Linux Audio

Check our new training course

Linux kernel drivers training

Mar 31-Apr 9, 2025, special US time zones
Register
Loading...
v3.1
   1/*
   2 * Copyright (C) 2008, 2009 Intel Corporation
   3 * Authors: Andi Kleen, Fengguang Wu
   4 *
   5 * This software may be redistributed and/or modified under the terms of
   6 * the GNU General Public License ("GPL") version 2 only as published by the
   7 * Free Software Foundation.
   8 *
   9 * High level machine check handler. Handles pages reported by the
  10 * hardware as being corrupted usually due to a multi-bit ECC memory or cache
  11 * failure.
  12 * 
  13 * In addition there is a "soft offline" entry point that allows stop using
  14 * not-yet-corrupted-by-suspicious pages without killing anything.
  15 *
  16 * Handles page cache pages in various states.	The tricky part
  17 * here is that we can access any page asynchronously in respect to 
  18 * other VM users, because memory failures could happen anytime and 
  19 * anywhere. This could violate some of their assumptions. This is why 
  20 * this code has to be extremely careful. Generally it tries to use 
  21 * normal locking rules, as in get the standard locks, even if that means 
  22 * the error handling takes potentially a long time.
 
 
 
 
 
 
 
 
  23 * 
  24 * There are several operations here with exponential complexity because
  25 * of unsuitable VM data structures. For example the operation to map back 
  26 * from RMAP chains to processes has to walk the complete process list and 
  27 * has non linear complexity with the number. But since memory corruptions
  28 * are rare we hope to get away with this. This avoids impacting the core 
  29 * VM.
  30 */
  31
  32/*
  33 * Notebook:
  34 * - hugetlb needs more code
  35 * - kcore/oldmem/vmcore/mem/kmem check for hwpoison pages
  36 * - pass bad pages to kdump next kernel
  37 */
  38#include <linux/kernel.h>
  39#include <linux/mm.h>
  40#include <linux/page-flags.h>
  41#include <linux/kernel-page-flags.h>
  42#include <linux/sched.h>
  43#include <linux/ksm.h>
  44#include <linux/rmap.h>
 
  45#include <linux/pagemap.h>
  46#include <linux/swap.h>
  47#include <linux/backing-dev.h>
  48#include <linux/migrate.h>
  49#include <linux/page-isolation.h>
  50#include <linux/suspend.h>
  51#include <linux/slab.h>
  52#include <linux/swapops.h>
  53#include <linux/hugetlb.h>
  54#include <linux/memory_hotplug.h>
  55#include <linux/mm_inline.h>
  56#include <linux/kfifo.h>
 
  57#include "internal.h"
 
  58
  59int sysctl_memory_failure_early_kill __read_mostly = 0;
  60
  61int sysctl_memory_failure_recovery __read_mostly = 1;
  62
  63atomic_long_t mce_bad_pages __read_mostly = ATOMIC_LONG_INIT(0);
  64
  65#if defined(CONFIG_HWPOISON_INJECT) || defined(CONFIG_HWPOISON_INJECT_MODULE)
  66
  67u32 hwpoison_filter_enable = 0;
  68u32 hwpoison_filter_dev_major = ~0U;
  69u32 hwpoison_filter_dev_minor = ~0U;
  70u64 hwpoison_filter_flags_mask;
  71u64 hwpoison_filter_flags_value;
  72EXPORT_SYMBOL_GPL(hwpoison_filter_enable);
  73EXPORT_SYMBOL_GPL(hwpoison_filter_dev_major);
  74EXPORT_SYMBOL_GPL(hwpoison_filter_dev_minor);
  75EXPORT_SYMBOL_GPL(hwpoison_filter_flags_mask);
  76EXPORT_SYMBOL_GPL(hwpoison_filter_flags_value);
  77
  78static int hwpoison_filter_dev(struct page *p)
  79{
  80	struct address_space *mapping;
  81	dev_t dev;
  82
  83	if (hwpoison_filter_dev_major == ~0U &&
  84	    hwpoison_filter_dev_minor == ~0U)
  85		return 0;
  86
  87	/*
  88	 * page_mapping() does not accept slab pages.
  89	 */
  90	if (PageSlab(p))
  91		return -EINVAL;
  92
  93	mapping = page_mapping(p);
  94	if (mapping == NULL || mapping->host == NULL)
  95		return -EINVAL;
  96
  97	dev = mapping->host->i_sb->s_dev;
  98	if (hwpoison_filter_dev_major != ~0U &&
  99	    hwpoison_filter_dev_major != MAJOR(dev))
 100		return -EINVAL;
 101	if (hwpoison_filter_dev_minor != ~0U &&
 102	    hwpoison_filter_dev_minor != MINOR(dev))
 103		return -EINVAL;
 104
 105	return 0;
 106}
 107
 108static int hwpoison_filter_flags(struct page *p)
 109{
 110	if (!hwpoison_filter_flags_mask)
 111		return 0;
 112
 113	if ((stable_page_flags(p) & hwpoison_filter_flags_mask) ==
 114				    hwpoison_filter_flags_value)
 115		return 0;
 116	else
 117		return -EINVAL;
 118}
 119
 120/*
 121 * This allows stress tests to limit test scope to a collection of tasks
 122 * by putting them under some memcg. This prevents killing unrelated/important
 123 * processes such as /sbin/init. Note that the target task may share clean
 124 * pages with init (eg. libc text), which is harmless. If the target task
 125 * share _dirty_ pages with another task B, the test scheme must make sure B
 126 * is also included in the memcg. At last, due to race conditions this filter
 127 * can only guarantee that the page either belongs to the memcg tasks, or is
 128 * a freed page.
 129 */
 130#ifdef	CONFIG_CGROUP_MEM_RES_CTLR_SWAP
 131u64 hwpoison_filter_memcg;
 132EXPORT_SYMBOL_GPL(hwpoison_filter_memcg);
 133static int hwpoison_filter_task(struct page *p)
 134{
 135	struct mem_cgroup *mem;
 136	struct cgroup_subsys_state *css;
 137	unsigned long ino;
 138
 139	if (!hwpoison_filter_memcg)
 140		return 0;
 141
 142	mem = try_get_mem_cgroup_from_page(p);
 143	if (!mem)
 144		return -EINVAL;
 145
 146	css = mem_cgroup_css(mem);
 147	/* root_mem_cgroup has NULL dentries */
 148	if (!css->cgroup->dentry)
 149		return -EINVAL;
 150
 151	ino = css->cgroup->dentry->d_inode->i_ino;
 152	css_put(css);
 153
 154	if (ino != hwpoison_filter_memcg)
 155		return -EINVAL;
 156
 157	return 0;
 158}
 159#else
 160static int hwpoison_filter_task(struct page *p) { return 0; }
 161#endif
 162
 163int hwpoison_filter(struct page *p)
 164{
 165	if (!hwpoison_filter_enable)
 166		return 0;
 167
 168	if (hwpoison_filter_dev(p))
 169		return -EINVAL;
 170
 171	if (hwpoison_filter_flags(p))
 172		return -EINVAL;
 173
 174	if (hwpoison_filter_task(p))
 175		return -EINVAL;
 176
 177	return 0;
 178}
 179#else
 180int hwpoison_filter(struct page *p)
 181{
 182	return 0;
 183}
 184#endif
 185
 186EXPORT_SYMBOL_GPL(hwpoison_filter);
 187
 188/*
 189 * Send all the processes who have the page mapped an ``action optional''
 190 * signal.
 
 191 */
 192static int kill_proc_ao(struct task_struct *t, unsigned long addr, int trapno,
 193			unsigned long pfn, struct page *page)
 194{
 195	struct siginfo si;
 196	int ret;
 197
 198	printk(KERN_ERR
 199		"MCE %#lx: Killing %s:%d early due to hardware memory corruption\n",
 200		pfn, t->comm, t->pid);
 201	si.si_signo = SIGBUS;
 202	si.si_errno = 0;
 203	si.si_code = BUS_MCEERR_AO;
 204	si.si_addr = (void *)addr;
 205#ifdef __ARCH_SI_TRAPNO
 206	si.si_trapno = trapno;
 207#endif
 208	si.si_addr_lsb = compound_trans_order(compound_head(page)) + PAGE_SHIFT;
 209	/*
 210	 * Don't use force here, it's convenient if the signal
 211	 * can be temporarily blocked.
 212	 * This could cause a loop when the user sets SIGBUS
 213	 * to SIG_IGN, but hopefully no one will do that?
 214	 */
 215	ret = send_sig_info(SIGBUS, &si, t);  /* synchronous? */
 
 
 
 
 
 
 
 216	if (ret < 0)
 217		printk(KERN_INFO "MCE: Error sending signal to %s:%d: %d\n",
 218		       t->comm, t->pid, ret);
 219	return ret;
 220}
 221
 222/*
 223 * When a unknown page type is encountered drain as many buffers as possible
 224 * in the hope to turn the page into a LRU or free page, which we can handle.
 225 */
 226void shake_page(struct page *p, int access)
 227{
 228	if (!PageSlab(p)) {
 229		lru_add_drain_all();
 230		if (PageLRU(p))
 231			return;
 232		drain_all_pages();
 233		if (PageLRU(p) || is_free_buddy_page(p))
 234			return;
 235	}
 236
 237	/*
 238	 * Only call shrink_slab here (which would also shrink other caches) if
 239	 * access is not potentially fatal.
 240	 */
 241	if (access) {
 242		int nr;
 243		do {
 244			struct shrink_control shrink = {
 245				.gfp_mask = GFP_KERNEL,
 246			};
 247
 248			nr = shrink_slab(&shrink, 1000, 1000);
 249			if (page_count(p) == 1)
 250				break;
 251		} while (nr > 10);
 252	}
 253}
 254EXPORT_SYMBOL_GPL(shake_page);
 255
 256/*
 257 * Kill all processes that have a poisoned page mapped and then isolate
 258 * the page.
 259 *
 260 * General strategy:
 261 * Find all processes having the page mapped and kill them.
 262 * But we keep a page reference around so that the page is not
 263 * actually freed yet.
 264 * Then stash the page away
 265 *
 266 * There's no convenient way to get back to mapped processes
 267 * from the VMAs. So do a brute-force search over all
 268 * running processes.
 269 *
 270 * Remember that machine checks are not common (or rather
 271 * if they are common you have other problems), so this shouldn't
 272 * be a performance issue.
 273 *
 274 * Also there are some races possible while we get from the
 275 * error detection to actually handle it.
 276 */
 277
 278struct to_kill {
 279	struct list_head nd;
 280	struct task_struct *tsk;
 281	unsigned long addr;
 282	char addr_valid;
 283};
 284
 285/*
 286 * Failure handling: if we can't find or can't kill a process there's
 287 * not much we can do.	We just print a message and ignore otherwise.
 288 */
 289
 290/*
 291 * Schedule a process for later kill.
 292 * Uses GFP_ATOMIC allocations to avoid potential recursions in the VM.
 293 * TBD would GFP_NOIO be enough?
 294 */
 295static void add_to_kill(struct task_struct *tsk, struct page *p,
 296		       struct vm_area_struct *vma,
 297		       struct list_head *to_kill,
 298		       struct to_kill **tkc)
 299{
 300	struct to_kill *tk;
 301
 302	if (*tkc) {
 303		tk = *tkc;
 304		*tkc = NULL;
 305	} else {
 306		tk = kmalloc(sizeof(struct to_kill), GFP_ATOMIC);
 307		if (!tk) {
 308			printk(KERN_ERR
 309		"MCE: Out of memory while machine check handling\n");
 310			return;
 311		}
 312	}
 313	tk->addr = page_address_in_vma(p, vma);
 314	tk->addr_valid = 1;
 315
 316	/*
 317	 * In theory we don't have to kill when the page was
 318	 * munmaped. But it could be also a mremap. Since that's
 319	 * likely very rare kill anyways just out of paranoia, but use
 320	 * a SIGKILL because the error is not contained anymore.
 321	 */
 322	if (tk->addr == -EFAULT) {
 323		pr_info("MCE: Unable to find user space address %lx in %s\n",
 324			page_to_pfn(p), tsk->comm);
 325		tk->addr_valid = 0;
 326	}
 327	get_task_struct(tsk);
 328	tk->tsk = tsk;
 329	list_add_tail(&tk->nd, to_kill);
 330}
 331
 332/*
 333 * Kill the processes that have been collected earlier.
 334 *
 335 * Only do anything when DOIT is set, otherwise just free the list
 336 * (this is used for clean pages which do not need killing)
 337 * Also when FAIL is set do a force kill because something went
 338 * wrong earlier.
 339 */
 340static void kill_procs_ao(struct list_head *to_kill, int doit, int trapno,
 341			  int fail, struct page *page, unsigned long pfn)
 
 342{
 343	struct to_kill *tk, *next;
 344
 345	list_for_each_entry_safe (tk, next, to_kill, nd) {
 346		if (doit) {
 347			/*
 348			 * In case something went wrong with munmapping
 349			 * make sure the process doesn't catch the
 350			 * signal and then access the memory. Just kill it.
 351			 */
 352			if (fail || tk->addr_valid == 0) {
 353				printk(KERN_ERR
 354		"MCE %#lx: forcibly killing %s:%d because of failure to unmap corrupted page\n",
 355					pfn, tk->tsk->comm, tk->tsk->pid);
 356				force_sig(SIGKILL, tk->tsk);
 357			}
 358
 359			/*
 360			 * In theory the process could have mapped
 361			 * something else on the address in-between. We could
 362			 * check for that, but we need to tell the
 363			 * process anyways.
 364			 */
 365			else if (kill_proc_ao(tk->tsk, tk->addr, trapno,
 366					      pfn, page) < 0)
 367				printk(KERN_ERR
 368		"MCE %#lx: Cannot send advisory machine check signal to %s:%d\n",
 369					pfn, tk->tsk->comm, tk->tsk->pid);
 370		}
 371		put_task_struct(tk->tsk);
 372		kfree(tk);
 373	}
 374}
 375
 376static int task_early_kill(struct task_struct *tsk)
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 377{
 
 378	if (!tsk->mm)
 379		return 0;
 380	if (tsk->flags & PF_MCE_PROCESS)
 381		return !!(tsk->flags & PF_MCE_EARLY);
 382	return sysctl_memory_failure_early_kill;
 
 
 
 
 
 383}
 384
 385/*
 386 * Collect processes when the error hit an anonymous page.
 387 */
 388static void collect_procs_anon(struct page *page, struct list_head *to_kill,
 389			      struct to_kill **tkc)
 390{
 391	struct vm_area_struct *vma;
 392	struct task_struct *tsk;
 393	struct anon_vma *av;
 
 394
 395	av = page_lock_anon_vma(page);
 396	if (av == NULL)	/* Not actually mapped anymore */
 397		return;
 398
 
 399	read_lock(&tasklist_lock);
 400	for_each_process (tsk) {
 401		struct anon_vma_chain *vmac;
 
 402
 403		if (!task_early_kill(tsk))
 404			continue;
 405		list_for_each_entry(vmac, &av->head, same_anon_vma) {
 
 406			vma = vmac->vma;
 407			if (!page_mapped_in_vma(page, vma))
 408				continue;
 409			if (vma->vm_mm == tsk->mm)
 410				add_to_kill(tsk, page, vma, to_kill, tkc);
 411		}
 412	}
 413	read_unlock(&tasklist_lock);
 414	page_unlock_anon_vma(av);
 415}
 416
 417/*
 418 * Collect processes when the error hit a file mapped page.
 419 */
 420static void collect_procs_file(struct page *page, struct list_head *to_kill,
 421			      struct to_kill **tkc)
 422{
 423	struct vm_area_struct *vma;
 424	struct task_struct *tsk;
 425	struct prio_tree_iter iter;
 426	struct address_space *mapping = page->mapping;
 427
 428	mutex_lock(&mapping->i_mmap_mutex);
 429	read_lock(&tasklist_lock);
 430	for_each_process(tsk) {
 431		pgoff_t pgoff = page->index << (PAGE_CACHE_SHIFT - PAGE_SHIFT);
 
 432
 433		if (!task_early_kill(tsk))
 434			continue;
 435
 436		vma_prio_tree_foreach(vma, &iter, &mapping->i_mmap, pgoff,
 437				      pgoff) {
 438			/*
 439			 * Send early kill signal to tasks where a vma covers
 440			 * the page but the corrupted page is not necessarily
 441			 * mapped it in its pte.
 442			 * Assume applications who requested early kill want
 443			 * to be informed of all such data corruptions.
 444			 */
 445			if (vma->vm_mm == tsk->mm)
 446				add_to_kill(tsk, page, vma, to_kill, tkc);
 447		}
 448	}
 449	read_unlock(&tasklist_lock);
 450	mutex_unlock(&mapping->i_mmap_mutex);
 451}
 452
 453/*
 454 * Collect the processes who have the corrupted page mapped to kill.
 455 * This is done in two steps for locking reasons.
 456 * First preallocate one tokill structure outside the spin locks,
 457 * so that we can kill at least one process reasonably reliable.
 458 */
 459static void collect_procs(struct page *page, struct list_head *tokill)
 
 460{
 461	struct to_kill *tk;
 462
 463	if (!page->mapping)
 464		return;
 465
 466	tk = kmalloc(sizeof(struct to_kill), GFP_NOIO);
 467	if (!tk)
 468		return;
 469	if (PageAnon(page))
 470		collect_procs_anon(page, tokill, &tk);
 471	else
 472		collect_procs_file(page, tokill, &tk);
 473	kfree(tk);
 474}
 475
 476/*
 477 * Error handlers for various types of pages.
 478 */
 479
 480enum outcome {
 481	IGNORED,	/* Error: cannot be handled */
 482	FAILED,		/* Error: handling failed */
 483	DELAYED,	/* Will be handled later */
 484	RECOVERED,	/* Successfully recovered */
 485};
 486
 487static const char *action_name[] = {
 488	[IGNORED] = "Ignored",
 489	[FAILED] = "Failed",
 490	[DELAYED] = "Delayed",
 491	[RECOVERED] = "Recovered",
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 492};
 493
 494/*
 495 * XXX: It is possible that a page is isolated from LRU cache,
 496 * and then kept in swap cache or failed to remove from page cache.
 497 * The page count will stop it from being freed by unpoison.
 498 * Stress tests should be aware of this memory leak problem.
 499 */
 500static int delete_from_lru_cache(struct page *p)
 501{
 502	if (!isolate_lru_page(p)) {
 503		/*
 504		 * Clear sensible page flags, so that the buddy system won't
 505		 * complain when the page is unpoison-and-freed.
 506		 */
 507		ClearPageActive(p);
 508		ClearPageUnevictable(p);
 509		/*
 510		 * drop the page count elevated by isolate_lru_page()
 511		 */
 512		page_cache_release(p);
 513		return 0;
 514	}
 515	return -EIO;
 516}
 517
 518/*
 519 * Error hit kernel page.
 520 * Do nothing, try to be lucky and not touch this instead. For a few cases we
 521 * could be more sophisticated.
 522 */
 523static int me_kernel(struct page *p, unsigned long pfn)
 524{
 525	return IGNORED;
 526}
 527
 528/*
 529 * Page in unknown state. Do nothing.
 530 */
 531static int me_unknown(struct page *p, unsigned long pfn)
 532{
 533	printk(KERN_ERR "MCE %#lx: Unknown page state\n", pfn);
 534	return FAILED;
 535}
 536
 537/*
 538 * Clean (or cleaned) page cache page.
 539 */
 540static int me_pagecache_clean(struct page *p, unsigned long pfn)
 541{
 542	int err;
 543	int ret = FAILED;
 544	struct address_space *mapping;
 545
 546	delete_from_lru_cache(p);
 547
 548	/*
 549	 * For anonymous pages we're done the only reference left
 550	 * should be the one m_f() holds.
 551	 */
 552	if (PageAnon(p))
 553		return RECOVERED;
 554
 555	/*
 556	 * Now truncate the page in the page cache. This is really
 557	 * more like a "temporary hole punch"
 558	 * Don't do this for block devices when someone else
 559	 * has a reference, because it could be file system metadata
 560	 * and that's not safe to truncate.
 561	 */
 562	mapping = page_mapping(p);
 563	if (!mapping) {
 564		/*
 565		 * Page has been teared down in the meanwhile
 566		 */
 567		return FAILED;
 568	}
 569
 570	/*
 571	 * Truncation is a bit tricky. Enable it per file system for now.
 572	 *
 573	 * Open: to take i_mutex or not for this? Right now we don't.
 574	 */
 575	if (mapping->a_ops->error_remove_page) {
 576		err = mapping->a_ops->error_remove_page(mapping, p);
 577		if (err != 0) {
 578			printk(KERN_INFO "MCE %#lx: Failed to punch page: %d\n",
 579					pfn, err);
 580		} else if (page_has_private(p) &&
 581				!try_to_release_page(p, GFP_NOIO)) {
 582			pr_info("MCE %#lx: failed to release buffers\n", pfn);
 
 583		} else {
 584			ret = RECOVERED;
 585		}
 586	} else {
 587		/*
 588		 * If the file system doesn't support it just invalidate
 589		 * This fails on dirty or anything with private pages
 590		 */
 591		if (invalidate_inode_page(p))
 592			ret = RECOVERED;
 593		else
 594			printk(KERN_INFO "MCE %#lx: Failed to invalidate\n",
 595				pfn);
 596	}
 597	return ret;
 598}
 599
 600/*
 601 * Dirty cache page page
 602 * Issues: when the error hit a hole page the error is not properly
 603 * propagated.
 604 */
 605static int me_pagecache_dirty(struct page *p, unsigned long pfn)
 606{
 607	struct address_space *mapping = page_mapping(p);
 608
 609	SetPageError(p);
 610	/* TBD: print more information about the file. */
 611	if (mapping) {
 612		/*
 613		 * IO error will be reported by write(), fsync(), etc.
 614		 * who check the mapping.
 615		 * This way the application knows that something went
 616		 * wrong with its dirty file data.
 617		 *
 618		 * There's one open issue:
 619		 *
 620		 * The EIO will be only reported on the next IO
 621		 * operation and then cleared through the IO map.
 622		 * Normally Linux has two mechanisms to pass IO error
 623		 * first through the AS_EIO flag in the address space
 624		 * and then through the PageError flag in the page.
 625		 * Since we drop pages on memory failure handling the
 626		 * only mechanism open to use is through AS_AIO.
 627		 *
 628		 * This has the disadvantage that it gets cleared on
 629		 * the first operation that returns an error, while
 630		 * the PageError bit is more sticky and only cleared
 631		 * when the page is reread or dropped.  If an
 632		 * application assumes it will always get error on
 633		 * fsync, but does other operations on the fd before
 634		 * and the page is dropped between then the error
 635		 * will not be properly reported.
 636		 *
 637		 * This can already happen even without hwpoisoned
 638		 * pages: first on metadata IO errors (which only
 639		 * report through AS_EIO) or when the page is dropped
 640		 * at the wrong time.
 641		 *
 642		 * So right now we assume that the application DTRT on
 643		 * the first EIO, but we're not worse than other parts
 644		 * of the kernel.
 645		 */
 646		mapping_set_error(mapping, EIO);
 647	}
 648
 649	return me_pagecache_clean(p, pfn);
 650}
 651
 652/*
 653 * Clean and dirty swap cache.
 654 *
 655 * Dirty swap cache page is tricky to handle. The page could live both in page
 656 * cache and swap cache(ie. page is freshly swapped in). So it could be
 657 * referenced concurrently by 2 types of PTEs:
 658 * normal PTEs and swap PTEs. We try to handle them consistently by calling
 659 * try_to_unmap(TTU_IGNORE_HWPOISON) to convert the normal PTEs to swap PTEs,
 660 * and then
 661 *      - clear dirty bit to prevent IO
 662 *      - remove from LRU
 663 *      - but keep in the swap cache, so that when we return to it on
 664 *        a later page fault, we know the application is accessing
 665 *        corrupted data and shall be killed (we installed simple
 666 *        interception code in do_swap_page to catch it).
 667 *
 668 * Clean swap cache pages can be directly isolated. A later page fault will
 669 * bring in the known good data from disk.
 670 */
 671static int me_swapcache_dirty(struct page *p, unsigned long pfn)
 672{
 673	ClearPageDirty(p);
 674	/* Trigger EIO in shmem: */
 675	ClearPageUptodate(p);
 676
 677	if (!delete_from_lru_cache(p))
 678		return DELAYED;
 679	else
 680		return FAILED;
 681}
 682
 683static int me_swapcache_clean(struct page *p, unsigned long pfn)
 684{
 685	delete_from_swap_cache(p);
 686
 687	if (!delete_from_lru_cache(p))
 688		return RECOVERED;
 689	else
 690		return FAILED;
 691}
 692
 693/*
 694 * Huge pages. Needs work.
 695 * Issues:
 696 * - Error on hugepage is contained in hugepage unit (not in raw page unit.)
 697 *   To narrow down kill region to one page, we need to break up pmd.
 698 */
 699static int me_huge_page(struct page *p, unsigned long pfn)
 700{
 701	int res = 0;
 702	struct page *hpage = compound_head(p);
 
 
 
 
 703	/*
 704	 * We can safely recover from error on free or reserved (i.e.
 705	 * not in-use) hugepage by dequeuing it from freelist.
 706	 * To check whether a hugepage is in-use or not, we can't use
 707	 * page->lru because it can be used in other hugepage operations,
 708	 * such as __unmap_hugepage_range() and gather_surplus_pages().
 709	 * So instead we use page_mapping() and PageAnon().
 710	 * We assume that this function is called with page lock held,
 711	 * so there is no race between isolation and mapping/unmapping.
 712	 */
 713	if (!(page_mapping(hpage) || PageAnon(hpage))) {
 714		res = dequeue_hwpoisoned_huge_page(hpage);
 715		if (!res)
 716			return RECOVERED;
 717	}
 718	return DELAYED;
 719}
 720
 721/*
 722 * Various page states we can handle.
 723 *
 724 * A page state is defined by its current page->flags bits.
 725 * The table matches them in order and calls the right handler.
 726 *
 727 * This is quite tricky because we can access page at any time
 728 * in its live cycle, so all accesses have to be extremely careful.
 729 *
 730 * This is not complete. More states could be added.
 731 * For any missing state don't attempt recovery.
 732 */
 733
 734#define dirty		(1UL << PG_dirty)
 735#define sc		(1UL << PG_swapcache)
 736#define unevict		(1UL << PG_unevictable)
 737#define mlock		(1UL << PG_mlocked)
 738#define writeback	(1UL << PG_writeback)
 739#define lru		(1UL << PG_lru)
 740#define swapbacked	(1UL << PG_swapbacked)
 741#define head		(1UL << PG_head)
 742#define tail		(1UL << PG_tail)
 743#define compound	(1UL << PG_compound)
 744#define slab		(1UL << PG_slab)
 745#define reserved	(1UL << PG_reserved)
 746
 747static struct page_state {
 748	unsigned long mask;
 749	unsigned long res;
 750	char *msg;
 751	int (*action)(struct page *p, unsigned long pfn);
 752} error_states[] = {
 753	{ reserved,	reserved,	"reserved kernel",	me_kernel },
 754	/*
 755	 * free pages are specially detected outside this table:
 756	 * PG_buddy pages only make a small fraction of all free pages.
 757	 */
 758
 759	/*
 760	 * Could in theory check if slab page is free or if we can drop
 761	 * currently unused objects without touching them. But just
 762	 * treat it as standard kernel for now.
 763	 */
 764	{ slab,		slab,		"kernel slab",	me_kernel },
 765
 766#ifdef CONFIG_PAGEFLAGS_EXTENDED
 767	{ head,		head,		"huge",		me_huge_page },
 768	{ tail,		tail,		"huge",		me_huge_page },
 769#else
 770	{ compound,	compound,	"huge",		me_huge_page },
 771#endif
 772
 773	{ sc|dirty,	sc|dirty,	"swapcache",	me_swapcache_dirty },
 774	{ sc|dirty,	sc,		"swapcache",	me_swapcache_clean },
 775
 776	{ unevict|dirty, unevict|dirty,	"unevictable LRU", me_pagecache_dirty},
 777	{ unevict,	unevict,	"unevictable LRU", me_pagecache_clean},
 778
 779	{ mlock|dirty,	mlock|dirty,	"mlocked LRU",	me_pagecache_dirty },
 780	{ mlock,	mlock,		"mlocked LRU",	me_pagecache_clean },
 781
 782	{ lru|dirty,	lru|dirty,	"LRU",		me_pagecache_dirty },
 783	{ lru|dirty,	lru,		"clean LRU",	me_pagecache_clean },
 784
 785	/*
 786	 * Catchall entry: must be at end.
 787	 */
 788	{ 0,		0,		"unknown page state",	me_unknown },
 789};
 790
 791#undef dirty
 792#undef sc
 793#undef unevict
 794#undef mlock
 795#undef writeback
 796#undef lru
 797#undef swapbacked
 798#undef head
 799#undef tail
 800#undef compound
 801#undef slab
 802#undef reserved
 803
 804static void action_result(unsigned long pfn, char *msg, int result)
 
 
 
 
 
 805{
 806	struct page *page = pfn_to_page(pfn);
 807
 808	printk(KERN_ERR "MCE %#lx: %s%s page recovery: %s\n",
 809		pfn,
 810		PageDirty(page) ? "dirty " : "",
 811		msg, action_name[result]);
 812}
 813
 814static int page_action(struct page_state *ps, struct page *p,
 815			unsigned long pfn)
 816{
 817	int result;
 818	int count;
 819
 820	result = ps->action(p, pfn);
 821	action_result(pfn, ps->msg, result);
 822
 823	count = page_count(p) - 1;
 824	if (ps->action == me_swapcache_dirty && result == DELAYED)
 825		count--;
 826	if (count != 0) {
 827		printk(KERN_ERR
 828		       "MCE %#lx: %s page still referenced by %d users\n",
 829		       pfn, ps->msg, count);
 830		result = FAILED;
 831	}
 
 832
 833	/* Could do more checks here if page looks ok */
 834	/*
 835	 * Could adjust zone counters here to correct for the missing page.
 836	 */
 837
 838	return (result == RECOVERED || result == DELAYED) ? 0 : -EBUSY;
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 839}
 
 840
 841/*
 842 * Do all that is necessary to remove user space mappings. Unmap
 843 * the pages and send SIGBUS to the processes if the data was dirty.
 844 */
 845static int hwpoison_user_mappings(struct page *p, unsigned long pfn,
 846				  int trapno)
 847{
 848	enum ttu_flags ttu = TTU_UNMAP | TTU_IGNORE_MLOCK | TTU_IGNORE_ACCESS;
 849	struct address_space *mapping;
 850	LIST_HEAD(tokill);
 851	int ret;
 852	int kill = 1;
 853	struct page *hpage = compound_head(p);
 854	struct page *ppage;
 855
 
 
 
 
 856	if (PageReserved(p) || PageSlab(p))
 857		return SWAP_SUCCESS;
 
 
 858
 859	/*
 860	 * This check implies we don't kill processes if their pages
 861	 * are in the swap cache early. Those are always late kills.
 862	 */
 863	if (!page_mapped(hpage))
 864		return SWAP_SUCCESS;
 865
 866	if (PageKsm(p))
 
 867		return SWAP_FAIL;
 
 868
 869	if (PageSwapCache(p)) {
 870		printk(KERN_ERR
 871		       "MCE %#lx: keeping poisoned page in swap cache\n", pfn);
 872		ttu |= TTU_IGNORE_HWPOISON;
 873	}
 874
 875	/*
 876	 * Propagate the dirty bit from PTEs to struct page first, because we
 877	 * need this to decide if we should kill or just drop the page.
 878	 * XXX: the dirty test could be racy: set_page_dirty() may not always
 879	 * be called inside page lock (it's recommended but not enforced).
 880	 */
 881	mapping = page_mapping(hpage);
 882	if (!PageDirty(hpage) && mapping &&
 883	    mapping_cap_writeback_dirty(mapping)) {
 884		if (page_mkclean(hpage)) {
 885			SetPageDirty(hpage);
 886		} else {
 887			kill = 0;
 888			ttu |= TTU_IGNORE_HWPOISON;
 889			printk(KERN_INFO
 890	"MCE %#lx: corrupted page was clean: dropped without side effects\n",
 891				pfn);
 892		}
 893	}
 894
 895	/*
 896	 * ppage: poisoned page
 897	 *   if p is regular page(4k page)
 898	 *        ppage == real poisoned page;
 899	 *   else p is hugetlb or THP, ppage == head page.
 900	 */
 901	ppage = hpage;
 902
 903	if (PageTransHuge(hpage)) {
 904		/*
 905		 * Verify that this isn't a hugetlbfs head page, the check for
 906		 * PageAnon is just for avoid tripping a split_huge_page
 907		 * internal debug check, as split_huge_page refuses to deal with
 908		 * anything that isn't an anon page. PageAnon can't go away fro
 909		 * under us because we hold a refcount on the hpage, without a
 910		 * refcount on the hpage. split_huge_page can't be safely called
 911		 * in the first place, having a refcount on the tail isn't
 912		 * enough * to be safe.
 913		 */
 914		if (!PageHuge(hpage) && PageAnon(hpage)) {
 915			if (unlikely(split_huge_page(hpage))) {
 916				/*
 917				 * FIXME: if splitting THP is failed, it is
 918				 * better to stop the following operation rather
 919				 * than causing panic by unmapping. System might
 920				 * survive if the page is freed later.
 921				 */
 922				printk(KERN_INFO
 923					"MCE %#lx: failed to split THP\n", pfn);
 924
 925				BUG_ON(!PageHWPoison(p));
 926				return SWAP_FAIL;
 927			}
 928			/* THP is split, so ppage should be the real poisoned page. */
 929			ppage = p;
 930		}
 931	}
 932
 933	/*
 934	 * First collect all the processes that have the page
 935	 * mapped in dirty form.  This has to be done before try_to_unmap,
 936	 * because ttu takes the rmap data structures down.
 937	 *
 938	 * Error handling: We ignore errors here because
 939	 * there's nothing that can be done.
 940	 */
 941	if (kill)
 942		collect_procs(ppage, &tokill);
 943
 944	if (hpage != ppage)
 945		lock_page(ppage);
 946
 947	ret = try_to_unmap(ppage, ttu);
 948	if (ret != SWAP_SUCCESS)
 949		printk(KERN_ERR "MCE %#lx: failed to unmap page (mapcount=%d)\n",
 950				pfn, page_mapcount(ppage));
 951
 952	if (hpage != ppage)
 953		unlock_page(ppage);
 954
 955	/*
 956	 * Now that the dirty bit has been propagated to the
 957	 * struct page and all unmaps done we can decide if
 958	 * killing is needed or not.  Only kill when the page
 959	 * was dirty, otherwise the tokill list is merely
 
 960	 * freed.  When there was a problem unmapping earlier
 961	 * use a more force-full uncatchable kill to prevent
 962	 * any accesses to the poisoned memory.
 963	 */
 964	kill_procs_ao(&tokill, !!PageDirty(ppage), trapno,
 965		      ret != SWAP_SUCCESS, p, pfn);
 
 966
 967	return ret;
 968}
 969
 970static void set_page_hwpoison_huge_page(struct page *hpage)
 971{
 972	int i;
 973	int nr_pages = 1 << compound_trans_order(hpage);
 974	for (i = 0; i < nr_pages; i++)
 975		SetPageHWPoison(hpage + i);
 976}
 977
 978static void clear_page_hwpoison_huge_page(struct page *hpage)
 979{
 980	int i;
 981	int nr_pages = 1 << compound_trans_order(hpage);
 982	for (i = 0; i < nr_pages; i++)
 983		ClearPageHWPoison(hpage + i);
 984}
 985
 986int __memory_failure(unsigned long pfn, int trapno, int flags)
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 987{
 988	struct page_state *ps;
 989	struct page *p;
 990	struct page *hpage;
 
 991	int res;
 992	unsigned int nr_pages;
 
 993
 994	if (!sysctl_memory_failure_recovery)
 995		panic("Memory failure from trap %d on page %lx", trapno, pfn);
 996
 997	if (!pfn_valid(pfn)) {
 998		printk(KERN_ERR
 999		       "MCE %#lx: memory outside kernel control\n",
1000		       pfn);
1001		return -ENXIO;
1002	}
1003
1004	p = pfn_to_page(pfn);
1005	hpage = compound_head(p);
1006	if (TestSetPageHWPoison(p)) {
1007		printk(KERN_ERR "MCE %#lx: already hardware poisoned\n", pfn);
 
1008		return 0;
1009	}
1010
1011	nr_pages = 1 << compound_trans_order(hpage);
1012	atomic_long_add(nr_pages, &mce_bad_pages);
 
 
 
 
 
 
 
 
 
 
1013
1014	/*
1015	 * We need/can do nothing about count=0 pages.
1016	 * 1) it's a free page, and therefore in safe hand:
1017	 *    prep_new_page() will be the gate keeper.
1018	 * 2) it's a free hugepage, which is also safe:
1019	 *    an affected hugepage will be dequeued from hugepage freelist,
1020	 *    so there's no concern about reusing it ever after.
1021	 * 3) it's part of a non-compound high order page.
1022	 *    Implies some kernel user: cannot stop them from
1023	 *    R/W the page; let's pray that the page has been
1024	 *    used and will be freed some time later.
1025	 * In fact it's dangerous to directly bump up page count from 0,
1026	 * that may make page_freeze_refs()/page_unfreeze_refs() mismatch.
1027	 */
1028	if (!(flags & MF_COUNT_INCREASED) &&
1029		!get_page_unless_zero(hpage)) {
1030		if (is_free_buddy_page(p)) {
1031			action_result(pfn, "free buddy", DELAYED);
1032			return 0;
1033		} else if (PageHuge(hpage)) {
1034			/*
1035			 * Check "just unpoisoned", "filter hit", and
1036			 * "race with other subpage."
1037			 */
1038			lock_page(hpage);
1039			if (!PageHWPoison(hpage)
1040			    || (hwpoison_filter(p) && TestClearPageHWPoison(p))
1041			    || (p != hpage && TestSetPageHWPoison(hpage))) {
1042				atomic_long_sub(nr_pages, &mce_bad_pages);
1043				return 0;
 
 
1044			}
1045			set_page_hwpoison_huge_page(hpage);
1046			res = dequeue_hwpoisoned_huge_page(hpage);
1047			action_result(pfn, "free huge",
1048				      res ? IGNORED : DELAYED);
1049			unlock_page(hpage);
1050			return res;
1051		} else {
1052			action_result(pfn, "high order kernel", IGNORED);
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1053			return -EBUSY;
1054		}
 
 
 
1055	}
1056
1057	/*
1058	 * We ignore non-LRU pages for good reasons.
1059	 * - PG_locked is only well defined for LRU pages and a few others
1060	 * - to avoid races with __set_page_locked()
1061	 * - to avoid races with __SetPageSlab*() (and more non-atomic ops)
1062	 * The check (unnecessarily) ignores LRU pages being isolated and
1063	 * walked by the page reclaim code, however that's not a big loss.
1064	 */
1065	if (!PageHuge(p) && !PageTransCompound(p)) {
1066		if (!PageLRU(p))
1067			shake_page(p, 0);
1068		if (!PageLRU(p)) {
1069			/*
1070			 * shake_page could have turned it free.
1071			 */
1072			if (is_free_buddy_page(p)) {
1073				action_result(pfn, "free buddy, 2nd try",
1074						DELAYED);
 
 
 
1075				return 0;
1076			}
1077			action_result(pfn, "non LRU", IGNORED);
1078			put_page(p);
1079			return -EBUSY;
1080		}
1081	}
1082
 
 
1083	/*
1084	 * Lock the page and wait for writeback to finish.
1085	 * It's very difficult to mess with pages currently under IO
1086	 * and in many cases impossible, so we just avoid it here.
1087	 */
1088	lock_page(hpage);
 
 
 
 
 
 
 
 
 
 
 
 
 
1089
1090	/*
1091	 * unpoison always clear PG_hwpoison inside page lock
1092	 */
1093	if (!PageHWPoison(p)) {
1094		printk(KERN_ERR "MCE %#lx: just unpoisoned\n", pfn);
1095		res = 0;
1096		goto out;
 
 
1097	}
1098	if (hwpoison_filter(p)) {
1099		if (TestClearPageHWPoison(p))
1100			atomic_long_sub(nr_pages, &mce_bad_pages);
1101		unlock_page(hpage);
1102		put_page(hpage);
1103		return 0;
1104	}
1105
 
 
 
1106	/*
1107	 * For error on the tail page, we should set PG_hwpoison
1108	 * on the head page to show that the hugepage is hwpoisoned
1109	 */
1110	if (PageHuge(p) && PageTail(p) && TestSetPageHWPoison(hpage)) {
1111		action_result(pfn, "hugepage already hardware poisoned",
1112				IGNORED);
1113		unlock_page(hpage);
1114		put_page(hpage);
1115		return 0;
1116	}
1117	/*
1118	 * Set PG_hwpoison on all pages in an error hugepage,
1119	 * because containment is done in hugepage unit for now.
1120	 * Since we have done TestSetPageHWPoison() for the head page with
1121	 * page lock held, we can safely set PG_hwpoison bits on tail pages.
1122	 */
1123	if (PageHuge(p))
1124		set_page_hwpoison_huge_page(hpage);
1125
 
 
 
 
1126	wait_on_page_writeback(p);
1127
1128	/*
1129	 * Now take care of user space mappings.
1130	 * Abort on fail: __delete_from_page_cache() assumes unmapped page.
 
 
 
1131	 */
1132	if (hwpoison_user_mappings(p, pfn, trapno) != SWAP_SUCCESS) {
1133		printk(KERN_ERR "MCE %#lx: cannot unmap page, give up\n", pfn);
 
1134		res = -EBUSY;
1135		goto out;
1136	}
1137
1138	/*
1139	 * Torn down by someone else?
1140	 */
1141	if (PageLRU(p) && !PageSwapCache(p) && p->mapping == NULL) {
1142		action_result(pfn, "already truncated LRU", IGNORED);
1143		res = -EBUSY;
1144		goto out;
1145	}
1146
 
1147	res = -EBUSY;
1148	for (ps = error_states;; ps++) {
1149		if ((p->flags & ps->mask) == ps->res) {
1150			res = page_action(ps, p, pfn);
 
 
 
 
1151			break;
1152		}
1153	}
 
 
 
 
 
 
1154out:
1155	unlock_page(hpage);
1156	return res;
1157}
1158EXPORT_SYMBOL_GPL(__memory_failure);
1159
1160/**
1161 * memory_failure - Handle memory failure of a page.
1162 * @pfn: Page Number of the corrupted page
1163 * @trapno: Trap number reported in the signal to user space.
1164 *
1165 * This function is called by the low level machine check code
1166 * of an architecture when it detects hardware memory corruption
1167 * of a page. It tries its best to recover, which includes
1168 * dropping pages, killing processes etc.
1169 *
1170 * The function is primarily of use for corruptions that
1171 * happen outside the current execution context (e.g. when
1172 * detected by a background scrubber)
1173 *
1174 * Must run in process context (e.g. a work queue) with interrupts
1175 * enabled and no spinlocks hold.
1176 */
1177void memory_failure(unsigned long pfn, int trapno)
1178{
1179	__memory_failure(pfn, trapno, 0);
1180}
1181
1182#define MEMORY_FAILURE_FIFO_ORDER	4
1183#define MEMORY_FAILURE_FIFO_SIZE	(1 << MEMORY_FAILURE_FIFO_ORDER)
1184
1185struct memory_failure_entry {
1186	unsigned long pfn;
1187	int trapno;
1188	int flags;
1189};
1190
1191struct memory_failure_cpu {
1192	DECLARE_KFIFO(fifo, struct memory_failure_entry,
1193		      MEMORY_FAILURE_FIFO_SIZE);
1194	spinlock_t lock;
1195	struct work_struct work;
1196};
1197
1198static DEFINE_PER_CPU(struct memory_failure_cpu, memory_failure_cpu);
1199
1200/**
1201 * memory_failure_queue - Schedule handling memory failure of a page.
1202 * @pfn: Page Number of the corrupted page
1203 * @trapno: Trap number reported in the signal to user space.
1204 * @flags: Flags for memory failure handling
1205 *
1206 * This function is called by the low level hardware error handler
1207 * when it detects hardware memory corruption of a page. It schedules
1208 * the recovering of error page, including dropping pages, killing
1209 * processes etc.
1210 *
1211 * The function is primarily of use for corruptions that
1212 * happen outside the current execution context (e.g. when
1213 * detected by a background scrubber)
1214 *
1215 * Can run in IRQ context.
1216 */
1217void memory_failure_queue(unsigned long pfn, int trapno, int flags)
1218{
1219	struct memory_failure_cpu *mf_cpu;
1220	unsigned long proc_flags;
1221	struct memory_failure_entry entry = {
1222		.pfn =		pfn,
1223		.trapno =	trapno,
1224		.flags =	flags,
1225	};
1226
1227	mf_cpu = &get_cpu_var(memory_failure_cpu);
1228	spin_lock_irqsave(&mf_cpu->lock, proc_flags);
1229	if (kfifo_put(&mf_cpu->fifo, &entry))
1230		schedule_work_on(smp_processor_id(), &mf_cpu->work);
1231	else
1232		pr_err("Memory failure: buffer overflow when queuing memory failure at 0x%#lx\n",
1233		       pfn);
1234	spin_unlock_irqrestore(&mf_cpu->lock, proc_flags);
1235	put_cpu_var(memory_failure_cpu);
1236}
1237EXPORT_SYMBOL_GPL(memory_failure_queue);
1238
1239static void memory_failure_work_func(struct work_struct *work)
1240{
1241	struct memory_failure_cpu *mf_cpu;
1242	struct memory_failure_entry entry = { 0, };
1243	unsigned long proc_flags;
1244	int gotten;
1245
1246	mf_cpu = &__get_cpu_var(memory_failure_cpu);
1247	for (;;) {
1248		spin_lock_irqsave(&mf_cpu->lock, proc_flags);
1249		gotten = kfifo_get(&mf_cpu->fifo, &entry);
1250		spin_unlock_irqrestore(&mf_cpu->lock, proc_flags);
1251		if (!gotten)
1252			break;
1253		__memory_failure(entry.pfn, entry.trapno, entry.flags);
 
 
 
1254	}
1255}
1256
1257static int __init memory_failure_init(void)
1258{
1259	struct memory_failure_cpu *mf_cpu;
1260	int cpu;
1261
1262	for_each_possible_cpu(cpu) {
1263		mf_cpu = &per_cpu(memory_failure_cpu, cpu);
1264		spin_lock_init(&mf_cpu->lock);
1265		INIT_KFIFO(mf_cpu->fifo);
1266		INIT_WORK(&mf_cpu->work, memory_failure_work_func);
1267	}
1268
1269	return 0;
1270}
1271core_initcall(memory_failure_init);
1272
 
 
 
 
 
 
1273/**
1274 * unpoison_memory - Unpoison a previously poisoned page
1275 * @pfn: Page number of the to be unpoisoned page
1276 *
1277 * Software-unpoison a page that has been poisoned by
1278 * memory_failure() earlier.
1279 *
1280 * This is only done on the software-level, so it only works
1281 * for linux injected failures, not real hardware failures
1282 *
1283 * Returns 0 for success, otherwise -errno.
1284 */
1285int unpoison_memory(unsigned long pfn)
1286{
1287	struct page *page;
1288	struct page *p;
1289	int freeit = 0;
1290	unsigned int nr_pages;
 
 
1291
1292	if (!pfn_valid(pfn))
1293		return -ENXIO;
1294
1295	p = pfn_to_page(pfn);
1296	page = compound_head(p);
1297
1298	if (!PageHWPoison(p)) {
1299		pr_info("MCE: Page was already unpoisoned %#lx\n", pfn);
 
1300		return 0;
1301	}
1302
1303	nr_pages = 1 << compound_trans_order(page);
 
 
 
 
1304
1305	if (!get_page_unless_zero(page)) {
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1306		/*
1307		 * Since HWPoisoned hugepage should have non-zero refcount,
1308		 * race between memory failure and unpoison seems to happen.
1309		 * In such case unpoison fails and memory failure runs
1310		 * to the end.
1311		 */
1312		if (PageHuge(page)) {
1313			pr_debug("MCE: Memory failure is now running on free hugepage %#lx\n", pfn);
 
1314			return 0;
1315		}
1316		if (TestClearPageHWPoison(p))
1317			atomic_long_sub(nr_pages, &mce_bad_pages);
1318		pr_info("MCE: Software-unpoisoned free page %#lx\n", pfn);
 
1319		return 0;
1320	}
1321
1322	lock_page(page);
1323	/*
1324	 * This test is racy because PG_hwpoison is set outside of page lock.
1325	 * That's acceptable because that won't trigger kernel panic. Instead,
1326	 * the PG_hwpoison page will be caught and isolated on the entrance to
1327	 * the free buddy page pool.
1328	 */
1329	if (TestClearPageHWPoison(page)) {
1330		pr_info("MCE: Software-unpoisoned page %#lx\n", pfn);
1331		atomic_long_sub(nr_pages, &mce_bad_pages);
 
1332		freeit = 1;
1333		if (PageHuge(page))
1334			clear_page_hwpoison_huge_page(page);
1335	}
1336	unlock_page(page);
1337
1338	put_page(page);
1339	if (freeit)
1340		put_page(page);
1341
1342	return 0;
1343}
1344EXPORT_SYMBOL(unpoison_memory);
1345
1346static struct page *new_page(struct page *p, unsigned long private, int **x)
1347{
1348	int nid = page_to_nid(p);
1349	if (PageHuge(p))
1350		return alloc_huge_page_node(page_hstate(compound_head(p)),
1351						   nid);
1352	else
1353		return alloc_pages_exact_node(nid, GFP_HIGHUSER_MOVABLE, 0);
1354}
1355
1356/*
1357 * Safely get reference count of an arbitrary page.
1358 * Returns 0 for a free page, -EIO for a zero refcount page
1359 * that is not free, and 1 for any other page type.
1360 * For 1 the page is returned with increased page count, otherwise not.
1361 */
1362static int get_any_page(struct page *p, unsigned long pfn, int flags)
1363{
1364	int ret;
1365
1366	if (flags & MF_COUNT_INCREASED)
1367		return 1;
1368
1369	/*
1370	 * The lock_memory_hotplug prevents a race with memory hotplug.
1371	 * This is a big hammer, a better would be nicer.
1372	 */
1373	lock_memory_hotplug();
1374
1375	/*
1376	 * Isolate the page, so that it doesn't get reallocated if it
1377	 * was free.
1378	 */
1379	set_migratetype_isolate(p);
1380	/*
1381	 * When the target page is a free hugepage, just remove it
1382	 * from free hugepage list.
1383	 */
1384	if (!get_page_unless_zero(compound_head(p))) {
1385		if (PageHuge(p)) {
1386			pr_info("get_any_page: %#lx free huge page\n", pfn);
1387			ret = dequeue_hwpoisoned_huge_page(compound_head(p));
1388		} else if (is_free_buddy_page(p)) {
1389			pr_info("get_any_page: %#lx free buddy page\n", pfn);
1390			/* Set hwpoison bit while page is still isolated */
1391			SetPageHWPoison(p);
1392			ret = 0;
1393		} else {
1394			pr_info("get_any_page: %#lx: unknown zero refcount page type %lx\n",
1395				pfn, p->flags);
1396			ret = -EIO;
1397		}
1398	} else {
1399		/* Not a free page */
1400		ret = 1;
1401	}
1402	unset_migratetype_isolate(p);
1403	unlock_memory_hotplug();
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1404	return ret;
1405}
1406
1407static int soft_offline_huge_page(struct page *page, int flags)
1408{
1409	int ret;
1410	unsigned long pfn = page_to_pfn(page);
1411	struct page *hpage = compound_head(page);
1412	LIST_HEAD(pagelist);
1413
1414	ret = get_any_page(page, pfn, flags);
1415	if (ret < 0)
1416		return ret;
1417	if (ret == 0)
1418		goto done;
1419
1420	if (PageHWPoison(hpage)) {
1421		put_page(hpage);
1422		pr_debug("soft offline: %#lx hugepage already poisoned\n", pfn);
 
1423		return -EBUSY;
1424	}
 
1425
1426	/* Keep page count to indicate a given hugepage is isolated. */
 
 
 
 
 
 
 
 
 
1427
1428	list_add(&hpage->lru, &pagelist);
1429	ret = migrate_huge_pages(&pagelist, new_page, MPOL_MF_MOVE_ALL, 0,
1430				true);
1431	if (ret) {
1432		struct page *page1, *page2;
1433		list_for_each_entry_safe(page1, page2, &pagelist, lru)
1434			put_page(page1);
1435
1436		pr_debug("soft offline: %#lx: migration failed %d, type %lx\n",
1437			 pfn, ret, page->flags);
 
 
1438		if (ret > 0)
1439			ret = -EIO;
1440		return ret;
 
 
 
 
 
 
 
 
 
1441	}
1442done:
1443	if (!PageHWPoison(hpage))
1444		atomic_long_add(1 << compound_trans_order(hpage), &mce_bad_pages);
1445	set_page_hwpoison_huge_page(hpage);
1446	dequeue_hwpoisoned_huge_page(hpage);
1447	/* keep elevated page count for bad page */
1448	return ret;
1449}
1450
1451/**
1452 * soft_offline_page - Soft offline a page.
1453 * @page: page to offline
1454 * @flags: flags. Same as memory_failure().
1455 *
1456 * Returns 0 on success, otherwise negated errno.
1457 *
1458 * Soft offline a page, by migration or invalidation,
1459 * without killing anything. This is for the case when
1460 * a page is not corrupted yet (so it's still valid to access),
1461 * but has had a number of corrected errors and is better taken
1462 * out.
1463 *
1464 * The actual policy on when to do that is maintained by
1465 * user space.
1466 *
1467 * This should never impact any application or cause data loss,
1468 * however it might take some time.
1469 *
1470 * This is not a 100% solution for all memory, but tries to be
1471 * ``good enough'' for the majority of memory.
1472 */
1473int soft_offline_page(struct page *page, int flags)
1474{
1475	int ret;
1476	unsigned long pfn = page_to_pfn(page);
1477
1478	if (PageHuge(page))
1479		return soft_offline_huge_page(page, flags);
1480
1481	ret = get_any_page(page, pfn, flags);
1482	if (ret < 0)
1483		return ret;
1484	if (ret == 0)
1485		goto done;
1486
1487	/*
1488	 * Page cache page we can handle?
 
 
 
1489	 */
1490	if (!PageLRU(page)) {
1491		/*
1492		 * Try to free it.
1493		 */
1494		put_page(page);
1495		shake_page(page, 1);
1496
1497		/*
1498		 * Did it turn free?
1499		 */
1500		ret = get_any_page(page, pfn, 0);
1501		if (ret < 0)
1502			return ret;
1503		if (ret == 0)
1504			goto done;
1505	}
1506	if (!PageLRU(page)) {
1507		pr_info("soft_offline: %#lx: unknown non LRU page type %lx\n",
1508				pfn, page->flags);
1509		return -EIO;
1510	}
1511
1512	lock_page(page);
1513	wait_on_page_writeback(page);
1514
1515	/*
1516	 * Synchronized using the page lock with memory_failure()
1517	 */
1518	if (PageHWPoison(page)) {
1519		unlock_page(page);
1520		put_page(page);
1521		pr_info("soft offline: %#lx page already poisoned\n", pfn);
1522		return -EBUSY;
1523	}
1524
1525	/*
1526	 * Try to invalidate first. This should work for
1527	 * non dirty unmapped page cache pages.
1528	 */
1529	ret = invalidate_inode_page(page);
1530	unlock_page(page);
1531	/*
1532	 * RED-PEN would be better to keep it isolated here, but we
1533	 * would need to fix isolation locking first.
1534	 */
1535	if (ret == 1) {
1536		put_page(page);
1537		ret = 0;
1538		pr_info("soft_offline: %#lx: invalidated\n", pfn);
1539		goto done;
 
 
1540	}
1541
1542	/*
1543	 * Simple invalidation didn't work.
1544	 * Try to migrate to a new page instead. migrate.c
1545	 * handles a large number of cases for us.
1546	 */
1547	ret = isolate_lru_page(page);
1548	/*
1549	 * Drop page reference which is came from get_any_page()
1550	 * successful isolate_lru_page() already took another one.
1551	 */
1552	put_page(page);
1553	if (!ret) {
1554		LIST_HEAD(pagelist);
1555		inc_zone_page_state(page, NR_ISOLATED_ANON +
1556					    page_is_file_cache(page));
1557		list_add(&page->lru, &pagelist);
1558		ret = migrate_pages(&pagelist, new_page, MPOL_MF_MOVE_ALL,
1559								0, true);
1560		if (ret) {
1561			putback_lru_pages(&pagelist);
 
 
 
 
 
 
1562			pr_info("soft offline: %#lx: migration failed %d, type %lx\n",
1563				pfn, ret, page->flags);
1564			if (ret > 0)
1565				ret = -EIO;
1566		}
1567	} else {
1568		pr_info("soft offline: %#lx: isolation failed: %d, page count %d, type %lx\n",
1569				pfn, ret, page_count(page), page->flags);
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1570	}
1571	if (ret)
1572		return ret;
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1573
1574done:
1575	atomic_long_add(1, &mce_bad_pages);
1576	SetPageHWPoison(page);
1577	/* keep elevated page count for bad page */
1578	return ret;
1579}
v4.10.11
   1/*
   2 * Copyright (C) 2008, 2009 Intel Corporation
   3 * Authors: Andi Kleen, Fengguang Wu
   4 *
   5 * This software may be redistributed and/or modified under the terms of
   6 * the GNU General Public License ("GPL") version 2 only as published by the
   7 * Free Software Foundation.
   8 *
   9 * High level machine check handler. Handles pages reported by the
  10 * hardware as being corrupted usually due to a multi-bit ECC memory or cache
  11 * failure.
  12 * 
  13 * In addition there is a "soft offline" entry point that allows stop using
  14 * not-yet-corrupted-by-suspicious pages without killing anything.
  15 *
  16 * Handles page cache pages in various states.	The tricky part
  17 * here is that we can access any page asynchronously in respect to 
  18 * other VM users, because memory failures could happen anytime and 
  19 * anywhere. This could violate some of their assumptions. This is why 
  20 * this code has to be extremely careful. Generally it tries to use 
  21 * normal locking rules, as in get the standard locks, even if that means 
  22 * the error handling takes potentially a long time.
  23 *
  24 * It can be very tempting to add handling for obscure cases here.
  25 * In general any code for handling new cases should only be added iff:
  26 * - You know how to test it.
  27 * - You have a test that can be added to mce-test
  28 *   https://git.kernel.org/cgit/utils/cpu/mce/mce-test.git/
  29 * - The case actually shows up as a frequent (top 10) page state in
  30 *   tools/vm/page-types when running a real workload.
  31 * 
  32 * There are several operations here with exponential complexity because
  33 * of unsuitable VM data structures. For example the operation to map back 
  34 * from RMAP chains to processes has to walk the complete process list and 
  35 * has non linear complexity with the number. But since memory corruptions
  36 * are rare we hope to get away with this. This avoids impacting the core 
  37 * VM.
  38 */
 
 
 
 
 
 
 
  39#include <linux/kernel.h>
  40#include <linux/mm.h>
  41#include <linux/page-flags.h>
  42#include <linux/kernel-page-flags.h>
  43#include <linux/sched.h>
  44#include <linux/ksm.h>
  45#include <linux/rmap.h>
  46#include <linux/export.h>
  47#include <linux/pagemap.h>
  48#include <linux/swap.h>
  49#include <linux/backing-dev.h>
  50#include <linux/migrate.h>
  51#include <linux/page-isolation.h>
  52#include <linux/suspend.h>
  53#include <linux/slab.h>
  54#include <linux/swapops.h>
  55#include <linux/hugetlb.h>
  56#include <linux/memory_hotplug.h>
  57#include <linux/mm_inline.h>
  58#include <linux/kfifo.h>
  59#include <linux/ratelimit.h>
  60#include "internal.h"
  61#include "ras/ras_event.h"
  62
  63int sysctl_memory_failure_early_kill __read_mostly = 0;
  64
  65int sysctl_memory_failure_recovery __read_mostly = 1;
  66
  67atomic_long_t num_poisoned_pages __read_mostly = ATOMIC_LONG_INIT(0);
  68
  69#if defined(CONFIG_HWPOISON_INJECT) || defined(CONFIG_HWPOISON_INJECT_MODULE)
  70
  71u32 hwpoison_filter_enable = 0;
  72u32 hwpoison_filter_dev_major = ~0U;
  73u32 hwpoison_filter_dev_minor = ~0U;
  74u64 hwpoison_filter_flags_mask;
  75u64 hwpoison_filter_flags_value;
  76EXPORT_SYMBOL_GPL(hwpoison_filter_enable);
  77EXPORT_SYMBOL_GPL(hwpoison_filter_dev_major);
  78EXPORT_SYMBOL_GPL(hwpoison_filter_dev_minor);
  79EXPORT_SYMBOL_GPL(hwpoison_filter_flags_mask);
  80EXPORT_SYMBOL_GPL(hwpoison_filter_flags_value);
  81
  82static int hwpoison_filter_dev(struct page *p)
  83{
  84	struct address_space *mapping;
  85	dev_t dev;
  86
  87	if (hwpoison_filter_dev_major == ~0U &&
  88	    hwpoison_filter_dev_minor == ~0U)
  89		return 0;
  90
  91	/*
  92	 * page_mapping() does not accept slab pages.
  93	 */
  94	if (PageSlab(p))
  95		return -EINVAL;
  96
  97	mapping = page_mapping(p);
  98	if (mapping == NULL || mapping->host == NULL)
  99		return -EINVAL;
 100
 101	dev = mapping->host->i_sb->s_dev;
 102	if (hwpoison_filter_dev_major != ~0U &&
 103	    hwpoison_filter_dev_major != MAJOR(dev))
 104		return -EINVAL;
 105	if (hwpoison_filter_dev_minor != ~0U &&
 106	    hwpoison_filter_dev_minor != MINOR(dev))
 107		return -EINVAL;
 108
 109	return 0;
 110}
 111
 112static int hwpoison_filter_flags(struct page *p)
 113{
 114	if (!hwpoison_filter_flags_mask)
 115		return 0;
 116
 117	if ((stable_page_flags(p) & hwpoison_filter_flags_mask) ==
 118				    hwpoison_filter_flags_value)
 119		return 0;
 120	else
 121		return -EINVAL;
 122}
 123
 124/*
 125 * This allows stress tests to limit test scope to a collection of tasks
 126 * by putting them under some memcg. This prevents killing unrelated/important
 127 * processes such as /sbin/init. Note that the target task may share clean
 128 * pages with init (eg. libc text), which is harmless. If the target task
 129 * share _dirty_ pages with another task B, the test scheme must make sure B
 130 * is also included in the memcg. At last, due to race conditions this filter
 131 * can only guarantee that the page either belongs to the memcg tasks, or is
 132 * a freed page.
 133 */
 134#ifdef CONFIG_MEMCG
 135u64 hwpoison_filter_memcg;
 136EXPORT_SYMBOL_GPL(hwpoison_filter_memcg);
 137static int hwpoison_filter_task(struct page *p)
 138{
 
 
 
 
 139	if (!hwpoison_filter_memcg)
 140		return 0;
 141
 142	if (page_cgroup_ino(p) != hwpoison_filter_memcg)
 
 
 
 
 
 
 
 
 
 
 
 
 143		return -EINVAL;
 144
 145	return 0;
 146}
 147#else
 148static int hwpoison_filter_task(struct page *p) { return 0; }
 149#endif
 150
 151int hwpoison_filter(struct page *p)
 152{
 153	if (!hwpoison_filter_enable)
 154		return 0;
 155
 156	if (hwpoison_filter_dev(p))
 157		return -EINVAL;
 158
 159	if (hwpoison_filter_flags(p))
 160		return -EINVAL;
 161
 162	if (hwpoison_filter_task(p))
 163		return -EINVAL;
 164
 165	return 0;
 166}
 167#else
 168int hwpoison_filter(struct page *p)
 169{
 170	return 0;
 171}
 172#endif
 173
 174EXPORT_SYMBOL_GPL(hwpoison_filter);
 175
 176/*
 177 * Send all the processes who have the page mapped a signal.
 178 * ``action optional'' if they are not immediately affected by the error
 179 * ``action required'' if error happened in current execution context
 180 */
 181static int kill_proc(struct task_struct *t, unsigned long addr, int trapno,
 182			unsigned long pfn, struct page *page, int flags)
 183{
 184	struct siginfo si;
 185	int ret;
 186
 187	pr_err("Memory failure: %#lx: Killing %s:%d due to hardware memory corruption\n",
 
 188		pfn, t->comm, t->pid);
 189	si.si_signo = SIGBUS;
 190	si.si_errno = 0;
 
 191	si.si_addr = (void *)addr;
 192#ifdef __ARCH_SI_TRAPNO
 193	si.si_trapno = trapno;
 194#endif
 195	si.si_addr_lsb = compound_order(compound_head(page)) + PAGE_SHIFT;
 196
 197	if ((flags & MF_ACTION_REQUIRED) && t->mm == current->mm) {
 198		si.si_code = BUS_MCEERR_AR;
 199		ret = force_sig_info(SIGBUS, &si, current);
 200	} else {
 201		/*
 202		 * Don't use force here, it's convenient if the signal
 203		 * can be temporarily blocked.
 204		 * This could cause a loop when the user sets SIGBUS
 205		 * to SIG_IGN, but hopefully no one will do that?
 206		 */
 207		si.si_code = BUS_MCEERR_AO;
 208		ret = send_sig_info(SIGBUS, &si, t);  /* synchronous? */
 209	}
 210	if (ret < 0)
 211		pr_info("Memory failure: Error sending signal to %s:%d: %d\n",
 212			t->comm, t->pid, ret);
 213	return ret;
 214}
 215
 216/*
 217 * When a unknown page type is encountered drain as many buffers as possible
 218 * in the hope to turn the page into a LRU or free page, which we can handle.
 219 */
 220void shake_page(struct page *p, int access)
 221{
 222	if (!PageSlab(p)) {
 223		lru_add_drain_all();
 224		if (PageLRU(p))
 225			return;
 226		drain_all_pages(page_zone(p));
 227		if (PageLRU(p) || is_free_buddy_page(p))
 228			return;
 229	}
 230
 231	/*
 232	 * Only call shrink_node_slabs here (which would also shrink
 233	 * other caches) if access is not potentially fatal.
 234	 */
 235	if (access)
 236		drop_slab_node(page_to_nid(p));
 
 
 
 
 
 
 
 
 
 
 237}
 238EXPORT_SYMBOL_GPL(shake_page);
 239
 240/*
 241 * Kill all processes that have a poisoned page mapped and then isolate
 242 * the page.
 243 *
 244 * General strategy:
 245 * Find all processes having the page mapped and kill them.
 246 * But we keep a page reference around so that the page is not
 247 * actually freed yet.
 248 * Then stash the page away
 249 *
 250 * There's no convenient way to get back to mapped processes
 251 * from the VMAs. So do a brute-force search over all
 252 * running processes.
 253 *
 254 * Remember that machine checks are not common (or rather
 255 * if they are common you have other problems), so this shouldn't
 256 * be a performance issue.
 257 *
 258 * Also there are some races possible while we get from the
 259 * error detection to actually handle it.
 260 */
 261
 262struct to_kill {
 263	struct list_head nd;
 264	struct task_struct *tsk;
 265	unsigned long addr;
 266	char addr_valid;
 267};
 268
 269/*
 270 * Failure handling: if we can't find or can't kill a process there's
 271 * not much we can do.	We just print a message and ignore otherwise.
 272 */
 273
 274/*
 275 * Schedule a process for later kill.
 276 * Uses GFP_ATOMIC allocations to avoid potential recursions in the VM.
 277 * TBD would GFP_NOIO be enough?
 278 */
 279static void add_to_kill(struct task_struct *tsk, struct page *p,
 280		       struct vm_area_struct *vma,
 281		       struct list_head *to_kill,
 282		       struct to_kill **tkc)
 283{
 284	struct to_kill *tk;
 285
 286	if (*tkc) {
 287		tk = *tkc;
 288		*tkc = NULL;
 289	} else {
 290		tk = kmalloc(sizeof(struct to_kill), GFP_ATOMIC);
 291		if (!tk) {
 292			pr_err("Memory failure: Out of memory while machine check handling\n");
 
 293			return;
 294		}
 295	}
 296	tk->addr = page_address_in_vma(p, vma);
 297	tk->addr_valid = 1;
 298
 299	/*
 300	 * In theory we don't have to kill when the page was
 301	 * munmaped. But it could be also a mremap. Since that's
 302	 * likely very rare kill anyways just out of paranoia, but use
 303	 * a SIGKILL because the error is not contained anymore.
 304	 */
 305	if (tk->addr == -EFAULT) {
 306		pr_info("Memory failure: Unable to find user space address %lx in %s\n",
 307			page_to_pfn(p), tsk->comm);
 308		tk->addr_valid = 0;
 309	}
 310	get_task_struct(tsk);
 311	tk->tsk = tsk;
 312	list_add_tail(&tk->nd, to_kill);
 313}
 314
 315/*
 316 * Kill the processes that have been collected earlier.
 317 *
 318 * Only do anything when DOIT is set, otherwise just free the list
 319 * (this is used for clean pages which do not need killing)
 320 * Also when FAIL is set do a force kill because something went
 321 * wrong earlier.
 322 */
 323static void kill_procs(struct list_head *to_kill, int forcekill, int trapno,
 324			  int fail, struct page *page, unsigned long pfn,
 325			  int flags)
 326{
 327	struct to_kill *tk, *next;
 328
 329	list_for_each_entry_safe (tk, next, to_kill, nd) {
 330		if (forcekill) {
 331			/*
 332			 * In case something went wrong with munmapping
 333			 * make sure the process doesn't catch the
 334			 * signal and then access the memory. Just kill it.
 335			 */
 336			if (fail || tk->addr_valid == 0) {
 337				pr_err("Memory failure: %#lx: forcibly killing %s:%d because of failure to unmap corrupted page\n",
 338				       pfn, tk->tsk->comm, tk->tsk->pid);
 
 339				force_sig(SIGKILL, tk->tsk);
 340			}
 341
 342			/*
 343			 * In theory the process could have mapped
 344			 * something else on the address in-between. We could
 345			 * check for that, but we need to tell the
 346			 * process anyways.
 347			 */
 348			else if (kill_proc(tk->tsk, tk->addr, trapno,
 349					      pfn, page, flags) < 0)
 350				pr_err("Memory failure: %#lx: Cannot send advisory machine check signal to %s:%d\n",
 351				       pfn, tk->tsk->comm, tk->tsk->pid);
 
 352		}
 353		put_task_struct(tk->tsk);
 354		kfree(tk);
 355	}
 356}
 357
 358/*
 359 * Find a dedicated thread which is supposed to handle SIGBUS(BUS_MCEERR_AO)
 360 * on behalf of the thread group. Return task_struct of the (first found)
 361 * dedicated thread if found, and return NULL otherwise.
 362 *
 363 * We already hold read_lock(&tasklist_lock) in the caller, so we don't
 364 * have to call rcu_read_lock/unlock() in this function.
 365 */
 366static struct task_struct *find_early_kill_thread(struct task_struct *tsk)
 367{
 368	struct task_struct *t;
 369
 370	for_each_thread(tsk, t)
 371		if ((t->flags & PF_MCE_PROCESS) && (t->flags & PF_MCE_EARLY))
 372			return t;
 373	return NULL;
 374}
 375
 376/*
 377 * Determine whether a given process is "early kill" process which expects
 378 * to be signaled when some page under the process is hwpoisoned.
 379 * Return task_struct of the dedicated thread (main thread unless explicitly
 380 * specified) if the process is "early kill," and otherwise returns NULL.
 381 */
 382static struct task_struct *task_early_kill(struct task_struct *tsk,
 383					   int force_early)
 384{
 385	struct task_struct *t;
 386	if (!tsk->mm)
 387		return NULL;
 388	if (force_early)
 389		return tsk;
 390	t = find_early_kill_thread(tsk);
 391	if (t)
 392		return t;
 393	if (sysctl_memory_failure_early_kill)
 394		return tsk;
 395	return NULL;
 396}
 397
 398/*
 399 * Collect processes when the error hit an anonymous page.
 400 */
 401static void collect_procs_anon(struct page *page, struct list_head *to_kill,
 402			      struct to_kill **tkc, int force_early)
 403{
 404	struct vm_area_struct *vma;
 405	struct task_struct *tsk;
 406	struct anon_vma *av;
 407	pgoff_t pgoff;
 408
 409	av = page_lock_anon_vma_read(page);
 410	if (av == NULL)	/* Not actually mapped anymore */
 411		return;
 412
 413	pgoff = page_to_pgoff(page);
 414	read_lock(&tasklist_lock);
 415	for_each_process (tsk) {
 416		struct anon_vma_chain *vmac;
 417		struct task_struct *t = task_early_kill(tsk, force_early);
 418
 419		if (!t)
 420			continue;
 421		anon_vma_interval_tree_foreach(vmac, &av->rb_root,
 422					       pgoff, pgoff) {
 423			vma = vmac->vma;
 424			if (!page_mapped_in_vma(page, vma))
 425				continue;
 426			if (vma->vm_mm == t->mm)
 427				add_to_kill(t, page, vma, to_kill, tkc);
 428		}
 429	}
 430	read_unlock(&tasklist_lock);
 431	page_unlock_anon_vma_read(av);
 432}
 433
 434/*
 435 * Collect processes when the error hit a file mapped page.
 436 */
 437static void collect_procs_file(struct page *page, struct list_head *to_kill,
 438			      struct to_kill **tkc, int force_early)
 439{
 440	struct vm_area_struct *vma;
 441	struct task_struct *tsk;
 
 442	struct address_space *mapping = page->mapping;
 443
 444	i_mmap_lock_read(mapping);
 445	read_lock(&tasklist_lock);
 446	for_each_process(tsk) {
 447		pgoff_t pgoff = page_to_pgoff(page);
 448		struct task_struct *t = task_early_kill(tsk, force_early);
 449
 450		if (!t)
 451			continue;
 452		vma_interval_tree_foreach(vma, &mapping->i_mmap, pgoff,
 
 453				      pgoff) {
 454			/*
 455			 * Send early kill signal to tasks where a vma covers
 456			 * the page but the corrupted page is not necessarily
 457			 * mapped it in its pte.
 458			 * Assume applications who requested early kill want
 459			 * to be informed of all such data corruptions.
 460			 */
 461			if (vma->vm_mm == t->mm)
 462				add_to_kill(t, page, vma, to_kill, tkc);
 463		}
 464	}
 465	read_unlock(&tasklist_lock);
 466	i_mmap_unlock_read(mapping);
 467}
 468
 469/*
 470 * Collect the processes who have the corrupted page mapped to kill.
 471 * This is done in two steps for locking reasons.
 472 * First preallocate one tokill structure outside the spin locks,
 473 * so that we can kill at least one process reasonably reliable.
 474 */
 475static void collect_procs(struct page *page, struct list_head *tokill,
 476				int force_early)
 477{
 478	struct to_kill *tk;
 479
 480	if (!page->mapping)
 481		return;
 482
 483	tk = kmalloc(sizeof(struct to_kill), GFP_NOIO);
 484	if (!tk)
 485		return;
 486	if (PageAnon(page))
 487		collect_procs_anon(page, tokill, &tk, force_early);
 488	else
 489		collect_procs_file(page, tokill, &tk, force_early);
 490	kfree(tk);
 491}
 492
 493static const char *action_name[] = {
 494	[MF_IGNORED] = "Ignored",
 495	[MF_FAILED] = "Failed",
 496	[MF_DELAYED] = "Delayed",
 497	[MF_RECOVERED] = "Recovered",
 
 
 
 
 498};
 499
 500static const char * const action_page_types[] = {
 501	[MF_MSG_KERNEL]			= "reserved kernel page",
 502	[MF_MSG_KERNEL_HIGH_ORDER]	= "high-order kernel page",
 503	[MF_MSG_SLAB]			= "kernel slab page",
 504	[MF_MSG_DIFFERENT_COMPOUND]	= "different compound page after locking",
 505	[MF_MSG_POISONED_HUGE]		= "huge page already hardware poisoned",
 506	[MF_MSG_HUGE]			= "huge page",
 507	[MF_MSG_FREE_HUGE]		= "free huge page",
 508	[MF_MSG_UNMAP_FAILED]		= "unmapping failed page",
 509	[MF_MSG_DIRTY_SWAPCACHE]	= "dirty swapcache page",
 510	[MF_MSG_CLEAN_SWAPCACHE]	= "clean swapcache page",
 511	[MF_MSG_DIRTY_MLOCKED_LRU]	= "dirty mlocked LRU page",
 512	[MF_MSG_CLEAN_MLOCKED_LRU]	= "clean mlocked LRU page",
 513	[MF_MSG_DIRTY_UNEVICTABLE_LRU]	= "dirty unevictable LRU page",
 514	[MF_MSG_CLEAN_UNEVICTABLE_LRU]	= "clean unevictable LRU page",
 515	[MF_MSG_DIRTY_LRU]		= "dirty LRU page",
 516	[MF_MSG_CLEAN_LRU]		= "clean LRU page",
 517	[MF_MSG_TRUNCATED_LRU]		= "already truncated LRU page",
 518	[MF_MSG_BUDDY]			= "free buddy page",
 519	[MF_MSG_BUDDY_2ND]		= "free buddy page (2nd try)",
 520	[MF_MSG_UNKNOWN]		= "unknown page",
 521};
 522
 523/*
 524 * XXX: It is possible that a page is isolated from LRU cache,
 525 * and then kept in swap cache or failed to remove from page cache.
 526 * The page count will stop it from being freed by unpoison.
 527 * Stress tests should be aware of this memory leak problem.
 528 */
 529static int delete_from_lru_cache(struct page *p)
 530{
 531	if (!isolate_lru_page(p)) {
 532		/*
 533		 * Clear sensible page flags, so that the buddy system won't
 534		 * complain when the page is unpoison-and-freed.
 535		 */
 536		ClearPageActive(p);
 537		ClearPageUnevictable(p);
 538		/*
 539		 * drop the page count elevated by isolate_lru_page()
 540		 */
 541		put_page(p);
 542		return 0;
 543	}
 544	return -EIO;
 545}
 546
 547/*
 548 * Error hit kernel page.
 549 * Do nothing, try to be lucky and not touch this instead. For a few cases we
 550 * could be more sophisticated.
 551 */
 552static int me_kernel(struct page *p, unsigned long pfn)
 553{
 554	return MF_IGNORED;
 555}
 556
 557/*
 558 * Page in unknown state. Do nothing.
 559 */
 560static int me_unknown(struct page *p, unsigned long pfn)
 561{
 562	pr_err("Memory failure: %#lx: Unknown page state\n", pfn);
 563	return MF_FAILED;
 564}
 565
 566/*
 567 * Clean (or cleaned) page cache page.
 568 */
 569static int me_pagecache_clean(struct page *p, unsigned long pfn)
 570{
 571	int err;
 572	int ret = MF_FAILED;
 573	struct address_space *mapping;
 574
 575	delete_from_lru_cache(p);
 576
 577	/*
 578	 * For anonymous pages we're done the only reference left
 579	 * should be the one m_f() holds.
 580	 */
 581	if (PageAnon(p))
 582		return MF_RECOVERED;
 583
 584	/*
 585	 * Now truncate the page in the page cache. This is really
 586	 * more like a "temporary hole punch"
 587	 * Don't do this for block devices when someone else
 588	 * has a reference, because it could be file system metadata
 589	 * and that's not safe to truncate.
 590	 */
 591	mapping = page_mapping(p);
 592	if (!mapping) {
 593		/*
 594		 * Page has been teared down in the meanwhile
 595		 */
 596		return MF_FAILED;
 597	}
 598
 599	/*
 600	 * Truncation is a bit tricky. Enable it per file system for now.
 601	 *
 602	 * Open: to take i_mutex or not for this? Right now we don't.
 603	 */
 604	if (mapping->a_ops->error_remove_page) {
 605		err = mapping->a_ops->error_remove_page(mapping, p);
 606		if (err != 0) {
 607			pr_info("Memory failure: %#lx: Failed to punch page: %d\n",
 608				pfn, err);
 609		} else if (page_has_private(p) &&
 610				!try_to_release_page(p, GFP_NOIO)) {
 611			pr_info("Memory failure: %#lx: failed to release buffers\n",
 612				pfn);
 613		} else {
 614			ret = MF_RECOVERED;
 615		}
 616	} else {
 617		/*
 618		 * If the file system doesn't support it just invalidate
 619		 * This fails on dirty or anything with private pages
 620		 */
 621		if (invalidate_inode_page(p))
 622			ret = MF_RECOVERED;
 623		else
 624			pr_info("Memory failure: %#lx: Failed to invalidate\n",
 625				pfn);
 626	}
 627	return ret;
 628}
 629
 630/*
 631 * Dirty pagecache page
 632 * Issues: when the error hit a hole page the error is not properly
 633 * propagated.
 634 */
 635static int me_pagecache_dirty(struct page *p, unsigned long pfn)
 636{
 637	struct address_space *mapping = page_mapping(p);
 638
 639	SetPageError(p);
 640	/* TBD: print more information about the file. */
 641	if (mapping) {
 642		/*
 643		 * IO error will be reported by write(), fsync(), etc.
 644		 * who check the mapping.
 645		 * This way the application knows that something went
 646		 * wrong with its dirty file data.
 647		 *
 648		 * There's one open issue:
 649		 *
 650		 * The EIO will be only reported on the next IO
 651		 * operation and then cleared through the IO map.
 652		 * Normally Linux has two mechanisms to pass IO error
 653		 * first through the AS_EIO flag in the address space
 654		 * and then through the PageError flag in the page.
 655		 * Since we drop pages on memory failure handling the
 656		 * only mechanism open to use is through AS_AIO.
 657		 *
 658		 * This has the disadvantage that it gets cleared on
 659		 * the first operation that returns an error, while
 660		 * the PageError bit is more sticky and only cleared
 661		 * when the page is reread or dropped.  If an
 662		 * application assumes it will always get error on
 663		 * fsync, but does other operations on the fd before
 664		 * and the page is dropped between then the error
 665		 * will not be properly reported.
 666		 *
 667		 * This can already happen even without hwpoisoned
 668		 * pages: first on metadata IO errors (which only
 669		 * report through AS_EIO) or when the page is dropped
 670		 * at the wrong time.
 671		 *
 672		 * So right now we assume that the application DTRT on
 673		 * the first EIO, but we're not worse than other parts
 674		 * of the kernel.
 675		 */
 676		mapping_set_error(mapping, EIO);
 677	}
 678
 679	return me_pagecache_clean(p, pfn);
 680}
 681
 682/*
 683 * Clean and dirty swap cache.
 684 *
 685 * Dirty swap cache page is tricky to handle. The page could live both in page
 686 * cache and swap cache(ie. page is freshly swapped in). So it could be
 687 * referenced concurrently by 2 types of PTEs:
 688 * normal PTEs and swap PTEs. We try to handle them consistently by calling
 689 * try_to_unmap(TTU_IGNORE_HWPOISON) to convert the normal PTEs to swap PTEs,
 690 * and then
 691 *      - clear dirty bit to prevent IO
 692 *      - remove from LRU
 693 *      - but keep in the swap cache, so that when we return to it on
 694 *        a later page fault, we know the application is accessing
 695 *        corrupted data and shall be killed (we installed simple
 696 *        interception code in do_swap_page to catch it).
 697 *
 698 * Clean swap cache pages can be directly isolated. A later page fault will
 699 * bring in the known good data from disk.
 700 */
 701static int me_swapcache_dirty(struct page *p, unsigned long pfn)
 702{
 703	ClearPageDirty(p);
 704	/* Trigger EIO in shmem: */
 705	ClearPageUptodate(p);
 706
 707	if (!delete_from_lru_cache(p))
 708		return MF_DELAYED;
 709	else
 710		return MF_FAILED;
 711}
 712
 713static int me_swapcache_clean(struct page *p, unsigned long pfn)
 714{
 715	delete_from_swap_cache(p);
 716
 717	if (!delete_from_lru_cache(p))
 718		return MF_RECOVERED;
 719	else
 720		return MF_FAILED;
 721}
 722
 723/*
 724 * Huge pages. Needs work.
 725 * Issues:
 726 * - Error on hugepage is contained in hugepage unit (not in raw page unit.)
 727 *   To narrow down kill region to one page, we need to break up pmd.
 728 */
 729static int me_huge_page(struct page *p, unsigned long pfn)
 730{
 731	int res = 0;
 732	struct page *hpage = compound_head(p);
 733
 734	if (!PageHuge(hpage))
 735		return MF_DELAYED;
 736
 737	/*
 738	 * We can safely recover from error on free or reserved (i.e.
 739	 * not in-use) hugepage by dequeuing it from freelist.
 740	 * To check whether a hugepage is in-use or not, we can't use
 741	 * page->lru because it can be used in other hugepage operations,
 742	 * such as __unmap_hugepage_range() and gather_surplus_pages().
 743	 * So instead we use page_mapping() and PageAnon().
 
 
 744	 */
 745	if (!(page_mapping(hpage) || PageAnon(hpage))) {
 746		res = dequeue_hwpoisoned_huge_page(hpage);
 747		if (!res)
 748			return MF_RECOVERED;
 749	}
 750	return MF_DELAYED;
 751}
 752
 753/*
 754 * Various page states we can handle.
 755 *
 756 * A page state is defined by its current page->flags bits.
 757 * The table matches them in order and calls the right handler.
 758 *
 759 * This is quite tricky because we can access page at any time
 760 * in its live cycle, so all accesses have to be extremely careful.
 761 *
 762 * This is not complete. More states could be added.
 763 * For any missing state don't attempt recovery.
 764 */
 765
 766#define dirty		(1UL << PG_dirty)
 767#define sc		((1UL << PG_swapcache) | (1UL << PG_swapbacked))
 768#define unevict		(1UL << PG_unevictable)
 769#define mlock		(1UL << PG_mlocked)
 770#define writeback	(1UL << PG_writeback)
 771#define lru		(1UL << PG_lru)
 
 772#define head		(1UL << PG_head)
 
 
 773#define slab		(1UL << PG_slab)
 774#define reserved	(1UL << PG_reserved)
 775
 776static struct page_state {
 777	unsigned long mask;
 778	unsigned long res;
 779	enum mf_action_page_type type;
 780	int (*action)(struct page *p, unsigned long pfn);
 781} error_states[] = {
 782	{ reserved,	reserved,	MF_MSG_KERNEL,	me_kernel },
 783	/*
 784	 * free pages are specially detected outside this table:
 785	 * PG_buddy pages only make a small fraction of all free pages.
 786	 */
 787
 788	/*
 789	 * Could in theory check if slab page is free or if we can drop
 790	 * currently unused objects without touching them. But just
 791	 * treat it as standard kernel for now.
 792	 */
 793	{ slab,		slab,		MF_MSG_SLAB,	me_kernel },
 794
 795	{ head,		head,		MF_MSG_HUGE,		me_huge_page },
 
 
 
 
 
 796
 797	{ sc|dirty,	sc|dirty,	MF_MSG_DIRTY_SWAPCACHE,	me_swapcache_dirty },
 798	{ sc|dirty,	sc,		MF_MSG_CLEAN_SWAPCACHE,	me_swapcache_clean },
 799
 800	{ mlock|dirty,	mlock|dirty,	MF_MSG_DIRTY_MLOCKED_LRU,	me_pagecache_dirty },
 801	{ mlock|dirty,	mlock,		MF_MSG_CLEAN_MLOCKED_LRU,	me_pagecache_clean },
 802
 803	{ unevict|dirty, unevict|dirty,	MF_MSG_DIRTY_UNEVICTABLE_LRU,	me_pagecache_dirty },
 804	{ unevict|dirty, unevict,	MF_MSG_CLEAN_UNEVICTABLE_LRU,	me_pagecache_clean },
 805
 806	{ lru|dirty,	lru|dirty,	MF_MSG_DIRTY_LRU,	me_pagecache_dirty },
 807	{ lru|dirty,	lru,		MF_MSG_CLEAN_LRU,	me_pagecache_clean },
 808
 809	/*
 810	 * Catchall entry: must be at end.
 811	 */
 812	{ 0,		0,		MF_MSG_UNKNOWN,	me_unknown },
 813};
 814
 815#undef dirty
 816#undef sc
 817#undef unevict
 818#undef mlock
 819#undef writeback
 820#undef lru
 
 821#undef head
 
 
 822#undef slab
 823#undef reserved
 824
 825/*
 826 * "Dirty/Clean" indication is not 100% accurate due to the possibility of
 827 * setting PG_dirty outside page lock. See also comment above set_page_dirty().
 828 */
 829static void action_result(unsigned long pfn, enum mf_action_page_type type,
 830			  enum mf_result result)
 831{
 832	trace_memory_failure_event(pfn, type, result);
 833
 834	pr_err("Memory failure: %#lx: recovery action for %s: %s\n",
 835		pfn, action_page_types[type], action_name[result]);
 
 
 836}
 837
 838static int page_action(struct page_state *ps, struct page *p,
 839			unsigned long pfn)
 840{
 841	int result;
 842	int count;
 843
 844	result = ps->action(p, pfn);
 
 845
 846	count = page_count(p) - 1;
 847	if (ps->action == me_swapcache_dirty && result == MF_DELAYED)
 848		count--;
 849	if (count != 0) {
 850		pr_err("Memory failure: %#lx: %s still referenced by %d users\n",
 851		       pfn, action_page_types[ps->type], count);
 852		result = MF_FAILED;
 
 853	}
 854	action_result(pfn, ps->type, result);
 855
 856	/* Could do more checks here if page looks ok */
 857	/*
 858	 * Could adjust zone counters here to correct for the missing page.
 859	 */
 860
 861	return (result == MF_RECOVERED || result == MF_DELAYED) ? 0 : -EBUSY;
 862}
 863
 864/**
 865 * get_hwpoison_page() - Get refcount for memory error handling:
 866 * @page:	raw error page (hit by memory error)
 867 *
 868 * Return: return 0 if failed to grab the refcount, otherwise true (some
 869 * non-zero value.)
 870 */
 871int get_hwpoison_page(struct page *page)
 872{
 873	struct page *head = compound_head(page);
 874
 875	if (!PageHuge(head) && PageTransHuge(head)) {
 876		/*
 877		 * Non anonymous thp exists only in allocation/free time. We
 878		 * can't handle such a case correctly, so let's give it up.
 879		 * This should be better than triggering BUG_ON when kernel
 880		 * tries to touch the "partially handled" page.
 881		 */
 882		if (!PageAnon(head)) {
 883			pr_err("Memory failure: %#lx: non anonymous thp\n",
 884				page_to_pfn(page));
 885			return 0;
 886		}
 887	}
 888
 889	if (get_page_unless_zero(head)) {
 890		if (head == compound_head(page))
 891			return 1;
 892
 893		pr_info("Memory failure: %#lx cannot catch tail\n",
 894			page_to_pfn(page));
 895		put_page(head);
 896	}
 897
 898	return 0;
 899}
 900EXPORT_SYMBOL_GPL(get_hwpoison_page);
 901
 902/*
 903 * Do all that is necessary to remove user space mappings. Unmap
 904 * the pages and send SIGBUS to the processes if the data was dirty.
 905 */
 906static int hwpoison_user_mappings(struct page *p, unsigned long pfn,
 907				  int trapno, int flags, struct page **hpagep)
 908{
 909	enum ttu_flags ttu = TTU_UNMAP | TTU_IGNORE_MLOCK | TTU_IGNORE_ACCESS;
 910	struct address_space *mapping;
 911	LIST_HEAD(tokill);
 912	int ret;
 913	int kill = 1, forcekill;
 914	struct page *hpage = *hpagep;
 
 915
 916	/*
 917	 * Here we are interested only in user-mapped pages, so skip any
 918	 * other types of pages.
 919	 */
 920	if (PageReserved(p) || PageSlab(p))
 921		return SWAP_SUCCESS;
 922	if (!(PageLRU(hpage) || PageHuge(p)))
 923		return SWAP_SUCCESS;
 924
 925	/*
 926	 * This check implies we don't kill processes if their pages
 927	 * are in the swap cache early. Those are always late kills.
 928	 */
 929	if (!page_mapped(hpage))
 930		return SWAP_SUCCESS;
 931
 932	if (PageKsm(p)) {
 933		pr_err("Memory failure: %#lx: can't handle KSM pages.\n", pfn);
 934		return SWAP_FAIL;
 935	}
 936
 937	if (PageSwapCache(p)) {
 938		pr_err("Memory failure: %#lx: keeping poisoned page in swap cache\n",
 939			pfn);
 940		ttu |= TTU_IGNORE_HWPOISON;
 941	}
 942
 943	/*
 944	 * Propagate the dirty bit from PTEs to struct page first, because we
 945	 * need this to decide if we should kill or just drop the page.
 946	 * XXX: the dirty test could be racy: set_page_dirty() may not always
 947	 * be called inside page lock (it's recommended but not enforced).
 948	 */
 949	mapping = page_mapping(hpage);
 950	if (!(flags & MF_MUST_KILL) && !PageDirty(hpage) && mapping &&
 951	    mapping_cap_writeback_dirty(mapping)) {
 952		if (page_mkclean(hpage)) {
 953			SetPageDirty(hpage);
 954		} else {
 955			kill = 0;
 956			ttu |= TTU_IGNORE_HWPOISON;
 957			pr_info("Memory failure: %#lx: corrupted page was clean: dropped without side effects\n",
 
 958				pfn);
 959		}
 960	}
 961
 962	/*
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 963	 * First collect all the processes that have the page
 964	 * mapped in dirty form.  This has to be done before try_to_unmap,
 965	 * because ttu takes the rmap data structures down.
 966	 *
 967	 * Error handling: We ignore errors here because
 968	 * there's nothing that can be done.
 969	 */
 970	if (kill)
 971		collect_procs(hpage, &tokill, flags & MF_ACTION_REQUIRED);
 
 
 
 972
 973	ret = try_to_unmap(hpage, ttu);
 974	if (ret != SWAP_SUCCESS)
 975		pr_err("Memory failure: %#lx: failed to unmap page (mapcount=%d)\n",
 976		       pfn, page_mapcount(hpage));
 
 
 
 977
 978	/*
 979	 * Now that the dirty bit has been propagated to the
 980	 * struct page and all unmaps done we can decide if
 981	 * killing is needed or not.  Only kill when the page
 982	 * was dirty or the process is not restartable,
 983	 * otherwise the tokill list is merely
 984	 * freed.  When there was a problem unmapping earlier
 985	 * use a more force-full uncatchable kill to prevent
 986	 * any accesses to the poisoned memory.
 987	 */
 988	forcekill = PageDirty(hpage) || (flags & MF_MUST_KILL);
 989	kill_procs(&tokill, forcekill, trapno,
 990		      ret != SWAP_SUCCESS, p, pfn, flags);
 991
 992	return ret;
 993}
 994
 995static void set_page_hwpoison_huge_page(struct page *hpage)
 996{
 997	int i;
 998	int nr_pages = 1 << compound_order(hpage);
 999	for (i = 0; i < nr_pages; i++)
1000		SetPageHWPoison(hpage + i);
1001}
1002
1003static void clear_page_hwpoison_huge_page(struct page *hpage)
1004{
1005	int i;
1006	int nr_pages = 1 << compound_order(hpage);
1007	for (i = 0; i < nr_pages; i++)
1008		ClearPageHWPoison(hpage + i);
1009}
1010
1011/**
1012 * memory_failure - Handle memory failure of a page.
1013 * @pfn: Page Number of the corrupted page
1014 * @trapno: Trap number reported in the signal to user space.
1015 * @flags: fine tune action taken
1016 *
1017 * This function is called by the low level machine check code
1018 * of an architecture when it detects hardware memory corruption
1019 * of a page. It tries its best to recover, which includes
1020 * dropping pages, killing processes etc.
1021 *
1022 * The function is primarily of use for corruptions that
1023 * happen outside the current execution context (e.g. when
1024 * detected by a background scrubber)
1025 *
1026 * Must run in process context (e.g. a work queue) with interrupts
1027 * enabled and no spinlocks hold.
1028 */
1029int memory_failure(unsigned long pfn, int trapno, int flags)
1030{
1031	struct page_state *ps;
1032	struct page *p;
1033	struct page *hpage;
1034	struct page *orig_head;
1035	int res;
1036	unsigned int nr_pages;
1037	unsigned long page_flags;
1038
1039	if (!sysctl_memory_failure_recovery)
1040		panic("Memory failure from trap %d on page %lx", trapno, pfn);
1041
1042	if (!pfn_valid(pfn)) {
1043		pr_err("Memory failure: %#lx: memory outside kernel control\n",
1044			pfn);
 
1045		return -ENXIO;
1046	}
1047
1048	p = pfn_to_page(pfn);
1049	orig_head = hpage = compound_head(p);
1050	if (TestSetPageHWPoison(p)) {
1051		pr_err("Memory failure: %#lx: already hardware poisoned\n",
1052			pfn);
1053		return 0;
1054	}
1055
1056	/*
1057	 * Currently errors on hugetlbfs pages are measured in hugepage units,
1058	 * so nr_pages should be 1 << compound_order.  OTOH when errors are on
1059	 * transparent hugepages, they are supposed to be split and error
1060	 * measurement is done in normal page units.  So nr_pages should be one
1061	 * in this case.
1062	 */
1063	if (PageHuge(p))
1064		nr_pages = 1 << compound_order(hpage);
1065	else /* normal page or thp */
1066		nr_pages = 1;
1067	num_poisoned_pages_add(nr_pages);
1068
1069	/*
1070	 * We need/can do nothing about count=0 pages.
1071	 * 1) it's a free page, and therefore in safe hand:
1072	 *    prep_new_page() will be the gate keeper.
1073	 * 2) it's a free hugepage, which is also safe:
1074	 *    an affected hugepage will be dequeued from hugepage freelist,
1075	 *    so there's no concern about reusing it ever after.
1076	 * 3) it's part of a non-compound high order page.
1077	 *    Implies some kernel user: cannot stop them from
1078	 *    R/W the page; let's pray that the page has been
1079	 *    used and will be freed some time later.
1080	 * In fact it's dangerous to directly bump up page count from 0,
1081	 * that may make page_freeze_refs()/page_unfreeze_refs() mismatch.
1082	 */
1083	if (!(flags & MF_COUNT_INCREASED) && !get_hwpoison_page(p)) {
 
1084		if (is_free_buddy_page(p)) {
1085			action_result(pfn, MF_MSG_BUDDY, MF_DELAYED);
1086			return 0;
1087		} else if (PageHuge(hpage)) {
1088			/*
1089			 * Check "filter hit" and "race with other subpage."
 
1090			 */
1091			lock_page(hpage);
1092			if (PageHWPoison(hpage)) {
1093				if ((hwpoison_filter(p) && TestClearPageHWPoison(p))
1094				    || (p != hpage && TestSetPageHWPoison(hpage))) {
1095					num_poisoned_pages_sub(nr_pages);
1096					unlock_page(hpage);
1097					return 0;
1098				}
1099			}
1100			set_page_hwpoison_huge_page(hpage);
1101			res = dequeue_hwpoisoned_huge_page(hpage);
1102			action_result(pfn, MF_MSG_FREE_HUGE,
1103				      res ? MF_IGNORED : MF_DELAYED);
1104			unlock_page(hpage);
1105			return res;
1106		} else {
1107			action_result(pfn, MF_MSG_KERNEL_HIGH_ORDER, MF_IGNORED);
1108			return -EBUSY;
1109		}
1110	}
1111
1112	if (!PageHuge(p) && PageTransHuge(hpage)) {
1113		lock_page(p);
1114		if (!PageAnon(p) || unlikely(split_huge_page(p))) {
1115			unlock_page(p);
1116			if (!PageAnon(p))
1117				pr_err("Memory failure: %#lx: non anonymous thp\n",
1118					pfn);
1119			else
1120				pr_err("Memory failure: %#lx: thp split failed\n",
1121					pfn);
1122			if (TestClearPageHWPoison(p))
1123				num_poisoned_pages_sub(nr_pages);
1124			put_hwpoison_page(p);
1125			return -EBUSY;
1126		}
1127		unlock_page(p);
1128		VM_BUG_ON_PAGE(!page_count(p), p);
1129		hpage = compound_head(p);
1130	}
1131
1132	/*
1133	 * We ignore non-LRU pages for good reasons.
1134	 * - PG_locked is only well defined for LRU pages and a few others
1135	 * - to avoid races with __SetPageLocked()
1136	 * - to avoid races with __SetPageSlab*() (and more non-atomic ops)
1137	 * The check (unnecessarily) ignores LRU pages being isolated and
1138	 * walked by the page reclaim code, however that's not a big loss.
1139	 */
1140	if (!PageHuge(p)) {
1141		if (!PageLRU(p))
1142			shake_page(p, 0);
1143		if (!PageLRU(p)) {
1144			/*
1145			 * shake_page could have turned it free.
1146			 */
1147			if (is_free_buddy_page(p)) {
1148				if (flags & MF_COUNT_INCREASED)
1149					action_result(pfn, MF_MSG_BUDDY, MF_DELAYED);
1150				else
1151					action_result(pfn, MF_MSG_BUDDY_2ND,
1152						      MF_DELAYED);
1153				return 0;
1154			}
 
 
 
1155		}
1156	}
1157
1158	lock_page(hpage);
1159
1160	/*
1161	 * The page could have changed compound pages during the locking.
1162	 * If this happens just bail out.
 
1163	 */
1164	if (PageCompound(p) && compound_head(p) != orig_head) {
1165		action_result(pfn, MF_MSG_DIFFERENT_COMPOUND, MF_IGNORED);
1166		res = -EBUSY;
1167		goto out;
1168	}
1169
1170	/*
1171	 * We use page flags to determine what action should be taken, but
1172	 * the flags can be modified by the error containment action.  One
1173	 * example is an mlocked page, where PG_mlocked is cleared by
1174	 * page_remove_rmap() in try_to_unmap_one(). So to determine page status
1175	 * correctly, we save a copy of the page flags at this time.
1176	 */
1177	page_flags = p->flags;
1178
1179	/*
1180	 * unpoison always clear PG_hwpoison inside page lock
1181	 */
1182	if (!PageHWPoison(p)) {
1183		pr_err("Memory failure: %#lx: just unpoisoned\n", pfn);
1184		num_poisoned_pages_sub(nr_pages);
1185		unlock_page(hpage);
1186		put_hwpoison_page(hpage);
1187		return 0;
1188	}
1189	if (hwpoison_filter(p)) {
1190		if (TestClearPageHWPoison(p))
1191			num_poisoned_pages_sub(nr_pages);
1192		unlock_page(hpage);
1193		put_hwpoison_page(hpage);
1194		return 0;
1195	}
1196
1197	if (!PageHuge(p) && !PageTransTail(p) && !PageLRU(p))
1198		goto identify_page_state;
1199
1200	/*
1201	 * For error on the tail page, we should set PG_hwpoison
1202	 * on the head page to show that the hugepage is hwpoisoned
1203	 */
1204	if (PageHuge(p) && PageTail(p) && TestSetPageHWPoison(hpage)) {
1205		action_result(pfn, MF_MSG_POISONED_HUGE, MF_IGNORED);
 
1206		unlock_page(hpage);
1207		put_hwpoison_page(hpage);
1208		return 0;
1209	}
1210	/*
1211	 * Set PG_hwpoison on all pages in an error hugepage,
1212	 * because containment is done in hugepage unit for now.
1213	 * Since we have done TestSetPageHWPoison() for the head page with
1214	 * page lock held, we can safely set PG_hwpoison bits on tail pages.
1215	 */
1216	if (PageHuge(p))
1217		set_page_hwpoison_huge_page(hpage);
1218
1219	/*
1220	 * It's very difficult to mess with pages currently under IO
1221	 * and in many cases impossible, so we just avoid it here.
1222	 */
1223	wait_on_page_writeback(p);
1224
1225	/*
1226	 * Now take care of user space mappings.
1227	 * Abort on fail: __delete_from_page_cache() assumes unmapped page.
1228	 *
1229	 * When the raw error page is thp tail page, hpage points to the raw
1230	 * page after thp split.
1231	 */
1232	if (hwpoison_user_mappings(p, pfn, trapno, flags, &hpage)
1233	    != SWAP_SUCCESS) {
1234		action_result(pfn, MF_MSG_UNMAP_FAILED, MF_IGNORED);
1235		res = -EBUSY;
1236		goto out;
1237	}
1238
1239	/*
1240	 * Torn down by someone else?
1241	 */
1242	if (PageLRU(p) && !PageSwapCache(p) && p->mapping == NULL) {
1243		action_result(pfn, MF_MSG_TRUNCATED_LRU, MF_IGNORED);
1244		res = -EBUSY;
1245		goto out;
1246	}
1247
1248identify_page_state:
1249	res = -EBUSY;
1250	/*
1251	 * The first check uses the current page flags which may not have any
1252	 * relevant information. The second check with the saved page flagss is
1253	 * carried out only if the first check can't determine the page status.
1254	 */
1255	for (ps = error_states;; ps++)
1256		if ((p->flags & ps->mask) == ps->res)
1257			break;
1258
1259	page_flags |= (p->flags & (1UL << PG_dirty));
1260
1261	if (!ps->mask)
1262		for (ps = error_states;; ps++)
1263			if ((page_flags & ps->mask) == ps->res)
1264				break;
1265	res = page_action(ps, p, pfn);
1266out:
1267	unlock_page(hpage);
1268	return res;
1269}
1270EXPORT_SYMBOL_GPL(memory_failure);
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1271
1272#define MEMORY_FAILURE_FIFO_ORDER	4
1273#define MEMORY_FAILURE_FIFO_SIZE	(1 << MEMORY_FAILURE_FIFO_ORDER)
1274
1275struct memory_failure_entry {
1276	unsigned long pfn;
1277	int trapno;
1278	int flags;
1279};
1280
1281struct memory_failure_cpu {
1282	DECLARE_KFIFO(fifo, struct memory_failure_entry,
1283		      MEMORY_FAILURE_FIFO_SIZE);
1284	spinlock_t lock;
1285	struct work_struct work;
1286};
1287
1288static DEFINE_PER_CPU(struct memory_failure_cpu, memory_failure_cpu);
1289
1290/**
1291 * memory_failure_queue - Schedule handling memory failure of a page.
1292 * @pfn: Page Number of the corrupted page
1293 * @trapno: Trap number reported in the signal to user space.
1294 * @flags: Flags for memory failure handling
1295 *
1296 * This function is called by the low level hardware error handler
1297 * when it detects hardware memory corruption of a page. It schedules
1298 * the recovering of error page, including dropping pages, killing
1299 * processes etc.
1300 *
1301 * The function is primarily of use for corruptions that
1302 * happen outside the current execution context (e.g. when
1303 * detected by a background scrubber)
1304 *
1305 * Can run in IRQ context.
1306 */
1307void memory_failure_queue(unsigned long pfn, int trapno, int flags)
1308{
1309	struct memory_failure_cpu *mf_cpu;
1310	unsigned long proc_flags;
1311	struct memory_failure_entry entry = {
1312		.pfn =		pfn,
1313		.trapno =	trapno,
1314		.flags =	flags,
1315	};
1316
1317	mf_cpu = &get_cpu_var(memory_failure_cpu);
1318	spin_lock_irqsave(&mf_cpu->lock, proc_flags);
1319	if (kfifo_put(&mf_cpu->fifo, entry))
1320		schedule_work_on(smp_processor_id(), &mf_cpu->work);
1321	else
1322		pr_err("Memory failure: buffer overflow when queuing memory failure at %#lx\n",
1323		       pfn);
1324	spin_unlock_irqrestore(&mf_cpu->lock, proc_flags);
1325	put_cpu_var(memory_failure_cpu);
1326}
1327EXPORT_SYMBOL_GPL(memory_failure_queue);
1328
1329static void memory_failure_work_func(struct work_struct *work)
1330{
1331	struct memory_failure_cpu *mf_cpu;
1332	struct memory_failure_entry entry = { 0, };
1333	unsigned long proc_flags;
1334	int gotten;
1335
1336	mf_cpu = this_cpu_ptr(&memory_failure_cpu);
1337	for (;;) {
1338		spin_lock_irqsave(&mf_cpu->lock, proc_flags);
1339		gotten = kfifo_get(&mf_cpu->fifo, &entry);
1340		spin_unlock_irqrestore(&mf_cpu->lock, proc_flags);
1341		if (!gotten)
1342			break;
1343		if (entry.flags & MF_SOFT_OFFLINE)
1344			soft_offline_page(pfn_to_page(entry.pfn), entry.flags);
1345		else
1346			memory_failure(entry.pfn, entry.trapno, entry.flags);
1347	}
1348}
1349
1350static int __init memory_failure_init(void)
1351{
1352	struct memory_failure_cpu *mf_cpu;
1353	int cpu;
1354
1355	for_each_possible_cpu(cpu) {
1356		mf_cpu = &per_cpu(memory_failure_cpu, cpu);
1357		spin_lock_init(&mf_cpu->lock);
1358		INIT_KFIFO(mf_cpu->fifo);
1359		INIT_WORK(&mf_cpu->work, memory_failure_work_func);
1360	}
1361
1362	return 0;
1363}
1364core_initcall(memory_failure_init);
1365
1366#define unpoison_pr_info(fmt, pfn, rs)			\
1367({							\
1368	if (__ratelimit(rs))				\
1369		pr_info(fmt, pfn);			\
1370})
1371
1372/**
1373 * unpoison_memory - Unpoison a previously poisoned page
1374 * @pfn: Page number of the to be unpoisoned page
1375 *
1376 * Software-unpoison a page that has been poisoned by
1377 * memory_failure() earlier.
1378 *
1379 * This is only done on the software-level, so it only works
1380 * for linux injected failures, not real hardware failures
1381 *
1382 * Returns 0 for success, otherwise -errno.
1383 */
1384int unpoison_memory(unsigned long pfn)
1385{
1386	struct page *page;
1387	struct page *p;
1388	int freeit = 0;
1389	unsigned int nr_pages;
1390	static DEFINE_RATELIMIT_STATE(unpoison_rs, DEFAULT_RATELIMIT_INTERVAL,
1391					DEFAULT_RATELIMIT_BURST);
1392
1393	if (!pfn_valid(pfn))
1394		return -ENXIO;
1395
1396	p = pfn_to_page(pfn);
1397	page = compound_head(p);
1398
1399	if (!PageHWPoison(p)) {
1400		unpoison_pr_info("Unpoison: Page was already unpoisoned %#lx\n",
1401				 pfn, &unpoison_rs);
1402		return 0;
1403	}
1404
1405	if (page_count(page) > 1) {
1406		unpoison_pr_info("Unpoison: Someone grabs the hwpoison page %#lx\n",
1407				 pfn, &unpoison_rs);
1408		return 0;
1409	}
1410
1411	if (page_mapped(page)) {
1412		unpoison_pr_info("Unpoison: Someone maps the hwpoison page %#lx\n",
1413				 pfn, &unpoison_rs);
1414		return 0;
1415	}
1416
1417	if (page_mapping(page)) {
1418		unpoison_pr_info("Unpoison: the hwpoison page has non-NULL mapping %#lx\n",
1419				 pfn, &unpoison_rs);
1420		return 0;
1421	}
1422
1423	/*
1424	 * unpoison_memory() can encounter thp only when the thp is being
1425	 * worked by memory_failure() and the page lock is not held yet.
1426	 * In such case, we yield to memory_failure() and make unpoison fail.
1427	 */
1428	if (!PageHuge(page) && PageTransHuge(page)) {
1429		unpoison_pr_info("Unpoison: Memory failure is now running on %#lx\n",
1430				 pfn, &unpoison_rs);
1431		return 0;
1432	}
1433
1434	nr_pages = 1 << compound_order(page);
1435
1436	if (!get_hwpoison_page(p)) {
1437		/*
1438		 * Since HWPoisoned hugepage should have non-zero refcount,
1439		 * race between memory failure and unpoison seems to happen.
1440		 * In such case unpoison fails and memory failure runs
1441		 * to the end.
1442		 */
1443		if (PageHuge(page)) {
1444			unpoison_pr_info("Unpoison: Memory failure is now running on free hugepage %#lx\n",
1445					 pfn, &unpoison_rs);
1446			return 0;
1447		}
1448		if (TestClearPageHWPoison(p))
1449			num_poisoned_pages_dec();
1450		unpoison_pr_info("Unpoison: Software-unpoisoned free page %#lx\n",
1451				 pfn, &unpoison_rs);
1452		return 0;
1453	}
1454
1455	lock_page(page);
1456	/*
1457	 * This test is racy because PG_hwpoison is set outside of page lock.
1458	 * That's acceptable because that won't trigger kernel panic. Instead,
1459	 * the PG_hwpoison page will be caught and isolated on the entrance to
1460	 * the free buddy page pool.
1461	 */
1462	if (TestClearPageHWPoison(page)) {
1463		unpoison_pr_info("Unpoison: Software-unpoisoned page %#lx\n",
1464				 pfn, &unpoison_rs);
1465		num_poisoned_pages_sub(nr_pages);
1466		freeit = 1;
1467		if (PageHuge(page))
1468			clear_page_hwpoison_huge_page(page);
1469	}
1470	unlock_page(page);
1471
1472	put_hwpoison_page(page);
1473	if (freeit && !(pfn == my_zero_pfn(0) && page_count(p) == 1))
1474		put_hwpoison_page(page);
1475
1476	return 0;
1477}
1478EXPORT_SYMBOL(unpoison_memory);
1479
1480static struct page *new_page(struct page *p, unsigned long private, int **x)
1481{
1482	int nid = page_to_nid(p);
1483	if (PageHuge(p))
1484		return alloc_huge_page_node(page_hstate(compound_head(p)),
1485						   nid);
1486	else
1487		return __alloc_pages_node(nid, GFP_HIGHUSER_MOVABLE, 0);
1488}
1489
1490/*
1491 * Safely get reference count of an arbitrary page.
1492 * Returns 0 for a free page, -EIO for a zero refcount page
1493 * that is not free, and 1 for any other page type.
1494 * For 1 the page is returned with increased page count, otherwise not.
1495 */
1496static int __get_any_page(struct page *p, unsigned long pfn, int flags)
1497{
1498	int ret;
1499
1500	if (flags & MF_COUNT_INCREASED)
1501		return 1;
1502
1503	/*
 
 
 
 
 
 
 
 
 
 
 
1504	 * When the target page is a free hugepage, just remove it
1505	 * from free hugepage list.
1506	 */
1507	if (!get_hwpoison_page(p)) {
1508		if (PageHuge(p)) {
1509			pr_info("%s: %#lx free huge page\n", __func__, pfn);
1510			ret = 0;
1511		} else if (is_free_buddy_page(p)) {
1512			pr_info("%s: %#lx free buddy page\n", __func__, pfn);
 
 
1513			ret = 0;
1514		} else {
1515			pr_info("%s: %#lx: unknown zero refcount page type %lx\n",
1516				__func__, pfn, p->flags);
1517			ret = -EIO;
1518		}
1519	} else {
1520		/* Not a free page */
1521		ret = 1;
1522	}
1523	return ret;
1524}
1525
1526static int get_any_page(struct page *page, unsigned long pfn, int flags)
1527{
1528	int ret = __get_any_page(page, pfn, flags);
1529
1530	if (ret == 1 && !PageHuge(page) && !PageLRU(page)) {
1531		/*
1532		 * Try to free it.
1533		 */
1534		put_hwpoison_page(page);
1535		shake_page(page, 1);
1536
1537		/*
1538		 * Did it turn free?
1539		 */
1540		ret = __get_any_page(page, pfn, 0);
1541		if (ret == 1 && !PageLRU(page)) {
1542			/* Drop page reference which is from __get_any_page() */
1543			put_hwpoison_page(page);
1544			pr_info("soft_offline: %#lx: unknown non LRU page type %lx\n",
1545				pfn, page->flags);
1546			return -EIO;
1547		}
1548	}
1549	return ret;
1550}
1551
1552static int soft_offline_huge_page(struct page *page, int flags)
1553{
1554	int ret;
1555	unsigned long pfn = page_to_pfn(page);
1556	struct page *hpage = compound_head(page);
1557	LIST_HEAD(pagelist);
1558
1559	/*
1560	 * This double-check of PageHWPoison is to avoid the race with
1561	 * memory_failure(). See also comment in __soft_offline_page().
1562	 */
1563	lock_page(hpage);
 
1564	if (PageHWPoison(hpage)) {
1565		unlock_page(hpage);
1566		put_hwpoison_page(hpage);
1567		pr_info("soft offline: %#lx hugepage already poisoned\n", pfn);
1568		return -EBUSY;
1569	}
1570	unlock_page(hpage);
1571
1572	ret = isolate_huge_page(hpage, &pagelist);
1573	/*
1574	 * get_any_page() and isolate_huge_page() takes a refcount each,
1575	 * so need to drop one here.
1576	 */
1577	put_hwpoison_page(hpage);
1578	if (!ret) {
1579		pr_info("soft offline: %#lx hugepage failed to isolate\n", pfn);
1580		return -EBUSY;
1581	}
1582
1583	ret = migrate_pages(&pagelist, new_page, NULL, MPOL_MF_MOVE_ALL,
1584				MIGRATE_SYNC, MR_MEMORY_FAILURE);
 
1585	if (ret) {
1586		pr_info("soft offline: %#lx: migration failed %d, type %lx\n",
1587			pfn, ret, page->flags);
1588		/*
1589		 * We know that soft_offline_huge_page() tries to migrate
1590		 * only one hugepage pointed to by hpage, so we need not
1591		 * run through the pagelist here.
1592		 */
1593		putback_active_hugepage(hpage);
1594		if (ret > 0)
1595			ret = -EIO;
1596	} else {
1597		/* overcommit hugetlb page will be freed to buddy */
1598		if (PageHuge(page)) {
1599			set_page_hwpoison_huge_page(hpage);
1600			dequeue_hwpoisoned_huge_page(hpage);
1601			num_poisoned_pages_add(1 << compound_order(hpage));
1602		} else {
1603			SetPageHWPoison(page);
1604			num_poisoned_pages_inc();
1605		}
1606	}
 
 
 
 
 
 
1607	return ret;
1608}
1609
1610static int __soft_offline_page(struct page *page, int flags)
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1611{
1612	int ret;
1613	unsigned long pfn = page_to_pfn(page);
1614
 
 
 
 
 
 
 
 
 
1615	/*
1616	 * Check PageHWPoison again inside page lock because PageHWPoison
1617	 * is set by memory_failure() outside page lock. Note that
1618	 * memory_failure() also double-checks PageHWPoison inside page lock,
1619	 * so there's no race between soft_offline_page() and memory_failure().
1620	 */
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1621	lock_page(page);
1622	wait_on_page_writeback(page);
 
 
 
 
1623	if (PageHWPoison(page)) {
1624		unlock_page(page);
1625		put_hwpoison_page(page);
1626		pr_info("soft offline: %#lx page already poisoned\n", pfn);
1627		return -EBUSY;
1628	}
 
1629	/*
1630	 * Try to invalidate first. This should work for
1631	 * non dirty unmapped page cache pages.
1632	 */
1633	ret = invalidate_inode_page(page);
1634	unlock_page(page);
1635	/*
1636	 * RED-PEN would be better to keep it isolated here, but we
1637	 * would need to fix isolation locking first.
1638	 */
1639	if (ret == 1) {
1640		put_hwpoison_page(page);
 
1641		pr_info("soft_offline: %#lx: invalidated\n", pfn);
1642		SetPageHWPoison(page);
1643		num_poisoned_pages_inc();
1644		return 0;
1645	}
1646
1647	/*
1648	 * Simple invalidation didn't work.
1649	 * Try to migrate to a new page instead. migrate.c
1650	 * handles a large number of cases for us.
1651	 */
1652	ret = isolate_lru_page(page);
1653	/*
1654	 * Drop page reference which is came from get_any_page()
1655	 * successful isolate_lru_page() already took another one.
1656	 */
1657	put_hwpoison_page(page);
1658	if (!ret) {
1659		LIST_HEAD(pagelist);
1660		inc_node_page_state(page, NR_ISOLATED_ANON +
1661					page_is_file_cache(page));
1662		list_add(&page->lru, &pagelist);
1663		ret = migrate_pages(&pagelist, new_page, NULL, MPOL_MF_MOVE_ALL,
1664					MIGRATE_SYNC, MR_MEMORY_FAILURE);
1665		if (ret) {
1666			if (!list_empty(&pagelist)) {
1667				list_del(&page->lru);
1668				dec_node_page_state(page, NR_ISOLATED_ANON +
1669						page_is_file_cache(page));
1670				putback_lru_page(page);
1671			}
1672
1673			pr_info("soft offline: %#lx: migration failed %d, type %lx\n",
1674				pfn, ret, page->flags);
1675			if (ret > 0)
1676				ret = -EIO;
1677		}
1678	} else {
1679		pr_info("soft offline: %#lx: isolation failed: %d, page count %d, type %lx\n",
1680			pfn, ret, page_count(page), page->flags);
1681	}
1682	return ret;
1683}
1684
1685static int soft_offline_in_use_page(struct page *page, int flags)
1686{
1687	int ret;
1688	struct page *hpage = compound_head(page);
1689
1690	if (!PageHuge(page) && PageTransHuge(hpage)) {
1691		lock_page(hpage);
1692		if (!PageAnon(hpage) || unlikely(split_huge_page(hpage))) {
1693			unlock_page(hpage);
1694			if (!PageAnon(hpage))
1695				pr_info("soft offline: %#lx: non anonymous thp\n", page_to_pfn(page));
1696			else
1697				pr_info("soft offline: %#lx: thp split failed\n", page_to_pfn(page));
1698			put_hwpoison_page(hpage);
1699			return -EBUSY;
1700		}
1701		unlock_page(hpage);
1702		get_hwpoison_page(page);
1703		put_hwpoison_page(hpage);
1704	}
1705
1706	if (PageHuge(page))
1707		ret = soft_offline_huge_page(page, flags);
1708	else
1709		ret = __soft_offline_page(page, flags);
1710
1711	return ret;
1712}
1713
1714static void soft_offline_free_page(struct page *page)
1715{
1716	if (PageHuge(page)) {
1717		struct page *hpage = compound_head(page);
1718
1719		set_page_hwpoison_huge_page(hpage);
1720		if (!dequeue_hwpoisoned_huge_page(hpage))
1721			num_poisoned_pages_add(1 << compound_order(hpage));
1722	} else {
1723		if (!TestSetPageHWPoison(page))
1724			num_poisoned_pages_inc();
1725	}
1726}
1727
1728/**
1729 * soft_offline_page - Soft offline a page.
1730 * @page: page to offline
1731 * @flags: flags. Same as memory_failure().
1732 *
1733 * Returns 0 on success, otherwise negated errno.
1734 *
1735 * Soft offline a page, by migration or invalidation,
1736 * without killing anything. This is for the case when
1737 * a page is not corrupted yet (so it's still valid to access),
1738 * but has had a number of corrected errors and is better taken
1739 * out.
1740 *
1741 * The actual policy on when to do that is maintained by
1742 * user space.
1743 *
1744 * This should never impact any application or cause data loss,
1745 * however it might take some time.
1746 *
1747 * This is not a 100% solution for all memory, but tries to be
1748 * ``good enough'' for the majority of memory.
1749 */
1750int soft_offline_page(struct page *page, int flags)
1751{
1752	int ret;
1753	unsigned long pfn = page_to_pfn(page);
1754
1755	if (PageHWPoison(page)) {
1756		pr_info("soft offline: %#lx page already poisoned\n", pfn);
1757		if (flags & MF_COUNT_INCREASED)
1758			put_hwpoison_page(page);
1759		return -EBUSY;
1760	}
1761
1762	get_online_mems();
1763	ret = get_any_page(page, pfn, flags);
1764	put_online_mems();
1765
1766	if (ret > 0)
1767		ret = soft_offline_in_use_page(page, flags);
1768	else if (ret == 0)
1769		soft_offline_free_page(page);
1770
 
 
 
 
1771	return ret;
1772}