Linux Audio

Check our new training course

Loading...
v3.1
 
   1/*
   2 * Copyright (C) 2008, 2009 Intel Corporation
   3 * Authors: Andi Kleen, Fengguang Wu
   4 *
   5 * This software may be redistributed and/or modified under the terms of
   6 * the GNU General Public License ("GPL") version 2 only as published by the
   7 * Free Software Foundation.
   8 *
   9 * High level machine check handler. Handles pages reported by the
  10 * hardware as being corrupted usually due to a multi-bit ECC memory or cache
  11 * failure.
  12 * 
  13 * In addition there is a "soft offline" entry point that allows stop using
  14 * not-yet-corrupted-by-suspicious pages without killing anything.
  15 *
  16 * Handles page cache pages in various states.	The tricky part
  17 * here is that we can access any page asynchronously in respect to 
  18 * other VM users, because memory failures could happen anytime and 
  19 * anywhere. This could violate some of their assumptions. This is why 
  20 * this code has to be extremely careful. Generally it tries to use 
  21 * normal locking rules, as in get the standard locks, even if that means 
  22 * the error handling takes potentially a long time.
 
 
 
 
 
 
 
 
  23 * 
  24 * There are several operations here with exponential complexity because
  25 * of unsuitable VM data structures. For example the operation to map back 
  26 * from RMAP chains to processes has to walk the complete process list and 
  27 * has non linear complexity with the number. But since memory corruptions
  28 * are rare we hope to get away with this. This avoids impacting the core 
  29 * VM.
  30 */
  31
  32/*
  33 * Notebook:
  34 * - hugetlb needs more code
  35 * - kcore/oldmem/vmcore/mem/kmem check for hwpoison pages
  36 * - pass bad pages to kdump next kernel
  37 */
  38#include <linux/kernel.h>
  39#include <linux/mm.h>
  40#include <linux/page-flags.h>
  41#include <linux/kernel-page-flags.h>
  42#include <linux/sched.h>
 
 
  43#include <linux/ksm.h>
  44#include <linux/rmap.h>
 
  45#include <linux/pagemap.h>
  46#include <linux/swap.h>
  47#include <linux/backing-dev.h>
  48#include <linux/migrate.h>
  49#include <linux/page-isolation.h>
  50#include <linux/suspend.h>
  51#include <linux/slab.h>
  52#include <linux/swapops.h>
  53#include <linux/hugetlb.h>
  54#include <linux/memory_hotplug.h>
  55#include <linux/mm_inline.h>
 
  56#include <linux/kfifo.h>
 
 
 
 
 
  57#include "internal.h"
 
  58
  59int sysctl_memory_failure_early_kill __read_mostly = 0;
  60
  61int sysctl_memory_failure_recovery __read_mostly = 1;
  62
  63atomic_long_t mce_bad_pages __read_mostly = ATOMIC_LONG_INIT(0);
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
  64
  65#if defined(CONFIG_HWPOISON_INJECT) || defined(CONFIG_HWPOISON_INJECT_MODULE)
  66
  67u32 hwpoison_filter_enable = 0;
  68u32 hwpoison_filter_dev_major = ~0U;
  69u32 hwpoison_filter_dev_minor = ~0U;
  70u64 hwpoison_filter_flags_mask;
  71u64 hwpoison_filter_flags_value;
  72EXPORT_SYMBOL_GPL(hwpoison_filter_enable);
  73EXPORT_SYMBOL_GPL(hwpoison_filter_dev_major);
  74EXPORT_SYMBOL_GPL(hwpoison_filter_dev_minor);
  75EXPORT_SYMBOL_GPL(hwpoison_filter_flags_mask);
  76EXPORT_SYMBOL_GPL(hwpoison_filter_flags_value);
  77
  78static int hwpoison_filter_dev(struct page *p)
  79{
  80	struct address_space *mapping;
  81	dev_t dev;
  82
  83	if (hwpoison_filter_dev_major == ~0U &&
  84	    hwpoison_filter_dev_minor == ~0U)
  85		return 0;
  86
  87	/*
  88	 * page_mapping() does not accept slab pages.
  89	 */
  90	if (PageSlab(p))
  91		return -EINVAL;
  92
  93	mapping = page_mapping(p);
  94	if (mapping == NULL || mapping->host == NULL)
  95		return -EINVAL;
  96
  97	dev = mapping->host->i_sb->s_dev;
  98	if (hwpoison_filter_dev_major != ~0U &&
  99	    hwpoison_filter_dev_major != MAJOR(dev))
 100		return -EINVAL;
 101	if (hwpoison_filter_dev_minor != ~0U &&
 102	    hwpoison_filter_dev_minor != MINOR(dev))
 103		return -EINVAL;
 104
 105	return 0;
 106}
 107
 108static int hwpoison_filter_flags(struct page *p)
 109{
 110	if (!hwpoison_filter_flags_mask)
 111		return 0;
 112
 113	if ((stable_page_flags(p) & hwpoison_filter_flags_mask) ==
 114				    hwpoison_filter_flags_value)
 115		return 0;
 116	else
 117		return -EINVAL;
 118}
 119
 120/*
 121 * This allows stress tests to limit test scope to a collection of tasks
 122 * by putting them under some memcg. This prevents killing unrelated/important
 123 * processes such as /sbin/init. Note that the target task may share clean
 124 * pages with init (eg. libc text), which is harmless. If the target task
 125 * share _dirty_ pages with another task B, the test scheme must make sure B
 126 * is also included in the memcg. At last, due to race conditions this filter
 127 * can only guarantee that the page either belongs to the memcg tasks, or is
 128 * a freed page.
 129 */
 130#ifdef	CONFIG_CGROUP_MEM_RES_CTLR_SWAP
 131u64 hwpoison_filter_memcg;
 132EXPORT_SYMBOL_GPL(hwpoison_filter_memcg);
 133static int hwpoison_filter_task(struct page *p)
 134{
 135	struct mem_cgroup *mem;
 136	struct cgroup_subsys_state *css;
 137	unsigned long ino;
 138
 139	if (!hwpoison_filter_memcg)
 140		return 0;
 141
 142	mem = try_get_mem_cgroup_from_page(p);
 143	if (!mem)
 144		return -EINVAL;
 145
 146	css = mem_cgroup_css(mem);
 147	/* root_mem_cgroup has NULL dentries */
 148	if (!css->cgroup->dentry)
 149		return -EINVAL;
 150
 151	ino = css->cgroup->dentry->d_inode->i_ino;
 152	css_put(css);
 153
 154	if (ino != hwpoison_filter_memcg)
 155		return -EINVAL;
 156
 157	return 0;
 158}
 159#else
 160static int hwpoison_filter_task(struct page *p) { return 0; }
 161#endif
 162
 163int hwpoison_filter(struct page *p)
 164{
 165	if (!hwpoison_filter_enable)
 166		return 0;
 167
 168	if (hwpoison_filter_dev(p))
 169		return -EINVAL;
 170
 171	if (hwpoison_filter_flags(p))
 172		return -EINVAL;
 173
 174	if (hwpoison_filter_task(p))
 175		return -EINVAL;
 176
 177	return 0;
 178}
 179#else
 180int hwpoison_filter(struct page *p)
 181{
 182	return 0;
 183}
 184#endif
 185
 186EXPORT_SYMBOL_GPL(hwpoison_filter);
 187
 188/*
 189 * Send all the processes who have the page mapped an ``action optional''
 190 * signal.
 191 */
 192static int kill_proc_ao(struct task_struct *t, unsigned long addr, int trapno,
 193			unsigned long pfn, struct page *page)
 194{
 195	struct siginfo si;
 196	int ret;
 197
 198	printk(KERN_ERR
 199		"MCE %#lx: Killing %s:%d early due to hardware memory corruption\n",
 200		pfn, t->comm, t->pid);
 201	si.si_signo = SIGBUS;
 202	si.si_errno = 0;
 203	si.si_code = BUS_MCEERR_AO;
 204	si.si_addr = (void *)addr;
 205#ifdef __ARCH_SI_TRAPNO
 206	si.si_trapno = trapno;
 207#endif
 208	si.si_addr_lsb = compound_trans_order(compound_head(page)) + PAGE_SHIFT;
 209	/*
 210	 * Don't use force here, it's convenient if the signal
 211	 * can be temporarily blocked.
 212	 * This could cause a loop when the user sets SIGBUS
 213	 * to SIG_IGN, but hopefully no one will do that?
 214	 */
 215	ret = send_sig_info(SIGBUS, &si, t);  /* synchronous? */
 216	if (ret < 0)
 217		printk(KERN_INFO "MCE: Error sending signal to %s:%d: %d\n",
 218		       t->comm, t->pid, ret);
 219	return ret;
 220}
 221
 222/*
 223 * When a unknown page type is encountered drain as many buffers as possible
 224 * in the hope to turn the page into a LRU or free page, which we can handle.
 225 */
 226void shake_page(struct page *p, int access)
 227{
 228	if (!PageSlab(p)) {
 229		lru_add_drain_all();
 230		if (PageLRU(p))
 231			return;
 232		drain_all_pages();
 233		if (PageLRU(p) || is_free_buddy_page(p))
 234			return;
 235	}
 236
 237	/*
 238	 * Only call shrink_slab here (which would also shrink other caches) if
 239	 * access is not potentially fatal.
 240	 */
 241	if (access) {
 242		int nr;
 243		do {
 244			struct shrink_control shrink = {
 245				.gfp_mask = GFP_KERNEL,
 246			};
 247
 248			nr = shrink_slab(&shrink, 1000, 1000);
 249			if (page_count(p) == 1)
 250				break;
 251		} while (nr > 10);
 252	}
 253}
 254EXPORT_SYMBOL_GPL(shake_page);
 255
 256/*
 257 * Kill all processes that have a poisoned page mapped and then isolate
 258 * the page.
 259 *
 260 * General strategy:
 261 * Find all processes having the page mapped and kill them.
 262 * But we keep a page reference around so that the page is not
 263 * actually freed yet.
 264 * Then stash the page away
 265 *
 266 * There's no convenient way to get back to mapped processes
 267 * from the VMAs. So do a brute-force search over all
 268 * running processes.
 269 *
 270 * Remember that machine checks are not common (or rather
 271 * if they are common you have other problems), so this shouldn't
 272 * be a performance issue.
 273 *
 274 * Also there are some races possible while we get from the
 275 * error detection to actually handle it.
 276 */
 277
 278struct to_kill {
 279	struct list_head nd;
 280	struct task_struct *tsk;
 281	unsigned long addr;
 282	char addr_valid;
 283};
 284
 285/*
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 286 * Failure handling: if we can't find or can't kill a process there's
 287 * not much we can do.	We just print a message and ignore otherwise.
 288 */
 289
 
 
 290/*
 291 * Schedule a process for later kill.
 292 * Uses GFP_ATOMIC allocations to avoid potential recursions in the VM.
 293 * TBD would GFP_NOIO be enough?
 
 
 
 
 
 294 */
 295static void add_to_kill(struct task_struct *tsk, struct page *p,
 296		       struct vm_area_struct *vma,
 297		       struct list_head *to_kill,
 298		       struct to_kill **tkc)
 299{
 300	struct to_kill *tk;
 301
 302	if (*tkc) {
 303		tk = *tkc;
 304		*tkc = NULL;
 305	} else {
 306		tk = kmalloc(sizeof(struct to_kill), GFP_ATOMIC);
 307		if (!tk) {
 308			printk(KERN_ERR
 309		"MCE: Out of memory while machine check handling\n");
 310			return;
 311		}
 312	}
 313	tk->addr = page_address_in_vma(p, vma);
 314	tk->addr_valid = 1;
 315
 316	/*
 317	 * In theory we don't have to kill when the page was
 318	 * munmaped. But it could be also a mremap. Since that's
 319	 * likely very rare kill anyways just out of paranoia, but use
 320	 * a SIGKILL because the error is not contained anymore.
 
 
 
 
 
 
 
 
 
 
 
 
 321	 */
 322	if (tk->addr == -EFAULT) {
 323		pr_info("MCE: Unable to find user space address %lx in %s\n",
 324			page_to_pfn(p), tsk->comm);
 325		tk->addr_valid = 0;
 
 
 326	}
 
 327	get_task_struct(tsk);
 328	tk->tsk = tsk;
 329	list_add_tail(&tk->nd, to_kill);
 330}
 331
 332/*
 333 * Kill the processes that have been collected earlier.
 334 *
 335 * Only do anything when DOIT is set, otherwise just free the list
 336 * (this is used for clean pages which do not need killing)
 337 * Also when FAIL is set do a force kill because something went
 338 * wrong earlier.
 339 */
 340static void kill_procs_ao(struct list_head *to_kill, int doit, int trapno,
 341			  int fail, struct page *page, unsigned long pfn)
 342{
 343	struct to_kill *tk, *next;
 344
 345	list_for_each_entry_safe (tk, next, to_kill, nd) {
 346		if (doit) {
 347			/*
 348			 * In case something went wrong with munmapping
 349			 * make sure the process doesn't catch the
 350			 * signal and then access the memory. Just kill it.
 351			 */
 352			if (fail || tk->addr_valid == 0) {
 353				printk(KERN_ERR
 354		"MCE %#lx: forcibly killing %s:%d because of failure to unmap corrupted page\n",
 355					pfn, tk->tsk->comm, tk->tsk->pid);
 356				force_sig(SIGKILL, tk->tsk);
 357			}
 358
 359			/*
 360			 * In theory the process could have mapped
 361			 * something else on the address in-between. We could
 362			 * check for that, but we need to tell the
 363			 * process anyways.
 364			 */
 365			else if (kill_proc_ao(tk->tsk, tk->addr, trapno,
 366					      pfn, page) < 0)
 367				printk(KERN_ERR
 368		"MCE %#lx: Cannot send advisory machine check signal to %s:%d\n",
 369					pfn, tk->tsk->comm, tk->tsk->pid);
 370		}
 
 371		put_task_struct(tk->tsk);
 372		kfree(tk);
 373	}
 374}
 375
 376static int task_early_kill(struct task_struct *tsk)
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 377{
 378	if (!tsk->mm)
 379		return 0;
 380	if (tsk->flags & PF_MCE_PROCESS)
 381		return !!(tsk->flags & PF_MCE_EARLY);
 382	return sysctl_memory_failure_early_kill;
 
 
 
 
 
 383}
 384
 385/*
 386 * Collect processes when the error hit an anonymous page.
 387 */
 388static void collect_procs_anon(struct page *page, struct list_head *to_kill,
 389			      struct to_kill **tkc)
 390{
 
 391	struct vm_area_struct *vma;
 392	struct task_struct *tsk;
 393	struct anon_vma *av;
 
 394
 395	av = page_lock_anon_vma(page);
 396	if (av == NULL)	/* Not actually mapped anymore */
 397		return;
 398
 
 399	read_lock(&tasklist_lock);
 400	for_each_process (tsk) {
 401		struct anon_vma_chain *vmac;
 
 402
 403		if (!task_early_kill(tsk))
 404			continue;
 405		list_for_each_entry(vmac, &av->head, same_anon_vma) {
 
 406			vma = vmac->vma;
 
 
 407			if (!page_mapped_in_vma(page, vma))
 408				continue;
 409			if (vma->vm_mm == tsk->mm)
 410				add_to_kill(tsk, page, vma, to_kill, tkc);
 411		}
 412	}
 413	read_unlock(&tasklist_lock);
 414	page_unlock_anon_vma(av);
 415}
 416
 417/*
 418 * Collect processes when the error hit a file mapped page.
 419 */
 420static void collect_procs_file(struct page *page, struct list_head *to_kill,
 421			      struct to_kill **tkc)
 422{
 423	struct vm_area_struct *vma;
 424	struct task_struct *tsk;
 425	struct prio_tree_iter iter;
 426	struct address_space *mapping = page->mapping;
 
 427
 428	mutex_lock(&mapping->i_mmap_mutex);
 429	read_lock(&tasklist_lock);
 
 430	for_each_process(tsk) {
 431		pgoff_t pgoff = page->index << (PAGE_CACHE_SHIFT - PAGE_SHIFT);
 432
 433		if (!task_early_kill(tsk))
 434			continue;
 435
 436		vma_prio_tree_foreach(vma, &iter, &mapping->i_mmap, pgoff,
 437				      pgoff) {
 438			/*
 439			 * Send early kill signal to tasks where a vma covers
 440			 * the page but the corrupted page is not necessarily
 441			 * mapped it in its pte.
 442			 * Assume applications who requested early kill want
 443			 * to be informed of all such data corruptions.
 444			 */
 445			if (vma->vm_mm == tsk->mm)
 446				add_to_kill(tsk, page, vma, to_kill, tkc);
 
 447		}
 448	}
 449	read_unlock(&tasklist_lock);
 450	mutex_unlock(&mapping->i_mmap_mutex);
 451}
 452
 
 453/*
 454 * Collect the processes who have the corrupted page mapped to kill.
 455 * This is done in two steps for locking reasons.
 456 * First preallocate one tokill structure outside the spin locks,
 457 * so that we can kill at least one process reasonably reliable.
 458 */
 459static void collect_procs(struct page *page, struct list_head *tokill)
 
 
 460{
 461	struct to_kill *tk;
 
 
 
 
 
 
 462
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 463	if (!page->mapping)
 464		return;
 465
 466	tk = kmalloc(sizeof(struct to_kill), GFP_NOIO);
 467	if (!tk)
 468		return;
 469	if (PageAnon(page))
 470		collect_procs_anon(page, tokill, &tk);
 471	else
 472		collect_procs_file(page, tokill, &tk);
 473	kfree(tk);
 
 
 
 
 
 
 
 
 
 
 
 474}
 475
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 476/*
 477 * Error handlers for various types of pages.
 
 
 
 
 
 
 
 
 
 
 478 */
 
 
 
 
 
 
 
 
 479
 480enum outcome {
 481	IGNORED,	/* Error: cannot be handled */
 482	FAILED,		/* Error: handling failed */
 483	DELAYED,	/* Will be handled later */
 484	RECOVERED,	/* Successfully recovered */
 485};
 
 
 
 
 
 
 
 486
 487static const char *action_name[] = {
 488	[IGNORED] = "Ignored",
 489	[FAILED] = "Failed",
 490	[DELAYED] = "Delayed",
 491	[RECOVERED] = "Recovered",
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 492};
 493
 494/*
 495 * XXX: It is possible that a page is isolated from LRU cache,
 496 * and then kept in swap cache or failed to remove from page cache.
 497 * The page count will stop it from being freed by unpoison.
 498 * Stress tests should be aware of this memory leak problem.
 499 */
 500static int delete_from_lru_cache(struct page *p)
 501{
 502	if (!isolate_lru_page(p)) {
 503		/*
 504		 * Clear sensible page flags, so that the buddy system won't
 505		 * complain when the page is unpoison-and-freed.
 506		 */
 507		ClearPageActive(p);
 508		ClearPageUnevictable(p);
 
 
 
 
 
 
 
 509		/*
 510		 * drop the page count elevated by isolate_lru_page()
 511		 */
 512		page_cache_release(p);
 513		return 0;
 514	}
 515	return -EIO;
 516}
 517
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 518/*
 519 * Error hit kernel page.
 520 * Do nothing, try to be lucky and not touch this instead. For a few cases we
 521 * could be more sophisticated.
 522 */
 523static int me_kernel(struct page *p, unsigned long pfn)
 524{
 525	return IGNORED;
 
 526}
 527
 528/*
 529 * Page in unknown state. Do nothing.
 530 */
 531static int me_unknown(struct page *p, unsigned long pfn)
 532{
 533	printk(KERN_ERR "MCE %#lx: Unknown page state\n", pfn);
 534	return FAILED;
 
 535}
 536
 537/*
 538 * Clean (or cleaned) page cache page.
 539 */
 540static int me_pagecache_clean(struct page *p, unsigned long pfn)
 541{
 542	int err;
 543	int ret = FAILED;
 544	struct address_space *mapping;
 
 545
 546	delete_from_lru_cache(p);
 547
 548	/*
 549	 * For anonymous pages we're done the only reference left
 550	 * should be the one m_f() holds.
 551	 */
 552	if (PageAnon(p))
 553		return RECOVERED;
 
 
 554
 555	/*
 556	 * Now truncate the page in the page cache. This is really
 557	 * more like a "temporary hole punch"
 558	 * Don't do this for block devices when someone else
 559	 * has a reference, because it could be file system metadata
 560	 * and that's not safe to truncate.
 561	 */
 562	mapping = page_mapping(p);
 563	if (!mapping) {
 564		/*
 565		 * Page has been teared down in the meanwhile
 566		 */
 567		return FAILED;
 
 568	}
 569
 570	/*
 
 
 
 
 
 
 571	 * Truncation is a bit tricky. Enable it per file system for now.
 572	 *
 573	 * Open: to take i_mutex or not for this? Right now we don't.
 574	 */
 575	if (mapping->a_ops->error_remove_page) {
 576		err = mapping->a_ops->error_remove_page(mapping, p);
 577		if (err != 0) {
 578			printk(KERN_INFO "MCE %#lx: Failed to punch page: %d\n",
 579					pfn, err);
 580		} else if (page_has_private(p) &&
 581				!try_to_release_page(p, GFP_NOIO)) {
 582			pr_info("MCE %#lx: failed to release buffers\n", pfn);
 583		} else {
 584			ret = RECOVERED;
 585		}
 586	} else {
 587		/*
 588		 * If the file system doesn't support it just invalidate
 589		 * This fails on dirty or anything with private pages
 590		 */
 591		if (invalidate_inode_page(p))
 592			ret = RECOVERED;
 593		else
 594			printk(KERN_INFO "MCE %#lx: Failed to invalidate\n",
 595				pfn);
 596	}
 597	return ret;
 598}
 599
 600/*
 601 * Dirty cache page page
 602 * Issues: when the error hit a hole page the error is not properly
 603 * propagated.
 604 */
 605static int me_pagecache_dirty(struct page *p, unsigned long pfn)
 606{
 607	struct address_space *mapping = page_mapping(p);
 608
 609	SetPageError(p);
 610	/* TBD: print more information about the file. */
 611	if (mapping) {
 612		/*
 613		 * IO error will be reported by write(), fsync(), etc.
 614		 * who check the mapping.
 615		 * This way the application knows that something went
 616		 * wrong with its dirty file data.
 617		 *
 618		 * There's one open issue:
 619		 *
 620		 * The EIO will be only reported on the next IO
 621		 * operation and then cleared through the IO map.
 622		 * Normally Linux has two mechanisms to pass IO error
 623		 * first through the AS_EIO flag in the address space
 624		 * and then through the PageError flag in the page.
 625		 * Since we drop pages on memory failure handling the
 626		 * only mechanism open to use is through AS_AIO.
 627		 *
 628		 * This has the disadvantage that it gets cleared on
 629		 * the first operation that returns an error, while
 630		 * the PageError bit is more sticky and only cleared
 631		 * when the page is reread or dropped.  If an
 632		 * application assumes it will always get error on
 633		 * fsync, but does other operations on the fd before
 634		 * and the page is dropped between then the error
 635		 * will not be properly reported.
 636		 *
 637		 * This can already happen even without hwpoisoned
 638		 * pages: first on metadata IO errors (which only
 639		 * report through AS_EIO) or when the page is dropped
 640		 * at the wrong time.
 641		 *
 642		 * So right now we assume that the application DTRT on
 643		 * the first EIO, but we're not worse than other parts
 644		 * of the kernel.
 645		 */
 646		mapping_set_error(mapping, EIO);
 647	}
 648
 649	return me_pagecache_clean(p, pfn);
 650}
 651
 652/*
 653 * Clean and dirty swap cache.
 654 *
 655 * Dirty swap cache page is tricky to handle. The page could live both in page
 656 * cache and swap cache(ie. page is freshly swapped in). So it could be
 657 * referenced concurrently by 2 types of PTEs:
 658 * normal PTEs and swap PTEs. We try to handle them consistently by calling
 659 * try_to_unmap(TTU_IGNORE_HWPOISON) to convert the normal PTEs to swap PTEs,
 660 * and then
 661 *      - clear dirty bit to prevent IO
 662 *      - remove from LRU
 663 *      - but keep in the swap cache, so that when we return to it on
 664 *        a later page fault, we know the application is accessing
 665 *        corrupted data and shall be killed (we installed simple
 666 *        interception code in do_swap_page to catch it).
 667 *
 668 * Clean swap cache pages can be directly isolated. A later page fault will
 669 * bring in the known good data from disk.
 670 */
 671static int me_swapcache_dirty(struct page *p, unsigned long pfn)
 672{
 
 
 
 673	ClearPageDirty(p);
 674	/* Trigger EIO in shmem: */
 675	ClearPageUptodate(p);
 676
 677	if (!delete_from_lru_cache(p))
 678		return DELAYED;
 679	else
 680		return FAILED;
 
 
 
 
 
 
 681}
 682
 683static int me_swapcache_clean(struct page *p, unsigned long pfn)
 684{
 685	delete_from_swap_cache(p);
 
 686
 687	if (!delete_from_lru_cache(p))
 688		return RECOVERED;
 689	else
 690		return FAILED;
 
 
 
 
 
 691}
 692
 693/*
 694 * Huge pages. Needs work.
 695 * Issues:
 696 * - Error on hugepage is contained in hugepage unit (not in raw page unit.)
 697 *   To narrow down kill region to one page, we need to break up pmd.
 698 */
 699static int me_huge_page(struct page *p, unsigned long pfn)
 700{
 701	int res = 0;
 702	struct page *hpage = compound_head(p);
 703	/*
 704	 * We can safely recover from error on free or reserved (i.e.
 705	 * not in-use) hugepage by dequeuing it from freelist.
 706	 * To check whether a hugepage is in-use or not, we can't use
 707	 * page->lru because it can be used in other hugepage operations,
 708	 * such as __unmap_hugepage_range() and gather_surplus_pages().
 709	 * So instead we use page_mapping() and PageAnon().
 710	 * We assume that this function is called with page lock held,
 711	 * so there is no race between isolation and mapping/unmapping.
 712	 */
 713	if (!(page_mapping(hpage) || PageAnon(hpage))) {
 714		res = dequeue_hwpoisoned_huge_page(hpage);
 715		if (!res)
 716			return RECOVERED;
 
 
 
 
 
 
 
 
 
 
 
 
 717	}
 718	return DELAYED;
 
 
 
 
 719}
 720
 721/*
 722 * Various page states we can handle.
 723 *
 724 * A page state is defined by its current page->flags bits.
 725 * The table matches them in order and calls the right handler.
 726 *
 727 * This is quite tricky because we can access page at any time
 728 * in its live cycle, so all accesses have to be extremely careful.
 729 *
 730 * This is not complete. More states could be added.
 731 * For any missing state don't attempt recovery.
 732 */
 733
 734#define dirty		(1UL << PG_dirty)
 735#define sc		(1UL << PG_swapcache)
 736#define unevict		(1UL << PG_unevictable)
 737#define mlock		(1UL << PG_mlocked)
 738#define writeback	(1UL << PG_writeback)
 739#define lru		(1UL << PG_lru)
 740#define swapbacked	(1UL << PG_swapbacked)
 741#define head		(1UL << PG_head)
 742#define tail		(1UL << PG_tail)
 743#define compound	(1UL << PG_compound)
 744#define slab		(1UL << PG_slab)
 745#define reserved	(1UL << PG_reserved)
 746
 747static struct page_state {
 748	unsigned long mask;
 749	unsigned long res;
 750	char *msg;
 751	int (*action)(struct page *p, unsigned long pfn);
 752} error_states[] = {
 753	{ reserved,	reserved,	"reserved kernel",	me_kernel },
 754	/*
 755	 * free pages are specially detected outside this table:
 756	 * PG_buddy pages only make a small fraction of all free pages.
 757	 */
 758
 759	/*
 760	 * Could in theory check if slab page is free or if we can drop
 761	 * currently unused objects without touching them. But just
 762	 * treat it as standard kernel for now.
 763	 */
 764	{ slab,		slab,		"kernel slab",	me_kernel },
 765
 766#ifdef CONFIG_PAGEFLAGS_EXTENDED
 767	{ head,		head,		"huge",		me_huge_page },
 768	{ tail,		tail,		"huge",		me_huge_page },
 769#else
 770	{ compound,	compound,	"huge",		me_huge_page },
 771#endif
 772
 773	{ sc|dirty,	sc|dirty,	"swapcache",	me_swapcache_dirty },
 774	{ sc|dirty,	sc,		"swapcache",	me_swapcache_clean },
 775
 776	{ unevict|dirty, unevict|dirty,	"unevictable LRU", me_pagecache_dirty},
 777	{ unevict,	unevict,	"unevictable LRU", me_pagecache_clean},
 778
 779	{ mlock|dirty,	mlock|dirty,	"mlocked LRU",	me_pagecache_dirty },
 780	{ mlock,	mlock,		"mlocked LRU",	me_pagecache_clean },
 781
 782	{ lru|dirty,	lru|dirty,	"LRU",		me_pagecache_dirty },
 783	{ lru|dirty,	lru,		"clean LRU",	me_pagecache_clean },
 784
 785	/*
 786	 * Catchall entry: must be at end.
 787	 */
 788	{ 0,		0,		"unknown page state",	me_unknown },
 789};
 790
 791#undef dirty
 792#undef sc
 793#undef unevict
 794#undef mlock
 795#undef writeback
 796#undef lru
 797#undef swapbacked
 798#undef head
 799#undef tail
 800#undef compound
 801#undef slab
 802#undef reserved
 803
 804static void action_result(unsigned long pfn, char *msg, int result)
 
 
 
 
 
 805{
 806	struct page *page = pfn_to_page(pfn);
 807
 808	printk(KERN_ERR "MCE %#lx: %s%s page recovery: %s\n",
 809		pfn,
 810		PageDirty(page) ? "dirty " : "",
 811		msg, action_name[result]);
 
 812}
 813
 814static int page_action(struct page_state *ps, struct page *p,
 815			unsigned long pfn)
 816{
 817	int result;
 818	int count;
 819
 820	result = ps->action(p, pfn);
 821	action_result(pfn, ps->msg, result);
 822
 823	count = page_count(p) - 1;
 824	if (ps->action == me_swapcache_dirty && result == DELAYED)
 825		count--;
 826	if (count != 0) {
 827		printk(KERN_ERR
 828		       "MCE %#lx: %s page still referenced by %d users\n",
 829		       pfn, ps->msg, count);
 830		result = FAILED;
 831	}
 832
 833	/* Could do more checks here if page looks ok */
 834	/*
 835	 * Could adjust zone counters here to correct for the missing page.
 836	 */
 837
 838	return (result == RECOVERED || result == DELAYED) ? 0 : -EBUSY;
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 839}
 840
 841/*
 842 * Do all that is necessary to remove user space mappings. Unmap
 843 * the pages and send SIGBUS to the processes if the data was dirty.
 844 */
 845static int hwpoison_user_mappings(struct page *p, unsigned long pfn,
 846				  int trapno)
 847{
 848	enum ttu_flags ttu = TTU_UNMAP | TTU_IGNORE_MLOCK | TTU_IGNORE_ACCESS;
 
 849	struct address_space *mapping;
 850	LIST_HEAD(tokill);
 851	int ret;
 852	int kill = 1;
 853	struct page *hpage = compound_head(p);
 854	struct page *ppage;
 855
 856	if (PageReserved(p) || PageSlab(p))
 857		return SWAP_SUCCESS;
 
 
 
 
 
 
 858
 859	/*
 860	 * This check implies we don't kill processes if their pages
 861	 * are in the swap cache early. Those are always late kills.
 862	 */
 863	if (!page_mapped(hpage))
 864		return SWAP_SUCCESS;
 865
 866	if (PageKsm(p))
 867		return SWAP_FAIL;
 
 
 868
 869	if (PageSwapCache(p)) {
 870		printk(KERN_ERR
 871		       "MCE %#lx: keeping poisoned page in swap cache\n", pfn);
 872		ttu |= TTU_IGNORE_HWPOISON;
 873	}
 874
 875	/*
 876	 * Propagate the dirty bit from PTEs to struct page first, because we
 877	 * need this to decide if we should kill or just drop the page.
 878	 * XXX: the dirty test could be racy: set_page_dirty() may not always
 879	 * be called inside page lock (it's recommended but not enforced).
 880	 */
 881	mapping = page_mapping(hpage);
 882	if (!PageDirty(hpage) && mapping &&
 883	    mapping_cap_writeback_dirty(mapping)) {
 884		if (page_mkclean(hpage)) {
 885			SetPageDirty(hpage);
 886		} else {
 887			kill = 0;
 888			ttu |= TTU_IGNORE_HWPOISON;
 889			printk(KERN_INFO
 890	"MCE %#lx: corrupted page was clean: dropped without side effects\n",
 891				pfn);
 892		}
 893	}
 894
 895	/*
 896	 * ppage: poisoned page
 897	 *   if p is regular page(4k page)
 898	 *        ppage == real poisoned page;
 899	 *   else p is hugetlb or THP, ppage == head page.
 900	 */
 901	ppage = hpage;
 902
 903	if (PageTransHuge(hpage)) {
 904		/*
 905		 * Verify that this isn't a hugetlbfs head page, the check for
 906		 * PageAnon is just for avoid tripping a split_huge_page
 907		 * internal debug check, as split_huge_page refuses to deal with
 908		 * anything that isn't an anon page. PageAnon can't go away fro
 909		 * under us because we hold a refcount on the hpage, without a
 910		 * refcount on the hpage. split_huge_page can't be safely called
 911		 * in the first place, having a refcount on the tail isn't
 912		 * enough * to be safe.
 913		 */
 914		if (!PageHuge(hpage) && PageAnon(hpage)) {
 915			if (unlikely(split_huge_page(hpage))) {
 916				/*
 917				 * FIXME: if splitting THP is failed, it is
 918				 * better to stop the following operation rather
 919				 * than causing panic by unmapping. System might
 920				 * survive if the page is freed later.
 921				 */
 922				printk(KERN_INFO
 923					"MCE %#lx: failed to split THP\n", pfn);
 924
 925				BUG_ON(!PageHWPoison(p));
 926				return SWAP_FAIL;
 927			}
 928			/* THP is split, so ppage should be the real poisoned page. */
 929			ppage = p;
 930		}
 931	}
 932
 
 
 
 
 
 933	/*
 934	 * First collect all the processes that have the page
 935	 * mapped in dirty form.  This has to be done before try_to_unmap,
 936	 * because ttu takes the rmap data structures down.
 937	 *
 938	 * Error handling: We ignore errors here because
 939	 * there's nothing that can be done.
 940	 */
 941	if (kill)
 942		collect_procs(ppage, &tokill);
 943
 944	if (hpage != ppage)
 945		lock_page(ppage);
 946
 947	ret = try_to_unmap(ppage, ttu);
 948	if (ret != SWAP_SUCCESS)
 949		printk(KERN_ERR "MCE %#lx: failed to unmap page (mapcount=%d)\n",
 950				pfn, page_mapcount(ppage));
 951
 952	if (hpage != ppage)
 953		unlock_page(ppage);
 954
 955	/*
 956	 * Now that the dirty bit has been propagated to the
 957	 * struct page and all unmaps done we can decide if
 958	 * killing is needed or not.  Only kill when the page
 959	 * was dirty, otherwise the tokill list is merely
 
 960	 * freed.  When there was a problem unmapping earlier
 961	 * use a more force-full uncatchable kill to prevent
 962	 * any accesses to the poisoned memory.
 963	 */
 964	kill_procs_ao(&tokill, !!PageDirty(ppage), trapno,
 965		      ret != SWAP_SUCCESS, p, pfn);
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 966
 967	return ret;
 968}
 969
 970static void set_page_hwpoison_huge_page(struct page *hpage)
 
 971{
 972	int i;
 973	int nr_pages = 1 << compound_trans_order(hpage);
 974	for (i = 0; i < nr_pages; i++)
 975		SetPageHWPoison(hpage + i);
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 976}
 977
 978static void clear_page_hwpoison_huge_page(struct page *hpage)
 
 979{
 980	int i;
 981	int nr_pages = 1 << compound_trans_order(hpage);
 982	for (i = 0; i < nr_pages; i++)
 983		ClearPageHWPoison(hpage + i);
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 984}
 985
 986int __memory_failure(unsigned long pfn, int trapno, int flags)
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 987{
 988	struct page_state *ps;
 989	struct page *p;
 990	struct page *hpage;
 991	int res;
 992	unsigned int nr_pages;
 
 
 
 993
 994	if (!sysctl_memory_failure_recovery)
 995		panic("Memory failure from trap %d on page %lx", trapno, pfn);
 996
 997	if (!pfn_valid(pfn)) {
 998		printk(KERN_ERR
 999		       "MCE %#lx: memory outside kernel control\n",
1000		       pfn);
1001		return -ENXIO;
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1002	}
1003
1004	p = pfn_to_page(pfn);
1005	hpage = compound_head(p);
 
 
 
1006	if (TestSetPageHWPoison(p)) {
1007		printk(KERN_ERR "MCE %#lx: already hardware poisoned\n", pfn);
1008		return 0;
 
 
 
 
 
1009	}
1010
1011	nr_pages = 1 << compound_trans_order(hpage);
1012	atomic_long_add(nr_pages, &mce_bad_pages);
1013
1014	/*
1015	 * We need/can do nothing about count=0 pages.
1016	 * 1) it's a free page, and therefore in safe hand:
1017	 *    prep_new_page() will be the gate keeper.
1018	 * 2) it's a free hugepage, which is also safe:
1019	 *    an affected hugepage will be dequeued from hugepage freelist,
1020	 *    so there's no concern about reusing it ever after.
1021	 * 3) it's part of a non-compound high order page.
1022	 *    Implies some kernel user: cannot stop them from
1023	 *    R/W the page; let's pray that the page has been
1024	 *    used and will be freed some time later.
1025	 * In fact it's dangerous to directly bump up page count from 0,
1026	 * that may make page_freeze_refs()/page_unfreeze_refs() mismatch.
1027	 */
1028	if (!(flags & MF_COUNT_INCREASED) &&
1029		!get_page_unless_zero(hpage)) {
1030		if (is_free_buddy_page(p)) {
1031			action_result(pfn, "free buddy", DELAYED);
1032			return 0;
1033		} else if (PageHuge(hpage)) {
1034			/*
1035			 * Check "just unpoisoned", "filter hit", and
1036			 * "race with other subpage."
1037			 */
1038			lock_page(hpage);
1039			if (!PageHWPoison(hpage)
1040			    || (hwpoison_filter(p) && TestClearPageHWPoison(p))
1041			    || (p != hpage && TestSetPageHWPoison(hpage))) {
1042				atomic_long_sub(nr_pages, &mce_bad_pages);
1043				return 0;
 
 
 
1044			}
1045			set_page_hwpoison_huge_page(hpage);
1046			res = dequeue_hwpoisoned_huge_page(hpage);
1047			action_result(pfn, "free huge",
1048				      res ? IGNORED : DELAYED);
1049			unlock_page(hpage);
1050			return res;
1051		} else {
1052			action_result(pfn, "high order kernel", IGNORED);
1053			return -EBUSY;
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1054		}
 
1055	}
1056
1057	/*
1058	 * We ignore non-LRU pages for good reasons.
1059	 * - PG_locked is only well defined for LRU pages and a few others
1060	 * - to avoid races with __set_page_locked()
1061	 * - to avoid races with __SetPageSlab*() (and more non-atomic ops)
1062	 * The check (unnecessarily) ignores LRU pages being isolated and
1063	 * walked by the page reclaim code, however that's not a big loss.
1064	 */
1065	if (!PageHuge(p) && !PageTransCompound(p)) {
1066		if (!PageLRU(p))
1067			shake_page(p, 0);
1068		if (!PageLRU(p)) {
1069			/*
1070			 * shake_page could have turned it free.
1071			 */
1072			if (is_free_buddy_page(p)) {
1073				action_result(pfn, "free buddy, 2nd try",
1074						DELAYED);
1075				return 0;
1076			}
1077			action_result(pfn, "non LRU", IGNORED);
 
1078			put_page(p);
1079			return -EBUSY;
 
 
1080		}
 
 
1081	}
1082
1083	/*
1084	 * Lock the page and wait for writeback to finish.
1085	 * It's very difficult to mess with pages currently under IO
1086	 * and in many cases impossible, so we just avoid it here.
 
 
1087	 */
1088	lock_page(hpage);
1089
1090	/*
1091	 * unpoison always clear PG_hwpoison inside page lock
1092	 */
1093	if (!PageHWPoison(p)) {
1094		printk(KERN_ERR "MCE %#lx: just unpoisoned\n", pfn);
1095		res = 0;
1096		goto out;
1097	}
1098	if (hwpoison_filter(p)) {
1099		if (TestClearPageHWPoison(p))
1100			atomic_long_sub(nr_pages, &mce_bad_pages);
1101		unlock_page(hpage);
1102		put_page(hpage);
1103		return 0;
1104	}
1105
1106	/*
1107	 * For error on the tail page, we should set PG_hwpoison
1108	 * on the head page to show that the hugepage is hwpoisoned
 
1109	 */
1110	if (PageHuge(p) && PageTail(p) && TestSetPageHWPoison(hpage)) {
1111		action_result(pfn, "hugepage already hardware poisoned",
1112				IGNORED);
1113		unlock_page(hpage);
1114		put_page(hpage);
1115		return 0;
1116	}
1117	/*
1118	 * Set PG_hwpoison on all pages in an error hugepage,
1119	 * because containment is done in hugepage unit for now.
1120	 * Since we have done TestSetPageHWPoison() for the head page with
1121	 * page lock held, we can safely set PG_hwpoison bits on tail pages.
1122	 */
1123	if (PageHuge(p))
1124		set_page_hwpoison_huge_page(hpage);
1125
1126	wait_on_page_writeback(p);
1127
1128	/*
1129	 * Now take care of user space mappings.
1130	 * Abort on fail: __delete_from_page_cache() assumes unmapped page.
1131	 */
1132	if (hwpoison_user_mappings(p, pfn, trapno) != SWAP_SUCCESS) {
1133		printk(KERN_ERR "MCE %#lx: cannot unmap page, give up\n", pfn);
1134		res = -EBUSY;
1135		goto out;
1136	}
1137
1138	/*
1139	 * Torn down by someone else?
1140	 */
1141	if (PageLRU(p) && !PageSwapCache(p) && p->mapping == NULL) {
1142		action_result(pfn, "already truncated LRU", IGNORED);
1143		res = -EBUSY;
1144		goto out;
1145	}
1146
1147	res = -EBUSY;
1148	for (ps = error_states;; ps++) {
1149		if ((p->flags & ps->mask) == ps->res) {
1150			res = page_action(ps, p, pfn);
1151			break;
1152		}
1153	}
1154out:
1155	unlock_page(hpage);
1156	return res;
1157}
1158EXPORT_SYMBOL_GPL(__memory_failure);
1159
1160/**
1161 * memory_failure - Handle memory failure of a page.
1162 * @pfn: Page Number of the corrupted page
1163 * @trapno: Trap number reported in the signal to user space.
1164 *
1165 * This function is called by the low level machine check code
1166 * of an architecture when it detects hardware memory corruption
1167 * of a page. It tries its best to recover, which includes
1168 * dropping pages, killing processes etc.
1169 *
1170 * The function is primarily of use for corruptions that
1171 * happen outside the current execution context (e.g. when
1172 * detected by a background scrubber)
1173 *
1174 * Must run in process context (e.g. a work queue) with interrupts
1175 * enabled and no spinlocks hold.
1176 */
1177void memory_failure(unsigned long pfn, int trapno)
1178{
1179	__memory_failure(pfn, trapno, 0);
1180}
1181
1182#define MEMORY_FAILURE_FIFO_ORDER	4
1183#define MEMORY_FAILURE_FIFO_SIZE	(1 << MEMORY_FAILURE_FIFO_ORDER)
1184
1185struct memory_failure_entry {
1186	unsigned long pfn;
1187	int trapno;
1188	int flags;
1189};
1190
1191struct memory_failure_cpu {
1192	DECLARE_KFIFO(fifo, struct memory_failure_entry,
1193		      MEMORY_FAILURE_FIFO_SIZE);
1194	spinlock_t lock;
1195	struct work_struct work;
1196};
1197
1198static DEFINE_PER_CPU(struct memory_failure_cpu, memory_failure_cpu);
1199
1200/**
1201 * memory_failure_queue - Schedule handling memory failure of a page.
1202 * @pfn: Page Number of the corrupted page
1203 * @trapno: Trap number reported in the signal to user space.
1204 * @flags: Flags for memory failure handling
1205 *
1206 * This function is called by the low level hardware error handler
1207 * when it detects hardware memory corruption of a page. It schedules
1208 * the recovering of error page, including dropping pages, killing
1209 * processes etc.
1210 *
1211 * The function is primarily of use for corruptions that
1212 * happen outside the current execution context (e.g. when
1213 * detected by a background scrubber)
1214 *
1215 * Can run in IRQ context.
1216 */
1217void memory_failure_queue(unsigned long pfn, int trapno, int flags)
1218{
1219	struct memory_failure_cpu *mf_cpu;
1220	unsigned long proc_flags;
1221	struct memory_failure_entry entry = {
1222		.pfn =		pfn,
1223		.trapno =	trapno,
1224		.flags =	flags,
1225	};
1226
1227	mf_cpu = &get_cpu_var(memory_failure_cpu);
1228	spin_lock_irqsave(&mf_cpu->lock, proc_flags);
1229	if (kfifo_put(&mf_cpu->fifo, &entry))
1230		schedule_work_on(smp_processor_id(), &mf_cpu->work);
1231	else
1232		pr_err("Memory failure: buffer overflow when queuing memory failure at 0x%#lx\n",
1233		       pfn);
1234	spin_unlock_irqrestore(&mf_cpu->lock, proc_flags);
1235	put_cpu_var(memory_failure_cpu);
1236}
1237EXPORT_SYMBOL_GPL(memory_failure_queue);
1238
1239static void memory_failure_work_func(struct work_struct *work)
1240{
1241	struct memory_failure_cpu *mf_cpu;
1242	struct memory_failure_entry entry = { 0, };
1243	unsigned long proc_flags;
1244	int gotten;
1245
1246	mf_cpu = &__get_cpu_var(memory_failure_cpu);
1247	for (;;) {
1248		spin_lock_irqsave(&mf_cpu->lock, proc_flags);
1249		gotten = kfifo_get(&mf_cpu->fifo, &entry);
1250		spin_unlock_irqrestore(&mf_cpu->lock, proc_flags);
1251		if (!gotten)
1252			break;
1253		__memory_failure(entry.pfn, entry.trapno, entry.flags);
 
 
 
1254	}
1255}
1256
 
 
 
 
 
 
 
 
 
 
 
 
 
1257static int __init memory_failure_init(void)
1258{
1259	struct memory_failure_cpu *mf_cpu;
1260	int cpu;
1261
1262	for_each_possible_cpu(cpu) {
1263		mf_cpu = &per_cpu(memory_failure_cpu, cpu);
1264		spin_lock_init(&mf_cpu->lock);
1265		INIT_KFIFO(mf_cpu->fifo);
1266		INIT_WORK(&mf_cpu->work, memory_failure_work_func);
1267	}
1268
1269	return 0;
1270}
1271core_initcall(memory_failure_init);
1272
 
 
 
 
 
 
 
 
1273/**
1274 * unpoison_memory - Unpoison a previously poisoned page
1275 * @pfn: Page number of the to be unpoisoned page
1276 *
1277 * Software-unpoison a page that has been poisoned by
1278 * memory_failure() earlier.
1279 *
1280 * This is only done on the software-level, so it only works
1281 * for linux injected failures, not real hardware failures
1282 *
1283 * Returns 0 for success, otherwise -errno.
1284 */
1285int unpoison_memory(unsigned long pfn)
1286{
1287	struct page *page;
1288	struct page *p;
1289	int freeit = 0;
1290	unsigned int nr_pages;
 
 
 
1291
1292	if (!pfn_valid(pfn))
1293		return -ENXIO;
1294
1295	p = pfn_to_page(pfn);
1296	page = compound_head(p);
1297
 
 
 
 
 
 
 
 
 
1298	if (!PageHWPoison(p)) {
1299		pr_info("MCE: Page was already unpoisoned %#lx\n", pfn);
1300		return 0;
 
1301	}
1302
1303	nr_pages = 1 << compound_trans_order(page);
 
 
 
 
1304
1305	if (!get_page_unless_zero(page)) {
1306		/*
1307		 * Since HWPoisoned hugepage should have non-zero refcount,
1308		 * race between memory failure and unpoison seems to happen.
1309		 * In such case unpoison fails and memory failure runs
1310		 * to the end.
1311		 */
1312		if (PageHuge(page)) {
1313			pr_debug("MCE: Memory failure is now running on free hugepage %#lx\n", pfn);
1314			return 0;
1315		}
1316		if (TestClearPageHWPoison(p))
1317			atomic_long_sub(nr_pages, &mce_bad_pages);
1318		pr_info("MCE: Software-unpoisoned free page %#lx\n", pfn);
1319		return 0;
1320	}
1321
1322	lock_page(page);
1323	/*
1324	 * This test is racy because PG_hwpoison is set outside of page lock.
1325	 * That's acceptable because that won't trigger kernel panic. Instead,
1326	 * the PG_hwpoison page will be caught and isolated on the entrance to
1327	 * the free buddy page pool.
1328	 */
1329	if (TestClearPageHWPoison(page)) {
1330		pr_info("MCE: Software-unpoisoned page %#lx\n", pfn);
1331		atomic_long_sub(nr_pages, &mce_bad_pages);
1332		freeit = 1;
1333		if (PageHuge(page))
1334			clear_page_hwpoison_huge_page(page);
1335	}
1336	unlock_page(page);
1337
1338	put_page(page);
1339	if (freeit)
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1340		put_page(page);
 
 
 
 
 
1341
1342	return 0;
 
 
 
 
 
 
 
 
1343}
1344EXPORT_SYMBOL(unpoison_memory);
1345
1346static struct page *new_page(struct page *p, unsigned long private, int **x)
1347{
1348	int nid = page_to_nid(p);
1349	if (PageHuge(p))
1350		return alloc_huge_page_node(page_hstate(compound_head(p)),
1351						   nid);
1352	else
1353		return alloc_pages_exact_node(nid, GFP_HIGHUSER_MOVABLE, 0);
1354}
1355
1356/*
1357 * Safely get reference count of an arbitrary page.
1358 * Returns 0 for a free page, -EIO for a zero refcount page
1359 * that is not free, and 1 for any other page type.
1360 * For 1 the page is returned with increased page count, otherwise not.
1361 */
1362static int get_any_page(struct page *p, unsigned long pfn, int flags)
1363{
1364	int ret;
1365
1366	if (flags & MF_COUNT_INCREASED)
1367		return 1;
 
 
 
1368
1369	/*
1370	 * The lock_memory_hotplug prevents a race with memory hotplug.
1371	 * This is a big hammer, a better would be nicer.
1372	 */
1373	lock_memory_hotplug();
 
 
1374
1375	/*
1376	 * Isolate the page, so that it doesn't get reallocated if it
1377	 * was free.
 
 
 
1378	 */
1379	set_migratetype_isolate(p);
1380	/*
1381	 * When the target page is a free hugepage, just remove it
1382	 * from free hugepage list.
1383	 */
1384	if (!get_page_unless_zero(compound_head(p))) {
1385		if (PageHuge(p)) {
1386			pr_info("get_any_page: %#lx free huge page\n", pfn);
1387			ret = dequeue_hwpoisoned_huge_page(compound_head(p));
1388		} else if (is_free_buddy_page(p)) {
1389			pr_info("get_any_page: %#lx free buddy page\n", pfn);
1390			/* Set hwpoison bit while page is still isolated */
1391			SetPageHWPoison(p);
1392			ret = 0;
1393		} else {
1394			pr_info("get_any_page: %#lx: unknown zero refcount page type %lx\n",
1395				pfn, p->flags);
1396			ret = -EIO;
1397		}
1398	} else {
1399		/* Not a free page */
1400		ret = 1;
1401	}
1402	unset_migratetype_isolate(p);
1403	unlock_memory_hotplug();
1404	return ret;
1405}
1406
1407static int soft_offline_huge_page(struct page *page, int flags)
 
 
 
 
 
1408{
1409	int ret;
1410	unsigned long pfn = page_to_pfn(page);
1411	struct page *hpage = compound_head(page);
 
 
1412	LIST_HEAD(pagelist);
 
 
 
 
1413
1414	ret = get_any_page(page, pfn, flags);
1415	if (ret < 0)
1416		return ret;
1417	if (ret == 0)
1418		goto done;
 
 
1419
1420	if (PageHWPoison(hpage)) {
1421		put_page(hpage);
1422		pr_debug("soft offline: %#lx hugepage already poisoned\n", pfn);
1423		return -EBUSY;
 
 
 
 
1424	}
1425
1426	/* Keep page count to indicate a given hugepage is isolated. */
 
 
 
 
 
 
1427
1428	list_add(&hpage->lru, &pagelist);
1429	ret = migrate_huge_pages(&pagelist, new_page, MPOL_MF_MOVE_ALL, 0,
1430				true);
1431	if (ret) {
1432		struct page *page1, *page2;
1433		list_for_each_entry_safe(page1, page2, &pagelist, lru)
1434			put_page(page1);
 
1435
1436		pr_debug("soft offline: %#lx: migration failed %d, type %lx\n",
1437			 pfn, ret, page->flags);
1438		if (ret > 0)
1439			ret = -EIO;
1440		return ret;
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1441	}
1442done:
1443	if (!PageHWPoison(hpage))
1444		atomic_long_add(1 << compound_trans_order(hpage), &mce_bad_pages);
1445	set_page_hwpoison_huge_page(hpage);
1446	dequeue_hwpoisoned_huge_page(hpage);
1447	/* keep elevated page count for bad page */
1448	return ret;
1449}
1450
1451/**
1452 * soft_offline_page - Soft offline a page.
1453 * @page: page to offline
1454 * @flags: flags. Same as memory_failure().
1455 *
1456 * Returns 0 on success, otherwise negated errno.
 
 
1457 *
1458 * Soft offline a page, by migration or invalidation,
1459 * without killing anything. This is for the case when
1460 * a page is not corrupted yet (so it's still valid to access),
1461 * but has had a number of corrected errors and is better taken
1462 * out.
1463 *
1464 * The actual policy on when to do that is maintained by
1465 * user space.
1466 *
1467 * This should never impact any application or cause data loss,
1468 * however it might take some time.
1469 *
1470 * This is not a 100% solution for all memory, but tries to be
1471 * ``good enough'' for the majority of memory.
1472 */
1473int soft_offline_page(struct page *page, int flags)
1474{
1475	int ret;
1476	unsigned long pfn = page_to_pfn(page);
1477
1478	if (PageHuge(page))
1479		return soft_offline_huge_page(page, flags);
1480
1481	ret = get_any_page(page, pfn, flags);
1482	if (ret < 0)
1483		return ret;
1484	if (ret == 0)
1485		goto done;
1486
1487	/*
1488	 * Page cache page we can handle?
1489	 */
1490	if (!PageLRU(page)) {
1491		/*
1492		 * Try to free it.
1493		 */
1494		put_page(page);
1495		shake_page(page, 1);
1496
1497		/*
1498		 * Did it turn free?
1499		 */
1500		ret = get_any_page(page, pfn, 0);
1501		if (ret < 0)
1502			return ret;
1503		if (ret == 0)
1504			goto done;
1505	}
1506	if (!PageLRU(page)) {
1507		pr_info("soft_offline: %#lx: unknown non LRU page type %lx\n",
1508				pfn, page->flags);
1509		return -EIO;
1510	}
1511
1512	lock_page(page);
1513	wait_on_page_writeback(page);
1514
1515	/*
1516	 * Synchronized using the page lock with memory_failure()
1517	 */
1518	if (PageHWPoison(page)) {
1519		unlock_page(page);
1520		put_page(page);
1521		pr_info("soft offline: %#lx page already poisoned\n", pfn);
1522		return -EBUSY;
1523	}
1524
1525	/*
1526	 * Try to invalidate first. This should work for
1527	 * non dirty unmapped page cache pages.
1528	 */
1529	ret = invalidate_inode_page(page);
1530	unlock_page(page);
1531	/*
1532	 * RED-PEN would be better to keep it isolated here, but we
1533	 * would need to fix isolation locking first.
1534	 */
1535	if (ret == 1) {
1536		put_page(page);
1537		ret = 0;
1538		pr_info("soft_offline: %#lx: invalidated\n", pfn);
1539		goto done;
1540	}
1541
1542	/*
1543	 * Simple invalidation didn't work.
1544	 * Try to migrate to a new page instead. migrate.c
1545	 * handles a large number of cases for us.
1546	 */
1547	ret = isolate_lru_page(page);
1548	/*
1549	 * Drop page reference which is came from get_any_page()
1550	 * successful isolate_lru_page() already took another one.
1551	 */
1552	put_page(page);
1553	if (!ret) {
1554		LIST_HEAD(pagelist);
1555		inc_zone_page_state(page, NR_ISOLATED_ANON +
1556					    page_is_file_cache(page));
1557		list_add(&page->lru, &pagelist);
1558		ret = migrate_pages(&pagelist, new_page, MPOL_MF_MOVE_ALL,
1559								0, true);
1560		if (ret) {
1561			putback_lru_pages(&pagelist);
1562			pr_info("soft offline: %#lx: migration failed %d, type %lx\n",
1563				pfn, ret, page->flags);
1564			if (ret > 0)
1565				ret = -EIO;
1566		}
1567	} else {
1568		pr_info("soft offline: %#lx: isolation failed: %d, page count %d, type %lx\n",
1569				pfn, ret, page_count(page), page->flags);
1570	}
1571	if (ret)
1572		return ret;
1573
1574done:
1575	atomic_long_add(1, &mce_bad_pages);
1576	SetPageHWPoison(page);
1577	/* keep elevated page count for bad page */
1578	return ret;
1579}
v6.2
   1// SPDX-License-Identifier: GPL-2.0-only
   2/*
   3 * Copyright (C) 2008, 2009 Intel Corporation
   4 * Authors: Andi Kleen, Fengguang Wu
   5 *
 
 
 
 
   6 * High level machine check handler. Handles pages reported by the
   7 * hardware as being corrupted usually due to a multi-bit ECC memory or cache
   8 * failure.
   9 * 
  10 * In addition there is a "soft offline" entry point that allows stop using
  11 * not-yet-corrupted-by-suspicious pages without killing anything.
  12 *
  13 * Handles page cache pages in various states.	The tricky part
  14 * here is that we can access any page asynchronously in respect to 
  15 * other VM users, because memory failures could happen anytime and 
  16 * anywhere. This could violate some of their assumptions. This is why 
  17 * this code has to be extremely careful. Generally it tries to use 
  18 * normal locking rules, as in get the standard locks, even if that means 
  19 * the error handling takes potentially a long time.
  20 *
  21 * It can be very tempting to add handling for obscure cases here.
  22 * In general any code for handling new cases should only be added iff:
  23 * - You know how to test it.
  24 * - You have a test that can be added to mce-test
  25 *   https://git.kernel.org/cgit/utils/cpu/mce/mce-test.git/
  26 * - The case actually shows up as a frequent (top 10) page state in
  27 *   tools/vm/page-types when running a real workload.
  28 * 
  29 * There are several operations here with exponential complexity because
  30 * of unsuitable VM data structures. For example the operation to map back 
  31 * from RMAP chains to processes has to walk the complete process list and 
  32 * has non linear complexity with the number. But since memory corruptions
  33 * are rare we hope to get away with this. This avoids impacting the core 
  34 * VM.
  35 */
  36
  37#define pr_fmt(fmt) "Memory failure: " fmt
  38
 
 
 
 
  39#include <linux/kernel.h>
  40#include <linux/mm.h>
  41#include <linux/page-flags.h>
  42#include <linux/kernel-page-flags.h>
  43#include <linux/sched/signal.h>
  44#include <linux/sched/task.h>
  45#include <linux/dax.h>
  46#include <linux/ksm.h>
  47#include <linux/rmap.h>
  48#include <linux/export.h>
  49#include <linux/pagemap.h>
  50#include <linux/swap.h>
  51#include <linux/backing-dev.h>
  52#include <linux/migrate.h>
 
  53#include <linux/suspend.h>
  54#include <linux/slab.h>
  55#include <linux/swapops.h>
  56#include <linux/hugetlb.h>
  57#include <linux/memory_hotplug.h>
  58#include <linux/mm_inline.h>
  59#include <linux/memremap.h>
  60#include <linux/kfifo.h>
  61#include <linux/ratelimit.h>
  62#include <linux/page-isolation.h>
  63#include <linux/pagewalk.h>
  64#include <linux/shmem_fs.h>
  65#include "swap.h"
  66#include "internal.h"
  67#include "ras/ras_event.h"
  68
  69int sysctl_memory_failure_early_kill __read_mostly = 0;
  70
  71int sysctl_memory_failure_recovery __read_mostly = 1;
  72
  73atomic_long_t num_poisoned_pages __read_mostly = ATOMIC_LONG_INIT(0);
  74
  75static bool hw_memory_failure __read_mostly = false;
  76
  77inline void num_poisoned_pages_inc(unsigned long pfn)
  78{
  79	atomic_long_inc(&num_poisoned_pages);
  80	memblk_nr_poison_inc(pfn);
  81}
  82
  83inline void num_poisoned_pages_sub(unsigned long pfn, long i)
  84{
  85	atomic_long_sub(i, &num_poisoned_pages);
  86	if (pfn != -1UL)
  87		memblk_nr_poison_sub(pfn, i);
  88}
  89
  90/*
  91 * Return values:
  92 *   1:   the page is dissolved (if needed) and taken off from buddy,
  93 *   0:   the page is dissolved (if needed) and not taken off from buddy,
  94 *   < 0: failed to dissolve.
  95 */
  96static int __page_handle_poison(struct page *page)
  97{
  98	int ret;
  99
 100	zone_pcp_disable(page_zone(page));
 101	ret = dissolve_free_huge_page(page);
 102	if (!ret)
 103		ret = take_page_off_buddy(page);
 104	zone_pcp_enable(page_zone(page));
 105
 106	return ret;
 107}
 108
 109static bool page_handle_poison(struct page *page, bool hugepage_or_freepage, bool release)
 110{
 111	if (hugepage_or_freepage) {
 112		/*
 113		 * Doing this check for free pages is also fine since dissolve_free_huge_page
 114		 * returns 0 for non-hugetlb pages as well.
 115		 */
 116		if (__page_handle_poison(page) <= 0)
 117			/*
 118			 * We could fail to take off the target page from buddy
 119			 * for example due to racy page allocation, but that's
 120			 * acceptable because soft-offlined page is not broken
 121			 * and if someone really want to use it, they should
 122			 * take it.
 123			 */
 124			return false;
 125	}
 126
 127	SetPageHWPoison(page);
 128	if (release)
 129		put_page(page);
 130	page_ref_inc(page);
 131	num_poisoned_pages_inc(page_to_pfn(page));
 132
 133	return true;
 134}
 135
 136#if defined(CONFIG_HWPOISON_INJECT) || defined(CONFIG_HWPOISON_INJECT_MODULE)
 137
 138u32 hwpoison_filter_enable = 0;
 139u32 hwpoison_filter_dev_major = ~0U;
 140u32 hwpoison_filter_dev_minor = ~0U;
 141u64 hwpoison_filter_flags_mask;
 142u64 hwpoison_filter_flags_value;
 143EXPORT_SYMBOL_GPL(hwpoison_filter_enable);
 144EXPORT_SYMBOL_GPL(hwpoison_filter_dev_major);
 145EXPORT_SYMBOL_GPL(hwpoison_filter_dev_minor);
 146EXPORT_SYMBOL_GPL(hwpoison_filter_flags_mask);
 147EXPORT_SYMBOL_GPL(hwpoison_filter_flags_value);
 148
 149static int hwpoison_filter_dev(struct page *p)
 150{
 151	struct address_space *mapping;
 152	dev_t dev;
 153
 154	if (hwpoison_filter_dev_major == ~0U &&
 155	    hwpoison_filter_dev_minor == ~0U)
 156		return 0;
 157
 
 
 
 
 
 
 158	mapping = page_mapping(p);
 159	if (mapping == NULL || mapping->host == NULL)
 160		return -EINVAL;
 161
 162	dev = mapping->host->i_sb->s_dev;
 163	if (hwpoison_filter_dev_major != ~0U &&
 164	    hwpoison_filter_dev_major != MAJOR(dev))
 165		return -EINVAL;
 166	if (hwpoison_filter_dev_minor != ~0U &&
 167	    hwpoison_filter_dev_minor != MINOR(dev))
 168		return -EINVAL;
 169
 170	return 0;
 171}
 172
 173static int hwpoison_filter_flags(struct page *p)
 174{
 175	if (!hwpoison_filter_flags_mask)
 176		return 0;
 177
 178	if ((stable_page_flags(p) & hwpoison_filter_flags_mask) ==
 179				    hwpoison_filter_flags_value)
 180		return 0;
 181	else
 182		return -EINVAL;
 183}
 184
 185/*
 186 * This allows stress tests to limit test scope to a collection of tasks
 187 * by putting them under some memcg. This prevents killing unrelated/important
 188 * processes such as /sbin/init. Note that the target task may share clean
 189 * pages with init (eg. libc text), which is harmless. If the target task
 190 * share _dirty_ pages with another task B, the test scheme must make sure B
 191 * is also included in the memcg. At last, due to race conditions this filter
 192 * can only guarantee that the page either belongs to the memcg tasks, or is
 193 * a freed page.
 194 */
 195#ifdef CONFIG_MEMCG
 196u64 hwpoison_filter_memcg;
 197EXPORT_SYMBOL_GPL(hwpoison_filter_memcg);
 198static int hwpoison_filter_task(struct page *p)
 199{
 
 
 
 
 200	if (!hwpoison_filter_memcg)
 201		return 0;
 202
 203	if (page_cgroup_ino(p) != hwpoison_filter_memcg)
 
 
 
 
 
 
 
 
 
 
 
 
 204		return -EINVAL;
 205
 206	return 0;
 207}
 208#else
 209static int hwpoison_filter_task(struct page *p) { return 0; }
 210#endif
 211
 212int hwpoison_filter(struct page *p)
 213{
 214	if (!hwpoison_filter_enable)
 215		return 0;
 216
 217	if (hwpoison_filter_dev(p))
 218		return -EINVAL;
 219
 220	if (hwpoison_filter_flags(p))
 221		return -EINVAL;
 222
 223	if (hwpoison_filter_task(p))
 224		return -EINVAL;
 225
 226	return 0;
 227}
 228#else
 229int hwpoison_filter(struct page *p)
 230{
 231	return 0;
 232}
 233#endif
 234
 235EXPORT_SYMBOL_GPL(hwpoison_filter);
 236
 237/*
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 238 * Kill all processes that have a poisoned page mapped and then isolate
 239 * the page.
 240 *
 241 * General strategy:
 242 * Find all processes having the page mapped and kill them.
 243 * But we keep a page reference around so that the page is not
 244 * actually freed yet.
 245 * Then stash the page away
 246 *
 247 * There's no convenient way to get back to mapped processes
 248 * from the VMAs. So do a brute-force search over all
 249 * running processes.
 250 *
 251 * Remember that machine checks are not common (or rather
 252 * if they are common you have other problems), so this shouldn't
 253 * be a performance issue.
 254 *
 255 * Also there are some races possible while we get from the
 256 * error detection to actually handle it.
 257 */
 258
 259struct to_kill {
 260	struct list_head nd;
 261	struct task_struct *tsk;
 262	unsigned long addr;
 263	short size_shift;
 264};
 265
 266/*
 267 * Send all the processes who have the page mapped a signal.
 268 * ``action optional'' if they are not immediately affected by the error
 269 * ``action required'' if error happened in current execution context
 270 */
 271static int kill_proc(struct to_kill *tk, unsigned long pfn, int flags)
 272{
 273	struct task_struct *t = tk->tsk;
 274	short addr_lsb = tk->size_shift;
 275	int ret = 0;
 276
 277	pr_err("%#lx: Sending SIGBUS to %s:%d due to hardware memory corruption\n",
 278			pfn, t->comm, t->pid);
 279
 280	if ((flags & MF_ACTION_REQUIRED) && (t == current))
 281		ret = force_sig_mceerr(BUS_MCEERR_AR,
 282				 (void __user *)tk->addr, addr_lsb);
 283	else
 284		/*
 285		 * Signal other processes sharing the page if they have
 286		 * PF_MCE_EARLY set.
 287		 * Don't use force here, it's convenient if the signal
 288		 * can be temporarily blocked.
 289		 * This could cause a loop when the user sets SIGBUS
 290		 * to SIG_IGN, but hopefully no one will do that?
 291		 */
 292		ret = send_sig_mceerr(BUS_MCEERR_AO, (void __user *)tk->addr,
 293				      addr_lsb, t);
 294	if (ret < 0)
 295		pr_info("Error sending signal to %s:%d: %d\n",
 296			t->comm, t->pid, ret);
 297	return ret;
 298}
 299
 300/*
 301 * Unknown page type encountered. Try to check whether it can turn PageLRU by
 302 * lru_add_drain_all.
 303 */
 304void shake_page(struct page *p)
 305{
 306	if (PageHuge(p))
 307		return;
 308
 309	if (!PageSlab(p)) {
 310		lru_add_drain_all();
 311		if (PageLRU(p) || is_free_buddy_page(p))
 312			return;
 313	}
 314
 315	/*
 316	 * TODO: Could shrink slab caches here if a lightweight range-based
 317	 * shrinker will be available.
 318	 */
 319}
 320EXPORT_SYMBOL_GPL(shake_page);
 321
 322static unsigned long dev_pagemap_mapping_shift(struct vm_area_struct *vma,
 323		unsigned long address)
 324{
 325	unsigned long ret = 0;
 326	pgd_t *pgd;
 327	p4d_t *p4d;
 328	pud_t *pud;
 329	pmd_t *pmd;
 330	pte_t *pte;
 331
 332	VM_BUG_ON_VMA(address == -EFAULT, vma);
 333	pgd = pgd_offset(vma->vm_mm, address);
 334	if (!pgd_present(*pgd))
 335		return 0;
 336	p4d = p4d_offset(pgd, address);
 337	if (!p4d_present(*p4d))
 338		return 0;
 339	pud = pud_offset(p4d, address);
 340	if (!pud_present(*pud))
 341		return 0;
 342	if (pud_devmap(*pud))
 343		return PUD_SHIFT;
 344	pmd = pmd_offset(pud, address);
 345	if (!pmd_present(*pmd))
 346		return 0;
 347	if (pmd_devmap(*pmd))
 348		return PMD_SHIFT;
 349	pte = pte_offset_map(pmd, address);
 350	if (pte_present(*pte) && pte_devmap(*pte))
 351		ret = PAGE_SHIFT;
 352	pte_unmap(pte);
 353	return ret;
 354}
 355
 356/*
 357 * Failure handling: if we can't find or can't kill a process there's
 358 * not much we can do.	We just print a message and ignore otherwise.
 359 */
 360
 361#define FSDAX_INVALID_PGOFF ULONG_MAX
 362
 363/*
 364 * Schedule a process for later kill.
 365 * Uses GFP_ATOMIC allocations to avoid potential recursions in the VM.
 366 *
 367 * Note: @fsdax_pgoff is used only when @p is a fsdax page and a
 368 * filesystem with a memory failure handler has claimed the
 369 * memory_failure event. In all other cases, page->index and
 370 * page->mapping are sufficient for mapping the page back to its
 371 * corresponding user virtual address.
 372 */
 373static void add_to_kill(struct task_struct *tsk, struct page *p,
 374			pgoff_t fsdax_pgoff, struct vm_area_struct *vma,
 375			struct list_head *to_kill)
 
 376{
 377	struct to_kill *tk;
 378
 379	tk = kmalloc(sizeof(struct to_kill), GFP_ATOMIC);
 380	if (!tk) {
 381		pr_err("Out of memory while machine check handling\n");
 382		return;
 
 
 
 
 
 
 383	}
 
 
 384
 385	tk->addr = page_address_in_vma(p, vma);
 386	if (is_zone_device_page(p)) {
 387		if (fsdax_pgoff != FSDAX_INVALID_PGOFF)
 388			tk->addr = vma_pgoff_address(fsdax_pgoff, 1, vma);
 389		tk->size_shift = dev_pagemap_mapping_shift(vma, tk->addr);
 390	} else
 391		tk->size_shift = page_shift(compound_head(p));
 392
 393	/*
 394	 * Send SIGKILL if "tk->addr == -EFAULT". Also, as
 395	 * "tk->size_shift" is always non-zero for !is_zone_device_page(),
 396	 * so "tk->size_shift == 0" effectively checks no mapping on
 397	 * ZONE_DEVICE. Indeed, when a devdax page is mmapped N times
 398	 * to a process' address space, it's possible not all N VMAs
 399	 * contain mappings for the page, but at least one VMA does.
 400	 * Only deliver SIGBUS with payload derived from the VMA that
 401	 * has a mapping for the page.
 402	 */
 403	if (tk->addr == -EFAULT) {
 404		pr_info("Unable to find user space address %lx in %s\n",
 405			page_to_pfn(p), tsk->comm);
 406	} else if (tk->size_shift == 0) {
 407		kfree(tk);
 408		return;
 409	}
 410
 411	get_task_struct(tsk);
 412	tk->tsk = tsk;
 413	list_add_tail(&tk->nd, to_kill);
 414}
 415
 416/*
 417 * Kill the processes that have been collected earlier.
 418 *
 419 * Only do anything when FORCEKILL is set, otherwise just free the
 420 * list (this is used for clean pages which do not need killing)
 421 * Also when FAIL is set do a force kill because something went
 422 * wrong earlier.
 423 */
 424static void kill_procs(struct list_head *to_kill, int forcekill, bool fail,
 425		unsigned long pfn, int flags)
 426{
 427	struct to_kill *tk, *next;
 428
 429	list_for_each_entry_safe(tk, next, to_kill, nd) {
 430		if (forcekill) {
 431			/*
 432			 * In case something went wrong with munmapping
 433			 * make sure the process doesn't catch the
 434			 * signal and then access the memory. Just kill it.
 435			 */
 436			if (fail || tk->addr == -EFAULT) {
 437				pr_err("%#lx: forcibly killing %s:%d because of failure to unmap corrupted page\n",
 438				       pfn, tk->tsk->comm, tk->tsk->pid);
 439				do_send_sig_info(SIGKILL, SEND_SIG_PRIV,
 440						 tk->tsk, PIDTYPE_PID);
 441			}
 442
 443			/*
 444			 * In theory the process could have mapped
 445			 * something else on the address in-between. We could
 446			 * check for that, but we need to tell the
 447			 * process anyways.
 448			 */
 449			else if (kill_proc(tk, pfn, flags) < 0)
 450				pr_err("%#lx: Cannot send advisory machine check signal to %s:%d\n",
 451				       pfn, tk->tsk->comm, tk->tsk->pid);
 
 
 452		}
 453		list_del(&tk->nd);
 454		put_task_struct(tk->tsk);
 455		kfree(tk);
 456	}
 457}
 458
 459/*
 460 * Find a dedicated thread which is supposed to handle SIGBUS(BUS_MCEERR_AO)
 461 * on behalf of the thread group. Return task_struct of the (first found)
 462 * dedicated thread if found, and return NULL otherwise.
 463 *
 464 * We already hold read_lock(&tasklist_lock) in the caller, so we don't
 465 * have to call rcu_read_lock/unlock() in this function.
 466 */
 467static struct task_struct *find_early_kill_thread(struct task_struct *tsk)
 468{
 469	struct task_struct *t;
 470
 471	for_each_thread(tsk, t) {
 472		if (t->flags & PF_MCE_PROCESS) {
 473			if (t->flags & PF_MCE_EARLY)
 474				return t;
 475		} else {
 476			if (sysctl_memory_failure_early_kill)
 477				return t;
 478		}
 479	}
 480	return NULL;
 481}
 482
 483/*
 484 * Determine whether a given process is "early kill" process which expects
 485 * to be signaled when some page under the process is hwpoisoned.
 486 * Return task_struct of the dedicated thread (main thread unless explicitly
 487 * specified) if the process is "early kill" and otherwise returns NULL.
 488 *
 489 * Note that the above is true for Action Optional case. For Action Required
 490 * case, it's only meaningful to the current thread which need to be signaled
 491 * with SIGBUS, this error is Action Optional for other non current
 492 * processes sharing the same error page,if the process is "early kill", the
 493 * task_struct of the dedicated thread will also be returned.
 494 */
 495static struct task_struct *task_early_kill(struct task_struct *tsk,
 496					   int force_early)
 497{
 498	if (!tsk->mm)
 499		return NULL;
 500	/*
 501	 * Comparing ->mm here because current task might represent
 502	 * a subthread, while tsk always points to the main thread.
 503	 */
 504	if (force_early && tsk->mm == current->mm)
 505		return current;
 506
 507	return find_early_kill_thread(tsk);
 508}
 509
 510/*
 511 * Collect processes when the error hit an anonymous page.
 512 */
 513static void collect_procs_anon(struct page *page, struct list_head *to_kill,
 514				int force_early)
 515{
 516	struct folio *folio = page_folio(page);
 517	struct vm_area_struct *vma;
 518	struct task_struct *tsk;
 519	struct anon_vma *av;
 520	pgoff_t pgoff;
 521
 522	av = folio_lock_anon_vma_read(folio, NULL);
 523	if (av == NULL)	/* Not actually mapped anymore */
 524		return;
 525
 526	pgoff = page_to_pgoff(page);
 527	read_lock(&tasklist_lock);
 528	for_each_process (tsk) {
 529		struct anon_vma_chain *vmac;
 530		struct task_struct *t = task_early_kill(tsk, force_early);
 531
 532		if (!t)
 533			continue;
 534		anon_vma_interval_tree_foreach(vmac, &av->rb_root,
 535					       pgoff, pgoff) {
 536			vma = vmac->vma;
 537			if (vma->vm_mm != t->mm)
 538				continue;
 539			if (!page_mapped_in_vma(page, vma))
 540				continue;
 541			add_to_kill(t, page, FSDAX_INVALID_PGOFF, vma, to_kill);
 
 542		}
 543	}
 544	read_unlock(&tasklist_lock);
 545	anon_vma_unlock_read(av);
 546}
 547
 548/*
 549 * Collect processes when the error hit a file mapped page.
 550 */
 551static void collect_procs_file(struct page *page, struct list_head *to_kill,
 552				int force_early)
 553{
 554	struct vm_area_struct *vma;
 555	struct task_struct *tsk;
 
 556	struct address_space *mapping = page->mapping;
 557	pgoff_t pgoff;
 558
 559	i_mmap_lock_read(mapping);
 560	read_lock(&tasklist_lock);
 561	pgoff = page_to_pgoff(page);
 562	for_each_process(tsk) {
 563		struct task_struct *t = task_early_kill(tsk, force_early);
 564
 565		if (!t)
 566			continue;
 567		vma_interval_tree_foreach(vma, &mapping->i_mmap, pgoff,
 
 568				      pgoff) {
 569			/*
 570			 * Send early kill signal to tasks where a vma covers
 571			 * the page but the corrupted page is not necessarily
 572			 * mapped it in its pte.
 573			 * Assume applications who requested early kill want
 574			 * to be informed of all such data corruptions.
 575			 */
 576			if (vma->vm_mm == t->mm)
 577				add_to_kill(t, page, FSDAX_INVALID_PGOFF, vma,
 578					    to_kill);
 579		}
 580	}
 581	read_unlock(&tasklist_lock);
 582	i_mmap_unlock_read(mapping);
 583}
 584
 585#ifdef CONFIG_FS_DAX
 586/*
 587 * Collect processes when the error hit a fsdax page.
 
 
 
 588 */
 589static void collect_procs_fsdax(struct page *page,
 590		struct address_space *mapping, pgoff_t pgoff,
 591		struct list_head *to_kill)
 592{
 593	struct vm_area_struct *vma;
 594	struct task_struct *tsk;
 595
 596	i_mmap_lock_read(mapping);
 597	read_lock(&tasklist_lock);
 598	for_each_process(tsk) {
 599		struct task_struct *t = task_early_kill(tsk, true);
 600
 601		if (!t)
 602			continue;
 603		vma_interval_tree_foreach(vma, &mapping->i_mmap, pgoff, pgoff) {
 604			if (vma->vm_mm == t->mm)
 605				add_to_kill(t, page, pgoff, vma, to_kill);
 606		}
 607	}
 608	read_unlock(&tasklist_lock);
 609	i_mmap_unlock_read(mapping);
 610}
 611#endif /* CONFIG_FS_DAX */
 612
 613/*
 614 * Collect the processes who have the corrupted page mapped to kill.
 615 */
 616static void collect_procs(struct page *page, struct list_head *tokill,
 617				int force_early)
 618{
 619	if (!page->mapping)
 620		return;
 621
 
 
 
 622	if (PageAnon(page))
 623		collect_procs_anon(page, tokill, force_early);
 624	else
 625		collect_procs_file(page, tokill, force_early);
 626}
 627
 628struct hwp_walk {
 629	struct to_kill tk;
 630	unsigned long pfn;
 631	int flags;
 632};
 633
 634static void set_to_kill(struct to_kill *tk, unsigned long addr, short shift)
 635{
 636	tk->addr = addr;
 637	tk->size_shift = shift;
 638}
 639
 640static int check_hwpoisoned_entry(pte_t pte, unsigned long addr, short shift,
 641				unsigned long poisoned_pfn, struct to_kill *tk)
 642{
 643	unsigned long pfn = 0;
 644
 645	if (pte_present(pte)) {
 646		pfn = pte_pfn(pte);
 647	} else {
 648		swp_entry_t swp = pte_to_swp_entry(pte);
 649
 650		if (is_hwpoison_entry(swp))
 651			pfn = swp_offset_pfn(swp);
 652	}
 653
 654	if (!pfn || pfn != poisoned_pfn)
 655		return 0;
 656
 657	set_to_kill(tk, addr, shift);
 658	return 1;
 659}
 660
 661#ifdef CONFIG_TRANSPARENT_HUGEPAGE
 662static int check_hwpoisoned_pmd_entry(pmd_t *pmdp, unsigned long addr,
 663				      struct hwp_walk *hwp)
 664{
 665	pmd_t pmd = *pmdp;
 666	unsigned long pfn;
 667	unsigned long hwpoison_vaddr;
 668
 669	if (!pmd_present(pmd))
 670		return 0;
 671	pfn = pmd_pfn(pmd);
 672	if (pfn <= hwp->pfn && hwp->pfn < pfn + HPAGE_PMD_NR) {
 673		hwpoison_vaddr = addr + ((hwp->pfn - pfn) << PAGE_SHIFT);
 674		set_to_kill(&hwp->tk, hwpoison_vaddr, PAGE_SHIFT);
 675		return 1;
 676	}
 677	return 0;
 678}
 679#else
 680static int check_hwpoisoned_pmd_entry(pmd_t *pmdp, unsigned long addr,
 681				      struct hwp_walk *hwp)
 682{
 683	return 0;
 684}
 685#endif
 686
 687static int hwpoison_pte_range(pmd_t *pmdp, unsigned long addr,
 688			      unsigned long end, struct mm_walk *walk)
 689{
 690	struct hwp_walk *hwp = walk->private;
 691	int ret = 0;
 692	pte_t *ptep, *mapped_pte;
 693	spinlock_t *ptl;
 694
 695	ptl = pmd_trans_huge_lock(pmdp, walk->vma);
 696	if (ptl) {
 697		ret = check_hwpoisoned_pmd_entry(pmdp, addr, hwp);
 698		spin_unlock(ptl);
 699		goto out;
 700	}
 701
 702	if (pmd_trans_unstable(pmdp))
 703		goto out;
 704
 705	mapped_pte = ptep = pte_offset_map_lock(walk->vma->vm_mm, pmdp,
 706						addr, &ptl);
 707	for (; addr != end; ptep++, addr += PAGE_SIZE) {
 708		ret = check_hwpoisoned_entry(*ptep, addr, PAGE_SHIFT,
 709					     hwp->pfn, &hwp->tk);
 710		if (ret == 1)
 711			break;
 712	}
 713	pte_unmap_unlock(mapped_pte, ptl);
 714out:
 715	cond_resched();
 716	return ret;
 717}
 718
 719#ifdef CONFIG_HUGETLB_PAGE
 720static int hwpoison_hugetlb_range(pte_t *ptep, unsigned long hmask,
 721			    unsigned long addr, unsigned long end,
 722			    struct mm_walk *walk)
 723{
 724	struct hwp_walk *hwp = walk->private;
 725	pte_t pte = huge_ptep_get(ptep);
 726	struct hstate *h = hstate_vma(walk->vma);
 727
 728	return check_hwpoisoned_entry(pte, addr, huge_page_shift(h),
 729				      hwp->pfn, &hwp->tk);
 730}
 731#else
 732#define hwpoison_hugetlb_range	NULL
 733#endif
 734
 735static const struct mm_walk_ops hwp_walk_ops = {
 736	.pmd_entry = hwpoison_pte_range,
 737	.hugetlb_entry = hwpoison_hugetlb_range,
 738};
 739
 740/*
 741 * Sends SIGBUS to the current process with error info.
 742 *
 743 * This function is intended to handle "Action Required" MCEs on already
 744 * hardware poisoned pages. They could happen, for example, when
 745 * memory_failure() failed to unmap the error page at the first call, or
 746 * when multiple local machine checks happened on different CPUs.
 747 *
 748 * MCE handler currently has no easy access to the error virtual address,
 749 * so this function walks page table to find it. The returned virtual address
 750 * is proper in most cases, but it could be wrong when the application
 751 * process has multiple entries mapping the error page.
 752 */
 753static int kill_accessing_process(struct task_struct *p, unsigned long pfn,
 754				  int flags)
 755{
 756	int ret;
 757	struct hwp_walk priv = {
 758		.pfn = pfn,
 759	};
 760	priv.tk.tsk = p;
 761
 762	if (!p->mm)
 763		return -EFAULT;
 764
 765	mmap_read_lock(p->mm);
 766	ret = walk_page_range(p->mm, 0, TASK_SIZE, &hwp_walk_ops,
 767			      (void *)&priv);
 768	if (ret == 1 && priv.tk.addr)
 769		kill_proc(&priv.tk, pfn, flags);
 770	else
 771		ret = 0;
 772	mmap_read_unlock(p->mm);
 773	return ret > 0 ? -EHWPOISON : -EFAULT;
 774}
 775
 776static const char *action_name[] = {
 777	[MF_IGNORED] = "Ignored",
 778	[MF_FAILED] = "Failed",
 779	[MF_DELAYED] = "Delayed",
 780	[MF_RECOVERED] = "Recovered",
 781};
 782
 783static const char * const action_page_types[] = {
 784	[MF_MSG_KERNEL]			= "reserved kernel page",
 785	[MF_MSG_KERNEL_HIGH_ORDER]	= "high-order kernel page",
 786	[MF_MSG_SLAB]			= "kernel slab page",
 787	[MF_MSG_DIFFERENT_COMPOUND]	= "different compound page after locking",
 788	[MF_MSG_HUGE]			= "huge page",
 789	[MF_MSG_FREE_HUGE]		= "free huge page",
 790	[MF_MSG_UNMAP_FAILED]		= "unmapping failed page",
 791	[MF_MSG_DIRTY_SWAPCACHE]	= "dirty swapcache page",
 792	[MF_MSG_CLEAN_SWAPCACHE]	= "clean swapcache page",
 793	[MF_MSG_DIRTY_MLOCKED_LRU]	= "dirty mlocked LRU page",
 794	[MF_MSG_CLEAN_MLOCKED_LRU]	= "clean mlocked LRU page",
 795	[MF_MSG_DIRTY_UNEVICTABLE_LRU]	= "dirty unevictable LRU page",
 796	[MF_MSG_CLEAN_UNEVICTABLE_LRU]	= "clean unevictable LRU page",
 797	[MF_MSG_DIRTY_LRU]		= "dirty LRU page",
 798	[MF_MSG_CLEAN_LRU]		= "clean LRU page",
 799	[MF_MSG_TRUNCATED_LRU]		= "already truncated LRU page",
 800	[MF_MSG_BUDDY]			= "free buddy page",
 801	[MF_MSG_DAX]			= "dax page",
 802	[MF_MSG_UNSPLIT_THP]		= "unsplit thp",
 803	[MF_MSG_UNKNOWN]		= "unknown page",
 804};
 805
 806/*
 807 * XXX: It is possible that a page is isolated from LRU cache,
 808 * and then kept in swap cache or failed to remove from page cache.
 809 * The page count will stop it from being freed by unpoison.
 810 * Stress tests should be aware of this memory leak problem.
 811 */
 812static int delete_from_lru_cache(struct page *p)
 813{
 814	if (!isolate_lru_page(p)) {
 815		/*
 816		 * Clear sensible page flags, so that the buddy system won't
 817		 * complain when the page is unpoison-and-freed.
 818		 */
 819		ClearPageActive(p);
 820		ClearPageUnevictable(p);
 821
 822		/*
 823		 * Poisoned page might never drop its ref count to 0 so we have
 824		 * to uncharge it manually from its memcg.
 825		 */
 826		mem_cgroup_uncharge(page_folio(p));
 827
 828		/*
 829		 * drop the page count elevated by isolate_lru_page()
 830		 */
 831		put_page(p);
 832		return 0;
 833	}
 834	return -EIO;
 835}
 836
 837static int truncate_error_page(struct page *p, unsigned long pfn,
 838				struct address_space *mapping)
 839{
 840	int ret = MF_FAILED;
 841
 842	if (mapping->a_ops->error_remove_page) {
 843		struct folio *folio = page_folio(p);
 844		int err = mapping->a_ops->error_remove_page(mapping, p);
 845
 846		if (err != 0) {
 847			pr_info("%#lx: Failed to punch page: %d\n", pfn, err);
 848		} else if (folio_has_private(folio) &&
 849			   !filemap_release_folio(folio, GFP_NOIO)) {
 850			pr_info("%#lx: failed to release buffers\n", pfn);
 851		} else {
 852			ret = MF_RECOVERED;
 853		}
 854	} else {
 855		/*
 856		 * If the file system doesn't support it just invalidate
 857		 * This fails on dirty or anything with private pages
 858		 */
 859		if (invalidate_inode_page(p))
 860			ret = MF_RECOVERED;
 861		else
 862			pr_info("%#lx: Failed to invalidate\n",	pfn);
 863	}
 864
 865	return ret;
 866}
 867
 868struct page_state {
 869	unsigned long mask;
 870	unsigned long res;
 871	enum mf_action_page_type type;
 872
 873	/* Callback ->action() has to unlock the relevant page inside it. */
 874	int (*action)(struct page_state *ps, struct page *p);
 875};
 876
 877/*
 878 * Return true if page is still referenced by others, otherwise return
 879 * false.
 880 *
 881 * The extra_pins is true when one extra refcount is expected.
 882 */
 883static bool has_extra_refcount(struct page_state *ps, struct page *p,
 884			       bool extra_pins)
 885{
 886	int count = page_count(p) - 1;
 887
 888	if (extra_pins)
 889		count -= 1;
 890
 891	if (count > 0) {
 892		pr_err("%#lx: %s still referenced by %d users\n",
 893		       page_to_pfn(p), action_page_types[ps->type], count);
 894		return true;
 895	}
 896
 897	return false;
 898}
 899
 900/*
 901 * Error hit kernel page.
 902 * Do nothing, try to be lucky and not touch this instead. For a few cases we
 903 * could be more sophisticated.
 904 */
 905static int me_kernel(struct page_state *ps, struct page *p)
 906{
 907	unlock_page(p);
 908	return MF_IGNORED;
 909}
 910
 911/*
 912 * Page in unknown state. Do nothing.
 913 */
 914static int me_unknown(struct page_state *ps, struct page *p)
 915{
 916	pr_err("%#lx: Unknown page state\n", page_to_pfn(p));
 917	unlock_page(p);
 918	return MF_FAILED;
 919}
 920
 921/*
 922 * Clean (or cleaned) page cache page.
 923 */
 924static int me_pagecache_clean(struct page_state *ps, struct page *p)
 925{
 926	int ret;
 
 927	struct address_space *mapping;
 928	bool extra_pins;
 929
 930	delete_from_lru_cache(p);
 931
 932	/*
 933	 * For anonymous pages we're done the only reference left
 934	 * should be the one m_f() holds.
 935	 */
 936	if (PageAnon(p)) {
 937		ret = MF_RECOVERED;
 938		goto out;
 939	}
 940
 941	/*
 942	 * Now truncate the page in the page cache. This is really
 943	 * more like a "temporary hole punch"
 944	 * Don't do this for block devices when someone else
 945	 * has a reference, because it could be file system metadata
 946	 * and that's not safe to truncate.
 947	 */
 948	mapping = page_mapping(p);
 949	if (!mapping) {
 950		/*
 951		 * Page has been teared down in the meanwhile
 952		 */
 953		ret = MF_FAILED;
 954		goto out;
 955	}
 956
 957	/*
 958	 * The shmem page is kept in page cache instead of truncating
 959	 * so is expected to have an extra refcount after error-handling.
 960	 */
 961	extra_pins = shmem_mapping(mapping);
 962
 963	/*
 964	 * Truncation is a bit tricky. Enable it per file system for now.
 965	 *
 966	 * Open: to take i_rwsem or not for this? Right now we don't.
 967	 */
 968	ret = truncate_error_page(p, page_to_pfn(p), mapping);
 969	if (has_extra_refcount(ps, p, extra_pins))
 970		ret = MF_FAILED;
 971
 972out:
 973	unlock_page(p);
 974
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 975	return ret;
 976}
 977
 978/*
 979 * Dirty pagecache page
 980 * Issues: when the error hit a hole page the error is not properly
 981 * propagated.
 982 */
 983static int me_pagecache_dirty(struct page_state *ps, struct page *p)
 984{
 985	struct address_space *mapping = page_mapping(p);
 986
 987	SetPageError(p);
 988	/* TBD: print more information about the file. */
 989	if (mapping) {
 990		/*
 991		 * IO error will be reported by write(), fsync(), etc.
 992		 * who check the mapping.
 993		 * This way the application knows that something went
 994		 * wrong with its dirty file data.
 995		 *
 996		 * There's one open issue:
 997		 *
 998		 * The EIO will be only reported on the next IO
 999		 * operation and then cleared through the IO map.
1000		 * Normally Linux has two mechanisms to pass IO error
1001		 * first through the AS_EIO flag in the address space
1002		 * and then through the PageError flag in the page.
1003		 * Since we drop pages on memory failure handling the
1004		 * only mechanism open to use is through AS_AIO.
1005		 *
1006		 * This has the disadvantage that it gets cleared on
1007		 * the first operation that returns an error, while
1008		 * the PageError bit is more sticky and only cleared
1009		 * when the page is reread or dropped.  If an
1010		 * application assumes it will always get error on
1011		 * fsync, but does other operations on the fd before
1012		 * and the page is dropped between then the error
1013		 * will not be properly reported.
1014		 *
1015		 * This can already happen even without hwpoisoned
1016		 * pages: first on metadata IO errors (which only
1017		 * report through AS_EIO) or when the page is dropped
1018		 * at the wrong time.
1019		 *
1020		 * So right now we assume that the application DTRT on
1021		 * the first EIO, but we're not worse than other parts
1022		 * of the kernel.
1023		 */
1024		mapping_set_error(mapping, -EIO);
1025	}
1026
1027	return me_pagecache_clean(ps, p);
1028}
1029
1030/*
1031 * Clean and dirty swap cache.
1032 *
1033 * Dirty swap cache page is tricky to handle. The page could live both in page
1034 * cache and swap cache(ie. page is freshly swapped in). So it could be
1035 * referenced concurrently by 2 types of PTEs:
1036 * normal PTEs and swap PTEs. We try to handle them consistently by calling
1037 * try_to_unmap(TTU_IGNORE_HWPOISON) to convert the normal PTEs to swap PTEs,
1038 * and then
1039 *      - clear dirty bit to prevent IO
1040 *      - remove from LRU
1041 *      - but keep in the swap cache, so that when we return to it on
1042 *        a later page fault, we know the application is accessing
1043 *        corrupted data and shall be killed (we installed simple
1044 *        interception code in do_swap_page to catch it).
1045 *
1046 * Clean swap cache pages can be directly isolated. A later page fault will
1047 * bring in the known good data from disk.
1048 */
1049static int me_swapcache_dirty(struct page_state *ps, struct page *p)
1050{
1051	int ret;
1052	bool extra_pins = false;
1053
1054	ClearPageDirty(p);
1055	/* Trigger EIO in shmem: */
1056	ClearPageUptodate(p);
1057
1058	ret = delete_from_lru_cache(p) ? MF_FAILED : MF_DELAYED;
1059	unlock_page(p);
1060
1061	if (ret == MF_DELAYED)
1062		extra_pins = true;
1063
1064	if (has_extra_refcount(ps, p, extra_pins))
1065		ret = MF_FAILED;
1066
1067	return ret;
1068}
1069
1070static int me_swapcache_clean(struct page_state *ps, struct page *p)
1071{
1072	struct folio *folio = page_folio(p);
1073	int ret;
1074
1075	delete_from_swap_cache(folio);
1076
1077	ret = delete_from_lru_cache(p) ? MF_FAILED : MF_RECOVERED;
1078	folio_unlock(folio);
1079
1080	if (has_extra_refcount(ps, p, false))
1081		ret = MF_FAILED;
1082
1083	return ret;
1084}
1085
1086/*
1087 * Huge pages. Needs work.
1088 * Issues:
1089 * - Error on hugepage is contained in hugepage unit (not in raw page unit.)
1090 *   To narrow down kill region to one page, we need to break up pmd.
1091 */
1092static int me_huge_page(struct page_state *ps, struct page *p)
1093{
1094	int res;
1095	struct page *hpage = compound_head(p);
1096	struct address_space *mapping;
1097	bool extra_pins = false;
1098
1099	if (!PageHuge(hpage))
1100		return MF_DELAYED;
1101
1102	mapping = page_mapping(hpage);
1103	if (mapping) {
1104		res = truncate_error_page(hpage, page_to_pfn(p), mapping);
1105		/* The page is kept in page cache. */
1106		extra_pins = true;
1107		unlock_page(hpage);
1108	} else {
1109		unlock_page(hpage);
1110		/*
1111		 * migration entry prevents later access on error hugepage,
1112		 * so we can free and dissolve it into buddy to save healthy
1113		 * subpages.
1114		 */
1115		put_page(hpage);
1116		if (__page_handle_poison(p) >= 0) {
1117			page_ref_inc(p);
1118			res = MF_RECOVERED;
1119		} else {
1120			res = MF_FAILED;
1121		}
1122	}
1123
1124	if (has_extra_refcount(ps, p, extra_pins))
1125		res = MF_FAILED;
1126
1127	return res;
1128}
1129
1130/*
1131 * Various page states we can handle.
1132 *
1133 * A page state is defined by its current page->flags bits.
1134 * The table matches them in order and calls the right handler.
1135 *
1136 * This is quite tricky because we can access page at any time
1137 * in its live cycle, so all accesses have to be extremely careful.
1138 *
1139 * This is not complete. More states could be added.
1140 * For any missing state don't attempt recovery.
1141 */
1142
1143#define dirty		(1UL << PG_dirty)
1144#define sc		((1UL << PG_swapcache) | (1UL << PG_swapbacked))
1145#define unevict		(1UL << PG_unevictable)
1146#define mlock		(1UL << PG_mlocked)
 
1147#define lru		(1UL << PG_lru)
 
1148#define head		(1UL << PG_head)
 
 
1149#define slab		(1UL << PG_slab)
1150#define reserved	(1UL << PG_reserved)
1151
1152static struct page_state error_states[] = {
1153	{ reserved,	reserved,	MF_MSG_KERNEL,	me_kernel },
 
 
 
 
 
1154	/*
1155	 * free pages are specially detected outside this table:
1156	 * PG_buddy pages only make a small fraction of all free pages.
1157	 */
1158
1159	/*
1160	 * Could in theory check if slab page is free or if we can drop
1161	 * currently unused objects without touching them. But just
1162	 * treat it as standard kernel for now.
1163	 */
1164	{ slab,		slab,		MF_MSG_SLAB,	me_kernel },
1165
1166	{ head,		head,		MF_MSG_HUGE,		me_huge_page },
 
 
 
 
 
1167
1168	{ sc|dirty,	sc|dirty,	MF_MSG_DIRTY_SWAPCACHE,	me_swapcache_dirty },
1169	{ sc|dirty,	sc,		MF_MSG_CLEAN_SWAPCACHE,	me_swapcache_clean },
1170
1171	{ mlock|dirty,	mlock|dirty,	MF_MSG_DIRTY_MLOCKED_LRU,	me_pagecache_dirty },
1172	{ mlock|dirty,	mlock,		MF_MSG_CLEAN_MLOCKED_LRU,	me_pagecache_clean },
1173
1174	{ unevict|dirty, unevict|dirty,	MF_MSG_DIRTY_UNEVICTABLE_LRU,	me_pagecache_dirty },
1175	{ unevict|dirty, unevict,	MF_MSG_CLEAN_UNEVICTABLE_LRU,	me_pagecache_clean },
1176
1177	{ lru|dirty,	lru|dirty,	MF_MSG_DIRTY_LRU,	me_pagecache_dirty },
1178	{ lru|dirty,	lru,		MF_MSG_CLEAN_LRU,	me_pagecache_clean },
1179
1180	/*
1181	 * Catchall entry: must be at end.
1182	 */
1183	{ 0,		0,		MF_MSG_UNKNOWN,	me_unknown },
1184};
1185
1186#undef dirty
1187#undef sc
1188#undef unevict
1189#undef mlock
 
1190#undef lru
 
1191#undef head
 
 
1192#undef slab
1193#undef reserved
1194
1195/*
1196 * "Dirty/Clean" indication is not 100% accurate due to the possibility of
1197 * setting PG_dirty outside page lock. See also comment above set_page_dirty().
1198 */
1199static int action_result(unsigned long pfn, enum mf_action_page_type type,
1200			 enum mf_result result)
1201{
1202	trace_memory_failure_event(pfn, type, result);
1203
1204	num_poisoned_pages_inc(pfn);
1205	pr_err("%#lx: recovery action for %s: %s\n",
1206		pfn, action_page_types[type], action_name[result]);
1207
1208	return (result == MF_RECOVERED || result == MF_DELAYED) ? 0 : -EBUSY;
1209}
1210
1211static int page_action(struct page_state *ps, struct page *p,
1212			unsigned long pfn)
1213{
1214	int result;
 
 
 
 
1215
1216	/* page p should be unlocked after returning from ps->action().  */
1217	result = ps->action(ps, p);
 
 
 
 
 
 
 
1218
1219	/* Could do more checks here if page looks ok */
1220	/*
1221	 * Could adjust zone counters here to correct for the missing page.
1222	 */
1223
1224	return action_result(pfn, ps->type, result);
1225}
1226
1227static inline bool PageHWPoisonTakenOff(struct page *page)
1228{
1229	return PageHWPoison(page) && page_private(page) == MAGIC_HWPOISON;
1230}
1231
1232void SetPageHWPoisonTakenOff(struct page *page)
1233{
1234	set_page_private(page, MAGIC_HWPOISON);
1235}
1236
1237void ClearPageHWPoisonTakenOff(struct page *page)
1238{
1239	if (PageHWPoison(page))
1240		set_page_private(page, 0);
1241}
1242
1243/*
1244 * Return true if a page type of a given page is supported by hwpoison
1245 * mechanism (while handling could fail), otherwise false.  This function
1246 * does not return true for hugetlb or device memory pages, so it's assumed
1247 * to be called only in the context where we never have such pages.
1248 */
1249static inline bool HWPoisonHandlable(struct page *page, unsigned long flags)
1250{
1251	/* Soft offline could migrate non-LRU movable pages */
1252	if ((flags & MF_SOFT_OFFLINE) && __PageMovable(page))
1253		return true;
1254
1255	return PageLRU(page) || is_free_buddy_page(page);
1256}
1257
1258static int __get_hwpoison_page(struct page *page, unsigned long flags)
1259{
1260	struct page *head = compound_head(page);
1261	int ret = 0;
1262	bool hugetlb = false;
1263
1264	ret = get_hwpoison_huge_page(head, &hugetlb, false);
1265	if (hugetlb)
1266		return ret;
1267
1268	/*
1269	 * This check prevents from calling get_page_unless_zero() for any
1270	 * unsupported type of page in order to reduce the risk of unexpected
1271	 * races caused by taking a page refcount.
1272	 */
1273	if (!HWPoisonHandlable(head, flags))
1274		return -EBUSY;
1275
1276	if (get_page_unless_zero(head)) {
1277		if (head == compound_head(page))
1278			return 1;
1279
1280		pr_info("%#lx cannot catch tail\n", page_to_pfn(page));
1281		put_page(head);
1282	}
1283
1284	return 0;
1285}
1286
1287static int get_any_page(struct page *p, unsigned long flags)
1288{
1289	int ret = 0, pass = 0;
1290	bool count_increased = false;
1291
1292	if (flags & MF_COUNT_INCREASED)
1293		count_increased = true;
1294
1295try_again:
1296	if (!count_increased) {
1297		ret = __get_hwpoison_page(p, flags);
1298		if (!ret) {
1299			if (page_count(p)) {
1300				/* We raced with an allocation, retry. */
1301				if (pass++ < 3)
1302					goto try_again;
1303				ret = -EBUSY;
1304			} else if (!PageHuge(p) && !is_free_buddy_page(p)) {
1305				/* We raced with put_page, retry. */
1306				if (pass++ < 3)
1307					goto try_again;
1308				ret = -EIO;
1309			}
1310			goto out;
1311		} else if (ret == -EBUSY) {
1312			/*
1313			 * We raced with (possibly temporary) unhandlable
1314			 * page, retry.
1315			 */
1316			if (pass++ < 3) {
1317				shake_page(p);
1318				goto try_again;
1319			}
1320			ret = -EIO;
1321			goto out;
1322		}
1323	}
1324
1325	if (PageHuge(p) || HWPoisonHandlable(p, flags)) {
1326		ret = 1;
1327	} else {
1328		/*
1329		 * A page we cannot handle. Check whether we can turn
1330		 * it into something we can handle.
1331		 */
1332		if (pass++ < 3) {
1333			put_page(p);
1334			shake_page(p);
1335			count_increased = false;
1336			goto try_again;
1337		}
1338		put_page(p);
1339		ret = -EIO;
1340	}
1341out:
1342	if (ret == -EIO)
1343		pr_err("%#lx: unhandlable page.\n", page_to_pfn(p));
1344
1345	return ret;
1346}
1347
1348static int __get_unpoison_page(struct page *page)
1349{
1350	struct page *head = compound_head(page);
1351	int ret = 0;
1352	bool hugetlb = false;
1353
1354	ret = get_hwpoison_huge_page(head, &hugetlb, true);
1355	if (hugetlb)
1356		return ret;
1357
1358	/*
1359	 * PageHWPoisonTakenOff pages are not only marked as PG_hwpoison,
1360	 * but also isolated from buddy freelist, so need to identify the
1361	 * state and have to cancel both operations to unpoison.
1362	 */
1363	if (PageHWPoisonTakenOff(page))
1364		return -EHWPOISON;
1365
1366	return get_page_unless_zero(page) ? 1 : 0;
1367}
1368
1369/**
1370 * get_hwpoison_page() - Get refcount for memory error handling
1371 * @p:		Raw error page (hit by memory error)
1372 * @flags:	Flags controlling behavior of error handling
1373 *
1374 * get_hwpoison_page() takes a page refcount of an error page to handle memory
1375 * error on it, after checking that the error page is in a well-defined state
1376 * (defined as a page-type we can successfully handle the memory error on it,
1377 * such as LRU page and hugetlb page).
1378 *
1379 * Memory error handling could be triggered at any time on any type of page,
1380 * so it's prone to race with typical memory management lifecycle (like
1381 * allocation and free).  So to avoid such races, get_hwpoison_page() takes
1382 * extra care for the error page's state (as done in __get_hwpoison_page()),
1383 * and has some retry logic in get_any_page().
1384 *
1385 * When called from unpoison_memory(), the caller should already ensure that
1386 * the given page has PG_hwpoison. So it's never reused for other page
1387 * allocations, and __get_unpoison_page() never races with them.
1388 *
1389 * Return: 0 on failure,
1390 *         1 on success for in-use pages in a well-defined state,
1391 *         -EIO for pages on which we can not handle memory errors,
1392 *         -EBUSY when get_hwpoison_page() has raced with page lifecycle
1393 *         operations like allocation and free,
1394 *         -EHWPOISON when the page is hwpoisoned and taken off from buddy.
1395 */
1396static int get_hwpoison_page(struct page *p, unsigned long flags)
1397{
1398	int ret;
1399
1400	zone_pcp_disable(page_zone(p));
1401	if (flags & MF_UNPOISON)
1402		ret = __get_unpoison_page(p);
1403	else
1404		ret = get_any_page(p, flags);
1405	zone_pcp_enable(page_zone(p));
1406
1407	return ret;
1408}
1409
1410/*
1411 * Do all that is necessary to remove user space mappings. Unmap
1412 * the pages and send SIGBUS to the processes if the data was dirty.
1413 */
1414static bool hwpoison_user_mappings(struct page *p, unsigned long pfn,
1415				  int flags, struct page *hpage)
1416{
1417	struct folio *folio = page_folio(hpage);
1418	enum ttu_flags ttu = TTU_IGNORE_MLOCK | TTU_SYNC;
1419	struct address_space *mapping;
1420	LIST_HEAD(tokill);
1421	bool unmap_success;
1422	int forcekill;
1423	bool mlocked = PageMlocked(hpage);
 
1424
1425	/*
1426	 * Here we are interested only in user-mapped pages, so skip any
1427	 * other types of pages.
1428	 */
1429	if (PageReserved(p) || PageSlab(p) || PageTable(p))
1430		return true;
1431	if (!(PageLRU(hpage) || PageHuge(p)))
1432		return true;
1433
1434	/*
1435	 * This check implies we don't kill processes if their pages
1436	 * are in the swap cache early. Those are always late kills.
1437	 */
1438	if (!page_mapped(hpage))
1439		return true;
1440
1441	if (PageKsm(p)) {
1442		pr_err("%#lx: can't handle KSM pages.\n", pfn);
1443		return false;
1444	}
1445
1446	if (PageSwapCache(p)) {
1447		pr_err("%#lx: keeping poisoned page in swap cache\n", pfn);
 
1448		ttu |= TTU_IGNORE_HWPOISON;
1449	}
1450
1451	/*
1452	 * Propagate the dirty bit from PTEs to struct page first, because we
1453	 * need this to decide if we should kill or just drop the page.
1454	 * XXX: the dirty test could be racy: set_page_dirty() may not always
1455	 * be called inside page lock (it's recommended but not enforced).
1456	 */
1457	mapping = page_mapping(hpage);
1458	if (!(flags & MF_MUST_KILL) && !PageDirty(hpage) && mapping &&
1459	    mapping_can_writeback(mapping)) {
1460		if (page_mkclean(hpage)) {
1461			SetPageDirty(hpage);
1462		} else {
 
1463			ttu |= TTU_IGNORE_HWPOISON;
1464			pr_info("%#lx: corrupted page was clean: dropped without side effects\n",
 
1465				pfn);
1466		}
1467	}
1468
1469	/*
1470	 * First collect all the processes that have the page
1471	 * mapped in dirty form.  This has to be done before try_to_unmap,
1472	 * because ttu takes the rmap data structures down.
 
1473	 */
1474	collect_procs(hpage, &tokill, flags & MF_ACTION_REQUIRED);
1475
1476	if (PageHuge(hpage) && !PageAnon(hpage)) {
1477		/*
1478		 * For hugetlb pages in shared mappings, try_to_unmap
1479		 * could potentially call huge_pmd_unshare.  Because of
1480		 * this, take semaphore in write mode here and set
1481		 * TTU_RMAP_LOCKED to indicate we have taken the lock
1482		 * at this higher level.
 
 
 
1483		 */
1484		mapping = hugetlb_page_mapping_lock_write(hpage);
1485		if (mapping) {
1486			try_to_unmap(folio, ttu|TTU_RMAP_LOCKED);
1487			i_mmap_unlock_write(mapping);
1488		} else
1489			pr_info("%#lx: could not lock mapping for mapped huge page\n", pfn);
1490	} else {
1491		try_to_unmap(folio, ttu);
 
 
 
 
 
 
 
 
 
1492	}
1493
1494	unmap_success = !page_mapped(hpage);
1495	if (!unmap_success)
1496		pr_err("%#lx: failed to unmap page (mapcount=%d)\n",
1497		       pfn, page_mapcount(hpage));
1498
1499	/*
1500	 * try_to_unmap() might put mlocked page in lru cache, so call
1501	 * shake_page() again to ensure that it's flushed.
 
 
 
 
1502	 */
1503	if (mlocked)
1504		shake_page(hpage);
 
 
 
 
 
 
 
 
 
 
 
1505
1506	/*
1507	 * Now that the dirty bit has been propagated to the
1508	 * struct page and all unmaps done we can decide if
1509	 * killing is needed or not.  Only kill when the page
1510	 * was dirty or the process is not restartable,
1511	 * otherwise the tokill list is merely
1512	 * freed.  When there was a problem unmapping earlier
1513	 * use a more force-full uncatchable kill to prevent
1514	 * any accesses to the poisoned memory.
1515	 */
1516	forcekill = PageDirty(hpage) || (flags & MF_MUST_KILL) ||
1517		    !unmap_success;
1518	kill_procs(&tokill, forcekill, !unmap_success, pfn, flags);
1519
1520	return unmap_success;
1521}
1522
1523static int identify_page_state(unsigned long pfn, struct page *p,
1524				unsigned long page_flags)
1525{
1526	struct page_state *ps;
1527
1528	/*
1529	 * The first check uses the current page flags which may not have any
1530	 * relevant information. The second check with the saved page flags is
1531	 * carried out only if the first check can't determine the page status.
1532	 */
1533	for (ps = error_states;; ps++)
1534		if ((p->flags & ps->mask) == ps->res)
1535			break;
1536
1537	page_flags |= (p->flags & (1UL << PG_dirty));
1538
1539	if (!ps->mask)
1540		for (ps = error_states;; ps++)
1541			if ((page_flags & ps->mask) == ps->res)
1542				break;
1543	return page_action(ps, p, pfn);
1544}
1545
1546static int try_to_split_thp_page(struct page *page)
1547{
1548	int ret;
1549
1550	lock_page(page);
1551	ret = split_huge_page(page);
1552	unlock_page(page);
1553
1554	if (unlikely(ret))
1555		put_page(page);
1556
1557	return ret;
1558}
1559
1560static void unmap_and_kill(struct list_head *to_kill, unsigned long pfn,
1561		struct address_space *mapping, pgoff_t index, int flags)
1562{
1563	struct to_kill *tk;
1564	unsigned long size = 0;
1565
1566	list_for_each_entry(tk, to_kill, nd)
1567		if (tk->size_shift)
1568			size = max(size, 1UL << tk->size_shift);
1569
1570	if (size) {
1571		/*
1572		 * Unmap the largest mapping to avoid breaking up device-dax
1573		 * mappings which are constant size. The actual size of the
1574		 * mapping being torn down is communicated in siginfo, see
1575		 * kill_proc()
1576		 */
1577		loff_t start = (index << PAGE_SHIFT) & ~(size - 1);
1578
1579		unmap_mapping_range(mapping, start, size, 0);
1580	}
1581
1582	kill_procs(to_kill, flags & MF_MUST_KILL, false, pfn, flags);
1583}
1584
1585static int mf_generic_kill_procs(unsigned long long pfn, int flags,
1586		struct dev_pagemap *pgmap)
1587{
1588	struct page *page = pfn_to_page(pfn);
1589	LIST_HEAD(to_kill);
1590	dax_entry_t cookie;
1591	int rc = 0;
1592
1593	/*
1594	 * Pages instantiated by device-dax (not filesystem-dax)
1595	 * may be compound pages.
1596	 */
1597	page = compound_head(page);
1598
1599	/*
1600	 * Prevent the inode from being freed while we are interrogating
1601	 * the address_space, typically this would be handled by
1602	 * lock_page(), but dax pages do not use the page lock. This
1603	 * also prevents changes to the mapping of this pfn until
1604	 * poison signaling is complete.
1605	 */
1606	cookie = dax_lock_page(page);
1607	if (!cookie)
1608		return -EBUSY;
1609
1610	if (hwpoison_filter(page)) {
1611		rc = -EOPNOTSUPP;
1612		goto unlock;
1613	}
1614
1615	switch (pgmap->type) {
1616	case MEMORY_DEVICE_PRIVATE:
1617	case MEMORY_DEVICE_COHERENT:
1618		/*
1619		 * TODO: Handle device pages which may need coordination
1620		 * with device-side memory.
1621		 */
1622		rc = -ENXIO;
1623		goto unlock;
1624	default:
1625		break;
1626	}
1627
1628	/*
1629	 * Use this flag as an indication that the dax page has been
1630	 * remapped UC to prevent speculative consumption of poison.
1631	 */
1632	SetPageHWPoison(page);
1633
1634	/*
1635	 * Unlike System-RAM there is no possibility to swap in a
1636	 * different physical page at a given virtual address, so all
1637	 * userspace consumption of ZONE_DEVICE memory necessitates
1638	 * SIGBUS (i.e. MF_MUST_KILL)
1639	 */
1640	flags |= MF_ACTION_REQUIRED | MF_MUST_KILL;
1641	collect_procs(page, &to_kill, true);
1642
1643	unmap_and_kill(&to_kill, pfn, page->mapping, page->index, flags);
1644unlock:
1645	dax_unlock_page(page, cookie);
1646	return rc;
1647}
1648
1649#ifdef CONFIG_FS_DAX
1650/**
1651 * mf_dax_kill_procs - Collect and kill processes who are using this file range
1652 * @mapping:	address_space of the file in use
1653 * @index:	start pgoff of the range within the file
1654 * @count:	length of the range, in unit of PAGE_SIZE
1655 * @mf_flags:	memory failure flags
1656 */
1657int mf_dax_kill_procs(struct address_space *mapping, pgoff_t index,
1658		unsigned long count, int mf_flags)
1659{
1660	LIST_HEAD(to_kill);
1661	dax_entry_t cookie;
1662	struct page *page;
1663	size_t end = index + count;
1664
1665	mf_flags |= MF_ACTION_REQUIRED | MF_MUST_KILL;
1666
1667	for (; index < end; index++) {
1668		page = NULL;
1669		cookie = dax_lock_mapping_entry(mapping, index, &page);
1670		if (!cookie)
1671			return -EBUSY;
1672		if (!page)
1673			goto unlock;
1674
1675		SetPageHWPoison(page);
1676
1677		collect_procs_fsdax(page, mapping, index, &to_kill);
1678		unmap_and_kill(&to_kill, page_to_pfn(page), mapping,
1679				index, mf_flags);
1680unlock:
1681		dax_unlock_mapping_entry(mapping, index, cookie);
1682	}
1683	return 0;
1684}
1685EXPORT_SYMBOL_GPL(mf_dax_kill_procs);
1686#endif /* CONFIG_FS_DAX */
1687
1688#ifdef CONFIG_HUGETLB_PAGE
1689/*
1690 * Struct raw_hwp_page represents information about "raw error page",
1691 * constructing singly linked list from ->_hugetlb_hwpoison field of folio.
1692 */
1693struct raw_hwp_page {
1694	struct llist_node node;
1695	struct page *page;
1696};
1697
1698static inline struct llist_head *raw_hwp_list_head(struct page *hpage)
1699{
1700	return (struct llist_head *)&page_folio(hpage)->_hugetlb_hwpoison;
1701}
1702
1703static unsigned long __free_raw_hwp_pages(struct page *hpage, bool move_flag)
1704{
1705	struct llist_head *head;
1706	struct llist_node *t, *tnode;
1707	unsigned long count = 0;
1708
1709	head = raw_hwp_list_head(hpage);
1710	llist_for_each_safe(tnode, t, head->first) {
1711		struct raw_hwp_page *p = container_of(tnode, struct raw_hwp_page, node);
1712
1713		if (move_flag)
1714			SetPageHWPoison(p->page);
1715		else
1716			num_poisoned_pages_sub(page_to_pfn(p->page), 1);
1717		kfree(p);
1718		count++;
1719	}
1720	llist_del_all(head);
1721	return count;
1722}
1723
1724static int hugetlb_set_page_hwpoison(struct page *hpage, struct page *page)
1725{
1726	struct llist_head *head;
1727	struct raw_hwp_page *raw_hwp;
1728	struct llist_node *t, *tnode;
1729	int ret = TestSetPageHWPoison(hpage) ? -EHWPOISON : 0;
1730
1731	/*
1732	 * Once the hwpoison hugepage has lost reliable raw error info,
1733	 * there is little meaning to keep additional error info precisely,
1734	 * so skip to add additional raw error info.
1735	 */
1736	if (HPageRawHwpUnreliable(hpage))
1737		return -EHWPOISON;
1738	head = raw_hwp_list_head(hpage);
1739	llist_for_each_safe(tnode, t, head->first) {
1740		struct raw_hwp_page *p = container_of(tnode, struct raw_hwp_page, node);
1741
1742		if (p->page == page)
1743			return -EHWPOISON;
1744	}
1745
1746	raw_hwp = kmalloc(sizeof(struct raw_hwp_page), GFP_ATOMIC);
1747	if (raw_hwp) {
1748		raw_hwp->page = page;
1749		llist_add(&raw_hwp->node, head);
1750		/* the first error event will be counted in action_result(). */
1751		if (ret)
1752			num_poisoned_pages_inc(page_to_pfn(page));
1753	} else {
1754		/*
1755		 * Failed to save raw error info.  We no longer trace all
1756		 * hwpoisoned subpages, and we need refuse to free/dissolve
1757		 * this hwpoisoned hugepage.
1758		 */
1759		SetHPageRawHwpUnreliable(hpage);
1760		/*
1761		 * Once HPageRawHwpUnreliable is set, raw_hwp_page is not
1762		 * used any more, so free it.
1763		 */
1764		__free_raw_hwp_pages(hpage, false);
1765	}
1766	return ret;
1767}
1768
1769static unsigned long free_raw_hwp_pages(struct page *hpage, bool move_flag)
1770{
1771	/*
1772	 * HPageVmemmapOptimized hugepages can't be freed because struct
1773	 * pages for tail pages are required but they don't exist.
1774	 */
1775	if (move_flag && HPageVmemmapOptimized(hpage))
1776		return 0;
1777
1778	/*
1779	 * HPageRawHwpUnreliable hugepages shouldn't be unpoisoned by
1780	 * definition.
1781	 */
1782	if (HPageRawHwpUnreliable(hpage))
1783		return 0;
1784
1785	return __free_raw_hwp_pages(hpage, move_flag);
1786}
1787
1788void hugetlb_clear_page_hwpoison(struct page *hpage)
1789{
1790	if (HPageRawHwpUnreliable(hpage))
1791		return;
1792	ClearPageHWPoison(hpage);
1793	free_raw_hwp_pages(hpage, true);
1794}
1795
1796/*
1797 * Called from hugetlb code with hugetlb_lock held.
1798 *
1799 * Return values:
1800 *   0             - free hugepage
1801 *   1             - in-use hugepage
1802 *   2             - not a hugepage
1803 *   -EBUSY        - the hugepage is busy (try to retry)
1804 *   -EHWPOISON    - the hugepage is already hwpoisoned
1805 */
1806int __get_huge_page_for_hwpoison(unsigned long pfn, int flags,
1807				 bool *migratable_cleared)
1808{
1809	struct page *page = pfn_to_page(pfn);
1810	struct page *head = compound_head(page);
1811	int ret = 2;	/* fallback to normal page handling */
1812	bool count_increased = false;
1813
1814	if (!PageHeadHuge(head))
1815		goto out;
1816
1817	if (flags & MF_COUNT_INCREASED) {
1818		ret = 1;
1819		count_increased = true;
1820	} else if (HPageFreed(head)) {
1821		ret = 0;
1822	} else if (HPageMigratable(head)) {
1823		ret = get_page_unless_zero(head);
1824		if (ret)
1825			count_increased = true;
1826	} else {
1827		ret = -EBUSY;
1828		if (!(flags & MF_NO_RETRY))
1829			goto out;
1830	}
1831
1832	if (hugetlb_set_page_hwpoison(head, page)) {
1833		ret = -EHWPOISON;
1834		goto out;
1835	}
1836
1837	/*
1838	 * Clearing HPageMigratable for hwpoisoned hugepages to prevent them
1839	 * from being migrated by memory hotremove.
1840	 */
1841	if (count_increased && HPageMigratable(head)) {
1842		ClearHPageMigratable(head);
1843		*migratable_cleared = true;
1844	}
1845
1846	return ret;
1847out:
1848	if (count_increased)
1849		put_page(head);
1850	return ret;
1851}
1852
1853/*
1854 * Taking refcount of hugetlb pages needs extra care about race conditions
1855 * with basic operations like hugepage allocation/free/demotion.
1856 * So some of prechecks for hwpoison (pinning, and testing/setting
1857 * PageHWPoison) should be done in single hugetlb_lock range.
1858 */
1859static int try_memory_failure_hugetlb(unsigned long pfn, int flags, int *hugetlb)
1860{
1861	int res;
1862	struct page *p = pfn_to_page(pfn);
1863	struct page *head;
1864	unsigned long page_flags;
1865	bool migratable_cleared = false;
1866
1867	*hugetlb = 1;
1868retry:
1869	res = get_huge_page_for_hwpoison(pfn, flags, &migratable_cleared);
1870	if (res == 2) { /* fallback to normal page handling */
1871		*hugetlb = 0;
1872		return 0;
1873	} else if (res == -EHWPOISON) {
1874		pr_err("%#lx: already hardware poisoned\n", pfn);
1875		if (flags & MF_ACTION_REQUIRED) {
1876			head = compound_head(p);
1877			res = kill_accessing_process(current, page_to_pfn(head), flags);
1878		}
1879		return res;
1880	} else if (res == -EBUSY) {
1881		if (!(flags & MF_NO_RETRY)) {
1882			flags |= MF_NO_RETRY;
1883			goto retry;
1884		}
1885		return action_result(pfn, MF_MSG_UNKNOWN, MF_IGNORED);
1886	}
1887
1888	head = compound_head(p);
1889	lock_page(head);
1890
1891	if (hwpoison_filter(p)) {
1892		hugetlb_clear_page_hwpoison(head);
1893		if (migratable_cleared)
1894			SetHPageMigratable(head);
1895		unlock_page(head);
1896		if (res == 1)
1897			put_page(head);
1898		return -EOPNOTSUPP;
1899	}
1900
1901	/*
1902	 * Handling free hugepage.  The possible race with hugepage allocation
1903	 * or demotion can be prevented by PageHWPoison flag.
1904	 */
1905	if (res == 0) {
1906		unlock_page(head);
1907		if (__page_handle_poison(p) >= 0) {
1908			page_ref_inc(p);
1909			res = MF_RECOVERED;
1910		} else {
1911			res = MF_FAILED;
1912		}
1913		return action_result(pfn, MF_MSG_FREE_HUGE, res);
1914	}
1915
1916	page_flags = head->flags;
1917
1918	if (!hwpoison_user_mappings(p, pfn, flags, head)) {
1919		unlock_page(head);
1920		return action_result(pfn, MF_MSG_UNMAP_FAILED, MF_IGNORED);
1921	}
1922
1923	return identify_page_state(pfn, p, page_flags);
1924}
1925
1926#else
1927static inline int try_memory_failure_hugetlb(unsigned long pfn, int flags, int *hugetlb)
1928{
1929	return 0;
1930}
1931
1932static inline unsigned long free_raw_hwp_pages(struct page *hpage, bool flag)
1933{
1934	return 0;
1935}
1936#endif	/* CONFIG_HUGETLB_PAGE */
1937
1938/* Drop the extra refcount in case we come from madvise() */
1939static void put_ref_page(unsigned long pfn, int flags)
1940{
1941	struct page *page;
1942
1943	if (!(flags & MF_COUNT_INCREASED))
1944		return;
1945
1946	page = pfn_to_page(pfn);
1947	if (page)
1948		put_page(page);
1949}
1950
1951static int memory_failure_dev_pagemap(unsigned long pfn, int flags,
1952		struct dev_pagemap *pgmap)
1953{
1954	int rc = -ENXIO;
1955
1956	put_ref_page(pfn, flags);
1957
1958	/* device metadata space is not recoverable */
1959	if (!pgmap_pfn_valid(pgmap, pfn))
1960		goto out;
1961
1962	/*
1963	 * Call driver's implementation to handle the memory failure, otherwise
1964	 * fall back to generic handler.
1965	 */
1966	if (pgmap_has_memory_failure(pgmap)) {
1967		rc = pgmap->ops->memory_failure(pgmap, pfn, 1, flags);
1968		/*
1969		 * Fall back to generic handler too if operation is not
1970		 * supported inside the driver/device/filesystem.
1971		 */
1972		if (rc != -EOPNOTSUPP)
1973			goto out;
1974	}
1975
1976	rc = mf_generic_kill_procs(pfn, flags, pgmap);
1977out:
1978	/* drop pgmap ref acquired in caller */
1979	put_dev_pagemap(pgmap);
1980	action_result(pfn, MF_MSG_DAX, rc ? MF_FAILED : MF_RECOVERED);
1981	return rc;
1982}
1983
1984static DEFINE_MUTEX(mf_mutex);
1985
1986/**
1987 * memory_failure - Handle memory failure of a page.
1988 * @pfn: Page Number of the corrupted page
1989 * @flags: fine tune action taken
1990 *
1991 * This function is called by the low level machine check code
1992 * of an architecture when it detects hardware memory corruption
1993 * of a page. It tries its best to recover, which includes
1994 * dropping pages, killing processes etc.
1995 *
1996 * The function is primarily of use for corruptions that
1997 * happen outside the current execution context (e.g. when
1998 * detected by a background scrubber)
1999 *
2000 * Must run in process context (e.g. a work queue) with interrupts
2001 * enabled and no spinlocks hold.
2002 *
2003 * Return: 0 for successfully handled the memory error,
2004 *         -EOPNOTSUPP for hwpoison_filter() filtered the error event,
2005 *         < 0(except -EOPNOTSUPP) on failure.
2006 */
2007int memory_failure(unsigned long pfn, int flags)
2008{
 
2009	struct page *p;
2010	struct page *hpage;
2011	struct dev_pagemap *pgmap;
2012	int res = 0;
2013	unsigned long page_flags;
2014	bool retry = true;
2015	int hugetlb = 0;
2016
2017	if (!sysctl_memory_failure_recovery)
2018		panic("Memory failure on page %lx", pfn);
2019
2020	mutex_lock(&mf_mutex);
2021
2022	if (!(flags & MF_SW_SIMULATED))
2023		hw_memory_failure = true;
2024
2025	p = pfn_to_online_page(pfn);
2026	if (!p) {
2027		res = arch_memory_failure(pfn, flags);
2028		if (res == 0)
2029			goto unlock_mutex;
2030
2031		if (pfn_valid(pfn)) {
2032			pgmap = get_dev_pagemap(pfn, NULL);
2033			if (pgmap) {
2034				res = memory_failure_dev_pagemap(pfn, flags,
2035								 pgmap);
2036				goto unlock_mutex;
2037			}
2038		}
2039		pr_err("%#lx: memory outside kernel control\n", pfn);
2040		res = -ENXIO;
2041		goto unlock_mutex;
2042	}
2043
2044try_again:
2045	res = try_memory_failure_hugetlb(pfn, flags, &hugetlb);
2046	if (hugetlb)
2047		goto unlock_mutex;
2048
2049	if (TestSetPageHWPoison(p)) {
2050		pr_err("%#lx: already hardware poisoned\n", pfn);
2051		res = -EHWPOISON;
2052		if (flags & MF_ACTION_REQUIRED)
2053			res = kill_accessing_process(current, pfn, flags);
2054		if (flags & MF_COUNT_INCREASED)
2055			put_page(p);
2056		goto unlock_mutex;
2057	}
2058
2059	hpage = compound_head(p);
 
2060
2061	/*
2062	 * We need/can do nothing about count=0 pages.
2063	 * 1) it's a free page, and therefore in safe hand:
2064	 *    check_new_page() will be the gate keeper.
2065	 * 2) it's part of a non-compound high order page.
 
 
 
2066	 *    Implies some kernel user: cannot stop them from
2067	 *    R/W the page; let's pray that the page has been
2068	 *    used and will be freed some time later.
2069	 * In fact it's dangerous to directly bump up page count from 0,
2070	 * that may make page_ref_freeze()/page_ref_unfreeze() mismatch.
2071	 */
2072	if (!(flags & MF_COUNT_INCREASED)) {
2073		res = get_hwpoison_page(p, flags);
2074		if (!res) {
2075			if (is_free_buddy_page(p)) {
2076				if (take_page_off_buddy(p)) {
2077					page_ref_inc(p);
2078					res = MF_RECOVERED;
2079				} else {
2080					/* We lost the race, try again */
2081					if (retry) {
2082						ClearPageHWPoison(p);
2083						retry = false;
2084						goto try_again;
2085					}
2086					res = MF_FAILED;
2087				}
2088				res = action_result(pfn, MF_MSG_BUDDY, res);
2089			} else {
2090				res = action_result(pfn, MF_MSG_KERNEL_HIGH_ORDER, MF_IGNORED);
2091			}
2092			goto unlock_mutex;
2093		} else if (res < 0) {
2094			res = action_result(pfn, MF_MSG_UNKNOWN, MF_IGNORED);
2095			goto unlock_mutex;
2096		}
2097	}
2098
2099	if (PageTransHuge(hpage)) {
2100		/*
2101		 * The flag must be set after the refcount is bumped
2102		 * otherwise it may race with THP split.
2103		 * And the flag can't be set in get_hwpoison_page() since
2104		 * it is called by soft offline too and it is just called
2105		 * for !MF_COUNT_INCREASE.  So here seems to be the best
2106		 * place.
2107		 *
2108		 * Don't need care about the above error handling paths for
2109		 * get_hwpoison_page() since they handle either free page
2110		 * or unhandlable page.  The refcount is bumped iff the
2111		 * page is a valid handlable page.
2112		 */
2113		SetPageHasHWPoisoned(hpage);
2114		if (try_to_split_thp_page(p) < 0) {
2115			res = action_result(pfn, MF_MSG_UNSPLIT_THP, MF_IGNORED);
2116			goto unlock_mutex;
2117		}
2118		VM_BUG_ON_PAGE(!page_count(p), p);
2119	}
2120
2121	/*
2122	 * We ignore non-LRU pages for good reasons.
2123	 * - PG_locked is only well defined for LRU pages and a few others
2124	 * - to avoid races with __SetPageLocked()
2125	 * - to avoid races with __SetPageSlab*() (and more non-atomic ops)
2126	 * The check (unnecessarily) ignores LRU pages being isolated and
2127	 * walked by the page reclaim code, however that's not a big loss.
2128	 */
2129	shake_page(p);
2130
2131	lock_page(p);
2132
2133	/*
2134	 * We're only intended to deal with the non-Compound page here.
2135	 * However, the page could have changed compound pages due to
2136	 * race window. If this happens, we could try again to hopefully
2137	 * handle the page next round.
2138	 */
2139	if (PageCompound(p)) {
2140		if (retry) {
2141			ClearPageHWPoison(p);
2142			unlock_page(p);
2143			put_page(p);
2144			flags &= ~MF_COUNT_INCREASED;
2145			retry = false;
2146			goto try_again;
2147		}
2148		res = action_result(pfn, MF_MSG_DIFFERENT_COMPOUND, MF_IGNORED);
2149		goto unlock_page;
2150	}
2151
2152	/*
2153	 * We use page flags to determine what action should be taken, but
2154	 * the flags can be modified by the error containment action.  One
2155	 * example is an mlocked page, where PG_mlocked is cleared by
2156	 * page_remove_rmap() in try_to_unmap_one(). So to determine page status
2157	 * correctly, we save a copy of the page flags at this time.
2158	 */
2159	page_flags = p->flags;
2160
 
 
 
 
 
 
 
 
2161	if (hwpoison_filter(p)) {
2162		ClearPageHWPoison(p);
2163		unlock_page(p);
2164		put_page(p);
2165		res = -EOPNOTSUPP;
2166		goto unlock_mutex;
2167	}
2168
2169	/*
2170	 * __munlock_pagevec may clear a writeback page's LRU flag without
2171	 * page_lock. We need wait writeback completion for this page or it
2172	 * may trigger vfs BUG while evict inode.
2173	 */
2174	if (!PageLRU(p) && !PageWriteback(p))
2175		goto identify_page_state;
2176
 
 
 
 
2177	/*
2178	 * It's very difficult to mess with pages currently under IO
2179	 * and in many cases impossible, so we just avoid it here.
 
 
2180	 */
 
 
 
2181	wait_on_page_writeback(p);
2182
2183	/*
2184	 * Now take care of user space mappings.
2185	 * Abort on fail: __filemap_remove_folio() assumes unmapped page.
2186	 */
2187	if (!hwpoison_user_mappings(p, pfn, flags, p)) {
2188		res = action_result(pfn, MF_MSG_UNMAP_FAILED, MF_IGNORED);
2189		goto unlock_page;
 
2190	}
2191
2192	/*
2193	 * Torn down by someone else?
2194	 */
2195	if (PageLRU(p) && !PageSwapCache(p) && p->mapping == NULL) {
2196		res = action_result(pfn, MF_MSG_TRUNCATED_LRU, MF_IGNORED);
2197		goto unlock_page;
 
2198	}
2199
2200identify_page_state:
2201	res = identify_page_state(pfn, p, page_flags);
2202	mutex_unlock(&mf_mutex);
2203	return res;
2204unlock_page:
2205	unlock_page(p);
2206unlock_mutex:
2207	mutex_unlock(&mf_mutex);
 
2208	return res;
2209}
2210EXPORT_SYMBOL_GPL(memory_failure);
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
2211
2212#define MEMORY_FAILURE_FIFO_ORDER	4
2213#define MEMORY_FAILURE_FIFO_SIZE	(1 << MEMORY_FAILURE_FIFO_ORDER)
2214
2215struct memory_failure_entry {
2216	unsigned long pfn;
 
2217	int flags;
2218};
2219
2220struct memory_failure_cpu {
2221	DECLARE_KFIFO(fifo, struct memory_failure_entry,
2222		      MEMORY_FAILURE_FIFO_SIZE);
2223	spinlock_t lock;
2224	struct work_struct work;
2225};
2226
2227static DEFINE_PER_CPU(struct memory_failure_cpu, memory_failure_cpu);
2228
2229/**
2230 * memory_failure_queue - Schedule handling memory failure of a page.
2231 * @pfn: Page Number of the corrupted page
 
2232 * @flags: Flags for memory failure handling
2233 *
2234 * This function is called by the low level hardware error handler
2235 * when it detects hardware memory corruption of a page. It schedules
2236 * the recovering of error page, including dropping pages, killing
2237 * processes etc.
2238 *
2239 * The function is primarily of use for corruptions that
2240 * happen outside the current execution context (e.g. when
2241 * detected by a background scrubber)
2242 *
2243 * Can run in IRQ context.
2244 */
2245void memory_failure_queue(unsigned long pfn, int flags)
2246{
2247	struct memory_failure_cpu *mf_cpu;
2248	unsigned long proc_flags;
2249	struct memory_failure_entry entry = {
2250		.pfn =		pfn,
 
2251		.flags =	flags,
2252	};
2253
2254	mf_cpu = &get_cpu_var(memory_failure_cpu);
2255	spin_lock_irqsave(&mf_cpu->lock, proc_flags);
2256	if (kfifo_put(&mf_cpu->fifo, entry))
2257		schedule_work_on(smp_processor_id(), &mf_cpu->work);
2258	else
2259		pr_err("buffer overflow when queuing memory failure at %#lx\n",
2260		       pfn);
2261	spin_unlock_irqrestore(&mf_cpu->lock, proc_flags);
2262	put_cpu_var(memory_failure_cpu);
2263}
2264EXPORT_SYMBOL_GPL(memory_failure_queue);
2265
2266static void memory_failure_work_func(struct work_struct *work)
2267{
2268	struct memory_failure_cpu *mf_cpu;
2269	struct memory_failure_entry entry = { 0, };
2270	unsigned long proc_flags;
2271	int gotten;
2272
2273	mf_cpu = container_of(work, struct memory_failure_cpu, work);
2274	for (;;) {
2275		spin_lock_irqsave(&mf_cpu->lock, proc_flags);
2276		gotten = kfifo_get(&mf_cpu->fifo, &entry);
2277		spin_unlock_irqrestore(&mf_cpu->lock, proc_flags);
2278		if (!gotten)
2279			break;
2280		if (entry.flags & MF_SOFT_OFFLINE)
2281			soft_offline_page(entry.pfn, entry.flags);
2282		else
2283			memory_failure(entry.pfn, entry.flags);
2284	}
2285}
2286
2287/*
2288 * Process memory_failure work queued on the specified CPU.
2289 * Used to avoid return-to-userspace racing with the memory_failure workqueue.
2290 */
2291void memory_failure_queue_kick(int cpu)
2292{
2293	struct memory_failure_cpu *mf_cpu;
2294
2295	mf_cpu = &per_cpu(memory_failure_cpu, cpu);
2296	cancel_work_sync(&mf_cpu->work);
2297	memory_failure_work_func(&mf_cpu->work);
2298}
2299
2300static int __init memory_failure_init(void)
2301{
2302	struct memory_failure_cpu *mf_cpu;
2303	int cpu;
2304
2305	for_each_possible_cpu(cpu) {
2306		mf_cpu = &per_cpu(memory_failure_cpu, cpu);
2307		spin_lock_init(&mf_cpu->lock);
2308		INIT_KFIFO(mf_cpu->fifo);
2309		INIT_WORK(&mf_cpu->work, memory_failure_work_func);
2310	}
2311
2312	return 0;
2313}
2314core_initcall(memory_failure_init);
2315
2316#undef pr_fmt
2317#define pr_fmt(fmt)	"" fmt
2318#define unpoison_pr_info(fmt, pfn, rs)			\
2319({							\
2320	if (__ratelimit(rs))				\
2321		pr_info(fmt, pfn);			\
2322})
2323
2324/**
2325 * unpoison_memory - Unpoison a previously poisoned page
2326 * @pfn: Page number of the to be unpoisoned page
2327 *
2328 * Software-unpoison a page that has been poisoned by
2329 * memory_failure() earlier.
2330 *
2331 * This is only done on the software-level, so it only works
2332 * for linux injected failures, not real hardware failures
2333 *
2334 * Returns 0 for success, otherwise -errno.
2335 */
2336int unpoison_memory(unsigned long pfn)
2337{
2338	struct page *page;
2339	struct page *p;
2340	int ret = -EBUSY;
2341	unsigned long count = 1;
2342	bool huge = false;
2343	static DEFINE_RATELIMIT_STATE(unpoison_rs, DEFAULT_RATELIMIT_INTERVAL,
2344					DEFAULT_RATELIMIT_BURST);
2345
2346	if (!pfn_valid(pfn))
2347		return -ENXIO;
2348
2349	p = pfn_to_page(pfn);
2350	page = compound_head(p);
2351
2352	mutex_lock(&mf_mutex);
2353
2354	if (hw_memory_failure) {
2355		unpoison_pr_info("Unpoison: Disabled after HW memory failure %#lx\n",
2356				 pfn, &unpoison_rs);
2357		ret = -EOPNOTSUPP;
2358		goto unlock_mutex;
2359	}
2360
2361	if (!PageHWPoison(p)) {
2362		unpoison_pr_info("Unpoison: Page was already unpoisoned %#lx\n",
2363				 pfn, &unpoison_rs);
2364		goto unlock_mutex;
2365	}
2366
2367	if (page_count(page) > 1) {
2368		unpoison_pr_info("Unpoison: Someone grabs the hwpoison page %#lx\n",
2369				 pfn, &unpoison_rs);
2370		goto unlock_mutex;
2371	}
2372
2373	if (page_mapped(page)) {
2374		unpoison_pr_info("Unpoison: Someone maps the hwpoison page %#lx\n",
2375				 pfn, &unpoison_rs);
2376		goto unlock_mutex;
 
 
 
 
 
 
 
 
 
 
 
2377	}
2378
2379	if (page_mapping(page)) {
2380		unpoison_pr_info("Unpoison: the hwpoison page has non-NULL mapping %#lx\n",
2381				 pfn, &unpoison_rs);
2382		goto unlock_mutex;
 
 
 
 
 
 
 
 
 
2383	}
 
2384
2385	if (PageSlab(page) || PageTable(page) || PageReserved(page))
2386		goto unlock_mutex;
2387
2388	ret = get_hwpoison_page(p, MF_UNPOISON);
2389	if (!ret) {
2390		if (PageHuge(p)) {
2391			huge = true;
2392			count = free_raw_hwp_pages(page, false);
2393			if (count == 0) {
2394				ret = -EBUSY;
2395				goto unlock_mutex;
2396			}
2397		}
2398		ret = TestClearPageHWPoison(page) ? 0 : -EBUSY;
2399	} else if (ret < 0) {
2400		if (ret == -EHWPOISON) {
2401			ret = put_page_back_buddy(p) ? 0 : -EBUSY;
2402		} else
2403			unpoison_pr_info("Unpoison: failed to grab page %#lx\n",
2404					 pfn, &unpoison_rs);
2405	} else {
2406		if (PageHuge(p)) {
2407			huge = true;
2408			count = free_raw_hwp_pages(page, false);
2409			if (count == 0) {
2410				ret = -EBUSY;
2411				put_page(page);
2412				goto unlock_mutex;
2413			}
2414		}
2415
2416		put_page(page);
2417		if (TestClearPageHWPoison(p)) {
2418			put_page(page);
2419			ret = 0;
2420		}
2421	}
2422
2423unlock_mutex:
2424	mutex_unlock(&mf_mutex);
2425	if (!ret) {
2426		if (!huge)
2427			num_poisoned_pages_sub(pfn, 1);
2428		unpoison_pr_info("Unpoison: Software-unpoisoned page %#lx\n",
2429				 page_to_pfn(p), &unpoison_rs);
2430	}
2431	return ret;
2432}
2433EXPORT_SYMBOL(unpoison_memory);
2434
2435static bool isolate_page(struct page *page, struct list_head *pagelist)
2436{
2437	bool isolated = false;
 
 
 
 
 
 
2438
2439	if (PageHuge(page)) {
2440		isolated = !isolate_hugetlb(page, pagelist);
2441	} else {
2442		bool lru = !__PageMovable(page);
 
 
 
 
 
2443
2444		if (lru)
2445			isolated = !isolate_lru_page(page);
2446		else
2447			isolated = !isolate_movable_page(page,
2448							 ISOLATE_UNEVICTABLE);
2449
2450		if (isolated) {
2451			list_add(&page->lru, pagelist);
2452			if (lru)
2453				inc_node_page_state(page, NR_ISOLATED_ANON +
2454						    page_is_file_lru(page));
2455		}
2456	}
2457
2458	/*
2459	 * If we succeed to isolate the page, we grabbed another refcount on
2460	 * the page, so we can safely drop the one we got from get_any_pages().
2461	 * If we failed to isolate the page, it means that we cannot go further
2462	 * and we will return an error, so drop the reference we got from
2463	 * get_any_pages() as well.
2464	 */
2465	put_page(page);
2466	return isolated;
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
2467}
2468
2469/*
2470 * soft_offline_in_use_page handles hugetlb-pages and non-hugetlb pages.
2471 * If the page is a non-dirty unmapped page-cache page, it simply invalidates.
2472 * If the page is mapped, it migrates the contents over.
2473 */
2474static int soft_offline_in_use_page(struct page *page)
2475{
2476	long ret = 0;
2477	unsigned long pfn = page_to_pfn(page);
2478	struct page *hpage = compound_head(page);
2479	char const *msg_page[] = {"page", "hugepage"};
2480	bool huge = PageHuge(page);
2481	LIST_HEAD(pagelist);
2482	struct migration_target_control mtc = {
2483		.nid = NUMA_NO_NODE,
2484		.gfp_mask = GFP_USER | __GFP_MOVABLE | __GFP_RETRY_MAYFAIL,
2485	};
2486
2487	if (!huge && PageTransHuge(hpage)) {
2488		if (try_to_split_thp_page(page)) {
2489			pr_info("soft offline: %#lx: thp split failed\n", pfn);
2490			return -EBUSY;
2491		}
2492		hpage = page;
2493	}
2494
2495	lock_page(page);
2496	if (!PageHuge(page))
2497		wait_on_page_writeback(page);
2498	if (PageHWPoison(page)) {
2499		unlock_page(page);
2500		put_page(page);
2501		pr_info("soft offline: %#lx page already poisoned\n", pfn);
2502		return 0;
2503	}
2504
2505	if (!PageHuge(page) && PageLRU(page) && !PageSwapCache(page))
2506		/*
2507		 * Try to invalidate first. This should work for
2508		 * non dirty unmapped page cache pages.
2509		 */
2510		ret = invalidate_inode_page(page);
2511	unlock_page(page);
2512
 
 
 
2513	if (ret) {
2514		pr_info("soft_offline: %#lx: invalidated\n", pfn);
2515		page_handle_poison(page, false, true);
2516		return 0;
2517	}
2518
2519	if (isolate_page(hpage, &pagelist)) {
2520		ret = migrate_pages(&pagelist, alloc_migration_target, NULL,
2521			(unsigned long)&mtc, MIGRATE_SYNC, MR_MEMORY_FAILURE, NULL);
2522		if (!ret) {
2523			bool release = !huge;
2524
2525			if (!page_handle_poison(page, huge, release))
2526				ret = -EBUSY;
2527		} else {
2528			if (!list_empty(&pagelist))
2529				putback_movable_pages(&pagelist);
2530
2531			pr_info("soft offline: %#lx: %s migration failed %ld, type %pGp\n",
2532				pfn, msg_page[huge], ret, &page->flags);
2533			if (ret > 0)
2534				ret = -EBUSY;
2535		}
2536	} else {
2537		pr_info("soft offline: %#lx: %s isolation failed, page count %d, type %pGp\n",
2538			pfn, msg_page[huge], page_count(page), &page->flags);
2539		ret = -EBUSY;
2540	}
 
 
 
 
 
 
2541	return ret;
2542}
2543
2544/**
2545 * soft_offline_page - Soft offline a page.
2546 * @pfn: pfn to soft-offline
2547 * @flags: flags. Same as memory_failure().
2548 *
2549 * Returns 0 on success
2550 *         -EOPNOTSUPP for hwpoison_filter() filtered the error event
2551 *         < 0 otherwise negated errno.
2552 *
2553 * Soft offline a page, by migration or invalidation,
2554 * without killing anything. This is for the case when
2555 * a page is not corrupted yet (so it's still valid to access),
2556 * but has had a number of corrected errors and is better taken
2557 * out.
2558 *
2559 * The actual policy on when to do that is maintained by
2560 * user space.
2561 *
2562 * This should never impact any application or cause data loss,
2563 * however it might take some time.
2564 *
2565 * This is not a 100% solution for all memory, but tries to be
2566 * ``good enough'' for the majority of memory.
2567 */
2568int soft_offline_page(unsigned long pfn, int flags)
2569{
2570	int ret;
2571	bool try_again = true;
2572	struct page *page;
 
 
 
 
 
 
 
 
2573
2574	if (!pfn_valid(pfn)) {
2575		WARN_ON_ONCE(flags & MF_COUNT_INCREASED);
2576		return -ENXIO;
2577	}
 
 
 
 
 
2578
2579	/* Only online pages can be soft-offlined (esp., not ZONE_DEVICE). */
2580	page = pfn_to_online_page(pfn);
2581	if (!page) {
2582		put_ref_page(pfn, flags);
 
 
 
 
 
 
 
 
2583		return -EIO;
2584	}
2585
2586	mutex_lock(&mf_mutex);
 
2587
 
 
 
2588	if (PageHWPoison(page)) {
2589		pr_info("%s: %#lx page already poisoned\n", __func__, pfn);
2590		put_ref_page(pfn, flags);
2591		mutex_unlock(&mf_mutex);
2592		return 0;
2593	}
2594
2595retry:
2596	get_online_mems();
2597	ret = get_hwpoison_page(page, flags | MF_SOFT_OFFLINE);
2598	put_online_mems();
2599
2600	if (hwpoison_filter(page)) {
2601		if (ret > 0)
2602			put_page(page);
2603
2604		mutex_unlock(&mf_mutex);
2605		return -EOPNOTSUPP;
 
 
 
 
2606	}
2607
2608	if (ret > 0) {
2609		ret = soft_offline_in_use_page(page);
2610	} else if (ret == 0) {
2611		if (!page_handle_poison(page, true, false) && try_again) {
2612			try_again = false;
2613			flags &= ~MF_COUNT_INCREASED;
2614			goto retry;
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
2615		}
 
 
 
2616	}
 
 
2617
2618	mutex_unlock(&mf_mutex);
2619
 
 
2620	return ret;
2621}