Loading...
Note: File does not exist in v3.1.
1// SPDX-License-Identifier: GPL-2.0-only
2/*
3 * Core driver for the pin control subsystem
4 *
5 * Copyright (C) 2011-2012 ST-Ericsson SA
6 * Written on behalf of Linaro for ST-Ericsson
7 * Based on bits of regulator core, gpio core and clk core
8 *
9 * Author: Linus Walleij <linus.walleij@linaro.org>
10 *
11 * Copyright (C) 2012 NVIDIA CORPORATION. All rights reserved.
12 */
13#define pr_fmt(fmt) "pinctrl core: " fmt
14
15#include <linux/debugfs.h>
16#include <linux/device.h>
17#include <linux/err.h>
18#include <linux/export.h>
19#include <linux/init.h>
20#include <linux/kernel.h>
21#include <linux/kref.h>
22#include <linux/list.h>
23#include <linux/seq_file.h>
24#include <linux/slab.h>
25
26#include <linux/pinctrl/consumer.h>
27#include <linux/pinctrl/devinfo.h>
28#include <linux/pinctrl/machine.h>
29#include <linux/pinctrl/pinctrl.h>
30
31#ifdef CONFIG_GPIOLIB
32#include "../gpio/gpiolib.h"
33#include <asm-generic/gpio.h>
34#endif
35
36#include "core.h"
37#include "devicetree.h"
38#include "pinconf.h"
39#include "pinmux.h"
40
41static bool pinctrl_dummy_state;
42
43/* Mutex taken to protect pinctrl_list */
44static DEFINE_MUTEX(pinctrl_list_mutex);
45
46/* Mutex taken to protect pinctrl_maps */
47DEFINE_MUTEX(pinctrl_maps_mutex);
48
49/* Mutex taken to protect pinctrldev_list */
50static DEFINE_MUTEX(pinctrldev_list_mutex);
51
52/* Global list of pin control devices (struct pinctrl_dev) */
53static LIST_HEAD(pinctrldev_list);
54
55/* List of pin controller handles (struct pinctrl) */
56static LIST_HEAD(pinctrl_list);
57
58/* List of pinctrl maps (struct pinctrl_maps) */
59LIST_HEAD(pinctrl_maps);
60
61
62/**
63 * pinctrl_provide_dummies() - indicate if pinctrl provides dummy state support
64 *
65 * Usually this function is called by platforms without pinctrl driver support
66 * but run with some shared drivers using pinctrl APIs.
67 * After calling this function, the pinctrl core will return successfully
68 * with creating a dummy state for the driver to keep going smoothly.
69 */
70void pinctrl_provide_dummies(void)
71{
72 pinctrl_dummy_state = true;
73}
74
75const char *pinctrl_dev_get_name(struct pinctrl_dev *pctldev)
76{
77 /* We're not allowed to register devices without name */
78 return pctldev->desc->name;
79}
80EXPORT_SYMBOL_GPL(pinctrl_dev_get_name);
81
82const char *pinctrl_dev_get_devname(struct pinctrl_dev *pctldev)
83{
84 return dev_name(pctldev->dev);
85}
86EXPORT_SYMBOL_GPL(pinctrl_dev_get_devname);
87
88void *pinctrl_dev_get_drvdata(struct pinctrl_dev *pctldev)
89{
90 return pctldev->driver_data;
91}
92EXPORT_SYMBOL_GPL(pinctrl_dev_get_drvdata);
93
94/**
95 * get_pinctrl_dev_from_devname() - look up pin controller device
96 * @devname: the name of a device instance, as returned by dev_name()
97 *
98 * Looks up a pin control device matching a certain device name or pure device
99 * pointer, the pure device pointer will take precedence.
100 */
101struct pinctrl_dev *get_pinctrl_dev_from_devname(const char *devname)
102{
103 struct pinctrl_dev *pctldev;
104
105 if (!devname)
106 return NULL;
107
108 mutex_lock(&pinctrldev_list_mutex);
109
110 list_for_each_entry(pctldev, &pinctrldev_list, node) {
111 if (!strcmp(dev_name(pctldev->dev), devname)) {
112 /* Matched on device name */
113 mutex_unlock(&pinctrldev_list_mutex);
114 return pctldev;
115 }
116 }
117
118 mutex_unlock(&pinctrldev_list_mutex);
119
120 return NULL;
121}
122
123struct pinctrl_dev *get_pinctrl_dev_from_of_node(struct device_node *np)
124{
125 struct pinctrl_dev *pctldev;
126
127 mutex_lock(&pinctrldev_list_mutex);
128
129 list_for_each_entry(pctldev, &pinctrldev_list, node)
130 if (device_match_of_node(pctldev->dev, np)) {
131 mutex_unlock(&pinctrldev_list_mutex);
132 return pctldev;
133 }
134
135 mutex_unlock(&pinctrldev_list_mutex);
136
137 return NULL;
138}
139
140/**
141 * pin_get_from_name() - look up a pin number from a name
142 * @pctldev: the pin control device to lookup the pin on
143 * @name: the name of the pin to look up
144 */
145int pin_get_from_name(struct pinctrl_dev *pctldev, const char *name)
146{
147 unsigned i, pin;
148
149 /* The pin number can be retrived from the pin controller descriptor */
150 for (i = 0; i < pctldev->desc->npins; i++) {
151 struct pin_desc *desc;
152
153 pin = pctldev->desc->pins[i].number;
154 desc = pin_desc_get(pctldev, pin);
155 /* Pin space may be sparse */
156 if (desc && !strcmp(name, desc->name))
157 return pin;
158 }
159
160 return -EINVAL;
161}
162
163/**
164 * pin_get_name() - look up a pin name from a pin id
165 * @pctldev: the pin control device to lookup the pin on
166 * @pin: pin number/id to look up
167 */
168const char *pin_get_name(struct pinctrl_dev *pctldev, const unsigned pin)
169{
170 const struct pin_desc *desc;
171
172 desc = pin_desc_get(pctldev, pin);
173 if (!desc) {
174 dev_err(pctldev->dev, "failed to get pin(%d) name\n",
175 pin);
176 return NULL;
177 }
178
179 return desc->name;
180}
181EXPORT_SYMBOL_GPL(pin_get_name);
182
183/* Deletes a range of pin descriptors */
184static void pinctrl_free_pindescs(struct pinctrl_dev *pctldev,
185 const struct pinctrl_pin_desc *pins,
186 unsigned num_pins)
187{
188 int i;
189
190 for (i = 0; i < num_pins; i++) {
191 struct pin_desc *pindesc;
192
193 pindesc = radix_tree_lookup(&pctldev->pin_desc_tree,
194 pins[i].number);
195 if (pindesc) {
196 radix_tree_delete(&pctldev->pin_desc_tree,
197 pins[i].number);
198 if (pindesc->dynamic_name)
199 kfree(pindesc->name);
200 }
201 kfree(pindesc);
202 }
203}
204
205static int pinctrl_register_one_pin(struct pinctrl_dev *pctldev,
206 const struct pinctrl_pin_desc *pin)
207{
208 struct pin_desc *pindesc;
209
210 pindesc = pin_desc_get(pctldev, pin->number);
211 if (pindesc) {
212 dev_err(pctldev->dev, "pin %d already registered\n",
213 pin->number);
214 return -EINVAL;
215 }
216
217 pindesc = kzalloc(sizeof(*pindesc), GFP_KERNEL);
218 if (!pindesc)
219 return -ENOMEM;
220
221 /* Set owner */
222 pindesc->pctldev = pctldev;
223
224 /* Copy basic pin info */
225 if (pin->name) {
226 pindesc->name = pin->name;
227 } else {
228 pindesc->name = kasprintf(GFP_KERNEL, "PIN%u", pin->number);
229 if (!pindesc->name) {
230 kfree(pindesc);
231 return -ENOMEM;
232 }
233 pindesc->dynamic_name = true;
234 }
235
236 pindesc->drv_data = pin->drv_data;
237
238 radix_tree_insert(&pctldev->pin_desc_tree, pin->number, pindesc);
239 pr_debug("registered pin %d (%s) on %s\n",
240 pin->number, pindesc->name, pctldev->desc->name);
241 return 0;
242}
243
244static int pinctrl_register_pins(struct pinctrl_dev *pctldev,
245 const struct pinctrl_pin_desc *pins,
246 unsigned num_descs)
247{
248 unsigned i;
249 int ret = 0;
250
251 for (i = 0; i < num_descs; i++) {
252 ret = pinctrl_register_one_pin(pctldev, &pins[i]);
253 if (ret)
254 return ret;
255 }
256
257 return 0;
258}
259
260/**
261 * gpio_to_pin() - GPIO range GPIO number to pin number translation
262 * @range: GPIO range used for the translation
263 * @gpio: gpio pin to translate to a pin number
264 *
265 * Finds the pin number for a given GPIO using the specified GPIO range
266 * as a base for translation. The distinction between linear GPIO ranges
267 * and pin list based GPIO ranges is managed correctly by this function.
268 *
269 * This function assumes the gpio is part of the specified GPIO range, use
270 * only after making sure this is the case (e.g. by calling it on the
271 * result of successful pinctrl_get_device_gpio_range calls)!
272 */
273static inline int gpio_to_pin(struct pinctrl_gpio_range *range,
274 unsigned int gpio)
275{
276 unsigned int offset = gpio - range->base;
277 if (range->pins)
278 return range->pins[offset];
279 else
280 return range->pin_base + offset;
281}
282
283/**
284 * pinctrl_match_gpio_range() - check if a certain GPIO pin is in range
285 * @pctldev: pin controller device to check
286 * @gpio: gpio pin to check taken from the global GPIO pin space
287 *
288 * Tries to match a GPIO pin number to the ranges handled by a certain pin
289 * controller, return the range or NULL
290 */
291static struct pinctrl_gpio_range *
292pinctrl_match_gpio_range(struct pinctrl_dev *pctldev, unsigned gpio)
293{
294 struct pinctrl_gpio_range *range;
295
296 mutex_lock(&pctldev->mutex);
297 /* Loop over the ranges */
298 list_for_each_entry(range, &pctldev->gpio_ranges, node) {
299 /* Check if we're in the valid range */
300 if (gpio >= range->base &&
301 gpio < range->base + range->npins) {
302 mutex_unlock(&pctldev->mutex);
303 return range;
304 }
305 }
306 mutex_unlock(&pctldev->mutex);
307 return NULL;
308}
309
310/**
311 * pinctrl_ready_for_gpio_range() - check if other GPIO pins of
312 * the same GPIO chip are in range
313 * @gpio: gpio pin to check taken from the global GPIO pin space
314 *
315 * This function is complement of pinctrl_match_gpio_range(). If the return
316 * value of pinctrl_match_gpio_range() is NULL, this function could be used
317 * to check whether pinctrl device is ready or not. Maybe some GPIO pins
318 * of the same GPIO chip don't have back-end pinctrl interface.
319 * If the return value is true, it means that pinctrl device is ready & the
320 * certain GPIO pin doesn't have back-end pinctrl device. If the return value
321 * is false, it means that pinctrl device may not be ready.
322 */
323#ifdef CONFIG_GPIOLIB
324static bool pinctrl_ready_for_gpio_range(unsigned gpio)
325{
326 struct pinctrl_dev *pctldev;
327 struct pinctrl_gpio_range *range = NULL;
328 struct gpio_chip *chip = gpio_to_chip(gpio);
329
330 if (WARN(!chip, "no gpio_chip for gpio%i?", gpio))
331 return false;
332
333 mutex_lock(&pinctrldev_list_mutex);
334
335 /* Loop over the pin controllers */
336 list_for_each_entry(pctldev, &pinctrldev_list, node) {
337 /* Loop over the ranges */
338 mutex_lock(&pctldev->mutex);
339 list_for_each_entry(range, &pctldev->gpio_ranges, node) {
340 /* Check if any gpio range overlapped with gpio chip */
341 if (range->base + range->npins - 1 < chip->base ||
342 range->base > chip->base + chip->ngpio - 1)
343 continue;
344 mutex_unlock(&pctldev->mutex);
345 mutex_unlock(&pinctrldev_list_mutex);
346 return true;
347 }
348 mutex_unlock(&pctldev->mutex);
349 }
350
351 mutex_unlock(&pinctrldev_list_mutex);
352
353 return false;
354}
355#else
356static bool pinctrl_ready_for_gpio_range(unsigned gpio) { return true; }
357#endif
358
359/**
360 * pinctrl_get_device_gpio_range() - find device for GPIO range
361 * @gpio: the pin to locate the pin controller for
362 * @outdev: the pin control device if found
363 * @outrange: the GPIO range if found
364 *
365 * Find the pin controller handling a certain GPIO pin from the pinspace of
366 * the GPIO subsystem, return the device and the matching GPIO range. Returns
367 * -EPROBE_DEFER if the GPIO range could not be found in any device since it
368 * may still have not been registered.
369 */
370static int pinctrl_get_device_gpio_range(unsigned gpio,
371 struct pinctrl_dev **outdev,
372 struct pinctrl_gpio_range **outrange)
373{
374 struct pinctrl_dev *pctldev;
375
376 mutex_lock(&pinctrldev_list_mutex);
377
378 /* Loop over the pin controllers */
379 list_for_each_entry(pctldev, &pinctrldev_list, node) {
380 struct pinctrl_gpio_range *range;
381
382 range = pinctrl_match_gpio_range(pctldev, gpio);
383 if (range) {
384 *outdev = pctldev;
385 *outrange = range;
386 mutex_unlock(&pinctrldev_list_mutex);
387 return 0;
388 }
389 }
390
391 mutex_unlock(&pinctrldev_list_mutex);
392
393 return -EPROBE_DEFER;
394}
395
396/**
397 * pinctrl_add_gpio_range() - register a GPIO range for a controller
398 * @pctldev: pin controller device to add the range to
399 * @range: the GPIO range to add
400 *
401 * This adds a range of GPIOs to be handled by a certain pin controller. Call
402 * this to register handled ranges after registering your pin controller.
403 */
404void pinctrl_add_gpio_range(struct pinctrl_dev *pctldev,
405 struct pinctrl_gpio_range *range)
406{
407 mutex_lock(&pctldev->mutex);
408 list_add_tail(&range->node, &pctldev->gpio_ranges);
409 mutex_unlock(&pctldev->mutex);
410}
411EXPORT_SYMBOL_GPL(pinctrl_add_gpio_range);
412
413void pinctrl_add_gpio_ranges(struct pinctrl_dev *pctldev,
414 struct pinctrl_gpio_range *ranges,
415 unsigned nranges)
416{
417 int i;
418
419 for (i = 0; i < nranges; i++)
420 pinctrl_add_gpio_range(pctldev, &ranges[i]);
421}
422EXPORT_SYMBOL_GPL(pinctrl_add_gpio_ranges);
423
424struct pinctrl_dev *pinctrl_find_and_add_gpio_range(const char *devname,
425 struct pinctrl_gpio_range *range)
426{
427 struct pinctrl_dev *pctldev;
428
429 pctldev = get_pinctrl_dev_from_devname(devname);
430
431 /*
432 * If we can't find this device, let's assume that is because
433 * it has not probed yet, so the driver trying to register this
434 * range need to defer probing.
435 */
436 if (!pctldev) {
437 return ERR_PTR(-EPROBE_DEFER);
438 }
439 pinctrl_add_gpio_range(pctldev, range);
440
441 return pctldev;
442}
443EXPORT_SYMBOL_GPL(pinctrl_find_and_add_gpio_range);
444
445int pinctrl_get_group_pins(struct pinctrl_dev *pctldev, const char *pin_group,
446 const unsigned **pins, unsigned *num_pins)
447{
448 const struct pinctrl_ops *pctlops = pctldev->desc->pctlops;
449 int gs;
450
451 if (!pctlops->get_group_pins)
452 return -EINVAL;
453
454 gs = pinctrl_get_group_selector(pctldev, pin_group);
455 if (gs < 0)
456 return gs;
457
458 return pctlops->get_group_pins(pctldev, gs, pins, num_pins);
459}
460EXPORT_SYMBOL_GPL(pinctrl_get_group_pins);
461
462struct pinctrl_gpio_range *
463pinctrl_find_gpio_range_from_pin_nolock(struct pinctrl_dev *pctldev,
464 unsigned int pin)
465{
466 struct pinctrl_gpio_range *range;
467
468 /* Loop over the ranges */
469 list_for_each_entry(range, &pctldev->gpio_ranges, node) {
470 /* Check if we're in the valid range */
471 if (range->pins) {
472 int a;
473 for (a = 0; a < range->npins; a++) {
474 if (range->pins[a] == pin)
475 return range;
476 }
477 } else if (pin >= range->pin_base &&
478 pin < range->pin_base + range->npins)
479 return range;
480 }
481
482 return NULL;
483}
484EXPORT_SYMBOL_GPL(pinctrl_find_gpio_range_from_pin_nolock);
485
486/**
487 * pinctrl_find_gpio_range_from_pin() - locate the GPIO range for a pin
488 * @pctldev: the pin controller device to look in
489 * @pin: a controller-local number to find the range for
490 */
491struct pinctrl_gpio_range *
492pinctrl_find_gpio_range_from_pin(struct pinctrl_dev *pctldev,
493 unsigned int pin)
494{
495 struct pinctrl_gpio_range *range;
496
497 mutex_lock(&pctldev->mutex);
498 range = pinctrl_find_gpio_range_from_pin_nolock(pctldev, pin);
499 mutex_unlock(&pctldev->mutex);
500
501 return range;
502}
503EXPORT_SYMBOL_GPL(pinctrl_find_gpio_range_from_pin);
504
505/**
506 * pinctrl_remove_gpio_range() - remove a range of GPIOs from a pin controller
507 * @pctldev: pin controller device to remove the range from
508 * @range: the GPIO range to remove
509 */
510void pinctrl_remove_gpio_range(struct pinctrl_dev *pctldev,
511 struct pinctrl_gpio_range *range)
512{
513 mutex_lock(&pctldev->mutex);
514 list_del(&range->node);
515 mutex_unlock(&pctldev->mutex);
516}
517EXPORT_SYMBOL_GPL(pinctrl_remove_gpio_range);
518
519#ifdef CONFIG_GENERIC_PINCTRL_GROUPS
520
521/**
522 * pinctrl_generic_get_group_count() - returns the number of pin groups
523 * @pctldev: pin controller device
524 */
525int pinctrl_generic_get_group_count(struct pinctrl_dev *pctldev)
526{
527 return pctldev->num_groups;
528}
529EXPORT_SYMBOL_GPL(pinctrl_generic_get_group_count);
530
531/**
532 * pinctrl_generic_get_group_name() - returns the name of a pin group
533 * @pctldev: pin controller device
534 * @selector: group number
535 */
536const char *pinctrl_generic_get_group_name(struct pinctrl_dev *pctldev,
537 unsigned int selector)
538{
539 struct group_desc *group;
540
541 group = radix_tree_lookup(&pctldev->pin_group_tree,
542 selector);
543 if (!group)
544 return NULL;
545
546 return group->name;
547}
548EXPORT_SYMBOL_GPL(pinctrl_generic_get_group_name);
549
550/**
551 * pinctrl_generic_get_group_pins() - gets the pin group pins
552 * @pctldev: pin controller device
553 * @selector: group number
554 * @pins: pins in the group
555 * @num_pins: number of pins in the group
556 */
557int pinctrl_generic_get_group_pins(struct pinctrl_dev *pctldev,
558 unsigned int selector,
559 const unsigned int **pins,
560 unsigned int *num_pins)
561{
562 struct group_desc *group;
563
564 group = radix_tree_lookup(&pctldev->pin_group_tree,
565 selector);
566 if (!group) {
567 dev_err(pctldev->dev, "%s could not find pingroup%i\n",
568 __func__, selector);
569 return -EINVAL;
570 }
571
572 *pins = group->pins;
573 *num_pins = group->num_pins;
574
575 return 0;
576}
577EXPORT_SYMBOL_GPL(pinctrl_generic_get_group_pins);
578
579/**
580 * pinctrl_generic_get_group() - returns a pin group based on the number
581 * @pctldev: pin controller device
582 * @selector: group number
583 */
584struct group_desc *pinctrl_generic_get_group(struct pinctrl_dev *pctldev,
585 unsigned int selector)
586{
587 struct group_desc *group;
588
589 group = radix_tree_lookup(&pctldev->pin_group_tree,
590 selector);
591 if (!group)
592 return NULL;
593
594 return group;
595}
596EXPORT_SYMBOL_GPL(pinctrl_generic_get_group);
597
598static int pinctrl_generic_group_name_to_selector(struct pinctrl_dev *pctldev,
599 const char *function)
600{
601 const struct pinctrl_ops *ops = pctldev->desc->pctlops;
602 int ngroups = ops->get_groups_count(pctldev);
603 int selector = 0;
604
605 /* See if this pctldev has this group */
606 while (selector < ngroups) {
607 const char *gname = ops->get_group_name(pctldev, selector);
608
609 if (gname && !strcmp(function, gname))
610 return selector;
611
612 selector++;
613 }
614
615 return -EINVAL;
616}
617
618/**
619 * pinctrl_generic_add_group() - adds a new pin group
620 * @pctldev: pin controller device
621 * @name: name of the pin group
622 * @pins: pins in the pin group
623 * @num_pins: number of pins in the pin group
624 * @data: pin controller driver specific data
625 *
626 * Note that the caller must take care of locking.
627 */
628int pinctrl_generic_add_group(struct pinctrl_dev *pctldev, const char *name,
629 int *pins, int num_pins, void *data)
630{
631 struct group_desc *group;
632 int selector;
633
634 if (!name)
635 return -EINVAL;
636
637 selector = pinctrl_generic_group_name_to_selector(pctldev, name);
638 if (selector >= 0)
639 return selector;
640
641 selector = pctldev->num_groups;
642
643 group = devm_kzalloc(pctldev->dev, sizeof(*group), GFP_KERNEL);
644 if (!group)
645 return -ENOMEM;
646
647 group->name = name;
648 group->pins = pins;
649 group->num_pins = num_pins;
650 group->data = data;
651
652 radix_tree_insert(&pctldev->pin_group_tree, selector, group);
653
654 pctldev->num_groups++;
655
656 return selector;
657}
658EXPORT_SYMBOL_GPL(pinctrl_generic_add_group);
659
660/**
661 * pinctrl_generic_remove_group() - removes a numbered pin group
662 * @pctldev: pin controller device
663 * @selector: group number
664 *
665 * Note that the caller must take care of locking.
666 */
667int pinctrl_generic_remove_group(struct pinctrl_dev *pctldev,
668 unsigned int selector)
669{
670 struct group_desc *group;
671
672 group = radix_tree_lookup(&pctldev->pin_group_tree,
673 selector);
674 if (!group)
675 return -ENOENT;
676
677 radix_tree_delete(&pctldev->pin_group_tree, selector);
678 devm_kfree(pctldev->dev, group);
679
680 pctldev->num_groups--;
681
682 return 0;
683}
684EXPORT_SYMBOL_GPL(pinctrl_generic_remove_group);
685
686/**
687 * pinctrl_generic_free_groups() - removes all pin groups
688 * @pctldev: pin controller device
689 *
690 * Note that the caller must take care of locking. The pinctrl groups
691 * are allocated with devm_kzalloc() so no need to free them here.
692 */
693static void pinctrl_generic_free_groups(struct pinctrl_dev *pctldev)
694{
695 struct radix_tree_iter iter;
696 void __rcu **slot;
697
698 radix_tree_for_each_slot(slot, &pctldev->pin_group_tree, &iter, 0)
699 radix_tree_delete(&pctldev->pin_group_tree, iter.index);
700
701 pctldev->num_groups = 0;
702}
703
704#else
705static inline void pinctrl_generic_free_groups(struct pinctrl_dev *pctldev)
706{
707}
708#endif /* CONFIG_GENERIC_PINCTRL_GROUPS */
709
710/**
711 * pinctrl_get_group_selector() - returns the group selector for a group
712 * @pctldev: the pin controller handling the group
713 * @pin_group: the pin group to look up
714 */
715int pinctrl_get_group_selector(struct pinctrl_dev *pctldev,
716 const char *pin_group)
717{
718 const struct pinctrl_ops *pctlops = pctldev->desc->pctlops;
719 unsigned ngroups = pctlops->get_groups_count(pctldev);
720 unsigned group_selector = 0;
721
722 while (group_selector < ngroups) {
723 const char *gname = pctlops->get_group_name(pctldev,
724 group_selector);
725 if (gname && !strcmp(gname, pin_group)) {
726 dev_dbg(pctldev->dev,
727 "found group selector %u for %s\n",
728 group_selector,
729 pin_group);
730 return group_selector;
731 }
732
733 group_selector++;
734 }
735
736 dev_err(pctldev->dev, "does not have pin group %s\n",
737 pin_group);
738
739 return -EINVAL;
740}
741
742bool pinctrl_gpio_can_use_line(unsigned gpio)
743{
744 struct pinctrl_dev *pctldev;
745 struct pinctrl_gpio_range *range;
746 bool result;
747 int pin;
748
749 /*
750 * Try to obtain GPIO range, if it fails
751 * we're probably dealing with GPIO driver
752 * without a backing pin controller - bail out.
753 */
754 if (pinctrl_get_device_gpio_range(gpio, &pctldev, &range))
755 return true;
756
757 mutex_lock(&pctldev->mutex);
758
759 /* Convert to the pin controllers number space */
760 pin = gpio_to_pin(range, gpio);
761
762 result = pinmux_can_be_used_for_gpio(pctldev, pin);
763
764 mutex_unlock(&pctldev->mutex);
765
766 return result;
767}
768EXPORT_SYMBOL_GPL(pinctrl_gpio_can_use_line);
769
770/**
771 * pinctrl_gpio_request() - request a single pin to be used as GPIO
772 * @gpio: the GPIO pin number from the GPIO subsystem number space
773 *
774 * This function should *ONLY* be used from gpiolib-based GPIO drivers,
775 * as part of their gpio_request() semantics, platforms and individual drivers
776 * shall *NOT* request GPIO pins to be muxed in.
777 */
778int pinctrl_gpio_request(unsigned gpio)
779{
780 struct pinctrl_dev *pctldev;
781 struct pinctrl_gpio_range *range;
782 int ret;
783 int pin;
784
785 ret = pinctrl_get_device_gpio_range(gpio, &pctldev, &range);
786 if (ret) {
787 if (pinctrl_ready_for_gpio_range(gpio))
788 ret = 0;
789 return ret;
790 }
791
792 mutex_lock(&pctldev->mutex);
793
794 /* Convert to the pin controllers number space */
795 pin = gpio_to_pin(range, gpio);
796
797 ret = pinmux_request_gpio(pctldev, range, pin, gpio);
798
799 mutex_unlock(&pctldev->mutex);
800
801 return ret;
802}
803EXPORT_SYMBOL_GPL(pinctrl_gpio_request);
804
805/**
806 * pinctrl_gpio_free() - free control on a single pin, currently used as GPIO
807 * @gpio: the GPIO pin number from the GPIO subsystem number space
808 *
809 * This function should *ONLY* be used from gpiolib-based GPIO drivers,
810 * as part of their gpio_free() semantics, platforms and individual drivers
811 * shall *NOT* request GPIO pins to be muxed out.
812 */
813void pinctrl_gpio_free(unsigned gpio)
814{
815 struct pinctrl_dev *pctldev;
816 struct pinctrl_gpio_range *range;
817 int ret;
818 int pin;
819
820 ret = pinctrl_get_device_gpio_range(gpio, &pctldev, &range);
821 if (ret) {
822 return;
823 }
824 mutex_lock(&pctldev->mutex);
825
826 /* Convert to the pin controllers number space */
827 pin = gpio_to_pin(range, gpio);
828
829 pinmux_free_gpio(pctldev, pin, range);
830
831 mutex_unlock(&pctldev->mutex);
832}
833EXPORT_SYMBOL_GPL(pinctrl_gpio_free);
834
835static int pinctrl_gpio_direction(unsigned gpio, bool input)
836{
837 struct pinctrl_dev *pctldev;
838 struct pinctrl_gpio_range *range;
839 int ret;
840 int pin;
841
842 ret = pinctrl_get_device_gpio_range(gpio, &pctldev, &range);
843 if (ret) {
844 return ret;
845 }
846
847 mutex_lock(&pctldev->mutex);
848
849 /* Convert to the pin controllers number space */
850 pin = gpio_to_pin(range, gpio);
851 ret = pinmux_gpio_direction(pctldev, range, pin, input);
852
853 mutex_unlock(&pctldev->mutex);
854
855 return ret;
856}
857
858/**
859 * pinctrl_gpio_direction_input() - request a GPIO pin to go into input mode
860 * @gpio: the GPIO pin number from the GPIO subsystem number space
861 *
862 * This function should *ONLY* be used from gpiolib-based GPIO drivers,
863 * as part of their gpio_direction_input() semantics, platforms and individual
864 * drivers shall *NOT* touch pin control GPIO calls.
865 */
866int pinctrl_gpio_direction_input(unsigned gpio)
867{
868 return pinctrl_gpio_direction(gpio, true);
869}
870EXPORT_SYMBOL_GPL(pinctrl_gpio_direction_input);
871
872/**
873 * pinctrl_gpio_direction_output() - request a GPIO pin to go into output mode
874 * @gpio: the GPIO pin number from the GPIO subsystem number space
875 *
876 * This function should *ONLY* be used from gpiolib-based GPIO drivers,
877 * as part of their gpio_direction_output() semantics, platforms and individual
878 * drivers shall *NOT* touch pin control GPIO calls.
879 */
880int pinctrl_gpio_direction_output(unsigned gpio)
881{
882 return pinctrl_gpio_direction(gpio, false);
883}
884EXPORT_SYMBOL_GPL(pinctrl_gpio_direction_output);
885
886/**
887 * pinctrl_gpio_set_config() - Apply config to given GPIO pin
888 * @gpio: the GPIO pin number from the GPIO subsystem number space
889 * @config: the configuration to apply to the GPIO
890 *
891 * This function should *ONLY* be used from gpiolib-based GPIO drivers, if
892 * they need to call the underlying pin controller to change GPIO config
893 * (for example set debounce time).
894 */
895int pinctrl_gpio_set_config(unsigned gpio, unsigned long config)
896{
897 unsigned long configs[] = { config };
898 struct pinctrl_gpio_range *range;
899 struct pinctrl_dev *pctldev;
900 int ret, pin;
901
902 ret = pinctrl_get_device_gpio_range(gpio, &pctldev, &range);
903 if (ret)
904 return ret;
905
906 mutex_lock(&pctldev->mutex);
907 pin = gpio_to_pin(range, gpio);
908 ret = pinconf_set_config(pctldev, pin, configs, ARRAY_SIZE(configs));
909 mutex_unlock(&pctldev->mutex);
910
911 return ret;
912}
913EXPORT_SYMBOL_GPL(pinctrl_gpio_set_config);
914
915static struct pinctrl_state *find_state(struct pinctrl *p,
916 const char *name)
917{
918 struct pinctrl_state *state;
919
920 list_for_each_entry(state, &p->states, node)
921 if (!strcmp(state->name, name))
922 return state;
923
924 return NULL;
925}
926
927static struct pinctrl_state *create_state(struct pinctrl *p,
928 const char *name)
929{
930 struct pinctrl_state *state;
931
932 state = kzalloc(sizeof(*state), GFP_KERNEL);
933 if (!state)
934 return ERR_PTR(-ENOMEM);
935
936 state->name = name;
937 INIT_LIST_HEAD(&state->settings);
938
939 list_add_tail(&state->node, &p->states);
940
941 return state;
942}
943
944static int add_setting(struct pinctrl *p, struct pinctrl_dev *pctldev,
945 const struct pinctrl_map *map)
946{
947 struct pinctrl_state *state;
948 struct pinctrl_setting *setting;
949 int ret;
950
951 state = find_state(p, map->name);
952 if (!state)
953 state = create_state(p, map->name);
954 if (IS_ERR(state))
955 return PTR_ERR(state);
956
957 if (map->type == PIN_MAP_TYPE_DUMMY_STATE)
958 return 0;
959
960 setting = kzalloc(sizeof(*setting), GFP_KERNEL);
961 if (!setting)
962 return -ENOMEM;
963
964 setting->type = map->type;
965
966 if (pctldev)
967 setting->pctldev = pctldev;
968 else
969 setting->pctldev =
970 get_pinctrl_dev_from_devname(map->ctrl_dev_name);
971 if (!setting->pctldev) {
972 kfree(setting);
973 /* Do not defer probing of hogs (circular loop) */
974 if (!strcmp(map->ctrl_dev_name, map->dev_name))
975 return -ENODEV;
976 /*
977 * OK let us guess that the driver is not there yet, and
978 * let's defer obtaining this pinctrl handle to later...
979 */
980 dev_info(p->dev, "unknown pinctrl device %s in map entry, deferring probe",
981 map->ctrl_dev_name);
982 return -EPROBE_DEFER;
983 }
984
985 setting->dev_name = map->dev_name;
986
987 switch (map->type) {
988 case PIN_MAP_TYPE_MUX_GROUP:
989 ret = pinmux_map_to_setting(map, setting);
990 break;
991 case PIN_MAP_TYPE_CONFIGS_PIN:
992 case PIN_MAP_TYPE_CONFIGS_GROUP:
993 ret = pinconf_map_to_setting(map, setting);
994 break;
995 default:
996 ret = -EINVAL;
997 break;
998 }
999 if (ret < 0) {
1000 kfree(setting);
1001 return ret;
1002 }
1003
1004 list_add_tail(&setting->node, &state->settings);
1005
1006 return 0;
1007}
1008
1009static struct pinctrl *find_pinctrl(struct device *dev)
1010{
1011 struct pinctrl *p;
1012
1013 mutex_lock(&pinctrl_list_mutex);
1014 list_for_each_entry(p, &pinctrl_list, node)
1015 if (p->dev == dev) {
1016 mutex_unlock(&pinctrl_list_mutex);
1017 return p;
1018 }
1019
1020 mutex_unlock(&pinctrl_list_mutex);
1021 return NULL;
1022}
1023
1024static void pinctrl_free(struct pinctrl *p, bool inlist);
1025
1026static struct pinctrl *create_pinctrl(struct device *dev,
1027 struct pinctrl_dev *pctldev)
1028{
1029 struct pinctrl *p;
1030 const char *devname;
1031 struct pinctrl_maps *maps_node;
1032 const struct pinctrl_map *map;
1033 int ret;
1034
1035 /*
1036 * create the state cookie holder struct pinctrl for each
1037 * mapping, this is what consumers will get when requesting
1038 * a pin control handle with pinctrl_get()
1039 */
1040 p = kzalloc(sizeof(*p), GFP_KERNEL);
1041 if (!p)
1042 return ERR_PTR(-ENOMEM);
1043 p->dev = dev;
1044 INIT_LIST_HEAD(&p->states);
1045 INIT_LIST_HEAD(&p->dt_maps);
1046
1047 ret = pinctrl_dt_to_map(p, pctldev);
1048 if (ret < 0) {
1049 kfree(p);
1050 return ERR_PTR(ret);
1051 }
1052
1053 devname = dev_name(dev);
1054
1055 mutex_lock(&pinctrl_maps_mutex);
1056 /* Iterate over the pin control maps to locate the right ones */
1057 for_each_pin_map(maps_node, map) {
1058 /* Map must be for this device */
1059 if (strcmp(map->dev_name, devname))
1060 continue;
1061 /*
1062 * If pctldev is not null, we are claiming hog for it,
1063 * that means, setting that is served by pctldev by itself.
1064 *
1065 * Thus we must skip map that is for this device but is served
1066 * by other device.
1067 */
1068 if (pctldev &&
1069 strcmp(dev_name(pctldev->dev), map->ctrl_dev_name))
1070 continue;
1071
1072 ret = add_setting(p, pctldev, map);
1073 /*
1074 * At this point the adding of a setting may:
1075 *
1076 * - Defer, if the pinctrl device is not yet available
1077 * - Fail, if the pinctrl device is not yet available,
1078 * AND the setting is a hog. We cannot defer that, since
1079 * the hog will kick in immediately after the device
1080 * is registered.
1081 *
1082 * If the error returned was not -EPROBE_DEFER then we
1083 * accumulate the errors to see if we end up with
1084 * an -EPROBE_DEFER later, as that is the worst case.
1085 */
1086 if (ret == -EPROBE_DEFER) {
1087 pinctrl_free(p, false);
1088 mutex_unlock(&pinctrl_maps_mutex);
1089 return ERR_PTR(ret);
1090 }
1091 }
1092 mutex_unlock(&pinctrl_maps_mutex);
1093
1094 if (ret < 0) {
1095 /* If some other error than deferral occurred, return here */
1096 pinctrl_free(p, false);
1097 return ERR_PTR(ret);
1098 }
1099
1100 kref_init(&p->users);
1101
1102 /* Add the pinctrl handle to the global list */
1103 mutex_lock(&pinctrl_list_mutex);
1104 list_add_tail(&p->node, &pinctrl_list);
1105 mutex_unlock(&pinctrl_list_mutex);
1106
1107 return p;
1108}
1109
1110/**
1111 * pinctrl_get() - retrieves the pinctrl handle for a device
1112 * @dev: the device to obtain the handle for
1113 */
1114struct pinctrl *pinctrl_get(struct device *dev)
1115{
1116 struct pinctrl *p;
1117
1118 if (WARN_ON(!dev))
1119 return ERR_PTR(-EINVAL);
1120
1121 /*
1122 * See if somebody else (such as the device core) has already
1123 * obtained a handle to the pinctrl for this device. In that case,
1124 * return another pointer to it.
1125 */
1126 p = find_pinctrl(dev);
1127 if (p) {
1128 dev_dbg(dev, "obtain a copy of previously claimed pinctrl\n");
1129 kref_get(&p->users);
1130 return p;
1131 }
1132
1133 return create_pinctrl(dev, NULL);
1134}
1135EXPORT_SYMBOL_GPL(pinctrl_get);
1136
1137static void pinctrl_free_setting(bool disable_setting,
1138 struct pinctrl_setting *setting)
1139{
1140 switch (setting->type) {
1141 case PIN_MAP_TYPE_MUX_GROUP:
1142 if (disable_setting)
1143 pinmux_disable_setting(setting);
1144 pinmux_free_setting(setting);
1145 break;
1146 case PIN_MAP_TYPE_CONFIGS_PIN:
1147 case PIN_MAP_TYPE_CONFIGS_GROUP:
1148 pinconf_free_setting(setting);
1149 break;
1150 default:
1151 break;
1152 }
1153}
1154
1155static void pinctrl_free(struct pinctrl *p, bool inlist)
1156{
1157 struct pinctrl_state *state, *n1;
1158 struct pinctrl_setting *setting, *n2;
1159
1160 mutex_lock(&pinctrl_list_mutex);
1161 list_for_each_entry_safe(state, n1, &p->states, node) {
1162 list_for_each_entry_safe(setting, n2, &state->settings, node) {
1163 pinctrl_free_setting(state == p->state, setting);
1164 list_del(&setting->node);
1165 kfree(setting);
1166 }
1167 list_del(&state->node);
1168 kfree(state);
1169 }
1170
1171 pinctrl_dt_free_maps(p);
1172
1173 if (inlist)
1174 list_del(&p->node);
1175 kfree(p);
1176 mutex_unlock(&pinctrl_list_mutex);
1177}
1178
1179/**
1180 * pinctrl_release() - release the pinctrl handle
1181 * @kref: the kref in the pinctrl being released
1182 */
1183static void pinctrl_release(struct kref *kref)
1184{
1185 struct pinctrl *p = container_of(kref, struct pinctrl, users);
1186
1187 pinctrl_free(p, true);
1188}
1189
1190/**
1191 * pinctrl_put() - decrease use count on a previously claimed pinctrl handle
1192 * @p: the pinctrl handle to release
1193 */
1194void pinctrl_put(struct pinctrl *p)
1195{
1196 kref_put(&p->users, pinctrl_release);
1197}
1198EXPORT_SYMBOL_GPL(pinctrl_put);
1199
1200/**
1201 * pinctrl_lookup_state() - retrieves a state handle from a pinctrl handle
1202 * @p: the pinctrl handle to retrieve the state from
1203 * @name: the state name to retrieve
1204 */
1205struct pinctrl_state *pinctrl_lookup_state(struct pinctrl *p,
1206 const char *name)
1207{
1208 struct pinctrl_state *state;
1209
1210 state = find_state(p, name);
1211 if (!state) {
1212 if (pinctrl_dummy_state) {
1213 /* create dummy state */
1214 dev_dbg(p->dev, "using pinctrl dummy state (%s)\n",
1215 name);
1216 state = create_state(p, name);
1217 } else
1218 state = ERR_PTR(-ENODEV);
1219 }
1220
1221 return state;
1222}
1223EXPORT_SYMBOL_GPL(pinctrl_lookup_state);
1224
1225static void pinctrl_link_add(struct pinctrl_dev *pctldev,
1226 struct device *consumer)
1227{
1228 if (pctldev->desc->link_consumers)
1229 device_link_add(consumer, pctldev->dev,
1230 DL_FLAG_PM_RUNTIME |
1231 DL_FLAG_AUTOREMOVE_CONSUMER);
1232}
1233
1234/**
1235 * pinctrl_commit_state() - select/activate/program a pinctrl state to HW
1236 * @p: the pinctrl handle for the device that requests configuration
1237 * @state: the state handle to select/activate/program
1238 */
1239static int pinctrl_commit_state(struct pinctrl *p, struct pinctrl_state *state)
1240{
1241 struct pinctrl_setting *setting, *setting2;
1242 struct pinctrl_state *old_state = p->state;
1243 int ret;
1244
1245 if (p->state) {
1246 /*
1247 * For each pinmux setting in the old state, forget SW's record
1248 * of mux owner for that pingroup. Any pingroups which are
1249 * still owned by the new state will be re-acquired by the call
1250 * to pinmux_enable_setting() in the loop below.
1251 */
1252 list_for_each_entry(setting, &p->state->settings, node) {
1253 if (setting->type != PIN_MAP_TYPE_MUX_GROUP)
1254 continue;
1255 pinmux_disable_setting(setting);
1256 }
1257 }
1258
1259 p->state = NULL;
1260
1261 /* Apply all the settings for the new state - pinmux first */
1262 list_for_each_entry(setting, &state->settings, node) {
1263 switch (setting->type) {
1264 case PIN_MAP_TYPE_MUX_GROUP:
1265 ret = pinmux_enable_setting(setting);
1266 break;
1267 case PIN_MAP_TYPE_CONFIGS_PIN:
1268 case PIN_MAP_TYPE_CONFIGS_GROUP:
1269 ret = 0;
1270 break;
1271 default:
1272 ret = -EINVAL;
1273 break;
1274 }
1275
1276 if (ret < 0)
1277 goto unapply_new_state;
1278
1279 /* Do not link hogs (circular dependency) */
1280 if (p != setting->pctldev->p)
1281 pinctrl_link_add(setting->pctldev, p->dev);
1282 }
1283
1284 /* Apply all the settings for the new state - pinconf after */
1285 list_for_each_entry(setting, &state->settings, node) {
1286 switch (setting->type) {
1287 case PIN_MAP_TYPE_MUX_GROUP:
1288 ret = 0;
1289 break;
1290 case PIN_MAP_TYPE_CONFIGS_PIN:
1291 case PIN_MAP_TYPE_CONFIGS_GROUP:
1292 ret = pinconf_apply_setting(setting);
1293 break;
1294 default:
1295 ret = -EINVAL;
1296 break;
1297 }
1298
1299 if (ret < 0) {
1300 goto unapply_new_state;
1301 }
1302
1303 /* Do not link hogs (circular dependency) */
1304 if (p != setting->pctldev->p)
1305 pinctrl_link_add(setting->pctldev, p->dev);
1306 }
1307
1308 p->state = state;
1309
1310 return 0;
1311
1312unapply_new_state:
1313 dev_err(p->dev, "Error applying setting, reverse things back\n");
1314
1315 list_for_each_entry(setting2, &state->settings, node) {
1316 if (&setting2->node == &setting->node)
1317 break;
1318 /*
1319 * All we can do here is pinmux_disable_setting.
1320 * That means that some pins are muxed differently now
1321 * than they were before applying the setting (We can't
1322 * "unmux a pin"!), but it's not a big deal since the pins
1323 * are free to be muxed by another apply_setting.
1324 */
1325 if (setting2->type == PIN_MAP_TYPE_MUX_GROUP)
1326 pinmux_disable_setting(setting2);
1327 }
1328
1329 /* There's no infinite recursive loop here because p->state is NULL */
1330 if (old_state)
1331 pinctrl_select_state(p, old_state);
1332
1333 return ret;
1334}
1335
1336/**
1337 * pinctrl_select_state() - select/activate/program a pinctrl state to HW
1338 * @p: the pinctrl handle for the device that requests configuration
1339 * @state: the state handle to select/activate/program
1340 */
1341int pinctrl_select_state(struct pinctrl *p, struct pinctrl_state *state)
1342{
1343 if (p->state == state)
1344 return 0;
1345
1346 return pinctrl_commit_state(p, state);
1347}
1348EXPORT_SYMBOL_GPL(pinctrl_select_state);
1349
1350static void devm_pinctrl_release(struct device *dev, void *res)
1351{
1352 pinctrl_put(*(struct pinctrl **)res);
1353}
1354
1355/**
1356 * devm_pinctrl_get() - Resource managed pinctrl_get()
1357 * @dev: the device to obtain the handle for
1358 *
1359 * If there is a need to explicitly destroy the returned struct pinctrl,
1360 * devm_pinctrl_put() should be used, rather than plain pinctrl_put().
1361 */
1362struct pinctrl *devm_pinctrl_get(struct device *dev)
1363{
1364 struct pinctrl **ptr, *p;
1365
1366 ptr = devres_alloc(devm_pinctrl_release, sizeof(*ptr), GFP_KERNEL);
1367 if (!ptr)
1368 return ERR_PTR(-ENOMEM);
1369
1370 p = pinctrl_get(dev);
1371 if (!IS_ERR(p)) {
1372 *ptr = p;
1373 devres_add(dev, ptr);
1374 } else {
1375 devres_free(ptr);
1376 }
1377
1378 return p;
1379}
1380EXPORT_SYMBOL_GPL(devm_pinctrl_get);
1381
1382static int devm_pinctrl_match(struct device *dev, void *res, void *data)
1383{
1384 struct pinctrl **p = res;
1385
1386 return *p == data;
1387}
1388
1389/**
1390 * devm_pinctrl_put() - Resource managed pinctrl_put()
1391 * @p: the pinctrl handle to release
1392 *
1393 * Deallocate a struct pinctrl obtained via devm_pinctrl_get(). Normally
1394 * this function will not need to be called and the resource management
1395 * code will ensure that the resource is freed.
1396 */
1397void devm_pinctrl_put(struct pinctrl *p)
1398{
1399 WARN_ON(devres_release(p->dev, devm_pinctrl_release,
1400 devm_pinctrl_match, p));
1401}
1402EXPORT_SYMBOL_GPL(devm_pinctrl_put);
1403
1404/**
1405 * pinctrl_register_mappings() - register a set of pin controller mappings
1406 * @maps: the pincontrol mappings table to register. Note the pinctrl-core
1407 * keeps a reference to the passed in maps, so they should _not_ be
1408 * marked with __initdata.
1409 * @num_maps: the number of maps in the mapping table
1410 */
1411int pinctrl_register_mappings(const struct pinctrl_map *maps,
1412 unsigned num_maps)
1413{
1414 int i, ret;
1415 struct pinctrl_maps *maps_node;
1416
1417 pr_debug("add %u pinctrl maps\n", num_maps);
1418
1419 /* First sanity check the new mapping */
1420 for (i = 0; i < num_maps; i++) {
1421 if (!maps[i].dev_name) {
1422 pr_err("failed to register map %s (%d): no device given\n",
1423 maps[i].name, i);
1424 return -EINVAL;
1425 }
1426
1427 if (!maps[i].name) {
1428 pr_err("failed to register map %d: no map name given\n",
1429 i);
1430 return -EINVAL;
1431 }
1432
1433 if (maps[i].type != PIN_MAP_TYPE_DUMMY_STATE &&
1434 !maps[i].ctrl_dev_name) {
1435 pr_err("failed to register map %s (%d): no pin control device given\n",
1436 maps[i].name, i);
1437 return -EINVAL;
1438 }
1439
1440 switch (maps[i].type) {
1441 case PIN_MAP_TYPE_DUMMY_STATE:
1442 break;
1443 case PIN_MAP_TYPE_MUX_GROUP:
1444 ret = pinmux_validate_map(&maps[i], i);
1445 if (ret < 0)
1446 return ret;
1447 break;
1448 case PIN_MAP_TYPE_CONFIGS_PIN:
1449 case PIN_MAP_TYPE_CONFIGS_GROUP:
1450 ret = pinconf_validate_map(&maps[i], i);
1451 if (ret < 0)
1452 return ret;
1453 break;
1454 default:
1455 pr_err("failed to register map %s (%d): invalid type given\n",
1456 maps[i].name, i);
1457 return -EINVAL;
1458 }
1459 }
1460
1461 maps_node = kzalloc(sizeof(*maps_node), GFP_KERNEL);
1462 if (!maps_node)
1463 return -ENOMEM;
1464
1465 maps_node->maps = maps;
1466 maps_node->num_maps = num_maps;
1467
1468 mutex_lock(&pinctrl_maps_mutex);
1469 list_add_tail(&maps_node->node, &pinctrl_maps);
1470 mutex_unlock(&pinctrl_maps_mutex);
1471
1472 return 0;
1473}
1474EXPORT_SYMBOL_GPL(pinctrl_register_mappings);
1475
1476/**
1477 * pinctrl_unregister_mappings() - unregister a set of pin controller mappings
1478 * @map: the pincontrol mappings table passed to pinctrl_register_mappings()
1479 * when registering the mappings.
1480 */
1481void pinctrl_unregister_mappings(const struct pinctrl_map *map)
1482{
1483 struct pinctrl_maps *maps_node;
1484
1485 mutex_lock(&pinctrl_maps_mutex);
1486 list_for_each_entry(maps_node, &pinctrl_maps, node) {
1487 if (maps_node->maps == map) {
1488 list_del(&maps_node->node);
1489 kfree(maps_node);
1490 mutex_unlock(&pinctrl_maps_mutex);
1491 return;
1492 }
1493 }
1494 mutex_unlock(&pinctrl_maps_mutex);
1495}
1496EXPORT_SYMBOL_GPL(pinctrl_unregister_mappings);
1497
1498/**
1499 * pinctrl_force_sleep() - turn a given controller device into sleep state
1500 * @pctldev: pin controller device
1501 */
1502int pinctrl_force_sleep(struct pinctrl_dev *pctldev)
1503{
1504 if (!IS_ERR(pctldev->p) && !IS_ERR(pctldev->hog_sleep))
1505 return pinctrl_commit_state(pctldev->p, pctldev->hog_sleep);
1506 return 0;
1507}
1508EXPORT_SYMBOL_GPL(pinctrl_force_sleep);
1509
1510/**
1511 * pinctrl_force_default() - turn a given controller device into default state
1512 * @pctldev: pin controller device
1513 */
1514int pinctrl_force_default(struct pinctrl_dev *pctldev)
1515{
1516 if (!IS_ERR(pctldev->p) && !IS_ERR(pctldev->hog_default))
1517 return pinctrl_commit_state(pctldev->p, pctldev->hog_default);
1518 return 0;
1519}
1520EXPORT_SYMBOL_GPL(pinctrl_force_default);
1521
1522/**
1523 * pinctrl_init_done() - tell pinctrl probe is done
1524 *
1525 * We'll use this time to switch the pins from "init" to "default" unless the
1526 * driver selected some other state.
1527 *
1528 * @dev: device to that's done probing
1529 */
1530int pinctrl_init_done(struct device *dev)
1531{
1532 struct dev_pin_info *pins = dev->pins;
1533 int ret;
1534
1535 if (!pins)
1536 return 0;
1537
1538 if (IS_ERR(pins->init_state))
1539 return 0; /* No such state */
1540
1541 if (pins->p->state != pins->init_state)
1542 return 0; /* Not at init anyway */
1543
1544 if (IS_ERR(pins->default_state))
1545 return 0; /* No default state */
1546
1547 ret = pinctrl_select_state(pins->p, pins->default_state);
1548 if (ret)
1549 dev_err(dev, "failed to activate default pinctrl state\n");
1550
1551 return ret;
1552}
1553
1554static int pinctrl_select_bound_state(struct device *dev,
1555 struct pinctrl_state *state)
1556{
1557 struct dev_pin_info *pins = dev->pins;
1558 int ret;
1559
1560 if (IS_ERR(state))
1561 return 0; /* No such state */
1562 ret = pinctrl_select_state(pins->p, state);
1563 if (ret)
1564 dev_err(dev, "failed to activate pinctrl state %s\n",
1565 state->name);
1566 return ret;
1567}
1568
1569/**
1570 * pinctrl_select_default_state() - select default pinctrl state
1571 * @dev: device to select default state for
1572 */
1573int pinctrl_select_default_state(struct device *dev)
1574{
1575 if (!dev->pins)
1576 return 0;
1577
1578 return pinctrl_select_bound_state(dev, dev->pins->default_state);
1579}
1580EXPORT_SYMBOL_GPL(pinctrl_select_default_state);
1581
1582#ifdef CONFIG_PM
1583
1584/**
1585 * pinctrl_pm_select_default_state() - select default pinctrl state for PM
1586 * @dev: device to select default state for
1587 */
1588int pinctrl_pm_select_default_state(struct device *dev)
1589{
1590 return pinctrl_select_default_state(dev);
1591}
1592EXPORT_SYMBOL_GPL(pinctrl_pm_select_default_state);
1593
1594/**
1595 * pinctrl_pm_select_sleep_state() - select sleep pinctrl state for PM
1596 * @dev: device to select sleep state for
1597 */
1598int pinctrl_pm_select_sleep_state(struct device *dev)
1599{
1600 if (!dev->pins)
1601 return 0;
1602
1603 return pinctrl_select_bound_state(dev, dev->pins->sleep_state);
1604}
1605EXPORT_SYMBOL_GPL(pinctrl_pm_select_sleep_state);
1606
1607/**
1608 * pinctrl_pm_select_idle_state() - select idle pinctrl state for PM
1609 * @dev: device to select idle state for
1610 */
1611int pinctrl_pm_select_idle_state(struct device *dev)
1612{
1613 if (!dev->pins)
1614 return 0;
1615
1616 return pinctrl_select_bound_state(dev, dev->pins->idle_state);
1617}
1618EXPORT_SYMBOL_GPL(pinctrl_pm_select_idle_state);
1619#endif
1620
1621#ifdef CONFIG_DEBUG_FS
1622
1623static int pinctrl_pins_show(struct seq_file *s, void *what)
1624{
1625 struct pinctrl_dev *pctldev = s->private;
1626 const struct pinctrl_ops *ops = pctldev->desc->pctlops;
1627 unsigned i, pin;
1628#ifdef CONFIG_GPIOLIB
1629 struct pinctrl_gpio_range *range;
1630 struct gpio_chip *chip;
1631 int gpio_num;
1632#endif
1633
1634 seq_printf(s, "registered pins: %d\n", pctldev->desc->npins);
1635
1636 mutex_lock(&pctldev->mutex);
1637
1638 /* The pin number can be retrived from the pin controller descriptor */
1639 for (i = 0; i < pctldev->desc->npins; i++) {
1640 struct pin_desc *desc;
1641
1642 pin = pctldev->desc->pins[i].number;
1643 desc = pin_desc_get(pctldev, pin);
1644 /* Pin space may be sparse */
1645 if (!desc)
1646 continue;
1647
1648 seq_printf(s, "pin %d (%s) ", pin, desc->name);
1649
1650#ifdef CONFIG_GPIOLIB
1651 gpio_num = -1;
1652 list_for_each_entry(range, &pctldev->gpio_ranges, node) {
1653 if ((pin >= range->pin_base) &&
1654 (pin < (range->pin_base + range->npins))) {
1655 gpio_num = range->base + (pin - range->pin_base);
1656 break;
1657 }
1658 }
1659 if (gpio_num >= 0)
1660 chip = gpio_to_chip(gpio_num);
1661 else
1662 chip = NULL;
1663 if (chip)
1664 seq_printf(s, "%u:%s ", gpio_num - chip->gpiodev->base, chip->label);
1665 else
1666 seq_puts(s, "0:? ");
1667#endif
1668
1669 /* Driver-specific info per pin */
1670 if (ops->pin_dbg_show)
1671 ops->pin_dbg_show(pctldev, s, pin);
1672
1673 seq_puts(s, "\n");
1674 }
1675
1676 mutex_unlock(&pctldev->mutex);
1677
1678 return 0;
1679}
1680DEFINE_SHOW_ATTRIBUTE(pinctrl_pins);
1681
1682static int pinctrl_groups_show(struct seq_file *s, void *what)
1683{
1684 struct pinctrl_dev *pctldev = s->private;
1685 const struct pinctrl_ops *ops = pctldev->desc->pctlops;
1686 unsigned ngroups, selector = 0;
1687
1688 mutex_lock(&pctldev->mutex);
1689
1690 ngroups = ops->get_groups_count(pctldev);
1691
1692 seq_puts(s, "registered pin groups:\n");
1693 while (selector < ngroups) {
1694 const unsigned *pins = NULL;
1695 unsigned num_pins = 0;
1696 const char *gname = ops->get_group_name(pctldev, selector);
1697 const char *pname;
1698 int ret = 0;
1699 int i;
1700
1701 if (ops->get_group_pins)
1702 ret = ops->get_group_pins(pctldev, selector,
1703 &pins, &num_pins);
1704 if (ret)
1705 seq_printf(s, "%s [ERROR GETTING PINS]\n",
1706 gname);
1707 else {
1708 seq_printf(s, "group: %s\n", gname);
1709 for (i = 0; i < num_pins; i++) {
1710 pname = pin_get_name(pctldev, pins[i]);
1711 if (WARN_ON(!pname)) {
1712 mutex_unlock(&pctldev->mutex);
1713 return -EINVAL;
1714 }
1715 seq_printf(s, "pin %d (%s)\n", pins[i], pname);
1716 }
1717 seq_puts(s, "\n");
1718 }
1719 selector++;
1720 }
1721
1722 mutex_unlock(&pctldev->mutex);
1723
1724 return 0;
1725}
1726DEFINE_SHOW_ATTRIBUTE(pinctrl_groups);
1727
1728static int pinctrl_gpioranges_show(struct seq_file *s, void *what)
1729{
1730 struct pinctrl_dev *pctldev = s->private;
1731 struct pinctrl_gpio_range *range;
1732
1733 seq_puts(s, "GPIO ranges handled:\n");
1734
1735 mutex_lock(&pctldev->mutex);
1736
1737 /* Loop over the ranges */
1738 list_for_each_entry(range, &pctldev->gpio_ranges, node) {
1739 if (range->pins) {
1740 int a;
1741 seq_printf(s, "%u: %s GPIOS [%u - %u] PINS {",
1742 range->id, range->name,
1743 range->base, (range->base + range->npins - 1));
1744 for (a = 0; a < range->npins - 1; a++)
1745 seq_printf(s, "%u, ", range->pins[a]);
1746 seq_printf(s, "%u}\n", range->pins[a]);
1747 }
1748 else
1749 seq_printf(s, "%u: %s GPIOS [%u - %u] PINS [%u - %u]\n",
1750 range->id, range->name,
1751 range->base, (range->base + range->npins - 1),
1752 range->pin_base,
1753 (range->pin_base + range->npins - 1));
1754 }
1755
1756 mutex_unlock(&pctldev->mutex);
1757
1758 return 0;
1759}
1760DEFINE_SHOW_ATTRIBUTE(pinctrl_gpioranges);
1761
1762static int pinctrl_devices_show(struct seq_file *s, void *what)
1763{
1764 struct pinctrl_dev *pctldev;
1765
1766 seq_puts(s, "name [pinmux] [pinconf]\n");
1767
1768 mutex_lock(&pinctrldev_list_mutex);
1769
1770 list_for_each_entry(pctldev, &pinctrldev_list, node) {
1771 seq_printf(s, "%s ", pctldev->desc->name);
1772 if (pctldev->desc->pmxops)
1773 seq_puts(s, "yes ");
1774 else
1775 seq_puts(s, "no ");
1776 if (pctldev->desc->confops)
1777 seq_puts(s, "yes");
1778 else
1779 seq_puts(s, "no");
1780 seq_puts(s, "\n");
1781 }
1782
1783 mutex_unlock(&pinctrldev_list_mutex);
1784
1785 return 0;
1786}
1787DEFINE_SHOW_ATTRIBUTE(pinctrl_devices);
1788
1789static inline const char *map_type(enum pinctrl_map_type type)
1790{
1791 static const char * const names[] = {
1792 "INVALID",
1793 "DUMMY_STATE",
1794 "MUX_GROUP",
1795 "CONFIGS_PIN",
1796 "CONFIGS_GROUP",
1797 };
1798
1799 if (type >= ARRAY_SIZE(names))
1800 return "UNKNOWN";
1801
1802 return names[type];
1803}
1804
1805static int pinctrl_maps_show(struct seq_file *s, void *what)
1806{
1807 struct pinctrl_maps *maps_node;
1808 const struct pinctrl_map *map;
1809
1810 seq_puts(s, "Pinctrl maps:\n");
1811
1812 mutex_lock(&pinctrl_maps_mutex);
1813 for_each_pin_map(maps_node, map) {
1814 seq_printf(s, "device %s\nstate %s\ntype %s (%d)\n",
1815 map->dev_name, map->name, map_type(map->type),
1816 map->type);
1817
1818 if (map->type != PIN_MAP_TYPE_DUMMY_STATE)
1819 seq_printf(s, "controlling device %s\n",
1820 map->ctrl_dev_name);
1821
1822 switch (map->type) {
1823 case PIN_MAP_TYPE_MUX_GROUP:
1824 pinmux_show_map(s, map);
1825 break;
1826 case PIN_MAP_TYPE_CONFIGS_PIN:
1827 case PIN_MAP_TYPE_CONFIGS_GROUP:
1828 pinconf_show_map(s, map);
1829 break;
1830 default:
1831 break;
1832 }
1833
1834 seq_putc(s, '\n');
1835 }
1836 mutex_unlock(&pinctrl_maps_mutex);
1837
1838 return 0;
1839}
1840DEFINE_SHOW_ATTRIBUTE(pinctrl_maps);
1841
1842static int pinctrl_show(struct seq_file *s, void *what)
1843{
1844 struct pinctrl *p;
1845 struct pinctrl_state *state;
1846 struct pinctrl_setting *setting;
1847
1848 seq_puts(s, "Requested pin control handlers their pinmux maps:\n");
1849
1850 mutex_lock(&pinctrl_list_mutex);
1851
1852 list_for_each_entry(p, &pinctrl_list, node) {
1853 seq_printf(s, "device: %s current state: %s\n",
1854 dev_name(p->dev),
1855 p->state ? p->state->name : "none");
1856
1857 list_for_each_entry(state, &p->states, node) {
1858 seq_printf(s, " state: %s\n", state->name);
1859
1860 list_for_each_entry(setting, &state->settings, node) {
1861 struct pinctrl_dev *pctldev = setting->pctldev;
1862
1863 seq_printf(s, " type: %s controller %s ",
1864 map_type(setting->type),
1865 pinctrl_dev_get_name(pctldev));
1866
1867 switch (setting->type) {
1868 case PIN_MAP_TYPE_MUX_GROUP:
1869 pinmux_show_setting(s, setting);
1870 break;
1871 case PIN_MAP_TYPE_CONFIGS_PIN:
1872 case PIN_MAP_TYPE_CONFIGS_GROUP:
1873 pinconf_show_setting(s, setting);
1874 break;
1875 default:
1876 break;
1877 }
1878 }
1879 }
1880 }
1881
1882 mutex_unlock(&pinctrl_list_mutex);
1883
1884 return 0;
1885}
1886DEFINE_SHOW_ATTRIBUTE(pinctrl);
1887
1888static struct dentry *debugfs_root;
1889
1890static void pinctrl_init_device_debugfs(struct pinctrl_dev *pctldev)
1891{
1892 struct dentry *device_root;
1893 const char *debugfs_name;
1894
1895 if (pctldev->desc->name &&
1896 strcmp(dev_name(pctldev->dev), pctldev->desc->name)) {
1897 debugfs_name = devm_kasprintf(pctldev->dev, GFP_KERNEL,
1898 "%s-%s", dev_name(pctldev->dev),
1899 pctldev->desc->name);
1900 if (!debugfs_name) {
1901 pr_warn("failed to determine debugfs dir name for %s\n",
1902 dev_name(pctldev->dev));
1903 return;
1904 }
1905 } else {
1906 debugfs_name = dev_name(pctldev->dev);
1907 }
1908
1909 device_root = debugfs_create_dir(debugfs_name, debugfs_root);
1910 pctldev->device_root = device_root;
1911
1912 if (IS_ERR(device_root) || !device_root) {
1913 pr_warn("failed to create debugfs directory for %s\n",
1914 dev_name(pctldev->dev));
1915 return;
1916 }
1917 debugfs_create_file("pins", 0444,
1918 device_root, pctldev, &pinctrl_pins_fops);
1919 debugfs_create_file("pingroups", 0444,
1920 device_root, pctldev, &pinctrl_groups_fops);
1921 debugfs_create_file("gpio-ranges", 0444,
1922 device_root, pctldev, &pinctrl_gpioranges_fops);
1923 if (pctldev->desc->pmxops)
1924 pinmux_init_device_debugfs(device_root, pctldev);
1925 if (pctldev->desc->confops)
1926 pinconf_init_device_debugfs(device_root, pctldev);
1927}
1928
1929static void pinctrl_remove_device_debugfs(struct pinctrl_dev *pctldev)
1930{
1931 debugfs_remove_recursive(pctldev->device_root);
1932}
1933
1934static void pinctrl_init_debugfs(void)
1935{
1936 debugfs_root = debugfs_create_dir("pinctrl", NULL);
1937 if (IS_ERR(debugfs_root) || !debugfs_root) {
1938 pr_warn("failed to create debugfs directory\n");
1939 debugfs_root = NULL;
1940 return;
1941 }
1942
1943 debugfs_create_file("pinctrl-devices", 0444,
1944 debugfs_root, NULL, &pinctrl_devices_fops);
1945 debugfs_create_file("pinctrl-maps", 0444,
1946 debugfs_root, NULL, &pinctrl_maps_fops);
1947 debugfs_create_file("pinctrl-handles", 0444,
1948 debugfs_root, NULL, &pinctrl_fops);
1949}
1950
1951#else /* CONFIG_DEBUG_FS */
1952
1953static void pinctrl_init_device_debugfs(struct pinctrl_dev *pctldev)
1954{
1955}
1956
1957static void pinctrl_init_debugfs(void)
1958{
1959}
1960
1961static void pinctrl_remove_device_debugfs(struct pinctrl_dev *pctldev)
1962{
1963}
1964
1965#endif
1966
1967static int pinctrl_check_ops(struct pinctrl_dev *pctldev)
1968{
1969 const struct pinctrl_ops *ops = pctldev->desc->pctlops;
1970
1971 if (!ops ||
1972 !ops->get_groups_count ||
1973 !ops->get_group_name)
1974 return -EINVAL;
1975
1976 return 0;
1977}
1978
1979/**
1980 * pinctrl_init_controller() - init a pin controller device
1981 * @pctldesc: descriptor for this pin controller
1982 * @dev: parent device for this pin controller
1983 * @driver_data: private pin controller data for this pin controller
1984 */
1985static struct pinctrl_dev *
1986pinctrl_init_controller(struct pinctrl_desc *pctldesc, struct device *dev,
1987 void *driver_data)
1988{
1989 struct pinctrl_dev *pctldev;
1990 int ret;
1991
1992 if (!pctldesc)
1993 return ERR_PTR(-EINVAL);
1994 if (!pctldesc->name)
1995 return ERR_PTR(-EINVAL);
1996
1997 pctldev = kzalloc(sizeof(*pctldev), GFP_KERNEL);
1998 if (!pctldev)
1999 return ERR_PTR(-ENOMEM);
2000
2001 /* Initialize pin control device struct */
2002 pctldev->owner = pctldesc->owner;
2003 pctldev->desc = pctldesc;
2004 pctldev->driver_data = driver_data;
2005 INIT_RADIX_TREE(&pctldev->pin_desc_tree, GFP_KERNEL);
2006#ifdef CONFIG_GENERIC_PINCTRL_GROUPS
2007 INIT_RADIX_TREE(&pctldev->pin_group_tree, GFP_KERNEL);
2008#endif
2009#ifdef CONFIG_GENERIC_PINMUX_FUNCTIONS
2010 INIT_RADIX_TREE(&pctldev->pin_function_tree, GFP_KERNEL);
2011#endif
2012 INIT_LIST_HEAD(&pctldev->gpio_ranges);
2013 INIT_LIST_HEAD(&pctldev->node);
2014 pctldev->dev = dev;
2015 mutex_init(&pctldev->mutex);
2016
2017 /* check core ops for sanity */
2018 ret = pinctrl_check_ops(pctldev);
2019 if (ret) {
2020 dev_err(dev, "pinctrl ops lacks necessary functions\n");
2021 goto out_err;
2022 }
2023
2024 /* If we're implementing pinmuxing, check the ops for sanity */
2025 if (pctldesc->pmxops) {
2026 ret = pinmux_check_ops(pctldev);
2027 if (ret)
2028 goto out_err;
2029 }
2030
2031 /* If we're implementing pinconfig, check the ops for sanity */
2032 if (pctldesc->confops) {
2033 ret = pinconf_check_ops(pctldev);
2034 if (ret)
2035 goto out_err;
2036 }
2037
2038 /* Register all the pins */
2039 dev_dbg(dev, "try to register %d pins ...\n", pctldesc->npins);
2040 ret = pinctrl_register_pins(pctldev, pctldesc->pins, pctldesc->npins);
2041 if (ret) {
2042 dev_err(dev, "error during pin registration\n");
2043 pinctrl_free_pindescs(pctldev, pctldesc->pins,
2044 pctldesc->npins);
2045 goto out_err;
2046 }
2047
2048 return pctldev;
2049
2050out_err:
2051 mutex_destroy(&pctldev->mutex);
2052 kfree(pctldev);
2053 return ERR_PTR(ret);
2054}
2055
2056static int pinctrl_claim_hogs(struct pinctrl_dev *pctldev)
2057{
2058 pctldev->p = create_pinctrl(pctldev->dev, pctldev);
2059 if (PTR_ERR(pctldev->p) == -ENODEV) {
2060 dev_dbg(pctldev->dev, "no hogs found\n");
2061
2062 return 0;
2063 }
2064
2065 if (IS_ERR(pctldev->p)) {
2066 dev_err(pctldev->dev, "error claiming hogs: %li\n",
2067 PTR_ERR(pctldev->p));
2068
2069 return PTR_ERR(pctldev->p);
2070 }
2071
2072 pctldev->hog_default =
2073 pinctrl_lookup_state(pctldev->p, PINCTRL_STATE_DEFAULT);
2074 if (IS_ERR(pctldev->hog_default)) {
2075 dev_dbg(pctldev->dev,
2076 "failed to lookup the default state\n");
2077 } else {
2078 if (pinctrl_select_state(pctldev->p,
2079 pctldev->hog_default))
2080 dev_err(pctldev->dev,
2081 "failed to select default state\n");
2082 }
2083
2084 pctldev->hog_sleep =
2085 pinctrl_lookup_state(pctldev->p,
2086 PINCTRL_STATE_SLEEP);
2087 if (IS_ERR(pctldev->hog_sleep))
2088 dev_dbg(pctldev->dev,
2089 "failed to lookup the sleep state\n");
2090
2091 return 0;
2092}
2093
2094int pinctrl_enable(struct pinctrl_dev *pctldev)
2095{
2096 int error;
2097
2098 error = pinctrl_claim_hogs(pctldev);
2099 if (error) {
2100 dev_err(pctldev->dev, "could not claim hogs: %i\n",
2101 error);
2102 pinctrl_free_pindescs(pctldev, pctldev->desc->pins,
2103 pctldev->desc->npins);
2104 mutex_destroy(&pctldev->mutex);
2105 kfree(pctldev);
2106
2107 return error;
2108 }
2109
2110 mutex_lock(&pinctrldev_list_mutex);
2111 list_add_tail(&pctldev->node, &pinctrldev_list);
2112 mutex_unlock(&pinctrldev_list_mutex);
2113
2114 pinctrl_init_device_debugfs(pctldev);
2115
2116 return 0;
2117}
2118EXPORT_SYMBOL_GPL(pinctrl_enable);
2119
2120/**
2121 * pinctrl_register() - register a pin controller device
2122 * @pctldesc: descriptor for this pin controller
2123 * @dev: parent device for this pin controller
2124 * @driver_data: private pin controller data for this pin controller
2125 *
2126 * Note that pinctrl_register() is known to have problems as the pin
2127 * controller driver functions are called before the driver has a
2128 * struct pinctrl_dev handle. To avoid issues later on, please use the
2129 * new pinctrl_register_and_init() below instead.
2130 */
2131struct pinctrl_dev *pinctrl_register(struct pinctrl_desc *pctldesc,
2132 struct device *dev, void *driver_data)
2133{
2134 struct pinctrl_dev *pctldev;
2135 int error;
2136
2137 pctldev = pinctrl_init_controller(pctldesc, dev, driver_data);
2138 if (IS_ERR(pctldev))
2139 return pctldev;
2140
2141 error = pinctrl_enable(pctldev);
2142 if (error)
2143 return ERR_PTR(error);
2144
2145 return pctldev;
2146}
2147EXPORT_SYMBOL_GPL(pinctrl_register);
2148
2149/**
2150 * pinctrl_register_and_init() - register and init pin controller device
2151 * @pctldesc: descriptor for this pin controller
2152 * @dev: parent device for this pin controller
2153 * @driver_data: private pin controller data for this pin controller
2154 * @pctldev: pin controller device
2155 *
2156 * Note that pinctrl_enable() still needs to be manually called after
2157 * this once the driver is ready.
2158 */
2159int pinctrl_register_and_init(struct pinctrl_desc *pctldesc,
2160 struct device *dev, void *driver_data,
2161 struct pinctrl_dev **pctldev)
2162{
2163 struct pinctrl_dev *p;
2164
2165 p = pinctrl_init_controller(pctldesc, dev, driver_data);
2166 if (IS_ERR(p))
2167 return PTR_ERR(p);
2168
2169 /*
2170 * We have pinctrl_start() call functions in the pin controller
2171 * driver with create_pinctrl() for at least dt_node_to_map(). So
2172 * let's make sure pctldev is properly initialized for the
2173 * pin controller driver before we do anything.
2174 */
2175 *pctldev = p;
2176
2177 return 0;
2178}
2179EXPORT_SYMBOL_GPL(pinctrl_register_and_init);
2180
2181/**
2182 * pinctrl_unregister() - unregister pinmux
2183 * @pctldev: pin controller to unregister
2184 *
2185 * Called by pinmux drivers to unregister a pinmux.
2186 */
2187void pinctrl_unregister(struct pinctrl_dev *pctldev)
2188{
2189 struct pinctrl_gpio_range *range, *n;
2190
2191 if (!pctldev)
2192 return;
2193
2194 mutex_lock(&pctldev->mutex);
2195 pinctrl_remove_device_debugfs(pctldev);
2196 mutex_unlock(&pctldev->mutex);
2197
2198 if (!IS_ERR_OR_NULL(pctldev->p))
2199 pinctrl_put(pctldev->p);
2200
2201 mutex_lock(&pinctrldev_list_mutex);
2202 mutex_lock(&pctldev->mutex);
2203 /* TODO: check that no pinmuxes are still active? */
2204 list_del(&pctldev->node);
2205 pinmux_generic_free_functions(pctldev);
2206 pinctrl_generic_free_groups(pctldev);
2207 /* Destroy descriptor tree */
2208 pinctrl_free_pindescs(pctldev, pctldev->desc->pins,
2209 pctldev->desc->npins);
2210 /* remove gpio ranges map */
2211 list_for_each_entry_safe(range, n, &pctldev->gpio_ranges, node)
2212 list_del(&range->node);
2213
2214 mutex_unlock(&pctldev->mutex);
2215 mutex_destroy(&pctldev->mutex);
2216 kfree(pctldev);
2217 mutex_unlock(&pinctrldev_list_mutex);
2218}
2219EXPORT_SYMBOL_GPL(pinctrl_unregister);
2220
2221static void devm_pinctrl_dev_release(struct device *dev, void *res)
2222{
2223 struct pinctrl_dev *pctldev = *(struct pinctrl_dev **)res;
2224
2225 pinctrl_unregister(pctldev);
2226}
2227
2228static int devm_pinctrl_dev_match(struct device *dev, void *res, void *data)
2229{
2230 struct pctldev **r = res;
2231
2232 if (WARN_ON(!r || !*r))
2233 return 0;
2234
2235 return *r == data;
2236}
2237
2238/**
2239 * devm_pinctrl_register() - Resource managed version of pinctrl_register().
2240 * @dev: parent device for this pin controller
2241 * @pctldesc: descriptor for this pin controller
2242 * @driver_data: private pin controller data for this pin controller
2243 *
2244 * Returns an error pointer if pincontrol register failed. Otherwise
2245 * it returns valid pinctrl handle.
2246 *
2247 * The pinctrl device will be automatically released when the device is unbound.
2248 */
2249struct pinctrl_dev *devm_pinctrl_register(struct device *dev,
2250 struct pinctrl_desc *pctldesc,
2251 void *driver_data)
2252{
2253 struct pinctrl_dev **ptr, *pctldev;
2254
2255 ptr = devres_alloc(devm_pinctrl_dev_release, sizeof(*ptr), GFP_KERNEL);
2256 if (!ptr)
2257 return ERR_PTR(-ENOMEM);
2258
2259 pctldev = pinctrl_register(pctldesc, dev, driver_data);
2260 if (IS_ERR(pctldev)) {
2261 devres_free(ptr);
2262 return pctldev;
2263 }
2264
2265 *ptr = pctldev;
2266 devres_add(dev, ptr);
2267
2268 return pctldev;
2269}
2270EXPORT_SYMBOL_GPL(devm_pinctrl_register);
2271
2272/**
2273 * devm_pinctrl_register_and_init() - Resource managed pinctrl register and init
2274 * @dev: parent device for this pin controller
2275 * @pctldesc: descriptor for this pin controller
2276 * @driver_data: private pin controller data for this pin controller
2277 * @pctldev: pin controller device
2278 *
2279 * Returns zero on success or an error number on failure.
2280 *
2281 * The pinctrl device will be automatically released when the device is unbound.
2282 */
2283int devm_pinctrl_register_and_init(struct device *dev,
2284 struct pinctrl_desc *pctldesc,
2285 void *driver_data,
2286 struct pinctrl_dev **pctldev)
2287{
2288 struct pinctrl_dev **ptr;
2289 int error;
2290
2291 ptr = devres_alloc(devm_pinctrl_dev_release, sizeof(*ptr), GFP_KERNEL);
2292 if (!ptr)
2293 return -ENOMEM;
2294
2295 error = pinctrl_register_and_init(pctldesc, dev, driver_data, pctldev);
2296 if (error) {
2297 devres_free(ptr);
2298 return error;
2299 }
2300
2301 *ptr = *pctldev;
2302 devres_add(dev, ptr);
2303
2304 return 0;
2305}
2306EXPORT_SYMBOL_GPL(devm_pinctrl_register_and_init);
2307
2308/**
2309 * devm_pinctrl_unregister() - Resource managed version of pinctrl_unregister().
2310 * @dev: device for which resource was allocated
2311 * @pctldev: the pinctrl device to unregister.
2312 */
2313void devm_pinctrl_unregister(struct device *dev, struct pinctrl_dev *pctldev)
2314{
2315 WARN_ON(devres_release(dev, devm_pinctrl_dev_release,
2316 devm_pinctrl_dev_match, pctldev));
2317}
2318EXPORT_SYMBOL_GPL(devm_pinctrl_unregister);
2319
2320static int __init pinctrl_init(void)
2321{
2322 pr_info("initialized pinctrl subsystem\n");
2323 pinctrl_init_debugfs();
2324 return 0;
2325}
2326
2327/* init early since many drivers really need to initialized pinmux early */
2328core_initcall(pinctrl_init);