Linux Audio

Check our new training course

Loading...
v3.1
 
   1/*
   2 * Copyright (C) 2008, 2009 Intel Corporation
   3 * Authors: Andi Kleen, Fengguang Wu
   4 *
   5 * This software may be redistributed and/or modified under the terms of
   6 * the GNU General Public License ("GPL") version 2 only as published by the
   7 * Free Software Foundation.
   8 *
   9 * High level machine check handler. Handles pages reported by the
  10 * hardware as being corrupted usually due to a multi-bit ECC memory or cache
  11 * failure.
  12 * 
  13 * In addition there is a "soft offline" entry point that allows stop using
  14 * not-yet-corrupted-by-suspicious pages without killing anything.
  15 *
  16 * Handles page cache pages in various states.	The tricky part
  17 * here is that we can access any page asynchronously in respect to 
  18 * other VM users, because memory failures could happen anytime and 
  19 * anywhere. This could violate some of their assumptions. This is why 
  20 * this code has to be extremely careful. Generally it tries to use 
  21 * normal locking rules, as in get the standard locks, even if that means 
  22 * the error handling takes potentially a long time.
 
 
 
 
 
 
 
 
  23 * 
  24 * There are several operations here with exponential complexity because
  25 * of unsuitable VM data structures. For example the operation to map back 
  26 * from RMAP chains to processes has to walk the complete process list and 
  27 * has non linear complexity with the number. But since memory corruptions
  28 * are rare we hope to get away with this. This avoids impacting the core 
  29 * VM.
  30 */
  31
  32/*
  33 * Notebook:
  34 * - hugetlb needs more code
  35 * - kcore/oldmem/vmcore/mem/kmem check for hwpoison pages
  36 * - pass bad pages to kdump next kernel
  37 */
  38#include <linux/kernel.h>
  39#include <linux/mm.h>
  40#include <linux/page-flags.h>
  41#include <linux/kernel-page-flags.h>
  42#include <linux/sched.h>
 
  43#include <linux/ksm.h>
  44#include <linux/rmap.h>
 
  45#include <linux/pagemap.h>
  46#include <linux/swap.h>
  47#include <linux/backing-dev.h>
  48#include <linux/migrate.h>
  49#include <linux/page-isolation.h>
  50#include <linux/suspend.h>
  51#include <linux/slab.h>
  52#include <linux/swapops.h>
  53#include <linux/hugetlb.h>
  54#include <linux/memory_hotplug.h>
  55#include <linux/mm_inline.h>
 
  56#include <linux/kfifo.h>
 
 
  57#include "internal.h"
 
  58
  59int sysctl_memory_failure_early_kill __read_mostly = 0;
  60
  61int sysctl_memory_failure_recovery __read_mostly = 1;
  62
  63atomic_long_t mce_bad_pages __read_mostly = ATOMIC_LONG_INIT(0);
  64
  65#if defined(CONFIG_HWPOISON_INJECT) || defined(CONFIG_HWPOISON_INJECT_MODULE)
  66
  67u32 hwpoison_filter_enable = 0;
  68u32 hwpoison_filter_dev_major = ~0U;
  69u32 hwpoison_filter_dev_minor = ~0U;
  70u64 hwpoison_filter_flags_mask;
  71u64 hwpoison_filter_flags_value;
  72EXPORT_SYMBOL_GPL(hwpoison_filter_enable);
  73EXPORT_SYMBOL_GPL(hwpoison_filter_dev_major);
  74EXPORT_SYMBOL_GPL(hwpoison_filter_dev_minor);
  75EXPORT_SYMBOL_GPL(hwpoison_filter_flags_mask);
  76EXPORT_SYMBOL_GPL(hwpoison_filter_flags_value);
  77
  78static int hwpoison_filter_dev(struct page *p)
  79{
  80	struct address_space *mapping;
  81	dev_t dev;
  82
  83	if (hwpoison_filter_dev_major == ~0U &&
  84	    hwpoison_filter_dev_minor == ~0U)
  85		return 0;
  86
  87	/*
  88	 * page_mapping() does not accept slab pages.
  89	 */
  90	if (PageSlab(p))
  91		return -EINVAL;
  92
  93	mapping = page_mapping(p);
  94	if (mapping == NULL || mapping->host == NULL)
  95		return -EINVAL;
  96
  97	dev = mapping->host->i_sb->s_dev;
  98	if (hwpoison_filter_dev_major != ~0U &&
  99	    hwpoison_filter_dev_major != MAJOR(dev))
 100		return -EINVAL;
 101	if (hwpoison_filter_dev_minor != ~0U &&
 102	    hwpoison_filter_dev_minor != MINOR(dev))
 103		return -EINVAL;
 104
 105	return 0;
 106}
 107
 108static int hwpoison_filter_flags(struct page *p)
 109{
 110	if (!hwpoison_filter_flags_mask)
 111		return 0;
 112
 113	if ((stable_page_flags(p) & hwpoison_filter_flags_mask) ==
 114				    hwpoison_filter_flags_value)
 115		return 0;
 116	else
 117		return -EINVAL;
 118}
 119
 120/*
 121 * This allows stress tests to limit test scope to a collection of tasks
 122 * by putting them under some memcg. This prevents killing unrelated/important
 123 * processes such as /sbin/init. Note that the target task may share clean
 124 * pages with init (eg. libc text), which is harmless. If the target task
 125 * share _dirty_ pages with another task B, the test scheme must make sure B
 126 * is also included in the memcg. At last, due to race conditions this filter
 127 * can only guarantee that the page either belongs to the memcg tasks, or is
 128 * a freed page.
 129 */
 130#ifdef	CONFIG_CGROUP_MEM_RES_CTLR_SWAP
 131u64 hwpoison_filter_memcg;
 132EXPORT_SYMBOL_GPL(hwpoison_filter_memcg);
 133static int hwpoison_filter_task(struct page *p)
 134{
 135	struct mem_cgroup *mem;
 136	struct cgroup_subsys_state *css;
 137	unsigned long ino;
 138
 139	if (!hwpoison_filter_memcg)
 140		return 0;
 141
 142	mem = try_get_mem_cgroup_from_page(p);
 143	if (!mem)
 144		return -EINVAL;
 145
 146	css = mem_cgroup_css(mem);
 147	/* root_mem_cgroup has NULL dentries */
 148	if (!css->cgroup->dentry)
 149		return -EINVAL;
 150
 151	ino = css->cgroup->dentry->d_inode->i_ino;
 152	css_put(css);
 153
 154	if (ino != hwpoison_filter_memcg)
 155		return -EINVAL;
 156
 157	return 0;
 158}
 159#else
 160static int hwpoison_filter_task(struct page *p) { return 0; }
 161#endif
 162
 163int hwpoison_filter(struct page *p)
 164{
 165	if (!hwpoison_filter_enable)
 166		return 0;
 167
 168	if (hwpoison_filter_dev(p))
 169		return -EINVAL;
 170
 171	if (hwpoison_filter_flags(p))
 172		return -EINVAL;
 173
 174	if (hwpoison_filter_task(p))
 175		return -EINVAL;
 176
 177	return 0;
 178}
 179#else
 180int hwpoison_filter(struct page *p)
 181{
 182	return 0;
 183}
 184#endif
 185
 186EXPORT_SYMBOL_GPL(hwpoison_filter);
 187
 188/*
 189 * Send all the processes who have the page mapped an ``action optional''
 190 * signal.
 191 */
 192static int kill_proc_ao(struct task_struct *t, unsigned long addr, int trapno,
 193			unsigned long pfn, struct page *page)
 194{
 195	struct siginfo si;
 196	int ret;
 197
 198	printk(KERN_ERR
 199		"MCE %#lx: Killing %s:%d early due to hardware memory corruption\n",
 200		pfn, t->comm, t->pid);
 201	si.si_signo = SIGBUS;
 202	si.si_errno = 0;
 203	si.si_code = BUS_MCEERR_AO;
 204	si.si_addr = (void *)addr;
 205#ifdef __ARCH_SI_TRAPNO
 206	si.si_trapno = trapno;
 207#endif
 208	si.si_addr_lsb = compound_trans_order(compound_head(page)) + PAGE_SHIFT;
 209	/*
 210	 * Don't use force here, it's convenient if the signal
 211	 * can be temporarily blocked.
 212	 * This could cause a loop when the user sets SIGBUS
 213	 * to SIG_IGN, but hopefully no one will do that?
 214	 */
 215	ret = send_sig_info(SIGBUS, &si, t);  /* synchronous? */
 216	if (ret < 0)
 217		printk(KERN_INFO "MCE: Error sending signal to %s:%d: %d\n",
 218		       t->comm, t->pid, ret);
 219	return ret;
 220}
 221
 222/*
 223 * When a unknown page type is encountered drain as many buffers as possible
 224 * in the hope to turn the page into a LRU or free page, which we can handle.
 225 */
 226void shake_page(struct page *p, int access)
 227{
 228	if (!PageSlab(p)) {
 229		lru_add_drain_all();
 230		if (PageLRU(p))
 231			return;
 232		drain_all_pages();
 233		if (PageLRU(p) || is_free_buddy_page(p))
 234			return;
 235	}
 236
 237	/*
 238	 * Only call shrink_slab here (which would also shrink other caches) if
 239	 * access is not potentially fatal.
 240	 */
 241	if (access) {
 242		int nr;
 243		do {
 244			struct shrink_control shrink = {
 245				.gfp_mask = GFP_KERNEL,
 246			};
 247
 248			nr = shrink_slab(&shrink, 1000, 1000);
 249			if (page_count(p) == 1)
 250				break;
 251		} while (nr > 10);
 252	}
 253}
 254EXPORT_SYMBOL_GPL(shake_page);
 255
 256/*
 257 * Kill all processes that have a poisoned page mapped and then isolate
 258 * the page.
 259 *
 260 * General strategy:
 261 * Find all processes having the page mapped and kill them.
 262 * But we keep a page reference around so that the page is not
 263 * actually freed yet.
 264 * Then stash the page away
 265 *
 266 * There's no convenient way to get back to mapped processes
 267 * from the VMAs. So do a brute-force search over all
 268 * running processes.
 269 *
 270 * Remember that machine checks are not common (or rather
 271 * if they are common you have other problems), so this shouldn't
 272 * be a performance issue.
 273 *
 274 * Also there are some races possible while we get from the
 275 * error detection to actually handle it.
 276 */
 277
 278struct to_kill {
 279	struct list_head nd;
 280	struct task_struct *tsk;
 281	unsigned long addr;
 282	char addr_valid;
 283};
 284
 285/*
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 286 * Failure handling: if we can't find or can't kill a process there's
 287 * not much we can do.	We just print a message and ignore otherwise.
 288 */
 289
 290/*
 291 * Schedule a process for later kill.
 292 * Uses GFP_ATOMIC allocations to avoid potential recursions in the VM.
 293 * TBD would GFP_NOIO be enough?
 294 */
 295static void add_to_kill(struct task_struct *tsk, struct page *p,
 296		       struct vm_area_struct *vma,
 297		       struct list_head *to_kill,
 298		       struct to_kill **tkc)
 299{
 300	struct to_kill *tk;
 301
 302	if (*tkc) {
 303		tk = *tkc;
 304		*tkc = NULL;
 305	} else {
 306		tk = kmalloc(sizeof(struct to_kill), GFP_ATOMIC);
 307		if (!tk) {
 308			printk(KERN_ERR
 309		"MCE: Out of memory while machine check handling\n");
 310			return;
 311		}
 312	}
 
 313	tk->addr = page_address_in_vma(p, vma);
 314	tk->addr_valid = 1;
 
 
 
 315
 316	/*
 317	 * In theory we don't have to kill when the page was
 318	 * munmaped. But it could be also a mremap. Since that's
 319	 * likely very rare kill anyways just out of paranoia, but use
 320	 * a SIGKILL because the error is not contained anymore.
 
 
 
 
 321	 */
 322	if (tk->addr == -EFAULT) {
 323		pr_info("MCE: Unable to find user space address %lx in %s\n",
 324			page_to_pfn(p), tsk->comm);
 325		tk->addr_valid = 0;
 
 
 326	}
 
 327	get_task_struct(tsk);
 328	tk->tsk = tsk;
 329	list_add_tail(&tk->nd, to_kill);
 330}
 331
 332/*
 333 * Kill the processes that have been collected earlier.
 334 *
 335 * Only do anything when DOIT is set, otherwise just free the list
 336 * (this is used for clean pages which do not need killing)
 337 * Also when FAIL is set do a force kill because something went
 338 * wrong earlier.
 339 */
 340static void kill_procs_ao(struct list_head *to_kill, int doit, int trapno,
 341			  int fail, struct page *page, unsigned long pfn)
 342{
 343	struct to_kill *tk, *next;
 344
 345	list_for_each_entry_safe (tk, next, to_kill, nd) {
 346		if (doit) {
 347			/*
 348			 * In case something went wrong with munmapping
 349			 * make sure the process doesn't catch the
 350			 * signal and then access the memory. Just kill it.
 351			 */
 352			if (fail || tk->addr_valid == 0) {
 353				printk(KERN_ERR
 354		"MCE %#lx: forcibly killing %s:%d because of failure to unmap corrupted page\n",
 355					pfn, tk->tsk->comm, tk->tsk->pid);
 356				force_sig(SIGKILL, tk->tsk);
 357			}
 358
 359			/*
 360			 * In theory the process could have mapped
 361			 * something else on the address in-between. We could
 362			 * check for that, but we need to tell the
 363			 * process anyways.
 364			 */
 365			else if (kill_proc_ao(tk->tsk, tk->addr, trapno,
 366					      pfn, page) < 0)
 367				printk(KERN_ERR
 368		"MCE %#lx: Cannot send advisory machine check signal to %s:%d\n",
 369					pfn, tk->tsk->comm, tk->tsk->pid);
 370		}
 371		put_task_struct(tk->tsk);
 372		kfree(tk);
 373	}
 374}
 375
 376static int task_early_kill(struct task_struct *tsk)
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 377{
 378	if (!tsk->mm)
 379		return 0;
 380	if (tsk->flags & PF_MCE_PROCESS)
 381		return !!(tsk->flags & PF_MCE_EARLY);
 382	return sysctl_memory_failure_early_kill;
 
 
 
 
 
 
 
 
 383}
 384
 385/*
 386 * Collect processes when the error hit an anonymous page.
 387 */
 388static void collect_procs_anon(struct page *page, struct list_head *to_kill,
 389			      struct to_kill **tkc)
 390{
 391	struct vm_area_struct *vma;
 392	struct task_struct *tsk;
 393	struct anon_vma *av;
 
 394
 395	av = page_lock_anon_vma(page);
 396	if (av == NULL)	/* Not actually mapped anymore */
 397		return;
 398
 
 399	read_lock(&tasklist_lock);
 400	for_each_process (tsk) {
 401		struct anon_vma_chain *vmac;
 
 402
 403		if (!task_early_kill(tsk))
 404			continue;
 405		list_for_each_entry(vmac, &av->head, same_anon_vma) {
 
 406			vma = vmac->vma;
 407			if (!page_mapped_in_vma(page, vma))
 408				continue;
 409			if (vma->vm_mm == tsk->mm)
 410				add_to_kill(tsk, page, vma, to_kill, tkc);
 411		}
 412	}
 413	read_unlock(&tasklist_lock);
 414	page_unlock_anon_vma(av);
 415}
 416
 417/*
 418 * Collect processes when the error hit a file mapped page.
 419 */
 420static void collect_procs_file(struct page *page, struct list_head *to_kill,
 421			      struct to_kill **tkc)
 422{
 423	struct vm_area_struct *vma;
 424	struct task_struct *tsk;
 425	struct prio_tree_iter iter;
 426	struct address_space *mapping = page->mapping;
 427
 428	mutex_lock(&mapping->i_mmap_mutex);
 429	read_lock(&tasklist_lock);
 430	for_each_process(tsk) {
 431		pgoff_t pgoff = page->index << (PAGE_CACHE_SHIFT - PAGE_SHIFT);
 
 432
 433		if (!task_early_kill(tsk))
 434			continue;
 435
 436		vma_prio_tree_foreach(vma, &iter, &mapping->i_mmap, pgoff,
 437				      pgoff) {
 438			/*
 439			 * Send early kill signal to tasks where a vma covers
 440			 * the page but the corrupted page is not necessarily
 441			 * mapped it in its pte.
 442			 * Assume applications who requested early kill want
 443			 * to be informed of all such data corruptions.
 444			 */
 445			if (vma->vm_mm == tsk->mm)
 446				add_to_kill(tsk, page, vma, to_kill, tkc);
 447		}
 448	}
 449	read_unlock(&tasklist_lock);
 450	mutex_unlock(&mapping->i_mmap_mutex);
 451}
 452
 453/*
 454 * Collect the processes who have the corrupted page mapped to kill.
 455 * This is done in two steps for locking reasons.
 456 * First preallocate one tokill structure outside the spin locks,
 457 * so that we can kill at least one process reasonably reliable.
 458 */
 459static void collect_procs(struct page *page, struct list_head *tokill)
 
 460{
 461	struct to_kill *tk;
 462
 463	if (!page->mapping)
 464		return;
 465
 466	tk = kmalloc(sizeof(struct to_kill), GFP_NOIO);
 467	if (!tk)
 468		return;
 469	if (PageAnon(page))
 470		collect_procs_anon(page, tokill, &tk);
 471	else
 472		collect_procs_file(page, tokill, &tk);
 473	kfree(tk);
 474}
 475
 476/*
 477 * Error handlers for various types of pages.
 478 */
 479
 480enum outcome {
 481	IGNORED,	/* Error: cannot be handled */
 482	FAILED,		/* Error: handling failed */
 483	DELAYED,	/* Will be handled later */
 484	RECOVERED,	/* Successfully recovered */
 485};
 486
 487static const char *action_name[] = {
 488	[IGNORED] = "Ignored",
 489	[FAILED] = "Failed",
 490	[DELAYED] = "Delayed",
 491	[RECOVERED] = "Recovered",
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 492};
 493
 494/*
 495 * XXX: It is possible that a page is isolated from LRU cache,
 496 * and then kept in swap cache or failed to remove from page cache.
 497 * The page count will stop it from being freed by unpoison.
 498 * Stress tests should be aware of this memory leak problem.
 499 */
 500static int delete_from_lru_cache(struct page *p)
 501{
 502	if (!isolate_lru_page(p)) {
 503		/*
 504		 * Clear sensible page flags, so that the buddy system won't
 505		 * complain when the page is unpoison-and-freed.
 506		 */
 507		ClearPageActive(p);
 508		ClearPageUnevictable(p);
 
 
 
 
 
 
 
 509		/*
 510		 * drop the page count elevated by isolate_lru_page()
 511		 */
 512		page_cache_release(p);
 513		return 0;
 514	}
 515	return -EIO;
 516}
 517
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 518/*
 519 * Error hit kernel page.
 520 * Do nothing, try to be lucky and not touch this instead. For a few cases we
 521 * could be more sophisticated.
 522 */
 523static int me_kernel(struct page *p, unsigned long pfn)
 524{
 525	return IGNORED;
 526}
 527
 528/*
 529 * Page in unknown state. Do nothing.
 530 */
 531static int me_unknown(struct page *p, unsigned long pfn)
 532{
 533	printk(KERN_ERR "MCE %#lx: Unknown page state\n", pfn);
 534	return FAILED;
 535}
 536
 537/*
 538 * Clean (or cleaned) page cache page.
 539 */
 540static int me_pagecache_clean(struct page *p, unsigned long pfn)
 541{
 542	int err;
 543	int ret = FAILED;
 544	struct address_space *mapping;
 545
 546	delete_from_lru_cache(p);
 547
 548	/*
 549	 * For anonymous pages we're done the only reference left
 550	 * should be the one m_f() holds.
 551	 */
 552	if (PageAnon(p))
 553		return RECOVERED;
 554
 555	/*
 556	 * Now truncate the page in the page cache. This is really
 557	 * more like a "temporary hole punch"
 558	 * Don't do this for block devices when someone else
 559	 * has a reference, because it could be file system metadata
 560	 * and that's not safe to truncate.
 561	 */
 562	mapping = page_mapping(p);
 563	if (!mapping) {
 564		/*
 565		 * Page has been teared down in the meanwhile
 566		 */
 567		return FAILED;
 568	}
 569
 570	/*
 571	 * Truncation is a bit tricky. Enable it per file system for now.
 572	 *
 573	 * Open: to take i_mutex or not for this? Right now we don't.
 574	 */
 575	if (mapping->a_ops->error_remove_page) {
 576		err = mapping->a_ops->error_remove_page(mapping, p);
 577		if (err != 0) {
 578			printk(KERN_INFO "MCE %#lx: Failed to punch page: %d\n",
 579					pfn, err);
 580		} else if (page_has_private(p) &&
 581				!try_to_release_page(p, GFP_NOIO)) {
 582			pr_info("MCE %#lx: failed to release buffers\n", pfn);
 583		} else {
 584			ret = RECOVERED;
 585		}
 586	} else {
 587		/*
 588		 * If the file system doesn't support it just invalidate
 589		 * This fails on dirty or anything with private pages
 590		 */
 591		if (invalidate_inode_page(p))
 592			ret = RECOVERED;
 593		else
 594			printk(KERN_INFO "MCE %#lx: Failed to invalidate\n",
 595				pfn);
 596	}
 597	return ret;
 598}
 599
 600/*
 601 * Dirty cache page page
 602 * Issues: when the error hit a hole page the error is not properly
 603 * propagated.
 604 */
 605static int me_pagecache_dirty(struct page *p, unsigned long pfn)
 606{
 607	struct address_space *mapping = page_mapping(p);
 608
 609	SetPageError(p);
 610	/* TBD: print more information about the file. */
 611	if (mapping) {
 612		/*
 613		 * IO error will be reported by write(), fsync(), etc.
 614		 * who check the mapping.
 615		 * This way the application knows that something went
 616		 * wrong with its dirty file data.
 617		 *
 618		 * There's one open issue:
 619		 *
 620		 * The EIO will be only reported on the next IO
 621		 * operation and then cleared through the IO map.
 622		 * Normally Linux has two mechanisms to pass IO error
 623		 * first through the AS_EIO flag in the address space
 624		 * and then through the PageError flag in the page.
 625		 * Since we drop pages on memory failure handling the
 626		 * only mechanism open to use is through AS_AIO.
 627		 *
 628		 * This has the disadvantage that it gets cleared on
 629		 * the first operation that returns an error, while
 630		 * the PageError bit is more sticky and only cleared
 631		 * when the page is reread or dropped.  If an
 632		 * application assumes it will always get error on
 633		 * fsync, but does other operations on the fd before
 634		 * and the page is dropped between then the error
 635		 * will not be properly reported.
 636		 *
 637		 * This can already happen even without hwpoisoned
 638		 * pages: first on metadata IO errors (which only
 639		 * report through AS_EIO) or when the page is dropped
 640		 * at the wrong time.
 641		 *
 642		 * So right now we assume that the application DTRT on
 643		 * the first EIO, but we're not worse than other parts
 644		 * of the kernel.
 645		 */
 646		mapping_set_error(mapping, EIO);
 647	}
 648
 649	return me_pagecache_clean(p, pfn);
 650}
 651
 652/*
 653 * Clean and dirty swap cache.
 654 *
 655 * Dirty swap cache page is tricky to handle. The page could live both in page
 656 * cache and swap cache(ie. page is freshly swapped in). So it could be
 657 * referenced concurrently by 2 types of PTEs:
 658 * normal PTEs and swap PTEs. We try to handle them consistently by calling
 659 * try_to_unmap(TTU_IGNORE_HWPOISON) to convert the normal PTEs to swap PTEs,
 660 * and then
 661 *      - clear dirty bit to prevent IO
 662 *      - remove from LRU
 663 *      - but keep in the swap cache, so that when we return to it on
 664 *        a later page fault, we know the application is accessing
 665 *        corrupted data and shall be killed (we installed simple
 666 *        interception code in do_swap_page to catch it).
 667 *
 668 * Clean swap cache pages can be directly isolated. A later page fault will
 669 * bring in the known good data from disk.
 670 */
 671static int me_swapcache_dirty(struct page *p, unsigned long pfn)
 672{
 673	ClearPageDirty(p);
 674	/* Trigger EIO in shmem: */
 675	ClearPageUptodate(p);
 676
 677	if (!delete_from_lru_cache(p))
 678		return DELAYED;
 679	else
 680		return FAILED;
 681}
 682
 683static int me_swapcache_clean(struct page *p, unsigned long pfn)
 684{
 685	delete_from_swap_cache(p);
 686
 687	if (!delete_from_lru_cache(p))
 688		return RECOVERED;
 689	else
 690		return FAILED;
 691}
 692
 693/*
 694 * Huge pages. Needs work.
 695 * Issues:
 696 * - Error on hugepage is contained in hugepage unit (not in raw page unit.)
 697 *   To narrow down kill region to one page, we need to break up pmd.
 698 */
 699static int me_huge_page(struct page *p, unsigned long pfn)
 700{
 701	int res = 0;
 702	struct page *hpage = compound_head(p);
 703	/*
 704	 * We can safely recover from error on free or reserved (i.e.
 705	 * not in-use) hugepage by dequeuing it from freelist.
 706	 * To check whether a hugepage is in-use or not, we can't use
 707	 * page->lru because it can be used in other hugepage operations,
 708	 * such as __unmap_hugepage_range() and gather_surplus_pages().
 709	 * So instead we use page_mapping() and PageAnon().
 710	 * We assume that this function is called with page lock held,
 711	 * so there is no race between isolation and mapping/unmapping.
 712	 */
 713	if (!(page_mapping(hpage) || PageAnon(hpage))) {
 714		res = dequeue_hwpoisoned_huge_page(hpage);
 715		if (!res)
 716			return RECOVERED;
 
 
 
 
 
 
 717	}
 718	return DELAYED;
 
 719}
 720
 721/*
 722 * Various page states we can handle.
 723 *
 724 * A page state is defined by its current page->flags bits.
 725 * The table matches them in order and calls the right handler.
 726 *
 727 * This is quite tricky because we can access page at any time
 728 * in its live cycle, so all accesses have to be extremely careful.
 729 *
 730 * This is not complete. More states could be added.
 731 * For any missing state don't attempt recovery.
 732 */
 733
 734#define dirty		(1UL << PG_dirty)
 735#define sc		(1UL << PG_swapcache)
 736#define unevict		(1UL << PG_unevictable)
 737#define mlock		(1UL << PG_mlocked)
 738#define writeback	(1UL << PG_writeback)
 739#define lru		(1UL << PG_lru)
 740#define swapbacked	(1UL << PG_swapbacked)
 741#define head		(1UL << PG_head)
 742#define tail		(1UL << PG_tail)
 743#define compound	(1UL << PG_compound)
 744#define slab		(1UL << PG_slab)
 745#define reserved	(1UL << PG_reserved)
 746
 747static struct page_state {
 748	unsigned long mask;
 749	unsigned long res;
 750	char *msg;
 751	int (*action)(struct page *p, unsigned long pfn);
 752} error_states[] = {
 753	{ reserved,	reserved,	"reserved kernel",	me_kernel },
 754	/*
 755	 * free pages are specially detected outside this table:
 756	 * PG_buddy pages only make a small fraction of all free pages.
 757	 */
 758
 759	/*
 760	 * Could in theory check if slab page is free or if we can drop
 761	 * currently unused objects without touching them. But just
 762	 * treat it as standard kernel for now.
 763	 */
 764	{ slab,		slab,		"kernel slab",	me_kernel },
 765
 766#ifdef CONFIG_PAGEFLAGS_EXTENDED
 767	{ head,		head,		"huge",		me_huge_page },
 768	{ tail,		tail,		"huge",		me_huge_page },
 769#else
 770	{ compound,	compound,	"huge",		me_huge_page },
 771#endif
 772
 773	{ sc|dirty,	sc|dirty,	"swapcache",	me_swapcache_dirty },
 774	{ sc|dirty,	sc,		"swapcache",	me_swapcache_clean },
 775
 776	{ unevict|dirty, unevict|dirty,	"unevictable LRU", me_pagecache_dirty},
 777	{ unevict,	unevict,	"unevictable LRU", me_pagecache_clean},
 778
 779	{ mlock|dirty,	mlock|dirty,	"mlocked LRU",	me_pagecache_dirty },
 780	{ mlock,	mlock,		"mlocked LRU",	me_pagecache_clean },
 781
 782	{ lru|dirty,	lru|dirty,	"LRU",		me_pagecache_dirty },
 783	{ lru|dirty,	lru,		"clean LRU",	me_pagecache_clean },
 784
 785	/*
 786	 * Catchall entry: must be at end.
 787	 */
 788	{ 0,		0,		"unknown page state",	me_unknown },
 789};
 790
 791#undef dirty
 792#undef sc
 793#undef unevict
 794#undef mlock
 795#undef writeback
 796#undef lru
 797#undef swapbacked
 798#undef head
 799#undef tail
 800#undef compound
 801#undef slab
 802#undef reserved
 803
 804static void action_result(unsigned long pfn, char *msg, int result)
 
 
 
 
 
 805{
 806	struct page *page = pfn_to_page(pfn);
 807
 808	printk(KERN_ERR "MCE %#lx: %s%s page recovery: %s\n",
 809		pfn,
 810		PageDirty(page) ? "dirty " : "",
 811		msg, action_name[result]);
 812}
 813
 814static int page_action(struct page_state *ps, struct page *p,
 815			unsigned long pfn)
 816{
 817	int result;
 818	int count;
 819
 820	result = ps->action(p, pfn);
 821	action_result(pfn, ps->msg, result);
 822
 823	count = page_count(p) - 1;
 824	if (ps->action == me_swapcache_dirty && result == DELAYED)
 825		count--;
 826	if (count != 0) {
 827		printk(KERN_ERR
 828		       "MCE %#lx: %s page still referenced by %d users\n",
 829		       pfn, ps->msg, count);
 830		result = FAILED;
 831	}
 
 832
 833	/* Could do more checks here if page looks ok */
 834	/*
 835	 * Could adjust zone counters here to correct for the missing page.
 836	 */
 837
 838	return (result == RECOVERED || result == DELAYED) ? 0 : -EBUSY;
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 839}
 
 840
 841/*
 842 * Do all that is necessary to remove user space mappings. Unmap
 843 * the pages and send SIGBUS to the processes if the data was dirty.
 844 */
 845static int hwpoison_user_mappings(struct page *p, unsigned long pfn,
 846				  int trapno)
 847{
 848	enum ttu_flags ttu = TTU_UNMAP | TTU_IGNORE_MLOCK | TTU_IGNORE_ACCESS;
 849	struct address_space *mapping;
 850	LIST_HEAD(tokill);
 851	int ret;
 852	int kill = 1;
 853	struct page *hpage = compound_head(p);
 854	struct page *ppage;
 855
 
 
 
 
 856	if (PageReserved(p) || PageSlab(p))
 857		return SWAP_SUCCESS;
 
 
 858
 859	/*
 860	 * This check implies we don't kill processes if their pages
 861	 * are in the swap cache early. Those are always late kills.
 862	 */
 863	if (!page_mapped(hpage))
 864		return SWAP_SUCCESS;
 865
 866	if (PageKsm(p))
 867		return SWAP_FAIL;
 
 
 868
 869	if (PageSwapCache(p)) {
 870		printk(KERN_ERR
 871		       "MCE %#lx: keeping poisoned page in swap cache\n", pfn);
 872		ttu |= TTU_IGNORE_HWPOISON;
 873	}
 874
 875	/*
 876	 * Propagate the dirty bit from PTEs to struct page first, because we
 877	 * need this to decide if we should kill or just drop the page.
 878	 * XXX: the dirty test could be racy: set_page_dirty() may not always
 879	 * be called inside page lock (it's recommended but not enforced).
 880	 */
 881	mapping = page_mapping(hpage);
 882	if (!PageDirty(hpage) && mapping &&
 883	    mapping_cap_writeback_dirty(mapping)) {
 884		if (page_mkclean(hpage)) {
 885			SetPageDirty(hpage);
 886		} else {
 887			kill = 0;
 888			ttu |= TTU_IGNORE_HWPOISON;
 889			printk(KERN_INFO
 890	"MCE %#lx: corrupted page was clean: dropped without side effects\n",
 891				pfn);
 892		}
 893	}
 894
 895	/*
 896	 * ppage: poisoned page
 897	 *   if p is regular page(4k page)
 898	 *        ppage == real poisoned page;
 899	 *   else p is hugetlb or THP, ppage == head page.
 900	 */
 901	ppage = hpage;
 902
 903	if (PageTransHuge(hpage)) {
 904		/*
 905		 * Verify that this isn't a hugetlbfs head page, the check for
 906		 * PageAnon is just for avoid tripping a split_huge_page
 907		 * internal debug check, as split_huge_page refuses to deal with
 908		 * anything that isn't an anon page. PageAnon can't go away fro
 909		 * under us because we hold a refcount on the hpage, without a
 910		 * refcount on the hpage. split_huge_page can't be safely called
 911		 * in the first place, having a refcount on the tail isn't
 912		 * enough * to be safe.
 913		 */
 914		if (!PageHuge(hpage) && PageAnon(hpage)) {
 915			if (unlikely(split_huge_page(hpage))) {
 916				/*
 917				 * FIXME: if splitting THP is failed, it is
 918				 * better to stop the following operation rather
 919				 * than causing panic by unmapping. System might
 920				 * survive if the page is freed later.
 921				 */
 922				printk(KERN_INFO
 923					"MCE %#lx: failed to split THP\n", pfn);
 924
 925				BUG_ON(!PageHWPoison(p));
 926				return SWAP_FAIL;
 927			}
 928			/* THP is split, so ppage should be the real poisoned page. */
 929			ppage = p;
 930		}
 931	}
 932
 933	/*
 934	 * First collect all the processes that have the page
 935	 * mapped in dirty form.  This has to be done before try_to_unmap,
 936	 * because ttu takes the rmap data structures down.
 937	 *
 938	 * Error handling: We ignore errors here because
 939	 * there's nothing that can be done.
 940	 */
 941	if (kill)
 942		collect_procs(ppage, &tokill);
 943
 944	if (hpage != ppage)
 945		lock_page(ppage);
 
 
 
 
 
 
 
 
 
 
 
 
 
 946
 947	ret = try_to_unmap(ppage, ttu);
 948	if (ret != SWAP_SUCCESS)
 949		printk(KERN_ERR "MCE %#lx: failed to unmap page (mapcount=%d)\n",
 950				pfn, page_mapcount(ppage));
 
 
 
 
 
 
 
 
 
 951
 952	if (hpage != ppage)
 953		unlock_page(ppage);
 
 
 
 
 954
 955	/*
 956	 * Now that the dirty bit has been propagated to the
 957	 * struct page and all unmaps done we can decide if
 958	 * killing is needed or not.  Only kill when the page
 959	 * was dirty, otherwise the tokill list is merely
 
 960	 * freed.  When there was a problem unmapping earlier
 961	 * use a more force-full uncatchable kill to prevent
 962	 * any accesses to the poisoned memory.
 963	 */
 964	kill_procs_ao(&tokill, !!PageDirty(ppage), trapno,
 965		      ret != SWAP_SUCCESS, p, pfn);
 966
 967	return ret;
 968}
 969
 970static void set_page_hwpoison_huge_page(struct page *hpage)
 
 971{
 972	int i;
 973	int nr_pages = 1 << compound_trans_order(hpage);
 974	for (i = 0; i < nr_pages; i++)
 975		SetPageHWPoison(hpage + i);
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 976}
 977
 978static void clear_page_hwpoison_huge_page(struct page *hpage)
 979{
 980	int i;
 981	int nr_pages = 1 << compound_trans_order(hpage);
 982	for (i = 0; i < nr_pages; i++)
 983		ClearPageHWPoison(hpage + i);
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 984}
 985
 986int __memory_failure(unsigned long pfn, int trapno, int flags)
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 987{
 988	struct page_state *ps;
 989	struct page *p;
 990	struct page *hpage;
 
 
 991	int res;
 992	unsigned int nr_pages;
 993
 994	if (!sysctl_memory_failure_recovery)
 995		panic("Memory failure from trap %d on page %lx", trapno, pfn);
 996
 997	if (!pfn_valid(pfn)) {
 998		printk(KERN_ERR
 999		       "MCE %#lx: memory outside kernel control\n",
1000		       pfn);
 
 
 
 
 
 
1001		return -ENXIO;
1002	}
1003
1004	p = pfn_to_page(pfn);
1005	hpage = compound_head(p);
1006	if (TestSetPageHWPoison(p)) {
1007		printk(KERN_ERR "MCE %#lx: already hardware poisoned\n", pfn);
 
1008		return 0;
1009	}
1010
1011	nr_pages = 1 << compound_trans_order(hpage);
1012	atomic_long_add(nr_pages, &mce_bad_pages);
1013
1014	/*
1015	 * We need/can do nothing about count=0 pages.
1016	 * 1) it's a free page, and therefore in safe hand:
1017	 *    prep_new_page() will be the gate keeper.
1018	 * 2) it's a free hugepage, which is also safe:
1019	 *    an affected hugepage will be dequeued from hugepage freelist,
1020	 *    so there's no concern about reusing it ever after.
1021	 * 3) it's part of a non-compound high order page.
1022	 *    Implies some kernel user: cannot stop them from
1023	 *    R/W the page; let's pray that the page has been
1024	 *    used and will be freed some time later.
1025	 * In fact it's dangerous to directly bump up page count from 0,
1026	 * that may make page_freeze_refs()/page_unfreeze_refs() mismatch.
1027	 */
1028	if (!(flags & MF_COUNT_INCREASED) &&
1029		!get_page_unless_zero(hpage)) {
1030		if (is_free_buddy_page(p)) {
1031			action_result(pfn, "free buddy", DELAYED);
1032			return 0;
1033		} else if (PageHuge(hpage)) {
1034			/*
1035			 * Check "just unpoisoned", "filter hit", and
1036			 * "race with other subpage."
1037			 */
1038			lock_page(hpage);
1039			if (!PageHWPoison(hpage)
1040			    || (hwpoison_filter(p) && TestClearPageHWPoison(p))
1041			    || (p != hpage && TestSetPageHWPoison(hpage))) {
1042				atomic_long_sub(nr_pages, &mce_bad_pages);
1043				return 0;
1044			}
1045			set_page_hwpoison_huge_page(hpage);
1046			res = dequeue_hwpoisoned_huge_page(hpage);
1047			action_result(pfn, "free huge",
1048				      res ? IGNORED : DELAYED);
1049			unlock_page(hpage);
1050			return res;
1051		} else {
1052			action_result(pfn, "high order kernel", IGNORED);
1053			return -EBUSY;
1054		}
1055	}
1056
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1057	/*
1058	 * We ignore non-LRU pages for good reasons.
1059	 * - PG_locked is only well defined for LRU pages and a few others
1060	 * - to avoid races with __set_page_locked()
1061	 * - to avoid races with __SetPageSlab*() (and more non-atomic ops)
1062	 * The check (unnecessarily) ignores LRU pages being isolated and
1063	 * walked by the page reclaim code, however that's not a big loss.
1064	 */
1065	if (!PageHuge(p) && !PageTransCompound(p)) {
1066		if (!PageLRU(p))
1067			shake_page(p, 0);
1068		if (!PageLRU(p)) {
1069			/*
1070			 * shake_page could have turned it free.
1071			 */
1072			if (is_free_buddy_page(p)) {
1073				action_result(pfn, "free buddy, 2nd try",
1074						DELAYED);
1075				return 0;
1076			}
1077			action_result(pfn, "non LRU", IGNORED);
1078			put_page(p);
1079			return -EBUSY;
1080		}
 
 
 
 
1081	}
1082
1083	/*
1084	 * Lock the page and wait for writeback to finish.
1085	 * It's very difficult to mess with pages currently under IO
1086	 * and in many cases impossible, so we just avoid it here.
 
 
1087	 */
1088	lock_page(hpage);
 
 
 
1089
1090	/*
1091	 * unpoison always clear PG_hwpoison inside page lock
1092	 */
1093	if (!PageHWPoison(p)) {
1094		printk(KERN_ERR "MCE %#lx: just unpoisoned\n", pfn);
1095		res = 0;
1096		goto out;
 
 
1097	}
1098	if (hwpoison_filter(p)) {
1099		if (TestClearPageHWPoison(p))
1100			atomic_long_sub(nr_pages, &mce_bad_pages);
1101		unlock_page(hpage);
1102		put_page(hpage);
1103		return 0;
1104	}
1105
 
 
 
1106	/*
1107	 * For error on the tail page, we should set PG_hwpoison
1108	 * on the head page to show that the hugepage is hwpoisoned
1109	 */
1110	if (PageHuge(p) && PageTail(p) && TestSetPageHWPoison(hpage)) {
1111		action_result(pfn, "hugepage already hardware poisoned",
1112				IGNORED);
1113		unlock_page(hpage);
1114		put_page(hpage);
1115		return 0;
1116	}
1117	/*
1118	 * Set PG_hwpoison on all pages in an error hugepage,
1119	 * because containment is done in hugepage unit for now.
1120	 * Since we have done TestSetPageHWPoison() for the head page with
1121	 * page lock held, we can safely set PG_hwpoison bits on tail pages.
1122	 */
1123	if (PageHuge(p))
1124		set_page_hwpoison_huge_page(hpage);
1125
1126	wait_on_page_writeback(p);
1127
1128	/*
1129	 * Now take care of user space mappings.
1130	 * Abort on fail: __delete_from_page_cache() assumes unmapped page.
 
 
 
1131	 */
1132	if (hwpoison_user_mappings(p, pfn, trapno) != SWAP_SUCCESS) {
1133		printk(KERN_ERR "MCE %#lx: cannot unmap page, give up\n", pfn);
1134		res = -EBUSY;
1135		goto out;
1136	}
1137
1138	/*
1139	 * Torn down by someone else?
1140	 */
1141	if (PageLRU(p) && !PageSwapCache(p) && p->mapping == NULL) {
1142		action_result(pfn, "already truncated LRU", IGNORED);
1143		res = -EBUSY;
1144		goto out;
1145	}
1146
1147	res = -EBUSY;
1148	for (ps = error_states;; ps++) {
1149		if ((p->flags & ps->mask) == ps->res) {
1150			res = page_action(ps, p, pfn);
1151			break;
1152		}
1153	}
1154out:
1155	unlock_page(hpage);
1156	return res;
1157}
1158EXPORT_SYMBOL_GPL(__memory_failure);
1159
1160/**
1161 * memory_failure - Handle memory failure of a page.
1162 * @pfn: Page Number of the corrupted page
1163 * @trapno: Trap number reported in the signal to user space.
1164 *
1165 * This function is called by the low level machine check code
1166 * of an architecture when it detects hardware memory corruption
1167 * of a page. It tries its best to recover, which includes
1168 * dropping pages, killing processes etc.
1169 *
1170 * The function is primarily of use for corruptions that
1171 * happen outside the current execution context (e.g. when
1172 * detected by a background scrubber)
1173 *
1174 * Must run in process context (e.g. a work queue) with interrupts
1175 * enabled and no spinlocks hold.
1176 */
1177void memory_failure(unsigned long pfn, int trapno)
1178{
1179	__memory_failure(pfn, trapno, 0);
1180}
1181
1182#define MEMORY_FAILURE_FIFO_ORDER	4
1183#define MEMORY_FAILURE_FIFO_SIZE	(1 << MEMORY_FAILURE_FIFO_ORDER)
1184
1185struct memory_failure_entry {
1186	unsigned long pfn;
1187	int trapno;
1188	int flags;
1189};
1190
1191struct memory_failure_cpu {
1192	DECLARE_KFIFO(fifo, struct memory_failure_entry,
1193		      MEMORY_FAILURE_FIFO_SIZE);
1194	spinlock_t lock;
1195	struct work_struct work;
1196};
1197
1198static DEFINE_PER_CPU(struct memory_failure_cpu, memory_failure_cpu);
1199
1200/**
1201 * memory_failure_queue - Schedule handling memory failure of a page.
1202 * @pfn: Page Number of the corrupted page
1203 * @trapno: Trap number reported in the signal to user space.
1204 * @flags: Flags for memory failure handling
1205 *
1206 * This function is called by the low level hardware error handler
1207 * when it detects hardware memory corruption of a page. It schedules
1208 * the recovering of error page, including dropping pages, killing
1209 * processes etc.
1210 *
1211 * The function is primarily of use for corruptions that
1212 * happen outside the current execution context (e.g. when
1213 * detected by a background scrubber)
1214 *
1215 * Can run in IRQ context.
1216 */
1217void memory_failure_queue(unsigned long pfn, int trapno, int flags)
1218{
1219	struct memory_failure_cpu *mf_cpu;
1220	unsigned long proc_flags;
1221	struct memory_failure_entry entry = {
1222		.pfn =		pfn,
1223		.trapno =	trapno,
1224		.flags =	flags,
1225	};
1226
1227	mf_cpu = &get_cpu_var(memory_failure_cpu);
1228	spin_lock_irqsave(&mf_cpu->lock, proc_flags);
1229	if (kfifo_put(&mf_cpu->fifo, &entry))
1230		schedule_work_on(smp_processor_id(), &mf_cpu->work);
1231	else
1232		pr_err("Memory failure: buffer overflow when queuing memory failure at 0x%#lx\n",
1233		       pfn);
1234	spin_unlock_irqrestore(&mf_cpu->lock, proc_flags);
1235	put_cpu_var(memory_failure_cpu);
1236}
1237EXPORT_SYMBOL_GPL(memory_failure_queue);
1238
1239static void memory_failure_work_func(struct work_struct *work)
1240{
1241	struct memory_failure_cpu *mf_cpu;
1242	struct memory_failure_entry entry = { 0, };
1243	unsigned long proc_flags;
1244	int gotten;
1245
1246	mf_cpu = &__get_cpu_var(memory_failure_cpu);
1247	for (;;) {
1248		spin_lock_irqsave(&mf_cpu->lock, proc_flags);
1249		gotten = kfifo_get(&mf_cpu->fifo, &entry);
1250		spin_unlock_irqrestore(&mf_cpu->lock, proc_flags);
1251		if (!gotten)
1252			break;
1253		__memory_failure(entry.pfn, entry.trapno, entry.flags);
 
 
 
1254	}
1255}
1256
 
 
 
 
 
 
 
 
 
 
 
 
 
1257static int __init memory_failure_init(void)
1258{
1259	struct memory_failure_cpu *mf_cpu;
1260	int cpu;
1261
1262	for_each_possible_cpu(cpu) {
1263		mf_cpu = &per_cpu(memory_failure_cpu, cpu);
1264		spin_lock_init(&mf_cpu->lock);
1265		INIT_KFIFO(mf_cpu->fifo);
1266		INIT_WORK(&mf_cpu->work, memory_failure_work_func);
1267	}
1268
1269	return 0;
1270}
1271core_initcall(memory_failure_init);
1272
 
 
 
 
 
 
1273/**
1274 * unpoison_memory - Unpoison a previously poisoned page
1275 * @pfn: Page number of the to be unpoisoned page
1276 *
1277 * Software-unpoison a page that has been poisoned by
1278 * memory_failure() earlier.
1279 *
1280 * This is only done on the software-level, so it only works
1281 * for linux injected failures, not real hardware failures
1282 *
1283 * Returns 0 for success, otherwise -errno.
1284 */
1285int unpoison_memory(unsigned long pfn)
1286{
1287	struct page *page;
1288	struct page *p;
1289	int freeit = 0;
1290	unsigned int nr_pages;
 
1291
1292	if (!pfn_valid(pfn))
1293		return -ENXIO;
1294
1295	p = pfn_to_page(pfn);
1296	page = compound_head(p);
1297
1298	if (!PageHWPoison(p)) {
1299		pr_info("MCE: Page was already unpoisoned %#lx\n", pfn);
 
1300		return 0;
1301	}
1302
1303	nr_pages = 1 << compound_trans_order(page);
 
 
 
 
1304
1305	if (!get_page_unless_zero(page)) {
1306		/*
1307		 * Since HWPoisoned hugepage should have non-zero refcount,
1308		 * race between memory failure and unpoison seems to happen.
1309		 * In such case unpoison fails and memory failure runs
1310		 * to the end.
1311		 */
1312		if (PageHuge(page)) {
1313			pr_debug("MCE: Memory failure is now running on free hugepage %#lx\n", pfn);
1314			return 0;
1315		}
 
 
 
 
 
 
 
 
 
 
 
 
 
1316		if (TestClearPageHWPoison(p))
1317			atomic_long_sub(nr_pages, &mce_bad_pages);
1318		pr_info("MCE: Software-unpoisoned free page %#lx\n", pfn);
 
1319		return 0;
1320	}
1321
1322	lock_page(page);
1323	/*
1324	 * This test is racy because PG_hwpoison is set outside of page lock.
1325	 * That's acceptable because that won't trigger kernel panic. Instead,
1326	 * the PG_hwpoison page will be caught and isolated on the entrance to
1327	 * the free buddy page pool.
1328	 */
1329	if (TestClearPageHWPoison(page)) {
1330		pr_info("MCE: Software-unpoisoned page %#lx\n", pfn);
1331		atomic_long_sub(nr_pages, &mce_bad_pages);
 
1332		freeit = 1;
1333		if (PageHuge(page))
1334			clear_page_hwpoison_huge_page(page);
1335	}
1336	unlock_page(page);
1337
1338	put_page(page);
1339	if (freeit)
1340		put_page(page);
1341
1342	return 0;
1343}
1344EXPORT_SYMBOL(unpoison_memory);
1345
1346static struct page *new_page(struct page *p, unsigned long private, int **x)
1347{
1348	int nid = page_to_nid(p);
1349	if (PageHuge(p))
1350		return alloc_huge_page_node(page_hstate(compound_head(p)),
1351						   nid);
1352	else
1353		return alloc_pages_exact_node(nid, GFP_HIGHUSER_MOVABLE, 0);
1354}
1355
1356/*
1357 * Safely get reference count of an arbitrary page.
1358 * Returns 0 for a free page, -EIO for a zero refcount page
1359 * that is not free, and 1 for any other page type.
1360 * For 1 the page is returned with increased page count, otherwise not.
1361 */
1362static int get_any_page(struct page *p, unsigned long pfn, int flags)
1363{
1364	int ret;
1365
1366	if (flags & MF_COUNT_INCREASED)
1367		return 1;
1368
1369	/*
1370	 * The lock_memory_hotplug prevents a race with memory hotplug.
1371	 * This is a big hammer, a better would be nicer.
1372	 */
1373	lock_memory_hotplug();
1374
1375	/*
1376	 * Isolate the page, so that it doesn't get reallocated if it
1377	 * was free.
1378	 */
1379	set_migratetype_isolate(p);
1380	/*
1381	 * When the target page is a free hugepage, just remove it
1382	 * from free hugepage list.
1383	 */
1384	if (!get_page_unless_zero(compound_head(p))) {
1385		if (PageHuge(p)) {
1386			pr_info("get_any_page: %#lx free huge page\n", pfn);
1387			ret = dequeue_hwpoisoned_huge_page(compound_head(p));
1388		} else if (is_free_buddy_page(p)) {
1389			pr_info("get_any_page: %#lx free buddy page\n", pfn);
1390			/* Set hwpoison bit while page is still isolated */
1391			SetPageHWPoison(p);
1392			ret = 0;
1393		} else {
1394			pr_info("get_any_page: %#lx: unknown zero refcount page type %lx\n",
1395				pfn, p->flags);
1396			ret = -EIO;
1397		}
1398	} else {
1399		/* Not a free page */
1400		ret = 1;
1401	}
1402	unset_migratetype_isolate(p);
1403	unlock_memory_hotplug();
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1404	return ret;
1405}
1406
1407static int soft_offline_huge_page(struct page *page, int flags)
1408{
1409	int ret;
1410	unsigned long pfn = page_to_pfn(page);
1411	struct page *hpage = compound_head(page);
1412	LIST_HEAD(pagelist);
1413
1414	ret = get_any_page(page, pfn, flags);
1415	if (ret < 0)
1416		return ret;
1417	if (ret == 0)
1418		goto done;
1419
1420	if (PageHWPoison(hpage)) {
1421		put_page(hpage);
1422		pr_debug("soft offline: %#lx hugepage already poisoned\n", pfn);
 
1423		return -EBUSY;
1424	}
 
1425
1426	/* Keep page count to indicate a given hugepage is isolated. */
 
 
 
 
 
 
 
 
 
1427
1428	list_add(&hpage->lru, &pagelist);
1429	ret = migrate_huge_pages(&pagelist, new_page, MPOL_MF_MOVE_ALL, 0,
1430				true);
1431	if (ret) {
1432		struct page *page1, *page2;
1433		list_for_each_entry_safe(page1, page2, &pagelist, lru)
1434			put_page(page1);
1435
1436		pr_debug("soft offline: %#lx: migration failed %d, type %lx\n",
1437			 pfn, ret, page->flags);
1438		if (ret > 0)
1439			ret = -EIO;
1440		return ret;
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1441	}
1442done:
1443	if (!PageHWPoison(hpage))
1444		atomic_long_add(1 << compound_trans_order(hpage), &mce_bad_pages);
1445	set_page_hwpoison_huge_page(hpage);
1446	dequeue_hwpoisoned_huge_page(hpage);
1447	/* keep elevated page count for bad page */
1448	return ret;
1449}
1450
1451/**
1452 * soft_offline_page - Soft offline a page.
1453 * @page: page to offline
1454 * @flags: flags. Same as memory_failure().
1455 *
1456 * Returns 0 on success, otherwise negated errno.
1457 *
1458 * Soft offline a page, by migration or invalidation,
1459 * without killing anything. This is for the case when
1460 * a page is not corrupted yet (so it's still valid to access),
1461 * but has had a number of corrected errors and is better taken
1462 * out.
1463 *
1464 * The actual policy on when to do that is maintained by
1465 * user space.
1466 *
1467 * This should never impact any application or cause data loss,
1468 * however it might take some time.
1469 *
1470 * This is not a 100% solution for all memory, but tries to be
1471 * ``good enough'' for the majority of memory.
1472 */
1473int soft_offline_page(struct page *page, int flags)
1474{
1475	int ret;
1476	unsigned long pfn = page_to_pfn(page);
1477
1478	if (PageHuge(page))
1479		return soft_offline_huge_page(page, flags);
1480
1481	ret = get_any_page(page, pfn, flags);
1482	if (ret < 0)
1483		return ret;
1484	if (ret == 0)
1485		goto done;
1486
1487	/*
1488	 * Page cache page we can handle?
 
 
 
1489	 */
1490	if (!PageLRU(page)) {
1491		/*
1492		 * Try to free it.
1493		 */
1494		put_page(page);
1495		shake_page(page, 1);
1496
1497		/*
1498		 * Did it turn free?
1499		 */
1500		ret = get_any_page(page, pfn, 0);
1501		if (ret < 0)
1502			return ret;
1503		if (ret == 0)
1504			goto done;
1505	}
1506	if (!PageLRU(page)) {
1507		pr_info("soft_offline: %#lx: unknown non LRU page type %lx\n",
1508				pfn, page->flags);
1509		return -EIO;
1510	}
1511
1512	lock_page(page);
1513	wait_on_page_writeback(page);
1514
1515	/*
1516	 * Synchronized using the page lock with memory_failure()
1517	 */
1518	if (PageHWPoison(page)) {
1519		unlock_page(page);
1520		put_page(page);
1521		pr_info("soft offline: %#lx page already poisoned\n", pfn);
1522		return -EBUSY;
1523	}
1524
1525	/*
1526	 * Try to invalidate first. This should work for
1527	 * non dirty unmapped page cache pages.
1528	 */
1529	ret = invalidate_inode_page(page);
1530	unlock_page(page);
1531	/*
1532	 * RED-PEN would be better to keep it isolated here, but we
1533	 * would need to fix isolation locking first.
1534	 */
1535	if (ret == 1) {
1536		put_page(page);
1537		ret = 0;
1538		pr_info("soft_offline: %#lx: invalidated\n", pfn);
1539		goto done;
 
 
1540	}
1541
1542	/*
1543	 * Simple invalidation didn't work.
1544	 * Try to migrate to a new page instead. migrate.c
1545	 * handles a large number of cases for us.
1546	 */
1547	ret = isolate_lru_page(page);
 
 
 
1548	/*
1549	 * Drop page reference which is came from get_any_page()
1550	 * successful isolate_lru_page() already took another one.
1551	 */
1552	put_page(page);
1553	if (!ret) {
1554		LIST_HEAD(pagelist);
1555		inc_zone_page_state(page, NR_ISOLATED_ANON +
1556					    page_is_file_cache(page));
 
 
 
 
 
 
1557		list_add(&page->lru, &pagelist);
1558		ret = migrate_pages(&pagelist, new_page, MPOL_MF_MOVE_ALL,
1559								0, true);
1560		if (ret) {
1561			putback_lru_pages(&pagelist);
1562			pr_info("soft offline: %#lx: migration failed %d, type %lx\n",
1563				pfn, ret, page->flags);
 
 
1564			if (ret > 0)
1565				ret = -EIO;
1566		}
1567	} else {
1568		pr_info("soft offline: %#lx: isolation failed: %d, page count %d, type %lx\n",
1569				pfn, ret, page_count(page), page->flags);
1570	}
1571	if (ret)
1572		return ret;
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1573
1574done:
1575	atomic_long_add(1, &mce_bad_pages);
1576	SetPageHWPoison(page);
1577	/* keep elevated page count for bad page */
1578	return ret;
1579}
v5.9
   1// SPDX-License-Identifier: GPL-2.0-only
   2/*
   3 * Copyright (C) 2008, 2009 Intel Corporation
   4 * Authors: Andi Kleen, Fengguang Wu
   5 *
 
 
 
 
   6 * High level machine check handler. Handles pages reported by the
   7 * hardware as being corrupted usually due to a multi-bit ECC memory or cache
   8 * failure.
   9 * 
  10 * In addition there is a "soft offline" entry point that allows stop using
  11 * not-yet-corrupted-by-suspicious pages without killing anything.
  12 *
  13 * Handles page cache pages in various states.	The tricky part
  14 * here is that we can access any page asynchronously in respect to 
  15 * other VM users, because memory failures could happen anytime and 
  16 * anywhere. This could violate some of their assumptions. This is why 
  17 * this code has to be extremely careful. Generally it tries to use 
  18 * normal locking rules, as in get the standard locks, even if that means 
  19 * the error handling takes potentially a long time.
  20 *
  21 * It can be very tempting to add handling for obscure cases here.
  22 * In general any code for handling new cases should only be added iff:
  23 * - You know how to test it.
  24 * - You have a test that can be added to mce-test
  25 *   https://git.kernel.org/cgit/utils/cpu/mce/mce-test.git/
  26 * - The case actually shows up as a frequent (top 10) page state in
  27 *   tools/vm/page-types when running a real workload.
  28 * 
  29 * There are several operations here with exponential complexity because
  30 * of unsuitable VM data structures. For example the operation to map back 
  31 * from RMAP chains to processes has to walk the complete process list and 
  32 * has non linear complexity with the number. But since memory corruptions
  33 * are rare we hope to get away with this. This avoids impacting the core 
  34 * VM.
  35 */
 
 
 
 
 
 
 
  36#include <linux/kernel.h>
  37#include <linux/mm.h>
  38#include <linux/page-flags.h>
  39#include <linux/kernel-page-flags.h>
  40#include <linux/sched/signal.h>
  41#include <linux/sched/task.h>
  42#include <linux/ksm.h>
  43#include <linux/rmap.h>
  44#include <linux/export.h>
  45#include <linux/pagemap.h>
  46#include <linux/swap.h>
  47#include <linux/backing-dev.h>
  48#include <linux/migrate.h>
 
  49#include <linux/suspend.h>
  50#include <linux/slab.h>
  51#include <linux/swapops.h>
  52#include <linux/hugetlb.h>
  53#include <linux/memory_hotplug.h>
  54#include <linux/mm_inline.h>
  55#include <linux/memremap.h>
  56#include <linux/kfifo.h>
  57#include <linux/ratelimit.h>
  58#include <linux/page-isolation.h>
  59#include "internal.h"
  60#include "ras/ras_event.h"
  61
  62int sysctl_memory_failure_early_kill __read_mostly = 0;
  63
  64int sysctl_memory_failure_recovery __read_mostly = 1;
  65
  66atomic_long_t num_poisoned_pages __read_mostly = ATOMIC_LONG_INIT(0);
  67
  68#if defined(CONFIG_HWPOISON_INJECT) || defined(CONFIG_HWPOISON_INJECT_MODULE)
  69
  70u32 hwpoison_filter_enable = 0;
  71u32 hwpoison_filter_dev_major = ~0U;
  72u32 hwpoison_filter_dev_minor = ~0U;
  73u64 hwpoison_filter_flags_mask;
  74u64 hwpoison_filter_flags_value;
  75EXPORT_SYMBOL_GPL(hwpoison_filter_enable);
  76EXPORT_SYMBOL_GPL(hwpoison_filter_dev_major);
  77EXPORT_SYMBOL_GPL(hwpoison_filter_dev_minor);
  78EXPORT_SYMBOL_GPL(hwpoison_filter_flags_mask);
  79EXPORT_SYMBOL_GPL(hwpoison_filter_flags_value);
  80
  81static int hwpoison_filter_dev(struct page *p)
  82{
  83	struct address_space *mapping;
  84	dev_t dev;
  85
  86	if (hwpoison_filter_dev_major == ~0U &&
  87	    hwpoison_filter_dev_minor == ~0U)
  88		return 0;
  89
  90	/*
  91	 * page_mapping() does not accept slab pages.
  92	 */
  93	if (PageSlab(p))
  94		return -EINVAL;
  95
  96	mapping = page_mapping(p);
  97	if (mapping == NULL || mapping->host == NULL)
  98		return -EINVAL;
  99
 100	dev = mapping->host->i_sb->s_dev;
 101	if (hwpoison_filter_dev_major != ~0U &&
 102	    hwpoison_filter_dev_major != MAJOR(dev))
 103		return -EINVAL;
 104	if (hwpoison_filter_dev_minor != ~0U &&
 105	    hwpoison_filter_dev_minor != MINOR(dev))
 106		return -EINVAL;
 107
 108	return 0;
 109}
 110
 111static int hwpoison_filter_flags(struct page *p)
 112{
 113	if (!hwpoison_filter_flags_mask)
 114		return 0;
 115
 116	if ((stable_page_flags(p) & hwpoison_filter_flags_mask) ==
 117				    hwpoison_filter_flags_value)
 118		return 0;
 119	else
 120		return -EINVAL;
 121}
 122
 123/*
 124 * This allows stress tests to limit test scope to a collection of tasks
 125 * by putting them under some memcg. This prevents killing unrelated/important
 126 * processes such as /sbin/init. Note that the target task may share clean
 127 * pages with init (eg. libc text), which is harmless. If the target task
 128 * share _dirty_ pages with another task B, the test scheme must make sure B
 129 * is also included in the memcg. At last, due to race conditions this filter
 130 * can only guarantee that the page either belongs to the memcg tasks, or is
 131 * a freed page.
 132 */
 133#ifdef CONFIG_MEMCG
 134u64 hwpoison_filter_memcg;
 135EXPORT_SYMBOL_GPL(hwpoison_filter_memcg);
 136static int hwpoison_filter_task(struct page *p)
 137{
 
 
 
 
 138	if (!hwpoison_filter_memcg)
 139		return 0;
 140
 141	if (page_cgroup_ino(p) != hwpoison_filter_memcg)
 
 
 
 
 
 
 
 
 
 
 
 
 142		return -EINVAL;
 143
 144	return 0;
 145}
 146#else
 147static int hwpoison_filter_task(struct page *p) { return 0; }
 148#endif
 149
 150int hwpoison_filter(struct page *p)
 151{
 152	if (!hwpoison_filter_enable)
 153		return 0;
 154
 155	if (hwpoison_filter_dev(p))
 156		return -EINVAL;
 157
 158	if (hwpoison_filter_flags(p))
 159		return -EINVAL;
 160
 161	if (hwpoison_filter_task(p))
 162		return -EINVAL;
 163
 164	return 0;
 165}
 166#else
 167int hwpoison_filter(struct page *p)
 168{
 169	return 0;
 170}
 171#endif
 172
 173EXPORT_SYMBOL_GPL(hwpoison_filter);
 174
 175/*
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 176 * Kill all processes that have a poisoned page mapped and then isolate
 177 * the page.
 178 *
 179 * General strategy:
 180 * Find all processes having the page mapped and kill them.
 181 * But we keep a page reference around so that the page is not
 182 * actually freed yet.
 183 * Then stash the page away
 184 *
 185 * There's no convenient way to get back to mapped processes
 186 * from the VMAs. So do a brute-force search over all
 187 * running processes.
 188 *
 189 * Remember that machine checks are not common (or rather
 190 * if they are common you have other problems), so this shouldn't
 191 * be a performance issue.
 192 *
 193 * Also there are some races possible while we get from the
 194 * error detection to actually handle it.
 195 */
 196
 197struct to_kill {
 198	struct list_head nd;
 199	struct task_struct *tsk;
 200	unsigned long addr;
 201	short size_shift;
 202};
 203
 204/*
 205 * Send all the processes who have the page mapped a signal.
 206 * ``action optional'' if they are not immediately affected by the error
 207 * ``action required'' if error happened in current execution context
 208 */
 209static int kill_proc(struct to_kill *tk, unsigned long pfn, int flags)
 210{
 211	struct task_struct *t = tk->tsk;
 212	short addr_lsb = tk->size_shift;
 213	int ret = 0;
 214
 215	pr_err("Memory failure: %#lx: Sending SIGBUS to %s:%d due to hardware memory corruption\n",
 216			pfn, t->comm, t->pid);
 217
 218	if (flags & MF_ACTION_REQUIRED) {
 219		WARN_ON_ONCE(t != current);
 220		ret = force_sig_mceerr(BUS_MCEERR_AR,
 221					 (void __user *)tk->addr, addr_lsb);
 222	} else {
 223		/*
 224		 * Don't use force here, it's convenient if the signal
 225		 * can be temporarily blocked.
 226		 * This could cause a loop when the user sets SIGBUS
 227		 * to SIG_IGN, but hopefully no one will do that?
 228		 */
 229		ret = send_sig_mceerr(BUS_MCEERR_AO, (void __user *)tk->addr,
 230				      addr_lsb, t);  /* synchronous? */
 231	}
 232	if (ret < 0)
 233		pr_info("Memory failure: Error sending signal to %s:%d: %d\n",
 234			t->comm, t->pid, ret);
 235	return ret;
 236}
 237
 238/*
 239 * When a unknown page type is encountered drain as many buffers as possible
 240 * in the hope to turn the page into a LRU or free page, which we can handle.
 241 */
 242void shake_page(struct page *p, int access)
 243{
 244	if (PageHuge(p))
 245		return;
 246
 247	if (!PageSlab(p)) {
 248		lru_add_drain_all();
 249		if (PageLRU(p))
 250			return;
 251		drain_all_pages(page_zone(p));
 252		if (PageLRU(p) || is_free_buddy_page(p))
 253			return;
 254	}
 255
 256	/*
 257	 * Only call shrink_node_slabs here (which would also shrink
 258	 * other caches) if access is not potentially fatal.
 259	 */
 260	if (access)
 261		drop_slab_node(page_to_nid(p));
 262}
 263EXPORT_SYMBOL_GPL(shake_page);
 264
 265static unsigned long dev_pagemap_mapping_shift(struct page *page,
 266		struct vm_area_struct *vma)
 267{
 268	unsigned long address = vma_address(page, vma);
 269	pgd_t *pgd;
 270	p4d_t *p4d;
 271	pud_t *pud;
 272	pmd_t *pmd;
 273	pte_t *pte;
 274
 275	pgd = pgd_offset(vma->vm_mm, address);
 276	if (!pgd_present(*pgd))
 277		return 0;
 278	p4d = p4d_offset(pgd, address);
 279	if (!p4d_present(*p4d))
 280		return 0;
 281	pud = pud_offset(p4d, address);
 282	if (!pud_present(*pud))
 283		return 0;
 284	if (pud_devmap(*pud))
 285		return PUD_SHIFT;
 286	pmd = pmd_offset(pud, address);
 287	if (!pmd_present(*pmd))
 288		return 0;
 289	if (pmd_devmap(*pmd))
 290		return PMD_SHIFT;
 291	pte = pte_offset_map(pmd, address);
 292	if (!pte_present(*pte))
 293		return 0;
 294	if (pte_devmap(*pte))
 295		return PAGE_SHIFT;
 296	return 0;
 297}
 298
 299/*
 300 * Failure handling: if we can't find or can't kill a process there's
 301 * not much we can do.	We just print a message and ignore otherwise.
 302 */
 303
 304/*
 305 * Schedule a process for later kill.
 306 * Uses GFP_ATOMIC allocations to avoid potential recursions in the VM.
 
 307 */
 308static void add_to_kill(struct task_struct *tsk, struct page *p,
 309		       struct vm_area_struct *vma,
 310		       struct list_head *to_kill)
 
 311{
 312	struct to_kill *tk;
 313
 314	tk = kmalloc(sizeof(struct to_kill), GFP_ATOMIC);
 315	if (!tk) {
 316		pr_err("Memory failure: Out of memory while machine check handling\n");
 317		return;
 
 
 
 
 
 
 318	}
 319
 320	tk->addr = page_address_in_vma(p, vma);
 321	if (is_zone_device_page(p))
 322		tk->size_shift = dev_pagemap_mapping_shift(p, vma);
 323	else
 324		tk->size_shift = page_shift(compound_head(p));
 325
 326	/*
 327	 * Send SIGKILL if "tk->addr == -EFAULT". Also, as
 328	 * "tk->size_shift" is always non-zero for !is_zone_device_page(),
 329	 * so "tk->size_shift == 0" effectively checks no mapping on
 330	 * ZONE_DEVICE. Indeed, when a devdax page is mmapped N times
 331	 * to a process' address space, it's possible not all N VMAs
 332	 * contain mappings for the page, but at least one VMA does.
 333	 * Only deliver SIGBUS with payload derived from the VMA that
 334	 * has a mapping for the page.
 335	 */
 336	if (tk->addr == -EFAULT) {
 337		pr_info("Memory failure: Unable to find user space address %lx in %s\n",
 338			page_to_pfn(p), tsk->comm);
 339	} else if (tk->size_shift == 0) {
 340		kfree(tk);
 341		return;
 342	}
 343
 344	get_task_struct(tsk);
 345	tk->tsk = tsk;
 346	list_add_tail(&tk->nd, to_kill);
 347}
 348
 349/*
 350 * Kill the processes that have been collected earlier.
 351 *
 352 * Only do anything when DOIT is set, otherwise just free the list
 353 * (this is used for clean pages which do not need killing)
 354 * Also when FAIL is set do a force kill because something went
 355 * wrong earlier.
 356 */
 357static void kill_procs(struct list_head *to_kill, int forcekill, bool fail,
 358		unsigned long pfn, int flags)
 359{
 360	struct to_kill *tk, *next;
 361
 362	list_for_each_entry_safe (tk, next, to_kill, nd) {
 363		if (forcekill) {
 364			/*
 365			 * In case something went wrong with munmapping
 366			 * make sure the process doesn't catch the
 367			 * signal and then access the memory. Just kill it.
 368			 */
 369			if (fail || tk->addr == -EFAULT) {
 370				pr_err("Memory failure: %#lx: forcibly killing %s:%d because of failure to unmap corrupted page\n",
 371				       pfn, tk->tsk->comm, tk->tsk->pid);
 372				do_send_sig_info(SIGKILL, SEND_SIG_PRIV,
 373						 tk->tsk, PIDTYPE_PID);
 374			}
 375
 376			/*
 377			 * In theory the process could have mapped
 378			 * something else on the address in-between. We could
 379			 * check for that, but we need to tell the
 380			 * process anyways.
 381			 */
 382			else if (kill_proc(tk, pfn, flags) < 0)
 383				pr_err("Memory failure: %#lx: Cannot send advisory machine check signal to %s:%d\n",
 384				       pfn, tk->tsk->comm, tk->tsk->pid);
 
 
 385		}
 386		put_task_struct(tk->tsk);
 387		kfree(tk);
 388	}
 389}
 390
 391/*
 392 * Find a dedicated thread which is supposed to handle SIGBUS(BUS_MCEERR_AO)
 393 * on behalf of the thread group. Return task_struct of the (first found)
 394 * dedicated thread if found, and return NULL otherwise.
 395 *
 396 * We already hold read_lock(&tasklist_lock) in the caller, so we don't
 397 * have to call rcu_read_lock/unlock() in this function.
 398 */
 399static struct task_struct *find_early_kill_thread(struct task_struct *tsk)
 400{
 401	struct task_struct *t;
 402
 403	for_each_thread(tsk, t) {
 404		if (t->flags & PF_MCE_PROCESS) {
 405			if (t->flags & PF_MCE_EARLY)
 406				return t;
 407		} else {
 408			if (sysctl_memory_failure_early_kill)
 409				return t;
 410		}
 411	}
 412	return NULL;
 413}
 414
 415/*
 416 * Determine whether a given process is "early kill" process which expects
 417 * to be signaled when some page under the process is hwpoisoned.
 418 * Return task_struct of the dedicated thread (main thread unless explicitly
 419 * specified) if the process is "early kill," and otherwise returns NULL.
 420 *
 421 * Note that the above is true for Action Optional case, but not for Action
 422 * Required case where SIGBUS should sent only to the current thread.
 423 */
 424static struct task_struct *task_early_kill(struct task_struct *tsk,
 425					   int force_early)
 426{
 427	if (!tsk->mm)
 428		return NULL;
 429	if (force_early) {
 430		/*
 431		 * Comparing ->mm here because current task might represent
 432		 * a subthread, while tsk always points to the main thread.
 433		 */
 434		if (tsk->mm == current->mm)
 435			return current;
 436		else
 437			return NULL;
 438	}
 439	return find_early_kill_thread(tsk);
 440}
 441
 442/*
 443 * Collect processes when the error hit an anonymous page.
 444 */
 445static void collect_procs_anon(struct page *page, struct list_head *to_kill,
 446				int force_early)
 447{
 448	struct vm_area_struct *vma;
 449	struct task_struct *tsk;
 450	struct anon_vma *av;
 451	pgoff_t pgoff;
 452
 453	av = page_lock_anon_vma_read(page);
 454	if (av == NULL)	/* Not actually mapped anymore */
 455		return;
 456
 457	pgoff = page_to_pgoff(page);
 458	read_lock(&tasklist_lock);
 459	for_each_process (tsk) {
 460		struct anon_vma_chain *vmac;
 461		struct task_struct *t = task_early_kill(tsk, force_early);
 462
 463		if (!t)
 464			continue;
 465		anon_vma_interval_tree_foreach(vmac, &av->rb_root,
 466					       pgoff, pgoff) {
 467			vma = vmac->vma;
 468			if (!page_mapped_in_vma(page, vma))
 469				continue;
 470			if (vma->vm_mm == t->mm)
 471				add_to_kill(t, page, vma, to_kill);
 472		}
 473	}
 474	read_unlock(&tasklist_lock);
 475	page_unlock_anon_vma_read(av);
 476}
 477
 478/*
 479 * Collect processes when the error hit a file mapped page.
 480 */
 481static void collect_procs_file(struct page *page, struct list_head *to_kill,
 482				int force_early)
 483{
 484	struct vm_area_struct *vma;
 485	struct task_struct *tsk;
 
 486	struct address_space *mapping = page->mapping;
 487
 488	i_mmap_lock_read(mapping);
 489	read_lock(&tasklist_lock);
 490	for_each_process(tsk) {
 491		pgoff_t pgoff = page_to_pgoff(page);
 492		struct task_struct *t = task_early_kill(tsk, force_early);
 493
 494		if (!t)
 495			continue;
 496		vma_interval_tree_foreach(vma, &mapping->i_mmap, pgoff,
 
 497				      pgoff) {
 498			/*
 499			 * Send early kill signal to tasks where a vma covers
 500			 * the page but the corrupted page is not necessarily
 501			 * mapped it in its pte.
 502			 * Assume applications who requested early kill want
 503			 * to be informed of all such data corruptions.
 504			 */
 505			if (vma->vm_mm == t->mm)
 506				add_to_kill(t, page, vma, to_kill);
 507		}
 508	}
 509	read_unlock(&tasklist_lock);
 510	i_mmap_unlock_read(mapping);
 511}
 512
 513/*
 514 * Collect the processes who have the corrupted page mapped to kill.
 
 
 
 515 */
 516static void collect_procs(struct page *page, struct list_head *tokill,
 517				int force_early)
 518{
 
 
 519	if (!page->mapping)
 520		return;
 521
 
 
 
 522	if (PageAnon(page))
 523		collect_procs_anon(page, tokill, force_early);
 524	else
 525		collect_procs_file(page, tokill, force_early);
 
 526}
 527
 528static const char *action_name[] = {
 529	[MF_IGNORED] = "Ignored",
 530	[MF_FAILED] = "Failed",
 531	[MF_DELAYED] = "Delayed",
 532	[MF_RECOVERED] = "Recovered",
 
 
 
 
 533};
 534
 535static const char * const action_page_types[] = {
 536	[MF_MSG_KERNEL]			= "reserved kernel page",
 537	[MF_MSG_KERNEL_HIGH_ORDER]	= "high-order kernel page",
 538	[MF_MSG_SLAB]			= "kernel slab page",
 539	[MF_MSG_DIFFERENT_COMPOUND]	= "different compound page after locking",
 540	[MF_MSG_POISONED_HUGE]		= "huge page already hardware poisoned",
 541	[MF_MSG_HUGE]			= "huge page",
 542	[MF_MSG_FREE_HUGE]		= "free huge page",
 543	[MF_MSG_NON_PMD_HUGE]		= "non-pmd-sized huge page",
 544	[MF_MSG_UNMAP_FAILED]		= "unmapping failed page",
 545	[MF_MSG_DIRTY_SWAPCACHE]	= "dirty swapcache page",
 546	[MF_MSG_CLEAN_SWAPCACHE]	= "clean swapcache page",
 547	[MF_MSG_DIRTY_MLOCKED_LRU]	= "dirty mlocked LRU page",
 548	[MF_MSG_CLEAN_MLOCKED_LRU]	= "clean mlocked LRU page",
 549	[MF_MSG_DIRTY_UNEVICTABLE_LRU]	= "dirty unevictable LRU page",
 550	[MF_MSG_CLEAN_UNEVICTABLE_LRU]	= "clean unevictable LRU page",
 551	[MF_MSG_DIRTY_LRU]		= "dirty LRU page",
 552	[MF_MSG_CLEAN_LRU]		= "clean LRU page",
 553	[MF_MSG_TRUNCATED_LRU]		= "already truncated LRU page",
 554	[MF_MSG_BUDDY]			= "free buddy page",
 555	[MF_MSG_BUDDY_2ND]		= "free buddy page (2nd try)",
 556	[MF_MSG_DAX]			= "dax page",
 557	[MF_MSG_UNKNOWN]		= "unknown page",
 558};
 559
 560/*
 561 * XXX: It is possible that a page is isolated from LRU cache,
 562 * and then kept in swap cache or failed to remove from page cache.
 563 * The page count will stop it from being freed by unpoison.
 564 * Stress tests should be aware of this memory leak problem.
 565 */
 566static int delete_from_lru_cache(struct page *p)
 567{
 568	if (!isolate_lru_page(p)) {
 569		/*
 570		 * Clear sensible page flags, so that the buddy system won't
 571		 * complain when the page is unpoison-and-freed.
 572		 */
 573		ClearPageActive(p);
 574		ClearPageUnevictable(p);
 575
 576		/*
 577		 * Poisoned page might never drop its ref count to 0 so we have
 578		 * to uncharge it manually from its memcg.
 579		 */
 580		mem_cgroup_uncharge(p);
 581
 582		/*
 583		 * drop the page count elevated by isolate_lru_page()
 584		 */
 585		put_page(p);
 586		return 0;
 587	}
 588	return -EIO;
 589}
 590
 591static int truncate_error_page(struct page *p, unsigned long pfn,
 592				struct address_space *mapping)
 593{
 594	int ret = MF_FAILED;
 595
 596	if (mapping->a_ops->error_remove_page) {
 597		int err = mapping->a_ops->error_remove_page(mapping, p);
 598
 599		if (err != 0) {
 600			pr_info("Memory failure: %#lx: Failed to punch page: %d\n",
 601				pfn, err);
 602		} else if (page_has_private(p) &&
 603			   !try_to_release_page(p, GFP_NOIO)) {
 604			pr_info("Memory failure: %#lx: failed to release buffers\n",
 605				pfn);
 606		} else {
 607			ret = MF_RECOVERED;
 608		}
 609	} else {
 610		/*
 611		 * If the file system doesn't support it just invalidate
 612		 * This fails on dirty or anything with private pages
 613		 */
 614		if (invalidate_inode_page(p))
 615			ret = MF_RECOVERED;
 616		else
 617			pr_info("Memory failure: %#lx: Failed to invalidate\n",
 618				pfn);
 619	}
 620
 621	return ret;
 622}
 623
 624/*
 625 * Error hit kernel page.
 626 * Do nothing, try to be lucky and not touch this instead. For a few cases we
 627 * could be more sophisticated.
 628 */
 629static int me_kernel(struct page *p, unsigned long pfn)
 630{
 631	return MF_IGNORED;
 632}
 633
 634/*
 635 * Page in unknown state. Do nothing.
 636 */
 637static int me_unknown(struct page *p, unsigned long pfn)
 638{
 639	pr_err("Memory failure: %#lx: Unknown page state\n", pfn);
 640	return MF_FAILED;
 641}
 642
 643/*
 644 * Clean (or cleaned) page cache page.
 645 */
 646static int me_pagecache_clean(struct page *p, unsigned long pfn)
 647{
 
 
 648	struct address_space *mapping;
 649
 650	delete_from_lru_cache(p);
 651
 652	/*
 653	 * For anonymous pages we're done the only reference left
 654	 * should be the one m_f() holds.
 655	 */
 656	if (PageAnon(p))
 657		return MF_RECOVERED;
 658
 659	/*
 660	 * Now truncate the page in the page cache. This is really
 661	 * more like a "temporary hole punch"
 662	 * Don't do this for block devices when someone else
 663	 * has a reference, because it could be file system metadata
 664	 * and that's not safe to truncate.
 665	 */
 666	mapping = page_mapping(p);
 667	if (!mapping) {
 668		/*
 669		 * Page has been teared down in the meanwhile
 670		 */
 671		return MF_FAILED;
 672	}
 673
 674	/*
 675	 * Truncation is a bit tricky. Enable it per file system for now.
 676	 *
 677	 * Open: to take i_mutex or not for this? Right now we don't.
 678	 */
 679	return truncate_error_page(p, pfn, mapping);
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 680}
 681
 682/*
 683 * Dirty pagecache page
 684 * Issues: when the error hit a hole page the error is not properly
 685 * propagated.
 686 */
 687static int me_pagecache_dirty(struct page *p, unsigned long pfn)
 688{
 689	struct address_space *mapping = page_mapping(p);
 690
 691	SetPageError(p);
 692	/* TBD: print more information about the file. */
 693	if (mapping) {
 694		/*
 695		 * IO error will be reported by write(), fsync(), etc.
 696		 * who check the mapping.
 697		 * This way the application knows that something went
 698		 * wrong with its dirty file data.
 699		 *
 700		 * There's one open issue:
 701		 *
 702		 * The EIO will be only reported on the next IO
 703		 * operation and then cleared through the IO map.
 704		 * Normally Linux has two mechanisms to pass IO error
 705		 * first through the AS_EIO flag in the address space
 706		 * and then through the PageError flag in the page.
 707		 * Since we drop pages on memory failure handling the
 708		 * only mechanism open to use is through AS_AIO.
 709		 *
 710		 * This has the disadvantage that it gets cleared on
 711		 * the first operation that returns an error, while
 712		 * the PageError bit is more sticky and only cleared
 713		 * when the page is reread or dropped.  If an
 714		 * application assumes it will always get error on
 715		 * fsync, but does other operations on the fd before
 716		 * and the page is dropped between then the error
 717		 * will not be properly reported.
 718		 *
 719		 * This can already happen even without hwpoisoned
 720		 * pages: first on metadata IO errors (which only
 721		 * report through AS_EIO) or when the page is dropped
 722		 * at the wrong time.
 723		 *
 724		 * So right now we assume that the application DTRT on
 725		 * the first EIO, but we're not worse than other parts
 726		 * of the kernel.
 727		 */
 728		mapping_set_error(mapping, -EIO);
 729	}
 730
 731	return me_pagecache_clean(p, pfn);
 732}
 733
 734/*
 735 * Clean and dirty swap cache.
 736 *
 737 * Dirty swap cache page is tricky to handle. The page could live both in page
 738 * cache and swap cache(ie. page is freshly swapped in). So it could be
 739 * referenced concurrently by 2 types of PTEs:
 740 * normal PTEs and swap PTEs. We try to handle them consistently by calling
 741 * try_to_unmap(TTU_IGNORE_HWPOISON) to convert the normal PTEs to swap PTEs,
 742 * and then
 743 *      - clear dirty bit to prevent IO
 744 *      - remove from LRU
 745 *      - but keep in the swap cache, so that when we return to it on
 746 *        a later page fault, we know the application is accessing
 747 *        corrupted data and shall be killed (we installed simple
 748 *        interception code in do_swap_page to catch it).
 749 *
 750 * Clean swap cache pages can be directly isolated. A later page fault will
 751 * bring in the known good data from disk.
 752 */
 753static int me_swapcache_dirty(struct page *p, unsigned long pfn)
 754{
 755	ClearPageDirty(p);
 756	/* Trigger EIO in shmem: */
 757	ClearPageUptodate(p);
 758
 759	if (!delete_from_lru_cache(p))
 760		return MF_DELAYED;
 761	else
 762		return MF_FAILED;
 763}
 764
 765static int me_swapcache_clean(struct page *p, unsigned long pfn)
 766{
 767	delete_from_swap_cache(p);
 768
 769	if (!delete_from_lru_cache(p))
 770		return MF_RECOVERED;
 771	else
 772		return MF_FAILED;
 773}
 774
 775/*
 776 * Huge pages. Needs work.
 777 * Issues:
 778 * - Error on hugepage is contained in hugepage unit (not in raw page unit.)
 779 *   To narrow down kill region to one page, we need to break up pmd.
 780 */
 781static int me_huge_page(struct page *p, unsigned long pfn)
 782{
 783	int res = 0;
 784	struct page *hpage = compound_head(p);
 785	struct address_space *mapping;
 786
 787	if (!PageHuge(hpage))
 788		return MF_DELAYED;
 789
 790	mapping = page_mapping(hpage);
 791	if (mapping) {
 792		res = truncate_error_page(hpage, pfn, mapping);
 793	} else {
 794		unlock_page(hpage);
 795		/*
 796		 * migration entry prevents later access on error anonymous
 797		 * hugepage, so we can free and dissolve it into buddy to
 798		 * save healthy subpages.
 799		 */
 800		if (PageAnon(hpage))
 801			put_page(hpage);
 802		dissolve_free_huge_page(p);
 803		res = MF_RECOVERED;
 804		lock_page(hpage);
 805	}
 806
 807	return res;
 808}
 809
 810/*
 811 * Various page states we can handle.
 812 *
 813 * A page state is defined by its current page->flags bits.
 814 * The table matches them in order and calls the right handler.
 815 *
 816 * This is quite tricky because we can access page at any time
 817 * in its live cycle, so all accesses have to be extremely careful.
 818 *
 819 * This is not complete. More states could be added.
 820 * For any missing state don't attempt recovery.
 821 */
 822
 823#define dirty		(1UL << PG_dirty)
 824#define sc		((1UL << PG_swapcache) | (1UL << PG_swapbacked))
 825#define unevict		(1UL << PG_unevictable)
 826#define mlock		(1UL << PG_mlocked)
 827#define writeback	(1UL << PG_writeback)
 828#define lru		(1UL << PG_lru)
 
 829#define head		(1UL << PG_head)
 
 
 830#define slab		(1UL << PG_slab)
 831#define reserved	(1UL << PG_reserved)
 832
 833static struct page_state {
 834	unsigned long mask;
 835	unsigned long res;
 836	enum mf_action_page_type type;
 837	int (*action)(struct page *p, unsigned long pfn);
 838} error_states[] = {
 839	{ reserved,	reserved,	MF_MSG_KERNEL,	me_kernel },
 840	/*
 841	 * free pages are specially detected outside this table:
 842	 * PG_buddy pages only make a small fraction of all free pages.
 843	 */
 844
 845	/*
 846	 * Could in theory check if slab page is free or if we can drop
 847	 * currently unused objects without touching them. But just
 848	 * treat it as standard kernel for now.
 849	 */
 850	{ slab,		slab,		MF_MSG_SLAB,	me_kernel },
 851
 852	{ head,		head,		MF_MSG_HUGE,		me_huge_page },
 
 
 
 
 
 853
 854	{ sc|dirty,	sc|dirty,	MF_MSG_DIRTY_SWAPCACHE,	me_swapcache_dirty },
 855	{ sc|dirty,	sc,		MF_MSG_CLEAN_SWAPCACHE,	me_swapcache_clean },
 856
 857	{ mlock|dirty,	mlock|dirty,	MF_MSG_DIRTY_MLOCKED_LRU,	me_pagecache_dirty },
 858	{ mlock|dirty,	mlock,		MF_MSG_CLEAN_MLOCKED_LRU,	me_pagecache_clean },
 859
 860	{ unevict|dirty, unevict|dirty,	MF_MSG_DIRTY_UNEVICTABLE_LRU,	me_pagecache_dirty },
 861	{ unevict|dirty, unevict,	MF_MSG_CLEAN_UNEVICTABLE_LRU,	me_pagecache_clean },
 862
 863	{ lru|dirty,	lru|dirty,	MF_MSG_DIRTY_LRU,	me_pagecache_dirty },
 864	{ lru|dirty,	lru,		MF_MSG_CLEAN_LRU,	me_pagecache_clean },
 865
 866	/*
 867	 * Catchall entry: must be at end.
 868	 */
 869	{ 0,		0,		MF_MSG_UNKNOWN,	me_unknown },
 870};
 871
 872#undef dirty
 873#undef sc
 874#undef unevict
 875#undef mlock
 876#undef writeback
 877#undef lru
 
 878#undef head
 
 
 879#undef slab
 880#undef reserved
 881
 882/*
 883 * "Dirty/Clean" indication is not 100% accurate due to the possibility of
 884 * setting PG_dirty outside page lock. See also comment above set_page_dirty().
 885 */
 886static void action_result(unsigned long pfn, enum mf_action_page_type type,
 887			  enum mf_result result)
 888{
 889	trace_memory_failure_event(pfn, type, result);
 890
 891	pr_err("Memory failure: %#lx: recovery action for %s: %s\n",
 892		pfn, action_page_types[type], action_name[result]);
 
 
 893}
 894
 895static int page_action(struct page_state *ps, struct page *p,
 896			unsigned long pfn)
 897{
 898	int result;
 899	int count;
 900
 901	result = ps->action(p, pfn);
 
 902
 903	count = page_count(p) - 1;
 904	if (ps->action == me_swapcache_dirty && result == MF_DELAYED)
 905		count--;
 906	if (count > 0) {
 907		pr_err("Memory failure: %#lx: %s still referenced by %d users\n",
 908		       pfn, action_page_types[ps->type], count);
 909		result = MF_FAILED;
 
 910	}
 911	action_result(pfn, ps->type, result);
 912
 913	/* Could do more checks here if page looks ok */
 914	/*
 915	 * Could adjust zone counters here to correct for the missing page.
 916	 */
 917
 918	return (result == MF_RECOVERED || result == MF_DELAYED) ? 0 : -EBUSY;
 919}
 920
 921/**
 922 * get_hwpoison_page() - Get refcount for memory error handling:
 923 * @page:	raw error page (hit by memory error)
 924 *
 925 * Return: return 0 if failed to grab the refcount, otherwise true (some
 926 * non-zero value.)
 927 */
 928int get_hwpoison_page(struct page *page)
 929{
 930	struct page *head = compound_head(page);
 931
 932	if (!PageHuge(head) && PageTransHuge(head)) {
 933		/*
 934		 * Non anonymous thp exists only in allocation/free time. We
 935		 * can't handle such a case correctly, so let's give it up.
 936		 * This should be better than triggering BUG_ON when kernel
 937		 * tries to touch the "partially handled" page.
 938		 */
 939		if (!PageAnon(head)) {
 940			pr_err("Memory failure: %#lx: non anonymous thp\n",
 941				page_to_pfn(page));
 942			return 0;
 943		}
 944	}
 945
 946	if (get_page_unless_zero(head)) {
 947		if (head == compound_head(page))
 948			return 1;
 949
 950		pr_info("Memory failure: %#lx cannot catch tail\n",
 951			page_to_pfn(page));
 952		put_page(head);
 953	}
 954
 955	return 0;
 956}
 957EXPORT_SYMBOL_GPL(get_hwpoison_page);
 958
 959/*
 960 * Do all that is necessary to remove user space mappings. Unmap
 961 * the pages and send SIGBUS to the processes if the data was dirty.
 962 */
 963static bool hwpoison_user_mappings(struct page *p, unsigned long pfn,
 964				  int flags, struct page **hpagep)
 965{
 966	enum ttu_flags ttu = TTU_IGNORE_MLOCK | TTU_IGNORE_ACCESS;
 967	struct address_space *mapping;
 968	LIST_HEAD(tokill);
 969	bool unmap_success = true;
 970	int kill = 1, forcekill;
 971	struct page *hpage = *hpagep;
 972	bool mlocked = PageMlocked(hpage);
 973
 974	/*
 975	 * Here we are interested only in user-mapped pages, so skip any
 976	 * other types of pages.
 977	 */
 978	if (PageReserved(p) || PageSlab(p))
 979		return true;
 980	if (!(PageLRU(hpage) || PageHuge(p)))
 981		return true;
 982
 983	/*
 984	 * This check implies we don't kill processes if their pages
 985	 * are in the swap cache early. Those are always late kills.
 986	 */
 987	if (!page_mapped(hpage))
 988		return true;
 989
 990	if (PageKsm(p)) {
 991		pr_err("Memory failure: %#lx: can't handle KSM pages.\n", pfn);
 992		return false;
 993	}
 994
 995	if (PageSwapCache(p)) {
 996		pr_err("Memory failure: %#lx: keeping poisoned page in swap cache\n",
 997			pfn);
 998		ttu |= TTU_IGNORE_HWPOISON;
 999	}
1000
1001	/*
1002	 * Propagate the dirty bit from PTEs to struct page first, because we
1003	 * need this to decide if we should kill or just drop the page.
1004	 * XXX: the dirty test could be racy: set_page_dirty() may not always
1005	 * be called inside page lock (it's recommended but not enforced).
1006	 */
1007	mapping = page_mapping(hpage);
1008	if (!(flags & MF_MUST_KILL) && !PageDirty(hpage) && mapping &&
1009	    mapping_cap_writeback_dirty(mapping)) {
1010		if (page_mkclean(hpage)) {
1011			SetPageDirty(hpage);
1012		} else {
1013			kill = 0;
1014			ttu |= TTU_IGNORE_HWPOISON;
1015			pr_info("Memory failure: %#lx: corrupted page was clean: dropped without side effects\n",
 
1016				pfn);
1017		}
1018	}
1019
1020	/*
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1021	 * First collect all the processes that have the page
1022	 * mapped in dirty form.  This has to be done before try_to_unmap,
1023	 * because ttu takes the rmap data structures down.
1024	 *
1025	 * Error handling: We ignore errors here because
1026	 * there's nothing that can be done.
1027	 */
1028	if (kill)
1029		collect_procs(hpage, &tokill, flags & MF_ACTION_REQUIRED);
1030
1031	if (!PageHuge(hpage)) {
1032		unmap_success = try_to_unmap(hpage, ttu);
1033	} else {
1034		/*
1035		 * For hugetlb pages, try_to_unmap could potentially call
1036		 * huge_pmd_unshare.  Because of this, take semaphore in
1037		 * write mode here and set TTU_RMAP_LOCKED to indicate we
1038		 * have taken the lock at this higer level.
1039		 *
1040		 * Note that the call to hugetlb_page_mapping_lock_write
1041		 * is necessary even if mapping is already set.  It handles
1042		 * ugliness of potentially having to drop page lock to obtain
1043		 * i_mmap_rwsem.
1044		 */
1045		mapping = hugetlb_page_mapping_lock_write(hpage);
1046
1047		if (mapping) {
1048			unmap_success = try_to_unmap(hpage,
1049						     ttu|TTU_RMAP_LOCKED);
1050			i_mmap_unlock_write(mapping);
1051		} else {
1052			pr_info("Memory failure: %#lx: could not find mapping for mapped huge page\n",
1053				pfn);
1054			unmap_success = false;
1055		}
1056	}
1057	if (!unmap_success)
1058		pr_err("Memory failure: %#lx: failed to unmap page (mapcount=%d)\n",
1059		       pfn, page_mapcount(hpage));
1060
1061	/*
1062	 * try_to_unmap() might put mlocked page in lru cache, so call
1063	 * shake_page() again to ensure that it's flushed.
1064	 */
1065	if (mlocked)
1066		shake_page(hpage, 0);
1067
1068	/*
1069	 * Now that the dirty bit has been propagated to the
1070	 * struct page and all unmaps done we can decide if
1071	 * killing is needed or not.  Only kill when the page
1072	 * was dirty or the process is not restartable,
1073	 * otherwise the tokill list is merely
1074	 * freed.  When there was a problem unmapping earlier
1075	 * use a more force-full uncatchable kill to prevent
1076	 * any accesses to the poisoned memory.
1077	 */
1078	forcekill = PageDirty(hpage) || (flags & MF_MUST_KILL);
1079	kill_procs(&tokill, forcekill, !unmap_success, pfn, flags);
1080
1081	return unmap_success;
1082}
1083
1084static int identify_page_state(unsigned long pfn, struct page *p,
1085				unsigned long page_flags)
1086{
1087	struct page_state *ps;
1088
1089	/*
1090	 * The first check uses the current page flags which may not have any
1091	 * relevant information. The second check with the saved page flags is
1092	 * carried out only if the first check can't determine the page status.
1093	 */
1094	for (ps = error_states;; ps++)
1095		if ((p->flags & ps->mask) == ps->res)
1096			break;
1097
1098	page_flags |= (p->flags & (1UL << PG_dirty));
1099
1100	if (!ps->mask)
1101		for (ps = error_states;; ps++)
1102			if ((page_flags & ps->mask) == ps->res)
1103				break;
1104	return page_action(ps, p, pfn);
1105}
1106
1107static int memory_failure_hugetlb(unsigned long pfn, int flags)
1108{
1109	struct page *p = pfn_to_page(pfn);
1110	struct page *head = compound_head(p);
1111	int res;
1112	unsigned long page_flags;
1113
1114	if (TestSetPageHWPoison(head)) {
1115		pr_err("Memory failure: %#lx: already hardware poisoned\n",
1116		       pfn);
1117		return 0;
1118	}
1119
1120	num_poisoned_pages_inc();
1121
1122	if (!(flags & MF_COUNT_INCREASED) && !get_hwpoison_page(p)) {
1123		/*
1124		 * Check "filter hit" and "race with other subpage."
1125		 */
1126		lock_page(head);
1127		if (PageHWPoison(head)) {
1128			if ((hwpoison_filter(p) && TestClearPageHWPoison(p))
1129			    || (p != head && TestSetPageHWPoison(head))) {
1130				num_poisoned_pages_dec();
1131				unlock_page(head);
1132				return 0;
1133			}
1134		}
1135		unlock_page(head);
1136		dissolve_free_huge_page(p);
1137		action_result(pfn, MF_MSG_FREE_HUGE, MF_DELAYED);
1138		return 0;
1139	}
1140
1141	lock_page(head);
1142	page_flags = head->flags;
1143
1144	if (!PageHWPoison(head)) {
1145		pr_err("Memory failure: %#lx: just unpoisoned\n", pfn);
1146		num_poisoned_pages_dec();
1147		unlock_page(head);
1148		put_hwpoison_page(head);
1149		return 0;
1150	}
1151
1152	/*
1153	 * TODO: hwpoison for pud-sized hugetlb doesn't work right now, so
1154	 * simply disable it. In order to make it work properly, we need
1155	 * make sure that:
1156	 *  - conversion of a pud that maps an error hugetlb into hwpoison
1157	 *    entry properly works, and
1158	 *  - other mm code walking over page table is aware of pud-aligned
1159	 *    hwpoison entries.
1160	 */
1161	if (huge_page_size(page_hstate(head)) > PMD_SIZE) {
1162		action_result(pfn, MF_MSG_NON_PMD_HUGE, MF_IGNORED);
1163		res = -EBUSY;
1164		goto out;
1165	}
1166
1167	if (!hwpoison_user_mappings(p, pfn, flags, &head)) {
1168		action_result(pfn, MF_MSG_UNMAP_FAILED, MF_IGNORED);
1169		res = -EBUSY;
1170		goto out;
1171	}
1172
1173	res = identify_page_state(pfn, p, page_flags);
1174out:
1175	unlock_page(head);
1176	return res;
1177}
1178
1179static int memory_failure_dev_pagemap(unsigned long pfn, int flags,
1180		struct dev_pagemap *pgmap)
1181{
1182	struct page *page = pfn_to_page(pfn);
1183	const bool unmap_success = true;
1184	unsigned long size = 0;
1185	struct to_kill *tk;
1186	LIST_HEAD(tokill);
1187	int rc = -EBUSY;
1188	loff_t start;
1189	dax_entry_t cookie;
1190
1191	/*
1192	 * Prevent the inode from being freed while we are interrogating
1193	 * the address_space, typically this would be handled by
1194	 * lock_page(), but dax pages do not use the page lock. This
1195	 * also prevents changes to the mapping of this pfn until
1196	 * poison signaling is complete.
1197	 */
1198	cookie = dax_lock_page(page);
1199	if (!cookie)
1200		goto out;
1201
1202	if (hwpoison_filter(page)) {
1203		rc = 0;
1204		goto unlock;
1205	}
1206
1207	if (pgmap->type == MEMORY_DEVICE_PRIVATE) {
1208		/*
1209		 * TODO: Handle HMM pages which may need coordination
1210		 * with device-side memory.
1211		 */
1212		goto unlock;
1213	}
1214
1215	/*
1216	 * Use this flag as an indication that the dax page has been
1217	 * remapped UC to prevent speculative consumption of poison.
1218	 */
1219	SetPageHWPoison(page);
1220
1221	/*
1222	 * Unlike System-RAM there is no possibility to swap in a
1223	 * different physical page at a given virtual address, so all
1224	 * userspace consumption of ZONE_DEVICE memory necessitates
1225	 * SIGBUS (i.e. MF_MUST_KILL)
1226	 */
1227	flags |= MF_ACTION_REQUIRED | MF_MUST_KILL;
1228	collect_procs(page, &tokill, flags & MF_ACTION_REQUIRED);
1229
1230	list_for_each_entry(tk, &tokill, nd)
1231		if (tk->size_shift)
1232			size = max(size, 1UL << tk->size_shift);
1233	if (size) {
1234		/*
1235		 * Unmap the largest mapping to avoid breaking up
1236		 * device-dax mappings which are constant size. The
1237		 * actual size of the mapping being torn down is
1238		 * communicated in siginfo, see kill_proc()
1239		 */
1240		start = (page->index << PAGE_SHIFT) & ~(size - 1);
1241		unmap_mapping_range(page->mapping, start, start + size, 0);
1242	}
1243	kill_procs(&tokill, flags & MF_MUST_KILL, !unmap_success, pfn, flags);
1244	rc = 0;
1245unlock:
1246	dax_unlock_page(page, cookie);
1247out:
1248	/* drop pgmap ref acquired in caller */
1249	put_dev_pagemap(pgmap);
1250	action_result(pfn, MF_MSG_DAX, rc ? MF_FAILED : MF_RECOVERED);
1251	return rc;
1252}
1253
1254/**
1255 * memory_failure - Handle memory failure of a page.
1256 * @pfn: Page Number of the corrupted page
1257 * @flags: fine tune action taken
1258 *
1259 * This function is called by the low level machine check code
1260 * of an architecture when it detects hardware memory corruption
1261 * of a page. It tries its best to recover, which includes
1262 * dropping pages, killing processes etc.
1263 *
1264 * The function is primarily of use for corruptions that
1265 * happen outside the current execution context (e.g. when
1266 * detected by a background scrubber)
1267 *
1268 * Must run in process context (e.g. a work queue) with interrupts
1269 * enabled and no spinlocks hold.
1270 */
1271int memory_failure(unsigned long pfn, int flags)
1272{
 
1273	struct page *p;
1274	struct page *hpage;
1275	struct page *orig_head;
1276	struct dev_pagemap *pgmap;
1277	int res;
1278	unsigned long page_flags;
1279
1280	if (!sysctl_memory_failure_recovery)
1281		panic("Memory failure on page %lx", pfn);
1282
1283	p = pfn_to_online_page(pfn);
1284	if (!p) {
1285		if (pfn_valid(pfn)) {
1286			pgmap = get_dev_pagemap(pfn, NULL);
1287			if (pgmap)
1288				return memory_failure_dev_pagemap(pfn, flags,
1289								  pgmap);
1290		}
1291		pr_err("Memory failure: %#lx: memory outside kernel control\n",
1292			pfn);
1293		return -ENXIO;
1294	}
1295
1296	if (PageHuge(p))
1297		return memory_failure_hugetlb(pfn, flags);
1298	if (TestSetPageHWPoison(p)) {
1299		pr_err("Memory failure: %#lx: already hardware poisoned\n",
1300			pfn);
1301		return 0;
1302	}
1303
1304	orig_head = hpage = compound_head(p);
1305	num_poisoned_pages_inc();
1306
1307	/*
1308	 * We need/can do nothing about count=0 pages.
1309	 * 1) it's a free page, and therefore in safe hand:
1310	 *    prep_new_page() will be the gate keeper.
1311	 * 2) it's part of a non-compound high order page.
 
 
 
1312	 *    Implies some kernel user: cannot stop them from
1313	 *    R/W the page; let's pray that the page has been
1314	 *    used and will be freed some time later.
1315	 * In fact it's dangerous to directly bump up page count from 0,
1316	 * that may make page_ref_freeze()/page_ref_unfreeze() mismatch.
1317	 */
1318	if (!(flags & MF_COUNT_INCREASED) && !get_hwpoison_page(p)) {
 
1319		if (is_free_buddy_page(p)) {
1320			action_result(pfn, MF_MSG_BUDDY, MF_DELAYED);
1321			return 0;
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1322		} else {
1323			action_result(pfn, MF_MSG_KERNEL_HIGH_ORDER, MF_IGNORED);
1324			return -EBUSY;
1325		}
1326	}
1327
1328	if (PageTransHuge(hpage)) {
1329		lock_page(p);
1330		if (!PageAnon(p) || unlikely(split_huge_page(p))) {
1331			unlock_page(p);
1332			if (!PageAnon(p))
1333				pr_err("Memory failure: %#lx: non anonymous thp\n",
1334					pfn);
1335			else
1336				pr_err("Memory failure: %#lx: thp split failed\n",
1337					pfn);
1338			if (TestClearPageHWPoison(p))
1339				num_poisoned_pages_dec();
1340			put_hwpoison_page(p);
1341			return -EBUSY;
1342		}
1343		unlock_page(p);
1344		VM_BUG_ON_PAGE(!page_count(p), p);
1345		hpage = compound_head(p);
1346	}
1347
1348	/*
1349	 * We ignore non-LRU pages for good reasons.
1350	 * - PG_locked is only well defined for LRU pages and a few others
1351	 * - to avoid races with __SetPageLocked()
1352	 * - to avoid races with __SetPageSlab*() (and more non-atomic ops)
1353	 * The check (unnecessarily) ignores LRU pages being isolated and
1354	 * walked by the page reclaim code, however that's not a big loss.
1355	 */
1356	shake_page(p, 0);
1357	/* shake_page could have turned it free. */
1358	if (!PageLRU(p) && is_free_buddy_page(p)) {
1359		if (flags & MF_COUNT_INCREASED)
1360			action_result(pfn, MF_MSG_BUDDY, MF_DELAYED);
1361		else
1362			action_result(pfn, MF_MSG_BUDDY_2ND, MF_DELAYED);
1363		return 0;
1364	}
1365
1366	lock_page(p);
1367
1368	/*
1369	 * The page could have changed compound pages during the locking.
1370	 * If this happens just bail out.
1371	 */
1372	if (PageCompound(p) && compound_head(p) != orig_head) {
1373		action_result(pfn, MF_MSG_DIFFERENT_COMPOUND, MF_IGNORED);
1374		res = -EBUSY;
1375		goto out;
1376	}
1377
1378	/*
1379	 * We use page flags to determine what action should be taken, but
1380	 * the flags can be modified by the error containment action.  One
1381	 * example is an mlocked page, where PG_mlocked is cleared by
1382	 * page_remove_rmap() in try_to_unmap_one(). So to determine page status
1383	 * correctly, we save a copy of the page flags at this time.
1384	 */
1385	if (PageHuge(p))
1386		page_flags = hpage->flags;
1387	else
1388		page_flags = p->flags;
1389
1390	/*
1391	 * unpoison always clear PG_hwpoison inside page lock
1392	 */
1393	if (!PageHWPoison(p)) {
1394		pr_err("Memory failure: %#lx: just unpoisoned\n", pfn);
1395		num_poisoned_pages_dec();
1396		unlock_page(p);
1397		put_hwpoison_page(p);
1398		return 0;
1399	}
1400	if (hwpoison_filter(p)) {
1401		if (TestClearPageHWPoison(p))
1402			num_poisoned_pages_dec();
1403		unlock_page(p);
1404		put_hwpoison_page(p);
1405		return 0;
1406	}
1407
1408	if (!PageTransTail(p) && !PageLRU(p))
1409		goto identify_page_state;
1410
1411	/*
1412	 * It's very difficult to mess with pages currently under IO
1413	 * and in many cases impossible, so we just avoid it here.
 
 
 
 
 
 
 
 
 
 
 
 
 
1414	 */
 
 
 
1415	wait_on_page_writeback(p);
1416
1417	/*
1418	 * Now take care of user space mappings.
1419	 * Abort on fail: __delete_from_page_cache() assumes unmapped page.
1420	 *
1421	 * When the raw error page is thp tail page, hpage points to the raw
1422	 * page after thp split.
1423	 */
1424	if (!hwpoison_user_mappings(p, pfn, flags, &hpage)) {
1425		action_result(pfn, MF_MSG_UNMAP_FAILED, MF_IGNORED);
1426		res = -EBUSY;
1427		goto out;
1428	}
1429
1430	/*
1431	 * Torn down by someone else?
1432	 */
1433	if (PageLRU(p) && !PageSwapCache(p) && p->mapping == NULL) {
1434		action_result(pfn, MF_MSG_TRUNCATED_LRU, MF_IGNORED);
1435		res = -EBUSY;
1436		goto out;
1437	}
1438
1439identify_page_state:
1440	res = identify_page_state(pfn, p, page_flags);
 
 
 
 
 
1441out:
1442	unlock_page(p);
1443	return res;
1444}
1445EXPORT_SYMBOL_GPL(memory_failure);
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1446
1447#define MEMORY_FAILURE_FIFO_ORDER	4
1448#define MEMORY_FAILURE_FIFO_SIZE	(1 << MEMORY_FAILURE_FIFO_ORDER)
1449
1450struct memory_failure_entry {
1451	unsigned long pfn;
 
1452	int flags;
1453};
1454
1455struct memory_failure_cpu {
1456	DECLARE_KFIFO(fifo, struct memory_failure_entry,
1457		      MEMORY_FAILURE_FIFO_SIZE);
1458	spinlock_t lock;
1459	struct work_struct work;
1460};
1461
1462static DEFINE_PER_CPU(struct memory_failure_cpu, memory_failure_cpu);
1463
1464/**
1465 * memory_failure_queue - Schedule handling memory failure of a page.
1466 * @pfn: Page Number of the corrupted page
 
1467 * @flags: Flags for memory failure handling
1468 *
1469 * This function is called by the low level hardware error handler
1470 * when it detects hardware memory corruption of a page. It schedules
1471 * the recovering of error page, including dropping pages, killing
1472 * processes etc.
1473 *
1474 * The function is primarily of use for corruptions that
1475 * happen outside the current execution context (e.g. when
1476 * detected by a background scrubber)
1477 *
1478 * Can run in IRQ context.
1479 */
1480void memory_failure_queue(unsigned long pfn, int flags)
1481{
1482	struct memory_failure_cpu *mf_cpu;
1483	unsigned long proc_flags;
1484	struct memory_failure_entry entry = {
1485		.pfn =		pfn,
 
1486		.flags =	flags,
1487	};
1488
1489	mf_cpu = &get_cpu_var(memory_failure_cpu);
1490	spin_lock_irqsave(&mf_cpu->lock, proc_flags);
1491	if (kfifo_put(&mf_cpu->fifo, entry))
1492		schedule_work_on(smp_processor_id(), &mf_cpu->work);
1493	else
1494		pr_err("Memory failure: buffer overflow when queuing memory failure at %#lx\n",
1495		       pfn);
1496	spin_unlock_irqrestore(&mf_cpu->lock, proc_flags);
1497	put_cpu_var(memory_failure_cpu);
1498}
1499EXPORT_SYMBOL_GPL(memory_failure_queue);
1500
1501static void memory_failure_work_func(struct work_struct *work)
1502{
1503	struct memory_failure_cpu *mf_cpu;
1504	struct memory_failure_entry entry = { 0, };
1505	unsigned long proc_flags;
1506	int gotten;
1507
1508	mf_cpu = container_of(work, struct memory_failure_cpu, work);
1509	for (;;) {
1510		spin_lock_irqsave(&mf_cpu->lock, proc_flags);
1511		gotten = kfifo_get(&mf_cpu->fifo, &entry);
1512		spin_unlock_irqrestore(&mf_cpu->lock, proc_flags);
1513		if (!gotten)
1514			break;
1515		if (entry.flags & MF_SOFT_OFFLINE)
1516			soft_offline_page(entry.pfn, entry.flags);
1517		else
1518			memory_failure(entry.pfn, entry.flags);
1519	}
1520}
1521
1522/*
1523 * Process memory_failure work queued on the specified CPU.
1524 * Used to avoid return-to-userspace racing with the memory_failure workqueue.
1525 */
1526void memory_failure_queue_kick(int cpu)
1527{
1528	struct memory_failure_cpu *mf_cpu;
1529
1530	mf_cpu = &per_cpu(memory_failure_cpu, cpu);
1531	cancel_work_sync(&mf_cpu->work);
1532	memory_failure_work_func(&mf_cpu->work);
1533}
1534
1535static int __init memory_failure_init(void)
1536{
1537	struct memory_failure_cpu *mf_cpu;
1538	int cpu;
1539
1540	for_each_possible_cpu(cpu) {
1541		mf_cpu = &per_cpu(memory_failure_cpu, cpu);
1542		spin_lock_init(&mf_cpu->lock);
1543		INIT_KFIFO(mf_cpu->fifo);
1544		INIT_WORK(&mf_cpu->work, memory_failure_work_func);
1545	}
1546
1547	return 0;
1548}
1549core_initcall(memory_failure_init);
1550
1551#define unpoison_pr_info(fmt, pfn, rs)			\
1552({							\
1553	if (__ratelimit(rs))				\
1554		pr_info(fmt, pfn);			\
1555})
1556
1557/**
1558 * unpoison_memory - Unpoison a previously poisoned page
1559 * @pfn: Page number of the to be unpoisoned page
1560 *
1561 * Software-unpoison a page that has been poisoned by
1562 * memory_failure() earlier.
1563 *
1564 * This is only done on the software-level, so it only works
1565 * for linux injected failures, not real hardware failures
1566 *
1567 * Returns 0 for success, otherwise -errno.
1568 */
1569int unpoison_memory(unsigned long pfn)
1570{
1571	struct page *page;
1572	struct page *p;
1573	int freeit = 0;
1574	static DEFINE_RATELIMIT_STATE(unpoison_rs, DEFAULT_RATELIMIT_INTERVAL,
1575					DEFAULT_RATELIMIT_BURST);
1576
1577	if (!pfn_valid(pfn))
1578		return -ENXIO;
1579
1580	p = pfn_to_page(pfn);
1581	page = compound_head(p);
1582
1583	if (!PageHWPoison(p)) {
1584		unpoison_pr_info("Unpoison: Page was already unpoisoned %#lx\n",
1585				 pfn, &unpoison_rs);
1586		return 0;
1587	}
1588
1589	if (page_count(page) > 1) {
1590		unpoison_pr_info("Unpoison: Someone grabs the hwpoison page %#lx\n",
1591				 pfn, &unpoison_rs);
1592		return 0;
1593	}
1594
1595	if (page_mapped(page)) {
1596		unpoison_pr_info("Unpoison: Someone maps the hwpoison page %#lx\n",
1597				 pfn, &unpoison_rs);
1598		return 0;
1599	}
1600
1601	if (page_mapping(page)) {
1602		unpoison_pr_info("Unpoison: the hwpoison page has non-NULL mapping %#lx\n",
1603				 pfn, &unpoison_rs);
1604		return 0;
1605	}
1606
1607	/*
1608	 * unpoison_memory() can encounter thp only when the thp is being
1609	 * worked by memory_failure() and the page lock is not held yet.
1610	 * In such case, we yield to memory_failure() and make unpoison fail.
1611	 */
1612	if (!PageHuge(page) && PageTransHuge(page)) {
1613		unpoison_pr_info("Unpoison: Memory failure is now running on %#lx\n",
1614				 pfn, &unpoison_rs);
1615		return 0;
1616	}
1617
1618	if (!get_hwpoison_page(p)) {
1619		if (TestClearPageHWPoison(p))
1620			num_poisoned_pages_dec();
1621		unpoison_pr_info("Unpoison: Software-unpoisoned free page %#lx\n",
1622				 pfn, &unpoison_rs);
1623		return 0;
1624	}
1625
1626	lock_page(page);
1627	/*
1628	 * This test is racy because PG_hwpoison is set outside of page lock.
1629	 * That's acceptable because that won't trigger kernel panic. Instead,
1630	 * the PG_hwpoison page will be caught and isolated on the entrance to
1631	 * the free buddy page pool.
1632	 */
1633	if (TestClearPageHWPoison(page)) {
1634		unpoison_pr_info("Unpoison: Software-unpoisoned page %#lx\n",
1635				 pfn, &unpoison_rs);
1636		num_poisoned_pages_dec();
1637		freeit = 1;
 
 
1638	}
1639	unlock_page(page);
1640
1641	put_hwpoison_page(page);
1642	if (freeit && !(pfn == my_zero_pfn(0) && page_count(p) == 1))
1643		put_hwpoison_page(page);
1644
1645	return 0;
1646}
1647EXPORT_SYMBOL(unpoison_memory);
1648
1649static struct page *new_page(struct page *p, unsigned long private)
1650{
1651	struct migration_target_control mtc = {
1652		.nid = page_to_nid(p),
1653		.gfp_mask = GFP_USER | __GFP_MOVABLE | __GFP_RETRY_MAYFAIL,
1654	};
1655
1656	return alloc_migration_target(p, (unsigned long)&mtc);
1657}
1658
1659/*
1660 * Safely get reference count of an arbitrary page.
1661 * Returns 0 for a free page, -EIO for a zero refcount page
1662 * that is not free, and 1 for any other page type.
1663 * For 1 the page is returned with increased page count, otherwise not.
1664 */
1665static int __get_any_page(struct page *p, unsigned long pfn, int flags)
1666{
1667	int ret;
1668
1669	if (flags & MF_COUNT_INCREASED)
1670		return 1;
1671
1672	/*
 
 
 
 
 
 
 
 
 
 
 
1673	 * When the target page is a free hugepage, just remove it
1674	 * from free hugepage list.
1675	 */
1676	if (!get_hwpoison_page(p)) {
1677		if (PageHuge(p)) {
1678			pr_info("%s: %#lx free huge page\n", __func__, pfn);
1679			ret = 0;
1680		} else if (is_free_buddy_page(p)) {
1681			pr_info("%s: %#lx free buddy page\n", __func__, pfn);
 
 
1682			ret = 0;
1683		} else {
1684			pr_info("%s: %#lx: unknown zero refcount page type %lx\n",
1685				__func__, pfn, p->flags);
1686			ret = -EIO;
1687		}
1688	} else {
1689		/* Not a free page */
1690		ret = 1;
1691	}
1692	return ret;
1693}
1694
1695static int get_any_page(struct page *page, unsigned long pfn, int flags)
1696{
1697	int ret = __get_any_page(page, pfn, flags);
1698
1699	if (ret == 1 && !PageHuge(page) &&
1700	    !PageLRU(page) && !__PageMovable(page)) {
1701		/*
1702		 * Try to free it.
1703		 */
1704		put_hwpoison_page(page);
1705		shake_page(page, 1);
1706
1707		/*
1708		 * Did it turn free?
1709		 */
1710		ret = __get_any_page(page, pfn, 0);
1711		if (ret == 1 && !PageLRU(page)) {
1712			/* Drop page reference which is from __get_any_page() */
1713			put_hwpoison_page(page);
1714			pr_info("soft_offline: %#lx: unknown non LRU page type %lx (%pGp)\n",
1715				pfn, page->flags, &page->flags);
1716			return -EIO;
1717		}
1718	}
1719	return ret;
1720}
1721
1722static int soft_offline_huge_page(struct page *page, int flags)
1723{
1724	int ret;
1725	unsigned long pfn = page_to_pfn(page);
1726	struct page *hpage = compound_head(page);
1727	LIST_HEAD(pagelist);
1728
1729	/*
1730	 * This double-check of PageHWPoison is to avoid the race with
1731	 * memory_failure(). See also comment in __soft_offline_page().
1732	 */
1733	lock_page(hpage);
 
1734	if (PageHWPoison(hpage)) {
1735		unlock_page(hpage);
1736		put_hwpoison_page(hpage);
1737		pr_info("soft offline: %#lx hugepage already poisoned\n", pfn);
1738		return -EBUSY;
1739	}
1740	unlock_page(hpage);
1741
1742	ret = isolate_huge_page(hpage, &pagelist);
1743	/*
1744	 * get_any_page() and isolate_huge_page() takes a refcount each,
1745	 * so need to drop one here.
1746	 */
1747	put_hwpoison_page(hpage);
1748	if (!ret) {
1749		pr_info("soft offline: %#lx hugepage failed to isolate\n", pfn);
1750		return -EBUSY;
1751	}
1752
1753	ret = migrate_pages(&pagelist, new_page, NULL, MPOL_MF_MOVE_ALL,
1754				MIGRATE_SYNC, MR_MEMORY_FAILURE);
 
1755	if (ret) {
1756		pr_info("soft offline: %#lx: hugepage migration failed %d, type %lx (%pGp)\n",
1757			pfn, ret, page->flags, &page->flags);
1758		if (!list_empty(&pagelist))
1759			putback_movable_pages(&pagelist);
 
 
1760		if (ret > 0)
1761			ret = -EIO;
1762	} else {
1763		/*
1764		 * We set PG_hwpoison only when the migration source hugepage
1765		 * was successfully dissolved, because otherwise hwpoisoned
1766		 * hugepage remains on free hugepage list, then userspace will
1767		 * find it as SIGBUS by allocation failure. That's not expected
1768		 * in soft-offlining.
1769		 */
1770		ret = dissolve_free_huge_page(page);
1771		if (!ret) {
1772			if (set_hwpoison_free_buddy_page(page))
1773				num_poisoned_pages_inc();
1774			else
1775				ret = -EBUSY;
1776		}
1777	}
 
 
 
 
 
 
1778	return ret;
1779}
1780
1781static int __soft_offline_page(struct page *page, int flags)
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1782{
1783	int ret;
1784	unsigned long pfn = page_to_pfn(page);
1785
 
 
 
 
 
 
 
 
 
1786	/*
1787	 * Check PageHWPoison again inside page lock because PageHWPoison
1788	 * is set by memory_failure() outside page lock. Note that
1789	 * memory_failure() also double-checks PageHWPoison inside page lock,
1790	 * so there's no race between soft_offline_page() and memory_failure().
1791	 */
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1792	lock_page(page);
1793	wait_on_page_writeback(page);
 
 
 
 
1794	if (PageHWPoison(page)) {
1795		unlock_page(page);
1796		put_hwpoison_page(page);
1797		pr_info("soft offline: %#lx page already poisoned\n", pfn);
1798		return -EBUSY;
1799	}
 
1800	/*
1801	 * Try to invalidate first. This should work for
1802	 * non dirty unmapped page cache pages.
1803	 */
1804	ret = invalidate_inode_page(page);
1805	unlock_page(page);
1806	/*
1807	 * RED-PEN would be better to keep it isolated here, but we
1808	 * would need to fix isolation locking first.
1809	 */
1810	if (ret == 1) {
1811		put_hwpoison_page(page);
 
1812		pr_info("soft_offline: %#lx: invalidated\n", pfn);
1813		SetPageHWPoison(page);
1814		num_poisoned_pages_inc();
1815		return 0;
1816	}
1817
1818	/*
1819	 * Simple invalidation didn't work.
1820	 * Try to migrate to a new page instead. migrate.c
1821	 * handles a large number of cases for us.
1822	 */
1823	if (PageLRU(page))
1824		ret = isolate_lru_page(page);
1825	else
1826		ret = isolate_movable_page(page, ISOLATE_UNEVICTABLE);
1827	/*
1828	 * Drop page reference which is came from get_any_page()
1829	 * successful isolate_lru_page() already took another one.
1830	 */
1831	put_hwpoison_page(page);
1832	if (!ret) {
1833		LIST_HEAD(pagelist);
1834		/*
1835		 * After isolated lru page, the PageLRU will be cleared,
1836		 * so use !__PageMovable instead for LRU page's mapping
1837		 * cannot have PAGE_MAPPING_MOVABLE.
1838		 */
1839		if (!__PageMovable(page))
1840			inc_node_page_state(page, NR_ISOLATED_ANON +
1841						page_is_file_lru(page));
1842		list_add(&page->lru, &pagelist);
1843		ret = migrate_pages(&pagelist, new_page, NULL, MPOL_MF_MOVE_ALL,
1844					MIGRATE_SYNC, MR_MEMORY_FAILURE);
1845		if (ret) {
1846			if (!list_empty(&pagelist))
1847				putback_movable_pages(&pagelist);
1848
1849			pr_info("soft offline: %#lx: migration failed %d, type %lx (%pGp)\n",
1850				pfn, ret, page->flags, &page->flags);
1851			if (ret > 0)
1852				ret = -EIO;
1853		}
1854	} else {
1855		pr_info("soft offline: %#lx: isolation failed: %d, page count %d, type %lx (%pGp)\n",
1856			pfn, ret, page_count(page), page->flags, &page->flags);
1857	}
1858	return ret;
1859}
1860
1861static int soft_offline_in_use_page(struct page *page, int flags)
1862{
1863	int ret;
1864	int mt;
1865	struct page *hpage = compound_head(page);
1866
1867	if (!PageHuge(page) && PageTransHuge(hpage)) {
1868		lock_page(page);
1869		if (!PageAnon(page) || unlikely(split_huge_page(page))) {
1870			unlock_page(page);
1871			if (!PageAnon(page))
1872				pr_info("soft offline: %#lx: non anonymous thp\n", page_to_pfn(page));
1873			else
1874				pr_info("soft offline: %#lx: thp split failed\n", page_to_pfn(page));
1875			put_hwpoison_page(page);
1876			return -EBUSY;
1877		}
1878		unlock_page(page);
1879	}
1880
1881	/*
1882	 * Setting MIGRATE_ISOLATE here ensures that the page will be linked
1883	 * to free list immediately (not via pcplist) when released after
1884	 * successful page migration. Otherwise we can't guarantee that the
1885	 * page is really free after put_page() returns, so
1886	 * set_hwpoison_free_buddy_page() highly likely fails.
1887	 */
1888	mt = get_pageblock_migratetype(page);
1889	set_pageblock_migratetype(page, MIGRATE_ISOLATE);
1890	if (PageHuge(page))
1891		ret = soft_offline_huge_page(page, flags);
1892	else
1893		ret = __soft_offline_page(page, flags);
1894	set_pageblock_migratetype(page, mt);
1895	return ret;
1896}
1897
1898static int soft_offline_free_page(struct page *page)
1899{
1900	int rc = dissolve_free_huge_page(page);
1901
1902	if (!rc) {
1903		if (set_hwpoison_free_buddy_page(page))
1904			num_poisoned_pages_inc();
1905		else
1906			rc = -EBUSY;
1907	}
1908	return rc;
1909}
1910
1911/**
1912 * soft_offline_page - Soft offline a page.
1913 * @pfn: pfn to soft-offline
1914 * @flags: flags. Same as memory_failure().
1915 *
1916 * Returns 0 on success, otherwise negated errno.
1917 *
1918 * Soft offline a page, by migration or invalidation,
1919 * without killing anything. This is for the case when
1920 * a page is not corrupted yet (so it's still valid to access),
1921 * but has had a number of corrected errors and is better taken
1922 * out.
1923 *
1924 * The actual policy on when to do that is maintained by
1925 * user space.
1926 *
1927 * This should never impact any application or cause data loss,
1928 * however it might take some time.
1929 *
1930 * This is not a 100% solution for all memory, but tries to be
1931 * ``good enough'' for the majority of memory.
1932 */
1933int soft_offline_page(unsigned long pfn, int flags)
1934{
1935	int ret;
1936	struct page *page;
1937
1938	if (!pfn_valid(pfn))
1939		return -ENXIO;
1940	/* Only online pages can be soft-offlined (esp., not ZONE_DEVICE). */
1941	page = pfn_to_online_page(pfn);
1942	if (!page)
1943		return -EIO;
1944
1945	if (PageHWPoison(page)) {
1946		pr_info("soft offline: %#lx page already poisoned\n", pfn);
1947		if (flags & MF_COUNT_INCREASED)
1948			put_hwpoison_page(page);
1949		return -EBUSY;
1950	}
1951
1952	get_online_mems();
1953	ret = get_any_page(page, pfn, flags);
1954	put_online_mems();
1955
1956	if (ret > 0)
1957		ret = soft_offline_in_use_page(page, flags);
1958	else if (ret == 0)
1959		ret = soft_offline_free_page(page);
1960
 
 
 
 
1961	return ret;
1962}