Linux Audio

Check our new training course

Real-Time Linux with PREEMPT_RT training

Feb 18-20, 2025
Register
Loading...
Note: File does not exist in v3.1.
   1// SPDX-License-Identifier: GPL-2.0-only
   2/*
   3 * Core driver for the pin control subsystem
   4 *
   5 * Copyright (C) 2011-2012 ST-Ericsson SA
   6 * Written on behalf of Linaro for ST-Ericsson
   7 * Based on bits of regulator core, gpio core and clk core
   8 *
   9 * Author: Linus Walleij <linus.walleij@linaro.org>
  10 *
  11 * Copyright (C) 2012 NVIDIA CORPORATION. All rights reserved.
  12 */
  13#define pr_fmt(fmt) "pinctrl core: " fmt
  14
  15#include <linux/debugfs.h>
  16#include <linux/device.h>
  17#include <linux/err.h>
  18#include <linux/export.h>
  19#include <linux/init.h>
  20#include <linux/kernel.h>
  21#include <linux/kref.h>
  22#include <linux/list.h>
  23#include <linux/seq_file.h>
  24#include <linux/slab.h>
  25
  26#include <linux/pinctrl/consumer.h>
  27#include <linux/pinctrl/devinfo.h>
  28#include <linux/pinctrl/machine.h>
  29#include <linux/pinctrl/pinctrl.h>
  30
  31#ifdef CONFIG_GPIOLIB
  32#include "../gpio/gpiolib.h"
  33#include <asm-generic/gpio.h>
  34#endif
  35
  36#include "core.h"
  37#include "devicetree.h"
  38#include "pinconf.h"
  39#include "pinmux.h"
  40
  41static bool pinctrl_dummy_state;
  42
  43/* Mutex taken to protect pinctrl_list */
  44static DEFINE_MUTEX(pinctrl_list_mutex);
  45
  46/* Mutex taken to protect pinctrl_maps */
  47DEFINE_MUTEX(pinctrl_maps_mutex);
  48
  49/* Mutex taken to protect pinctrldev_list */
  50static DEFINE_MUTEX(pinctrldev_list_mutex);
  51
  52/* Global list of pin control devices (struct pinctrl_dev) */
  53static LIST_HEAD(pinctrldev_list);
  54
  55/* List of pin controller handles (struct pinctrl) */
  56static LIST_HEAD(pinctrl_list);
  57
  58/* List of pinctrl maps (struct pinctrl_maps) */
  59LIST_HEAD(pinctrl_maps);
  60
  61
  62/**
  63 * pinctrl_provide_dummies() - indicate if pinctrl provides dummy state support
  64 *
  65 * Usually this function is called by platforms without pinctrl driver support
  66 * but run with some shared drivers using pinctrl APIs.
  67 * After calling this function, the pinctrl core will return successfully
  68 * with creating a dummy state for the driver to keep going smoothly.
  69 */
  70void pinctrl_provide_dummies(void)
  71{
  72	pinctrl_dummy_state = true;
  73}
  74
  75const char *pinctrl_dev_get_name(struct pinctrl_dev *pctldev)
  76{
  77	/* We're not allowed to register devices without name */
  78	return pctldev->desc->name;
  79}
  80EXPORT_SYMBOL_GPL(pinctrl_dev_get_name);
  81
  82const char *pinctrl_dev_get_devname(struct pinctrl_dev *pctldev)
  83{
  84	return dev_name(pctldev->dev);
  85}
  86EXPORT_SYMBOL_GPL(pinctrl_dev_get_devname);
  87
  88void *pinctrl_dev_get_drvdata(struct pinctrl_dev *pctldev)
  89{
  90	return pctldev->driver_data;
  91}
  92EXPORT_SYMBOL_GPL(pinctrl_dev_get_drvdata);
  93
  94/**
  95 * get_pinctrl_dev_from_devname() - look up pin controller device
  96 * @devname: the name of a device instance, as returned by dev_name()
  97 *
  98 * Looks up a pin control device matching a certain device name or pure device
  99 * pointer, the pure device pointer will take precedence.
 100 */
 101struct pinctrl_dev *get_pinctrl_dev_from_devname(const char *devname)
 102{
 103	struct pinctrl_dev *pctldev;
 104
 105	if (!devname)
 106		return NULL;
 107
 108	mutex_lock(&pinctrldev_list_mutex);
 109
 110	list_for_each_entry(pctldev, &pinctrldev_list, node) {
 111		if (!strcmp(dev_name(pctldev->dev), devname)) {
 112			/* Matched on device name */
 113			mutex_unlock(&pinctrldev_list_mutex);
 114			return pctldev;
 115		}
 116	}
 117
 118	mutex_unlock(&pinctrldev_list_mutex);
 119
 120	return NULL;
 121}
 122
 123struct pinctrl_dev *get_pinctrl_dev_from_of_node(struct device_node *np)
 124{
 125	struct pinctrl_dev *pctldev;
 126
 127	mutex_lock(&pinctrldev_list_mutex);
 128
 129	list_for_each_entry(pctldev, &pinctrldev_list, node)
 130		if (device_match_of_node(pctldev->dev, np)) {
 131			mutex_unlock(&pinctrldev_list_mutex);
 132			return pctldev;
 133		}
 134
 135	mutex_unlock(&pinctrldev_list_mutex);
 136
 137	return NULL;
 138}
 139
 140/**
 141 * pin_get_from_name() - look up a pin number from a name
 142 * @pctldev: the pin control device to lookup the pin on
 143 * @name: the name of the pin to look up
 144 */
 145int pin_get_from_name(struct pinctrl_dev *pctldev, const char *name)
 146{
 147	unsigned i, pin;
 148
 149	/* The pin number can be retrived from the pin controller descriptor */
 150	for (i = 0; i < pctldev->desc->npins; i++) {
 151		struct pin_desc *desc;
 152
 153		pin = pctldev->desc->pins[i].number;
 154		desc = pin_desc_get(pctldev, pin);
 155		/* Pin space may be sparse */
 156		if (desc && !strcmp(name, desc->name))
 157			return pin;
 158	}
 159
 160	return -EINVAL;
 161}
 162
 163/**
 164 * pin_get_name() - look up a pin name from a pin id
 165 * @pctldev: the pin control device to lookup the pin on
 166 * @pin: pin number/id to look up
 167 */
 168const char *pin_get_name(struct pinctrl_dev *pctldev, const unsigned pin)
 169{
 170	const struct pin_desc *desc;
 171
 172	desc = pin_desc_get(pctldev, pin);
 173	if (!desc) {
 174		dev_err(pctldev->dev, "failed to get pin(%d) name\n",
 175			pin);
 176		return NULL;
 177	}
 178
 179	return desc->name;
 180}
 181EXPORT_SYMBOL_GPL(pin_get_name);
 182
 183/* Deletes a range of pin descriptors */
 184static void pinctrl_free_pindescs(struct pinctrl_dev *pctldev,
 185				  const struct pinctrl_pin_desc *pins,
 186				  unsigned num_pins)
 187{
 188	int i;
 189
 190	for (i = 0; i < num_pins; i++) {
 191		struct pin_desc *pindesc;
 192
 193		pindesc = radix_tree_lookup(&pctldev->pin_desc_tree,
 194					    pins[i].number);
 195		if (pindesc) {
 196			radix_tree_delete(&pctldev->pin_desc_tree,
 197					  pins[i].number);
 198			if (pindesc->dynamic_name)
 199				kfree(pindesc->name);
 200		}
 201		kfree(pindesc);
 202	}
 203}
 204
 205static int pinctrl_register_one_pin(struct pinctrl_dev *pctldev,
 206				    const struct pinctrl_pin_desc *pin)
 207{
 208	struct pin_desc *pindesc;
 209
 210	pindesc = pin_desc_get(pctldev, pin->number);
 211	if (pindesc) {
 212		dev_err(pctldev->dev, "pin %d already registered\n",
 213			pin->number);
 214		return -EINVAL;
 215	}
 216
 217	pindesc = kzalloc(sizeof(*pindesc), GFP_KERNEL);
 218	if (!pindesc)
 219		return -ENOMEM;
 220
 221	/* Set owner */
 222	pindesc->pctldev = pctldev;
 223
 224	/* Copy basic pin info */
 225	if (pin->name) {
 226		pindesc->name = pin->name;
 227	} else {
 228		pindesc->name = kasprintf(GFP_KERNEL, "PIN%u", pin->number);
 229		if (!pindesc->name) {
 230			kfree(pindesc);
 231			return -ENOMEM;
 232		}
 233		pindesc->dynamic_name = true;
 234	}
 235
 236	pindesc->drv_data = pin->drv_data;
 237
 238	radix_tree_insert(&pctldev->pin_desc_tree, pin->number, pindesc);
 239	pr_debug("registered pin %d (%s) on %s\n",
 240		 pin->number, pindesc->name, pctldev->desc->name);
 241	return 0;
 242}
 243
 244static int pinctrl_register_pins(struct pinctrl_dev *pctldev,
 245				 const struct pinctrl_pin_desc *pins,
 246				 unsigned num_descs)
 247{
 248	unsigned i;
 249	int ret = 0;
 250
 251	for (i = 0; i < num_descs; i++) {
 252		ret = pinctrl_register_one_pin(pctldev, &pins[i]);
 253		if (ret)
 254			return ret;
 255	}
 256
 257	return 0;
 258}
 259
 260/**
 261 * gpio_to_pin() - GPIO range GPIO number to pin number translation
 262 * @range: GPIO range used for the translation
 263 * @gpio: gpio pin to translate to a pin number
 264 *
 265 * Finds the pin number for a given GPIO using the specified GPIO range
 266 * as a base for translation. The distinction between linear GPIO ranges
 267 * and pin list based GPIO ranges is managed correctly by this function.
 268 *
 269 * This function assumes the gpio is part of the specified GPIO range, use
 270 * only after making sure this is the case (e.g. by calling it on the
 271 * result of successful pinctrl_get_device_gpio_range calls)!
 272 */
 273static inline int gpio_to_pin(struct pinctrl_gpio_range *range,
 274				unsigned int gpio)
 275{
 276	unsigned int offset = gpio - range->base;
 277	if (range->pins)
 278		return range->pins[offset];
 279	else
 280		return range->pin_base + offset;
 281}
 282
 283/**
 284 * pinctrl_match_gpio_range() - check if a certain GPIO pin is in range
 285 * @pctldev: pin controller device to check
 286 * @gpio: gpio pin to check taken from the global GPIO pin space
 287 *
 288 * Tries to match a GPIO pin number to the ranges handled by a certain pin
 289 * controller, return the range or NULL
 290 */
 291static struct pinctrl_gpio_range *
 292pinctrl_match_gpio_range(struct pinctrl_dev *pctldev, unsigned gpio)
 293{
 294	struct pinctrl_gpio_range *range;
 295
 296	mutex_lock(&pctldev->mutex);
 297	/* Loop over the ranges */
 298	list_for_each_entry(range, &pctldev->gpio_ranges, node) {
 299		/* Check if we're in the valid range */
 300		if (gpio >= range->base &&
 301		    gpio < range->base + range->npins) {
 302			mutex_unlock(&pctldev->mutex);
 303			return range;
 304		}
 305	}
 306	mutex_unlock(&pctldev->mutex);
 307	return NULL;
 308}
 309
 310/**
 311 * pinctrl_ready_for_gpio_range() - check if other GPIO pins of
 312 * the same GPIO chip are in range
 313 * @gpio: gpio pin to check taken from the global GPIO pin space
 314 *
 315 * This function is complement of pinctrl_match_gpio_range(). If the return
 316 * value of pinctrl_match_gpio_range() is NULL, this function could be used
 317 * to check whether pinctrl device is ready or not. Maybe some GPIO pins
 318 * of the same GPIO chip don't have back-end pinctrl interface.
 319 * If the return value is true, it means that pinctrl device is ready & the
 320 * certain GPIO pin doesn't have back-end pinctrl device. If the return value
 321 * is false, it means that pinctrl device may not be ready.
 322 */
 323#ifdef CONFIG_GPIOLIB
 324static bool pinctrl_ready_for_gpio_range(unsigned gpio)
 325{
 326	struct pinctrl_dev *pctldev;
 327	struct pinctrl_gpio_range *range = NULL;
 328	struct gpio_chip *chip = gpio_to_chip(gpio);
 329
 330	if (WARN(!chip, "no gpio_chip for gpio%i?", gpio))
 331		return false;
 332
 333	mutex_lock(&pinctrldev_list_mutex);
 334
 335	/* Loop over the pin controllers */
 336	list_for_each_entry(pctldev, &pinctrldev_list, node) {
 337		/* Loop over the ranges */
 338		mutex_lock(&pctldev->mutex);
 339		list_for_each_entry(range, &pctldev->gpio_ranges, node) {
 340			/* Check if any gpio range overlapped with gpio chip */
 341			if (range->base + range->npins - 1 < chip->base ||
 342			    range->base > chip->base + chip->ngpio - 1)
 343				continue;
 344			mutex_unlock(&pctldev->mutex);
 345			mutex_unlock(&pinctrldev_list_mutex);
 346			return true;
 347		}
 348		mutex_unlock(&pctldev->mutex);
 349	}
 350
 351	mutex_unlock(&pinctrldev_list_mutex);
 352
 353	return false;
 354}
 355#else
 356static bool pinctrl_ready_for_gpio_range(unsigned gpio) { return true; }
 357#endif
 358
 359/**
 360 * pinctrl_get_device_gpio_range() - find device for GPIO range
 361 * @gpio: the pin to locate the pin controller for
 362 * @outdev: the pin control device if found
 363 * @outrange: the GPIO range if found
 364 *
 365 * Find the pin controller handling a certain GPIO pin from the pinspace of
 366 * the GPIO subsystem, return the device and the matching GPIO range. Returns
 367 * -EPROBE_DEFER if the GPIO range could not be found in any device since it
 368 * may still have not been registered.
 369 */
 370static int pinctrl_get_device_gpio_range(unsigned gpio,
 371					 struct pinctrl_dev **outdev,
 372					 struct pinctrl_gpio_range **outrange)
 373{
 374	struct pinctrl_dev *pctldev;
 375
 376	mutex_lock(&pinctrldev_list_mutex);
 377
 378	/* Loop over the pin controllers */
 379	list_for_each_entry(pctldev, &pinctrldev_list, node) {
 380		struct pinctrl_gpio_range *range;
 381
 382		range = pinctrl_match_gpio_range(pctldev, gpio);
 383		if (range) {
 384			*outdev = pctldev;
 385			*outrange = range;
 386			mutex_unlock(&pinctrldev_list_mutex);
 387			return 0;
 388		}
 389	}
 390
 391	mutex_unlock(&pinctrldev_list_mutex);
 392
 393	return -EPROBE_DEFER;
 394}
 395
 396/**
 397 * pinctrl_add_gpio_range() - register a GPIO range for a controller
 398 * @pctldev: pin controller device to add the range to
 399 * @range: the GPIO range to add
 400 *
 401 * This adds a range of GPIOs to be handled by a certain pin controller. Call
 402 * this to register handled ranges after registering your pin controller.
 403 */
 404void pinctrl_add_gpio_range(struct pinctrl_dev *pctldev,
 405			    struct pinctrl_gpio_range *range)
 406{
 407	mutex_lock(&pctldev->mutex);
 408	list_add_tail(&range->node, &pctldev->gpio_ranges);
 409	mutex_unlock(&pctldev->mutex);
 410}
 411EXPORT_SYMBOL_GPL(pinctrl_add_gpio_range);
 412
 413void pinctrl_add_gpio_ranges(struct pinctrl_dev *pctldev,
 414			     struct pinctrl_gpio_range *ranges,
 415			     unsigned nranges)
 416{
 417	int i;
 418
 419	for (i = 0; i < nranges; i++)
 420		pinctrl_add_gpio_range(pctldev, &ranges[i]);
 421}
 422EXPORT_SYMBOL_GPL(pinctrl_add_gpio_ranges);
 423
 424struct pinctrl_dev *pinctrl_find_and_add_gpio_range(const char *devname,
 425		struct pinctrl_gpio_range *range)
 426{
 427	struct pinctrl_dev *pctldev;
 428
 429	pctldev = get_pinctrl_dev_from_devname(devname);
 430
 431	/*
 432	 * If we can't find this device, let's assume that is because
 433	 * it has not probed yet, so the driver trying to register this
 434	 * range need to defer probing.
 435	 */
 436	if (!pctldev) {
 437		return ERR_PTR(-EPROBE_DEFER);
 438	}
 439	pinctrl_add_gpio_range(pctldev, range);
 440
 441	return pctldev;
 442}
 443EXPORT_SYMBOL_GPL(pinctrl_find_and_add_gpio_range);
 444
 445int pinctrl_get_group_pins(struct pinctrl_dev *pctldev, const char *pin_group,
 446				const unsigned **pins, unsigned *num_pins)
 447{
 448	const struct pinctrl_ops *pctlops = pctldev->desc->pctlops;
 449	int gs;
 450
 451	if (!pctlops->get_group_pins)
 452		return -EINVAL;
 453
 454	gs = pinctrl_get_group_selector(pctldev, pin_group);
 455	if (gs < 0)
 456		return gs;
 457
 458	return pctlops->get_group_pins(pctldev, gs, pins, num_pins);
 459}
 460EXPORT_SYMBOL_GPL(pinctrl_get_group_pins);
 461
 462struct pinctrl_gpio_range *
 463pinctrl_find_gpio_range_from_pin_nolock(struct pinctrl_dev *pctldev,
 464					unsigned int pin)
 465{
 466	struct pinctrl_gpio_range *range;
 467
 468	/* Loop over the ranges */
 469	list_for_each_entry(range, &pctldev->gpio_ranges, node) {
 470		/* Check if we're in the valid range */
 471		if (range->pins) {
 472			int a;
 473			for (a = 0; a < range->npins; a++) {
 474				if (range->pins[a] == pin)
 475					return range;
 476			}
 477		} else if (pin >= range->pin_base &&
 478			   pin < range->pin_base + range->npins)
 479			return range;
 480	}
 481
 482	return NULL;
 483}
 484EXPORT_SYMBOL_GPL(pinctrl_find_gpio_range_from_pin_nolock);
 485
 486/**
 487 * pinctrl_find_gpio_range_from_pin() - locate the GPIO range for a pin
 488 * @pctldev: the pin controller device to look in
 489 * @pin: a controller-local number to find the range for
 490 */
 491struct pinctrl_gpio_range *
 492pinctrl_find_gpio_range_from_pin(struct pinctrl_dev *pctldev,
 493				 unsigned int pin)
 494{
 495	struct pinctrl_gpio_range *range;
 496
 497	mutex_lock(&pctldev->mutex);
 498	range = pinctrl_find_gpio_range_from_pin_nolock(pctldev, pin);
 499	mutex_unlock(&pctldev->mutex);
 500
 501	return range;
 502}
 503EXPORT_SYMBOL_GPL(pinctrl_find_gpio_range_from_pin);
 504
 505/**
 506 * pinctrl_remove_gpio_range() - remove a range of GPIOs from a pin controller
 507 * @pctldev: pin controller device to remove the range from
 508 * @range: the GPIO range to remove
 509 */
 510void pinctrl_remove_gpio_range(struct pinctrl_dev *pctldev,
 511			       struct pinctrl_gpio_range *range)
 512{
 513	mutex_lock(&pctldev->mutex);
 514	list_del(&range->node);
 515	mutex_unlock(&pctldev->mutex);
 516}
 517EXPORT_SYMBOL_GPL(pinctrl_remove_gpio_range);
 518
 519#ifdef CONFIG_GENERIC_PINCTRL_GROUPS
 520
 521/**
 522 * pinctrl_generic_get_group_count() - returns the number of pin groups
 523 * @pctldev: pin controller device
 524 */
 525int pinctrl_generic_get_group_count(struct pinctrl_dev *pctldev)
 526{
 527	return pctldev->num_groups;
 528}
 529EXPORT_SYMBOL_GPL(pinctrl_generic_get_group_count);
 530
 531/**
 532 * pinctrl_generic_get_group_name() - returns the name of a pin group
 533 * @pctldev: pin controller device
 534 * @selector: group number
 535 */
 536const char *pinctrl_generic_get_group_name(struct pinctrl_dev *pctldev,
 537					   unsigned int selector)
 538{
 539	struct group_desc *group;
 540
 541	group = radix_tree_lookup(&pctldev->pin_group_tree,
 542				  selector);
 543	if (!group)
 544		return NULL;
 545
 546	return group->name;
 547}
 548EXPORT_SYMBOL_GPL(pinctrl_generic_get_group_name);
 549
 550/**
 551 * pinctrl_generic_get_group_pins() - gets the pin group pins
 552 * @pctldev: pin controller device
 553 * @selector: group number
 554 * @pins: pins in the group
 555 * @num_pins: number of pins in the group
 556 */
 557int pinctrl_generic_get_group_pins(struct pinctrl_dev *pctldev,
 558				   unsigned int selector,
 559				   const unsigned int **pins,
 560				   unsigned int *num_pins)
 561{
 562	struct group_desc *group;
 563
 564	group = radix_tree_lookup(&pctldev->pin_group_tree,
 565				  selector);
 566	if (!group) {
 567		dev_err(pctldev->dev, "%s could not find pingroup%i\n",
 568			__func__, selector);
 569		return -EINVAL;
 570	}
 571
 572	*pins = group->pins;
 573	*num_pins = group->num_pins;
 574
 575	return 0;
 576}
 577EXPORT_SYMBOL_GPL(pinctrl_generic_get_group_pins);
 578
 579/**
 580 * pinctrl_generic_get_group() - returns a pin group based on the number
 581 * @pctldev: pin controller device
 582 * @selector: group number
 583 */
 584struct group_desc *pinctrl_generic_get_group(struct pinctrl_dev *pctldev,
 585					     unsigned int selector)
 586{
 587	struct group_desc *group;
 588
 589	group = radix_tree_lookup(&pctldev->pin_group_tree,
 590				  selector);
 591	if (!group)
 592		return NULL;
 593
 594	return group;
 595}
 596EXPORT_SYMBOL_GPL(pinctrl_generic_get_group);
 597
 598static int pinctrl_generic_group_name_to_selector(struct pinctrl_dev *pctldev,
 599						  const char *function)
 600{
 601	const struct pinctrl_ops *ops = pctldev->desc->pctlops;
 602	int ngroups = ops->get_groups_count(pctldev);
 603	int selector = 0;
 604
 605	/* See if this pctldev has this group */
 606	while (selector < ngroups) {
 607		const char *gname = ops->get_group_name(pctldev, selector);
 608
 609		if (gname && !strcmp(function, gname))
 610			return selector;
 611
 612		selector++;
 613	}
 614
 615	return -EINVAL;
 616}
 617
 618/**
 619 * pinctrl_generic_add_group() - adds a new pin group
 620 * @pctldev: pin controller device
 621 * @name: name of the pin group
 622 * @pins: pins in the pin group
 623 * @num_pins: number of pins in the pin group
 624 * @data: pin controller driver specific data
 625 *
 626 * Note that the caller must take care of locking.
 627 */
 628int pinctrl_generic_add_group(struct pinctrl_dev *pctldev, const char *name,
 629			      int *pins, int num_pins, void *data)
 630{
 631	struct group_desc *group;
 632	int selector;
 633
 634	if (!name)
 635		return -EINVAL;
 636
 637	selector = pinctrl_generic_group_name_to_selector(pctldev, name);
 638	if (selector >= 0)
 639		return selector;
 640
 641	selector = pctldev->num_groups;
 642
 643	group = devm_kzalloc(pctldev->dev, sizeof(*group), GFP_KERNEL);
 644	if (!group)
 645		return -ENOMEM;
 646
 647	group->name = name;
 648	group->pins = pins;
 649	group->num_pins = num_pins;
 650	group->data = data;
 651
 652	radix_tree_insert(&pctldev->pin_group_tree, selector, group);
 653
 654	pctldev->num_groups++;
 655
 656	return selector;
 657}
 658EXPORT_SYMBOL_GPL(pinctrl_generic_add_group);
 659
 660/**
 661 * pinctrl_generic_remove_group() - removes a numbered pin group
 662 * @pctldev: pin controller device
 663 * @selector: group number
 664 *
 665 * Note that the caller must take care of locking.
 666 */
 667int pinctrl_generic_remove_group(struct pinctrl_dev *pctldev,
 668				 unsigned int selector)
 669{
 670	struct group_desc *group;
 671
 672	group = radix_tree_lookup(&pctldev->pin_group_tree,
 673				  selector);
 674	if (!group)
 675		return -ENOENT;
 676
 677	radix_tree_delete(&pctldev->pin_group_tree, selector);
 678	devm_kfree(pctldev->dev, group);
 679
 680	pctldev->num_groups--;
 681
 682	return 0;
 683}
 684EXPORT_SYMBOL_GPL(pinctrl_generic_remove_group);
 685
 686/**
 687 * pinctrl_generic_free_groups() - removes all pin groups
 688 * @pctldev: pin controller device
 689 *
 690 * Note that the caller must take care of locking. The pinctrl groups
 691 * are allocated with devm_kzalloc() so no need to free them here.
 692 */
 693static void pinctrl_generic_free_groups(struct pinctrl_dev *pctldev)
 694{
 695	struct radix_tree_iter iter;
 696	void __rcu **slot;
 697
 698	radix_tree_for_each_slot(slot, &pctldev->pin_group_tree, &iter, 0)
 699		radix_tree_delete(&pctldev->pin_group_tree, iter.index);
 700
 701	pctldev->num_groups = 0;
 702}
 703
 704#else
 705static inline void pinctrl_generic_free_groups(struct pinctrl_dev *pctldev)
 706{
 707}
 708#endif /* CONFIG_GENERIC_PINCTRL_GROUPS */
 709
 710/**
 711 * pinctrl_get_group_selector() - returns the group selector for a group
 712 * @pctldev: the pin controller handling the group
 713 * @pin_group: the pin group to look up
 714 */
 715int pinctrl_get_group_selector(struct pinctrl_dev *pctldev,
 716			       const char *pin_group)
 717{
 718	const struct pinctrl_ops *pctlops = pctldev->desc->pctlops;
 719	unsigned ngroups = pctlops->get_groups_count(pctldev);
 720	unsigned group_selector = 0;
 721
 722	while (group_selector < ngroups) {
 723		const char *gname = pctlops->get_group_name(pctldev,
 724							    group_selector);
 725		if (gname && !strcmp(gname, pin_group)) {
 726			dev_dbg(pctldev->dev,
 727				"found group selector %u for %s\n",
 728				group_selector,
 729				pin_group);
 730			return group_selector;
 731		}
 732
 733		group_selector++;
 734	}
 735
 736	dev_err(pctldev->dev, "does not have pin group %s\n",
 737		pin_group);
 738
 739	return -EINVAL;
 740}
 741
 742bool pinctrl_gpio_can_use_line(unsigned gpio)
 743{
 744	struct pinctrl_dev *pctldev;
 745	struct pinctrl_gpio_range *range;
 746	bool result;
 747	int pin;
 748
 749	/*
 750	 * Try to obtain GPIO range, if it fails
 751	 * we're probably dealing with GPIO driver
 752	 * without a backing pin controller - bail out.
 753	 */
 754	if (pinctrl_get_device_gpio_range(gpio, &pctldev, &range))
 755		return true;
 756
 757	mutex_lock(&pctldev->mutex);
 758
 759	/* Convert to the pin controllers number space */
 760	pin = gpio_to_pin(range, gpio);
 761
 762	result = pinmux_can_be_used_for_gpio(pctldev, pin);
 763
 764	mutex_unlock(&pctldev->mutex);
 765
 766	return result;
 767}
 768EXPORT_SYMBOL_GPL(pinctrl_gpio_can_use_line);
 769
 770/**
 771 * pinctrl_gpio_request() - request a single pin to be used as GPIO
 772 * @gpio: the GPIO pin number from the GPIO subsystem number space
 773 *
 774 * This function should *ONLY* be used from gpiolib-based GPIO drivers,
 775 * as part of their gpio_request() semantics, platforms and individual drivers
 776 * shall *NOT* request GPIO pins to be muxed in.
 777 */
 778int pinctrl_gpio_request(unsigned gpio)
 779{
 780	struct pinctrl_dev *pctldev;
 781	struct pinctrl_gpio_range *range;
 782	int ret;
 783	int pin;
 784
 785	ret = pinctrl_get_device_gpio_range(gpio, &pctldev, &range);
 786	if (ret) {
 787		if (pinctrl_ready_for_gpio_range(gpio))
 788			ret = 0;
 789		return ret;
 790	}
 791
 792	mutex_lock(&pctldev->mutex);
 793
 794	/* Convert to the pin controllers number space */
 795	pin = gpio_to_pin(range, gpio);
 796
 797	ret = pinmux_request_gpio(pctldev, range, pin, gpio);
 798
 799	mutex_unlock(&pctldev->mutex);
 800
 801	return ret;
 802}
 803EXPORT_SYMBOL_GPL(pinctrl_gpio_request);
 804
 805/**
 806 * pinctrl_gpio_free() - free control on a single pin, currently used as GPIO
 807 * @gpio: the GPIO pin number from the GPIO subsystem number space
 808 *
 809 * This function should *ONLY* be used from gpiolib-based GPIO drivers,
 810 * as part of their gpio_free() semantics, platforms and individual drivers
 811 * shall *NOT* request GPIO pins to be muxed out.
 812 */
 813void pinctrl_gpio_free(unsigned gpio)
 814{
 815	struct pinctrl_dev *pctldev;
 816	struct pinctrl_gpio_range *range;
 817	int ret;
 818	int pin;
 819
 820	ret = pinctrl_get_device_gpio_range(gpio, &pctldev, &range);
 821	if (ret) {
 822		return;
 823	}
 824	mutex_lock(&pctldev->mutex);
 825
 826	/* Convert to the pin controllers number space */
 827	pin = gpio_to_pin(range, gpio);
 828
 829	pinmux_free_gpio(pctldev, pin, range);
 830
 831	mutex_unlock(&pctldev->mutex);
 832}
 833EXPORT_SYMBOL_GPL(pinctrl_gpio_free);
 834
 835static int pinctrl_gpio_direction(unsigned gpio, bool input)
 836{
 837	struct pinctrl_dev *pctldev;
 838	struct pinctrl_gpio_range *range;
 839	int ret;
 840	int pin;
 841
 842	ret = pinctrl_get_device_gpio_range(gpio, &pctldev, &range);
 843	if (ret) {
 844		return ret;
 845	}
 846
 847	mutex_lock(&pctldev->mutex);
 848
 849	/* Convert to the pin controllers number space */
 850	pin = gpio_to_pin(range, gpio);
 851	ret = pinmux_gpio_direction(pctldev, range, pin, input);
 852
 853	mutex_unlock(&pctldev->mutex);
 854
 855	return ret;
 856}
 857
 858/**
 859 * pinctrl_gpio_direction_input() - request a GPIO pin to go into input mode
 860 * @gpio: the GPIO pin number from the GPIO subsystem number space
 861 *
 862 * This function should *ONLY* be used from gpiolib-based GPIO drivers,
 863 * as part of their gpio_direction_input() semantics, platforms and individual
 864 * drivers shall *NOT* touch pin control GPIO calls.
 865 */
 866int pinctrl_gpio_direction_input(unsigned gpio)
 867{
 868	return pinctrl_gpio_direction(gpio, true);
 869}
 870EXPORT_SYMBOL_GPL(pinctrl_gpio_direction_input);
 871
 872/**
 873 * pinctrl_gpio_direction_output() - request a GPIO pin to go into output mode
 874 * @gpio: the GPIO pin number from the GPIO subsystem number space
 875 *
 876 * This function should *ONLY* be used from gpiolib-based GPIO drivers,
 877 * as part of their gpio_direction_output() semantics, platforms and individual
 878 * drivers shall *NOT* touch pin control GPIO calls.
 879 */
 880int pinctrl_gpio_direction_output(unsigned gpio)
 881{
 882	return pinctrl_gpio_direction(gpio, false);
 883}
 884EXPORT_SYMBOL_GPL(pinctrl_gpio_direction_output);
 885
 886/**
 887 * pinctrl_gpio_set_config() - Apply config to given GPIO pin
 888 * @gpio: the GPIO pin number from the GPIO subsystem number space
 889 * @config: the configuration to apply to the GPIO
 890 *
 891 * This function should *ONLY* be used from gpiolib-based GPIO drivers, if
 892 * they need to call the underlying pin controller to change GPIO config
 893 * (for example set debounce time).
 894 */
 895int pinctrl_gpio_set_config(unsigned gpio, unsigned long config)
 896{
 897	unsigned long configs[] = { config };
 898	struct pinctrl_gpio_range *range;
 899	struct pinctrl_dev *pctldev;
 900	int ret, pin;
 901
 902	ret = pinctrl_get_device_gpio_range(gpio, &pctldev, &range);
 903	if (ret)
 904		return ret;
 905
 906	mutex_lock(&pctldev->mutex);
 907	pin = gpio_to_pin(range, gpio);
 908	ret = pinconf_set_config(pctldev, pin, configs, ARRAY_SIZE(configs));
 909	mutex_unlock(&pctldev->mutex);
 910
 911	return ret;
 912}
 913EXPORT_SYMBOL_GPL(pinctrl_gpio_set_config);
 914
 915static struct pinctrl_state *find_state(struct pinctrl *p,
 916					const char *name)
 917{
 918	struct pinctrl_state *state;
 919
 920	list_for_each_entry(state, &p->states, node)
 921		if (!strcmp(state->name, name))
 922			return state;
 923
 924	return NULL;
 925}
 926
 927static struct pinctrl_state *create_state(struct pinctrl *p,
 928					  const char *name)
 929{
 930	struct pinctrl_state *state;
 931
 932	state = kzalloc(sizeof(*state), GFP_KERNEL);
 933	if (!state)
 934		return ERR_PTR(-ENOMEM);
 935
 936	state->name = name;
 937	INIT_LIST_HEAD(&state->settings);
 938
 939	list_add_tail(&state->node, &p->states);
 940
 941	return state;
 942}
 943
 944static int add_setting(struct pinctrl *p, struct pinctrl_dev *pctldev,
 945		       const struct pinctrl_map *map)
 946{
 947	struct pinctrl_state *state;
 948	struct pinctrl_setting *setting;
 949	int ret;
 950
 951	state = find_state(p, map->name);
 952	if (!state)
 953		state = create_state(p, map->name);
 954	if (IS_ERR(state))
 955		return PTR_ERR(state);
 956
 957	if (map->type == PIN_MAP_TYPE_DUMMY_STATE)
 958		return 0;
 959
 960	setting = kzalloc(sizeof(*setting), GFP_KERNEL);
 961	if (!setting)
 962		return -ENOMEM;
 963
 964	setting->type = map->type;
 965
 966	if (pctldev)
 967		setting->pctldev = pctldev;
 968	else
 969		setting->pctldev =
 970			get_pinctrl_dev_from_devname(map->ctrl_dev_name);
 971	if (!setting->pctldev) {
 972		kfree(setting);
 973		/* Do not defer probing of hogs (circular loop) */
 974		if (!strcmp(map->ctrl_dev_name, map->dev_name))
 975			return -ENODEV;
 976		/*
 977		 * OK let us guess that the driver is not there yet, and
 978		 * let's defer obtaining this pinctrl handle to later...
 979		 */
 980		dev_info(p->dev, "unknown pinctrl device %s in map entry, deferring probe",
 981			map->ctrl_dev_name);
 982		return -EPROBE_DEFER;
 983	}
 984
 985	setting->dev_name = map->dev_name;
 986
 987	switch (map->type) {
 988	case PIN_MAP_TYPE_MUX_GROUP:
 989		ret = pinmux_map_to_setting(map, setting);
 990		break;
 991	case PIN_MAP_TYPE_CONFIGS_PIN:
 992	case PIN_MAP_TYPE_CONFIGS_GROUP:
 993		ret = pinconf_map_to_setting(map, setting);
 994		break;
 995	default:
 996		ret = -EINVAL;
 997		break;
 998	}
 999	if (ret < 0) {
1000		kfree(setting);
1001		return ret;
1002	}
1003
1004	list_add_tail(&setting->node, &state->settings);
1005
1006	return 0;
1007}
1008
1009static struct pinctrl *find_pinctrl(struct device *dev)
1010{
1011	struct pinctrl *p;
1012
1013	mutex_lock(&pinctrl_list_mutex);
1014	list_for_each_entry(p, &pinctrl_list, node)
1015		if (p->dev == dev) {
1016			mutex_unlock(&pinctrl_list_mutex);
1017			return p;
1018		}
1019
1020	mutex_unlock(&pinctrl_list_mutex);
1021	return NULL;
1022}
1023
1024static void pinctrl_free(struct pinctrl *p, bool inlist);
1025
1026static struct pinctrl *create_pinctrl(struct device *dev,
1027				      struct pinctrl_dev *pctldev)
1028{
1029	struct pinctrl *p;
1030	const char *devname;
1031	struct pinctrl_maps *maps_node;
1032	const struct pinctrl_map *map;
1033	int ret;
1034
1035	/*
1036	 * create the state cookie holder struct pinctrl for each
1037	 * mapping, this is what consumers will get when requesting
1038	 * a pin control handle with pinctrl_get()
1039	 */
1040	p = kzalloc(sizeof(*p), GFP_KERNEL);
1041	if (!p)
1042		return ERR_PTR(-ENOMEM);
1043	p->dev = dev;
1044	INIT_LIST_HEAD(&p->states);
1045	INIT_LIST_HEAD(&p->dt_maps);
1046
1047	ret = pinctrl_dt_to_map(p, pctldev);
1048	if (ret < 0) {
1049		kfree(p);
1050		return ERR_PTR(ret);
1051	}
1052
1053	devname = dev_name(dev);
1054
1055	mutex_lock(&pinctrl_maps_mutex);
1056	/* Iterate over the pin control maps to locate the right ones */
1057	for_each_pin_map(maps_node, map) {
1058		/* Map must be for this device */
1059		if (strcmp(map->dev_name, devname))
1060			continue;
1061		/*
1062		 * If pctldev is not null, we are claiming hog for it,
1063		 * that means, setting that is served by pctldev by itself.
1064		 *
1065		 * Thus we must skip map that is for this device but is served
1066		 * by other device.
1067		 */
1068		if (pctldev &&
1069		    strcmp(dev_name(pctldev->dev), map->ctrl_dev_name))
1070			continue;
1071
1072		ret = add_setting(p, pctldev, map);
1073		/*
1074		 * At this point the adding of a setting may:
1075		 *
1076		 * - Defer, if the pinctrl device is not yet available
1077		 * - Fail, if the pinctrl device is not yet available,
1078		 *   AND the setting is a hog. We cannot defer that, since
1079		 *   the hog will kick in immediately after the device
1080		 *   is registered.
1081		 *
1082		 * If the error returned was not -EPROBE_DEFER then we
1083		 * accumulate the errors to see if we end up with
1084		 * an -EPROBE_DEFER later, as that is the worst case.
1085		 */
1086		if (ret == -EPROBE_DEFER) {
1087			pinctrl_free(p, false);
1088			mutex_unlock(&pinctrl_maps_mutex);
1089			return ERR_PTR(ret);
1090		}
1091	}
1092	mutex_unlock(&pinctrl_maps_mutex);
1093
1094	if (ret < 0) {
1095		/* If some other error than deferral occurred, return here */
1096		pinctrl_free(p, false);
1097		return ERR_PTR(ret);
1098	}
1099
1100	kref_init(&p->users);
1101
1102	/* Add the pinctrl handle to the global list */
1103	mutex_lock(&pinctrl_list_mutex);
1104	list_add_tail(&p->node, &pinctrl_list);
1105	mutex_unlock(&pinctrl_list_mutex);
1106
1107	return p;
1108}
1109
1110/**
1111 * pinctrl_get() - retrieves the pinctrl handle for a device
1112 * @dev: the device to obtain the handle for
1113 */
1114struct pinctrl *pinctrl_get(struct device *dev)
1115{
1116	struct pinctrl *p;
1117
1118	if (WARN_ON(!dev))
1119		return ERR_PTR(-EINVAL);
1120
1121	/*
1122	 * See if somebody else (such as the device core) has already
1123	 * obtained a handle to the pinctrl for this device. In that case,
1124	 * return another pointer to it.
1125	 */
1126	p = find_pinctrl(dev);
1127	if (p) {
1128		dev_dbg(dev, "obtain a copy of previously claimed pinctrl\n");
1129		kref_get(&p->users);
1130		return p;
1131	}
1132
1133	return create_pinctrl(dev, NULL);
1134}
1135EXPORT_SYMBOL_GPL(pinctrl_get);
1136
1137static void pinctrl_free_setting(bool disable_setting,
1138				 struct pinctrl_setting *setting)
1139{
1140	switch (setting->type) {
1141	case PIN_MAP_TYPE_MUX_GROUP:
1142		if (disable_setting)
1143			pinmux_disable_setting(setting);
1144		pinmux_free_setting(setting);
1145		break;
1146	case PIN_MAP_TYPE_CONFIGS_PIN:
1147	case PIN_MAP_TYPE_CONFIGS_GROUP:
1148		pinconf_free_setting(setting);
1149		break;
1150	default:
1151		break;
1152	}
1153}
1154
1155static void pinctrl_free(struct pinctrl *p, bool inlist)
1156{
1157	struct pinctrl_state *state, *n1;
1158	struct pinctrl_setting *setting, *n2;
1159
1160	mutex_lock(&pinctrl_list_mutex);
1161	list_for_each_entry_safe(state, n1, &p->states, node) {
1162		list_for_each_entry_safe(setting, n2, &state->settings, node) {
1163			pinctrl_free_setting(state == p->state, setting);
1164			list_del(&setting->node);
1165			kfree(setting);
1166		}
1167		list_del(&state->node);
1168		kfree(state);
1169	}
1170
1171	pinctrl_dt_free_maps(p);
1172
1173	if (inlist)
1174		list_del(&p->node);
1175	kfree(p);
1176	mutex_unlock(&pinctrl_list_mutex);
1177}
1178
1179/**
1180 * pinctrl_release() - release the pinctrl handle
1181 * @kref: the kref in the pinctrl being released
1182 */
1183static void pinctrl_release(struct kref *kref)
1184{
1185	struct pinctrl *p = container_of(kref, struct pinctrl, users);
1186
1187	pinctrl_free(p, true);
1188}
1189
1190/**
1191 * pinctrl_put() - decrease use count on a previously claimed pinctrl handle
1192 * @p: the pinctrl handle to release
1193 */
1194void pinctrl_put(struct pinctrl *p)
1195{
1196	kref_put(&p->users, pinctrl_release);
1197}
1198EXPORT_SYMBOL_GPL(pinctrl_put);
1199
1200/**
1201 * pinctrl_lookup_state() - retrieves a state handle from a pinctrl handle
1202 * @p: the pinctrl handle to retrieve the state from
1203 * @name: the state name to retrieve
1204 */
1205struct pinctrl_state *pinctrl_lookup_state(struct pinctrl *p,
1206						 const char *name)
1207{
1208	struct pinctrl_state *state;
1209
1210	state = find_state(p, name);
1211	if (!state) {
1212		if (pinctrl_dummy_state) {
1213			/* create dummy state */
1214			dev_dbg(p->dev, "using pinctrl dummy state (%s)\n",
1215				name);
1216			state = create_state(p, name);
1217		} else
1218			state = ERR_PTR(-ENODEV);
1219	}
1220
1221	return state;
1222}
1223EXPORT_SYMBOL_GPL(pinctrl_lookup_state);
1224
1225static void pinctrl_link_add(struct pinctrl_dev *pctldev,
1226			     struct device *consumer)
1227{
1228	if (pctldev->desc->link_consumers)
1229		device_link_add(consumer, pctldev->dev,
1230				DL_FLAG_PM_RUNTIME |
1231				DL_FLAG_AUTOREMOVE_CONSUMER);
1232}
1233
1234/**
1235 * pinctrl_commit_state() - select/activate/program a pinctrl state to HW
1236 * @p: the pinctrl handle for the device that requests configuration
1237 * @state: the state handle to select/activate/program
1238 */
1239static int pinctrl_commit_state(struct pinctrl *p, struct pinctrl_state *state)
1240{
1241	struct pinctrl_setting *setting, *setting2;
1242	struct pinctrl_state *old_state = p->state;
1243	int ret;
1244
1245	if (p->state) {
1246		/*
1247		 * For each pinmux setting in the old state, forget SW's record
1248		 * of mux owner for that pingroup. Any pingroups which are
1249		 * still owned by the new state will be re-acquired by the call
1250		 * to pinmux_enable_setting() in the loop below.
1251		 */
1252		list_for_each_entry(setting, &p->state->settings, node) {
1253			if (setting->type != PIN_MAP_TYPE_MUX_GROUP)
1254				continue;
1255			pinmux_disable_setting(setting);
1256		}
1257	}
1258
1259	p->state = NULL;
1260
1261	/* Apply all the settings for the new state - pinmux first */
1262	list_for_each_entry(setting, &state->settings, node) {
1263		switch (setting->type) {
1264		case PIN_MAP_TYPE_MUX_GROUP:
1265			ret = pinmux_enable_setting(setting);
1266			break;
1267		case PIN_MAP_TYPE_CONFIGS_PIN:
1268		case PIN_MAP_TYPE_CONFIGS_GROUP:
1269			ret = 0;
1270			break;
1271		default:
1272			ret = -EINVAL;
1273			break;
1274		}
1275
1276		if (ret < 0)
1277			goto unapply_new_state;
1278
1279		/* Do not link hogs (circular dependency) */
1280		if (p != setting->pctldev->p)
1281			pinctrl_link_add(setting->pctldev, p->dev);
1282	}
1283
1284	/* Apply all the settings for the new state - pinconf after */
1285	list_for_each_entry(setting, &state->settings, node) {
1286		switch (setting->type) {
1287		case PIN_MAP_TYPE_MUX_GROUP:
1288			ret = 0;
1289			break;
1290		case PIN_MAP_TYPE_CONFIGS_PIN:
1291		case PIN_MAP_TYPE_CONFIGS_GROUP:
1292			ret = pinconf_apply_setting(setting);
1293			break;
1294		default:
1295			ret = -EINVAL;
1296			break;
1297		}
1298
1299		if (ret < 0) {
1300			goto unapply_new_state;
1301		}
1302
1303		/* Do not link hogs (circular dependency) */
1304		if (p != setting->pctldev->p)
1305			pinctrl_link_add(setting->pctldev, p->dev);
1306	}
1307
1308	p->state = state;
1309
1310	return 0;
1311
1312unapply_new_state:
1313	dev_err(p->dev, "Error applying setting, reverse things back\n");
1314
1315	list_for_each_entry(setting2, &state->settings, node) {
1316		if (&setting2->node == &setting->node)
1317			break;
1318		/*
1319		 * All we can do here is pinmux_disable_setting.
1320		 * That means that some pins are muxed differently now
1321		 * than they were before applying the setting (We can't
1322		 * "unmux a pin"!), but it's not a big deal since the pins
1323		 * are free to be muxed by another apply_setting.
1324		 */
1325		if (setting2->type == PIN_MAP_TYPE_MUX_GROUP)
1326			pinmux_disable_setting(setting2);
1327	}
1328
1329	/* There's no infinite recursive loop here because p->state is NULL */
1330	if (old_state)
1331		pinctrl_select_state(p, old_state);
1332
1333	return ret;
1334}
1335
1336/**
1337 * pinctrl_select_state() - select/activate/program a pinctrl state to HW
1338 * @p: the pinctrl handle for the device that requests configuration
1339 * @state: the state handle to select/activate/program
1340 */
1341int pinctrl_select_state(struct pinctrl *p, struct pinctrl_state *state)
1342{
1343	if (p->state == state)
1344		return 0;
1345
1346	return pinctrl_commit_state(p, state);
1347}
1348EXPORT_SYMBOL_GPL(pinctrl_select_state);
1349
1350static void devm_pinctrl_release(struct device *dev, void *res)
1351{
1352	pinctrl_put(*(struct pinctrl **)res);
1353}
1354
1355/**
1356 * devm_pinctrl_get() - Resource managed pinctrl_get()
1357 * @dev: the device to obtain the handle for
1358 *
1359 * If there is a need to explicitly destroy the returned struct pinctrl,
1360 * devm_pinctrl_put() should be used, rather than plain pinctrl_put().
1361 */
1362struct pinctrl *devm_pinctrl_get(struct device *dev)
1363{
1364	struct pinctrl **ptr, *p;
1365
1366	ptr = devres_alloc(devm_pinctrl_release, sizeof(*ptr), GFP_KERNEL);
1367	if (!ptr)
1368		return ERR_PTR(-ENOMEM);
1369
1370	p = pinctrl_get(dev);
1371	if (!IS_ERR(p)) {
1372		*ptr = p;
1373		devres_add(dev, ptr);
1374	} else {
1375		devres_free(ptr);
1376	}
1377
1378	return p;
1379}
1380EXPORT_SYMBOL_GPL(devm_pinctrl_get);
1381
1382static int devm_pinctrl_match(struct device *dev, void *res, void *data)
1383{
1384	struct pinctrl **p = res;
1385
1386	return *p == data;
1387}
1388
1389/**
1390 * devm_pinctrl_put() - Resource managed pinctrl_put()
1391 * @p: the pinctrl handle to release
1392 *
1393 * Deallocate a struct pinctrl obtained via devm_pinctrl_get(). Normally
1394 * this function will not need to be called and the resource management
1395 * code will ensure that the resource is freed.
1396 */
1397void devm_pinctrl_put(struct pinctrl *p)
1398{
1399	WARN_ON(devres_release(p->dev, devm_pinctrl_release,
1400			       devm_pinctrl_match, p));
1401}
1402EXPORT_SYMBOL_GPL(devm_pinctrl_put);
1403
1404/**
1405 * pinctrl_register_mappings() - register a set of pin controller mappings
1406 * @maps: the pincontrol mappings table to register. Note the pinctrl-core
1407 *	keeps a reference to the passed in maps, so they should _not_ be
1408 *	marked with __initdata.
1409 * @num_maps: the number of maps in the mapping table
1410 */
1411int pinctrl_register_mappings(const struct pinctrl_map *maps,
1412			      unsigned num_maps)
1413{
1414	int i, ret;
1415	struct pinctrl_maps *maps_node;
1416
1417	pr_debug("add %u pinctrl maps\n", num_maps);
1418
1419	/* First sanity check the new mapping */
1420	for (i = 0; i < num_maps; i++) {
1421		if (!maps[i].dev_name) {
1422			pr_err("failed to register map %s (%d): no device given\n",
1423			       maps[i].name, i);
1424			return -EINVAL;
1425		}
1426
1427		if (!maps[i].name) {
1428			pr_err("failed to register map %d: no map name given\n",
1429			       i);
1430			return -EINVAL;
1431		}
1432
1433		if (maps[i].type != PIN_MAP_TYPE_DUMMY_STATE &&
1434				!maps[i].ctrl_dev_name) {
1435			pr_err("failed to register map %s (%d): no pin control device given\n",
1436			       maps[i].name, i);
1437			return -EINVAL;
1438		}
1439
1440		switch (maps[i].type) {
1441		case PIN_MAP_TYPE_DUMMY_STATE:
1442			break;
1443		case PIN_MAP_TYPE_MUX_GROUP:
1444			ret = pinmux_validate_map(&maps[i], i);
1445			if (ret < 0)
1446				return ret;
1447			break;
1448		case PIN_MAP_TYPE_CONFIGS_PIN:
1449		case PIN_MAP_TYPE_CONFIGS_GROUP:
1450			ret = pinconf_validate_map(&maps[i], i);
1451			if (ret < 0)
1452				return ret;
1453			break;
1454		default:
1455			pr_err("failed to register map %s (%d): invalid type given\n",
1456			       maps[i].name, i);
1457			return -EINVAL;
1458		}
1459	}
1460
1461	maps_node = kzalloc(sizeof(*maps_node), GFP_KERNEL);
1462	if (!maps_node)
1463		return -ENOMEM;
1464
1465	maps_node->maps = maps;
1466	maps_node->num_maps = num_maps;
1467
1468	mutex_lock(&pinctrl_maps_mutex);
1469	list_add_tail(&maps_node->node, &pinctrl_maps);
1470	mutex_unlock(&pinctrl_maps_mutex);
1471
1472	return 0;
1473}
1474EXPORT_SYMBOL_GPL(pinctrl_register_mappings);
1475
1476/**
1477 * pinctrl_unregister_mappings() - unregister a set of pin controller mappings
1478 * @map: the pincontrol mappings table passed to pinctrl_register_mappings()
1479 *	when registering the mappings.
1480 */
1481void pinctrl_unregister_mappings(const struct pinctrl_map *map)
1482{
1483	struct pinctrl_maps *maps_node;
1484
1485	mutex_lock(&pinctrl_maps_mutex);
1486	list_for_each_entry(maps_node, &pinctrl_maps, node) {
1487		if (maps_node->maps == map) {
1488			list_del(&maps_node->node);
1489			kfree(maps_node);
1490			mutex_unlock(&pinctrl_maps_mutex);
1491			return;
1492		}
1493	}
1494	mutex_unlock(&pinctrl_maps_mutex);
1495}
1496EXPORT_SYMBOL_GPL(pinctrl_unregister_mappings);
1497
1498/**
1499 * pinctrl_force_sleep() - turn a given controller device into sleep state
1500 * @pctldev: pin controller device
1501 */
1502int pinctrl_force_sleep(struct pinctrl_dev *pctldev)
1503{
1504	if (!IS_ERR(pctldev->p) && !IS_ERR(pctldev->hog_sleep))
1505		return pinctrl_commit_state(pctldev->p, pctldev->hog_sleep);
1506	return 0;
1507}
1508EXPORT_SYMBOL_GPL(pinctrl_force_sleep);
1509
1510/**
1511 * pinctrl_force_default() - turn a given controller device into default state
1512 * @pctldev: pin controller device
1513 */
1514int pinctrl_force_default(struct pinctrl_dev *pctldev)
1515{
1516	if (!IS_ERR(pctldev->p) && !IS_ERR(pctldev->hog_default))
1517		return pinctrl_commit_state(pctldev->p, pctldev->hog_default);
1518	return 0;
1519}
1520EXPORT_SYMBOL_GPL(pinctrl_force_default);
1521
1522/**
1523 * pinctrl_init_done() - tell pinctrl probe is done
1524 *
1525 * We'll use this time to switch the pins from "init" to "default" unless the
1526 * driver selected some other state.
1527 *
1528 * @dev: device to that's done probing
1529 */
1530int pinctrl_init_done(struct device *dev)
1531{
1532	struct dev_pin_info *pins = dev->pins;
1533	int ret;
1534
1535	if (!pins)
1536		return 0;
1537
1538	if (IS_ERR(pins->init_state))
1539		return 0; /* No such state */
1540
1541	if (pins->p->state != pins->init_state)
1542		return 0; /* Not at init anyway */
1543
1544	if (IS_ERR(pins->default_state))
1545		return 0; /* No default state */
1546
1547	ret = pinctrl_select_state(pins->p, pins->default_state);
1548	if (ret)
1549		dev_err(dev, "failed to activate default pinctrl state\n");
1550
1551	return ret;
1552}
1553
1554static int pinctrl_select_bound_state(struct device *dev,
1555				      struct pinctrl_state *state)
1556{
1557	struct dev_pin_info *pins = dev->pins;
1558	int ret;
1559
1560	if (IS_ERR(state))
1561		return 0; /* No such state */
1562	ret = pinctrl_select_state(pins->p, state);
1563	if (ret)
1564		dev_err(dev, "failed to activate pinctrl state %s\n",
1565			state->name);
1566	return ret;
1567}
1568
1569/**
1570 * pinctrl_select_default_state() - select default pinctrl state
1571 * @dev: device to select default state for
1572 */
1573int pinctrl_select_default_state(struct device *dev)
1574{
1575	if (!dev->pins)
1576		return 0;
1577
1578	return pinctrl_select_bound_state(dev, dev->pins->default_state);
1579}
1580EXPORT_SYMBOL_GPL(pinctrl_select_default_state);
1581
1582#ifdef CONFIG_PM
1583
1584/**
1585 * pinctrl_pm_select_default_state() - select default pinctrl state for PM
1586 * @dev: device to select default state for
1587 */
1588int pinctrl_pm_select_default_state(struct device *dev)
1589{
1590	return pinctrl_select_default_state(dev);
1591}
1592EXPORT_SYMBOL_GPL(pinctrl_pm_select_default_state);
1593
1594/**
1595 * pinctrl_pm_select_sleep_state() - select sleep pinctrl state for PM
1596 * @dev: device to select sleep state for
1597 */
1598int pinctrl_pm_select_sleep_state(struct device *dev)
1599{
1600	if (!dev->pins)
1601		return 0;
1602
1603	return pinctrl_select_bound_state(dev, dev->pins->sleep_state);
1604}
1605EXPORT_SYMBOL_GPL(pinctrl_pm_select_sleep_state);
1606
1607/**
1608 * pinctrl_pm_select_idle_state() - select idle pinctrl state for PM
1609 * @dev: device to select idle state for
1610 */
1611int pinctrl_pm_select_idle_state(struct device *dev)
1612{
1613	if (!dev->pins)
1614		return 0;
1615
1616	return pinctrl_select_bound_state(dev, dev->pins->idle_state);
1617}
1618EXPORT_SYMBOL_GPL(pinctrl_pm_select_idle_state);
1619#endif
1620
1621#ifdef CONFIG_DEBUG_FS
1622
1623static int pinctrl_pins_show(struct seq_file *s, void *what)
1624{
1625	struct pinctrl_dev *pctldev = s->private;
1626	const struct pinctrl_ops *ops = pctldev->desc->pctlops;
1627	unsigned i, pin;
1628#ifdef CONFIG_GPIOLIB
1629	struct pinctrl_gpio_range *range;
1630	struct gpio_chip *chip;
1631	int gpio_num;
1632#endif
1633
1634	seq_printf(s, "registered pins: %d\n", pctldev->desc->npins);
1635
1636	mutex_lock(&pctldev->mutex);
1637
1638	/* The pin number can be retrived from the pin controller descriptor */
1639	for (i = 0; i < pctldev->desc->npins; i++) {
1640		struct pin_desc *desc;
1641
1642		pin = pctldev->desc->pins[i].number;
1643		desc = pin_desc_get(pctldev, pin);
1644		/* Pin space may be sparse */
1645		if (!desc)
1646			continue;
1647
1648		seq_printf(s, "pin %d (%s) ", pin, desc->name);
1649
1650#ifdef CONFIG_GPIOLIB
1651		gpio_num = -1;
1652		list_for_each_entry(range, &pctldev->gpio_ranges, node) {
1653			if ((pin >= range->pin_base) &&
1654			    (pin < (range->pin_base + range->npins))) {
1655				gpio_num = range->base + (pin - range->pin_base);
1656				break;
1657			}
1658		}
1659		if (gpio_num >= 0)
1660			chip = gpio_to_chip(gpio_num);
1661		else
1662			chip = NULL;
1663		if (chip)
1664			seq_printf(s, "%u:%s ", gpio_num - chip->gpiodev->base, chip->label);
1665		else
1666			seq_puts(s, "0:? ");
1667#endif
1668
1669		/* Driver-specific info per pin */
1670		if (ops->pin_dbg_show)
1671			ops->pin_dbg_show(pctldev, s, pin);
1672
1673		seq_puts(s, "\n");
1674	}
1675
1676	mutex_unlock(&pctldev->mutex);
1677
1678	return 0;
1679}
1680DEFINE_SHOW_ATTRIBUTE(pinctrl_pins);
1681
1682static int pinctrl_groups_show(struct seq_file *s, void *what)
1683{
1684	struct pinctrl_dev *pctldev = s->private;
1685	const struct pinctrl_ops *ops = pctldev->desc->pctlops;
1686	unsigned ngroups, selector = 0;
1687
1688	mutex_lock(&pctldev->mutex);
1689
1690	ngroups = ops->get_groups_count(pctldev);
1691
1692	seq_puts(s, "registered pin groups:\n");
1693	while (selector < ngroups) {
1694		const unsigned *pins = NULL;
1695		unsigned num_pins = 0;
1696		const char *gname = ops->get_group_name(pctldev, selector);
1697		const char *pname;
1698		int ret = 0;
1699		int i;
1700
1701		if (ops->get_group_pins)
1702			ret = ops->get_group_pins(pctldev, selector,
1703						  &pins, &num_pins);
1704		if (ret)
1705			seq_printf(s, "%s [ERROR GETTING PINS]\n",
1706				   gname);
1707		else {
1708			seq_printf(s, "group: %s\n", gname);
1709			for (i = 0; i < num_pins; i++) {
1710				pname = pin_get_name(pctldev, pins[i]);
1711				if (WARN_ON(!pname)) {
1712					mutex_unlock(&pctldev->mutex);
1713					return -EINVAL;
1714				}
1715				seq_printf(s, "pin %d (%s)\n", pins[i], pname);
1716			}
1717			seq_puts(s, "\n");
1718		}
1719		selector++;
1720	}
1721
1722	mutex_unlock(&pctldev->mutex);
1723
1724	return 0;
1725}
1726DEFINE_SHOW_ATTRIBUTE(pinctrl_groups);
1727
1728static int pinctrl_gpioranges_show(struct seq_file *s, void *what)
1729{
1730	struct pinctrl_dev *pctldev = s->private;
1731	struct pinctrl_gpio_range *range;
1732
1733	seq_puts(s, "GPIO ranges handled:\n");
1734
1735	mutex_lock(&pctldev->mutex);
1736
1737	/* Loop over the ranges */
1738	list_for_each_entry(range, &pctldev->gpio_ranges, node) {
1739		if (range->pins) {
1740			int a;
1741			seq_printf(s, "%u: %s GPIOS [%u - %u] PINS {",
1742				range->id, range->name,
1743				range->base, (range->base + range->npins - 1));
1744			for (a = 0; a < range->npins - 1; a++)
1745				seq_printf(s, "%u, ", range->pins[a]);
1746			seq_printf(s, "%u}\n", range->pins[a]);
1747		}
1748		else
1749			seq_printf(s, "%u: %s GPIOS [%u - %u] PINS [%u - %u]\n",
1750				range->id, range->name,
1751				range->base, (range->base + range->npins - 1),
1752				range->pin_base,
1753				(range->pin_base + range->npins - 1));
1754	}
1755
1756	mutex_unlock(&pctldev->mutex);
1757
1758	return 0;
1759}
1760DEFINE_SHOW_ATTRIBUTE(pinctrl_gpioranges);
1761
1762static int pinctrl_devices_show(struct seq_file *s, void *what)
1763{
1764	struct pinctrl_dev *pctldev;
1765
1766	seq_puts(s, "name [pinmux] [pinconf]\n");
1767
1768	mutex_lock(&pinctrldev_list_mutex);
1769
1770	list_for_each_entry(pctldev, &pinctrldev_list, node) {
1771		seq_printf(s, "%s ", pctldev->desc->name);
1772		if (pctldev->desc->pmxops)
1773			seq_puts(s, "yes ");
1774		else
1775			seq_puts(s, "no ");
1776		if (pctldev->desc->confops)
1777			seq_puts(s, "yes");
1778		else
1779			seq_puts(s, "no");
1780		seq_puts(s, "\n");
1781	}
1782
1783	mutex_unlock(&pinctrldev_list_mutex);
1784
1785	return 0;
1786}
1787DEFINE_SHOW_ATTRIBUTE(pinctrl_devices);
1788
1789static inline const char *map_type(enum pinctrl_map_type type)
1790{
1791	static const char * const names[] = {
1792		"INVALID",
1793		"DUMMY_STATE",
1794		"MUX_GROUP",
1795		"CONFIGS_PIN",
1796		"CONFIGS_GROUP",
1797	};
1798
1799	if (type >= ARRAY_SIZE(names))
1800		return "UNKNOWN";
1801
1802	return names[type];
1803}
1804
1805static int pinctrl_maps_show(struct seq_file *s, void *what)
1806{
1807	struct pinctrl_maps *maps_node;
1808	const struct pinctrl_map *map;
1809
1810	seq_puts(s, "Pinctrl maps:\n");
1811
1812	mutex_lock(&pinctrl_maps_mutex);
1813	for_each_pin_map(maps_node, map) {
1814		seq_printf(s, "device %s\nstate %s\ntype %s (%d)\n",
1815			   map->dev_name, map->name, map_type(map->type),
1816			   map->type);
1817
1818		if (map->type != PIN_MAP_TYPE_DUMMY_STATE)
1819			seq_printf(s, "controlling device %s\n",
1820				   map->ctrl_dev_name);
1821
1822		switch (map->type) {
1823		case PIN_MAP_TYPE_MUX_GROUP:
1824			pinmux_show_map(s, map);
1825			break;
1826		case PIN_MAP_TYPE_CONFIGS_PIN:
1827		case PIN_MAP_TYPE_CONFIGS_GROUP:
1828			pinconf_show_map(s, map);
1829			break;
1830		default:
1831			break;
1832		}
1833
1834		seq_putc(s, '\n');
1835	}
1836	mutex_unlock(&pinctrl_maps_mutex);
1837
1838	return 0;
1839}
1840DEFINE_SHOW_ATTRIBUTE(pinctrl_maps);
1841
1842static int pinctrl_show(struct seq_file *s, void *what)
1843{
1844	struct pinctrl *p;
1845	struct pinctrl_state *state;
1846	struct pinctrl_setting *setting;
1847
1848	seq_puts(s, "Requested pin control handlers their pinmux maps:\n");
1849
1850	mutex_lock(&pinctrl_list_mutex);
1851
1852	list_for_each_entry(p, &pinctrl_list, node) {
1853		seq_printf(s, "device: %s current state: %s\n",
1854			   dev_name(p->dev),
1855			   p->state ? p->state->name : "none");
1856
1857		list_for_each_entry(state, &p->states, node) {
1858			seq_printf(s, "  state: %s\n", state->name);
1859
1860			list_for_each_entry(setting, &state->settings, node) {
1861				struct pinctrl_dev *pctldev = setting->pctldev;
1862
1863				seq_printf(s, "    type: %s controller %s ",
1864					   map_type(setting->type),
1865					   pinctrl_dev_get_name(pctldev));
1866
1867				switch (setting->type) {
1868				case PIN_MAP_TYPE_MUX_GROUP:
1869					pinmux_show_setting(s, setting);
1870					break;
1871				case PIN_MAP_TYPE_CONFIGS_PIN:
1872				case PIN_MAP_TYPE_CONFIGS_GROUP:
1873					pinconf_show_setting(s, setting);
1874					break;
1875				default:
1876					break;
1877				}
1878			}
1879		}
1880	}
1881
1882	mutex_unlock(&pinctrl_list_mutex);
1883
1884	return 0;
1885}
1886DEFINE_SHOW_ATTRIBUTE(pinctrl);
1887
1888static struct dentry *debugfs_root;
1889
1890static void pinctrl_init_device_debugfs(struct pinctrl_dev *pctldev)
1891{
1892	struct dentry *device_root;
1893	const char *debugfs_name;
1894
1895	if (pctldev->desc->name &&
1896			strcmp(dev_name(pctldev->dev), pctldev->desc->name)) {
1897		debugfs_name = devm_kasprintf(pctldev->dev, GFP_KERNEL,
1898				"%s-%s", dev_name(pctldev->dev),
1899				pctldev->desc->name);
1900		if (!debugfs_name) {
1901			pr_warn("failed to determine debugfs dir name for %s\n",
1902				dev_name(pctldev->dev));
1903			return;
1904		}
1905	} else {
1906		debugfs_name = dev_name(pctldev->dev);
1907	}
1908
1909	device_root = debugfs_create_dir(debugfs_name, debugfs_root);
1910	pctldev->device_root = device_root;
1911
1912	if (IS_ERR(device_root) || !device_root) {
1913		pr_warn("failed to create debugfs directory for %s\n",
1914			dev_name(pctldev->dev));
1915		return;
1916	}
1917	debugfs_create_file("pins", 0444,
1918			    device_root, pctldev, &pinctrl_pins_fops);
1919	debugfs_create_file("pingroups", 0444,
1920			    device_root, pctldev, &pinctrl_groups_fops);
1921	debugfs_create_file("gpio-ranges", 0444,
1922			    device_root, pctldev, &pinctrl_gpioranges_fops);
1923	if (pctldev->desc->pmxops)
1924		pinmux_init_device_debugfs(device_root, pctldev);
1925	if (pctldev->desc->confops)
1926		pinconf_init_device_debugfs(device_root, pctldev);
1927}
1928
1929static void pinctrl_remove_device_debugfs(struct pinctrl_dev *pctldev)
1930{
1931	debugfs_remove_recursive(pctldev->device_root);
1932}
1933
1934static void pinctrl_init_debugfs(void)
1935{
1936	debugfs_root = debugfs_create_dir("pinctrl", NULL);
1937	if (IS_ERR(debugfs_root) || !debugfs_root) {
1938		pr_warn("failed to create debugfs directory\n");
1939		debugfs_root = NULL;
1940		return;
1941	}
1942
1943	debugfs_create_file("pinctrl-devices", 0444,
1944			    debugfs_root, NULL, &pinctrl_devices_fops);
1945	debugfs_create_file("pinctrl-maps", 0444,
1946			    debugfs_root, NULL, &pinctrl_maps_fops);
1947	debugfs_create_file("pinctrl-handles", 0444,
1948			    debugfs_root, NULL, &pinctrl_fops);
1949}
1950
1951#else /* CONFIG_DEBUG_FS */
1952
1953static void pinctrl_init_device_debugfs(struct pinctrl_dev *pctldev)
1954{
1955}
1956
1957static void pinctrl_init_debugfs(void)
1958{
1959}
1960
1961static void pinctrl_remove_device_debugfs(struct pinctrl_dev *pctldev)
1962{
1963}
1964
1965#endif
1966
1967static int pinctrl_check_ops(struct pinctrl_dev *pctldev)
1968{
1969	const struct pinctrl_ops *ops = pctldev->desc->pctlops;
1970
1971	if (!ops ||
1972	    !ops->get_groups_count ||
1973	    !ops->get_group_name)
1974		return -EINVAL;
1975
1976	return 0;
1977}
1978
1979/**
1980 * pinctrl_init_controller() - init a pin controller device
1981 * @pctldesc: descriptor for this pin controller
1982 * @dev: parent device for this pin controller
1983 * @driver_data: private pin controller data for this pin controller
1984 */
1985static struct pinctrl_dev *
1986pinctrl_init_controller(struct pinctrl_desc *pctldesc, struct device *dev,
1987			void *driver_data)
1988{
1989	struct pinctrl_dev *pctldev;
1990	int ret;
1991
1992	if (!pctldesc)
1993		return ERR_PTR(-EINVAL);
1994	if (!pctldesc->name)
1995		return ERR_PTR(-EINVAL);
1996
1997	pctldev = kzalloc(sizeof(*pctldev), GFP_KERNEL);
1998	if (!pctldev)
1999		return ERR_PTR(-ENOMEM);
2000
2001	/* Initialize pin control device struct */
2002	pctldev->owner = pctldesc->owner;
2003	pctldev->desc = pctldesc;
2004	pctldev->driver_data = driver_data;
2005	INIT_RADIX_TREE(&pctldev->pin_desc_tree, GFP_KERNEL);
2006#ifdef CONFIG_GENERIC_PINCTRL_GROUPS
2007	INIT_RADIX_TREE(&pctldev->pin_group_tree, GFP_KERNEL);
2008#endif
2009#ifdef CONFIG_GENERIC_PINMUX_FUNCTIONS
2010	INIT_RADIX_TREE(&pctldev->pin_function_tree, GFP_KERNEL);
2011#endif
2012	INIT_LIST_HEAD(&pctldev->gpio_ranges);
2013	INIT_LIST_HEAD(&pctldev->node);
2014	pctldev->dev = dev;
2015	mutex_init(&pctldev->mutex);
2016
2017	/* check core ops for sanity */
2018	ret = pinctrl_check_ops(pctldev);
2019	if (ret) {
2020		dev_err(dev, "pinctrl ops lacks necessary functions\n");
2021		goto out_err;
2022	}
2023
2024	/* If we're implementing pinmuxing, check the ops for sanity */
2025	if (pctldesc->pmxops) {
2026		ret = pinmux_check_ops(pctldev);
2027		if (ret)
2028			goto out_err;
2029	}
2030
2031	/* If we're implementing pinconfig, check the ops for sanity */
2032	if (pctldesc->confops) {
2033		ret = pinconf_check_ops(pctldev);
2034		if (ret)
2035			goto out_err;
2036	}
2037
2038	/* Register all the pins */
2039	dev_dbg(dev, "try to register %d pins ...\n",  pctldesc->npins);
2040	ret = pinctrl_register_pins(pctldev, pctldesc->pins, pctldesc->npins);
2041	if (ret) {
2042		dev_err(dev, "error during pin registration\n");
2043		pinctrl_free_pindescs(pctldev, pctldesc->pins,
2044				      pctldesc->npins);
2045		goto out_err;
2046	}
2047
2048	return pctldev;
2049
2050out_err:
2051	mutex_destroy(&pctldev->mutex);
2052	kfree(pctldev);
2053	return ERR_PTR(ret);
2054}
2055
2056static int pinctrl_claim_hogs(struct pinctrl_dev *pctldev)
2057{
2058	pctldev->p = create_pinctrl(pctldev->dev, pctldev);
2059	if (PTR_ERR(pctldev->p) == -ENODEV) {
2060		dev_dbg(pctldev->dev, "no hogs found\n");
2061
2062		return 0;
2063	}
2064
2065	if (IS_ERR(pctldev->p)) {
2066		dev_err(pctldev->dev, "error claiming hogs: %li\n",
2067			PTR_ERR(pctldev->p));
2068
2069		return PTR_ERR(pctldev->p);
2070	}
2071
2072	pctldev->hog_default =
2073		pinctrl_lookup_state(pctldev->p, PINCTRL_STATE_DEFAULT);
2074	if (IS_ERR(pctldev->hog_default)) {
2075		dev_dbg(pctldev->dev,
2076			"failed to lookup the default state\n");
2077	} else {
2078		if (pinctrl_select_state(pctldev->p,
2079					 pctldev->hog_default))
2080			dev_err(pctldev->dev,
2081				"failed to select default state\n");
2082	}
2083
2084	pctldev->hog_sleep =
2085		pinctrl_lookup_state(pctldev->p,
2086				     PINCTRL_STATE_SLEEP);
2087	if (IS_ERR(pctldev->hog_sleep))
2088		dev_dbg(pctldev->dev,
2089			"failed to lookup the sleep state\n");
2090
2091	return 0;
2092}
2093
2094int pinctrl_enable(struct pinctrl_dev *pctldev)
2095{
2096	int error;
2097
2098	error = pinctrl_claim_hogs(pctldev);
2099	if (error) {
2100		dev_err(pctldev->dev, "could not claim hogs: %i\n",
2101			error);
2102		pinctrl_free_pindescs(pctldev, pctldev->desc->pins,
2103				      pctldev->desc->npins);
2104		mutex_destroy(&pctldev->mutex);
2105		kfree(pctldev);
2106
2107		return error;
2108	}
2109
2110	mutex_lock(&pinctrldev_list_mutex);
2111	list_add_tail(&pctldev->node, &pinctrldev_list);
2112	mutex_unlock(&pinctrldev_list_mutex);
2113
2114	pinctrl_init_device_debugfs(pctldev);
2115
2116	return 0;
2117}
2118EXPORT_SYMBOL_GPL(pinctrl_enable);
2119
2120/**
2121 * pinctrl_register() - register a pin controller device
2122 * @pctldesc: descriptor for this pin controller
2123 * @dev: parent device for this pin controller
2124 * @driver_data: private pin controller data for this pin controller
2125 *
2126 * Note that pinctrl_register() is known to have problems as the pin
2127 * controller driver functions are called before the driver has a
2128 * struct pinctrl_dev handle. To avoid issues later on, please use the
2129 * new pinctrl_register_and_init() below instead.
2130 */
2131struct pinctrl_dev *pinctrl_register(struct pinctrl_desc *pctldesc,
2132				    struct device *dev, void *driver_data)
2133{
2134	struct pinctrl_dev *pctldev;
2135	int error;
2136
2137	pctldev = pinctrl_init_controller(pctldesc, dev, driver_data);
2138	if (IS_ERR(pctldev))
2139		return pctldev;
2140
2141	error = pinctrl_enable(pctldev);
2142	if (error)
2143		return ERR_PTR(error);
2144
2145	return pctldev;
2146}
2147EXPORT_SYMBOL_GPL(pinctrl_register);
2148
2149/**
2150 * pinctrl_register_and_init() - register and init pin controller device
2151 * @pctldesc: descriptor for this pin controller
2152 * @dev: parent device for this pin controller
2153 * @driver_data: private pin controller data for this pin controller
2154 * @pctldev: pin controller device
2155 *
2156 * Note that pinctrl_enable() still needs to be manually called after
2157 * this once the driver is ready.
2158 */
2159int pinctrl_register_and_init(struct pinctrl_desc *pctldesc,
2160			      struct device *dev, void *driver_data,
2161			      struct pinctrl_dev **pctldev)
2162{
2163	struct pinctrl_dev *p;
2164
2165	p = pinctrl_init_controller(pctldesc, dev, driver_data);
2166	if (IS_ERR(p))
2167		return PTR_ERR(p);
2168
2169	/*
2170	 * We have pinctrl_start() call functions in the pin controller
2171	 * driver with create_pinctrl() for at least dt_node_to_map(). So
2172	 * let's make sure pctldev is properly initialized for the
2173	 * pin controller driver before we do anything.
2174	 */
2175	*pctldev = p;
2176
2177	return 0;
2178}
2179EXPORT_SYMBOL_GPL(pinctrl_register_and_init);
2180
2181/**
2182 * pinctrl_unregister() - unregister pinmux
2183 * @pctldev: pin controller to unregister
2184 *
2185 * Called by pinmux drivers to unregister a pinmux.
2186 */
2187void pinctrl_unregister(struct pinctrl_dev *pctldev)
2188{
2189	struct pinctrl_gpio_range *range, *n;
2190
2191	if (!pctldev)
2192		return;
2193
2194	mutex_lock(&pctldev->mutex);
2195	pinctrl_remove_device_debugfs(pctldev);
2196	mutex_unlock(&pctldev->mutex);
2197
2198	if (!IS_ERR_OR_NULL(pctldev->p))
2199		pinctrl_put(pctldev->p);
2200
2201	mutex_lock(&pinctrldev_list_mutex);
2202	mutex_lock(&pctldev->mutex);
2203	/* TODO: check that no pinmuxes are still active? */
2204	list_del(&pctldev->node);
2205	pinmux_generic_free_functions(pctldev);
2206	pinctrl_generic_free_groups(pctldev);
2207	/* Destroy descriptor tree */
2208	pinctrl_free_pindescs(pctldev, pctldev->desc->pins,
2209			      pctldev->desc->npins);
2210	/* remove gpio ranges map */
2211	list_for_each_entry_safe(range, n, &pctldev->gpio_ranges, node)
2212		list_del(&range->node);
2213
2214	mutex_unlock(&pctldev->mutex);
2215	mutex_destroy(&pctldev->mutex);
2216	kfree(pctldev);
2217	mutex_unlock(&pinctrldev_list_mutex);
2218}
2219EXPORT_SYMBOL_GPL(pinctrl_unregister);
2220
2221static void devm_pinctrl_dev_release(struct device *dev, void *res)
2222{
2223	struct pinctrl_dev *pctldev = *(struct pinctrl_dev **)res;
2224
2225	pinctrl_unregister(pctldev);
2226}
2227
2228static int devm_pinctrl_dev_match(struct device *dev, void *res, void *data)
2229{
2230	struct pctldev **r = res;
2231
2232	if (WARN_ON(!r || !*r))
2233		return 0;
2234
2235	return *r == data;
2236}
2237
2238/**
2239 * devm_pinctrl_register() - Resource managed version of pinctrl_register().
2240 * @dev: parent device for this pin controller
2241 * @pctldesc: descriptor for this pin controller
2242 * @driver_data: private pin controller data for this pin controller
2243 *
2244 * Returns an error pointer if pincontrol register failed. Otherwise
2245 * it returns valid pinctrl handle.
2246 *
2247 * The pinctrl device will be automatically released when the device is unbound.
2248 */
2249struct pinctrl_dev *devm_pinctrl_register(struct device *dev,
2250					  struct pinctrl_desc *pctldesc,
2251					  void *driver_data)
2252{
2253	struct pinctrl_dev **ptr, *pctldev;
2254
2255	ptr = devres_alloc(devm_pinctrl_dev_release, sizeof(*ptr), GFP_KERNEL);
2256	if (!ptr)
2257		return ERR_PTR(-ENOMEM);
2258
2259	pctldev = pinctrl_register(pctldesc, dev, driver_data);
2260	if (IS_ERR(pctldev)) {
2261		devres_free(ptr);
2262		return pctldev;
2263	}
2264
2265	*ptr = pctldev;
2266	devres_add(dev, ptr);
2267
2268	return pctldev;
2269}
2270EXPORT_SYMBOL_GPL(devm_pinctrl_register);
2271
2272/**
2273 * devm_pinctrl_register_and_init() - Resource managed pinctrl register and init
2274 * @dev: parent device for this pin controller
2275 * @pctldesc: descriptor for this pin controller
2276 * @driver_data: private pin controller data for this pin controller
2277 * @pctldev: pin controller device
2278 *
2279 * Returns zero on success or an error number on failure.
2280 *
2281 * The pinctrl device will be automatically released when the device is unbound.
2282 */
2283int devm_pinctrl_register_and_init(struct device *dev,
2284				   struct pinctrl_desc *pctldesc,
2285				   void *driver_data,
2286				   struct pinctrl_dev **pctldev)
2287{
2288	struct pinctrl_dev **ptr;
2289	int error;
2290
2291	ptr = devres_alloc(devm_pinctrl_dev_release, sizeof(*ptr), GFP_KERNEL);
2292	if (!ptr)
2293		return -ENOMEM;
2294
2295	error = pinctrl_register_and_init(pctldesc, dev, driver_data, pctldev);
2296	if (error) {
2297		devres_free(ptr);
2298		return error;
2299	}
2300
2301	*ptr = *pctldev;
2302	devres_add(dev, ptr);
2303
2304	return 0;
2305}
2306EXPORT_SYMBOL_GPL(devm_pinctrl_register_and_init);
2307
2308/**
2309 * devm_pinctrl_unregister() - Resource managed version of pinctrl_unregister().
2310 * @dev: device for which resource was allocated
2311 * @pctldev: the pinctrl device to unregister.
2312 */
2313void devm_pinctrl_unregister(struct device *dev, struct pinctrl_dev *pctldev)
2314{
2315	WARN_ON(devres_release(dev, devm_pinctrl_dev_release,
2316			       devm_pinctrl_dev_match, pctldev));
2317}
2318EXPORT_SYMBOL_GPL(devm_pinctrl_unregister);
2319
2320static int __init pinctrl_init(void)
2321{
2322	pr_info("initialized pinctrl subsystem\n");
2323	pinctrl_init_debugfs();
2324	return 0;
2325}
2326
2327/* init early since many drivers really need to initialized pinmux early */
2328core_initcall(pinctrl_init);