Loading...
1/*
2 * Copyright (C) 2008, 2009 Intel Corporation
3 * Authors: Andi Kleen, Fengguang Wu
4 *
5 * This software may be redistributed and/or modified under the terms of
6 * the GNU General Public License ("GPL") version 2 only as published by the
7 * Free Software Foundation.
8 *
9 * High level machine check handler. Handles pages reported by the
10 * hardware as being corrupted usually due to a multi-bit ECC memory or cache
11 * failure.
12 *
13 * In addition there is a "soft offline" entry point that allows stop using
14 * not-yet-corrupted-by-suspicious pages without killing anything.
15 *
16 * Handles page cache pages in various states. The tricky part
17 * here is that we can access any page asynchronously in respect to
18 * other VM users, because memory failures could happen anytime and
19 * anywhere. This could violate some of their assumptions. This is why
20 * this code has to be extremely careful. Generally it tries to use
21 * normal locking rules, as in get the standard locks, even if that means
22 * the error handling takes potentially a long time.
23 *
24 * There are several operations here with exponential complexity because
25 * of unsuitable VM data structures. For example the operation to map back
26 * from RMAP chains to processes has to walk the complete process list and
27 * has non linear complexity with the number. But since memory corruptions
28 * are rare we hope to get away with this. This avoids impacting the core
29 * VM.
30 */
31
32/*
33 * Notebook:
34 * - hugetlb needs more code
35 * - kcore/oldmem/vmcore/mem/kmem check for hwpoison pages
36 * - pass bad pages to kdump next kernel
37 */
38#include <linux/kernel.h>
39#include <linux/mm.h>
40#include <linux/page-flags.h>
41#include <linux/kernel-page-flags.h>
42#include <linux/sched.h>
43#include <linux/ksm.h>
44#include <linux/rmap.h>
45#include <linux/pagemap.h>
46#include <linux/swap.h>
47#include <linux/backing-dev.h>
48#include <linux/migrate.h>
49#include <linux/page-isolation.h>
50#include <linux/suspend.h>
51#include <linux/slab.h>
52#include <linux/swapops.h>
53#include <linux/hugetlb.h>
54#include <linux/memory_hotplug.h>
55#include <linux/mm_inline.h>
56#include <linux/kfifo.h>
57#include "internal.h"
58
59int sysctl_memory_failure_early_kill __read_mostly = 0;
60
61int sysctl_memory_failure_recovery __read_mostly = 1;
62
63atomic_long_t mce_bad_pages __read_mostly = ATOMIC_LONG_INIT(0);
64
65#if defined(CONFIG_HWPOISON_INJECT) || defined(CONFIG_HWPOISON_INJECT_MODULE)
66
67u32 hwpoison_filter_enable = 0;
68u32 hwpoison_filter_dev_major = ~0U;
69u32 hwpoison_filter_dev_minor = ~0U;
70u64 hwpoison_filter_flags_mask;
71u64 hwpoison_filter_flags_value;
72EXPORT_SYMBOL_GPL(hwpoison_filter_enable);
73EXPORT_SYMBOL_GPL(hwpoison_filter_dev_major);
74EXPORT_SYMBOL_GPL(hwpoison_filter_dev_minor);
75EXPORT_SYMBOL_GPL(hwpoison_filter_flags_mask);
76EXPORT_SYMBOL_GPL(hwpoison_filter_flags_value);
77
78static int hwpoison_filter_dev(struct page *p)
79{
80 struct address_space *mapping;
81 dev_t dev;
82
83 if (hwpoison_filter_dev_major == ~0U &&
84 hwpoison_filter_dev_minor == ~0U)
85 return 0;
86
87 /*
88 * page_mapping() does not accept slab pages.
89 */
90 if (PageSlab(p))
91 return -EINVAL;
92
93 mapping = page_mapping(p);
94 if (mapping == NULL || mapping->host == NULL)
95 return -EINVAL;
96
97 dev = mapping->host->i_sb->s_dev;
98 if (hwpoison_filter_dev_major != ~0U &&
99 hwpoison_filter_dev_major != MAJOR(dev))
100 return -EINVAL;
101 if (hwpoison_filter_dev_minor != ~0U &&
102 hwpoison_filter_dev_minor != MINOR(dev))
103 return -EINVAL;
104
105 return 0;
106}
107
108static int hwpoison_filter_flags(struct page *p)
109{
110 if (!hwpoison_filter_flags_mask)
111 return 0;
112
113 if ((stable_page_flags(p) & hwpoison_filter_flags_mask) ==
114 hwpoison_filter_flags_value)
115 return 0;
116 else
117 return -EINVAL;
118}
119
120/*
121 * This allows stress tests to limit test scope to a collection of tasks
122 * by putting them under some memcg. This prevents killing unrelated/important
123 * processes such as /sbin/init. Note that the target task may share clean
124 * pages with init (eg. libc text), which is harmless. If the target task
125 * share _dirty_ pages with another task B, the test scheme must make sure B
126 * is also included in the memcg. At last, due to race conditions this filter
127 * can only guarantee that the page either belongs to the memcg tasks, or is
128 * a freed page.
129 */
130#ifdef CONFIG_CGROUP_MEM_RES_CTLR_SWAP
131u64 hwpoison_filter_memcg;
132EXPORT_SYMBOL_GPL(hwpoison_filter_memcg);
133static int hwpoison_filter_task(struct page *p)
134{
135 struct mem_cgroup *mem;
136 struct cgroup_subsys_state *css;
137 unsigned long ino;
138
139 if (!hwpoison_filter_memcg)
140 return 0;
141
142 mem = try_get_mem_cgroup_from_page(p);
143 if (!mem)
144 return -EINVAL;
145
146 css = mem_cgroup_css(mem);
147 /* root_mem_cgroup has NULL dentries */
148 if (!css->cgroup->dentry)
149 return -EINVAL;
150
151 ino = css->cgroup->dentry->d_inode->i_ino;
152 css_put(css);
153
154 if (ino != hwpoison_filter_memcg)
155 return -EINVAL;
156
157 return 0;
158}
159#else
160static int hwpoison_filter_task(struct page *p) { return 0; }
161#endif
162
163int hwpoison_filter(struct page *p)
164{
165 if (!hwpoison_filter_enable)
166 return 0;
167
168 if (hwpoison_filter_dev(p))
169 return -EINVAL;
170
171 if (hwpoison_filter_flags(p))
172 return -EINVAL;
173
174 if (hwpoison_filter_task(p))
175 return -EINVAL;
176
177 return 0;
178}
179#else
180int hwpoison_filter(struct page *p)
181{
182 return 0;
183}
184#endif
185
186EXPORT_SYMBOL_GPL(hwpoison_filter);
187
188/*
189 * Send all the processes who have the page mapped an ``action optional''
190 * signal.
191 */
192static int kill_proc_ao(struct task_struct *t, unsigned long addr, int trapno,
193 unsigned long pfn, struct page *page)
194{
195 struct siginfo si;
196 int ret;
197
198 printk(KERN_ERR
199 "MCE %#lx: Killing %s:%d early due to hardware memory corruption\n",
200 pfn, t->comm, t->pid);
201 si.si_signo = SIGBUS;
202 si.si_errno = 0;
203 si.si_code = BUS_MCEERR_AO;
204 si.si_addr = (void *)addr;
205#ifdef __ARCH_SI_TRAPNO
206 si.si_trapno = trapno;
207#endif
208 si.si_addr_lsb = compound_trans_order(compound_head(page)) + PAGE_SHIFT;
209 /*
210 * Don't use force here, it's convenient if the signal
211 * can be temporarily blocked.
212 * This could cause a loop when the user sets SIGBUS
213 * to SIG_IGN, but hopefully no one will do that?
214 */
215 ret = send_sig_info(SIGBUS, &si, t); /* synchronous? */
216 if (ret < 0)
217 printk(KERN_INFO "MCE: Error sending signal to %s:%d: %d\n",
218 t->comm, t->pid, ret);
219 return ret;
220}
221
222/*
223 * When a unknown page type is encountered drain as many buffers as possible
224 * in the hope to turn the page into a LRU or free page, which we can handle.
225 */
226void shake_page(struct page *p, int access)
227{
228 if (!PageSlab(p)) {
229 lru_add_drain_all();
230 if (PageLRU(p))
231 return;
232 drain_all_pages();
233 if (PageLRU(p) || is_free_buddy_page(p))
234 return;
235 }
236
237 /*
238 * Only call shrink_slab here (which would also shrink other caches) if
239 * access is not potentially fatal.
240 */
241 if (access) {
242 int nr;
243 do {
244 struct shrink_control shrink = {
245 .gfp_mask = GFP_KERNEL,
246 };
247
248 nr = shrink_slab(&shrink, 1000, 1000);
249 if (page_count(p) == 1)
250 break;
251 } while (nr > 10);
252 }
253}
254EXPORT_SYMBOL_GPL(shake_page);
255
256/*
257 * Kill all processes that have a poisoned page mapped and then isolate
258 * the page.
259 *
260 * General strategy:
261 * Find all processes having the page mapped and kill them.
262 * But we keep a page reference around so that the page is not
263 * actually freed yet.
264 * Then stash the page away
265 *
266 * There's no convenient way to get back to mapped processes
267 * from the VMAs. So do a brute-force search over all
268 * running processes.
269 *
270 * Remember that machine checks are not common (or rather
271 * if they are common you have other problems), so this shouldn't
272 * be a performance issue.
273 *
274 * Also there are some races possible while we get from the
275 * error detection to actually handle it.
276 */
277
278struct to_kill {
279 struct list_head nd;
280 struct task_struct *tsk;
281 unsigned long addr;
282 char addr_valid;
283};
284
285/*
286 * Failure handling: if we can't find or can't kill a process there's
287 * not much we can do. We just print a message and ignore otherwise.
288 */
289
290/*
291 * Schedule a process for later kill.
292 * Uses GFP_ATOMIC allocations to avoid potential recursions in the VM.
293 * TBD would GFP_NOIO be enough?
294 */
295static void add_to_kill(struct task_struct *tsk, struct page *p,
296 struct vm_area_struct *vma,
297 struct list_head *to_kill,
298 struct to_kill **tkc)
299{
300 struct to_kill *tk;
301
302 if (*tkc) {
303 tk = *tkc;
304 *tkc = NULL;
305 } else {
306 tk = kmalloc(sizeof(struct to_kill), GFP_ATOMIC);
307 if (!tk) {
308 printk(KERN_ERR
309 "MCE: Out of memory while machine check handling\n");
310 return;
311 }
312 }
313 tk->addr = page_address_in_vma(p, vma);
314 tk->addr_valid = 1;
315
316 /*
317 * In theory we don't have to kill when the page was
318 * munmaped. But it could be also a mremap. Since that's
319 * likely very rare kill anyways just out of paranoia, but use
320 * a SIGKILL because the error is not contained anymore.
321 */
322 if (tk->addr == -EFAULT) {
323 pr_info("MCE: Unable to find user space address %lx in %s\n",
324 page_to_pfn(p), tsk->comm);
325 tk->addr_valid = 0;
326 }
327 get_task_struct(tsk);
328 tk->tsk = tsk;
329 list_add_tail(&tk->nd, to_kill);
330}
331
332/*
333 * Kill the processes that have been collected earlier.
334 *
335 * Only do anything when DOIT is set, otherwise just free the list
336 * (this is used for clean pages which do not need killing)
337 * Also when FAIL is set do a force kill because something went
338 * wrong earlier.
339 */
340static void kill_procs_ao(struct list_head *to_kill, int doit, int trapno,
341 int fail, struct page *page, unsigned long pfn)
342{
343 struct to_kill *tk, *next;
344
345 list_for_each_entry_safe (tk, next, to_kill, nd) {
346 if (doit) {
347 /*
348 * In case something went wrong with munmapping
349 * make sure the process doesn't catch the
350 * signal and then access the memory. Just kill it.
351 */
352 if (fail || tk->addr_valid == 0) {
353 printk(KERN_ERR
354 "MCE %#lx: forcibly killing %s:%d because of failure to unmap corrupted page\n",
355 pfn, tk->tsk->comm, tk->tsk->pid);
356 force_sig(SIGKILL, tk->tsk);
357 }
358
359 /*
360 * In theory the process could have mapped
361 * something else on the address in-between. We could
362 * check for that, but we need to tell the
363 * process anyways.
364 */
365 else if (kill_proc_ao(tk->tsk, tk->addr, trapno,
366 pfn, page) < 0)
367 printk(KERN_ERR
368 "MCE %#lx: Cannot send advisory machine check signal to %s:%d\n",
369 pfn, tk->tsk->comm, tk->tsk->pid);
370 }
371 put_task_struct(tk->tsk);
372 kfree(tk);
373 }
374}
375
376static int task_early_kill(struct task_struct *tsk)
377{
378 if (!tsk->mm)
379 return 0;
380 if (tsk->flags & PF_MCE_PROCESS)
381 return !!(tsk->flags & PF_MCE_EARLY);
382 return sysctl_memory_failure_early_kill;
383}
384
385/*
386 * Collect processes when the error hit an anonymous page.
387 */
388static void collect_procs_anon(struct page *page, struct list_head *to_kill,
389 struct to_kill **tkc)
390{
391 struct vm_area_struct *vma;
392 struct task_struct *tsk;
393 struct anon_vma *av;
394
395 av = page_lock_anon_vma(page);
396 if (av == NULL) /* Not actually mapped anymore */
397 return;
398
399 read_lock(&tasklist_lock);
400 for_each_process (tsk) {
401 struct anon_vma_chain *vmac;
402
403 if (!task_early_kill(tsk))
404 continue;
405 list_for_each_entry(vmac, &av->head, same_anon_vma) {
406 vma = vmac->vma;
407 if (!page_mapped_in_vma(page, vma))
408 continue;
409 if (vma->vm_mm == tsk->mm)
410 add_to_kill(tsk, page, vma, to_kill, tkc);
411 }
412 }
413 read_unlock(&tasklist_lock);
414 page_unlock_anon_vma(av);
415}
416
417/*
418 * Collect processes when the error hit a file mapped page.
419 */
420static void collect_procs_file(struct page *page, struct list_head *to_kill,
421 struct to_kill **tkc)
422{
423 struct vm_area_struct *vma;
424 struct task_struct *tsk;
425 struct prio_tree_iter iter;
426 struct address_space *mapping = page->mapping;
427
428 mutex_lock(&mapping->i_mmap_mutex);
429 read_lock(&tasklist_lock);
430 for_each_process(tsk) {
431 pgoff_t pgoff = page->index << (PAGE_CACHE_SHIFT - PAGE_SHIFT);
432
433 if (!task_early_kill(tsk))
434 continue;
435
436 vma_prio_tree_foreach(vma, &iter, &mapping->i_mmap, pgoff,
437 pgoff) {
438 /*
439 * Send early kill signal to tasks where a vma covers
440 * the page but the corrupted page is not necessarily
441 * mapped it in its pte.
442 * Assume applications who requested early kill want
443 * to be informed of all such data corruptions.
444 */
445 if (vma->vm_mm == tsk->mm)
446 add_to_kill(tsk, page, vma, to_kill, tkc);
447 }
448 }
449 read_unlock(&tasklist_lock);
450 mutex_unlock(&mapping->i_mmap_mutex);
451}
452
453/*
454 * Collect the processes who have the corrupted page mapped to kill.
455 * This is done in two steps for locking reasons.
456 * First preallocate one tokill structure outside the spin locks,
457 * so that we can kill at least one process reasonably reliable.
458 */
459static void collect_procs(struct page *page, struct list_head *tokill)
460{
461 struct to_kill *tk;
462
463 if (!page->mapping)
464 return;
465
466 tk = kmalloc(sizeof(struct to_kill), GFP_NOIO);
467 if (!tk)
468 return;
469 if (PageAnon(page))
470 collect_procs_anon(page, tokill, &tk);
471 else
472 collect_procs_file(page, tokill, &tk);
473 kfree(tk);
474}
475
476/*
477 * Error handlers for various types of pages.
478 */
479
480enum outcome {
481 IGNORED, /* Error: cannot be handled */
482 FAILED, /* Error: handling failed */
483 DELAYED, /* Will be handled later */
484 RECOVERED, /* Successfully recovered */
485};
486
487static const char *action_name[] = {
488 [IGNORED] = "Ignored",
489 [FAILED] = "Failed",
490 [DELAYED] = "Delayed",
491 [RECOVERED] = "Recovered",
492};
493
494/*
495 * XXX: It is possible that a page is isolated from LRU cache,
496 * and then kept in swap cache or failed to remove from page cache.
497 * The page count will stop it from being freed by unpoison.
498 * Stress tests should be aware of this memory leak problem.
499 */
500static int delete_from_lru_cache(struct page *p)
501{
502 if (!isolate_lru_page(p)) {
503 /*
504 * Clear sensible page flags, so that the buddy system won't
505 * complain when the page is unpoison-and-freed.
506 */
507 ClearPageActive(p);
508 ClearPageUnevictable(p);
509 /*
510 * drop the page count elevated by isolate_lru_page()
511 */
512 page_cache_release(p);
513 return 0;
514 }
515 return -EIO;
516}
517
518/*
519 * Error hit kernel page.
520 * Do nothing, try to be lucky and not touch this instead. For a few cases we
521 * could be more sophisticated.
522 */
523static int me_kernel(struct page *p, unsigned long pfn)
524{
525 return IGNORED;
526}
527
528/*
529 * Page in unknown state. Do nothing.
530 */
531static int me_unknown(struct page *p, unsigned long pfn)
532{
533 printk(KERN_ERR "MCE %#lx: Unknown page state\n", pfn);
534 return FAILED;
535}
536
537/*
538 * Clean (or cleaned) page cache page.
539 */
540static int me_pagecache_clean(struct page *p, unsigned long pfn)
541{
542 int err;
543 int ret = FAILED;
544 struct address_space *mapping;
545
546 delete_from_lru_cache(p);
547
548 /*
549 * For anonymous pages we're done the only reference left
550 * should be the one m_f() holds.
551 */
552 if (PageAnon(p))
553 return RECOVERED;
554
555 /*
556 * Now truncate the page in the page cache. This is really
557 * more like a "temporary hole punch"
558 * Don't do this for block devices when someone else
559 * has a reference, because it could be file system metadata
560 * and that's not safe to truncate.
561 */
562 mapping = page_mapping(p);
563 if (!mapping) {
564 /*
565 * Page has been teared down in the meanwhile
566 */
567 return FAILED;
568 }
569
570 /*
571 * Truncation is a bit tricky. Enable it per file system for now.
572 *
573 * Open: to take i_mutex or not for this? Right now we don't.
574 */
575 if (mapping->a_ops->error_remove_page) {
576 err = mapping->a_ops->error_remove_page(mapping, p);
577 if (err != 0) {
578 printk(KERN_INFO "MCE %#lx: Failed to punch page: %d\n",
579 pfn, err);
580 } else if (page_has_private(p) &&
581 !try_to_release_page(p, GFP_NOIO)) {
582 pr_info("MCE %#lx: failed to release buffers\n", pfn);
583 } else {
584 ret = RECOVERED;
585 }
586 } else {
587 /*
588 * If the file system doesn't support it just invalidate
589 * This fails on dirty or anything with private pages
590 */
591 if (invalidate_inode_page(p))
592 ret = RECOVERED;
593 else
594 printk(KERN_INFO "MCE %#lx: Failed to invalidate\n",
595 pfn);
596 }
597 return ret;
598}
599
600/*
601 * Dirty cache page page
602 * Issues: when the error hit a hole page the error is not properly
603 * propagated.
604 */
605static int me_pagecache_dirty(struct page *p, unsigned long pfn)
606{
607 struct address_space *mapping = page_mapping(p);
608
609 SetPageError(p);
610 /* TBD: print more information about the file. */
611 if (mapping) {
612 /*
613 * IO error will be reported by write(), fsync(), etc.
614 * who check the mapping.
615 * This way the application knows that something went
616 * wrong with its dirty file data.
617 *
618 * There's one open issue:
619 *
620 * The EIO will be only reported on the next IO
621 * operation and then cleared through the IO map.
622 * Normally Linux has two mechanisms to pass IO error
623 * first through the AS_EIO flag in the address space
624 * and then through the PageError flag in the page.
625 * Since we drop pages on memory failure handling the
626 * only mechanism open to use is through AS_AIO.
627 *
628 * This has the disadvantage that it gets cleared on
629 * the first operation that returns an error, while
630 * the PageError bit is more sticky and only cleared
631 * when the page is reread or dropped. If an
632 * application assumes it will always get error on
633 * fsync, but does other operations on the fd before
634 * and the page is dropped between then the error
635 * will not be properly reported.
636 *
637 * This can already happen even without hwpoisoned
638 * pages: first on metadata IO errors (which only
639 * report through AS_EIO) or when the page is dropped
640 * at the wrong time.
641 *
642 * So right now we assume that the application DTRT on
643 * the first EIO, but we're not worse than other parts
644 * of the kernel.
645 */
646 mapping_set_error(mapping, EIO);
647 }
648
649 return me_pagecache_clean(p, pfn);
650}
651
652/*
653 * Clean and dirty swap cache.
654 *
655 * Dirty swap cache page is tricky to handle. The page could live both in page
656 * cache and swap cache(ie. page is freshly swapped in). So it could be
657 * referenced concurrently by 2 types of PTEs:
658 * normal PTEs and swap PTEs. We try to handle them consistently by calling
659 * try_to_unmap(TTU_IGNORE_HWPOISON) to convert the normal PTEs to swap PTEs,
660 * and then
661 * - clear dirty bit to prevent IO
662 * - remove from LRU
663 * - but keep in the swap cache, so that when we return to it on
664 * a later page fault, we know the application is accessing
665 * corrupted data and shall be killed (we installed simple
666 * interception code in do_swap_page to catch it).
667 *
668 * Clean swap cache pages can be directly isolated. A later page fault will
669 * bring in the known good data from disk.
670 */
671static int me_swapcache_dirty(struct page *p, unsigned long pfn)
672{
673 ClearPageDirty(p);
674 /* Trigger EIO in shmem: */
675 ClearPageUptodate(p);
676
677 if (!delete_from_lru_cache(p))
678 return DELAYED;
679 else
680 return FAILED;
681}
682
683static int me_swapcache_clean(struct page *p, unsigned long pfn)
684{
685 delete_from_swap_cache(p);
686
687 if (!delete_from_lru_cache(p))
688 return RECOVERED;
689 else
690 return FAILED;
691}
692
693/*
694 * Huge pages. Needs work.
695 * Issues:
696 * - Error on hugepage is contained in hugepage unit (not in raw page unit.)
697 * To narrow down kill region to one page, we need to break up pmd.
698 */
699static int me_huge_page(struct page *p, unsigned long pfn)
700{
701 int res = 0;
702 struct page *hpage = compound_head(p);
703 /*
704 * We can safely recover from error on free or reserved (i.e.
705 * not in-use) hugepage by dequeuing it from freelist.
706 * To check whether a hugepage is in-use or not, we can't use
707 * page->lru because it can be used in other hugepage operations,
708 * such as __unmap_hugepage_range() and gather_surplus_pages().
709 * So instead we use page_mapping() and PageAnon().
710 * We assume that this function is called with page lock held,
711 * so there is no race between isolation and mapping/unmapping.
712 */
713 if (!(page_mapping(hpage) || PageAnon(hpage))) {
714 res = dequeue_hwpoisoned_huge_page(hpage);
715 if (!res)
716 return RECOVERED;
717 }
718 return DELAYED;
719}
720
721/*
722 * Various page states we can handle.
723 *
724 * A page state is defined by its current page->flags bits.
725 * The table matches them in order and calls the right handler.
726 *
727 * This is quite tricky because we can access page at any time
728 * in its live cycle, so all accesses have to be extremely careful.
729 *
730 * This is not complete. More states could be added.
731 * For any missing state don't attempt recovery.
732 */
733
734#define dirty (1UL << PG_dirty)
735#define sc (1UL << PG_swapcache)
736#define unevict (1UL << PG_unevictable)
737#define mlock (1UL << PG_mlocked)
738#define writeback (1UL << PG_writeback)
739#define lru (1UL << PG_lru)
740#define swapbacked (1UL << PG_swapbacked)
741#define head (1UL << PG_head)
742#define tail (1UL << PG_tail)
743#define compound (1UL << PG_compound)
744#define slab (1UL << PG_slab)
745#define reserved (1UL << PG_reserved)
746
747static struct page_state {
748 unsigned long mask;
749 unsigned long res;
750 char *msg;
751 int (*action)(struct page *p, unsigned long pfn);
752} error_states[] = {
753 { reserved, reserved, "reserved kernel", me_kernel },
754 /*
755 * free pages are specially detected outside this table:
756 * PG_buddy pages only make a small fraction of all free pages.
757 */
758
759 /*
760 * Could in theory check if slab page is free or if we can drop
761 * currently unused objects without touching them. But just
762 * treat it as standard kernel for now.
763 */
764 { slab, slab, "kernel slab", me_kernel },
765
766#ifdef CONFIG_PAGEFLAGS_EXTENDED
767 { head, head, "huge", me_huge_page },
768 { tail, tail, "huge", me_huge_page },
769#else
770 { compound, compound, "huge", me_huge_page },
771#endif
772
773 { sc|dirty, sc|dirty, "swapcache", me_swapcache_dirty },
774 { sc|dirty, sc, "swapcache", me_swapcache_clean },
775
776 { unevict|dirty, unevict|dirty, "unevictable LRU", me_pagecache_dirty},
777 { unevict, unevict, "unevictable LRU", me_pagecache_clean},
778
779 { mlock|dirty, mlock|dirty, "mlocked LRU", me_pagecache_dirty },
780 { mlock, mlock, "mlocked LRU", me_pagecache_clean },
781
782 { lru|dirty, lru|dirty, "LRU", me_pagecache_dirty },
783 { lru|dirty, lru, "clean LRU", me_pagecache_clean },
784
785 /*
786 * Catchall entry: must be at end.
787 */
788 { 0, 0, "unknown page state", me_unknown },
789};
790
791#undef dirty
792#undef sc
793#undef unevict
794#undef mlock
795#undef writeback
796#undef lru
797#undef swapbacked
798#undef head
799#undef tail
800#undef compound
801#undef slab
802#undef reserved
803
804static void action_result(unsigned long pfn, char *msg, int result)
805{
806 struct page *page = pfn_to_page(pfn);
807
808 printk(KERN_ERR "MCE %#lx: %s%s page recovery: %s\n",
809 pfn,
810 PageDirty(page) ? "dirty " : "",
811 msg, action_name[result]);
812}
813
814static int page_action(struct page_state *ps, struct page *p,
815 unsigned long pfn)
816{
817 int result;
818 int count;
819
820 result = ps->action(p, pfn);
821 action_result(pfn, ps->msg, result);
822
823 count = page_count(p) - 1;
824 if (ps->action == me_swapcache_dirty && result == DELAYED)
825 count--;
826 if (count != 0) {
827 printk(KERN_ERR
828 "MCE %#lx: %s page still referenced by %d users\n",
829 pfn, ps->msg, count);
830 result = FAILED;
831 }
832
833 /* Could do more checks here if page looks ok */
834 /*
835 * Could adjust zone counters here to correct for the missing page.
836 */
837
838 return (result == RECOVERED || result == DELAYED) ? 0 : -EBUSY;
839}
840
841/*
842 * Do all that is necessary to remove user space mappings. Unmap
843 * the pages and send SIGBUS to the processes if the data was dirty.
844 */
845static int hwpoison_user_mappings(struct page *p, unsigned long pfn,
846 int trapno)
847{
848 enum ttu_flags ttu = TTU_UNMAP | TTU_IGNORE_MLOCK | TTU_IGNORE_ACCESS;
849 struct address_space *mapping;
850 LIST_HEAD(tokill);
851 int ret;
852 int kill = 1;
853 struct page *hpage = compound_head(p);
854 struct page *ppage;
855
856 if (PageReserved(p) || PageSlab(p))
857 return SWAP_SUCCESS;
858
859 /*
860 * This check implies we don't kill processes if their pages
861 * are in the swap cache early. Those are always late kills.
862 */
863 if (!page_mapped(hpage))
864 return SWAP_SUCCESS;
865
866 if (PageKsm(p))
867 return SWAP_FAIL;
868
869 if (PageSwapCache(p)) {
870 printk(KERN_ERR
871 "MCE %#lx: keeping poisoned page in swap cache\n", pfn);
872 ttu |= TTU_IGNORE_HWPOISON;
873 }
874
875 /*
876 * Propagate the dirty bit from PTEs to struct page first, because we
877 * need this to decide if we should kill or just drop the page.
878 * XXX: the dirty test could be racy: set_page_dirty() may not always
879 * be called inside page lock (it's recommended but not enforced).
880 */
881 mapping = page_mapping(hpage);
882 if (!PageDirty(hpage) && mapping &&
883 mapping_cap_writeback_dirty(mapping)) {
884 if (page_mkclean(hpage)) {
885 SetPageDirty(hpage);
886 } else {
887 kill = 0;
888 ttu |= TTU_IGNORE_HWPOISON;
889 printk(KERN_INFO
890 "MCE %#lx: corrupted page was clean: dropped without side effects\n",
891 pfn);
892 }
893 }
894
895 /*
896 * ppage: poisoned page
897 * if p is regular page(4k page)
898 * ppage == real poisoned page;
899 * else p is hugetlb or THP, ppage == head page.
900 */
901 ppage = hpage;
902
903 if (PageTransHuge(hpage)) {
904 /*
905 * Verify that this isn't a hugetlbfs head page, the check for
906 * PageAnon is just for avoid tripping a split_huge_page
907 * internal debug check, as split_huge_page refuses to deal with
908 * anything that isn't an anon page. PageAnon can't go away fro
909 * under us because we hold a refcount on the hpage, without a
910 * refcount on the hpage. split_huge_page can't be safely called
911 * in the first place, having a refcount on the tail isn't
912 * enough * to be safe.
913 */
914 if (!PageHuge(hpage) && PageAnon(hpage)) {
915 if (unlikely(split_huge_page(hpage))) {
916 /*
917 * FIXME: if splitting THP is failed, it is
918 * better to stop the following operation rather
919 * than causing panic by unmapping. System might
920 * survive if the page is freed later.
921 */
922 printk(KERN_INFO
923 "MCE %#lx: failed to split THP\n", pfn);
924
925 BUG_ON(!PageHWPoison(p));
926 return SWAP_FAIL;
927 }
928 /* THP is split, so ppage should be the real poisoned page. */
929 ppage = p;
930 }
931 }
932
933 /*
934 * First collect all the processes that have the page
935 * mapped in dirty form. This has to be done before try_to_unmap,
936 * because ttu takes the rmap data structures down.
937 *
938 * Error handling: We ignore errors here because
939 * there's nothing that can be done.
940 */
941 if (kill)
942 collect_procs(ppage, &tokill);
943
944 if (hpage != ppage)
945 lock_page(ppage);
946
947 ret = try_to_unmap(ppage, ttu);
948 if (ret != SWAP_SUCCESS)
949 printk(KERN_ERR "MCE %#lx: failed to unmap page (mapcount=%d)\n",
950 pfn, page_mapcount(ppage));
951
952 if (hpage != ppage)
953 unlock_page(ppage);
954
955 /*
956 * Now that the dirty bit has been propagated to the
957 * struct page and all unmaps done we can decide if
958 * killing is needed or not. Only kill when the page
959 * was dirty, otherwise the tokill list is merely
960 * freed. When there was a problem unmapping earlier
961 * use a more force-full uncatchable kill to prevent
962 * any accesses to the poisoned memory.
963 */
964 kill_procs_ao(&tokill, !!PageDirty(ppage), trapno,
965 ret != SWAP_SUCCESS, p, pfn);
966
967 return ret;
968}
969
970static void set_page_hwpoison_huge_page(struct page *hpage)
971{
972 int i;
973 int nr_pages = 1 << compound_trans_order(hpage);
974 for (i = 0; i < nr_pages; i++)
975 SetPageHWPoison(hpage + i);
976}
977
978static void clear_page_hwpoison_huge_page(struct page *hpage)
979{
980 int i;
981 int nr_pages = 1 << compound_trans_order(hpage);
982 for (i = 0; i < nr_pages; i++)
983 ClearPageHWPoison(hpage + i);
984}
985
986int __memory_failure(unsigned long pfn, int trapno, int flags)
987{
988 struct page_state *ps;
989 struct page *p;
990 struct page *hpage;
991 int res;
992 unsigned int nr_pages;
993
994 if (!sysctl_memory_failure_recovery)
995 panic("Memory failure from trap %d on page %lx", trapno, pfn);
996
997 if (!pfn_valid(pfn)) {
998 printk(KERN_ERR
999 "MCE %#lx: memory outside kernel control\n",
1000 pfn);
1001 return -ENXIO;
1002 }
1003
1004 p = pfn_to_page(pfn);
1005 hpage = compound_head(p);
1006 if (TestSetPageHWPoison(p)) {
1007 printk(KERN_ERR "MCE %#lx: already hardware poisoned\n", pfn);
1008 return 0;
1009 }
1010
1011 nr_pages = 1 << compound_trans_order(hpage);
1012 atomic_long_add(nr_pages, &mce_bad_pages);
1013
1014 /*
1015 * We need/can do nothing about count=0 pages.
1016 * 1) it's a free page, and therefore in safe hand:
1017 * prep_new_page() will be the gate keeper.
1018 * 2) it's a free hugepage, which is also safe:
1019 * an affected hugepage will be dequeued from hugepage freelist,
1020 * so there's no concern about reusing it ever after.
1021 * 3) it's part of a non-compound high order page.
1022 * Implies some kernel user: cannot stop them from
1023 * R/W the page; let's pray that the page has been
1024 * used and will be freed some time later.
1025 * In fact it's dangerous to directly bump up page count from 0,
1026 * that may make page_freeze_refs()/page_unfreeze_refs() mismatch.
1027 */
1028 if (!(flags & MF_COUNT_INCREASED) &&
1029 !get_page_unless_zero(hpage)) {
1030 if (is_free_buddy_page(p)) {
1031 action_result(pfn, "free buddy", DELAYED);
1032 return 0;
1033 } else if (PageHuge(hpage)) {
1034 /*
1035 * Check "just unpoisoned", "filter hit", and
1036 * "race with other subpage."
1037 */
1038 lock_page(hpage);
1039 if (!PageHWPoison(hpage)
1040 || (hwpoison_filter(p) && TestClearPageHWPoison(p))
1041 || (p != hpage && TestSetPageHWPoison(hpage))) {
1042 atomic_long_sub(nr_pages, &mce_bad_pages);
1043 return 0;
1044 }
1045 set_page_hwpoison_huge_page(hpage);
1046 res = dequeue_hwpoisoned_huge_page(hpage);
1047 action_result(pfn, "free huge",
1048 res ? IGNORED : DELAYED);
1049 unlock_page(hpage);
1050 return res;
1051 } else {
1052 action_result(pfn, "high order kernel", IGNORED);
1053 return -EBUSY;
1054 }
1055 }
1056
1057 /*
1058 * We ignore non-LRU pages for good reasons.
1059 * - PG_locked is only well defined for LRU pages and a few others
1060 * - to avoid races with __set_page_locked()
1061 * - to avoid races with __SetPageSlab*() (and more non-atomic ops)
1062 * The check (unnecessarily) ignores LRU pages being isolated and
1063 * walked by the page reclaim code, however that's not a big loss.
1064 */
1065 if (!PageHuge(p) && !PageTransCompound(p)) {
1066 if (!PageLRU(p))
1067 shake_page(p, 0);
1068 if (!PageLRU(p)) {
1069 /*
1070 * shake_page could have turned it free.
1071 */
1072 if (is_free_buddy_page(p)) {
1073 action_result(pfn, "free buddy, 2nd try",
1074 DELAYED);
1075 return 0;
1076 }
1077 action_result(pfn, "non LRU", IGNORED);
1078 put_page(p);
1079 return -EBUSY;
1080 }
1081 }
1082
1083 /*
1084 * Lock the page and wait for writeback to finish.
1085 * It's very difficult to mess with pages currently under IO
1086 * and in many cases impossible, so we just avoid it here.
1087 */
1088 lock_page(hpage);
1089
1090 /*
1091 * unpoison always clear PG_hwpoison inside page lock
1092 */
1093 if (!PageHWPoison(p)) {
1094 printk(KERN_ERR "MCE %#lx: just unpoisoned\n", pfn);
1095 res = 0;
1096 goto out;
1097 }
1098 if (hwpoison_filter(p)) {
1099 if (TestClearPageHWPoison(p))
1100 atomic_long_sub(nr_pages, &mce_bad_pages);
1101 unlock_page(hpage);
1102 put_page(hpage);
1103 return 0;
1104 }
1105
1106 /*
1107 * For error on the tail page, we should set PG_hwpoison
1108 * on the head page to show that the hugepage is hwpoisoned
1109 */
1110 if (PageHuge(p) && PageTail(p) && TestSetPageHWPoison(hpage)) {
1111 action_result(pfn, "hugepage already hardware poisoned",
1112 IGNORED);
1113 unlock_page(hpage);
1114 put_page(hpage);
1115 return 0;
1116 }
1117 /*
1118 * Set PG_hwpoison on all pages in an error hugepage,
1119 * because containment is done in hugepage unit for now.
1120 * Since we have done TestSetPageHWPoison() for the head page with
1121 * page lock held, we can safely set PG_hwpoison bits on tail pages.
1122 */
1123 if (PageHuge(p))
1124 set_page_hwpoison_huge_page(hpage);
1125
1126 wait_on_page_writeback(p);
1127
1128 /*
1129 * Now take care of user space mappings.
1130 * Abort on fail: __delete_from_page_cache() assumes unmapped page.
1131 */
1132 if (hwpoison_user_mappings(p, pfn, trapno) != SWAP_SUCCESS) {
1133 printk(KERN_ERR "MCE %#lx: cannot unmap page, give up\n", pfn);
1134 res = -EBUSY;
1135 goto out;
1136 }
1137
1138 /*
1139 * Torn down by someone else?
1140 */
1141 if (PageLRU(p) && !PageSwapCache(p) && p->mapping == NULL) {
1142 action_result(pfn, "already truncated LRU", IGNORED);
1143 res = -EBUSY;
1144 goto out;
1145 }
1146
1147 res = -EBUSY;
1148 for (ps = error_states;; ps++) {
1149 if ((p->flags & ps->mask) == ps->res) {
1150 res = page_action(ps, p, pfn);
1151 break;
1152 }
1153 }
1154out:
1155 unlock_page(hpage);
1156 return res;
1157}
1158EXPORT_SYMBOL_GPL(__memory_failure);
1159
1160/**
1161 * memory_failure - Handle memory failure of a page.
1162 * @pfn: Page Number of the corrupted page
1163 * @trapno: Trap number reported in the signal to user space.
1164 *
1165 * This function is called by the low level machine check code
1166 * of an architecture when it detects hardware memory corruption
1167 * of a page. It tries its best to recover, which includes
1168 * dropping pages, killing processes etc.
1169 *
1170 * The function is primarily of use for corruptions that
1171 * happen outside the current execution context (e.g. when
1172 * detected by a background scrubber)
1173 *
1174 * Must run in process context (e.g. a work queue) with interrupts
1175 * enabled and no spinlocks hold.
1176 */
1177void memory_failure(unsigned long pfn, int trapno)
1178{
1179 __memory_failure(pfn, trapno, 0);
1180}
1181
1182#define MEMORY_FAILURE_FIFO_ORDER 4
1183#define MEMORY_FAILURE_FIFO_SIZE (1 << MEMORY_FAILURE_FIFO_ORDER)
1184
1185struct memory_failure_entry {
1186 unsigned long pfn;
1187 int trapno;
1188 int flags;
1189};
1190
1191struct memory_failure_cpu {
1192 DECLARE_KFIFO(fifo, struct memory_failure_entry,
1193 MEMORY_FAILURE_FIFO_SIZE);
1194 spinlock_t lock;
1195 struct work_struct work;
1196};
1197
1198static DEFINE_PER_CPU(struct memory_failure_cpu, memory_failure_cpu);
1199
1200/**
1201 * memory_failure_queue - Schedule handling memory failure of a page.
1202 * @pfn: Page Number of the corrupted page
1203 * @trapno: Trap number reported in the signal to user space.
1204 * @flags: Flags for memory failure handling
1205 *
1206 * This function is called by the low level hardware error handler
1207 * when it detects hardware memory corruption of a page. It schedules
1208 * the recovering of error page, including dropping pages, killing
1209 * processes etc.
1210 *
1211 * The function is primarily of use for corruptions that
1212 * happen outside the current execution context (e.g. when
1213 * detected by a background scrubber)
1214 *
1215 * Can run in IRQ context.
1216 */
1217void memory_failure_queue(unsigned long pfn, int trapno, int flags)
1218{
1219 struct memory_failure_cpu *mf_cpu;
1220 unsigned long proc_flags;
1221 struct memory_failure_entry entry = {
1222 .pfn = pfn,
1223 .trapno = trapno,
1224 .flags = flags,
1225 };
1226
1227 mf_cpu = &get_cpu_var(memory_failure_cpu);
1228 spin_lock_irqsave(&mf_cpu->lock, proc_flags);
1229 if (kfifo_put(&mf_cpu->fifo, &entry))
1230 schedule_work_on(smp_processor_id(), &mf_cpu->work);
1231 else
1232 pr_err("Memory failure: buffer overflow when queuing memory failure at 0x%#lx\n",
1233 pfn);
1234 spin_unlock_irqrestore(&mf_cpu->lock, proc_flags);
1235 put_cpu_var(memory_failure_cpu);
1236}
1237EXPORT_SYMBOL_GPL(memory_failure_queue);
1238
1239static void memory_failure_work_func(struct work_struct *work)
1240{
1241 struct memory_failure_cpu *mf_cpu;
1242 struct memory_failure_entry entry = { 0, };
1243 unsigned long proc_flags;
1244 int gotten;
1245
1246 mf_cpu = &__get_cpu_var(memory_failure_cpu);
1247 for (;;) {
1248 spin_lock_irqsave(&mf_cpu->lock, proc_flags);
1249 gotten = kfifo_get(&mf_cpu->fifo, &entry);
1250 spin_unlock_irqrestore(&mf_cpu->lock, proc_flags);
1251 if (!gotten)
1252 break;
1253 __memory_failure(entry.pfn, entry.trapno, entry.flags);
1254 }
1255}
1256
1257static int __init memory_failure_init(void)
1258{
1259 struct memory_failure_cpu *mf_cpu;
1260 int cpu;
1261
1262 for_each_possible_cpu(cpu) {
1263 mf_cpu = &per_cpu(memory_failure_cpu, cpu);
1264 spin_lock_init(&mf_cpu->lock);
1265 INIT_KFIFO(mf_cpu->fifo);
1266 INIT_WORK(&mf_cpu->work, memory_failure_work_func);
1267 }
1268
1269 return 0;
1270}
1271core_initcall(memory_failure_init);
1272
1273/**
1274 * unpoison_memory - Unpoison a previously poisoned page
1275 * @pfn: Page number of the to be unpoisoned page
1276 *
1277 * Software-unpoison a page that has been poisoned by
1278 * memory_failure() earlier.
1279 *
1280 * This is only done on the software-level, so it only works
1281 * for linux injected failures, not real hardware failures
1282 *
1283 * Returns 0 for success, otherwise -errno.
1284 */
1285int unpoison_memory(unsigned long pfn)
1286{
1287 struct page *page;
1288 struct page *p;
1289 int freeit = 0;
1290 unsigned int nr_pages;
1291
1292 if (!pfn_valid(pfn))
1293 return -ENXIO;
1294
1295 p = pfn_to_page(pfn);
1296 page = compound_head(p);
1297
1298 if (!PageHWPoison(p)) {
1299 pr_info("MCE: Page was already unpoisoned %#lx\n", pfn);
1300 return 0;
1301 }
1302
1303 nr_pages = 1 << compound_trans_order(page);
1304
1305 if (!get_page_unless_zero(page)) {
1306 /*
1307 * Since HWPoisoned hugepage should have non-zero refcount,
1308 * race between memory failure and unpoison seems to happen.
1309 * In such case unpoison fails and memory failure runs
1310 * to the end.
1311 */
1312 if (PageHuge(page)) {
1313 pr_debug("MCE: Memory failure is now running on free hugepage %#lx\n", pfn);
1314 return 0;
1315 }
1316 if (TestClearPageHWPoison(p))
1317 atomic_long_sub(nr_pages, &mce_bad_pages);
1318 pr_info("MCE: Software-unpoisoned free page %#lx\n", pfn);
1319 return 0;
1320 }
1321
1322 lock_page(page);
1323 /*
1324 * This test is racy because PG_hwpoison is set outside of page lock.
1325 * That's acceptable because that won't trigger kernel panic. Instead,
1326 * the PG_hwpoison page will be caught and isolated on the entrance to
1327 * the free buddy page pool.
1328 */
1329 if (TestClearPageHWPoison(page)) {
1330 pr_info("MCE: Software-unpoisoned page %#lx\n", pfn);
1331 atomic_long_sub(nr_pages, &mce_bad_pages);
1332 freeit = 1;
1333 if (PageHuge(page))
1334 clear_page_hwpoison_huge_page(page);
1335 }
1336 unlock_page(page);
1337
1338 put_page(page);
1339 if (freeit)
1340 put_page(page);
1341
1342 return 0;
1343}
1344EXPORT_SYMBOL(unpoison_memory);
1345
1346static struct page *new_page(struct page *p, unsigned long private, int **x)
1347{
1348 int nid = page_to_nid(p);
1349 if (PageHuge(p))
1350 return alloc_huge_page_node(page_hstate(compound_head(p)),
1351 nid);
1352 else
1353 return alloc_pages_exact_node(nid, GFP_HIGHUSER_MOVABLE, 0);
1354}
1355
1356/*
1357 * Safely get reference count of an arbitrary page.
1358 * Returns 0 for a free page, -EIO for a zero refcount page
1359 * that is not free, and 1 for any other page type.
1360 * For 1 the page is returned with increased page count, otherwise not.
1361 */
1362static int get_any_page(struct page *p, unsigned long pfn, int flags)
1363{
1364 int ret;
1365
1366 if (flags & MF_COUNT_INCREASED)
1367 return 1;
1368
1369 /*
1370 * The lock_memory_hotplug prevents a race with memory hotplug.
1371 * This is a big hammer, a better would be nicer.
1372 */
1373 lock_memory_hotplug();
1374
1375 /*
1376 * Isolate the page, so that it doesn't get reallocated if it
1377 * was free.
1378 */
1379 set_migratetype_isolate(p);
1380 /*
1381 * When the target page is a free hugepage, just remove it
1382 * from free hugepage list.
1383 */
1384 if (!get_page_unless_zero(compound_head(p))) {
1385 if (PageHuge(p)) {
1386 pr_info("get_any_page: %#lx free huge page\n", pfn);
1387 ret = dequeue_hwpoisoned_huge_page(compound_head(p));
1388 } else if (is_free_buddy_page(p)) {
1389 pr_info("get_any_page: %#lx free buddy page\n", pfn);
1390 /* Set hwpoison bit while page is still isolated */
1391 SetPageHWPoison(p);
1392 ret = 0;
1393 } else {
1394 pr_info("get_any_page: %#lx: unknown zero refcount page type %lx\n",
1395 pfn, p->flags);
1396 ret = -EIO;
1397 }
1398 } else {
1399 /* Not a free page */
1400 ret = 1;
1401 }
1402 unset_migratetype_isolate(p);
1403 unlock_memory_hotplug();
1404 return ret;
1405}
1406
1407static int soft_offline_huge_page(struct page *page, int flags)
1408{
1409 int ret;
1410 unsigned long pfn = page_to_pfn(page);
1411 struct page *hpage = compound_head(page);
1412 LIST_HEAD(pagelist);
1413
1414 ret = get_any_page(page, pfn, flags);
1415 if (ret < 0)
1416 return ret;
1417 if (ret == 0)
1418 goto done;
1419
1420 if (PageHWPoison(hpage)) {
1421 put_page(hpage);
1422 pr_debug("soft offline: %#lx hugepage already poisoned\n", pfn);
1423 return -EBUSY;
1424 }
1425
1426 /* Keep page count to indicate a given hugepage is isolated. */
1427
1428 list_add(&hpage->lru, &pagelist);
1429 ret = migrate_huge_pages(&pagelist, new_page, MPOL_MF_MOVE_ALL, 0,
1430 true);
1431 if (ret) {
1432 struct page *page1, *page2;
1433 list_for_each_entry_safe(page1, page2, &pagelist, lru)
1434 put_page(page1);
1435
1436 pr_debug("soft offline: %#lx: migration failed %d, type %lx\n",
1437 pfn, ret, page->flags);
1438 if (ret > 0)
1439 ret = -EIO;
1440 return ret;
1441 }
1442done:
1443 if (!PageHWPoison(hpage))
1444 atomic_long_add(1 << compound_trans_order(hpage), &mce_bad_pages);
1445 set_page_hwpoison_huge_page(hpage);
1446 dequeue_hwpoisoned_huge_page(hpage);
1447 /* keep elevated page count for bad page */
1448 return ret;
1449}
1450
1451/**
1452 * soft_offline_page - Soft offline a page.
1453 * @page: page to offline
1454 * @flags: flags. Same as memory_failure().
1455 *
1456 * Returns 0 on success, otherwise negated errno.
1457 *
1458 * Soft offline a page, by migration or invalidation,
1459 * without killing anything. This is for the case when
1460 * a page is not corrupted yet (so it's still valid to access),
1461 * but has had a number of corrected errors and is better taken
1462 * out.
1463 *
1464 * The actual policy on when to do that is maintained by
1465 * user space.
1466 *
1467 * This should never impact any application or cause data loss,
1468 * however it might take some time.
1469 *
1470 * This is not a 100% solution for all memory, but tries to be
1471 * ``good enough'' for the majority of memory.
1472 */
1473int soft_offline_page(struct page *page, int flags)
1474{
1475 int ret;
1476 unsigned long pfn = page_to_pfn(page);
1477
1478 if (PageHuge(page))
1479 return soft_offline_huge_page(page, flags);
1480
1481 ret = get_any_page(page, pfn, flags);
1482 if (ret < 0)
1483 return ret;
1484 if (ret == 0)
1485 goto done;
1486
1487 /*
1488 * Page cache page we can handle?
1489 */
1490 if (!PageLRU(page)) {
1491 /*
1492 * Try to free it.
1493 */
1494 put_page(page);
1495 shake_page(page, 1);
1496
1497 /*
1498 * Did it turn free?
1499 */
1500 ret = get_any_page(page, pfn, 0);
1501 if (ret < 0)
1502 return ret;
1503 if (ret == 0)
1504 goto done;
1505 }
1506 if (!PageLRU(page)) {
1507 pr_info("soft_offline: %#lx: unknown non LRU page type %lx\n",
1508 pfn, page->flags);
1509 return -EIO;
1510 }
1511
1512 lock_page(page);
1513 wait_on_page_writeback(page);
1514
1515 /*
1516 * Synchronized using the page lock with memory_failure()
1517 */
1518 if (PageHWPoison(page)) {
1519 unlock_page(page);
1520 put_page(page);
1521 pr_info("soft offline: %#lx page already poisoned\n", pfn);
1522 return -EBUSY;
1523 }
1524
1525 /*
1526 * Try to invalidate first. This should work for
1527 * non dirty unmapped page cache pages.
1528 */
1529 ret = invalidate_inode_page(page);
1530 unlock_page(page);
1531 /*
1532 * RED-PEN would be better to keep it isolated here, but we
1533 * would need to fix isolation locking first.
1534 */
1535 if (ret == 1) {
1536 put_page(page);
1537 ret = 0;
1538 pr_info("soft_offline: %#lx: invalidated\n", pfn);
1539 goto done;
1540 }
1541
1542 /*
1543 * Simple invalidation didn't work.
1544 * Try to migrate to a new page instead. migrate.c
1545 * handles a large number of cases for us.
1546 */
1547 ret = isolate_lru_page(page);
1548 /*
1549 * Drop page reference which is came from get_any_page()
1550 * successful isolate_lru_page() already took another one.
1551 */
1552 put_page(page);
1553 if (!ret) {
1554 LIST_HEAD(pagelist);
1555 inc_zone_page_state(page, NR_ISOLATED_ANON +
1556 page_is_file_cache(page));
1557 list_add(&page->lru, &pagelist);
1558 ret = migrate_pages(&pagelist, new_page, MPOL_MF_MOVE_ALL,
1559 0, true);
1560 if (ret) {
1561 putback_lru_pages(&pagelist);
1562 pr_info("soft offline: %#lx: migration failed %d, type %lx\n",
1563 pfn, ret, page->flags);
1564 if (ret > 0)
1565 ret = -EIO;
1566 }
1567 } else {
1568 pr_info("soft offline: %#lx: isolation failed: %d, page count %d, type %lx\n",
1569 pfn, ret, page_count(page), page->flags);
1570 }
1571 if (ret)
1572 return ret;
1573
1574done:
1575 atomic_long_add(1, &mce_bad_pages);
1576 SetPageHWPoison(page);
1577 /* keep elevated page count for bad page */
1578 return ret;
1579}
1// SPDX-License-Identifier: GPL-2.0-only
2/*
3 * Copyright (C) 2008, 2009 Intel Corporation
4 * Authors: Andi Kleen, Fengguang Wu
5 *
6 * High level machine check handler. Handles pages reported by the
7 * hardware as being corrupted usually due to a multi-bit ECC memory or cache
8 * failure.
9 *
10 * In addition there is a "soft offline" entry point that allows stop using
11 * not-yet-corrupted-by-suspicious pages without killing anything.
12 *
13 * Handles page cache pages in various states. The tricky part
14 * here is that we can access any page asynchronously in respect to
15 * other VM users, because memory failures could happen anytime and
16 * anywhere. This could violate some of their assumptions. This is why
17 * this code has to be extremely careful. Generally it tries to use
18 * normal locking rules, as in get the standard locks, even if that means
19 * the error handling takes potentially a long time.
20 *
21 * It can be very tempting to add handling for obscure cases here.
22 * In general any code for handling new cases should only be added iff:
23 * - You know how to test it.
24 * - You have a test that can be added to mce-test
25 * https://git.kernel.org/cgit/utils/cpu/mce/mce-test.git/
26 * - The case actually shows up as a frequent (top 10) page state in
27 * tools/vm/page-types when running a real workload.
28 *
29 * There are several operations here with exponential complexity because
30 * of unsuitable VM data structures. For example the operation to map back
31 * from RMAP chains to processes has to walk the complete process list and
32 * has non linear complexity with the number. But since memory corruptions
33 * are rare we hope to get away with this. This avoids impacting the core
34 * VM.
35 */
36#include <linux/kernel.h>
37#include <linux/mm.h>
38#include <linux/page-flags.h>
39#include <linux/kernel-page-flags.h>
40#include <linux/sched/signal.h>
41#include <linux/sched/task.h>
42#include <linux/ksm.h>
43#include <linux/rmap.h>
44#include <linux/export.h>
45#include <linux/pagemap.h>
46#include <linux/swap.h>
47#include <linux/backing-dev.h>
48#include <linux/migrate.h>
49#include <linux/suspend.h>
50#include <linux/slab.h>
51#include <linux/swapops.h>
52#include <linux/hugetlb.h>
53#include <linux/memory_hotplug.h>
54#include <linux/mm_inline.h>
55#include <linux/memremap.h>
56#include <linux/kfifo.h>
57#include <linux/ratelimit.h>
58#include <linux/page-isolation.h>
59#include <linux/pagewalk.h>
60#include "internal.h"
61#include "ras/ras_event.h"
62
63int sysctl_memory_failure_early_kill __read_mostly = 0;
64
65int sysctl_memory_failure_recovery __read_mostly = 1;
66
67atomic_long_t num_poisoned_pages __read_mostly = ATOMIC_LONG_INIT(0);
68
69static bool __page_handle_poison(struct page *page)
70{
71 int ret;
72
73 zone_pcp_disable(page_zone(page));
74 ret = dissolve_free_huge_page(page);
75 if (!ret)
76 ret = take_page_off_buddy(page);
77 zone_pcp_enable(page_zone(page));
78
79 return ret > 0;
80}
81
82static bool page_handle_poison(struct page *page, bool hugepage_or_freepage, bool release)
83{
84 if (hugepage_or_freepage) {
85 /*
86 * Doing this check for free pages is also fine since dissolve_free_huge_page
87 * returns 0 for non-hugetlb pages as well.
88 */
89 if (!__page_handle_poison(page))
90 /*
91 * We could fail to take off the target page from buddy
92 * for example due to racy page allocation, but that's
93 * acceptable because soft-offlined page is not broken
94 * and if someone really want to use it, they should
95 * take it.
96 */
97 return false;
98 }
99
100 SetPageHWPoison(page);
101 if (release)
102 put_page(page);
103 page_ref_inc(page);
104 num_poisoned_pages_inc();
105
106 return true;
107}
108
109#if defined(CONFIG_HWPOISON_INJECT) || defined(CONFIG_HWPOISON_INJECT_MODULE)
110
111u32 hwpoison_filter_enable = 0;
112u32 hwpoison_filter_dev_major = ~0U;
113u32 hwpoison_filter_dev_minor = ~0U;
114u64 hwpoison_filter_flags_mask;
115u64 hwpoison_filter_flags_value;
116EXPORT_SYMBOL_GPL(hwpoison_filter_enable);
117EXPORT_SYMBOL_GPL(hwpoison_filter_dev_major);
118EXPORT_SYMBOL_GPL(hwpoison_filter_dev_minor);
119EXPORT_SYMBOL_GPL(hwpoison_filter_flags_mask);
120EXPORT_SYMBOL_GPL(hwpoison_filter_flags_value);
121
122static int hwpoison_filter_dev(struct page *p)
123{
124 struct address_space *mapping;
125 dev_t dev;
126
127 if (hwpoison_filter_dev_major == ~0U &&
128 hwpoison_filter_dev_minor == ~0U)
129 return 0;
130
131 /*
132 * page_mapping() does not accept slab pages.
133 */
134 if (PageSlab(p))
135 return -EINVAL;
136
137 mapping = page_mapping(p);
138 if (mapping == NULL || mapping->host == NULL)
139 return -EINVAL;
140
141 dev = mapping->host->i_sb->s_dev;
142 if (hwpoison_filter_dev_major != ~0U &&
143 hwpoison_filter_dev_major != MAJOR(dev))
144 return -EINVAL;
145 if (hwpoison_filter_dev_minor != ~0U &&
146 hwpoison_filter_dev_minor != MINOR(dev))
147 return -EINVAL;
148
149 return 0;
150}
151
152static int hwpoison_filter_flags(struct page *p)
153{
154 if (!hwpoison_filter_flags_mask)
155 return 0;
156
157 if ((stable_page_flags(p) & hwpoison_filter_flags_mask) ==
158 hwpoison_filter_flags_value)
159 return 0;
160 else
161 return -EINVAL;
162}
163
164/*
165 * This allows stress tests to limit test scope to a collection of tasks
166 * by putting them under some memcg. This prevents killing unrelated/important
167 * processes such as /sbin/init. Note that the target task may share clean
168 * pages with init (eg. libc text), which is harmless. If the target task
169 * share _dirty_ pages with another task B, the test scheme must make sure B
170 * is also included in the memcg. At last, due to race conditions this filter
171 * can only guarantee that the page either belongs to the memcg tasks, or is
172 * a freed page.
173 */
174#ifdef CONFIG_MEMCG
175u64 hwpoison_filter_memcg;
176EXPORT_SYMBOL_GPL(hwpoison_filter_memcg);
177static int hwpoison_filter_task(struct page *p)
178{
179 if (!hwpoison_filter_memcg)
180 return 0;
181
182 if (page_cgroup_ino(p) != hwpoison_filter_memcg)
183 return -EINVAL;
184
185 return 0;
186}
187#else
188static int hwpoison_filter_task(struct page *p) { return 0; }
189#endif
190
191int hwpoison_filter(struct page *p)
192{
193 if (!hwpoison_filter_enable)
194 return 0;
195
196 if (hwpoison_filter_dev(p))
197 return -EINVAL;
198
199 if (hwpoison_filter_flags(p))
200 return -EINVAL;
201
202 if (hwpoison_filter_task(p))
203 return -EINVAL;
204
205 return 0;
206}
207#else
208int hwpoison_filter(struct page *p)
209{
210 return 0;
211}
212#endif
213
214EXPORT_SYMBOL_GPL(hwpoison_filter);
215
216/*
217 * Kill all processes that have a poisoned page mapped and then isolate
218 * the page.
219 *
220 * General strategy:
221 * Find all processes having the page mapped and kill them.
222 * But we keep a page reference around so that the page is not
223 * actually freed yet.
224 * Then stash the page away
225 *
226 * There's no convenient way to get back to mapped processes
227 * from the VMAs. So do a brute-force search over all
228 * running processes.
229 *
230 * Remember that machine checks are not common (or rather
231 * if they are common you have other problems), so this shouldn't
232 * be a performance issue.
233 *
234 * Also there are some races possible while we get from the
235 * error detection to actually handle it.
236 */
237
238struct to_kill {
239 struct list_head nd;
240 struct task_struct *tsk;
241 unsigned long addr;
242 short size_shift;
243};
244
245/*
246 * Send all the processes who have the page mapped a signal.
247 * ``action optional'' if they are not immediately affected by the error
248 * ``action required'' if error happened in current execution context
249 */
250static int kill_proc(struct to_kill *tk, unsigned long pfn, int flags)
251{
252 struct task_struct *t = tk->tsk;
253 short addr_lsb = tk->size_shift;
254 int ret = 0;
255
256 pr_err("Memory failure: %#lx: Sending SIGBUS to %s:%d due to hardware memory corruption\n",
257 pfn, t->comm, t->pid);
258
259 if (flags & MF_ACTION_REQUIRED) {
260 if (t == current)
261 ret = force_sig_mceerr(BUS_MCEERR_AR,
262 (void __user *)tk->addr, addr_lsb);
263 else
264 /* Signal other processes sharing the page if they have PF_MCE_EARLY set. */
265 ret = send_sig_mceerr(BUS_MCEERR_AO, (void __user *)tk->addr,
266 addr_lsb, t);
267 } else {
268 /*
269 * Don't use force here, it's convenient if the signal
270 * can be temporarily blocked.
271 * This could cause a loop when the user sets SIGBUS
272 * to SIG_IGN, but hopefully no one will do that?
273 */
274 ret = send_sig_mceerr(BUS_MCEERR_AO, (void __user *)tk->addr,
275 addr_lsb, t); /* synchronous? */
276 }
277 if (ret < 0)
278 pr_info("Memory failure: Error sending signal to %s:%d: %d\n",
279 t->comm, t->pid, ret);
280 return ret;
281}
282
283/*
284 * Unknown page type encountered. Try to check whether it can turn PageLRU by
285 * lru_add_drain_all, or a free page by reclaiming slabs when possible.
286 */
287void shake_page(struct page *p, int access)
288{
289 if (PageHuge(p))
290 return;
291
292 if (!PageSlab(p)) {
293 lru_add_drain_all();
294 if (PageLRU(p) || is_free_buddy_page(p))
295 return;
296 }
297
298 /*
299 * Only call shrink_node_slabs here (which would also shrink
300 * other caches) if access is not potentially fatal.
301 */
302 if (access)
303 drop_slab_node(page_to_nid(p));
304}
305EXPORT_SYMBOL_GPL(shake_page);
306
307static unsigned long dev_pagemap_mapping_shift(struct page *page,
308 struct vm_area_struct *vma)
309{
310 unsigned long address = vma_address(page, vma);
311 pgd_t *pgd;
312 p4d_t *p4d;
313 pud_t *pud;
314 pmd_t *pmd;
315 pte_t *pte;
316
317 pgd = pgd_offset(vma->vm_mm, address);
318 if (!pgd_present(*pgd))
319 return 0;
320 p4d = p4d_offset(pgd, address);
321 if (!p4d_present(*p4d))
322 return 0;
323 pud = pud_offset(p4d, address);
324 if (!pud_present(*pud))
325 return 0;
326 if (pud_devmap(*pud))
327 return PUD_SHIFT;
328 pmd = pmd_offset(pud, address);
329 if (!pmd_present(*pmd))
330 return 0;
331 if (pmd_devmap(*pmd))
332 return PMD_SHIFT;
333 pte = pte_offset_map(pmd, address);
334 if (!pte_present(*pte))
335 return 0;
336 if (pte_devmap(*pte))
337 return PAGE_SHIFT;
338 return 0;
339}
340
341/*
342 * Failure handling: if we can't find or can't kill a process there's
343 * not much we can do. We just print a message and ignore otherwise.
344 */
345
346/*
347 * Schedule a process for later kill.
348 * Uses GFP_ATOMIC allocations to avoid potential recursions in the VM.
349 */
350static void add_to_kill(struct task_struct *tsk, struct page *p,
351 struct vm_area_struct *vma,
352 struct list_head *to_kill)
353{
354 struct to_kill *tk;
355
356 tk = kmalloc(sizeof(struct to_kill), GFP_ATOMIC);
357 if (!tk) {
358 pr_err("Memory failure: Out of memory while machine check handling\n");
359 return;
360 }
361
362 tk->addr = page_address_in_vma(p, vma);
363 if (is_zone_device_page(p))
364 tk->size_shift = dev_pagemap_mapping_shift(p, vma);
365 else
366 tk->size_shift = page_shift(compound_head(p));
367
368 /*
369 * Send SIGKILL if "tk->addr == -EFAULT". Also, as
370 * "tk->size_shift" is always non-zero for !is_zone_device_page(),
371 * so "tk->size_shift == 0" effectively checks no mapping on
372 * ZONE_DEVICE. Indeed, when a devdax page is mmapped N times
373 * to a process' address space, it's possible not all N VMAs
374 * contain mappings for the page, but at least one VMA does.
375 * Only deliver SIGBUS with payload derived from the VMA that
376 * has a mapping for the page.
377 */
378 if (tk->addr == -EFAULT) {
379 pr_info("Memory failure: Unable to find user space address %lx in %s\n",
380 page_to_pfn(p), tsk->comm);
381 } else if (tk->size_shift == 0) {
382 kfree(tk);
383 return;
384 }
385
386 get_task_struct(tsk);
387 tk->tsk = tsk;
388 list_add_tail(&tk->nd, to_kill);
389}
390
391/*
392 * Kill the processes that have been collected earlier.
393 *
394 * Only do anything when DOIT is set, otherwise just free the list
395 * (this is used for clean pages which do not need killing)
396 * Also when FAIL is set do a force kill because something went
397 * wrong earlier.
398 */
399static void kill_procs(struct list_head *to_kill, int forcekill, bool fail,
400 unsigned long pfn, int flags)
401{
402 struct to_kill *tk, *next;
403
404 list_for_each_entry_safe (tk, next, to_kill, nd) {
405 if (forcekill) {
406 /*
407 * In case something went wrong with munmapping
408 * make sure the process doesn't catch the
409 * signal and then access the memory. Just kill it.
410 */
411 if (fail || tk->addr == -EFAULT) {
412 pr_err("Memory failure: %#lx: forcibly killing %s:%d because of failure to unmap corrupted page\n",
413 pfn, tk->tsk->comm, tk->tsk->pid);
414 do_send_sig_info(SIGKILL, SEND_SIG_PRIV,
415 tk->tsk, PIDTYPE_PID);
416 }
417
418 /*
419 * In theory the process could have mapped
420 * something else on the address in-between. We could
421 * check for that, but we need to tell the
422 * process anyways.
423 */
424 else if (kill_proc(tk, pfn, flags) < 0)
425 pr_err("Memory failure: %#lx: Cannot send advisory machine check signal to %s:%d\n",
426 pfn, tk->tsk->comm, tk->tsk->pid);
427 }
428 put_task_struct(tk->tsk);
429 kfree(tk);
430 }
431}
432
433/*
434 * Find a dedicated thread which is supposed to handle SIGBUS(BUS_MCEERR_AO)
435 * on behalf of the thread group. Return task_struct of the (first found)
436 * dedicated thread if found, and return NULL otherwise.
437 *
438 * We already hold read_lock(&tasklist_lock) in the caller, so we don't
439 * have to call rcu_read_lock/unlock() in this function.
440 */
441static struct task_struct *find_early_kill_thread(struct task_struct *tsk)
442{
443 struct task_struct *t;
444
445 for_each_thread(tsk, t) {
446 if (t->flags & PF_MCE_PROCESS) {
447 if (t->flags & PF_MCE_EARLY)
448 return t;
449 } else {
450 if (sysctl_memory_failure_early_kill)
451 return t;
452 }
453 }
454 return NULL;
455}
456
457/*
458 * Determine whether a given process is "early kill" process which expects
459 * to be signaled when some page under the process is hwpoisoned.
460 * Return task_struct of the dedicated thread (main thread unless explicitly
461 * specified) if the process is "early kill" and otherwise returns NULL.
462 *
463 * Note that the above is true for Action Optional case. For Action Required
464 * case, it's only meaningful to the current thread which need to be signaled
465 * with SIGBUS, this error is Action Optional for other non current
466 * processes sharing the same error page,if the process is "early kill", the
467 * task_struct of the dedicated thread will also be returned.
468 */
469static struct task_struct *task_early_kill(struct task_struct *tsk,
470 int force_early)
471{
472 if (!tsk->mm)
473 return NULL;
474 /*
475 * Comparing ->mm here because current task might represent
476 * a subthread, while tsk always points to the main thread.
477 */
478 if (force_early && tsk->mm == current->mm)
479 return current;
480
481 return find_early_kill_thread(tsk);
482}
483
484/*
485 * Collect processes when the error hit an anonymous page.
486 */
487static void collect_procs_anon(struct page *page, struct list_head *to_kill,
488 int force_early)
489{
490 struct vm_area_struct *vma;
491 struct task_struct *tsk;
492 struct anon_vma *av;
493 pgoff_t pgoff;
494
495 av = page_lock_anon_vma_read(page);
496 if (av == NULL) /* Not actually mapped anymore */
497 return;
498
499 pgoff = page_to_pgoff(page);
500 read_lock(&tasklist_lock);
501 for_each_process (tsk) {
502 struct anon_vma_chain *vmac;
503 struct task_struct *t = task_early_kill(tsk, force_early);
504
505 if (!t)
506 continue;
507 anon_vma_interval_tree_foreach(vmac, &av->rb_root,
508 pgoff, pgoff) {
509 vma = vmac->vma;
510 if (!page_mapped_in_vma(page, vma))
511 continue;
512 if (vma->vm_mm == t->mm)
513 add_to_kill(t, page, vma, to_kill);
514 }
515 }
516 read_unlock(&tasklist_lock);
517 page_unlock_anon_vma_read(av);
518}
519
520/*
521 * Collect processes when the error hit a file mapped page.
522 */
523static void collect_procs_file(struct page *page, struct list_head *to_kill,
524 int force_early)
525{
526 struct vm_area_struct *vma;
527 struct task_struct *tsk;
528 struct address_space *mapping = page->mapping;
529 pgoff_t pgoff;
530
531 i_mmap_lock_read(mapping);
532 read_lock(&tasklist_lock);
533 pgoff = page_to_pgoff(page);
534 for_each_process(tsk) {
535 struct task_struct *t = task_early_kill(tsk, force_early);
536
537 if (!t)
538 continue;
539 vma_interval_tree_foreach(vma, &mapping->i_mmap, pgoff,
540 pgoff) {
541 /*
542 * Send early kill signal to tasks where a vma covers
543 * the page but the corrupted page is not necessarily
544 * mapped it in its pte.
545 * Assume applications who requested early kill want
546 * to be informed of all such data corruptions.
547 */
548 if (vma->vm_mm == t->mm)
549 add_to_kill(t, page, vma, to_kill);
550 }
551 }
552 read_unlock(&tasklist_lock);
553 i_mmap_unlock_read(mapping);
554}
555
556/*
557 * Collect the processes who have the corrupted page mapped to kill.
558 */
559static void collect_procs(struct page *page, struct list_head *tokill,
560 int force_early)
561{
562 if (!page->mapping)
563 return;
564
565 if (PageAnon(page))
566 collect_procs_anon(page, tokill, force_early);
567 else
568 collect_procs_file(page, tokill, force_early);
569}
570
571struct hwp_walk {
572 struct to_kill tk;
573 unsigned long pfn;
574 int flags;
575};
576
577static void set_to_kill(struct to_kill *tk, unsigned long addr, short shift)
578{
579 tk->addr = addr;
580 tk->size_shift = shift;
581}
582
583static int check_hwpoisoned_entry(pte_t pte, unsigned long addr, short shift,
584 unsigned long poisoned_pfn, struct to_kill *tk)
585{
586 unsigned long pfn = 0;
587
588 if (pte_present(pte)) {
589 pfn = pte_pfn(pte);
590 } else {
591 swp_entry_t swp = pte_to_swp_entry(pte);
592
593 if (is_hwpoison_entry(swp))
594 pfn = hwpoison_entry_to_pfn(swp);
595 }
596
597 if (!pfn || pfn != poisoned_pfn)
598 return 0;
599
600 set_to_kill(tk, addr, shift);
601 return 1;
602}
603
604#ifdef CONFIG_TRANSPARENT_HUGEPAGE
605static int check_hwpoisoned_pmd_entry(pmd_t *pmdp, unsigned long addr,
606 struct hwp_walk *hwp)
607{
608 pmd_t pmd = *pmdp;
609 unsigned long pfn;
610 unsigned long hwpoison_vaddr;
611
612 if (!pmd_present(pmd))
613 return 0;
614 pfn = pmd_pfn(pmd);
615 if (pfn <= hwp->pfn && hwp->pfn < pfn + HPAGE_PMD_NR) {
616 hwpoison_vaddr = addr + ((hwp->pfn - pfn) << PAGE_SHIFT);
617 set_to_kill(&hwp->tk, hwpoison_vaddr, PAGE_SHIFT);
618 return 1;
619 }
620 return 0;
621}
622#else
623static int check_hwpoisoned_pmd_entry(pmd_t *pmdp, unsigned long addr,
624 struct hwp_walk *hwp)
625{
626 return 0;
627}
628#endif
629
630static int hwpoison_pte_range(pmd_t *pmdp, unsigned long addr,
631 unsigned long end, struct mm_walk *walk)
632{
633 struct hwp_walk *hwp = (struct hwp_walk *)walk->private;
634 int ret = 0;
635 pte_t *ptep;
636 spinlock_t *ptl;
637
638 ptl = pmd_trans_huge_lock(pmdp, walk->vma);
639 if (ptl) {
640 ret = check_hwpoisoned_pmd_entry(pmdp, addr, hwp);
641 spin_unlock(ptl);
642 goto out;
643 }
644
645 if (pmd_trans_unstable(pmdp))
646 goto out;
647
648 ptep = pte_offset_map_lock(walk->vma->vm_mm, pmdp, addr, &ptl);
649 for (; addr != end; ptep++, addr += PAGE_SIZE) {
650 ret = check_hwpoisoned_entry(*ptep, addr, PAGE_SHIFT,
651 hwp->pfn, &hwp->tk);
652 if (ret == 1)
653 break;
654 }
655 pte_unmap_unlock(ptep - 1, ptl);
656out:
657 cond_resched();
658 return ret;
659}
660
661#ifdef CONFIG_HUGETLB_PAGE
662static int hwpoison_hugetlb_range(pte_t *ptep, unsigned long hmask,
663 unsigned long addr, unsigned long end,
664 struct mm_walk *walk)
665{
666 struct hwp_walk *hwp = (struct hwp_walk *)walk->private;
667 pte_t pte = huge_ptep_get(ptep);
668 struct hstate *h = hstate_vma(walk->vma);
669
670 return check_hwpoisoned_entry(pte, addr, huge_page_shift(h),
671 hwp->pfn, &hwp->tk);
672}
673#else
674#define hwpoison_hugetlb_range NULL
675#endif
676
677static struct mm_walk_ops hwp_walk_ops = {
678 .pmd_entry = hwpoison_pte_range,
679 .hugetlb_entry = hwpoison_hugetlb_range,
680};
681
682/*
683 * Sends SIGBUS to the current process with error info.
684 *
685 * This function is intended to handle "Action Required" MCEs on already
686 * hardware poisoned pages. They could happen, for example, when
687 * memory_failure() failed to unmap the error page at the first call, or
688 * when multiple local machine checks happened on different CPUs.
689 *
690 * MCE handler currently has no easy access to the error virtual address,
691 * so this function walks page table to find it. The returned virtual address
692 * is proper in most cases, but it could be wrong when the application
693 * process has multiple entries mapping the error page.
694 */
695static int kill_accessing_process(struct task_struct *p, unsigned long pfn,
696 int flags)
697{
698 int ret;
699 struct hwp_walk priv = {
700 .pfn = pfn,
701 };
702 priv.tk.tsk = p;
703
704 mmap_read_lock(p->mm);
705 ret = walk_page_range(p->mm, 0, TASK_SIZE, &hwp_walk_ops,
706 (void *)&priv);
707 if (ret == 1 && priv.tk.addr)
708 kill_proc(&priv.tk, pfn, flags);
709 mmap_read_unlock(p->mm);
710 return ret ? -EFAULT : -EHWPOISON;
711}
712
713static const char *action_name[] = {
714 [MF_IGNORED] = "Ignored",
715 [MF_FAILED] = "Failed",
716 [MF_DELAYED] = "Delayed",
717 [MF_RECOVERED] = "Recovered",
718};
719
720static const char * const action_page_types[] = {
721 [MF_MSG_KERNEL] = "reserved kernel page",
722 [MF_MSG_KERNEL_HIGH_ORDER] = "high-order kernel page",
723 [MF_MSG_SLAB] = "kernel slab page",
724 [MF_MSG_DIFFERENT_COMPOUND] = "different compound page after locking",
725 [MF_MSG_POISONED_HUGE] = "huge page already hardware poisoned",
726 [MF_MSG_HUGE] = "huge page",
727 [MF_MSG_FREE_HUGE] = "free huge page",
728 [MF_MSG_NON_PMD_HUGE] = "non-pmd-sized huge page",
729 [MF_MSG_UNMAP_FAILED] = "unmapping failed page",
730 [MF_MSG_DIRTY_SWAPCACHE] = "dirty swapcache page",
731 [MF_MSG_CLEAN_SWAPCACHE] = "clean swapcache page",
732 [MF_MSG_DIRTY_MLOCKED_LRU] = "dirty mlocked LRU page",
733 [MF_MSG_CLEAN_MLOCKED_LRU] = "clean mlocked LRU page",
734 [MF_MSG_DIRTY_UNEVICTABLE_LRU] = "dirty unevictable LRU page",
735 [MF_MSG_CLEAN_UNEVICTABLE_LRU] = "clean unevictable LRU page",
736 [MF_MSG_DIRTY_LRU] = "dirty LRU page",
737 [MF_MSG_CLEAN_LRU] = "clean LRU page",
738 [MF_MSG_TRUNCATED_LRU] = "already truncated LRU page",
739 [MF_MSG_BUDDY] = "free buddy page",
740 [MF_MSG_BUDDY_2ND] = "free buddy page (2nd try)",
741 [MF_MSG_DAX] = "dax page",
742 [MF_MSG_UNSPLIT_THP] = "unsplit thp",
743 [MF_MSG_UNKNOWN] = "unknown page",
744};
745
746/*
747 * XXX: It is possible that a page is isolated from LRU cache,
748 * and then kept in swap cache or failed to remove from page cache.
749 * The page count will stop it from being freed by unpoison.
750 * Stress tests should be aware of this memory leak problem.
751 */
752static int delete_from_lru_cache(struct page *p)
753{
754 if (!isolate_lru_page(p)) {
755 /*
756 * Clear sensible page flags, so that the buddy system won't
757 * complain when the page is unpoison-and-freed.
758 */
759 ClearPageActive(p);
760 ClearPageUnevictable(p);
761
762 /*
763 * Poisoned page might never drop its ref count to 0 so we have
764 * to uncharge it manually from its memcg.
765 */
766 mem_cgroup_uncharge(p);
767
768 /*
769 * drop the page count elevated by isolate_lru_page()
770 */
771 put_page(p);
772 return 0;
773 }
774 return -EIO;
775}
776
777static int truncate_error_page(struct page *p, unsigned long pfn,
778 struct address_space *mapping)
779{
780 int ret = MF_FAILED;
781
782 if (mapping->a_ops->error_remove_page) {
783 int err = mapping->a_ops->error_remove_page(mapping, p);
784
785 if (err != 0) {
786 pr_info("Memory failure: %#lx: Failed to punch page: %d\n",
787 pfn, err);
788 } else if (page_has_private(p) &&
789 !try_to_release_page(p, GFP_NOIO)) {
790 pr_info("Memory failure: %#lx: failed to release buffers\n",
791 pfn);
792 } else {
793 ret = MF_RECOVERED;
794 }
795 } else {
796 /*
797 * If the file system doesn't support it just invalidate
798 * This fails on dirty or anything with private pages
799 */
800 if (invalidate_inode_page(p))
801 ret = MF_RECOVERED;
802 else
803 pr_info("Memory failure: %#lx: Failed to invalidate\n",
804 pfn);
805 }
806
807 return ret;
808}
809
810/*
811 * Error hit kernel page.
812 * Do nothing, try to be lucky and not touch this instead. For a few cases we
813 * could be more sophisticated.
814 */
815static int me_kernel(struct page *p, unsigned long pfn)
816{
817 unlock_page(p);
818 return MF_IGNORED;
819}
820
821/*
822 * Page in unknown state. Do nothing.
823 */
824static int me_unknown(struct page *p, unsigned long pfn)
825{
826 pr_err("Memory failure: %#lx: Unknown page state\n", pfn);
827 unlock_page(p);
828 return MF_FAILED;
829}
830
831/*
832 * Clean (or cleaned) page cache page.
833 */
834static int me_pagecache_clean(struct page *p, unsigned long pfn)
835{
836 int ret;
837 struct address_space *mapping;
838
839 delete_from_lru_cache(p);
840
841 /*
842 * For anonymous pages we're done the only reference left
843 * should be the one m_f() holds.
844 */
845 if (PageAnon(p)) {
846 ret = MF_RECOVERED;
847 goto out;
848 }
849
850 /*
851 * Now truncate the page in the page cache. This is really
852 * more like a "temporary hole punch"
853 * Don't do this for block devices when someone else
854 * has a reference, because it could be file system metadata
855 * and that's not safe to truncate.
856 */
857 mapping = page_mapping(p);
858 if (!mapping) {
859 /*
860 * Page has been teared down in the meanwhile
861 */
862 ret = MF_FAILED;
863 goto out;
864 }
865
866 /*
867 * Truncation is a bit tricky. Enable it per file system for now.
868 *
869 * Open: to take i_mutex or not for this? Right now we don't.
870 */
871 ret = truncate_error_page(p, pfn, mapping);
872out:
873 unlock_page(p);
874 return ret;
875}
876
877/*
878 * Dirty pagecache page
879 * Issues: when the error hit a hole page the error is not properly
880 * propagated.
881 */
882static int me_pagecache_dirty(struct page *p, unsigned long pfn)
883{
884 struct address_space *mapping = page_mapping(p);
885
886 SetPageError(p);
887 /* TBD: print more information about the file. */
888 if (mapping) {
889 /*
890 * IO error will be reported by write(), fsync(), etc.
891 * who check the mapping.
892 * This way the application knows that something went
893 * wrong with its dirty file data.
894 *
895 * There's one open issue:
896 *
897 * The EIO will be only reported on the next IO
898 * operation and then cleared through the IO map.
899 * Normally Linux has two mechanisms to pass IO error
900 * first through the AS_EIO flag in the address space
901 * and then through the PageError flag in the page.
902 * Since we drop pages on memory failure handling the
903 * only mechanism open to use is through AS_AIO.
904 *
905 * This has the disadvantage that it gets cleared on
906 * the first operation that returns an error, while
907 * the PageError bit is more sticky and only cleared
908 * when the page is reread or dropped. If an
909 * application assumes it will always get error on
910 * fsync, but does other operations on the fd before
911 * and the page is dropped between then the error
912 * will not be properly reported.
913 *
914 * This can already happen even without hwpoisoned
915 * pages: first on metadata IO errors (which only
916 * report through AS_EIO) or when the page is dropped
917 * at the wrong time.
918 *
919 * So right now we assume that the application DTRT on
920 * the first EIO, but we're not worse than other parts
921 * of the kernel.
922 */
923 mapping_set_error(mapping, -EIO);
924 }
925
926 return me_pagecache_clean(p, pfn);
927}
928
929/*
930 * Clean and dirty swap cache.
931 *
932 * Dirty swap cache page is tricky to handle. The page could live both in page
933 * cache and swap cache(ie. page is freshly swapped in). So it could be
934 * referenced concurrently by 2 types of PTEs:
935 * normal PTEs and swap PTEs. We try to handle them consistently by calling
936 * try_to_unmap(TTU_IGNORE_HWPOISON) to convert the normal PTEs to swap PTEs,
937 * and then
938 * - clear dirty bit to prevent IO
939 * - remove from LRU
940 * - but keep in the swap cache, so that when we return to it on
941 * a later page fault, we know the application is accessing
942 * corrupted data and shall be killed (we installed simple
943 * interception code in do_swap_page to catch it).
944 *
945 * Clean swap cache pages can be directly isolated. A later page fault will
946 * bring in the known good data from disk.
947 */
948static int me_swapcache_dirty(struct page *p, unsigned long pfn)
949{
950 int ret;
951
952 ClearPageDirty(p);
953 /* Trigger EIO in shmem: */
954 ClearPageUptodate(p);
955
956 ret = delete_from_lru_cache(p) ? MF_FAILED : MF_DELAYED;
957 unlock_page(p);
958 return ret;
959}
960
961static int me_swapcache_clean(struct page *p, unsigned long pfn)
962{
963 int ret;
964
965 delete_from_swap_cache(p);
966
967 ret = delete_from_lru_cache(p) ? MF_FAILED : MF_RECOVERED;
968 unlock_page(p);
969 return ret;
970}
971
972/*
973 * Huge pages. Needs work.
974 * Issues:
975 * - Error on hugepage is contained in hugepage unit (not in raw page unit.)
976 * To narrow down kill region to one page, we need to break up pmd.
977 */
978static int me_huge_page(struct page *p, unsigned long pfn)
979{
980 int res;
981 struct page *hpage = compound_head(p);
982 struct address_space *mapping;
983
984 if (!PageHuge(hpage))
985 return MF_DELAYED;
986
987 mapping = page_mapping(hpage);
988 if (mapping) {
989 res = truncate_error_page(hpage, pfn, mapping);
990 unlock_page(hpage);
991 } else {
992 res = MF_FAILED;
993 unlock_page(hpage);
994 /*
995 * migration entry prevents later access on error anonymous
996 * hugepage, so we can free and dissolve it into buddy to
997 * save healthy subpages.
998 */
999 if (PageAnon(hpage))
1000 put_page(hpage);
1001 if (__page_handle_poison(p)) {
1002 page_ref_inc(p);
1003 res = MF_RECOVERED;
1004 }
1005 }
1006
1007 return res;
1008}
1009
1010/*
1011 * Various page states we can handle.
1012 *
1013 * A page state is defined by its current page->flags bits.
1014 * The table matches them in order and calls the right handler.
1015 *
1016 * This is quite tricky because we can access page at any time
1017 * in its live cycle, so all accesses have to be extremely careful.
1018 *
1019 * This is not complete. More states could be added.
1020 * For any missing state don't attempt recovery.
1021 */
1022
1023#define dirty (1UL << PG_dirty)
1024#define sc ((1UL << PG_swapcache) | (1UL << PG_swapbacked))
1025#define unevict (1UL << PG_unevictable)
1026#define mlock (1UL << PG_mlocked)
1027#define lru (1UL << PG_lru)
1028#define head (1UL << PG_head)
1029#define slab (1UL << PG_slab)
1030#define reserved (1UL << PG_reserved)
1031
1032static struct page_state {
1033 unsigned long mask;
1034 unsigned long res;
1035 enum mf_action_page_type type;
1036
1037 /* Callback ->action() has to unlock the relevant page inside it. */
1038 int (*action)(struct page *p, unsigned long pfn);
1039} error_states[] = {
1040 { reserved, reserved, MF_MSG_KERNEL, me_kernel },
1041 /*
1042 * free pages are specially detected outside this table:
1043 * PG_buddy pages only make a small fraction of all free pages.
1044 */
1045
1046 /*
1047 * Could in theory check if slab page is free or if we can drop
1048 * currently unused objects without touching them. But just
1049 * treat it as standard kernel for now.
1050 */
1051 { slab, slab, MF_MSG_SLAB, me_kernel },
1052
1053 { head, head, MF_MSG_HUGE, me_huge_page },
1054
1055 { sc|dirty, sc|dirty, MF_MSG_DIRTY_SWAPCACHE, me_swapcache_dirty },
1056 { sc|dirty, sc, MF_MSG_CLEAN_SWAPCACHE, me_swapcache_clean },
1057
1058 { mlock|dirty, mlock|dirty, MF_MSG_DIRTY_MLOCKED_LRU, me_pagecache_dirty },
1059 { mlock|dirty, mlock, MF_MSG_CLEAN_MLOCKED_LRU, me_pagecache_clean },
1060
1061 { unevict|dirty, unevict|dirty, MF_MSG_DIRTY_UNEVICTABLE_LRU, me_pagecache_dirty },
1062 { unevict|dirty, unevict, MF_MSG_CLEAN_UNEVICTABLE_LRU, me_pagecache_clean },
1063
1064 { lru|dirty, lru|dirty, MF_MSG_DIRTY_LRU, me_pagecache_dirty },
1065 { lru|dirty, lru, MF_MSG_CLEAN_LRU, me_pagecache_clean },
1066
1067 /*
1068 * Catchall entry: must be at end.
1069 */
1070 { 0, 0, MF_MSG_UNKNOWN, me_unknown },
1071};
1072
1073#undef dirty
1074#undef sc
1075#undef unevict
1076#undef mlock
1077#undef lru
1078#undef head
1079#undef slab
1080#undef reserved
1081
1082/*
1083 * "Dirty/Clean" indication is not 100% accurate due to the possibility of
1084 * setting PG_dirty outside page lock. See also comment above set_page_dirty().
1085 */
1086static void action_result(unsigned long pfn, enum mf_action_page_type type,
1087 enum mf_result result)
1088{
1089 trace_memory_failure_event(pfn, type, result);
1090
1091 pr_err("Memory failure: %#lx: recovery action for %s: %s\n",
1092 pfn, action_page_types[type], action_name[result]);
1093}
1094
1095static int page_action(struct page_state *ps, struct page *p,
1096 unsigned long pfn)
1097{
1098 int result;
1099 int count;
1100
1101 /* page p should be unlocked after returning from ps->action(). */
1102 result = ps->action(p, pfn);
1103
1104 count = page_count(p) - 1;
1105 if (ps->action == me_swapcache_dirty && result == MF_DELAYED)
1106 count--;
1107 if (count > 0) {
1108 pr_err("Memory failure: %#lx: %s still referenced by %d users\n",
1109 pfn, action_page_types[ps->type], count);
1110 result = MF_FAILED;
1111 }
1112 action_result(pfn, ps->type, result);
1113
1114 /* Could do more checks here if page looks ok */
1115 /*
1116 * Could adjust zone counters here to correct for the missing page.
1117 */
1118
1119 return (result == MF_RECOVERED || result == MF_DELAYED) ? 0 : -EBUSY;
1120}
1121
1122/*
1123 * Return true if a page type of a given page is supported by hwpoison
1124 * mechanism (while handling could fail), otherwise false. This function
1125 * does not return true for hugetlb or device memory pages, so it's assumed
1126 * to be called only in the context where we never have such pages.
1127 */
1128static inline bool HWPoisonHandlable(struct page *page)
1129{
1130 return PageLRU(page) || __PageMovable(page) || is_free_buddy_page(page);
1131}
1132
1133static int __get_hwpoison_page(struct page *page)
1134{
1135 struct page *head = compound_head(page);
1136 int ret = 0;
1137 bool hugetlb = false;
1138
1139 ret = get_hwpoison_huge_page(head, &hugetlb);
1140 if (hugetlb)
1141 return ret;
1142
1143 /*
1144 * This check prevents from calling get_hwpoison_unless_zero()
1145 * for any unsupported type of page in order to reduce the risk of
1146 * unexpected races caused by taking a page refcount.
1147 */
1148 if (!HWPoisonHandlable(head))
1149 return -EBUSY;
1150
1151 if (PageTransHuge(head)) {
1152 /*
1153 * Non anonymous thp exists only in allocation/free time. We
1154 * can't handle such a case correctly, so let's give it up.
1155 * This should be better than triggering BUG_ON when kernel
1156 * tries to touch the "partially handled" page.
1157 */
1158 if (!PageAnon(head)) {
1159 pr_err("Memory failure: %#lx: non anonymous thp\n",
1160 page_to_pfn(page));
1161 return 0;
1162 }
1163 }
1164
1165 if (get_page_unless_zero(head)) {
1166 if (head == compound_head(page))
1167 return 1;
1168
1169 pr_info("Memory failure: %#lx cannot catch tail\n",
1170 page_to_pfn(page));
1171 put_page(head);
1172 }
1173
1174 return 0;
1175}
1176
1177static int get_any_page(struct page *p, unsigned long flags)
1178{
1179 int ret = 0, pass = 0;
1180 bool count_increased = false;
1181
1182 if (flags & MF_COUNT_INCREASED)
1183 count_increased = true;
1184
1185try_again:
1186 if (!count_increased) {
1187 ret = __get_hwpoison_page(p);
1188 if (!ret) {
1189 if (page_count(p)) {
1190 /* We raced with an allocation, retry. */
1191 if (pass++ < 3)
1192 goto try_again;
1193 ret = -EBUSY;
1194 } else if (!PageHuge(p) && !is_free_buddy_page(p)) {
1195 /* We raced with put_page, retry. */
1196 if (pass++ < 3)
1197 goto try_again;
1198 ret = -EIO;
1199 }
1200 goto out;
1201 } else if (ret == -EBUSY) {
1202 /*
1203 * We raced with (possibly temporary) unhandlable
1204 * page, retry.
1205 */
1206 if (pass++ < 3) {
1207 shake_page(p, 1);
1208 goto try_again;
1209 }
1210 ret = -EIO;
1211 goto out;
1212 }
1213 }
1214
1215 if (PageHuge(p) || HWPoisonHandlable(p)) {
1216 ret = 1;
1217 } else {
1218 /*
1219 * A page we cannot handle. Check whether we can turn
1220 * it into something we can handle.
1221 */
1222 if (pass++ < 3) {
1223 put_page(p);
1224 shake_page(p, 1);
1225 count_increased = false;
1226 goto try_again;
1227 }
1228 put_page(p);
1229 ret = -EIO;
1230 }
1231out:
1232 return ret;
1233}
1234
1235/**
1236 * get_hwpoison_page() - Get refcount for memory error handling
1237 * @p: Raw error page (hit by memory error)
1238 * @flags: Flags controlling behavior of error handling
1239 *
1240 * get_hwpoison_page() takes a page refcount of an error page to handle memory
1241 * error on it, after checking that the error page is in a well-defined state
1242 * (defined as a page-type we can successfully handle the memor error on it,
1243 * such as LRU page and hugetlb page).
1244 *
1245 * Memory error handling could be triggered at any time on any type of page,
1246 * so it's prone to race with typical memory management lifecycle (like
1247 * allocation and free). So to avoid such races, get_hwpoison_page() takes
1248 * extra care for the error page's state (as done in __get_hwpoison_page()),
1249 * and has some retry logic in get_any_page().
1250 *
1251 * Return: 0 on failure,
1252 * 1 on success for in-use pages in a well-defined state,
1253 * -EIO for pages on which we can not handle memory errors,
1254 * -EBUSY when get_hwpoison_page() has raced with page lifecycle
1255 * operations like allocation and free.
1256 */
1257static int get_hwpoison_page(struct page *p, unsigned long flags)
1258{
1259 int ret;
1260
1261 zone_pcp_disable(page_zone(p));
1262 ret = get_any_page(p, flags);
1263 zone_pcp_enable(page_zone(p));
1264
1265 return ret;
1266}
1267
1268/*
1269 * Do all that is necessary to remove user space mappings. Unmap
1270 * the pages and send SIGBUS to the processes if the data was dirty.
1271 */
1272static bool hwpoison_user_mappings(struct page *p, unsigned long pfn,
1273 int flags, struct page **hpagep)
1274{
1275 enum ttu_flags ttu = TTU_IGNORE_MLOCK | TTU_SYNC;
1276 struct address_space *mapping;
1277 LIST_HEAD(tokill);
1278 bool unmap_success;
1279 int kill = 1, forcekill;
1280 struct page *hpage = *hpagep;
1281 bool mlocked = PageMlocked(hpage);
1282
1283 /*
1284 * Here we are interested only in user-mapped pages, so skip any
1285 * other types of pages.
1286 */
1287 if (PageReserved(p) || PageSlab(p))
1288 return true;
1289 if (!(PageLRU(hpage) || PageHuge(p)))
1290 return true;
1291
1292 /*
1293 * This check implies we don't kill processes if their pages
1294 * are in the swap cache early. Those are always late kills.
1295 */
1296 if (!page_mapped(hpage))
1297 return true;
1298
1299 if (PageKsm(p)) {
1300 pr_err("Memory failure: %#lx: can't handle KSM pages.\n", pfn);
1301 return false;
1302 }
1303
1304 if (PageSwapCache(p)) {
1305 pr_err("Memory failure: %#lx: keeping poisoned page in swap cache\n",
1306 pfn);
1307 ttu |= TTU_IGNORE_HWPOISON;
1308 }
1309
1310 /*
1311 * Propagate the dirty bit from PTEs to struct page first, because we
1312 * need this to decide if we should kill or just drop the page.
1313 * XXX: the dirty test could be racy: set_page_dirty() may not always
1314 * be called inside page lock (it's recommended but not enforced).
1315 */
1316 mapping = page_mapping(hpage);
1317 if (!(flags & MF_MUST_KILL) && !PageDirty(hpage) && mapping &&
1318 mapping_can_writeback(mapping)) {
1319 if (page_mkclean(hpage)) {
1320 SetPageDirty(hpage);
1321 } else {
1322 kill = 0;
1323 ttu |= TTU_IGNORE_HWPOISON;
1324 pr_info("Memory failure: %#lx: corrupted page was clean: dropped without side effects\n",
1325 pfn);
1326 }
1327 }
1328
1329 /*
1330 * First collect all the processes that have the page
1331 * mapped in dirty form. This has to be done before try_to_unmap,
1332 * because ttu takes the rmap data structures down.
1333 *
1334 * Error handling: We ignore errors here because
1335 * there's nothing that can be done.
1336 */
1337 if (kill)
1338 collect_procs(hpage, &tokill, flags & MF_ACTION_REQUIRED);
1339
1340 if (!PageHuge(hpage)) {
1341 try_to_unmap(hpage, ttu);
1342 } else {
1343 if (!PageAnon(hpage)) {
1344 /*
1345 * For hugetlb pages in shared mappings, try_to_unmap
1346 * could potentially call huge_pmd_unshare. Because of
1347 * this, take semaphore in write mode here and set
1348 * TTU_RMAP_LOCKED to indicate we have taken the lock
1349 * at this higher level.
1350 */
1351 mapping = hugetlb_page_mapping_lock_write(hpage);
1352 if (mapping) {
1353 try_to_unmap(hpage, ttu|TTU_RMAP_LOCKED);
1354 i_mmap_unlock_write(mapping);
1355 } else
1356 pr_info("Memory failure: %#lx: could not lock mapping for mapped huge page\n", pfn);
1357 } else {
1358 try_to_unmap(hpage, ttu);
1359 }
1360 }
1361
1362 unmap_success = !page_mapped(hpage);
1363 if (!unmap_success)
1364 pr_err("Memory failure: %#lx: failed to unmap page (mapcount=%d)\n",
1365 pfn, page_mapcount(hpage));
1366
1367 /*
1368 * try_to_unmap() might put mlocked page in lru cache, so call
1369 * shake_page() again to ensure that it's flushed.
1370 */
1371 if (mlocked)
1372 shake_page(hpage, 0);
1373
1374 /*
1375 * Now that the dirty bit has been propagated to the
1376 * struct page and all unmaps done we can decide if
1377 * killing is needed or not. Only kill when the page
1378 * was dirty or the process is not restartable,
1379 * otherwise the tokill list is merely
1380 * freed. When there was a problem unmapping earlier
1381 * use a more force-full uncatchable kill to prevent
1382 * any accesses to the poisoned memory.
1383 */
1384 forcekill = PageDirty(hpage) || (flags & MF_MUST_KILL);
1385 kill_procs(&tokill, forcekill, !unmap_success, pfn, flags);
1386
1387 return unmap_success;
1388}
1389
1390static int identify_page_state(unsigned long pfn, struct page *p,
1391 unsigned long page_flags)
1392{
1393 struct page_state *ps;
1394
1395 /*
1396 * The first check uses the current page flags which may not have any
1397 * relevant information. The second check with the saved page flags is
1398 * carried out only if the first check can't determine the page status.
1399 */
1400 for (ps = error_states;; ps++)
1401 if ((p->flags & ps->mask) == ps->res)
1402 break;
1403
1404 page_flags |= (p->flags & (1UL << PG_dirty));
1405
1406 if (!ps->mask)
1407 for (ps = error_states;; ps++)
1408 if ((page_flags & ps->mask) == ps->res)
1409 break;
1410 return page_action(ps, p, pfn);
1411}
1412
1413static int try_to_split_thp_page(struct page *page, const char *msg)
1414{
1415 lock_page(page);
1416 if (!PageAnon(page) || unlikely(split_huge_page(page))) {
1417 unsigned long pfn = page_to_pfn(page);
1418
1419 unlock_page(page);
1420 if (!PageAnon(page))
1421 pr_info("%s: %#lx: non anonymous thp\n", msg, pfn);
1422 else
1423 pr_info("%s: %#lx: thp split failed\n", msg, pfn);
1424 put_page(page);
1425 return -EBUSY;
1426 }
1427 unlock_page(page);
1428
1429 return 0;
1430}
1431
1432static int memory_failure_hugetlb(unsigned long pfn, int flags)
1433{
1434 struct page *p = pfn_to_page(pfn);
1435 struct page *head = compound_head(p);
1436 int res;
1437 unsigned long page_flags;
1438
1439 if (TestSetPageHWPoison(head)) {
1440 pr_err("Memory failure: %#lx: already hardware poisoned\n",
1441 pfn);
1442 res = -EHWPOISON;
1443 if (flags & MF_ACTION_REQUIRED)
1444 res = kill_accessing_process(current, page_to_pfn(head), flags);
1445 return res;
1446 }
1447
1448 num_poisoned_pages_inc();
1449
1450 if (!(flags & MF_COUNT_INCREASED)) {
1451 res = get_hwpoison_page(p, flags);
1452 if (!res) {
1453 /*
1454 * Check "filter hit" and "race with other subpage."
1455 */
1456 lock_page(head);
1457 if (PageHWPoison(head)) {
1458 if ((hwpoison_filter(p) && TestClearPageHWPoison(p))
1459 || (p != head && TestSetPageHWPoison(head))) {
1460 num_poisoned_pages_dec();
1461 unlock_page(head);
1462 return 0;
1463 }
1464 }
1465 unlock_page(head);
1466 res = MF_FAILED;
1467 if (__page_handle_poison(p)) {
1468 page_ref_inc(p);
1469 res = MF_RECOVERED;
1470 }
1471 action_result(pfn, MF_MSG_FREE_HUGE, res);
1472 return res == MF_RECOVERED ? 0 : -EBUSY;
1473 } else if (res < 0) {
1474 action_result(pfn, MF_MSG_UNKNOWN, MF_IGNORED);
1475 return -EBUSY;
1476 }
1477 }
1478
1479 lock_page(head);
1480 page_flags = head->flags;
1481
1482 if (!PageHWPoison(head)) {
1483 pr_err("Memory failure: %#lx: just unpoisoned\n", pfn);
1484 num_poisoned_pages_dec();
1485 unlock_page(head);
1486 put_page(head);
1487 return 0;
1488 }
1489
1490 /*
1491 * TODO: hwpoison for pud-sized hugetlb doesn't work right now, so
1492 * simply disable it. In order to make it work properly, we need
1493 * make sure that:
1494 * - conversion of a pud that maps an error hugetlb into hwpoison
1495 * entry properly works, and
1496 * - other mm code walking over page table is aware of pud-aligned
1497 * hwpoison entries.
1498 */
1499 if (huge_page_size(page_hstate(head)) > PMD_SIZE) {
1500 action_result(pfn, MF_MSG_NON_PMD_HUGE, MF_IGNORED);
1501 res = -EBUSY;
1502 goto out;
1503 }
1504
1505 if (!hwpoison_user_mappings(p, pfn, flags, &head)) {
1506 action_result(pfn, MF_MSG_UNMAP_FAILED, MF_IGNORED);
1507 res = -EBUSY;
1508 goto out;
1509 }
1510
1511 return identify_page_state(pfn, p, page_flags);
1512out:
1513 unlock_page(head);
1514 return res;
1515}
1516
1517static int memory_failure_dev_pagemap(unsigned long pfn, int flags,
1518 struct dev_pagemap *pgmap)
1519{
1520 struct page *page = pfn_to_page(pfn);
1521 const bool unmap_success = true;
1522 unsigned long size = 0;
1523 struct to_kill *tk;
1524 LIST_HEAD(tokill);
1525 int rc = -EBUSY;
1526 loff_t start;
1527 dax_entry_t cookie;
1528
1529 if (flags & MF_COUNT_INCREASED)
1530 /*
1531 * Drop the extra refcount in case we come from madvise().
1532 */
1533 put_page(page);
1534
1535 /* device metadata space is not recoverable */
1536 if (!pgmap_pfn_valid(pgmap, pfn)) {
1537 rc = -ENXIO;
1538 goto out;
1539 }
1540
1541 /*
1542 * Prevent the inode from being freed while we are interrogating
1543 * the address_space, typically this would be handled by
1544 * lock_page(), but dax pages do not use the page lock. This
1545 * also prevents changes to the mapping of this pfn until
1546 * poison signaling is complete.
1547 */
1548 cookie = dax_lock_page(page);
1549 if (!cookie)
1550 goto out;
1551
1552 if (hwpoison_filter(page)) {
1553 rc = 0;
1554 goto unlock;
1555 }
1556
1557 if (pgmap->type == MEMORY_DEVICE_PRIVATE) {
1558 /*
1559 * TODO: Handle HMM pages which may need coordination
1560 * with device-side memory.
1561 */
1562 goto unlock;
1563 }
1564
1565 /*
1566 * Use this flag as an indication that the dax page has been
1567 * remapped UC to prevent speculative consumption of poison.
1568 */
1569 SetPageHWPoison(page);
1570
1571 /*
1572 * Unlike System-RAM there is no possibility to swap in a
1573 * different physical page at a given virtual address, so all
1574 * userspace consumption of ZONE_DEVICE memory necessitates
1575 * SIGBUS (i.e. MF_MUST_KILL)
1576 */
1577 flags |= MF_ACTION_REQUIRED | MF_MUST_KILL;
1578 collect_procs(page, &tokill, flags & MF_ACTION_REQUIRED);
1579
1580 list_for_each_entry(tk, &tokill, nd)
1581 if (tk->size_shift)
1582 size = max(size, 1UL << tk->size_shift);
1583 if (size) {
1584 /*
1585 * Unmap the largest mapping to avoid breaking up
1586 * device-dax mappings which are constant size. The
1587 * actual size of the mapping being torn down is
1588 * communicated in siginfo, see kill_proc()
1589 */
1590 start = (page->index << PAGE_SHIFT) & ~(size - 1);
1591 unmap_mapping_range(page->mapping, start, size, 0);
1592 }
1593 kill_procs(&tokill, flags & MF_MUST_KILL, !unmap_success, pfn, flags);
1594 rc = 0;
1595unlock:
1596 dax_unlock_page(page, cookie);
1597out:
1598 /* drop pgmap ref acquired in caller */
1599 put_dev_pagemap(pgmap);
1600 action_result(pfn, MF_MSG_DAX, rc ? MF_FAILED : MF_RECOVERED);
1601 return rc;
1602}
1603
1604/**
1605 * memory_failure - Handle memory failure of a page.
1606 * @pfn: Page Number of the corrupted page
1607 * @flags: fine tune action taken
1608 *
1609 * This function is called by the low level machine check code
1610 * of an architecture when it detects hardware memory corruption
1611 * of a page. It tries its best to recover, which includes
1612 * dropping pages, killing processes etc.
1613 *
1614 * The function is primarily of use for corruptions that
1615 * happen outside the current execution context (e.g. when
1616 * detected by a background scrubber)
1617 *
1618 * Must run in process context (e.g. a work queue) with interrupts
1619 * enabled and no spinlocks hold.
1620 */
1621int memory_failure(unsigned long pfn, int flags)
1622{
1623 struct page *p;
1624 struct page *hpage;
1625 struct page *orig_head;
1626 struct dev_pagemap *pgmap;
1627 int res = 0;
1628 unsigned long page_flags;
1629 bool retry = true;
1630 static DEFINE_MUTEX(mf_mutex);
1631
1632 if (!sysctl_memory_failure_recovery)
1633 panic("Memory failure on page %lx", pfn);
1634
1635 p = pfn_to_online_page(pfn);
1636 if (!p) {
1637 if (pfn_valid(pfn)) {
1638 pgmap = get_dev_pagemap(pfn, NULL);
1639 if (pgmap)
1640 return memory_failure_dev_pagemap(pfn, flags,
1641 pgmap);
1642 }
1643 pr_err("Memory failure: %#lx: memory outside kernel control\n",
1644 pfn);
1645 return -ENXIO;
1646 }
1647
1648 mutex_lock(&mf_mutex);
1649
1650try_again:
1651 if (PageHuge(p)) {
1652 res = memory_failure_hugetlb(pfn, flags);
1653 goto unlock_mutex;
1654 }
1655
1656 if (TestSetPageHWPoison(p)) {
1657 pr_err("Memory failure: %#lx: already hardware poisoned\n",
1658 pfn);
1659 res = -EHWPOISON;
1660 if (flags & MF_ACTION_REQUIRED)
1661 res = kill_accessing_process(current, pfn, flags);
1662 goto unlock_mutex;
1663 }
1664
1665 orig_head = hpage = compound_head(p);
1666 num_poisoned_pages_inc();
1667
1668 /*
1669 * We need/can do nothing about count=0 pages.
1670 * 1) it's a free page, and therefore in safe hand:
1671 * prep_new_page() will be the gate keeper.
1672 * 2) it's part of a non-compound high order page.
1673 * Implies some kernel user: cannot stop them from
1674 * R/W the page; let's pray that the page has been
1675 * used and will be freed some time later.
1676 * In fact it's dangerous to directly bump up page count from 0,
1677 * that may make page_ref_freeze()/page_ref_unfreeze() mismatch.
1678 */
1679 if (!(flags & MF_COUNT_INCREASED)) {
1680 res = get_hwpoison_page(p, flags);
1681 if (!res) {
1682 if (is_free_buddy_page(p)) {
1683 if (take_page_off_buddy(p)) {
1684 page_ref_inc(p);
1685 res = MF_RECOVERED;
1686 } else {
1687 /* We lost the race, try again */
1688 if (retry) {
1689 ClearPageHWPoison(p);
1690 num_poisoned_pages_dec();
1691 retry = false;
1692 goto try_again;
1693 }
1694 res = MF_FAILED;
1695 }
1696 action_result(pfn, MF_MSG_BUDDY, res);
1697 res = res == MF_RECOVERED ? 0 : -EBUSY;
1698 } else {
1699 action_result(pfn, MF_MSG_KERNEL_HIGH_ORDER, MF_IGNORED);
1700 res = -EBUSY;
1701 }
1702 goto unlock_mutex;
1703 } else if (res < 0) {
1704 action_result(pfn, MF_MSG_UNKNOWN, MF_IGNORED);
1705 res = -EBUSY;
1706 goto unlock_mutex;
1707 }
1708 }
1709
1710 if (PageTransHuge(hpage)) {
1711 if (try_to_split_thp_page(p, "Memory Failure") < 0) {
1712 action_result(pfn, MF_MSG_UNSPLIT_THP, MF_IGNORED);
1713 res = -EBUSY;
1714 goto unlock_mutex;
1715 }
1716 VM_BUG_ON_PAGE(!page_count(p), p);
1717 }
1718
1719 /*
1720 * We ignore non-LRU pages for good reasons.
1721 * - PG_locked is only well defined for LRU pages and a few others
1722 * - to avoid races with __SetPageLocked()
1723 * - to avoid races with __SetPageSlab*() (and more non-atomic ops)
1724 * The check (unnecessarily) ignores LRU pages being isolated and
1725 * walked by the page reclaim code, however that's not a big loss.
1726 */
1727 shake_page(p, 0);
1728
1729 lock_page(p);
1730
1731 /*
1732 * The page could have changed compound pages during the locking.
1733 * If this happens just bail out.
1734 */
1735 if (PageCompound(p) && compound_head(p) != orig_head) {
1736 action_result(pfn, MF_MSG_DIFFERENT_COMPOUND, MF_IGNORED);
1737 res = -EBUSY;
1738 goto unlock_page;
1739 }
1740
1741 /*
1742 * We use page flags to determine what action should be taken, but
1743 * the flags can be modified by the error containment action. One
1744 * example is an mlocked page, where PG_mlocked is cleared by
1745 * page_remove_rmap() in try_to_unmap_one(). So to determine page status
1746 * correctly, we save a copy of the page flags at this time.
1747 */
1748 page_flags = p->flags;
1749
1750 /*
1751 * unpoison always clear PG_hwpoison inside page lock
1752 */
1753 if (!PageHWPoison(p)) {
1754 pr_err("Memory failure: %#lx: just unpoisoned\n", pfn);
1755 num_poisoned_pages_dec();
1756 unlock_page(p);
1757 put_page(p);
1758 goto unlock_mutex;
1759 }
1760 if (hwpoison_filter(p)) {
1761 if (TestClearPageHWPoison(p))
1762 num_poisoned_pages_dec();
1763 unlock_page(p);
1764 put_page(p);
1765 goto unlock_mutex;
1766 }
1767
1768 /*
1769 * __munlock_pagevec may clear a writeback page's LRU flag without
1770 * page_lock. We need wait writeback completion for this page or it
1771 * may trigger vfs BUG while evict inode.
1772 */
1773 if (!PageTransTail(p) && !PageLRU(p) && !PageWriteback(p))
1774 goto identify_page_state;
1775
1776 /*
1777 * It's very difficult to mess with pages currently under IO
1778 * and in many cases impossible, so we just avoid it here.
1779 */
1780 wait_on_page_writeback(p);
1781
1782 /*
1783 * Now take care of user space mappings.
1784 * Abort on fail: __delete_from_page_cache() assumes unmapped page.
1785 */
1786 if (!hwpoison_user_mappings(p, pfn, flags, &p)) {
1787 action_result(pfn, MF_MSG_UNMAP_FAILED, MF_IGNORED);
1788 res = -EBUSY;
1789 goto unlock_page;
1790 }
1791
1792 /*
1793 * Torn down by someone else?
1794 */
1795 if (PageLRU(p) && !PageSwapCache(p) && p->mapping == NULL) {
1796 action_result(pfn, MF_MSG_TRUNCATED_LRU, MF_IGNORED);
1797 res = -EBUSY;
1798 goto unlock_page;
1799 }
1800
1801identify_page_state:
1802 res = identify_page_state(pfn, p, page_flags);
1803 mutex_unlock(&mf_mutex);
1804 return res;
1805unlock_page:
1806 unlock_page(p);
1807unlock_mutex:
1808 mutex_unlock(&mf_mutex);
1809 return res;
1810}
1811EXPORT_SYMBOL_GPL(memory_failure);
1812
1813#define MEMORY_FAILURE_FIFO_ORDER 4
1814#define MEMORY_FAILURE_FIFO_SIZE (1 << MEMORY_FAILURE_FIFO_ORDER)
1815
1816struct memory_failure_entry {
1817 unsigned long pfn;
1818 int flags;
1819};
1820
1821struct memory_failure_cpu {
1822 DECLARE_KFIFO(fifo, struct memory_failure_entry,
1823 MEMORY_FAILURE_FIFO_SIZE);
1824 spinlock_t lock;
1825 struct work_struct work;
1826};
1827
1828static DEFINE_PER_CPU(struct memory_failure_cpu, memory_failure_cpu);
1829
1830/**
1831 * memory_failure_queue - Schedule handling memory failure of a page.
1832 * @pfn: Page Number of the corrupted page
1833 * @flags: Flags for memory failure handling
1834 *
1835 * This function is called by the low level hardware error handler
1836 * when it detects hardware memory corruption of a page. It schedules
1837 * the recovering of error page, including dropping pages, killing
1838 * processes etc.
1839 *
1840 * The function is primarily of use for corruptions that
1841 * happen outside the current execution context (e.g. when
1842 * detected by a background scrubber)
1843 *
1844 * Can run in IRQ context.
1845 */
1846void memory_failure_queue(unsigned long pfn, int flags)
1847{
1848 struct memory_failure_cpu *mf_cpu;
1849 unsigned long proc_flags;
1850 struct memory_failure_entry entry = {
1851 .pfn = pfn,
1852 .flags = flags,
1853 };
1854
1855 mf_cpu = &get_cpu_var(memory_failure_cpu);
1856 spin_lock_irqsave(&mf_cpu->lock, proc_flags);
1857 if (kfifo_put(&mf_cpu->fifo, entry))
1858 schedule_work_on(smp_processor_id(), &mf_cpu->work);
1859 else
1860 pr_err("Memory failure: buffer overflow when queuing memory failure at %#lx\n",
1861 pfn);
1862 spin_unlock_irqrestore(&mf_cpu->lock, proc_flags);
1863 put_cpu_var(memory_failure_cpu);
1864}
1865EXPORT_SYMBOL_GPL(memory_failure_queue);
1866
1867static void memory_failure_work_func(struct work_struct *work)
1868{
1869 struct memory_failure_cpu *mf_cpu;
1870 struct memory_failure_entry entry = { 0, };
1871 unsigned long proc_flags;
1872 int gotten;
1873
1874 mf_cpu = container_of(work, struct memory_failure_cpu, work);
1875 for (;;) {
1876 spin_lock_irqsave(&mf_cpu->lock, proc_flags);
1877 gotten = kfifo_get(&mf_cpu->fifo, &entry);
1878 spin_unlock_irqrestore(&mf_cpu->lock, proc_flags);
1879 if (!gotten)
1880 break;
1881 if (entry.flags & MF_SOFT_OFFLINE)
1882 soft_offline_page(entry.pfn, entry.flags);
1883 else
1884 memory_failure(entry.pfn, entry.flags);
1885 }
1886}
1887
1888/*
1889 * Process memory_failure work queued on the specified CPU.
1890 * Used to avoid return-to-userspace racing with the memory_failure workqueue.
1891 */
1892void memory_failure_queue_kick(int cpu)
1893{
1894 struct memory_failure_cpu *mf_cpu;
1895
1896 mf_cpu = &per_cpu(memory_failure_cpu, cpu);
1897 cancel_work_sync(&mf_cpu->work);
1898 memory_failure_work_func(&mf_cpu->work);
1899}
1900
1901static int __init memory_failure_init(void)
1902{
1903 struct memory_failure_cpu *mf_cpu;
1904 int cpu;
1905
1906 for_each_possible_cpu(cpu) {
1907 mf_cpu = &per_cpu(memory_failure_cpu, cpu);
1908 spin_lock_init(&mf_cpu->lock);
1909 INIT_KFIFO(mf_cpu->fifo);
1910 INIT_WORK(&mf_cpu->work, memory_failure_work_func);
1911 }
1912
1913 return 0;
1914}
1915core_initcall(memory_failure_init);
1916
1917#define unpoison_pr_info(fmt, pfn, rs) \
1918({ \
1919 if (__ratelimit(rs)) \
1920 pr_info(fmt, pfn); \
1921})
1922
1923/**
1924 * unpoison_memory - Unpoison a previously poisoned page
1925 * @pfn: Page number of the to be unpoisoned page
1926 *
1927 * Software-unpoison a page that has been poisoned by
1928 * memory_failure() earlier.
1929 *
1930 * This is only done on the software-level, so it only works
1931 * for linux injected failures, not real hardware failures
1932 *
1933 * Returns 0 for success, otherwise -errno.
1934 */
1935int unpoison_memory(unsigned long pfn)
1936{
1937 struct page *page;
1938 struct page *p;
1939 int freeit = 0;
1940 unsigned long flags = 0;
1941 static DEFINE_RATELIMIT_STATE(unpoison_rs, DEFAULT_RATELIMIT_INTERVAL,
1942 DEFAULT_RATELIMIT_BURST);
1943
1944 if (!pfn_valid(pfn))
1945 return -ENXIO;
1946
1947 p = pfn_to_page(pfn);
1948 page = compound_head(p);
1949
1950 if (!PageHWPoison(p)) {
1951 unpoison_pr_info("Unpoison: Page was already unpoisoned %#lx\n",
1952 pfn, &unpoison_rs);
1953 return 0;
1954 }
1955
1956 if (page_count(page) > 1) {
1957 unpoison_pr_info("Unpoison: Someone grabs the hwpoison page %#lx\n",
1958 pfn, &unpoison_rs);
1959 return 0;
1960 }
1961
1962 if (page_mapped(page)) {
1963 unpoison_pr_info("Unpoison: Someone maps the hwpoison page %#lx\n",
1964 pfn, &unpoison_rs);
1965 return 0;
1966 }
1967
1968 if (page_mapping(page)) {
1969 unpoison_pr_info("Unpoison: the hwpoison page has non-NULL mapping %#lx\n",
1970 pfn, &unpoison_rs);
1971 return 0;
1972 }
1973
1974 /*
1975 * unpoison_memory() can encounter thp only when the thp is being
1976 * worked by memory_failure() and the page lock is not held yet.
1977 * In such case, we yield to memory_failure() and make unpoison fail.
1978 */
1979 if (!PageHuge(page) && PageTransHuge(page)) {
1980 unpoison_pr_info("Unpoison: Memory failure is now running on %#lx\n",
1981 pfn, &unpoison_rs);
1982 return 0;
1983 }
1984
1985 if (!get_hwpoison_page(p, flags)) {
1986 if (TestClearPageHWPoison(p))
1987 num_poisoned_pages_dec();
1988 unpoison_pr_info("Unpoison: Software-unpoisoned free page %#lx\n",
1989 pfn, &unpoison_rs);
1990 return 0;
1991 }
1992
1993 lock_page(page);
1994 /*
1995 * This test is racy because PG_hwpoison is set outside of page lock.
1996 * That's acceptable because that won't trigger kernel panic. Instead,
1997 * the PG_hwpoison page will be caught and isolated on the entrance to
1998 * the free buddy page pool.
1999 */
2000 if (TestClearPageHWPoison(page)) {
2001 unpoison_pr_info("Unpoison: Software-unpoisoned page %#lx\n",
2002 pfn, &unpoison_rs);
2003 num_poisoned_pages_dec();
2004 freeit = 1;
2005 }
2006 unlock_page(page);
2007
2008 put_page(page);
2009 if (freeit && !(pfn == my_zero_pfn(0) && page_count(p) == 1))
2010 put_page(page);
2011
2012 return 0;
2013}
2014EXPORT_SYMBOL(unpoison_memory);
2015
2016static bool isolate_page(struct page *page, struct list_head *pagelist)
2017{
2018 bool isolated = false;
2019 bool lru = PageLRU(page);
2020
2021 if (PageHuge(page)) {
2022 isolated = isolate_huge_page(page, pagelist);
2023 } else {
2024 if (lru)
2025 isolated = !isolate_lru_page(page);
2026 else
2027 isolated = !isolate_movable_page(page, ISOLATE_UNEVICTABLE);
2028
2029 if (isolated)
2030 list_add(&page->lru, pagelist);
2031 }
2032
2033 if (isolated && lru)
2034 inc_node_page_state(page, NR_ISOLATED_ANON +
2035 page_is_file_lru(page));
2036
2037 /*
2038 * If we succeed to isolate the page, we grabbed another refcount on
2039 * the page, so we can safely drop the one we got from get_any_pages().
2040 * If we failed to isolate the page, it means that we cannot go further
2041 * and we will return an error, so drop the reference we got from
2042 * get_any_pages() as well.
2043 */
2044 put_page(page);
2045 return isolated;
2046}
2047
2048/*
2049 * __soft_offline_page handles hugetlb-pages and non-hugetlb pages.
2050 * If the page is a non-dirty unmapped page-cache page, it simply invalidates.
2051 * If the page is mapped, it migrates the contents over.
2052 */
2053static int __soft_offline_page(struct page *page)
2054{
2055 int ret = 0;
2056 unsigned long pfn = page_to_pfn(page);
2057 struct page *hpage = compound_head(page);
2058 char const *msg_page[] = {"page", "hugepage"};
2059 bool huge = PageHuge(page);
2060 LIST_HEAD(pagelist);
2061 struct migration_target_control mtc = {
2062 .nid = NUMA_NO_NODE,
2063 .gfp_mask = GFP_USER | __GFP_MOVABLE | __GFP_RETRY_MAYFAIL,
2064 };
2065
2066 /*
2067 * Check PageHWPoison again inside page lock because PageHWPoison
2068 * is set by memory_failure() outside page lock. Note that
2069 * memory_failure() also double-checks PageHWPoison inside page lock,
2070 * so there's no race between soft_offline_page() and memory_failure().
2071 */
2072 lock_page(page);
2073 if (!PageHuge(page))
2074 wait_on_page_writeback(page);
2075 if (PageHWPoison(page)) {
2076 unlock_page(page);
2077 put_page(page);
2078 pr_info("soft offline: %#lx page already poisoned\n", pfn);
2079 return 0;
2080 }
2081
2082 if (!PageHuge(page))
2083 /*
2084 * Try to invalidate first. This should work for
2085 * non dirty unmapped page cache pages.
2086 */
2087 ret = invalidate_inode_page(page);
2088 unlock_page(page);
2089
2090 /*
2091 * RED-PEN would be better to keep it isolated here, but we
2092 * would need to fix isolation locking first.
2093 */
2094 if (ret) {
2095 pr_info("soft_offline: %#lx: invalidated\n", pfn);
2096 page_handle_poison(page, false, true);
2097 return 0;
2098 }
2099
2100 if (isolate_page(hpage, &pagelist)) {
2101 ret = migrate_pages(&pagelist, alloc_migration_target, NULL,
2102 (unsigned long)&mtc, MIGRATE_SYNC, MR_MEMORY_FAILURE);
2103 if (!ret) {
2104 bool release = !huge;
2105
2106 if (!page_handle_poison(page, huge, release))
2107 ret = -EBUSY;
2108 } else {
2109 if (!list_empty(&pagelist))
2110 putback_movable_pages(&pagelist);
2111
2112 pr_info("soft offline: %#lx: %s migration failed %d, type %lx (%pGp)\n",
2113 pfn, msg_page[huge], ret, page->flags, &page->flags);
2114 if (ret > 0)
2115 ret = -EBUSY;
2116 }
2117 } else {
2118 pr_info("soft offline: %#lx: %s isolation failed, page count %d, type %lx (%pGp)\n",
2119 pfn, msg_page[huge], page_count(page), page->flags, &page->flags);
2120 ret = -EBUSY;
2121 }
2122 return ret;
2123}
2124
2125static int soft_offline_in_use_page(struct page *page)
2126{
2127 struct page *hpage = compound_head(page);
2128
2129 if (!PageHuge(page) && PageTransHuge(hpage))
2130 if (try_to_split_thp_page(page, "soft offline") < 0)
2131 return -EBUSY;
2132 return __soft_offline_page(page);
2133}
2134
2135static int soft_offline_free_page(struct page *page)
2136{
2137 int rc = 0;
2138
2139 if (!page_handle_poison(page, true, false))
2140 rc = -EBUSY;
2141
2142 return rc;
2143}
2144
2145static void put_ref_page(struct page *page)
2146{
2147 if (page)
2148 put_page(page);
2149}
2150
2151/**
2152 * soft_offline_page - Soft offline a page.
2153 * @pfn: pfn to soft-offline
2154 * @flags: flags. Same as memory_failure().
2155 *
2156 * Returns 0 on success, otherwise negated errno.
2157 *
2158 * Soft offline a page, by migration or invalidation,
2159 * without killing anything. This is for the case when
2160 * a page is not corrupted yet (so it's still valid to access),
2161 * but has had a number of corrected errors and is better taken
2162 * out.
2163 *
2164 * The actual policy on when to do that is maintained by
2165 * user space.
2166 *
2167 * This should never impact any application or cause data loss,
2168 * however it might take some time.
2169 *
2170 * This is not a 100% solution for all memory, but tries to be
2171 * ``good enough'' for the majority of memory.
2172 */
2173int soft_offline_page(unsigned long pfn, int flags)
2174{
2175 int ret;
2176 bool try_again = true;
2177 struct page *page, *ref_page = NULL;
2178
2179 WARN_ON_ONCE(!pfn_valid(pfn) && (flags & MF_COUNT_INCREASED));
2180
2181 if (!pfn_valid(pfn))
2182 return -ENXIO;
2183 if (flags & MF_COUNT_INCREASED)
2184 ref_page = pfn_to_page(pfn);
2185
2186 /* Only online pages can be soft-offlined (esp., not ZONE_DEVICE). */
2187 page = pfn_to_online_page(pfn);
2188 if (!page) {
2189 put_ref_page(ref_page);
2190 return -EIO;
2191 }
2192
2193 if (PageHWPoison(page)) {
2194 pr_info("%s: %#lx page already poisoned\n", __func__, pfn);
2195 put_ref_page(ref_page);
2196 return 0;
2197 }
2198
2199retry:
2200 get_online_mems();
2201 ret = get_hwpoison_page(page, flags);
2202 put_online_mems();
2203
2204 if (ret > 0) {
2205 ret = soft_offline_in_use_page(page);
2206 } else if (ret == 0) {
2207 if (soft_offline_free_page(page) && try_again) {
2208 try_again = false;
2209 goto retry;
2210 }
2211 } else if (ret == -EIO) {
2212 pr_info("%s: %#lx: unknown page type: %lx (%pGp)\n",
2213 __func__, pfn, page->flags, &page->flags);
2214 }
2215
2216 return ret;
2217}