Linux Audio

Check our new training course

Embedded Linux training

Mar 10-20, 2025, special US time zones
Register
Loading...
v3.1
 
  1/*
  2 *  linux/arch/arm/mm/dma-mapping.c
  3 *
  4 *  Copyright (C) 2000-2004 Russell King
  5 *
  6 * This program is free software; you can redistribute it and/or modify
  7 * it under the terms of the GNU General Public License version 2 as
  8 * published by the Free Software Foundation.
  9 *
 10 *  DMA uncached mapping support.
 11 */
 12#include <linux/module.h>
 13#include <linux/mm.h>
 
 14#include <linux/gfp.h>
 15#include <linux/errno.h>
 16#include <linux/list.h>
 17#include <linux/init.h>
 18#include <linux/device.h>
 19#include <linux/dma-mapping.h>
 
 20#include <linux/highmem.h>
 
 
 
 
 
 
 
 21
 22#include <asm/memory.h>
 23#include <asm/highmem.h>
 24#include <asm/cacheflush.h>
 25#include <asm/tlbflush.h>
 26#include <asm/sizes.h>
 
 
 
 
 27
 
 28#include "mm.h"
 29
 30static u64 get_coherent_dma_mask(struct device *dev)
 31{
 32	u64 mask = (u64)arm_dma_limit;
 
 
 
 
 
 
 33
 34	if (dev) {
 35		mask = dev->coherent_dma_mask;
 
 
 
 
 
 36
 37		/*
 38		 * Sanity check the DMA mask - it must be non-zero, and
 39		 * must be able to be satisfied by a DMA allocation.
 40		 */
 41		if (mask == 0) {
 42			dev_warn(dev, "coherent DMA mask is unset\n");
 43			return 0;
 44		}
 
 
 
 
 
 
 45
 46		if ((~mask) & (u64)arm_dma_limit) {
 47			dev_warn(dev, "coherent DMA mask %#llx is smaller "
 48				 "than system GFP_DMA mask %#llx\n",
 49				 mask, (u64)arm_dma_limit);
 50			return 0;
 
 
 
 
 
 
 
 
 
 51		}
 52	}
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 53
 54	return mask;
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 55}
 56
 57/*
 58 * Allocate a DMA buffer for 'dev' of size 'size' using the
 59 * specified gfp mask.  Note that 'size' must be page aligned.
 60 */
 61static struct page *__dma_alloc_buffer(struct device *dev, size_t size, gfp_t gfp)
 
 62{
 63	unsigned long order = get_order(size);
 64	struct page *page, *p, *e;
 65	void *ptr;
 66	u64 mask = get_coherent_dma_mask(dev);
 67
 68#ifdef CONFIG_DMA_API_DEBUG
 69	u64 limit = (mask + 1) & ~mask;
 70	if (limit && size >= limit) {
 71		dev_warn(dev, "coherent allocation too big (requested %#x mask %#llx)\n",
 72			size, mask);
 73		return NULL;
 74	}
 75#endif
 76
 77	if (!mask)
 78		return NULL;
 79
 80	if (mask < 0xffffffffULL)
 81		gfp |= GFP_DMA;
 82
 83	page = alloc_pages(gfp, order);
 84	if (!page)
 85		return NULL;
 86
 87	/*
 88	 * Now split the huge page and free the excess pages
 89	 */
 90	split_page(page, order);
 91	for (p = page + (size >> PAGE_SHIFT), e = page + (1 << order); p < e; p++)
 92		__free_page(p);
 93
 94	/*
 95	 * Ensure that the allocated pages are zeroed, and that any data
 96	 * lurking in the kernel direct-mapped region is invalidated.
 97	 */
 98	ptr = page_address(page);
 99	memset(ptr, 0, size);
100	dmac_flush_range(ptr, ptr + size);
101	outer_flush_range(__pa(ptr), __pa(ptr) + size);
102
103	return page;
104}
105
106/*
107 * Free a DMA buffer.  'size' must be page aligned.
108 */
109static void __dma_free_buffer(struct page *page, size_t size)
110{
111	struct page *e = page + (size >> PAGE_SHIFT);
112
113	while (page < e) {
114		__free_page(page);
115		page++;
116	}
117}
118
119#ifdef CONFIG_MMU
120/* Sanity check size */
121#if (CONSISTENT_DMA_SIZE % SZ_2M)
122#error "CONSISTENT_DMA_SIZE must be multiple of 2MiB"
123#endif
124
125#define CONSISTENT_OFFSET(x)	(((unsigned long)(x) - CONSISTENT_BASE) >> PAGE_SHIFT)
126#define CONSISTENT_PTE_INDEX(x) (((unsigned long)(x) - CONSISTENT_BASE) >> PGDIR_SHIFT)
127#define NUM_CONSISTENT_PTES (CONSISTENT_DMA_SIZE >> PGDIR_SHIFT)
128
129/*
130 * These are the page tables (2MB each) covering uncached, DMA consistent allocations
131 */
132static pte_t *consistent_pte[NUM_CONSISTENT_PTES];
133
134#include "vmregion.h"
 
135
136static struct arm_vmregion_head consistent_head = {
137	.vm_lock	= __SPIN_LOCK_UNLOCKED(&consistent_head.vm_lock),
138	.vm_list	= LIST_HEAD_INIT(consistent_head.vm_list),
139	.vm_start	= CONSISTENT_BASE,
140	.vm_end		= CONSISTENT_END,
141};
142
143#ifdef CONFIG_HUGETLB_PAGE
144#error ARM Coherent DMA allocator does not (yet) support huge TLB
145#endif
 
 
 
146
147/*
148 * Initialise the consistent memory allocation.
149 */
150static int __init consistent_init(void)
151{
152	int ret = 0;
153	pgd_t *pgd;
154	pud_t *pud;
155	pmd_t *pmd;
156	pte_t *pte;
157	int i = 0;
158	u32 base = CONSISTENT_BASE;
159
160	do {
161		pgd = pgd_offset(&init_mm, base);
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
162
163		pud = pud_alloc(&init_mm, pgd, base);
164		if (!pud) {
165			printk(KERN_ERR "%s: no pud tables\n", __func__);
166			ret = -ENOMEM;
167			break;
168		}
 
 
 
 
 
 
169
170		pmd = pmd_alloc(&init_mm, pud, base);
171		if (!pmd) {
172			printk(KERN_ERR "%s: no pmd tables\n", __func__);
173			ret = -ENOMEM;
174			break;
175		}
176		WARN_ON(!pmd_none(*pmd));
177
178		pte = pte_alloc_kernel(pmd, base);
179		if (!pte) {
180			printk(KERN_ERR "%s: no pte tables\n", __func__);
181			ret = -ENOMEM;
182			break;
183		}
184
185		consistent_pte[i++] = pte;
186		base += (1 << PGDIR_SHIFT);
187	} while (base < CONSISTENT_END);
188
189	return ret;
 
 
 
 
190}
191
192core_initcall(consistent_init);
193
194static void *
195__dma_alloc_remap(struct page *page, size_t size, gfp_t gfp, pgprot_t prot)
196{
197	struct arm_vmregion *c;
198	size_t align;
199	int bit;
 
 
 
 
 
 
 
 
200
201	if (!consistent_pte[0]) {
202		printk(KERN_ERR "%s: not initialised\n", __func__);
203		dump_stack();
204		return NULL;
205	}
206
207	/*
208	 * Align the virtual region allocation - maximum alignment is
209	 * a section size, minimum is a page size.  This helps reduce
210	 * fragmentation of the DMA space, and also prevents allocations
211	 * smaller than a section from crossing a section boundary.
212	 */
213	bit = fls(size - 1);
214	if (bit > SECTION_SHIFT)
215		bit = SECTION_SHIFT;
216	align = 1 << bit;
 
 
217
218	/*
219	 * Allocate a virtual address in the consistent mapping region.
220	 */
221	c = arm_vmregion_alloc(&consistent_head, align, size,
222			    gfp & ~(__GFP_DMA | __GFP_HIGHMEM));
223	if (c) {
224		pte_t *pte;
225		int idx = CONSISTENT_PTE_INDEX(c->vm_start);
226		u32 off = CONSISTENT_OFFSET(c->vm_start) & (PTRS_PER_PTE-1);
227
228		pte = consistent_pte[idx] + off;
229		c->vm_pages = page;
 
 
230
231		do {
232			BUG_ON(!pte_none(*pte));
 
 
233
234			set_pte_ext(pte, mk_pte(page, prot), 0);
235			page++;
236			pte++;
237			off++;
238			if (off >= PTRS_PER_PTE) {
239				off = 0;
240				pte = consistent_pte[++idx];
241			}
242		} while (size -= PAGE_SIZE);
243
244		dsb();
 
 
 
245
246		return (void *)c->vm_start;
247	}
248	return NULL;
249}
250
251static void __dma_free_remap(void *cpu_addr, size_t size)
 
 
252{
253	struct arm_vmregion *c;
254	unsigned long addr;
255	pte_t *ptep;
256	int idx;
257	u32 off;
 
 
 
 
 
 
258
259	c = arm_vmregion_find_remove(&consistent_head, (unsigned long)cpu_addr);
260	if (!c) {
261		printk(KERN_ERR "%s: trying to free invalid coherent area: %p\n",
262		       __func__, cpu_addr);
263		dump_stack();
264		return;
265	}
266
267	if ((c->vm_end - c->vm_start) != size) {
268		printk(KERN_ERR "%s: freeing wrong coherent size (%ld != %d)\n",
269		       __func__, c->vm_end - c->vm_start, size);
270		dump_stack();
271		size = c->vm_end - c->vm_start;
272	}
273
274	idx = CONSISTENT_PTE_INDEX(c->vm_start);
275	off = CONSISTENT_OFFSET(c->vm_start) & (PTRS_PER_PTE-1);
276	ptep = consistent_pte[idx] + off;
277	addr = c->vm_start;
278	do {
279		pte_t pte = ptep_get_and_clear(&init_mm, addr, ptep);
280
281		ptep++;
282		addr += PAGE_SIZE;
283		off++;
284		if (off >= PTRS_PER_PTE) {
285			off = 0;
286			ptep = consistent_pte[++idx];
287		}
288
289		if (pte_none(pte) || !pte_present(pte))
290			printk(KERN_CRIT "%s: bad page in kernel page table\n",
291			       __func__);
292	} while (size -= PAGE_SIZE);
293
294	flush_tlb_kernel_range(c->vm_start, c->vm_end);
 
 
295
296	arm_vmregion_free(&consistent_head, c);
297}
298
299#else	/* !CONFIG_MMU */
 
 
 
300
301#define __dma_alloc_remap(page, size, gfp, prot)	page_address(page)
302#define __dma_free_remap(addr, size)			do { } while (0)
 
 
303
304#endif	/* CONFIG_MMU */
 
 
 
305
306static void *
307__dma_alloc(struct device *dev, size_t size, dma_addr_t *handle, gfp_t gfp,
308	    pgprot_t prot)
 
309{
 
 
310	struct page *page;
311	void *addr;
312
313	*handle = ~0;
314	size = PAGE_ALIGN(size);
315
316	page = __dma_alloc_buffer(dev, size, gfp);
317	if (!page)
318		return NULL;
319
320	if (!arch_is_coherent())
321		addr = __dma_alloc_remap(page, size, gfp, prot);
322	else
323		addr = page_address(page);
324
325	if (addr)
326		*handle = pfn_to_dma(dev, page_to_pfn(page));
327	else
328		__dma_free_buffer(page, size);
329
330	return addr;
 
 
 
 
 
 
 
 
 
 
 
 
 
331}
332
333/*
334 * Allocate DMA-coherent memory space and return both the kernel remapped
335 * virtual and bus address for that space.
336 */
337void *
338dma_alloc_coherent(struct device *dev, size_t size, dma_addr_t *handle, gfp_t gfp)
 
 
 
 
 
 
 
339{
340	void *memory;
 
 
 
 
341
342	if (dma_alloc_from_coherent(dev, size, handle, &memory))
343		return memory;
 
 
 
 
 
 
344
345	return __dma_alloc(dev, size, handle, gfp,
346			   pgprot_dmacoherent(pgprot_kernel));
347}
348EXPORT_SYMBOL(dma_alloc_coherent);
349
350/*
351 * Allocate a writecombining region, in much the same way as
352 * dma_alloc_coherent above.
353 */
354void *
355dma_alloc_writecombine(struct device *dev, size_t size, dma_addr_t *handle, gfp_t gfp)
356{
357	return __dma_alloc(dev, size, handle, gfp,
358			   pgprot_writecombine(pgprot_kernel));
359}
360EXPORT_SYMBOL(dma_alloc_writecombine);
361
362static int dma_mmap(struct device *dev, struct vm_area_struct *vma,
363		    void *cpu_addr, dma_addr_t dma_addr, size_t size)
364{
365	int ret = -ENXIO;
366#ifdef CONFIG_MMU
367	unsigned long user_size, kern_size;
368	struct arm_vmregion *c;
369
370	user_size = (vma->vm_end - vma->vm_start) >> PAGE_SHIFT;
 
 
 
371
372	c = arm_vmregion_find(&consistent_head, (unsigned long)cpu_addr);
373	if (c) {
374		unsigned long off = vma->vm_pgoff;
 
 
 
 
 
375
376		kern_size = (c->vm_end - c->vm_start) >> PAGE_SHIFT;
 
 
 
 
377
378		if (off < kern_size &&
379		    user_size <= (kern_size - off)) {
380			ret = remap_pfn_range(vma, vma->vm_start,
381					      page_to_pfn(c->vm_pages) + off,
382					      user_size << PAGE_SHIFT,
383					      vma->vm_page_prot);
384		}
385	}
386#endif	/* CONFIG_MMU */
387
388	return ret;
 
 
 
389}
390
391int dma_mmap_coherent(struct device *dev, struct vm_area_struct *vma,
392		      void *cpu_addr, dma_addr_t dma_addr, size_t size)
393{
394	vma->vm_page_prot = pgprot_dmacoherent(vma->vm_page_prot);
395	return dma_mmap(dev, vma, cpu_addr, dma_addr, size);
396}
397EXPORT_SYMBOL(dma_mmap_coherent);
398
399int dma_mmap_writecombine(struct device *dev, struct vm_area_struct *vma,
400			  void *cpu_addr, dma_addr_t dma_addr, size_t size)
 
 
 
 
 
401{
402	vma->vm_page_prot = pgprot_writecombine(vma->vm_page_prot);
403	return dma_mmap(dev, vma, cpu_addr, dma_addr, size);
 
404}
405EXPORT_SYMBOL(dma_mmap_writecombine);
406
407/*
408 * free a page as defined by the above mapping.
409 * Must not be called with IRQs disabled.
410 */
411void dma_free_coherent(struct device *dev, size_t size, void *cpu_addr, dma_addr_t handle)
412{
413	WARN_ON(irqs_disabled());
 
414
415	if (dma_release_from_coherent(dev, get_order(size), cpu_addr))
416		return;
417
418	size = PAGE_ALIGN(size);
 
 
 
419
420	if (!arch_is_coherent())
421		__dma_free_remap(cpu_addr, size);
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
422
423	__dma_free_buffer(pfn_to_page(dma_to_pfn(dev, handle)), size);
424}
425EXPORT_SYMBOL(dma_free_coherent);
 
 
 
 
 
426
427/*
428 * Make an area consistent for devices.
429 * Note: Drivers should NOT use this function directly, as it will break
430 * platforms with CONFIG_DMABOUNCE.
431 * Use the driver DMA support - see dma-mapping.h (dma_sync_*)
432 */
433void ___dma_single_cpu_to_dev(const void *kaddr, size_t size,
434	enum dma_data_direction dir)
435{
436	unsigned long paddr;
437
438	BUG_ON(!virt_addr_valid(kaddr) || !virt_addr_valid(kaddr + size - 1));
 
439
440	dmac_map_area(kaddr, size, dir);
441
442	paddr = __pa(kaddr);
443	if (dir == DMA_FROM_DEVICE) {
444		outer_inv_range(paddr, paddr + size);
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
445	} else {
446		outer_clean_range(paddr, paddr + size);
447	}
448	/* FIXME: non-speculating: flush on bidirectional mappings? */
 
449}
450EXPORT_SYMBOL(___dma_single_cpu_to_dev);
451
452void ___dma_single_dev_to_cpu(const void *kaddr, size_t size,
453	enum dma_data_direction dir)
454{
455	BUG_ON(!virt_addr_valid(kaddr) || !virt_addr_valid(kaddr + size - 1));
 
 
 
 
 
 
 
 
 
 
 
 
456
457	/* FIXME: non-speculating: not required */
458	/* don't bother invalidating if DMA to device */
459	if (dir != DMA_TO_DEVICE) {
460		unsigned long paddr = __pa(kaddr);
461		outer_inv_range(paddr, paddr + size);
462	}
463
464	dmac_unmap_area(kaddr, size, dir);
 
465}
466EXPORT_SYMBOL(___dma_single_dev_to_cpu);
467
468static void dma_cache_maint_page(struct page *page, unsigned long offset,
469	size_t size, enum dma_data_direction dir,
470	void (*op)(const void *, size_t, int))
471{
 
 
 
 
 
 
472	/*
473	 * A single sg entry may refer to multiple physically contiguous
474	 * pages.  But we still need to process highmem pages individually.
475	 * If highmem is not configured then the bulk of this loop gets
476	 * optimized out.
477	 */
478	size_t left = size;
479	do {
480		size_t len = left;
481		void *vaddr;
482
 
 
483		if (PageHighMem(page)) {
484			if (len + offset > PAGE_SIZE) {
485				if (offset >= PAGE_SIZE) {
486					page += offset / PAGE_SIZE;
487					offset %= PAGE_SIZE;
488				}
489				len = PAGE_SIZE - offset;
490			}
491			vaddr = kmap_high_get(page);
492			if (vaddr) {
493				vaddr += offset;
494				op(vaddr, len, dir);
495				kunmap_high(page);
496			} else if (cache_is_vipt()) {
497				/* unmapped pages might still be cached */
498				vaddr = kmap_atomic(page);
499				op(vaddr + offset, len, dir);
500				kunmap_atomic(vaddr);
 
 
 
 
 
 
501			}
502		} else {
503			vaddr = page_address(page) + offset;
504			op(vaddr, len, dir);
505		}
506		offset = 0;
507		page++;
508		left -= len;
509	} while (left);
510}
511
512void ___dma_page_cpu_to_dev(struct page *page, unsigned long off,
 
 
 
 
 
513	size_t size, enum dma_data_direction dir)
514{
515	unsigned long paddr;
516
517	dma_cache_maint_page(page, off, size, dir, dmac_map_area);
518
519	paddr = page_to_phys(page) + off;
520	if (dir == DMA_FROM_DEVICE) {
521		outer_inv_range(paddr, paddr + size);
522	} else {
523		outer_clean_range(paddr, paddr + size);
524	}
525	/* FIXME: non-speculating: flush on bidirectional mappings? */
526}
527EXPORT_SYMBOL(___dma_page_cpu_to_dev);
528
529void ___dma_page_dev_to_cpu(struct page *page, unsigned long off,
530	size_t size, enum dma_data_direction dir)
531{
532	unsigned long paddr = page_to_phys(page) + off;
533
534	/* FIXME: non-speculating: not required */
535	/* don't bother invalidating if DMA to device */
536	if (dir != DMA_TO_DEVICE)
537		outer_inv_range(paddr, paddr + size);
538
539	dma_cache_maint_page(page, off, size, dir, dmac_unmap_area);
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
540
541	/*
542	 * Mark the D-cache clean for this page to avoid extra flushing.
 
543	 */
544	if (dir != DMA_TO_DEVICE && off == 0 && size >= PAGE_SIZE)
545		set_bit(PG_dcache_clean, &page->flags);
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
546}
547EXPORT_SYMBOL(___dma_page_dev_to_cpu);
548
549/**
550 * dma_map_sg - map a set of SG buffers for streaming mode DMA
551 * @dev: valid struct device pointer, or NULL for ISA and EISA-like devices
552 * @sg: list of buffers
553 * @nents: number of buffers to map
554 * @dir: DMA transfer direction
555 *
556 * Map a set of buffers described by scatterlist in streaming mode for DMA.
557 * This is the scatter-gather version of the dma_map_single interface.
558 * Here the scatter gather list elements are each tagged with the
559 * appropriate dma address and length.  They are obtained via
560 * sg_dma_{address,length}.
561 *
562 * Device ownership issues as mentioned for dma_map_single are the same
563 * here.
564 */
565int dma_map_sg(struct device *dev, struct scatterlist *sg, int nents,
566		enum dma_data_direction dir)
567{
568	struct scatterlist *s;
569	int i, j;
570
571	BUG_ON(!valid_dma_direction(dir));
572
573	for_each_sg(sg, s, nents, i) {
574		s->dma_address = __dma_map_page(dev, sg_page(s), s->offset,
575						s->length, dir);
576		if (dma_mapping_error(dev, s->dma_address))
577			goto bad_mapping;
578	}
579	debug_dma_map_sg(dev, sg, nents, nents, dir);
580	return nents;
581
582 bad_mapping:
583	for_each_sg(sg, s, i, j)
584		__dma_unmap_page(dev, sg_dma_address(s), sg_dma_len(s), dir);
585	return 0;
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
586}
587EXPORT_SYMBOL(dma_map_sg);
588
589/**
590 * dma_unmap_sg - unmap a set of SG buffers mapped by dma_map_sg
591 * @dev: valid struct device pointer, or NULL for ISA and EISA-like devices
592 * @sg: list of buffers
593 * @nents: number of buffers to unmap (same as was passed to dma_map_sg)
594 * @dir: DMA transfer direction (same as was passed to dma_map_sg)
595 *
596 * Unmap a set of streaming mode DMA translations.  Again, CPU access
597 * rules concerning calls here are the same as for dma_unmap_single().
598 */
599void dma_unmap_sg(struct device *dev, struct scatterlist *sg, int nents,
600		enum dma_data_direction dir)
 
 
601{
602	struct scatterlist *s;
603	int i;
604
605	debug_dma_unmap_sg(dev, sg, nents, dir);
606
607	for_each_sg(sg, s, nents, i)
608		__dma_unmap_page(dev, sg_dma_address(s), sg_dma_len(s), dir);
 
 
 
 
609}
610EXPORT_SYMBOL(dma_unmap_sg);
611
612/**
613 * dma_sync_sg_for_cpu
614 * @dev: valid struct device pointer, or NULL for ISA and EISA-like devices
615 * @sg: list of buffers
616 * @nents: number of buffers to map (returned from dma_map_sg)
617 * @dir: DMA transfer direction (same as was passed to dma_map_sg)
618 */
619void dma_sync_sg_for_cpu(struct device *dev, struct scatterlist *sg,
 
620			int nents, enum dma_data_direction dir)
621{
622	struct scatterlist *s;
623	int i;
624
625	for_each_sg(sg, s, nents, i) {
626		if (!dmabounce_sync_for_cpu(dev, sg_dma_address(s), 0,
627					    sg_dma_len(s), dir))
628			continue;
629
630		__dma_page_dev_to_cpu(sg_page(s), s->offset,
631				      s->length, dir);
632	}
633
634	debug_dma_sync_sg_for_cpu(dev, sg, nents, dir);
635}
636EXPORT_SYMBOL(dma_sync_sg_for_cpu);
637
638/**
639 * dma_sync_sg_for_device
640 * @dev: valid struct device pointer, or NULL for ISA and EISA-like devices
641 * @sg: list of buffers
642 * @nents: number of buffers to map (returned from dma_map_sg)
643 * @dir: DMA transfer direction (same as was passed to dma_map_sg)
644 */
645void dma_sync_sg_for_device(struct device *dev, struct scatterlist *sg,
 
646			int nents, enum dma_data_direction dir)
647{
648	struct scatterlist *s;
649	int i;
650
651	for_each_sg(sg, s, nents, i) {
652		if (!dmabounce_sync_for_device(dev, sg_dma_address(s), 0,
653					sg_dma_len(s), dir))
654			continue;
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
655
656		__dma_page_cpu_to_dev(sg_page(s), s->offset,
657				      s->length, dir);
 
658	}
659
660	debug_dma_sync_sg_for_device(dev, sg, nents, dir);
 
661}
662EXPORT_SYMBOL(dma_sync_sg_for_device);
663
664/*
665 * Return whether the given device DMA address mask can be supported
666 * properly.  For example, if your device can only drive the low 24-bits
667 * during bus mastering, then you would pass 0x00ffffff as the mask
668 * to this function.
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
669 */
670int dma_supported(struct device *dev, u64 mask)
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
671{
672	if (mask < (u64)arm_dma_limit)
673		return 0;
674	return 1;
 
 
 
 
 
 
 
675}
676EXPORT_SYMBOL(dma_supported);
677
678int dma_set_mask(struct device *dev, u64 dma_mask)
 
679{
680	if (!dev->dma_mask || !dma_supported(dev, dma_mask))
681		return -EIO;
 
 
682
683#ifndef CONFIG_DMABOUNCE
684	*dev->dma_mask = dma_mask;
685#endif
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
686
687	return 0;
688}
689EXPORT_SYMBOL(dma_set_mask);
690
691#define PREALLOC_DMA_DEBUG_ENTRIES	4096
 
 
 
 
 
692
693static int __init dma_debug_do_init(void)
 
694{
695	dma_debug_init(PREALLOC_DMA_DEBUG_ENTRIES);
 
 
 
 
 
 
 
 
 
696	return 0;
697}
698fs_initcall(dma_debug_do_init);
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
v6.2
   1// SPDX-License-Identifier: GPL-2.0-only
   2/*
   3 *  linux/arch/arm/mm/dma-mapping.c
   4 *
   5 *  Copyright (C) 2000-2004 Russell King
   6 *
 
 
 
 
   7 *  DMA uncached mapping support.
   8 */
   9#include <linux/module.h>
  10#include <linux/mm.h>
  11#include <linux/genalloc.h>
  12#include <linux/gfp.h>
  13#include <linux/errno.h>
  14#include <linux/list.h>
  15#include <linux/init.h>
  16#include <linux/device.h>
  17#include <linux/dma-direct.h>
  18#include <linux/dma-map-ops.h>
  19#include <linux/highmem.h>
  20#include <linux/memblock.h>
  21#include <linux/slab.h>
  22#include <linux/iommu.h>
  23#include <linux/io.h>
  24#include <linux/vmalloc.h>
  25#include <linux/sizes.h>
  26#include <linux/cma.h>
  27
  28#include <asm/memory.h>
  29#include <asm/highmem.h>
  30#include <asm/cacheflush.h>
  31#include <asm/tlbflush.h>
  32#include <asm/mach/arch.h>
  33#include <asm/dma-iommu.h>
  34#include <asm/mach/map.h>
  35#include <asm/system_info.h>
  36#include <asm/xen/xen-ops.h>
  37
  38#include "dma.h"
  39#include "mm.h"
  40
  41struct arm_dma_alloc_args {
  42	struct device *dev;
  43	size_t size;
  44	gfp_t gfp;
  45	pgprot_t prot;
  46	const void *caller;
  47	bool want_vaddr;
  48	int coherent_flag;
  49};
  50
  51struct arm_dma_free_args {
  52	struct device *dev;
  53	size_t size;
  54	void *cpu_addr;
  55	struct page *page;
  56	bool want_vaddr;
  57};
  58
  59#define NORMAL	    0
  60#define COHERENT    1
  61
  62struct arm_dma_allocator {
  63	void *(*alloc)(struct arm_dma_alloc_args *args,
  64		       struct page **ret_page);
  65	void (*free)(struct arm_dma_free_args *args);
  66};
  67
  68struct arm_dma_buffer {
  69	struct list_head list;
  70	void *virt;
  71	struct arm_dma_allocator *allocator;
  72};
  73
  74static LIST_HEAD(arm_dma_bufs);
  75static DEFINE_SPINLOCK(arm_dma_bufs_lock);
  76
  77static struct arm_dma_buffer *arm_dma_buffer_find(void *virt)
  78{
  79	struct arm_dma_buffer *buf, *found = NULL;
  80	unsigned long flags;
  81
  82	spin_lock_irqsave(&arm_dma_bufs_lock, flags);
  83	list_for_each_entry(buf, &arm_dma_bufs, list) {
  84		if (buf->virt == virt) {
  85			list_del(&buf->list);
  86			found = buf;
  87			break;
  88		}
  89	}
  90	spin_unlock_irqrestore(&arm_dma_bufs_lock, flags);
  91	return found;
  92}
  93
  94/*
  95 * The DMA API is built upon the notion of "buffer ownership".  A buffer
  96 * is either exclusively owned by the CPU (and therefore may be accessed
  97 * by it) or exclusively owned by the DMA device.  These helper functions
  98 * represent the transitions between these two ownership states.
  99 *
 100 * Note, however, that on later ARMs, this notion does not work due to
 101 * speculative prefetches.  We model our approach on the assumption that
 102 * the CPU does do speculative prefetches, which means we clean caches
 103 * before transfers and delay cache invalidation until transfer completion.
 104 *
 105 */
 106
 107static void __dma_clear_buffer(struct page *page, size_t size, int coherent_flag)
 108{
 109	/*
 110	 * Ensure that the allocated pages are zeroed, and that any data
 111	 * lurking in the kernel direct-mapped region is invalidated.
 112	 */
 113	if (PageHighMem(page)) {
 114		phys_addr_t base = __pfn_to_phys(page_to_pfn(page));
 115		phys_addr_t end = base + size;
 116		while (size > 0) {
 117			void *ptr = kmap_atomic(page);
 118			memset(ptr, 0, PAGE_SIZE);
 119			if (coherent_flag != COHERENT)
 120				dmac_flush_range(ptr, ptr + PAGE_SIZE);
 121			kunmap_atomic(ptr);
 122			page++;
 123			size -= PAGE_SIZE;
 124		}
 125		if (coherent_flag != COHERENT)
 126			outer_flush_range(base, end);
 127	} else {
 128		void *ptr = page_address(page);
 129		memset(ptr, 0, size);
 130		if (coherent_flag != COHERENT) {
 131			dmac_flush_range(ptr, ptr + size);
 132			outer_flush_range(__pa(ptr), __pa(ptr) + size);
 133		}
 134	}
 135}
 136
 137/*
 138 * Allocate a DMA buffer for 'dev' of size 'size' using the
 139 * specified gfp mask.  Note that 'size' must be page aligned.
 140 */
 141static struct page *__dma_alloc_buffer(struct device *dev, size_t size,
 142				       gfp_t gfp, int coherent_flag)
 143{
 144	unsigned long order = get_order(size);
 145	struct page *page, *p, *e;
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 146
 147	page = alloc_pages(gfp, order);
 148	if (!page)
 149		return NULL;
 150
 151	/*
 152	 * Now split the huge page and free the excess pages
 153	 */
 154	split_page(page, order);
 155	for (p = page + (size >> PAGE_SHIFT), e = page + (1 << order); p < e; p++)
 156		__free_page(p);
 157
 158	__dma_clear_buffer(page, size, coherent_flag);
 
 
 
 
 
 
 
 159
 160	return page;
 161}
 162
 163/*
 164 * Free a DMA buffer.  'size' must be page aligned.
 165 */
 166static void __dma_free_buffer(struct page *page, size_t size)
 167{
 168	struct page *e = page + (size >> PAGE_SHIFT);
 169
 170	while (page < e) {
 171		__free_page(page);
 172		page++;
 173	}
 174}
 175
 176static void *__alloc_from_contiguous(struct device *dev, size_t size,
 177				     pgprot_t prot, struct page **ret_page,
 178				     const void *caller, bool want_vaddr,
 179				     int coherent_flag, gfp_t gfp);
 
 
 
 
 
 180
 181static void *__alloc_remap_buffer(struct device *dev, size_t size, gfp_t gfp,
 182				 pgprot_t prot, struct page **ret_page,
 183				 const void *caller, bool want_vaddr);
 
 184
 185#define DEFAULT_DMA_COHERENT_POOL_SIZE	SZ_256K
 186static struct gen_pool *atomic_pool __ro_after_init;
 187
 188static size_t atomic_pool_size __initdata = DEFAULT_DMA_COHERENT_POOL_SIZE;
 
 
 
 
 
 189
 190static int __init early_coherent_pool(char *p)
 191{
 192	atomic_pool_size = memparse(p, &p);
 193	return 0;
 194}
 195early_param("coherent_pool", early_coherent_pool);
 196
 197/*
 198 * Initialise the coherent pool for atomic allocations.
 199 */
 200static int __init atomic_pool_init(void)
 201{
 202	pgprot_t prot = pgprot_dmacoherent(PAGE_KERNEL);
 203	gfp_t gfp = GFP_KERNEL | GFP_DMA;
 204	struct page *page;
 205	void *ptr;
 
 
 
 206
 207	atomic_pool = gen_pool_create(PAGE_SHIFT, -1);
 208	if (!atomic_pool)
 209		goto out;
 210	/*
 211	 * The atomic pool is only used for non-coherent allocations
 212	 * so we must pass NORMAL for coherent_flag.
 213	 */
 214	if (dev_get_cma_area(NULL))
 215		ptr = __alloc_from_contiguous(NULL, atomic_pool_size, prot,
 216				      &page, atomic_pool_init, true, NORMAL,
 217				      GFP_KERNEL);
 218	else
 219		ptr = __alloc_remap_buffer(NULL, atomic_pool_size, gfp, prot,
 220					   &page, atomic_pool_init, true);
 221	if (ptr) {
 222		int ret;
 223
 224		ret = gen_pool_add_virt(atomic_pool, (unsigned long)ptr,
 225					page_to_phys(page),
 226					atomic_pool_size, -1);
 227		if (ret)
 228			goto destroy_genpool;
 229
 230		gen_pool_set_algo(atomic_pool,
 231				gen_pool_first_fit_order_align,
 232				NULL);
 233		pr_info("DMA: preallocated %zu KiB pool for atomic coherent allocations\n",
 234		       atomic_pool_size / 1024);
 235		return 0;
 236	}
 237
 238destroy_genpool:
 239	gen_pool_destroy(atomic_pool);
 240	atomic_pool = NULL;
 241out:
 242	pr_err("DMA: failed to allocate %zu KiB pool for atomic coherent allocation\n",
 243	       atomic_pool_size / 1024);
 244	return -ENOMEM;
 245}
 246/*
 247 * CMA is activated by core_initcall, so we must be called after it.
 248 */
 249postcore_initcall(atomic_pool_init);
 250
 251#ifdef CONFIG_CMA_AREAS
 252struct dma_contig_early_reserve {
 253	phys_addr_t base;
 254	unsigned long size;
 255};
 
 
 256
 257static struct dma_contig_early_reserve dma_mmu_remap[MAX_CMA_AREAS] __initdata;
 
 
 
 
 
 258
 259static int dma_mmu_remap_num __initdata;
 
 
 260
 261void __init dma_contiguous_early_fixup(phys_addr_t base, unsigned long size)
 262{
 263	dma_mmu_remap[dma_mmu_remap_num].base = base;
 264	dma_mmu_remap[dma_mmu_remap_num].size = size;
 265	dma_mmu_remap_num++;
 266}
 267
 268void __init dma_contiguous_remap(void)
 
 
 
 269{
 270	int i;
 271	for (i = 0; i < dma_mmu_remap_num; i++) {
 272		phys_addr_t start = dma_mmu_remap[i].base;
 273		phys_addr_t end = start + dma_mmu_remap[i].size;
 274		struct map_desc map;
 275		unsigned long addr;
 276
 277		if (end > arm_lowmem_limit)
 278			end = arm_lowmem_limit;
 279		if (start >= end)
 280			continue;
 281
 282		map.pfn = __phys_to_pfn(start);
 283		map.virtual = __phys_to_virt(start);
 284		map.length = end - start;
 285		map.type = MT_MEMORY_DMA_READY;
 
 286
 287		/*
 288		 * Clear previous low-memory mapping to ensure that the
 289		 * TLB does not see any conflicting entries, then flush
 290		 * the TLB of the old entries before creating new mappings.
 291		 *
 292		 * This ensures that any speculatively loaded TLB entries
 293		 * (even though they may be rare) can not cause any problems,
 294		 * and ensures that this code is architecturally compliant.
 295		 */
 296		for (addr = __phys_to_virt(start); addr < __phys_to_virt(end);
 297		     addr += PMD_SIZE)
 298			pmd_clear(pmd_off_k(addr));
 299
 300		flush_tlb_kernel_range(__phys_to_virt(start),
 301				       __phys_to_virt(end));
 
 
 
 
 
 
 
 302
 303		iotable_init(&map, 1);
 304	}
 305}
 306#endif
 307
 308static int __dma_update_pte(pte_t *pte, unsigned long addr, void *data)
 309{
 310	struct page *page = virt_to_page((void *)addr);
 311	pgprot_t prot = *(pgprot_t *)data;
 312
 313	set_pte_ext(pte, mk_pte(page, prot), 0);
 314	return 0;
 315}
 
 
 
 
 
 
 316
 317static void __dma_remap(struct page *page, size_t size, pgprot_t prot)
 318{
 319	unsigned long start = (unsigned long) page_address(page);
 320	unsigned end = start + size;
 321
 322	apply_to_page_range(&init_mm, start, size, __dma_update_pte, &prot);
 323	flush_tlb_kernel_range(start, end);
 
 324}
 325
 326static void *__alloc_remap_buffer(struct device *dev, size_t size, gfp_t gfp,
 327				 pgprot_t prot, struct page **ret_page,
 328				 const void *caller, bool want_vaddr)
 329{
 330	struct page *page;
 331	void *ptr = NULL;
 332	/*
 333	 * __alloc_remap_buffer is only called when the device is
 334	 * non-coherent
 335	 */
 336	page = __dma_alloc_buffer(dev, size, gfp, NORMAL);
 337	if (!page)
 338		return NULL;
 339	if (!want_vaddr)
 340		goto out;
 341
 342	ptr = dma_common_contiguous_remap(page, size, prot, caller);
 343	if (!ptr) {
 344		__dma_free_buffer(page, size);
 345		return NULL;
 
 
 346	}
 347
 348 out:
 349	*ret_page = page;
 350	return ptr;
 351}
 
 
 352
 353static void *__alloc_from_pool(size_t size, struct page **ret_page)
 354{
 355	unsigned long val;
 356	void *ptr = NULL;
 
 
 357
 358	if (!atomic_pool) {
 359		WARN(1, "coherent pool not initialised!\n");
 360		return NULL;
 361	}
 
 
 
 362
 363	val = gen_pool_alloc(atomic_pool, size);
 364	if (val) {
 365		phys_addr_t phys = gen_pool_virt_to_phys(atomic_pool, val);
 
 366
 367		*ret_page = phys_to_page(phys);
 368		ptr = (void *)val;
 369	}
 370
 371	return ptr;
 372}
 373
 374static bool __in_atomic_pool(void *start, size_t size)
 375{
 376	return gen_pool_has_addr(atomic_pool, (unsigned long)start, size);
 377}
 378
 379static int __free_from_pool(void *start, size_t size)
 380{
 381	if (!__in_atomic_pool(start, size))
 382		return 0;
 383
 384	gen_pool_free(atomic_pool, (unsigned long)start, size);
 385
 386	return 1;
 387}
 388
 389static void *__alloc_from_contiguous(struct device *dev, size_t size,
 390				     pgprot_t prot, struct page **ret_page,
 391				     const void *caller, bool want_vaddr,
 392				     int coherent_flag, gfp_t gfp)
 393{
 394	unsigned long order = get_order(size);
 395	size_t count = size >> PAGE_SHIFT;
 396	struct page *page;
 397	void *ptr = NULL;
 
 
 
 398
 399	page = dma_alloc_from_contiguous(dev, count, order, gfp & __GFP_NOWARN);
 400	if (!page)
 401		return NULL;
 402
 403	__dma_clear_buffer(page, size, coherent_flag);
 
 
 
 404
 405	if (!want_vaddr)
 406		goto out;
 
 
 407
 408	if (PageHighMem(page)) {
 409		ptr = dma_common_contiguous_remap(page, size, prot, caller);
 410		if (!ptr) {
 411			dma_release_from_contiguous(dev, page, count);
 412			return NULL;
 413		}
 414	} else {
 415		__dma_remap(page, size, prot);
 416		ptr = page_address(page);
 417	}
 418
 419 out:
 420	*ret_page = page;
 421	return ptr;
 422}
 423
 424static void __free_from_contiguous(struct device *dev, struct page *page,
 425				   void *cpu_addr, size_t size, bool want_vaddr)
 426{
 427	if (want_vaddr) {
 428		if (PageHighMem(page))
 429			dma_common_free_remap(cpu_addr, size);
 430		else
 431			__dma_remap(page, size, PAGE_KERNEL);
 432	}
 433	dma_release_from_contiguous(dev, page, size >> PAGE_SHIFT);
 434}
 435
 436static inline pgprot_t __get_dma_pgprot(unsigned long attrs, pgprot_t prot)
 437{
 438	prot = (attrs & DMA_ATTR_WRITE_COMBINE) ?
 439			pgprot_writecombine(prot) :
 440			pgprot_dmacoherent(prot);
 441	return prot;
 442}
 443
 444static void *__alloc_simple_buffer(struct device *dev, size_t size, gfp_t gfp,
 445				   struct page **ret_page)
 446{
 447	struct page *page;
 448	/* __alloc_simple_buffer is only called when the device is coherent */
 449	page = __dma_alloc_buffer(dev, size, gfp, COHERENT);
 450	if (!page)
 451		return NULL;
 452
 453	*ret_page = page;
 454	return page_address(page);
 455}
 
 456
 457static void *simple_allocator_alloc(struct arm_dma_alloc_args *args,
 458				    struct page **ret_page)
 
 
 
 
 459{
 460	return __alloc_simple_buffer(args->dev, args->size, args->gfp,
 461				     ret_page);
 462}
 
 463
 464static void simple_allocator_free(struct arm_dma_free_args *args)
 
 465{
 466	__dma_free_buffer(args->page, args->size);
 467}
 
 
 468
 469static struct arm_dma_allocator simple_allocator = {
 470	.alloc = simple_allocator_alloc,
 471	.free = simple_allocator_free,
 472};
 473
 474static void *cma_allocator_alloc(struct arm_dma_alloc_args *args,
 475				 struct page **ret_page)
 476{
 477	return __alloc_from_contiguous(args->dev, args->size, args->prot,
 478				       ret_page, args->caller,
 479				       args->want_vaddr, args->coherent_flag,
 480				       args->gfp);
 481}
 482
 483static void cma_allocator_free(struct arm_dma_free_args *args)
 484{
 485	__free_from_contiguous(args->dev, args->page, args->cpu_addr,
 486			       args->size, args->want_vaddr);
 487}
 488
 489static struct arm_dma_allocator cma_allocator = {
 490	.alloc = cma_allocator_alloc,
 491	.free = cma_allocator_free,
 492};
 
 
 
 
 
 493
 494static void *pool_allocator_alloc(struct arm_dma_alloc_args *args,
 495				  struct page **ret_page)
 496{
 497	return __alloc_from_pool(args->size, ret_page);
 498}
 499
 500static void pool_allocator_free(struct arm_dma_free_args *args)
 
 501{
 502	__free_from_pool(args->cpu_addr, args->size);
 
 503}
 
 504
 505static struct arm_dma_allocator pool_allocator = {
 506	.alloc = pool_allocator_alloc,
 507	.free = pool_allocator_free,
 508};
 509
 510static void *remap_allocator_alloc(struct arm_dma_alloc_args *args,
 511				   struct page **ret_page)
 512{
 513	return __alloc_remap_buffer(args->dev, args->size, args->gfp,
 514				    args->prot, ret_page, args->caller,
 515				    args->want_vaddr);
 516}
 
 517
 518static void remap_allocator_free(struct arm_dma_free_args *args)
 
 
 
 
 519{
 520	if (args->want_vaddr)
 521		dma_common_free_remap(args->cpu_addr, args->size);
 522
 523	__dma_free_buffer(args->page, args->size);
 524}
 525
 526static struct arm_dma_allocator remap_allocator = {
 527	.alloc = remap_allocator_alloc,
 528	.free = remap_allocator_free,
 529};
 530
 531static void *__dma_alloc(struct device *dev, size_t size, dma_addr_t *handle,
 532			 gfp_t gfp, pgprot_t prot, bool is_coherent,
 533			 unsigned long attrs, const void *caller)
 534{
 535	u64 mask = min_not_zero(dev->coherent_dma_mask, dev->bus_dma_limit);
 536	struct page *page = NULL;
 537	void *addr;
 538	bool allowblock, cma;
 539	struct arm_dma_buffer *buf;
 540	struct arm_dma_alloc_args args = {
 541		.dev = dev,
 542		.size = PAGE_ALIGN(size),
 543		.gfp = gfp,
 544		.prot = prot,
 545		.caller = caller,
 546		.want_vaddr = ((attrs & DMA_ATTR_NO_KERNEL_MAPPING) == 0),
 547		.coherent_flag = is_coherent ? COHERENT : NORMAL,
 548	};
 549
 550#ifdef CONFIG_DMA_API_DEBUG
 551	u64 limit = (mask + 1) & ~mask;
 552	if (limit && size >= limit) {
 553		dev_warn(dev, "coherent allocation too big (requested %#x mask %#llx)\n",
 554			size, mask);
 555		return NULL;
 556	}
 557#endif
 558
 559	buf = kzalloc(sizeof(*buf),
 560		      gfp & ~(__GFP_DMA | __GFP_DMA32 | __GFP_HIGHMEM));
 561	if (!buf)
 562		return NULL;
 
 
 
 
 
 
 563
 564	if (mask < 0xffffffffULL)
 565		gfp |= GFP_DMA;
 566
 567	args.gfp = gfp;
 568
 569	*handle = DMA_MAPPING_ERROR;
 570	allowblock = gfpflags_allow_blocking(gfp);
 571	cma = allowblock ? dev_get_cma_area(dev) : NULL;
 572
 573	if (cma)
 574		buf->allocator = &cma_allocator;
 575	else if (is_coherent)
 576		buf->allocator = &simple_allocator;
 577	else if (allowblock)
 578		buf->allocator = &remap_allocator;
 579	else
 580		buf->allocator = &pool_allocator;
 581
 582	addr = buf->allocator->alloc(&args, &page);
 583
 584	if (page) {
 585		unsigned long flags;
 586
 587		*handle = phys_to_dma(dev, page_to_phys(page));
 588		buf->virt = args.want_vaddr ? addr : page;
 589
 590		spin_lock_irqsave(&arm_dma_bufs_lock, flags);
 591		list_add(&buf->list, &arm_dma_bufs);
 592		spin_unlock_irqrestore(&arm_dma_bufs_lock, flags);
 593	} else {
 594		kfree(buf);
 595	}
 596
 597	return args.want_vaddr ? addr : page;
 598}
 
 599
 600/*
 601 * Free a buffer as defined by the above mapping.
 602 */
 603static void __arm_dma_free(struct device *dev, size_t size, void *cpu_addr,
 604			   dma_addr_t handle, unsigned long attrs,
 605			   bool is_coherent)
 606{
 607	struct page *page = phys_to_page(dma_to_phys(dev, handle));
 608	struct arm_dma_buffer *buf;
 609	struct arm_dma_free_args args = {
 610		.dev = dev,
 611		.size = PAGE_ALIGN(size),
 612		.cpu_addr = cpu_addr,
 613		.page = page,
 614		.want_vaddr = ((attrs & DMA_ATTR_NO_KERNEL_MAPPING) == 0),
 615	};
 616
 617	buf = arm_dma_buffer_find(cpu_addr);
 618	if (WARN(!buf, "Freeing invalid buffer %p\n", cpu_addr))
 619		return;
 
 
 
 620
 621	buf->allocator->free(&args);
 622	kfree(buf);
 623}
 
 624
 625static void dma_cache_maint_page(struct page *page, unsigned long offset,
 626	size_t size, enum dma_data_direction dir,
 627	void (*op)(const void *, size_t, int))
 628{
 629	unsigned long pfn;
 630	size_t left = size;
 631
 632	pfn = page_to_pfn(page) + offset / PAGE_SIZE;
 633	offset %= PAGE_SIZE;
 634
 635	/*
 636	 * A single sg entry may refer to multiple physically contiguous
 637	 * pages.  But we still need to process highmem pages individually.
 638	 * If highmem is not configured then the bulk of this loop gets
 639	 * optimized out.
 640	 */
 
 641	do {
 642		size_t len = left;
 643		void *vaddr;
 644
 645		page = pfn_to_page(pfn);
 646
 647		if (PageHighMem(page)) {
 648			if (len + offset > PAGE_SIZE)
 
 
 
 
 649				len = PAGE_SIZE - offset;
 650
 651			if (cache_is_vipt_nonaliasing()) {
 
 
 
 
 
 
 652				vaddr = kmap_atomic(page);
 653				op(vaddr + offset, len, dir);
 654				kunmap_atomic(vaddr);
 655			} else {
 656				vaddr = kmap_high_get(page);
 657				if (vaddr) {
 658					op(vaddr + offset, len, dir);
 659					kunmap_high(page);
 660				}
 661			}
 662		} else {
 663			vaddr = page_address(page) + offset;
 664			op(vaddr, len, dir);
 665		}
 666		offset = 0;
 667		pfn++;
 668		left -= len;
 669	} while (left);
 670}
 671
 672/*
 673 * Make an area consistent for devices.
 674 * Note: Drivers should NOT use this function directly.
 675 * Use the driver DMA support - see dma-mapping.h (dma_sync_*)
 676 */
 677static void __dma_page_cpu_to_dev(struct page *page, unsigned long off,
 678	size_t size, enum dma_data_direction dir)
 679{
 680	phys_addr_t paddr;
 681
 682	dma_cache_maint_page(page, off, size, dir, dmac_map_area);
 683
 684	paddr = page_to_phys(page) + off;
 685	if (dir == DMA_FROM_DEVICE) {
 686		outer_inv_range(paddr, paddr + size);
 687	} else {
 688		outer_clean_range(paddr, paddr + size);
 689	}
 690	/* FIXME: non-speculating: flush on bidirectional mappings? */
 691}
 
 692
 693static void __dma_page_dev_to_cpu(struct page *page, unsigned long off,
 694	size_t size, enum dma_data_direction dir)
 695{
 696	phys_addr_t paddr = page_to_phys(page) + off;
 697
 698	/* FIXME: non-speculating: not required */
 699	/* in any case, don't bother invalidating if DMA to device */
 700	if (dir != DMA_TO_DEVICE) {
 701		outer_inv_range(paddr, paddr + size);
 702
 703		dma_cache_maint_page(page, off, size, dir, dmac_unmap_area);
 704	}
 705
 706	/*
 707	 * Mark the D-cache clean for these pages to avoid extra flushing.
 708	 */
 709	if (dir != DMA_TO_DEVICE && size >= PAGE_SIZE) {
 710		unsigned long pfn;
 711		size_t left = size;
 712
 713		pfn = page_to_pfn(page) + off / PAGE_SIZE;
 714		off %= PAGE_SIZE;
 715		if (off) {
 716			pfn++;
 717			left -= PAGE_SIZE - off;
 718		}
 719		while (left >= PAGE_SIZE) {
 720			page = pfn_to_page(pfn++);
 721			set_bit(PG_dcache_clean, &page->flags);
 722			left -= PAGE_SIZE;
 723		}
 724	}
 725}
 726
 727#ifdef CONFIG_ARM_DMA_USE_IOMMU
 728
 729static int __dma_info_to_prot(enum dma_data_direction dir, unsigned long attrs)
 730{
 731	int prot = 0;
 732
 733	if (attrs & DMA_ATTR_PRIVILEGED)
 734		prot |= IOMMU_PRIV;
 735
 736	switch (dir) {
 737	case DMA_BIDIRECTIONAL:
 738		return prot | IOMMU_READ | IOMMU_WRITE;
 739	case DMA_TO_DEVICE:
 740		return prot | IOMMU_READ;
 741	case DMA_FROM_DEVICE:
 742		return prot | IOMMU_WRITE;
 743	default:
 744		return prot;
 745	}
 746}
 747
 748/* IOMMU */
 749
 750static int extend_iommu_mapping(struct dma_iommu_mapping *mapping);
 751
 752static inline dma_addr_t __alloc_iova(struct dma_iommu_mapping *mapping,
 753				      size_t size)
 754{
 755	unsigned int order = get_order(size);
 756	unsigned int align = 0;
 757	unsigned int count, start;
 758	size_t mapping_size = mapping->bits << PAGE_SHIFT;
 759	unsigned long flags;
 760	dma_addr_t iova;
 761	int i;
 762
 763	if (order > CONFIG_ARM_DMA_IOMMU_ALIGNMENT)
 764		order = CONFIG_ARM_DMA_IOMMU_ALIGNMENT;
 765
 766	count = PAGE_ALIGN(size) >> PAGE_SHIFT;
 767	align = (1 << order) - 1;
 768
 769	spin_lock_irqsave(&mapping->lock, flags);
 770	for (i = 0; i < mapping->nr_bitmaps; i++) {
 771		start = bitmap_find_next_zero_area(mapping->bitmaps[i],
 772				mapping->bits, 0, count, align);
 773
 774		if (start > mapping->bits)
 775			continue;
 776
 777		bitmap_set(mapping->bitmaps[i], start, count);
 778		break;
 779	}
 780
 781	/*
 782	 * No unused range found. Try to extend the existing mapping
 783	 * and perform a second attempt to reserve an IO virtual
 784	 * address range of size bytes.
 785	 */
 786	if (i == mapping->nr_bitmaps) {
 787		if (extend_iommu_mapping(mapping)) {
 788			spin_unlock_irqrestore(&mapping->lock, flags);
 789			return DMA_MAPPING_ERROR;
 790		}
 791
 792		start = bitmap_find_next_zero_area(mapping->bitmaps[i],
 793				mapping->bits, 0, count, align);
 794
 795		if (start > mapping->bits) {
 796			spin_unlock_irqrestore(&mapping->lock, flags);
 797			return DMA_MAPPING_ERROR;
 798		}
 799
 800		bitmap_set(mapping->bitmaps[i], start, count);
 801	}
 802	spin_unlock_irqrestore(&mapping->lock, flags);
 803
 804	iova = mapping->base + (mapping_size * i);
 805	iova += start << PAGE_SHIFT;
 806
 807	return iova;
 808}
 809
 810static inline void __free_iova(struct dma_iommu_mapping *mapping,
 811			       dma_addr_t addr, size_t size)
 812{
 813	unsigned int start, count;
 814	size_t mapping_size = mapping->bits << PAGE_SHIFT;
 815	unsigned long flags;
 816	dma_addr_t bitmap_base;
 817	u32 bitmap_index;
 818
 819	if (!size)
 820		return;
 821
 822	bitmap_index = (u32) (addr - mapping->base) / (u32) mapping_size;
 823	BUG_ON(addr < mapping->base || bitmap_index > mapping->extensions);
 824
 825	bitmap_base = mapping->base + mapping_size * bitmap_index;
 826
 827	start = (addr - bitmap_base) >>	PAGE_SHIFT;
 828
 829	if (addr + size > bitmap_base + mapping_size) {
 830		/*
 831		 * The address range to be freed reaches into the iova
 832		 * range of the next bitmap. This should not happen as
 833		 * we don't allow this in __alloc_iova (at the
 834		 * moment).
 835		 */
 836		BUG();
 837	} else
 838		count = size >> PAGE_SHIFT;
 839
 840	spin_lock_irqsave(&mapping->lock, flags);
 841	bitmap_clear(mapping->bitmaps[bitmap_index], start, count);
 842	spin_unlock_irqrestore(&mapping->lock, flags);
 843}
 844
 845/* We'll try 2M, 1M, 64K, and finally 4K; array must end with 0! */
 846static const int iommu_order_array[] = { 9, 8, 4, 0 };
 847
 848static struct page **__iommu_alloc_buffer(struct device *dev, size_t size,
 849					  gfp_t gfp, unsigned long attrs,
 850					  int coherent_flag)
 851{
 852	struct page **pages;
 853	int count = size >> PAGE_SHIFT;
 854	int array_size = count * sizeof(struct page *);
 855	int i = 0;
 856	int order_idx = 0;
 857
 858	if (array_size <= PAGE_SIZE)
 859		pages = kzalloc(array_size, GFP_KERNEL);
 860	else
 861		pages = vzalloc(array_size);
 862	if (!pages)
 863		return NULL;
 864
 865	if (attrs & DMA_ATTR_FORCE_CONTIGUOUS)
 866	{
 867		unsigned long order = get_order(size);
 868		struct page *page;
 869
 870		page = dma_alloc_from_contiguous(dev, count, order,
 871						 gfp & __GFP_NOWARN);
 872		if (!page)
 873			goto error;
 874
 875		__dma_clear_buffer(page, size, coherent_flag);
 876
 877		for (i = 0; i < count; i++)
 878			pages[i] = page + i;
 879
 880		return pages;
 881	}
 882
 883	/* Go straight to 4K chunks if caller says it's OK. */
 884	if (attrs & DMA_ATTR_ALLOC_SINGLE_PAGES)
 885		order_idx = ARRAY_SIZE(iommu_order_array) - 1;
 886
 887	/*
 888	 * IOMMU can map any pages, so himem can also be used here
 889	 */
 890	gfp |= __GFP_NOWARN | __GFP_HIGHMEM;
 891
 892	while (count) {
 893		int j, order;
 894
 895		order = iommu_order_array[order_idx];
 896
 897		/* Drop down when we get small */
 898		if (__fls(count) < order) {
 899			order_idx++;
 900			continue;
 901		}
 902
 903		if (order) {
 904			/* See if it's easy to allocate a high-order chunk */
 905			pages[i] = alloc_pages(gfp | __GFP_NORETRY, order);
 906
 907			/* Go down a notch at first sign of pressure */
 908			if (!pages[i]) {
 909				order_idx++;
 910				continue;
 911			}
 912		} else {
 913			pages[i] = alloc_pages(gfp, 0);
 914			if (!pages[i])
 915				goto error;
 916		}
 917
 918		if (order) {
 919			split_page(pages[i], order);
 920			j = 1 << order;
 921			while (--j)
 922				pages[i + j] = pages[i] + j;
 923		}
 924
 925		__dma_clear_buffer(pages[i], PAGE_SIZE << order, coherent_flag);
 926		i += 1 << order;
 927		count -= 1 << order;
 928	}
 929
 930	return pages;
 931error:
 932	while (i--)
 933		if (pages[i])
 934			__free_pages(pages[i], 0);
 935	kvfree(pages);
 936	return NULL;
 937}
 938
 939static int __iommu_free_buffer(struct device *dev, struct page **pages,
 940			       size_t size, unsigned long attrs)
 941{
 942	int count = size >> PAGE_SHIFT;
 943	int i;
 944
 945	if (attrs & DMA_ATTR_FORCE_CONTIGUOUS) {
 946		dma_release_from_contiguous(dev, pages[0], count);
 947	} else {
 948		for (i = 0; i < count; i++)
 949			if (pages[i])
 950				__free_pages(pages[i], 0);
 951	}
 952
 953	kvfree(pages);
 954	return 0;
 955}
 956
 957/*
 958 * Create a mapping in device IO address space for specified pages
 959 */
 960static dma_addr_t
 961__iommu_create_mapping(struct device *dev, struct page **pages, size_t size,
 962		       unsigned long attrs)
 963{
 964	struct dma_iommu_mapping *mapping = to_dma_iommu_mapping(dev);
 965	unsigned int count = PAGE_ALIGN(size) >> PAGE_SHIFT;
 966	dma_addr_t dma_addr, iova;
 967	int i;
 968
 969	dma_addr = __alloc_iova(mapping, size);
 970	if (dma_addr == DMA_MAPPING_ERROR)
 971		return dma_addr;
 972
 973	iova = dma_addr;
 974	for (i = 0; i < count; ) {
 975		int ret;
 976
 977		unsigned int next_pfn = page_to_pfn(pages[i]) + 1;
 978		phys_addr_t phys = page_to_phys(pages[i]);
 979		unsigned int len, j;
 980
 981		for (j = i + 1; j < count; j++, next_pfn++)
 982			if (page_to_pfn(pages[j]) != next_pfn)
 983				break;
 984
 985		len = (j - i) << PAGE_SHIFT;
 986		ret = iommu_map(mapping->domain, iova, phys, len,
 987				__dma_info_to_prot(DMA_BIDIRECTIONAL, attrs));
 988		if (ret < 0)
 989			goto fail;
 990		iova += len;
 991		i = j;
 992	}
 993	return dma_addr;
 994fail:
 995	iommu_unmap(mapping->domain, dma_addr, iova-dma_addr);
 996	__free_iova(mapping, dma_addr, size);
 997	return DMA_MAPPING_ERROR;
 998}
 999
1000static int __iommu_remove_mapping(struct device *dev, dma_addr_t iova, size_t size)
1001{
1002	struct dma_iommu_mapping *mapping = to_dma_iommu_mapping(dev);
1003
1004	/*
1005	 * add optional in-page offset from iova to size and align
1006	 * result to page size
1007	 */
1008	size = PAGE_ALIGN((iova & ~PAGE_MASK) + size);
1009	iova &= PAGE_MASK;
1010
1011	iommu_unmap(mapping->domain, iova, size);
1012	__free_iova(mapping, iova, size);
1013	return 0;
1014}
1015
1016static struct page **__atomic_get_pages(void *addr)
1017{
1018	struct page *page;
1019	phys_addr_t phys;
1020
1021	phys = gen_pool_virt_to_phys(atomic_pool, (unsigned long)addr);
1022	page = phys_to_page(phys);
1023
1024	return (struct page **)page;
1025}
1026
1027static struct page **__iommu_get_pages(void *cpu_addr, unsigned long attrs)
1028{
1029	if (__in_atomic_pool(cpu_addr, PAGE_SIZE))
1030		return __atomic_get_pages(cpu_addr);
1031
1032	if (attrs & DMA_ATTR_NO_KERNEL_MAPPING)
1033		return cpu_addr;
1034
1035	return dma_common_find_pages(cpu_addr);
1036}
1037
1038static void *__iommu_alloc_simple(struct device *dev, size_t size, gfp_t gfp,
1039				  dma_addr_t *handle, int coherent_flag,
1040				  unsigned long attrs)
1041{
1042	struct page *page;
1043	void *addr;
1044
1045	if (coherent_flag  == COHERENT)
1046		addr = __alloc_simple_buffer(dev, size, gfp, &page);
1047	else
1048		addr = __alloc_from_pool(size, &page);
1049	if (!addr)
1050		return NULL;
1051
1052	*handle = __iommu_create_mapping(dev, &page, size, attrs);
1053	if (*handle == DMA_MAPPING_ERROR)
1054		goto err_mapping;
1055
1056	return addr;
1057
1058err_mapping:
1059	__free_from_pool(addr, size);
1060	return NULL;
1061}
1062
1063static void __iommu_free_atomic(struct device *dev, void *cpu_addr,
1064			dma_addr_t handle, size_t size, int coherent_flag)
1065{
1066	__iommu_remove_mapping(dev, handle, size);
1067	if (coherent_flag == COHERENT)
1068		__dma_free_buffer(virt_to_page(cpu_addr), size);
1069	else
1070		__free_from_pool(cpu_addr, size);
1071}
1072
1073static void *arm_iommu_alloc_attrs(struct device *dev, size_t size,
1074	    dma_addr_t *handle, gfp_t gfp, unsigned long attrs)
1075{
1076	pgprot_t prot = __get_dma_pgprot(attrs, PAGE_KERNEL);
1077	struct page **pages;
1078	void *addr = NULL;
1079	int coherent_flag = dev->dma_coherent ? COHERENT : NORMAL;
1080
1081	*handle = DMA_MAPPING_ERROR;
1082	size = PAGE_ALIGN(size);
1083
1084	if (coherent_flag  == COHERENT || !gfpflags_allow_blocking(gfp))
1085		return __iommu_alloc_simple(dev, size, gfp, handle,
1086					    coherent_flag, attrs);
1087
1088	pages = __iommu_alloc_buffer(dev, size, gfp, attrs, coherent_flag);
1089	if (!pages)
1090		return NULL;
1091
1092	*handle = __iommu_create_mapping(dev, pages, size, attrs);
1093	if (*handle == DMA_MAPPING_ERROR)
1094		goto err_buffer;
1095
1096	if (attrs & DMA_ATTR_NO_KERNEL_MAPPING)
1097		return pages;
1098
1099	addr = dma_common_pages_remap(pages, size, prot,
1100				   __builtin_return_address(0));
1101	if (!addr)
1102		goto err_mapping;
1103
1104	return addr;
1105
1106err_mapping:
1107	__iommu_remove_mapping(dev, *handle, size);
1108err_buffer:
1109	__iommu_free_buffer(dev, pages, size, attrs);
1110	return NULL;
1111}
1112
1113static int arm_iommu_mmap_attrs(struct device *dev, struct vm_area_struct *vma,
1114		    void *cpu_addr, dma_addr_t dma_addr, size_t size,
1115		    unsigned long attrs)
1116{
1117	struct page **pages = __iommu_get_pages(cpu_addr, attrs);
1118	unsigned long nr_pages = PAGE_ALIGN(size) >> PAGE_SHIFT;
1119	int err;
1120
1121	if (!pages)
1122		return -ENXIO;
1123
1124	if (vma->vm_pgoff >= nr_pages)
1125		return -ENXIO;
1126
1127	if (!dev->dma_coherent)
1128		vma->vm_page_prot = __get_dma_pgprot(attrs, vma->vm_page_prot);
1129
1130	err = vm_map_pages(vma, pages, nr_pages);
1131	if (err)
1132		pr_err("Remapping memory failed: %d\n", err);
1133
1134	return err;
1135}
1136
1137/*
1138 * free a page as defined by the above mapping.
1139 * Must not be called with IRQs disabled.
1140 */
1141static void arm_iommu_free_attrs(struct device *dev, size_t size, void *cpu_addr,
1142	dma_addr_t handle, unsigned long attrs)
1143{
1144	int coherent_flag = dev->dma_coherent ? COHERENT : NORMAL;
1145	struct page **pages;
1146	size = PAGE_ALIGN(size);
1147
1148	if (coherent_flag == COHERENT || __in_atomic_pool(cpu_addr, size)) {
1149		__iommu_free_atomic(dev, cpu_addr, handle, size, coherent_flag);
1150		return;
1151	}
1152
1153	pages = __iommu_get_pages(cpu_addr, attrs);
1154	if (!pages) {
1155		WARN(1, "trying to free invalid coherent area: %p\n", cpu_addr);
1156		return;
1157	}
1158
1159	if ((attrs & DMA_ATTR_NO_KERNEL_MAPPING) == 0)
1160		dma_common_free_remap(cpu_addr, size);
1161
1162	__iommu_remove_mapping(dev, handle, size);
1163	__iommu_free_buffer(dev, pages, size, attrs);
1164}
1165
1166static int arm_iommu_get_sgtable(struct device *dev, struct sg_table *sgt,
1167				 void *cpu_addr, dma_addr_t dma_addr,
1168				 size_t size, unsigned long attrs)
1169{
1170	unsigned int count = PAGE_ALIGN(size) >> PAGE_SHIFT;
1171	struct page **pages = __iommu_get_pages(cpu_addr, attrs);
1172
1173	if (!pages)
1174		return -ENXIO;
1175
1176	return sg_alloc_table_from_pages(sgt, pages, count, 0, size,
1177					 GFP_KERNEL);
1178}
1179
1180/*
1181 * Map a part of the scatter-gather list into contiguous io address space
1182 */
1183static int __map_sg_chunk(struct device *dev, struct scatterlist *sg,
1184			  size_t size, dma_addr_t *handle,
1185			  enum dma_data_direction dir, unsigned long attrs)
1186{
1187	struct dma_iommu_mapping *mapping = to_dma_iommu_mapping(dev);
1188	dma_addr_t iova, iova_base;
1189	int ret = 0;
1190	unsigned int count;
1191	struct scatterlist *s;
1192	int prot;
1193
1194	size = PAGE_ALIGN(size);
1195	*handle = DMA_MAPPING_ERROR;
1196
1197	iova_base = iova = __alloc_iova(mapping, size);
1198	if (iova == DMA_MAPPING_ERROR)
1199		return -ENOMEM;
1200
1201	for (count = 0, s = sg; count < (size >> PAGE_SHIFT); s = sg_next(s)) {
1202		phys_addr_t phys = page_to_phys(sg_page(s));
1203		unsigned int len = PAGE_ALIGN(s->offset + s->length);
1204
1205		if (!dev->dma_coherent && !(attrs & DMA_ATTR_SKIP_CPU_SYNC))
1206			__dma_page_cpu_to_dev(sg_page(s), s->offset, s->length, dir);
1207
1208		prot = __dma_info_to_prot(dir, attrs);
1209
1210		ret = iommu_map(mapping->domain, iova, phys, len, prot);
1211		if (ret < 0)
1212			goto fail;
1213		count += len >> PAGE_SHIFT;
1214		iova += len;
1215	}
1216	*handle = iova_base;
1217
1218	return 0;
1219fail:
1220	iommu_unmap(mapping->domain, iova_base, count * PAGE_SIZE);
1221	__free_iova(mapping, iova_base, size);
1222	return ret;
1223}
 
1224
1225/**
1226 * arm_iommu_map_sg - map a set of SG buffers for streaming mode DMA
1227 * @dev: valid struct device pointer
1228 * @sg: list of buffers
1229 * @nents: number of buffers to map
1230 * @dir: DMA transfer direction
1231 *
1232 * Map a set of buffers described by scatterlist in streaming mode for DMA.
1233 * The scatter gather list elements are merged together (if possible) and
1234 * tagged with the appropriate dma address and length. They are obtained via
 
1235 * sg_dma_{address,length}.
 
 
 
1236 */
1237static int arm_iommu_map_sg(struct device *dev, struct scatterlist *sg,
1238		int nents, enum dma_data_direction dir, unsigned long attrs)
1239{
1240	struct scatterlist *s = sg, *dma = sg, *start = sg;
1241	int i, count = 0, ret;
1242	unsigned int offset = s->offset;
1243	unsigned int size = s->offset + s->length;
1244	unsigned int max = dma_get_max_seg_size(dev);
1245
1246	for (i = 1; i < nents; i++) {
1247		s = sg_next(s);
1248
1249		s->dma_length = 0;
1250
1251		if (s->offset || (size & ~PAGE_MASK) || size + s->length > max) {
1252			ret = __map_sg_chunk(dev, start, size,
1253					     &dma->dma_address, dir, attrs);
1254			if (ret < 0)
1255				goto bad_mapping;
1256
1257			dma->dma_address += offset;
1258			dma->dma_length = size - offset;
1259
1260			size = offset = s->offset;
1261			start = s;
1262			dma = sg_next(dma);
1263			count += 1;
1264		}
1265		size += s->length;
1266	}
1267	ret = __map_sg_chunk(dev, start, size, &dma->dma_address, dir, attrs);
1268	if (ret < 0)
1269		goto bad_mapping;
1270
1271	dma->dma_address += offset;
1272	dma->dma_length = size - offset;
1273
1274	return count+1;
1275
1276bad_mapping:
1277	for_each_sg(sg, s, count, i)
1278		__iommu_remove_mapping(dev, sg_dma_address(s), sg_dma_len(s));
1279	if (ret == -ENOMEM)
1280		return ret;
1281	return -EINVAL;
1282}
 
1283
1284/**
1285 * arm_iommu_unmap_sg - unmap a set of SG buffers mapped by dma_map_sg
1286 * @dev: valid struct device pointer
1287 * @sg: list of buffers
1288 * @nents: number of buffers to unmap (same as was passed to dma_map_sg)
1289 * @dir: DMA transfer direction (same as was passed to dma_map_sg)
1290 *
1291 * Unmap a set of streaming mode DMA translations.  Again, CPU access
1292 * rules concerning calls here are the same as for dma_unmap_single().
1293 */
1294static void arm_iommu_unmap_sg(struct device *dev,
1295			       struct scatterlist *sg, int nents,
1296			       enum dma_data_direction dir,
1297			       unsigned long attrs)
1298{
1299	struct scatterlist *s;
1300	int i;
1301
1302	for_each_sg(sg, s, nents, i) {
1303		if (sg_dma_len(s))
1304			__iommu_remove_mapping(dev, sg_dma_address(s),
1305					       sg_dma_len(s));
1306		if (!dev->dma_coherent && !(attrs & DMA_ATTR_SKIP_CPU_SYNC))
1307			__dma_page_dev_to_cpu(sg_page(s), s->offset,
1308					      s->length, dir);
1309	}
1310}
 
1311
1312/**
1313 * arm_iommu_sync_sg_for_cpu
1314 * @dev: valid struct device pointer
1315 * @sg: list of buffers
1316 * @nents: number of buffers to map (returned from dma_map_sg)
1317 * @dir: DMA transfer direction (same as was passed to dma_map_sg)
1318 */
1319static void arm_iommu_sync_sg_for_cpu(struct device *dev,
1320			struct scatterlist *sg,
1321			int nents, enum dma_data_direction dir)
1322{
1323	struct scatterlist *s;
1324	int i;
1325
1326	if (dev->dma_coherent)
1327		return;
 
 
1328
1329	for_each_sg(sg, s, nents, i)
1330		__dma_page_dev_to_cpu(sg_page(s), s->offset, s->length, dir);
 
1331
 
1332}
 
1333
1334/**
1335 * arm_iommu_sync_sg_for_device
1336 * @dev: valid struct device pointer
1337 * @sg: list of buffers
1338 * @nents: number of buffers to map (returned from dma_map_sg)
1339 * @dir: DMA transfer direction (same as was passed to dma_map_sg)
1340 */
1341static void arm_iommu_sync_sg_for_device(struct device *dev,
1342			struct scatterlist *sg,
1343			int nents, enum dma_data_direction dir)
1344{
1345	struct scatterlist *s;
1346	int i;
1347
1348	if (dev->dma_coherent)
1349		return;
1350
1351	for_each_sg(sg, s, nents, i)
1352		__dma_page_cpu_to_dev(sg_page(s), s->offset, s->length, dir);
1353}
1354
1355/**
1356 * arm_iommu_map_page
1357 * @dev: valid struct device pointer
1358 * @page: page that buffer resides in
1359 * @offset: offset into page for start of buffer
1360 * @size: size of buffer to map
1361 * @dir: DMA transfer direction
1362 *
1363 * IOMMU aware version of arm_dma_map_page()
1364 */
1365static dma_addr_t arm_iommu_map_page(struct device *dev, struct page *page,
1366	     unsigned long offset, size_t size, enum dma_data_direction dir,
1367	     unsigned long attrs)
1368{
1369	struct dma_iommu_mapping *mapping = to_dma_iommu_mapping(dev);
1370	dma_addr_t dma_addr;
1371	int ret, prot, len = PAGE_ALIGN(size + offset);
1372
1373	if (!dev->dma_coherent && !(attrs & DMA_ATTR_SKIP_CPU_SYNC))
1374		__dma_page_cpu_to_dev(page, offset, size, dir);
1375
1376	dma_addr = __alloc_iova(mapping, len);
1377	if (dma_addr == DMA_MAPPING_ERROR)
1378		return dma_addr;
1379
1380	prot = __dma_info_to_prot(dir, attrs);
1381
1382	ret = iommu_map(mapping->domain, dma_addr, page_to_phys(page), len, prot);
1383	if (ret < 0)
1384		goto fail;
1385
1386	return dma_addr + offset;
1387fail:
1388	__free_iova(mapping, dma_addr, len);
1389	return DMA_MAPPING_ERROR;
1390}
1391
1392/**
1393 * arm_iommu_unmap_page
1394 * @dev: valid struct device pointer
1395 * @handle: DMA address of buffer
1396 * @size: size of buffer (same as passed to dma_map_page)
1397 * @dir: DMA transfer direction (same as passed to dma_map_page)
1398 *
1399 * IOMMU aware version of arm_dma_unmap_page()
1400 */
1401static void arm_iommu_unmap_page(struct device *dev, dma_addr_t handle,
1402		size_t size, enum dma_data_direction dir, unsigned long attrs)
1403{
1404	struct dma_iommu_mapping *mapping = to_dma_iommu_mapping(dev);
1405	dma_addr_t iova = handle & PAGE_MASK;
1406	struct page *page;
1407	int offset = handle & ~PAGE_MASK;
1408	int len = PAGE_ALIGN(size + offset);
1409
1410	if (!iova)
1411		return;
1412
1413	if (!dev->dma_coherent && !(attrs & DMA_ATTR_SKIP_CPU_SYNC)) {
1414		page = phys_to_page(iommu_iova_to_phys(mapping->domain, iova));
1415		__dma_page_dev_to_cpu(page, offset, size, dir);
1416	}
1417
1418	iommu_unmap(mapping->domain, iova, len);
1419	__free_iova(mapping, iova, len);
1420}
 
1421
1422/**
1423 * arm_iommu_map_resource - map a device resource for DMA
1424 * @dev: valid struct device pointer
1425 * @phys_addr: physical address of resource
1426 * @size: size of resource to map
1427 * @dir: DMA transfer direction
1428 */
1429static dma_addr_t arm_iommu_map_resource(struct device *dev,
1430		phys_addr_t phys_addr, size_t size,
1431		enum dma_data_direction dir, unsigned long attrs)
1432{
1433	struct dma_iommu_mapping *mapping = to_dma_iommu_mapping(dev);
1434	dma_addr_t dma_addr;
1435	int ret, prot;
1436	phys_addr_t addr = phys_addr & PAGE_MASK;
1437	unsigned int offset = phys_addr & ~PAGE_MASK;
1438	size_t len = PAGE_ALIGN(size + offset);
1439
1440	dma_addr = __alloc_iova(mapping, len);
1441	if (dma_addr == DMA_MAPPING_ERROR)
1442		return dma_addr;
1443
1444	prot = __dma_info_to_prot(dir, attrs) | IOMMU_MMIO;
1445
1446	ret = iommu_map(mapping->domain, dma_addr, addr, len, prot);
1447	if (ret < 0)
1448		goto fail;
1449
1450	return dma_addr + offset;
1451fail:
1452	__free_iova(mapping, dma_addr, len);
1453	return DMA_MAPPING_ERROR;
1454}
1455
1456/**
1457 * arm_iommu_unmap_resource - unmap a device DMA resource
1458 * @dev: valid struct device pointer
1459 * @dma_handle: DMA address to resource
1460 * @size: size of resource to map
1461 * @dir: DMA transfer direction
1462 */
1463static void arm_iommu_unmap_resource(struct device *dev, dma_addr_t dma_handle,
1464		size_t size, enum dma_data_direction dir,
1465		unsigned long attrs)
1466{
1467	struct dma_iommu_mapping *mapping = to_dma_iommu_mapping(dev);
1468	dma_addr_t iova = dma_handle & PAGE_MASK;
1469	unsigned int offset = dma_handle & ~PAGE_MASK;
1470	size_t len = PAGE_ALIGN(size + offset);
1471
1472	if (!iova)
1473		return;
1474
1475	iommu_unmap(mapping->domain, iova, len);
1476	__free_iova(mapping, iova, len);
1477}
1478
1479static void arm_iommu_sync_single_for_cpu(struct device *dev,
1480		dma_addr_t handle, size_t size, enum dma_data_direction dir)
1481{
1482	struct dma_iommu_mapping *mapping = to_dma_iommu_mapping(dev);
1483	dma_addr_t iova = handle & PAGE_MASK;
1484	struct page *page;
1485	unsigned int offset = handle & ~PAGE_MASK;
1486
1487	if (dev->dma_coherent || !iova)
1488		return;
1489
1490	page = phys_to_page(iommu_iova_to_phys(mapping->domain, iova));
1491	__dma_page_dev_to_cpu(page, offset, size, dir);
1492}
 
1493
1494static void arm_iommu_sync_single_for_device(struct device *dev,
1495		dma_addr_t handle, size_t size, enum dma_data_direction dir)
1496{
1497	struct dma_iommu_mapping *mapping = to_dma_iommu_mapping(dev);
1498	dma_addr_t iova = handle & PAGE_MASK;
1499	struct page *page;
1500	unsigned int offset = handle & ~PAGE_MASK;
1501
1502	if (dev->dma_coherent || !iova)
1503		return;
1504
1505	page = phys_to_page(iommu_iova_to_phys(mapping->domain, iova));
1506	__dma_page_cpu_to_dev(page, offset, size, dir);
1507}
1508
1509static const struct dma_map_ops iommu_ops = {
1510	.alloc		= arm_iommu_alloc_attrs,
1511	.free		= arm_iommu_free_attrs,
1512	.mmap		= arm_iommu_mmap_attrs,
1513	.get_sgtable	= arm_iommu_get_sgtable,
1514
1515	.map_page		= arm_iommu_map_page,
1516	.unmap_page		= arm_iommu_unmap_page,
1517	.sync_single_for_cpu	= arm_iommu_sync_single_for_cpu,
1518	.sync_single_for_device	= arm_iommu_sync_single_for_device,
1519
1520	.map_sg			= arm_iommu_map_sg,
1521	.unmap_sg		= arm_iommu_unmap_sg,
1522	.sync_sg_for_cpu	= arm_iommu_sync_sg_for_cpu,
1523	.sync_sg_for_device	= arm_iommu_sync_sg_for_device,
1524
1525	.map_resource		= arm_iommu_map_resource,
1526	.unmap_resource		= arm_iommu_unmap_resource,
1527};
1528
1529/**
1530 * arm_iommu_create_mapping
1531 * @bus: pointer to the bus holding the client device (for IOMMU calls)
1532 * @base: start address of the valid IO address space
1533 * @size: maximum size of the valid IO address space
1534 *
1535 * Creates a mapping structure which holds information about used/unused
1536 * IO address ranges, which is required to perform memory allocation and
1537 * mapping with IOMMU aware functions.
1538 *
1539 * The client device need to be attached to the mapping with
1540 * arm_iommu_attach_device function.
1541 */
1542struct dma_iommu_mapping *
1543arm_iommu_create_mapping(struct bus_type *bus, dma_addr_t base, u64 size)
1544{
1545	unsigned int bits = size >> PAGE_SHIFT;
1546	unsigned int bitmap_size = BITS_TO_LONGS(bits) * sizeof(long);
1547	struct dma_iommu_mapping *mapping;
1548	int extensions = 1;
1549	int err = -ENOMEM;
1550
1551	/* currently only 32-bit DMA address space is supported */
1552	if (size > DMA_BIT_MASK(32) + 1)
1553		return ERR_PTR(-ERANGE);
1554
1555	if (!bitmap_size)
1556		return ERR_PTR(-EINVAL);
1557
1558	if (bitmap_size > PAGE_SIZE) {
1559		extensions = bitmap_size / PAGE_SIZE;
1560		bitmap_size = PAGE_SIZE;
1561	}
1562
1563	mapping = kzalloc(sizeof(struct dma_iommu_mapping), GFP_KERNEL);
1564	if (!mapping)
1565		goto err;
1566
1567	mapping->bitmap_size = bitmap_size;
1568	mapping->bitmaps = kcalloc(extensions, sizeof(unsigned long *),
1569				   GFP_KERNEL);
1570	if (!mapping->bitmaps)
1571		goto err2;
1572
1573	mapping->bitmaps[0] = kzalloc(bitmap_size, GFP_KERNEL);
1574	if (!mapping->bitmaps[0])
1575		goto err3;
1576
1577	mapping->nr_bitmaps = 1;
1578	mapping->extensions = extensions;
1579	mapping->base = base;
1580	mapping->bits = BITS_PER_BYTE * bitmap_size;
1581
1582	spin_lock_init(&mapping->lock);
1583
1584	mapping->domain = iommu_domain_alloc(bus);
1585	if (!mapping->domain)
1586		goto err4;
1587
1588	kref_init(&mapping->kref);
1589	return mapping;
1590err4:
1591	kfree(mapping->bitmaps[0]);
1592err3:
1593	kfree(mapping->bitmaps);
1594err2:
1595	kfree(mapping);
1596err:
1597	return ERR_PTR(err);
1598}
1599EXPORT_SYMBOL_GPL(arm_iommu_create_mapping);
1600
1601static void release_iommu_mapping(struct kref *kref)
1602{
1603	int i;
1604	struct dma_iommu_mapping *mapping =
1605		container_of(kref, struct dma_iommu_mapping, kref);
1606
1607	iommu_domain_free(mapping->domain);
1608	for (i = 0; i < mapping->nr_bitmaps; i++)
1609		kfree(mapping->bitmaps[i]);
1610	kfree(mapping->bitmaps);
1611	kfree(mapping);
1612}
1613
1614static int extend_iommu_mapping(struct dma_iommu_mapping *mapping)
1615{
1616	int next_bitmap;
1617
1618	if (mapping->nr_bitmaps >= mapping->extensions)
1619		return -EINVAL;
1620
1621	next_bitmap = mapping->nr_bitmaps;
1622	mapping->bitmaps[next_bitmap] = kzalloc(mapping->bitmap_size,
1623						GFP_ATOMIC);
1624	if (!mapping->bitmaps[next_bitmap])
1625		return -ENOMEM;
1626
1627	mapping->nr_bitmaps++;
1628
1629	return 0;
1630}
 
1631
1632void arm_iommu_release_mapping(struct dma_iommu_mapping *mapping)
1633{
1634	if (mapping)
1635		kref_put(&mapping->kref, release_iommu_mapping);
1636}
1637EXPORT_SYMBOL_GPL(arm_iommu_release_mapping);
1638
1639static int __arm_iommu_attach_device(struct device *dev,
1640				     struct dma_iommu_mapping *mapping)
1641{
1642	int err;
1643
1644	err = iommu_attach_device(mapping->domain, dev);
1645	if (err)
1646		return err;
1647
1648	kref_get(&mapping->kref);
1649	to_dma_iommu_mapping(dev) = mapping;
1650
1651	pr_debug("Attached IOMMU controller to %s device.\n", dev_name(dev));
1652	return 0;
1653}
1654
1655/**
1656 * arm_iommu_attach_device
1657 * @dev: valid struct device pointer
1658 * @mapping: io address space mapping structure (returned from
1659 *	arm_iommu_create_mapping)
1660 *
1661 * Attaches specified io address space mapping to the provided device.
1662 * This replaces the dma operations (dma_map_ops pointer) with the
1663 * IOMMU aware version.
1664 *
1665 * More than one client might be attached to the same io address space
1666 * mapping.
1667 */
1668int arm_iommu_attach_device(struct device *dev,
1669			    struct dma_iommu_mapping *mapping)
1670{
1671	int err;
1672
1673	err = __arm_iommu_attach_device(dev, mapping);
1674	if (err)
1675		return err;
1676
1677	set_dma_ops(dev, &iommu_ops);
1678	return 0;
1679}
1680EXPORT_SYMBOL_GPL(arm_iommu_attach_device);
1681
1682/**
1683 * arm_iommu_detach_device
1684 * @dev: valid struct device pointer
1685 *
1686 * Detaches the provided device from a previously attached map.
1687 * This overwrites the dma_ops pointer with appropriate non-IOMMU ops.
1688 */
1689void arm_iommu_detach_device(struct device *dev)
1690{
1691	struct dma_iommu_mapping *mapping;
1692
1693	mapping = to_dma_iommu_mapping(dev);
1694	if (!mapping) {
1695		dev_warn(dev, "Not attached\n");
1696		return;
1697	}
1698
1699	iommu_detach_device(mapping->domain, dev);
1700	kref_put(&mapping->kref, release_iommu_mapping);
1701	to_dma_iommu_mapping(dev) = NULL;
1702	set_dma_ops(dev, NULL);
1703
1704	pr_debug("Detached IOMMU controller from %s device.\n", dev_name(dev));
1705}
1706EXPORT_SYMBOL_GPL(arm_iommu_detach_device);
1707
1708static void arm_setup_iommu_dma_ops(struct device *dev, u64 dma_base, u64 size,
1709				    const struct iommu_ops *iommu, bool coherent)
1710{
1711	struct dma_iommu_mapping *mapping;
1712
1713	mapping = arm_iommu_create_mapping(dev->bus, dma_base, size);
1714	if (IS_ERR(mapping)) {
1715		pr_warn("Failed to create %llu-byte IOMMU mapping for device %s\n",
1716				size, dev_name(dev));
1717		return;
1718	}
1719
1720	if (__arm_iommu_attach_device(dev, mapping)) {
1721		pr_warn("Failed to attached device %s to IOMMU_mapping\n",
1722				dev_name(dev));
1723		arm_iommu_release_mapping(mapping);
1724		return;
1725	}
1726
1727	set_dma_ops(dev, &iommu_ops);
1728}
1729
1730static void arm_teardown_iommu_dma_ops(struct device *dev)
1731{
1732	struct dma_iommu_mapping *mapping = to_dma_iommu_mapping(dev);
1733
1734	if (!mapping)
1735		return;
1736
1737	arm_iommu_detach_device(dev);
1738	arm_iommu_release_mapping(mapping);
1739}
1740
1741#else
1742
1743static void arm_setup_iommu_dma_ops(struct device *dev, u64 dma_base, u64 size,
1744				    const struct iommu_ops *iommu, bool coherent)
1745{
1746}
1747
1748static void arm_teardown_iommu_dma_ops(struct device *dev) { }
1749
1750#endif	/* CONFIG_ARM_DMA_USE_IOMMU */
1751
1752void arch_setup_dma_ops(struct device *dev, u64 dma_base, u64 size,
1753			const struct iommu_ops *iommu, bool coherent)
1754{
1755	/*
1756	 * Due to legacy code that sets the ->dma_coherent flag from a bus
1757	 * notifier we can't just assign coherent to the ->dma_coherent flag
1758	 * here, but instead have to make sure we only set but never clear it
1759	 * for now.
1760	 */
1761	if (coherent)
1762		dev->dma_coherent = true;
1763
1764	/*
1765	 * Don't override the dma_ops if they have already been set. Ideally
1766	 * this should be the only location where dma_ops are set, remove this
1767	 * check when all other callers of set_dma_ops will have disappeared.
1768	 */
1769	if (dev->dma_ops)
1770		return;
1771
1772	if (iommu)
1773		arm_setup_iommu_dma_ops(dev, dma_base, size, iommu, coherent);
1774
1775	xen_setup_dma_ops(dev);
1776	dev->archdata.dma_ops_setup = true;
1777}
1778
1779void arch_teardown_dma_ops(struct device *dev)
1780{
1781	if (!dev->archdata.dma_ops_setup)
1782		return;
1783
1784	arm_teardown_iommu_dma_ops(dev);
1785	/* Let arch_setup_dma_ops() start again from scratch upon re-probe */
1786	set_dma_ops(dev, NULL);
1787}
1788
1789void arch_sync_dma_for_device(phys_addr_t paddr, size_t size,
1790		enum dma_data_direction dir)
1791{
1792	__dma_page_cpu_to_dev(phys_to_page(paddr), paddr & (PAGE_SIZE - 1),
1793			      size, dir);
1794}
1795
1796void arch_sync_dma_for_cpu(phys_addr_t paddr, size_t size,
1797		enum dma_data_direction dir)
1798{
1799	__dma_page_dev_to_cpu(phys_to_page(paddr), paddr & (PAGE_SIZE - 1),
1800			      size, dir);
1801}
1802
1803void *arch_dma_alloc(struct device *dev, size_t size, dma_addr_t *dma_handle,
1804		gfp_t gfp, unsigned long attrs)
1805{
1806	return __dma_alloc(dev, size, dma_handle, gfp,
1807			   __get_dma_pgprot(attrs, PAGE_KERNEL), false,
1808			   attrs, __builtin_return_address(0));
1809}
1810
1811void arch_dma_free(struct device *dev, size_t size, void *cpu_addr,
1812		dma_addr_t dma_handle, unsigned long attrs)
1813{
1814	__arm_dma_free(dev, size, cpu_addr, dma_handle, attrs, false);
1815}