Linux Audio

Check our new training course

Linux kernel drivers training

May 6-19, 2025
Register
Loading...
Note: File does not exist in v3.1.
   1/*
   2 * Core driver for the pin control subsystem
   3 *
   4 * Copyright (C) 2011-2012 ST-Ericsson SA
   5 * Written on behalf of Linaro for ST-Ericsson
   6 * Based on bits of regulator core, gpio core and clk core
   7 *
   8 * Author: Linus Walleij <linus.walleij@linaro.org>
   9 *
  10 * Copyright (C) 2012 NVIDIA CORPORATION. All rights reserved.
  11 *
  12 * License terms: GNU General Public License (GPL) version 2
  13 */
  14#define pr_fmt(fmt) "pinctrl core: " fmt
  15
  16#include <linux/kernel.h>
  17#include <linux/kref.h>
  18#include <linux/export.h>
  19#include <linux/init.h>
  20#include <linux/device.h>
  21#include <linux/slab.h>
  22#include <linux/err.h>
  23#include <linux/list.h>
  24#include <linux/sysfs.h>
  25#include <linux/debugfs.h>
  26#include <linux/seq_file.h>
  27#include <linux/pinctrl/consumer.h>
  28#include <linux/pinctrl/pinctrl.h>
  29#include <linux/pinctrl/machine.h>
  30
  31#ifdef CONFIG_GPIOLIB
  32#include <asm-generic/gpio.h>
  33#endif
  34
  35#include "core.h"
  36#include "devicetree.h"
  37#include "pinmux.h"
  38#include "pinconf.h"
  39
  40
  41static bool pinctrl_dummy_state;
  42
  43/* Mutex taken to protect pinctrl_list */
  44static DEFINE_MUTEX(pinctrl_list_mutex);
  45
  46/* Mutex taken to protect pinctrl_maps */
  47DEFINE_MUTEX(pinctrl_maps_mutex);
  48
  49/* Mutex taken to protect pinctrldev_list */
  50static DEFINE_MUTEX(pinctrldev_list_mutex);
  51
  52/* Global list of pin control devices (struct pinctrl_dev) */
  53static LIST_HEAD(pinctrldev_list);
  54
  55/* List of pin controller handles (struct pinctrl) */
  56static LIST_HEAD(pinctrl_list);
  57
  58/* List of pinctrl maps (struct pinctrl_maps) */
  59LIST_HEAD(pinctrl_maps);
  60
  61
  62/**
  63 * pinctrl_provide_dummies() - indicate if pinctrl provides dummy state support
  64 *
  65 * Usually this function is called by platforms without pinctrl driver support
  66 * but run with some shared drivers using pinctrl APIs.
  67 * After calling this function, the pinctrl core will return successfully
  68 * with creating a dummy state for the driver to keep going smoothly.
  69 */
  70void pinctrl_provide_dummies(void)
  71{
  72	pinctrl_dummy_state = true;
  73}
  74
  75const char *pinctrl_dev_get_name(struct pinctrl_dev *pctldev)
  76{
  77	/* We're not allowed to register devices without name */
  78	return pctldev->desc->name;
  79}
  80EXPORT_SYMBOL_GPL(pinctrl_dev_get_name);
  81
  82const char *pinctrl_dev_get_devname(struct pinctrl_dev *pctldev)
  83{
  84	return dev_name(pctldev->dev);
  85}
  86EXPORT_SYMBOL_GPL(pinctrl_dev_get_devname);
  87
  88void *pinctrl_dev_get_drvdata(struct pinctrl_dev *pctldev)
  89{
  90	return pctldev->driver_data;
  91}
  92EXPORT_SYMBOL_GPL(pinctrl_dev_get_drvdata);
  93
  94/**
  95 * get_pinctrl_dev_from_devname() - look up pin controller device
  96 * @devname: the name of a device instance, as returned by dev_name()
  97 *
  98 * Looks up a pin control device matching a certain device name or pure device
  99 * pointer, the pure device pointer will take precedence.
 100 */
 101struct pinctrl_dev *get_pinctrl_dev_from_devname(const char *devname)
 102{
 103	struct pinctrl_dev *pctldev = NULL;
 104
 105	if (!devname)
 106		return NULL;
 107
 108	mutex_lock(&pinctrldev_list_mutex);
 109
 110	list_for_each_entry(pctldev, &pinctrldev_list, node) {
 111		if (!strcmp(dev_name(pctldev->dev), devname)) {
 112			/* Matched on device name */
 113			mutex_unlock(&pinctrldev_list_mutex);
 114			return pctldev;
 115		}
 116	}
 117
 118	mutex_unlock(&pinctrldev_list_mutex);
 119
 120	return NULL;
 121}
 122
 123struct pinctrl_dev *get_pinctrl_dev_from_of_node(struct device_node *np)
 124{
 125	struct pinctrl_dev *pctldev;
 126
 127	mutex_lock(&pinctrldev_list_mutex);
 128
 129	list_for_each_entry(pctldev, &pinctrldev_list, node)
 130		if (pctldev->dev->of_node == np) {
 131			mutex_unlock(&pinctrldev_list_mutex);
 132			return pctldev;
 133		}
 134
 135	mutex_unlock(&pinctrldev_list_mutex);
 136
 137	return NULL;
 138}
 139
 140/**
 141 * pin_get_from_name() - look up a pin number from a name
 142 * @pctldev: the pin control device to lookup the pin on
 143 * @name: the name of the pin to look up
 144 */
 145int pin_get_from_name(struct pinctrl_dev *pctldev, const char *name)
 146{
 147	unsigned i, pin;
 148
 149	/* The pin number can be retrived from the pin controller descriptor */
 150	for (i = 0; i < pctldev->desc->npins; i++) {
 151		struct pin_desc *desc;
 152
 153		pin = pctldev->desc->pins[i].number;
 154		desc = pin_desc_get(pctldev, pin);
 155		/* Pin space may be sparse */
 156		if (desc && !strcmp(name, desc->name))
 157			return pin;
 158	}
 159
 160	return -EINVAL;
 161}
 162
 163/**
 164 * pin_get_name_from_id() - look up a pin name from a pin id
 165 * @pctldev: the pin control device to lookup the pin on
 166 * @name: the name of the pin to look up
 167 */
 168const char *pin_get_name(struct pinctrl_dev *pctldev, const unsigned pin)
 169{
 170	const struct pin_desc *desc;
 171
 172	desc = pin_desc_get(pctldev, pin);
 173	if (desc == NULL) {
 174		dev_err(pctldev->dev, "failed to get pin(%d) name\n",
 175			pin);
 176		return NULL;
 177	}
 178
 179	return desc->name;
 180}
 181
 182/**
 183 * pin_is_valid() - check if pin exists on controller
 184 * @pctldev: the pin control device to check the pin on
 185 * @pin: pin to check, use the local pin controller index number
 186 *
 187 * This tells us whether a certain pin exist on a certain pin controller or
 188 * not. Pin lists may be sparse, so some pins may not exist.
 189 */
 190bool pin_is_valid(struct pinctrl_dev *pctldev, int pin)
 191{
 192	struct pin_desc *pindesc;
 193
 194	if (pin < 0)
 195		return false;
 196
 197	mutex_lock(&pctldev->mutex);
 198	pindesc = pin_desc_get(pctldev, pin);
 199	mutex_unlock(&pctldev->mutex);
 200
 201	return pindesc != NULL;
 202}
 203EXPORT_SYMBOL_GPL(pin_is_valid);
 204
 205/* Deletes a range of pin descriptors */
 206static void pinctrl_free_pindescs(struct pinctrl_dev *pctldev,
 207				  const struct pinctrl_pin_desc *pins,
 208				  unsigned num_pins)
 209{
 210	int i;
 211
 212	for (i = 0; i < num_pins; i++) {
 213		struct pin_desc *pindesc;
 214
 215		pindesc = radix_tree_lookup(&pctldev->pin_desc_tree,
 216					    pins[i].number);
 217		if (pindesc != NULL) {
 218			radix_tree_delete(&pctldev->pin_desc_tree,
 219					  pins[i].number);
 220			if (pindesc->dynamic_name)
 221				kfree(pindesc->name);
 222		}
 223		kfree(pindesc);
 224	}
 225}
 226
 227static int pinctrl_register_one_pin(struct pinctrl_dev *pctldev,
 228				    unsigned number, const char *name)
 229{
 230	struct pin_desc *pindesc;
 231
 232	pindesc = pin_desc_get(pctldev, number);
 233	if (pindesc != NULL) {
 234		pr_err("pin %d already registered on %s\n", number,
 235		       pctldev->desc->name);
 236		return -EINVAL;
 237	}
 238
 239	pindesc = kzalloc(sizeof(*pindesc), GFP_KERNEL);
 240	if (pindesc == NULL) {
 241		dev_err(pctldev->dev, "failed to alloc struct pin_desc\n");
 242		return -ENOMEM;
 243	}
 244
 245	/* Set owner */
 246	pindesc->pctldev = pctldev;
 247
 248	/* Copy basic pin info */
 249	if (name) {
 250		pindesc->name = name;
 251	} else {
 252		pindesc->name = kasprintf(GFP_KERNEL, "PIN%u", number);
 253		if (pindesc->name == NULL) {
 254			kfree(pindesc);
 255			return -ENOMEM;
 256		}
 257		pindesc->dynamic_name = true;
 258	}
 259
 260	radix_tree_insert(&pctldev->pin_desc_tree, number, pindesc);
 261	pr_debug("registered pin %d (%s) on %s\n",
 262		 number, pindesc->name, pctldev->desc->name);
 263	return 0;
 264}
 265
 266static int pinctrl_register_pins(struct pinctrl_dev *pctldev,
 267				 struct pinctrl_pin_desc const *pins,
 268				 unsigned num_descs)
 269{
 270	unsigned i;
 271	int ret = 0;
 272
 273	for (i = 0; i < num_descs; i++) {
 274		ret = pinctrl_register_one_pin(pctldev,
 275					       pins[i].number, pins[i].name);
 276		if (ret)
 277			return ret;
 278	}
 279
 280	return 0;
 281}
 282
 283/**
 284 * gpio_to_pin() - GPIO range GPIO number to pin number translation
 285 * @range: GPIO range used for the translation
 286 * @gpio: gpio pin to translate to a pin number
 287 *
 288 * Finds the pin number for a given GPIO using the specified GPIO range
 289 * as a base for translation. The distinction between linear GPIO ranges
 290 * and pin list based GPIO ranges is managed correctly by this function.
 291 *
 292 * This function assumes the gpio is part of the specified GPIO range, use
 293 * only after making sure this is the case (e.g. by calling it on the
 294 * result of successful pinctrl_get_device_gpio_range calls)!
 295 */
 296static inline int gpio_to_pin(struct pinctrl_gpio_range *range,
 297				unsigned int gpio)
 298{
 299	unsigned int offset = gpio - range->base;
 300	if (range->pins)
 301		return range->pins[offset];
 302	else
 303		return range->pin_base + offset;
 304}
 305
 306/**
 307 * pinctrl_match_gpio_range() - check if a certain GPIO pin is in range
 308 * @pctldev: pin controller device to check
 309 * @gpio: gpio pin to check taken from the global GPIO pin space
 310 *
 311 * Tries to match a GPIO pin number to the ranges handled by a certain pin
 312 * controller, return the range or NULL
 313 */
 314static struct pinctrl_gpio_range *
 315pinctrl_match_gpio_range(struct pinctrl_dev *pctldev, unsigned gpio)
 316{
 317	struct pinctrl_gpio_range *range = NULL;
 318
 319	mutex_lock(&pctldev->mutex);
 320	/* Loop over the ranges */
 321	list_for_each_entry(range, &pctldev->gpio_ranges, node) {
 322		/* Check if we're in the valid range */
 323		if (gpio >= range->base &&
 324		    gpio < range->base + range->npins) {
 325			mutex_unlock(&pctldev->mutex);
 326			return range;
 327		}
 328	}
 329	mutex_unlock(&pctldev->mutex);
 330	return NULL;
 331}
 332
 333/**
 334 * pinctrl_ready_for_gpio_range() - check if other GPIO pins of
 335 * the same GPIO chip are in range
 336 * @gpio: gpio pin to check taken from the global GPIO pin space
 337 *
 338 * This function is complement of pinctrl_match_gpio_range(). If the return
 339 * value of pinctrl_match_gpio_range() is NULL, this function could be used
 340 * to check whether pinctrl device is ready or not. Maybe some GPIO pins
 341 * of the same GPIO chip don't have back-end pinctrl interface.
 342 * If the return value is true, it means that pinctrl device is ready & the
 343 * certain GPIO pin doesn't have back-end pinctrl device. If the return value
 344 * is false, it means that pinctrl device may not be ready.
 345 */
 346#ifdef CONFIG_GPIOLIB
 347static bool pinctrl_ready_for_gpio_range(unsigned gpio)
 348{
 349	struct pinctrl_dev *pctldev;
 350	struct pinctrl_gpio_range *range = NULL;
 351	struct gpio_chip *chip = gpio_to_chip(gpio);
 352
 353	mutex_lock(&pinctrldev_list_mutex);
 354
 355	/* Loop over the pin controllers */
 356	list_for_each_entry(pctldev, &pinctrldev_list, node) {
 357		/* Loop over the ranges */
 358		mutex_lock(&pctldev->mutex);
 359		list_for_each_entry(range, &pctldev->gpio_ranges, node) {
 360			/* Check if any gpio range overlapped with gpio chip */
 361			if (range->base + range->npins - 1 < chip->base ||
 362			    range->base > chip->base + chip->ngpio - 1)
 363				continue;
 364			mutex_unlock(&pctldev->mutex);
 365			mutex_unlock(&pinctrldev_list_mutex);
 366			return true;
 367		}
 368		mutex_unlock(&pctldev->mutex);
 369	}
 370
 371	mutex_unlock(&pinctrldev_list_mutex);
 372
 373	return false;
 374}
 375#else
 376static bool pinctrl_ready_for_gpio_range(unsigned gpio) { return true; }
 377#endif
 378
 379/**
 380 * pinctrl_get_device_gpio_range() - find device for GPIO range
 381 * @gpio: the pin to locate the pin controller for
 382 * @outdev: the pin control device if found
 383 * @outrange: the GPIO range if found
 384 *
 385 * Find the pin controller handling a certain GPIO pin from the pinspace of
 386 * the GPIO subsystem, return the device and the matching GPIO range. Returns
 387 * -EPROBE_DEFER if the GPIO range could not be found in any device since it
 388 * may still have not been registered.
 389 */
 390static int pinctrl_get_device_gpio_range(unsigned gpio,
 391					 struct pinctrl_dev **outdev,
 392					 struct pinctrl_gpio_range **outrange)
 393{
 394	struct pinctrl_dev *pctldev = NULL;
 395
 396	mutex_lock(&pinctrldev_list_mutex);
 397
 398	/* Loop over the pin controllers */
 399	list_for_each_entry(pctldev, &pinctrldev_list, node) {
 400		struct pinctrl_gpio_range *range;
 401
 402		range = pinctrl_match_gpio_range(pctldev, gpio);
 403		if (range != NULL) {
 404			*outdev = pctldev;
 405			*outrange = range;
 406			mutex_unlock(&pinctrldev_list_mutex);
 407			return 0;
 408		}
 409	}
 410
 411	mutex_unlock(&pinctrldev_list_mutex);
 412
 413	return -EPROBE_DEFER;
 414}
 415
 416/**
 417 * pinctrl_add_gpio_range() - register a GPIO range for a controller
 418 * @pctldev: pin controller device to add the range to
 419 * @range: the GPIO range to add
 420 *
 421 * This adds a range of GPIOs to be handled by a certain pin controller. Call
 422 * this to register handled ranges after registering your pin controller.
 423 */
 424void pinctrl_add_gpio_range(struct pinctrl_dev *pctldev,
 425			    struct pinctrl_gpio_range *range)
 426{
 427	mutex_lock(&pctldev->mutex);
 428	list_add_tail(&range->node, &pctldev->gpio_ranges);
 429	mutex_unlock(&pctldev->mutex);
 430}
 431EXPORT_SYMBOL_GPL(pinctrl_add_gpio_range);
 432
 433void pinctrl_add_gpio_ranges(struct pinctrl_dev *pctldev,
 434			     struct pinctrl_gpio_range *ranges,
 435			     unsigned nranges)
 436{
 437	int i;
 438
 439	for (i = 0; i < nranges; i++)
 440		pinctrl_add_gpio_range(pctldev, &ranges[i]);
 441}
 442EXPORT_SYMBOL_GPL(pinctrl_add_gpio_ranges);
 443
 444struct pinctrl_dev *pinctrl_find_and_add_gpio_range(const char *devname,
 445		struct pinctrl_gpio_range *range)
 446{
 447	struct pinctrl_dev *pctldev;
 448
 449	pctldev = get_pinctrl_dev_from_devname(devname);
 450
 451	/*
 452	 * If we can't find this device, let's assume that is because
 453	 * it has not probed yet, so the driver trying to register this
 454	 * range need to defer probing.
 455	 */
 456	if (!pctldev) {
 457		return ERR_PTR(-EPROBE_DEFER);
 458	}
 459	pinctrl_add_gpio_range(pctldev, range);
 460
 461	return pctldev;
 462}
 463EXPORT_SYMBOL_GPL(pinctrl_find_and_add_gpio_range);
 464
 465int pinctrl_get_group_pins(struct pinctrl_dev *pctldev, const char *pin_group,
 466				const unsigned **pins, unsigned *num_pins)
 467{
 468	const struct pinctrl_ops *pctlops = pctldev->desc->pctlops;
 469	int gs;
 470
 471	gs = pinctrl_get_group_selector(pctldev, pin_group);
 472	if (gs < 0)
 473		return gs;
 474
 475	return pctlops->get_group_pins(pctldev, gs, pins, num_pins);
 476}
 477EXPORT_SYMBOL_GPL(pinctrl_get_group_pins);
 478
 479/**
 480 * pinctrl_find_gpio_range_from_pin() - locate the GPIO range for a pin
 481 * @pctldev: the pin controller device to look in
 482 * @pin: a controller-local number to find the range for
 483 */
 484struct pinctrl_gpio_range *
 485pinctrl_find_gpio_range_from_pin(struct pinctrl_dev *pctldev,
 486				 unsigned int pin)
 487{
 488	struct pinctrl_gpio_range *range;
 489
 490	mutex_lock(&pctldev->mutex);
 491	/* Loop over the ranges */
 492	list_for_each_entry(range, &pctldev->gpio_ranges, node) {
 493		/* Check if we're in the valid range */
 494		if (range->pins) {
 495			int a;
 496			for (a = 0; a < range->npins; a++) {
 497				if (range->pins[a] == pin)
 498					goto out;
 499			}
 500		} else if (pin >= range->pin_base &&
 501			   pin < range->pin_base + range->npins)
 502			goto out;
 503	}
 504	range = NULL;
 505out:
 506	mutex_unlock(&pctldev->mutex);
 507	return range;
 508}
 509EXPORT_SYMBOL_GPL(pinctrl_find_gpio_range_from_pin);
 510
 511/**
 512 * pinctrl_remove_gpio_range() - remove a range of GPIOs fro a pin controller
 513 * @pctldev: pin controller device to remove the range from
 514 * @range: the GPIO range to remove
 515 */
 516void pinctrl_remove_gpio_range(struct pinctrl_dev *pctldev,
 517			       struct pinctrl_gpio_range *range)
 518{
 519	mutex_lock(&pctldev->mutex);
 520	list_del(&range->node);
 521	mutex_unlock(&pctldev->mutex);
 522}
 523EXPORT_SYMBOL_GPL(pinctrl_remove_gpio_range);
 524
 525/**
 526 * pinctrl_get_group_selector() - returns the group selector for a group
 527 * @pctldev: the pin controller handling the group
 528 * @pin_group: the pin group to look up
 529 */
 530int pinctrl_get_group_selector(struct pinctrl_dev *pctldev,
 531			       const char *pin_group)
 532{
 533	const struct pinctrl_ops *pctlops = pctldev->desc->pctlops;
 534	unsigned ngroups = pctlops->get_groups_count(pctldev);
 535	unsigned group_selector = 0;
 536
 537	while (group_selector < ngroups) {
 538		const char *gname = pctlops->get_group_name(pctldev,
 539							    group_selector);
 540		if (!strcmp(gname, pin_group)) {
 541			dev_dbg(pctldev->dev,
 542				"found group selector %u for %s\n",
 543				group_selector,
 544				pin_group);
 545			return group_selector;
 546		}
 547
 548		group_selector++;
 549	}
 550
 551	dev_err(pctldev->dev, "does not have pin group %s\n",
 552		pin_group);
 553
 554	return -EINVAL;
 555}
 556
 557/**
 558 * pinctrl_request_gpio() - request a single pin to be used in as GPIO
 559 * @gpio: the GPIO pin number from the GPIO subsystem number space
 560 *
 561 * This function should *ONLY* be used from gpiolib-based GPIO drivers,
 562 * as part of their gpio_request() semantics, platforms and individual drivers
 563 * shall *NOT* request GPIO pins to be muxed in.
 564 */
 565int pinctrl_request_gpio(unsigned gpio)
 566{
 567	struct pinctrl_dev *pctldev;
 568	struct pinctrl_gpio_range *range;
 569	int ret;
 570	int pin;
 571
 572	ret = pinctrl_get_device_gpio_range(gpio, &pctldev, &range);
 573	if (ret) {
 574		if (pinctrl_ready_for_gpio_range(gpio))
 575			ret = 0;
 576		return ret;
 577	}
 578
 579	mutex_lock(&pctldev->mutex);
 580
 581	/* Convert to the pin controllers number space */
 582	pin = gpio_to_pin(range, gpio);
 583
 584	ret = pinmux_request_gpio(pctldev, range, pin, gpio);
 585
 586	mutex_unlock(&pctldev->mutex);
 587
 588	return ret;
 589}
 590EXPORT_SYMBOL_GPL(pinctrl_request_gpio);
 591
 592/**
 593 * pinctrl_free_gpio() - free control on a single pin, currently used as GPIO
 594 * @gpio: the GPIO pin number from the GPIO subsystem number space
 595 *
 596 * This function should *ONLY* be used from gpiolib-based GPIO drivers,
 597 * as part of their gpio_free() semantics, platforms and individual drivers
 598 * shall *NOT* request GPIO pins to be muxed out.
 599 */
 600void pinctrl_free_gpio(unsigned gpio)
 601{
 602	struct pinctrl_dev *pctldev;
 603	struct pinctrl_gpio_range *range;
 604	int ret;
 605	int pin;
 606
 607	ret = pinctrl_get_device_gpio_range(gpio, &pctldev, &range);
 608	if (ret) {
 609		return;
 610	}
 611	mutex_lock(&pctldev->mutex);
 612
 613	/* Convert to the pin controllers number space */
 614	pin = gpio_to_pin(range, gpio);
 615
 616	pinmux_free_gpio(pctldev, pin, range);
 617
 618	mutex_unlock(&pctldev->mutex);
 619}
 620EXPORT_SYMBOL_GPL(pinctrl_free_gpio);
 621
 622static int pinctrl_gpio_direction(unsigned gpio, bool input)
 623{
 624	struct pinctrl_dev *pctldev;
 625	struct pinctrl_gpio_range *range;
 626	int ret;
 627	int pin;
 628
 629	ret = pinctrl_get_device_gpio_range(gpio, &pctldev, &range);
 630	if (ret) {
 631		return ret;
 632	}
 633
 634	mutex_lock(&pctldev->mutex);
 635
 636	/* Convert to the pin controllers number space */
 637	pin = gpio_to_pin(range, gpio);
 638	ret = pinmux_gpio_direction(pctldev, range, pin, input);
 639
 640	mutex_unlock(&pctldev->mutex);
 641
 642	return ret;
 643}
 644
 645/**
 646 * pinctrl_gpio_direction_input() - request a GPIO pin to go into input mode
 647 * @gpio: the GPIO pin number from the GPIO subsystem number space
 648 *
 649 * This function should *ONLY* be used from gpiolib-based GPIO drivers,
 650 * as part of their gpio_direction_input() semantics, platforms and individual
 651 * drivers shall *NOT* touch pin control GPIO calls.
 652 */
 653int pinctrl_gpio_direction_input(unsigned gpio)
 654{
 655	return pinctrl_gpio_direction(gpio, true);
 656}
 657EXPORT_SYMBOL_GPL(pinctrl_gpio_direction_input);
 658
 659/**
 660 * pinctrl_gpio_direction_output() - request a GPIO pin to go into output mode
 661 * @gpio: the GPIO pin number from the GPIO subsystem number space
 662 *
 663 * This function should *ONLY* be used from gpiolib-based GPIO drivers,
 664 * as part of their gpio_direction_output() semantics, platforms and individual
 665 * drivers shall *NOT* touch pin control GPIO calls.
 666 */
 667int pinctrl_gpio_direction_output(unsigned gpio)
 668{
 669	return pinctrl_gpio_direction(gpio, false);
 670}
 671EXPORT_SYMBOL_GPL(pinctrl_gpio_direction_output);
 672
 673static struct pinctrl_state *find_state(struct pinctrl *p,
 674					const char *name)
 675{
 676	struct pinctrl_state *state;
 677
 678	list_for_each_entry(state, &p->states, node)
 679		if (!strcmp(state->name, name))
 680			return state;
 681
 682	return NULL;
 683}
 684
 685static struct pinctrl_state *create_state(struct pinctrl *p,
 686					  const char *name)
 687{
 688	struct pinctrl_state *state;
 689
 690	state = kzalloc(sizeof(*state), GFP_KERNEL);
 691	if (state == NULL) {
 692		dev_err(p->dev,
 693			"failed to alloc struct pinctrl_state\n");
 694		return ERR_PTR(-ENOMEM);
 695	}
 696
 697	state->name = name;
 698	INIT_LIST_HEAD(&state->settings);
 699
 700	list_add_tail(&state->node, &p->states);
 701
 702	return state;
 703}
 704
 705static int add_setting(struct pinctrl *p, struct pinctrl_map const *map)
 706{
 707	struct pinctrl_state *state;
 708	struct pinctrl_setting *setting;
 709	int ret;
 710
 711	state = find_state(p, map->name);
 712	if (!state)
 713		state = create_state(p, map->name);
 714	if (IS_ERR(state))
 715		return PTR_ERR(state);
 716
 717	if (map->type == PIN_MAP_TYPE_DUMMY_STATE)
 718		return 0;
 719
 720	setting = kzalloc(sizeof(*setting), GFP_KERNEL);
 721	if (setting == NULL) {
 722		dev_err(p->dev,
 723			"failed to alloc struct pinctrl_setting\n");
 724		return -ENOMEM;
 725	}
 726
 727	setting->type = map->type;
 728
 729	setting->pctldev = get_pinctrl_dev_from_devname(map->ctrl_dev_name);
 730	if (setting->pctldev == NULL) {
 731		kfree(setting);
 732		/* Do not defer probing of hogs (circular loop) */
 733		if (!strcmp(map->ctrl_dev_name, map->dev_name))
 734			return -ENODEV;
 735		/*
 736		 * OK let us guess that the driver is not there yet, and
 737		 * let's defer obtaining this pinctrl handle to later...
 738		 */
 739		dev_info(p->dev, "unknown pinctrl device %s in map entry, deferring probe",
 740			map->ctrl_dev_name);
 741		return -EPROBE_DEFER;
 742	}
 743
 744	setting->dev_name = map->dev_name;
 745
 746	switch (map->type) {
 747	case PIN_MAP_TYPE_MUX_GROUP:
 748		ret = pinmux_map_to_setting(map, setting);
 749		break;
 750	case PIN_MAP_TYPE_CONFIGS_PIN:
 751	case PIN_MAP_TYPE_CONFIGS_GROUP:
 752		ret = pinconf_map_to_setting(map, setting);
 753		break;
 754	default:
 755		ret = -EINVAL;
 756		break;
 757	}
 758	if (ret < 0) {
 759		kfree(setting);
 760		return ret;
 761	}
 762
 763	list_add_tail(&setting->node, &state->settings);
 764
 765	return 0;
 766}
 767
 768static struct pinctrl *find_pinctrl(struct device *dev)
 769{
 770	struct pinctrl *p;
 771
 772	mutex_lock(&pinctrl_list_mutex);
 773	list_for_each_entry(p, &pinctrl_list, node)
 774		if (p->dev == dev) {
 775			mutex_unlock(&pinctrl_list_mutex);
 776			return p;
 777		}
 778
 779	mutex_unlock(&pinctrl_list_mutex);
 780	return NULL;
 781}
 782
 783static void pinctrl_free(struct pinctrl *p, bool inlist);
 784
 785static struct pinctrl *create_pinctrl(struct device *dev)
 786{
 787	struct pinctrl *p;
 788	const char *devname;
 789	struct pinctrl_maps *maps_node;
 790	int i;
 791	struct pinctrl_map const *map;
 792	int ret;
 793
 794	/*
 795	 * create the state cookie holder struct pinctrl for each
 796	 * mapping, this is what consumers will get when requesting
 797	 * a pin control handle with pinctrl_get()
 798	 */
 799	p = kzalloc(sizeof(*p), GFP_KERNEL);
 800	if (p == NULL) {
 801		dev_err(dev, "failed to alloc struct pinctrl\n");
 802		return ERR_PTR(-ENOMEM);
 803	}
 804	p->dev = dev;
 805	INIT_LIST_HEAD(&p->states);
 806	INIT_LIST_HEAD(&p->dt_maps);
 807
 808	ret = pinctrl_dt_to_map(p);
 809	if (ret < 0) {
 810		kfree(p);
 811		return ERR_PTR(ret);
 812	}
 813
 814	devname = dev_name(dev);
 815
 816	mutex_lock(&pinctrl_maps_mutex);
 817	/* Iterate over the pin control maps to locate the right ones */
 818	for_each_maps(maps_node, i, map) {
 819		/* Map must be for this device */
 820		if (strcmp(map->dev_name, devname))
 821			continue;
 822
 823		ret = add_setting(p, map);
 824		/*
 825		 * At this point the adding of a setting may:
 826		 *
 827		 * - Defer, if the pinctrl device is not yet available
 828		 * - Fail, if the pinctrl device is not yet available,
 829		 *   AND the setting is a hog. We cannot defer that, since
 830		 *   the hog will kick in immediately after the device
 831		 *   is registered.
 832		 *
 833		 * If the error returned was not -EPROBE_DEFER then we
 834		 * accumulate the errors to see if we end up with
 835		 * an -EPROBE_DEFER later, as that is the worst case.
 836		 */
 837		if (ret == -EPROBE_DEFER) {
 838			pinctrl_free(p, false);
 839			mutex_unlock(&pinctrl_maps_mutex);
 840			return ERR_PTR(ret);
 841		}
 842	}
 843	mutex_unlock(&pinctrl_maps_mutex);
 844
 845	if (ret < 0) {
 846		/* If some other error than deferral occured, return here */
 847		pinctrl_free(p, false);
 848		return ERR_PTR(ret);
 849	}
 850
 851	kref_init(&p->users);
 852
 853	/* Add the pinctrl handle to the global list */
 854	mutex_lock(&pinctrl_list_mutex);
 855	list_add_tail(&p->node, &pinctrl_list);
 856	mutex_unlock(&pinctrl_list_mutex);
 857
 858	return p;
 859}
 860
 861/**
 862 * pinctrl_get() - retrieves the pinctrl handle for a device
 863 * @dev: the device to obtain the handle for
 864 */
 865struct pinctrl *pinctrl_get(struct device *dev)
 866{
 867	struct pinctrl *p;
 868
 869	if (WARN_ON(!dev))
 870		return ERR_PTR(-EINVAL);
 871
 872	/*
 873	 * See if somebody else (such as the device core) has already
 874	 * obtained a handle to the pinctrl for this device. In that case,
 875	 * return another pointer to it.
 876	 */
 877	p = find_pinctrl(dev);
 878	if (p != NULL) {
 879		dev_dbg(dev, "obtain a copy of previously claimed pinctrl\n");
 880		kref_get(&p->users);
 881		return p;
 882	}
 883
 884	return create_pinctrl(dev);
 885}
 886EXPORT_SYMBOL_GPL(pinctrl_get);
 887
 888static void pinctrl_free_setting(bool disable_setting,
 889				 struct pinctrl_setting *setting)
 890{
 891	switch (setting->type) {
 892	case PIN_MAP_TYPE_MUX_GROUP:
 893		if (disable_setting)
 894			pinmux_disable_setting(setting);
 895		pinmux_free_setting(setting);
 896		break;
 897	case PIN_MAP_TYPE_CONFIGS_PIN:
 898	case PIN_MAP_TYPE_CONFIGS_GROUP:
 899		pinconf_free_setting(setting);
 900		break;
 901	default:
 902		break;
 903	}
 904}
 905
 906static void pinctrl_free(struct pinctrl *p, bool inlist)
 907{
 908	struct pinctrl_state *state, *n1;
 909	struct pinctrl_setting *setting, *n2;
 910
 911	mutex_lock(&pinctrl_list_mutex);
 912	list_for_each_entry_safe(state, n1, &p->states, node) {
 913		list_for_each_entry_safe(setting, n2, &state->settings, node) {
 914			pinctrl_free_setting(state == p->state, setting);
 915			list_del(&setting->node);
 916			kfree(setting);
 917		}
 918		list_del(&state->node);
 919		kfree(state);
 920	}
 921
 922	pinctrl_dt_free_maps(p);
 923
 924	if (inlist)
 925		list_del(&p->node);
 926	kfree(p);
 927	mutex_unlock(&pinctrl_list_mutex);
 928}
 929
 930/**
 931 * pinctrl_release() - release the pinctrl handle
 932 * @kref: the kref in the pinctrl being released
 933 */
 934static void pinctrl_release(struct kref *kref)
 935{
 936	struct pinctrl *p = container_of(kref, struct pinctrl, users);
 937
 938	pinctrl_free(p, true);
 939}
 940
 941/**
 942 * pinctrl_put() - decrease use count on a previously claimed pinctrl handle
 943 * @p: the pinctrl handle to release
 944 */
 945void pinctrl_put(struct pinctrl *p)
 946{
 947	kref_put(&p->users, pinctrl_release);
 948}
 949EXPORT_SYMBOL_GPL(pinctrl_put);
 950
 951/**
 952 * pinctrl_lookup_state() - retrieves a state handle from a pinctrl handle
 953 * @p: the pinctrl handle to retrieve the state from
 954 * @name: the state name to retrieve
 955 */
 956struct pinctrl_state *pinctrl_lookup_state(struct pinctrl *p,
 957						 const char *name)
 958{
 959	struct pinctrl_state *state;
 960
 961	state = find_state(p, name);
 962	if (!state) {
 963		if (pinctrl_dummy_state) {
 964			/* create dummy state */
 965			dev_dbg(p->dev, "using pinctrl dummy state (%s)\n",
 966				name);
 967			state = create_state(p, name);
 968		} else
 969			state = ERR_PTR(-ENODEV);
 970	}
 971
 972	return state;
 973}
 974EXPORT_SYMBOL_GPL(pinctrl_lookup_state);
 975
 976/**
 977 * pinctrl_select_state() - select/activate/program a pinctrl state to HW
 978 * @p: the pinctrl handle for the device that requests configuration
 979 * @state: the state handle to select/activate/program
 980 */
 981int pinctrl_select_state(struct pinctrl *p, struct pinctrl_state *state)
 982{
 983	struct pinctrl_setting *setting, *setting2;
 984	struct pinctrl_state *old_state = p->state;
 985	int ret;
 986
 987	if (p->state == state)
 988		return 0;
 989
 990	if (p->state) {
 991		/*
 992		 * The set of groups with a mux configuration in the old state
 993		 * may not be identical to the set of groups with a mux setting
 994		 * in the new state. While this might be unusual, it's entirely
 995		 * possible for the "user"-supplied mapping table to be written
 996		 * that way. For each group that was configured in the old state
 997		 * but not in the new state, this code puts that group into a
 998		 * safe/disabled state.
 999		 */
1000		list_for_each_entry(setting, &p->state->settings, node) {
1001			bool found = false;
1002			if (setting->type != PIN_MAP_TYPE_MUX_GROUP)
1003				continue;
1004			list_for_each_entry(setting2, &state->settings, node) {
1005				if (setting2->type != PIN_MAP_TYPE_MUX_GROUP)
1006					continue;
1007				if (setting2->data.mux.group ==
1008						setting->data.mux.group) {
1009					found = true;
1010					break;
1011				}
1012			}
1013			if (!found)
1014				pinmux_disable_setting(setting);
1015		}
1016	}
1017
1018	p->state = NULL;
1019
1020	/* Apply all the settings for the new state */
1021	list_for_each_entry(setting, &state->settings, node) {
1022		switch (setting->type) {
1023		case PIN_MAP_TYPE_MUX_GROUP:
1024			ret = pinmux_enable_setting(setting);
1025			break;
1026		case PIN_MAP_TYPE_CONFIGS_PIN:
1027		case PIN_MAP_TYPE_CONFIGS_GROUP:
1028			ret = pinconf_apply_setting(setting);
1029			break;
1030		default:
1031			ret = -EINVAL;
1032			break;
1033		}
1034
1035		if (ret < 0) {
1036			goto unapply_new_state;
1037		}
1038	}
1039
1040	p->state = state;
1041
1042	return 0;
1043
1044unapply_new_state:
1045	dev_err(p->dev, "Error applying setting, reverse things back\n");
1046
1047	list_for_each_entry(setting2, &state->settings, node) {
1048		if (&setting2->node == &setting->node)
1049			break;
1050		/*
1051		 * All we can do here is pinmux_disable_setting.
1052		 * That means that some pins are muxed differently now
1053		 * than they were before applying the setting (We can't
1054		 * "unmux a pin"!), but it's not a big deal since the pins
1055		 * are free to be muxed by another apply_setting.
1056		 */
1057		if (setting2->type == PIN_MAP_TYPE_MUX_GROUP)
1058			pinmux_disable_setting(setting2);
1059	}
1060
1061	/* There's no infinite recursive loop here because p->state is NULL */
1062	if (old_state)
1063		pinctrl_select_state(p, old_state);
1064
1065	return ret;
1066}
1067EXPORT_SYMBOL_GPL(pinctrl_select_state);
1068
1069static void devm_pinctrl_release(struct device *dev, void *res)
1070{
1071	pinctrl_put(*(struct pinctrl **)res);
1072}
1073
1074/**
1075 * struct devm_pinctrl_get() - Resource managed pinctrl_get()
1076 * @dev: the device to obtain the handle for
1077 *
1078 * If there is a need to explicitly destroy the returned struct pinctrl,
1079 * devm_pinctrl_put() should be used, rather than plain pinctrl_put().
1080 */
1081struct pinctrl *devm_pinctrl_get(struct device *dev)
1082{
1083	struct pinctrl **ptr, *p;
1084
1085	ptr = devres_alloc(devm_pinctrl_release, sizeof(*ptr), GFP_KERNEL);
1086	if (!ptr)
1087		return ERR_PTR(-ENOMEM);
1088
1089	p = pinctrl_get(dev);
1090	if (!IS_ERR(p)) {
1091		*ptr = p;
1092		devres_add(dev, ptr);
1093	} else {
1094		devres_free(ptr);
1095	}
1096
1097	return p;
1098}
1099EXPORT_SYMBOL_GPL(devm_pinctrl_get);
1100
1101static int devm_pinctrl_match(struct device *dev, void *res, void *data)
1102{
1103	struct pinctrl **p = res;
1104
1105	return *p == data;
1106}
1107
1108/**
1109 * devm_pinctrl_put() - Resource managed pinctrl_put()
1110 * @p: the pinctrl handle to release
1111 *
1112 * Deallocate a struct pinctrl obtained via devm_pinctrl_get(). Normally
1113 * this function will not need to be called and the resource management
1114 * code will ensure that the resource is freed.
1115 */
1116void devm_pinctrl_put(struct pinctrl *p)
1117{
1118	WARN_ON(devres_release(p->dev, devm_pinctrl_release,
1119			       devm_pinctrl_match, p));
1120}
1121EXPORT_SYMBOL_GPL(devm_pinctrl_put);
1122
1123int pinctrl_register_map(struct pinctrl_map const *maps, unsigned num_maps,
1124			 bool dup, bool locked)
1125{
1126	int i, ret;
1127	struct pinctrl_maps *maps_node;
1128
1129	pr_debug("add %d pinmux maps\n", num_maps);
1130
1131	/* First sanity check the new mapping */
1132	for (i = 0; i < num_maps; i++) {
1133		if (!maps[i].dev_name) {
1134			pr_err("failed to register map %s (%d): no device given\n",
1135			       maps[i].name, i);
1136			return -EINVAL;
1137		}
1138
1139		if (!maps[i].name) {
1140			pr_err("failed to register map %d: no map name given\n",
1141			       i);
1142			return -EINVAL;
1143		}
1144
1145		if (maps[i].type != PIN_MAP_TYPE_DUMMY_STATE &&
1146				!maps[i].ctrl_dev_name) {
1147			pr_err("failed to register map %s (%d): no pin control device given\n",
1148			       maps[i].name, i);
1149			return -EINVAL;
1150		}
1151
1152		switch (maps[i].type) {
1153		case PIN_MAP_TYPE_DUMMY_STATE:
1154			break;
1155		case PIN_MAP_TYPE_MUX_GROUP:
1156			ret = pinmux_validate_map(&maps[i], i);
1157			if (ret < 0)
1158				return ret;
1159			break;
1160		case PIN_MAP_TYPE_CONFIGS_PIN:
1161		case PIN_MAP_TYPE_CONFIGS_GROUP:
1162			ret = pinconf_validate_map(&maps[i], i);
1163			if (ret < 0)
1164				return ret;
1165			break;
1166		default:
1167			pr_err("failed to register map %s (%d): invalid type given\n",
1168			       maps[i].name, i);
1169			return -EINVAL;
1170		}
1171	}
1172
1173	maps_node = kzalloc(sizeof(*maps_node), GFP_KERNEL);
1174	if (!maps_node) {
1175		pr_err("failed to alloc struct pinctrl_maps\n");
1176		return -ENOMEM;
1177	}
1178
1179	maps_node->num_maps = num_maps;
1180	if (dup) {
1181		maps_node->maps = kmemdup(maps, sizeof(*maps) * num_maps,
1182					  GFP_KERNEL);
1183		if (!maps_node->maps) {
1184			pr_err("failed to duplicate mapping table\n");
1185			kfree(maps_node);
1186			return -ENOMEM;
1187		}
1188	} else {
1189		maps_node->maps = maps;
1190	}
1191
1192	if (!locked)
1193		mutex_lock(&pinctrl_maps_mutex);
1194	list_add_tail(&maps_node->node, &pinctrl_maps);
1195	if (!locked)
1196		mutex_unlock(&pinctrl_maps_mutex);
1197
1198	return 0;
1199}
1200
1201/**
1202 * pinctrl_register_mappings() - register a set of pin controller mappings
1203 * @maps: the pincontrol mappings table to register. This should probably be
1204 *	marked with __initdata so it can be discarded after boot. This
1205 *	function will perform a shallow copy for the mapping entries.
1206 * @num_maps: the number of maps in the mapping table
1207 */
1208int pinctrl_register_mappings(struct pinctrl_map const *maps,
1209			      unsigned num_maps)
1210{
1211	return pinctrl_register_map(maps, num_maps, true, false);
1212}
1213
1214void pinctrl_unregister_map(struct pinctrl_map const *map)
1215{
1216	struct pinctrl_maps *maps_node;
1217
1218	mutex_lock(&pinctrl_maps_mutex);
1219	list_for_each_entry(maps_node, &pinctrl_maps, node) {
1220		if (maps_node->maps == map) {
1221			list_del(&maps_node->node);
1222			kfree(maps_node);
1223			mutex_unlock(&pinctrl_maps_mutex);
1224			return;
1225		}
1226	}
1227	mutex_unlock(&pinctrl_maps_mutex);
1228}
1229
1230/**
1231 * pinctrl_force_sleep() - turn a given controller device into sleep state
1232 * @pctldev: pin controller device
1233 */
1234int pinctrl_force_sleep(struct pinctrl_dev *pctldev)
1235{
1236	if (!IS_ERR(pctldev->p) && !IS_ERR(pctldev->hog_sleep))
1237		return pinctrl_select_state(pctldev->p, pctldev->hog_sleep);
1238	return 0;
1239}
1240EXPORT_SYMBOL_GPL(pinctrl_force_sleep);
1241
1242/**
1243 * pinctrl_force_default() - turn a given controller device into default state
1244 * @pctldev: pin controller device
1245 */
1246int pinctrl_force_default(struct pinctrl_dev *pctldev)
1247{
1248	if (!IS_ERR(pctldev->p) && !IS_ERR(pctldev->hog_default))
1249		return pinctrl_select_state(pctldev->p, pctldev->hog_default);
1250	return 0;
1251}
1252EXPORT_SYMBOL_GPL(pinctrl_force_default);
1253
1254#ifdef CONFIG_PM
1255
1256/**
1257 * pinctrl_pm_select_state() - select pinctrl state for PM
1258 * @dev: device to select default state for
1259 * @state: state to set
1260 */
1261static int pinctrl_pm_select_state(struct device *dev,
1262				   struct pinctrl_state *state)
1263{
1264	struct dev_pin_info *pins = dev->pins;
1265	int ret;
1266
1267	if (IS_ERR(state))
1268		return 0; /* No such state */
1269	ret = pinctrl_select_state(pins->p, state);
1270	if (ret)
1271		dev_err(dev, "failed to activate pinctrl state %s\n",
1272			state->name);
1273	return ret;
1274}
1275
1276/**
1277 * pinctrl_pm_select_default_state() - select default pinctrl state for PM
1278 * @dev: device to select default state for
1279 */
1280int pinctrl_pm_select_default_state(struct device *dev)
1281{
1282	if (!dev->pins)
1283		return 0;
1284
1285	return pinctrl_pm_select_state(dev, dev->pins->default_state);
1286}
1287EXPORT_SYMBOL_GPL(pinctrl_pm_select_default_state);
1288
1289/**
1290 * pinctrl_pm_select_sleep_state() - select sleep pinctrl state for PM
1291 * @dev: device to select sleep state for
1292 */
1293int pinctrl_pm_select_sleep_state(struct device *dev)
1294{
1295	if (!dev->pins)
1296		return 0;
1297
1298	return pinctrl_pm_select_state(dev, dev->pins->sleep_state);
1299}
1300EXPORT_SYMBOL_GPL(pinctrl_pm_select_sleep_state);
1301
1302/**
1303 * pinctrl_pm_select_idle_state() - select idle pinctrl state for PM
1304 * @dev: device to select idle state for
1305 */
1306int pinctrl_pm_select_idle_state(struct device *dev)
1307{
1308	if (!dev->pins)
1309		return 0;
1310
1311	return pinctrl_pm_select_state(dev, dev->pins->idle_state);
1312}
1313EXPORT_SYMBOL_GPL(pinctrl_pm_select_idle_state);
1314#endif
1315
1316#ifdef CONFIG_DEBUG_FS
1317
1318static int pinctrl_pins_show(struct seq_file *s, void *what)
1319{
1320	struct pinctrl_dev *pctldev = s->private;
1321	const struct pinctrl_ops *ops = pctldev->desc->pctlops;
1322	unsigned i, pin;
1323
1324	seq_printf(s, "registered pins: %d\n", pctldev->desc->npins);
1325
1326	mutex_lock(&pctldev->mutex);
1327
1328	/* The pin number can be retrived from the pin controller descriptor */
1329	for (i = 0; i < pctldev->desc->npins; i++) {
1330		struct pin_desc *desc;
1331
1332		pin = pctldev->desc->pins[i].number;
1333		desc = pin_desc_get(pctldev, pin);
1334		/* Pin space may be sparse */
1335		if (desc == NULL)
1336			continue;
1337
1338		seq_printf(s, "pin %d (%s) ", pin,
1339			   desc->name ? desc->name : "unnamed");
1340
1341		/* Driver-specific info per pin */
1342		if (ops->pin_dbg_show)
1343			ops->pin_dbg_show(pctldev, s, pin);
1344
1345		seq_puts(s, "\n");
1346	}
1347
1348	mutex_unlock(&pctldev->mutex);
1349
1350	return 0;
1351}
1352
1353static int pinctrl_groups_show(struct seq_file *s, void *what)
1354{
1355	struct pinctrl_dev *pctldev = s->private;
1356	const struct pinctrl_ops *ops = pctldev->desc->pctlops;
1357	unsigned ngroups, selector = 0;
1358
1359	mutex_lock(&pctldev->mutex);
1360
1361	ngroups = ops->get_groups_count(pctldev);
1362
1363	seq_puts(s, "registered pin groups:\n");
1364	while (selector < ngroups) {
1365		const unsigned *pins;
1366		unsigned num_pins;
1367		const char *gname = ops->get_group_name(pctldev, selector);
1368		const char *pname;
1369		int ret;
1370		int i;
1371
1372		ret = ops->get_group_pins(pctldev, selector,
1373					  &pins, &num_pins);
1374		if (ret)
1375			seq_printf(s, "%s [ERROR GETTING PINS]\n",
1376				   gname);
1377		else {
1378			seq_printf(s, "group: %s\n", gname);
1379			for (i = 0; i < num_pins; i++) {
1380				pname = pin_get_name(pctldev, pins[i]);
1381				if (WARN_ON(!pname)) {
1382					mutex_unlock(&pctldev->mutex);
1383					return -EINVAL;
1384				}
1385				seq_printf(s, "pin %d (%s)\n", pins[i], pname);
1386			}
1387			seq_puts(s, "\n");
1388		}
1389		selector++;
1390	}
1391
1392	mutex_unlock(&pctldev->mutex);
1393
1394	return 0;
1395}
1396
1397static int pinctrl_gpioranges_show(struct seq_file *s, void *what)
1398{
1399	struct pinctrl_dev *pctldev = s->private;
1400	struct pinctrl_gpio_range *range = NULL;
1401
1402	seq_puts(s, "GPIO ranges handled:\n");
1403
1404	mutex_lock(&pctldev->mutex);
1405
1406	/* Loop over the ranges */
1407	list_for_each_entry(range, &pctldev->gpio_ranges, node) {
1408		if (range->pins) {
1409			int a;
1410			seq_printf(s, "%u: %s GPIOS [%u - %u] PINS {",
1411				range->id, range->name,
1412				range->base, (range->base + range->npins - 1));
1413			for (a = 0; a < range->npins - 1; a++)
1414				seq_printf(s, "%u, ", range->pins[a]);
1415			seq_printf(s, "%u}\n", range->pins[a]);
1416		}
1417		else
1418			seq_printf(s, "%u: %s GPIOS [%u - %u] PINS [%u - %u]\n",
1419				range->id, range->name,
1420				range->base, (range->base + range->npins - 1),
1421				range->pin_base,
1422				(range->pin_base + range->npins - 1));
1423	}
1424
1425	mutex_unlock(&pctldev->mutex);
1426
1427	return 0;
1428}
1429
1430static int pinctrl_devices_show(struct seq_file *s, void *what)
1431{
1432	struct pinctrl_dev *pctldev;
1433
1434	seq_puts(s, "name [pinmux] [pinconf]\n");
1435
1436	mutex_lock(&pinctrldev_list_mutex);
1437
1438	list_for_each_entry(pctldev, &pinctrldev_list, node) {
1439		seq_printf(s, "%s ", pctldev->desc->name);
1440		if (pctldev->desc->pmxops)
1441			seq_puts(s, "yes ");
1442		else
1443			seq_puts(s, "no ");
1444		if (pctldev->desc->confops)
1445			seq_puts(s, "yes");
1446		else
1447			seq_puts(s, "no");
1448		seq_puts(s, "\n");
1449	}
1450
1451	mutex_unlock(&pinctrldev_list_mutex);
1452
1453	return 0;
1454}
1455
1456static inline const char *map_type(enum pinctrl_map_type type)
1457{
1458	static const char * const names[] = {
1459		"INVALID",
1460		"DUMMY_STATE",
1461		"MUX_GROUP",
1462		"CONFIGS_PIN",
1463		"CONFIGS_GROUP",
1464	};
1465
1466	if (type >= ARRAY_SIZE(names))
1467		return "UNKNOWN";
1468
1469	return names[type];
1470}
1471
1472static int pinctrl_maps_show(struct seq_file *s, void *what)
1473{
1474	struct pinctrl_maps *maps_node;
1475	int i;
1476	struct pinctrl_map const *map;
1477
1478	seq_puts(s, "Pinctrl maps:\n");
1479
1480	mutex_lock(&pinctrl_maps_mutex);
1481	for_each_maps(maps_node, i, map) {
1482		seq_printf(s, "device %s\nstate %s\ntype %s (%d)\n",
1483			   map->dev_name, map->name, map_type(map->type),
1484			   map->type);
1485
1486		if (map->type != PIN_MAP_TYPE_DUMMY_STATE)
1487			seq_printf(s, "controlling device %s\n",
1488				   map->ctrl_dev_name);
1489
1490		switch (map->type) {
1491		case PIN_MAP_TYPE_MUX_GROUP:
1492			pinmux_show_map(s, map);
1493			break;
1494		case PIN_MAP_TYPE_CONFIGS_PIN:
1495		case PIN_MAP_TYPE_CONFIGS_GROUP:
1496			pinconf_show_map(s, map);
1497			break;
1498		default:
1499			break;
1500		}
1501
1502		seq_printf(s, "\n");
1503	}
1504	mutex_unlock(&pinctrl_maps_mutex);
1505
1506	return 0;
1507}
1508
1509static int pinctrl_show(struct seq_file *s, void *what)
1510{
1511	struct pinctrl *p;
1512	struct pinctrl_state *state;
1513	struct pinctrl_setting *setting;
1514
1515	seq_puts(s, "Requested pin control handlers their pinmux maps:\n");
1516
1517	mutex_lock(&pinctrl_list_mutex);
1518
1519	list_for_each_entry(p, &pinctrl_list, node) {
1520		seq_printf(s, "device: %s current state: %s\n",
1521			   dev_name(p->dev),
1522			   p->state ? p->state->name : "none");
1523
1524		list_for_each_entry(state, &p->states, node) {
1525			seq_printf(s, "  state: %s\n", state->name);
1526
1527			list_for_each_entry(setting, &state->settings, node) {
1528				struct pinctrl_dev *pctldev = setting->pctldev;
1529
1530				seq_printf(s, "    type: %s controller %s ",
1531					   map_type(setting->type),
1532					   pinctrl_dev_get_name(pctldev));
1533
1534				switch (setting->type) {
1535				case PIN_MAP_TYPE_MUX_GROUP:
1536					pinmux_show_setting(s, setting);
1537					break;
1538				case PIN_MAP_TYPE_CONFIGS_PIN:
1539				case PIN_MAP_TYPE_CONFIGS_GROUP:
1540					pinconf_show_setting(s, setting);
1541					break;
1542				default:
1543					break;
1544				}
1545			}
1546		}
1547	}
1548
1549	mutex_unlock(&pinctrl_list_mutex);
1550
1551	return 0;
1552}
1553
1554static int pinctrl_pins_open(struct inode *inode, struct file *file)
1555{
1556	return single_open(file, pinctrl_pins_show, inode->i_private);
1557}
1558
1559static int pinctrl_groups_open(struct inode *inode, struct file *file)
1560{
1561	return single_open(file, pinctrl_groups_show, inode->i_private);
1562}
1563
1564static int pinctrl_gpioranges_open(struct inode *inode, struct file *file)
1565{
1566	return single_open(file, pinctrl_gpioranges_show, inode->i_private);
1567}
1568
1569static int pinctrl_devices_open(struct inode *inode, struct file *file)
1570{
1571	return single_open(file, pinctrl_devices_show, NULL);
1572}
1573
1574static int pinctrl_maps_open(struct inode *inode, struct file *file)
1575{
1576	return single_open(file, pinctrl_maps_show, NULL);
1577}
1578
1579static int pinctrl_open(struct inode *inode, struct file *file)
1580{
1581	return single_open(file, pinctrl_show, NULL);
1582}
1583
1584static const struct file_operations pinctrl_pins_ops = {
1585	.open		= pinctrl_pins_open,
1586	.read		= seq_read,
1587	.llseek		= seq_lseek,
1588	.release	= single_release,
1589};
1590
1591static const struct file_operations pinctrl_groups_ops = {
1592	.open		= pinctrl_groups_open,
1593	.read		= seq_read,
1594	.llseek		= seq_lseek,
1595	.release	= single_release,
1596};
1597
1598static const struct file_operations pinctrl_gpioranges_ops = {
1599	.open		= pinctrl_gpioranges_open,
1600	.read		= seq_read,
1601	.llseek		= seq_lseek,
1602	.release	= single_release,
1603};
1604
1605static const struct file_operations pinctrl_devices_ops = {
1606	.open		= pinctrl_devices_open,
1607	.read		= seq_read,
1608	.llseek		= seq_lseek,
1609	.release	= single_release,
1610};
1611
1612static const struct file_operations pinctrl_maps_ops = {
1613	.open		= pinctrl_maps_open,
1614	.read		= seq_read,
1615	.llseek		= seq_lseek,
1616	.release	= single_release,
1617};
1618
1619static const struct file_operations pinctrl_ops = {
1620	.open		= pinctrl_open,
1621	.read		= seq_read,
1622	.llseek		= seq_lseek,
1623	.release	= single_release,
1624};
1625
1626static struct dentry *debugfs_root;
1627
1628static void pinctrl_init_device_debugfs(struct pinctrl_dev *pctldev)
1629{
1630	struct dentry *device_root;
1631
1632	device_root = debugfs_create_dir(dev_name(pctldev->dev),
1633					 debugfs_root);
1634	pctldev->device_root = device_root;
1635
1636	if (IS_ERR(device_root) || !device_root) {
1637		pr_warn("failed to create debugfs directory for %s\n",
1638			dev_name(pctldev->dev));
1639		return;
1640	}
1641	debugfs_create_file("pins", S_IFREG | S_IRUGO,
1642			    device_root, pctldev, &pinctrl_pins_ops);
1643	debugfs_create_file("pingroups", S_IFREG | S_IRUGO,
1644			    device_root, pctldev, &pinctrl_groups_ops);
1645	debugfs_create_file("gpio-ranges", S_IFREG | S_IRUGO,
1646			    device_root, pctldev, &pinctrl_gpioranges_ops);
1647	if (pctldev->desc->pmxops)
1648		pinmux_init_device_debugfs(device_root, pctldev);
1649	if (pctldev->desc->confops)
1650		pinconf_init_device_debugfs(device_root, pctldev);
1651}
1652
1653static void pinctrl_remove_device_debugfs(struct pinctrl_dev *pctldev)
1654{
1655	debugfs_remove_recursive(pctldev->device_root);
1656}
1657
1658static void pinctrl_init_debugfs(void)
1659{
1660	debugfs_root = debugfs_create_dir("pinctrl", NULL);
1661	if (IS_ERR(debugfs_root) || !debugfs_root) {
1662		pr_warn("failed to create debugfs directory\n");
1663		debugfs_root = NULL;
1664		return;
1665	}
1666
1667	debugfs_create_file("pinctrl-devices", S_IFREG | S_IRUGO,
1668			    debugfs_root, NULL, &pinctrl_devices_ops);
1669	debugfs_create_file("pinctrl-maps", S_IFREG | S_IRUGO,
1670			    debugfs_root, NULL, &pinctrl_maps_ops);
1671	debugfs_create_file("pinctrl-handles", S_IFREG | S_IRUGO,
1672			    debugfs_root, NULL, &pinctrl_ops);
1673}
1674
1675#else /* CONFIG_DEBUG_FS */
1676
1677static void pinctrl_init_device_debugfs(struct pinctrl_dev *pctldev)
1678{
1679}
1680
1681static void pinctrl_init_debugfs(void)
1682{
1683}
1684
1685static void pinctrl_remove_device_debugfs(struct pinctrl_dev *pctldev)
1686{
1687}
1688
1689#endif
1690
1691static int pinctrl_check_ops(struct pinctrl_dev *pctldev)
1692{
1693	const struct pinctrl_ops *ops = pctldev->desc->pctlops;
1694
1695	if (!ops ||
1696	    !ops->get_groups_count ||
1697	    !ops->get_group_name ||
1698	    !ops->get_group_pins)
1699		return -EINVAL;
1700
1701	if (ops->dt_node_to_map && !ops->dt_free_map)
1702		return -EINVAL;
1703
1704	return 0;
1705}
1706
1707/**
1708 * pinctrl_register() - register a pin controller device
1709 * @pctldesc: descriptor for this pin controller
1710 * @dev: parent device for this pin controller
1711 * @driver_data: private pin controller data for this pin controller
1712 */
1713struct pinctrl_dev *pinctrl_register(struct pinctrl_desc *pctldesc,
1714				    struct device *dev, void *driver_data)
1715{
1716	struct pinctrl_dev *pctldev;
1717	int ret;
1718
1719	if (!pctldesc)
1720		return NULL;
1721	if (!pctldesc->name)
1722		return NULL;
1723
1724	pctldev = kzalloc(sizeof(*pctldev), GFP_KERNEL);
1725	if (pctldev == NULL) {
1726		dev_err(dev, "failed to alloc struct pinctrl_dev\n");
1727		return NULL;
1728	}
1729
1730	/* Initialize pin control device struct */
1731	pctldev->owner = pctldesc->owner;
1732	pctldev->desc = pctldesc;
1733	pctldev->driver_data = driver_data;
1734	INIT_RADIX_TREE(&pctldev->pin_desc_tree, GFP_KERNEL);
1735	INIT_LIST_HEAD(&pctldev->gpio_ranges);
1736	pctldev->dev = dev;
1737	mutex_init(&pctldev->mutex);
1738
1739	/* check core ops for sanity */
1740	if (pinctrl_check_ops(pctldev)) {
1741		dev_err(dev, "pinctrl ops lacks necessary functions\n");
1742		goto out_err;
1743	}
1744
1745	/* If we're implementing pinmuxing, check the ops for sanity */
1746	if (pctldesc->pmxops) {
1747		if (pinmux_check_ops(pctldev))
1748			goto out_err;
1749	}
1750
1751	/* If we're implementing pinconfig, check the ops for sanity */
1752	if (pctldesc->confops) {
1753		if (pinconf_check_ops(pctldev))
1754			goto out_err;
1755	}
1756
1757	/* Register all the pins */
1758	dev_dbg(dev, "try to register %d pins ...\n",  pctldesc->npins);
1759	ret = pinctrl_register_pins(pctldev, pctldesc->pins, pctldesc->npins);
1760	if (ret) {
1761		dev_err(dev, "error during pin registration\n");
1762		pinctrl_free_pindescs(pctldev, pctldesc->pins,
1763				      pctldesc->npins);
1764		goto out_err;
1765	}
1766
1767	mutex_lock(&pinctrldev_list_mutex);
1768	list_add_tail(&pctldev->node, &pinctrldev_list);
1769	mutex_unlock(&pinctrldev_list_mutex);
1770
1771	pctldev->p = pinctrl_get(pctldev->dev);
1772
1773	if (!IS_ERR(pctldev->p)) {
1774		pctldev->hog_default =
1775			pinctrl_lookup_state(pctldev->p, PINCTRL_STATE_DEFAULT);
1776		if (IS_ERR(pctldev->hog_default)) {
1777			dev_dbg(dev, "failed to lookup the default state\n");
1778		} else {
1779			if (pinctrl_select_state(pctldev->p,
1780						pctldev->hog_default))
1781				dev_err(dev,
1782					"failed to select default state\n");
1783		}
1784
1785		pctldev->hog_sleep =
1786			pinctrl_lookup_state(pctldev->p,
1787						    PINCTRL_STATE_SLEEP);
1788		if (IS_ERR(pctldev->hog_sleep))
1789			dev_dbg(dev, "failed to lookup the sleep state\n");
1790	}
1791
1792	pinctrl_init_device_debugfs(pctldev);
1793
1794	return pctldev;
1795
1796out_err:
1797	mutex_destroy(&pctldev->mutex);
1798	kfree(pctldev);
1799	return NULL;
1800}
1801EXPORT_SYMBOL_GPL(pinctrl_register);
1802
1803/**
1804 * pinctrl_unregister() - unregister pinmux
1805 * @pctldev: pin controller to unregister
1806 *
1807 * Called by pinmux drivers to unregister a pinmux.
1808 */
1809void pinctrl_unregister(struct pinctrl_dev *pctldev)
1810{
1811	struct pinctrl_gpio_range *range, *n;
1812	if (pctldev == NULL)
1813		return;
1814
1815	mutex_lock(&pinctrldev_list_mutex);
1816	mutex_lock(&pctldev->mutex);
1817
1818	pinctrl_remove_device_debugfs(pctldev);
1819
1820	if (!IS_ERR(pctldev->p))
1821		pinctrl_put(pctldev->p);
1822
1823	/* TODO: check that no pinmuxes are still active? */
1824	list_del(&pctldev->node);
1825	/* Destroy descriptor tree */
1826	pinctrl_free_pindescs(pctldev, pctldev->desc->pins,
1827			      pctldev->desc->npins);
1828	/* remove gpio ranges map */
1829	list_for_each_entry_safe(range, n, &pctldev->gpio_ranges, node)
1830		list_del(&range->node);
1831
1832	mutex_unlock(&pctldev->mutex);
1833	mutex_destroy(&pctldev->mutex);
1834	kfree(pctldev);
1835	mutex_unlock(&pinctrldev_list_mutex);
1836}
1837EXPORT_SYMBOL_GPL(pinctrl_unregister);
1838
1839static int __init pinctrl_init(void)
1840{
1841	pr_info("initialized pinctrl subsystem\n");
1842	pinctrl_init_debugfs();
1843	return 0;
1844}
1845
1846/* init early since many drivers really need to initialized pinmux early */
1847core_initcall(pinctrl_init);