Linux Audio

Check our new training course

Loading...
  1/*
  2 *  linux/arch/arm/mm/fault-armv.c
  3 *
  4 *  Copyright (C) 1995  Linus Torvalds
  5 *  Modifications for ARM processor (c) 1995-2002 Russell King
  6 *
  7 * This program is free software; you can redistribute it and/or modify
  8 * it under the terms of the GNU General Public License version 2 as
  9 * published by the Free Software Foundation.
 10 */
 11#include <linux/sched.h>
 12#include <linux/kernel.h>
 13#include <linux/mm.h>
 14#include <linux/bitops.h>
 15#include <linux/vmalloc.h>
 16#include <linux/init.h>
 17#include <linux/pagemap.h>
 18#include <linux/gfp.h>
 19
 20#include <asm/bugs.h>
 21#include <asm/cacheflush.h>
 22#include <asm/cachetype.h>
 23#include <asm/pgtable.h>
 24#include <asm/tlbflush.h>
 25
 26#include "mm.h"
 27
 28static pteval_t shared_pte_mask = L_PTE_MT_BUFFERABLE;
 29
 30#if __LINUX_ARM_ARCH__ < 6
 31/*
 32 * We take the easy way out of this problem - we make the
 33 * PTE uncacheable.  However, we leave the write buffer on.
 34 *
 35 * Note that the pte lock held when calling update_mmu_cache must also
 36 * guard the pte (somewhere else in the same mm) that we modify here.
 37 * Therefore those configurations which might call adjust_pte (those
 38 * without CONFIG_CPU_CACHE_VIPT) cannot support split page_table_lock.
 39 */
 40static int do_adjust_pte(struct vm_area_struct *vma, unsigned long address,
 41	unsigned long pfn, pte_t *ptep)
 42{
 43	pte_t entry = *ptep;
 44	int ret;
 45
 46	/*
 47	 * If this page is present, it's actually being shared.
 48	 */
 49	ret = pte_present(entry);
 50
 51	/*
 52	 * If this page isn't present, or is already setup to
 53	 * fault (ie, is old), we can safely ignore any issues.
 54	 */
 55	if (ret && (pte_val(entry) & L_PTE_MT_MASK) != shared_pte_mask) {
 56		flush_cache_page(vma, address, pfn);
 57		outer_flush_range((pfn << PAGE_SHIFT),
 58				  (pfn << PAGE_SHIFT) + PAGE_SIZE);
 59		pte_val(entry) &= ~L_PTE_MT_MASK;
 60		pte_val(entry) |= shared_pte_mask;
 61		set_pte_at(vma->vm_mm, address, ptep, entry);
 62		flush_tlb_page(vma, address);
 63	}
 64
 65	return ret;
 66}
 67
 68#if USE_SPLIT_PTLOCKS
 69/*
 70 * If we are using split PTE locks, then we need to take the page
 71 * lock here.  Otherwise we are using shared mm->page_table_lock
 72 * which is already locked, thus cannot take it.
 73 */
 74static inline void do_pte_lock(spinlock_t *ptl)
 75{
 76	/*
 77	 * Use nested version here to indicate that we are already
 78	 * holding one similar spinlock.
 79	 */
 80	spin_lock_nested(ptl, SINGLE_DEPTH_NESTING);
 81}
 82
 83static inline void do_pte_unlock(spinlock_t *ptl)
 84{
 85	spin_unlock(ptl);
 86}
 87#else /* !USE_SPLIT_PTLOCKS */
 88static inline void do_pte_lock(spinlock_t *ptl) {}
 89static inline void do_pte_unlock(spinlock_t *ptl) {}
 90#endif /* USE_SPLIT_PTLOCKS */
 91
 92static int adjust_pte(struct vm_area_struct *vma, unsigned long address,
 93	unsigned long pfn)
 94{
 95	spinlock_t *ptl;
 96	pgd_t *pgd;
 97	pud_t *pud;
 98	pmd_t *pmd;
 99	pte_t *pte;
100	int ret;
101
102	pgd = pgd_offset(vma->vm_mm, address);
103	if (pgd_none_or_clear_bad(pgd))
104		return 0;
105
106	pud = pud_offset(pgd, address);
107	if (pud_none_or_clear_bad(pud))
108		return 0;
109
110	pmd = pmd_offset(pud, address);
111	if (pmd_none_or_clear_bad(pmd))
112		return 0;
113
114	/*
115	 * This is called while another page table is mapped, so we
116	 * must use the nested version.  This also means we need to
117	 * open-code the spin-locking.
118	 */
119	ptl = pte_lockptr(vma->vm_mm, pmd);
120	pte = pte_offset_map(pmd, address);
121	do_pte_lock(ptl);
122
123	ret = do_adjust_pte(vma, address, pfn, pte);
124
125	do_pte_unlock(ptl);
126	pte_unmap(pte);
127
128	return ret;
129}
130
131static void
132make_coherent(struct address_space *mapping, struct vm_area_struct *vma,
133	unsigned long addr, pte_t *ptep, unsigned long pfn)
134{
135	struct mm_struct *mm = vma->vm_mm;
136	struct vm_area_struct *mpnt;
137	struct prio_tree_iter iter;
138	unsigned long offset;
139	pgoff_t pgoff;
140	int aliases = 0;
141
142	pgoff = vma->vm_pgoff + ((addr - vma->vm_start) >> PAGE_SHIFT);
143
144	/*
145	 * If we have any shared mappings that are in the same mm
146	 * space, then we need to handle them specially to maintain
147	 * cache coherency.
148	 */
149	flush_dcache_mmap_lock(mapping);
150	vma_prio_tree_foreach(mpnt, &iter, &mapping->i_mmap, pgoff, pgoff) {
151		/*
152		 * If this VMA is not in our MM, we can ignore it.
153		 * Note that we intentionally mask out the VMA
154		 * that we are fixing up.
155		 */
156		if (mpnt->vm_mm != mm || mpnt == vma)
157			continue;
158		if (!(mpnt->vm_flags & VM_MAYSHARE))
159			continue;
160		offset = (pgoff - mpnt->vm_pgoff) << PAGE_SHIFT;
161		aliases += adjust_pte(mpnt, mpnt->vm_start + offset, pfn);
162	}
163	flush_dcache_mmap_unlock(mapping);
164	if (aliases)
165		do_adjust_pte(vma, addr, pfn, ptep);
166}
167
168/*
169 * Take care of architecture specific things when placing a new PTE into
170 * a page table, or changing an existing PTE.  Basically, there are two
171 * things that we need to take care of:
172 *
173 *  1. If PG_dcache_clean is not set for the page, we need to ensure
174 *     that any cache entries for the kernels virtual memory
175 *     range are written back to the page.
176 *  2. If we have multiple shared mappings of the same space in
177 *     an object, we need to deal with the cache aliasing issues.
178 *
179 * Note that the pte lock will be held.
180 */
181void update_mmu_cache(struct vm_area_struct *vma, unsigned long addr,
182	pte_t *ptep)
183{
184	unsigned long pfn = pte_pfn(*ptep);
185	struct address_space *mapping;
186	struct page *page;
187
188	if (!pfn_valid(pfn))
189		return;
190
191	/*
192	 * The zero page is never written to, so never has any dirty
193	 * cache lines, and therefore never needs to be flushed.
194	 */
195	page = pfn_to_page(pfn);
196	if (page == ZERO_PAGE(0))
197		return;
198
199	mapping = page_mapping(page);
200	if (!test_and_set_bit(PG_dcache_clean, &page->flags))
201		__flush_dcache_page(mapping, page);
202	if (mapping) {
203		if (cache_is_vivt())
204			make_coherent(mapping, vma, addr, ptep, pfn);
205		else if (vma->vm_flags & VM_EXEC)
206			__flush_icache_all();
207	}
208}
209#endif	/* __LINUX_ARM_ARCH__ < 6 */
210
211/*
212 * Check whether the write buffer has physical address aliasing
213 * issues.  If it has, we need to avoid them for the case where
214 * we have several shared mappings of the same object in user
215 * space.
216 */
217static int __init check_writebuffer(unsigned long *p1, unsigned long *p2)
218{
219	register unsigned long zero = 0, one = 1, val;
220
221	local_irq_disable();
222	mb();
223	*p1 = one;
224	mb();
225	*p2 = zero;
226	mb();
227	val = *p1;
228	mb();
229	local_irq_enable();
230	return val != zero;
231}
232
233void __init check_writebuffer_bugs(void)
234{
235	struct page *page;
236	const char *reason;
237	unsigned long v = 1;
238
239	printk(KERN_INFO "CPU: Testing write buffer coherency: ");
240
241	page = alloc_page(GFP_KERNEL);
242	if (page) {
243		unsigned long *p1, *p2;
244		pgprot_t prot = __pgprot_modify(PAGE_KERNEL,
245					L_PTE_MT_MASK, L_PTE_MT_BUFFERABLE);
246
247		p1 = vmap(&page, 1, VM_IOREMAP, prot);
248		p2 = vmap(&page, 1, VM_IOREMAP, prot);
249
250		if (p1 && p2) {
251			v = check_writebuffer(p1, p2);
252			reason = "enabling work-around";
253		} else {
254			reason = "unable to map memory\n";
255		}
256
257		vunmap(p1);
258		vunmap(p2);
259		put_page(page);
260	} else {
261		reason = "unable to grab page\n";
262	}
263
264	if (v) {
265		printk("failed, %s\n", reason);
266		shared_pte_mask = L_PTE_MT_UNCACHED;
267	} else {
268		printk("ok\n");
269	}
270}