Loading...
1/*
2 * linux/arch/arm/mm/dma-mapping.c
3 *
4 * Copyright (C) 2000-2004 Russell King
5 *
6 * This program is free software; you can redistribute it and/or modify
7 * it under the terms of the GNU General Public License version 2 as
8 * published by the Free Software Foundation.
9 *
10 * DMA uncached mapping support.
11 */
12#include <linux/module.h>
13#include <linux/mm.h>
14#include <linux/gfp.h>
15#include <linux/errno.h>
16#include <linux/list.h>
17#include <linux/init.h>
18#include <linux/device.h>
19#include <linux/dma-mapping.h>
20#include <linux/highmem.h>
21
22#include <asm/memory.h>
23#include <asm/highmem.h>
24#include <asm/cacheflush.h>
25#include <asm/tlbflush.h>
26#include <asm/sizes.h>
27
28#include "mm.h"
29
30static u64 get_coherent_dma_mask(struct device *dev)
31{
32 u64 mask = (u64)arm_dma_limit;
33
34 if (dev) {
35 mask = dev->coherent_dma_mask;
36
37 /*
38 * Sanity check the DMA mask - it must be non-zero, and
39 * must be able to be satisfied by a DMA allocation.
40 */
41 if (mask == 0) {
42 dev_warn(dev, "coherent DMA mask is unset\n");
43 return 0;
44 }
45
46 if ((~mask) & (u64)arm_dma_limit) {
47 dev_warn(dev, "coherent DMA mask %#llx is smaller "
48 "than system GFP_DMA mask %#llx\n",
49 mask, (u64)arm_dma_limit);
50 return 0;
51 }
52 }
53
54 return mask;
55}
56
57/*
58 * Allocate a DMA buffer for 'dev' of size 'size' using the
59 * specified gfp mask. Note that 'size' must be page aligned.
60 */
61static struct page *__dma_alloc_buffer(struct device *dev, size_t size, gfp_t gfp)
62{
63 unsigned long order = get_order(size);
64 struct page *page, *p, *e;
65 void *ptr;
66 u64 mask = get_coherent_dma_mask(dev);
67
68#ifdef CONFIG_DMA_API_DEBUG
69 u64 limit = (mask + 1) & ~mask;
70 if (limit && size >= limit) {
71 dev_warn(dev, "coherent allocation too big (requested %#x mask %#llx)\n",
72 size, mask);
73 return NULL;
74 }
75#endif
76
77 if (!mask)
78 return NULL;
79
80 if (mask < 0xffffffffULL)
81 gfp |= GFP_DMA;
82
83 page = alloc_pages(gfp, order);
84 if (!page)
85 return NULL;
86
87 /*
88 * Now split the huge page and free the excess pages
89 */
90 split_page(page, order);
91 for (p = page + (size >> PAGE_SHIFT), e = page + (1 << order); p < e; p++)
92 __free_page(p);
93
94 /*
95 * Ensure that the allocated pages are zeroed, and that any data
96 * lurking in the kernel direct-mapped region is invalidated.
97 */
98 ptr = page_address(page);
99 memset(ptr, 0, size);
100 dmac_flush_range(ptr, ptr + size);
101 outer_flush_range(__pa(ptr), __pa(ptr) + size);
102
103 return page;
104}
105
106/*
107 * Free a DMA buffer. 'size' must be page aligned.
108 */
109static void __dma_free_buffer(struct page *page, size_t size)
110{
111 struct page *e = page + (size >> PAGE_SHIFT);
112
113 while (page < e) {
114 __free_page(page);
115 page++;
116 }
117}
118
119#ifdef CONFIG_MMU
120/* Sanity check size */
121#if (CONSISTENT_DMA_SIZE % SZ_2M)
122#error "CONSISTENT_DMA_SIZE must be multiple of 2MiB"
123#endif
124
125#define CONSISTENT_OFFSET(x) (((unsigned long)(x) - CONSISTENT_BASE) >> PAGE_SHIFT)
126#define CONSISTENT_PTE_INDEX(x) (((unsigned long)(x) - CONSISTENT_BASE) >> PGDIR_SHIFT)
127#define NUM_CONSISTENT_PTES (CONSISTENT_DMA_SIZE >> PGDIR_SHIFT)
128
129/*
130 * These are the page tables (2MB each) covering uncached, DMA consistent allocations
131 */
132static pte_t *consistent_pte[NUM_CONSISTENT_PTES];
133
134#include "vmregion.h"
135
136static struct arm_vmregion_head consistent_head = {
137 .vm_lock = __SPIN_LOCK_UNLOCKED(&consistent_head.vm_lock),
138 .vm_list = LIST_HEAD_INIT(consistent_head.vm_list),
139 .vm_start = CONSISTENT_BASE,
140 .vm_end = CONSISTENT_END,
141};
142
143#ifdef CONFIG_HUGETLB_PAGE
144#error ARM Coherent DMA allocator does not (yet) support huge TLB
145#endif
146
147/*
148 * Initialise the consistent memory allocation.
149 */
150static int __init consistent_init(void)
151{
152 int ret = 0;
153 pgd_t *pgd;
154 pud_t *pud;
155 pmd_t *pmd;
156 pte_t *pte;
157 int i = 0;
158 u32 base = CONSISTENT_BASE;
159
160 do {
161 pgd = pgd_offset(&init_mm, base);
162
163 pud = pud_alloc(&init_mm, pgd, base);
164 if (!pud) {
165 printk(KERN_ERR "%s: no pud tables\n", __func__);
166 ret = -ENOMEM;
167 break;
168 }
169
170 pmd = pmd_alloc(&init_mm, pud, base);
171 if (!pmd) {
172 printk(KERN_ERR "%s: no pmd tables\n", __func__);
173 ret = -ENOMEM;
174 break;
175 }
176 WARN_ON(!pmd_none(*pmd));
177
178 pte = pte_alloc_kernel(pmd, base);
179 if (!pte) {
180 printk(KERN_ERR "%s: no pte tables\n", __func__);
181 ret = -ENOMEM;
182 break;
183 }
184
185 consistent_pte[i++] = pte;
186 base += (1 << PGDIR_SHIFT);
187 } while (base < CONSISTENT_END);
188
189 return ret;
190}
191
192core_initcall(consistent_init);
193
194static void *
195__dma_alloc_remap(struct page *page, size_t size, gfp_t gfp, pgprot_t prot)
196{
197 struct arm_vmregion *c;
198 size_t align;
199 int bit;
200
201 if (!consistent_pte[0]) {
202 printk(KERN_ERR "%s: not initialised\n", __func__);
203 dump_stack();
204 return NULL;
205 }
206
207 /*
208 * Align the virtual region allocation - maximum alignment is
209 * a section size, minimum is a page size. This helps reduce
210 * fragmentation of the DMA space, and also prevents allocations
211 * smaller than a section from crossing a section boundary.
212 */
213 bit = fls(size - 1);
214 if (bit > SECTION_SHIFT)
215 bit = SECTION_SHIFT;
216 align = 1 << bit;
217
218 /*
219 * Allocate a virtual address in the consistent mapping region.
220 */
221 c = arm_vmregion_alloc(&consistent_head, align, size,
222 gfp & ~(__GFP_DMA | __GFP_HIGHMEM));
223 if (c) {
224 pte_t *pte;
225 int idx = CONSISTENT_PTE_INDEX(c->vm_start);
226 u32 off = CONSISTENT_OFFSET(c->vm_start) & (PTRS_PER_PTE-1);
227
228 pte = consistent_pte[idx] + off;
229 c->vm_pages = page;
230
231 do {
232 BUG_ON(!pte_none(*pte));
233
234 set_pte_ext(pte, mk_pte(page, prot), 0);
235 page++;
236 pte++;
237 off++;
238 if (off >= PTRS_PER_PTE) {
239 off = 0;
240 pte = consistent_pte[++idx];
241 }
242 } while (size -= PAGE_SIZE);
243
244 dsb();
245
246 return (void *)c->vm_start;
247 }
248 return NULL;
249}
250
251static void __dma_free_remap(void *cpu_addr, size_t size)
252{
253 struct arm_vmregion *c;
254 unsigned long addr;
255 pte_t *ptep;
256 int idx;
257 u32 off;
258
259 c = arm_vmregion_find_remove(&consistent_head, (unsigned long)cpu_addr);
260 if (!c) {
261 printk(KERN_ERR "%s: trying to free invalid coherent area: %p\n",
262 __func__, cpu_addr);
263 dump_stack();
264 return;
265 }
266
267 if ((c->vm_end - c->vm_start) != size) {
268 printk(KERN_ERR "%s: freeing wrong coherent size (%ld != %d)\n",
269 __func__, c->vm_end - c->vm_start, size);
270 dump_stack();
271 size = c->vm_end - c->vm_start;
272 }
273
274 idx = CONSISTENT_PTE_INDEX(c->vm_start);
275 off = CONSISTENT_OFFSET(c->vm_start) & (PTRS_PER_PTE-1);
276 ptep = consistent_pte[idx] + off;
277 addr = c->vm_start;
278 do {
279 pte_t pte = ptep_get_and_clear(&init_mm, addr, ptep);
280
281 ptep++;
282 addr += PAGE_SIZE;
283 off++;
284 if (off >= PTRS_PER_PTE) {
285 off = 0;
286 ptep = consistent_pte[++idx];
287 }
288
289 if (pte_none(pte) || !pte_present(pte))
290 printk(KERN_CRIT "%s: bad page in kernel page table\n",
291 __func__);
292 } while (size -= PAGE_SIZE);
293
294 flush_tlb_kernel_range(c->vm_start, c->vm_end);
295
296 arm_vmregion_free(&consistent_head, c);
297}
298
299#else /* !CONFIG_MMU */
300
301#define __dma_alloc_remap(page, size, gfp, prot) page_address(page)
302#define __dma_free_remap(addr, size) do { } while (0)
303
304#endif /* CONFIG_MMU */
305
306static void *
307__dma_alloc(struct device *dev, size_t size, dma_addr_t *handle, gfp_t gfp,
308 pgprot_t prot)
309{
310 struct page *page;
311 void *addr;
312
313 *handle = ~0;
314 size = PAGE_ALIGN(size);
315
316 page = __dma_alloc_buffer(dev, size, gfp);
317 if (!page)
318 return NULL;
319
320 if (!arch_is_coherent())
321 addr = __dma_alloc_remap(page, size, gfp, prot);
322 else
323 addr = page_address(page);
324
325 if (addr)
326 *handle = pfn_to_dma(dev, page_to_pfn(page));
327 else
328 __dma_free_buffer(page, size);
329
330 return addr;
331}
332
333/*
334 * Allocate DMA-coherent memory space and return both the kernel remapped
335 * virtual and bus address for that space.
336 */
337void *
338dma_alloc_coherent(struct device *dev, size_t size, dma_addr_t *handle, gfp_t gfp)
339{
340 void *memory;
341
342 if (dma_alloc_from_coherent(dev, size, handle, &memory))
343 return memory;
344
345 return __dma_alloc(dev, size, handle, gfp,
346 pgprot_dmacoherent(pgprot_kernel));
347}
348EXPORT_SYMBOL(dma_alloc_coherent);
349
350/*
351 * Allocate a writecombining region, in much the same way as
352 * dma_alloc_coherent above.
353 */
354void *
355dma_alloc_writecombine(struct device *dev, size_t size, dma_addr_t *handle, gfp_t gfp)
356{
357 return __dma_alloc(dev, size, handle, gfp,
358 pgprot_writecombine(pgprot_kernel));
359}
360EXPORT_SYMBOL(dma_alloc_writecombine);
361
362static int dma_mmap(struct device *dev, struct vm_area_struct *vma,
363 void *cpu_addr, dma_addr_t dma_addr, size_t size)
364{
365 int ret = -ENXIO;
366#ifdef CONFIG_MMU
367 unsigned long user_size, kern_size;
368 struct arm_vmregion *c;
369
370 user_size = (vma->vm_end - vma->vm_start) >> PAGE_SHIFT;
371
372 c = arm_vmregion_find(&consistent_head, (unsigned long)cpu_addr);
373 if (c) {
374 unsigned long off = vma->vm_pgoff;
375
376 kern_size = (c->vm_end - c->vm_start) >> PAGE_SHIFT;
377
378 if (off < kern_size &&
379 user_size <= (kern_size - off)) {
380 ret = remap_pfn_range(vma, vma->vm_start,
381 page_to_pfn(c->vm_pages) + off,
382 user_size << PAGE_SHIFT,
383 vma->vm_page_prot);
384 }
385 }
386#endif /* CONFIG_MMU */
387
388 return ret;
389}
390
391int dma_mmap_coherent(struct device *dev, struct vm_area_struct *vma,
392 void *cpu_addr, dma_addr_t dma_addr, size_t size)
393{
394 vma->vm_page_prot = pgprot_dmacoherent(vma->vm_page_prot);
395 return dma_mmap(dev, vma, cpu_addr, dma_addr, size);
396}
397EXPORT_SYMBOL(dma_mmap_coherent);
398
399int dma_mmap_writecombine(struct device *dev, struct vm_area_struct *vma,
400 void *cpu_addr, dma_addr_t dma_addr, size_t size)
401{
402 vma->vm_page_prot = pgprot_writecombine(vma->vm_page_prot);
403 return dma_mmap(dev, vma, cpu_addr, dma_addr, size);
404}
405EXPORT_SYMBOL(dma_mmap_writecombine);
406
407/*
408 * free a page as defined by the above mapping.
409 * Must not be called with IRQs disabled.
410 */
411void dma_free_coherent(struct device *dev, size_t size, void *cpu_addr, dma_addr_t handle)
412{
413 WARN_ON(irqs_disabled());
414
415 if (dma_release_from_coherent(dev, get_order(size), cpu_addr))
416 return;
417
418 size = PAGE_ALIGN(size);
419
420 if (!arch_is_coherent())
421 __dma_free_remap(cpu_addr, size);
422
423 __dma_free_buffer(pfn_to_page(dma_to_pfn(dev, handle)), size);
424}
425EXPORT_SYMBOL(dma_free_coherent);
426
427/*
428 * Make an area consistent for devices.
429 * Note: Drivers should NOT use this function directly, as it will break
430 * platforms with CONFIG_DMABOUNCE.
431 * Use the driver DMA support - see dma-mapping.h (dma_sync_*)
432 */
433void ___dma_single_cpu_to_dev(const void *kaddr, size_t size,
434 enum dma_data_direction dir)
435{
436 unsigned long paddr;
437
438 BUG_ON(!virt_addr_valid(kaddr) || !virt_addr_valid(kaddr + size - 1));
439
440 dmac_map_area(kaddr, size, dir);
441
442 paddr = __pa(kaddr);
443 if (dir == DMA_FROM_DEVICE) {
444 outer_inv_range(paddr, paddr + size);
445 } else {
446 outer_clean_range(paddr, paddr + size);
447 }
448 /* FIXME: non-speculating: flush on bidirectional mappings? */
449}
450EXPORT_SYMBOL(___dma_single_cpu_to_dev);
451
452void ___dma_single_dev_to_cpu(const void *kaddr, size_t size,
453 enum dma_data_direction dir)
454{
455 BUG_ON(!virt_addr_valid(kaddr) || !virt_addr_valid(kaddr + size - 1));
456
457 /* FIXME: non-speculating: not required */
458 /* don't bother invalidating if DMA to device */
459 if (dir != DMA_TO_DEVICE) {
460 unsigned long paddr = __pa(kaddr);
461 outer_inv_range(paddr, paddr + size);
462 }
463
464 dmac_unmap_area(kaddr, size, dir);
465}
466EXPORT_SYMBOL(___dma_single_dev_to_cpu);
467
468static void dma_cache_maint_page(struct page *page, unsigned long offset,
469 size_t size, enum dma_data_direction dir,
470 void (*op)(const void *, size_t, int))
471{
472 /*
473 * A single sg entry may refer to multiple physically contiguous
474 * pages. But we still need to process highmem pages individually.
475 * If highmem is not configured then the bulk of this loop gets
476 * optimized out.
477 */
478 size_t left = size;
479 do {
480 size_t len = left;
481 void *vaddr;
482
483 if (PageHighMem(page)) {
484 if (len + offset > PAGE_SIZE) {
485 if (offset >= PAGE_SIZE) {
486 page += offset / PAGE_SIZE;
487 offset %= PAGE_SIZE;
488 }
489 len = PAGE_SIZE - offset;
490 }
491 vaddr = kmap_high_get(page);
492 if (vaddr) {
493 vaddr += offset;
494 op(vaddr, len, dir);
495 kunmap_high(page);
496 } else if (cache_is_vipt()) {
497 /* unmapped pages might still be cached */
498 vaddr = kmap_atomic(page);
499 op(vaddr + offset, len, dir);
500 kunmap_atomic(vaddr);
501 }
502 } else {
503 vaddr = page_address(page) + offset;
504 op(vaddr, len, dir);
505 }
506 offset = 0;
507 page++;
508 left -= len;
509 } while (left);
510}
511
512void ___dma_page_cpu_to_dev(struct page *page, unsigned long off,
513 size_t size, enum dma_data_direction dir)
514{
515 unsigned long paddr;
516
517 dma_cache_maint_page(page, off, size, dir, dmac_map_area);
518
519 paddr = page_to_phys(page) + off;
520 if (dir == DMA_FROM_DEVICE) {
521 outer_inv_range(paddr, paddr + size);
522 } else {
523 outer_clean_range(paddr, paddr + size);
524 }
525 /* FIXME: non-speculating: flush on bidirectional mappings? */
526}
527EXPORT_SYMBOL(___dma_page_cpu_to_dev);
528
529void ___dma_page_dev_to_cpu(struct page *page, unsigned long off,
530 size_t size, enum dma_data_direction dir)
531{
532 unsigned long paddr = page_to_phys(page) + off;
533
534 /* FIXME: non-speculating: not required */
535 /* don't bother invalidating if DMA to device */
536 if (dir != DMA_TO_DEVICE)
537 outer_inv_range(paddr, paddr + size);
538
539 dma_cache_maint_page(page, off, size, dir, dmac_unmap_area);
540
541 /*
542 * Mark the D-cache clean for this page to avoid extra flushing.
543 */
544 if (dir != DMA_TO_DEVICE && off == 0 && size >= PAGE_SIZE)
545 set_bit(PG_dcache_clean, &page->flags);
546}
547EXPORT_SYMBOL(___dma_page_dev_to_cpu);
548
549/**
550 * dma_map_sg - map a set of SG buffers for streaming mode DMA
551 * @dev: valid struct device pointer, or NULL for ISA and EISA-like devices
552 * @sg: list of buffers
553 * @nents: number of buffers to map
554 * @dir: DMA transfer direction
555 *
556 * Map a set of buffers described by scatterlist in streaming mode for DMA.
557 * This is the scatter-gather version of the dma_map_single interface.
558 * Here the scatter gather list elements are each tagged with the
559 * appropriate dma address and length. They are obtained via
560 * sg_dma_{address,length}.
561 *
562 * Device ownership issues as mentioned for dma_map_single are the same
563 * here.
564 */
565int dma_map_sg(struct device *dev, struct scatterlist *sg, int nents,
566 enum dma_data_direction dir)
567{
568 struct scatterlist *s;
569 int i, j;
570
571 BUG_ON(!valid_dma_direction(dir));
572
573 for_each_sg(sg, s, nents, i) {
574 s->dma_address = __dma_map_page(dev, sg_page(s), s->offset,
575 s->length, dir);
576 if (dma_mapping_error(dev, s->dma_address))
577 goto bad_mapping;
578 }
579 debug_dma_map_sg(dev, sg, nents, nents, dir);
580 return nents;
581
582 bad_mapping:
583 for_each_sg(sg, s, i, j)
584 __dma_unmap_page(dev, sg_dma_address(s), sg_dma_len(s), dir);
585 return 0;
586}
587EXPORT_SYMBOL(dma_map_sg);
588
589/**
590 * dma_unmap_sg - unmap a set of SG buffers mapped by dma_map_sg
591 * @dev: valid struct device pointer, or NULL for ISA and EISA-like devices
592 * @sg: list of buffers
593 * @nents: number of buffers to unmap (same as was passed to dma_map_sg)
594 * @dir: DMA transfer direction (same as was passed to dma_map_sg)
595 *
596 * Unmap a set of streaming mode DMA translations. Again, CPU access
597 * rules concerning calls here are the same as for dma_unmap_single().
598 */
599void dma_unmap_sg(struct device *dev, struct scatterlist *sg, int nents,
600 enum dma_data_direction dir)
601{
602 struct scatterlist *s;
603 int i;
604
605 debug_dma_unmap_sg(dev, sg, nents, dir);
606
607 for_each_sg(sg, s, nents, i)
608 __dma_unmap_page(dev, sg_dma_address(s), sg_dma_len(s), dir);
609}
610EXPORT_SYMBOL(dma_unmap_sg);
611
612/**
613 * dma_sync_sg_for_cpu
614 * @dev: valid struct device pointer, or NULL for ISA and EISA-like devices
615 * @sg: list of buffers
616 * @nents: number of buffers to map (returned from dma_map_sg)
617 * @dir: DMA transfer direction (same as was passed to dma_map_sg)
618 */
619void dma_sync_sg_for_cpu(struct device *dev, struct scatterlist *sg,
620 int nents, enum dma_data_direction dir)
621{
622 struct scatterlist *s;
623 int i;
624
625 for_each_sg(sg, s, nents, i) {
626 if (!dmabounce_sync_for_cpu(dev, sg_dma_address(s), 0,
627 sg_dma_len(s), dir))
628 continue;
629
630 __dma_page_dev_to_cpu(sg_page(s), s->offset,
631 s->length, dir);
632 }
633
634 debug_dma_sync_sg_for_cpu(dev, sg, nents, dir);
635}
636EXPORT_SYMBOL(dma_sync_sg_for_cpu);
637
638/**
639 * dma_sync_sg_for_device
640 * @dev: valid struct device pointer, or NULL for ISA and EISA-like devices
641 * @sg: list of buffers
642 * @nents: number of buffers to map (returned from dma_map_sg)
643 * @dir: DMA transfer direction (same as was passed to dma_map_sg)
644 */
645void dma_sync_sg_for_device(struct device *dev, struct scatterlist *sg,
646 int nents, enum dma_data_direction dir)
647{
648 struct scatterlist *s;
649 int i;
650
651 for_each_sg(sg, s, nents, i) {
652 if (!dmabounce_sync_for_device(dev, sg_dma_address(s), 0,
653 sg_dma_len(s), dir))
654 continue;
655
656 __dma_page_cpu_to_dev(sg_page(s), s->offset,
657 s->length, dir);
658 }
659
660 debug_dma_sync_sg_for_device(dev, sg, nents, dir);
661}
662EXPORT_SYMBOL(dma_sync_sg_for_device);
663
664/*
665 * Return whether the given device DMA address mask can be supported
666 * properly. For example, if your device can only drive the low 24-bits
667 * during bus mastering, then you would pass 0x00ffffff as the mask
668 * to this function.
669 */
670int dma_supported(struct device *dev, u64 mask)
671{
672 if (mask < (u64)arm_dma_limit)
673 return 0;
674 return 1;
675}
676EXPORT_SYMBOL(dma_supported);
677
678int dma_set_mask(struct device *dev, u64 dma_mask)
679{
680 if (!dev->dma_mask || !dma_supported(dev, dma_mask))
681 return -EIO;
682
683#ifndef CONFIG_DMABOUNCE
684 *dev->dma_mask = dma_mask;
685#endif
686
687 return 0;
688}
689EXPORT_SYMBOL(dma_set_mask);
690
691#define PREALLOC_DMA_DEBUG_ENTRIES 4096
692
693static int __init dma_debug_do_init(void)
694{
695 dma_debug_init(PREALLOC_DMA_DEBUG_ENTRIES);
696 return 0;
697}
698fs_initcall(dma_debug_do_init);
1/*
2 * linux/arch/arm/mm/dma-mapping.c
3 *
4 * Copyright (C) 2000-2004 Russell King
5 *
6 * This program is free software; you can redistribute it and/or modify
7 * it under the terms of the GNU General Public License version 2 as
8 * published by the Free Software Foundation.
9 *
10 * DMA uncached mapping support.
11 */
12#include <linux/bootmem.h>
13#include <linux/module.h>
14#include <linux/mm.h>
15#include <linux/gfp.h>
16#include <linux/errno.h>
17#include <linux/list.h>
18#include <linux/init.h>
19#include <linux/device.h>
20#include <linux/dma-mapping.h>
21#include <linux/dma-contiguous.h>
22#include <linux/highmem.h>
23#include <linux/memblock.h>
24#include <linux/slab.h>
25#include <linux/iommu.h>
26#include <linux/io.h>
27#include <linux/vmalloc.h>
28#include <linux/sizes.h>
29
30#include <asm/memory.h>
31#include <asm/highmem.h>
32#include <asm/cacheflush.h>
33#include <asm/tlbflush.h>
34#include <asm/mach/arch.h>
35#include <asm/dma-iommu.h>
36#include <asm/mach/map.h>
37#include <asm/system_info.h>
38#include <asm/dma-contiguous.h>
39
40#include "mm.h"
41
42/*
43 * The DMA API is built upon the notion of "buffer ownership". A buffer
44 * is either exclusively owned by the CPU (and therefore may be accessed
45 * by it) or exclusively owned by the DMA device. These helper functions
46 * represent the transitions between these two ownership states.
47 *
48 * Note, however, that on later ARMs, this notion does not work due to
49 * speculative prefetches. We model our approach on the assumption that
50 * the CPU does do speculative prefetches, which means we clean caches
51 * before transfers and delay cache invalidation until transfer completion.
52 *
53 */
54static void __dma_page_cpu_to_dev(struct page *, unsigned long,
55 size_t, enum dma_data_direction);
56static void __dma_page_dev_to_cpu(struct page *, unsigned long,
57 size_t, enum dma_data_direction);
58
59/**
60 * arm_dma_map_page - map a portion of a page for streaming DMA
61 * @dev: valid struct device pointer, or NULL for ISA and EISA-like devices
62 * @page: page that buffer resides in
63 * @offset: offset into page for start of buffer
64 * @size: size of buffer to map
65 * @dir: DMA transfer direction
66 *
67 * Ensure that any data held in the cache is appropriately discarded
68 * or written back.
69 *
70 * The device owns this memory once this call has completed. The CPU
71 * can regain ownership by calling dma_unmap_page().
72 */
73static dma_addr_t arm_dma_map_page(struct device *dev, struct page *page,
74 unsigned long offset, size_t size, enum dma_data_direction dir,
75 struct dma_attrs *attrs)
76{
77 if (!dma_get_attr(DMA_ATTR_SKIP_CPU_SYNC, attrs))
78 __dma_page_cpu_to_dev(page, offset, size, dir);
79 return pfn_to_dma(dev, page_to_pfn(page)) + offset;
80}
81
82static dma_addr_t arm_coherent_dma_map_page(struct device *dev, struct page *page,
83 unsigned long offset, size_t size, enum dma_data_direction dir,
84 struct dma_attrs *attrs)
85{
86 return pfn_to_dma(dev, page_to_pfn(page)) + offset;
87}
88
89/**
90 * arm_dma_unmap_page - unmap a buffer previously mapped through dma_map_page()
91 * @dev: valid struct device pointer, or NULL for ISA and EISA-like devices
92 * @handle: DMA address of buffer
93 * @size: size of buffer (same as passed to dma_map_page)
94 * @dir: DMA transfer direction (same as passed to dma_map_page)
95 *
96 * Unmap a page streaming mode DMA translation. The handle and size
97 * must match what was provided in the previous dma_map_page() call.
98 * All other usages are undefined.
99 *
100 * After this call, reads by the CPU to the buffer are guaranteed to see
101 * whatever the device wrote there.
102 */
103static void arm_dma_unmap_page(struct device *dev, dma_addr_t handle,
104 size_t size, enum dma_data_direction dir,
105 struct dma_attrs *attrs)
106{
107 if (!dma_get_attr(DMA_ATTR_SKIP_CPU_SYNC, attrs))
108 __dma_page_dev_to_cpu(pfn_to_page(dma_to_pfn(dev, handle)),
109 handle & ~PAGE_MASK, size, dir);
110}
111
112static void arm_dma_sync_single_for_cpu(struct device *dev,
113 dma_addr_t handle, size_t size, enum dma_data_direction dir)
114{
115 unsigned int offset = handle & (PAGE_SIZE - 1);
116 struct page *page = pfn_to_page(dma_to_pfn(dev, handle-offset));
117 __dma_page_dev_to_cpu(page, offset, size, dir);
118}
119
120static void arm_dma_sync_single_for_device(struct device *dev,
121 dma_addr_t handle, size_t size, enum dma_data_direction dir)
122{
123 unsigned int offset = handle & (PAGE_SIZE - 1);
124 struct page *page = pfn_to_page(dma_to_pfn(dev, handle-offset));
125 __dma_page_cpu_to_dev(page, offset, size, dir);
126}
127
128struct dma_map_ops arm_dma_ops = {
129 .alloc = arm_dma_alloc,
130 .free = arm_dma_free,
131 .mmap = arm_dma_mmap,
132 .get_sgtable = arm_dma_get_sgtable,
133 .map_page = arm_dma_map_page,
134 .unmap_page = arm_dma_unmap_page,
135 .map_sg = arm_dma_map_sg,
136 .unmap_sg = arm_dma_unmap_sg,
137 .sync_single_for_cpu = arm_dma_sync_single_for_cpu,
138 .sync_single_for_device = arm_dma_sync_single_for_device,
139 .sync_sg_for_cpu = arm_dma_sync_sg_for_cpu,
140 .sync_sg_for_device = arm_dma_sync_sg_for_device,
141 .set_dma_mask = arm_dma_set_mask,
142};
143EXPORT_SYMBOL(arm_dma_ops);
144
145static void *arm_coherent_dma_alloc(struct device *dev, size_t size,
146 dma_addr_t *handle, gfp_t gfp, struct dma_attrs *attrs);
147static void arm_coherent_dma_free(struct device *dev, size_t size, void *cpu_addr,
148 dma_addr_t handle, struct dma_attrs *attrs);
149
150struct dma_map_ops arm_coherent_dma_ops = {
151 .alloc = arm_coherent_dma_alloc,
152 .free = arm_coherent_dma_free,
153 .mmap = arm_dma_mmap,
154 .get_sgtable = arm_dma_get_sgtable,
155 .map_page = arm_coherent_dma_map_page,
156 .map_sg = arm_dma_map_sg,
157 .set_dma_mask = arm_dma_set_mask,
158};
159EXPORT_SYMBOL(arm_coherent_dma_ops);
160
161static int __dma_supported(struct device *dev, u64 mask, bool warn)
162{
163 unsigned long max_dma_pfn;
164
165 /*
166 * If the mask allows for more memory than we can address,
167 * and we actually have that much memory, then we must
168 * indicate that DMA to this device is not supported.
169 */
170 if (sizeof(mask) != sizeof(dma_addr_t) &&
171 mask > (dma_addr_t)~0 &&
172 dma_to_pfn(dev, ~0) < max_pfn) {
173 if (warn) {
174 dev_warn(dev, "Coherent DMA mask %#llx is larger than dma_addr_t allows\n",
175 mask);
176 dev_warn(dev, "Driver did not use or check the return value from dma_set_coherent_mask()?\n");
177 }
178 return 0;
179 }
180
181 max_dma_pfn = min(max_pfn, arm_dma_pfn_limit);
182
183 /*
184 * Translate the device's DMA mask to a PFN limit. This
185 * PFN number includes the page which we can DMA to.
186 */
187 if (dma_to_pfn(dev, mask) < max_dma_pfn) {
188 if (warn)
189 dev_warn(dev, "Coherent DMA mask %#llx (pfn %#lx-%#lx) covers a smaller range of system memory than the DMA zone pfn 0x0-%#lx\n",
190 mask,
191 dma_to_pfn(dev, 0), dma_to_pfn(dev, mask) + 1,
192 max_dma_pfn + 1);
193 return 0;
194 }
195
196 return 1;
197}
198
199static u64 get_coherent_dma_mask(struct device *dev)
200{
201 u64 mask = (u64)DMA_BIT_MASK(32);
202
203 if (dev) {
204 mask = dev->coherent_dma_mask;
205
206 /*
207 * Sanity check the DMA mask - it must be non-zero, and
208 * must be able to be satisfied by a DMA allocation.
209 */
210 if (mask == 0) {
211 dev_warn(dev, "coherent DMA mask is unset\n");
212 return 0;
213 }
214
215 if (!__dma_supported(dev, mask, true))
216 return 0;
217 }
218
219 return mask;
220}
221
222static void __dma_clear_buffer(struct page *page, size_t size)
223{
224 /*
225 * Ensure that the allocated pages are zeroed, and that any data
226 * lurking in the kernel direct-mapped region is invalidated.
227 */
228 if (PageHighMem(page)) {
229 phys_addr_t base = __pfn_to_phys(page_to_pfn(page));
230 phys_addr_t end = base + size;
231 while (size > 0) {
232 void *ptr = kmap_atomic(page);
233 memset(ptr, 0, PAGE_SIZE);
234 dmac_flush_range(ptr, ptr + PAGE_SIZE);
235 kunmap_atomic(ptr);
236 page++;
237 size -= PAGE_SIZE;
238 }
239 outer_flush_range(base, end);
240 } else {
241 void *ptr = page_address(page);
242 memset(ptr, 0, size);
243 dmac_flush_range(ptr, ptr + size);
244 outer_flush_range(__pa(ptr), __pa(ptr) + size);
245 }
246}
247
248/*
249 * Allocate a DMA buffer for 'dev' of size 'size' using the
250 * specified gfp mask. Note that 'size' must be page aligned.
251 */
252static struct page *__dma_alloc_buffer(struct device *dev, size_t size, gfp_t gfp)
253{
254 unsigned long order = get_order(size);
255 struct page *page, *p, *e;
256
257 page = alloc_pages(gfp, order);
258 if (!page)
259 return NULL;
260
261 /*
262 * Now split the huge page and free the excess pages
263 */
264 split_page(page, order);
265 for (p = page + (size >> PAGE_SHIFT), e = page + (1 << order); p < e; p++)
266 __free_page(p);
267
268 __dma_clear_buffer(page, size);
269
270 return page;
271}
272
273/*
274 * Free a DMA buffer. 'size' must be page aligned.
275 */
276static void __dma_free_buffer(struct page *page, size_t size)
277{
278 struct page *e = page + (size >> PAGE_SHIFT);
279
280 while (page < e) {
281 __free_page(page);
282 page++;
283 }
284}
285
286#ifdef CONFIG_MMU
287
288static void *__alloc_from_contiguous(struct device *dev, size_t size,
289 pgprot_t prot, struct page **ret_page,
290 const void *caller);
291
292static void *__alloc_remap_buffer(struct device *dev, size_t size, gfp_t gfp,
293 pgprot_t prot, struct page **ret_page,
294 const void *caller);
295
296static void *
297__dma_alloc_remap(struct page *page, size_t size, gfp_t gfp, pgprot_t prot,
298 const void *caller)
299{
300 struct vm_struct *area;
301 unsigned long addr;
302
303 /*
304 * DMA allocation can be mapped to user space, so lets
305 * set VM_USERMAP flags too.
306 */
307 area = get_vm_area_caller(size, VM_ARM_DMA_CONSISTENT | VM_USERMAP,
308 caller);
309 if (!area)
310 return NULL;
311 addr = (unsigned long)area->addr;
312 area->phys_addr = __pfn_to_phys(page_to_pfn(page));
313
314 if (ioremap_page_range(addr, addr + size, area->phys_addr, prot)) {
315 vunmap((void *)addr);
316 return NULL;
317 }
318 return (void *)addr;
319}
320
321static void __dma_free_remap(void *cpu_addr, size_t size)
322{
323 unsigned int flags = VM_ARM_DMA_CONSISTENT | VM_USERMAP;
324 struct vm_struct *area = find_vm_area(cpu_addr);
325 if (!area || (area->flags & flags) != flags) {
326 WARN(1, "trying to free invalid coherent area: %p\n", cpu_addr);
327 return;
328 }
329 unmap_kernel_range((unsigned long)cpu_addr, size);
330 vunmap(cpu_addr);
331}
332
333#define DEFAULT_DMA_COHERENT_POOL_SIZE SZ_256K
334
335struct dma_pool {
336 size_t size;
337 spinlock_t lock;
338 unsigned long *bitmap;
339 unsigned long nr_pages;
340 void *vaddr;
341 struct page **pages;
342};
343
344static struct dma_pool atomic_pool = {
345 .size = DEFAULT_DMA_COHERENT_POOL_SIZE,
346};
347
348static int __init early_coherent_pool(char *p)
349{
350 atomic_pool.size = memparse(p, &p);
351 return 0;
352}
353early_param("coherent_pool", early_coherent_pool);
354
355void __init init_dma_coherent_pool_size(unsigned long size)
356{
357 /*
358 * Catch any attempt to set the pool size too late.
359 */
360 BUG_ON(atomic_pool.vaddr);
361
362 /*
363 * Set architecture specific coherent pool size only if
364 * it has not been changed by kernel command line parameter.
365 */
366 if (atomic_pool.size == DEFAULT_DMA_COHERENT_POOL_SIZE)
367 atomic_pool.size = size;
368}
369
370/*
371 * Initialise the coherent pool for atomic allocations.
372 */
373static int __init atomic_pool_init(void)
374{
375 struct dma_pool *pool = &atomic_pool;
376 pgprot_t prot = pgprot_dmacoherent(PAGE_KERNEL);
377 gfp_t gfp = GFP_KERNEL | GFP_DMA;
378 unsigned long nr_pages = pool->size >> PAGE_SHIFT;
379 unsigned long *bitmap;
380 struct page *page;
381 struct page **pages;
382 void *ptr;
383 int bitmap_size = BITS_TO_LONGS(nr_pages) * sizeof(long);
384
385 bitmap = kzalloc(bitmap_size, GFP_KERNEL);
386 if (!bitmap)
387 goto no_bitmap;
388
389 pages = kzalloc(nr_pages * sizeof(struct page *), GFP_KERNEL);
390 if (!pages)
391 goto no_pages;
392
393 if (IS_ENABLED(CONFIG_DMA_CMA))
394 ptr = __alloc_from_contiguous(NULL, pool->size, prot, &page,
395 atomic_pool_init);
396 else
397 ptr = __alloc_remap_buffer(NULL, pool->size, gfp, prot, &page,
398 atomic_pool_init);
399 if (ptr) {
400 int i;
401
402 for (i = 0; i < nr_pages; i++)
403 pages[i] = page + i;
404
405 spin_lock_init(&pool->lock);
406 pool->vaddr = ptr;
407 pool->pages = pages;
408 pool->bitmap = bitmap;
409 pool->nr_pages = nr_pages;
410 pr_info("DMA: preallocated %u KiB pool for atomic coherent allocations\n",
411 (unsigned)pool->size / 1024);
412 return 0;
413 }
414
415 kfree(pages);
416no_pages:
417 kfree(bitmap);
418no_bitmap:
419 pr_err("DMA: failed to allocate %u KiB pool for atomic coherent allocation\n",
420 (unsigned)pool->size / 1024);
421 return -ENOMEM;
422}
423/*
424 * CMA is activated by core_initcall, so we must be called after it.
425 */
426postcore_initcall(atomic_pool_init);
427
428struct dma_contig_early_reserve {
429 phys_addr_t base;
430 unsigned long size;
431};
432
433static struct dma_contig_early_reserve dma_mmu_remap[MAX_CMA_AREAS] __initdata;
434
435static int dma_mmu_remap_num __initdata;
436
437void __init dma_contiguous_early_fixup(phys_addr_t base, unsigned long size)
438{
439 dma_mmu_remap[dma_mmu_remap_num].base = base;
440 dma_mmu_remap[dma_mmu_remap_num].size = size;
441 dma_mmu_remap_num++;
442}
443
444void __init dma_contiguous_remap(void)
445{
446 int i;
447 for (i = 0; i < dma_mmu_remap_num; i++) {
448 phys_addr_t start = dma_mmu_remap[i].base;
449 phys_addr_t end = start + dma_mmu_remap[i].size;
450 struct map_desc map;
451 unsigned long addr;
452
453 if (end > arm_lowmem_limit)
454 end = arm_lowmem_limit;
455 if (start >= end)
456 continue;
457
458 map.pfn = __phys_to_pfn(start);
459 map.virtual = __phys_to_virt(start);
460 map.length = end - start;
461 map.type = MT_MEMORY_DMA_READY;
462
463 /*
464 * Clear previous low-memory mapping
465 */
466 for (addr = __phys_to_virt(start); addr < __phys_to_virt(end);
467 addr += PMD_SIZE)
468 pmd_clear(pmd_off_k(addr));
469
470 iotable_init(&map, 1);
471 }
472}
473
474static int __dma_update_pte(pte_t *pte, pgtable_t token, unsigned long addr,
475 void *data)
476{
477 struct page *page = virt_to_page(addr);
478 pgprot_t prot = *(pgprot_t *)data;
479
480 set_pte_ext(pte, mk_pte(page, prot), 0);
481 return 0;
482}
483
484static void __dma_remap(struct page *page, size_t size, pgprot_t prot)
485{
486 unsigned long start = (unsigned long) page_address(page);
487 unsigned end = start + size;
488
489 apply_to_page_range(&init_mm, start, size, __dma_update_pte, &prot);
490 flush_tlb_kernel_range(start, end);
491}
492
493static void *__alloc_remap_buffer(struct device *dev, size_t size, gfp_t gfp,
494 pgprot_t prot, struct page **ret_page,
495 const void *caller)
496{
497 struct page *page;
498 void *ptr;
499 page = __dma_alloc_buffer(dev, size, gfp);
500 if (!page)
501 return NULL;
502
503 ptr = __dma_alloc_remap(page, size, gfp, prot, caller);
504 if (!ptr) {
505 __dma_free_buffer(page, size);
506 return NULL;
507 }
508
509 *ret_page = page;
510 return ptr;
511}
512
513static void *__alloc_from_pool(size_t size, struct page **ret_page)
514{
515 struct dma_pool *pool = &atomic_pool;
516 unsigned int count = PAGE_ALIGN(size) >> PAGE_SHIFT;
517 unsigned int pageno;
518 unsigned long flags;
519 void *ptr = NULL;
520 unsigned long align_mask;
521
522 if (!pool->vaddr) {
523 WARN(1, "coherent pool not initialised!\n");
524 return NULL;
525 }
526
527 /*
528 * Align the region allocation - allocations from pool are rather
529 * small, so align them to their order in pages, minimum is a page
530 * size. This helps reduce fragmentation of the DMA space.
531 */
532 align_mask = (1 << get_order(size)) - 1;
533
534 spin_lock_irqsave(&pool->lock, flags);
535 pageno = bitmap_find_next_zero_area(pool->bitmap, pool->nr_pages,
536 0, count, align_mask);
537 if (pageno < pool->nr_pages) {
538 bitmap_set(pool->bitmap, pageno, count);
539 ptr = pool->vaddr + PAGE_SIZE * pageno;
540 *ret_page = pool->pages[pageno];
541 } else {
542 pr_err_once("ERROR: %u KiB atomic DMA coherent pool is too small!\n"
543 "Please increase it with coherent_pool= kernel parameter!\n",
544 (unsigned)pool->size / 1024);
545 }
546 spin_unlock_irqrestore(&pool->lock, flags);
547
548 return ptr;
549}
550
551static bool __in_atomic_pool(void *start, size_t size)
552{
553 struct dma_pool *pool = &atomic_pool;
554 void *end = start + size;
555 void *pool_start = pool->vaddr;
556 void *pool_end = pool->vaddr + pool->size;
557
558 if (start < pool_start || start >= pool_end)
559 return false;
560
561 if (end <= pool_end)
562 return true;
563
564 WARN(1, "Wrong coherent size(%p-%p) from atomic pool(%p-%p)\n",
565 start, end - 1, pool_start, pool_end - 1);
566
567 return false;
568}
569
570static int __free_from_pool(void *start, size_t size)
571{
572 struct dma_pool *pool = &atomic_pool;
573 unsigned long pageno, count;
574 unsigned long flags;
575
576 if (!__in_atomic_pool(start, size))
577 return 0;
578
579 pageno = (start - pool->vaddr) >> PAGE_SHIFT;
580 count = size >> PAGE_SHIFT;
581
582 spin_lock_irqsave(&pool->lock, flags);
583 bitmap_clear(pool->bitmap, pageno, count);
584 spin_unlock_irqrestore(&pool->lock, flags);
585
586 return 1;
587}
588
589static void *__alloc_from_contiguous(struct device *dev, size_t size,
590 pgprot_t prot, struct page **ret_page,
591 const void *caller)
592{
593 unsigned long order = get_order(size);
594 size_t count = size >> PAGE_SHIFT;
595 struct page *page;
596 void *ptr;
597
598 page = dma_alloc_from_contiguous(dev, count, order);
599 if (!page)
600 return NULL;
601
602 __dma_clear_buffer(page, size);
603
604 if (PageHighMem(page)) {
605 ptr = __dma_alloc_remap(page, size, GFP_KERNEL, prot, caller);
606 if (!ptr) {
607 dma_release_from_contiguous(dev, page, count);
608 return NULL;
609 }
610 } else {
611 __dma_remap(page, size, prot);
612 ptr = page_address(page);
613 }
614 *ret_page = page;
615 return ptr;
616}
617
618static void __free_from_contiguous(struct device *dev, struct page *page,
619 void *cpu_addr, size_t size)
620{
621 if (PageHighMem(page))
622 __dma_free_remap(cpu_addr, size);
623 else
624 __dma_remap(page, size, PAGE_KERNEL);
625 dma_release_from_contiguous(dev, page, size >> PAGE_SHIFT);
626}
627
628static inline pgprot_t __get_dma_pgprot(struct dma_attrs *attrs, pgprot_t prot)
629{
630 prot = dma_get_attr(DMA_ATTR_WRITE_COMBINE, attrs) ?
631 pgprot_writecombine(prot) :
632 pgprot_dmacoherent(prot);
633 return prot;
634}
635
636#define nommu() 0
637
638#else /* !CONFIG_MMU */
639
640#define nommu() 1
641
642#define __get_dma_pgprot(attrs, prot) __pgprot(0)
643#define __alloc_remap_buffer(dev, size, gfp, prot, ret, c) NULL
644#define __alloc_from_pool(size, ret_page) NULL
645#define __alloc_from_contiguous(dev, size, prot, ret, c) NULL
646#define __free_from_pool(cpu_addr, size) 0
647#define __free_from_contiguous(dev, page, cpu_addr, size) do { } while (0)
648#define __dma_free_remap(cpu_addr, size) do { } while (0)
649
650#endif /* CONFIG_MMU */
651
652static void *__alloc_simple_buffer(struct device *dev, size_t size, gfp_t gfp,
653 struct page **ret_page)
654{
655 struct page *page;
656 page = __dma_alloc_buffer(dev, size, gfp);
657 if (!page)
658 return NULL;
659
660 *ret_page = page;
661 return page_address(page);
662}
663
664
665
666static void *__dma_alloc(struct device *dev, size_t size, dma_addr_t *handle,
667 gfp_t gfp, pgprot_t prot, bool is_coherent, const void *caller)
668{
669 u64 mask = get_coherent_dma_mask(dev);
670 struct page *page = NULL;
671 void *addr;
672
673#ifdef CONFIG_DMA_API_DEBUG
674 u64 limit = (mask + 1) & ~mask;
675 if (limit && size >= limit) {
676 dev_warn(dev, "coherent allocation too big (requested %#x mask %#llx)\n",
677 size, mask);
678 return NULL;
679 }
680#endif
681
682 if (!mask)
683 return NULL;
684
685 if (mask < 0xffffffffULL)
686 gfp |= GFP_DMA;
687
688 /*
689 * Following is a work-around (a.k.a. hack) to prevent pages
690 * with __GFP_COMP being passed to split_page() which cannot
691 * handle them. The real problem is that this flag probably
692 * should be 0 on ARM as it is not supported on this
693 * platform; see CONFIG_HUGETLBFS.
694 */
695 gfp &= ~(__GFP_COMP);
696
697 *handle = DMA_ERROR_CODE;
698 size = PAGE_ALIGN(size);
699
700 if (is_coherent || nommu())
701 addr = __alloc_simple_buffer(dev, size, gfp, &page);
702 else if (!(gfp & __GFP_WAIT))
703 addr = __alloc_from_pool(size, &page);
704 else if (!IS_ENABLED(CONFIG_DMA_CMA))
705 addr = __alloc_remap_buffer(dev, size, gfp, prot, &page, caller);
706 else
707 addr = __alloc_from_contiguous(dev, size, prot, &page, caller);
708
709 if (addr)
710 *handle = pfn_to_dma(dev, page_to_pfn(page));
711
712 return addr;
713}
714
715/*
716 * Allocate DMA-coherent memory space and return both the kernel remapped
717 * virtual and bus address for that space.
718 */
719void *arm_dma_alloc(struct device *dev, size_t size, dma_addr_t *handle,
720 gfp_t gfp, struct dma_attrs *attrs)
721{
722 pgprot_t prot = __get_dma_pgprot(attrs, PAGE_KERNEL);
723 void *memory;
724
725 if (dma_alloc_from_coherent(dev, size, handle, &memory))
726 return memory;
727
728 return __dma_alloc(dev, size, handle, gfp, prot, false,
729 __builtin_return_address(0));
730}
731
732static void *arm_coherent_dma_alloc(struct device *dev, size_t size,
733 dma_addr_t *handle, gfp_t gfp, struct dma_attrs *attrs)
734{
735 pgprot_t prot = __get_dma_pgprot(attrs, PAGE_KERNEL);
736 void *memory;
737
738 if (dma_alloc_from_coherent(dev, size, handle, &memory))
739 return memory;
740
741 return __dma_alloc(dev, size, handle, gfp, prot, true,
742 __builtin_return_address(0));
743}
744
745/*
746 * Create userspace mapping for the DMA-coherent memory.
747 */
748int arm_dma_mmap(struct device *dev, struct vm_area_struct *vma,
749 void *cpu_addr, dma_addr_t dma_addr, size_t size,
750 struct dma_attrs *attrs)
751{
752 int ret = -ENXIO;
753#ifdef CONFIG_MMU
754 unsigned long nr_vma_pages = (vma->vm_end - vma->vm_start) >> PAGE_SHIFT;
755 unsigned long nr_pages = PAGE_ALIGN(size) >> PAGE_SHIFT;
756 unsigned long pfn = dma_to_pfn(dev, dma_addr);
757 unsigned long off = vma->vm_pgoff;
758
759 vma->vm_page_prot = __get_dma_pgprot(attrs, vma->vm_page_prot);
760
761 if (dma_mmap_from_coherent(dev, vma, cpu_addr, size, &ret))
762 return ret;
763
764 if (off < nr_pages && nr_vma_pages <= (nr_pages - off)) {
765 ret = remap_pfn_range(vma, vma->vm_start,
766 pfn + off,
767 vma->vm_end - vma->vm_start,
768 vma->vm_page_prot);
769 }
770#endif /* CONFIG_MMU */
771
772 return ret;
773}
774
775/*
776 * Free a buffer as defined by the above mapping.
777 */
778static void __arm_dma_free(struct device *dev, size_t size, void *cpu_addr,
779 dma_addr_t handle, struct dma_attrs *attrs,
780 bool is_coherent)
781{
782 struct page *page = pfn_to_page(dma_to_pfn(dev, handle));
783
784 if (dma_release_from_coherent(dev, get_order(size), cpu_addr))
785 return;
786
787 size = PAGE_ALIGN(size);
788
789 if (is_coherent || nommu()) {
790 __dma_free_buffer(page, size);
791 } else if (__free_from_pool(cpu_addr, size)) {
792 return;
793 } else if (!IS_ENABLED(CONFIG_DMA_CMA)) {
794 __dma_free_remap(cpu_addr, size);
795 __dma_free_buffer(page, size);
796 } else {
797 /*
798 * Non-atomic allocations cannot be freed with IRQs disabled
799 */
800 WARN_ON(irqs_disabled());
801 __free_from_contiguous(dev, page, cpu_addr, size);
802 }
803}
804
805void arm_dma_free(struct device *dev, size_t size, void *cpu_addr,
806 dma_addr_t handle, struct dma_attrs *attrs)
807{
808 __arm_dma_free(dev, size, cpu_addr, handle, attrs, false);
809}
810
811static void arm_coherent_dma_free(struct device *dev, size_t size, void *cpu_addr,
812 dma_addr_t handle, struct dma_attrs *attrs)
813{
814 __arm_dma_free(dev, size, cpu_addr, handle, attrs, true);
815}
816
817int arm_dma_get_sgtable(struct device *dev, struct sg_table *sgt,
818 void *cpu_addr, dma_addr_t handle, size_t size,
819 struct dma_attrs *attrs)
820{
821 struct page *page = pfn_to_page(dma_to_pfn(dev, handle));
822 int ret;
823
824 ret = sg_alloc_table(sgt, 1, GFP_KERNEL);
825 if (unlikely(ret))
826 return ret;
827
828 sg_set_page(sgt->sgl, page, PAGE_ALIGN(size), 0);
829 return 0;
830}
831
832static void dma_cache_maint_page(struct page *page, unsigned long offset,
833 size_t size, enum dma_data_direction dir,
834 void (*op)(const void *, size_t, int))
835{
836 unsigned long pfn;
837 size_t left = size;
838
839 pfn = page_to_pfn(page) + offset / PAGE_SIZE;
840 offset %= PAGE_SIZE;
841
842 /*
843 * A single sg entry may refer to multiple physically contiguous
844 * pages. But we still need to process highmem pages individually.
845 * If highmem is not configured then the bulk of this loop gets
846 * optimized out.
847 */
848 do {
849 size_t len = left;
850 void *vaddr;
851
852 page = pfn_to_page(pfn);
853
854 if (PageHighMem(page)) {
855 if (len + offset > PAGE_SIZE)
856 len = PAGE_SIZE - offset;
857
858 if (cache_is_vipt_nonaliasing()) {
859 vaddr = kmap_atomic(page);
860 op(vaddr + offset, len, dir);
861 kunmap_atomic(vaddr);
862 } else {
863 vaddr = kmap_high_get(page);
864 if (vaddr) {
865 op(vaddr + offset, len, dir);
866 kunmap_high(page);
867 }
868 }
869 } else {
870 vaddr = page_address(page) + offset;
871 op(vaddr, len, dir);
872 }
873 offset = 0;
874 pfn++;
875 left -= len;
876 } while (left);
877}
878
879/*
880 * Make an area consistent for devices.
881 * Note: Drivers should NOT use this function directly, as it will break
882 * platforms with CONFIG_DMABOUNCE.
883 * Use the driver DMA support - see dma-mapping.h (dma_sync_*)
884 */
885static void __dma_page_cpu_to_dev(struct page *page, unsigned long off,
886 size_t size, enum dma_data_direction dir)
887{
888 unsigned long paddr;
889
890 dma_cache_maint_page(page, off, size, dir, dmac_map_area);
891
892 paddr = page_to_phys(page) + off;
893 if (dir == DMA_FROM_DEVICE) {
894 outer_inv_range(paddr, paddr + size);
895 } else {
896 outer_clean_range(paddr, paddr + size);
897 }
898 /* FIXME: non-speculating: flush on bidirectional mappings? */
899}
900
901static void __dma_page_dev_to_cpu(struct page *page, unsigned long off,
902 size_t size, enum dma_data_direction dir)
903{
904 unsigned long paddr = page_to_phys(page) + off;
905
906 /* FIXME: non-speculating: not required */
907 /* don't bother invalidating if DMA to device */
908 if (dir != DMA_TO_DEVICE)
909 outer_inv_range(paddr, paddr + size);
910
911 dma_cache_maint_page(page, off, size, dir, dmac_unmap_area);
912
913 /*
914 * Mark the D-cache clean for these pages to avoid extra flushing.
915 */
916 if (dir != DMA_TO_DEVICE && size >= PAGE_SIZE) {
917 unsigned long pfn;
918 size_t left = size;
919
920 pfn = page_to_pfn(page) + off / PAGE_SIZE;
921 off %= PAGE_SIZE;
922 if (off) {
923 pfn++;
924 left -= PAGE_SIZE - off;
925 }
926 while (left >= PAGE_SIZE) {
927 page = pfn_to_page(pfn++);
928 set_bit(PG_dcache_clean, &page->flags);
929 left -= PAGE_SIZE;
930 }
931 }
932}
933
934/**
935 * arm_dma_map_sg - map a set of SG buffers for streaming mode DMA
936 * @dev: valid struct device pointer, or NULL for ISA and EISA-like devices
937 * @sg: list of buffers
938 * @nents: number of buffers to map
939 * @dir: DMA transfer direction
940 *
941 * Map a set of buffers described by scatterlist in streaming mode for DMA.
942 * This is the scatter-gather version of the dma_map_single interface.
943 * Here the scatter gather list elements are each tagged with the
944 * appropriate dma address and length. They are obtained via
945 * sg_dma_{address,length}.
946 *
947 * Device ownership issues as mentioned for dma_map_single are the same
948 * here.
949 */
950int arm_dma_map_sg(struct device *dev, struct scatterlist *sg, int nents,
951 enum dma_data_direction dir, struct dma_attrs *attrs)
952{
953 struct dma_map_ops *ops = get_dma_ops(dev);
954 struct scatterlist *s;
955 int i, j;
956
957 for_each_sg(sg, s, nents, i) {
958#ifdef CONFIG_NEED_SG_DMA_LENGTH
959 s->dma_length = s->length;
960#endif
961 s->dma_address = ops->map_page(dev, sg_page(s), s->offset,
962 s->length, dir, attrs);
963 if (dma_mapping_error(dev, s->dma_address))
964 goto bad_mapping;
965 }
966 return nents;
967
968 bad_mapping:
969 for_each_sg(sg, s, i, j)
970 ops->unmap_page(dev, sg_dma_address(s), sg_dma_len(s), dir, attrs);
971 return 0;
972}
973
974/**
975 * arm_dma_unmap_sg - unmap a set of SG buffers mapped by dma_map_sg
976 * @dev: valid struct device pointer, or NULL for ISA and EISA-like devices
977 * @sg: list of buffers
978 * @nents: number of buffers to unmap (same as was passed to dma_map_sg)
979 * @dir: DMA transfer direction (same as was passed to dma_map_sg)
980 *
981 * Unmap a set of streaming mode DMA translations. Again, CPU access
982 * rules concerning calls here are the same as for dma_unmap_single().
983 */
984void arm_dma_unmap_sg(struct device *dev, struct scatterlist *sg, int nents,
985 enum dma_data_direction dir, struct dma_attrs *attrs)
986{
987 struct dma_map_ops *ops = get_dma_ops(dev);
988 struct scatterlist *s;
989
990 int i;
991
992 for_each_sg(sg, s, nents, i)
993 ops->unmap_page(dev, sg_dma_address(s), sg_dma_len(s), dir, attrs);
994}
995
996/**
997 * arm_dma_sync_sg_for_cpu
998 * @dev: valid struct device pointer, or NULL for ISA and EISA-like devices
999 * @sg: list of buffers
1000 * @nents: number of buffers to map (returned from dma_map_sg)
1001 * @dir: DMA transfer direction (same as was passed to dma_map_sg)
1002 */
1003void arm_dma_sync_sg_for_cpu(struct device *dev, struct scatterlist *sg,
1004 int nents, enum dma_data_direction dir)
1005{
1006 struct dma_map_ops *ops = get_dma_ops(dev);
1007 struct scatterlist *s;
1008 int i;
1009
1010 for_each_sg(sg, s, nents, i)
1011 ops->sync_single_for_cpu(dev, sg_dma_address(s), s->length,
1012 dir);
1013}
1014
1015/**
1016 * arm_dma_sync_sg_for_device
1017 * @dev: valid struct device pointer, or NULL for ISA and EISA-like devices
1018 * @sg: list of buffers
1019 * @nents: number of buffers to map (returned from dma_map_sg)
1020 * @dir: DMA transfer direction (same as was passed to dma_map_sg)
1021 */
1022void arm_dma_sync_sg_for_device(struct device *dev, struct scatterlist *sg,
1023 int nents, enum dma_data_direction dir)
1024{
1025 struct dma_map_ops *ops = get_dma_ops(dev);
1026 struct scatterlist *s;
1027 int i;
1028
1029 for_each_sg(sg, s, nents, i)
1030 ops->sync_single_for_device(dev, sg_dma_address(s), s->length,
1031 dir);
1032}
1033
1034/*
1035 * Return whether the given device DMA address mask can be supported
1036 * properly. For example, if your device can only drive the low 24-bits
1037 * during bus mastering, then you would pass 0x00ffffff as the mask
1038 * to this function.
1039 */
1040int dma_supported(struct device *dev, u64 mask)
1041{
1042 return __dma_supported(dev, mask, false);
1043}
1044EXPORT_SYMBOL(dma_supported);
1045
1046int arm_dma_set_mask(struct device *dev, u64 dma_mask)
1047{
1048 if (!dev->dma_mask || !dma_supported(dev, dma_mask))
1049 return -EIO;
1050
1051 *dev->dma_mask = dma_mask;
1052
1053 return 0;
1054}
1055
1056#define PREALLOC_DMA_DEBUG_ENTRIES 4096
1057
1058static int __init dma_debug_do_init(void)
1059{
1060 dma_debug_init(PREALLOC_DMA_DEBUG_ENTRIES);
1061 return 0;
1062}
1063fs_initcall(dma_debug_do_init);
1064
1065#ifdef CONFIG_ARM_DMA_USE_IOMMU
1066
1067/* IOMMU */
1068
1069static int extend_iommu_mapping(struct dma_iommu_mapping *mapping);
1070
1071static inline dma_addr_t __alloc_iova(struct dma_iommu_mapping *mapping,
1072 size_t size)
1073{
1074 unsigned int order = get_order(size);
1075 unsigned int align = 0;
1076 unsigned int count, start;
1077 unsigned long flags;
1078 dma_addr_t iova;
1079 int i;
1080
1081 if (order > CONFIG_ARM_DMA_IOMMU_ALIGNMENT)
1082 order = CONFIG_ARM_DMA_IOMMU_ALIGNMENT;
1083
1084 count = PAGE_ALIGN(size) >> PAGE_SHIFT;
1085 align = (1 << order) - 1;
1086
1087 spin_lock_irqsave(&mapping->lock, flags);
1088 for (i = 0; i < mapping->nr_bitmaps; i++) {
1089 start = bitmap_find_next_zero_area(mapping->bitmaps[i],
1090 mapping->bits, 0, count, align);
1091
1092 if (start > mapping->bits)
1093 continue;
1094
1095 bitmap_set(mapping->bitmaps[i], start, count);
1096 break;
1097 }
1098
1099 /*
1100 * No unused range found. Try to extend the existing mapping
1101 * and perform a second attempt to reserve an IO virtual
1102 * address range of size bytes.
1103 */
1104 if (i == mapping->nr_bitmaps) {
1105 if (extend_iommu_mapping(mapping)) {
1106 spin_unlock_irqrestore(&mapping->lock, flags);
1107 return DMA_ERROR_CODE;
1108 }
1109
1110 start = bitmap_find_next_zero_area(mapping->bitmaps[i],
1111 mapping->bits, 0, count, align);
1112
1113 if (start > mapping->bits) {
1114 spin_unlock_irqrestore(&mapping->lock, flags);
1115 return DMA_ERROR_CODE;
1116 }
1117
1118 bitmap_set(mapping->bitmaps[i], start, count);
1119 }
1120 spin_unlock_irqrestore(&mapping->lock, flags);
1121
1122 iova = mapping->base + (mapping->size * i);
1123 iova += start << PAGE_SHIFT;
1124
1125 return iova;
1126}
1127
1128static inline void __free_iova(struct dma_iommu_mapping *mapping,
1129 dma_addr_t addr, size_t size)
1130{
1131 unsigned int start, count;
1132 unsigned long flags;
1133 dma_addr_t bitmap_base;
1134 u32 bitmap_index;
1135
1136 if (!size)
1137 return;
1138
1139 bitmap_index = (u32) (addr - mapping->base) / (u32) mapping->size;
1140 BUG_ON(addr < mapping->base || bitmap_index > mapping->extensions);
1141
1142 bitmap_base = mapping->base + mapping->size * bitmap_index;
1143
1144 start = (addr - bitmap_base) >> PAGE_SHIFT;
1145
1146 if (addr + size > bitmap_base + mapping->size) {
1147 /*
1148 * The address range to be freed reaches into the iova
1149 * range of the next bitmap. This should not happen as
1150 * we don't allow this in __alloc_iova (at the
1151 * moment).
1152 */
1153 BUG();
1154 } else
1155 count = size >> PAGE_SHIFT;
1156
1157 spin_lock_irqsave(&mapping->lock, flags);
1158 bitmap_clear(mapping->bitmaps[bitmap_index], start, count);
1159 spin_unlock_irqrestore(&mapping->lock, flags);
1160}
1161
1162static struct page **__iommu_alloc_buffer(struct device *dev, size_t size,
1163 gfp_t gfp, struct dma_attrs *attrs)
1164{
1165 struct page **pages;
1166 int count = size >> PAGE_SHIFT;
1167 int array_size = count * sizeof(struct page *);
1168 int i = 0;
1169
1170 if (array_size <= PAGE_SIZE)
1171 pages = kzalloc(array_size, gfp);
1172 else
1173 pages = vzalloc(array_size);
1174 if (!pages)
1175 return NULL;
1176
1177 if (dma_get_attr(DMA_ATTR_FORCE_CONTIGUOUS, attrs))
1178 {
1179 unsigned long order = get_order(size);
1180 struct page *page;
1181
1182 page = dma_alloc_from_contiguous(dev, count, order);
1183 if (!page)
1184 goto error;
1185
1186 __dma_clear_buffer(page, size);
1187
1188 for (i = 0; i < count; i++)
1189 pages[i] = page + i;
1190
1191 return pages;
1192 }
1193
1194 /*
1195 * IOMMU can map any pages, so himem can also be used here
1196 */
1197 gfp |= __GFP_NOWARN | __GFP_HIGHMEM;
1198
1199 while (count) {
1200 int j, order = __fls(count);
1201
1202 pages[i] = alloc_pages(gfp, order);
1203 while (!pages[i] && order)
1204 pages[i] = alloc_pages(gfp, --order);
1205 if (!pages[i])
1206 goto error;
1207
1208 if (order) {
1209 split_page(pages[i], order);
1210 j = 1 << order;
1211 while (--j)
1212 pages[i + j] = pages[i] + j;
1213 }
1214
1215 __dma_clear_buffer(pages[i], PAGE_SIZE << order);
1216 i += 1 << order;
1217 count -= 1 << order;
1218 }
1219
1220 return pages;
1221error:
1222 while (i--)
1223 if (pages[i])
1224 __free_pages(pages[i], 0);
1225 if (array_size <= PAGE_SIZE)
1226 kfree(pages);
1227 else
1228 vfree(pages);
1229 return NULL;
1230}
1231
1232static int __iommu_free_buffer(struct device *dev, struct page **pages,
1233 size_t size, struct dma_attrs *attrs)
1234{
1235 int count = size >> PAGE_SHIFT;
1236 int array_size = count * sizeof(struct page *);
1237 int i;
1238
1239 if (dma_get_attr(DMA_ATTR_FORCE_CONTIGUOUS, attrs)) {
1240 dma_release_from_contiguous(dev, pages[0], count);
1241 } else {
1242 for (i = 0; i < count; i++)
1243 if (pages[i])
1244 __free_pages(pages[i], 0);
1245 }
1246
1247 if (array_size <= PAGE_SIZE)
1248 kfree(pages);
1249 else
1250 vfree(pages);
1251 return 0;
1252}
1253
1254/*
1255 * Create a CPU mapping for a specified pages
1256 */
1257static void *
1258__iommu_alloc_remap(struct page **pages, size_t size, gfp_t gfp, pgprot_t prot,
1259 const void *caller)
1260{
1261 unsigned int i, nr_pages = PAGE_ALIGN(size) >> PAGE_SHIFT;
1262 struct vm_struct *area;
1263 unsigned long p;
1264
1265 area = get_vm_area_caller(size, VM_ARM_DMA_CONSISTENT | VM_USERMAP,
1266 caller);
1267 if (!area)
1268 return NULL;
1269
1270 area->pages = pages;
1271 area->nr_pages = nr_pages;
1272 p = (unsigned long)area->addr;
1273
1274 for (i = 0; i < nr_pages; i++) {
1275 phys_addr_t phys = __pfn_to_phys(page_to_pfn(pages[i]));
1276 if (ioremap_page_range(p, p + PAGE_SIZE, phys, prot))
1277 goto err;
1278 p += PAGE_SIZE;
1279 }
1280 return area->addr;
1281err:
1282 unmap_kernel_range((unsigned long)area->addr, size);
1283 vunmap(area->addr);
1284 return NULL;
1285}
1286
1287/*
1288 * Create a mapping in device IO address space for specified pages
1289 */
1290static dma_addr_t
1291__iommu_create_mapping(struct device *dev, struct page **pages, size_t size)
1292{
1293 struct dma_iommu_mapping *mapping = dev->archdata.mapping;
1294 unsigned int count = PAGE_ALIGN(size) >> PAGE_SHIFT;
1295 dma_addr_t dma_addr, iova;
1296 int i, ret = DMA_ERROR_CODE;
1297
1298 dma_addr = __alloc_iova(mapping, size);
1299 if (dma_addr == DMA_ERROR_CODE)
1300 return dma_addr;
1301
1302 iova = dma_addr;
1303 for (i = 0; i < count; ) {
1304 unsigned int next_pfn = page_to_pfn(pages[i]) + 1;
1305 phys_addr_t phys = page_to_phys(pages[i]);
1306 unsigned int len, j;
1307
1308 for (j = i + 1; j < count; j++, next_pfn++)
1309 if (page_to_pfn(pages[j]) != next_pfn)
1310 break;
1311
1312 len = (j - i) << PAGE_SHIFT;
1313 ret = iommu_map(mapping->domain, iova, phys, len,
1314 IOMMU_READ|IOMMU_WRITE);
1315 if (ret < 0)
1316 goto fail;
1317 iova += len;
1318 i = j;
1319 }
1320 return dma_addr;
1321fail:
1322 iommu_unmap(mapping->domain, dma_addr, iova-dma_addr);
1323 __free_iova(mapping, dma_addr, size);
1324 return DMA_ERROR_CODE;
1325}
1326
1327static int __iommu_remove_mapping(struct device *dev, dma_addr_t iova, size_t size)
1328{
1329 struct dma_iommu_mapping *mapping = dev->archdata.mapping;
1330
1331 /*
1332 * add optional in-page offset from iova to size and align
1333 * result to page size
1334 */
1335 size = PAGE_ALIGN((iova & ~PAGE_MASK) + size);
1336 iova &= PAGE_MASK;
1337
1338 iommu_unmap(mapping->domain, iova, size);
1339 __free_iova(mapping, iova, size);
1340 return 0;
1341}
1342
1343static struct page **__atomic_get_pages(void *addr)
1344{
1345 struct dma_pool *pool = &atomic_pool;
1346 struct page **pages = pool->pages;
1347 int offs = (addr - pool->vaddr) >> PAGE_SHIFT;
1348
1349 return pages + offs;
1350}
1351
1352static struct page **__iommu_get_pages(void *cpu_addr, struct dma_attrs *attrs)
1353{
1354 struct vm_struct *area;
1355
1356 if (__in_atomic_pool(cpu_addr, PAGE_SIZE))
1357 return __atomic_get_pages(cpu_addr);
1358
1359 if (dma_get_attr(DMA_ATTR_NO_KERNEL_MAPPING, attrs))
1360 return cpu_addr;
1361
1362 area = find_vm_area(cpu_addr);
1363 if (area && (area->flags & VM_ARM_DMA_CONSISTENT))
1364 return area->pages;
1365 return NULL;
1366}
1367
1368static void *__iommu_alloc_atomic(struct device *dev, size_t size,
1369 dma_addr_t *handle)
1370{
1371 struct page *page;
1372 void *addr;
1373
1374 addr = __alloc_from_pool(size, &page);
1375 if (!addr)
1376 return NULL;
1377
1378 *handle = __iommu_create_mapping(dev, &page, size);
1379 if (*handle == DMA_ERROR_CODE)
1380 goto err_mapping;
1381
1382 return addr;
1383
1384err_mapping:
1385 __free_from_pool(addr, size);
1386 return NULL;
1387}
1388
1389static void __iommu_free_atomic(struct device *dev, void *cpu_addr,
1390 dma_addr_t handle, size_t size)
1391{
1392 __iommu_remove_mapping(dev, handle, size);
1393 __free_from_pool(cpu_addr, size);
1394}
1395
1396static void *arm_iommu_alloc_attrs(struct device *dev, size_t size,
1397 dma_addr_t *handle, gfp_t gfp, struct dma_attrs *attrs)
1398{
1399 pgprot_t prot = __get_dma_pgprot(attrs, PAGE_KERNEL);
1400 struct page **pages;
1401 void *addr = NULL;
1402
1403 *handle = DMA_ERROR_CODE;
1404 size = PAGE_ALIGN(size);
1405
1406 if (!(gfp & __GFP_WAIT))
1407 return __iommu_alloc_atomic(dev, size, handle);
1408
1409 /*
1410 * Following is a work-around (a.k.a. hack) to prevent pages
1411 * with __GFP_COMP being passed to split_page() which cannot
1412 * handle them. The real problem is that this flag probably
1413 * should be 0 on ARM as it is not supported on this
1414 * platform; see CONFIG_HUGETLBFS.
1415 */
1416 gfp &= ~(__GFP_COMP);
1417
1418 pages = __iommu_alloc_buffer(dev, size, gfp, attrs);
1419 if (!pages)
1420 return NULL;
1421
1422 *handle = __iommu_create_mapping(dev, pages, size);
1423 if (*handle == DMA_ERROR_CODE)
1424 goto err_buffer;
1425
1426 if (dma_get_attr(DMA_ATTR_NO_KERNEL_MAPPING, attrs))
1427 return pages;
1428
1429 addr = __iommu_alloc_remap(pages, size, gfp, prot,
1430 __builtin_return_address(0));
1431 if (!addr)
1432 goto err_mapping;
1433
1434 return addr;
1435
1436err_mapping:
1437 __iommu_remove_mapping(dev, *handle, size);
1438err_buffer:
1439 __iommu_free_buffer(dev, pages, size, attrs);
1440 return NULL;
1441}
1442
1443static int arm_iommu_mmap_attrs(struct device *dev, struct vm_area_struct *vma,
1444 void *cpu_addr, dma_addr_t dma_addr, size_t size,
1445 struct dma_attrs *attrs)
1446{
1447 unsigned long uaddr = vma->vm_start;
1448 unsigned long usize = vma->vm_end - vma->vm_start;
1449 struct page **pages = __iommu_get_pages(cpu_addr, attrs);
1450
1451 vma->vm_page_prot = __get_dma_pgprot(attrs, vma->vm_page_prot);
1452
1453 if (!pages)
1454 return -ENXIO;
1455
1456 do {
1457 int ret = vm_insert_page(vma, uaddr, *pages++);
1458 if (ret) {
1459 pr_err("Remapping memory failed: %d\n", ret);
1460 return ret;
1461 }
1462 uaddr += PAGE_SIZE;
1463 usize -= PAGE_SIZE;
1464 } while (usize > 0);
1465
1466 return 0;
1467}
1468
1469/*
1470 * free a page as defined by the above mapping.
1471 * Must not be called with IRQs disabled.
1472 */
1473void arm_iommu_free_attrs(struct device *dev, size_t size, void *cpu_addr,
1474 dma_addr_t handle, struct dma_attrs *attrs)
1475{
1476 struct page **pages;
1477 size = PAGE_ALIGN(size);
1478
1479 if (__in_atomic_pool(cpu_addr, size)) {
1480 __iommu_free_atomic(dev, cpu_addr, handle, size);
1481 return;
1482 }
1483
1484 pages = __iommu_get_pages(cpu_addr, attrs);
1485 if (!pages) {
1486 WARN(1, "trying to free invalid coherent area: %p\n", cpu_addr);
1487 return;
1488 }
1489
1490 if (!dma_get_attr(DMA_ATTR_NO_KERNEL_MAPPING, attrs)) {
1491 unmap_kernel_range((unsigned long)cpu_addr, size);
1492 vunmap(cpu_addr);
1493 }
1494
1495 __iommu_remove_mapping(dev, handle, size);
1496 __iommu_free_buffer(dev, pages, size, attrs);
1497}
1498
1499static int arm_iommu_get_sgtable(struct device *dev, struct sg_table *sgt,
1500 void *cpu_addr, dma_addr_t dma_addr,
1501 size_t size, struct dma_attrs *attrs)
1502{
1503 unsigned int count = PAGE_ALIGN(size) >> PAGE_SHIFT;
1504 struct page **pages = __iommu_get_pages(cpu_addr, attrs);
1505
1506 if (!pages)
1507 return -ENXIO;
1508
1509 return sg_alloc_table_from_pages(sgt, pages, count, 0, size,
1510 GFP_KERNEL);
1511}
1512
1513static int __dma_direction_to_prot(enum dma_data_direction dir)
1514{
1515 int prot;
1516
1517 switch (dir) {
1518 case DMA_BIDIRECTIONAL:
1519 prot = IOMMU_READ | IOMMU_WRITE;
1520 break;
1521 case DMA_TO_DEVICE:
1522 prot = IOMMU_READ;
1523 break;
1524 case DMA_FROM_DEVICE:
1525 prot = IOMMU_WRITE;
1526 break;
1527 default:
1528 prot = 0;
1529 }
1530
1531 return prot;
1532}
1533
1534/*
1535 * Map a part of the scatter-gather list into contiguous io address space
1536 */
1537static int __map_sg_chunk(struct device *dev, struct scatterlist *sg,
1538 size_t size, dma_addr_t *handle,
1539 enum dma_data_direction dir, struct dma_attrs *attrs,
1540 bool is_coherent)
1541{
1542 struct dma_iommu_mapping *mapping = dev->archdata.mapping;
1543 dma_addr_t iova, iova_base;
1544 int ret = 0;
1545 unsigned int count;
1546 struct scatterlist *s;
1547 int prot;
1548
1549 size = PAGE_ALIGN(size);
1550 *handle = DMA_ERROR_CODE;
1551
1552 iova_base = iova = __alloc_iova(mapping, size);
1553 if (iova == DMA_ERROR_CODE)
1554 return -ENOMEM;
1555
1556 for (count = 0, s = sg; count < (size >> PAGE_SHIFT); s = sg_next(s)) {
1557 phys_addr_t phys = page_to_phys(sg_page(s));
1558 unsigned int len = PAGE_ALIGN(s->offset + s->length);
1559
1560 if (!is_coherent &&
1561 !dma_get_attr(DMA_ATTR_SKIP_CPU_SYNC, attrs))
1562 __dma_page_cpu_to_dev(sg_page(s), s->offset, s->length, dir);
1563
1564 prot = __dma_direction_to_prot(dir);
1565
1566 ret = iommu_map(mapping->domain, iova, phys, len, prot);
1567 if (ret < 0)
1568 goto fail;
1569 count += len >> PAGE_SHIFT;
1570 iova += len;
1571 }
1572 *handle = iova_base;
1573
1574 return 0;
1575fail:
1576 iommu_unmap(mapping->domain, iova_base, count * PAGE_SIZE);
1577 __free_iova(mapping, iova_base, size);
1578 return ret;
1579}
1580
1581static int __iommu_map_sg(struct device *dev, struct scatterlist *sg, int nents,
1582 enum dma_data_direction dir, struct dma_attrs *attrs,
1583 bool is_coherent)
1584{
1585 struct scatterlist *s = sg, *dma = sg, *start = sg;
1586 int i, count = 0;
1587 unsigned int offset = s->offset;
1588 unsigned int size = s->offset + s->length;
1589 unsigned int max = dma_get_max_seg_size(dev);
1590
1591 for (i = 1; i < nents; i++) {
1592 s = sg_next(s);
1593
1594 s->dma_address = DMA_ERROR_CODE;
1595 s->dma_length = 0;
1596
1597 if (s->offset || (size & ~PAGE_MASK) || size + s->length > max) {
1598 if (__map_sg_chunk(dev, start, size, &dma->dma_address,
1599 dir, attrs, is_coherent) < 0)
1600 goto bad_mapping;
1601
1602 dma->dma_address += offset;
1603 dma->dma_length = size - offset;
1604
1605 size = offset = s->offset;
1606 start = s;
1607 dma = sg_next(dma);
1608 count += 1;
1609 }
1610 size += s->length;
1611 }
1612 if (__map_sg_chunk(dev, start, size, &dma->dma_address, dir, attrs,
1613 is_coherent) < 0)
1614 goto bad_mapping;
1615
1616 dma->dma_address += offset;
1617 dma->dma_length = size - offset;
1618
1619 return count+1;
1620
1621bad_mapping:
1622 for_each_sg(sg, s, count, i)
1623 __iommu_remove_mapping(dev, sg_dma_address(s), sg_dma_len(s));
1624 return 0;
1625}
1626
1627/**
1628 * arm_coherent_iommu_map_sg - map a set of SG buffers for streaming mode DMA
1629 * @dev: valid struct device pointer
1630 * @sg: list of buffers
1631 * @nents: number of buffers to map
1632 * @dir: DMA transfer direction
1633 *
1634 * Map a set of i/o coherent buffers described by scatterlist in streaming
1635 * mode for DMA. The scatter gather list elements are merged together (if
1636 * possible) and tagged with the appropriate dma address and length. They are
1637 * obtained via sg_dma_{address,length}.
1638 */
1639int arm_coherent_iommu_map_sg(struct device *dev, struct scatterlist *sg,
1640 int nents, enum dma_data_direction dir, struct dma_attrs *attrs)
1641{
1642 return __iommu_map_sg(dev, sg, nents, dir, attrs, true);
1643}
1644
1645/**
1646 * arm_iommu_map_sg - map a set of SG buffers for streaming mode DMA
1647 * @dev: valid struct device pointer
1648 * @sg: list of buffers
1649 * @nents: number of buffers to map
1650 * @dir: DMA transfer direction
1651 *
1652 * Map a set of buffers described by scatterlist in streaming mode for DMA.
1653 * The scatter gather list elements are merged together (if possible) and
1654 * tagged with the appropriate dma address and length. They are obtained via
1655 * sg_dma_{address,length}.
1656 */
1657int arm_iommu_map_sg(struct device *dev, struct scatterlist *sg,
1658 int nents, enum dma_data_direction dir, struct dma_attrs *attrs)
1659{
1660 return __iommu_map_sg(dev, sg, nents, dir, attrs, false);
1661}
1662
1663static void __iommu_unmap_sg(struct device *dev, struct scatterlist *sg,
1664 int nents, enum dma_data_direction dir, struct dma_attrs *attrs,
1665 bool is_coherent)
1666{
1667 struct scatterlist *s;
1668 int i;
1669
1670 for_each_sg(sg, s, nents, i) {
1671 if (sg_dma_len(s))
1672 __iommu_remove_mapping(dev, sg_dma_address(s),
1673 sg_dma_len(s));
1674 if (!is_coherent &&
1675 !dma_get_attr(DMA_ATTR_SKIP_CPU_SYNC, attrs))
1676 __dma_page_dev_to_cpu(sg_page(s), s->offset,
1677 s->length, dir);
1678 }
1679}
1680
1681/**
1682 * arm_coherent_iommu_unmap_sg - unmap a set of SG buffers mapped by dma_map_sg
1683 * @dev: valid struct device pointer
1684 * @sg: list of buffers
1685 * @nents: number of buffers to unmap (same as was passed to dma_map_sg)
1686 * @dir: DMA transfer direction (same as was passed to dma_map_sg)
1687 *
1688 * Unmap a set of streaming mode DMA translations. Again, CPU access
1689 * rules concerning calls here are the same as for dma_unmap_single().
1690 */
1691void arm_coherent_iommu_unmap_sg(struct device *dev, struct scatterlist *sg,
1692 int nents, enum dma_data_direction dir, struct dma_attrs *attrs)
1693{
1694 __iommu_unmap_sg(dev, sg, nents, dir, attrs, true);
1695}
1696
1697/**
1698 * arm_iommu_unmap_sg - unmap a set of SG buffers mapped by dma_map_sg
1699 * @dev: valid struct device pointer
1700 * @sg: list of buffers
1701 * @nents: number of buffers to unmap (same as was passed to dma_map_sg)
1702 * @dir: DMA transfer direction (same as was passed to dma_map_sg)
1703 *
1704 * Unmap a set of streaming mode DMA translations. Again, CPU access
1705 * rules concerning calls here are the same as for dma_unmap_single().
1706 */
1707void arm_iommu_unmap_sg(struct device *dev, struct scatterlist *sg, int nents,
1708 enum dma_data_direction dir, struct dma_attrs *attrs)
1709{
1710 __iommu_unmap_sg(dev, sg, nents, dir, attrs, false);
1711}
1712
1713/**
1714 * arm_iommu_sync_sg_for_cpu
1715 * @dev: valid struct device pointer
1716 * @sg: list of buffers
1717 * @nents: number of buffers to map (returned from dma_map_sg)
1718 * @dir: DMA transfer direction (same as was passed to dma_map_sg)
1719 */
1720void arm_iommu_sync_sg_for_cpu(struct device *dev, struct scatterlist *sg,
1721 int nents, enum dma_data_direction dir)
1722{
1723 struct scatterlist *s;
1724 int i;
1725
1726 for_each_sg(sg, s, nents, i)
1727 __dma_page_dev_to_cpu(sg_page(s), s->offset, s->length, dir);
1728
1729}
1730
1731/**
1732 * arm_iommu_sync_sg_for_device
1733 * @dev: valid struct device pointer
1734 * @sg: list of buffers
1735 * @nents: number of buffers to map (returned from dma_map_sg)
1736 * @dir: DMA transfer direction (same as was passed to dma_map_sg)
1737 */
1738void arm_iommu_sync_sg_for_device(struct device *dev, struct scatterlist *sg,
1739 int nents, enum dma_data_direction dir)
1740{
1741 struct scatterlist *s;
1742 int i;
1743
1744 for_each_sg(sg, s, nents, i)
1745 __dma_page_cpu_to_dev(sg_page(s), s->offset, s->length, dir);
1746}
1747
1748
1749/**
1750 * arm_coherent_iommu_map_page
1751 * @dev: valid struct device pointer
1752 * @page: page that buffer resides in
1753 * @offset: offset into page for start of buffer
1754 * @size: size of buffer to map
1755 * @dir: DMA transfer direction
1756 *
1757 * Coherent IOMMU aware version of arm_dma_map_page()
1758 */
1759static dma_addr_t arm_coherent_iommu_map_page(struct device *dev, struct page *page,
1760 unsigned long offset, size_t size, enum dma_data_direction dir,
1761 struct dma_attrs *attrs)
1762{
1763 struct dma_iommu_mapping *mapping = dev->archdata.mapping;
1764 dma_addr_t dma_addr;
1765 int ret, prot, len = PAGE_ALIGN(size + offset);
1766
1767 dma_addr = __alloc_iova(mapping, len);
1768 if (dma_addr == DMA_ERROR_CODE)
1769 return dma_addr;
1770
1771 prot = __dma_direction_to_prot(dir);
1772
1773 ret = iommu_map(mapping->domain, dma_addr, page_to_phys(page), len, prot);
1774 if (ret < 0)
1775 goto fail;
1776
1777 return dma_addr + offset;
1778fail:
1779 __free_iova(mapping, dma_addr, len);
1780 return DMA_ERROR_CODE;
1781}
1782
1783/**
1784 * arm_iommu_map_page
1785 * @dev: valid struct device pointer
1786 * @page: page that buffer resides in
1787 * @offset: offset into page for start of buffer
1788 * @size: size of buffer to map
1789 * @dir: DMA transfer direction
1790 *
1791 * IOMMU aware version of arm_dma_map_page()
1792 */
1793static dma_addr_t arm_iommu_map_page(struct device *dev, struct page *page,
1794 unsigned long offset, size_t size, enum dma_data_direction dir,
1795 struct dma_attrs *attrs)
1796{
1797 if (!dma_get_attr(DMA_ATTR_SKIP_CPU_SYNC, attrs))
1798 __dma_page_cpu_to_dev(page, offset, size, dir);
1799
1800 return arm_coherent_iommu_map_page(dev, page, offset, size, dir, attrs);
1801}
1802
1803/**
1804 * arm_coherent_iommu_unmap_page
1805 * @dev: valid struct device pointer
1806 * @handle: DMA address of buffer
1807 * @size: size of buffer (same as passed to dma_map_page)
1808 * @dir: DMA transfer direction (same as passed to dma_map_page)
1809 *
1810 * Coherent IOMMU aware version of arm_dma_unmap_page()
1811 */
1812static void arm_coherent_iommu_unmap_page(struct device *dev, dma_addr_t handle,
1813 size_t size, enum dma_data_direction dir,
1814 struct dma_attrs *attrs)
1815{
1816 struct dma_iommu_mapping *mapping = dev->archdata.mapping;
1817 dma_addr_t iova = handle & PAGE_MASK;
1818 int offset = handle & ~PAGE_MASK;
1819 int len = PAGE_ALIGN(size + offset);
1820
1821 if (!iova)
1822 return;
1823
1824 iommu_unmap(mapping->domain, iova, len);
1825 __free_iova(mapping, iova, len);
1826}
1827
1828/**
1829 * arm_iommu_unmap_page
1830 * @dev: valid struct device pointer
1831 * @handle: DMA address of buffer
1832 * @size: size of buffer (same as passed to dma_map_page)
1833 * @dir: DMA transfer direction (same as passed to dma_map_page)
1834 *
1835 * IOMMU aware version of arm_dma_unmap_page()
1836 */
1837static void arm_iommu_unmap_page(struct device *dev, dma_addr_t handle,
1838 size_t size, enum dma_data_direction dir,
1839 struct dma_attrs *attrs)
1840{
1841 struct dma_iommu_mapping *mapping = dev->archdata.mapping;
1842 dma_addr_t iova = handle & PAGE_MASK;
1843 struct page *page = phys_to_page(iommu_iova_to_phys(mapping->domain, iova));
1844 int offset = handle & ~PAGE_MASK;
1845 int len = PAGE_ALIGN(size + offset);
1846
1847 if (!iova)
1848 return;
1849
1850 if (!dma_get_attr(DMA_ATTR_SKIP_CPU_SYNC, attrs))
1851 __dma_page_dev_to_cpu(page, offset, size, dir);
1852
1853 iommu_unmap(mapping->domain, iova, len);
1854 __free_iova(mapping, iova, len);
1855}
1856
1857static void arm_iommu_sync_single_for_cpu(struct device *dev,
1858 dma_addr_t handle, size_t size, enum dma_data_direction dir)
1859{
1860 struct dma_iommu_mapping *mapping = dev->archdata.mapping;
1861 dma_addr_t iova = handle & PAGE_MASK;
1862 struct page *page = phys_to_page(iommu_iova_to_phys(mapping->domain, iova));
1863 unsigned int offset = handle & ~PAGE_MASK;
1864
1865 if (!iova)
1866 return;
1867
1868 __dma_page_dev_to_cpu(page, offset, size, dir);
1869}
1870
1871static void arm_iommu_sync_single_for_device(struct device *dev,
1872 dma_addr_t handle, size_t size, enum dma_data_direction dir)
1873{
1874 struct dma_iommu_mapping *mapping = dev->archdata.mapping;
1875 dma_addr_t iova = handle & PAGE_MASK;
1876 struct page *page = phys_to_page(iommu_iova_to_phys(mapping->domain, iova));
1877 unsigned int offset = handle & ~PAGE_MASK;
1878
1879 if (!iova)
1880 return;
1881
1882 __dma_page_cpu_to_dev(page, offset, size, dir);
1883}
1884
1885struct dma_map_ops iommu_ops = {
1886 .alloc = arm_iommu_alloc_attrs,
1887 .free = arm_iommu_free_attrs,
1888 .mmap = arm_iommu_mmap_attrs,
1889 .get_sgtable = arm_iommu_get_sgtable,
1890
1891 .map_page = arm_iommu_map_page,
1892 .unmap_page = arm_iommu_unmap_page,
1893 .sync_single_for_cpu = arm_iommu_sync_single_for_cpu,
1894 .sync_single_for_device = arm_iommu_sync_single_for_device,
1895
1896 .map_sg = arm_iommu_map_sg,
1897 .unmap_sg = arm_iommu_unmap_sg,
1898 .sync_sg_for_cpu = arm_iommu_sync_sg_for_cpu,
1899 .sync_sg_for_device = arm_iommu_sync_sg_for_device,
1900
1901 .set_dma_mask = arm_dma_set_mask,
1902};
1903
1904struct dma_map_ops iommu_coherent_ops = {
1905 .alloc = arm_iommu_alloc_attrs,
1906 .free = arm_iommu_free_attrs,
1907 .mmap = arm_iommu_mmap_attrs,
1908 .get_sgtable = arm_iommu_get_sgtable,
1909
1910 .map_page = arm_coherent_iommu_map_page,
1911 .unmap_page = arm_coherent_iommu_unmap_page,
1912
1913 .map_sg = arm_coherent_iommu_map_sg,
1914 .unmap_sg = arm_coherent_iommu_unmap_sg,
1915
1916 .set_dma_mask = arm_dma_set_mask,
1917};
1918
1919/**
1920 * arm_iommu_create_mapping
1921 * @bus: pointer to the bus holding the client device (for IOMMU calls)
1922 * @base: start address of the valid IO address space
1923 * @size: maximum size of the valid IO address space
1924 *
1925 * Creates a mapping structure which holds information about used/unused
1926 * IO address ranges, which is required to perform memory allocation and
1927 * mapping with IOMMU aware functions.
1928 *
1929 * The client device need to be attached to the mapping with
1930 * arm_iommu_attach_device function.
1931 */
1932struct dma_iommu_mapping *
1933arm_iommu_create_mapping(struct bus_type *bus, dma_addr_t base, size_t size)
1934{
1935 unsigned int bits = size >> PAGE_SHIFT;
1936 unsigned int bitmap_size = BITS_TO_LONGS(bits) * sizeof(long);
1937 struct dma_iommu_mapping *mapping;
1938 int extensions = 1;
1939 int err = -ENOMEM;
1940
1941 if (!bitmap_size)
1942 return ERR_PTR(-EINVAL);
1943
1944 if (bitmap_size > PAGE_SIZE) {
1945 extensions = bitmap_size / PAGE_SIZE;
1946 bitmap_size = PAGE_SIZE;
1947 }
1948
1949 mapping = kzalloc(sizeof(struct dma_iommu_mapping), GFP_KERNEL);
1950 if (!mapping)
1951 goto err;
1952
1953 mapping->bitmap_size = bitmap_size;
1954 mapping->bitmaps = kzalloc(extensions * sizeof(unsigned long *),
1955 GFP_KERNEL);
1956 if (!mapping->bitmaps)
1957 goto err2;
1958
1959 mapping->bitmaps[0] = kzalloc(bitmap_size, GFP_KERNEL);
1960 if (!mapping->bitmaps[0])
1961 goto err3;
1962
1963 mapping->nr_bitmaps = 1;
1964 mapping->extensions = extensions;
1965 mapping->base = base;
1966 mapping->bits = BITS_PER_BYTE * bitmap_size;
1967 mapping->size = mapping->bits << PAGE_SHIFT;
1968
1969 spin_lock_init(&mapping->lock);
1970
1971 mapping->domain = iommu_domain_alloc(bus);
1972 if (!mapping->domain)
1973 goto err4;
1974
1975 kref_init(&mapping->kref);
1976 return mapping;
1977err4:
1978 kfree(mapping->bitmaps[0]);
1979err3:
1980 kfree(mapping->bitmaps);
1981err2:
1982 kfree(mapping);
1983err:
1984 return ERR_PTR(err);
1985}
1986EXPORT_SYMBOL_GPL(arm_iommu_create_mapping);
1987
1988static void release_iommu_mapping(struct kref *kref)
1989{
1990 int i;
1991 struct dma_iommu_mapping *mapping =
1992 container_of(kref, struct dma_iommu_mapping, kref);
1993
1994 iommu_domain_free(mapping->domain);
1995 for (i = 0; i < mapping->nr_bitmaps; i++)
1996 kfree(mapping->bitmaps[i]);
1997 kfree(mapping->bitmaps);
1998 kfree(mapping);
1999}
2000
2001static int extend_iommu_mapping(struct dma_iommu_mapping *mapping)
2002{
2003 int next_bitmap;
2004
2005 if (mapping->nr_bitmaps > mapping->extensions)
2006 return -EINVAL;
2007
2008 next_bitmap = mapping->nr_bitmaps;
2009 mapping->bitmaps[next_bitmap] = kzalloc(mapping->bitmap_size,
2010 GFP_ATOMIC);
2011 if (!mapping->bitmaps[next_bitmap])
2012 return -ENOMEM;
2013
2014 mapping->nr_bitmaps++;
2015
2016 return 0;
2017}
2018
2019void arm_iommu_release_mapping(struct dma_iommu_mapping *mapping)
2020{
2021 if (mapping)
2022 kref_put(&mapping->kref, release_iommu_mapping);
2023}
2024EXPORT_SYMBOL_GPL(arm_iommu_release_mapping);
2025
2026/**
2027 * arm_iommu_attach_device
2028 * @dev: valid struct device pointer
2029 * @mapping: io address space mapping structure (returned from
2030 * arm_iommu_create_mapping)
2031 *
2032 * Attaches specified io address space mapping to the provided device,
2033 * this replaces the dma operations (dma_map_ops pointer) with the
2034 * IOMMU aware version. More than one client might be attached to
2035 * the same io address space mapping.
2036 */
2037int arm_iommu_attach_device(struct device *dev,
2038 struct dma_iommu_mapping *mapping)
2039{
2040 int err;
2041
2042 err = iommu_attach_device(mapping->domain, dev);
2043 if (err)
2044 return err;
2045
2046 kref_get(&mapping->kref);
2047 dev->archdata.mapping = mapping;
2048 set_dma_ops(dev, &iommu_ops);
2049
2050 pr_debug("Attached IOMMU controller to %s device.\n", dev_name(dev));
2051 return 0;
2052}
2053EXPORT_SYMBOL_GPL(arm_iommu_attach_device);
2054
2055/**
2056 * arm_iommu_detach_device
2057 * @dev: valid struct device pointer
2058 *
2059 * Detaches the provided device from a previously attached map.
2060 * This voids the dma operations (dma_map_ops pointer)
2061 */
2062void arm_iommu_detach_device(struct device *dev)
2063{
2064 struct dma_iommu_mapping *mapping;
2065
2066 mapping = to_dma_iommu_mapping(dev);
2067 if (!mapping) {
2068 dev_warn(dev, "Not attached\n");
2069 return;
2070 }
2071
2072 iommu_detach_device(mapping->domain, dev);
2073 kref_put(&mapping->kref, release_iommu_mapping);
2074 dev->archdata.mapping = NULL;
2075 set_dma_ops(dev, NULL);
2076
2077 pr_debug("Detached IOMMU controller from %s device.\n", dev_name(dev));
2078}
2079EXPORT_SYMBOL_GPL(arm_iommu_detach_device);
2080
2081#endif