Linux Audio

Check our new training course

Loading...
v3.1
 
  1/*
  2 *  linux/arch/arm/mm/dma-mapping.c
  3 *
  4 *  Copyright (C) 2000-2004 Russell King
  5 *
  6 * This program is free software; you can redistribute it and/or modify
  7 * it under the terms of the GNU General Public License version 2 as
  8 * published by the Free Software Foundation.
  9 *
 10 *  DMA uncached mapping support.
 11 */
 12#include <linux/module.h>
 13#include <linux/mm.h>
 
 14#include <linux/gfp.h>
 15#include <linux/errno.h>
 16#include <linux/list.h>
 17#include <linux/init.h>
 18#include <linux/device.h>
 
 19#include <linux/dma-mapping.h>
 
 
 20#include <linux/highmem.h>
 
 
 
 
 
 
 
 21
 22#include <asm/memory.h>
 23#include <asm/highmem.h>
 24#include <asm/cacheflush.h>
 25#include <asm/tlbflush.h>
 26#include <asm/sizes.h>
 
 
 
 
 
 27
 
 28#include "mm.h"
 29
 30static u64 get_coherent_dma_mask(struct device *dev)
 31{
 32	u64 mask = (u64)arm_dma_limit;
 
 
 
 
 
 
 33
 34	if (dev) {
 35		mask = dev->coherent_dma_mask;
 
 
 
 
 
 36
 37		/*
 38		 * Sanity check the DMA mask - it must be non-zero, and
 39		 * must be able to be satisfied by a DMA allocation.
 40		 */
 41		if (mask == 0) {
 42			dev_warn(dev, "coherent DMA mask is unset\n");
 43			return 0;
 44		}
 
 
 
 
 
 
 
 
 
 45
 46		if ((~mask) & (u64)arm_dma_limit) {
 47			dev_warn(dev, "coherent DMA mask %#llx is smaller "
 48				 "than system GFP_DMA mask %#llx\n",
 49				 mask, (u64)arm_dma_limit);
 50			return 0;
 
 
 
 
 
 
 51		}
 52	}
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 53
 54	return mask;
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 55}
 56
 57/*
 58 * Allocate a DMA buffer for 'dev' of size 'size' using the
 59 * specified gfp mask.  Note that 'size' must be page aligned.
 60 */
 61static struct page *__dma_alloc_buffer(struct device *dev, size_t size, gfp_t gfp)
 
 62{
 63	unsigned long order = get_order(size);
 64	struct page *page, *p, *e;
 65	void *ptr;
 66	u64 mask = get_coherent_dma_mask(dev);
 67
 68#ifdef CONFIG_DMA_API_DEBUG
 69	u64 limit = (mask + 1) & ~mask;
 70	if (limit && size >= limit) {
 71		dev_warn(dev, "coherent allocation too big (requested %#x mask %#llx)\n",
 72			size, mask);
 73		return NULL;
 74	}
 75#endif
 76
 77	if (!mask)
 78		return NULL;
 79
 80	if (mask < 0xffffffffULL)
 81		gfp |= GFP_DMA;
 82
 83	page = alloc_pages(gfp, order);
 84	if (!page)
 85		return NULL;
 86
 87	/*
 88	 * Now split the huge page and free the excess pages
 89	 */
 90	split_page(page, order);
 91	for (p = page + (size >> PAGE_SHIFT), e = page + (1 << order); p < e; p++)
 92		__free_page(p);
 93
 94	/*
 95	 * Ensure that the allocated pages are zeroed, and that any data
 96	 * lurking in the kernel direct-mapped region is invalidated.
 97	 */
 98	ptr = page_address(page);
 99	memset(ptr, 0, size);
100	dmac_flush_range(ptr, ptr + size);
101	outer_flush_range(__pa(ptr), __pa(ptr) + size);
102
103	return page;
104}
105
106/*
107 * Free a DMA buffer.  'size' must be page aligned.
108 */
109static void __dma_free_buffer(struct page *page, size_t size)
110{
111	struct page *e = page + (size >> PAGE_SHIFT);
112
113	while (page < e) {
114		__free_page(page);
115		page++;
116	}
117}
118
119#ifdef CONFIG_MMU
120/* Sanity check size */
121#if (CONSISTENT_DMA_SIZE % SZ_2M)
122#error "CONSISTENT_DMA_SIZE must be multiple of 2MiB"
123#endif
 
 
 
 
 
 
 
 
124
125#define CONSISTENT_OFFSET(x)	(((unsigned long)(x) - CONSISTENT_BASE) >> PAGE_SHIFT)
126#define CONSISTENT_PTE_INDEX(x) (((unsigned long)(x) - CONSISTENT_BASE) >> PGDIR_SHIFT)
127#define NUM_CONSISTENT_PTES (CONSISTENT_DMA_SIZE >> PGDIR_SHIFT)
 
 
 
128
129/*
130 * These are the page tables (2MB each) covering uncached, DMA consistent allocations
131 */
132static pte_t *consistent_pte[NUM_CONSISTENT_PTES];
 
 
 
 
 
133
134#include "vmregion.h"
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
135
136static struct arm_vmregion_head consistent_head = {
137	.vm_lock	= __SPIN_LOCK_UNLOCKED(&consistent_head.vm_lock),
138	.vm_list	= LIST_HEAD_INIT(consistent_head.vm_list),
139	.vm_start	= CONSISTENT_BASE,
140	.vm_end		= CONSISTENT_END,
 
 
 
 
 
 
 
 
 
 
 
141};
142
143#ifdef CONFIG_HUGETLB_PAGE
144#error ARM Coherent DMA allocator does not (yet) support huge TLB
145#endif
146
147/*
148 * Initialise the consistent memory allocation.
149 */
150static int __init consistent_init(void)
151{
152	int ret = 0;
153	pgd_t *pgd;
154	pud_t *pud;
155	pmd_t *pmd;
156	pte_t *pte;
157	int i = 0;
158	u32 base = CONSISTENT_BASE;
159
160	do {
161		pgd = pgd_offset(&init_mm, base);
 
 
 
 
162
163		pud = pud_alloc(&init_mm, pgd, base);
164		if (!pud) {
165			printk(KERN_ERR "%s: no pud tables\n", __func__);
166			ret = -ENOMEM;
167			break;
168		}
 
 
 
 
 
 
 
169
170		pmd = pmd_alloc(&init_mm, pud, base);
171		if (!pmd) {
172			printk(KERN_ERR "%s: no pmd tables\n", __func__);
173			ret = -ENOMEM;
174			break;
175		}
176		WARN_ON(!pmd_none(*pmd));
177
178		pte = pte_alloc_kernel(pmd, base);
179		if (!pte) {
180			printk(KERN_ERR "%s: no pte tables\n", __func__);
181			ret = -ENOMEM;
182			break;
183		}
 
 
 
 
 
 
184
185		consistent_pte[i++] = pte;
186		base += (1 << PGDIR_SHIFT);
187	} while (base < CONSISTENT_END);
188
189	return ret;
 
190}
191
192core_initcall(consistent_init);
 
 
 
 
 
 
 
193
194static void *
195__dma_alloc_remap(struct page *page, size_t size, gfp_t gfp, pgprot_t prot)
196{
197	struct arm_vmregion *c;
198	size_t align;
199	int bit;
200
201	if (!consistent_pte[0]) {
202		printk(KERN_ERR "%s: not initialised\n", __func__);
203		dump_stack();
204		return NULL;
205	}
206
 
 
 
 
 
 
207	/*
208	 * Align the virtual region allocation - maximum alignment is
209	 * a section size, minimum is a page size.  This helps reduce
210	 * fragmentation of the DMA space, and also prevents allocations
211	 * smaller than a section from crossing a section boundary.
212	 */
213	bit = fls(size - 1);
214	if (bit > SECTION_SHIFT)
215		bit = SECTION_SHIFT;
216	align = 1 << bit;
 
217
218	/*
219	 * Allocate a virtual address in the consistent mapping region.
220	 */
221	c = arm_vmregion_alloc(&consistent_head, align, size,
222			    gfp & ~(__GFP_DMA | __GFP_HIGHMEM));
223	if (c) {
224		pte_t *pte;
225		int idx = CONSISTENT_PTE_INDEX(c->vm_start);
226		u32 off = CONSISTENT_OFFSET(c->vm_start) & (PTRS_PER_PTE-1);
227
228		pte = consistent_pte[idx] + off;
229		c->vm_pages = page;
 
 
230
231		do {
232			BUG_ON(!pte_none(*pte));
 
 
233
234			set_pte_ext(pte, mk_pte(page, prot), 0);
235			page++;
236			pte++;
237			off++;
238			if (off >= PTRS_PER_PTE) {
239				off = 0;
240				pte = consistent_pte[++idx];
241			}
242		} while (size -= PAGE_SIZE);
243
244		dsb();
 
 
245
246		return (void *)c->vm_start;
 
247	}
248	return NULL;
 
249}
250
251static void __dma_free_remap(void *cpu_addr, size_t size)
252{
253	struct arm_vmregion *c;
254	unsigned long addr;
255	pte_t *ptep;
256	int idx;
257	u32 off;
258
259	c = arm_vmregion_find_remove(&consistent_head, (unsigned long)cpu_addr);
260	if (!c) {
261		printk(KERN_ERR "%s: trying to free invalid coherent area: %p\n",
262		       __func__, cpu_addr);
263		dump_stack();
264		return;
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
265	}
266
267	if ((c->vm_end - c->vm_start) != size) {
268		printk(KERN_ERR "%s: freeing wrong coherent size (%ld != %d)\n",
269		       __func__, c->vm_end - c->vm_start, size);
270		dump_stack();
271		size = c->vm_end - c->vm_start;
 
 
 
 
 
 
 
 
272	}
 
 
273
274	idx = CONSISTENT_PTE_INDEX(c->vm_start);
275	off = CONSISTENT_OFFSET(c->vm_start) & (PTRS_PER_PTE-1);
276	ptep = consistent_pte[idx] + off;
277	addr = c->vm_start;
278	do {
279		pte_t pte = ptep_get_and_clear(&init_mm, addr, ptep);
 
280
281		ptep++;
282		addr += PAGE_SIZE;
283		off++;
284		if (off >= PTRS_PER_PTE) {
285			off = 0;
286			ptep = consistent_pte[++idx];
287		}
 
288
289		if (pte_none(pte) || !pte_present(pte))
290			printk(KERN_CRIT "%s: bad page in kernel page table\n",
291			       __func__);
292	} while (size -= PAGE_SIZE);
293
294	flush_tlb_kernel_range(c->vm_start, c->vm_end);
 
 
 
 
 
295
296	arm_vmregion_free(&consistent_head, c);
 
 
297}
298
299#else	/* !CONFIG_MMU */
 
 
 
300
301#define __dma_alloc_remap(page, size, gfp, prot)	page_address(page)
302#define __dma_free_remap(addr, size)			do { } while (0)
 
 
 
 
 
 
303
304#endif	/* CONFIG_MMU */
 
 
 
 
305
306static void *
307__dma_alloc(struct device *dev, size_t size, dma_addr_t *handle, gfp_t gfp,
308	    pgprot_t prot)
 
 
 
 
309{
310	struct page *page;
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
311	void *addr;
 
 
 
 
 
 
 
 
 
 
 
312
313	*handle = ~0;
314	size = PAGE_ALIGN(size);
 
 
 
 
 
 
315
316	page = __dma_alloc_buffer(dev, size, gfp);
317	if (!page)
 
318		return NULL;
319
320	if (!arch_is_coherent())
321		addr = __dma_alloc_remap(page, size, gfp, prot);
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
322	else
323		addr = page_address(page);
 
 
 
 
 
324
325	if (addr)
326		*handle = pfn_to_dma(dev, page_to_pfn(page));
327	else
328		__dma_free_buffer(page, size);
329
330	return addr;
 
 
 
 
 
 
 
331}
332
333/*
334 * Allocate DMA-coherent memory space and return both the kernel remapped
335 * virtual and bus address for that space.
336 */
337void *
338dma_alloc_coherent(struct device *dev, size_t size, dma_addr_t *handle, gfp_t gfp)
339{
340	void *memory;
341
342	if (dma_alloc_from_coherent(dev, size, handle, &memory))
343		return memory;
344
345	return __dma_alloc(dev, size, handle, gfp,
346			   pgprot_dmacoherent(pgprot_kernel));
347}
348EXPORT_SYMBOL(dma_alloc_coherent);
349
350/*
351 * Allocate a writecombining region, in much the same way as
352 * dma_alloc_coherent above.
353 */
354void *
355dma_alloc_writecombine(struct device *dev, size_t size, dma_addr_t *handle, gfp_t gfp)
356{
357	return __dma_alloc(dev, size, handle, gfp,
358			   pgprot_writecombine(pgprot_kernel));
359}
360EXPORT_SYMBOL(dma_alloc_writecombine);
361
362static int dma_mmap(struct device *dev, struct vm_area_struct *vma,
363		    void *cpu_addr, dma_addr_t dma_addr, size_t size)
 
364{
365	int ret = -ENXIO;
366#ifdef CONFIG_MMU
367	unsigned long user_size, kern_size;
368	struct arm_vmregion *c;
369
370	user_size = (vma->vm_end - vma->vm_start) >> PAGE_SHIFT;
371
372	c = arm_vmregion_find(&consistent_head, (unsigned long)cpu_addr);
373	if (c) {
374		unsigned long off = vma->vm_pgoff;
375
376		kern_size = (c->vm_end - c->vm_start) >> PAGE_SHIFT;
377
378		if (off < kern_size &&
379		    user_size <= (kern_size - off)) {
380			ret = remap_pfn_range(vma, vma->vm_start,
381					      page_to_pfn(c->vm_pages) + off,
382					      user_size << PAGE_SHIFT,
383					      vma->vm_page_prot);
384		}
385	}
386#endif	/* CONFIG_MMU */
387
388	return ret;
389}
390
391int dma_mmap_coherent(struct device *dev, struct vm_area_struct *vma,
392		      void *cpu_addr, dma_addr_t dma_addr, size_t size)
 
 
 
 
393{
394	vma->vm_page_prot = pgprot_dmacoherent(vma->vm_page_prot);
395	return dma_mmap(dev, vma, cpu_addr, dma_addr, size);
396}
397EXPORT_SYMBOL(dma_mmap_coherent);
398
399int dma_mmap_writecombine(struct device *dev, struct vm_area_struct *vma,
400			  void *cpu_addr, dma_addr_t dma_addr, size_t size)
 
401{
402	vma->vm_page_prot = pgprot_writecombine(vma->vm_page_prot);
403	return dma_mmap(dev, vma, cpu_addr, dma_addr, size);
404}
405EXPORT_SYMBOL(dma_mmap_writecombine);
406
407/*
408 * free a page as defined by the above mapping.
409 * Must not be called with IRQs disabled.
410 */
411void dma_free_coherent(struct device *dev, size_t size, void *cpu_addr, dma_addr_t handle)
412{
413	WARN_ON(irqs_disabled());
 
 
 
 
 
 
 
 
 
 
414
415	if (dma_release_from_coherent(dev, get_order(size), cpu_addr))
 
416		return;
417
418	size = PAGE_ALIGN(size);
419
420	if (!arch_is_coherent())
421		__dma_free_remap(cpu_addr, size);
422
423	__dma_free_buffer(pfn_to_page(dma_to_pfn(dev, handle)), size);
424}
425EXPORT_SYMBOL(dma_free_coherent);
426
427/*
428 * Make an area consistent for devices.
429 * Note: Drivers should NOT use this function directly, as it will break
430 * platforms with CONFIG_DMABOUNCE.
431 * Use the driver DMA support - see dma-mapping.h (dma_sync_*)
432 */
433void ___dma_single_cpu_to_dev(const void *kaddr, size_t size,
434	enum dma_data_direction dir)
435{
436	unsigned long paddr;
437
438	BUG_ON(!virt_addr_valid(kaddr) || !virt_addr_valid(kaddr + size - 1));
439
440	dmac_map_area(kaddr, size, dir);
441
442	paddr = __pa(kaddr);
443	if (dir == DMA_FROM_DEVICE) {
444		outer_inv_range(paddr, paddr + size);
445	} else {
446		outer_clean_range(paddr, paddr + size);
447	}
448	/* FIXME: non-speculating: flush on bidirectional mappings? */
449}
450EXPORT_SYMBOL(___dma_single_cpu_to_dev);
451
452void ___dma_single_dev_to_cpu(const void *kaddr, size_t size,
453	enum dma_data_direction dir)
 
454{
455	BUG_ON(!virt_addr_valid(kaddr) || !virt_addr_valid(kaddr + size - 1));
 
 
456
457	/* FIXME: non-speculating: not required */
458	/* don't bother invalidating if DMA to device */
459	if (dir != DMA_TO_DEVICE) {
460		unsigned long paddr = __pa(kaddr);
461		outer_inv_range(paddr, paddr + size);
462	}
463
464	dmac_unmap_area(kaddr, size, dir);
 
 
 
 
 
 
 
465}
466EXPORT_SYMBOL(___dma_single_dev_to_cpu);
467
468static void dma_cache_maint_page(struct page *page, unsigned long offset,
469	size_t size, enum dma_data_direction dir,
470	void (*op)(const void *, size_t, int))
471{
 
 
 
 
 
 
472	/*
473	 * A single sg entry may refer to multiple physically contiguous
474	 * pages.  But we still need to process highmem pages individually.
475	 * If highmem is not configured then the bulk of this loop gets
476	 * optimized out.
477	 */
478	size_t left = size;
479	do {
480		size_t len = left;
481		void *vaddr;
482
 
 
483		if (PageHighMem(page)) {
484			if (len + offset > PAGE_SIZE) {
485				if (offset >= PAGE_SIZE) {
486					page += offset / PAGE_SIZE;
487					offset %= PAGE_SIZE;
488				}
489				len = PAGE_SIZE - offset;
490			}
491			vaddr = kmap_high_get(page);
492			if (vaddr) {
493				vaddr += offset;
494				op(vaddr, len, dir);
495				kunmap_high(page);
496			} else if (cache_is_vipt()) {
497				/* unmapped pages might still be cached */
498				vaddr = kmap_atomic(page);
499				op(vaddr + offset, len, dir);
500				kunmap_atomic(vaddr);
 
 
 
 
 
 
501			}
502		} else {
503			vaddr = page_address(page) + offset;
504			op(vaddr, len, dir);
505		}
506		offset = 0;
507		page++;
508		left -= len;
509	} while (left);
510}
511
512void ___dma_page_cpu_to_dev(struct page *page, unsigned long off,
 
 
 
 
 
 
513	size_t size, enum dma_data_direction dir)
514{
515	unsigned long paddr;
516
517	dma_cache_maint_page(page, off, size, dir, dmac_map_area);
518
519	paddr = page_to_phys(page) + off;
520	if (dir == DMA_FROM_DEVICE) {
521		outer_inv_range(paddr, paddr + size);
522	} else {
523		outer_clean_range(paddr, paddr + size);
524	}
525	/* FIXME: non-speculating: flush on bidirectional mappings? */
526}
527EXPORT_SYMBOL(___dma_page_cpu_to_dev);
528
529void ___dma_page_dev_to_cpu(struct page *page, unsigned long off,
530	size_t size, enum dma_data_direction dir)
531{
532	unsigned long paddr = page_to_phys(page) + off;
533
534	/* FIXME: non-speculating: not required */
535	/* don't bother invalidating if DMA to device */
536	if (dir != DMA_TO_DEVICE)
537		outer_inv_range(paddr, paddr + size);
538
539	dma_cache_maint_page(page, off, size, dir, dmac_unmap_area);
 
540
541	/*
542	 * Mark the D-cache clean for this page to avoid extra flushing.
543	 */
544	if (dir != DMA_TO_DEVICE && off == 0 && size >= PAGE_SIZE)
545		set_bit(PG_dcache_clean, &page->flags);
 
 
 
 
 
 
 
 
 
 
 
 
 
 
546}
547EXPORT_SYMBOL(___dma_page_dev_to_cpu);
548
549/**
550 * dma_map_sg - map a set of SG buffers for streaming mode DMA
551 * @dev: valid struct device pointer, or NULL for ISA and EISA-like devices
552 * @sg: list of buffers
553 * @nents: number of buffers to map
554 * @dir: DMA transfer direction
555 *
556 * Map a set of buffers described by scatterlist in streaming mode for DMA.
557 * This is the scatter-gather version of the dma_map_single interface.
558 * Here the scatter gather list elements are each tagged with the
559 * appropriate dma address and length.  They are obtained via
560 * sg_dma_{address,length}.
561 *
562 * Device ownership issues as mentioned for dma_map_single are the same
563 * here.
564 */
565int dma_map_sg(struct device *dev, struct scatterlist *sg, int nents,
566		enum dma_data_direction dir)
567{
 
568	struct scatterlist *s;
569	int i, j;
570
571	BUG_ON(!valid_dma_direction(dir));
572
573	for_each_sg(sg, s, nents, i) {
574		s->dma_address = __dma_map_page(dev, sg_page(s), s->offset,
575						s->length, dir);
 
 
 
576		if (dma_mapping_error(dev, s->dma_address))
577			goto bad_mapping;
578	}
579	debug_dma_map_sg(dev, sg, nents, nents, dir);
580	return nents;
581
582 bad_mapping:
583	for_each_sg(sg, s, i, j)
584		__dma_unmap_page(dev, sg_dma_address(s), sg_dma_len(s), dir);
585	return 0;
586}
587EXPORT_SYMBOL(dma_map_sg);
588
589/**
590 * dma_unmap_sg - unmap a set of SG buffers mapped by dma_map_sg
591 * @dev: valid struct device pointer, or NULL for ISA and EISA-like devices
592 * @sg: list of buffers
593 * @nents: number of buffers to unmap (same as was passed to dma_map_sg)
594 * @dir: DMA transfer direction (same as was passed to dma_map_sg)
595 *
596 * Unmap a set of streaming mode DMA translations.  Again, CPU access
597 * rules concerning calls here are the same as for dma_unmap_single().
598 */
599void dma_unmap_sg(struct device *dev, struct scatterlist *sg, int nents,
600		enum dma_data_direction dir)
601{
 
602	struct scatterlist *s;
 
603	int i;
604
605	debug_dma_unmap_sg(dev, sg, nents, dir);
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
606
607	for_each_sg(sg, s, nents, i)
608		__dma_unmap_page(dev, sg_dma_address(s), sg_dma_len(s), dir);
 
609}
610EXPORT_SYMBOL(dma_unmap_sg);
611
612/**
613 * dma_sync_sg_for_cpu
614 * @dev: valid struct device pointer, or NULL for ISA and EISA-like devices
615 * @sg: list of buffers
616 * @nents: number of buffers to map (returned from dma_map_sg)
617 * @dir: DMA transfer direction (same as was passed to dma_map_sg)
618 */
619void dma_sync_sg_for_cpu(struct device *dev, struct scatterlist *sg,
620			int nents, enum dma_data_direction dir)
621{
 
622	struct scatterlist *s;
623	int i;
624
625	for_each_sg(sg, s, nents, i) {
626		if (!dmabounce_sync_for_cpu(dev, sg_dma_address(s), 0,
627					    sg_dma_len(s), dir))
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
628			continue;
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
629
630		__dma_page_dev_to_cpu(sg_page(s), s->offset,
631				      s->length, dir);
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
632	}
633
634	debug_dma_sync_sg_for_cpu(dev, sg, nents, dir);
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
635}
636EXPORT_SYMBOL(dma_sync_sg_for_cpu);
637
638/**
639 * dma_sync_sg_for_device
640 * @dev: valid struct device pointer, or NULL for ISA and EISA-like devices
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
641 * @sg: list of buffers
642 * @nents: number of buffers to map (returned from dma_map_sg)
643 * @dir: DMA transfer direction (same as was passed to dma_map_sg)
644 */
645void dma_sync_sg_for_device(struct device *dev, struct scatterlist *sg,
 
646			int nents, enum dma_data_direction dir)
647{
648	struct scatterlist *s;
649	int i;
650
651	for_each_sg(sg, s, nents, i) {
652		if (!dmabounce_sync_for_device(dev, sg_dma_address(s), 0,
653					sg_dma_len(s), dir))
654			continue;
655
656		__dma_page_cpu_to_dev(sg_page(s), s->offset,
657				      s->length, dir);
658	}
659
660	debug_dma_sync_sg_for_device(dev, sg, nents, dir);
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
661}
662EXPORT_SYMBOL(dma_sync_sg_for_device);
663
664/*
665 * Return whether the given device DMA address mask can be supported
666 * properly.  For example, if your device can only drive the low 24-bits
667 * during bus mastering, then you would pass 0x00ffffff as the mask
668 * to this function.
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
669 */
670int dma_supported(struct device *dev, u64 mask)
 
 
671{
672	if (mask < (u64)arm_dma_limit)
673		return 0;
674	return 1;
 
675}
676EXPORT_SYMBOL(dma_supported);
677
678int dma_set_mask(struct device *dev, u64 dma_mask)
 
 
 
 
 
 
 
 
 
 
679{
680	if (!dev->dma_mask || !dma_supported(dev, dma_mask))
681		return -EIO;
 
 
682
683#ifndef CONFIG_DMABOUNCE
684	*dev->dma_mask = dma_mask;
685#endif
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
686
687	return 0;
688}
689EXPORT_SYMBOL(dma_set_mask);
690
691#define PREALLOC_DMA_DEBUG_ENTRIES	4096
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
692
693static int __init dma_debug_do_init(void)
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
694{
695	dma_debug_init(PREALLOC_DMA_DEBUG_ENTRIES);
 
 
 
 
 
 
696	return 0;
697}
698fs_initcall(dma_debug_do_init);
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
v5.9
   1// SPDX-License-Identifier: GPL-2.0-only
   2/*
   3 *  linux/arch/arm/mm/dma-mapping.c
   4 *
   5 *  Copyright (C) 2000-2004 Russell King
   6 *
 
 
 
 
   7 *  DMA uncached mapping support.
   8 */
   9#include <linux/module.h>
  10#include <linux/mm.h>
  11#include <linux/genalloc.h>
  12#include <linux/gfp.h>
  13#include <linux/errno.h>
  14#include <linux/list.h>
  15#include <linux/init.h>
  16#include <linux/device.h>
  17#include <linux/dma-direct.h>
  18#include <linux/dma-mapping.h>
  19#include <linux/dma-noncoherent.h>
  20#include <linux/dma-contiguous.h>
  21#include <linux/highmem.h>
  22#include <linux/memblock.h>
  23#include <linux/slab.h>
  24#include <linux/iommu.h>
  25#include <linux/io.h>
  26#include <linux/vmalloc.h>
  27#include <linux/sizes.h>
  28#include <linux/cma.h>
  29
  30#include <asm/memory.h>
  31#include <asm/highmem.h>
  32#include <asm/cacheflush.h>
  33#include <asm/tlbflush.h>
  34#include <asm/mach/arch.h>
  35#include <asm/dma-iommu.h>
  36#include <asm/mach/map.h>
  37#include <asm/system_info.h>
  38#include <asm/dma-contiguous.h>
  39#include <xen/swiotlb-xen.h>
  40
  41#include "dma.h"
  42#include "mm.h"
  43
  44struct arm_dma_alloc_args {
  45	struct device *dev;
  46	size_t size;
  47	gfp_t gfp;
  48	pgprot_t prot;
  49	const void *caller;
  50	bool want_vaddr;
  51	int coherent_flag;
  52};
  53
  54struct arm_dma_free_args {
  55	struct device *dev;
  56	size_t size;
  57	void *cpu_addr;
  58	struct page *page;
  59	bool want_vaddr;
  60};
  61
  62#define NORMAL	    0
  63#define COHERENT    1
  64
  65struct arm_dma_allocator {
  66	void *(*alloc)(struct arm_dma_alloc_args *args,
  67		       struct page **ret_page);
  68	void (*free)(struct arm_dma_free_args *args);
  69};
  70
  71struct arm_dma_buffer {
  72	struct list_head list;
  73	void *virt;
  74	struct arm_dma_allocator *allocator;
  75};
  76
  77static LIST_HEAD(arm_dma_bufs);
  78static DEFINE_SPINLOCK(arm_dma_bufs_lock);
  79
  80static struct arm_dma_buffer *arm_dma_buffer_find(void *virt)
  81{
  82	struct arm_dma_buffer *buf, *found = NULL;
  83	unsigned long flags;
  84
  85	spin_lock_irqsave(&arm_dma_bufs_lock, flags);
  86	list_for_each_entry(buf, &arm_dma_bufs, list) {
  87		if (buf->virt == virt) {
  88			list_del(&buf->list);
  89			found = buf;
  90			break;
  91		}
  92	}
  93	spin_unlock_irqrestore(&arm_dma_bufs_lock, flags);
  94	return found;
  95}
  96
  97/*
  98 * The DMA API is built upon the notion of "buffer ownership".  A buffer
  99 * is either exclusively owned by the CPU (and therefore may be accessed
 100 * by it) or exclusively owned by the DMA device.  These helper functions
 101 * represent the transitions between these two ownership states.
 102 *
 103 * Note, however, that on later ARMs, this notion does not work due to
 104 * speculative prefetches.  We model our approach on the assumption that
 105 * the CPU does do speculative prefetches, which means we clean caches
 106 * before transfers and delay cache invalidation until transfer completion.
 107 *
 108 */
 109static void __dma_page_cpu_to_dev(struct page *, unsigned long,
 110		size_t, enum dma_data_direction);
 111static void __dma_page_dev_to_cpu(struct page *, unsigned long,
 112		size_t, enum dma_data_direction);
 113
 114/**
 115 * arm_dma_map_page - map a portion of a page for streaming DMA
 116 * @dev: valid struct device pointer, or NULL for ISA and EISA-like devices
 117 * @page: page that buffer resides in
 118 * @offset: offset into page for start of buffer
 119 * @size: size of buffer to map
 120 * @dir: DMA transfer direction
 121 *
 122 * Ensure that any data held in the cache is appropriately discarded
 123 * or written back.
 124 *
 125 * The device owns this memory once this call has completed.  The CPU
 126 * can regain ownership by calling dma_unmap_page().
 127 */
 128static dma_addr_t arm_dma_map_page(struct device *dev, struct page *page,
 129	     unsigned long offset, size_t size, enum dma_data_direction dir,
 130	     unsigned long attrs)
 131{
 132	if ((attrs & DMA_ATTR_SKIP_CPU_SYNC) == 0)
 133		__dma_page_cpu_to_dev(page, offset, size, dir);
 134	return pfn_to_dma(dev, page_to_pfn(page)) + offset;
 135}
 136
 137static dma_addr_t arm_coherent_dma_map_page(struct device *dev, struct page *page,
 138	     unsigned long offset, size_t size, enum dma_data_direction dir,
 139	     unsigned long attrs)
 140{
 141	return pfn_to_dma(dev, page_to_pfn(page)) + offset;
 142}
 143
 144/**
 145 * arm_dma_unmap_page - unmap a buffer previously mapped through dma_map_page()
 146 * @dev: valid struct device pointer, or NULL for ISA and EISA-like devices
 147 * @handle: DMA address of buffer
 148 * @size: size of buffer (same as passed to dma_map_page)
 149 * @dir: DMA transfer direction (same as passed to dma_map_page)
 150 *
 151 * Unmap a page streaming mode DMA translation.  The handle and size
 152 * must match what was provided in the previous dma_map_page() call.
 153 * All other usages are undefined.
 154 *
 155 * After this call, reads by the CPU to the buffer are guaranteed to see
 156 * whatever the device wrote there.
 157 */
 158static void arm_dma_unmap_page(struct device *dev, dma_addr_t handle,
 159		size_t size, enum dma_data_direction dir, unsigned long attrs)
 160{
 161	if ((attrs & DMA_ATTR_SKIP_CPU_SYNC) == 0)
 162		__dma_page_dev_to_cpu(pfn_to_page(dma_to_pfn(dev, handle)),
 163				      handle & ~PAGE_MASK, size, dir);
 164}
 165
 166static void arm_dma_sync_single_for_cpu(struct device *dev,
 167		dma_addr_t handle, size_t size, enum dma_data_direction dir)
 168{
 169	unsigned int offset = handle & (PAGE_SIZE - 1);
 170	struct page *page = pfn_to_page(dma_to_pfn(dev, handle-offset));
 171	__dma_page_dev_to_cpu(page, offset, size, dir);
 172}
 173
 174static void arm_dma_sync_single_for_device(struct device *dev,
 175		dma_addr_t handle, size_t size, enum dma_data_direction dir)
 176{
 177	unsigned int offset = handle & (PAGE_SIZE - 1);
 178	struct page *page = pfn_to_page(dma_to_pfn(dev, handle-offset));
 179	__dma_page_cpu_to_dev(page, offset, size, dir);
 180}
 181
 182/*
 183 * Return whether the given device DMA address mask can be supported
 184 * properly.  For example, if your device can only drive the low 24-bits
 185 * during bus mastering, then you would pass 0x00ffffff as the mask
 186 * to this function.
 187 */
 188static int arm_dma_supported(struct device *dev, u64 mask)
 189{
 190	unsigned long max_dma_pfn = min(max_pfn - 1, arm_dma_pfn_limit);
 191
 192	/*
 193	 * Translate the device's DMA mask to a PFN limit.  This
 194	 * PFN number includes the page which we can DMA to.
 195	 */
 196	return dma_to_pfn(dev, mask) >= max_dma_pfn;
 197}
 198
 199const struct dma_map_ops arm_dma_ops = {
 200	.alloc			= arm_dma_alloc,
 201	.free			= arm_dma_free,
 202	.mmap			= arm_dma_mmap,
 203	.get_sgtable		= arm_dma_get_sgtable,
 204	.map_page		= arm_dma_map_page,
 205	.unmap_page		= arm_dma_unmap_page,
 206	.map_sg			= arm_dma_map_sg,
 207	.unmap_sg		= arm_dma_unmap_sg,
 208	.map_resource		= dma_direct_map_resource,
 209	.sync_single_for_cpu	= arm_dma_sync_single_for_cpu,
 210	.sync_single_for_device	= arm_dma_sync_single_for_device,
 211	.sync_sg_for_cpu	= arm_dma_sync_sg_for_cpu,
 212	.sync_sg_for_device	= arm_dma_sync_sg_for_device,
 213	.dma_supported		= arm_dma_supported,
 214	.get_required_mask	= dma_direct_get_required_mask,
 215};
 216EXPORT_SYMBOL(arm_dma_ops);
 217
 218static void *arm_coherent_dma_alloc(struct device *dev, size_t size,
 219	dma_addr_t *handle, gfp_t gfp, unsigned long attrs);
 220static void arm_coherent_dma_free(struct device *dev, size_t size, void *cpu_addr,
 221				  dma_addr_t handle, unsigned long attrs);
 222static int arm_coherent_dma_mmap(struct device *dev, struct vm_area_struct *vma,
 223		 void *cpu_addr, dma_addr_t dma_addr, size_t size,
 224		 unsigned long attrs);
 225
 226const struct dma_map_ops arm_coherent_dma_ops = {
 227	.alloc			= arm_coherent_dma_alloc,
 228	.free			= arm_coherent_dma_free,
 229	.mmap			= arm_coherent_dma_mmap,
 230	.get_sgtable		= arm_dma_get_sgtable,
 231	.map_page		= arm_coherent_dma_map_page,
 232	.map_sg			= arm_dma_map_sg,
 233	.map_resource		= dma_direct_map_resource,
 234	.dma_supported		= arm_dma_supported,
 235	.get_required_mask	= dma_direct_get_required_mask,
 236};
 237EXPORT_SYMBOL(arm_coherent_dma_ops);
 238
 239static void __dma_clear_buffer(struct page *page, size_t size, int coherent_flag)
 240{
 241	/*
 242	 * Ensure that the allocated pages are zeroed, and that any data
 243	 * lurking in the kernel direct-mapped region is invalidated.
 244	 */
 245	if (PageHighMem(page)) {
 246		phys_addr_t base = __pfn_to_phys(page_to_pfn(page));
 247		phys_addr_t end = base + size;
 248		while (size > 0) {
 249			void *ptr = kmap_atomic(page);
 250			memset(ptr, 0, PAGE_SIZE);
 251			if (coherent_flag != COHERENT)
 252				dmac_flush_range(ptr, ptr + PAGE_SIZE);
 253			kunmap_atomic(ptr);
 254			page++;
 255			size -= PAGE_SIZE;
 256		}
 257		if (coherent_flag != COHERENT)
 258			outer_flush_range(base, end);
 259	} else {
 260		void *ptr = page_address(page);
 261		memset(ptr, 0, size);
 262		if (coherent_flag != COHERENT) {
 263			dmac_flush_range(ptr, ptr + size);
 264			outer_flush_range(__pa(ptr), __pa(ptr) + size);
 265		}
 266	}
 267}
 268
 269/*
 270 * Allocate a DMA buffer for 'dev' of size 'size' using the
 271 * specified gfp mask.  Note that 'size' must be page aligned.
 272 */
 273static struct page *__dma_alloc_buffer(struct device *dev, size_t size,
 274				       gfp_t gfp, int coherent_flag)
 275{
 276	unsigned long order = get_order(size);
 277	struct page *page, *p, *e;
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 278
 279	page = alloc_pages(gfp, order);
 280	if (!page)
 281		return NULL;
 282
 283	/*
 284	 * Now split the huge page and free the excess pages
 285	 */
 286	split_page(page, order);
 287	for (p = page + (size >> PAGE_SHIFT), e = page + (1 << order); p < e; p++)
 288		__free_page(p);
 289
 290	__dma_clear_buffer(page, size, coherent_flag);
 
 
 
 
 
 
 
 291
 292	return page;
 293}
 294
 295/*
 296 * Free a DMA buffer.  'size' must be page aligned.
 297 */
 298static void __dma_free_buffer(struct page *page, size_t size)
 299{
 300	struct page *e = page + (size >> PAGE_SHIFT);
 301
 302	while (page < e) {
 303		__free_page(page);
 304		page++;
 305	}
 306}
 307
 308static void *__alloc_from_contiguous(struct device *dev, size_t size,
 309				     pgprot_t prot, struct page **ret_page,
 310				     const void *caller, bool want_vaddr,
 311				     int coherent_flag, gfp_t gfp);
 312
 313static void *__alloc_remap_buffer(struct device *dev, size_t size, gfp_t gfp,
 314				 pgprot_t prot, struct page **ret_page,
 315				 const void *caller, bool want_vaddr);
 316
 317#define DEFAULT_DMA_COHERENT_POOL_SIZE	SZ_256K
 318static struct gen_pool *atomic_pool __ro_after_init;
 319
 320static size_t atomic_pool_size __initdata = DEFAULT_DMA_COHERENT_POOL_SIZE;
 321
 322static int __init early_coherent_pool(char *p)
 323{
 324	atomic_pool_size = memparse(p, &p);
 325	return 0;
 326}
 327early_param("coherent_pool", early_coherent_pool);
 328
 329/*
 330 * Initialise the coherent pool for atomic allocations.
 331 */
 332static int __init atomic_pool_init(void)
 333{
 334	pgprot_t prot = pgprot_dmacoherent(PAGE_KERNEL);
 335	gfp_t gfp = GFP_KERNEL | GFP_DMA;
 336	struct page *page;
 337	void *ptr;
 338
 339	atomic_pool = gen_pool_create(PAGE_SHIFT, -1);
 340	if (!atomic_pool)
 341		goto out;
 342	/*
 343	 * The atomic pool is only used for non-coherent allocations
 344	 * so we must pass NORMAL for coherent_flag.
 345	 */
 346	if (dev_get_cma_area(NULL))
 347		ptr = __alloc_from_contiguous(NULL, atomic_pool_size, prot,
 348				      &page, atomic_pool_init, true, NORMAL,
 349				      GFP_KERNEL);
 350	else
 351		ptr = __alloc_remap_buffer(NULL, atomic_pool_size, gfp, prot,
 352					   &page, atomic_pool_init, true);
 353	if (ptr) {
 354		int ret;
 355
 356		ret = gen_pool_add_virt(atomic_pool, (unsigned long)ptr,
 357					page_to_phys(page),
 358					atomic_pool_size, -1);
 359		if (ret)
 360			goto destroy_genpool;
 361
 362		gen_pool_set_algo(atomic_pool,
 363				gen_pool_first_fit_order_align,
 364				NULL);
 365		pr_info("DMA: preallocated %zu KiB pool for atomic coherent allocations\n",
 366		       atomic_pool_size / 1024);
 367		return 0;
 368	}
 369
 370destroy_genpool:
 371	gen_pool_destroy(atomic_pool);
 372	atomic_pool = NULL;
 373out:
 374	pr_err("DMA: failed to allocate %zu KiB pool for atomic coherent allocation\n",
 375	       atomic_pool_size / 1024);
 376	return -ENOMEM;
 377}
 378/*
 379 * CMA is activated by core_initcall, so we must be called after it.
 380 */
 381postcore_initcall(atomic_pool_init);
 382
 383struct dma_contig_early_reserve {
 384	phys_addr_t base;
 385	unsigned long size;
 386};
 387
 388static struct dma_contig_early_reserve dma_mmu_remap[MAX_CMA_AREAS] __initdata;
 
 
 389
 390static int dma_mmu_remap_num __initdata;
 
 
 
 
 
 
 
 
 
 
 
 391
 392void __init dma_contiguous_early_fixup(phys_addr_t base, unsigned long size)
 393{
 394	dma_mmu_remap[dma_mmu_remap_num].base = base;
 395	dma_mmu_remap[dma_mmu_remap_num].size = size;
 396	dma_mmu_remap_num++;
 397}
 398
 399void __init dma_contiguous_remap(void)
 400{
 401	int i;
 402	for (i = 0; i < dma_mmu_remap_num; i++) {
 403		phys_addr_t start = dma_mmu_remap[i].base;
 404		phys_addr_t end = start + dma_mmu_remap[i].size;
 405		struct map_desc map;
 406		unsigned long addr;
 407
 408		if (end > arm_lowmem_limit)
 409			end = arm_lowmem_limit;
 410		if (start >= end)
 411			continue;
 412
 413		map.pfn = __phys_to_pfn(start);
 414		map.virtual = __phys_to_virt(start);
 415		map.length = end - start;
 416		map.type = MT_MEMORY_DMA_READY;
 
 
 
 417
 418		/*
 419		 * Clear previous low-memory mapping to ensure that the
 420		 * TLB does not see any conflicting entries, then flush
 421		 * the TLB of the old entries before creating new mappings.
 422		 *
 423		 * This ensures that any speculatively loaded TLB entries
 424		 * (even though they may be rare) can not cause any problems,
 425		 * and ensures that this code is architecturally compliant.
 426		 */
 427		for (addr = __phys_to_virt(start); addr < __phys_to_virt(end);
 428		     addr += PMD_SIZE)
 429			pmd_clear(pmd_off_k(addr));
 430
 431		flush_tlb_kernel_range(__phys_to_virt(start),
 432				       __phys_to_virt(end));
 
 433
 434		iotable_init(&map, 1);
 435	}
 436}
 437
 438static int __dma_update_pte(pte_t *pte, unsigned long addr, void *data)
 439{
 440	struct page *page = virt_to_page(addr);
 441	pgprot_t prot = *(pgprot_t *)data;
 442
 443	set_pte_ext(pte, mk_pte(page, prot), 0);
 444	return 0;
 445}
 446
 447static void __dma_remap(struct page *page, size_t size, pgprot_t prot)
 
 448{
 449	unsigned long start = (unsigned long) page_address(page);
 450	unsigned end = start + size;
 
 451
 452	apply_to_page_range(&init_mm, start, size, __dma_update_pte, &prot);
 453	flush_tlb_kernel_range(start, end);
 454}
 
 
 455
 456static void *__alloc_remap_buffer(struct device *dev, size_t size, gfp_t gfp,
 457				 pgprot_t prot, struct page **ret_page,
 458				 const void *caller, bool want_vaddr)
 459{
 460	struct page *page;
 461	void *ptr = NULL;
 462	/*
 463	 * __alloc_remap_buffer is only called when the device is
 464	 * non-coherent
 
 
 465	 */
 466	page = __dma_alloc_buffer(dev, size, gfp, NORMAL);
 467	if (!page)
 468		return NULL;
 469	if (!want_vaddr)
 470		goto out;
 471
 472	ptr = dma_common_contiguous_remap(page, size, prot, caller);
 473	if (!ptr) {
 474		__dma_free_buffer(page, size);
 475		return NULL;
 476	}
 
 
 
 
 477
 478 out:
 479	*ret_page = page;
 480	return ptr;
 481}
 482
 483static void *__alloc_from_pool(size_t size, struct page **ret_page)
 484{
 485	unsigned long val;
 486	void *ptr = NULL;
 487
 488	if (!atomic_pool) {
 489		WARN(1, "coherent pool not initialised!\n");
 490		return NULL;
 491	}
 
 
 
 
 
 492
 493	val = gen_pool_alloc(atomic_pool, size);
 494	if (val) {
 495		phys_addr_t phys = gen_pool_virt_to_phys(atomic_pool, val);
 496
 497		*ret_page = phys_to_page(phys);
 498		ptr = (void *)val;
 499	}
 500
 501	return ptr;
 502}
 503
 504static bool __in_atomic_pool(void *start, size_t size)
 505{
 506	return gen_pool_has_addr(atomic_pool, (unsigned long)start, size);
 507}
 
 
 
 508
 509static int __free_from_pool(void *start, size_t size)
 510{
 511	if (!__in_atomic_pool(start, size))
 512		return 0;
 513
 514	gen_pool_free(atomic_pool, (unsigned long)start, size);
 515
 516	return 1;
 517}
 518
 519static void *__alloc_from_contiguous(struct device *dev, size_t size,
 520				     pgprot_t prot, struct page **ret_page,
 521				     const void *caller, bool want_vaddr,
 522				     int coherent_flag, gfp_t gfp)
 523{
 524	unsigned long order = get_order(size);
 525	size_t count = size >> PAGE_SHIFT;
 526	struct page *page;
 527	void *ptr = NULL;
 528
 529	page = dma_alloc_from_contiguous(dev, count, order, gfp & __GFP_NOWARN);
 530	if (!page)
 531		return NULL;
 532
 533	__dma_clear_buffer(page, size, coherent_flag);
 534
 535	if (!want_vaddr)
 536		goto out;
 537
 538	if (PageHighMem(page)) {
 539		ptr = dma_common_contiguous_remap(page, size, prot, caller);
 540		if (!ptr) {
 541			dma_release_from_contiguous(dev, page, count);
 542			return NULL;
 543		}
 544	} else {
 545		__dma_remap(page, size, prot);
 546		ptr = page_address(page);
 547	}
 548
 549 out:
 550	*ret_page = page;
 551	return ptr;
 552}
 553
 554static void __free_from_contiguous(struct device *dev, struct page *page,
 555				   void *cpu_addr, size_t size, bool want_vaddr)
 556{
 557	if (want_vaddr) {
 558		if (PageHighMem(page))
 559			dma_common_free_remap(cpu_addr, size);
 560		else
 561			__dma_remap(page, size, PAGE_KERNEL);
 562	}
 563	dma_release_from_contiguous(dev, page, size >> PAGE_SHIFT);
 564}
 565
 566static inline pgprot_t __get_dma_pgprot(unsigned long attrs, pgprot_t prot)
 567{
 568	prot = (attrs & DMA_ATTR_WRITE_COMBINE) ?
 569			pgprot_writecombine(prot) :
 570			pgprot_dmacoherent(prot);
 571	return prot;
 572}
 573
 574static void *__alloc_simple_buffer(struct device *dev, size_t size, gfp_t gfp,
 575				   struct page **ret_page)
 576{
 577	struct page *page;
 578	/* __alloc_simple_buffer is only called when the device is coherent */
 579	page = __dma_alloc_buffer(dev, size, gfp, COHERENT);
 580	if (!page)
 581		return NULL;
 582
 583	*ret_page = page;
 584	return page_address(page);
 585}
 
 586
 587static void *simple_allocator_alloc(struct arm_dma_alloc_args *args,
 588				    struct page **ret_page)
 589{
 590	return __alloc_simple_buffer(args->dev, args->size, args->gfp,
 591				     ret_page);
 592}
 593
 594static void simple_allocator_free(struct arm_dma_free_args *args)
 595{
 596	__dma_free_buffer(args->page, args->size);
 597}
 598
 599static struct arm_dma_allocator simple_allocator = {
 600	.alloc = simple_allocator_alloc,
 601	.free = simple_allocator_free,
 602};
 603
 604static void *cma_allocator_alloc(struct arm_dma_alloc_args *args,
 605				 struct page **ret_page)
 606{
 607	return __alloc_from_contiguous(args->dev, args->size, args->prot,
 608				       ret_page, args->caller,
 609				       args->want_vaddr, args->coherent_flag,
 610				       args->gfp);
 611}
 612
 613static void cma_allocator_free(struct arm_dma_free_args *args)
 614{
 615	__free_from_contiguous(args->dev, args->page, args->cpu_addr,
 616			       args->size, args->want_vaddr);
 617}
 618
 619static struct arm_dma_allocator cma_allocator = {
 620	.alloc = cma_allocator_alloc,
 621	.free = cma_allocator_free,
 622};
 623
 624static void *pool_allocator_alloc(struct arm_dma_alloc_args *args,
 625				  struct page **ret_page)
 626{
 627	return __alloc_from_pool(args->size, ret_page);
 628}
 629
 630static void pool_allocator_free(struct arm_dma_free_args *args)
 631{
 632	__free_from_pool(args->cpu_addr, args->size);
 633}
 634
 635static struct arm_dma_allocator pool_allocator = {
 636	.alloc = pool_allocator_alloc,
 637	.free = pool_allocator_free,
 638};
 639
 640static void *remap_allocator_alloc(struct arm_dma_alloc_args *args,
 641				   struct page **ret_page)
 642{
 643	return __alloc_remap_buffer(args->dev, args->size, args->gfp,
 644				    args->prot, ret_page, args->caller,
 645				    args->want_vaddr);
 646}
 647
 648static void remap_allocator_free(struct arm_dma_free_args *args)
 649{
 650	if (args->want_vaddr)
 651		dma_common_free_remap(args->cpu_addr, args->size);
 652
 653	__dma_free_buffer(args->page, args->size);
 654}
 655
 656static struct arm_dma_allocator remap_allocator = {
 657	.alloc = remap_allocator_alloc,
 658	.free = remap_allocator_free,
 659};
 660
 661static void *__dma_alloc(struct device *dev, size_t size, dma_addr_t *handle,
 662			 gfp_t gfp, pgprot_t prot, bool is_coherent,
 663			 unsigned long attrs, const void *caller)
 664{
 665	u64 mask = min_not_zero(dev->coherent_dma_mask, dev->bus_dma_limit);
 666	struct page *page = NULL;
 667	void *addr;
 668	bool allowblock, cma;
 669	struct arm_dma_buffer *buf;
 670	struct arm_dma_alloc_args args = {
 671		.dev = dev,
 672		.size = PAGE_ALIGN(size),
 673		.gfp = gfp,
 674		.prot = prot,
 675		.caller = caller,
 676		.want_vaddr = ((attrs & DMA_ATTR_NO_KERNEL_MAPPING) == 0),
 677		.coherent_flag = is_coherent ? COHERENT : NORMAL,
 678	};
 679
 680#ifdef CONFIG_DMA_API_DEBUG
 681	u64 limit = (mask + 1) & ~mask;
 682	if (limit && size >= limit) {
 683		dev_warn(dev, "coherent allocation too big (requested %#x mask %#llx)\n",
 684			size, mask);
 685		return NULL;
 686	}
 687#endif
 688
 689	buf = kzalloc(sizeof(*buf),
 690		      gfp & ~(__GFP_DMA | __GFP_DMA32 | __GFP_HIGHMEM));
 691	if (!buf)
 692		return NULL;
 693
 694	if (mask < 0xffffffffULL)
 695		gfp |= GFP_DMA;
 696
 697	/*
 698	 * Following is a work-around (a.k.a. hack) to prevent pages
 699	 * with __GFP_COMP being passed to split_page() which cannot
 700	 * handle them.  The real problem is that this flag probably
 701	 * should be 0 on ARM as it is not supported on this
 702	 * platform; see CONFIG_HUGETLBFS.
 703	 */
 704	gfp &= ~(__GFP_COMP);
 705	args.gfp = gfp;
 706
 707	*handle = DMA_MAPPING_ERROR;
 708	allowblock = gfpflags_allow_blocking(gfp);
 709	cma = allowblock ? dev_get_cma_area(dev) : false;
 710
 711	if (cma)
 712		buf->allocator = &cma_allocator;
 713	else if (is_coherent)
 714		buf->allocator = &simple_allocator;
 715	else if (allowblock)
 716		buf->allocator = &remap_allocator;
 717	else
 718		buf->allocator = &pool_allocator;
 719
 720	addr = buf->allocator->alloc(&args, &page);
 721
 722	if (page) {
 723		unsigned long flags;
 724
 
 725		*handle = pfn_to_dma(dev, page_to_pfn(page));
 726		buf->virt = args.want_vaddr ? addr : page;
 
 727
 728		spin_lock_irqsave(&arm_dma_bufs_lock, flags);
 729		list_add(&buf->list, &arm_dma_bufs);
 730		spin_unlock_irqrestore(&arm_dma_bufs_lock, flags);
 731	} else {
 732		kfree(buf);
 733	}
 734
 735	return args.want_vaddr ? addr : page;
 736}
 737
 738/*
 739 * Allocate DMA-coherent memory space and return both the kernel remapped
 740 * virtual and bus address for that space.
 741 */
 742void *arm_dma_alloc(struct device *dev, size_t size, dma_addr_t *handle,
 743		    gfp_t gfp, unsigned long attrs)
 744{
 745	pgprot_t prot = __get_dma_pgprot(attrs, PAGE_KERNEL);
 
 
 
 746
 747	return __dma_alloc(dev, size, handle, gfp, prot, false,
 748			   attrs, __builtin_return_address(0));
 749}
 
 750
 751static void *arm_coherent_dma_alloc(struct device *dev, size_t size,
 752	dma_addr_t *handle, gfp_t gfp, unsigned long attrs)
 
 
 
 
 753{
 754	return __dma_alloc(dev, size, handle, gfp, PAGE_KERNEL, true,
 755			   attrs, __builtin_return_address(0));
 756}
 
 757
 758static int __arm_dma_mmap(struct device *dev, struct vm_area_struct *vma,
 759		 void *cpu_addr, dma_addr_t dma_addr, size_t size,
 760		 unsigned long attrs)
 761{
 762	int ret = -ENXIO;
 763	unsigned long nr_vma_pages = vma_pages(vma);
 764	unsigned long nr_pages = PAGE_ALIGN(size) >> PAGE_SHIFT;
 765	unsigned long pfn = dma_to_pfn(dev, dma_addr);
 766	unsigned long off = vma->vm_pgoff;
 767
 768	if (dma_mmap_from_dev_coherent(dev, vma, cpu_addr, size, &ret))
 769		return ret;
 770
 771	if (off < nr_pages && nr_vma_pages <= (nr_pages - off)) {
 772		ret = remap_pfn_range(vma, vma->vm_start,
 773				      pfn + off,
 774				      vma->vm_end - vma->vm_start,
 775				      vma->vm_page_prot);
 
 
 
 
 
 
 776	}
 
 777
 778	return ret;
 779}
 780
 781/*
 782 * Create userspace mapping for the DMA-coherent memory.
 783 */
 784static int arm_coherent_dma_mmap(struct device *dev, struct vm_area_struct *vma,
 785		 void *cpu_addr, dma_addr_t dma_addr, size_t size,
 786		 unsigned long attrs)
 787{
 788	return __arm_dma_mmap(dev, vma, cpu_addr, dma_addr, size, attrs);
 
 789}
 
 790
 791int arm_dma_mmap(struct device *dev, struct vm_area_struct *vma,
 792		 void *cpu_addr, dma_addr_t dma_addr, size_t size,
 793		 unsigned long attrs)
 794{
 795	vma->vm_page_prot = __get_dma_pgprot(attrs, vma->vm_page_prot);
 796	return __arm_dma_mmap(dev, vma, cpu_addr, dma_addr, size, attrs);
 797}
 
 798
 799/*
 800 * Free a buffer as defined by the above mapping.
 
 801 */
 802static void __arm_dma_free(struct device *dev, size_t size, void *cpu_addr,
 803			   dma_addr_t handle, unsigned long attrs,
 804			   bool is_coherent)
 805{
 806	struct page *page = pfn_to_page(dma_to_pfn(dev, handle));
 807	struct arm_dma_buffer *buf;
 808	struct arm_dma_free_args args = {
 809		.dev = dev,
 810		.size = PAGE_ALIGN(size),
 811		.cpu_addr = cpu_addr,
 812		.page = page,
 813		.want_vaddr = ((attrs & DMA_ATTR_NO_KERNEL_MAPPING) == 0),
 814	};
 815
 816	buf = arm_dma_buffer_find(cpu_addr);
 817	if (WARN(!buf, "Freeing invalid buffer %p\n", cpu_addr))
 818		return;
 819
 820	buf->allocator->free(&args);
 821	kfree(buf);
 
 
 
 
 822}
 
 823
 824void arm_dma_free(struct device *dev, size_t size, void *cpu_addr,
 825		  dma_addr_t handle, unsigned long attrs)
 
 
 
 
 
 
 826{
 827	__arm_dma_free(dev, size, cpu_addr, handle, attrs, false);
 828}
 
 
 
 829
 830static void arm_coherent_dma_free(struct device *dev, size_t size, void *cpu_addr,
 831				  dma_addr_t handle, unsigned long attrs)
 832{
 833	__arm_dma_free(dev, size, cpu_addr, handle, attrs, true);
 
 
 
 834}
 
 835
 836int arm_dma_get_sgtable(struct device *dev, struct sg_table *sgt,
 837		 void *cpu_addr, dma_addr_t handle, size_t size,
 838		 unsigned long attrs)
 839{
 840	unsigned long pfn = dma_to_pfn(dev, handle);
 841	struct page *page;
 842	int ret;
 843
 844	/* If the PFN is not valid, we do not have a struct page */
 845	if (!pfn_valid(pfn))
 846		return -ENXIO;
 
 
 
 847
 848	page = pfn_to_page(pfn);
 849
 850	ret = sg_alloc_table(sgt, 1, GFP_KERNEL);
 851	if (unlikely(ret))
 852		return ret;
 853
 854	sg_set_page(sgt->sgl, page, PAGE_ALIGN(size), 0);
 855	return 0;
 856}
 
 857
 858static void dma_cache_maint_page(struct page *page, unsigned long offset,
 859	size_t size, enum dma_data_direction dir,
 860	void (*op)(const void *, size_t, int))
 861{
 862	unsigned long pfn;
 863	size_t left = size;
 864
 865	pfn = page_to_pfn(page) + offset / PAGE_SIZE;
 866	offset %= PAGE_SIZE;
 867
 868	/*
 869	 * A single sg entry may refer to multiple physically contiguous
 870	 * pages.  But we still need to process highmem pages individually.
 871	 * If highmem is not configured then the bulk of this loop gets
 872	 * optimized out.
 873	 */
 
 874	do {
 875		size_t len = left;
 876		void *vaddr;
 877
 878		page = pfn_to_page(pfn);
 879
 880		if (PageHighMem(page)) {
 881			if (len + offset > PAGE_SIZE)
 
 
 
 
 882				len = PAGE_SIZE - offset;
 883
 884			if (cache_is_vipt_nonaliasing()) {
 
 
 
 
 
 
 885				vaddr = kmap_atomic(page);
 886				op(vaddr + offset, len, dir);
 887				kunmap_atomic(vaddr);
 888			} else {
 889				vaddr = kmap_high_get(page);
 890				if (vaddr) {
 891					op(vaddr + offset, len, dir);
 892					kunmap_high(page);
 893				}
 894			}
 895		} else {
 896			vaddr = page_address(page) + offset;
 897			op(vaddr, len, dir);
 898		}
 899		offset = 0;
 900		pfn++;
 901		left -= len;
 902	} while (left);
 903}
 904
 905/*
 906 * Make an area consistent for devices.
 907 * Note: Drivers should NOT use this function directly, as it will break
 908 * platforms with CONFIG_DMABOUNCE.
 909 * Use the driver DMA support - see dma-mapping.h (dma_sync_*)
 910 */
 911static void __dma_page_cpu_to_dev(struct page *page, unsigned long off,
 912	size_t size, enum dma_data_direction dir)
 913{
 914	phys_addr_t paddr;
 915
 916	dma_cache_maint_page(page, off, size, dir, dmac_map_area);
 917
 918	paddr = page_to_phys(page) + off;
 919	if (dir == DMA_FROM_DEVICE) {
 920		outer_inv_range(paddr, paddr + size);
 921	} else {
 922		outer_clean_range(paddr, paddr + size);
 923	}
 924	/* FIXME: non-speculating: flush on bidirectional mappings? */
 925}
 
 926
 927static void __dma_page_dev_to_cpu(struct page *page, unsigned long off,
 928	size_t size, enum dma_data_direction dir)
 929{
 930	phys_addr_t paddr = page_to_phys(page) + off;
 931
 932	/* FIXME: non-speculating: not required */
 933	/* in any case, don't bother invalidating if DMA to device */
 934	if (dir != DMA_TO_DEVICE) {
 935		outer_inv_range(paddr, paddr + size);
 936
 937		dma_cache_maint_page(page, off, size, dir, dmac_unmap_area);
 938	}
 939
 940	/*
 941	 * Mark the D-cache clean for these pages to avoid extra flushing.
 942	 */
 943	if (dir != DMA_TO_DEVICE && size >= PAGE_SIZE) {
 944		unsigned long pfn;
 945		size_t left = size;
 946
 947		pfn = page_to_pfn(page) + off / PAGE_SIZE;
 948		off %= PAGE_SIZE;
 949		if (off) {
 950			pfn++;
 951			left -= PAGE_SIZE - off;
 952		}
 953		while (left >= PAGE_SIZE) {
 954			page = pfn_to_page(pfn++);
 955			set_bit(PG_dcache_clean, &page->flags);
 956			left -= PAGE_SIZE;
 957		}
 958	}
 959}
 
 960
 961/**
 962 * arm_dma_map_sg - map a set of SG buffers for streaming mode DMA
 963 * @dev: valid struct device pointer, or NULL for ISA and EISA-like devices
 964 * @sg: list of buffers
 965 * @nents: number of buffers to map
 966 * @dir: DMA transfer direction
 967 *
 968 * Map a set of buffers described by scatterlist in streaming mode for DMA.
 969 * This is the scatter-gather version of the dma_map_single interface.
 970 * Here the scatter gather list elements are each tagged with the
 971 * appropriate dma address and length.  They are obtained via
 972 * sg_dma_{address,length}.
 973 *
 974 * Device ownership issues as mentioned for dma_map_single are the same
 975 * here.
 976 */
 977int arm_dma_map_sg(struct device *dev, struct scatterlist *sg, int nents,
 978		enum dma_data_direction dir, unsigned long attrs)
 979{
 980	const struct dma_map_ops *ops = get_dma_ops(dev);
 981	struct scatterlist *s;
 982	int i, j;
 983
 
 
 984	for_each_sg(sg, s, nents, i) {
 985#ifdef CONFIG_NEED_SG_DMA_LENGTH
 986		s->dma_length = s->length;
 987#endif
 988		s->dma_address = ops->map_page(dev, sg_page(s), s->offset,
 989						s->length, dir, attrs);
 990		if (dma_mapping_error(dev, s->dma_address))
 991			goto bad_mapping;
 992	}
 
 993	return nents;
 994
 995 bad_mapping:
 996	for_each_sg(sg, s, i, j)
 997		ops->unmap_page(dev, sg_dma_address(s), sg_dma_len(s), dir, attrs);
 998	return 0;
 999}
 
1000
1001/**
1002 * arm_dma_unmap_sg - unmap a set of SG buffers mapped by dma_map_sg
1003 * @dev: valid struct device pointer, or NULL for ISA and EISA-like devices
1004 * @sg: list of buffers
1005 * @nents: number of buffers to unmap (same as was passed to dma_map_sg)
1006 * @dir: DMA transfer direction (same as was passed to dma_map_sg)
1007 *
1008 * Unmap a set of streaming mode DMA translations.  Again, CPU access
1009 * rules concerning calls here are the same as for dma_unmap_single().
1010 */
1011void arm_dma_unmap_sg(struct device *dev, struct scatterlist *sg, int nents,
1012		enum dma_data_direction dir, unsigned long attrs)
1013{
1014	const struct dma_map_ops *ops = get_dma_ops(dev);
1015	struct scatterlist *s;
1016
1017	int i;
1018
1019	for_each_sg(sg, s, nents, i)
1020		ops->unmap_page(dev, sg_dma_address(s), sg_dma_len(s), dir, attrs);
1021}
1022
1023/**
1024 * arm_dma_sync_sg_for_cpu
1025 * @dev: valid struct device pointer, or NULL for ISA and EISA-like devices
1026 * @sg: list of buffers
1027 * @nents: number of buffers to map (returned from dma_map_sg)
1028 * @dir: DMA transfer direction (same as was passed to dma_map_sg)
1029 */
1030void arm_dma_sync_sg_for_cpu(struct device *dev, struct scatterlist *sg,
1031			int nents, enum dma_data_direction dir)
1032{
1033	const struct dma_map_ops *ops = get_dma_ops(dev);
1034	struct scatterlist *s;
1035	int i;
1036
1037	for_each_sg(sg, s, nents, i)
1038		ops->sync_single_for_cpu(dev, sg_dma_address(s), s->length,
1039					 dir);
1040}
 
1041
1042/**
1043 * arm_dma_sync_sg_for_device
1044 * @dev: valid struct device pointer, or NULL for ISA and EISA-like devices
1045 * @sg: list of buffers
1046 * @nents: number of buffers to map (returned from dma_map_sg)
1047 * @dir: DMA transfer direction (same as was passed to dma_map_sg)
1048 */
1049void arm_dma_sync_sg_for_device(struct device *dev, struct scatterlist *sg,
1050			int nents, enum dma_data_direction dir)
1051{
1052	const struct dma_map_ops *ops = get_dma_ops(dev);
1053	struct scatterlist *s;
1054	int i;
1055
1056	for_each_sg(sg, s, nents, i)
1057		ops->sync_single_for_device(dev, sg_dma_address(s), s->length,
1058					    dir);
1059}
1060
1061static const struct dma_map_ops *arm_get_dma_map_ops(bool coherent)
1062{
1063	/*
1064	 * When CONFIG_ARM_LPAE is set, physical address can extend above
1065	 * 32-bits, which then can't be addressed by devices that only support
1066	 * 32-bit DMA.
1067	 * Use the generic dma-direct / swiotlb ops code in that case, as that
1068	 * handles bounce buffering for us.
1069	 */
1070	if (IS_ENABLED(CONFIG_ARM_LPAE))
1071		return NULL;
1072	return coherent ? &arm_coherent_dma_ops : &arm_dma_ops;
1073}
1074
1075#ifdef CONFIG_ARM_DMA_USE_IOMMU
1076
1077static int __dma_info_to_prot(enum dma_data_direction dir, unsigned long attrs)
1078{
1079	int prot = 0;
1080
1081	if (attrs & DMA_ATTR_PRIVILEGED)
1082		prot |= IOMMU_PRIV;
1083
1084	switch (dir) {
1085	case DMA_BIDIRECTIONAL:
1086		return prot | IOMMU_READ | IOMMU_WRITE;
1087	case DMA_TO_DEVICE:
1088		return prot | IOMMU_READ;
1089	case DMA_FROM_DEVICE:
1090		return prot | IOMMU_WRITE;
1091	default:
1092		return prot;
1093	}
1094}
1095
1096/* IOMMU */
1097
1098static int extend_iommu_mapping(struct dma_iommu_mapping *mapping);
1099
1100static inline dma_addr_t __alloc_iova(struct dma_iommu_mapping *mapping,
1101				      size_t size)
1102{
1103	unsigned int order = get_order(size);
1104	unsigned int align = 0;
1105	unsigned int count, start;
1106	size_t mapping_size = mapping->bits << PAGE_SHIFT;
1107	unsigned long flags;
1108	dma_addr_t iova;
1109	int i;
1110
1111	if (order > CONFIG_ARM_DMA_IOMMU_ALIGNMENT)
1112		order = CONFIG_ARM_DMA_IOMMU_ALIGNMENT;
1113
1114	count = PAGE_ALIGN(size) >> PAGE_SHIFT;
1115	align = (1 << order) - 1;
1116
1117	spin_lock_irqsave(&mapping->lock, flags);
1118	for (i = 0; i < mapping->nr_bitmaps; i++) {
1119		start = bitmap_find_next_zero_area(mapping->bitmaps[i],
1120				mapping->bits, 0, count, align);
1121
1122		if (start > mapping->bits)
1123			continue;
1124
1125		bitmap_set(mapping->bitmaps[i], start, count);
1126		break;
1127	}
1128
1129	/*
1130	 * No unused range found. Try to extend the existing mapping
1131	 * and perform a second attempt to reserve an IO virtual
1132	 * address range of size bytes.
1133	 */
1134	if (i == mapping->nr_bitmaps) {
1135		if (extend_iommu_mapping(mapping)) {
1136			spin_unlock_irqrestore(&mapping->lock, flags);
1137			return DMA_MAPPING_ERROR;
1138		}
1139
1140		start = bitmap_find_next_zero_area(mapping->bitmaps[i],
1141				mapping->bits, 0, count, align);
1142
1143		if (start > mapping->bits) {
1144			spin_unlock_irqrestore(&mapping->lock, flags);
1145			return DMA_MAPPING_ERROR;
1146		}
1147
1148		bitmap_set(mapping->bitmaps[i], start, count);
1149	}
1150	spin_unlock_irqrestore(&mapping->lock, flags);
1151
1152	iova = mapping->base + (mapping_size * i);
1153	iova += start << PAGE_SHIFT;
1154
1155	return iova;
1156}
1157
1158static inline void __free_iova(struct dma_iommu_mapping *mapping,
1159			       dma_addr_t addr, size_t size)
1160{
1161	unsigned int start, count;
1162	size_t mapping_size = mapping->bits << PAGE_SHIFT;
1163	unsigned long flags;
1164	dma_addr_t bitmap_base;
1165	u32 bitmap_index;
1166
1167	if (!size)
1168		return;
1169
1170	bitmap_index = (u32) (addr - mapping->base) / (u32) mapping_size;
1171	BUG_ON(addr < mapping->base || bitmap_index > mapping->extensions);
1172
1173	bitmap_base = mapping->base + mapping_size * bitmap_index;
1174
1175	start = (addr - bitmap_base) >>	PAGE_SHIFT;
1176
1177	if (addr + size > bitmap_base + mapping_size) {
1178		/*
1179		 * The address range to be freed reaches into the iova
1180		 * range of the next bitmap. This should not happen as
1181		 * we don't allow this in __alloc_iova (at the
1182		 * moment).
1183		 */
1184		BUG();
1185	} else
1186		count = size >> PAGE_SHIFT;
1187
1188	spin_lock_irqsave(&mapping->lock, flags);
1189	bitmap_clear(mapping->bitmaps[bitmap_index], start, count);
1190	spin_unlock_irqrestore(&mapping->lock, flags);
1191}
1192
1193/* We'll try 2M, 1M, 64K, and finally 4K; array must end with 0! */
1194static const int iommu_order_array[] = { 9, 8, 4, 0 };
1195
1196static struct page **__iommu_alloc_buffer(struct device *dev, size_t size,
1197					  gfp_t gfp, unsigned long attrs,
1198					  int coherent_flag)
1199{
1200	struct page **pages;
1201	int count = size >> PAGE_SHIFT;
1202	int array_size = count * sizeof(struct page *);
1203	int i = 0;
1204	int order_idx = 0;
1205
1206	if (array_size <= PAGE_SIZE)
1207		pages = kzalloc(array_size, GFP_KERNEL);
1208	else
1209		pages = vzalloc(array_size);
1210	if (!pages)
1211		return NULL;
1212
1213	if (attrs & DMA_ATTR_FORCE_CONTIGUOUS)
1214	{
1215		unsigned long order = get_order(size);
1216		struct page *page;
1217
1218		page = dma_alloc_from_contiguous(dev, count, order,
1219						 gfp & __GFP_NOWARN);
1220		if (!page)
1221			goto error;
1222
1223		__dma_clear_buffer(page, size, coherent_flag);
1224
1225		for (i = 0; i < count; i++)
1226			pages[i] = page + i;
1227
1228		return pages;
1229	}
1230
1231	/* Go straight to 4K chunks if caller says it's OK. */
1232	if (attrs & DMA_ATTR_ALLOC_SINGLE_PAGES)
1233		order_idx = ARRAY_SIZE(iommu_order_array) - 1;
1234
1235	/*
1236	 * IOMMU can map any pages, so himem can also be used here
1237	 */
1238	gfp |= __GFP_NOWARN | __GFP_HIGHMEM;
1239
1240	while (count) {
1241		int j, order;
1242
1243		order = iommu_order_array[order_idx];
1244
1245		/* Drop down when we get small */
1246		if (__fls(count) < order) {
1247			order_idx++;
1248			continue;
1249		}
1250
1251		if (order) {
1252			/* See if it's easy to allocate a high-order chunk */
1253			pages[i] = alloc_pages(gfp | __GFP_NORETRY, order);
1254
1255			/* Go down a notch at first sign of pressure */
1256			if (!pages[i]) {
1257				order_idx++;
1258				continue;
1259			}
1260		} else {
1261			pages[i] = alloc_pages(gfp, 0);
1262			if (!pages[i])
1263				goto error;
1264		}
1265
1266		if (order) {
1267			split_page(pages[i], order);
1268			j = 1 << order;
1269			while (--j)
1270				pages[i + j] = pages[i] + j;
1271		}
1272
1273		__dma_clear_buffer(pages[i], PAGE_SIZE << order, coherent_flag);
1274		i += 1 << order;
1275		count -= 1 << order;
1276	}
1277
1278	return pages;
1279error:
1280	while (i--)
1281		if (pages[i])
1282			__free_pages(pages[i], 0);
1283	kvfree(pages);
1284	return NULL;
1285}
1286
1287static int __iommu_free_buffer(struct device *dev, struct page **pages,
1288			       size_t size, unsigned long attrs)
1289{
1290	int count = size >> PAGE_SHIFT;
1291	int i;
1292
1293	if (attrs & DMA_ATTR_FORCE_CONTIGUOUS) {
1294		dma_release_from_contiguous(dev, pages[0], count);
1295	} else {
1296		for (i = 0; i < count; i++)
1297			if (pages[i])
1298				__free_pages(pages[i], 0);
1299	}
1300
1301	kvfree(pages);
1302	return 0;
1303}
1304
1305/*
1306 * Create a mapping in device IO address space for specified pages
1307 */
1308static dma_addr_t
1309__iommu_create_mapping(struct device *dev, struct page **pages, size_t size,
1310		       unsigned long attrs)
1311{
1312	struct dma_iommu_mapping *mapping = to_dma_iommu_mapping(dev);
1313	unsigned int count = PAGE_ALIGN(size) >> PAGE_SHIFT;
1314	dma_addr_t dma_addr, iova;
1315	int i;
1316
1317	dma_addr = __alloc_iova(mapping, size);
1318	if (dma_addr == DMA_MAPPING_ERROR)
1319		return dma_addr;
1320
1321	iova = dma_addr;
1322	for (i = 0; i < count; ) {
1323		int ret;
1324
1325		unsigned int next_pfn = page_to_pfn(pages[i]) + 1;
1326		phys_addr_t phys = page_to_phys(pages[i]);
1327		unsigned int len, j;
1328
1329		for (j = i + 1; j < count; j++, next_pfn++)
1330			if (page_to_pfn(pages[j]) != next_pfn)
1331				break;
1332
1333		len = (j - i) << PAGE_SHIFT;
1334		ret = iommu_map(mapping->domain, iova, phys, len,
1335				__dma_info_to_prot(DMA_BIDIRECTIONAL, attrs));
1336		if (ret < 0)
1337			goto fail;
1338		iova += len;
1339		i = j;
1340	}
1341	return dma_addr;
1342fail:
1343	iommu_unmap(mapping->domain, dma_addr, iova-dma_addr);
1344	__free_iova(mapping, dma_addr, size);
1345	return DMA_MAPPING_ERROR;
1346}
1347
1348static int __iommu_remove_mapping(struct device *dev, dma_addr_t iova, size_t size)
1349{
1350	struct dma_iommu_mapping *mapping = to_dma_iommu_mapping(dev);
1351
1352	/*
1353	 * add optional in-page offset from iova to size and align
1354	 * result to page size
1355	 */
1356	size = PAGE_ALIGN((iova & ~PAGE_MASK) + size);
1357	iova &= PAGE_MASK;
1358
1359	iommu_unmap(mapping->domain, iova, size);
1360	__free_iova(mapping, iova, size);
1361	return 0;
1362}
1363
1364static struct page **__atomic_get_pages(void *addr)
1365{
1366	struct page *page;
1367	phys_addr_t phys;
1368
1369	phys = gen_pool_virt_to_phys(atomic_pool, (unsigned long)addr);
1370	page = phys_to_page(phys);
1371
1372	return (struct page **)page;
1373}
1374
1375static struct page **__iommu_get_pages(void *cpu_addr, unsigned long attrs)
1376{
1377	if (__in_atomic_pool(cpu_addr, PAGE_SIZE))
1378		return __atomic_get_pages(cpu_addr);
1379
1380	if (attrs & DMA_ATTR_NO_KERNEL_MAPPING)
1381		return cpu_addr;
1382
1383	return dma_common_find_pages(cpu_addr);
1384}
1385
1386static void *__iommu_alloc_simple(struct device *dev, size_t size, gfp_t gfp,
1387				  dma_addr_t *handle, int coherent_flag,
1388				  unsigned long attrs)
1389{
1390	struct page *page;
1391	void *addr;
1392
1393	if (coherent_flag  == COHERENT)
1394		addr = __alloc_simple_buffer(dev, size, gfp, &page);
1395	else
1396		addr = __alloc_from_pool(size, &page);
1397	if (!addr)
1398		return NULL;
1399
1400	*handle = __iommu_create_mapping(dev, &page, size, attrs);
1401	if (*handle == DMA_MAPPING_ERROR)
1402		goto err_mapping;
1403
1404	return addr;
1405
1406err_mapping:
1407	__free_from_pool(addr, size);
1408	return NULL;
1409}
1410
1411static void __iommu_free_atomic(struct device *dev, void *cpu_addr,
1412			dma_addr_t handle, size_t size, int coherent_flag)
1413{
1414	__iommu_remove_mapping(dev, handle, size);
1415	if (coherent_flag == COHERENT)
1416		__dma_free_buffer(virt_to_page(cpu_addr), size);
1417	else
1418		__free_from_pool(cpu_addr, size);
1419}
1420
1421static void *__arm_iommu_alloc_attrs(struct device *dev, size_t size,
1422	    dma_addr_t *handle, gfp_t gfp, unsigned long attrs,
1423	    int coherent_flag)
1424{
1425	pgprot_t prot = __get_dma_pgprot(attrs, PAGE_KERNEL);
1426	struct page **pages;
1427	void *addr = NULL;
1428
1429	*handle = DMA_MAPPING_ERROR;
1430	size = PAGE_ALIGN(size);
1431
1432	if (coherent_flag  == COHERENT || !gfpflags_allow_blocking(gfp))
1433		return __iommu_alloc_simple(dev, size, gfp, handle,
1434					    coherent_flag, attrs);
1435
1436	/*
1437	 * Following is a work-around (a.k.a. hack) to prevent pages
1438	 * with __GFP_COMP being passed to split_page() which cannot
1439	 * handle them.  The real problem is that this flag probably
1440	 * should be 0 on ARM as it is not supported on this
1441	 * platform; see CONFIG_HUGETLBFS.
1442	 */
1443	gfp &= ~(__GFP_COMP);
1444
1445	pages = __iommu_alloc_buffer(dev, size, gfp, attrs, coherent_flag);
1446	if (!pages)
1447		return NULL;
1448
1449	*handle = __iommu_create_mapping(dev, pages, size, attrs);
1450	if (*handle == DMA_MAPPING_ERROR)
1451		goto err_buffer;
1452
1453	if (attrs & DMA_ATTR_NO_KERNEL_MAPPING)
1454		return pages;
1455
1456	addr = dma_common_pages_remap(pages, size, prot,
1457				   __builtin_return_address(0));
1458	if (!addr)
1459		goto err_mapping;
1460
1461	return addr;
1462
1463err_mapping:
1464	__iommu_remove_mapping(dev, *handle, size);
1465err_buffer:
1466	__iommu_free_buffer(dev, pages, size, attrs);
1467	return NULL;
1468}
1469
1470static void *arm_iommu_alloc_attrs(struct device *dev, size_t size,
1471	    dma_addr_t *handle, gfp_t gfp, unsigned long attrs)
1472{
1473	return __arm_iommu_alloc_attrs(dev, size, handle, gfp, attrs, NORMAL);
1474}
1475
1476static void *arm_coherent_iommu_alloc_attrs(struct device *dev, size_t size,
1477		    dma_addr_t *handle, gfp_t gfp, unsigned long attrs)
1478{
1479	return __arm_iommu_alloc_attrs(dev, size, handle, gfp, attrs, COHERENT);
1480}
1481
1482static int __arm_iommu_mmap_attrs(struct device *dev, struct vm_area_struct *vma,
1483		    void *cpu_addr, dma_addr_t dma_addr, size_t size,
1484		    unsigned long attrs)
1485{
1486	struct page **pages = __iommu_get_pages(cpu_addr, attrs);
1487	unsigned long nr_pages = PAGE_ALIGN(size) >> PAGE_SHIFT;
1488	int err;
1489
1490	if (!pages)
1491		return -ENXIO;
1492
1493	if (vma->vm_pgoff >= nr_pages)
1494		return -ENXIO;
1495
1496	err = vm_map_pages(vma, pages, nr_pages);
1497	if (err)
1498		pr_err("Remapping memory failed: %d\n", err);
1499
1500	return err;
1501}
1502static int arm_iommu_mmap_attrs(struct device *dev,
1503		struct vm_area_struct *vma, void *cpu_addr,
1504		dma_addr_t dma_addr, size_t size, unsigned long attrs)
1505{
1506	vma->vm_page_prot = __get_dma_pgprot(attrs, vma->vm_page_prot);
1507
1508	return __arm_iommu_mmap_attrs(dev, vma, cpu_addr, dma_addr, size, attrs);
1509}
1510
1511static int arm_coherent_iommu_mmap_attrs(struct device *dev,
1512		struct vm_area_struct *vma, void *cpu_addr,
1513		dma_addr_t dma_addr, size_t size, unsigned long attrs)
1514{
1515	return __arm_iommu_mmap_attrs(dev, vma, cpu_addr, dma_addr, size, attrs);
1516}
1517
1518/*
1519 * free a page as defined by the above mapping.
1520 * Must not be called with IRQs disabled.
1521 */
1522static void __arm_iommu_free_attrs(struct device *dev, size_t size, void *cpu_addr,
1523	dma_addr_t handle, unsigned long attrs, int coherent_flag)
1524{
1525	struct page **pages;
1526	size = PAGE_ALIGN(size);
1527
1528	if (coherent_flag == COHERENT || __in_atomic_pool(cpu_addr, size)) {
1529		__iommu_free_atomic(dev, cpu_addr, handle, size, coherent_flag);
1530		return;
1531	}
1532
1533	pages = __iommu_get_pages(cpu_addr, attrs);
1534	if (!pages) {
1535		WARN(1, "trying to free invalid coherent area: %p\n", cpu_addr);
1536		return;
1537	}
1538
1539	if ((attrs & DMA_ATTR_NO_KERNEL_MAPPING) == 0)
1540		dma_common_free_remap(cpu_addr, size);
1541
1542	__iommu_remove_mapping(dev, handle, size);
1543	__iommu_free_buffer(dev, pages, size, attrs);
1544}
1545
1546static void arm_iommu_free_attrs(struct device *dev, size_t size,
1547				 void *cpu_addr, dma_addr_t handle,
1548				 unsigned long attrs)
1549{
1550	__arm_iommu_free_attrs(dev, size, cpu_addr, handle, attrs, NORMAL);
1551}
1552
1553static void arm_coherent_iommu_free_attrs(struct device *dev, size_t size,
1554		    void *cpu_addr, dma_addr_t handle, unsigned long attrs)
1555{
1556	__arm_iommu_free_attrs(dev, size, cpu_addr, handle, attrs, COHERENT);
1557}
1558
1559static int arm_iommu_get_sgtable(struct device *dev, struct sg_table *sgt,
1560				 void *cpu_addr, dma_addr_t dma_addr,
1561				 size_t size, unsigned long attrs)
1562{
1563	unsigned int count = PAGE_ALIGN(size) >> PAGE_SHIFT;
1564	struct page **pages = __iommu_get_pages(cpu_addr, attrs);
1565
1566	if (!pages)
1567		return -ENXIO;
1568
1569	return sg_alloc_table_from_pages(sgt, pages, count, 0, size,
1570					 GFP_KERNEL);
1571}
1572
1573/*
1574 * Map a part of the scatter-gather list into contiguous io address space
1575 */
1576static int __map_sg_chunk(struct device *dev, struct scatterlist *sg,
1577			  size_t size, dma_addr_t *handle,
1578			  enum dma_data_direction dir, unsigned long attrs,
1579			  bool is_coherent)
1580{
1581	struct dma_iommu_mapping *mapping = to_dma_iommu_mapping(dev);
1582	dma_addr_t iova, iova_base;
1583	int ret = 0;
1584	unsigned int count;
1585	struct scatterlist *s;
1586	int prot;
1587
1588	size = PAGE_ALIGN(size);
1589	*handle = DMA_MAPPING_ERROR;
1590
1591	iova_base = iova = __alloc_iova(mapping, size);
1592	if (iova == DMA_MAPPING_ERROR)
1593		return -ENOMEM;
1594
1595	for (count = 0, s = sg; count < (size >> PAGE_SHIFT); s = sg_next(s)) {
1596		phys_addr_t phys = page_to_phys(sg_page(s));
1597		unsigned int len = PAGE_ALIGN(s->offset + s->length);
1598
1599		if (!is_coherent && (attrs & DMA_ATTR_SKIP_CPU_SYNC) == 0)
1600			__dma_page_cpu_to_dev(sg_page(s), s->offset, s->length, dir);
1601
1602		prot = __dma_info_to_prot(dir, attrs);
1603
1604		ret = iommu_map(mapping->domain, iova, phys, len, prot);
1605		if (ret < 0)
1606			goto fail;
1607		count += len >> PAGE_SHIFT;
1608		iova += len;
1609	}
1610	*handle = iova_base;
1611
1612	return 0;
1613fail:
1614	iommu_unmap(mapping->domain, iova_base, count * PAGE_SIZE);
1615	__free_iova(mapping, iova_base, size);
1616	return ret;
1617}
1618
1619static int __iommu_map_sg(struct device *dev, struct scatterlist *sg, int nents,
1620		     enum dma_data_direction dir, unsigned long attrs,
1621		     bool is_coherent)
1622{
1623	struct scatterlist *s = sg, *dma = sg, *start = sg;
1624	int i, count = 0;
1625	unsigned int offset = s->offset;
1626	unsigned int size = s->offset + s->length;
1627	unsigned int max = dma_get_max_seg_size(dev);
1628
1629	for (i = 1; i < nents; i++) {
1630		s = sg_next(s);
1631
1632		s->dma_address = DMA_MAPPING_ERROR;
1633		s->dma_length = 0;
1634
1635		if (s->offset || (size & ~PAGE_MASK) || size + s->length > max) {
1636			if (__map_sg_chunk(dev, start, size, &dma->dma_address,
1637			    dir, attrs, is_coherent) < 0)
1638				goto bad_mapping;
1639
1640			dma->dma_address += offset;
1641			dma->dma_length = size - offset;
1642
1643			size = offset = s->offset;
1644			start = s;
1645			dma = sg_next(dma);
1646			count += 1;
1647		}
1648		size += s->length;
1649	}
1650	if (__map_sg_chunk(dev, start, size, &dma->dma_address, dir, attrs,
1651		is_coherent) < 0)
1652		goto bad_mapping;
1653
1654	dma->dma_address += offset;
1655	dma->dma_length = size - offset;
1656
1657	return count+1;
1658
1659bad_mapping:
1660	for_each_sg(sg, s, count, i)
1661		__iommu_remove_mapping(dev, sg_dma_address(s), sg_dma_len(s));
1662	return 0;
1663}
 
1664
1665/**
1666 * arm_coherent_iommu_map_sg - map a set of SG buffers for streaming mode DMA
1667 * @dev: valid struct device pointer
1668 * @sg: list of buffers
1669 * @nents: number of buffers to map
1670 * @dir: DMA transfer direction
1671 *
1672 * Map a set of i/o coherent buffers described by scatterlist in streaming
1673 * mode for DMA. The scatter gather list elements are merged together (if
1674 * possible) and tagged with the appropriate dma address and length. They are
1675 * obtained via sg_dma_{address,length}.
1676 */
1677static int arm_coherent_iommu_map_sg(struct device *dev, struct scatterlist *sg,
1678		int nents, enum dma_data_direction dir, unsigned long attrs)
1679{
1680	return __iommu_map_sg(dev, sg, nents, dir, attrs, true);
1681}
1682
1683/**
1684 * arm_iommu_map_sg - map a set of SG buffers for streaming mode DMA
1685 * @dev: valid struct device pointer
1686 * @sg: list of buffers
1687 * @nents: number of buffers to map
1688 * @dir: DMA transfer direction
1689 *
1690 * Map a set of buffers described by scatterlist in streaming mode for DMA.
1691 * The scatter gather list elements are merged together (if possible) and
1692 * tagged with the appropriate dma address and length. They are obtained via
1693 * sg_dma_{address,length}.
1694 */
1695static int arm_iommu_map_sg(struct device *dev, struct scatterlist *sg,
1696		int nents, enum dma_data_direction dir, unsigned long attrs)
1697{
1698	return __iommu_map_sg(dev, sg, nents, dir, attrs, false);
1699}
1700
1701static void __iommu_unmap_sg(struct device *dev, struct scatterlist *sg,
1702		int nents, enum dma_data_direction dir,
1703		unsigned long attrs, bool is_coherent)
1704{
1705	struct scatterlist *s;
1706	int i;
1707
1708	for_each_sg(sg, s, nents, i) {
1709		if (sg_dma_len(s))
1710			__iommu_remove_mapping(dev, sg_dma_address(s),
1711					       sg_dma_len(s));
1712		if (!is_coherent && (attrs & DMA_ATTR_SKIP_CPU_SYNC) == 0)
1713			__dma_page_dev_to_cpu(sg_page(s), s->offset,
1714					      s->length, dir);
1715	}
1716}
1717
1718/**
1719 * arm_coherent_iommu_unmap_sg - unmap a set of SG buffers mapped by dma_map_sg
1720 * @dev: valid struct device pointer
1721 * @sg: list of buffers
1722 * @nents: number of buffers to unmap (same as was passed to dma_map_sg)
1723 * @dir: DMA transfer direction (same as was passed to dma_map_sg)
1724 *
1725 * Unmap a set of streaming mode DMA translations.  Again, CPU access
1726 * rules concerning calls here are the same as for dma_unmap_single().
1727 */
1728static void arm_coherent_iommu_unmap_sg(struct device *dev,
1729		struct scatterlist *sg, int nents, enum dma_data_direction dir,
1730		unsigned long attrs)
1731{
1732	__iommu_unmap_sg(dev, sg, nents, dir, attrs, true);
1733}
1734
1735/**
1736 * arm_iommu_unmap_sg - unmap a set of SG buffers mapped by dma_map_sg
1737 * @dev: valid struct device pointer
1738 * @sg: list of buffers
1739 * @nents: number of buffers to unmap (same as was passed to dma_map_sg)
1740 * @dir: DMA transfer direction (same as was passed to dma_map_sg)
1741 *
1742 * Unmap a set of streaming mode DMA translations.  Again, CPU access
1743 * rules concerning calls here are the same as for dma_unmap_single().
1744 */
1745static void arm_iommu_unmap_sg(struct device *dev,
1746			       struct scatterlist *sg, int nents,
1747			       enum dma_data_direction dir,
1748			       unsigned long attrs)
1749{
1750	__iommu_unmap_sg(dev, sg, nents, dir, attrs, false);
1751}
1752
1753/**
1754 * arm_iommu_sync_sg_for_cpu
1755 * @dev: valid struct device pointer
1756 * @sg: list of buffers
1757 * @nents: number of buffers to map (returned from dma_map_sg)
1758 * @dir: DMA transfer direction (same as was passed to dma_map_sg)
1759 */
1760static void arm_iommu_sync_sg_for_cpu(struct device *dev,
1761			struct scatterlist *sg,
1762			int nents, enum dma_data_direction dir)
1763{
1764	struct scatterlist *s;
1765	int i;
1766
1767	for_each_sg(sg, s, nents, i)
1768		__dma_page_dev_to_cpu(sg_page(s), s->offset, s->length, dir);
 
 
1769
1770}
 
 
1771
1772/**
1773 * arm_iommu_sync_sg_for_device
1774 * @dev: valid struct device pointer
1775 * @sg: list of buffers
1776 * @nents: number of buffers to map (returned from dma_map_sg)
1777 * @dir: DMA transfer direction (same as was passed to dma_map_sg)
1778 */
1779static void arm_iommu_sync_sg_for_device(struct device *dev,
1780			struct scatterlist *sg,
1781			int nents, enum dma_data_direction dir)
1782{
1783	struct scatterlist *s;
1784	int i;
1785
1786	for_each_sg(sg, s, nents, i)
1787		__dma_page_cpu_to_dev(sg_page(s), s->offset, s->length, dir);
1788}
 
1789
1790
1791/**
1792 * arm_coherent_iommu_map_page
1793 * @dev: valid struct device pointer
1794 * @page: page that buffer resides in
1795 * @offset: offset into page for start of buffer
1796 * @size: size of buffer to map
1797 * @dir: DMA transfer direction
1798 *
1799 * Coherent IOMMU aware version of arm_dma_map_page()
1800 */
1801static dma_addr_t arm_coherent_iommu_map_page(struct device *dev, struct page *page,
1802	     unsigned long offset, size_t size, enum dma_data_direction dir,
1803	     unsigned long attrs)
1804{
1805	struct dma_iommu_mapping *mapping = to_dma_iommu_mapping(dev);
1806	dma_addr_t dma_addr;
1807	int ret, prot, len = PAGE_ALIGN(size + offset);
1808
1809	dma_addr = __alloc_iova(mapping, len);
1810	if (dma_addr == DMA_MAPPING_ERROR)
1811		return dma_addr;
1812
1813	prot = __dma_info_to_prot(dir, attrs);
1814
1815	ret = iommu_map(mapping->domain, dma_addr, page_to_phys(page), len, prot);
1816	if (ret < 0)
1817		goto fail;
1818
1819	return dma_addr + offset;
1820fail:
1821	__free_iova(mapping, dma_addr, len);
1822	return DMA_MAPPING_ERROR;
1823}
1824
1825/**
1826 * arm_iommu_map_page
1827 * @dev: valid struct device pointer
1828 * @page: page that buffer resides in
1829 * @offset: offset into page for start of buffer
1830 * @size: size of buffer to map
1831 * @dir: DMA transfer direction
1832 *
1833 * IOMMU aware version of arm_dma_map_page()
1834 */
1835static dma_addr_t arm_iommu_map_page(struct device *dev, struct page *page,
1836	     unsigned long offset, size_t size, enum dma_data_direction dir,
1837	     unsigned long attrs)
1838{
1839	if ((attrs & DMA_ATTR_SKIP_CPU_SYNC) == 0)
1840		__dma_page_cpu_to_dev(page, offset, size, dir);
1841
1842	return arm_coherent_iommu_map_page(dev, page, offset, size, dir, attrs);
1843}
 
1844
1845/**
1846 * arm_coherent_iommu_unmap_page
1847 * @dev: valid struct device pointer
1848 * @handle: DMA address of buffer
1849 * @size: size of buffer (same as passed to dma_map_page)
1850 * @dir: DMA transfer direction (same as passed to dma_map_page)
1851 *
1852 * Coherent IOMMU aware version of arm_dma_unmap_page()
1853 */
1854static void arm_coherent_iommu_unmap_page(struct device *dev, dma_addr_t handle,
1855		size_t size, enum dma_data_direction dir, unsigned long attrs)
1856{
1857	struct dma_iommu_mapping *mapping = to_dma_iommu_mapping(dev);
1858	dma_addr_t iova = handle & PAGE_MASK;
1859	int offset = handle & ~PAGE_MASK;
1860	int len = PAGE_ALIGN(size + offset);
1861
1862	if (!iova)
1863		return;
1864
1865	iommu_unmap(mapping->domain, iova, len);
1866	__free_iova(mapping, iova, len);
1867}
1868
1869/**
1870 * arm_iommu_unmap_page
1871 * @dev: valid struct device pointer
1872 * @handle: DMA address of buffer
1873 * @size: size of buffer (same as passed to dma_map_page)
1874 * @dir: DMA transfer direction (same as passed to dma_map_page)
1875 *
1876 * IOMMU aware version of arm_dma_unmap_page()
1877 */
1878static void arm_iommu_unmap_page(struct device *dev, dma_addr_t handle,
1879		size_t size, enum dma_data_direction dir, unsigned long attrs)
1880{
1881	struct dma_iommu_mapping *mapping = to_dma_iommu_mapping(dev);
1882	dma_addr_t iova = handle & PAGE_MASK;
1883	struct page *page = phys_to_page(iommu_iova_to_phys(mapping->domain, iova));
1884	int offset = handle & ~PAGE_MASK;
1885	int len = PAGE_ALIGN(size + offset);
1886
1887	if (!iova)
1888		return;
1889
1890	if ((attrs & DMA_ATTR_SKIP_CPU_SYNC) == 0)
1891		__dma_page_dev_to_cpu(page, offset, size, dir);
1892
1893	iommu_unmap(mapping->domain, iova, len);
1894	__free_iova(mapping, iova, len);
1895}
1896
1897/**
1898 * arm_iommu_map_resource - map a device resource for DMA
1899 * @dev: valid struct device pointer
1900 * @phys_addr: physical address of resource
1901 * @size: size of resource to map
1902 * @dir: DMA transfer direction
1903 */
1904static dma_addr_t arm_iommu_map_resource(struct device *dev,
1905		phys_addr_t phys_addr, size_t size,
1906		enum dma_data_direction dir, unsigned long attrs)
1907{
1908	struct dma_iommu_mapping *mapping = to_dma_iommu_mapping(dev);
1909	dma_addr_t dma_addr;
1910	int ret, prot;
1911	phys_addr_t addr = phys_addr & PAGE_MASK;
1912	unsigned int offset = phys_addr & ~PAGE_MASK;
1913	size_t len = PAGE_ALIGN(size + offset);
1914
1915	dma_addr = __alloc_iova(mapping, len);
1916	if (dma_addr == DMA_MAPPING_ERROR)
1917		return dma_addr;
1918
1919	prot = __dma_info_to_prot(dir, attrs) | IOMMU_MMIO;
1920
1921	ret = iommu_map(mapping->domain, dma_addr, addr, len, prot);
1922	if (ret < 0)
1923		goto fail;
1924
1925	return dma_addr + offset;
1926fail:
1927	__free_iova(mapping, dma_addr, len);
1928	return DMA_MAPPING_ERROR;
1929}
1930
1931/**
1932 * arm_iommu_unmap_resource - unmap a device DMA resource
1933 * @dev: valid struct device pointer
1934 * @dma_handle: DMA address to resource
1935 * @size: size of resource to map
1936 * @dir: DMA transfer direction
1937 */
1938static void arm_iommu_unmap_resource(struct device *dev, dma_addr_t dma_handle,
1939		size_t size, enum dma_data_direction dir,
1940		unsigned long attrs)
1941{
1942	struct dma_iommu_mapping *mapping = to_dma_iommu_mapping(dev);
1943	dma_addr_t iova = dma_handle & PAGE_MASK;
1944	unsigned int offset = dma_handle & ~PAGE_MASK;
1945	size_t len = PAGE_ALIGN(size + offset);
1946
1947	if (!iova)
1948		return;
1949
1950	iommu_unmap(mapping->domain, iova, len);
1951	__free_iova(mapping, iova, len);
1952}
1953
1954static void arm_iommu_sync_single_for_cpu(struct device *dev,
1955		dma_addr_t handle, size_t size, enum dma_data_direction dir)
1956{
1957	struct dma_iommu_mapping *mapping = to_dma_iommu_mapping(dev);
1958	dma_addr_t iova = handle & PAGE_MASK;
1959	struct page *page = phys_to_page(iommu_iova_to_phys(mapping->domain, iova));
1960	unsigned int offset = handle & ~PAGE_MASK;
1961
1962	if (!iova)
1963		return;
1964
1965	__dma_page_dev_to_cpu(page, offset, size, dir);
1966}
1967
1968static void arm_iommu_sync_single_for_device(struct device *dev,
1969		dma_addr_t handle, size_t size, enum dma_data_direction dir)
1970{
1971	struct dma_iommu_mapping *mapping = to_dma_iommu_mapping(dev);
1972	dma_addr_t iova = handle & PAGE_MASK;
1973	struct page *page = phys_to_page(iommu_iova_to_phys(mapping->domain, iova));
1974	unsigned int offset = handle & ~PAGE_MASK;
1975
1976	if (!iova)
1977		return;
1978
1979	__dma_page_cpu_to_dev(page, offset, size, dir);
1980}
1981
1982static const struct dma_map_ops iommu_ops = {
1983	.alloc		= arm_iommu_alloc_attrs,
1984	.free		= arm_iommu_free_attrs,
1985	.mmap		= arm_iommu_mmap_attrs,
1986	.get_sgtable	= arm_iommu_get_sgtable,
1987
1988	.map_page		= arm_iommu_map_page,
1989	.unmap_page		= arm_iommu_unmap_page,
1990	.sync_single_for_cpu	= arm_iommu_sync_single_for_cpu,
1991	.sync_single_for_device	= arm_iommu_sync_single_for_device,
1992
1993	.map_sg			= arm_iommu_map_sg,
1994	.unmap_sg		= arm_iommu_unmap_sg,
1995	.sync_sg_for_cpu	= arm_iommu_sync_sg_for_cpu,
1996	.sync_sg_for_device	= arm_iommu_sync_sg_for_device,
1997
1998	.map_resource		= arm_iommu_map_resource,
1999	.unmap_resource		= arm_iommu_unmap_resource,
2000
2001	.dma_supported		= arm_dma_supported,
2002};
2003
2004static const struct dma_map_ops iommu_coherent_ops = {
2005	.alloc		= arm_coherent_iommu_alloc_attrs,
2006	.free		= arm_coherent_iommu_free_attrs,
2007	.mmap		= arm_coherent_iommu_mmap_attrs,
2008	.get_sgtable	= arm_iommu_get_sgtable,
2009
2010	.map_page	= arm_coherent_iommu_map_page,
2011	.unmap_page	= arm_coherent_iommu_unmap_page,
2012
2013	.map_sg		= arm_coherent_iommu_map_sg,
2014	.unmap_sg	= arm_coherent_iommu_unmap_sg,
2015
2016	.map_resource	= arm_iommu_map_resource,
2017	.unmap_resource	= arm_iommu_unmap_resource,
2018
2019	.dma_supported		= arm_dma_supported,
2020};
2021
2022/**
2023 * arm_iommu_create_mapping
2024 * @bus: pointer to the bus holding the client device (for IOMMU calls)
2025 * @base: start address of the valid IO address space
2026 * @size: maximum size of the valid IO address space
2027 *
2028 * Creates a mapping structure which holds information about used/unused
2029 * IO address ranges, which is required to perform memory allocation and
2030 * mapping with IOMMU aware functions.
2031 *
2032 * The client device need to be attached to the mapping with
2033 * arm_iommu_attach_device function.
2034 */
2035struct dma_iommu_mapping *
2036arm_iommu_create_mapping(struct bus_type *bus, dma_addr_t base, u64 size)
2037{
2038	unsigned int bits = size >> PAGE_SHIFT;
2039	unsigned int bitmap_size = BITS_TO_LONGS(bits) * sizeof(long);
2040	struct dma_iommu_mapping *mapping;
2041	int extensions = 1;
2042	int err = -ENOMEM;
2043
2044	/* currently only 32-bit DMA address space is supported */
2045	if (size > DMA_BIT_MASK(32) + 1)
2046		return ERR_PTR(-ERANGE);
2047
2048	if (!bitmap_size)
2049		return ERR_PTR(-EINVAL);
2050
2051	if (bitmap_size > PAGE_SIZE) {
2052		extensions = bitmap_size / PAGE_SIZE;
2053		bitmap_size = PAGE_SIZE;
2054	}
2055
2056	mapping = kzalloc(sizeof(struct dma_iommu_mapping), GFP_KERNEL);
2057	if (!mapping)
2058		goto err;
2059
2060	mapping->bitmap_size = bitmap_size;
2061	mapping->bitmaps = kcalloc(extensions, sizeof(unsigned long *),
2062				   GFP_KERNEL);
2063	if (!mapping->bitmaps)
2064		goto err2;
2065
2066	mapping->bitmaps[0] = kzalloc(bitmap_size, GFP_KERNEL);
2067	if (!mapping->bitmaps[0])
2068		goto err3;
2069
2070	mapping->nr_bitmaps = 1;
2071	mapping->extensions = extensions;
2072	mapping->base = base;
2073	mapping->bits = BITS_PER_BYTE * bitmap_size;
2074
2075	spin_lock_init(&mapping->lock);
2076
2077	mapping->domain = iommu_domain_alloc(bus);
2078	if (!mapping->domain)
2079		goto err4;
2080
2081	kref_init(&mapping->kref);
2082	return mapping;
2083err4:
2084	kfree(mapping->bitmaps[0]);
2085err3:
2086	kfree(mapping->bitmaps);
2087err2:
2088	kfree(mapping);
2089err:
2090	return ERR_PTR(err);
2091}
2092EXPORT_SYMBOL_GPL(arm_iommu_create_mapping);
2093
2094static void release_iommu_mapping(struct kref *kref)
2095{
2096	int i;
2097	struct dma_iommu_mapping *mapping =
2098		container_of(kref, struct dma_iommu_mapping, kref);
2099
2100	iommu_domain_free(mapping->domain);
2101	for (i = 0; i < mapping->nr_bitmaps; i++)
2102		kfree(mapping->bitmaps[i]);
2103	kfree(mapping->bitmaps);
2104	kfree(mapping);
2105}
2106
2107static int extend_iommu_mapping(struct dma_iommu_mapping *mapping)
2108{
2109	int next_bitmap;
2110
2111	if (mapping->nr_bitmaps >= mapping->extensions)
2112		return -EINVAL;
2113
2114	next_bitmap = mapping->nr_bitmaps;
2115	mapping->bitmaps[next_bitmap] = kzalloc(mapping->bitmap_size,
2116						GFP_ATOMIC);
2117	if (!mapping->bitmaps[next_bitmap])
2118		return -ENOMEM;
2119
2120	mapping->nr_bitmaps++;
2121
2122	return 0;
2123}
 
2124
2125void arm_iommu_release_mapping(struct dma_iommu_mapping *mapping)
2126{
2127	if (mapping)
2128		kref_put(&mapping->kref, release_iommu_mapping);
2129}
2130EXPORT_SYMBOL_GPL(arm_iommu_release_mapping);
2131
2132static int __arm_iommu_attach_device(struct device *dev,
2133				     struct dma_iommu_mapping *mapping)
2134{
2135	int err;
2136
2137	err = iommu_attach_device(mapping->domain, dev);
2138	if (err)
2139		return err;
2140
2141	kref_get(&mapping->kref);
2142	to_dma_iommu_mapping(dev) = mapping;
2143
2144	pr_debug("Attached IOMMU controller to %s device.\n", dev_name(dev));
2145	return 0;
2146}
2147
2148/**
2149 * arm_iommu_attach_device
2150 * @dev: valid struct device pointer
2151 * @mapping: io address space mapping structure (returned from
2152 *	arm_iommu_create_mapping)
2153 *
2154 * Attaches specified io address space mapping to the provided device.
2155 * This replaces the dma operations (dma_map_ops pointer) with the
2156 * IOMMU aware version.
2157 *
2158 * More than one client might be attached to the same io address space
2159 * mapping.
2160 */
2161int arm_iommu_attach_device(struct device *dev,
2162			    struct dma_iommu_mapping *mapping)
2163{
2164	int err;
2165
2166	err = __arm_iommu_attach_device(dev, mapping);
2167	if (err)
2168		return err;
2169
2170	set_dma_ops(dev, &iommu_ops);
2171	return 0;
2172}
2173EXPORT_SYMBOL_GPL(arm_iommu_attach_device);
2174
2175/**
2176 * arm_iommu_detach_device
2177 * @dev: valid struct device pointer
2178 *
2179 * Detaches the provided device from a previously attached map.
2180 * This overwrites the dma_ops pointer with appropriate non-IOMMU ops.
2181 */
2182void arm_iommu_detach_device(struct device *dev)
2183{
2184	struct dma_iommu_mapping *mapping;
2185
2186	mapping = to_dma_iommu_mapping(dev);
2187	if (!mapping) {
2188		dev_warn(dev, "Not attached\n");
2189		return;
2190	}
2191
2192	iommu_detach_device(mapping->domain, dev);
2193	kref_put(&mapping->kref, release_iommu_mapping);
2194	to_dma_iommu_mapping(dev) = NULL;
2195	set_dma_ops(dev, arm_get_dma_map_ops(dev->archdata.dma_coherent));
2196
2197	pr_debug("Detached IOMMU controller from %s device.\n", dev_name(dev));
2198}
2199EXPORT_SYMBOL_GPL(arm_iommu_detach_device);
2200
2201static const struct dma_map_ops *arm_get_iommu_dma_map_ops(bool coherent)
2202{
2203	return coherent ? &iommu_coherent_ops : &iommu_ops;
2204}
2205
2206static bool arm_setup_iommu_dma_ops(struct device *dev, u64 dma_base, u64 size,
2207				    const struct iommu_ops *iommu)
2208{
2209	struct dma_iommu_mapping *mapping;
2210
2211	if (!iommu)
2212		return false;
2213
2214	mapping = arm_iommu_create_mapping(dev->bus, dma_base, size);
2215	if (IS_ERR(mapping)) {
2216		pr_warn("Failed to create %llu-byte IOMMU mapping for device %s\n",
2217				size, dev_name(dev));
2218		return false;
2219	}
2220
2221	if (__arm_iommu_attach_device(dev, mapping)) {
2222		pr_warn("Failed to attached device %s to IOMMU_mapping\n",
2223				dev_name(dev));
2224		arm_iommu_release_mapping(mapping);
2225		return false;
2226	}
2227
2228	return true;
2229}
2230
2231static void arm_teardown_iommu_dma_ops(struct device *dev)
2232{
2233	struct dma_iommu_mapping *mapping = to_dma_iommu_mapping(dev);
2234
2235	if (!mapping)
2236		return;
2237
2238	arm_iommu_detach_device(dev);
2239	arm_iommu_release_mapping(mapping);
2240}
2241
2242#else
2243
2244static bool arm_setup_iommu_dma_ops(struct device *dev, u64 dma_base, u64 size,
2245				    const struct iommu_ops *iommu)
2246{
2247	return false;
2248}
2249
2250static void arm_teardown_iommu_dma_ops(struct device *dev) { }
2251
2252#define arm_get_iommu_dma_map_ops arm_get_dma_map_ops
2253
2254#endif	/* CONFIG_ARM_DMA_USE_IOMMU */
2255
2256void arch_setup_dma_ops(struct device *dev, u64 dma_base, u64 size,
2257			const struct iommu_ops *iommu, bool coherent)
2258{
2259	const struct dma_map_ops *dma_ops;
2260
2261	dev->archdata.dma_coherent = coherent;
2262#ifdef CONFIG_SWIOTLB
2263	dev->dma_coherent = coherent;
2264#endif
2265
2266	/*
2267	 * Don't override the dma_ops if they have already been set. Ideally
2268	 * this should be the only location where dma_ops are set, remove this
2269	 * check when all other callers of set_dma_ops will have disappeared.
2270	 */
2271	if (dev->dma_ops)
2272		return;
2273
2274	if (arm_setup_iommu_dma_ops(dev, dma_base, size, iommu))
2275		dma_ops = arm_get_iommu_dma_map_ops(coherent);
2276	else
2277		dma_ops = arm_get_dma_map_ops(coherent);
2278
2279	set_dma_ops(dev, dma_ops);
2280
2281#ifdef CONFIG_XEN
2282	if (xen_initial_domain())
2283		dev->dma_ops = &xen_swiotlb_dma_ops;
2284#endif
2285	dev->archdata.dma_ops_setup = true;
2286}
2287
2288void arch_teardown_dma_ops(struct device *dev)
2289{
2290	if (!dev->archdata.dma_ops_setup)
2291		return;
2292
2293	arm_teardown_iommu_dma_ops(dev);
2294	/* Let arch_setup_dma_ops() start again from scratch upon re-probe */
2295	set_dma_ops(dev, NULL);
2296}
2297
2298#ifdef CONFIG_SWIOTLB
2299void arch_sync_dma_for_device(phys_addr_t paddr, size_t size,
2300		enum dma_data_direction dir)
2301{
2302	__dma_page_cpu_to_dev(phys_to_page(paddr), paddr & (PAGE_SIZE - 1),
2303			      size, dir);
2304}
2305
2306void arch_sync_dma_for_cpu(phys_addr_t paddr, size_t size,
2307		enum dma_data_direction dir)
2308{
2309	__dma_page_dev_to_cpu(phys_to_page(paddr), paddr & (PAGE_SIZE - 1),
2310			      size, dir);
2311}
2312
2313void *arch_dma_alloc(struct device *dev, size_t size, dma_addr_t *dma_handle,
2314		gfp_t gfp, unsigned long attrs)
2315{
2316	return __dma_alloc(dev, size, dma_handle, gfp,
2317			   __get_dma_pgprot(attrs, PAGE_KERNEL), false,
2318			   attrs, __builtin_return_address(0));
2319}
2320
2321void arch_dma_free(struct device *dev, size_t size, void *cpu_addr,
2322		dma_addr_t dma_handle, unsigned long attrs)
2323{
2324	__arm_dma_free(dev, size, cpu_addr, dma_handle, attrs, false);
2325}
2326#endif /* CONFIG_SWIOTLB */