Loading...
1/*
2 * linux/arch/arm/mm/dma-mapping.c
3 *
4 * Copyright (C) 2000-2004 Russell King
5 *
6 * This program is free software; you can redistribute it and/or modify
7 * it under the terms of the GNU General Public License version 2 as
8 * published by the Free Software Foundation.
9 *
10 * DMA uncached mapping support.
11 */
12#include <linux/module.h>
13#include <linux/mm.h>
14#include <linux/gfp.h>
15#include <linux/errno.h>
16#include <linux/list.h>
17#include <linux/init.h>
18#include <linux/device.h>
19#include <linux/dma-mapping.h>
20#include <linux/highmem.h>
21
22#include <asm/memory.h>
23#include <asm/highmem.h>
24#include <asm/cacheflush.h>
25#include <asm/tlbflush.h>
26#include <asm/sizes.h>
27
28#include "mm.h"
29
30static u64 get_coherent_dma_mask(struct device *dev)
31{
32 u64 mask = (u64)arm_dma_limit;
33
34 if (dev) {
35 mask = dev->coherent_dma_mask;
36
37 /*
38 * Sanity check the DMA mask - it must be non-zero, and
39 * must be able to be satisfied by a DMA allocation.
40 */
41 if (mask == 0) {
42 dev_warn(dev, "coherent DMA mask is unset\n");
43 return 0;
44 }
45
46 if ((~mask) & (u64)arm_dma_limit) {
47 dev_warn(dev, "coherent DMA mask %#llx is smaller "
48 "than system GFP_DMA mask %#llx\n",
49 mask, (u64)arm_dma_limit);
50 return 0;
51 }
52 }
53
54 return mask;
55}
56
57/*
58 * Allocate a DMA buffer for 'dev' of size 'size' using the
59 * specified gfp mask. Note that 'size' must be page aligned.
60 */
61static struct page *__dma_alloc_buffer(struct device *dev, size_t size, gfp_t gfp)
62{
63 unsigned long order = get_order(size);
64 struct page *page, *p, *e;
65 void *ptr;
66 u64 mask = get_coherent_dma_mask(dev);
67
68#ifdef CONFIG_DMA_API_DEBUG
69 u64 limit = (mask + 1) & ~mask;
70 if (limit && size >= limit) {
71 dev_warn(dev, "coherent allocation too big (requested %#x mask %#llx)\n",
72 size, mask);
73 return NULL;
74 }
75#endif
76
77 if (!mask)
78 return NULL;
79
80 if (mask < 0xffffffffULL)
81 gfp |= GFP_DMA;
82
83 page = alloc_pages(gfp, order);
84 if (!page)
85 return NULL;
86
87 /*
88 * Now split the huge page and free the excess pages
89 */
90 split_page(page, order);
91 for (p = page + (size >> PAGE_SHIFT), e = page + (1 << order); p < e; p++)
92 __free_page(p);
93
94 /*
95 * Ensure that the allocated pages are zeroed, and that any data
96 * lurking in the kernel direct-mapped region is invalidated.
97 */
98 ptr = page_address(page);
99 memset(ptr, 0, size);
100 dmac_flush_range(ptr, ptr + size);
101 outer_flush_range(__pa(ptr), __pa(ptr) + size);
102
103 return page;
104}
105
106/*
107 * Free a DMA buffer. 'size' must be page aligned.
108 */
109static void __dma_free_buffer(struct page *page, size_t size)
110{
111 struct page *e = page + (size >> PAGE_SHIFT);
112
113 while (page < e) {
114 __free_page(page);
115 page++;
116 }
117}
118
119#ifdef CONFIG_MMU
120/* Sanity check size */
121#if (CONSISTENT_DMA_SIZE % SZ_2M)
122#error "CONSISTENT_DMA_SIZE must be multiple of 2MiB"
123#endif
124
125#define CONSISTENT_OFFSET(x) (((unsigned long)(x) - CONSISTENT_BASE) >> PAGE_SHIFT)
126#define CONSISTENT_PTE_INDEX(x) (((unsigned long)(x) - CONSISTENT_BASE) >> PGDIR_SHIFT)
127#define NUM_CONSISTENT_PTES (CONSISTENT_DMA_SIZE >> PGDIR_SHIFT)
128
129/*
130 * These are the page tables (2MB each) covering uncached, DMA consistent allocations
131 */
132static pte_t *consistent_pte[NUM_CONSISTENT_PTES];
133
134#include "vmregion.h"
135
136static struct arm_vmregion_head consistent_head = {
137 .vm_lock = __SPIN_LOCK_UNLOCKED(&consistent_head.vm_lock),
138 .vm_list = LIST_HEAD_INIT(consistent_head.vm_list),
139 .vm_start = CONSISTENT_BASE,
140 .vm_end = CONSISTENT_END,
141};
142
143#ifdef CONFIG_HUGETLB_PAGE
144#error ARM Coherent DMA allocator does not (yet) support huge TLB
145#endif
146
147/*
148 * Initialise the consistent memory allocation.
149 */
150static int __init consistent_init(void)
151{
152 int ret = 0;
153 pgd_t *pgd;
154 pud_t *pud;
155 pmd_t *pmd;
156 pte_t *pte;
157 int i = 0;
158 u32 base = CONSISTENT_BASE;
159
160 do {
161 pgd = pgd_offset(&init_mm, base);
162
163 pud = pud_alloc(&init_mm, pgd, base);
164 if (!pud) {
165 printk(KERN_ERR "%s: no pud tables\n", __func__);
166 ret = -ENOMEM;
167 break;
168 }
169
170 pmd = pmd_alloc(&init_mm, pud, base);
171 if (!pmd) {
172 printk(KERN_ERR "%s: no pmd tables\n", __func__);
173 ret = -ENOMEM;
174 break;
175 }
176 WARN_ON(!pmd_none(*pmd));
177
178 pte = pte_alloc_kernel(pmd, base);
179 if (!pte) {
180 printk(KERN_ERR "%s: no pte tables\n", __func__);
181 ret = -ENOMEM;
182 break;
183 }
184
185 consistent_pte[i++] = pte;
186 base += (1 << PGDIR_SHIFT);
187 } while (base < CONSISTENT_END);
188
189 return ret;
190}
191
192core_initcall(consistent_init);
193
194static void *
195__dma_alloc_remap(struct page *page, size_t size, gfp_t gfp, pgprot_t prot)
196{
197 struct arm_vmregion *c;
198 size_t align;
199 int bit;
200
201 if (!consistent_pte[0]) {
202 printk(KERN_ERR "%s: not initialised\n", __func__);
203 dump_stack();
204 return NULL;
205 }
206
207 /*
208 * Align the virtual region allocation - maximum alignment is
209 * a section size, minimum is a page size. This helps reduce
210 * fragmentation of the DMA space, and also prevents allocations
211 * smaller than a section from crossing a section boundary.
212 */
213 bit = fls(size - 1);
214 if (bit > SECTION_SHIFT)
215 bit = SECTION_SHIFT;
216 align = 1 << bit;
217
218 /*
219 * Allocate a virtual address in the consistent mapping region.
220 */
221 c = arm_vmregion_alloc(&consistent_head, align, size,
222 gfp & ~(__GFP_DMA | __GFP_HIGHMEM));
223 if (c) {
224 pte_t *pte;
225 int idx = CONSISTENT_PTE_INDEX(c->vm_start);
226 u32 off = CONSISTENT_OFFSET(c->vm_start) & (PTRS_PER_PTE-1);
227
228 pte = consistent_pte[idx] + off;
229 c->vm_pages = page;
230
231 do {
232 BUG_ON(!pte_none(*pte));
233
234 set_pte_ext(pte, mk_pte(page, prot), 0);
235 page++;
236 pte++;
237 off++;
238 if (off >= PTRS_PER_PTE) {
239 off = 0;
240 pte = consistent_pte[++idx];
241 }
242 } while (size -= PAGE_SIZE);
243
244 dsb();
245
246 return (void *)c->vm_start;
247 }
248 return NULL;
249}
250
251static void __dma_free_remap(void *cpu_addr, size_t size)
252{
253 struct arm_vmregion *c;
254 unsigned long addr;
255 pte_t *ptep;
256 int idx;
257 u32 off;
258
259 c = arm_vmregion_find_remove(&consistent_head, (unsigned long)cpu_addr);
260 if (!c) {
261 printk(KERN_ERR "%s: trying to free invalid coherent area: %p\n",
262 __func__, cpu_addr);
263 dump_stack();
264 return;
265 }
266
267 if ((c->vm_end - c->vm_start) != size) {
268 printk(KERN_ERR "%s: freeing wrong coherent size (%ld != %d)\n",
269 __func__, c->vm_end - c->vm_start, size);
270 dump_stack();
271 size = c->vm_end - c->vm_start;
272 }
273
274 idx = CONSISTENT_PTE_INDEX(c->vm_start);
275 off = CONSISTENT_OFFSET(c->vm_start) & (PTRS_PER_PTE-1);
276 ptep = consistent_pte[idx] + off;
277 addr = c->vm_start;
278 do {
279 pte_t pte = ptep_get_and_clear(&init_mm, addr, ptep);
280
281 ptep++;
282 addr += PAGE_SIZE;
283 off++;
284 if (off >= PTRS_PER_PTE) {
285 off = 0;
286 ptep = consistent_pte[++idx];
287 }
288
289 if (pte_none(pte) || !pte_present(pte))
290 printk(KERN_CRIT "%s: bad page in kernel page table\n",
291 __func__);
292 } while (size -= PAGE_SIZE);
293
294 flush_tlb_kernel_range(c->vm_start, c->vm_end);
295
296 arm_vmregion_free(&consistent_head, c);
297}
298
299#else /* !CONFIG_MMU */
300
301#define __dma_alloc_remap(page, size, gfp, prot) page_address(page)
302#define __dma_free_remap(addr, size) do { } while (0)
303
304#endif /* CONFIG_MMU */
305
306static void *
307__dma_alloc(struct device *dev, size_t size, dma_addr_t *handle, gfp_t gfp,
308 pgprot_t prot)
309{
310 struct page *page;
311 void *addr;
312
313 *handle = ~0;
314 size = PAGE_ALIGN(size);
315
316 page = __dma_alloc_buffer(dev, size, gfp);
317 if (!page)
318 return NULL;
319
320 if (!arch_is_coherent())
321 addr = __dma_alloc_remap(page, size, gfp, prot);
322 else
323 addr = page_address(page);
324
325 if (addr)
326 *handle = pfn_to_dma(dev, page_to_pfn(page));
327 else
328 __dma_free_buffer(page, size);
329
330 return addr;
331}
332
333/*
334 * Allocate DMA-coherent memory space and return both the kernel remapped
335 * virtual and bus address for that space.
336 */
337void *
338dma_alloc_coherent(struct device *dev, size_t size, dma_addr_t *handle, gfp_t gfp)
339{
340 void *memory;
341
342 if (dma_alloc_from_coherent(dev, size, handle, &memory))
343 return memory;
344
345 return __dma_alloc(dev, size, handle, gfp,
346 pgprot_dmacoherent(pgprot_kernel));
347}
348EXPORT_SYMBOL(dma_alloc_coherent);
349
350/*
351 * Allocate a writecombining region, in much the same way as
352 * dma_alloc_coherent above.
353 */
354void *
355dma_alloc_writecombine(struct device *dev, size_t size, dma_addr_t *handle, gfp_t gfp)
356{
357 return __dma_alloc(dev, size, handle, gfp,
358 pgprot_writecombine(pgprot_kernel));
359}
360EXPORT_SYMBOL(dma_alloc_writecombine);
361
362static int dma_mmap(struct device *dev, struct vm_area_struct *vma,
363 void *cpu_addr, dma_addr_t dma_addr, size_t size)
364{
365 int ret = -ENXIO;
366#ifdef CONFIG_MMU
367 unsigned long user_size, kern_size;
368 struct arm_vmregion *c;
369
370 user_size = (vma->vm_end - vma->vm_start) >> PAGE_SHIFT;
371
372 c = arm_vmregion_find(&consistent_head, (unsigned long)cpu_addr);
373 if (c) {
374 unsigned long off = vma->vm_pgoff;
375
376 kern_size = (c->vm_end - c->vm_start) >> PAGE_SHIFT;
377
378 if (off < kern_size &&
379 user_size <= (kern_size - off)) {
380 ret = remap_pfn_range(vma, vma->vm_start,
381 page_to_pfn(c->vm_pages) + off,
382 user_size << PAGE_SHIFT,
383 vma->vm_page_prot);
384 }
385 }
386#endif /* CONFIG_MMU */
387
388 return ret;
389}
390
391int dma_mmap_coherent(struct device *dev, struct vm_area_struct *vma,
392 void *cpu_addr, dma_addr_t dma_addr, size_t size)
393{
394 vma->vm_page_prot = pgprot_dmacoherent(vma->vm_page_prot);
395 return dma_mmap(dev, vma, cpu_addr, dma_addr, size);
396}
397EXPORT_SYMBOL(dma_mmap_coherent);
398
399int dma_mmap_writecombine(struct device *dev, struct vm_area_struct *vma,
400 void *cpu_addr, dma_addr_t dma_addr, size_t size)
401{
402 vma->vm_page_prot = pgprot_writecombine(vma->vm_page_prot);
403 return dma_mmap(dev, vma, cpu_addr, dma_addr, size);
404}
405EXPORT_SYMBOL(dma_mmap_writecombine);
406
407/*
408 * free a page as defined by the above mapping.
409 * Must not be called with IRQs disabled.
410 */
411void dma_free_coherent(struct device *dev, size_t size, void *cpu_addr, dma_addr_t handle)
412{
413 WARN_ON(irqs_disabled());
414
415 if (dma_release_from_coherent(dev, get_order(size), cpu_addr))
416 return;
417
418 size = PAGE_ALIGN(size);
419
420 if (!arch_is_coherent())
421 __dma_free_remap(cpu_addr, size);
422
423 __dma_free_buffer(pfn_to_page(dma_to_pfn(dev, handle)), size);
424}
425EXPORT_SYMBOL(dma_free_coherent);
426
427/*
428 * Make an area consistent for devices.
429 * Note: Drivers should NOT use this function directly, as it will break
430 * platforms with CONFIG_DMABOUNCE.
431 * Use the driver DMA support - see dma-mapping.h (dma_sync_*)
432 */
433void ___dma_single_cpu_to_dev(const void *kaddr, size_t size,
434 enum dma_data_direction dir)
435{
436 unsigned long paddr;
437
438 BUG_ON(!virt_addr_valid(kaddr) || !virt_addr_valid(kaddr + size - 1));
439
440 dmac_map_area(kaddr, size, dir);
441
442 paddr = __pa(kaddr);
443 if (dir == DMA_FROM_DEVICE) {
444 outer_inv_range(paddr, paddr + size);
445 } else {
446 outer_clean_range(paddr, paddr + size);
447 }
448 /* FIXME: non-speculating: flush on bidirectional mappings? */
449}
450EXPORT_SYMBOL(___dma_single_cpu_to_dev);
451
452void ___dma_single_dev_to_cpu(const void *kaddr, size_t size,
453 enum dma_data_direction dir)
454{
455 BUG_ON(!virt_addr_valid(kaddr) || !virt_addr_valid(kaddr + size - 1));
456
457 /* FIXME: non-speculating: not required */
458 /* don't bother invalidating if DMA to device */
459 if (dir != DMA_TO_DEVICE) {
460 unsigned long paddr = __pa(kaddr);
461 outer_inv_range(paddr, paddr + size);
462 }
463
464 dmac_unmap_area(kaddr, size, dir);
465}
466EXPORT_SYMBOL(___dma_single_dev_to_cpu);
467
468static void dma_cache_maint_page(struct page *page, unsigned long offset,
469 size_t size, enum dma_data_direction dir,
470 void (*op)(const void *, size_t, int))
471{
472 /*
473 * A single sg entry may refer to multiple physically contiguous
474 * pages. But we still need to process highmem pages individually.
475 * If highmem is not configured then the bulk of this loop gets
476 * optimized out.
477 */
478 size_t left = size;
479 do {
480 size_t len = left;
481 void *vaddr;
482
483 if (PageHighMem(page)) {
484 if (len + offset > PAGE_SIZE) {
485 if (offset >= PAGE_SIZE) {
486 page += offset / PAGE_SIZE;
487 offset %= PAGE_SIZE;
488 }
489 len = PAGE_SIZE - offset;
490 }
491 vaddr = kmap_high_get(page);
492 if (vaddr) {
493 vaddr += offset;
494 op(vaddr, len, dir);
495 kunmap_high(page);
496 } else if (cache_is_vipt()) {
497 /* unmapped pages might still be cached */
498 vaddr = kmap_atomic(page);
499 op(vaddr + offset, len, dir);
500 kunmap_atomic(vaddr);
501 }
502 } else {
503 vaddr = page_address(page) + offset;
504 op(vaddr, len, dir);
505 }
506 offset = 0;
507 page++;
508 left -= len;
509 } while (left);
510}
511
512void ___dma_page_cpu_to_dev(struct page *page, unsigned long off,
513 size_t size, enum dma_data_direction dir)
514{
515 unsigned long paddr;
516
517 dma_cache_maint_page(page, off, size, dir, dmac_map_area);
518
519 paddr = page_to_phys(page) + off;
520 if (dir == DMA_FROM_DEVICE) {
521 outer_inv_range(paddr, paddr + size);
522 } else {
523 outer_clean_range(paddr, paddr + size);
524 }
525 /* FIXME: non-speculating: flush on bidirectional mappings? */
526}
527EXPORT_SYMBOL(___dma_page_cpu_to_dev);
528
529void ___dma_page_dev_to_cpu(struct page *page, unsigned long off,
530 size_t size, enum dma_data_direction dir)
531{
532 unsigned long paddr = page_to_phys(page) + off;
533
534 /* FIXME: non-speculating: not required */
535 /* don't bother invalidating if DMA to device */
536 if (dir != DMA_TO_DEVICE)
537 outer_inv_range(paddr, paddr + size);
538
539 dma_cache_maint_page(page, off, size, dir, dmac_unmap_area);
540
541 /*
542 * Mark the D-cache clean for this page to avoid extra flushing.
543 */
544 if (dir != DMA_TO_DEVICE && off == 0 && size >= PAGE_SIZE)
545 set_bit(PG_dcache_clean, &page->flags);
546}
547EXPORT_SYMBOL(___dma_page_dev_to_cpu);
548
549/**
550 * dma_map_sg - map a set of SG buffers for streaming mode DMA
551 * @dev: valid struct device pointer, or NULL for ISA and EISA-like devices
552 * @sg: list of buffers
553 * @nents: number of buffers to map
554 * @dir: DMA transfer direction
555 *
556 * Map a set of buffers described by scatterlist in streaming mode for DMA.
557 * This is the scatter-gather version of the dma_map_single interface.
558 * Here the scatter gather list elements are each tagged with the
559 * appropriate dma address and length. They are obtained via
560 * sg_dma_{address,length}.
561 *
562 * Device ownership issues as mentioned for dma_map_single are the same
563 * here.
564 */
565int dma_map_sg(struct device *dev, struct scatterlist *sg, int nents,
566 enum dma_data_direction dir)
567{
568 struct scatterlist *s;
569 int i, j;
570
571 BUG_ON(!valid_dma_direction(dir));
572
573 for_each_sg(sg, s, nents, i) {
574 s->dma_address = __dma_map_page(dev, sg_page(s), s->offset,
575 s->length, dir);
576 if (dma_mapping_error(dev, s->dma_address))
577 goto bad_mapping;
578 }
579 debug_dma_map_sg(dev, sg, nents, nents, dir);
580 return nents;
581
582 bad_mapping:
583 for_each_sg(sg, s, i, j)
584 __dma_unmap_page(dev, sg_dma_address(s), sg_dma_len(s), dir);
585 return 0;
586}
587EXPORT_SYMBOL(dma_map_sg);
588
589/**
590 * dma_unmap_sg - unmap a set of SG buffers mapped by dma_map_sg
591 * @dev: valid struct device pointer, or NULL for ISA and EISA-like devices
592 * @sg: list of buffers
593 * @nents: number of buffers to unmap (same as was passed to dma_map_sg)
594 * @dir: DMA transfer direction (same as was passed to dma_map_sg)
595 *
596 * Unmap a set of streaming mode DMA translations. Again, CPU access
597 * rules concerning calls here are the same as for dma_unmap_single().
598 */
599void dma_unmap_sg(struct device *dev, struct scatterlist *sg, int nents,
600 enum dma_data_direction dir)
601{
602 struct scatterlist *s;
603 int i;
604
605 debug_dma_unmap_sg(dev, sg, nents, dir);
606
607 for_each_sg(sg, s, nents, i)
608 __dma_unmap_page(dev, sg_dma_address(s), sg_dma_len(s), dir);
609}
610EXPORT_SYMBOL(dma_unmap_sg);
611
612/**
613 * dma_sync_sg_for_cpu
614 * @dev: valid struct device pointer, or NULL for ISA and EISA-like devices
615 * @sg: list of buffers
616 * @nents: number of buffers to map (returned from dma_map_sg)
617 * @dir: DMA transfer direction (same as was passed to dma_map_sg)
618 */
619void dma_sync_sg_for_cpu(struct device *dev, struct scatterlist *sg,
620 int nents, enum dma_data_direction dir)
621{
622 struct scatterlist *s;
623 int i;
624
625 for_each_sg(sg, s, nents, i) {
626 if (!dmabounce_sync_for_cpu(dev, sg_dma_address(s), 0,
627 sg_dma_len(s), dir))
628 continue;
629
630 __dma_page_dev_to_cpu(sg_page(s), s->offset,
631 s->length, dir);
632 }
633
634 debug_dma_sync_sg_for_cpu(dev, sg, nents, dir);
635}
636EXPORT_SYMBOL(dma_sync_sg_for_cpu);
637
638/**
639 * dma_sync_sg_for_device
640 * @dev: valid struct device pointer, or NULL for ISA and EISA-like devices
641 * @sg: list of buffers
642 * @nents: number of buffers to map (returned from dma_map_sg)
643 * @dir: DMA transfer direction (same as was passed to dma_map_sg)
644 */
645void dma_sync_sg_for_device(struct device *dev, struct scatterlist *sg,
646 int nents, enum dma_data_direction dir)
647{
648 struct scatterlist *s;
649 int i;
650
651 for_each_sg(sg, s, nents, i) {
652 if (!dmabounce_sync_for_device(dev, sg_dma_address(s), 0,
653 sg_dma_len(s), dir))
654 continue;
655
656 __dma_page_cpu_to_dev(sg_page(s), s->offset,
657 s->length, dir);
658 }
659
660 debug_dma_sync_sg_for_device(dev, sg, nents, dir);
661}
662EXPORT_SYMBOL(dma_sync_sg_for_device);
663
664/*
665 * Return whether the given device DMA address mask can be supported
666 * properly. For example, if your device can only drive the low 24-bits
667 * during bus mastering, then you would pass 0x00ffffff as the mask
668 * to this function.
669 */
670int dma_supported(struct device *dev, u64 mask)
671{
672 if (mask < (u64)arm_dma_limit)
673 return 0;
674 return 1;
675}
676EXPORT_SYMBOL(dma_supported);
677
678int dma_set_mask(struct device *dev, u64 dma_mask)
679{
680 if (!dev->dma_mask || !dma_supported(dev, dma_mask))
681 return -EIO;
682
683#ifndef CONFIG_DMABOUNCE
684 *dev->dma_mask = dma_mask;
685#endif
686
687 return 0;
688}
689EXPORT_SYMBOL(dma_set_mask);
690
691#define PREALLOC_DMA_DEBUG_ENTRIES 4096
692
693static int __init dma_debug_do_init(void)
694{
695 dma_debug_init(PREALLOC_DMA_DEBUG_ENTRIES);
696 return 0;
697}
698fs_initcall(dma_debug_do_init);
1// SPDX-License-Identifier: GPL-2.0-only
2/*
3 * linux/arch/arm/mm/dma-mapping.c
4 *
5 * Copyright (C) 2000-2004 Russell King
6 *
7 * DMA uncached mapping support.
8 */
9#include <linux/module.h>
10#include <linux/mm.h>
11#include <linux/genalloc.h>
12#include <linux/gfp.h>
13#include <linux/errno.h>
14#include <linux/list.h>
15#include <linux/init.h>
16#include <linux/device.h>
17#include <linux/dma-direct.h>
18#include <linux/dma-map-ops.h>
19#include <linux/highmem.h>
20#include <linux/memblock.h>
21#include <linux/slab.h>
22#include <linux/iommu.h>
23#include <linux/io.h>
24#include <linux/vmalloc.h>
25#include <linux/sizes.h>
26#include <linux/cma.h>
27
28#include <asm/memory.h>
29#include <asm/highmem.h>
30#include <asm/cacheflush.h>
31#include <asm/tlbflush.h>
32#include <asm/mach/arch.h>
33#include <asm/dma-iommu.h>
34#include <asm/mach/map.h>
35#include <asm/system_info.h>
36#include <asm/xen/xen-ops.h>
37
38#include "dma.h"
39#include "mm.h"
40
41struct arm_dma_alloc_args {
42 struct device *dev;
43 size_t size;
44 gfp_t gfp;
45 pgprot_t prot;
46 const void *caller;
47 bool want_vaddr;
48 int coherent_flag;
49};
50
51struct arm_dma_free_args {
52 struct device *dev;
53 size_t size;
54 void *cpu_addr;
55 struct page *page;
56 bool want_vaddr;
57};
58
59#define NORMAL 0
60#define COHERENT 1
61
62struct arm_dma_allocator {
63 void *(*alloc)(struct arm_dma_alloc_args *args,
64 struct page **ret_page);
65 void (*free)(struct arm_dma_free_args *args);
66};
67
68struct arm_dma_buffer {
69 struct list_head list;
70 void *virt;
71 struct arm_dma_allocator *allocator;
72};
73
74static LIST_HEAD(arm_dma_bufs);
75static DEFINE_SPINLOCK(arm_dma_bufs_lock);
76
77static struct arm_dma_buffer *arm_dma_buffer_find(void *virt)
78{
79 struct arm_dma_buffer *buf, *found = NULL;
80 unsigned long flags;
81
82 spin_lock_irqsave(&arm_dma_bufs_lock, flags);
83 list_for_each_entry(buf, &arm_dma_bufs, list) {
84 if (buf->virt == virt) {
85 list_del(&buf->list);
86 found = buf;
87 break;
88 }
89 }
90 spin_unlock_irqrestore(&arm_dma_bufs_lock, flags);
91 return found;
92}
93
94/*
95 * The DMA API is built upon the notion of "buffer ownership". A buffer
96 * is either exclusively owned by the CPU (and therefore may be accessed
97 * by it) or exclusively owned by the DMA device. These helper functions
98 * represent the transitions between these two ownership states.
99 *
100 * Note, however, that on later ARMs, this notion does not work due to
101 * speculative prefetches. We model our approach on the assumption that
102 * the CPU does do speculative prefetches, which means we clean caches
103 * before transfers and delay cache invalidation until transfer completion.
104 *
105 */
106
107static void __dma_clear_buffer(struct page *page, size_t size, int coherent_flag)
108{
109 /*
110 * Ensure that the allocated pages are zeroed, and that any data
111 * lurking in the kernel direct-mapped region is invalidated.
112 */
113 if (PageHighMem(page)) {
114 phys_addr_t base = __pfn_to_phys(page_to_pfn(page));
115 phys_addr_t end = base + size;
116 while (size > 0) {
117 void *ptr = kmap_atomic(page);
118 memset(ptr, 0, PAGE_SIZE);
119 if (coherent_flag != COHERENT)
120 dmac_flush_range(ptr, ptr + PAGE_SIZE);
121 kunmap_atomic(ptr);
122 page++;
123 size -= PAGE_SIZE;
124 }
125 if (coherent_flag != COHERENT)
126 outer_flush_range(base, end);
127 } else {
128 void *ptr = page_address(page);
129 memset(ptr, 0, size);
130 if (coherent_flag != COHERENT) {
131 dmac_flush_range(ptr, ptr + size);
132 outer_flush_range(__pa(ptr), __pa(ptr) + size);
133 }
134 }
135}
136
137/*
138 * Allocate a DMA buffer for 'dev' of size 'size' using the
139 * specified gfp mask. Note that 'size' must be page aligned.
140 */
141static struct page *__dma_alloc_buffer(struct device *dev, size_t size,
142 gfp_t gfp, int coherent_flag)
143{
144 unsigned long order = get_order(size);
145 struct page *page, *p, *e;
146
147 page = alloc_pages(gfp, order);
148 if (!page)
149 return NULL;
150
151 /*
152 * Now split the huge page and free the excess pages
153 */
154 split_page(page, order);
155 for (p = page + (size >> PAGE_SHIFT), e = page + (1 << order); p < e; p++)
156 __free_page(p);
157
158 __dma_clear_buffer(page, size, coherent_flag);
159
160 return page;
161}
162
163/*
164 * Free a DMA buffer. 'size' must be page aligned.
165 */
166static void __dma_free_buffer(struct page *page, size_t size)
167{
168 struct page *e = page + (size >> PAGE_SHIFT);
169
170 while (page < e) {
171 __free_page(page);
172 page++;
173 }
174}
175
176static void *__alloc_from_contiguous(struct device *dev, size_t size,
177 pgprot_t prot, struct page **ret_page,
178 const void *caller, bool want_vaddr,
179 int coherent_flag, gfp_t gfp);
180
181static void *__alloc_remap_buffer(struct device *dev, size_t size, gfp_t gfp,
182 pgprot_t prot, struct page **ret_page,
183 const void *caller, bool want_vaddr);
184
185#define DEFAULT_DMA_COHERENT_POOL_SIZE SZ_256K
186static struct gen_pool *atomic_pool __ro_after_init;
187
188static size_t atomic_pool_size __initdata = DEFAULT_DMA_COHERENT_POOL_SIZE;
189
190static int __init early_coherent_pool(char *p)
191{
192 atomic_pool_size = memparse(p, &p);
193 return 0;
194}
195early_param("coherent_pool", early_coherent_pool);
196
197/*
198 * Initialise the coherent pool for atomic allocations.
199 */
200static int __init atomic_pool_init(void)
201{
202 pgprot_t prot = pgprot_dmacoherent(PAGE_KERNEL);
203 gfp_t gfp = GFP_KERNEL | GFP_DMA;
204 struct page *page;
205 void *ptr;
206
207 atomic_pool = gen_pool_create(PAGE_SHIFT, -1);
208 if (!atomic_pool)
209 goto out;
210 /*
211 * The atomic pool is only used for non-coherent allocations
212 * so we must pass NORMAL for coherent_flag.
213 */
214 if (dev_get_cma_area(NULL))
215 ptr = __alloc_from_contiguous(NULL, atomic_pool_size, prot,
216 &page, atomic_pool_init, true, NORMAL,
217 GFP_KERNEL);
218 else
219 ptr = __alloc_remap_buffer(NULL, atomic_pool_size, gfp, prot,
220 &page, atomic_pool_init, true);
221 if (ptr) {
222 int ret;
223
224 ret = gen_pool_add_virt(atomic_pool, (unsigned long)ptr,
225 page_to_phys(page),
226 atomic_pool_size, -1);
227 if (ret)
228 goto destroy_genpool;
229
230 gen_pool_set_algo(atomic_pool,
231 gen_pool_first_fit_order_align,
232 NULL);
233 pr_info("DMA: preallocated %zu KiB pool for atomic coherent allocations\n",
234 atomic_pool_size / 1024);
235 return 0;
236 }
237
238destroy_genpool:
239 gen_pool_destroy(atomic_pool);
240 atomic_pool = NULL;
241out:
242 pr_err("DMA: failed to allocate %zu KiB pool for atomic coherent allocation\n",
243 atomic_pool_size / 1024);
244 return -ENOMEM;
245}
246/*
247 * CMA is activated by core_initcall, so we must be called after it.
248 */
249postcore_initcall(atomic_pool_init);
250
251#ifdef CONFIG_CMA_AREAS
252struct dma_contig_early_reserve {
253 phys_addr_t base;
254 unsigned long size;
255};
256
257static struct dma_contig_early_reserve dma_mmu_remap[MAX_CMA_AREAS] __initdata;
258
259static int dma_mmu_remap_num __initdata;
260
261void __init dma_contiguous_early_fixup(phys_addr_t base, unsigned long size)
262{
263 dma_mmu_remap[dma_mmu_remap_num].base = base;
264 dma_mmu_remap[dma_mmu_remap_num].size = size;
265 dma_mmu_remap_num++;
266}
267
268void __init dma_contiguous_remap(void)
269{
270 int i;
271 for (i = 0; i < dma_mmu_remap_num; i++) {
272 phys_addr_t start = dma_mmu_remap[i].base;
273 phys_addr_t end = start + dma_mmu_remap[i].size;
274 struct map_desc map;
275 unsigned long addr;
276
277 if (end > arm_lowmem_limit)
278 end = arm_lowmem_limit;
279 if (start >= end)
280 continue;
281
282 map.pfn = __phys_to_pfn(start);
283 map.virtual = __phys_to_virt(start);
284 map.length = end - start;
285 map.type = MT_MEMORY_DMA_READY;
286
287 /*
288 * Clear previous low-memory mapping to ensure that the
289 * TLB does not see any conflicting entries, then flush
290 * the TLB of the old entries before creating new mappings.
291 *
292 * This ensures that any speculatively loaded TLB entries
293 * (even though they may be rare) can not cause any problems,
294 * and ensures that this code is architecturally compliant.
295 */
296 for (addr = __phys_to_virt(start); addr < __phys_to_virt(end);
297 addr += PMD_SIZE)
298 pmd_clear(pmd_off_k(addr));
299
300 flush_tlb_kernel_range(__phys_to_virt(start),
301 __phys_to_virt(end));
302
303 iotable_init(&map, 1);
304 }
305}
306#endif
307
308static int __dma_update_pte(pte_t *pte, unsigned long addr, void *data)
309{
310 struct page *page = virt_to_page((void *)addr);
311 pgprot_t prot = *(pgprot_t *)data;
312
313 set_pte_ext(pte, mk_pte(page, prot), 0);
314 return 0;
315}
316
317static void __dma_remap(struct page *page, size_t size, pgprot_t prot)
318{
319 unsigned long start = (unsigned long) page_address(page);
320 unsigned end = start + size;
321
322 apply_to_page_range(&init_mm, start, size, __dma_update_pte, &prot);
323 flush_tlb_kernel_range(start, end);
324}
325
326static void *__alloc_remap_buffer(struct device *dev, size_t size, gfp_t gfp,
327 pgprot_t prot, struct page **ret_page,
328 const void *caller, bool want_vaddr)
329{
330 struct page *page;
331 void *ptr = NULL;
332 /*
333 * __alloc_remap_buffer is only called when the device is
334 * non-coherent
335 */
336 page = __dma_alloc_buffer(dev, size, gfp, NORMAL);
337 if (!page)
338 return NULL;
339 if (!want_vaddr)
340 goto out;
341
342 ptr = dma_common_contiguous_remap(page, size, prot, caller);
343 if (!ptr) {
344 __dma_free_buffer(page, size);
345 return NULL;
346 }
347
348 out:
349 *ret_page = page;
350 return ptr;
351}
352
353static void *__alloc_from_pool(size_t size, struct page **ret_page)
354{
355 unsigned long val;
356 void *ptr = NULL;
357
358 if (!atomic_pool) {
359 WARN(1, "coherent pool not initialised!\n");
360 return NULL;
361 }
362
363 val = gen_pool_alloc(atomic_pool, size);
364 if (val) {
365 phys_addr_t phys = gen_pool_virt_to_phys(atomic_pool, val);
366
367 *ret_page = phys_to_page(phys);
368 ptr = (void *)val;
369 }
370
371 return ptr;
372}
373
374static bool __in_atomic_pool(void *start, size_t size)
375{
376 return gen_pool_has_addr(atomic_pool, (unsigned long)start, size);
377}
378
379static int __free_from_pool(void *start, size_t size)
380{
381 if (!__in_atomic_pool(start, size))
382 return 0;
383
384 gen_pool_free(atomic_pool, (unsigned long)start, size);
385
386 return 1;
387}
388
389static void *__alloc_from_contiguous(struct device *dev, size_t size,
390 pgprot_t prot, struct page **ret_page,
391 const void *caller, bool want_vaddr,
392 int coherent_flag, gfp_t gfp)
393{
394 unsigned long order = get_order(size);
395 size_t count = size >> PAGE_SHIFT;
396 struct page *page;
397 void *ptr = NULL;
398
399 page = dma_alloc_from_contiguous(dev, count, order, gfp & __GFP_NOWARN);
400 if (!page)
401 return NULL;
402
403 __dma_clear_buffer(page, size, coherent_flag);
404
405 if (!want_vaddr)
406 goto out;
407
408 if (PageHighMem(page)) {
409 ptr = dma_common_contiguous_remap(page, size, prot, caller);
410 if (!ptr) {
411 dma_release_from_contiguous(dev, page, count);
412 return NULL;
413 }
414 } else {
415 __dma_remap(page, size, prot);
416 ptr = page_address(page);
417 }
418
419 out:
420 *ret_page = page;
421 return ptr;
422}
423
424static void __free_from_contiguous(struct device *dev, struct page *page,
425 void *cpu_addr, size_t size, bool want_vaddr)
426{
427 if (want_vaddr) {
428 if (PageHighMem(page))
429 dma_common_free_remap(cpu_addr, size);
430 else
431 __dma_remap(page, size, PAGE_KERNEL);
432 }
433 dma_release_from_contiguous(dev, page, size >> PAGE_SHIFT);
434}
435
436static inline pgprot_t __get_dma_pgprot(unsigned long attrs, pgprot_t prot)
437{
438 prot = (attrs & DMA_ATTR_WRITE_COMBINE) ?
439 pgprot_writecombine(prot) :
440 pgprot_dmacoherent(prot);
441 return prot;
442}
443
444static void *__alloc_simple_buffer(struct device *dev, size_t size, gfp_t gfp,
445 struct page **ret_page)
446{
447 struct page *page;
448 /* __alloc_simple_buffer is only called when the device is coherent */
449 page = __dma_alloc_buffer(dev, size, gfp, COHERENT);
450 if (!page)
451 return NULL;
452
453 *ret_page = page;
454 return page_address(page);
455}
456
457static void *simple_allocator_alloc(struct arm_dma_alloc_args *args,
458 struct page **ret_page)
459{
460 return __alloc_simple_buffer(args->dev, args->size, args->gfp,
461 ret_page);
462}
463
464static void simple_allocator_free(struct arm_dma_free_args *args)
465{
466 __dma_free_buffer(args->page, args->size);
467}
468
469static struct arm_dma_allocator simple_allocator = {
470 .alloc = simple_allocator_alloc,
471 .free = simple_allocator_free,
472};
473
474static void *cma_allocator_alloc(struct arm_dma_alloc_args *args,
475 struct page **ret_page)
476{
477 return __alloc_from_contiguous(args->dev, args->size, args->prot,
478 ret_page, args->caller,
479 args->want_vaddr, args->coherent_flag,
480 args->gfp);
481}
482
483static void cma_allocator_free(struct arm_dma_free_args *args)
484{
485 __free_from_contiguous(args->dev, args->page, args->cpu_addr,
486 args->size, args->want_vaddr);
487}
488
489static struct arm_dma_allocator cma_allocator = {
490 .alloc = cma_allocator_alloc,
491 .free = cma_allocator_free,
492};
493
494static void *pool_allocator_alloc(struct arm_dma_alloc_args *args,
495 struct page **ret_page)
496{
497 return __alloc_from_pool(args->size, ret_page);
498}
499
500static void pool_allocator_free(struct arm_dma_free_args *args)
501{
502 __free_from_pool(args->cpu_addr, args->size);
503}
504
505static struct arm_dma_allocator pool_allocator = {
506 .alloc = pool_allocator_alloc,
507 .free = pool_allocator_free,
508};
509
510static void *remap_allocator_alloc(struct arm_dma_alloc_args *args,
511 struct page **ret_page)
512{
513 return __alloc_remap_buffer(args->dev, args->size, args->gfp,
514 args->prot, ret_page, args->caller,
515 args->want_vaddr);
516}
517
518static void remap_allocator_free(struct arm_dma_free_args *args)
519{
520 if (args->want_vaddr)
521 dma_common_free_remap(args->cpu_addr, args->size);
522
523 __dma_free_buffer(args->page, args->size);
524}
525
526static struct arm_dma_allocator remap_allocator = {
527 .alloc = remap_allocator_alloc,
528 .free = remap_allocator_free,
529};
530
531static void *__dma_alloc(struct device *dev, size_t size, dma_addr_t *handle,
532 gfp_t gfp, pgprot_t prot, bool is_coherent,
533 unsigned long attrs, const void *caller)
534{
535 u64 mask = min_not_zero(dev->coherent_dma_mask, dev->bus_dma_limit);
536 struct page *page = NULL;
537 void *addr;
538 bool allowblock, cma;
539 struct arm_dma_buffer *buf;
540 struct arm_dma_alloc_args args = {
541 .dev = dev,
542 .size = PAGE_ALIGN(size),
543 .gfp = gfp,
544 .prot = prot,
545 .caller = caller,
546 .want_vaddr = ((attrs & DMA_ATTR_NO_KERNEL_MAPPING) == 0),
547 .coherent_flag = is_coherent ? COHERENT : NORMAL,
548 };
549
550#ifdef CONFIG_DMA_API_DEBUG
551 u64 limit = (mask + 1) & ~mask;
552 if (limit && size >= limit) {
553 dev_warn(dev, "coherent allocation too big (requested %#x mask %#llx)\n",
554 size, mask);
555 return NULL;
556 }
557#endif
558
559 buf = kzalloc(sizeof(*buf),
560 gfp & ~(__GFP_DMA | __GFP_DMA32 | __GFP_HIGHMEM));
561 if (!buf)
562 return NULL;
563
564 if (mask < 0xffffffffULL)
565 gfp |= GFP_DMA;
566
567 args.gfp = gfp;
568
569 *handle = DMA_MAPPING_ERROR;
570 allowblock = gfpflags_allow_blocking(gfp);
571 cma = allowblock ? dev_get_cma_area(dev) : NULL;
572
573 if (cma)
574 buf->allocator = &cma_allocator;
575 else if (is_coherent)
576 buf->allocator = &simple_allocator;
577 else if (allowblock)
578 buf->allocator = &remap_allocator;
579 else
580 buf->allocator = &pool_allocator;
581
582 addr = buf->allocator->alloc(&args, &page);
583
584 if (page) {
585 unsigned long flags;
586
587 *handle = phys_to_dma(dev, page_to_phys(page));
588 buf->virt = args.want_vaddr ? addr : page;
589
590 spin_lock_irqsave(&arm_dma_bufs_lock, flags);
591 list_add(&buf->list, &arm_dma_bufs);
592 spin_unlock_irqrestore(&arm_dma_bufs_lock, flags);
593 } else {
594 kfree(buf);
595 }
596
597 return args.want_vaddr ? addr : page;
598}
599
600/*
601 * Free a buffer as defined by the above mapping.
602 */
603static void __arm_dma_free(struct device *dev, size_t size, void *cpu_addr,
604 dma_addr_t handle, unsigned long attrs,
605 bool is_coherent)
606{
607 struct page *page = phys_to_page(dma_to_phys(dev, handle));
608 struct arm_dma_buffer *buf;
609 struct arm_dma_free_args args = {
610 .dev = dev,
611 .size = PAGE_ALIGN(size),
612 .cpu_addr = cpu_addr,
613 .page = page,
614 .want_vaddr = ((attrs & DMA_ATTR_NO_KERNEL_MAPPING) == 0),
615 };
616
617 buf = arm_dma_buffer_find(cpu_addr);
618 if (WARN(!buf, "Freeing invalid buffer %p\n", cpu_addr))
619 return;
620
621 buf->allocator->free(&args);
622 kfree(buf);
623}
624
625static void dma_cache_maint_page(struct page *page, unsigned long offset,
626 size_t size, enum dma_data_direction dir,
627 void (*op)(const void *, size_t, int))
628{
629 unsigned long pfn;
630 size_t left = size;
631
632 pfn = page_to_pfn(page) + offset / PAGE_SIZE;
633 offset %= PAGE_SIZE;
634
635 /*
636 * A single sg entry may refer to multiple physically contiguous
637 * pages. But we still need to process highmem pages individually.
638 * If highmem is not configured then the bulk of this loop gets
639 * optimized out.
640 */
641 do {
642 size_t len = left;
643 void *vaddr;
644
645 page = pfn_to_page(pfn);
646
647 if (PageHighMem(page)) {
648 if (len + offset > PAGE_SIZE)
649 len = PAGE_SIZE - offset;
650
651 if (cache_is_vipt_nonaliasing()) {
652 vaddr = kmap_atomic(page);
653 op(vaddr + offset, len, dir);
654 kunmap_atomic(vaddr);
655 } else {
656 vaddr = kmap_high_get(page);
657 if (vaddr) {
658 op(vaddr + offset, len, dir);
659 kunmap_high(page);
660 }
661 }
662 } else {
663 vaddr = page_address(page) + offset;
664 op(vaddr, len, dir);
665 }
666 offset = 0;
667 pfn++;
668 left -= len;
669 } while (left);
670}
671
672/*
673 * Make an area consistent for devices.
674 * Note: Drivers should NOT use this function directly.
675 * Use the driver DMA support - see dma-mapping.h (dma_sync_*)
676 */
677static void __dma_page_cpu_to_dev(struct page *page, unsigned long off,
678 size_t size, enum dma_data_direction dir)
679{
680 phys_addr_t paddr;
681
682 dma_cache_maint_page(page, off, size, dir, dmac_map_area);
683
684 paddr = page_to_phys(page) + off;
685 if (dir == DMA_FROM_DEVICE) {
686 outer_inv_range(paddr, paddr + size);
687 } else {
688 outer_clean_range(paddr, paddr + size);
689 }
690 /* FIXME: non-speculating: flush on bidirectional mappings? */
691}
692
693static void __dma_page_dev_to_cpu(struct page *page, unsigned long off,
694 size_t size, enum dma_data_direction dir)
695{
696 phys_addr_t paddr = page_to_phys(page) + off;
697
698 /* FIXME: non-speculating: not required */
699 /* in any case, don't bother invalidating if DMA to device */
700 if (dir != DMA_TO_DEVICE) {
701 outer_inv_range(paddr, paddr + size);
702
703 dma_cache_maint_page(page, off, size, dir, dmac_unmap_area);
704 }
705
706 /*
707 * Mark the D-cache clean for these pages to avoid extra flushing.
708 */
709 if (dir != DMA_TO_DEVICE && size >= PAGE_SIZE) {
710 unsigned long pfn;
711 size_t left = size;
712
713 pfn = page_to_pfn(page) + off / PAGE_SIZE;
714 off %= PAGE_SIZE;
715 if (off) {
716 pfn++;
717 left -= PAGE_SIZE - off;
718 }
719 while (left >= PAGE_SIZE) {
720 page = pfn_to_page(pfn++);
721 set_bit(PG_dcache_clean, &page->flags);
722 left -= PAGE_SIZE;
723 }
724 }
725}
726
727#ifdef CONFIG_ARM_DMA_USE_IOMMU
728
729static int __dma_info_to_prot(enum dma_data_direction dir, unsigned long attrs)
730{
731 int prot = 0;
732
733 if (attrs & DMA_ATTR_PRIVILEGED)
734 prot |= IOMMU_PRIV;
735
736 switch (dir) {
737 case DMA_BIDIRECTIONAL:
738 return prot | IOMMU_READ | IOMMU_WRITE;
739 case DMA_TO_DEVICE:
740 return prot | IOMMU_READ;
741 case DMA_FROM_DEVICE:
742 return prot | IOMMU_WRITE;
743 default:
744 return prot;
745 }
746}
747
748/* IOMMU */
749
750static int extend_iommu_mapping(struct dma_iommu_mapping *mapping);
751
752static inline dma_addr_t __alloc_iova(struct dma_iommu_mapping *mapping,
753 size_t size)
754{
755 unsigned int order = get_order(size);
756 unsigned int align = 0;
757 unsigned int count, start;
758 size_t mapping_size = mapping->bits << PAGE_SHIFT;
759 unsigned long flags;
760 dma_addr_t iova;
761 int i;
762
763 if (order > CONFIG_ARM_DMA_IOMMU_ALIGNMENT)
764 order = CONFIG_ARM_DMA_IOMMU_ALIGNMENT;
765
766 count = PAGE_ALIGN(size) >> PAGE_SHIFT;
767 align = (1 << order) - 1;
768
769 spin_lock_irqsave(&mapping->lock, flags);
770 for (i = 0; i < mapping->nr_bitmaps; i++) {
771 start = bitmap_find_next_zero_area(mapping->bitmaps[i],
772 mapping->bits, 0, count, align);
773
774 if (start > mapping->bits)
775 continue;
776
777 bitmap_set(mapping->bitmaps[i], start, count);
778 break;
779 }
780
781 /*
782 * No unused range found. Try to extend the existing mapping
783 * and perform a second attempt to reserve an IO virtual
784 * address range of size bytes.
785 */
786 if (i == mapping->nr_bitmaps) {
787 if (extend_iommu_mapping(mapping)) {
788 spin_unlock_irqrestore(&mapping->lock, flags);
789 return DMA_MAPPING_ERROR;
790 }
791
792 start = bitmap_find_next_zero_area(mapping->bitmaps[i],
793 mapping->bits, 0, count, align);
794
795 if (start > mapping->bits) {
796 spin_unlock_irqrestore(&mapping->lock, flags);
797 return DMA_MAPPING_ERROR;
798 }
799
800 bitmap_set(mapping->bitmaps[i], start, count);
801 }
802 spin_unlock_irqrestore(&mapping->lock, flags);
803
804 iova = mapping->base + (mapping_size * i);
805 iova += start << PAGE_SHIFT;
806
807 return iova;
808}
809
810static inline void __free_iova(struct dma_iommu_mapping *mapping,
811 dma_addr_t addr, size_t size)
812{
813 unsigned int start, count;
814 size_t mapping_size = mapping->bits << PAGE_SHIFT;
815 unsigned long flags;
816 dma_addr_t bitmap_base;
817 u32 bitmap_index;
818
819 if (!size)
820 return;
821
822 bitmap_index = (u32) (addr - mapping->base) / (u32) mapping_size;
823 BUG_ON(addr < mapping->base || bitmap_index > mapping->extensions);
824
825 bitmap_base = mapping->base + mapping_size * bitmap_index;
826
827 start = (addr - bitmap_base) >> PAGE_SHIFT;
828
829 if (addr + size > bitmap_base + mapping_size) {
830 /*
831 * The address range to be freed reaches into the iova
832 * range of the next bitmap. This should not happen as
833 * we don't allow this in __alloc_iova (at the
834 * moment).
835 */
836 BUG();
837 } else
838 count = size >> PAGE_SHIFT;
839
840 spin_lock_irqsave(&mapping->lock, flags);
841 bitmap_clear(mapping->bitmaps[bitmap_index], start, count);
842 spin_unlock_irqrestore(&mapping->lock, flags);
843}
844
845/* We'll try 2M, 1M, 64K, and finally 4K; array must end with 0! */
846static const int iommu_order_array[] = { 9, 8, 4, 0 };
847
848static struct page **__iommu_alloc_buffer(struct device *dev, size_t size,
849 gfp_t gfp, unsigned long attrs,
850 int coherent_flag)
851{
852 struct page **pages;
853 int count = size >> PAGE_SHIFT;
854 int array_size = count * sizeof(struct page *);
855 int i = 0;
856 int order_idx = 0;
857
858 if (array_size <= PAGE_SIZE)
859 pages = kzalloc(array_size, GFP_KERNEL);
860 else
861 pages = vzalloc(array_size);
862 if (!pages)
863 return NULL;
864
865 if (attrs & DMA_ATTR_FORCE_CONTIGUOUS)
866 {
867 unsigned long order = get_order(size);
868 struct page *page;
869
870 page = dma_alloc_from_contiguous(dev, count, order,
871 gfp & __GFP_NOWARN);
872 if (!page)
873 goto error;
874
875 __dma_clear_buffer(page, size, coherent_flag);
876
877 for (i = 0; i < count; i++)
878 pages[i] = page + i;
879
880 return pages;
881 }
882
883 /* Go straight to 4K chunks if caller says it's OK. */
884 if (attrs & DMA_ATTR_ALLOC_SINGLE_PAGES)
885 order_idx = ARRAY_SIZE(iommu_order_array) - 1;
886
887 /*
888 * IOMMU can map any pages, so himem can also be used here
889 */
890 gfp |= __GFP_NOWARN | __GFP_HIGHMEM;
891
892 while (count) {
893 int j, order;
894
895 order = iommu_order_array[order_idx];
896
897 /* Drop down when we get small */
898 if (__fls(count) < order) {
899 order_idx++;
900 continue;
901 }
902
903 if (order) {
904 /* See if it's easy to allocate a high-order chunk */
905 pages[i] = alloc_pages(gfp | __GFP_NORETRY, order);
906
907 /* Go down a notch at first sign of pressure */
908 if (!pages[i]) {
909 order_idx++;
910 continue;
911 }
912 } else {
913 pages[i] = alloc_pages(gfp, 0);
914 if (!pages[i])
915 goto error;
916 }
917
918 if (order) {
919 split_page(pages[i], order);
920 j = 1 << order;
921 while (--j)
922 pages[i + j] = pages[i] + j;
923 }
924
925 __dma_clear_buffer(pages[i], PAGE_SIZE << order, coherent_flag);
926 i += 1 << order;
927 count -= 1 << order;
928 }
929
930 return pages;
931error:
932 while (i--)
933 if (pages[i])
934 __free_pages(pages[i], 0);
935 kvfree(pages);
936 return NULL;
937}
938
939static int __iommu_free_buffer(struct device *dev, struct page **pages,
940 size_t size, unsigned long attrs)
941{
942 int count = size >> PAGE_SHIFT;
943 int i;
944
945 if (attrs & DMA_ATTR_FORCE_CONTIGUOUS) {
946 dma_release_from_contiguous(dev, pages[0], count);
947 } else {
948 for (i = 0; i < count; i++)
949 if (pages[i])
950 __free_pages(pages[i], 0);
951 }
952
953 kvfree(pages);
954 return 0;
955}
956
957/*
958 * Create a mapping in device IO address space for specified pages
959 */
960static dma_addr_t
961__iommu_create_mapping(struct device *dev, struct page **pages, size_t size,
962 unsigned long attrs)
963{
964 struct dma_iommu_mapping *mapping = to_dma_iommu_mapping(dev);
965 unsigned int count = PAGE_ALIGN(size) >> PAGE_SHIFT;
966 dma_addr_t dma_addr, iova;
967 int i;
968
969 dma_addr = __alloc_iova(mapping, size);
970 if (dma_addr == DMA_MAPPING_ERROR)
971 return dma_addr;
972
973 iova = dma_addr;
974 for (i = 0; i < count; ) {
975 int ret;
976
977 unsigned int next_pfn = page_to_pfn(pages[i]) + 1;
978 phys_addr_t phys = page_to_phys(pages[i]);
979 unsigned int len, j;
980
981 for (j = i + 1; j < count; j++, next_pfn++)
982 if (page_to_pfn(pages[j]) != next_pfn)
983 break;
984
985 len = (j - i) << PAGE_SHIFT;
986 ret = iommu_map(mapping->domain, iova, phys, len,
987 __dma_info_to_prot(DMA_BIDIRECTIONAL, attrs));
988 if (ret < 0)
989 goto fail;
990 iova += len;
991 i = j;
992 }
993 return dma_addr;
994fail:
995 iommu_unmap(mapping->domain, dma_addr, iova-dma_addr);
996 __free_iova(mapping, dma_addr, size);
997 return DMA_MAPPING_ERROR;
998}
999
1000static int __iommu_remove_mapping(struct device *dev, dma_addr_t iova, size_t size)
1001{
1002 struct dma_iommu_mapping *mapping = to_dma_iommu_mapping(dev);
1003
1004 /*
1005 * add optional in-page offset from iova to size and align
1006 * result to page size
1007 */
1008 size = PAGE_ALIGN((iova & ~PAGE_MASK) + size);
1009 iova &= PAGE_MASK;
1010
1011 iommu_unmap(mapping->domain, iova, size);
1012 __free_iova(mapping, iova, size);
1013 return 0;
1014}
1015
1016static struct page **__atomic_get_pages(void *addr)
1017{
1018 struct page *page;
1019 phys_addr_t phys;
1020
1021 phys = gen_pool_virt_to_phys(atomic_pool, (unsigned long)addr);
1022 page = phys_to_page(phys);
1023
1024 return (struct page **)page;
1025}
1026
1027static struct page **__iommu_get_pages(void *cpu_addr, unsigned long attrs)
1028{
1029 if (__in_atomic_pool(cpu_addr, PAGE_SIZE))
1030 return __atomic_get_pages(cpu_addr);
1031
1032 if (attrs & DMA_ATTR_NO_KERNEL_MAPPING)
1033 return cpu_addr;
1034
1035 return dma_common_find_pages(cpu_addr);
1036}
1037
1038static void *__iommu_alloc_simple(struct device *dev, size_t size, gfp_t gfp,
1039 dma_addr_t *handle, int coherent_flag,
1040 unsigned long attrs)
1041{
1042 struct page *page;
1043 void *addr;
1044
1045 if (coherent_flag == COHERENT)
1046 addr = __alloc_simple_buffer(dev, size, gfp, &page);
1047 else
1048 addr = __alloc_from_pool(size, &page);
1049 if (!addr)
1050 return NULL;
1051
1052 *handle = __iommu_create_mapping(dev, &page, size, attrs);
1053 if (*handle == DMA_MAPPING_ERROR)
1054 goto err_mapping;
1055
1056 return addr;
1057
1058err_mapping:
1059 __free_from_pool(addr, size);
1060 return NULL;
1061}
1062
1063static void __iommu_free_atomic(struct device *dev, void *cpu_addr,
1064 dma_addr_t handle, size_t size, int coherent_flag)
1065{
1066 __iommu_remove_mapping(dev, handle, size);
1067 if (coherent_flag == COHERENT)
1068 __dma_free_buffer(virt_to_page(cpu_addr), size);
1069 else
1070 __free_from_pool(cpu_addr, size);
1071}
1072
1073static void *arm_iommu_alloc_attrs(struct device *dev, size_t size,
1074 dma_addr_t *handle, gfp_t gfp, unsigned long attrs)
1075{
1076 pgprot_t prot = __get_dma_pgprot(attrs, PAGE_KERNEL);
1077 struct page **pages;
1078 void *addr = NULL;
1079 int coherent_flag = dev->dma_coherent ? COHERENT : NORMAL;
1080
1081 *handle = DMA_MAPPING_ERROR;
1082 size = PAGE_ALIGN(size);
1083
1084 if (coherent_flag == COHERENT || !gfpflags_allow_blocking(gfp))
1085 return __iommu_alloc_simple(dev, size, gfp, handle,
1086 coherent_flag, attrs);
1087
1088 pages = __iommu_alloc_buffer(dev, size, gfp, attrs, coherent_flag);
1089 if (!pages)
1090 return NULL;
1091
1092 *handle = __iommu_create_mapping(dev, pages, size, attrs);
1093 if (*handle == DMA_MAPPING_ERROR)
1094 goto err_buffer;
1095
1096 if (attrs & DMA_ATTR_NO_KERNEL_MAPPING)
1097 return pages;
1098
1099 addr = dma_common_pages_remap(pages, size, prot,
1100 __builtin_return_address(0));
1101 if (!addr)
1102 goto err_mapping;
1103
1104 return addr;
1105
1106err_mapping:
1107 __iommu_remove_mapping(dev, *handle, size);
1108err_buffer:
1109 __iommu_free_buffer(dev, pages, size, attrs);
1110 return NULL;
1111}
1112
1113static int arm_iommu_mmap_attrs(struct device *dev, struct vm_area_struct *vma,
1114 void *cpu_addr, dma_addr_t dma_addr, size_t size,
1115 unsigned long attrs)
1116{
1117 struct page **pages = __iommu_get_pages(cpu_addr, attrs);
1118 unsigned long nr_pages = PAGE_ALIGN(size) >> PAGE_SHIFT;
1119 int err;
1120
1121 if (!pages)
1122 return -ENXIO;
1123
1124 if (vma->vm_pgoff >= nr_pages)
1125 return -ENXIO;
1126
1127 if (!dev->dma_coherent)
1128 vma->vm_page_prot = __get_dma_pgprot(attrs, vma->vm_page_prot);
1129
1130 err = vm_map_pages(vma, pages, nr_pages);
1131 if (err)
1132 pr_err("Remapping memory failed: %d\n", err);
1133
1134 return err;
1135}
1136
1137/*
1138 * free a page as defined by the above mapping.
1139 * Must not be called with IRQs disabled.
1140 */
1141static void arm_iommu_free_attrs(struct device *dev, size_t size, void *cpu_addr,
1142 dma_addr_t handle, unsigned long attrs)
1143{
1144 int coherent_flag = dev->dma_coherent ? COHERENT : NORMAL;
1145 struct page **pages;
1146 size = PAGE_ALIGN(size);
1147
1148 if (coherent_flag == COHERENT || __in_atomic_pool(cpu_addr, size)) {
1149 __iommu_free_atomic(dev, cpu_addr, handle, size, coherent_flag);
1150 return;
1151 }
1152
1153 pages = __iommu_get_pages(cpu_addr, attrs);
1154 if (!pages) {
1155 WARN(1, "trying to free invalid coherent area: %p\n", cpu_addr);
1156 return;
1157 }
1158
1159 if ((attrs & DMA_ATTR_NO_KERNEL_MAPPING) == 0)
1160 dma_common_free_remap(cpu_addr, size);
1161
1162 __iommu_remove_mapping(dev, handle, size);
1163 __iommu_free_buffer(dev, pages, size, attrs);
1164}
1165
1166static int arm_iommu_get_sgtable(struct device *dev, struct sg_table *sgt,
1167 void *cpu_addr, dma_addr_t dma_addr,
1168 size_t size, unsigned long attrs)
1169{
1170 unsigned int count = PAGE_ALIGN(size) >> PAGE_SHIFT;
1171 struct page **pages = __iommu_get_pages(cpu_addr, attrs);
1172
1173 if (!pages)
1174 return -ENXIO;
1175
1176 return sg_alloc_table_from_pages(sgt, pages, count, 0, size,
1177 GFP_KERNEL);
1178}
1179
1180/*
1181 * Map a part of the scatter-gather list into contiguous io address space
1182 */
1183static int __map_sg_chunk(struct device *dev, struct scatterlist *sg,
1184 size_t size, dma_addr_t *handle,
1185 enum dma_data_direction dir, unsigned long attrs)
1186{
1187 struct dma_iommu_mapping *mapping = to_dma_iommu_mapping(dev);
1188 dma_addr_t iova, iova_base;
1189 int ret = 0;
1190 unsigned int count;
1191 struct scatterlist *s;
1192 int prot;
1193
1194 size = PAGE_ALIGN(size);
1195 *handle = DMA_MAPPING_ERROR;
1196
1197 iova_base = iova = __alloc_iova(mapping, size);
1198 if (iova == DMA_MAPPING_ERROR)
1199 return -ENOMEM;
1200
1201 for (count = 0, s = sg; count < (size >> PAGE_SHIFT); s = sg_next(s)) {
1202 phys_addr_t phys = page_to_phys(sg_page(s));
1203 unsigned int len = PAGE_ALIGN(s->offset + s->length);
1204
1205 if (!dev->dma_coherent && !(attrs & DMA_ATTR_SKIP_CPU_SYNC))
1206 __dma_page_cpu_to_dev(sg_page(s), s->offset, s->length, dir);
1207
1208 prot = __dma_info_to_prot(dir, attrs);
1209
1210 ret = iommu_map(mapping->domain, iova, phys, len, prot);
1211 if (ret < 0)
1212 goto fail;
1213 count += len >> PAGE_SHIFT;
1214 iova += len;
1215 }
1216 *handle = iova_base;
1217
1218 return 0;
1219fail:
1220 iommu_unmap(mapping->domain, iova_base, count * PAGE_SIZE);
1221 __free_iova(mapping, iova_base, size);
1222 return ret;
1223}
1224
1225/**
1226 * arm_iommu_map_sg - map a set of SG buffers for streaming mode DMA
1227 * @dev: valid struct device pointer
1228 * @sg: list of buffers
1229 * @nents: number of buffers to map
1230 * @dir: DMA transfer direction
1231 *
1232 * Map a set of buffers described by scatterlist in streaming mode for DMA.
1233 * The scatter gather list elements are merged together (if possible) and
1234 * tagged with the appropriate dma address and length. They are obtained via
1235 * sg_dma_{address,length}.
1236 */
1237static int arm_iommu_map_sg(struct device *dev, struct scatterlist *sg,
1238 int nents, enum dma_data_direction dir, unsigned long attrs)
1239{
1240 struct scatterlist *s = sg, *dma = sg, *start = sg;
1241 int i, count = 0, ret;
1242 unsigned int offset = s->offset;
1243 unsigned int size = s->offset + s->length;
1244 unsigned int max = dma_get_max_seg_size(dev);
1245
1246 for (i = 1; i < nents; i++) {
1247 s = sg_next(s);
1248
1249 s->dma_length = 0;
1250
1251 if (s->offset || (size & ~PAGE_MASK) || size + s->length > max) {
1252 ret = __map_sg_chunk(dev, start, size,
1253 &dma->dma_address, dir, attrs);
1254 if (ret < 0)
1255 goto bad_mapping;
1256
1257 dma->dma_address += offset;
1258 dma->dma_length = size - offset;
1259
1260 size = offset = s->offset;
1261 start = s;
1262 dma = sg_next(dma);
1263 count += 1;
1264 }
1265 size += s->length;
1266 }
1267 ret = __map_sg_chunk(dev, start, size, &dma->dma_address, dir, attrs);
1268 if (ret < 0)
1269 goto bad_mapping;
1270
1271 dma->dma_address += offset;
1272 dma->dma_length = size - offset;
1273
1274 return count+1;
1275
1276bad_mapping:
1277 for_each_sg(sg, s, count, i)
1278 __iommu_remove_mapping(dev, sg_dma_address(s), sg_dma_len(s));
1279 if (ret == -ENOMEM)
1280 return ret;
1281 return -EINVAL;
1282}
1283
1284/**
1285 * arm_iommu_unmap_sg - unmap a set of SG buffers mapped by dma_map_sg
1286 * @dev: valid struct device pointer
1287 * @sg: list of buffers
1288 * @nents: number of buffers to unmap (same as was passed to dma_map_sg)
1289 * @dir: DMA transfer direction (same as was passed to dma_map_sg)
1290 *
1291 * Unmap a set of streaming mode DMA translations. Again, CPU access
1292 * rules concerning calls here are the same as for dma_unmap_single().
1293 */
1294static void arm_iommu_unmap_sg(struct device *dev,
1295 struct scatterlist *sg, int nents,
1296 enum dma_data_direction dir,
1297 unsigned long attrs)
1298{
1299 struct scatterlist *s;
1300 int i;
1301
1302 for_each_sg(sg, s, nents, i) {
1303 if (sg_dma_len(s))
1304 __iommu_remove_mapping(dev, sg_dma_address(s),
1305 sg_dma_len(s));
1306 if (!dev->dma_coherent && !(attrs & DMA_ATTR_SKIP_CPU_SYNC))
1307 __dma_page_dev_to_cpu(sg_page(s), s->offset,
1308 s->length, dir);
1309 }
1310}
1311
1312/**
1313 * arm_iommu_sync_sg_for_cpu
1314 * @dev: valid struct device pointer
1315 * @sg: list of buffers
1316 * @nents: number of buffers to map (returned from dma_map_sg)
1317 * @dir: DMA transfer direction (same as was passed to dma_map_sg)
1318 */
1319static void arm_iommu_sync_sg_for_cpu(struct device *dev,
1320 struct scatterlist *sg,
1321 int nents, enum dma_data_direction dir)
1322{
1323 struct scatterlist *s;
1324 int i;
1325
1326 if (dev->dma_coherent)
1327 return;
1328
1329 for_each_sg(sg, s, nents, i)
1330 __dma_page_dev_to_cpu(sg_page(s), s->offset, s->length, dir);
1331
1332}
1333
1334/**
1335 * arm_iommu_sync_sg_for_device
1336 * @dev: valid struct device pointer
1337 * @sg: list of buffers
1338 * @nents: number of buffers to map (returned from dma_map_sg)
1339 * @dir: DMA transfer direction (same as was passed to dma_map_sg)
1340 */
1341static void arm_iommu_sync_sg_for_device(struct device *dev,
1342 struct scatterlist *sg,
1343 int nents, enum dma_data_direction dir)
1344{
1345 struct scatterlist *s;
1346 int i;
1347
1348 if (dev->dma_coherent)
1349 return;
1350
1351 for_each_sg(sg, s, nents, i)
1352 __dma_page_cpu_to_dev(sg_page(s), s->offset, s->length, dir);
1353}
1354
1355/**
1356 * arm_iommu_map_page
1357 * @dev: valid struct device pointer
1358 * @page: page that buffer resides in
1359 * @offset: offset into page for start of buffer
1360 * @size: size of buffer to map
1361 * @dir: DMA transfer direction
1362 *
1363 * IOMMU aware version of arm_dma_map_page()
1364 */
1365static dma_addr_t arm_iommu_map_page(struct device *dev, struct page *page,
1366 unsigned long offset, size_t size, enum dma_data_direction dir,
1367 unsigned long attrs)
1368{
1369 struct dma_iommu_mapping *mapping = to_dma_iommu_mapping(dev);
1370 dma_addr_t dma_addr;
1371 int ret, prot, len = PAGE_ALIGN(size + offset);
1372
1373 if (!dev->dma_coherent && !(attrs & DMA_ATTR_SKIP_CPU_SYNC))
1374 __dma_page_cpu_to_dev(page, offset, size, dir);
1375
1376 dma_addr = __alloc_iova(mapping, len);
1377 if (dma_addr == DMA_MAPPING_ERROR)
1378 return dma_addr;
1379
1380 prot = __dma_info_to_prot(dir, attrs);
1381
1382 ret = iommu_map(mapping->domain, dma_addr, page_to_phys(page), len, prot);
1383 if (ret < 0)
1384 goto fail;
1385
1386 return dma_addr + offset;
1387fail:
1388 __free_iova(mapping, dma_addr, len);
1389 return DMA_MAPPING_ERROR;
1390}
1391
1392/**
1393 * arm_iommu_unmap_page
1394 * @dev: valid struct device pointer
1395 * @handle: DMA address of buffer
1396 * @size: size of buffer (same as passed to dma_map_page)
1397 * @dir: DMA transfer direction (same as passed to dma_map_page)
1398 *
1399 * IOMMU aware version of arm_dma_unmap_page()
1400 */
1401static void arm_iommu_unmap_page(struct device *dev, dma_addr_t handle,
1402 size_t size, enum dma_data_direction dir, unsigned long attrs)
1403{
1404 struct dma_iommu_mapping *mapping = to_dma_iommu_mapping(dev);
1405 dma_addr_t iova = handle & PAGE_MASK;
1406 struct page *page;
1407 int offset = handle & ~PAGE_MASK;
1408 int len = PAGE_ALIGN(size + offset);
1409
1410 if (!iova)
1411 return;
1412
1413 if (!dev->dma_coherent && !(attrs & DMA_ATTR_SKIP_CPU_SYNC)) {
1414 page = phys_to_page(iommu_iova_to_phys(mapping->domain, iova));
1415 __dma_page_dev_to_cpu(page, offset, size, dir);
1416 }
1417
1418 iommu_unmap(mapping->domain, iova, len);
1419 __free_iova(mapping, iova, len);
1420}
1421
1422/**
1423 * arm_iommu_map_resource - map a device resource for DMA
1424 * @dev: valid struct device pointer
1425 * @phys_addr: physical address of resource
1426 * @size: size of resource to map
1427 * @dir: DMA transfer direction
1428 */
1429static dma_addr_t arm_iommu_map_resource(struct device *dev,
1430 phys_addr_t phys_addr, size_t size,
1431 enum dma_data_direction dir, unsigned long attrs)
1432{
1433 struct dma_iommu_mapping *mapping = to_dma_iommu_mapping(dev);
1434 dma_addr_t dma_addr;
1435 int ret, prot;
1436 phys_addr_t addr = phys_addr & PAGE_MASK;
1437 unsigned int offset = phys_addr & ~PAGE_MASK;
1438 size_t len = PAGE_ALIGN(size + offset);
1439
1440 dma_addr = __alloc_iova(mapping, len);
1441 if (dma_addr == DMA_MAPPING_ERROR)
1442 return dma_addr;
1443
1444 prot = __dma_info_to_prot(dir, attrs) | IOMMU_MMIO;
1445
1446 ret = iommu_map(mapping->domain, dma_addr, addr, len, prot);
1447 if (ret < 0)
1448 goto fail;
1449
1450 return dma_addr + offset;
1451fail:
1452 __free_iova(mapping, dma_addr, len);
1453 return DMA_MAPPING_ERROR;
1454}
1455
1456/**
1457 * arm_iommu_unmap_resource - unmap a device DMA resource
1458 * @dev: valid struct device pointer
1459 * @dma_handle: DMA address to resource
1460 * @size: size of resource to map
1461 * @dir: DMA transfer direction
1462 */
1463static void arm_iommu_unmap_resource(struct device *dev, dma_addr_t dma_handle,
1464 size_t size, enum dma_data_direction dir,
1465 unsigned long attrs)
1466{
1467 struct dma_iommu_mapping *mapping = to_dma_iommu_mapping(dev);
1468 dma_addr_t iova = dma_handle & PAGE_MASK;
1469 unsigned int offset = dma_handle & ~PAGE_MASK;
1470 size_t len = PAGE_ALIGN(size + offset);
1471
1472 if (!iova)
1473 return;
1474
1475 iommu_unmap(mapping->domain, iova, len);
1476 __free_iova(mapping, iova, len);
1477}
1478
1479static void arm_iommu_sync_single_for_cpu(struct device *dev,
1480 dma_addr_t handle, size_t size, enum dma_data_direction dir)
1481{
1482 struct dma_iommu_mapping *mapping = to_dma_iommu_mapping(dev);
1483 dma_addr_t iova = handle & PAGE_MASK;
1484 struct page *page;
1485 unsigned int offset = handle & ~PAGE_MASK;
1486
1487 if (dev->dma_coherent || !iova)
1488 return;
1489
1490 page = phys_to_page(iommu_iova_to_phys(mapping->domain, iova));
1491 __dma_page_dev_to_cpu(page, offset, size, dir);
1492}
1493
1494static void arm_iommu_sync_single_for_device(struct device *dev,
1495 dma_addr_t handle, size_t size, enum dma_data_direction dir)
1496{
1497 struct dma_iommu_mapping *mapping = to_dma_iommu_mapping(dev);
1498 dma_addr_t iova = handle & PAGE_MASK;
1499 struct page *page;
1500 unsigned int offset = handle & ~PAGE_MASK;
1501
1502 if (dev->dma_coherent || !iova)
1503 return;
1504
1505 page = phys_to_page(iommu_iova_to_phys(mapping->domain, iova));
1506 __dma_page_cpu_to_dev(page, offset, size, dir);
1507}
1508
1509static const struct dma_map_ops iommu_ops = {
1510 .alloc = arm_iommu_alloc_attrs,
1511 .free = arm_iommu_free_attrs,
1512 .mmap = arm_iommu_mmap_attrs,
1513 .get_sgtable = arm_iommu_get_sgtable,
1514
1515 .map_page = arm_iommu_map_page,
1516 .unmap_page = arm_iommu_unmap_page,
1517 .sync_single_for_cpu = arm_iommu_sync_single_for_cpu,
1518 .sync_single_for_device = arm_iommu_sync_single_for_device,
1519
1520 .map_sg = arm_iommu_map_sg,
1521 .unmap_sg = arm_iommu_unmap_sg,
1522 .sync_sg_for_cpu = arm_iommu_sync_sg_for_cpu,
1523 .sync_sg_for_device = arm_iommu_sync_sg_for_device,
1524
1525 .map_resource = arm_iommu_map_resource,
1526 .unmap_resource = arm_iommu_unmap_resource,
1527};
1528
1529/**
1530 * arm_iommu_create_mapping
1531 * @bus: pointer to the bus holding the client device (for IOMMU calls)
1532 * @base: start address of the valid IO address space
1533 * @size: maximum size of the valid IO address space
1534 *
1535 * Creates a mapping structure which holds information about used/unused
1536 * IO address ranges, which is required to perform memory allocation and
1537 * mapping with IOMMU aware functions.
1538 *
1539 * The client device need to be attached to the mapping with
1540 * arm_iommu_attach_device function.
1541 */
1542struct dma_iommu_mapping *
1543arm_iommu_create_mapping(struct bus_type *bus, dma_addr_t base, u64 size)
1544{
1545 unsigned int bits = size >> PAGE_SHIFT;
1546 unsigned int bitmap_size = BITS_TO_LONGS(bits) * sizeof(long);
1547 struct dma_iommu_mapping *mapping;
1548 int extensions = 1;
1549 int err = -ENOMEM;
1550
1551 /* currently only 32-bit DMA address space is supported */
1552 if (size > DMA_BIT_MASK(32) + 1)
1553 return ERR_PTR(-ERANGE);
1554
1555 if (!bitmap_size)
1556 return ERR_PTR(-EINVAL);
1557
1558 if (bitmap_size > PAGE_SIZE) {
1559 extensions = bitmap_size / PAGE_SIZE;
1560 bitmap_size = PAGE_SIZE;
1561 }
1562
1563 mapping = kzalloc(sizeof(struct dma_iommu_mapping), GFP_KERNEL);
1564 if (!mapping)
1565 goto err;
1566
1567 mapping->bitmap_size = bitmap_size;
1568 mapping->bitmaps = kcalloc(extensions, sizeof(unsigned long *),
1569 GFP_KERNEL);
1570 if (!mapping->bitmaps)
1571 goto err2;
1572
1573 mapping->bitmaps[0] = kzalloc(bitmap_size, GFP_KERNEL);
1574 if (!mapping->bitmaps[0])
1575 goto err3;
1576
1577 mapping->nr_bitmaps = 1;
1578 mapping->extensions = extensions;
1579 mapping->base = base;
1580 mapping->bits = BITS_PER_BYTE * bitmap_size;
1581
1582 spin_lock_init(&mapping->lock);
1583
1584 mapping->domain = iommu_domain_alloc(bus);
1585 if (!mapping->domain)
1586 goto err4;
1587
1588 kref_init(&mapping->kref);
1589 return mapping;
1590err4:
1591 kfree(mapping->bitmaps[0]);
1592err3:
1593 kfree(mapping->bitmaps);
1594err2:
1595 kfree(mapping);
1596err:
1597 return ERR_PTR(err);
1598}
1599EXPORT_SYMBOL_GPL(arm_iommu_create_mapping);
1600
1601static void release_iommu_mapping(struct kref *kref)
1602{
1603 int i;
1604 struct dma_iommu_mapping *mapping =
1605 container_of(kref, struct dma_iommu_mapping, kref);
1606
1607 iommu_domain_free(mapping->domain);
1608 for (i = 0; i < mapping->nr_bitmaps; i++)
1609 kfree(mapping->bitmaps[i]);
1610 kfree(mapping->bitmaps);
1611 kfree(mapping);
1612}
1613
1614static int extend_iommu_mapping(struct dma_iommu_mapping *mapping)
1615{
1616 int next_bitmap;
1617
1618 if (mapping->nr_bitmaps >= mapping->extensions)
1619 return -EINVAL;
1620
1621 next_bitmap = mapping->nr_bitmaps;
1622 mapping->bitmaps[next_bitmap] = kzalloc(mapping->bitmap_size,
1623 GFP_ATOMIC);
1624 if (!mapping->bitmaps[next_bitmap])
1625 return -ENOMEM;
1626
1627 mapping->nr_bitmaps++;
1628
1629 return 0;
1630}
1631
1632void arm_iommu_release_mapping(struct dma_iommu_mapping *mapping)
1633{
1634 if (mapping)
1635 kref_put(&mapping->kref, release_iommu_mapping);
1636}
1637EXPORT_SYMBOL_GPL(arm_iommu_release_mapping);
1638
1639static int __arm_iommu_attach_device(struct device *dev,
1640 struct dma_iommu_mapping *mapping)
1641{
1642 int err;
1643
1644 err = iommu_attach_device(mapping->domain, dev);
1645 if (err)
1646 return err;
1647
1648 kref_get(&mapping->kref);
1649 to_dma_iommu_mapping(dev) = mapping;
1650
1651 pr_debug("Attached IOMMU controller to %s device.\n", dev_name(dev));
1652 return 0;
1653}
1654
1655/**
1656 * arm_iommu_attach_device
1657 * @dev: valid struct device pointer
1658 * @mapping: io address space mapping structure (returned from
1659 * arm_iommu_create_mapping)
1660 *
1661 * Attaches specified io address space mapping to the provided device.
1662 * This replaces the dma operations (dma_map_ops pointer) with the
1663 * IOMMU aware version.
1664 *
1665 * More than one client might be attached to the same io address space
1666 * mapping.
1667 */
1668int arm_iommu_attach_device(struct device *dev,
1669 struct dma_iommu_mapping *mapping)
1670{
1671 int err;
1672
1673 err = __arm_iommu_attach_device(dev, mapping);
1674 if (err)
1675 return err;
1676
1677 set_dma_ops(dev, &iommu_ops);
1678 return 0;
1679}
1680EXPORT_SYMBOL_GPL(arm_iommu_attach_device);
1681
1682/**
1683 * arm_iommu_detach_device
1684 * @dev: valid struct device pointer
1685 *
1686 * Detaches the provided device from a previously attached map.
1687 * This overwrites the dma_ops pointer with appropriate non-IOMMU ops.
1688 */
1689void arm_iommu_detach_device(struct device *dev)
1690{
1691 struct dma_iommu_mapping *mapping;
1692
1693 mapping = to_dma_iommu_mapping(dev);
1694 if (!mapping) {
1695 dev_warn(dev, "Not attached\n");
1696 return;
1697 }
1698
1699 iommu_detach_device(mapping->domain, dev);
1700 kref_put(&mapping->kref, release_iommu_mapping);
1701 to_dma_iommu_mapping(dev) = NULL;
1702 set_dma_ops(dev, NULL);
1703
1704 pr_debug("Detached IOMMU controller from %s device.\n", dev_name(dev));
1705}
1706EXPORT_SYMBOL_GPL(arm_iommu_detach_device);
1707
1708static void arm_setup_iommu_dma_ops(struct device *dev, u64 dma_base, u64 size,
1709 const struct iommu_ops *iommu, bool coherent)
1710{
1711 struct dma_iommu_mapping *mapping;
1712
1713 mapping = arm_iommu_create_mapping(dev->bus, dma_base, size);
1714 if (IS_ERR(mapping)) {
1715 pr_warn("Failed to create %llu-byte IOMMU mapping for device %s\n",
1716 size, dev_name(dev));
1717 return;
1718 }
1719
1720 if (__arm_iommu_attach_device(dev, mapping)) {
1721 pr_warn("Failed to attached device %s to IOMMU_mapping\n",
1722 dev_name(dev));
1723 arm_iommu_release_mapping(mapping);
1724 return;
1725 }
1726
1727 set_dma_ops(dev, &iommu_ops);
1728}
1729
1730static void arm_teardown_iommu_dma_ops(struct device *dev)
1731{
1732 struct dma_iommu_mapping *mapping = to_dma_iommu_mapping(dev);
1733
1734 if (!mapping)
1735 return;
1736
1737 arm_iommu_detach_device(dev);
1738 arm_iommu_release_mapping(mapping);
1739}
1740
1741#else
1742
1743static void arm_setup_iommu_dma_ops(struct device *dev, u64 dma_base, u64 size,
1744 const struct iommu_ops *iommu, bool coherent)
1745{
1746}
1747
1748static void arm_teardown_iommu_dma_ops(struct device *dev) { }
1749
1750#endif /* CONFIG_ARM_DMA_USE_IOMMU */
1751
1752void arch_setup_dma_ops(struct device *dev, u64 dma_base, u64 size,
1753 const struct iommu_ops *iommu, bool coherent)
1754{
1755 /*
1756 * Due to legacy code that sets the ->dma_coherent flag from a bus
1757 * notifier we can't just assign coherent to the ->dma_coherent flag
1758 * here, but instead have to make sure we only set but never clear it
1759 * for now.
1760 */
1761 if (coherent)
1762 dev->dma_coherent = true;
1763
1764 /*
1765 * Don't override the dma_ops if they have already been set. Ideally
1766 * this should be the only location where dma_ops are set, remove this
1767 * check when all other callers of set_dma_ops will have disappeared.
1768 */
1769 if (dev->dma_ops)
1770 return;
1771
1772 if (iommu)
1773 arm_setup_iommu_dma_ops(dev, dma_base, size, iommu, coherent);
1774
1775 xen_setup_dma_ops(dev);
1776 dev->archdata.dma_ops_setup = true;
1777}
1778
1779void arch_teardown_dma_ops(struct device *dev)
1780{
1781 if (!dev->archdata.dma_ops_setup)
1782 return;
1783
1784 arm_teardown_iommu_dma_ops(dev);
1785 /* Let arch_setup_dma_ops() start again from scratch upon re-probe */
1786 set_dma_ops(dev, NULL);
1787}
1788
1789void arch_sync_dma_for_device(phys_addr_t paddr, size_t size,
1790 enum dma_data_direction dir)
1791{
1792 __dma_page_cpu_to_dev(phys_to_page(paddr), paddr & (PAGE_SIZE - 1),
1793 size, dir);
1794}
1795
1796void arch_sync_dma_for_cpu(phys_addr_t paddr, size_t size,
1797 enum dma_data_direction dir)
1798{
1799 __dma_page_dev_to_cpu(phys_to_page(paddr), paddr & (PAGE_SIZE - 1),
1800 size, dir);
1801}
1802
1803void *arch_dma_alloc(struct device *dev, size_t size, dma_addr_t *dma_handle,
1804 gfp_t gfp, unsigned long attrs)
1805{
1806 return __dma_alloc(dev, size, dma_handle, gfp,
1807 __get_dma_pgprot(attrs, PAGE_KERNEL), false,
1808 attrs, __builtin_return_address(0));
1809}
1810
1811void arch_dma_free(struct device *dev, size_t size, void *cpu_addr,
1812 dma_addr_t dma_handle, unsigned long attrs)
1813{
1814 __arm_dma_free(dev, size, cpu_addr, dma_handle, attrs, false);
1815}