Loading...
Note: File does not exist in v3.1.
1// SPDX-License-Identifier: GPL-2.0-only
2/*
3 * Core driver for the pin control subsystem
4 *
5 * Copyright (C) 2011-2012 ST-Ericsson SA
6 * Written on behalf of Linaro for ST-Ericsson
7 * Based on bits of regulator core, gpio core and clk core
8 *
9 * Author: Linus Walleij <linus.walleij@linaro.org>
10 *
11 * Copyright (C) 2012 NVIDIA CORPORATION. All rights reserved.
12 */
13#define pr_fmt(fmt) "pinctrl core: " fmt
14
15#include <linux/kernel.h>
16#include <linux/kref.h>
17#include <linux/export.h>
18#include <linux/init.h>
19#include <linux/device.h>
20#include <linux/slab.h>
21#include <linux/err.h>
22#include <linux/list.h>
23#include <linux/debugfs.h>
24#include <linux/seq_file.h>
25#include <linux/pinctrl/consumer.h>
26#include <linux/pinctrl/pinctrl.h>
27#include <linux/pinctrl/machine.h>
28
29#ifdef CONFIG_GPIOLIB
30#include "../gpio/gpiolib.h"
31#include <asm-generic/gpio.h>
32#endif
33
34#include "core.h"
35#include "devicetree.h"
36#include "pinmux.h"
37#include "pinconf.h"
38
39
40static bool pinctrl_dummy_state;
41
42/* Mutex taken to protect pinctrl_list */
43static DEFINE_MUTEX(pinctrl_list_mutex);
44
45/* Mutex taken to protect pinctrl_maps */
46DEFINE_MUTEX(pinctrl_maps_mutex);
47
48/* Mutex taken to protect pinctrldev_list */
49static DEFINE_MUTEX(pinctrldev_list_mutex);
50
51/* Global list of pin control devices (struct pinctrl_dev) */
52static LIST_HEAD(pinctrldev_list);
53
54/* List of pin controller handles (struct pinctrl) */
55static LIST_HEAD(pinctrl_list);
56
57/* List of pinctrl maps (struct pinctrl_maps) */
58LIST_HEAD(pinctrl_maps);
59
60
61/**
62 * pinctrl_provide_dummies() - indicate if pinctrl provides dummy state support
63 *
64 * Usually this function is called by platforms without pinctrl driver support
65 * but run with some shared drivers using pinctrl APIs.
66 * After calling this function, the pinctrl core will return successfully
67 * with creating a dummy state for the driver to keep going smoothly.
68 */
69void pinctrl_provide_dummies(void)
70{
71 pinctrl_dummy_state = true;
72}
73
74const char *pinctrl_dev_get_name(struct pinctrl_dev *pctldev)
75{
76 /* We're not allowed to register devices without name */
77 return pctldev->desc->name;
78}
79EXPORT_SYMBOL_GPL(pinctrl_dev_get_name);
80
81const char *pinctrl_dev_get_devname(struct pinctrl_dev *pctldev)
82{
83 return dev_name(pctldev->dev);
84}
85EXPORT_SYMBOL_GPL(pinctrl_dev_get_devname);
86
87void *pinctrl_dev_get_drvdata(struct pinctrl_dev *pctldev)
88{
89 return pctldev->driver_data;
90}
91EXPORT_SYMBOL_GPL(pinctrl_dev_get_drvdata);
92
93/**
94 * get_pinctrl_dev_from_devname() - look up pin controller device
95 * @devname: the name of a device instance, as returned by dev_name()
96 *
97 * Looks up a pin control device matching a certain device name or pure device
98 * pointer, the pure device pointer will take precedence.
99 */
100struct pinctrl_dev *get_pinctrl_dev_from_devname(const char *devname)
101{
102 struct pinctrl_dev *pctldev;
103
104 if (!devname)
105 return NULL;
106
107 mutex_lock(&pinctrldev_list_mutex);
108
109 list_for_each_entry(pctldev, &pinctrldev_list, node) {
110 if (!strcmp(dev_name(pctldev->dev), devname)) {
111 /* Matched on device name */
112 mutex_unlock(&pinctrldev_list_mutex);
113 return pctldev;
114 }
115 }
116
117 mutex_unlock(&pinctrldev_list_mutex);
118
119 return NULL;
120}
121
122struct pinctrl_dev *get_pinctrl_dev_from_of_node(struct device_node *np)
123{
124 struct pinctrl_dev *pctldev;
125
126 mutex_lock(&pinctrldev_list_mutex);
127
128 list_for_each_entry(pctldev, &pinctrldev_list, node)
129 if (pctldev->dev->of_node == np) {
130 mutex_unlock(&pinctrldev_list_mutex);
131 return pctldev;
132 }
133
134 mutex_unlock(&pinctrldev_list_mutex);
135
136 return NULL;
137}
138
139/**
140 * pin_get_from_name() - look up a pin number from a name
141 * @pctldev: the pin control device to lookup the pin on
142 * @name: the name of the pin to look up
143 */
144int pin_get_from_name(struct pinctrl_dev *pctldev, const char *name)
145{
146 unsigned i, pin;
147
148 /* The pin number can be retrived from the pin controller descriptor */
149 for (i = 0; i < pctldev->desc->npins; i++) {
150 struct pin_desc *desc;
151
152 pin = pctldev->desc->pins[i].number;
153 desc = pin_desc_get(pctldev, pin);
154 /* Pin space may be sparse */
155 if (desc && !strcmp(name, desc->name))
156 return pin;
157 }
158
159 return -EINVAL;
160}
161
162/**
163 * pin_get_name() - look up a pin name from a pin id
164 * @pctldev: the pin control device to lookup the pin on
165 * @pin: pin number/id to look up
166 */
167const char *pin_get_name(struct pinctrl_dev *pctldev, const unsigned pin)
168{
169 const struct pin_desc *desc;
170
171 desc = pin_desc_get(pctldev, pin);
172 if (!desc) {
173 dev_err(pctldev->dev, "failed to get pin(%d) name\n",
174 pin);
175 return NULL;
176 }
177
178 return desc->name;
179}
180EXPORT_SYMBOL_GPL(pin_get_name);
181
182/* Deletes a range of pin descriptors */
183static void pinctrl_free_pindescs(struct pinctrl_dev *pctldev,
184 const struct pinctrl_pin_desc *pins,
185 unsigned num_pins)
186{
187 int i;
188
189 for (i = 0; i < num_pins; i++) {
190 struct pin_desc *pindesc;
191
192 pindesc = radix_tree_lookup(&pctldev->pin_desc_tree,
193 pins[i].number);
194 if (pindesc) {
195 radix_tree_delete(&pctldev->pin_desc_tree,
196 pins[i].number);
197 if (pindesc->dynamic_name)
198 kfree(pindesc->name);
199 }
200 kfree(pindesc);
201 }
202}
203
204static int pinctrl_register_one_pin(struct pinctrl_dev *pctldev,
205 const struct pinctrl_pin_desc *pin)
206{
207 struct pin_desc *pindesc;
208
209 pindesc = pin_desc_get(pctldev, pin->number);
210 if (pindesc) {
211 dev_err(pctldev->dev, "pin %d already registered\n",
212 pin->number);
213 return -EINVAL;
214 }
215
216 pindesc = kzalloc(sizeof(*pindesc), GFP_KERNEL);
217 if (!pindesc)
218 return -ENOMEM;
219
220 /* Set owner */
221 pindesc->pctldev = pctldev;
222
223 /* Copy basic pin info */
224 if (pin->name) {
225 pindesc->name = pin->name;
226 } else {
227 pindesc->name = kasprintf(GFP_KERNEL, "PIN%u", pin->number);
228 if (!pindesc->name) {
229 kfree(pindesc);
230 return -ENOMEM;
231 }
232 pindesc->dynamic_name = true;
233 }
234
235 pindesc->drv_data = pin->drv_data;
236
237 radix_tree_insert(&pctldev->pin_desc_tree, pin->number, pindesc);
238 pr_debug("registered pin %d (%s) on %s\n",
239 pin->number, pindesc->name, pctldev->desc->name);
240 return 0;
241}
242
243static int pinctrl_register_pins(struct pinctrl_dev *pctldev,
244 const struct pinctrl_pin_desc *pins,
245 unsigned num_descs)
246{
247 unsigned i;
248 int ret = 0;
249
250 for (i = 0; i < num_descs; i++) {
251 ret = pinctrl_register_one_pin(pctldev, &pins[i]);
252 if (ret)
253 return ret;
254 }
255
256 return 0;
257}
258
259/**
260 * gpio_to_pin() - GPIO range GPIO number to pin number translation
261 * @range: GPIO range used for the translation
262 * @gpio: gpio pin to translate to a pin number
263 *
264 * Finds the pin number for a given GPIO using the specified GPIO range
265 * as a base for translation. The distinction between linear GPIO ranges
266 * and pin list based GPIO ranges is managed correctly by this function.
267 *
268 * This function assumes the gpio is part of the specified GPIO range, use
269 * only after making sure this is the case (e.g. by calling it on the
270 * result of successful pinctrl_get_device_gpio_range calls)!
271 */
272static inline int gpio_to_pin(struct pinctrl_gpio_range *range,
273 unsigned int gpio)
274{
275 unsigned int offset = gpio - range->base;
276 if (range->pins)
277 return range->pins[offset];
278 else
279 return range->pin_base + offset;
280}
281
282/**
283 * pinctrl_match_gpio_range() - check if a certain GPIO pin is in range
284 * @pctldev: pin controller device to check
285 * @gpio: gpio pin to check taken from the global GPIO pin space
286 *
287 * Tries to match a GPIO pin number to the ranges handled by a certain pin
288 * controller, return the range or NULL
289 */
290static struct pinctrl_gpio_range *
291pinctrl_match_gpio_range(struct pinctrl_dev *pctldev, unsigned gpio)
292{
293 struct pinctrl_gpio_range *range;
294
295 mutex_lock(&pctldev->mutex);
296 /* Loop over the ranges */
297 list_for_each_entry(range, &pctldev->gpio_ranges, node) {
298 /* Check if we're in the valid range */
299 if (gpio >= range->base &&
300 gpio < range->base + range->npins) {
301 mutex_unlock(&pctldev->mutex);
302 return range;
303 }
304 }
305 mutex_unlock(&pctldev->mutex);
306 return NULL;
307}
308
309/**
310 * pinctrl_ready_for_gpio_range() - check if other GPIO pins of
311 * the same GPIO chip are in range
312 * @gpio: gpio pin to check taken from the global GPIO pin space
313 *
314 * This function is complement of pinctrl_match_gpio_range(). If the return
315 * value of pinctrl_match_gpio_range() is NULL, this function could be used
316 * to check whether pinctrl device is ready or not. Maybe some GPIO pins
317 * of the same GPIO chip don't have back-end pinctrl interface.
318 * If the return value is true, it means that pinctrl device is ready & the
319 * certain GPIO pin doesn't have back-end pinctrl device. If the return value
320 * is false, it means that pinctrl device may not be ready.
321 */
322#ifdef CONFIG_GPIOLIB
323static bool pinctrl_ready_for_gpio_range(unsigned gpio)
324{
325 struct pinctrl_dev *pctldev;
326 struct pinctrl_gpio_range *range = NULL;
327 struct gpio_chip *chip = gpio_to_chip(gpio);
328
329 if (WARN(!chip, "no gpio_chip for gpio%i?", gpio))
330 return false;
331
332 mutex_lock(&pinctrldev_list_mutex);
333
334 /* Loop over the pin controllers */
335 list_for_each_entry(pctldev, &pinctrldev_list, node) {
336 /* Loop over the ranges */
337 mutex_lock(&pctldev->mutex);
338 list_for_each_entry(range, &pctldev->gpio_ranges, node) {
339 /* Check if any gpio range overlapped with gpio chip */
340 if (range->base + range->npins - 1 < chip->base ||
341 range->base > chip->base + chip->ngpio - 1)
342 continue;
343 mutex_unlock(&pctldev->mutex);
344 mutex_unlock(&pinctrldev_list_mutex);
345 return true;
346 }
347 mutex_unlock(&pctldev->mutex);
348 }
349
350 mutex_unlock(&pinctrldev_list_mutex);
351
352 return false;
353}
354#else
355static bool pinctrl_ready_for_gpio_range(unsigned gpio) { return true; }
356#endif
357
358/**
359 * pinctrl_get_device_gpio_range() - find device for GPIO range
360 * @gpio: the pin to locate the pin controller for
361 * @outdev: the pin control device if found
362 * @outrange: the GPIO range if found
363 *
364 * Find the pin controller handling a certain GPIO pin from the pinspace of
365 * the GPIO subsystem, return the device and the matching GPIO range. Returns
366 * -EPROBE_DEFER if the GPIO range could not be found in any device since it
367 * may still have not been registered.
368 */
369static int pinctrl_get_device_gpio_range(unsigned gpio,
370 struct pinctrl_dev **outdev,
371 struct pinctrl_gpio_range **outrange)
372{
373 struct pinctrl_dev *pctldev;
374
375 mutex_lock(&pinctrldev_list_mutex);
376
377 /* Loop over the pin controllers */
378 list_for_each_entry(pctldev, &pinctrldev_list, node) {
379 struct pinctrl_gpio_range *range;
380
381 range = pinctrl_match_gpio_range(pctldev, gpio);
382 if (range) {
383 *outdev = pctldev;
384 *outrange = range;
385 mutex_unlock(&pinctrldev_list_mutex);
386 return 0;
387 }
388 }
389
390 mutex_unlock(&pinctrldev_list_mutex);
391
392 return -EPROBE_DEFER;
393}
394
395/**
396 * pinctrl_add_gpio_range() - register a GPIO range for a controller
397 * @pctldev: pin controller device to add the range to
398 * @range: the GPIO range to add
399 *
400 * This adds a range of GPIOs to be handled by a certain pin controller. Call
401 * this to register handled ranges after registering your pin controller.
402 */
403void pinctrl_add_gpio_range(struct pinctrl_dev *pctldev,
404 struct pinctrl_gpio_range *range)
405{
406 mutex_lock(&pctldev->mutex);
407 list_add_tail(&range->node, &pctldev->gpio_ranges);
408 mutex_unlock(&pctldev->mutex);
409}
410EXPORT_SYMBOL_GPL(pinctrl_add_gpio_range);
411
412void pinctrl_add_gpio_ranges(struct pinctrl_dev *pctldev,
413 struct pinctrl_gpio_range *ranges,
414 unsigned nranges)
415{
416 int i;
417
418 for (i = 0; i < nranges; i++)
419 pinctrl_add_gpio_range(pctldev, &ranges[i]);
420}
421EXPORT_SYMBOL_GPL(pinctrl_add_gpio_ranges);
422
423struct pinctrl_dev *pinctrl_find_and_add_gpio_range(const char *devname,
424 struct pinctrl_gpio_range *range)
425{
426 struct pinctrl_dev *pctldev;
427
428 pctldev = get_pinctrl_dev_from_devname(devname);
429
430 /*
431 * If we can't find this device, let's assume that is because
432 * it has not probed yet, so the driver trying to register this
433 * range need to defer probing.
434 */
435 if (!pctldev) {
436 return ERR_PTR(-EPROBE_DEFER);
437 }
438 pinctrl_add_gpio_range(pctldev, range);
439
440 return pctldev;
441}
442EXPORT_SYMBOL_GPL(pinctrl_find_and_add_gpio_range);
443
444int pinctrl_get_group_pins(struct pinctrl_dev *pctldev, const char *pin_group,
445 const unsigned **pins, unsigned *num_pins)
446{
447 const struct pinctrl_ops *pctlops = pctldev->desc->pctlops;
448 int gs;
449
450 if (!pctlops->get_group_pins)
451 return -EINVAL;
452
453 gs = pinctrl_get_group_selector(pctldev, pin_group);
454 if (gs < 0)
455 return gs;
456
457 return pctlops->get_group_pins(pctldev, gs, pins, num_pins);
458}
459EXPORT_SYMBOL_GPL(pinctrl_get_group_pins);
460
461struct pinctrl_gpio_range *
462pinctrl_find_gpio_range_from_pin_nolock(struct pinctrl_dev *pctldev,
463 unsigned int pin)
464{
465 struct pinctrl_gpio_range *range;
466
467 /* Loop over the ranges */
468 list_for_each_entry(range, &pctldev->gpio_ranges, node) {
469 /* Check if we're in the valid range */
470 if (range->pins) {
471 int a;
472 for (a = 0; a < range->npins; a++) {
473 if (range->pins[a] == pin)
474 return range;
475 }
476 } else if (pin >= range->pin_base &&
477 pin < range->pin_base + range->npins)
478 return range;
479 }
480
481 return NULL;
482}
483EXPORT_SYMBOL_GPL(pinctrl_find_gpio_range_from_pin_nolock);
484
485/**
486 * pinctrl_find_gpio_range_from_pin() - locate the GPIO range for a pin
487 * @pctldev: the pin controller device to look in
488 * @pin: a controller-local number to find the range for
489 */
490struct pinctrl_gpio_range *
491pinctrl_find_gpio_range_from_pin(struct pinctrl_dev *pctldev,
492 unsigned int pin)
493{
494 struct pinctrl_gpio_range *range;
495
496 mutex_lock(&pctldev->mutex);
497 range = pinctrl_find_gpio_range_from_pin_nolock(pctldev, pin);
498 mutex_unlock(&pctldev->mutex);
499
500 return range;
501}
502EXPORT_SYMBOL_GPL(pinctrl_find_gpio_range_from_pin);
503
504/**
505 * pinctrl_remove_gpio_range() - remove a range of GPIOs from a pin controller
506 * @pctldev: pin controller device to remove the range from
507 * @range: the GPIO range to remove
508 */
509void pinctrl_remove_gpio_range(struct pinctrl_dev *pctldev,
510 struct pinctrl_gpio_range *range)
511{
512 mutex_lock(&pctldev->mutex);
513 list_del(&range->node);
514 mutex_unlock(&pctldev->mutex);
515}
516EXPORT_SYMBOL_GPL(pinctrl_remove_gpio_range);
517
518#ifdef CONFIG_GENERIC_PINCTRL_GROUPS
519
520/**
521 * pinctrl_generic_get_group_count() - returns the number of pin groups
522 * @pctldev: pin controller device
523 */
524int pinctrl_generic_get_group_count(struct pinctrl_dev *pctldev)
525{
526 return pctldev->num_groups;
527}
528EXPORT_SYMBOL_GPL(pinctrl_generic_get_group_count);
529
530/**
531 * pinctrl_generic_get_group_name() - returns the name of a pin group
532 * @pctldev: pin controller device
533 * @selector: group number
534 */
535const char *pinctrl_generic_get_group_name(struct pinctrl_dev *pctldev,
536 unsigned int selector)
537{
538 struct group_desc *group;
539
540 group = radix_tree_lookup(&pctldev->pin_group_tree,
541 selector);
542 if (!group)
543 return NULL;
544
545 return group->name;
546}
547EXPORT_SYMBOL_GPL(pinctrl_generic_get_group_name);
548
549/**
550 * pinctrl_generic_get_group_pins() - gets the pin group pins
551 * @pctldev: pin controller device
552 * @selector: group number
553 * @pins: pins in the group
554 * @num_pins: number of pins in the group
555 */
556int pinctrl_generic_get_group_pins(struct pinctrl_dev *pctldev,
557 unsigned int selector,
558 const unsigned int **pins,
559 unsigned int *num_pins)
560{
561 struct group_desc *group;
562
563 group = radix_tree_lookup(&pctldev->pin_group_tree,
564 selector);
565 if (!group) {
566 dev_err(pctldev->dev, "%s could not find pingroup%i\n",
567 __func__, selector);
568 return -EINVAL;
569 }
570
571 *pins = group->pins;
572 *num_pins = group->num_pins;
573
574 return 0;
575}
576EXPORT_SYMBOL_GPL(pinctrl_generic_get_group_pins);
577
578/**
579 * pinctrl_generic_get_group() - returns a pin group based on the number
580 * @pctldev: pin controller device
581 * @selector: group number
582 */
583struct group_desc *pinctrl_generic_get_group(struct pinctrl_dev *pctldev,
584 unsigned int selector)
585{
586 struct group_desc *group;
587
588 group = radix_tree_lookup(&pctldev->pin_group_tree,
589 selector);
590 if (!group)
591 return NULL;
592
593 return group;
594}
595EXPORT_SYMBOL_GPL(pinctrl_generic_get_group);
596
597static int pinctrl_generic_group_name_to_selector(struct pinctrl_dev *pctldev,
598 const char *function)
599{
600 const struct pinctrl_ops *ops = pctldev->desc->pctlops;
601 int ngroups = ops->get_groups_count(pctldev);
602 int selector = 0;
603
604 /* See if this pctldev has this group */
605 while (selector < ngroups) {
606 const char *gname = ops->get_group_name(pctldev, selector);
607
608 if (gname && !strcmp(function, gname))
609 return selector;
610
611 selector++;
612 }
613
614 return -EINVAL;
615}
616
617/**
618 * pinctrl_generic_add_group() - adds a new pin group
619 * @pctldev: pin controller device
620 * @name: name of the pin group
621 * @pins: pins in the pin group
622 * @num_pins: number of pins in the pin group
623 * @data: pin controller driver specific data
624 *
625 * Note that the caller must take care of locking.
626 */
627int pinctrl_generic_add_group(struct pinctrl_dev *pctldev, const char *name,
628 int *pins, int num_pins, void *data)
629{
630 struct group_desc *group;
631 int selector;
632
633 if (!name)
634 return -EINVAL;
635
636 selector = pinctrl_generic_group_name_to_selector(pctldev, name);
637 if (selector >= 0)
638 return selector;
639
640 selector = pctldev->num_groups;
641
642 group = devm_kzalloc(pctldev->dev, sizeof(*group), GFP_KERNEL);
643 if (!group)
644 return -ENOMEM;
645
646 group->name = name;
647 group->pins = pins;
648 group->num_pins = num_pins;
649 group->data = data;
650
651 radix_tree_insert(&pctldev->pin_group_tree, selector, group);
652
653 pctldev->num_groups++;
654
655 return selector;
656}
657EXPORT_SYMBOL_GPL(pinctrl_generic_add_group);
658
659/**
660 * pinctrl_generic_remove_group() - removes a numbered pin group
661 * @pctldev: pin controller device
662 * @selector: group number
663 *
664 * Note that the caller must take care of locking.
665 */
666int pinctrl_generic_remove_group(struct pinctrl_dev *pctldev,
667 unsigned int selector)
668{
669 struct group_desc *group;
670
671 group = radix_tree_lookup(&pctldev->pin_group_tree,
672 selector);
673 if (!group)
674 return -ENOENT;
675
676 radix_tree_delete(&pctldev->pin_group_tree, selector);
677 devm_kfree(pctldev->dev, group);
678
679 pctldev->num_groups--;
680
681 return 0;
682}
683EXPORT_SYMBOL_GPL(pinctrl_generic_remove_group);
684
685/**
686 * pinctrl_generic_free_groups() - removes all pin groups
687 * @pctldev: pin controller device
688 *
689 * Note that the caller must take care of locking. The pinctrl groups
690 * are allocated with devm_kzalloc() so no need to free them here.
691 */
692static void pinctrl_generic_free_groups(struct pinctrl_dev *pctldev)
693{
694 struct radix_tree_iter iter;
695 void __rcu **slot;
696
697 radix_tree_for_each_slot(slot, &pctldev->pin_group_tree, &iter, 0)
698 radix_tree_delete(&pctldev->pin_group_tree, iter.index);
699
700 pctldev->num_groups = 0;
701}
702
703#else
704static inline void pinctrl_generic_free_groups(struct pinctrl_dev *pctldev)
705{
706}
707#endif /* CONFIG_GENERIC_PINCTRL_GROUPS */
708
709/**
710 * pinctrl_get_group_selector() - returns the group selector for a group
711 * @pctldev: the pin controller handling the group
712 * @pin_group: the pin group to look up
713 */
714int pinctrl_get_group_selector(struct pinctrl_dev *pctldev,
715 const char *pin_group)
716{
717 const struct pinctrl_ops *pctlops = pctldev->desc->pctlops;
718 unsigned ngroups = pctlops->get_groups_count(pctldev);
719 unsigned group_selector = 0;
720
721 while (group_selector < ngroups) {
722 const char *gname = pctlops->get_group_name(pctldev,
723 group_selector);
724 if (gname && !strcmp(gname, pin_group)) {
725 dev_dbg(pctldev->dev,
726 "found group selector %u for %s\n",
727 group_selector,
728 pin_group);
729 return group_selector;
730 }
731
732 group_selector++;
733 }
734
735 dev_err(pctldev->dev, "does not have pin group %s\n",
736 pin_group);
737
738 return -EINVAL;
739}
740
741bool pinctrl_gpio_can_use_line(unsigned gpio)
742{
743 struct pinctrl_dev *pctldev;
744 struct pinctrl_gpio_range *range;
745 bool result;
746 int pin;
747
748 /*
749 * Try to obtain GPIO range, if it fails
750 * we're probably dealing with GPIO driver
751 * without a backing pin controller - bail out.
752 */
753 if (pinctrl_get_device_gpio_range(gpio, &pctldev, &range))
754 return true;
755
756 mutex_lock(&pctldev->mutex);
757
758 /* Convert to the pin controllers number space */
759 pin = gpio_to_pin(range, gpio);
760
761 result = pinmux_can_be_used_for_gpio(pctldev, pin);
762
763 mutex_unlock(&pctldev->mutex);
764
765 return result;
766}
767EXPORT_SYMBOL_GPL(pinctrl_gpio_can_use_line);
768
769/**
770 * pinctrl_gpio_request() - request a single pin to be used as GPIO
771 * @gpio: the GPIO pin number from the GPIO subsystem number space
772 *
773 * This function should *ONLY* be used from gpiolib-based GPIO drivers,
774 * as part of their gpio_request() semantics, platforms and individual drivers
775 * shall *NOT* request GPIO pins to be muxed in.
776 */
777int pinctrl_gpio_request(unsigned gpio)
778{
779 struct pinctrl_dev *pctldev;
780 struct pinctrl_gpio_range *range;
781 int ret;
782 int pin;
783
784 ret = pinctrl_get_device_gpio_range(gpio, &pctldev, &range);
785 if (ret) {
786 if (pinctrl_ready_for_gpio_range(gpio))
787 ret = 0;
788 return ret;
789 }
790
791 mutex_lock(&pctldev->mutex);
792
793 /* Convert to the pin controllers number space */
794 pin = gpio_to_pin(range, gpio);
795
796 ret = pinmux_request_gpio(pctldev, range, pin, gpio);
797
798 mutex_unlock(&pctldev->mutex);
799
800 return ret;
801}
802EXPORT_SYMBOL_GPL(pinctrl_gpio_request);
803
804/**
805 * pinctrl_gpio_free() - free control on a single pin, currently used as GPIO
806 * @gpio: the GPIO pin number from the GPIO subsystem number space
807 *
808 * This function should *ONLY* be used from gpiolib-based GPIO drivers,
809 * as part of their gpio_free() semantics, platforms and individual drivers
810 * shall *NOT* request GPIO pins to be muxed out.
811 */
812void pinctrl_gpio_free(unsigned gpio)
813{
814 struct pinctrl_dev *pctldev;
815 struct pinctrl_gpio_range *range;
816 int ret;
817 int pin;
818
819 ret = pinctrl_get_device_gpio_range(gpio, &pctldev, &range);
820 if (ret) {
821 return;
822 }
823 mutex_lock(&pctldev->mutex);
824
825 /* Convert to the pin controllers number space */
826 pin = gpio_to_pin(range, gpio);
827
828 pinmux_free_gpio(pctldev, pin, range);
829
830 mutex_unlock(&pctldev->mutex);
831}
832EXPORT_SYMBOL_GPL(pinctrl_gpio_free);
833
834static int pinctrl_gpio_direction(unsigned gpio, bool input)
835{
836 struct pinctrl_dev *pctldev;
837 struct pinctrl_gpio_range *range;
838 int ret;
839 int pin;
840
841 ret = pinctrl_get_device_gpio_range(gpio, &pctldev, &range);
842 if (ret) {
843 return ret;
844 }
845
846 mutex_lock(&pctldev->mutex);
847
848 /* Convert to the pin controllers number space */
849 pin = gpio_to_pin(range, gpio);
850 ret = pinmux_gpio_direction(pctldev, range, pin, input);
851
852 mutex_unlock(&pctldev->mutex);
853
854 return ret;
855}
856
857/**
858 * pinctrl_gpio_direction_input() - request a GPIO pin to go into input mode
859 * @gpio: the GPIO pin number from the GPIO subsystem number space
860 *
861 * This function should *ONLY* be used from gpiolib-based GPIO drivers,
862 * as part of their gpio_direction_input() semantics, platforms and individual
863 * drivers shall *NOT* touch pin control GPIO calls.
864 */
865int pinctrl_gpio_direction_input(unsigned gpio)
866{
867 return pinctrl_gpio_direction(gpio, true);
868}
869EXPORT_SYMBOL_GPL(pinctrl_gpio_direction_input);
870
871/**
872 * pinctrl_gpio_direction_output() - request a GPIO pin to go into output mode
873 * @gpio: the GPIO pin number from the GPIO subsystem number space
874 *
875 * This function should *ONLY* be used from gpiolib-based GPIO drivers,
876 * as part of their gpio_direction_output() semantics, platforms and individual
877 * drivers shall *NOT* touch pin control GPIO calls.
878 */
879int pinctrl_gpio_direction_output(unsigned gpio)
880{
881 return pinctrl_gpio_direction(gpio, false);
882}
883EXPORT_SYMBOL_GPL(pinctrl_gpio_direction_output);
884
885/**
886 * pinctrl_gpio_set_config() - Apply config to given GPIO pin
887 * @gpio: the GPIO pin number from the GPIO subsystem number space
888 * @config: the configuration to apply to the GPIO
889 *
890 * This function should *ONLY* be used from gpiolib-based GPIO drivers, if
891 * they need to call the underlying pin controller to change GPIO config
892 * (for example set debounce time).
893 */
894int pinctrl_gpio_set_config(unsigned gpio, unsigned long config)
895{
896 unsigned long configs[] = { config };
897 struct pinctrl_gpio_range *range;
898 struct pinctrl_dev *pctldev;
899 int ret, pin;
900
901 ret = pinctrl_get_device_gpio_range(gpio, &pctldev, &range);
902 if (ret)
903 return ret;
904
905 mutex_lock(&pctldev->mutex);
906 pin = gpio_to_pin(range, gpio);
907 ret = pinconf_set_config(pctldev, pin, configs, ARRAY_SIZE(configs));
908 mutex_unlock(&pctldev->mutex);
909
910 return ret;
911}
912EXPORT_SYMBOL_GPL(pinctrl_gpio_set_config);
913
914static struct pinctrl_state *find_state(struct pinctrl *p,
915 const char *name)
916{
917 struct pinctrl_state *state;
918
919 list_for_each_entry(state, &p->states, node)
920 if (!strcmp(state->name, name))
921 return state;
922
923 return NULL;
924}
925
926static struct pinctrl_state *create_state(struct pinctrl *p,
927 const char *name)
928{
929 struct pinctrl_state *state;
930
931 state = kzalloc(sizeof(*state), GFP_KERNEL);
932 if (!state)
933 return ERR_PTR(-ENOMEM);
934
935 state->name = name;
936 INIT_LIST_HEAD(&state->settings);
937
938 list_add_tail(&state->node, &p->states);
939
940 return state;
941}
942
943static int add_setting(struct pinctrl *p, struct pinctrl_dev *pctldev,
944 const struct pinctrl_map *map)
945{
946 struct pinctrl_state *state;
947 struct pinctrl_setting *setting;
948 int ret;
949
950 state = find_state(p, map->name);
951 if (!state)
952 state = create_state(p, map->name);
953 if (IS_ERR(state))
954 return PTR_ERR(state);
955
956 if (map->type == PIN_MAP_TYPE_DUMMY_STATE)
957 return 0;
958
959 setting = kzalloc(sizeof(*setting), GFP_KERNEL);
960 if (!setting)
961 return -ENOMEM;
962
963 setting->type = map->type;
964
965 if (pctldev)
966 setting->pctldev = pctldev;
967 else
968 setting->pctldev =
969 get_pinctrl_dev_from_devname(map->ctrl_dev_name);
970 if (!setting->pctldev) {
971 kfree(setting);
972 /* Do not defer probing of hogs (circular loop) */
973 if (!strcmp(map->ctrl_dev_name, map->dev_name))
974 return -ENODEV;
975 /*
976 * OK let us guess that the driver is not there yet, and
977 * let's defer obtaining this pinctrl handle to later...
978 */
979 dev_info(p->dev, "unknown pinctrl device %s in map entry, deferring probe",
980 map->ctrl_dev_name);
981 return -EPROBE_DEFER;
982 }
983
984 setting->dev_name = map->dev_name;
985
986 switch (map->type) {
987 case PIN_MAP_TYPE_MUX_GROUP:
988 ret = pinmux_map_to_setting(map, setting);
989 break;
990 case PIN_MAP_TYPE_CONFIGS_PIN:
991 case PIN_MAP_TYPE_CONFIGS_GROUP:
992 ret = pinconf_map_to_setting(map, setting);
993 break;
994 default:
995 ret = -EINVAL;
996 break;
997 }
998 if (ret < 0) {
999 kfree(setting);
1000 return ret;
1001 }
1002
1003 list_add_tail(&setting->node, &state->settings);
1004
1005 return 0;
1006}
1007
1008static struct pinctrl *find_pinctrl(struct device *dev)
1009{
1010 struct pinctrl *p;
1011
1012 mutex_lock(&pinctrl_list_mutex);
1013 list_for_each_entry(p, &pinctrl_list, node)
1014 if (p->dev == dev) {
1015 mutex_unlock(&pinctrl_list_mutex);
1016 return p;
1017 }
1018
1019 mutex_unlock(&pinctrl_list_mutex);
1020 return NULL;
1021}
1022
1023static void pinctrl_free(struct pinctrl *p, bool inlist);
1024
1025static struct pinctrl *create_pinctrl(struct device *dev,
1026 struct pinctrl_dev *pctldev)
1027{
1028 struct pinctrl *p;
1029 const char *devname;
1030 struct pinctrl_maps *maps_node;
1031 int i;
1032 const struct pinctrl_map *map;
1033 int ret;
1034
1035 /*
1036 * create the state cookie holder struct pinctrl for each
1037 * mapping, this is what consumers will get when requesting
1038 * a pin control handle with pinctrl_get()
1039 */
1040 p = kzalloc(sizeof(*p), GFP_KERNEL);
1041 if (!p)
1042 return ERR_PTR(-ENOMEM);
1043 p->dev = dev;
1044 INIT_LIST_HEAD(&p->states);
1045 INIT_LIST_HEAD(&p->dt_maps);
1046
1047 ret = pinctrl_dt_to_map(p, pctldev);
1048 if (ret < 0) {
1049 kfree(p);
1050 return ERR_PTR(ret);
1051 }
1052
1053 devname = dev_name(dev);
1054
1055 mutex_lock(&pinctrl_maps_mutex);
1056 /* Iterate over the pin control maps to locate the right ones */
1057 for_each_maps(maps_node, i, map) {
1058 /* Map must be for this device */
1059 if (strcmp(map->dev_name, devname))
1060 continue;
1061 /*
1062 * If pctldev is not null, we are claiming hog for it,
1063 * that means, setting that is served by pctldev by itself.
1064 *
1065 * Thus we must skip map that is for this device but is served
1066 * by other device.
1067 */
1068 if (pctldev &&
1069 strcmp(dev_name(pctldev->dev), map->ctrl_dev_name))
1070 continue;
1071
1072 ret = add_setting(p, pctldev, map);
1073 /*
1074 * At this point the adding of a setting may:
1075 *
1076 * - Defer, if the pinctrl device is not yet available
1077 * - Fail, if the pinctrl device is not yet available,
1078 * AND the setting is a hog. We cannot defer that, since
1079 * the hog will kick in immediately after the device
1080 * is registered.
1081 *
1082 * If the error returned was not -EPROBE_DEFER then we
1083 * accumulate the errors to see if we end up with
1084 * an -EPROBE_DEFER later, as that is the worst case.
1085 */
1086 if (ret == -EPROBE_DEFER) {
1087 pinctrl_free(p, false);
1088 mutex_unlock(&pinctrl_maps_mutex);
1089 return ERR_PTR(ret);
1090 }
1091 }
1092 mutex_unlock(&pinctrl_maps_mutex);
1093
1094 if (ret < 0) {
1095 /* If some other error than deferral occurred, return here */
1096 pinctrl_free(p, false);
1097 return ERR_PTR(ret);
1098 }
1099
1100 kref_init(&p->users);
1101
1102 /* Add the pinctrl handle to the global list */
1103 mutex_lock(&pinctrl_list_mutex);
1104 list_add_tail(&p->node, &pinctrl_list);
1105 mutex_unlock(&pinctrl_list_mutex);
1106
1107 return p;
1108}
1109
1110/**
1111 * pinctrl_get() - retrieves the pinctrl handle for a device
1112 * @dev: the device to obtain the handle for
1113 */
1114struct pinctrl *pinctrl_get(struct device *dev)
1115{
1116 struct pinctrl *p;
1117
1118 if (WARN_ON(!dev))
1119 return ERR_PTR(-EINVAL);
1120
1121 /*
1122 * See if somebody else (such as the device core) has already
1123 * obtained a handle to the pinctrl for this device. In that case,
1124 * return another pointer to it.
1125 */
1126 p = find_pinctrl(dev);
1127 if (p) {
1128 dev_dbg(dev, "obtain a copy of previously claimed pinctrl\n");
1129 kref_get(&p->users);
1130 return p;
1131 }
1132
1133 return create_pinctrl(dev, NULL);
1134}
1135EXPORT_SYMBOL_GPL(pinctrl_get);
1136
1137static void pinctrl_free_setting(bool disable_setting,
1138 struct pinctrl_setting *setting)
1139{
1140 switch (setting->type) {
1141 case PIN_MAP_TYPE_MUX_GROUP:
1142 if (disable_setting)
1143 pinmux_disable_setting(setting);
1144 pinmux_free_setting(setting);
1145 break;
1146 case PIN_MAP_TYPE_CONFIGS_PIN:
1147 case PIN_MAP_TYPE_CONFIGS_GROUP:
1148 pinconf_free_setting(setting);
1149 break;
1150 default:
1151 break;
1152 }
1153}
1154
1155static void pinctrl_free(struct pinctrl *p, bool inlist)
1156{
1157 struct pinctrl_state *state, *n1;
1158 struct pinctrl_setting *setting, *n2;
1159
1160 mutex_lock(&pinctrl_list_mutex);
1161 list_for_each_entry_safe(state, n1, &p->states, node) {
1162 list_for_each_entry_safe(setting, n2, &state->settings, node) {
1163 pinctrl_free_setting(state == p->state, setting);
1164 list_del(&setting->node);
1165 kfree(setting);
1166 }
1167 list_del(&state->node);
1168 kfree(state);
1169 }
1170
1171 pinctrl_dt_free_maps(p);
1172
1173 if (inlist)
1174 list_del(&p->node);
1175 kfree(p);
1176 mutex_unlock(&pinctrl_list_mutex);
1177}
1178
1179/**
1180 * pinctrl_release() - release the pinctrl handle
1181 * @kref: the kref in the pinctrl being released
1182 */
1183static void pinctrl_release(struct kref *kref)
1184{
1185 struct pinctrl *p = container_of(kref, struct pinctrl, users);
1186
1187 pinctrl_free(p, true);
1188}
1189
1190/**
1191 * pinctrl_put() - decrease use count on a previously claimed pinctrl handle
1192 * @p: the pinctrl handle to release
1193 */
1194void pinctrl_put(struct pinctrl *p)
1195{
1196 kref_put(&p->users, pinctrl_release);
1197}
1198EXPORT_SYMBOL_GPL(pinctrl_put);
1199
1200/**
1201 * pinctrl_lookup_state() - retrieves a state handle from a pinctrl handle
1202 * @p: the pinctrl handle to retrieve the state from
1203 * @name: the state name to retrieve
1204 */
1205struct pinctrl_state *pinctrl_lookup_state(struct pinctrl *p,
1206 const char *name)
1207{
1208 struct pinctrl_state *state;
1209
1210 state = find_state(p, name);
1211 if (!state) {
1212 if (pinctrl_dummy_state) {
1213 /* create dummy state */
1214 dev_dbg(p->dev, "using pinctrl dummy state (%s)\n",
1215 name);
1216 state = create_state(p, name);
1217 } else
1218 state = ERR_PTR(-ENODEV);
1219 }
1220
1221 return state;
1222}
1223EXPORT_SYMBOL_GPL(pinctrl_lookup_state);
1224
1225static void pinctrl_link_add(struct pinctrl_dev *pctldev,
1226 struct device *consumer)
1227{
1228 if (pctldev->desc->link_consumers)
1229 device_link_add(consumer, pctldev->dev,
1230 DL_FLAG_PM_RUNTIME |
1231 DL_FLAG_AUTOREMOVE_CONSUMER);
1232}
1233
1234/**
1235 * pinctrl_commit_state() - select/activate/program a pinctrl state to HW
1236 * @p: the pinctrl handle for the device that requests configuration
1237 * @state: the state handle to select/activate/program
1238 */
1239static int pinctrl_commit_state(struct pinctrl *p, struct pinctrl_state *state)
1240{
1241 struct pinctrl_setting *setting, *setting2;
1242 struct pinctrl_state *old_state = p->state;
1243 int ret;
1244
1245 if (p->state) {
1246 /*
1247 * For each pinmux setting in the old state, forget SW's record
1248 * of mux owner for that pingroup. Any pingroups which are
1249 * still owned by the new state will be re-acquired by the call
1250 * to pinmux_enable_setting() in the loop below.
1251 */
1252 list_for_each_entry(setting, &p->state->settings, node) {
1253 if (setting->type != PIN_MAP_TYPE_MUX_GROUP)
1254 continue;
1255 pinmux_disable_setting(setting);
1256 }
1257 }
1258
1259 p->state = NULL;
1260
1261 /* Apply all the settings for the new state - pinmux first */
1262 list_for_each_entry(setting, &state->settings, node) {
1263 switch (setting->type) {
1264 case PIN_MAP_TYPE_MUX_GROUP:
1265 ret = pinmux_enable_setting(setting);
1266 break;
1267 case PIN_MAP_TYPE_CONFIGS_PIN:
1268 case PIN_MAP_TYPE_CONFIGS_GROUP:
1269 ret = 0;
1270 break;
1271 default:
1272 ret = -EINVAL;
1273 break;
1274 }
1275
1276 if (ret < 0)
1277 goto unapply_new_state;
1278
1279 /* Do not link hogs (circular dependency) */
1280 if (p != setting->pctldev->p)
1281 pinctrl_link_add(setting->pctldev, p->dev);
1282 }
1283
1284 /* Apply all the settings for the new state - pinconf after */
1285 list_for_each_entry(setting, &state->settings, node) {
1286 switch (setting->type) {
1287 case PIN_MAP_TYPE_MUX_GROUP:
1288 ret = 0;
1289 break;
1290 case PIN_MAP_TYPE_CONFIGS_PIN:
1291 case PIN_MAP_TYPE_CONFIGS_GROUP:
1292 ret = pinconf_apply_setting(setting);
1293 break;
1294 default:
1295 ret = -EINVAL;
1296 break;
1297 }
1298
1299 if (ret < 0) {
1300 goto unapply_new_state;
1301 }
1302
1303 /* Do not link hogs (circular dependency) */
1304 if (p != setting->pctldev->p)
1305 pinctrl_link_add(setting->pctldev, p->dev);
1306 }
1307
1308 p->state = state;
1309
1310 return 0;
1311
1312unapply_new_state:
1313 dev_err(p->dev, "Error applying setting, reverse things back\n");
1314
1315 list_for_each_entry(setting2, &state->settings, node) {
1316 if (&setting2->node == &setting->node)
1317 break;
1318 /*
1319 * All we can do here is pinmux_disable_setting.
1320 * That means that some pins are muxed differently now
1321 * than they were before applying the setting (We can't
1322 * "unmux a pin"!), but it's not a big deal since the pins
1323 * are free to be muxed by another apply_setting.
1324 */
1325 if (setting2->type == PIN_MAP_TYPE_MUX_GROUP)
1326 pinmux_disable_setting(setting2);
1327 }
1328
1329 /* There's no infinite recursive loop here because p->state is NULL */
1330 if (old_state)
1331 pinctrl_select_state(p, old_state);
1332
1333 return ret;
1334}
1335
1336/**
1337 * pinctrl_select_state() - select/activate/program a pinctrl state to HW
1338 * @p: the pinctrl handle for the device that requests configuration
1339 * @state: the state handle to select/activate/program
1340 */
1341int pinctrl_select_state(struct pinctrl *p, struct pinctrl_state *state)
1342{
1343 if (p->state == state)
1344 return 0;
1345
1346 return pinctrl_commit_state(p, state);
1347}
1348EXPORT_SYMBOL_GPL(pinctrl_select_state);
1349
1350static void devm_pinctrl_release(struct device *dev, void *res)
1351{
1352 pinctrl_put(*(struct pinctrl **)res);
1353}
1354
1355/**
1356 * devm_pinctrl_get() - Resource managed pinctrl_get()
1357 * @dev: the device to obtain the handle for
1358 *
1359 * If there is a need to explicitly destroy the returned struct pinctrl,
1360 * devm_pinctrl_put() should be used, rather than plain pinctrl_put().
1361 */
1362struct pinctrl *devm_pinctrl_get(struct device *dev)
1363{
1364 struct pinctrl **ptr, *p;
1365
1366 ptr = devres_alloc(devm_pinctrl_release, sizeof(*ptr), GFP_KERNEL);
1367 if (!ptr)
1368 return ERR_PTR(-ENOMEM);
1369
1370 p = pinctrl_get(dev);
1371 if (!IS_ERR(p)) {
1372 *ptr = p;
1373 devres_add(dev, ptr);
1374 } else {
1375 devres_free(ptr);
1376 }
1377
1378 return p;
1379}
1380EXPORT_SYMBOL_GPL(devm_pinctrl_get);
1381
1382static int devm_pinctrl_match(struct device *dev, void *res, void *data)
1383{
1384 struct pinctrl **p = res;
1385
1386 return *p == data;
1387}
1388
1389/**
1390 * devm_pinctrl_put() - Resource managed pinctrl_put()
1391 * @p: the pinctrl handle to release
1392 *
1393 * Deallocate a struct pinctrl obtained via devm_pinctrl_get(). Normally
1394 * this function will not need to be called and the resource management
1395 * code will ensure that the resource is freed.
1396 */
1397void devm_pinctrl_put(struct pinctrl *p)
1398{
1399 WARN_ON(devres_release(p->dev, devm_pinctrl_release,
1400 devm_pinctrl_match, p));
1401}
1402EXPORT_SYMBOL_GPL(devm_pinctrl_put);
1403
1404/**
1405 * pinctrl_register_mappings() - register a set of pin controller mappings
1406 * @maps: the pincontrol mappings table to register. Note the pinctrl-core
1407 * keeps a reference to the passed in maps, so they should _not_ be
1408 * marked with __initdata.
1409 * @num_maps: the number of maps in the mapping table
1410 */
1411int pinctrl_register_mappings(const struct pinctrl_map *maps,
1412 unsigned num_maps)
1413{
1414 int i, ret;
1415 struct pinctrl_maps *maps_node;
1416
1417 pr_debug("add %u pinctrl maps\n", num_maps);
1418
1419 /* First sanity check the new mapping */
1420 for (i = 0; i < num_maps; i++) {
1421 if (!maps[i].dev_name) {
1422 pr_err("failed to register map %s (%d): no device given\n",
1423 maps[i].name, i);
1424 return -EINVAL;
1425 }
1426
1427 if (!maps[i].name) {
1428 pr_err("failed to register map %d: no map name given\n",
1429 i);
1430 return -EINVAL;
1431 }
1432
1433 if (maps[i].type != PIN_MAP_TYPE_DUMMY_STATE &&
1434 !maps[i].ctrl_dev_name) {
1435 pr_err("failed to register map %s (%d): no pin control device given\n",
1436 maps[i].name, i);
1437 return -EINVAL;
1438 }
1439
1440 switch (maps[i].type) {
1441 case PIN_MAP_TYPE_DUMMY_STATE:
1442 break;
1443 case PIN_MAP_TYPE_MUX_GROUP:
1444 ret = pinmux_validate_map(&maps[i], i);
1445 if (ret < 0)
1446 return ret;
1447 break;
1448 case PIN_MAP_TYPE_CONFIGS_PIN:
1449 case PIN_MAP_TYPE_CONFIGS_GROUP:
1450 ret = pinconf_validate_map(&maps[i], i);
1451 if (ret < 0)
1452 return ret;
1453 break;
1454 default:
1455 pr_err("failed to register map %s (%d): invalid type given\n",
1456 maps[i].name, i);
1457 return -EINVAL;
1458 }
1459 }
1460
1461 maps_node = kzalloc(sizeof(*maps_node), GFP_KERNEL);
1462 if (!maps_node)
1463 return -ENOMEM;
1464
1465 maps_node->maps = maps;
1466 maps_node->num_maps = num_maps;
1467
1468 mutex_lock(&pinctrl_maps_mutex);
1469 list_add_tail(&maps_node->node, &pinctrl_maps);
1470 mutex_unlock(&pinctrl_maps_mutex);
1471
1472 return 0;
1473}
1474EXPORT_SYMBOL_GPL(pinctrl_register_mappings);
1475
1476/**
1477 * pinctrl_unregister_mappings() - unregister a set of pin controller mappings
1478 * @map: the pincontrol mappings table passed to pinctrl_register_mappings()
1479 * when registering the mappings.
1480 */
1481void pinctrl_unregister_mappings(const struct pinctrl_map *map)
1482{
1483 struct pinctrl_maps *maps_node;
1484
1485 mutex_lock(&pinctrl_maps_mutex);
1486 list_for_each_entry(maps_node, &pinctrl_maps, node) {
1487 if (maps_node->maps == map) {
1488 list_del(&maps_node->node);
1489 kfree(maps_node);
1490 mutex_unlock(&pinctrl_maps_mutex);
1491 return;
1492 }
1493 }
1494 mutex_unlock(&pinctrl_maps_mutex);
1495}
1496EXPORT_SYMBOL_GPL(pinctrl_unregister_mappings);
1497
1498/**
1499 * pinctrl_force_sleep() - turn a given controller device into sleep state
1500 * @pctldev: pin controller device
1501 */
1502int pinctrl_force_sleep(struct pinctrl_dev *pctldev)
1503{
1504 if (!IS_ERR(pctldev->p) && !IS_ERR(pctldev->hog_sleep))
1505 return pinctrl_commit_state(pctldev->p, pctldev->hog_sleep);
1506 return 0;
1507}
1508EXPORT_SYMBOL_GPL(pinctrl_force_sleep);
1509
1510/**
1511 * pinctrl_force_default() - turn a given controller device into default state
1512 * @pctldev: pin controller device
1513 */
1514int pinctrl_force_default(struct pinctrl_dev *pctldev)
1515{
1516 if (!IS_ERR(pctldev->p) && !IS_ERR(pctldev->hog_default))
1517 return pinctrl_commit_state(pctldev->p, pctldev->hog_default);
1518 return 0;
1519}
1520EXPORT_SYMBOL_GPL(pinctrl_force_default);
1521
1522/**
1523 * pinctrl_init_done() - tell pinctrl probe is done
1524 *
1525 * We'll use this time to switch the pins from "init" to "default" unless the
1526 * driver selected some other state.
1527 *
1528 * @dev: device to that's done probing
1529 */
1530int pinctrl_init_done(struct device *dev)
1531{
1532 struct dev_pin_info *pins = dev->pins;
1533 int ret;
1534
1535 if (!pins)
1536 return 0;
1537
1538 if (IS_ERR(pins->init_state))
1539 return 0; /* No such state */
1540
1541 if (pins->p->state != pins->init_state)
1542 return 0; /* Not at init anyway */
1543
1544 if (IS_ERR(pins->default_state))
1545 return 0; /* No default state */
1546
1547 ret = pinctrl_select_state(pins->p, pins->default_state);
1548 if (ret)
1549 dev_err(dev, "failed to activate default pinctrl state\n");
1550
1551 return ret;
1552}
1553
1554static int pinctrl_select_bound_state(struct device *dev,
1555 struct pinctrl_state *state)
1556{
1557 struct dev_pin_info *pins = dev->pins;
1558 int ret;
1559
1560 if (IS_ERR(state))
1561 return 0; /* No such state */
1562 ret = pinctrl_select_state(pins->p, state);
1563 if (ret)
1564 dev_err(dev, "failed to activate pinctrl state %s\n",
1565 state->name);
1566 return ret;
1567}
1568
1569/**
1570 * pinctrl_select_default_state() - select default pinctrl state
1571 * @dev: device to select default state for
1572 */
1573int pinctrl_select_default_state(struct device *dev)
1574{
1575 if (!dev->pins)
1576 return 0;
1577
1578 return pinctrl_select_bound_state(dev, dev->pins->default_state);
1579}
1580EXPORT_SYMBOL_GPL(pinctrl_select_default_state);
1581
1582#ifdef CONFIG_PM
1583
1584/**
1585 * pinctrl_pm_select_default_state() - select default pinctrl state for PM
1586 * @dev: device to select default state for
1587 */
1588int pinctrl_pm_select_default_state(struct device *dev)
1589{
1590 return pinctrl_select_default_state(dev);
1591}
1592EXPORT_SYMBOL_GPL(pinctrl_pm_select_default_state);
1593
1594/**
1595 * pinctrl_pm_select_sleep_state() - select sleep pinctrl state for PM
1596 * @dev: device to select sleep state for
1597 */
1598int pinctrl_pm_select_sleep_state(struct device *dev)
1599{
1600 if (!dev->pins)
1601 return 0;
1602
1603 return pinctrl_select_bound_state(dev, dev->pins->sleep_state);
1604}
1605EXPORT_SYMBOL_GPL(pinctrl_pm_select_sleep_state);
1606
1607/**
1608 * pinctrl_pm_select_idle_state() - select idle pinctrl state for PM
1609 * @dev: device to select idle state for
1610 */
1611int pinctrl_pm_select_idle_state(struct device *dev)
1612{
1613 if (!dev->pins)
1614 return 0;
1615
1616 return pinctrl_select_bound_state(dev, dev->pins->idle_state);
1617}
1618EXPORT_SYMBOL_GPL(pinctrl_pm_select_idle_state);
1619#endif
1620
1621#ifdef CONFIG_DEBUG_FS
1622
1623static int pinctrl_pins_show(struct seq_file *s, void *what)
1624{
1625 struct pinctrl_dev *pctldev = s->private;
1626 const struct pinctrl_ops *ops = pctldev->desc->pctlops;
1627 unsigned i, pin;
1628#ifdef CONFIG_GPIOLIB
1629 struct pinctrl_gpio_range *range;
1630 struct gpio_chip *chip;
1631 int gpio_num;
1632#endif
1633
1634 seq_printf(s, "registered pins: %d\n", pctldev->desc->npins);
1635
1636 mutex_lock(&pctldev->mutex);
1637
1638 /* The pin number can be retrived from the pin controller descriptor */
1639 for (i = 0; i < pctldev->desc->npins; i++) {
1640 struct pin_desc *desc;
1641
1642 pin = pctldev->desc->pins[i].number;
1643 desc = pin_desc_get(pctldev, pin);
1644 /* Pin space may be sparse */
1645 if (!desc)
1646 continue;
1647
1648 seq_printf(s, "pin %d (%s) ", pin, desc->name);
1649
1650#ifdef CONFIG_GPIOLIB
1651 gpio_num = -1;
1652 list_for_each_entry(range, &pctldev->gpio_ranges, node) {
1653 if ((pin >= range->pin_base) &&
1654 (pin < (range->pin_base + range->npins))) {
1655 gpio_num = range->base + (pin - range->pin_base);
1656 break;
1657 }
1658 }
1659 if (gpio_num >= 0)
1660 chip = gpio_to_chip(gpio_num);
1661 else
1662 chip = NULL;
1663 if (chip)
1664 seq_printf(s, "%u:%s ", gpio_num - chip->gpiodev->base, chip->label);
1665 else
1666 seq_puts(s, "0:? ");
1667#endif
1668
1669 /* Driver-specific info per pin */
1670 if (ops->pin_dbg_show)
1671 ops->pin_dbg_show(pctldev, s, pin);
1672
1673 seq_puts(s, "\n");
1674 }
1675
1676 mutex_unlock(&pctldev->mutex);
1677
1678 return 0;
1679}
1680DEFINE_SHOW_ATTRIBUTE(pinctrl_pins);
1681
1682static int pinctrl_groups_show(struct seq_file *s, void *what)
1683{
1684 struct pinctrl_dev *pctldev = s->private;
1685 const struct pinctrl_ops *ops = pctldev->desc->pctlops;
1686 unsigned ngroups, selector = 0;
1687
1688 mutex_lock(&pctldev->mutex);
1689
1690 ngroups = ops->get_groups_count(pctldev);
1691
1692 seq_puts(s, "registered pin groups:\n");
1693 while (selector < ngroups) {
1694 const unsigned *pins = NULL;
1695 unsigned num_pins = 0;
1696 const char *gname = ops->get_group_name(pctldev, selector);
1697 const char *pname;
1698 int ret = 0;
1699 int i;
1700
1701 if (ops->get_group_pins)
1702 ret = ops->get_group_pins(pctldev, selector,
1703 &pins, &num_pins);
1704 if (ret)
1705 seq_printf(s, "%s [ERROR GETTING PINS]\n",
1706 gname);
1707 else {
1708 seq_printf(s, "group: %s\n", gname);
1709 for (i = 0; i < num_pins; i++) {
1710 pname = pin_get_name(pctldev, pins[i]);
1711 if (WARN_ON(!pname)) {
1712 mutex_unlock(&pctldev->mutex);
1713 return -EINVAL;
1714 }
1715 seq_printf(s, "pin %d (%s)\n", pins[i], pname);
1716 }
1717 seq_puts(s, "\n");
1718 }
1719 selector++;
1720 }
1721
1722 mutex_unlock(&pctldev->mutex);
1723
1724 return 0;
1725}
1726DEFINE_SHOW_ATTRIBUTE(pinctrl_groups);
1727
1728static int pinctrl_gpioranges_show(struct seq_file *s, void *what)
1729{
1730 struct pinctrl_dev *pctldev = s->private;
1731 struct pinctrl_gpio_range *range;
1732
1733 seq_puts(s, "GPIO ranges handled:\n");
1734
1735 mutex_lock(&pctldev->mutex);
1736
1737 /* Loop over the ranges */
1738 list_for_each_entry(range, &pctldev->gpio_ranges, node) {
1739 if (range->pins) {
1740 int a;
1741 seq_printf(s, "%u: %s GPIOS [%u - %u] PINS {",
1742 range->id, range->name,
1743 range->base, (range->base + range->npins - 1));
1744 for (a = 0; a < range->npins - 1; a++)
1745 seq_printf(s, "%u, ", range->pins[a]);
1746 seq_printf(s, "%u}\n", range->pins[a]);
1747 }
1748 else
1749 seq_printf(s, "%u: %s GPIOS [%u - %u] PINS [%u - %u]\n",
1750 range->id, range->name,
1751 range->base, (range->base + range->npins - 1),
1752 range->pin_base,
1753 (range->pin_base + range->npins - 1));
1754 }
1755
1756 mutex_unlock(&pctldev->mutex);
1757
1758 return 0;
1759}
1760DEFINE_SHOW_ATTRIBUTE(pinctrl_gpioranges);
1761
1762static int pinctrl_devices_show(struct seq_file *s, void *what)
1763{
1764 struct pinctrl_dev *pctldev;
1765
1766 seq_puts(s, "name [pinmux] [pinconf]\n");
1767
1768 mutex_lock(&pinctrldev_list_mutex);
1769
1770 list_for_each_entry(pctldev, &pinctrldev_list, node) {
1771 seq_printf(s, "%s ", pctldev->desc->name);
1772 if (pctldev->desc->pmxops)
1773 seq_puts(s, "yes ");
1774 else
1775 seq_puts(s, "no ");
1776 if (pctldev->desc->confops)
1777 seq_puts(s, "yes");
1778 else
1779 seq_puts(s, "no");
1780 seq_puts(s, "\n");
1781 }
1782
1783 mutex_unlock(&pinctrldev_list_mutex);
1784
1785 return 0;
1786}
1787DEFINE_SHOW_ATTRIBUTE(pinctrl_devices);
1788
1789static inline const char *map_type(enum pinctrl_map_type type)
1790{
1791 static const char * const names[] = {
1792 "INVALID",
1793 "DUMMY_STATE",
1794 "MUX_GROUP",
1795 "CONFIGS_PIN",
1796 "CONFIGS_GROUP",
1797 };
1798
1799 if (type >= ARRAY_SIZE(names))
1800 return "UNKNOWN";
1801
1802 return names[type];
1803}
1804
1805static int pinctrl_maps_show(struct seq_file *s, void *what)
1806{
1807 struct pinctrl_maps *maps_node;
1808 int i;
1809 const struct pinctrl_map *map;
1810
1811 seq_puts(s, "Pinctrl maps:\n");
1812
1813 mutex_lock(&pinctrl_maps_mutex);
1814 for_each_maps(maps_node, i, map) {
1815 seq_printf(s, "device %s\nstate %s\ntype %s (%d)\n",
1816 map->dev_name, map->name, map_type(map->type),
1817 map->type);
1818
1819 if (map->type != PIN_MAP_TYPE_DUMMY_STATE)
1820 seq_printf(s, "controlling device %s\n",
1821 map->ctrl_dev_name);
1822
1823 switch (map->type) {
1824 case PIN_MAP_TYPE_MUX_GROUP:
1825 pinmux_show_map(s, map);
1826 break;
1827 case PIN_MAP_TYPE_CONFIGS_PIN:
1828 case PIN_MAP_TYPE_CONFIGS_GROUP:
1829 pinconf_show_map(s, map);
1830 break;
1831 default:
1832 break;
1833 }
1834
1835 seq_putc(s, '\n');
1836 }
1837 mutex_unlock(&pinctrl_maps_mutex);
1838
1839 return 0;
1840}
1841DEFINE_SHOW_ATTRIBUTE(pinctrl_maps);
1842
1843static int pinctrl_show(struct seq_file *s, void *what)
1844{
1845 struct pinctrl *p;
1846 struct pinctrl_state *state;
1847 struct pinctrl_setting *setting;
1848
1849 seq_puts(s, "Requested pin control handlers their pinmux maps:\n");
1850
1851 mutex_lock(&pinctrl_list_mutex);
1852
1853 list_for_each_entry(p, &pinctrl_list, node) {
1854 seq_printf(s, "device: %s current state: %s\n",
1855 dev_name(p->dev),
1856 p->state ? p->state->name : "none");
1857
1858 list_for_each_entry(state, &p->states, node) {
1859 seq_printf(s, " state: %s\n", state->name);
1860
1861 list_for_each_entry(setting, &state->settings, node) {
1862 struct pinctrl_dev *pctldev = setting->pctldev;
1863
1864 seq_printf(s, " type: %s controller %s ",
1865 map_type(setting->type),
1866 pinctrl_dev_get_name(pctldev));
1867
1868 switch (setting->type) {
1869 case PIN_MAP_TYPE_MUX_GROUP:
1870 pinmux_show_setting(s, setting);
1871 break;
1872 case PIN_MAP_TYPE_CONFIGS_PIN:
1873 case PIN_MAP_TYPE_CONFIGS_GROUP:
1874 pinconf_show_setting(s, setting);
1875 break;
1876 default:
1877 break;
1878 }
1879 }
1880 }
1881 }
1882
1883 mutex_unlock(&pinctrl_list_mutex);
1884
1885 return 0;
1886}
1887DEFINE_SHOW_ATTRIBUTE(pinctrl);
1888
1889static struct dentry *debugfs_root;
1890
1891static void pinctrl_init_device_debugfs(struct pinctrl_dev *pctldev)
1892{
1893 struct dentry *device_root;
1894 const char *debugfs_name;
1895
1896 if (pctldev->desc->name &&
1897 strcmp(dev_name(pctldev->dev), pctldev->desc->name)) {
1898 debugfs_name = devm_kasprintf(pctldev->dev, GFP_KERNEL,
1899 "%s-%s", dev_name(pctldev->dev),
1900 pctldev->desc->name);
1901 if (!debugfs_name) {
1902 pr_warn("failed to determine debugfs dir name for %s\n",
1903 dev_name(pctldev->dev));
1904 return;
1905 }
1906 } else {
1907 debugfs_name = dev_name(pctldev->dev);
1908 }
1909
1910 device_root = debugfs_create_dir(debugfs_name, debugfs_root);
1911 pctldev->device_root = device_root;
1912
1913 if (IS_ERR(device_root) || !device_root) {
1914 pr_warn("failed to create debugfs directory for %s\n",
1915 dev_name(pctldev->dev));
1916 return;
1917 }
1918 debugfs_create_file("pins", 0444,
1919 device_root, pctldev, &pinctrl_pins_fops);
1920 debugfs_create_file("pingroups", 0444,
1921 device_root, pctldev, &pinctrl_groups_fops);
1922 debugfs_create_file("gpio-ranges", 0444,
1923 device_root, pctldev, &pinctrl_gpioranges_fops);
1924 if (pctldev->desc->pmxops)
1925 pinmux_init_device_debugfs(device_root, pctldev);
1926 if (pctldev->desc->confops)
1927 pinconf_init_device_debugfs(device_root, pctldev);
1928}
1929
1930static void pinctrl_remove_device_debugfs(struct pinctrl_dev *pctldev)
1931{
1932 debugfs_remove_recursive(pctldev->device_root);
1933}
1934
1935static void pinctrl_init_debugfs(void)
1936{
1937 debugfs_root = debugfs_create_dir("pinctrl", NULL);
1938 if (IS_ERR(debugfs_root) || !debugfs_root) {
1939 pr_warn("failed to create debugfs directory\n");
1940 debugfs_root = NULL;
1941 return;
1942 }
1943
1944 debugfs_create_file("pinctrl-devices", 0444,
1945 debugfs_root, NULL, &pinctrl_devices_fops);
1946 debugfs_create_file("pinctrl-maps", 0444,
1947 debugfs_root, NULL, &pinctrl_maps_fops);
1948 debugfs_create_file("pinctrl-handles", 0444,
1949 debugfs_root, NULL, &pinctrl_fops);
1950}
1951
1952#else /* CONFIG_DEBUG_FS */
1953
1954static void pinctrl_init_device_debugfs(struct pinctrl_dev *pctldev)
1955{
1956}
1957
1958static void pinctrl_init_debugfs(void)
1959{
1960}
1961
1962static void pinctrl_remove_device_debugfs(struct pinctrl_dev *pctldev)
1963{
1964}
1965
1966#endif
1967
1968static int pinctrl_check_ops(struct pinctrl_dev *pctldev)
1969{
1970 const struct pinctrl_ops *ops = pctldev->desc->pctlops;
1971
1972 if (!ops ||
1973 !ops->get_groups_count ||
1974 !ops->get_group_name)
1975 return -EINVAL;
1976
1977 return 0;
1978}
1979
1980/**
1981 * pinctrl_init_controller() - init a pin controller device
1982 * @pctldesc: descriptor for this pin controller
1983 * @dev: parent device for this pin controller
1984 * @driver_data: private pin controller data for this pin controller
1985 */
1986static struct pinctrl_dev *
1987pinctrl_init_controller(struct pinctrl_desc *pctldesc, struct device *dev,
1988 void *driver_data)
1989{
1990 struct pinctrl_dev *pctldev;
1991 int ret;
1992
1993 if (!pctldesc)
1994 return ERR_PTR(-EINVAL);
1995 if (!pctldesc->name)
1996 return ERR_PTR(-EINVAL);
1997
1998 pctldev = kzalloc(sizeof(*pctldev), GFP_KERNEL);
1999 if (!pctldev)
2000 return ERR_PTR(-ENOMEM);
2001
2002 /* Initialize pin control device struct */
2003 pctldev->owner = pctldesc->owner;
2004 pctldev->desc = pctldesc;
2005 pctldev->driver_data = driver_data;
2006 INIT_RADIX_TREE(&pctldev->pin_desc_tree, GFP_KERNEL);
2007#ifdef CONFIG_GENERIC_PINCTRL_GROUPS
2008 INIT_RADIX_TREE(&pctldev->pin_group_tree, GFP_KERNEL);
2009#endif
2010#ifdef CONFIG_GENERIC_PINMUX_FUNCTIONS
2011 INIT_RADIX_TREE(&pctldev->pin_function_tree, GFP_KERNEL);
2012#endif
2013 INIT_LIST_HEAD(&pctldev->gpio_ranges);
2014 INIT_LIST_HEAD(&pctldev->node);
2015 pctldev->dev = dev;
2016 mutex_init(&pctldev->mutex);
2017
2018 /* check core ops for sanity */
2019 ret = pinctrl_check_ops(pctldev);
2020 if (ret) {
2021 dev_err(dev, "pinctrl ops lacks necessary functions\n");
2022 goto out_err;
2023 }
2024
2025 /* If we're implementing pinmuxing, check the ops for sanity */
2026 if (pctldesc->pmxops) {
2027 ret = pinmux_check_ops(pctldev);
2028 if (ret)
2029 goto out_err;
2030 }
2031
2032 /* If we're implementing pinconfig, check the ops for sanity */
2033 if (pctldesc->confops) {
2034 ret = pinconf_check_ops(pctldev);
2035 if (ret)
2036 goto out_err;
2037 }
2038
2039 /* Register all the pins */
2040 dev_dbg(dev, "try to register %d pins ...\n", pctldesc->npins);
2041 ret = pinctrl_register_pins(pctldev, pctldesc->pins, pctldesc->npins);
2042 if (ret) {
2043 dev_err(dev, "error during pin registration\n");
2044 pinctrl_free_pindescs(pctldev, pctldesc->pins,
2045 pctldesc->npins);
2046 goto out_err;
2047 }
2048
2049 return pctldev;
2050
2051out_err:
2052 mutex_destroy(&pctldev->mutex);
2053 kfree(pctldev);
2054 return ERR_PTR(ret);
2055}
2056
2057static int pinctrl_claim_hogs(struct pinctrl_dev *pctldev)
2058{
2059 pctldev->p = create_pinctrl(pctldev->dev, pctldev);
2060 if (PTR_ERR(pctldev->p) == -ENODEV) {
2061 dev_dbg(pctldev->dev, "no hogs found\n");
2062
2063 return 0;
2064 }
2065
2066 if (IS_ERR(pctldev->p)) {
2067 dev_err(pctldev->dev, "error claiming hogs: %li\n",
2068 PTR_ERR(pctldev->p));
2069
2070 return PTR_ERR(pctldev->p);
2071 }
2072
2073 pctldev->hog_default =
2074 pinctrl_lookup_state(pctldev->p, PINCTRL_STATE_DEFAULT);
2075 if (IS_ERR(pctldev->hog_default)) {
2076 dev_dbg(pctldev->dev,
2077 "failed to lookup the default state\n");
2078 } else {
2079 if (pinctrl_select_state(pctldev->p,
2080 pctldev->hog_default))
2081 dev_err(pctldev->dev,
2082 "failed to select default state\n");
2083 }
2084
2085 pctldev->hog_sleep =
2086 pinctrl_lookup_state(pctldev->p,
2087 PINCTRL_STATE_SLEEP);
2088 if (IS_ERR(pctldev->hog_sleep))
2089 dev_dbg(pctldev->dev,
2090 "failed to lookup the sleep state\n");
2091
2092 return 0;
2093}
2094
2095int pinctrl_enable(struct pinctrl_dev *pctldev)
2096{
2097 int error;
2098
2099 error = pinctrl_claim_hogs(pctldev);
2100 if (error) {
2101 dev_err(pctldev->dev, "could not claim hogs: %i\n",
2102 error);
2103 mutex_destroy(&pctldev->mutex);
2104 kfree(pctldev);
2105
2106 return error;
2107 }
2108
2109 mutex_lock(&pinctrldev_list_mutex);
2110 list_add_tail(&pctldev->node, &pinctrldev_list);
2111 mutex_unlock(&pinctrldev_list_mutex);
2112
2113 pinctrl_init_device_debugfs(pctldev);
2114
2115 return 0;
2116}
2117EXPORT_SYMBOL_GPL(pinctrl_enable);
2118
2119/**
2120 * pinctrl_register() - register a pin controller device
2121 * @pctldesc: descriptor for this pin controller
2122 * @dev: parent device for this pin controller
2123 * @driver_data: private pin controller data for this pin controller
2124 *
2125 * Note that pinctrl_register() is known to have problems as the pin
2126 * controller driver functions are called before the driver has a
2127 * struct pinctrl_dev handle. To avoid issues later on, please use the
2128 * new pinctrl_register_and_init() below instead.
2129 */
2130struct pinctrl_dev *pinctrl_register(struct pinctrl_desc *pctldesc,
2131 struct device *dev, void *driver_data)
2132{
2133 struct pinctrl_dev *pctldev;
2134 int error;
2135
2136 pctldev = pinctrl_init_controller(pctldesc, dev, driver_data);
2137 if (IS_ERR(pctldev))
2138 return pctldev;
2139
2140 error = pinctrl_enable(pctldev);
2141 if (error)
2142 return ERR_PTR(error);
2143
2144 return pctldev;
2145}
2146EXPORT_SYMBOL_GPL(pinctrl_register);
2147
2148/**
2149 * pinctrl_register_and_init() - register and init pin controller device
2150 * @pctldesc: descriptor for this pin controller
2151 * @dev: parent device for this pin controller
2152 * @driver_data: private pin controller data for this pin controller
2153 * @pctldev: pin controller device
2154 *
2155 * Note that pinctrl_enable() still needs to be manually called after
2156 * this once the driver is ready.
2157 */
2158int pinctrl_register_and_init(struct pinctrl_desc *pctldesc,
2159 struct device *dev, void *driver_data,
2160 struct pinctrl_dev **pctldev)
2161{
2162 struct pinctrl_dev *p;
2163
2164 p = pinctrl_init_controller(pctldesc, dev, driver_data);
2165 if (IS_ERR(p))
2166 return PTR_ERR(p);
2167
2168 /*
2169 * We have pinctrl_start() call functions in the pin controller
2170 * driver with create_pinctrl() for at least dt_node_to_map(). So
2171 * let's make sure pctldev is properly initialized for the
2172 * pin controller driver before we do anything.
2173 */
2174 *pctldev = p;
2175
2176 return 0;
2177}
2178EXPORT_SYMBOL_GPL(pinctrl_register_and_init);
2179
2180/**
2181 * pinctrl_unregister() - unregister pinmux
2182 * @pctldev: pin controller to unregister
2183 *
2184 * Called by pinmux drivers to unregister a pinmux.
2185 */
2186void pinctrl_unregister(struct pinctrl_dev *pctldev)
2187{
2188 struct pinctrl_gpio_range *range, *n;
2189
2190 if (!pctldev)
2191 return;
2192
2193 mutex_lock(&pctldev->mutex);
2194 pinctrl_remove_device_debugfs(pctldev);
2195 mutex_unlock(&pctldev->mutex);
2196
2197 if (!IS_ERR_OR_NULL(pctldev->p))
2198 pinctrl_put(pctldev->p);
2199
2200 mutex_lock(&pinctrldev_list_mutex);
2201 mutex_lock(&pctldev->mutex);
2202 /* TODO: check that no pinmuxes are still active? */
2203 list_del(&pctldev->node);
2204 pinmux_generic_free_functions(pctldev);
2205 pinctrl_generic_free_groups(pctldev);
2206 /* Destroy descriptor tree */
2207 pinctrl_free_pindescs(pctldev, pctldev->desc->pins,
2208 pctldev->desc->npins);
2209 /* remove gpio ranges map */
2210 list_for_each_entry_safe(range, n, &pctldev->gpio_ranges, node)
2211 list_del(&range->node);
2212
2213 mutex_unlock(&pctldev->mutex);
2214 mutex_destroy(&pctldev->mutex);
2215 kfree(pctldev);
2216 mutex_unlock(&pinctrldev_list_mutex);
2217}
2218EXPORT_SYMBOL_GPL(pinctrl_unregister);
2219
2220static void devm_pinctrl_dev_release(struct device *dev, void *res)
2221{
2222 struct pinctrl_dev *pctldev = *(struct pinctrl_dev **)res;
2223
2224 pinctrl_unregister(pctldev);
2225}
2226
2227static int devm_pinctrl_dev_match(struct device *dev, void *res, void *data)
2228{
2229 struct pctldev **r = res;
2230
2231 if (WARN_ON(!r || !*r))
2232 return 0;
2233
2234 return *r == data;
2235}
2236
2237/**
2238 * devm_pinctrl_register() - Resource managed version of pinctrl_register().
2239 * @dev: parent device for this pin controller
2240 * @pctldesc: descriptor for this pin controller
2241 * @driver_data: private pin controller data for this pin controller
2242 *
2243 * Returns an error pointer if pincontrol register failed. Otherwise
2244 * it returns valid pinctrl handle.
2245 *
2246 * The pinctrl device will be automatically released when the device is unbound.
2247 */
2248struct pinctrl_dev *devm_pinctrl_register(struct device *dev,
2249 struct pinctrl_desc *pctldesc,
2250 void *driver_data)
2251{
2252 struct pinctrl_dev **ptr, *pctldev;
2253
2254 ptr = devres_alloc(devm_pinctrl_dev_release, sizeof(*ptr), GFP_KERNEL);
2255 if (!ptr)
2256 return ERR_PTR(-ENOMEM);
2257
2258 pctldev = pinctrl_register(pctldesc, dev, driver_data);
2259 if (IS_ERR(pctldev)) {
2260 devres_free(ptr);
2261 return pctldev;
2262 }
2263
2264 *ptr = pctldev;
2265 devres_add(dev, ptr);
2266
2267 return pctldev;
2268}
2269EXPORT_SYMBOL_GPL(devm_pinctrl_register);
2270
2271/**
2272 * devm_pinctrl_register_and_init() - Resource managed pinctrl register and init
2273 * @dev: parent device for this pin controller
2274 * @pctldesc: descriptor for this pin controller
2275 * @driver_data: private pin controller data for this pin controller
2276 * @pctldev: pin controller device
2277 *
2278 * Returns zero on success or an error number on failure.
2279 *
2280 * The pinctrl device will be automatically released when the device is unbound.
2281 */
2282int devm_pinctrl_register_and_init(struct device *dev,
2283 struct pinctrl_desc *pctldesc,
2284 void *driver_data,
2285 struct pinctrl_dev **pctldev)
2286{
2287 struct pinctrl_dev **ptr;
2288 int error;
2289
2290 ptr = devres_alloc(devm_pinctrl_dev_release, sizeof(*ptr), GFP_KERNEL);
2291 if (!ptr)
2292 return -ENOMEM;
2293
2294 error = pinctrl_register_and_init(pctldesc, dev, driver_data, pctldev);
2295 if (error) {
2296 devres_free(ptr);
2297 return error;
2298 }
2299
2300 *ptr = *pctldev;
2301 devres_add(dev, ptr);
2302
2303 return 0;
2304}
2305EXPORT_SYMBOL_GPL(devm_pinctrl_register_and_init);
2306
2307/**
2308 * devm_pinctrl_unregister() - Resource managed version of pinctrl_unregister().
2309 * @dev: device for which which resource was allocated
2310 * @pctldev: the pinctrl device to unregister.
2311 */
2312void devm_pinctrl_unregister(struct device *dev, struct pinctrl_dev *pctldev)
2313{
2314 WARN_ON(devres_release(dev, devm_pinctrl_dev_release,
2315 devm_pinctrl_dev_match, pctldev));
2316}
2317EXPORT_SYMBOL_GPL(devm_pinctrl_unregister);
2318
2319static int __init pinctrl_init(void)
2320{
2321 pr_info("initialized pinctrl subsystem\n");
2322 pinctrl_init_debugfs();
2323 return 0;
2324}
2325
2326/* init early since many drivers really need to initialized pinmux early */
2327core_initcall(pinctrl_init);