Loading...
Note: File does not exist in v3.1.
1// SPDX-License-Identifier: GPL-2.0-only
2/*
3 * Core driver for the pin control subsystem
4 *
5 * Copyright (C) 2011-2012 ST-Ericsson SA
6 * Written on behalf of Linaro for ST-Ericsson
7 * Based on bits of regulator core, gpio core and clk core
8 *
9 * Author: Linus Walleij <linus.walleij@linaro.org>
10 *
11 * Copyright (C) 2012 NVIDIA CORPORATION. All rights reserved.
12 */
13#define pr_fmt(fmt) "pinctrl core: " fmt
14
15#include <linux/kernel.h>
16#include <linux/kref.h>
17#include <linux/export.h>
18#include <linux/init.h>
19#include <linux/device.h>
20#include <linux/slab.h>
21#include <linux/err.h>
22#include <linux/list.h>
23#include <linux/debugfs.h>
24#include <linux/seq_file.h>
25#include <linux/pinctrl/consumer.h>
26#include <linux/pinctrl/pinctrl.h>
27#include <linux/pinctrl/machine.h>
28
29#ifdef CONFIG_GPIOLIB
30#include <asm-generic/gpio.h>
31#endif
32
33#include "core.h"
34#include "devicetree.h"
35#include "pinmux.h"
36#include "pinconf.h"
37
38
39static bool pinctrl_dummy_state;
40
41/* Mutex taken to protect pinctrl_list */
42static DEFINE_MUTEX(pinctrl_list_mutex);
43
44/* Mutex taken to protect pinctrl_maps */
45DEFINE_MUTEX(pinctrl_maps_mutex);
46
47/* Mutex taken to protect pinctrldev_list */
48static DEFINE_MUTEX(pinctrldev_list_mutex);
49
50/* Global list of pin control devices (struct pinctrl_dev) */
51static LIST_HEAD(pinctrldev_list);
52
53/* List of pin controller handles (struct pinctrl) */
54static LIST_HEAD(pinctrl_list);
55
56/* List of pinctrl maps (struct pinctrl_maps) */
57LIST_HEAD(pinctrl_maps);
58
59
60/**
61 * pinctrl_provide_dummies() - indicate if pinctrl provides dummy state support
62 *
63 * Usually this function is called by platforms without pinctrl driver support
64 * but run with some shared drivers using pinctrl APIs.
65 * After calling this function, the pinctrl core will return successfully
66 * with creating a dummy state for the driver to keep going smoothly.
67 */
68void pinctrl_provide_dummies(void)
69{
70 pinctrl_dummy_state = true;
71}
72
73const char *pinctrl_dev_get_name(struct pinctrl_dev *pctldev)
74{
75 /* We're not allowed to register devices without name */
76 return pctldev->desc->name;
77}
78EXPORT_SYMBOL_GPL(pinctrl_dev_get_name);
79
80const char *pinctrl_dev_get_devname(struct pinctrl_dev *pctldev)
81{
82 return dev_name(pctldev->dev);
83}
84EXPORT_SYMBOL_GPL(pinctrl_dev_get_devname);
85
86void *pinctrl_dev_get_drvdata(struct pinctrl_dev *pctldev)
87{
88 return pctldev->driver_data;
89}
90EXPORT_SYMBOL_GPL(pinctrl_dev_get_drvdata);
91
92/**
93 * get_pinctrl_dev_from_devname() - look up pin controller device
94 * @devname: the name of a device instance, as returned by dev_name()
95 *
96 * Looks up a pin control device matching a certain device name or pure device
97 * pointer, the pure device pointer will take precedence.
98 */
99struct pinctrl_dev *get_pinctrl_dev_from_devname(const char *devname)
100{
101 struct pinctrl_dev *pctldev;
102
103 if (!devname)
104 return NULL;
105
106 mutex_lock(&pinctrldev_list_mutex);
107
108 list_for_each_entry(pctldev, &pinctrldev_list, node) {
109 if (!strcmp(dev_name(pctldev->dev), devname)) {
110 /* Matched on device name */
111 mutex_unlock(&pinctrldev_list_mutex);
112 return pctldev;
113 }
114 }
115
116 mutex_unlock(&pinctrldev_list_mutex);
117
118 return NULL;
119}
120
121struct pinctrl_dev *get_pinctrl_dev_from_of_node(struct device_node *np)
122{
123 struct pinctrl_dev *pctldev;
124
125 mutex_lock(&pinctrldev_list_mutex);
126
127 list_for_each_entry(pctldev, &pinctrldev_list, node)
128 if (pctldev->dev->of_node == np) {
129 mutex_unlock(&pinctrldev_list_mutex);
130 return pctldev;
131 }
132
133 mutex_unlock(&pinctrldev_list_mutex);
134
135 return NULL;
136}
137
138/**
139 * pin_get_from_name() - look up a pin number from a name
140 * @pctldev: the pin control device to lookup the pin on
141 * @name: the name of the pin to look up
142 */
143int pin_get_from_name(struct pinctrl_dev *pctldev, const char *name)
144{
145 unsigned i, pin;
146
147 /* The pin number can be retrived from the pin controller descriptor */
148 for (i = 0; i < pctldev->desc->npins; i++) {
149 struct pin_desc *desc;
150
151 pin = pctldev->desc->pins[i].number;
152 desc = pin_desc_get(pctldev, pin);
153 /* Pin space may be sparse */
154 if (desc && !strcmp(name, desc->name))
155 return pin;
156 }
157
158 return -EINVAL;
159}
160
161/**
162 * pin_get_name_from_id() - look up a pin name from a pin id
163 * @pctldev: the pin control device to lookup the pin on
164 * @name: the name of the pin to look up
165 */
166const char *pin_get_name(struct pinctrl_dev *pctldev, const unsigned pin)
167{
168 const struct pin_desc *desc;
169
170 desc = pin_desc_get(pctldev, pin);
171 if (!desc) {
172 dev_err(pctldev->dev, "failed to get pin(%d) name\n",
173 pin);
174 return NULL;
175 }
176
177 return desc->name;
178}
179
180/* Deletes a range of pin descriptors */
181static void pinctrl_free_pindescs(struct pinctrl_dev *pctldev,
182 const struct pinctrl_pin_desc *pins,
183 unsigned num_pins)
184{
185 int i;
186
187 for (i = 0; i < num_pins; i++) {
188 struct pin_desc *pindesc;
189
190 pindesc = radix_tree_lookup(&pctldev->pin_desc_tree,
191 pins[i].number);
192 if (pindesc) {
193 radix_tree_delete(&pctldev->pin_desc_tree,
194 pins[i].number);
195 if (pindesc->dynamic_name)
196 kfree(pindesc->name);
197 }
198 kfree(pindesc);
199 }
200}
201
202static int pinctrl_register_one_pin(struct pinctrl_dev *pctldev,
203 const struct pinctrl_pin_desc *pin)
204{
205 struct pin_desc *pindesc;
206
207 pindesc = pin_desc_get(pctldev, pin->number);
208 if (pindesc) {
209 dev_err(pctldev->dev, "pin %d already registered\n",
210 pin->number);
211 return -EINVAL;
212 }
213
214 pindesc = kzalloc(sizeof(*pindesc), GFP_KERNEL);
215 if (!pindesc)
216 return -ENOMEM;
217
218 /* Set owner */
219 pindesc->pctldev = pctldev;
220
221 /* Copy basic pin info */
222 if (pin->name) {
223 pindesc->name = pin->name;
224 } else {
225 pindesc->name = kasprintf(GFP_KERNEL, "PIN%u", pin->number);
226 if (!pindesc->name) {
227 kfree(pindesc);
228 return -ENOMEM;
229 }
230 pindesc->dynamic_name = true;
231 }
232
233 pindesc->drv_data = pin->drv_data;
234
235 radix_tree_insert(&pctldev->pin_desc_tree, pin->number, pindesc);
236 pr_debug("registered pin %d (%s) on %s\n",
237 pin->number, pindesc->name, pctldev->desc->name);
238 return 0;
239}
240
241static int pinctrl_register_pins(struct pinctrl_dev *pctldev,
242 const struct pinctrl_pin_desc *pins,
243 unsigned num_descs)
244{
245 unsigned i;
246 int ret = 0;
247
248 for (i = 0; i < num_descs; i++) {
249 ret = pinctrl_register_one_pin(pctldev, &pins[i]);
250 if (ret)
251 return ret;
252 }
253
254 return 0;
255}
256
257/**
258 * gpio_to_pin() - GPIO range GPIO number to pin number translation
259 * @range: GPIO range used for the translation
260 * @gpio: gpio pin to translate to a pin number
261 *
262 * Finds the pin number for a given GPIO using the specified GPIO range
263 * as a base for translation. The distinction between linear GPIO ranges
264 * and pin list based GPIO ranges is managed correctly by this function.
265 *
266 * This function assumes the gpio is part of the specified GPIO range, use
267 * only after making sure this is the case (e.g. by calling it on the
268 * result of successful pinctrl_get_device_gpio_range calls)!
269 */
270static inline int gpio_to_pin(struct pinctrl_gpio_range *range,
271 unsigned int gpio)
272{
273 unsigned int offset = gpio - range->base;
274 if (range->pins)
275 return range->pins[offset];
276 else
277 return range->pin_base + offset;
278}
279
280/**
281 * pinctrl_match_gpio_range() - check if a certain GPIO pin is in range
282 * @pctldev: pin controller device to check
283 * @gpio: gpio pin to check taken from the global GPIO pin space
284 *
285 * Tries to match a GPIO pin number to the ranges handled by a certain pin
286 * controller, return the range or NULL
287 */
288static struct pinctrl_gpio_range *
289pinctrl_match_gpio_range(struct pinctrl_dev *pctldev, unsigned gpio)
290{
291 struct pinctrl_gpio_range *range;
292
293 mutex_lock(&pctldev->mutex);
294 /* Loop over the ranges */
295 list_for_each_entry(range, &pctldev->gpio_ranges, node) {
296 /* Check if we're in the valid range */
297 if (gpio >= range->base &&
298 gpio < range->base + range->npins) {
299 mutex_unlock(&pctldev->mutex);
300 return range;
301 }
302 }
303 mutex_unlock(&pctldev->mutex);
304 return NULL;
305}
306
307/**
308 * pinctrl_ready_for_gpio_range() - check if other GPIO pins of
309 * the same GPIO chip are in range
310 * @gpio: gpio pin to check taken from the global GPIO pin space
311 *
312 * This function is complement of pinctrl_match_gpio_range(). If the return
313 * value of pinctrl_match_gpio_range() is NULL, this function could be used
314 * to check whether pinctrl device is ready or not. Maybe some GPIO pins
315 * of the same GPIO chip don't have back-end pinctrl interface.
316 * If the return value is true, it means that pinctrl device is ready & the
317 * certain GPIO pin doesn't have back-end pinctrl device. If the return value
318 * is false, it means that pinctrl device may not be ready.
319 */
320#ifdef CONFIG_GPIOLIB
321static bool pinctrl_ready_for_gpio_range(unsigned gpio)
322{
323 struct pinctrl_dev *pctldev;
324 struct pinctrl_gpio_range *range = NULL;
325 struct gpio_chip *chip = gpio_to_chip(gpio);
326
327 if (WARN(!chip, "no gpio_chip for gpio%i?", gpio))
328 return false;
329
330 mutex_lock(&pinctrldev_list_mutex);
331
332 /* Loop over the pin controllers */
333 list_for_each_entry(pctldev, &pinctrldev_list, node) {
334 /* Loop over the ranges */
335 mutex_lock(&pctldev->mutex);
336 list_for_each_entry(range, &pctldev->gpio_ranges, node) {
337 /* Check if any gpio range overlapped with gpio chip */
338 if (range->base + range->npins - 1 < chip->base ||
339 range->base > chip->base + chip->ngpio - 1)
340 continue;
341 mutex_unlock(&pctldev->mutex);
342 mutex_unlock(&pinctrldev_list_mutex);
343 return true;
344 }
345 mutex_unlock(&pctldev->mutex);
346 }
347
348 mutex_unlock(&pinctrldev_list_mutex);
349
350 return false;
351}
352#else
353static bool pinctrl_ready_for_gpio_range(unsigned gpio) { return true; }
354#endif
355
356/**
357 * pinctrl_get_device_gpio_range() - find device for GPIO range
358 * @gpio: the pin to locate the pin controller for
359 * @outdev: the pin control device if found
360 * @outrange: the GPIO range if found
361 *
362 * Find the pin controller handling a certain GPIO pin from the pinspace of
363 * the GPIO subsystem, return the device and the matching GPIO range. Returns
364 * -EPROBE_DEFER if the GPIO range could not be found in any device since it
365 * may still have not been registered.
366 */
367static int pinctrl_get_device_gpio_range(unsigned gpio,
368 struct pinctrl_dev **outdev,
369 struct pinctrl_gpio_range **outrange)
370{
371 struct pinctrl_dev *pctldev;
372
373 mutex_lock(&pinctrldev_list_mutex);
374
375 /* Loop over the pin controllers */
376 list_for_each_entry(pctldev, &pinctrldev_list, node) {
377 struct pinctrl_gpio_range *range;
378
379 range = pinctrl_match_gpio_range(pctldev, gpio);
380 if (range) {
381 *outdev = pctldev;
382 *outrange = range;
383 mutex_unlock(&pinctrldev_list_mutex);
384 return 0;
385 }
386 }
387
388 mutex_unlock(&pinctrldev_list_mutex);
389
390 return -EPROBE_DEFER;
391}
392
393/**
394 * pinctrl_add_gpio_range() - register a GPIO range for a controller
395 * @pctldev: pin controller device to add the range to
396 * @range: the GPIO range to add
397 *
398 * This adds a range of GPIOs to be handled by a certain pin controller. Call
399 * this to register handled ranges after registering your pin controller.
400 */
401void pinctrl_add_gpio_range(struct pinctrl_dev *pctldev,
402 struct pinctrl_gpio_range *range)
403{
404 mutex_lock(&pctldev->mutex);
405 list_add_tail(&range->node, &pctldev->gpio_ranges);
406 mutex_unlock(&pctldev->mutex);
407}
408EXPORT_SYMBOL_GPL(pinctrl_add_gpio_range);
409
410void pinctrl_add_gpio_ranges(struct pinctrl_dev *pctldev,
411 struct pinctrl_gpio_range *ranges,
412 unsigned nranges)
413{
414 int i;
415
416 for (i = 0; i < nranges; i++)
417 pinctrl_add_gpio_range(pctldev, &ranges[i]);
418}
419EXPORT_SYMBOL_GPL(pinctrl_add_gpio_ranges);
420
421struct pinctrl_dev *pinctrl_find_and_add_gpio_range(const char *devname,
422 struct pinctrl_gpio_range *range)
423{
424 struct pinctrl_dev *pctldev;
425
426 pctldev = get_pinctrl_dev_from_devname(devname);
427
428 /*
429 * If we can't find this device, let's assume that is because
430 * it has not probed yet, so the driver trying to register this
431 * range need to defer probing.
432 */
433 if (!pctldev) {
434 return ERR_PTR(-EPROBE_DEFER);
435 }
436 pinctrl_add_gpio_range(pctldev, range);
437
438 return pctldev;
439}
440EXPORT_SYMBOL_GPL(pinctrl_find_and_add_gpio_range);
441
442int pinctrl_get_group_pins(struct pinctrl_dev *pctldev, const char *pin_group,
443 const unsigned **pins, unsigned *num_pins)
444{
445 const struct pinctrl_ops *pctlops = pctldev->desc->pctlops;
446 int gs;
447
448 if (!pctlops->get_group_pins)
449 return -EINVAL;
450
451 gs = pinctrl_get_group_selector(pctldev, pin_group);
452 if (gs < 0)
453 return gs;
454
455 return pctlops->get_group_pins(pctldev, gs, pins, num_pins);
456}
457EXPORT_SYMBOL_GPL(pinctrl_get_group_pins);
458
459struct pinctrl_gpio_range *
460pinctrl_find_gpio_range_from_pin_nolock(struct pinctrl_dev *pctldev,
461 unsigned int pin)
462{
463 struct pinctrl_gpio_range *range;
464
465 /* Loop over the ranges */
466 list_for_each_entry(range, &pctldev->gpio_ranges, node) {
467 /* Check if we're in the valid range */
468 if (range->pins) {
469 int a;
470 for (a = 0; a < range->npins; a++) {
471 if (range->pins[a] == pin)
472 return range;
473 }
474 } else if (pin >= range->pin_base &&
475 pin < range->pin_base + range->npins)
476 return range;
477 }
478
479 return NULL;
480}
481EXPORT_SYMBOL_GPL(pinctrl_find_gpio_range_from_pin_nolock);
482
483/**
484 * pinctrl_find_gpio_range_from_pin() - locate the GPIO range for a pin
485 * @pctldev: the pin controller device to look in
486 * @pin: a controller-local number to find the range for
487 */
488struct pinctrl_gpio_range *
489pinctrl_find_gpio_range_from_pin(struct pinctrl_dev *pctldev,
490 unsigned int pin)
491{
492 struct pinctrl_gpio_range *range;
493
494 mutex_lock(&pctldev->mutex);
495 range = pinctrl_find_gpio_range_from_pin_nolock(pctldev, pin);
496 mutex_unlock(&pctldev->mutex);
497
498 return range;
499}
500EXPORT_SYMBOL_GPL(pinctrl_find_gpio_range_from_pin);
501
502/**
503 * pinctrl_remove_gpio_range() - remove a range of GPIOs from a pin controller
504 * @pctldev: pin controller device to remove the range from
505 * @range: the GPIO range to remove
506 */
507void pinctrl_remove_gpio_range(struct pinctrl_dev *pctldev,
508 struct pinctrl_gpio_range *range)
509{
510 mutex_lock(&pctldev->mutex);
511 list_del(&range->node);
512 mutex_unlock(&pctldev->mutex);
513}
514EXPORT_SYMBOL_GPL(pinctrl_remove_gpio_range);
515
516#ifdef CONFIG_GENERIC_PINCTRL_GROUPS
517
518/**
519 * pinctrl_generic_get_group_count() - returns the number of pin groups
520 * @pctldev: pin controller device
521 */
522int pinctrl_generic_get_group_count(struct pinctrl_dev *pctldev)
523{
524 return pctldev->num_groups;
525}
526EXPORT_SYMBOL_GPL(pinctrl_generic_get_group_count);
527
528/**
529 * pinctrl_generic_get_group_name() - returns the name of a pin group
530 * @pctldev: pin controller device
531 * @selector: group number
532 */
533const char *pinctrl_generic_get_group_name(struct pinctrl_dev *pctldev,
534 unsigned int selector)
535{
536 struct group_desc *group;
537
538 group = radix_tree_lookup(&pctldev->pin_group_tree,
539 selector);
540 if (!group)
541 return NULL;
542
543 return group->name;
544}
545EXPORT_SYMBOL_GPL(pinctrl_generic_get_group_name);
546
547/**
548 * pinctrl_generic_get_group_pins() - gets the pin group pins
549 * @pctldev: pin controller device
550 * @selector: group number
551 * @pins: pins in the group
552 * @num_pins: number of pins in the group
553 */
554int pinctrl_generic_get_group_pins(struct pinctrl_dev *pctldev,
555 unsigned int selector,
556 const unsigned int **pins,
557 unsigned int *num_pins)
558{
559 struct group_desc *group;
560
561 group = radix_tree_lookup(&pctldev->pin_group_tree,
562 selector);
563 if (!group) {
564 dev_err(pctldev->dev, "%s could not find pingroup%i\n",
565 __func__, selector);
566 return -EINVAL;
567 }
568
569 *pins = group->pins;
570 *num_pins = group->num_pins;
571
572 return 0;
573}
574EXPORT_SYMBOL_GPL(pinctrl_generic_get_group_pins);
575
576/**
577 * pinctrl_generic_get_group() - returns a pin group based on the number
578 * @pctldev: pin controller device
579 * @gselector: group number
580 */
581struct group_desc *pinctrl_generic_get_group(struct pinctrl_dev *pctldev,
582 unsigned int selector)
583{
584 struct group_desc *group;
585
586 group = radix_tree_lookup(&pctldev->pin_group_tree,
587 selector);
588 if (!group)
589 return NULL;
590
591 return group;
592}
593EXPORT_SYMBOL_GPL(pinctrl_generic_get_group);
594
595static int pinctrl_generic_group_name_to_selector(struct pinctrl_dev *pctldev,
596 const char *function)
597{
598 const struct pinctrl_ops *ops = pctldev->desc->pctlops;
599 int ngroups = ops->get_groups_count(pctldev);
600 int selector = 0;
601
602 /* See if this pctldev has this group */
603 while (selector < ngroups) {
604 const char *gname = ops->get_group_name(pctldev, selector);
605
606 if (gname && !strcmp(function, gname))
607 return selector;
608
609 selector++;
610 }
611
612 return -EINVAL;
613}
614
615/**
616 * pinctrl_generic_add_group() - adds a new pin group
617 * @pctldev: pin controller device
618 * @name: name of the pin group
619 * @pins: pins in the pin group
620 * @num_pins: number of pins in the pin group
621 * @data: pin controller driver specific data
622 *
623 * Note that the caller must take care of locking.
624 */
625int pinctrl_generic_add_group(struct pinctrl_dev *pctldev, const char *name,
626 int *pins, int num_pins, void *data)
627{
628 struct group_desc *group;
629 int selector;
630
631 if (!name)
632 return -EINVAL;
633
634 selector = pinctrl_generic_group_name_to_selector(pctldev, name);
635 if (selector >= 0)
636 return selector;
637
638 selector = pctldev->num_groups;
639
640 group = devm_kzalloc(pctldev->dev, sizeof(*group), GFP_KERNEL);
641 if (!group)
642 return -ENOMEM;
643
644 group->name = name;
645 group->pins = pins;
646 group->num_pins = num_pins;
647 group->data = data;
648
649 radix_tree_insert(&pctldev->pin_group_tree, selector, group);
650
651 pctldev->num_groups++;
652
653 return selector;
654}
655EXPORT_SYMBOL_GPL(pinctrl_generic_add_group);
656
657/**
658 * pinctrl_generic_remove_group() - removes a numbered pin group
659 * @pctldev: pin controller device
660 * @selector: group number
661 *
662 * Note that the caller must take care of locking.
663 */
664int pinctrl_generic_remove_group(struct pinctrl_dev *pctldev,
665 unsigned int selector)
666{
667 struct group_desc *group;
668
669 group = radix_tree_lookup(&pctldev->pin_group_tree,
670 selector);
671 if (!group)
672 return -ENOENT;
673
674 radix_tree_delete(&pctldev->pin_group_tree, selector);
675 devm_kfree(pctldev->dev, group);
676
677 pctldev->num_groups--;
678
679 return 0;
680}
681EXPORT_SYMBOL_GPL(pinctrl_generic_remove_group);
682
683/**
684 * pinctrl_generic_free_groups() - removes all pin groups
685 * @pctldev: pin controller device
686 *
687 * Note that the caller must take care of locking. The pinctrl groups
688 * are allocated with devm_kzalloc() so no need to free them here.
689 */
690static void pinctrl_generic_free_groups(struct pinctrl_dev *pctldev)
691{
692 struct radix_tree_iter iter;
693 void __rcu **slot;
694
695 radix_tree_for_each_slot(slot, &pctldev->pin_group_tree, &iter, 0)
696 radix_tree_delete(&pctldev->pin_group_tree, iter.index);
697
698 pctldev->num_groups = 0;
699}
700
701#else
702static inline void pinctrl_generic_free_groups(struct pinctrl_dev *pctldev)
703{
704}
705#endif /* CONFIG_GENERIC_PINCTRL_GROUPS */
706
707/**
708 * pinctrl_get_group_selector() - returns the group selector for a group
709 * @pctldev: the pin controller handling the group
710 * @pin_group: the pin group to look up
711 */
712int pinctrl_get_group_selector(struct pinctrl_dev *pctldev,
713 const char *pin_group)
714{
715 const struct pinctrl_ops *pctlops = pctldev->desc->pctlops;
716 unsigned ngroups = pctlops->get_groups_count(pctldev);
717 unsigned group_selector = 0;
718
719 while (group_selector < ngroups) {
720 const char *gname = pctlops->get_group_name(pctldev,
721 group_selector);
722 if (gname && !strcmp(gname, pin_group)) {
723 dev_dbg(pctldev->dev,
724 "found group selector %u for %s\n",
725 group_selector,
726 pin_group);
727 return group_selector;
728 }
729
730 group_selector++;
731 }
732
733 dev_err(pctldev->dev, "does not have pin group %s\n",
734 pin_group);
735
736 return -EINVAL;
737}
738
739bool pinctrl_gpio_can_use_line(unsigned gpio)
740{
741 struct pinctrl_dev *pctldev;
742 struct pinctrl_gpio_range *range;
743 bool result;
744 int pin;
745
746 /*
747 * Try to obtain GPIO range, if it fails
748 * we're probably dealing with GPIO driver
749 * without a backing pin controller - bail out.
750 */
751 if (pinctrl_get_device_gpio_range(gpio, &pctldev, &range))
752 return true;
753
754 mutex_lock(&pctldev->mutex);
755
756 /* Convert to the pin controllers number space */
757 pin = gpio_to_pin(range, gpio);
758
759 result = pinmux_can_be_used_for_gpio(pctldev, pin);
760
761 mutex_unlock(&pctldev->mutex);
762
763 return result;
764}
765EXPORT_SYMBOL_GPL(pinctrl_gpio_can_use_line);
766
767/**
768 * pinctrl_gpio_request() - request a single pin to be used as GPIO
769 * @gpio: the GPIO pin number from the GPIO subsystem number space
770 *
771 * This function should *ONLY* be used from gpiolib-based GPIO drivers,
772 * as part of their gpio_request() semantics, platforms and individual drivers
773 * shall *NOT* request GPIO pins to be muxed in.
774 */
775int pinctrl_gpio_request(unsigned gpio)
776{
777 struct pinctrl_dev *pctldev;
778 struct pinctrl_gpio_range *range;
779 int ret;
780 int pin;
781
782 ret = pinctrl_get_device_gpio_range(gpio, &pctldev, &range);
783 if (ret) {
784 if (pinctrl_ready_for_gpio_range(gpio))
785 ret = 0;
786 return ret;
787 }
788
789 mutex_lock(&pctldev->mutex);
790
791 /* Convert to the pin controllers number space */
792 pin = gpio_to_pin(range, gpio);
793
794 ret = pinmux_request_gpio(pctldev, range, pin, gpio);
795
796 mutex_unlock(&pctldev->mutex);
797
798 return ret;
799}
800EXPORT_SYMBOL_GPL(pinctrl_gpio_request);
801
802/**
803 * pinctrl_gpio_free() - free control on a single pin, currently used as GPIO
804 * @gpio: the GPIO pin number from the GPIO subsystem number space
805 *
806 * This function should *ONLY* be used from gpiolib-based GPIO drivers,
807 * as part of their gpio_free() semantics, platforms and individual drivers
808 * shall *NOT* request GPIO pins to be muxed out.
809 */
810void pinctrl_gpio_free(unsigned gpio)
811{
812 struct pinctrl_dev *pctldev;
813 struct pinctrl_gpio_range *range;
814 int ret;
815 int pin;
816
817 ret = pinctrl_get_device_gpio_range(gpio, &pctldev, &range);
818 if (ret) {
819 return;
820 }
821 mutex_lock(&pctldev->mutex);
822
823 /* Convert to the pin controllers number space */
824 pin = gpio_to_pin(range, gpio);
825
826 pinmux_free_gpio(pctldev, pin, range);
827
828 mutex_unlock(&pctldev->mutex);
829}
830EXPORT_SYMBOL_GPL(pinctrl_gpio_free);
831
832static int pinctrl_gpio_direction(unsigned gpio, bool input)
833{
834 struct pinctrl_dev *pctldev;
835 struct pinctrl_gpio_range *range;
836 int ret;
837 int pin;
838
839 ret = pinctrl_get_device_gpio_range(gpio, &pctldev, &range);
840 if (ret) {
841 return ret;
842 }
843
844 mutex_lock(&pctldev->mutex);
845
846 /* Convert to the pin controllers number space */
847 pin = gpio_to_pin(range, gpio);
848 ret = pinmux_gpio_direction(pctldev, range, pin, input);
849
850 mutex_unlock(&pctldev->mutex);
851
852 return ret;
853}
854
855/**
856 * pinctrl_gpio_direction_input() - request a GPIO pin to go into input mode
857 * @gpio: the GPIO pin number from the GPIO subsystem number space
858 *
859 * This function should *ONLY* be used from gpiolib-based GPIO drivers,
860 * as part of their gpio_direction_input() semantics, platforms and individual
861 * drivers shall *NOT* touch pin control GPIO calls.
862 */
863int pinctrl_gpio_direction_input(unsigned gpio)
864{
865 return pinctrl_gpio_direction(gpio, true);
866}
867EXPORT_SYMBOL_GPL(pinctrl_gpio_direction_input);
868
869/**
870 * pinctrl_gpio_direction_output() - request a GPIO pin to go into output mode
871 * @gpio: the GPIO pin number from the GPIO subsystem number space
872 *
873 * This function should *ONLY* be used from gpiolib-based GPIO drivers,
874 * as part of their gpio_direction_output() semantics, platforms and individual
875 * drivers shall *NOT* touch pin control GPIO calls.
876 */
877int pinctrl_gpio_direction_output(unsigned gpio)
878{
879 return pinctrl_gpio_direction(gpio, false);
880}
881EXPORT_SYMBOL_GPL(pinctrl_gpio_direction_output);
882
883/**
884 * pinctrl_gpio_set_config() - Apply config to given GPIO pin
885 * @gpio: the GPIO pin number from the GPIO subsystem number space
886 * @config: the configuration to apply to the GPIO
887 *
888 * This function should *ONLY* be used from gpiolib-based GPIO drivers, if
889 * they need to call the underlying pin controller to change GPIO config
890 * (for example set debounce time).
891 */
892int pinctrl_gpio_set_config(unsigned gpio, unsigned long config)
893{
894 unsigned long configs[] = { config };
895 struct pinctrl_gpio_range *range;
896 struct pinctrl_dev *pctldev;
897 int ret, pin;
898
899 ret = pinctrl_get_device_gpio_range(gpio, &pctldev, &range);
900 if (ret)
901 return ret;
902
903 mutex_lock(&pctldev->mutex);
904 pin = gpio_to_pin(range, gpio);
905 ret = pinconf_set_config(pctldev, pin, configs, ARRAY_SIZE(configs));
906 mutex_unlock(&pctldev->mutex);
907
908 return ret;
909}
910EXPORT_SYMBOL_GPL(pinctrl_gpio_set_config);
911
912static struct pinctrl_state *find_state(struct pinctrl *p,
913 const char *name)
914{
915 struct pinctrl_state *state;
916
917 list_for_each_entry(state, &p->states, node)
918 if (!strcmp(state->name, name))
919 return state;
920
921 return NULL;
922}
923
924static struct pinctrl_state *create_state(struct pinctrl *p,
925 const char *name)
926{
927 struct pinctrl_state *state;
928
929 state = kzalloc(sizeof(*state), GFP_KERNEL);
930 if (!state)
931 return ERR_PTR(-ENOMEM);
932
933 state->name = name;
934 INIT_LIST_HEAD(&state->settings);
935
936 list_add_tail(&state->node, &p->states);
937
938 return state;
939}
940
941static int add_setting(struct pinctrl *p, struct pinctrl_dev *pctldev,
942 const struct pinctrl_map *map)
943{
944 struct pinctrl_state *state;
945 struct pinctrl_setting *setting;
946 int ret;
947
948 state = find_state(p, map->name);
949 if (!state)
950 state = create_state(p, map->name);
951 if (IS_ERR(state))
952 return PTR_ERR(state);
953
954 if (map->type == PIN_MAP_TYPE_DUMMY_STATE)
955 return 0;
956
957 setting = kzalloc(sizeof(*setting), GFP_KERNEL);
958 if (!setting)
959 return -ENOMEM;
960
961 setting->type = map->type;
962
963 if (pctldev)
964 setting->pctldev = pctldev;
965 else
966 setting->pctldev =
967 get_pinctrl_dev_from_devname(map->ctrl_dev_name);
968 if (!setting->pctldev) {
969 kfree(setting);
970 /* Do not defer probing of hogs (circular loop) */
971 if (!strcmp(map->ctrl_dev_name, map->dev_name))
972 return -ENODEV;
973 /*
974 * OK let us guess that the driver is not there yet, and
975 * let's defer obtaining this pinctrl handle to later...
976 */
977 dev_info(p->dev, "unknown pinctrl device %s in map entry, deferring probe",
978 map->ctrl_dev_name);
979 return -EPROBE_DEFER;
980 }
981
982 setting->dev_name = map->dev_name;
983
984 switch (map->type) {
985 case PIN_MAP_TYPE_MUX_GROUP:
986 ret = pinmux_map_to_setting(map, setting);
987 break;
988 case PIN_MAP_TYPE_CONFIGS_PIN:
989 case PIN_MAP_TYPE_CONFIGS_GROUP:
990 ret = pinconf_map_to_setting(map, setting);
991 break;
992 default:
993 ret = -EINVAL;
994 break;
995 }
996 if (ret < 0) {
997 kfree(setting);
998 return ret;
999 }
1000
1001 list_add_tail(&setting->node, &state->settings);
1002
1003 return 0;
1004}
1005
1006static struct pinctrl *find_pinctrl(struct device *dev)
1007{
1008 struct pinctrl *p;
1009
1010 mutex_lock(&pinctrl_list_mutex);
1011 list_for_each_entry(p, &pinctrl_list, node)
1012 if (p->dev == dev) {
1013 mutex_unlock(&pinctrl_list_mutex);
1014 return p;
1015 }
1016
1017 mutex_unlock(&pinctrl_list_mutex);
1018 return NULL;
1019}
1020
1021static void pinctrl_free(struct pinctrl *p, bool inlist);
1022
1023static struct pinctrl *create_pinctrl(struct device *dev,
1024 struct pinctrl_dev *pctldev)
1025{
1026 struct pinctrl *p;
1027 const char *devname;
1028 struct pinctrl_maps *maps_node;
1029 int i;
1030 const struct pinctrl_map *map;
1031 int ret;
1032
1033 /*
1034 * create the state cookie holder struct pinctrl for each
1035 * mapping, this is what consumers will get when requesting
1036 * a pin control handle with pinctrl_get()
1037 */
1038 p = kzalloc(sizeof(*p), GFP_KERNEL);
1039 if (!p)
1040 return ERR_PTR(-ENOMEM);
1041 p->dev = dev;
1042 INIT_LIST_HEAD(&p->states);
1043 INIT_LIST_HEAD(&p->dt_maps);
1044
1045 ret = pinctrl_dt_to_map(p, pctldev);
1046 if (ret < 0) {
1047 kfree(p);
1048 return ERR_PTR(ret);
1049 }
1050
1051 devname = dev_name(dev);
1052
1053 mutex_lock(&pinctrl_maps_mutex);
1054 /* Iterate over the pin control maps to locate the right ones */
1055 for_each_maps(maps_node, i, map) {
1056 /* Map must be for this device */
1057 if (strcmp(map->dev_name, devname))
1058 continue;
1059 /*
1060 * If pctldev is not null, we are claiming hog for it,
1061 * that means, setting that is served by pctldev by itself.
1062 *
1063 * Thus we must skip map that is for this device but is served
1064 * by other device.
1065 */
1066 if (pctldev &&
1067 strcmp(dev_name(pctldev->dev), map->ctrl_dev_name))
1068 continue;
1069
1070 ret = add_setting(p, pctldev, map);
1071 /*
1072 * At this point the adding of a setting may:
1073 *
1074 * - Defer, if the pinctrl device is not yet available
1075 * - Fail, if the pinctrl device is not yet available,
1076 * AND the setting is a hog. We cannot defer that, since
1077 * the hog will kick in immediately after the device
1078 * is registered.
1079 *
1080 * If the error returned was not -EPROBE_DEFER then we
1081 * accumulate the errors to see if we end up with
1082 * an -EPROBE_DEFER later, as that is the worst case.
1083 */
1084 if (ret == -EPROBE_DEFER) {
1085 pinctrl_free(p, false);
1086 mutex_unlock(&pinctrl_maps_mutex);
1087 return ERR_PTR(ret);
1088 }
1089 }
1090 mutex_unlock(&pinctrl_maps_mutex);
1091
1092 if (ret < 0) {
1093 /* If some other error than deferral occurred, return here */
1094 pinctrl_free(p, false);
1095 return ERR_PTR(ret);
1096 }
1097
1098 kref_init(&p->users);
1099
1100 /* Add the pinctrl handle to the global list */
1101 mutex_lock(&pinctrl_list_mutex);
1102 list_add_tail(&p->node, &pinctrl_list);
1103 mutex_unlock(&pinctrl_list_mutex);
1104
1105 return p;
1106}
1107
1108/**
1109 * pinctrl_get() - retrieves the pinctrl handle for a device
1110 * @dev: the device to obtain the handle for
1111 */
1112struct pinctrl *pinctrl_get(struct device *dev)
1113{
1114 struct pinctrl *p;
1115
1116 if (WARN_ON(!dev))
1117 return ERR_PTR(-EINVAL);
1118
1119 /*
1120 * See if somebody else (such as the device core) has already
1121 * obtained a handle to the pinctrl for this device. In that case,
1122 * return another pointer to it.
1123 */
1124 p = find_pinctrl(dev);
1125 if (p) {
1126 dev_dbg(dev, "obtain a copy of previously claimed pinctrl\n");
1127 kref_get(&p->users);
1128 return p;
1129 }
1130
1131 return create_pinctrl(dev, NULL);
1132}
1133EXPORT_SYMBOL_GPL(pinctrl_get);
1134
1135static void pinctrl_free_setting(bool disable_setting,
1136 struct pinctrl_setting *setting)
1137{
1138 switch (setting->type) {
1139 case PIN_MAP_TYPE_MUX_GROUP:
1140 if (disable_setting)
1141 pinmux_disable_setting(setting);
1142 pinmux_free_setting(setting);
1143 break;
1144 case PIN_MAP_TYPE_CONFIGS_PIN:
1145 case PIN_MAP_TYPE_CONFIGS_GROUP:
1146 pinconf_free_setting(setting);
1147 break;
1148 default:
1149 break;
1150 }
1151}
1152
1153static void pinctrl_free(struct pinctrl *p, bool inlist)
1154{
1155 struct pinctrl_state *state, *n1;
1156 struct pinctrl_setting *setting, *n2;
1157
1158 mutex_lock(&pinctrl_list_mutex);
1159 list_for_each_entry_safe(state, n1, &p->states, node) {
1160 list_for_each_entry_safe(setting, n2, &state->settings, node) {
1161 pinctrl_free_setting(state == p->state, setting);
1162 list_del(&setting->node);
1163 kfree(setting);
1164 }
1165 list_del(&state->node);
1166 kfree(state);
1167 }
1168
1169 pinctrl_dt_free_maps(p);
1170
1171 if (inlist)
1172 list_del(&p->node);
1173 kfree(p);
1174 mutex_unlock(&pinctrl_list_mutex);
1175}
1176
1177/**
1178 * pinctrl_release() - release the pinctrl handle
1179 * @kref: the kref in the pinctrl being released
1180 */
1181static void pinctrl_release(struct kref *kref)
1182{
1183 struct pinctrl *p = container_of(kref, struct pinctrl, users);
1184
1185 pinctrl_free(p, true);
1186}
1187
1188/**
1189 * pinctrl_put() - decrease use count on a previously claimed pinctrl handle
1190 * @p: the pinctrl handle to release
1191 */
1192void pinctrl_put(struct pinctrl *p)
1193{
1194 kref_put(&p->users, pinctrl_release);
1195}
1196EXPORT_SYMBOL_GPL(pinctrl_put);
1197
1198/**
1199 * pinctrl_lookup_state() - retrieves a state handle from a pinctrl handle
1200 * @p: the pinctrl handle to retrieve the state from
1201 * @name: the state name to retrieve
1202 */
1203struct pinctrl_state *pinctrl_lookup_state(struct pinctrl *p,
1204 const char *name)
1205{
1206 struct pinctrl_state *state;
1207
1208 state = find_state(p, name);
1209 if (!state) {
1210 if (pinctrl_dummy_state) {
1211 /* create dummy state */
1212 dev_dbg(p->dev, "using pinctrl dummy state (%s)\n",
1213 name);
1214 state = create_state(p, name);
1215 } else
1216 state = ERR_PTR(-ENODEV);
1217 }
1218
1219 return state;
1220}
1221EXPORT_SYMBOL_GPL(pinctrl_lookup_state);
1222
1223static void pinctrl_link_add(struct pinctrl_dev *pctldev,
1224 struct device *consumer)
1225{
1226 if (pctldev->desc->link_consumers)
1227 device_link_add(consumer, pctldev->dev,
1228 DL_FLAG_PM_RUNTIME |
1229 DL_FLAG_AUTOREMOVE_CONSUMER);
1230}
1231
1232/**
1233 * pinctrl_commit_state() - select/activate/program a pinctrl state to HW
1234 * @p: the pinctrl handle for the device that requests configuration
1235 * @state: the state handle to select/activate/program
1236 */
1237static int pinctrl_commit_state(struct pinctrl *p, struct pinctrl_state *state)
1238{
1239 struct pinctrl_setting *setting, *setting2;
1240 struct pinctrl_state *old_state = p->state;
1241 int ret;
1242
1243 if (p->state) {
1244 /*
1245 * For each pinmux setting in the old state, forget SW's record
1246 * of mux owner for that pingroup. Any pingroups which are
1247 * still owned by the new state will be re-acquired by the call
1248 * to pinmux_enable_setting() in the loop below.
1249 */
1250 list_for_each_entry(setting, &p->state->settings, node) {
1251 if (setting->type != PIN_MAP_TYPE_MUX_GROUP)
1252 continue;
1253 pinmux_disable_setting(setting);
1254 }
1255 }
1256
1257 p->state = NULL;
1258
1259 /* Apply all the settings for the new state */
1260 list_for_each_entry(setting, &state->settings, node) {
1261 switch (setting->type) {
1262 case PIN_MAP_TYPE_MUX_GROUP:
1263 ret = pinmux_enable_setting(setting);
1264 break;
1265 case PIN_MAP_TYPE_CONFIGS_PIN:
1266 case PIN_MAP_TYPE_CONFIGS_GROUP:
1267 ret = pinconf_apply_setting(setting);
1268 break;
1269 default:
1270 ret = -EINVAL;
1271 break;
1272 }
1273
1274 if (ret < 0) {
1275 goto unapply_new_state;
1276 }
1277
1278 /* Do not link hogs (circular dependency) */
1279 if (p != setting->pctldev->p)
1280 pinctrl_link_add(setting->pctldev, p->dev);
1281 }
1282
1283 p->state = state;
1284
1285 return 0;
1286
1287unapply_new_state:
1288 dev_err(p->dev, "Error applying setting, reverse things back\n");
1289
1290 list_for_each_entry(setting2, &state->settings, node) {
1291 if (&setting2->node == &setting->node)
1292 break;
1293 /*
1294 * All we can do here is pinmux_disable_setting.
1295 * That means that some pins are muxed differently now
1296 * than they were before applying the setting (We can't
1297 * "unmux a pin"!), but it's not a big deal since the pins
1298 * are free to be muxed by another apply_setting.
1299 */
1300 if (setting2->type == PIN_MAP_TYPE_MUX_GROUP)
1301 pinmux_disable_setting(setting2);
1302 }
1303
1304 /* There's no infinite recursive loop here because p->state is NULL */
1305 if (old_state)
1306 pinctrl_select_state(p, old_state);
1307
1308 return ret;
1309}
1310
1311/**
1312 * pinctrl_select_state() - select/activate/program a pinctrl state to HW
1313 * @p: the pinctrl handle for the device that requests configuration
1314 * @state: the state handle to select/activate/program
1315 */
1316int pinctrl_select_state(struct pinctrl *p, struct pinctrl_state *state)
1317{
1318 if (p->state == state)
1319 return 0;
1320
1321 return pinctrl_commit_state(p, state);
1322}
1323EXPORT_SYMBOL_GPL(pinctrl_select_state);
1324
1325static void devm_pinctrl_release(struct device *dev, void *res)
1326{
1327 pinctrl_put(*(struct pinctrl **)res);
1328}
1329
1330/**
1331 * struct devm_pinctrl_get() - Resource managed pinctrl_get()
1332 * @dev: the device to obtain the handle for
1333 *
1334 * If there is a need to explicitly destroy the returned struct pinctrl,
1335 * devm_pinctrl_put() should be used, rather than plain pinctrl_put().
1336 */
1337struct pinctrl *devm_pinctrl_get(struct device *dev)
1338{
1339 struct pinctrl **ptr, *p;
1340
1341 ptr = devres_alloc(devm_pinctrl_release, sizeof(*ptr), GFP_KERNEL);
1342 if (!ptr)
1343 return ERR_PTR(-ENOMEM);
1344
1345 p = pinctrl_get(dev);
1346 if (!IS_ERR(p)) {
1347 *ptr = p;
1348 devres_add(dev, ptr);
1349 } else {
1350 devres_free(ptr);
1351 }
1352
1353 return p;
1354}
1355EXPORT_SYMBOL_GPL(devm_pinctrl_get);
1356
1357static int devm_pinctrl_match(struct device *dev, void *res, void *data)
1358{
1359 struct pinctrl **p = res;
1360
1361 return *p == data;
1362}
1363
1364/**
1365 * devm_pinctrl_put() - Resource managed pinctrl_put()
1366 * @p: the pinctrl handle to release
1367 *
1368 * Deallocate a struct pinctrl obtained via devm_pinctrl_get(). Normally
1369 * this function will not need to be called and the resource management
1370 * code will ensure that the resource is freed.
1371 */
1372void devm_pinctrl_put(struct pinctrl *p)
1373{
1374 WARN_ON(devres_release(p->dev, devm_pinctrl_release,
1375 devm_pinctrl_match, p));
1376}
1377EXPORT_SYMBOL_GPL(devm_pinctrl_put);
1378
1379int pinctrl_register_map(const struct pinctrl_map *maps, unsigned num_maps,
1380 bool dup)
1381{
1382 int i, ret;
1383 struct pinctrl_maps *maps_node;
1384
1385 pr_debug("add %u pinctrl maps\n", num_maps);
1386
1387 /* First sanity check the new mapping */
1388 for (i = 0; i < num_maps; i++) {
1389 if (!maps[i].dev_name) {
1390 pr_err("failed to register map %s (%d): no device given\n",
1391 maps[i].name, i);
1392 return -EINVAL;
1393 }
1394
1395 if (!maps[i].name) {
1396 pr_err("failed to register map %d: no map name given\n",
1397 i);
1398 return -EINVAL;
1399 }
1400
1401 if (maps[i].type != PIN_MAP_TYPE_DUMMY_STATE &&
1402 !maps[i].ctrl_dev_name) {
1403 pr_err("failed to register map %s (%d): no pin control device given\n",
1404 maps[i].name, i);
1405 return -EINVAL;
1406 }
1407
1408 switch (maps[i].type) {
1409 case PIN_MAP_TYPE_DUMMY_STATE:
1410 break;
1411 case PIN_MAP_TYPE_MUX_GROUP:
1412 ret = pinmux_validate_map(&maps[i], i);
1413 if (ret < 0)
1414 return ret;
1415 break;
1416 case PIN_MAP_TYPE_CONFIGS_PIN:
1417 case PIN_MAP_TYPE_CONFIGS_GROUP:
1418 ret = pinconf_validate_map(&maps[i], i);
1419 if (ret < 0)
1420 return ret;
1421 break;
1422 default:
1423 pr_err("failed to register map %s (%d): invalid type given\n",
1424 maps[i].name, i);
1425 return -EINVAL;
1426 }
1427 }
1428
1429 maps_node = kzalloc(sizeof(*maps_node), GFP_KERNEL);
1430 if (!maps_node)
1431 return -ENOMEM;
1432
1433 maps_node->num_maps = num_maps;
1434 if (dup) {
1435 maps_node->maps = kmemdup(maps, sizeof(*maps) * num_maps,
1436 GFP_KERNEL);
1437 if (!maps_node->maps) {
1438 kfree(maps_node);
1439 return -ENOMEM;
1440 }
1441 } else {
1442 maps_node->maps = maps;
1443 }
1444
1445 mutex_lock(&pinctrl_maps_mutex);
1446 list_add_tail(&maps_node->node, &pinctrl_maps);
1447 mutex_unlock(&pinctrl_maps_mutex);
1448
1449 return 0;
1450}
1451
1452/**
1453 * pinctrl_register_mappings() - register a set of pin controller mappings
1454 * @maps: the pincontrol mappings table to register. This should probably be
1455 * marked with __initdata so it can be discarded after boot. This
1456 * function will perform a shallow copy for the mapping entries.
1457 * @num_maps: the number of maps in the mapping table
1458 */
1459int pinctrl_register_mappings(const struct pinctrl_map *maps,
1460 unsigned num_maps)
1461{
1462 return pinctrl_register_map(maps, num_maps, true);
1463}
1464EXPORT_SYMBOL_GPL(pinctrl_register_mappings);
1465
1466void pinctrl_unregister_map(const struct pinctrl_map *map)
1467{
1468 struct pinctrl_maps *maps_node;
1469
1470 mutex_lock(&pinctrl_maps_mutex);
1471 list_for_each_entry(maps_node, &pinctrl_maps, node) {
1472 if (maps_node->maps == map) {
1473 list_del(&maps_node->node);
1474 kfree(maps_node);
1475 mutex_unlock(&pinctrl_maps_mutex);
1476 return;
1477 }
1478 }
1479 mutex_unlock(&pinctrl_maps_mutex);
1480}
1481
1482/**
1483 * pinctrl_force_sleep() - turn a given controller device into sleep state
1484 * @pctldev: pin controller device
1485 */
1486int pinctrl_force_sleep(struct pinctrl_dev *pctldev)
1487{
1488 if (!IS_ERR(pctldev->p) && !IS_ERR(pctldev->hog_sleep))
1489 return pinctrl_commit_state(pctldev->p, pctldev->hog_sleep);
1490 return 0;
1491}
1492EXPORT_SYMBOL_GPL(pinctrl_force_sleep);
1493
1494/**
1495 * pinctrl_force_default() - turn a given controller device into default state
1496 * @pctldev: pin controller device
1497 */
1498int pinctrl_force_default(struct pinctrl_dev *pctldev)
1499{
1500 if (!IS_ERR(pctldev->p) && !IS_ERR(pctldev->hog_default))
1501 return pinctrl_commit_state(pctldev->p, pctldev->hog_default);
1502 return 0;
1503}
1504EXPORT_SYMBOL_GPL(pinctrl_force_default);
1505
1506/**
1507 * pinctrl_init_done() - tell pinctrl probe is done
1508 *
1509 * We'll use this time to switch the pins from "init" to "default" unless the
1510 * driver selected some other state.
1511 *
1512 * @dev: device to that's done probing
1513 */
1514int pinctrl_init_done(struct device *dev)
1515{
1516 struct dev_pin_info *pins = dev->pins;
1517 int ret;
1518
1519 if (!pins)
1520 return 0;
1521
1522 if (IS_ERR(pins->init_state))
1523 return 0; /* No such state */
1524
1525 if (pins->p->state != pins->init_state)
1526 return 0; /* Not at init anyway */
1527
1528 if (IS_ERR(pins->default_state))
1529 return 0; /* No default state */
1530
1531 ret = pinctrl_select_state(pins->p, pins->default_state);
1532 if (ret)
1533 dev_err(dev, "failed to activate default pinctrl state\n");
1534
1535 return ret;
1536}
1537
1538#ifdef CONFIG_PM
1539
1540/**
1541 * pinctrl_pm_select_state() - select pinctrl state for PM
1542 * @dev: device to select default state for
1543 * @state: state to set
1544 */
1545static int pinctrl_pm_select_state(struct device *dev,
1546 struct pinctrl_state *state)
1547{
1548 struct dev_pin_info *pins = dev->pins;
1549 int ret;
1550
1551 if (IS_ERR(state))
1552 return 0; /* No such state */
1553 ret = pinctrl_select_state(pins->p, state);
1554 if (ret)
1555 dev_err(dev, "failed to activate pinctrl state %s\n",
1556 state->name);
1557 return ret;
1558}
1559
1560/**
1561 * pinctrl_pm_select_default_state() - select default pinctrl state for PM
1562 * @dev: device to select default state for
1563 */
1564int pinctrl_pm_select_default_state(struct device *dev)
1565{
1566 if (!dev->pins)
1567 return 0;
1568
1569 return pinctrl_pm_select_state(dev, dev->pins->default_state);
1570}
1571EXPORT_SYMBOL_GPL(pinctrl_pm_select_default_state);
1572
1573/**
1574 * pinctrl_pm_select_sleep_state() - select sleep pinctrl state for PM
1575 * @dev: device to select sleep state for
1576 */
1577int pinctrl_pm_select_sleep_state(struct device *dev)
1578{
1579 if (!dev->pins)
1580 return 0;
1581
1582 return pinctrl_pm_select_state(dev, dev->pins->sleep_state);
1583}
1584EXPORT_SYMBOL_GPL(pinctrl_pm_select_sleep_state);
1585
1586/**
1587 * pinctrl_pm_select_idle_state() - select idle pinctrl state for PM
1588 * @dev: device to select idle state for
1589 */
1590int pinctrl_pm_select_idle_state(struct device *dev)
1591{
1592 if (!dev->pins)
1593 return 0;
1594
1595 return pinctrl_pm_select_state(dev, dev->pins->idle_state);
1596}
1597EXPORT_SYMBOL_GPL(pinctrl_pm_select_idle_state);
1598#endif
1599
1600#ifdef CONFIG_DEBUG_FS
1601
1602static int pinctrl_pins_show(struct seq_file *s, void *what)
1603{
1604 struct pinctrl_dev *pctldev = s->private;
1605 const struct pinctrl_ops *ops = pctldev->desc->pctlops;
1606 unsigned i, pin;
1607
1608 seq_printf(s, "registered pins: %d\n", pctldev->desc->npins);
1609
1610 mutex_lock(&pctldev->mutex);
1611
1612 /* The pin number can be retrived from the pin controller descriptor */
1613 for (i = 0; i < pctldev->desc->npins; i++) {
1614 struct pin_desc *desc;
1615
1616 pin = pctldev->desc->pins[i].number;
1617 desc = pin_desc_get(pctldev, pin);
1618 /* Pin space may be sparse */
1619 if (!desc)
1620 continue;
1621
1622 seq_printf(s, "pin %d (%s) ", pin, desc->name);
1623
1624 /* Driver-specific info per pin */
1625 if (ops->pin_dbg_show)
1626 ops->pin_dbg_show(pctldev, s, pin);
1627
1628 seq_puts(s, "\n");
1629 }
1630
1631 mutex_unlock(&pctldev->mutex);
1632
1633 return 0;
1634}
1635DEFINE_SHOW_ATTRIBUTE(pinctrl_pins);
1636
1637static int pinctrl_groups_show(struct seq_file *s, void *what)
1638{
1639 struct pinctrl_dev *pctldev = s->private;
1640 const struct pinctrl_ops *ops = pctldev->desc->pctlops;
1641 unsigned ngroups, selector = 0;
1642
1643 mutex_lock(&pctldev->mutex);
1644
1645 ngroups = ops->get_groups_count(pctldev);
1646
1647 seq_puts(s, "registered pin groups:\n");
1648 while (selector < ngroups) {
1649 const unsigned *pins = NULL;
1650 unsigned num_pins = 0;
1651 const char *gname = ops->get_group_name(pctldev, selector);
1652 const char *pname;
1653 int ret = 0;
1654 int i;
1655
1656 if (ops->get_group_pins)
1657 ret = ops->get_group_pins(pctldev, selector,
1658 &pins, &num_pins);
1659 if (ret)
1660 seq_printf(s, "%s [ERROR GETTING PINS]\n",
1661 gname);
1662 else {
1663 seq_printf(s, "group: %s\n", gname);
1664 for (i = 0; i < num_pins; i++) {
1665 pname = pin_get_name(pctldev, pins[i]);
1666 if (WARN_ON(!pname)) {
1667 mutex_unlock(&pctldev->mutex);
1668 return -EINVAL;
1669 }
1670 seq_printf(s, "pin %d (%s)\n", pins[i], pname);
1671 }
1672 seq_puts(s, "\n");
1673 }
1674 selector++;
1675 }
1676
1677 mutex_unlock(&pctldev->mutex);
1678
1679 return 0;
1680}
1681DEFINE_SHOW_ATTRIBUTE(pinctrl_groups);
1682
1683static int pinctrl_gpioranges_show(struct seq_file *s, void *what)
1684{
1685 struct pinctrl_dev *pctldev = s->private;
1686 struct pinctrl_gpio_range *range;
1687
1688 seq_puts(s, "GPIO ranges handled:\n");
1689
1690 mutex_lock(&pctldev->mutex);
1691
1692 /* Loop over the ranges */
1693 list_for_each_entry(range, &pctldev->gpio_ranges, node) {
1694 if (range->pins) {
1695 int a;
1696 seq_printf(s, "%u: %s GPIOS [%u - %u] PINS {",
1697 range->id, range->name,
1698 range->base, (range->base + range->npins - 1));
1699 for (a = 0; a < range->npins - 1; a++)
1700 seq_printf(s, "%u, ", range->pins[a]);
1701 seq_printf(s, "%u}\n", range->pins[a]);
1702 }
1703 else
1704 seq_printf(s, "%u: %s GPIOS [%u - %u] PINS [%u - %u]\n",
1705 range->id, range->name,
1706 range->base, (range->base + range->npins - 1),
1707 range->pin_base,
1708 (range->pin_base + range->npins - 1));
1709 }
1710
1711 mutex_unlock(&pctldev->mutex);
1712
1713 return 0;
1714}
1715DEFINE_SHOW_ATTRIBUTE(pinctrl_gpioranges);
1716
1717static int pinctrl_devices_show(struct seq_file *s, void *what)
1718{
1719 struct pinctrl_dev *pctldev;
1720
1721 seq_puts(s, "name [pinmux] [pinconf]\n");
1722
1723 mutex_lock(&pinctrldev_list_mutex);
1724
1725 list_for_each_entry(pctldev, &pinctrldev_list, node) {
1726 seq_printf(s, "%s ", pctldev->desc->name);
1727 if (pctldev->desc->pmxops)
1728 seq_puts(s, "yes ");
1729 else
1730 seq_puts(s, "no ");
1731 if (pctldev->desc->confops)
1732 seq_puts(s, "yes");
1733 else
1734 seq_puts(s, "no");
1735 seq_puts(s, "\n");
1736 }
1737
1738 mutex_unlock(&pinctrldev_list_mutex);
1739
1740 return 0;
1741}
1742DEFINE_SHOW_ATTRIBUTE(pinctrl_devices);
1743
1744static inline const char *map_type(enum pinctrl_map_type type)
1745{
1746 static const char * const names[] = {
1747 "INVALID",
1748 "DUMMY_STATE",
1749 "MUX_GROUP",
1750 "CONFIGS_PIN",
1751 "CONFIGS_GROUP",
1752 };
1753
1754 if (type >= ARRAY_SIZE(names))
1755 return "UNKNOWN";
1756
1757 return names[type];
1758}
1759
1760static int pinctrl_maps_show(struct seq_file *s, void *what)
1761{
1762 struct pinctrl_maps *maps_node;
1763 int i;
1764 const struct pinctrl_map *map;
1765
1766 seq_puts(s, "Pinctrl maps:\n");
1767
1768 mutex_lock(&pinctrl_maps_mutex);
1769 for_each_maps(maps_node, i, map) {
1770 seq_printf(s, "device %s\nstate %s\ntype %s (%d)\n",
1771 map->dev_name, map->name, map_type(map->type),
1772 map->type);
1773
1774 if (map->type != PIN_MAP_TYPE_DUMMY_STATE)
1775 seq_printf(s, "controlling device %s\n",
1776 map->ctrl_dev_name);
1777
1778 switch (map->type) {
1779 case PIN_MAP_TYPE_MUX_GROUP:
1780 pinmux_show_map(s, map);
1781 break;
1782 case PIN_MAP_TYPE_CONFIGS_PIN:
1783 case PIN_MAP_TYPE_CONFIGS_GROUP:
1784 pinconf_show_map(s, map);
1785 break;
1786 default:
1787 break;
1788 }
1789
1790 seq_putc(s, '\n');
1791 }
1792 mutex_unlock(&pinctrl_maps_mutex);
1793
1794 return 0;
1795}
1796DEFINE_SHOW_ATTRIBUTE(pinctrl_maps);
1797
1798static int pinctrl_show(struct seq_file *s, void *what)
1799{
1800 struct pinctrl *p;
1801 struct pinctrl_state *state;
1802 struct pinctrl_setting *setting;
1803
1804 seq_puts(s, "Requested pin control handlers their pinmux maps:\n");
1805
1806 mutex_lock(&pinctrl_list_mutex);
1807
1808 list_for_each_entry(p, &pinctrl_list, node) {
1809 seq_printf(s, "device: %s current state: %s\n",
1810 dev_name(p->dev),
1811 p->state ? p->state->name : "none");
1812
1813 list_for_each_entry(state, &p->states, node) {
1814 seq_printf(s, " state: %s\n", state->name);
1815
1816 list_for_each_entry(setting, &state->settings, node) {
1817 struct pinctrl_dev *pctldev = setting->pctldev;
1818
1819 seq_printf(s, " type: %s controller %s ",
1820 map_type(setting->type),
1821 pinctrl_dev_get_name(pctldev));
1822
1823 switch (setting->type) {
1824 case PIN_MAP_TYPE_MUX_GROUP:
1825 pinmux_show_setting(s, setting);
1826 break;
1827 case PIN_MAP_TYPE_CONFIGS_PIN:
1828 case PIN_MAP_TYPE_CONFIGS_GROUP:
1829 pinconf_show_setting(s, setting);
1830 break;
1831 default:
1832 break;
1833 }
1834 }
1835 }
1836 }
1837
1838 mutex_unlock(&pinctrl_list_mutex);
1839
1840 return 0;
1841}
1842DEFINE_SHOW_ATTRIBUTE(pinctrl);
1843
1844static struct dentry *debugfs_root;
1845
1846static void pinctrl_init_device_debugfs(struct pinctrl_dev *pctldev)
1847{
1848 struct dentry *device_root;
1849 const char *debugfs_name;
1850
1851 if (pctldev->desc->name &&
1852 strcmp(dev_name(pctldev->dev), pctldev->desc->name)) {
1853 debugfs_name = devm_kasprintf(pctldev->dev, GFP_KERNEL,
1854 "%s-%s", dev_name(pctldev->dev),
1855 pctldev->desc->name);
1856 if (!debugfs_name) {
1857 pr_warn("failed to determine debugfs dir name for %s\n",
1858 dev_name(pctldev->dev));
1859 return;
1860 }
1861 } else {
1862 debugfs_name = dev_name(pctldev->dev);
1863 }
1864
1865 device_root = debugfs_create_dir(debugfs_name, debugfs_root);
1866 pctldev->device_root = device_root;
1867
1868 if (IS_ERR(device_root) || !device_root) {
1869 pr_warn("failed to create debugfs directory for %s\n",
1870 dev_name(pctldev->dev));
1871 return;
1872 }
1873 debugfs_create_file("pins", S_IFREG | S_IRUGO,
1874 device_root, pctldev, &pinctrl_pins_fops);
1875 debugfs_create_file("pingroups", S_IFREG | S_IRUGO,
1876 device_root, pctldev, &pinctrl_groups_fops);
1877 debugfs_create_file("gpio-ranges", S_IFREG | S_IRUGO,
1878 device_root, pctldev, &pinctrl_gpioranges_fops);
1879 if (pctldev->desc->pmxops)
1880 pinmux_init_device_debugfs(device_root, pctldev);
1881 if (pctldev->desc->confops)
1882 pinconf_init_device_debugfs(device_root, pctldev);
1883}
1884
1885static void pinctrl_remove_device_debugfs(struct pinctrl_dev *pctldev)
1886{
1887 debugfs_remove_recursive(pctldev->device_root);
1888}
1889
1890static void pinctrl_init_debugfs(void)
1891{
1892 debugfs_root = debugfs_create_dir("pinctrl", NULL);
1893 if (IS_ERR(debugfs_root) || !debugfs_root) {
1894 pr_warn("failed to create debugfs directory\n");
1895 debugfs_root = NULL;
1896 return;
1897 }
1898
1899 debugfs_create_file("pinctrl-devices", S_IFREG | S_IRUGO,
1900 debugfs_root, NULL, &pinctrl_devices_fops);
1901 debugfs_create_file("pinctrl-maps", S_IFREG | S_IRUGO,
1902 debugfs_root, NULL, &pinctrl_maps_fops);
1903 debugfs_create_file("pinctrl-handles", S_IFREG | S_IRUGO,
1904 debugfs_root, NULL, &pinctrl_fops);
1905}
1906
1907#else /* CONFIG_DEBUG_FS */
1908
1909static void pinctrl_init_device_debugfs(struct pinctrl_dev *pctldev)
1910{
1911}
1912
1913static void pinctrl_init_debugfs(void)
1914{
1915}
1916
1917static void pinctrl_remove_device_debugfs(struct pinctrl_dev *pctldev)
1918{
1919}
1920
1921#endif
1922
1923static int pinctrl_check_ops(struct pinctrl_dev *pctldev)
1924{
1925 const struct pinctrl_ops *ops = pctldev->desc->pctlops;
1926
1927 if (!ops ||
1928 !ops->get_groups_count ||
1929 !ops->get_group_name)
1930 return -EINVAL;
1931
1932 return 0;
1933}
1934
1935/**
1936 * pinctrl_init_controller() - init a pin controller device
1937 * @pctldesc: descriptor for this pin controller
1938 * @dev: parent device for this pin controller
1939 * @driver_data: private pin controller data for this pin controller
1940 */
1941static struct pinctrl_dev *
1942pinctrl_init_controller(struct pinctrl_desc *pctldesc, struct device *dev,
1943 void *driver_data)
1944{
1945 struct pinctrl_dev *pctldev;
1946 int ret;
1947
1948 if (!pctldesc)
1949 return ERR_PTR(-EINVAL);
1950 if (!pctldesc->name)
1951 return ERR_PTR(-EINVAL);
1952
1953 pctldev = kzalloc(sizeof(*pctldev), GFP_KERNEL);
1954 if (!pctldev)
1955 return ERR_PTR(-ENOMEM);
1956
1957 /* Initialize pin control device struct */
1958 pctldev->owner = pctldesc->owner;
1959 pctldev->desc = pctldesc;
1960 pctldev->driver_data = driver_data;
1961 INIT_RADIX_TREE(&pctldev->pin_desc_tree, GFP_KERNEL);
1962#ifdef CONFIG_GENERIC_PINCTRL_GROUPS
1963 INIT_RADIX_TREE(&pctldev->pin_group_tree, GFP_KERNEL);
1964#endif
1965#ifdef CONFIG_GENERIC_PINMUX_FUNCTIONS
1966 INIT_RADIX_TREE(&pctldev->pin_function_tree, GFP_KERNEL);
1967#endif
1968 INIT_LIST_HEAD(&pctldev->gpio_ranges);
1969 INIT_LIST_HEAD(&pctldev->node);
1970 pctldev->dev = dev;
1971 mutex_init(&pctldev->mutex);
1972
1973 /* check core ops for sanity */
1974 ret = pinctrl_check_ops(pctldev);
1975 if (ret) {
1976 dev_err(dev, "pinctrl ops lacks necessary functions\n");
1977 goto out_err;
1978 }
1979
1980 /* If we're implementing pinmuxing, check the ops for sanity */
1981 if (pctldesc->pmxops) {
1982 ret = pinmux_check_ops(pctldev);
1983 if (ret)
1984 goto out_err;
1985 }
1986
1987 /* If we're implementing pinconfig, check the ops for sanity */
1988 if (pctldesc->confops) {
1989 ret = pinconf_check_ops(pctldev);
1990 if (ret)
1991 goto out_err;
1992 }
1993
1994 /* Register all the pins */
1995 dev_dbg(dev, "try to register %d pins ...\n", pctldesc->npins);
1996 ret = pinctrl_register_pins(pctldev, pctldesc->pins, pctldesc->npins);
1997 if (ret) {
1998 dev_err(dev, "error during pin registration\n");
1999 pinctrl_free_pindescs(pctldev, pctldesc->pins,
2000 pctldesc->npins);
2001 goto out_err;
2002 }
2003
2004 return pctldev;
2005
2006out_err:
2007 mutex_destroy(&pctldev->mutex);
2008 kfree(pctldev);
2009 return ERR_PTR(ret);
2010}
2011
2012static int pinctrl_claim_hogs(struct pinctrl_dev *pctldev)
2013{
2014 pctldev->p = create_pinctrl(pctldev->dev, pctldev);
2015 if (PTR_ERR(pctldev->p) == -ENODEV) {
2016 dev_dbg(pctldev->dev, "no hogs found\n");
2017
2018 return 0;
2019 }
2020
2021 if (IS_ERR(pctldev->p)) {
2022 dev_err(pctldev->dev, "error claiming hogs: %li\n",
2023 PTR_ERR(pctldev->p));
2024
2025 return PTR_ERR(pctldev->p);
2026 }
2027
2028 kref_get(&pctldev->p->users);
2029 pctldev->hog_default =
2030 pinctrl_lookup_state(pctldev->p, PINCTRL_STATE_DEFAULT);
2031 if (IS_ERR(pctldev->hog_default)) {
2032 dev_dbg(pctldev->dev,
2033 "failed to lookup the default state\n");
2034 } else {
2035 if (pinctrl_select_state(pctldev->p,
2036 pctldev->hog_default))
2037 dev_err(pctldev->dev,
2038 "failed to select default state\n");
2039 }
2040
2041 pctldev->hog_sleep =
2042 pinctrl_lookup_state(pctldev->p,
2043 PINCTRL_STATE_SLEEP);
2044 if (IS_ERR(pctldev->hog_sleep))
2045 dev_dbg(pctldev->dev,
2046 "failed to lookup the sleep state\n");
2047
2048 return 0;
2049}
2050
2051int pinctrl_enable(struct pinctrl_dev *pctldev)
2052{
2053 int error;
2054
2055 error = pinctrl_claim_hogs(pctldev);
2056 if (error) {
2057 dev_err(pctldev->dev, "could not claim hogs: %i\n",
2058 error);
2059 mutex_destroy(&pctldev->mutex);
2060 kfree(pctldev);
2061
2062 return error;
2063 }
2064
2065 mutex_lock(&pinctrldev_list_mutex);
2066 list_add_tail(&pctldev->node, &pinctrldev_list);
2067 mutex_unlock(&pinctrldev_list_mutex);
2068
2069 pinctrl_init_device_debugfs(pctldev);
2070
2071 return 0;
2072}
2073EXPORT_SYMBOL_GPL(pinctrl_enable);
2074
2075/**
2076 * pinctrl_register() - register a pin controller device
2077 * @pctldesc: descriptor for this pin controller
2078 * @dev: parent device for this pin controller
2079 * @driver_data: private pin controller data for this pin controller
2080 *
2081 * Note that pinctrl_register() is known to have problems as the pin
2082 * controller driver functions are called before the driver has a
2083 * struct pinctrl_dev handle. To avoid issues later on, please use the
2084 * new pinctrl_register_and_init() below instead.
2085 */
2086struct pinctrl_dev *pinctrl_register(struct pinctrl_desc *pctldesc,
2087 struct device *dev, void *driver_data)
2088{
2089 struct pinctrl_dev *pctldev;
2090 int error;
2091
2092 pctldev = pinctrl_init_controller(pctldesc, dev, driver_data);
2093 if (IS_ERR(pctldev))
2094 return pctldev;
2095
2096 error = pinctrl_enable(pctldev);
2097 if (error)
2098 return ERR_PTR(error);
2099
2100 return pctldev;
2101
2102}
2103EXPORT_SYMBOL_GPL(pinctrl_register);
2104
2105/**
2106 * pinctrl_register_and_init() - register and init pin controller device
2107 * @pctldesc: descriptor for this pin controller
2108 * @dev: parent device for this pin controller
2109 * @driver_data: private pin controller data for this pin controller
2110 * @pctldev: pin controller device
2111 *
2112 * Note that pinctrl_enable() still needs to be manually called after
2113 * this once the driver is ready.
2114 */
2115int pinctrl_register_and_init(struct pinctrl_desc *pctldesc,
2116 struct device *dev, void *driver_data,
2117 struct pinctrl_dev **pctldev)
2118{
2119 struct pinctrl_dev *p;
2120
2121 p = pinctrl_init_controller(pctldesc, dev, driver_data);
2122 if (IS_ERR(p))
2123 return PTR_ERR(p);
2124
2125 /*
2126 * We have pinctrl_start() call functions in the pin controller
2127 * driver with create_pinctrl() for at least dt_node_to_map(). So
2128 * let's make sure pctldev is properly initialized for the
2129 * pin controller driver before we do anything.
2130 */
2131 *pctldev = p;
2132
2133 return 0;
2134}
2135EXPORT_SYMBOL_GPL(pinctrl_register_and_init);
2136
2137/**
2138 * pinctrl_unregister() - unregister pinmux
2139 * @pctldev: pin controller to unregister
2140 *
2141 * Called by pinmux drivers to unregister a pinmux.
2142 */
2143void pinctrl_unregister(struct pinctrl_dev *pctldev)
2144{
2145 struct pinctrl_gpio_range *range, *n;
2146
2147 if (!pctldev)
2148 return;
2149
2150 mutex_lock(&pctldev->mutex);
2151 pinctrl_remove_device_debugfs(pctldev);
2152 mutex_unlock(&pctldev->mutex);
2153
2154 if (!IS_ERR_OR_NULL(pctldev->p))
2155 pinctrl_put(pctldev->p);
2156
2157 mutex_lock(&pinctrldev_list_mutex);
2158 mutex_lock(&pctldev->mutex);
2159 /* TODO: check that no pinmuxes are still active? */
2160 list_del(&pctldev->node);
2161 pinmux_generic_free_functions(pctldev);
2162 pinctrl_generic_free_groups(pctldev);
2163 /* Destroy descriptor tree */
2164 pinctrl_free_pindescs(pctldev, pctldev->desc->pins,
2165 pctldev->desc->npins);
2166 /* remove gpio ranges map */
2167 list_for_each_entry_safe(range, n, &pctldev->gpio_ranges, node)
2168 list_del(&range->node);
2169
2170 mutex_unlock(&pctldev->mutex);
2171 mutex_destroy(&pctldev->mutex);
2172 kfree(pctldev);
2173 mutex_unlock(&pinctrldev_list_mutex);
2174}
2175EXPORT_SYMBOL_GPL(pinctrl_unregister);
2176
2177static void devm_pinctrl_dev_release(struct device *dev, void *res)
2178{
2179 struct pinctrl_dev *pctldev = *(struct pinctrl_dev **)res;
2180
2181 pinctrl_unregister(pctldev);
2182}
2183
2184static int devm_pinctrl_dev_match(struct device *dev, void *res, void *data)
2185{
2186 struct pctldev **r = res;
2187
2188 if (WARN_ON(!r || !*r))
2189 return 0;
2190
2191 return *r == data;
2192}
2193
2194/**
2195 * devm_pinctrl_register() - Resource managed version of pinctrl_register().
2196 * @dev: parent device for this pin controller
2197 * @pctldesc: descriptor for this pin controller
2198 * @driver_data: private pin controller data for this pin controller
2199 *
2200 * Returns an error pointer if pincontrol register failed. Otherwise
2201 * it returns valid pinctrl handle.
2202 *
2203 * The pinctrl device will be automatically released when the device is unbound.
2204 */
2205struct pinctrl_dev *devm_pinctrl_register(struct device *dev,
2206 struct pinctrl_desc *pctldesc,
2207 void *driver_data)
2208{
2209 struct pinctrl_dev **ptr, *pctldev;
2210
2211 ptr = devres_alloc(devm_pinctrl_dev_release, sizeof(*ptr), GFP_KERNEL);
2212 if (!ptr)
2213 return ERR_PTR(-ENOMEM);
2214
2215 pctldev = pinctrl_register(pctldesc, dev, driver_data);
2216 if (IS_ERR(pctldev)) {
2217 devres_free(ptr);
2218 return pctldev;
2219 }
2220
2221 *ptr = pctldev;
2222 devres_add(dev, ptr);
2223
2224 return pctldev;
2225}
2226EXPORT_SYMBOL_GPL(devm_pinctrl_register);
2227
2228/**
2229 * devm_pinctrl_register_and_init() - Resource managed pinctrl register and init
2230 * @dev: parent device for this pin controller
2231 * @pctldesc: descriptor for this pin controller
2232 * @driver_data: private pin controller data for this pin controller
2233 *
2234 * Returns an error pointer if pincontrol register failed. Otherwise
2235 * it returns valid pinctrl handle.
2236 *
2237 * The pinctrl device will be automatically released when the device is unbound.
2238 */
2239int devm_pinctrl_register_and_init(struct device *dev,
2240 struct pinctrl_desc *pctldesc,
2241 void *driver_data,
2242 struct pinctrl_dev **pctldev)
2243{
2244 struct pinctrl_dev **ptr;
2245 int error;
2246
2247 ptr = devres_alloc(devm_pinctrl_dev_release, sizeof(*ptr), GFP_KERNEL);
2248 if (!ptr)
2249 return -ENOMEM;
2250
2251 error = pinctrl_register_and_init(pctldesc, dev, driver_data, pctldev);
2252 if (error) {
2253 devres_free(ptr);
2254 return error;
2255 }
2256
2257 *ptr = *pctldev;
2258 devres_add(dev, ptr);
2259
2260 return 0;
2261}
2262EXPORT_SYMBOL_GPL(devm_pinctrl_register_and_init);
2263
2264/**
2265 * devm_pinctrl_unregister() - Resource managed version of pinctrl_unregister().
2266 * @dev: device for which which resource was allocated
2267 * @pctldev: the pinctrl device to unregister.
2268 */
2269void devm_pinctrl_unregister(struct device *dev, struct pinctrl_dev *pctldev)
2270{
2271 WARN_ON(devres_release(dev, devm_pinctrl_dev_release,
2272 devm_pinctrl_dev_match, pctldev));
2273}
2274EXPORT_SYMBOL_GPL(devm_pinctrl_unregister);
2275
2276static int __init pinctrl_init(void)
2277{
2278 pr_info("initialized pinctrl subsystem\n");
2279 pinctrl_init_debugfs();
2280 return 0;
2281}
2282
2283/* init early since many drivers really need to initialized pinmux early */
2284core_initcall(pinctrl_init);