Loading...
1/*
2 * Copyright (C) 2008, 2009 Intel Corporation
3 * Authors: Andi Kleen, Fengguang Wu
4 *
5 * This software may be redistributed and/or modified under the terms of
6 * the GNU General Public License ("GPL") version 2 only as published by the
7 * Free Software Foundation.
8 *
9 * High level machine check handler. Handles pages reported by the
10 * hardware as being corrupted usually due to a multi-bit ECC memory or cache
11 * failure.
12 *
13 * In addition there is a "soft offline" entry point that allows stop using
14 * not-yet-corrupted-by-suspicious pages without killing anything.
15 *
16 * Handles page cache pages in various states. The tricky part
17 * here is that we can access any page asynchronously in respect to
18 * other VM users, because memory failures could happen anytime and
19 * anywhere. This could violate some of their assumptions. This is why
20 * this code has to be extremely careful. Generally it tries to use
21 * normal locking rules, as in get the standard locks, even if that means
22 * the error handling takes potentially a long time.
23 *
24 * There are several operations here with exponential complexity because
25 * of unsuitable VM data structures. For example the operation to map back
26 * from RMAP chains to processes has to walk the complete process list and
27 * has non linear complexity with the number. But since memory corruptions
28 * are rare we hope to get away with this. This avoids impacting the core
29 * VM.
30 */
31
32/*
33 * Notebook:
34 * - hugetlb needs more code
35 * - kcore/oldmem/vmcore/mem/kmem check for hwpoison pages
36 * - pass bad pages to kdump next kernel
37 */
38#include <linux/kernel.h>
39#include <linux/mm.h>
40#include <linux/page-flags.h>
41#include <linux/kernel-page-flags.h>
42#include <linux/sched.h>
43#include <linux/ksm.h>
44#include <linux/rmap.h>
45#include <linux/pagemap.h>
46#include <linux/swap.h>
47#include <linux/backing-dev.h>
48#include <linux/migrate.h>
49#include <linux/page-isolation.h>
50#include <linux/suspend.h>
51#include <linux/slab.h>
52#include <linux/swapops.h>
53#include <linux/hugetlb.h>
54#include <linux/memory_hotplug.h>
55#include <linux/mm_inline.h>
56#include <linux/kfifo.h>
57#include "internal.h"
58
59int sysctl_memory_failure_early_kill __read_mostly = 0;
60
61int sysctl_memory_failure_recovery __read_mostly = 1;
62
63atomic_long_t mce_bad_pages __read_mostly = ATOMIC_LONG_INIT(0);
64
65#if defined(CONFIG_HWPOISON_INJECT) || defined(CONFIG_HWPOISON_INJECT_MODULE)
66
67u32 hwpoison_filter_enable = 0;
68u32 hwpoison_filter_dev_major = ~0U;
69u32 hwpoison_filter_dev_minor = ~0U;
70u64 hwpoison_filter_flags_mask;
71u64 hwpoison_filter_flags_value;
72EXPORT_SYMBOL_GPL(hwpoison_filter_enable);
73EXPORT_SYMBOL_GPL(hwpoison_filter_dev_major);
74EXPORT_SYMBOL_GPL(hwpoison_filter_dev_minor);
75EXPORT_SYMBOL_GPL(hwpoison_filter_flags_mask);
76EXPORT_SYMBOL_GPL(hwpoison_filter_flags_value);
77
78static int hwpoison_filter_dev(struct page *p)
79{
80 struct address_space *mapping;
81 dev_t dev;
82
83 if (hwpoison_filter_dev_major == ~0U &&
84 hwpoison_filter_dev_minor == ~0U)
85 return 0;
86
87 /*
88 * page_mapping() does not accept slab pages.
89 */
90 if (PageSlab(p))
91 return -EINVAL;
92
93 mapping = page_mapping(p);
94 if (mapping == NULL || mapping->host == NULL)
95 return -EINVAL;
96
97 dev = mapping->host->i_sb->s_dev;
98 if (hwpoison_filter_dev_major != ~0U &&
99 hwpoison_filter_dev_major != MAJOR(dev))
100 return -EINVAL;
101 if (hwpoison_filter_dev_minor != ~0U &&
102 hwpoison_filter_dev_minor != MINOR(dev))
103 return -EINVAL;
104
105 return 0;
106}
107
108static int hwpoison_filter_flags(struct page *p)
109{
110 if (!hwpoison_filter_flags_mask)
111 return 0;
112
113 if ((stable_page_flags(p) & hwpoison_filter_flags_mask) ==
114 hwpoison_filter_flags_value)
115 return 0;
116 else
117 return -EINVAL;
118}
119
120/*
121 * This allows stress tests to limit test scope to a collection of tasks
122 * by putting them under some memcg. This prevents killing unrelated/important
123 * processes such as /sbin/init. Note that the target task may share clean
124 * pages with init (eg. libc text), which is harmless. If the target task
125 * share _dirty_ pages with another task B, the test scheme must make sure B
126 * is also included in the memcg. At last, due to race conditions this filter
127 * can only guarantee that the page either belongs to the memcg tasks, or is
128 * a freed page.
129 */
130#ifdef CONFIG_CGROUP_MEM_RES_CTLR_SWAP
131u64 hwpoison_filter_memcg;
132EXPORT_SYMBOL_GPL(hwpoison_filter_memcg);
133static int hwpoison_filter_task(struct page *p)
134{
135 struct mem_cgroup *mem;
136 struct cgroup_subsys_state *css;
137 unsigned long ino;
138
139 if (!hwpoison_filter_memcg)
140 return 0;
141
142 mem = try_get_mem_cgroup_from_page(p);
143 if (!mem)
144 return -EINVAL;
145
146 css = mem_cgroup_css(mem);
147 /* root_mem_cgroup has NULL dentries */
148 if (!css->cgroup->dentry)
149 return -EINVAL;
150
151 ino = css->cgroup->dentry->d_inode->i_ino;
152 css_put(css);
153
154 if (ino != hwpoison_filter_memcg)
155 return -EINVAL;
156
157 return 0;
158}
159#else
160static int hwpoison_filter_task(struct page *p) { return 0; }
161#endif
162
163int hwpoison_filter(struct page *p)
164{
165 if (!hwpoison_filter_enable)
166 return 0;
167
168 if (hwpoison_filter_dev(p))
169 return -EINVAL;
170
171 if (hwpoison_filter_flags(p))
172 return -EINVAL;
173
174 if (hwpoison_filter_task(p))
175 return -EINVAL;
176
177 return 0;
178}
179#else
180int hwpoison_filter(struct page *p)
181{
182 return 0;
183}
184#endif
185
186EXPORT_SYMBOL_GPL(hwpoison_filter);
187
188/*
189 * Send all the processes who have the page mapped an ``action optional''
190 * signal.
191 */
192static int kill_proc_ao(struct task_struct *t, unsigned long addr, int trapno,
193 unsigned long pfn, struct page *page)
194{
195 struct siginfo si;
196 int ret;
197
198 printk(KERN_ERR
199 "MCE %#lx: Killing %s:%d early due to hardware memory corruption\n",
200 pfn, t->comm, t->pid);
201 si.si_signo = SIGBUS;
202 si.si_errno = 0;
203 si.si_code = BUS_MCEERR_AO;
204 si.si_addr = (void *)addr;
205#ifdef __ARCH_SI_TRAPNO
206 si.si_trapno = trapno;
207#endif
208 si.si_addr_lsb = compound_trans_order(compound_head(page)) + PAGE_SHIFT;
209 /*
210 * Don't use force here, it's convenient if the signal
211 * can be temporarily blocked.
212 * This could cause a loop when the user sets SIGBUS
213 * to SIG_IGN, but hopefully no one will do that?
214 */
215 ret = send_sig_info(SIGBUS, &si, t); /* synchronous? */
216 if (ret < 0)
217 printk(KERN_INFO "MCE: Error sending signal to %s:%d: %d\n",
218 t->comm, t->pid, ret);
219 return ret;
220}
221
222/*
223 * When a unknown page type is encountered drain as many buffers as possible
224 * in the hope to turn the page into a LRU or free page, which we can handle.
225 */
226void shake_page(struct page *p, int access)
227{
228 if (!PageSlab(p)) {
229 lru_add_drain_all();
230 if (PageLRU(p))
231 return;
232 drain_all_pages();
233 if (PageLRU(p) || is_free_buddy_page(p))
234 return;
235 }
236
237 /*
238 * Only call shrink_slab here (which would also shrink other caches) if
239 * access is not potentially fatal.
240 */
241 if (access) {
242 int nr;
243 do {
244 struct shrink_control shrink = {
245 .gfp_mask = GFP_KERNEL,
246 };
247
248 nr = shrink_slab(&shrink, 1000, 1000);
249 if (page_count(p) == 1)
250 break;
251 } while (nr > 10);
252 }
253}
254EXPORT_SYMBOL_GPL(shake_page);
255
256/*
257 * Kill all processes that have a poisoned page mapped and then isolate
258 * the page.
259 *
260 * General strategy:
261 * Find all processes having the page mapped and kill them.
262 * But we keep a page reference around so that the page is not
263 * actually freed yet.
264 * Then stash the page away
265 *
266 * There's no convenient way to get back to mapped processes
267 * from the VMAs. So do a brute-force search over all
268 * running processes.
269 *
270 * Remember that machine checks are not common (or rather
271 * if they are common you have other problems), so this shouldn't
272 * be a performance issue.
273 *
274 * Also there are some races possible while we get from the
275 * error detection to actually handle it.
276 */
277
278struct to_kill {
279 struct list_head nd;
280 struct task_struct *tsk;
281 unsigned long addr;
282 char addr_valid;
283};
284
285/*
286 * Failure handling: if we can't find or can't kill a process there's
287 * not much we can do. We just print a message and ignore otherwise.
288 */
289
290/*
291 * Schedule a process for later kill.
292 * Uses GFP_ATOMIC allocations to avoid potential recursions in the VM.
293 * TBD would GFP_NOIO be enough?
294 */
295static void add_to_kill(struct task_struct *tsk, struct page *p,
296 struct vm_area_struct *vma,
297 struct list_head *to_kill,
298 struct to_kill **tkc)
299{
300 struct to_kill *tk;
301
302 if (*tkc) {
303 tk = *tkc;
304 *tkc = NULL;
305 } else {
306 tk = kmalloc(sizeof(struct to_kill), GFP_ATOMIC);
307 if (!tk) {
308 printk(KERN_ERR
309 "MCE: Out of memory while machine check handling\n");
310 return;
311 }
312 }
313 tk->addr = page_address_in_vma(p, vma);
314 tk->addr_valid = 1;
315
316 /*
317 * In theory we don't have to kill when the page was
318 * munmaped. But it could be also a mremap. Since that's
319 * likely very rare kill anyways just out of paranoia, but use
320 * a SIGKILL because the error is not contained anymore.
321 */
322 if (tk->addr == -EFAULT) {
323 pr_info("MCE: Unable to find user space address %lx in %s\n",
324 page_to_pfn(p), tsk->comm);
325 tk->addr_valid = 0;
326 }
327 get_task_struct(tsk);
328 tk->tsk = tsk;
329 list_add_tail(&tk->nd, to_kill);
330}
331
332/*
333 * Kill the processes that have been collected earlier.
334 *
335 * Only do anything when DOIT is set, otherwise just free the list
336 * (this is used for clean pages which do not need killing)
337 * Also when FAIL is set do a force kill because something went
338 * wrong earlier.
339 */
340static void kill_procs_ao(struct list_head *to_kill, int doit, int trapno,
341 int fail, struct page *page, unsigned long pfn)
342{
343 struct to_kill *tk, *next;
344
345 list_for_each_entry_safe (tk, next, to_kill, nd) {
346 if (doit) {
347 /*
348 * In case something went wrong with munmapping
349 * make sure the process doesn't catch the
350 * signal and then access the memory. Just kill it.
351 */
352 if (fail || tk->addr_valid == 0) {
353 printk(KERN_ERR
354 "MCE %#lx: forcibly killing %s:%d because of failure to unmap corrupted page\n",
355 pfn, tk->tsk->comm, tk->tsk->pid);
356 force_sig(SIGKILL, tk->tsk);
357 }
358
359 /*
360 * In theory the process could have mapped
361 * something else on the address in-between. We could
362 * check for that, but we need to tell the
363 * process anyways.
364 */
365 else if (kill_proc_ao(tk->tsk, tk->addr, trapno,
366 pfn, page) < 0)
367 printk(KERN_ERR
368 "MCE %#lx: Cannot send advisory machine check signal to %s:%d\n",
369 pfn, tk->tsk->comm, tk->tsk->pid);
370 }
371 put_task_struct(tk->tsk);
372 kfree(tk);
373 }
374}
375
376static int task_early_kill(struct task_struct *tsk)
377{
378 if (!tsk->mm)
379 return 0;
380 if (tsk->flags & PF_MCE_PROCESS)
381 return !!(tsk->flags & PF_MCE_EARLY);
382 return sysctl_memory_failure_early_kill;
383}
384
385/*
386 * Collect processes when the error hit an anonymous page.
387 */
388static void collect_procs_anon(struct page *page, struct list_head *to_kill,
389 struct to_kill **tkc)
390{
391 struct vm_area_struct *vma;
392 struct task_struct *tsk;
393 struct anon_vma *av;
394
395 av = page_lock_anon_vma(page);
396 if (av == NULL) /* Not actually mapped anymore */
397 return;
398
399 read_lock(&tasklist_lock);
400 for_each_process (tsk) {
401 struct anon_vma_chain *vmac;
402
403 if (!task_early_kill(tsk))
404 continue;
405 list_for_each_entry(vmac, &av->head, same_anon_vma) {
406 vma = vmac->vma;
407 if (!page_mapped_in_vma(page, vma))
408 continue;
409 if (vma->vm_mm == tsk->mm)
410 add_to_kill(tsk, page, vma, to_kill, tkc);
411 }
412 }
413 read_unlock(&tasklist_lock);
414 page_unlock_anon_vma(av);
415}
416
417/*
418 * Collect processes when the error hit a file mapped page.
419 */
420static void collect_procs_file(struct page *page, struct list_head *to_kill,
421 struct to_kill **tkc)
422{
423 struct vm_area_struct *vma;
424 struct task_struct *tsk;
425 struct prio_tree_iter iter;
426 struct address_space *mapping = page->mapping;
427
428 mutex_lock(&mapping->i_mmap_mutex);
429 read_lock(&tasklist_lock);
430 for_each_process(tsk) {
431 pgoff_t pgoff = page->index << (PAGE_CACHE_SHIFT - PAGE_SHIFT);
432
433 if (!task_early_kill(tsk))
434 continue;
435
436 vma_prio_tree_foreach(vma, &iter, &mapping->i_mmap, pgoff,
437 pgoff) {
438 /*
439 * Send early kill signal to tasks where a vma covers
440 * the page but the corrupted page is not necessarily
441 * mapped it in its pte.
442 * Assume applications who requested early kill want
443 * to be informed of all such data corruptions.
444 */
445 if (vma->vm_mm == tsk->mm)
446 add_to_kill(tsk, page, vma, to_kill, tkc);
447 }
448 }
449 read_unlock(&tasklist_lock);
450 mutex_unlock(&mapping->i_mmap_mutex);
451}
452
453/*
454 * Collect the processes who have the corrupted page mapped to kill.
455 * This is done in two steps for locking reasons.
456 * First preallocate one tokill structure outside the spin locks,
457 * so that we can kill at least one process reasonably reliable.
458 */
459static void collect_procs(struct page *page, struct list_head *tokill)
460{
461 struct to_kill *tk;
462
463 if (!page->mapping)
464 return;
465
466 tk = kmalloc(sizeof(struct to_kill), GFP_NOIO);
467 if (!tk)
468 return;
469 if (PageAnon(page))
470 collect_procs_anon(page, tokill, &tk);
471 else
472 collect_procs_file(page, tokill, &tk);
473 kfree(tk);
474}
475
476/*
477 * Error handlers for various types of pages.
478 */
479
480enum outcome {
481 IGNORED, /* Error: cannot be handled */
482 FAILED, /* Error: handling failed */
483 DELAYED, /* Will be handled later */
484 RECOVERED, /* Successfully recovered */
485};
486
487static const char *action_name[] = {
488 [IGNORED] = "Ignored",
489 [FAILED] = "Failed",
490 [DELAYED] = "Delayed",
491 [RECOVERED] = "Recovered",
492};
493
494/*
495 * XXX: It is possible that a page is isolated from LRU cache,
496 * and then kept in swap cache or failed to remove from page cache.
497 * The page count will stop it from being freed by unpoison.
498 * Stress tests should be aware of this memory leak problem.
499 */
500static int delete_from_lru_cache(struct page *p)
501{
502 if (!isolate_lru_page(p)) {
503 /*
504 * Clear sensible page flags, so that the buddy system won't
505 * complain when the page is unpoison-and-freed.
506 */
507 ClearPageActive(p);
508 ClearPageUnevictable(p);
509 /*
510 * drop the page count elevated by isolate_lru_page()
511 */
512 page_cache_release(p);
513 return 0;
514 }
515 return -EIO;
516}
517
518/*
519 * Error hit kernel page.
520 * Do nothing, try to be lucky and not touch this instead. For a few cases we
521 * could be more sophisticated.
522 */
523static int me_kernel(struct page *p, unsigned long pfn)
524{
525 return IGNORED;
526}
527
528/*
529 * Page in unknown state. Do nothing.
530 */
531static int me_unknown(struct page *p, unsigned long pfn)
532{
533 printk(KERN_ERR "MCE %#lx: Unknown page state\n", pfn);
534 return FAILED;
535}
536
537/*
538 * Clean (or cleaned) page cache page.
539 */
540static int me_pagecache_clean(struct page *p, unsigned long pfn)
541{
542 int err;
543 int ret = FAILED;
544 struct address_space *mapping;
545
546 delete_from_lru_cache(p);
547
548 /*
549 * For anonymous pages we're done the only reference left
550 * should be the one m_f() holds.
551 */
552 if (PageAnon(p))
553 return RECOVERED;
554
555 /*
556 * Now truncate the page in the page cache. This is really
557 * more like a "temporary hole punch"
558 * Don't do this for block devices when someone else
559 * has a reference, because it could be file system metadata
560 * and that's not safe to truncate.
561 */
562 mapping = page_mapping(p);
563 if (!mapping) {
564 /*
565 * Page has been teared down in the meanwhile
566 */
567 return FAILED;
568 }
569
570 /*
571 * Truncation is a bit tricky. Enable it per file system for now.
572 *
573 * Open: to take i_mutex or not for this? Right now we don't.
574 */
575 if (mapping->a_ops->error_remove_page) {
576 err = mapping->a_ops->error_remove_page(mapping, p);
577 if (err != 0) {
578 printk(KERN_INFO "MCE %#lx: Failed to punch page: %d\n",
579 pfn, err);
580 } else if (page_has_private(p) &&
581 !try_to_release_page(p, GFP_NOIO)) {
582 pr_info("MCE %#lx: failed to release buffers\n", pfn);
583 } else {
584 ret = RECOVERED;
585 }
586 } else {
587 /*
588 * If the file system doesn't support it just invalidate
589 * This fails on dirty or anything with private pages
590 */
591 if (invalidate_inode_page(p))
592 ret = RECOVERED;
593 else
594 printk(KERN_INFO "MCE %#lx: Failed to invalidate\n",
595 pfn);
596 }
597 return ret;
598}
599
600/*
601 * Dirty cache page page
602 * Issues: when the error hit a hole page the error is not properly
603 * propagated.
604 */
605static int me_pagecache_dirty(struct page *p, unsigned long pfn)
606{
607 struct address_space *mapping = page_mapping(p);
608
609 SetPageError(p);
610 /* TBD: print more information about the file. */
611 if (mapping) {
612 /*
613 * IO error will be reported by write(), fsync(), etc.
614 * who check the mapping.
615 * This way the application knows that something went
616 * wrong with its dirty file data.
617 *
618 * There's one open issue:
619 *
620 * The EIO will be only reported on the next IO
621 * operation and then cleared through the IO map.
622 * Normally Linux has two mechanisms to pass IO error
623 * first through the AS_EIO flag in the address space
624 * and then through the PageError flag in the page.
625 * Since we drop pages on memory failure handling the
626 * only mechanism open to use is through AS_AIO.
627 *
628 * This has the disadvantage that it gets cleared on
629 * the first operation that returns an error, while
630 * the PageError bit is more sticky and only cleared
631 * when the page is reread or dropped. If an
632 * application assumes it will always get error on
633 * fsync, but does other operations on the fd before
634 * and the page is dropped between then the error
635 * will not be properly reported.
636 *
637 * This can already happen even without hwpoisoned
638 * pages: first on metadata IO errors (which only
639 * report through AS_EIO) or when the page is dropped
640 * at the wrong time.
641 *
642 * So right now we assume that the application DTRT on
643 * the first EIO, but we're not worse than other parts
644 * of the kernel.
645 */
646 mapping_set_error(mapping, EIO);
647 }
648
649 return me_pagecache_clean(p, pfn);
650}
651
652/*
653 * Clean and dirty swap cache.
654 *
655 * Dirty swap cache page is tricky to handle. The page could live both in page
656 * cache and swap cache(ie. page is freshly swapped in). So it could be
657 * referenced concurrently by 2 types of PTEs:
658 * normal PTEs and swap PTEs. We try to handle them consistently by calling
659 * try_to_unmap(TTU_IGNORE_HWPOISON) to convert the normal PTEs to swap PTEs,
660 * and then
661 * - clear dirty bit to prevent IO
662 * - remove from LRU
663 * - but keep in the swap cache, so that when we return to it on
664 * a later page fault, we know the application is accessing
665 * corrupted data and shall be killed (we installed simple
666 * interception code in do_swap_page to catch it).
667 *
668 * Clean swap cache pages can be directly isolated. A later page fault will
669 * bring in the known good data from disk.
670 */
671static int me_swapcache_dirty(struct page *p, unsigned long pfn)
672{
673 ClearPageDirty(p);
674 /* Trigger EIO in shmem: */
675 ClearPageUptodate(p);
676
677 if (!delete_from_lru_cache(p))
678 return DELAYED;
679 else
680 return FAILED;
681}
682
683static int me_swapcache_clean(struct page *p, unsigned long pfn)
684{
685 delete_from_swap_cache(p);
686
687 if (!delete_from_lru_cache(p))
688 return RECOVERED;
689 else
690 return FAILED;
691}
692
693/*
694 * Huge pages. Needs work.
695 * Issues:
696 * - Error on hugepage is contained in hugepage unit (not in raw page unit.)
697 * To narrow down kill region to one page, we need to break up pmd.
698 */
699static int me_huge_page(struct page *p, unsigned long pfn)
700{
701 int res = 0;
702 struct page *hpage = compound_head(p);
703 /*
704 * We can safely recover from error on free or reserved (i.e.
705 * not in-use) hugepage by dequeuing it from freelist.
706 * To check whether a hugepage is in-use or not, we can't use
707 * page->lru because it can be used in other hugepage operations,
708 * such as __unmap_hugepage_range() and gather_surplus_pages().
709 * So instead we use page_mapping() and PageAnon().
710 * We assume that this function is called with page lock held,
711 * so there is no race between isolation and mapping/unmapping.
712 */
713 if (!(page_mapping(hpage) || PageAnon(hpage))) {
714 res = dequeue_hwpoisoned_huge_page(hpage);
715 if (!res)
716 return RECOVERED;
717 }
718 return DELAYED;
719}
720
721/*
722 * Various page states we can handle.
723 *
724 * A page state is defined by its current page->flags bits.
725 * The table matches them in order and calls the right handler.
726 *
727 * This is quite tricky because we can access page at any time
728 * in its live cycle, so all accesses have to be extremely careful.
729 *
730 * This is not complete. More states could be added.
731 * For any missing state don't attempt recovery.
732 */
733
734#define dirty (1UL << PG_dirty)
735#define sc (1UL << PG_swapcache)
736#define unevict (1UL << PG_unevictable)
737#define mlock (1UL << PG_mlocked)
738#define writeback (1UL << PG_writeback)
739#define lru (1UL << PG_lru)
740#define swapbacked (1UL << PG_swapbacked)
741#define head (1UL << PG_head)
742#define tail (1UL << PG_tail)
743#define compound (1UL << PG_compound)
744#define slab (1UL << PG_slab)
745#define reserved (1UL << PG_reserved)
746
747static struct page_state {
748 unsigned long mask;
749 unsigned long res;
750 char *msg;
751 int (*action)(struct page *p, unsigned long pfn);
752} error_states[] = {
753 { reserved, reserved, "reserved kernel", me_kernel },
754 /*
755 * free pages are specially detected outside this table:
756 * PG_buddy pages only make a small fraction of all free pages.
757 */
758
759 /*
760 * Could in theory check if slab page is free or if we can drop
761 * currently unused objects without touching them. But just
762 * treat it as standard kernel for now.
763 */
764 { slab, slab, "kernel slab", me_kernel },
765
766#ifdef CONFIG_PAGEFLAGS_EXTENDED
767 { head, head, "huge", me_huge_page },
768 { tail, tail, "huge", me_huge_page },
769#else
770 { compound, compound, "huge", me_huge_page },
771#endif
772
773 { sc|dirty, sc|dirty, "swapcache", me_swapcache_dirty },
774 { sc|dirty, sc, "swapcache", me_swapcache_clean },
775
776 { unevict|dirty, unevict|dirty, "unevictable LRU", me_pagecache_dirty},
777 { unevict, unevict, "unevictable LRU", me_pagecache_clean},
778
779 { mlock|dirty, mlock|dirty, "mlocked LRU", me_pagecache_dirty },
780 { mlock, mlock, "mlocked LRU", me_pagecache_clean },
781
782 { lru|dirty, lru|dirty, "LRU", me_pagecache_dirty },
783 { lru|dirty, lru, "clean LRU", me_pagecache_clean },
784
785 /*
786 * Catchall entry: must be at end.
787 */
788 { 0, 0, "unknown page state", me_unknown },
789};
790
791#undef dirty
792#undef sc
793#undef unevict
794#undef mlock
795#undef writeback
796#undef lru
797#undef swapbacked
798#undef head
799#undef tail
800#undef compound
801#undef slab
802#undef reserved
803
804static void action_result(unsigned long pfn, char *msg, int result)
805{
806 struct page *page = pfn_to_page(pfn);
807
808 printk(KERN_ERR "MCE %#lx: %s%s page recovery: %s\n",
809 pfn,
810 PageDirty(page) ? "dirty " : "",
811 msg, action_name[result]);
812}
813
814static int page_action(struct page_state *ps, struct page *p,
815 unsigned long pfn)
816{
817 int result;
818 int count;
819
820 result = ps->action(p, pfn);
821 action_result(pfn, ps->msg, result);
822
823 count = page_count(p) - 1;
824 if (ps->action == me_swapcache_dirty && result == DELAYED)
825 count--;
826 if (count != 0) {
827 printk(KERN_ERR
828 "MCE %#lx: %s page still referenced by %d users\n",
829 pfn, ps->msg, count);
830 result = FAILED;
831 }
832
833 /* Could do more checks here if page looks ok */
834 /*
835 * Could adjust zone counters here to correct for the missing page.
836 */
837
838 return (result == RECOVERED || result == DELAYED) ? 0 : -EBUSY;
839}
840
841/*
842 * Do all that is necessary to remove user space mappings. Unmap
843 * the pages and send SIGBUS to the processes if the data was dirty.
844 */
845static int hwpoison_user_mappings(struct page *p, unsigned long pfn,
846 int trapno)
847{
848 enum ttu_flags ttu = TTU_UNMAP | TTU_IGNORE_MLOCK | TTU_IGNORE_ACCESS;
849 struct address_space *mapping;
850 LIST_HEAD(tokill);
851 int ret;
852 int kill = 1;
853 struct page *hpage = compound_head(p);
854 struct page *ppage;
855
856 if (PageReserved(p) || PageSlab(p))
857 return SWAP_SUCCESS;
858
859 /*
860 * This check implies we don't kill processes if their pages
861 * are in the swap cache early. Those are always late kills.
862 */
863 if (!page_mapped(hpage))
864 return SWAP_SUCCESS;
865
866 if (PageKsm(p))
867 return SWAP_FAIL;
868
869 if (PageSwapCache(p)) {
870 printk(KERN_ERR
871 "MCE %#lx: keeping poisoned page in swap cache\n", pfn);
872 ttu |= TTU_IGNORE_HWPOISON;
873 }
874
875 /*
876 * Propagate the dirty bit from PTEs to struct page first, because we
877 * need this to decide if we should kill or just drop the page.
878 * XXX: the dirty test could be racy: set_page_dirty() may not always
879 * be called inside page lock (it's recommended but not enforced).
880 */
881 mapping = page_mapping(hpage);
882 if (!PageDirty(hpage) && mapping &&
883 mapping_cap_writeback_dirty(mapping)) {
884 if (page_mkclean(hpage)) {
885 SetPageDirty(hpage);
886 } else {
887 kill = 0;
888 ttu |= TTU_IGNORE_HWPOISON;
889 printk(KERN_INFO
890 "MCE %#lx: corrupted page was clean: dropped without side effects\n",
891 pfn);
892 }
893 }
894
895 /*
896 * ppage: poisoned page
897 * if p is regular page(4k page)
898 * ppage == real poisoned page;
899 * else p is hugetlb or THP, ppage == head page.
900 */
901 ppage = hpage;
902
903 if (PageTransHuge(hpage)) {
904 /*
905 * Verify that this isn't a hugetlbfs head page, the check for
906 * PageAnon is just for avoid tripping a split_huge_page
907 * internal debug check, as split_huge_page refuses to deal with
908 * anything that isn't an anon page. PageAnon can't go away fro
909 * under us because we hold a refcount on the hpage, without a
910 * refcount on the hpage. split_huge_page can't be safely called
911 * in the first place, having a refcount on the tail isn't
912 * enough * to be safe.
913 */
914 if (!PageHuge(hpage) && PageAnon(hpage)) {
915 if (unlikely(split_huge_page(hpage))) {
916 /*
917 * FIXME: if splitting THP is failed, it is
918 * better to stop the following operation rather
919 * than causing panic by unmapping. System might
920 * survive if the page is freed later.
921 */
922 printk(KERN_INFO
923 "MCE %#lx: failed to split THP\n", pfn);
924
925 BUG_ON(!PageHWPoison(p));
926 return SWAP_FAIL;
927 }
928 /* THP is split, so ppage should be the real poisoned page. */
929 ppage = p;
930 }
931 }
932
933 /*
934 * First collect all the processes that have the page
935 * mapped in dirty form. This has to be done before try_to_unmap,
936 * because ttu takes the rmap data structures down.
937 *
938 * Error handling: We ignore errors here because
939 * there's nothing that can be done.
940 */
941 if (kill)
942 collect_procs(ppage, &tokill);
943
944 if (hpage != ppage)
945 lock_page(ppage);
946
947 ret = try_to_unmap(ppage, ttu);
948 if (ret != SWAP_SUCCESS)
949 printk(KERN_ERR "MCE %#lx: failed to unmap page (mapcount=%d)\n",
950 pfn, page_mapcount(ppage));
951
952 if (hpage != ppage)
953 unlock_page(ppage);
954
955 /*
956 * Now that the dirty bit has been propagated to the
957 * struct page and all unmaps done we can decide if
958 * killing is needed or not. Only kill when the page
959 * was dirty, otherwise the tokill list is merely
960 * freed. When there was a problem unmapping earlier
961 * use a more force-full uncatchable kill to prevent
962 * any accesses to the poisoned memory.
963 */
964 kill_procs_ao(&tokill, !!PageDirty(ppage), trapno,
965 ret != SWAP_SUCCESS, p, pfn);
966
967 return ret;
968}
969
970static void set_page_hwpoison_huge_page(struct page *hpage)
971{
972 int i;
973 int nr_pages = 1 << compound_trans_order(hpage);
974 for (i = 0; i < nr_pages; i++)
975 SetPageHWPoison(hpage + i);
976}
977
978static void clear_page_hwpoison_huge_page(struct page *hpage)
979{
980 int i;
981 int nr_pages = 1 << compound_trans_order(hpage);
982 for (i = 0; i < nr_pages; i++)
983 ClearPageHWPoison(hpage + i);
984}
985
986int __memory_failure(unsigned long pfn, int trapno, int flags)
987{
988 struct page_state *ps;
989 struct page *p;
990 struct page *hpage;
991 int res;
992 unsigned int nr_pages;
993
994 if (!sysctl_memory_failure_recovery)
995 panic("Memory failure from trap %d on page %lx", trapno, pfn);
996
997 if (!pfn_valid(pfn)) {
998 printk(KERN_ERR
999 "MCE %#lx: memory outside kernel control\n",
1000 pfn);
1001 return -ENXIO;
1002 }
1003
1004 p = pfn_to_page(pfn);
1005 hpage = compound_head(p);
1006 if (TestSetPageHWPoison(p)) {
1007 printk(KERN_ERR "MCE %#lx: already hardware poisoned\n", pfn);
1008 return 0;
1009 }
1010
1011 nr_pages = 1 << compound_trans_order(hpage);
1012 atomic_long_add(nr_pages, &mce_bad_pages);
1013
1014 /*
1015 * We need/can do nothing about count=0 pages.
1016 * 1) it's a free page, and therefore in safe hand:
1017 * prep_new_page() will be the gate keeper.
1018 * 2) it's a free hugepage, which is also safe:
1019 * an affected hugepage will be dequeued from hugepage freelist,
1020 * so there's no concern about reusing it ever after.
1021 * 3) it's part of a non-compound high order page.
1022 * Implies some kernel user: cannot stop them from
1023 * R/W the page; let's pray that the page has been
1024 * used and will be freed some time later.
1025 * In fact it's dangerous to directly bump up page count from 0,
1026 * that may make page_freeze_refs()/page_unfreeze_refs() mismatch.
1027 */
1028 if (!(flags & MF_COUNT_INCREASED) &&
1029 !get_page_unless_zero(hpage)) {
1030 if (is_free_buddy_page(p)) {
1031 action_result(pfn, "free buddy", DELAYED);
1032 return 0;
1033 } else if (PageHuge(hpage)) {
1034 /*
1035 * Check "just unpoisoned", "filter hit", and
1036 * "race with other subpage."
1037 */
1038 lock_page(hpage);
1039 if (!PageHWPoison(hpage)
1040 || (hwpoison_filter(p) && TestClearPageHWPoison(p))
1041 || (p != hpage && TestSetPageHWPoison(hpage))) {
1042 atomic_long_sub(nr_pages, &mce_bad_pages);
1043 return 0;
1044 }
1045 set_page_hwpoison_huge_page(hpage);
1046 res = dequeue_hwpoisoned_huge_page(hpage);
1047 action_result(pfn, "free huge",
1048 res ? IGNORED : DELAYED);
1049 unlock_page(hpage);
1050 return res;
1051 } else {
1052 action_result(pfn, "high order kernel", IGNORED);
1053 return -EBUSY;
1054 }
1055 }
1056
1057 /*
1058 * We ignore non-LRU pages for good reasons.
1059 * - PG_locked is only well defined for LRU pages and a few others
1060 * - to avoid races with __set_page_locked()
1061 * - to avoid races with __SetPageSlab*() (and more non-atomic ops)
1062 * The check (unnecessarily) ignores LRU pages being isolated and
1063 * walked by the page reclaim code, however that's not a big loss.
1064 */
1065 if (!PageHuge(p) && !PageTransCompound(p)) {
1066 if (!PageLRU(p))
1067 shake_page(p, 0);
1068 if (!PageLRU(p)) {
1069 /*
1070 * shake_page could have turned it free.
1071 */
1072 if (is_free_buddy_page(p)) {
1073 action_result(pfn, "free buddy, 2nd try",
1074 DELAYED);
1075 return 0;
1076 }
1077 action_result(pfn, "non LRU", IGNORED);
1078 put_page(p);
1079 return -EBUSY;
1080 }
1081 }
1082
1083 /*
1084 * Lock the page and wait for writeback to finish.
1085 * It's very difficult to mess with pages currently under IO
1086 * and in many cases impossible, so we just avoid it here.
1087 */
1088 lock_page(hpage);
1089
1090 /*
1091 * unpoison always clear PG_hwpoison inside page lock
1092 */
1093 if (!PageHWPoison(p)) {
1094 printk(KERN_ERR "MCE %#lx: just unpoisoned\n", pfn);
1095 res = 0;
1096 goto out;
1097 }
1098 if (hwpoison_filter(p)) {
1099 if (TestClearPageHWPoison(p))
1100 atomic_long_sub(nr_pages, &mce_bad_pages);
1101 unlock_page(hpage);
1102 put_page(hpage);
1103 return 0;
1104 }
1105
1106 /*
1107 * For error on the tail page, we should set PG_hwpoison
1108 * on the head page to show that the hugepage is hwpoisoned
1109 */
1110 if (PageHuge(p) && PageTail(p) && TestSetPageHWPoison(hpage)) {
1111 action_result(pfn, "hugepage already hardware poisoned",
1112 IGNORED);
1113 unlock_page(hpage);
1114 put_page(hpage);
1115 return 0;
1116 }
1117 /*
1118 * Set PG_hwpoison on all pages in an error hugepage,
1119 * because containment is done in hugepage unit for now.
1120 * Since we have done TestSetPageHWPoison() for the head page with
1121 * page lock held, we can safely set PG_hwpoison bits on tail pages.
1122 */
1123 if (PageHuge(p))
1124 set_page_hwpoison_huge_page(hpage);
1125
1126 wait_on_page_writeback(p);
1127
1128 /*
1129 * Now take care of user space mappings.
1130 * Abort on fail: __delete_from_page_cache() assumes unmapped page.
1131 */
1132 if (hwpoison_user_mappings(p, pfn, trapno) != SWAP_SUCCESS) {
1133 printk(KERN_ERR "MCE %#lx: cannot unmap page, give up\n", pfn);
1134 res = -EBUSY;
1135 goto out;
1136 }
1137
1138 /*
1139 * Torn down by someone else?
1140 */
1141 if (PageLRU(p) && !PageSwapCache(p) && p->mapping == NULL) {
1142 action_result(pfn, "already truncated LRU", IGNORED);
1143 res = -EBUSY;
1144 goto out;
1145 }
1146
1147 res = -EBUSY;
1148 for (ps = error_states;; ps++) {
1149 if ((p->flags & ps->mask) == ps->res) {
1150 res = page_action(ps, p, pfn);
1151 break;
1152 }
1153 }
1154out:
1155 unlock_page(hpage);
1156 return res;
1157}
1158EXPORT_SYMBOL_GPL(__memory_failure);
1159
1160/**
1161 * memory_failure - Handle memory failure of a page.
1162 * @pfn: Page Number of the corrupted page
1163 * @trapno: Trap number reported in the signal to user space.
1164 *
1165 * This function is called by the low level machine check code
1166 * of an architecture when it detects hardware memory corruption
1167 * of a page. It tries its best to recover, which includes
1168 * dropping pages, killing processes etc.
1169 *
1170 * The function is primarily of use for corruptions that
1171 * happen outside the current execution context (e.g. when
1172 * detected by a background scrubber)
1173 *
1174 * Must run in process context (e.g. a work queue) with interrupts
1175 * enabled and no spinlocks hold.
1176 */
1177void memory_failure(unsigned long pfn, int trapno)
1178{
1179 __memory_failure(pfn, trapno, 0);
1180}
1181
1182#define MEMORY_FAILURE_FIFO_ORDER 4
1183#define MEMORY_FAILURE_FIFO_SIZE (1 << MEMORY_FAILURE_FIFO_ORDER)
1184
1185struct memory_failure_entry {
1186 unsigned long pfn;
1187 int trapno;
1188 int flags;
1189};
1190
1191struct memory_failure_cpu {
1192 DECLARE_KFIFO(fifo, struct memory_failure_entry,
1193 MEMORY_FAILURE_FIFO_SIZE);
1194 spinlock_t lock;
1195 struct work_struct work;
1196};
1197
1198static DEFINE_PER_CPU(struct memory_failure_cpu, memory_failure_cpu);
1199
1200/**
1201 * memory_failure_queue - Schedule handling memory failure of a page.
1202 * @pfn: Page Number of the corrupted page
1203 * @trapno: Trap number reported in the signal to user space.
1204 * @flags: Flags for memory failure handling
1205 *
1206 * This function is called by the low level hardware error handler
1207 * when it detects hardware memory corruption of a page. It schedules
1208 * the recovering of error page, including dropping pages, killing
1209 * processes etc.
1210 *
1211 * The function is primarily of use for corruptions that
1212 * happen outside the current execution context (e.g. when
1213 * detected by a background scrubber)
1214 *
1215 * Can run in IRQ context.
1216 */
1217void memory_failure_queue(unsigned long pfn, int trapno, int flags)
1218{
1219 struct memory_failure_cpu *mf_cpu;
1220 unsigned long proc_flags;
1221 struct memory_failure_entry entry = {
1222 .pfn = pfn,
1223 .trapno = trapno,
1224 .flags = flags,
1225 };
1226
1227 mf_cpu = &get_cpu_var(memory_failure_cpu);
1228 spin_lock_irqsave(&mf_cpu->lock, proc_flags);
1229 if (kfifo_put(&mf_cpu->fifo, &entry))
1230 schedule_work_on(smp_processor_id(), &mf_cpu->work);
1231 else
1232 pr_err("Memory failure: buffer overflow when queuing memory failure at 0x%#lx\n",
1233 pfn);
1234 spin_unlock_irqrestore(&mf_cpu->lock, proc_flags);
1235 put_cpu_var(memory_failure_cpu);
1236}
1237EXPORT_SYMBOL_GPL(memory_failure_queue);
1238
1239static void memory_failure_work_func(struct work_struct *work)
1240{
1241 struct memory_failure_cpu *mf_cpu;
1242 struct memory_failure_entry entry = { 0, };
1243 unsigned long proc_flags;
1244 int gotten;
1245
1246 mf_cpu = &__get_cpu_var(memory_failure_cpu);
1247 for (;;) {
1248 spin_lock_irqsave(&mf_cpu->lock, proc_flags);
1249 gotten = kfifo_get(&mf_cpu->fifo, &entry);
1250 spin_unlock_irqrestore(&mf_cpu->lock, proc_flags);
1251 if (!gotten)
1252 break;
1253 __memory_failure(entry.pfn, entry.trapno, entry.flags);
1254 }
1255}
1256
1257static int __init memory_failure_init(void)
1258{
1259 struct memory_failure_cpu *mf_cpu;
1260 int cpu;
1261
1262 for_each_possible_cpu(cpu) {
1263 mf_cpu = &per_cpu(memory_failure_cpu, cpu);
1264 spin_lock_init(&mf_cpu->lock);
1265 INIT_KFIFO(mf_cpu->fifo);
1266 INIT_WORK(&mf_cpu->work, memory_failure_work_func);
1267 }
1268
1269 return 0;
1270}
1271core_initcall(memory_failure_init);
1272
1273/**
1274 * unpoison_memory - Unpoison a previously poisoned page
1275 * @pfn: Page number of the to be unpoisoned page
1276 *
1277 * Software-unpoison a page that has been poisoned by
1278 * memory_failure() earlier.
1279 *
1280 * This is only done on the software-level, so it only works
1281 * for linux injected failures, not real hardware failures
1282 *
1283 * Returns 0 for success, otherwise -errno.
1284 */
1285int unpoison_memory(unsigned long pfn)
1286{
1287 struct page *page;
1288 struct page *p;
1289 int freeit = 0;
1290 unsigned int nr_pages;
1291
1292 if (!pfn_valid(pfn))
1293 return -ENXIO;
1294
1295 p = pfn_to_page(pfn);
1296 page = compound_head(p);
1297
1298 if (!PageHWPoison(p)) {
1299 pr_info("MCE: Page was already unpoisoned %#lx\n", pfn);
1300 return 0;
1301 }
1302
1303 nr_pages = 1 << compound_trans_order(page);
1304
1305 if (!get_page_unless_zero(page)) {
1306 /*
1307 * Since HWPoisoned hugepage should have non-zero refcount,
1308 * race between memory failure and unpoison seems to happen.
1309 * In such case unpoison fails and memory failure runs
1310 * to the end.
1311 */
1312 if (PageHuge(page)) {
1313 pr_debug("MCE: Memory failure is now running on free hugepage %#lx\n", pfn);
1314 return 0;
1315 }
1316 if (TestClearPageHWPoison(p))
1317 atomic_long_sub(nr_pages, &mce_bad_pages);
1318 pr_info("MCE: Software-unpoisoned free page %#lx\n", pfn);
1319 return 0;
1320 }
1321
1322 lock_page(page);
1323 /*
1324 * This test is racy because PG_hwpoison is set outside of page lock.
1325 * That's acceptable because that won't trigger kernel panic. Instead,
1326 * the PG_hwpoison page will be caught and isolated on the entrance to
1327 * the free buddy page pool.
1328 */
1329 if (TestClearPageHWPoison(page)) {
1330 pr_info("MCE: Software-unpoisoned page %#lx\n", pfn);
1331 atomic_long_sub(nr_pages, &mce_bad_pages);
1332 freeit = 1;
1333 if (PageHuge(page))
1334 clear_page_hwpoison_huge_page(page);
1335 }
1336 unlock_page(page);
1337
1338 put_page(page);
1339 if (freeit)
1340 put_page(page);
1341
1342 return 0;
1343}
1344EXPORT_SYMBOL(unpoison_memory);
1345
1346static struct page *new_page(struct page *p, unsigned long private, int **x)
1347{
1348 int nid = page_to_nid(p);
1349 if (PageHuge(p))
1350 return alloc_huge_page_node(page_hstate(compound_head(p)),
1351 nid);
1352 else
1353 return alloc_pages_exact_node(nid, GFP_HIGHUSER_MOVABLE, 0);
1354}
1355
1356/*
1357 * Safely get reference count of an arbitrary page.
1358 * Returns 0 for a free page, -EIO for a zero refcount page
1359 * that is not free, and 1 for any other page type.
1360 * For 1 the page is returned with increased page count, otherwise not.
1361 */
1362static int get_any_page(struct page *p, unsigned long pfn, int flags)
1363{
1364 int ret;
1365
1366 if (flags & MF_COUNT_INCREASED)
1367 return 1;
1368
1369 /*
1370 * The lock_memory_hotplug prevents a race with memory hotplug.
1371 * This is a big hammer, a better would be nicer.
1372 */
1373 lock_memory_hotplug();
1374
1375 /*
1376 * Isolate the page, so that it doesn't get reallocated if it
1377 * was free.
1378 */
1379 set_migratetype_isolate(p);
1380 /*
1381 * When the target page is a free hugepage, just remove it
1382 * from free hugepage list.
1383 */
1384 if (!get_page_unless_zero(compound_head(p))) {
1385 if (PageHuge(p)) {
1386 pr_info("get_any_page: %#lx free huge page\n", pfn);
1387 ret = dequeue_hwpoisoned_huge_page(compound_head(p));
1388 } else if (is_free_buddy_page(p)) {
1389 pr_info("get_any_page: %#lx free buddy page\n", pfn);
1390 /* Set hwpoison bit while page is still isolated */
1391 SetPageHWPoison(p);
1392 ret = 0;
1393 } else {
1394 pr_info("get_any_page: %#lx: unknown zero refcount page type %lx\n",
1395 pfn, p->flags);
1396 ret = -EIO;
1397 }
1398 } else {
1399 /* Not a free page */
1400 ret = 1;
1401 }
1402 unset_migratetype_isolate(p);
1403 unlock_memory_hotplug();
1404 return ret;
1405}
1406
1407static int soft_offline_huge_page(struct page *page, int flags)
1408{
1409 int ret;
1410 unsigned long pfn = page_to_pfn(page);
1411 struct page *hpage = compound_head(page);
1412 LIST_HEAD(pagelist);
1413
1414 ret = get_any_page(page, pfn, flags);
1415 if (ret < 0)
1416 return ret;
1417 if (ret == 0)
1418 goto done;
1419
1420 if (PageHWPoison(hpage)) {
1421 put_page(hpage);
1422 pr_debug("soft offline: %#lx hugepage already poisoned\n", pfn);
1423 return -EBUSY;
1424 }
1425
1426 /* Keep page count to indicate a given hugepage is isolated. */
1427
1428 list_add(&hpage->lru, &pagelist);
1429 ret = migrate_huge_pages(&pagelist, new_page, MPOL_MF_MOVE_ALL, 0,
1430 true);
1431 if (ret) {
1432 struct page *page1, *page2;
1433 list_for_each_entry_safe(page1, page2, &pagelist, lru)
1434 put_page(page1);
1435
1436 pr_debug("soft offline: %#lx: migration failed %d, type %lx\n",
1437 pfn, ret, page->flags);
1438 if (ret > 0)
1439 ret = -EIO;
1440 return ret;
1441 }
1442done:
1443 if (!PageHWPoison(hpage))
1444 atomic_long_add(1 << compound_trans_order(hpage), &mce_bad_pages);
1445 set_page_hwpoison_huge_page(hpage);
1446 dequeue_hwpoisoned_huge_page(hpage);
1447 /* keep elevated page count for bad page */
1448 return ret;
1449}
1450
1451/**
1452 * soft_offline_page - Soft offline a page.
1453 * @page: page to offline
1454 * @flags: flags. Same as memory_failure().
1455 *
1456 * Returns 0 on success, otherwise negated errno.
1457 *
1458 * Soft offline a page, by migration or invalidation,
1459 * without killing anything. This is for the case when
1460 * a page is not corrupted yet (so it's still valid to access),
1461 * but has had a number of corrected errors and is better taken
1462 * out.
1463 *
1464 * The actual policy on when to do that is maintained by
1465 * user space.
1466 *
1467 * This should never impact any application or cause data loss,
1468 * however it might take some time.
1469 *
1470 * This is not a 100% solution for all memory, but tries to be
1471 * ``good enough'' for the majority of memory.
1472 */
1473int soft_offline_page(struct page *page, int flags)
1474{
1475 int ret;
1476 unsigned long pfn = page_to_pfn(page);
1477
1478 if (PageHuge(page))
1479 return soft_offline_huge_page(page, flags);
1480
1481 ret = get_any_page(page, pfn, flags);
1482 if (ret < 0)
1483 return ret;
1484 if (ret == 0)
1485 goto done;
1486
1487 /*
1488 * Page cache page we can handle?
1489 */
1490 if (!PageLRU(page)) {
1491 /*
1492 * Try to free it.
1493 */
1494 put_page(page);
1495 shake_page(page, 1);
1496
1497 /*
1498 * Did it turn free?
1499 */
1500 ret = get_any_page(page, pfn, 0);
1501 if (ret < 0)
1502 return ret;
1503 if (ret == 0)
1504 goto done;
1505 }
1506 if (!PageLRU(page)) {
1507 pr_info("soft_offline: %#lx: unknown non LRU page type %lx\n",
1508 pfn, page->flags);
1509 return -EIO;
1510 }
1511
1512 lock_page(page);
1513 wait_on_page_writeback(page);
1514
1515 /*
1516 * Synchronized using the page lock with memory_failure()
1517 */
1518 if (PageHWPoison(page)) {
1519 unlock_page(page);
1520 put_page(page);
1521 pr_info("soft offline: %#lx page already poisoned\n", pfn);
1522 return -EBUSY;
1523 }
1524
1525 /*
1526 * Try to invalidate first. This should work for
1527 * non dirty unmapped page cache pages.
1528 */
1529 ret = invalidate_inode_page(page);
1530 unlock_page(page);
1531 /*
1532 * RED-PEN would be better to keep it isolated here, but we
1533 * would need to fix isolation locking first.
1534 */
1535 if (ret == 1) {
1536 put_page(page);
1537 ret = 0;
1538 pr_info("soft_offline: %#lx: invalidated\n", pfn);
1539 goto done;
1540 }
1541
1542 /*
1543 * Simple invalidation didn't work.
1544 * Try to migrate to a new page instead. migrate.c
1545 * handles a large number of cases for us.
1546 */
1547 ret = isolate_lru_page(page);
1548 /*
1549 * Drop page reference which is came from get_any_page()
1550 * successful isolate_lru_page() already took another one.
1551 */
1552 put_page(page);
1553 if (!ret) {
1554 LIST_HEAD(pagelist);
1555 inc_zone_page_state(page, NR_ISOLATED_ANON +
1556 page_is_file_cache(page));
1557 list_add(&page->lru, &pagelist);
1558 ret = migrate_pages(&pagelist, new_page, MPOL_MF_MOVE_ALL,
1559 0, true);
1560 if (ret) {
1561 putback_lru_pages(&pagelist);
1562 pr_info("soft offline: %#lx: migration failed %d, type %lx\n",
1563 pfn, ret, page->flags);
1564 if (ret > 0)
1565 ret = -EIO;
1566 }
1567 } else {
1568 pr_info("soft offline: %#lx: isolation failed: %d, page count %d, type %lx\n",
1569 pfn, ret, page_count(page), page->flags);
1570 }
1571 if (ret)
1572 return ret;
1573
1574done:
1575 atomic_long_add(1, &mce_bad_pages);
1576 SetPageHWPoison(page);
1577 /* keep elevated page count for bad page */
1578 return ret;
1579}
1// SPDX-License-Identifier: GPL-2.0-only
2/*
3 * Copyright (C) 2008, 2009 Intel Corporation
4 * Authors: Andi Kleen, Fengguang Wu
5 *
6 * High level machine check handler. Handles pages reported by the
7 * hardware as being corrupted usually due to a multi-bit ECC memory or cache
8 * failure.
9 *
10 * In addition there is a "soft offline" entry point that allows stop using
11 * not-yet-corrupted-by-suspicious pages without killing anything.
12 *
13 * Handles page cache pages in various states. The tricky part
14 * here is that we can access any page asynchronously in respect to
15 * other VM users, because memory failures could happen anytime and
16 * anywhere. This could violate some of their assumptions. This is why
17 * this code has to be extremely careful. Generally it tries to use
18 * normal locking rules, as in get the standard locks, even if that means
19 * the error handling takes potentially a long time.
20 *
21 * It can be very tempting to add handling for obscure cases here.
22 * In general any code for handling new cases should only be added iff:
23 * - You know how to test it.
24 * - You have a test that can be added to mce-test
25 * https://git.kernel.org/cgit/utils/cpu/mce/mce-test.git/
26 * - The case actually shows up as a frequent (top 10) page state in
27 * tools/vm/page-types when running a real workload.
28 *
29 * There are several operations here with exponential complexity because
30 * of unsuitable VM data structures. For example the operation to map back
31 * from RMAP chains to processes has to walk the complete process list and
32 * has non linear complexity with the number. But since memory corruptions
33 * are rare we hope to get away with this. This avoids impacting the core
34 * VM.
35 */
36#include <linux/kernel.h>
37#include <linux/mm.h>
38#include <linux/page-flags.h>
39#include <linux/kernel-page-flags.h>
40#include <linux/sched/signal.h>
41#include <linux/sched/task.h>
42#include <linux/ksm.h>
43#include <linux/rmap.h>
44#include <linux/export.h>
45#include <linux/pagemap.h>
46#include <linux/swap.h>
47#include <linux/backing-dev.h>
48#include <linux/migrate.h>
49#include <linux/suspend.h>
50#include <linux/slab.h>
51#include <linux/swapops.h>
52#include <linux/hugetlb.h>
53#include <linux/memory_hotplug.h>
54#include <linux/mm_inline.h>
55#include <linux/memremap.h>
56#include <linux/kfifo.h>
57#include <linux/ratelimit.h>
58#include <linux/page-isolation.h>
59#include "internal.h"
60#include "ras/ras_event.h"
61
62int sysctl_memory_failure_early_kill __read_mostly = 0;
63
64int sysctl_memory_failure_recovery __read_mostly = 1;
65
66atomic_long_t num_poisoned_pages __read_mostly = ATOMIC_LONG_INIT(0);
67
68#if defined(CONFIG_HWPOISON_INJECT) || defined(CONFIG_HWPOISON_INJECT_MODULE)
69
70u32 hwpoison_filter_enable = 0;
71u32 hwpoison_filter_dev_major = ~0U;
72u32 hwpoison_filter_dev_minor = ~0U;
73u64 hwpoison_filter_flags_mask;
74u64 hwpoison_filter_flags_value;
75EXPORT_SYMBOL_GPL(hwpoison_filter_enable);
76EXPORT_SYMBOL_GPL(hwpoison_filter_dev_major);
77EXPORT_SYMBOL_GPL(hwpoison_filter_dev_minor);
78EXPORT_SYMBOL_GPL(hwpoison_filter_flags_mask);
79EXPORT_SYMBOL_GPL(hwpoison_filter_flags_value);
80
81static int hwpoison_filter_dev(struct page *p)
82{
83 struct address_space *mapping;
84 dev_t dev;
85
86 if (hwpoison_filter_dev_major == ~0U &&
87 hwpoison_filter_dev_minor == ~0U)
88 return 0;
89
90 /*
91 * page_mapping() does not accept slab pages.
92 */
93 if (PageSlab(p))
94 return -EINVAL;
95
96 mapping = page_mapping(p);
97 if (mapping == NULL || mapping->host == NULL)
98 return -EINVAL;
99
100 dev = mapping->host->i_sb->s_dev;
101 if (hwpoison_filter_dev_major != ~0U &&
102 hwpoison_filter_dev_major != MAJOR(dev))
103 return -EINVAL;
104 if (hwpoison_filter_dev_minor != ~0U &&
105 hwpoison_filter_dev_minor != MINOR(dev))
106 return -EINVAL;
107
108 return 0;
109}
110
111static int hwpoison_filter_flags(struct page *p)
112{
113 if (!hwpoison_filter_flags_mask)
114 return 0;
115
116 if ((stable_page_flags(p) & hwpoison_filter_flags_mask) ==
117 hwpoison_filter_flags_value)
118 return 0;
119 else
120 return -EINVAL;
121}
122
123/*
124 * This allows stress tests to limit test scope to a collection of tasks
125 * by putting them under some memcg. This prevents killing unrelated/important
126 * processes such as /sbin/init. Note that the target task may share clean
127 * pages with init (eg. libc text), which is harmless. If the target task
128 * share _dirty_ pages with another task B, the test scheme must make sure B
129 * is also included in the memcg. At last, due to race conditions this filter
130 * can only guarantee that the page either belongs to the memcg tasks, or is
131 * a freed page.
132 */
133#ifdef CONFIG_MEMCG
134u64 hwpoison_filter_memcg;
135EXPORT_SYMBOL_GPL(hwpoison_filter_memcg);
136static int hwpoison_filter_task(struct page *p)
137{
138 if (!hwpoison_filter_memcg)
139 return 0;
140
141 if (page_cgroup_ino(p) != hwpoison_filter_memcg)
142 return -EINVAL;
143
144 return 0;
145}
146#else
147static int hwpoison_filter_task(struct page *p) { return 0; }
148#endif
149
150int hwpoison_filter(struct page *p)
151{
152 if (!hwpoison_filter_enable)
153 return 0;
154
155 if (hwpoison_filter_dev(p))
156 return -EINVAL;
157
158 if (hwpoison_filter_flags(p))
159 return -EINVAL;
160
161 if (hwpoison_filter_task(p))
162 return -EINVAL;
163
164 return 0;
165}
166#else
167int hwpoison_filter(struct page *p)
168{
169 return 0;
170}
171#endif
172
173EXPORT_SYMBOL_GPL(hwpoison_filter);
174
175/*
176 * Kill all processes that have a poisoned page mapped and then isolate
177 * the page.
178 *
179 * General strategy:
180 * Find all processes having the page mapped and kill them.
181 * But we keep a page reference around so that the page is not
182 * actually freed yet.
183 * Then stash the page away
184 *
185 * There's no convenient way to get back to mapped processes
186 * from the VMAs. So do a brute-force search over all
187 * running processes.
188 *
189 * Remember that machine checks are not common (or rather
190 * if they are common you have other problems), so this shouldn't
191 * be a performance issue.
192 *
193 * Also there are some races possible while we get from the
194 * error detection to actually handle it.
195 */
196
197struct to_kill {
198 struct list_head nd;
199 struct task_struct *tsk;
200 unsigned long addr;
201 short size_shift;
202};
203
204/*
205 * Send all the processes who have the page mapped a signal.
206 * ``action optional'' if they are not immediately affected by the error
207 * ``action required'' if error happened in current execution context
208 */
209static int kill_proc(struct to_kill *tk, unsigned long pfn, int flags)
210{
211 struct task_struct *t = tk->tsk;
212 short addr_lsb = tk->size_shift;
213 int ret = 0;
214
215 pr_err("Memory failure: %#lx: Sending SIGBUS to %s:%d due to hardware memory corruption\n",
216 pfn, t->comm, t->pid);
217
218 if (flags & MF_ACTION_REQUIRED) {
219 WARN_ON_ONCE(t != current);
220 ret = force_sig_mceerr(BUS_MCEERR_AR,
221 (void __user *)tk->addr, addr_lsb);
222 } else {
223 /*
224 * Don't use force here, it's convenient if the signal
225 * can be temporarily blocked.
226 * This could cause a loop when the user sets SIGBUS
227 * to SIG_IGN, but hopefully no one will do that?
228 */
229 ret = send_sig_mceerr(BUS_MCEERR_AO, (void __user *)tk->addr,
230 addr_lsb, t); /* synchronous? */
231 }
232 if (ret < 0)
233 pr_info("Memory failure: Error sending signal to %s:%d: %d\n",
234 t->comm, t->pid, ret);
235 return ret;
236}
237
238/*
239 * When a unknown page type is encountered drain as many buffers as possible
240 * in the hope to turn the page into a LRU or free page, which we can handle.
241 */
242void shake_page(struct page *p, int access)
243{
244 if (PageHuge(p))
245 return;
246
247 if (!PageSlab(p)) {
248 lru_add_drain_all();
249 if (PageLRU(p))
250 return;
251 drain_all_pages(page_zone(p));
252 if (PageLRU(p) || is_free_buddy_page(p))
253 return;
254 }
255
256 /*
257 * Only call shrink_node_slabs here (which would also shrink
258 * other caches) if access is not potentially fatal.
259 */
260 if (access)
261 drop_slab_node(page_to_nid(p));
262}
263EXPORT_SYMBOL_GPL(shake_page);
264
265static unsigned long dev_pagemap_mapping_shift(struct page *page,
266 struct vm_area_struct *vma)
267{
268 unsigned long address = vma_address(page, vma);
269 pgd_t *pgd;
270 p4d_t *p4d;
271 pud_t *pud;
272 pmd_t *pmd;
273 pte_t *pte;
274
275 pgd = pgd_offset(vma->vm_mm, address);
276 if (!pgd_present(*pgd))
277 return 0;
278 p4d = p4d_offset(pgd, address);
279 if (!p4d_present(*p4d))
280 return 0;
281 pud = pud_offset(p4d, address);
282 if (!pud_present(*pud))
283 return 0;
284 if (pud_devmap(*pud))
285 return PUD_SHIFT;
286 pmd = pmd_offset(pud, address);
287 if (!pmd_present(*pmd))
288 return 0;
289 if (pmd_devmap(*pmd))
290 return PMD_SHIFT;
291 pte = pte_offset_map(pmd, address);
292 if (!pte_present(*pte))
293 return 0;
294 if (pte_devmap(*pte))
295 return PAGE_SHIFT;
296 return 0;
297}
298
299/*
300 * Failure handling: if we can't find or can't kill a process there's
301 * not much we can do. We just print a message and ignore otherwise.
302 */
303
304/*
305 * Schedule a process for later kill.
306 * Uses GFP_ATOMIC allocations to avoid potential recursions in the VM.
307 */
308static void add_to_kill(struct task_struct *tsk, struct page *p,
309 struct vm_area_struct *vma,
310 struct list_head *to_kill)
311{
312 struct to_kill *tk;
313
314 tk = kmalloc(sizeof(struct to_kill), GFP_ATOMIC);
315 if (!tk) {
316 pr_err("Memory failure: Out of memory while machine check handling\n");
317 return;
318 }
319
320 tk->addr = page_address_in_vma(p, vma);
321 if (is_zone_device_page(p))
322 tk->size_shift = dev_pagemap_mapping_shift(p, vma);
323 else
324 tk->size_shift = page_shift(compound_head(p));
325
326 /*
327 * Send SIGKILL if "tk->addr == -EFAULT". Also, as
328 * "tk->size_shift" is always non-zero for !is_zone_device_page(),
329 * so "tk->size_shift == 0" effectively checks no mapping on
330 * ZONE_DEVICE. Indeed, when a devdax page is mmapped N times
331 * to a process' address space, it's possible not all N VMAs
332 * contain mappings for the page, but at least one VMA does.
333 * Only deliver SIGBUS with payload derived from the VMA that
334 * has a mapping for the page.
335 */
336 if (tk->addr == -EFAULT) {
337 pr_info("Memory failure: Unable to find user space address %lx in %s\n",
338 page_to_pfn(p), tsk->comm);
339 } else if (tk->size_shift == 0) {
340 kfree(tk);
341 return;
342 }
343
344 get_task_struct(tsk);
345 tk->tsk = tsk;
346 list_add_tail(&tk->nd, to_kill);
347}
348
349/*
350 * Kill the processes that have been collected earlier.
351 *
352 * Only do anything when DOIT is set, otherwise just free the list
353 * (this is used for clean pages which do not need killing)
354 * Also when FAIL is set do a force kill because something went
355 * wrong earlier.
356 */
357static void kill_procs(struct list_head *to_kill, int forcekill, bool fail,
358 unsigned long pfn, int flags)
359{
360 struct to_kill *tk, *next;
361
362 list_for_each_entry_safe (tk, next, to_kill, nd) {
363 if (forcekill) {
364 /*
365 * In case something went wrong with munmapping
366 * make sure the process doesn't catch the
367 * signal and then access the memory. Just kill it.
368 */
369 if (fail || tk->addr == -EFAULT) {
370 pr_err("Memory failure: %#lx: forcibly killing %s:%d because of failure to unmap corrupted page\n",
371 pfn, tk->tsk->comm, tk->tsk->pid);
372 do_send_sig_info(SIGKILL, SEND_SIG_PRIV,
373 tk->tsk, PIDTYPE_PID);
374 }
375
376 /*
377 * In theory the process could have mapped
378 * something else on the address in-between. We could
379 * check for that, but we need to tell the
380 * process anyways.
381 */
382 else if (kill_proc(tk, pfn, flags) < 0)
383 pr_err("Memory failure: %#lx: Cannot send advisory machine check signal to %s:%d\n",
384 pfn, tk->tsk->comm, tk->tsk->pid);
385 }
386 put_task_struct(tk->tsk);
387 kfree(tk);
388 }
389}
390
391/*
392 * Find a dedicated thread which is supposed to handle SIGBUS(BUS_MCEERR_AO)
393 * on behalf of the thread group. Return task_struct of the (first found)
394 * dedicated thread if found, and return NULL otherwise.
395 *
396 * We already hold read_lock(&tasklist_lock) in the caller, so we don't
397 * have to call rcu_read_lock/unlock() in this function.
398 */
399static struct task_struct *find_early_kill_thread(struct task_struct *tsk)
400{
401 struct task_struct *t;
402
403 for_each_thread(tsk, t) {
404 if (t->flags & PF_MCE_PROCESS) {
405 if (t->flags & PF_MCE_EARLY)
406 return t;
407 } else {
408 if (sysctl_memory_failure_early_kill)
409 return t;
410 }
411 }
412 return NULL;
413}
414
415/*
416 * Determine whether a given process is "early kill" process which expects
417 * to be signaled when some page under the process is hwpoisoned.
418 * Return task_struct of the dedicated thread (main thread unless explicitly
419 * specified) if the process is "early kill," and otherwise returns NULL.
420 *
421 * Note that the above is true for Action Optional case, but not for Action
422 * Required case where SIGBUS should sent only to the current thread.
423 */
424static struct task_struct *task_early_kill(struct task_struct *tsk,
425 int force_early)
426{
427 if (!tsk->mm)
428 return NULL;
429 if (force_early) {
430 /*
431 * Comparing ->mm here because current task might represent
432 * a subthread, while tsk always points to the main thread.
433 */
434 if (tsk->mm == current->mm)
435 return current;
436 else
437 return NULL;
438 }
439 return find_early_kill_thread(tsk);
440}
441
442/*
443 * Collect processes when the error hit an anonymous page.
444 */
445static void collect_procs_anon(struct page *page, struct list_head *to_kill,
446 int force_early)
447{
448 struct vm_area_struct *vma;
449 struct task_struct *tsk;
450 struct anon_vma *av;
451 pgoff_t pgoff;
452
453 av = page_lock_anon_vma_read(page);
454 if (av == NULL) /* Not actually mapped anymore */
455 return;
456
457 pgoff = page_to_pgoff(page);
458 read_lock(&tasklist_lock);
459 for_each_process (tsk) {
460 struct anon_vma_chain *vmac;
461 struct task_struct *t = task_early_kill(tsk, force_early);
462
463 if (!t)
464 continue;
465 anon_vma_interval_tree_foreach(vmac, &av->rb_root,
466 pgoff, pgoff) {
467 vma = vmac->vma;
468 if (!page_mapped_in_vma(page, vma))
469 continue;
470 if (vma->vm_mm == t->mm)
471 add_to_kill(t, page, vma, to_kill);
472 }
473 }
474 read_unlock(&tasklist_lock);
475 page_unlock_anon_vma_read(av);
476}
477
478/*
479 * Collect processes when the error hit a file mapped page.
480 */
481static void collect_procs_file(struct page *page, struct list_head *to_kill,
482 int force_early)
483{
484 struct vm_area_struct *vma;
485 struct task_struct *tsk;
486 struct address_space *mapping = page->mapping;
487
488 i_mmap_lock_read(mapping);
489 read_lock(&tasklist_lock);
490 for_each_process(tsk) {
491 pgoff_t pgoff = page_to_pgoff(page);
492 struct task_struct *t = task_early_kill(tsk, force_early);
493
494 if (!t)
495 continue;
496 vma_interval_tree_foreach(vma, &mapping->i_mmap, pgoff,
497 pgoff) {
498 /*
499 * Send early kill signal to tasks where a vma covers
500 * the page but the corrupted page is not necessarily
501 * mapped it in its pte.
502 * Assume applications who requested early kill want
503 * to be informed of all such data corruptions.
504 */
505 if (vma->vm_mm == t->mm)
506 add_to_kill(t, page, vma, to_kill);
507 }
508 }
509 read_unlock(&tasklist_lock);
510 i_mmap_unlock_read(mapping);
511}
512
513/*
514 * Collect the processes who have the corrupted page mapped to kill.
515 */
516static void collect_procs(struct page *page, struct list_head *tokill,
517 int force_early)
518{
519 if (!page->mapping)
520 return;
521
522 if (PageAnon(page))
523 collect_procs_anon(page, tokill, force_early);
524 else
525 collect_procs_file(page, tokill, force_early);
526}
527
528static const char *action_name[] = {
529 [MF_IGNORED] = "Ignored",
530 [MF_FAILED] = "Failed",
531 [MF_DELAYED] = "Delayed",
532 [MF_RECOVERED] = "Recovered",
533};
534
535static const char * const action_page_types[] = {
536 [MF_MSG_KERNEL] = "reserved kernel page",
537 [MF_MSG_KERNEL_HIGH_ORDER] = "high-order kernel page",
538 [MF_MSG_SLAB] = "kernel slab page",
539 [MF_MSG_DIFFERENT_COMPOUND] = "different compound page after locking",
540 [MF_MSG_POISONED_HUGE] = "huge page already hardware poisoned",
541 [MF_MSG_HUGE] = "huge page",
542 [MF_MSG_FREE_HUGE] = "free huge page",
543 [MF_MSG_NON_PMD_HUGE] = "non-pmd-sized huge page",
544 [MF_MSG_UNMAP_FAILED] = "unmapping failed page",
545 [MF_MSG_DIRTY_SWAPCACHE] = "dirty swapcache page",
546 [MF_MSG_CLEAN_SWAPCACHE] = "clean swapcache page",
547 [MF_MSG_DIRTY_MLOCKED_LRU] = "dirty mlocked LRU page",
548 [MF_MSG_CLEAN_MLOCKED_LRU] = "clean mlocked LRU page",
549 [MF_MSG_DIRTY_UNEVICTABLE_LRU] = "dirty unevictable LRU page",
550 [MF_MSG_CLEAN_UNEVICTABLE_LRU] = "clean unevictable LRU page",
551 [MF_MSG_DIRTY_LRU] = "dirty LRU page",
552 [MF_MSG_CLEAN_LRU] = "clean LRU page",
553 [MF_MSG_TRUNCATED_LRU] = "already truncated LRU page",
554 [MF_MSG_BUDDY] = "free buddy page",
555 [MF_MSG_BUDDY_2ND] = "free buddy page (2nd try)",
556 [MF_MSG_DAX] = "dax page",
557 [MF_MSG_UNKNOWN] = "unknown page",
558};
559
560/*
561 * XXX: It is possible that a page is isolated from LRU cache,
562 * and then kept in swap cache or failed to remove from page cache.
563 * The page count will stop it from being freed by unpoison.
564 * Stress tests should be aware of this memory leak problem.
565 */
566static int delete_from_lru_cache(struct page *p)
567{
568 if (!isolate_lru_page(p)) {
569 /*
570 * Clear sensible page flags, so that the buddy system won't
571 * complain when the page is unpoison-and-freed.
572 */
573 ClearPageActive(p);
574 ClearPageUnevictable(p);
575
576 /*
577 * Poisoned page might never drop its ref count to 0 so we have
578 * to uncharge it manually from its memcg.
579 */
580 mem_cgroup_uncharge(p);
581
582 /*
583 * drop the page count elevated by isolate_lru_page()
584 */
585 put_page(p);
586 return 0;
587 }
588 return -EIO;
589}
590
591static int truncate_error_page(struct page *p, unsigned long pfn,
592 struct address_space *mapping)
593{
594 int ret = MF_FAILED;
595
596 if (mapping->a_ops->error_remove_page) {
597 int err = mapping->a_ops->error_remove_page(mapping, p);
598
599 if (err != 0) {
600 pr_info("Memory failure: %#lx: Failed to punch page: %d\n",
601 pfn, err);
602 } else if (page_has_private(p) &&
603 !try_to_release_page(p, GFP_NOIO)) {
604 pr_info("Memory failure: %#lx: failed to release buffers\n",
605 pfn);
606 } else {
607 ret = MF_RECOVERED;
608 }
609 } else {
610 /*
611 * If the file system doesn't support it just invalidate
612 * This fails on dirty or anything with private pages
613 */
614 if (invalidate_inode_page(p))
615 ret = MF_RECOVERED;
616 else
617 pr_info("Memory failure: %#lx: Failed to invalidate\n",
618 pfn);
619 }
620
621 return ret;
622}
623
624/*
625 * Error hit kernel page.
626 * Do nothing, try to be lucky and not touch this instead. For a few cases we
627 * could be more sophisticated.
628 */
629static int me_kernel(struct page *p, unsigned long pfn)
630{
631 return MF_IGNORED;
632}
633
634/*
635 * Page in unknown state. Do nothing.
636 */
637static int me_unknown(struct page *p, unsigned long pfn)
638{
639 pr_err("Memory failure: %#lx: Unknown page state\n", pfn);
640 return MF_FAILED;
641}
642
643/*
644 * Clean (or cleaned) page cache page.
645 */
646static int me_pagecache_clean(struct page *p, unsigned long pfn)
647{
648 struct address_space *mapping;
649
650 delete_from_lru_cache(p);
651
652 /*
653 * For anonymous pages we're done the only reference left
654 * should be the one m_f() holds.
655 */
656 if (PageAnon(p))
657 return MF_RECOVERED;
658
659 /*
660 * Now truncate the page in the page cache. This is really
661 * more like a "temporary hole punch"
662 * Don't do this for block devices when someone else
663 * has a reference, because it could be file system metadata
664 * and that's not safe to truncate.
665 */
666 mapping = page_mapping(p);
667 if (!mapping) {
668 /*
669 * Page has been teared down in the meanwhile
670 */
671 return MF_FAILED;
672 }
673
674 /*
675 * Truncation is a bit tricky. Enable it per file system for now.
676 *
677 * Open: to take i_mutex or not for this? Right now we don't.
678 */
679 return truncate_error_page(p, pfn, mapping);
680}
681
682/*
683 * Dirty pagecache page
684 * Issues: when the error hit a hole page the error is not properly
685 * propagated.
686 */
687static int me_pagecache_dirty(struct page *p, unsigned long pfn)
688{
689 struct address_space *mapping = page_mapping(p);
690
691 SetPageError(p);
692 /* TBD: print more information about the file. */
693 if (mapping) {
694 /*
695 * IO error will be reported by write(), fsync(), etc.
696 * who check the mapping.
697 * This way the application knows that something went
698 * wrong with its dirty file data.
699 *
700 * There's one open issue:
701 *
702 * The EIO will be only reported on the next IO
703 * operation and then cleared through the IO map.
704 * Normally Linux has two mechanisms to pass IO error
705 * first through the AS_EIO flag in the address space
706 * and then through the PageError flag in the page.
707 * Since we drop pages on memory failure handling the
708 * only mechanism open to use is through AS_AIO.
709 *
710 * This has the disadvantage that it gets cleared on
711 * the first operation that returns an error, while
712 * the PageError bit is more sticky and only cleared
713 * when the page is reread or dropped. If an
714 * application assumes it will always get error on
715 * fsync, but does other operations on the fd before
716 * and the page is dropped between then the error
717 * will not be properly reported.
718 *
719 * This can already happen even without hwpoisoned
720 * pages: first on metadata IO errors (which only
721 * report through AS_EIO) or when the page is dropped
722 * at the wrong time.
723 *
724 * So right now we assume that the application DTRT on
725 * the first EIO, but we're not worse than other parts
726 * of the kernel.
727 */
728 mapping_set_error(mapping, -EIO);
729 }
730
731 return me_pagecache_clean(p, pfn);
732}
733
734/*
735 * Clean and dirty swap cache.
736 *
737 * Dirty swap cache page is tricky to handle. The page could live both in page
738 * cache and swap cache(ie. page is freshly swapped in). So it could be
739 * referenced concurrently by 2 types of PTEs:
740 * normal PTEs and swap PTEs. We try to handle them consistently by calling
741 * try_to_unmap(TTU_IGNORE_HWPOISON) to convert the normal PTEs to swap PTEs,
742 * and then
743 * - clear dirty bit to prevent IO
744 * - remove from LRU
745 * - but keep in the swap cache, so that when we return to it on
746 * a later page fault, we know the application is accessing
747 * corrupted data and shall be killed (we installed simple
748 * interception code in do_swap_page to catch it).
749 *
750 * Clean swap cache pages can be directly isolated. A later page fault will
751 * bring in the known good data from disk.
752 */
753static int me_swapcache_dirty(struct page *p, unsigned long pfn)
754{
755 ClearPageDirty(p);
756 /* Trigger EIO in shmem: */
757 ClearPageUptodate(p);
758
759 if (!delete_from_lru_cache(p))
760 return MF_DELAYED;
761 else
762 return MF_FAILED;
763}
764
765static int me_swapcache_clean(struct page *p, unsigned long pfn)
766{
767 delete_from_swap_cache(p);
768
769 if (!delete_from_lru_cache(p))
770 return MF_RECOVERED;
771 else
772 return MF_FAILED;
773}
774
775/*
776 * Huge pages. Needs work.
777 * Issues:
778 * - Error on hugepage is contained in hugepage unit (not in raw page unit.)
779 * To narrow down kill region to one page, we need to break up pmd.
780 */
781static int me_huge_page(struct page *p, unsigned long pfn)
782{
783 int res = 0;
784 struct page *hpage = compound_head(p);
785 struct address_space *mapping;
786
787 if (!PageHuge(hpage))
788 return MF_DELAYED;
789
790 mapping = page_mapping(hpage);
791 if (mapping) {
792 res = truncate_error_page(hpage, pfn, mapping);
793 } else {
794 unlock_page(hpage);
795 /*
796 * migration entry prevents later access on error anonymous
797 * hugepage, so we can free and dissolve it into buddy to
798 * save healthy subpages.
799 */
800 if (PageAnon(hpage))
801 put_page(hpage);
802 dissolve_free_huge_page(p);
803 res = MF_RECOVERED;
804 lock_page(hpage);
805 }
806
807 return res;
808}
809
810/*
811 * Various page states we can handle.
812 *
813 * A page state is defined by its current page->flags bits.
814 * The table matches them in order and calls the right handler.
815 *
816 * This is quite tricky because we can access page at any time
817 * in its live cycle, so all accesses have to be extremely careful.
818 *
819 * This is not complete. More states could be added.
820 * For any missing state don't attempt recovery.
821 */
822
823#define dirty (1UL << PG_dirty)
824#define sc ((1UL << PG_swapcache) | (1UL << PG_swapbacked))
825#define unevict (1UL << PG_unevictable)
826#define mlock (1UL << PG_mlocked)
827#define writeback (1UL << PG_writeback)
828#define lru (1UL << PG_lru)
829#define head (1UL << PG_head)
830#define slab (1UL << PG_slab)
831#define reserved (1UL << PG_reserved)
832
833static struct page_state {
834 unsigned long mask;
835 unsigned long res;
836 enum mf_action_page_type type;
837 int (*action)(struct page *p, unsigned long pfn);
838} error_states[] = {
839 { reserved, reserved, MF_MSG_KERNEL, me_kernel },
840 /*
841 * free pages are specially detected outside this table:
842 * PG_buddy pages only make a small fraction of all free pages.
843 */
844
845 /*
846 * Could in theory check if slab page is free or if we can drop
847 * currently unused objects without touching them. But just
848 * treat it as standard kernel for now.
849 */
850 { slab, slab, MF_MSG_SLAB, me_kernel },
851
852 { head, head, MF_MSG_HUGE, me_huge_page },
853
854 { sc|dirty, sc|dirty, MF_MSG_DIRTY_SWAPCACHE, me_swapcache_dirty },
855 { sc|dirty, sc, MF_MSG_CLEAN_SWAPCACHE, me_swapcache_clean },
856
857 { mlock|dirty, mlock|dirty, MF_MSG_DIRTY_MLOCKED_LRU, me_pagecache_dirty },
858 { mlock|dirty, mlock, MF_MSG_CLEAN_MLOCKED_LRU, me_pagecache_clean },
859
860 { unevict|dirty, unevict|dirty, MF_MSG_DIRTY_UNEVICTABLE_LRU, me_pagecache_dirty },
861 { unevict|dirty, unevict, MF_MSG_CLEAN_UNEVICTABLE_LRU, me_pagecache_clean },
862
863 { lru|dirty, lru|dirty, MF_MSG_DIRTY_LRU, me_pagecache_dirty },
864 { lru|dirty, lru, MF_MSG_CLEAN_LRU, me_pagecache_clean },
865
866 /*
867 * Catchall entry: must be at end.
868 */
869 { 0, 0, MF_MSG_UNKNOWN, me_unknown },
870};
871
872#undef dirty
873#undef sc
874#undef unevict
875#undef mlock
876#undef writeback
877#undef lru
878#undef head
879#undef slab
880#undef reserved
881
882/*
883 * "Dirty/Clean" indication is not 100% accurate due to the possibility of
884 * setting PG_dirty outside page lock. See also comment above set_page_dirty().
885 */
886static void action_result(unsigned long pfn, enum mf_action_page_type type,
887 enum mf_result result)
888{
889 trace_memory_failure_event(pfn, type, result);
890
891 pr_err("Memory failure: %#lx: recovery action for %s: %s\n",
892 pfn, action_page_types[type], action_name[result]);
893}
894
895static int page_action(struct page_state *ps, struct page *p,
896 unsigned long pfn)
897{
898 int result;
899 int count;
900
901 result = ps->action(p, pfn);
902
903 count = page_count(p) - 1;
904 if (ps->action == me_swapcache_dirty && result == MF_DELAYED)
905 count--;
906 if (count > 0) {
907 pr_err("Memory failure: %#lx: %s still referenced by %d users\n",
908 pfn, action_page_types[ps->type], count);
909 result = MF_FAILED;
910 }
911 action_result(pfn, ps->type, result);
912
913 /* Could do more checks here if page looks ok */
914 /*
915 * Could adjust zone counters here to correct for the missing page.
916 */
917
918 return (result == MF_RECOVERED || result == MF_DELAYED) ? 0 : -EBUSY;
919}
920
921/**
922 * get_hwpoison_page() - Get refcount for memory error handling:
923 * @page: raw error page (hit by memory error)
924 *
925 * Return: return 0 if failed to grab the refcount, otherwise true (some
926 * non-zero value.)
927 */
928int get_hwpoison_page(struct page *page)
929{
930 struct page *head = compound_head(page);
931
932 if (!PageHuge(head) && PageTransHuge(head)) {
933 /*
934 * Non anonymous thp exists only in allocation/free time. We
935 * can't handle such a case correctly, so let's give it up.
936 * This should be better than triggering BUG_ON when kernel
937 * tries to touch the "partially handled" page.
938 */
939 if (!PageAnon(head)) {
940 pr_err("Memory failure: %#lx: non anonymous thp\n",
941 page_to_pfn(page));
942 return 0;
943 }
944 }
945
946 if (get_page_unless_zero(head)) {
947 if (head == compound_head(page))
948 return 1;
949
950 pr_info("Memory failure: %#lx cannot catch tail\n",
951 page_to_pfn(page));
952 put_page(head);
953 }
954
955 return 0;
956}
957EXPORT_SYMBOL_GPL(get_hwpoison_page);
958
959/*
960 * Do all that is necessary to remove user space mappings. Unmap
961 * the pages and send SIGBUS to the processes if the data was dirty.
962 */
963static bool hwpoison_user_mappings(struct page *p, unsigned long pfn,
964 int flags, struct page **hpagep)
965{
966 enum ttu_flags ttu = TTU_IGNORE_MLOCK | TTU_IGNORE_ACCESS;
967 struct address_space *mapping;
968 LIST_HEAD(tokill);
969 bool unmap_success = true;
970 int kill = 1, forcekill;
971 struct page *hpage = *hpagep;
972 bool mlocked = PageMlocked(hpage);
973
974 /*
975 * Here we are interested only in user-mapped pages, so skip any
976 * other types of pages.
977 */
978 if (PageReserved(p) || PageSlab(p))
979 return true;
980 if (!(PageLRU(hpage) || PageHuge(p)))
981 return true;
982
983 /*
984 * This check implies we don't kill processes if their pages
985 * are in the swap cache early. Those are always late kills.
986 */
987 if (!page_mapped(hpage))
988 return true;
989
990 if (PageKsm(p)) {
991 pr_err("Memory failure: %#lx: can't handle KSM pages.\n", pfn);
992 return false;
993 }
994
995 if (PageSwapCache(p)) {
996 pr_err("Memory failure: %#lx: keeping poisoned page in swap cache\n",
997 pfn);
998 ttu |= TTU_IGNORE_HWPOISON;
999 }
1000
1001 /*
1002 * Propagate the dirty bit from PTEs to struct page first, because we
1003 * need this to decide if we should kill or just drop the page.
1004 * XXX: the dirty test could be racy: set_page_dirty() may not always
1005 * be called inside page lock (it's recommended but not enforced).
1006 */
1007 mapping = page_mapping(hpage);
1008 if (!(flags & MF_MUST_KILL) && !PageDirty(hpage) && mapping &&
1009 mapping_cap_writeback_dirty(mapping)) {
1010 if (page_mkclean(hpage)) {
1011 SetPageDirty(hpage);
1012 } else {
1013 kill = 0;
1014 ttu |= TTU_IGNORE_HWPOISON;
1015 pr_info("Memory failure: %#lx: corrupted page was clean: dropped without side effects\n",
1016 pfn);
1017 }
1018 }
1019
1020 /*
1021 * First collect all the processes that have the page
1022 * mapped in dirty form. This has to be done before try_to_unmap,
1023 * because ttu takes the rmap data structures down.
1024 *
1025 * Error handling: We ignore errors here because
1026 * there's nothing that can be done.
1027 */
1028 if (kill)
1029 collect_procs(hpage, &tokill, flags & MF_ACTION_REQUIRED);
1030
1031 if (!PageHuge(hpage)) {
1032 unmap_success = try_to_unmap(hpage, ttu);
1033 } else {
1034 /*
1035 * For hugetlb pages, try_to_unmap could potentially call
1036 * huge_pmd_unshare. Because of this, take semaphore in
1037 * write mode here and set TTU_RMAP_LOCKED to indicate we
1038 * have taken the lock at this higer level.
1039 *
1040 * Note that the call to hugetlb_page_mapping_lock_write
1041 * is necessary even if mapping is already set. It handles
1042 * ugliness of potentially having to drop page lock to obtain
1043 * i_mmap_rwsem.
1044 */
1045 mapping = hugetlb_page_mapping_lock_write(hpage);
1046
1047 if (mapping) {
1048 unmap_success = try_to_unmap(hpage,
1049 ttu|TTU_RMAP_LOCKED);
1050 i_mmap_unlock_write(mapping);
1051 } else {
1052 pr_info("Memory failure: %#lx: could not find mapping for mapped huge page\n",
1053 pfn);
1054 unmap_success = false;
1055 }
1056 }
1057 if (!unmap_success)
1058 pr_err("Memory failure: %#lx: failed to unmap page (mapcount=%d)\n",
1059 pfn, page_mapcount(hpage));
1060
1061 /*
1062 * try_to_unmap() might put mlocked page in lru cache, so call
1063 * shake_page() again to ensure that it's flushed.
1064 */
1065 if (mlocked)
1066 shake_page(hpage, 0);
1067
1068 /*
1069 * Now that the dirty bit has been propagated to the
1070 * struct page and all unmaps done we can decide if
1071 * killing is needed or not. Only kill when the page
1072 * was dirty or the process is not restartable,
1073 * otherwise the tokill list is merely
1074 * freed. When there was a problem unmapping earlier
1075 * use a more force-full uncatchable kill to prevent
1076 * any accesses to the poisoned memory.
1077 */
1078 forcekill = PageDirty(hpage) || (flags & MF_MUST_KILL);
1079 kill_procs(&tokill, forcekill, !unmap_success, pfn, flags);
1080
1081 return unmap_success;
1082}
1083
1084static int identify_page_state(unsigned long pfn, struct page *p,
1085 unsigned long page_flags)
1086{
1087 struct page_state *ps;
1088
1089 /*
1090 * The first check uses the current page flags which may not have any
1091 * relevant information. The second check with the saved page flags is
1092 * carried out only if the first check can't determine the page status.
1093 */
1094 for (ps = error_states;; ps++)
1095 if ((p->flags & ps->mask) == ps->res)
1096 break;
1097
1098 page_flags |= (p->flags & (1UL << PG_dirty));
1099
1100 if (!ps->mask)
1101 for (ps = error_states;; ps++)
1102 if ((page_flags & ps->mask) == ps->res)
1103 break;
1104 return page_action(ps, p, pfn);
1105}
1106
1107static int memory_failure_hugetlb(unsigned long pfn, int flags)
1108{
1109 struct page *p = pfn_to_page(pfn);
1110 struct page *head = compound_head(p);
1111 int res;
1112 unsigned long page_flags;
1113
1114 if (TestSetPageHWPoison(head)) {
1115 pr_err("Memory failure: %#lx: already hardware poisoned\n",
1116 pfn);
1117 return 0;
1118 }
1119
1120 num_poisoned_pages_inc();
1121
1122 if (!(flags & MF_COUNT_INCREASED) && !get_hwpoison_page(p)) {
1123 /*
1124 * Check "filter hit" and "race with other subpage."
1125 */
1126 lock_page(head);
1127 if (PageHWPoison(head)) {
1128 if ((hwpoison_filter(p) && TestClearPageHWPoison(p))
1129 || (p != head && TestSetPageHWPoison(head))) {
1130 num_poisoned_pages_dec();
1131 unlock_page(head);
1132 return 0;
1133 }
1134 }
1135 unlock_page(head);
1136 dissolve_free_huge_page(p);
1137 action_result(pfn, MF_MSG_FREE_HUGE, MF_DELAYED);
1138 return 0;
1139 }
1140
1141 lock_page(head);
1142 page_flags = head->flags;
1143
1144 if (!PageHWPoison(head)) {
1145 pr_err("Memory failure: %#lx: just unpoisoned\n", pfn);
1146 num_poisoned_pages_dec();
1147 unlock_page(head);
1148 put_hwpoison_page(head);
1149 return 0;
1150 }
1151
1152 /*
1153 * TODO: hwpoison for pud-sized hugetlb doesn't work right now, so
1154 * simply disable it. In order to make it work properly, we need
1155 * make sure that:
1156 * - conversion of a pud that maps an error hugetlb into hwpoison
1157 * entry properly works, and
1158 * - other mm code walking over page table is aware of pud-aligned
1159 * hwpoison entries.
1160 */
1161 if (huge_page_size(page_hstate(head)) > PMD_SIZE) {
1162 action_result(pfn, MF_MSG_NON_PMD_HUGE, MF_IGNORED);
1163 res = -EBUSY;
1164 goto out;
1165 }
1166
1167 if (!hwpoison_user_mappings(p, pfn, flags, &head)) {
1168 action_result(pfn, MF_MSG_UNMAP_FAILED, MF_IGNORED);
1169 res = -EBUSY;
1170 goto out;
1171 }
1172
1173 res = identify_page_state(pfn, p, page_flags);
1174out:
1175 unlock_page(head);
1176 return res;
1177}
1178
1179static int memory_failure_dev_pagemap(unsigned long pfn, int flags,
1180 struct dev_pagemap *pgmap)
1181{
1182 struct page *page = pfn_to_page(pfn);
1183 const bool unmap_success = true;
1184 unsigned long size = 0;
1185 struct to_kill *tk;
1186 LIST_HEAD(tokill);
1187 int rc = -EBUSY;
1188 loff_t start;
1189 dax_entry_t cookie;
1190
1191 /*
1192 * Prevent the inode from being freed while we are interrogating
1193 * the address_space, typically this would be handled by
1194 * lock_page(), but dax pages do not use the page lock. This
1195 * also prevents changes to the mapping of this pfn until
1196 * poison signaling is complete.
1197 */
1198 cookie = dax_lock_page(page);
1199 if (!cookie)
1200 goto out;
1201
1202 if (hwpoison_filter(page)) {
1203 rc = 0;
1204 goto unlock;
1205 }
1206
1207 if (pgmap->type == MEMORY_DEVICE_PRIVATE) {
1208 /*
1209 * TODO: Handle HMM pages which may need coordination
1210 * with device-side memory.
1211 */
1212 goto unlock;
1213 }
1214
1215 /*
1216 * Use this flag as an indication that the dax page has been
1217 * remapped UC to prevent speculative consumption of poison.
1218 */
1219 SetPageHWPoison(page);
1220
1221 /*
1222 * Unlike System-RAM there is no possibility to swap in a
1223 * different physical page at a given virtual address, so all
1224 * userspace consumption of ZONE_DEVICE memory necessitates
1225 * SIGBUS (i.e. MF_MUST_KILL)
1226 */
1227 flags |= MF_ACTION_REQUIRED | MF_MUST_KILL;
1228 collect_procs(page, &tokill, flags & MF_ACTION_REQUIRED);
1229
1230 list_for_each_entry(tk, &tokill, nd)
1231 if (tk->size_shift)
1232 size = max(size, 1UL << tk->size_shift);
1233 if (size) {
1234 /*
1235 * Unmap the largest mapping to avoid breaking up
1236 * device-dax mappings which are constant size. The
1237 * actual size of the mapping being torn down is
1238 * communicated in siginfo, see kill_proc()
1239 */
1240 start = (page->index << PAGE_SHIFT) & ~(size - 1);
1241 unmap_mapping_range(page->mapping, start, start + size, 0);
1242 }
1243 kill_procs(&tokill, flags & MF_MUST_KILL, !unmap_success, pfn, flags);
1244 rc = 0;
1245unlock:
1246 dax_unlock_page(page, cookie);
1247out:
1248 /* drop pgmap ref acquired in caller */
1249 put_dev_pagemap(pgmap);
1250 action_result(pfn, MF_MSG_DAX, rc ? MF_FAILED : MF_RECOVERED);
1251 return rc;
1252}
1253
1254/**
1255 * memory_failure - Handle memory failure of a page.
1256 * @pfn: Page Number of the corrupted page
1257 * @flags: fine tune action taken
1258 *
1259 * This function is called by the low level machine check code
1260 * of an architecture when it detects hardware memory corruption
1261 * of a page. It tries its best to recover, which includes
1262 * dropping pages, killing processes etc.
1263 *
1264 * The function is primarily of use for corruptions that
1265 * happen outside the current execution context (e.g. when
1266 * detected by a background scrubber)
1267 *
1268 * Must run in process context (e.g. a work queue) with interrupts
1269 * enabled and no spinlocks hold.
1270 */
1271int memory_failure(unsigned long pfn, int flags)
1272{
1273 struct page *p;
1274 struct page *hpage;
1275 struct page *orig_head;
1276 struct dev_pagemap *pgmap;
1277 int res;
1278 unsigned long page_flags;
1279
1280 if (!sysctl_memory_failure_recovery)
1281 panic("Memory failure on page %lx", pfn);
1282
1283 p = pfn_to_online_page(pfn);
1284 if (!p) {
1285 if (pfn_valid(pfn)) {
1286 pgmap = get_dev_pagemap(pfn, NULL);
1287 if (pgmap)
1288 return memory_failure_dev_pagemap(pfn, flags,
1289 pgmap);
1290 }
1291 pr_err("Memory failure: %#lx: memory outside kernel control\n",
1292 pfn);
1293 return -ENXIO;
1294 }
1295
1296 if (PageHuge(p))
1297 return memory_failure_hugetlb(pfn, flags);
1298 if (TestSetPageHWPoison(p)) {
1299 pr_err("Memory failure: %#lx: already hardware poisoned\n",
1300 pfn);
1301 return 0;
1302 }
1303
1304 orig_head = hpage = compound_head(p);
1305 num_poisoned_pages_inc();
1306
1307 /*
1308 * We need/can do nothing about count=0 pages.
1309 * 1) it's a free page, and therefore in safe hand:
1310 * prep_new_page() will be the gate keeper.
1311 * 2) it's part of a non-compound high order page.
1312 * Implies some kernel user: cannot stop them from
1313 * R/W the page; let's pray that the page has been
1314 * used and will be freed some time later.
1315 * In fact it's dangerous to directly bump up page count from 0,
1316 * that may make page_ref_freeze()/page_ref_unfreeze() mismatch.
1317 */
1318 if (!(flags & MF_COUNT_INCREASED) && !get_hwpoison_page(p)) {
1319 if (is_free_buddy_page(p)) {
1320 action_result(pfn, MF_MSG_BUDDY, MF_DELAYED);
1321 return 0;
1322 } else {
1323 action_result(pfn, MF_MSG_KERNEL_HIGH_ORDER, MF_IGNORED);
1324 return -EBUSY;
1325 }
1326 }
1327
1328 if (PageTransHuge(hpage)) {
1329 lock_page(p);
1330 if (!PageAnon(p) || unlikely(split_huge_page(p))) {
1331 unlock_page(p);
1332 if (!PageAnon(p))
1333 pr_err("Memory failure: %#lx: non anonymous thp\n",
1334 pfn);
1335 else
1336 pr_err("Memory failure: %#lx: thp split failed\n",
1337 pfn);
1338 if (TestClearPageHWPoison(p))
1339 num_poisoned_pages_dec();
1340 put_hwpoison_page(p);
1341 return -EBUSY;
1342 }
1343 unlock_page(p);
1344 VM_BUG_ON_PAGE(!page_count(p), p);
1345 hpage = compound_head(p);
1346 }
1347
1348 /*
1349 * We ignore non-LRU pages for good reasons.
1350 * - PG_locked is only well defined for LRU pages and a few others
1351 * - to avoid races with __SetPageLocked()
1352 * - to avoid races with __SetPageSlab*() (and more non-atomic ops)
1353 * The check (unnecessarily) ignores LRU pages being isolated and
1354 * walked by the page reclaim code, however that's not a big loss.
1355 */
1356 shake_page(p, 0);
1357 /* shake_page could have turned it free. */
1358 if (!PageLRU(p) && is_free_buddy_page(p)) {
1359 if (flags & MF_COUNT_INCREASED)
1360 action_result(pfn, MF_MSG_BUDDY, MF_DELAYED);
1361 else
1362 action_result(pfn, MF_MSG_BUDDY_2ND, MF_DELAYED);
1363 return 0;
1364 }
1365
1366 lock_page(p);
1367
1368 /*
1369 * The page could have changed compound pages during the locking.
1370 * If this happens just bail out.
1371 */
1372 if (PageCompound(p) && compound_head(p) != orig_head) {
1373 action_result(pfn, MF_MSG_DIFFERENT_COMPOUND, MF_IGNORED);
1374 res = -EBUSY;
1375 goto out;
1376 }
1377
1378 /*
1379 * We use page flags to determine what action should be taken, but
1380 * the flags can be modified by the error containment action. One
1381 * example is an mlocked page, where PG_mlocked is cleared by
1382 * page_remove_rmap() in try_to_unmap_one(). So to determine page status
1383 * correctly, we save a copy of the page flags at this time.
1384 */
1385 if (PageHuge(p))
1386 page_flags = hpage->flags;
1387 else
1388 page_flags = p->flags;
1389
1390 /*
1391 * unpoison always clear PG_hwpoison inside page lock
1392 */
1393 if (!PageHWPoison(p)) {
1394 pr_err("Memory failure: %#lx: just unpoisoned\n", pfn);
1395 num_poisoned_pages_dec();
1396 unlock_page(p);
1397 put_hwpoison_page(p);
1398 return 0;
1399 }
1400 if (hwpoison_filter(p)) {
1401 if (TestClearPageHWPoison(p))
1402 num_poisoned_pages_dec();
1403 unlock_page(p);
1404 put_hwpoison_page(p);
1405 return 0;
1406 }
1407
1408 if (!PageTransTail(p) && !PageLRU(p))
1409 goto identify_page_state;
1410
1411 /*
1412 * It's very difficult to mess with pages currently under IO
1413 * and in many cases impossible, so we just avoid it here.
1414 */
1415 wait_on_page_writeback(p);
1416
1417 /*
1418 * Now take care of user space mappings.
1419 * Abort on fail: __delete_from_page_cache() assumes unmapped page.
1420 *
1421 * When the raw error page is thp tail page, hpage points to the raw
1422 * page after thp split.
1423 */
1424 if (!hwpoison_user_mappings(p, pfn, flags, &hpage)) {
1425 action_result(pfn, MF_MSG_UNMAP_FAILED, MF_IGNORED);
1426 res = -EBUSY;
1427 goto out;
1428 }
1429
1430 /*
1431 * Torn down by someone else?
1432 */
1433 if (PageLRU(p) && !PageSwapCache(p) && p->mapping == NULL) {
1434 action_result(pfn, MF_MSG_TRUNCATED_LRU, MF_IGNORED);
1435 res = -EBUSY;
1436 goto out;
1437 }
1438
1439identify_page_state:
1440 res = identify_page_state(pfn, p, page_flags);
1441out:
1442 unlock_page(p);
1443 return res;
1444}
1445EXPORT_SYMBOL_GPL(memory_failure);
1446
1447#define MEMORY_FAILURE_FIFO_ORDER 4
1448#define MEMORY_FAILURE_FIFO_SIZE (1 << MEMORY_FAILURE_FIFO_ORDER)
1449
1450struct memory_failure_entry {
1451 unsigned long pfn;
1452 int flags;
1453};
1454
1455struct memory_failure_cpu {
1456 DECLARE_KFIFO(fifo, struct memory_failure_entry,
1457 MEMORY_FAILURE_FIFO_SIZE);
1458 spinlock_t lock;
1459 struct work_struct work;
1460};
1461
1462static DEFINE_PER_CPU(struct memory_failure_cpu, memory_failure_cpu);
1463
1464/**
1465 * memory_failure_queue - Schedule handling memory failure of a page.
1466 * @pfn: Page Number of the corrupted page
1467 * @flags: Flags for memory failure handling
1468 *
1469 * This function is called by the low level hardware error handler
1470 * when it detects hardware memory corruption of a page. It schedules
1471 * the recovering of error page, including dropping pages, killing
1472 * processes etc.
1473 *
1474 * The function is primarily of use for corruptions that
1475 * happen outside the current execution context (e.g. when
1476 * detected by a background scrubber)
1477 *
1478 * Can run in IRQ context.
1479 */
1480void memory_failure_queue(unsigned long pfn, int flags)
1481{
1482 struct memory_failure_cpu *mf_cpu;
1483 unsigned long proc_flags;
1484 struct memory_failure_entry entry = {
1485 .pfn = pfn,
1486 .flags = flags,
1487 };
1488
1489 mf_cpu = &get_cpu_var(memory_failure_cpu);
1490 spin_lock_irqsave(&mf_cpu->lock, proc_flags);
1491 if (kfifo_put(&mf_cpu->fifo, entry))
1492 schedule_work_on(smp_processor_id(), &mf_cpu->work);
1493 else
1494 pr_err("Memory failure: buffer overflow when queuing memory failure at %#lx\n",
1495 pfn);
1496 spin_unlock_irqrestore(&mf_cpu->lock, proc_flags);
1497 put_cpu_var(memory_failure_cpu);
1498}
1499EXPORT_SYMBOL_GPL(memory_failure_queue);
1500
1501static void memory_failure_work_func(struct work_struct *work)
1502{
1503 struct memory_failure_cpu *mf_cpu;
1504 struct memory_failure_entry entry = { 0, };
1505 unsigned long proc_flags;
1506 int gotten;
1507
1508 mf_cpu = container_of(work, struct memory_failure_cpu, work);
1509 for (;;) {
1510 spin_lock_irqsave(&mf_cpu->lock, proc_flags);
1511 gotten = kfifo_get(&mf_cpu->fifo, &entry);
1512 spin_unlock_irqrestore(&mf_cpu->lock, proc_flags);
1513 if (!gotten)
1514 break;
1515 if (entry.flags & MF_SOFT_OFFLINE)
1516 soft_offline_page(entry.pfn, entry.flags);
1517 else
1518 memory_failure(entry.pfn, entry.flags);
1519 }
1520}
1521
1522/*
1523 * Process memory_failure work queued on the specified CPU.
1524 * Used to avoid return-to-userspace racing with the memory_failure workqueue.
1525 */
1526void memory_failure_queue_kick(int cpu)
1527{
1528 struct memory_failure_cpu *mf_cpu;
1529
1530 mf_cpu = &per_cpu(memory_failure_cpu, cpu);
1531 cancel_work_sync(&mf_cpu->work);
1532 memory_failure_work_func(&mf_cpu->work);
1533}
1534
1535static int __init memory_failure_init(void)
1536{
1537 struct memory_failure_cpu *mf_cpu;
1538 int cpu;
1539
1540 for_each_possible_cpu(cpu) {
1541 mf_cpu = &per_cpu(memory_failure_cpu, cpu);
1542 spin_lock_init(&mf_cpu->lock);
1543 INIT_KFIFO(mf_cpu->fifo);
1544 INIT_WORK(&mf_cpu->work, memory_failure_work_func);
1545 }
1546
1547 return 0;
1548}
1549core_initcall(memory_failure_init);
1550
1551#define unpoison_pr_info(fmt, pfn, rs) \
1552({ \
1553 if (__ratelimit(rs)) \
1554 pr_info(fmt, pfn); \
1555})
1556
1557/**
1558 * unpoison_memory - Unpoison a previously poisoned page
1559 * @pfn: Page number of the to be unpoisoned page
1560 *
1561 * Software-unpoison a page that has been poisoned by
1562 * memory_failure() earlier.
1563 *
1564 * This is only done on the software-level, so it only works
1565 * for linux injected failures, not real hardware failures
1566 *
1567 * Returns 0 for success, otherwise -errno.
1568 */
1569int unpoison_memory(unsigned long pfn)
1570{
1571 struct page *page;
1572 struct page *p;
1573 int freeit = 0;
1574 static DEFINE_RATELIMIT_STATE(unpoison_rs, DEFAULT_RATELIMIT_INTERVAL,
1575 DEFAULT_RATELIMIT_BURST);
1576
1577 if (!pfn_valid(pfn))
1578 return -ENXIO;
1579
1580 p = pfn_to_page(pfn);
1581 page = compound_head(p);
1582
1583 if (!PageHWPoison(p)) {
1584 unpoison_pr_info("Unpoison: Page was already unpoisoned %#lx\n",
1585 pfn, &unpoison_rs);
1586 return 0;
1587 }
1588
1589 if (page_count(page) > 1) {
1590 unpoison_pr_info("Unpoison: Someone grabs the hwpoison page %#lx\n",
1591 pfn, &unpoison_rs);
1592 return 0;
1593 }
1594
1595 if (page_mapped(page)) {
1596 unpoison_pr_info("Unpoison: Someone maps the hwpoison page %#lx\n",
1597 pfn, &unpoison_rs);
1598 return 0;
1599 }
1600
1601 if (page_mapping(page)) {
1602 unpoison_pr_info("Unpoison: the hwpoison page has non-NULL mapping %#lx\n",
1603 pfn, &unpoison_rs);
1604 return 0;
1605 }
1606
1607 /*
1608 * unpoison_memory() can encounter thp only when the thp is being
1609 * worked by memory_failure() and the page lock is not held yet.
1610 * In such case, we yield to memory_failure() and make unpoison fail.
1611 */
1612 if (!PageHuge(page) && PageTransHuge(page)) {
1613 unpoison_pr_info("Unpoison: Memory failure is now running on %#lx\n",
1614 pfn, &unpoison_rs);
1615 return 0;
1616 }
1617
1618 if (!get_hwpoison_page(p)) {
1619 if (TestClearPageHWPoison(p))
1620 num_poisoned_pages_dec();
1621 unpoison_pr_info("Unpoison: Software-unpoisoned free page %#lx\n",
1622 pfn, &unpoison_rs);
1623 return 0;
1624 }
1625
1626 lock_page(page);
1627 /*
1628 * This test is racy because PG_hwpoison is set outside of page lock.
1629 * That's acceptable because that won't trigger kernel panic. Instead,
1630 * the PG_hwpoison page will be caught and isolated on the entrance to
1631 * the free buddy page pool.
1632 */
1633 if (TestClearPageHWPoison(page)) {
1634 unpoison_pr_info("Unpoison: Software-unpoisoned page %#lx\n",
1635 pfn, &unpoison_rs);
1636 num_poisoned_pages_dec();
1637 freeit = 1;
1638 }
1639 unlock_page(page);
1640
1641 put_hwpoison_page(page);
1642 if (freeit && !(pfn == my_zero_pfn(0) && page_count(p) == 1))
1643 put_hwpoison_page(page);
1644
1645 return 0;
1646}
1647EXPORT_SYMBOL(unpoison_memory);
1648
1649static struct page *new_page(struct page *p, unsigned long private)
1650{
1651 struct migration_target_control mtc = {
1652 .nid = page_to_nid(p),
1653 .gfp_mask = GFP_USER | __GFP_MOVABLE | __GFP_RETRY_MAYFAIL,
1654 };
1655
1656 return alloc_migration_target(p, (unsigned long)&mtc);
1657}
1658
1659/*
1660 * Safely get reference count of an arbitrary page.
1661 * Returns 0 for a free page, -EIO for a zero refcount page
1662 * that is not free, and 1 for any other page type.
1663 * For 1 the page is returned with increased page count, otherwise not.
1664 */
1665static int __get_any_page(struct page *p, unsigned long pfn, int flags)
1666{
1667 int ret;
1668
1669 if (flags & MF_COUNT_INCREASED)
1670 return 1;
1671
1672 /*
1673 * When the target page is a free hugepage, just remove it
1674 * from free hugepage list.
1675 */
1676 if (!get_hwpoison_page(p)) {
1677 if (PageHuge(p)) {
1678 pr_info("%s: %#lx free huge page\n", __func__, pfn);
1679 ret = 0;
1680 } else if (is_free_buddy_page(p)) {
1681 pr_info("%s: %#lx free buddy page\n", __func__, pfn);
1682 ret = 0;
1683 } else {
1684 pr_info("%s: %#lx: unknown zero refcount page type %lx\n",
1685 __func__, pfn, p->flags);
1686 ret = -EIO;
1687 }
1688 } else {
1689 /* Not a free page */
1690 ret = 1;
1691 }
1692 return ret;
1693}
1694
1695static int get_any_page(struct page *page, unsigned long pfn, int flags)
1696{
1697 int ret = __get_any_page(page, pfn, flags);
1698
1699 if (ret == 1 && !PageHuge(page) &&
1700 !PageLRU(page) && !__PageMovable(page)) {
1701 /*
1702 * Try to free it.
1703 */
1704 put_hwpoison_page(page);
1705 shake_page(page, 1);
1706
1707 /*
1708 * Did it turn free?
1709 */
1710 ret = __get_any_page(page, pfn, 0);
1711 if (ret == 1 && !PageLRU(page)) {
1712 /* Drop page reference which is from __get_any_page() */
1713 put_hwpoison_page(page);
1714 pr_info("soft_offline: %#lx: unknown non LRU page type %lx (%pGp)\n",
1715 pfn, page->flags, &page->flags);
1716 return -EIO;
1717 }
1718 }
1719 return ret;
1720}
1721
1722static int soft_offline_huge_page(struct page *page, int flags)
1723{
1724 int ret;
1725 unsigned long pfn = page_to_pfn(page);
1726 struct page *hpage = compound_head(page);
1727 LIST_HEAD(pagelist);
1728
1729 /*
1730 * This double-check of PageHWPoison is to avoid the race with
1731 * memory_failure(). See also comment in __soft_offline_page().
1732 */
1733 lock_page(hpage);
1734 if (PageHWPoison(hpage)) {
1735 unlock_page(hpage);
1736 put_hwpoison_page(hpage);
1737 pr_info("soft offline: %#lx hugepage already poisoned\n", pfn);
1738 return -EBUSY;
1739 }
1740 unlock_page(hpage);
1741
1742 ret = isolate_huge_page(hpage, &pagelist);
1743 /*
1744 * get_any_page() and isolate_huge_page() takes a refcount each,
1745 * so need to drop one here.
1746 */
1747 put_hwpoison_page(hpage);
1748 if (!ret) {
1749 pr_info("soft offline: %#lx hugepage failed to isolate\n", pfn);
1750 return -EBUSY;
1751 }
1752
1753 ret = migrate_pages(&pagelist, new_page, NULL, MPOL_MF_MOVE_ALL,
1754 MIGRATE_SYNC, MR_MEMORY_FAILURE);
1755 if (ret) {
1756 pr_info("soft offline: %#lx: hugepage migration failed %d, type %lx (%pGp)\n",
1757 pfn, ret, page->flags, &page->flags);
1758 if (!list_empty(&pagelist))
1759 putback_movable_pages(&pagelist);
1760 if (ret > 0)
1761 ret = -EIO;
1762 } else {
1763 /*
1764 * We set PG_hwpoison only when the migration source hugepage
1765 * was successfully dissolved, because otherwise hwpoisoned
1766 * hugepage remains on free hugepage list, then userspace will
1767 * find it as SIGBUS by allocation failure. That's not expected
1768 * in soft-offlining.
1769 */
1770 ret = dissolve_free_huge_page(page);
1771 if (!ret) {
1772 if (set_hwpoison_free_buddy_page(page))
1773 num_poisoned_pages_inc();
1774 else
1775 ret = -EBUSY;
1776 }
1777 }
1778 return ret;
1779}
1780
1781static int __soft_offline_page(struct page *page, int flags)
1782{
1783 int ret;
1784 unsigned long pfn = page_to_pfn(page);
1785
1786 /*
1787 * Check PageHWPoison again inside page lock because PageHWPoison
1788 * is set by memory_failure() outside page lock. Note that
1789 * memory_failure() also double-checks PageHWPoison inside page lock,
1790 * so there's no race between soft_offline_page() and memory_failure().
1791 */
1792 lock_page(page);
1793 wait_on_page_writeback(page);
1794 if (PageHWPoison(page)) {
1795 unlock_page(page);
1796 put_hwpoison_page(page);
1797 pr_info("soft offline: %#lx page already poisoned\n", pfn);
1798 return -EBUSY;
1799 }
1800 /*
1801 * Try to invalidate first. This should work for
1802 * non dirty unmapped page cache pages.
1803 */
1804 ret = invalidate_inode_page(page);
1805 unlock_page(page);
1806 /*
1807 * RED-PEN would be better to keep it isolated here, but we
1808 * would need to fix isolation locking first.
1809 */
1810 if (ret == 1) {
1811 put_hwpoison_page(page);
1812 pr_info("soft_offline: %#lx: invalidated\n", pfn);
1813 SetPageHWPoison(page);
1814 num_poisoned_pages_inc();
1815 return 0;
1816 }
1817
1818 /*
1819 * Simple invalidation didn't work.
1820 * Try to migrate to a new page instead. migrate.c
1821 * handles a large number of cases for us.
1822 */
1823 if (PageLRU(page))
1824 ret = isolate_lru_page(page);
1825 else
1826 ret = isolate_movable_page(page, ISOLATE_UNEVICTABLE);
1827 /*
1828 * Drop page reference which is came from get_any_page()
1829 * successful isolate_lru_page() already took another one.
1830 */
1831 put_hwpoison_page(page);
1832 if (!ret) {
1833 LIST_HEAD(pagelist);
1834 /*
1835 * After isolated lru page, the PageLRU will be cleared,
1836 * so use !__PageMovable instead for LRU page's mapping
1837 * cannot have PAGE_MAPPING_MOVABLE.
1838 */
1839 if (!__PageMovable(page))
1840 inc_node_page_state(page, NR_ISOLATED_ANON +
1841 page_is_file_lru(page));
1842 list_add(&page->lru, &pagelist);
1843 ret = migrate_pages(&pagelist, new_page, NULL, MPOL_MF_MOVE_ALL,
1844 MIGRATE_SYNC, MR_MEMORY_FAILURE);
1845 if (ret) {
1846 if (!list_empty(&pagelist))
1847 putback_movable_pages(&pagelist);
1848
1849 pr_info("soft offline: %#lx: migration failed %d, type %lx (%pGp)\n",
1850 pfn, ret, page->flags, &page->flags);
1851 if (ret > 0)
1852 ret = -EIO;
1853 }
1854 } else {
1855 pr_info("soft offline: %#lx: isolation failed: %d, page count %d, type %lx (%pGp)\n",
1856 pfn, ret, page_count(page), page->flags, &page->flags);
1857 }
1858 return ret;
1859}
1860
1861static int soft_offline_in_use_page(struct page *page, int flags)
1862{
1863 int ret;
1864 int mt;
1865 struct page *hpage = compound_head(page);
1866
1867 if (!PageHuge(page) && PageTransHuge(hpage)) {
1868 lock_page(page);
1869 if (!PageAnon(page) || unlikely(split_huge_page(page))) {
1870 unlock_page(page);
1871 if (!PageAnon(page))
1872 pr_info("soft offline: %#lx: non anonymous thp\n", page_to_pfn(page));
1873 else
1874 pr_info("soft offline: %#lx: thp split failed\n", page_to_pfn(page));
1875 put_hwpoison_page(page);
1876 return -EBUSY;
1877 }
1878 unlock_page(page);
1879 }
1880
1881 /*
1882 * Setting MIGRATE_ISOLATE here ensures that the page will be linked
1883 * to free list immediately (not via pcplist) when released after
1884 * successful page migration. Otherwise we can't guarantee that the
1885 * page is really free after put_page() returns, so
1886 * set_hwpoison_free_buddy_page() highly likely fails.
1887 */
1888 mt = get_pageblock_migratetype(page);
1889 set_pageblock_migratetype(page, MIGRATE_ISOLATE);
1890 if (PageHuge(page))
1891 ret = soft_offline_huge_page(page, flags);
1892 else
1893 ret = __soft_offline_page(page, flags);
1894 set_pageblock_migratetype(page, mt);
1895 return ret;
1896}
1897
1898static int soft_offline_free_page(struct page *page)
1899{
1900 int rc = dissolve_free_huge_page(page);
1901
1902 if (!rc) {
1903 if (set_hwpoison_free_buddy_page(page))
1904 num_poisoned_pages_inc();
1905 else
1906 rc = -EBUSY;
1907 }
1908 return rc;
1909}
1910
1911/**
1912 * soft_offline_page - Soft offline a page.
1913 * @pfn: pfn to soft-offline
1914 * @flags: flags. Same as memory_failure().
1915 *
1916 * Returns 0 on success, otherwise negated errno.
1917 *
1918 * Soft offline a page, by migration or invalidation,
1919 * without killing anything. This is for the case when
1920 * a page is not corrupted yet (so it's still valid to access),
1921 * but has had a number of corrected errors and is better taken
1922 * out.
1923 *
1924 * The actual policy on when to do that is maintained by
1925 * user space.
1926 *
1927 * This should never impact any application or cause data loss,
1928 * however it might take some time.
1929 *
1930 * This is not a 100% solution for all memory, but tries to be
1931 * ``good enough'' for the majority of memory.
1932 */
1933int soft_offline_page(unsigned long pfn, int flags)
1934{
1935 int ret;
1936 struct page *page;
1937
1938 if (!pfn_valid(pfn))
1939 return -ENXIO;
1940 /* Only online pages can be soft-offlined (esp., not ZONE_DEVICE). */
1941 page = pfn_to_online_page(pfn);
1942 if (!page)
1943 return -EIO;
1944
1945 if (PageHWPoison(page)) {
1946 pr_info("soft offline: %#lx page already poisoned\n", pfn);
1947 if (flags & MF_COUNT_INCREASED)
1948 put_hwpoison_page(page);
1949 return -EBUSY;
1950 }
1951
1952 get_online_mems();
1953 ret = get_any_page(page, pfn, flags);
1954 put_online_mems();
1955
1956 if (ret > 0)
1957 ret = soft_offline_in_use_page(page, flags);
1958 else if (ret == 0)
1959 ret = soft_offline_free_page(page);
1960
1961 return ret;
1962}