Loading...
1/*
2 * Common EFI (Extensible Firmware Interface) support functions
3 * Based on Extensible Firmware Interface Specification version 1.0
4 *
5 * Copyright (C) 1999 VA Linux Systems
6 * Copyright (C) 1999 Walt Drummond <drummond@valinux.com>
7 * Copyright (C) 1999-2002 Hewlett-Packard Co.
8 * David Mosberger-Tang <davidm@hpl.hp.com>
9 * Stephane Eranian <eranian@hpl.hp.com>
10 * Copyright (C) 2005-2008 Intel Co.
11 * Fenghua Yu <fenghua.yu@intel.com>
12 * Bibo Mao <bibo.mao@intel.com>
13 * Chandramouli Narayanan <mouli@linux.intel.com>
14 * Huang Ying <ying.huang@intel.com>
15 *
16 * Copied from efi_32.c to eliminate the duplicated code between EFI
17 * 32/64 support code. --ying 2007-10-26
18 *
19 * All EFI Runtime Services are not implemented yet as EFI only
20 * supports physical mode addressing on SoftSDV. This is to be fixed
21 * in a future version. --drummond 1999-07-20
22 *
23 * Implemented EFI runtime services and virtual mode calls. --davidm
24 *
25 * Goutham Rao: <goutham.rao@intel.com>
26 * Skip non-WB memory and ignore empty memory ranges.
27 */
28
29#include <linux/kernel.h>
30#include <linux/init.h>
31#include <linux/efi.h>
32#include <linux/bootmem.h>
33#include <linux/memblock.h>
34#include <linux/spinlock.h>
35#include <linux/uaccess.h>
36#include <linux/time.h>
37#include <linux/io.h>
38#include <linux/reboot.h>
39#include <linux/bcd.h>
40
41#include <asm/setup.h>
42#include <asm/efi.h>
43#include <asm/time.h>
44#include <asm/cacheflush.h>
45#include <asm/tlbflush.h>
46#include <asm/x86_init.h>
47
48#define EFI_DEBUG 1
49#define PFX "EFI: "
50
51int efi_enabled;
52EXPORT_SYMBOL(efi_enabled);
53
54struct efi __read_mostly efi = {
55 .mps = EFI_INVALID_TABLE_ADDR,
56 .acpi = EFI_INVALID_TABLE_ADDR,
57 .acpi20 = EFI_INVALID_TABLE_ADDR,
58 .smbios = EFI_INVALID_TABLE_ADDR,
59 .sal_systab = EFI_INVALID_TABLE_ADDR,
60 .boot_info = EFI_INVALID_TABLE_ADDR,
61 .hcdp = EFI_INVALID_TABLE_ADDR,
62 .uga = EFI_INVALID_TABLE_ADDR,
63 .uv_systab = EFI_INVALID_TABLE_ADDR,
64};
65EXPORT_SYMBOL(efi);
66
67struct efi_memory_map memmap;
68
69static struct efi efi_phys __initdata;
70static efi_system_table_t efi_systab __initdata;
71
72static int __init setup_noefi(char *arg)
73{
74 efi_enabled = 0;
75 return 0;
76}
77early_param("noefi", setup_noefi);
78
79int add_efi_memmap;
80EXPORT_SYMBOL(add_efi_memmap);
81
82static int __init setup_add_efi_memmap(char *arg)
83{
84 add_efi_memmap = 1;
85 return 0;
86}
87early_param("add_efi_memmap", setup_add_efi_memmap);
88
89
90static efi_status_t virt_efi_get_time(efi_time_t *tm, efi_time_cap_t *tc)
91{
92 unsigned long flags;
93 efi_status_t status;
94
95 spin_lock_irqsave(&rtc_lock, flags);
96 status = efi_call_virt2(get_time, tm, tc);
97 spin_unlock_irqrestore(&rtc_lock, flags);
98 return status;
99}
100
101static efi_status_t virt_efi_set_time(efi_time_t *tm)
102{
103 unsigned long flags;
104 efi_status_t status;
105
106 spin_lock_irqsave(&rtc_lock, flags);
107 status = efi_call_virt1(set_time, tm);
108 spin_unlock_irqrestore(&rtc_lock, flags);
109 return status;
110}
111
112static efi_status_t virt_efi_get_wakeup_time(efi_bool_t *enabled,
113 efi_bool_t *pending,
114 efi_time_t *tm)
115{
116 unsigned long flags;
117 efi_status_t status;
118
119 spin_lock_irqsave(&rtc_lock, flags);
120 status = efi_call_virt3(get_wakeup_time,
121 enabled, pending, tm);
122 spin_unlock_irqrestore(&rtc_lock, flags);
123 return status;
124}
125
126static efi_status_t virt_efi_set_wakeup_time(efi_bool_t enabled, efi_time_t *tm)
127{
128 unsigned long flags;
129 efi_status_t status;
130
131 spin_lock_irqsave(&rtc_lock, flags);
132 status = efi_call_virt2(set_wakeup_time,
133 enabled, tm);
134 spin_unlock_irqrestore(&rtc_lock, flags);
135 return status;
136}
137
138static efi_status_t virt_efi_get_variable(efi_char16_t *name,
139 efi_guid_t *vendor,
140 u32 *attr,
141 unsigned long *data_size,
142 void *data)
143{
144 return efi_call_virt5(get_variable,
145 name, vendor, attr,
146 data_size, data);
147}
148
149static efi_status_t virt_efi_get_next_variable(unsigned long *name_size,
150 efi_char16_t *name,
151 efi_guid_t *vendor)
152{
153 return efi_call_virt3(get_next_variable,
154 name_size, name, vendor);
155}
156
157static efi_status_t virt_efi_set_variable(efi_char16_t *name,
158 efi_guid_t *vendor,
159 u32 attr,
160 unsigned long data_size,
161 void *data)
162{
163 return efi_call_virt5(set_variable,
164 name, vendor, attr,
165 data_size, data);
166}
167
168static efi_status_t virt_efi_query_variable_info(u32 attr,
169 u64 *storage_space,
170 u64 *remaining_space,
171 u64 *max_variable_size)
172{
173 if (efi.runtime_version < EFI_2_00_SYSTEM_TABLE_REVISION)
174 return EFI_UNSUPPORTED;
175
176 return efi_call_virt4(query_variable_info, attr, storage_space,
177 remaining_space, max_variable_size);
178}
179
180static efi_status_t virt_efi_get_next_high_mono_count(u32 *count)
181{
182 return efi_call_virt1(get_next_high_mono_count, count);
183}
184
185static void virt_efi_reset_system(int reset_type,
186 efi_status_t status,
187 unsigned long data_size,
188 efi_char16_t *data)
189{
190 efi_call_virt4(reset_system, reset_type, status,
191 data_size, data);
192}
193
194static efi_status_t virt_efi_update_capsule(efi_capsule_header_t **capsules,
195 unsigned long count,
196 unsigned long sg_list)
197{
198 if (efi.runtime_version < EFI_2_00_SYSTEM_TABLE_REVISION)
199 return EFI_UNSUPPORTED;
200
201 return efi_call_virt3(update_capsule, capsules, count, sg_list);
202}
203
204static efi_status_t virt_efi_query_capsule_caps(efi_capsule_header_t **capsules,
205 unsigned long count,
206 u64 *max_size,
207 int *reset_type)
208{
209 if (efi.runtime_version < EFI_2_00_SYSTEM_TABLE_REVISION)
210 return EFI_UNSUPPORTED;
211
212 return efi_call_virt4(query_capsule_caps, capsules, count, max_size,
213 reset_type);
214}
215
216static efi_status_t __init phys_efi_set_virtual_address_map(
217 unsigned long memory_map_size,
218 unsigned long descriptor_size,
219 u32 descriptor_version,
220 efi_memory_desc_t *virtual_map)
221{
222 efi_status_t status;
223
224 efi_call_phys_prelog();
225 status = efi_call_phys4(efi_phys.set_virtual_address_map,
226 memory_map_size, descriptor_size,
227 descriptor_version, virtual_map);
228 efi_call_phys_epilog();
229 return status;
230}
231
232static efi_status_t __init phys_efi_get_time(efi_time_t *tm,
233 efi_time_cap_t *tc)
234{
235 unsigned long flags;
236 efi_status_t status;
237
238 spin_lock_irqsave(&rtc_lock, flags);
239 efi_call_phys_prelog();
240 status = efi_call_phys2(efi_phys.get_time, tm, tc);
241 efi_call_phys_epilog();
242 spin_unlock_irqrestore(&rtc_lock, flags);
243 return status;
244}
245
246int efi_set_rtc_mmss(unsigned long nowtime)
247{
248 int real_seconds, real_minutes;
249 efi_status_t status;
250 efi_time_t eft;
251 efi_time_cap_t cap;
252
253 status = efi.get_time(&eft, &cap);
254 if (status != EFI_SUCCESS) {
255 printk(KERN_ERR "Oops: efitime: can't read time!\n");
256 return -1;
257 }
258
259 real_seconds = nowtime % 60;
260 real_minutes = nowtime / 60;
261 if (((abs(real_minutes - eft.minute) + 15)/30) & 1)
262 real_minutes += 30;
263 real_minutes %= 60;
264 eft.minute = real_minutes;
265 eft.second = real_seconds;
266
267 status = efi.set_time(&eft);
268 if (status != EFI_SUCCESS) {
269 printk(KERN_ERR "Oops: efitime: can't write time!\n");
270 return -1;
271 }
272 return 0;
273}
274
275unsigned long efi_get_time(void)
276{
277 efi_status_t status;
278 efi_time_t eft;
279 efi_time_cap_t cap;
280
281 status = efi.get_time(&eft, &cap);
282 if (status != EFI_SUCCESS)
283 printk(KERN_ERR "Oops: efitime: can't read time!\n");
284
285 return mktime(eft.year, eft.month, eft.day, eft.hour,
286 eft.minute, eft.second);
287}
288
289/*
290 * Tell the kernel about the EFI memory map. This might include
291 * more than the max 128 entries that can fit in the e820 legacy
292 * (zeropage) memory map.
293 */
294
295static void __init do_add_efi_memmap(void)
296{
297 void *p;
298
299 for (p = memmap.map; p < memmap.map_end; p += memmap.desc_size) {
300 efi_memory_desc_t *md = p;
301 unsigned long long start = md->phys_addr;
302 unsigned long long size = md->num_pages << EFI_PAGE_SHIFT;
303 int e820_type;
304
305 switch (md->type) {
306 case EFI_LOADER_CODE:
307 case EFI_LOADER_DATA:
308 case EFI_BOOT_SERVICES_CODE:
309 case EFI_BOOT_SERVICES_DATA:
310 case EFI_CONVENTIONAL_MEMORY:
311 if (md->attribute & EFI_MEMORY_WB)
312 e820_type = E820_RAM;
313 else
314 e820_type = E820_RESERVED;
315 break;
316 case EFI_ACPI_RECLAIM_MEMORY:
317 e820_type = E820_ACPI;
318 break;
319 case EFI_ACPI_MEMORY_NVS:
320 e820_type = E820_NVS;
321 break;
322 case EFI_UNUSABLE_MEMORY:
323 e820_type = E820_UNUSABLE;
324 break;
325 default:
326 /*
327 * EFI_RESERVED_TYPE EFI_RUNTIME_SERVICES_CODE
328 * EFI_RUNTIME_SERVICES_DATA EFI_MEMORY_MAPPED_IO
329 * EFI_MEMORY_MAPPED_IO_PORT_SPACE EFI_PAL_CODE
330 */
331 e820_type = E820_RESERVED;
332 break;
333 }
334 e820_add_region(start, size, e820_type);
335 }
336 sanitize_e820_map(e820.map, ARRAY_SIZE(e820.map), &e820.nr_map);
337}
338
339void __init efi_memblock_x86_reserve_range(void)
340{
341 unsigned long pmap;
342
343#ifdef CONFIG_X86_32
344 pmap = boot_params.efi_info.efi_memmap;
345#else
346 pmap = (boot_params.efi_info.efi_memmap |
347 ((__u64)boot_params.efi_info.efi_memmap_hi<<32));
348#endif
349 memmap.phys_map = (void *)pmap;
350 memmap.nr_map = boot_params.efi_info.efi_memmap_size /
351 boot_params.efi_info.efi_memdesc_size;
352 memmap.desc_version = boot_params.efi_info.efi_memdesc_version;
353 memmap.desc_size = boot_params.efi_info.efi_memdesc_size;
354 memblock_x86_reserve_range(pmap, pmap + memmap.nr_map * memmap.desc_size,
355 "EFI memmap");
356}
357
358#if EFI_DEBUG
359static void __init print_efi_memmap(void)
360{
361 efi_memory_desc_t *md;
362 void *p;
363 int i;
364
365 for (p = memmap.map, i = 0;
366 p < memmap.map_end;
367 p += memmap.desc_size, i++) {
368 md = p;
369 printk(KERN_INFO PFX "mem%02u: type=%u, attr=0x%llx, "
370 "range=[0x%016llx-0x%016llx) (%lluMB)\n",
371 i, md->type, md->attribute, md->phys_addr,
372 md->phys_addr + (md->num_pages << EFI_PAGE_SHIFT),
373 (md->num_pages >> (20 - EFI_PAGE_SHIFT)));
374 }
375}
376#endif /* EFI_DEBUG */
377
378void __init efi_reserve_boot_services(void)
379{
380 void *p;
381
382 for (p = memmap.map; p < memmap.map_end; p += memmap.desc_size) {
383 efi_memory_desc_t *md = p;
384 u64 start = md->phys_addr;
385 u64 size = md->num_pages << EFI_PAGE_SHIFT;
386
387 if (md->type != EFI_BOOT_SERVICES_CODE &&
388 md->type != EFI_BOOT_SERVICES_DATA)
389 continue;
390 /* Only reserve where possible:
391 * - Not within any already allocated areas
392 * - Not over any memory area (really needed, if above?)
393 * - Not within any part of the kernel
394 * - Not the bios reserved area
395 */
396 if ((start+size >= virt_to_phys(_text)
397 && start <= virt_to_phys(_end)) ||
398 !e820_all_mapped(start, start+size, E820_RAM) ||
399 memblock_x86_check_reserved_size(&start, &size,
400 1<<EFI_PAGE_SHIFT)) {
401 /* Could not reserve, skip it */
402 md->num_pages = 0;
403 memblock_dbg(PFX "Could not reserve boot range "
404 "[0x%010llx-0x%010llx]\n",
405 start, start+size-1);
406 } else
407 memblock_x86_reserve_range(start, start+size,
408 "EFI Boot");
409 }
410}
411
412static void __init efi_free_boot_services(void)
413{
414 void *p;
415
416 for (p = memmap.map; p < memmap.map_end; p += memmap.desc_size) {
417 efi_memory_desc_t *md = p;
418 unsigned long long start = md->phys_addr;
419 unsigned long long size = md->num_pages << EFI_PAGE_SHIFT;
420
421 if (md->type != EFI_BOOT_SERVICES_CODE &&
422 md->type != EFI_BOOT_SERVICES_DATA)
423 continue;
424
425 /* Could not reserve boot area */
426 if (!size)
427 continue;
428
429 free_bootmem_late(start, size);
430 }
431}
432
433void __init efi_init(void)
434{
435 efi_config_table_t *config_tables;
436 efi_runtime_services_t *runtime;
437 efi_char16_t *c16;
438 char vendor[100] = "unknown";
439 int i = 0;
440 void *tmp;
441
442#ifdef CONFIG_X86_32
443 efi_phys.systab = (efi_system_table_t *)boot_params.efi_info.efi_systab;
444#else
445 efi_phys.systab = (efi_system_table_t *)
446 (boot_params.efi_info.efi_systab |
447 ((__u64)boot_params.efi_info.efi_systab_hi<<32));
448#endif
449
450 efi.systab = early_ioremap((unsigned long)efi_phys.systab,
451 sizeof(efi_system_table_t));
452 if (efi.systab == NULL)
453 printk(KERN_ERR "Couldn't map the EFI system table!\n");
454 memcpy(&efi_systab, efi.systab, sizeof(efi_system_table_t));
455 early_iounmap(efi.systab, sizeof(efi_system_table_t));
456 efi.systab = &efi_systab;
457
458 /*
459 * Verify the EFI Table
460 */
461 if (efi.systab->hdr.signature != EFI_SYSTEM_TABLE_SIGNATURE)
462 printk(KERN_ERR "EFI system table signature incorrect!\n");
463 if ((efi.systab->hdr.revision >> 16) == 0)
464 printk(KERN_ERR "Warning: EFI system table version "
465 "%d.%02d, expected 1.00 or greater!\n",
466 efi.systab->hdr.revision >> 16,
467 efi.systab->hdr.revision & 0xffff);
468
469 /*
470 * Show what we know for posterity
471 */
472 c16 = tmp = early_ioremap(efi.systab->fw_vendor, 2);
473 if (c16) {
474 for (i = 0; i < sizeof(vendor) - 1 && *c16; ++i)
475 vendor[i] = *c16++;
476 vendor[i] = '\0';
477 } else
478 printk(KERN_ERR PFX "Could not map the firmware vendor!\n");
479 early_iounmap(tmp, 2);
480
481 printk(KERN_INFO "EFI v%u.%.02u by %s\n",
482 efi.systab->hdr.revision >> 16,
483 efi.systab->hdr.revision & 0xffff, vendor);
484
485 /*
486 * Let's see what config tables the firmware passed to us.
487 */
488 config_tables = early_ioremap(
489 efi.systab->tables,
490 efi.systab->nr_tables * sizeof(efi_config_table_t));
491 if (config_tables == NULL)
492 printk(KERN_ERR "Could not map EFI Configuration Table!\n");
493
494 printk(KERN_INFO);
495 for (i = 0; i < efi.systab->nr_tables; i++) {
496 if (!efi_guidcmp(config_tables[i].guid, MPS_TABLE_GUID)) {
497 efi.mps = config_tables[i].table;
498 printk(" MPS=0x%lx ", config_tables[i].table);
499 } else if (!efi_guidcmp(config_tables[i].guid,
500 ACPI_20_TABLE_GUID)) {
501 efi.acpi20 = config_tables[i].table;
502 printk(" ACPI 2.0=0x%lx ", config_tables[i].table);
503 } else if (!efi_guidcmp(config_tables[i].guid,
504 ACPI_TABLE_GUID)) {
505 efi.acpi = config_tables[i].table;
506 printk(" ACPI=0x%lx ", config_tables[i].table);
507 } else if (!efi_guidcmp(config_tables[i].guid,
508 SMBIOS_TABLE_GUID)) {
509 efi.smbios = config_tables[i].table;
510 printk(" SMBIOS=0x%lx ", config_tables[i].table);
511#ifdef CONFIG_X86_UV
512 } else if (!efi_guidcmp(config_tables[i].guid,
513 UV_SYSTEM_TABLE_GUID)) {
514 efi.uv_systab = config_tables[i].table;
515 printk(" UVsystab=0x%lx ", config_tables[i].table);
516#endif
517 } else if (!efi_guidcmp(config_tables[i].guid,
518 HCDP_TABLE_GUID)) {
519 efi.hcdp = config_tables[i].table;
520 printk(" HCDP=0x%lx ", config_tables[i].table);
521 } else if (!efi_guidcmp(config_tables[i].guid,
522 UGA_IO_PROTOCOL_GUID)) {
523 efi.uga = config_tables[i].table;
524 printk(" UGA=0x%lx ", config_tables[i].table);
525 }
526 }
527 printk("\n");
528 early_iounmap(config_tables,
529 efi.systab->nr_tables * sizeof(efi_config_table_t));
530
531 /*
532 * Check out the runtime services table. We need to map
533 * the runtime services table so that we can grab the physical
534 * address of several of the EFI runtime functions, needed to
535 * set the firmware into virtual mode.
536 */
537 runtime = early_ioremap((unsigned long)efi.systab->runtime,
538 sizeof(efi_runtime_services_t));
539 if (runtime != NULL) {
540 /*
541 * We will only need *early* access to the following
542 * two EFI runtime services before set_virtual_address_map
543 * is invoked.
544 */
545 efi_phys.get_time = (efi_get_time_t *)runtime->get_time;
546 efi_phys.set_virtual_address_map =
547 (efi_set_virtual_address_map_t *)
548 runtime->set_virtual_address_map;
549 /*
550 * Make efi_get_time can be called before entering
551 * virtual mode.
552 */
553 efi.get_time = phys_efi_get_time;
554 } else
555 printk(KERN_ERR "Could not map the EFI runtime service "
556 "table!\n");
557 early_iounmap(runtime, sizeof(efi_runtime_services_t));
558
559 /* Map the EFI memory map */
560 memmap.map = early_ioremap((unsigned long)memmap.phys_map,
561 memmap.nr_map * memmap.desc_size);
562 if (memmap.map == NULL)
563 printk(KERN_ERR "Could not map the EFI memory map!\n");
564 memmap.map_end = memmap.map + (memmap.nr_map * memmap.desc_size);
565
566 if (memmap.desc_size != sizeof(efi_memory_desc_t))
567 printk(KERN_WARNING
568 "Kernel-defined memdesc doesn't match the one from EFI!\n");
569
570 if (add_efi_memmap)
571 do_add_efi_memmap();
572
573#ifdef CONFIG_X86_32
574 x86_platform.get_wallclock = efi_get_time;
575 x86_platform.set_wallclock = efi_set_rtc_mmss;
576#endif
577
578#if EFI_DEBUG
579 print_efi_memmap();
580#endif
581}
582
583void __init efi_set_executable(efi_memory_desc_t *md, bool executable)
584{
585 u64 addr, npages;
586
587 addr = md->virt_addr;
588 npages = md->num_pages;
589
590 memrange_efi_to_native(&addr, &npages);
591
592 if (executable)
593 set_memory_x(addr, npages);
594 else
595 set_memory_nx(addr, npages);
596}
597
598static void __init runtime_code_page_mkexec(void)
599{
600 efi_memory_desc_t *md;
601 void *p;
602
603 /* Make EFI runtime service code area executable */
604 for (p = memmap.map; p < memmap.map_end; p += memmap.desc_size) {
605 md = p;
606
607 if (md->type != EFI_RUNTIME_SERVICES_CODE)
608 continue;
609
610 efi_set_executable(md, true);
611 }
612}
613
614/*
615 * This function will switch the EFI runtime services to virtual mode.
616 * Essentially, look through the EFI memmap and map every region that
617 * has the runtime attribute bit set in its memory descriptor and update
618 * that memory descriptor with the virtual address obtained from ioremap().
619 * This enables the runtime services to be called without having to
620 * thunk back into physical mode for every invocation.
621 */
622void __init efi_enter_virtual_mode(void)
623{
624 efi_memory_desc_t *md, *prev_md = NULL;
625 efi_status_t status;
626 unsigned long size;
627 u64 end, systab, addr, npages, end_pfn;
628 void *p, *va, *new_memmap = NULL;
629 int count = 0;
630
631 efi.systab = NULL;
632
633 /* Merge contiguous regions of the same type and attribute */
634 for (p = memmap.map; p < memmap.map_end; p += memmap.desc_size) {
635 u64 prev_size;
636 md = p;
637
638 if (!prev_md) {
639 prev_md = md;
640 continue;
641 }
642
643 if (prev_md->type != md->type ||
644 prev_md->attribute != md->attribute) {
645 prev_md = md;
646 continue;
647 }
648
649 prev_size = prev_md->num_pages << EFI_PAGE_SHIFT;
650
651 if (md->phys_addr == (prev_md->phys_addr + prev_size)) {
652 prev_md->num_pages += md->num_pages;
653 md->type = EFI_RESERVED_TYPE;
654 md->attribute = 0;
655 continue;
656 }
657 prev_md = md;
658 }
659
660 for (p = memmap.map; p < memmap.map_end; p += memmap.desc_size) {
661 md = p;
662 if (!(md->attribute & EFI_MEMORY_RUNTIME) &&
663 md->type != EFI_BOOT_SERVICES_CODE &&
664 md->type != EFI_BOOT_SERVICES_DATA)
665 continue;
666
667 size = md->num_pages << EFI_PAGE_SHIFT;
668 end = md->phys_addr + size;
669
670 end_pfn = PFN_UP(end);
671 if (end_pfn <= max_low_pfn_mapped
672 || (end_pfn > (1UL << (32 - PAGE_SHIFT))
673 && end_pfn <= max_pfn_mapped))
674 va = __va(md->phys_addr);
675 else
676 va = efi_ioremap(md->phys_addr, size, md->type);
677
678 md->virt_addr = (u64) (unsigned long) va;
679
680 if (!va) {
681 printk(KERN_ERR PFX "ioremap of 0x%llX failed!\n",
682 (unsigned long long)md->phys_addr);
683 continue;
684 }
685
686 if (!(md->attribute & EFI_MEMORY_WB)) {
687 addr = md->virt_addr;
688 npages = md->num_pages;
689 memrange_efi_to_native(&addr, &npages);
690 set_memory_uc(addr, npages);
691 }
692
693 systab = (u64) (unsigned long) efi_phys.systab;
694 if (md->phys_addr <= systab && systab < end) {
695 systab += md->virt_addr - md->phys_addr;
696 efi.systab = (efi_system_table_t *) (unsigned long) systab;
697 }
698 new_memmap = krealloc(new_memmap,
699 (count + 1) * memmap.desc_size,
700 GFP_KERNEL);
701 memcpy(new_memmap + (count * memmap.desc_size), md,
702 memmap.desc_size);
703 count++;
704 }
705
706 BUG_ON(!efi.systab);
707
708 status = phys_efi_set_virtual_address_map(
709 memmap.desc_size * count,
710 memmap.desc_size,
711 memmap.desc_version,
712 (efi_memory_desc_t *)__pa(new_memmap));
713
714 if (status != EFI_SUCCESS) {
715 printk(KERN_ALERT "Unable to switch EFI into virtual mode "
716 "(status=%lx)!\n", status);
717 panic("EFI call to SetVirtualAddressMap() failed!");
718 }
719
720 /*
721 * Thankfully, it does seem that no runtime services other than
722 * SetVirtualAddressMap() will touch boot services code, so we can
723 * get rid of it all at this point
724 */
725 efi_free_boot_services();
726
727 /*
728 * Now that EFI is in virtual mode, update the function
729 * pointers in the runtime service table to the new virtual addresses.
730 *
731 * Call EFI services through wrapper functions.
732 */
733 efi.get_time = virt_efi_get_time;
734 efi.set_time = virt_efi_set_time;
735 efi.get_wakeup_time = virt_efi_get_wakeup_time;
736 efi.set_wakeup_time = virt_efi_set_wakeup_time;
737 efi.get_variable = virt_efi_get_variable;
738 efi.get_next_variable = virt_efi_get_next_variable;
739 efi.set_variable = virt_efi_set_variable;
740 efi.get_next_high_mono_count = virt_efi_get_next_high_mono_count;
741 efi.reset_system = virt_efi_reset_system;
742 efi.set_virtual_address_map = NULL;
743 efi.query_variable_info = virt_efi_query_variable_info;
744 efi.update_capsule = virt_efi_update_capsule;
745 efi.query_capsule_caps = virt_efi_query_capsule_caps;
746 if (__supported_pte_mask & _PAGE_NX)
747 runtime_code_page_mkexec();
748 early_iounmap(memmap.map, memmap.nr_map * memmap.desc_size);
749 memmap.map = NULL;
750 kfree(new_memmap);
751}
752
753/*
754 * Convenience functions to obtain memory types and attributes
755 */
756u32 efi_mem_type(unsigned long phys_addr)
757{
758 efi_memory_desc_t *md;
759 void *p;
760
761 for (p = memmap.map; p < memmap.map_end; p += memmap.desc_size) {
762 md = p;
763 if ((md->phys_addr <= phys_addr) &&
764 (phys_addr < (md->phys_addr +
765 (md->num_pages << EFI_PAGE_SHIFT))))
766 return md->type;
767 }
768 return 0;
769}
770
771u64 efi_mem_attributes(unsigned long phys_addr)
772{
773 efi_memory_desc_t *md;
774 void *p;
775
776 for (p = memmap.map; p < memmap.map_end; p += memmap.desc_size) {
777 md = p;
778 if ((md->phys_addr <= phys_addr) &&
779 (phys_addr < (md->phys_addr +
780 (md->num_pages << EFI_PAGE_SHIFT))))
781 return md->attribute;
782 }
783 return 0;
784}
1// SPDX-License-Identifier: GPL-2.0
2/*
3 * Common EFI (Extensible Firmware Interface) support functions
4 * Based on Extensible Firmware Interface Specification version 1.0
5 *
6 * Copyright (C) 1999 VA Linux Systems
7 * Copyright (C) 1999 Walt Drummond <drummond@valinux.com>
8 * Copyright (C) 1999-2002 Hewlett-Packard Co.
9 * David Mosberger-Tang <davidm@hpl.hp.com>
10 * Stephane Eranian <eranian@hpl.hp.com>
11 * Copyright (C) 2005-2008 Intel Co.
12 * Fenghua Yu <fenghua.yu@intel.com>
13 * Bibo Mao <bibo.mao@intel.com>
14 * Chandramouli Narayanan <mouli@linux.intel.com>
15 * Huang Ying <ying.huang@intel.com>
16 * Copyright (C) 2013 SuSE Labs
17 * Borislav Petkov <bp@suse.de> - runtime services VA mapping
18 *
19 * Copied from efi_32.c to eliminate the duplicated code between EFI
20 * 32/64 support code. --ying 2007-10-26
21 *
22 * All EFI Runtime Services are not implemented yet as EFI only
23 * supports physical mode addressing on SoftSDV. This is to be fixed
24 * in a future version. --drummond 1999-07-20
25 *
26 * Implemented EFI runtime services and virtual mode calls. --davidm
27 *
28 * Goutham Rao: <goutham.rao@intel.com>
29 * Skip non-WB memory and ignore empty memory ranges.
30 */
31
32#define pr_fmt(fmt) KBUILD_MODNAME ": " fmt
33
34#include <linux/kernel.h>
35#include <linux/init.h>
36#include <linux/efi.h>
37#include <linux/efi-bgrt.h>
38#include <linux/export.h>
39#include <linux/memblock.h>
40#include <linux/slab.h>
41#include <linux/spinlock.h>
42#include <linux/uaccess.h>
43#include <linux/time.h>
44#include <linux/io.h>
45#include <linux/reboot.h>
46#include <linux/bcd.h>
47
48#include <asm/setup.h>
49#include <asm/efi.h>
50#include <asm/e820/api.h>
51#include <asm/time.h>
52#include <asm/tlbflush.h>
53#include <asm/x86_init.h>
54#include <asm/uv/uv.h>
55
56static unsigned long efi_systab_phys __initdata;
57static unsigned long uga_phys = EFI_INVALID_TABLE_ADDR;
58static unsigned long efi_runtime, efi_nr_tables;
59
60unsigned long efi_fw_vendor, efi_config_table;
61
62static const efi_config_table_type_t arch_tables[] __initconst = {
63 {UGA_IO_PROTOCOL_GUID, &uga_phys, "UGA" },
64#ifdef CONFIG_X86_UV
65 {UV_SYSTEM_TABLE_GUID, &uv_systab_phys, "UVsystab" },
66#endif
67 {},
68};
69
70static const unsigned long * const efi_tables[] = {
71 &efi.acpi,
72 &efi.acpi20,
73 &efi.smbios,
74 &efi.smbios3,
75 &uga_phys,
76#ifdef CONFIG_X86_UV
77 &uv_systab_phys,
78#endif
79 &efi_fw_vendor,
80 &efi_runtime,
81 &efi_config_table,
82 &efi.esrt,
83 &efi_mem_attr_table,
84#ifdef CONFIG_EFI_RCI2_TABLE
85 &rci2_table_phys,
86#endif
87 &efi.tpm_log,
88 &efi.tpm_final_log,
89 &efi_rng_seed,
90#ifdef CONFIG_LOAD_UEFI_KEYS
91 &efi.mokvar_table,
92#endif
93#ifdef CONFIG_EFI_COCO_SECRET
94 &efi.coco_secret,
95#endif
96#ifdef CONFIG_UNACCEPTED_MEMORY
97 &efi.unaccepted,
98#endif
99};
100
101u64 efi_setup; /* efi setup_data physical address */
102
103static int add_efi_memmap __initdata;
104static int __init setup_add_efi_memmap(char *arg)
105{
106 add_efi_memmap = 1;
107 return 0;
108}
109early_param("add_efi_memmap", setup_add_efi_memmap);
110
111/*
112 * Tell the kernel about the EFI memory map. This might include
113 * more than the max 128 entries that can fit in the passed in e820
114 * legacy (zeropage) memory map, but the kernel's e820 table can hold
115 * E820_MAX_ENTRIES.
116 */
117
118static void __init do_add_efi_memmap(void)
119{
120 efi_memory_desc_t *md;
121
122 if (!efi_enabled(EFI_MEMMAP))
123 return;
124
125 for_each_efi_memory_desc(md) {
126 unsigned long long start = md->phys_addr;
127 unsigned long long size = md->num_pages << EFI_PAGE_SHIFT;
128 int e820_type;
129
130 switch (md->type) {
131 case EFI_LOADER_CODE:
132 case EFI_LOADER_DATA:
133 case EFI_BOOT_SERVICES_CODE:
134 case EFI_BOOT_SERVICES_DATA:
135 case EFI_CONVENTIONAL_MEMORY:
136 if (efi_soft_reserve_enabled()
137 && (md->attribute & EFI_MEMORY_SP))
138 e820_type = E820_TYPE_SOFT_RESERVED;
139 else if (md->attribute & EFI_MEMORY_WB)
140 e820_type = E820_TYPE_RAM;
141 else
142 e820_type = E820_TYPE_RESERVED;
143 break;
144 case EFI_ACPI_RECLAIM_MEMORY:
145 e820_type = E820_TYPE_ACPI;
146 break;
147 case EFI_ACPI_MEMORY_NVS:
148 e820_type = E820_TYPE_NVS;
149 break;
150 case EFI_UNUSABLE_MEMORY:
151 e820_type = E820_TYPE_UNUSABLE;
152 break;
153 case EFI_PERSISTENT_MEMORY:
154 e820_type = E820_TYPE_PMEM;
155 break;
156 default:
157 /*
158 * EFI_RESERVED_TYPE EFI_RUNTIME_SERVICES_CODE
159 * EFI_RUNTIME_SERVICES_DATA EFI_MEMORY_MAPPED_IO
160 * EFI_MEMORY_MAPPED_IO_PORT_SPACE EFI_PAL_CODE
161 */
162 e820_type = E820_TYPE_RESERVED;
163 break;
164 }
165
166 e820__range_add(start, size, e820_type);
167 }
168 e820__update_table(e820_table);
169}
170
171/*
172 * Given add_efi_memmap defaults to 0 and there is no alternative
173 * e820 mechanism for soft-reserved memory, import the full EFI memory
174 * map if soft reservations are present and enabled. Otherwise, the
175 * mechanism to disable the kernel's consideration of EFI_MEMORY_SP is
176 * the efi=nosoftreserve option.
177 */
178static bool do_efi_soft_reserve(void)
179{
180 efi_memory_desc_t *md;
181
182 if (!efi_enabled(EFI_MEMMAP))
183 return false;
184
185 if (!efi_soft_reserve_enabled())
186 return false;
187
188 for_each_efi_memory_desc(md)
189 if (md->type == EFI_CONVENTIONAL_MEMORY &&
190 (md->attribute & EFI_MEMORY_SP))
191 return true;
192 return false;
193}
194
195int __init efi_memblock_x86_reserve_range(void)
196{
197 struct efi_info *e = &boot_params.efi_info;
198 struct efi_memory_map_data data;
199 phys_addr_t pmap;
200 int rv;
201
202 if (efi_enabled(EFI_PARAVIRT))
203 return 0;
204
205 /* Can't handle firmware tables above 4GB on i386 */
206 if (IS_ENABLED(CONFIG_X86_32) && e->efi_memmap_hi > 0) {
207 pr_err("Memory map is above 4GB, disabling EFI.\n");
208 return -EINVAL;
209 }
210 pmap = (phys_addr_t)(e->efi_memmap | ((u64)e->efi_memmap_hi << 32));
211
212 data.phys_map = pmap;
213 data.size = e->efi_memmap_size;
214 data.desc_size = e->efi_memdesc_size;
215 data.desc_version = e->efi_memdesc_version;
216
217 if (!efi_enabled(EFI_PARAVIRT)) {
218 rv = efi_memmap_init_early(&data);
219 if (rv)
220 return rv;
221 }
222
223 if (add_efi_memmap || do_efi_soft_reserve())
224 do_add_efi_memmap();
225
226 WARN(efi.memmap.desc_version != 1,
227 "Unexpected EFI_MEMORY_DESCRIPTOR version %ld",
228 efi.memmap.desc_version);
229
230 memblock_reserve(pmap, efi.memmap.nr_map * efi.memmap.desc_size);
231 set_bit(EFI_PRESERVE_BS_REGIONS, &efi.flags);
232
233 return 0;
234}
235
236#define OVERFLOW_ADDR_SHIFT (64 - EFI_PAGE_SHIFT)
237#define OVERFLOW_ADDR_MASK (U64_MAX << OVERFLOW_ADDR_SHIFT)
238#define U64_HIGH_BIT (~(U64_MAX >> 1))
239
240static bool __init efi_memmap_entry_valid(const efi_memory_desc_t *md, int i)
241{
242 u64 end = (md->num_pages << EFI_PAGE_SHIFT) + md->phys_addr - 1;
243 u64 end_hi = 0;
244 char buf[64];
245
246 if (md->num_pages == 0) {
247 end = 0;
248 } else if (md->num_pages > EFI_PAGES_MAX ||
249 EFI_PAGES_MAX - md->num_pages <
250 (md->phys_addr >> EFI_PAGE_SHIFT)) {
251 end_hi = (md->num_pages & OVERFLOW_ADDR_MASK)
252 >> OVERFLOW_ADDR_SHIFT;
253
254 if ((md->phys_addr & U64_HIGH_BIT) && !(end & U64_HIGH_BIT))
255 end_hi += 1;
256 } else {
257 return true;
258 }
259
260 pr_warn_once(FW_BUG "Invalid EFI memory map entries:\n");
261
262 if (end_hi) {
263 pr_warn("mem%02u: %s range=[0x%016llx-0x%llx%016llx] (invalid)\n",
264 i, efi_md_typeattr_format(buf, sizeof(buf), md),
265 md->phys_addr, end_hi, end);
266 } else {
267 pr_warn("mem%02u: %s range=[0x%016llx-0x%016llx] (invalid)\n",
268 i, efi_md_typeattr_format(buf, sizeof(buf), md),
269 md->phys_addr, end);
270 }
271 return false;
272}
273
274static void __init efi_clean_memmap(void)
275{
276 efi_memory_desc_t *out = efi.memmap.map;
277 const efi_memory_desc_t *in = out;
278 const efi_memory_desc_t *end = efi.memmap.map_end;
279 int i, n_removal;
280
281 for (i = n_removal = 0; in < end; i++) {
282 if (efi_memmap_entry_valid(in, i)) {
283 if (out != in)
284 memcpy(out, in, efi.memmap.desc_size);
285 out = (void *)out + efi.memmap.desc_size;
286 } else {
287 n_removal++;
288 }
289 in = (void *)in + efi.memmap.desc_size;
290 }
291
292 if (n_removal > 0) {
293 struct efi_memory_map_data data = {
294 .phys_map = efi.memmap.phys_map,
295 .desc_version = efi.memmap.desc_version,
296 .desc_size = efi.memmap.desc_size,
297 .size = efi.memmap.desc_size * (efi.memmap.nr_map - n_removal),
298 .flags = 0,
299 };
300
301 pr_warn("Removing %d invalid memory map entries.\n", n_removal);
302 efi_memmap_install(&data);
303 }
304}
305
306/*
307 * Firmware can use EfiMemoryMappedIO to request that MMIO regions be
308 * mapped by the OS so they can be accessed by EFI runtime services, but
309 * should have no other significance to the OS (UEFI r2.10, sec 7.2).
310 * However, most bootloaders and EFI stubs convert EfiMemoryMappedIO
311 * regions to E820_TYPE_RESERVED entries, which prevent Linux from
312 * allocating space from them (see remove_e820_regions()).
313 *
314 * Some platforms use EfiMemoryMappedIO entries for PCI MMCONFIG space and
315 * PCI host bridge windows, which means Linux can't allocate BAR space for
316 * hot-added devices.
317 *
318 * Remove large EfiMemoryMappedIO regions from the E820 map to avoid this
319 * problem.
320 *
321 * Retain small EfiMemoryMappedIO regions because on some platforms, these
322 * describe non-window space that's included in host bridge _CRS. If we
323 * assign that space to PCI devices, they don't work.
324 */
325static void __init efi_remove_e820_mmio(void)
326{
327 efi_memory_desc_t *md;
328 u64 size, start, end;
329 int i = 0;
330
331 for_each_efi_memory_desc(md) {
332 if (md->type == EFI_MEMORY_MAPPED_IO) {
333 size = md->num_pages << EFI_PAGE_SHIFT;
334 start = md->phys_addr;
335 end = start + size - 1;
336 if (size >= 256*1024) {
337 pr_info("Remove mem%02u: MMIO range=[0x%08llx-0x%08llx] (%lluMB) from e820 map\n",
338 i, start, end, size >> 20);
339 e820__range_remove(start, size,
340 E820_TYPE_RESERVED, 1);
341 } else {
342 pr_info("Not removing mem%02u: MMIO range=[0x%08llx-0x%08llx] (%lluKB) from e820 map\n",
343 i, start, end, size >> 10);
344 }
345 }
346 i++;
347 }
348}
349
350void __init efi_print_memmap(void)
351{
352 efi_memory_desc_t *md;
353 int i = 0;
354
355 for_each_efi_memory_desc(md) {
356 char buf[64];
357
358 pr_info("mem%02u: %s range=[0x%016llx-0x%016llx] (%lluMB)\n",
359 i++, efi_md_typeattr_format(buf, sizeof(buf), md),
360 md->phys_addr,
361 md->phys_addr + (md->num_pages << EFI_PAGE_SHIFT) - 1,
362 (md->num_pages >> (20 - EFI_PAGE_SHIFT)));
363 }
364}
365
366static int __init efi_systab_init(unsigned long phys)
367{
368 int size = efi_enabled(EFI_64BIT) ? sizeof(efi_system_table_64_t)
369 : sizeof(efi_system_table_32_t);
370 const efi_table_hdr_t *hdr;
371 bool over4g = false;
372 void *p;
373 int ret;
374
375 hdr = p = early_memremap_ro(phys, size);
376 if (p == NULL) {
377 pr_err("Couldn't map the system table!\n");
378 return -ENOMEM;
379 }
380
381 ret = efi_systab_check_header(hdr);
382 if (ret) {
383 early_memunmap(p, size);
384 return ret;
385 }
386
387 if (efi_enabled(EFI_64BIT)) {
388 const efi_system_table_64_t *systab64 = p;
389
390 efi_runtime = systab64->runtime;
391 over4g = systab64->runtime > U32_MAX;
392
393 if (efi_setup) {
394 struct efi_setup_data *data;
395
396 data = early_memremap_ro(efi_setup, sizeof(*data));
397 if (!data) {
398 early_memunmap(p, size);
399 return -ENOMEM;
400 }
401
402 efi_fw_vendor = (unsigned long)data->fw_vendor;
403 efi_config_table = (unsigned long)data->tables;
404
405 over4g |= data->fw_vendor > U32_MAX ||
406 data->tables > U32_MAX;
407
408 early_memunmap(data, sizeof(*data));
409 } else {
410 efi_fw_vendor = systab64->fw_vendor;
411 efi_config_table = systab64->tables;
412
413 over4g |= systab64->fw_vendor > U32_MAX ||
414 systab64->tables > U32_MAX;
415 }
416 efi_nr_tables = systab64->nr_tables;
417 } else {
418 const efi_system_table_32_t *systab32 = p;
419
420 efi_fw_vendor = systab32->fw_vendor;
421 efi_runtime = systab32->runtime;
422 efi_config_table = systab32->tables;
423 efi_nr_tables = systab32->nr_tables;
424 }
425
426 efi.runtime_version = hdr->revision;
427
428 efi_systab_report_header(hdr, efi_fw_vendor);
429 early_memunmap(p, size);
430
431 if (IS_ENABLED(CONFIG_X86_32) && over4g) {
432 pr_err("EFI data located above 4GB, disabling EFI.\n");
433 return -EINVAL;
434 }
435
436 return 0;
437}
438
439static int __init efi_config_init(const efi_config_table_type_t *arch_tables)
440{
441 void *config_tables;
442 int sz, ret;
443
444 if (efi_nr_tables == 0)
445 return 0;
446
447 if (efi_enabled(EFI_64BIT))
448 sz = sizeof(efi_config_table_64_t);
449 else
450 sz = sizeof(efi_config_table_32_t);
451
452 /*
453 * Let's see what config tables the firmware passed to us.
454 */
455 config_tables = early_memremap(efi_config_table, efi_nr_tables * sz);
456 if (config_tables == NULL) {
457 pr_err("Could not map Configuration table!\n");
458 return -ENOMEM;
459 }
460
461 ret = efi_config_parse_tables(config_tables, efi_nr_tables,
462 arch_tables);
463
464 early_memunmap(config_tables, efi_nr_tables * sz);
465 return ret;
466}
467
468void __init efi_init(void)
469{
470 if (IS_ENABLED(CONFIG_X86_32) &&
471 (boot_params.efi_info.efi_systab_hi ||
472 boot_params.efi_info.efi_memmap_hi)) {
473 pr_info("Table located above 4GB, disabling EFI.\n");
474 return;
475 }
476
477 efi_systab_phys = boot_params.efi_info.efi_systab |
478 ((__u64)boot_params.efi_info.efi_systab_hi << 32);
479
480 if (efi_systab_init(efi_systab_phys))
481 return;
482
483 if (efi_reuse_config(efi_config_table, efi_nr_tables))
484 return;
485
486 if (efi_config_init(arch_tables))
487 return;
488
489 /*
490 * Note: We currently don't support runtime services on an EFI
491 * that doesn't match the kernel 32/64-bit mode.
492 */
493
494 if (!efi_runtime_supported())
495 pr_err("No EFI runtime due to 32/64-bit mismatch with kernel\n");
496
497 if (!efi_runtime_supported() || efi_runtime_disabled()) {
498 efi_memmap_unmap();
499 return;
500 }
501
502 set_bit(EFI_RUNTIME_SERVICES, &efi.flags);
503 efi_clean_memmap();
504
505 efi_remove_e820_mmio();
506
507 if (efi_enabled(EFI_DBG))
508 efi_print_memmap();
509}
510
511/* Merge contiguous regions of the same type and attribute */
512static void __init efi_merge_regions(void)
513{
514 efi_memory_desc_t *md, *prev_md = NULL;
515
516 for_each_efi_memory_desc(md) {
517 u64 prev_size;
518
519 if (!prev_md) {
520 prev_md = md;
521 continue;
522 }
523
524 if (prev_md->type != md->type ||
525 prev_md->attribute != md->attribute) {
526 prev_md = md;
527 continue;
528 }
529
530 prev_size = prev_md->num_pages << EFI_PAGE_SHIFT;
531
532 if (md->phys_addr == (prev_md->phys_addr + prev_size)) {
533 prev_md->num_pages += md->num_pages;
534 md->type = EFI_RESERVED_TYPE;
535 md->attribute = 0;
536 continue;
537 }
538 prev_md = md;
539 }
540}
541
542static void *realloc_pages(void *old_memmap, int old_shift)
543{
544 void *ret;
545
546 ret = (void *)__get_free_pages(GFP_KERNEL, old_shift + 1);
547 if (!ret)
548 goto out;
549
550 /*
551 * A first-time allocation doesn't have anything to copy.
552 */
553 if (!old_memmap)
554 return ret;
555
556 memcpy(ret, old_memmap, PAGE_SIZE << old_shift);
557
558out:
559 free_pages((unsigned long)old_memmap, old_shift);
560 return ret;
561}
562
563/*
564 * Iterate the EFI memory map in reverse order because the regions
565 * will be mapped top-down. The end result is the same as if we had
566 * mapped things forward, but doesn't require us to change the
567 * existing implementation of efi_map_region().
568 */
569static inline void *efi_map_next_entry_reverse(void *entry)
570{
571 /* Initial call */
572 if (!entry)
573 return efi.memmap.map_end - efi.memmap.desc_size;
574
575 entry -= efi.memmap.desc_size;
576 if (entry < efi.memmap.map)
577 return NULL;
578
579 return entry;
580}
581
582/*
583 * efi_map_next_entry - Return the next EFI memory map descriptor
584 * @entry: Previous EFI memory map descriptor
585 *
586 * This is a helper function to iterate over the EFI memory map, which
587 * we do in different orders depending on the current configuration.
588 *
589 * To begin traversing the memory map @entry must be %NULL.
590 *
591 * Returns %NULL when we reach the end of the memory map.
592 */
593static void *efi_map_next_entry(void *entry)
594{
595 if (efi_enabled(EFI_64BIT)) {
596 /*
597 * Starting in UEFI v2.5 the EFI_PROPERTIES_TABLE
598 * config table feature requires us to map all entries
599 * in the same order as they appear in the EFI memory
600 * map. That is to say, entry N must have a lower
601 * virtual address than entry N+1. This is because the
602 * firmware toolchain leaves relative references in
603 * the code/data sections, which are split and become
604 * separate EFI memory regions. Mapping things
605 * out-of-order leads to the firmware accessing
606 * unmapped addresses.
607 *
608 * Since we need to map things this way whether or not
609 * the kernel actually makes use of
610 * EFI_PROPERTIES_TABLE, let's just switch to this
611 * scheme by default for 64-bit.
612 */
613 return efi_map_next_entry_reverse(entry);
614 }
615
616 /* Initial call */
617 if (!entry)
618 return efi.memmap.map;
619
620 entry += efi.memmap.desc_size;
621 if (entry >= efi.memmap.map_end)
622 return NULL;
623
624 return entry;
625}
626
627static bool should_map_region(efi_memory_desc_t *md)
628{
629 /*
630 * Runtime regions always require runtime mappings (obviously).
631 */
632 if (md->attribute & EFI_MEMORY_RUNTIME)
633 return true;
634
635 /*
636 * 32-bit EFI doesn't suffer from the bug that requires us to
637 * reserve boot services regions, and mixed mode support
638 * doesn't exist for 32-bit kernels.
639 */
640 if (IS_ENABLED(CONFIG_X86_32))
641 return false;
642
643 /*
644 * EFI specific purpose memory may be reserved by default
645 * depending on kernel config and boot options.
646 */
647 if (md->type == EFI_CONVENTIONAL_MEMORY &&
648 efi_soft_reserve_enabled() &&
649 (md->attribute & EFI_MEMORY_SP))
650 return false;
651
652 /*
653 * Map all of RAM so that we can access arguments in the 1:1
654 * mapping when making EFI runtime calls.
655 */
656 if (efi_is_mixed()) {
657 if (md->type == EFI_CONVENTIONAL_MEMORY ||
658 md->type == EFI_LOADER_DATA ||
659 md->type == EFI_LOADER_CODE)
660 return true;
661 }
662
663 /*
664 * Map boot services regions as a workaround for buggy
665 * firmware that accesses them even when they shouldn't.
666 *
667 * See efi_{reserve,free}_boot_services().
668 */
669 if (md->type == EFI_BOOT_SERVICES_CODE ||
670 md->type == EFI_BOOT_SERVICES_DATA)
671 return true;
672
673 return false;
674}
675
676/*
677 * Map the efi memory ranges of the runtime services and update new_mmap with
678 * virtual addresses.
679 */
680static void * __init efi_map_regions(int *count, int *pg_shift)
681{
682 void *p, *new_memmap = NULL;
683 unsigned long left = 0;
684 unsigned long desc_size;
685 efi_memory_desc_t *md;
686
687 desc_size = efi.memmap.desc_size;
688
689 p = NULL;
690 while ((p = efi_map_next_entry(p))) {
691 md = p;
692
693 if (!should_map_region(md))
694 continue;
695
696 efi_map_region(md);
697
698 if (left < desc_size) {
699 new_memmap = realloc_pages(new_memmap, *pg_shift);
700 if (!new_memmap)
701 return NULL;
702
703 left += PAGE_SIZE << *pg_shift;
704 (*pg_shift)++;
705 }
706
707 memcpy(new_memmap + (*count * desc_size), md, desc_size);
708
709 left -= desc_size;
710 (*count)++;
711 }
712
713 return new_memmap;
714}
715
716static void __init kexec_enter_virtual_mode(void)
717{
718#ifdef CONFIG_KEXEC_CORE
719 efi_memory_desc_t *md;
720 unsigned int num_pages;
721
722 /*
723 * We don't do virtual mode, since we don't do runtime services, on
724 * non-native EFI.
725 */
726 if (efi_is_mixed()) {
727 efi_memmap_unmap();
728 clear_bit(EFI_RUNTIME_SERVICES, &efi.flags);
729 return;
730 }
731
732 if (efi_alloc_page_tables()) {
733 pr_err("Failed to allocate EFI page tables\n");
734 clear_bit(EFI_RUNTIME_SERVICES, &efi.flags);
735 return;
736 }
737
738 /*
739 * Map efi regions which were passed via setup_data. The virt_addr is a
740 * fixed addr which was used in first kernel of a kexec boot.
741 */
742 for_each_efi_memory_desc(md)
743 efi_map_region_fixed(md); /* FIXME: add error handling */
744
745 /*
746 * Unregister the early EFI memmap from efi_init() and install
747 * the new EFI memory map.
748 */
749 efi_memmap_unmap();
750
751 if (efi_memmap_init_late(efi.memmap.phys_map,
752 efi.memmap.desc_size * efi.memmap.nr_map)) {
753 pr_err("Failed to remap late EFI memory map\n");
754 clear_bit(EFI_RUNTIME_SERVICES, &efi.flags);
755 return;
756 }
757
758 num_pages = ALIGN(efi.memmap.nr_map * efi.memmap.desc_size, PAGE_SIZE);
759 num_pages >>= PAGE_SHIFT;
760
761 if (efi_setup_page_tables(efi.memmap.phys_map, num_pages)) {
762 clear_bit(EFI_RUNTIME_SERVICES, &efi.flags);
763 return;
764 }
765
766 efi_sync_low_kernel_mappings();
767 efi_native_runtime_setup();
768 efi_runtime_update_mappings();
769#endif
770}
771
772/*
773 * This function will switch the EFI runtime services to virtual mode.
774 * Essentially, we look through the EFI memmap and map every region that
775 * has the runtime attribute bit set in its memory descriptor into the
776 * efi_pgd page table.
777 *
778 * The new method does a pagetable switch in a preemption-safe manner
779 * so that we're in a different address space when calling a runtime
780 * function. For function arguments passing we do copy the PUDs of the
781 * kernel page table into efi_pgd prior to each call.
782 *
783 * Specially for kexec boot, efi runtime maps in previous kernel should
784 * be passed in via setup_data. In that case runtime ranges will be mapped
785 * to the same virtual addresses as the first kernel, see
786 * kexec_enter_virtual_mode().
787 */
788static void __init __efi_enter_virtual_mode(void)
789{
790 int count = 0, pg_shift = 0;
791 void *new_memmap = NULL;
792 efi_status_t status;
793 unsigned long pa;
794
795 if (efi_alloc_page_tables()) {
796 pr_err("Failed to allocate EFI page tables\n");
797 goto err;
798 }
799
800 efi_merge_regions();
801 new_memmap = efi_map_regions(&count, &pg_shift);
802 if (!new_memmap) {
803 pr_err("Error reallocating memory, EFI runtime non-functional!\n");
804 goto err;
805 }
806
807 pa = __pa(new_memmap);
808
809 /*
810 * Unregister the early EFI memmap from efi_init() and install
811 * the new EFI memory map that we are about to pass to the
812 * firmware via SetVirtualAddressMap().
813 */
814 efi_memmap_unmap();
815
816 if (efi_memmap_init_late(pa, efi.memmap.desc_size * count)) {
817 pr_err("Failed to remap late EFI memory map\n");
818 goto err;
819 }
820
821 if (efi_enabled(EFI_DBG)) {
822 pr_info("EFI runtime memory map:\n");
823 efi_print_memmap();
824 }
825
826 if (efi_setup_page_tables(pa, 1 << pg_shift))
827 goto err;
828
829 efi_sync_low_kernel_mappings();
830
831 status = efi_set_virtual_address_map(efi.memmap.desc_size * count,
832 efi.memmap.desc_size,
833 efi.memmap.desc_version,
834 (efi_memory_desc_t *)pa,
835 efi_systab_phys);
836 if (status != EFI_SUCCESS) {
837 pr_err("Unable to switch EFI into virtual mode (status=%lx)!\n",
838 status);
839 goto err;
840 }
841
842 efi_check_for_embedded_firmwares();
843 efi_free_boot_services();
844
845 if (!efi_is_mixed())
846 efi_native_runtime_setup();
847 else
848 efi_thunk_runtime_setup();
849
850 /*
851 * Apply more restrictive page table mapping attributes now that
852 * SVAM() has been called and the firmware has performed all
853 * necessary relocation fixups for the new virtual addresses.
854 */
855 efi_runtime_update_mappings();
856
857 /* clean DUMMY object */
858 efi_delete_dummy_variable();
859 return;
860
861err:
862 clear_bit(EFI_RUNTIME_SERVICES, &efi.flags);
863}
864
865void __init efi_enter_virtual_mode(void)
866{
867 if (efi_enabled(EFI_PARAVIRT))
868 return;
869
870 efi.runtime = (efi_runtime_services_t *)efi_runtime;
871
872 if (efi_setup)
873 kexec_enter_virtual_mode();
874 else
875 __efi_enter_virtual_mode();
876
877 efi_dump_pagetable();
878}
879
880bool efi_is_table_address(unsigned long phys_addr)
881{
882 unsigned int i;
883
884 if (phys_addr == EFI_INVALID_TABLE_ADDR)
885 return false;
886
887 for (i = 0; i < ARRAY_SIZE(efi_tables); i++)
888 if (*(efi_tables[i]) == phys_addr)
889 return true;
890
891 return false;
892}
893
894char *efi_systab_show_arch(char *str)
895{
896 if (uga_phys != EFI_INVALID_TABLE_ADDR)
897 str += sprintf(str, "UGA=0x%lx\n", uga_phys);
898 return str;
899}
900
901#define EFI_FIELD(var) efi_ ## var
902
903#define EFI_ATTR_SHOW(name) \
904static ssize_t name##_show(struct kobject *kobj, \
905 struct kobj_attribute *attr, char *buf) \
906{ \
907 return sprintf(buf, "0x%lx\n", EFI_FIELD(name)); \
908}
909
910EFI_ATTR_SHOW(fw_vendor);
911EFI_ATTR_SHOW(runtime);
912EFI_ATTR_SHOW(config_table);
913
914struct kobj_attribute efi_attr_fw_vendor = __ATTR_RO(fw_vendor);
915struct kobj_attribute efi_attr_runtime = __ATTR_RO(runtime);
916struct kobj_attribute efi_attr_config_table = __ATTR_RO(config_table);
917
918umode_t efi_attr_is_visible(struct kobject *kobj, struct attribute *attr, int n)
919{
920 if (attr == &efi_attr_fw_vendor.attr) {
921 if (efi_enabled(EFI_PARAVIRT) ||
922 efi_fw_vendor == EFI_INVALID_TABLE_ADDR)
923 return 0;
924 } else if (attr == &efi_attr_runtime.attr) {
925 if (efi_runtime == EFI_INVALID_TABLE_ADDR)
926 return 0;
927 } else if (attr == &efi_attr_config_table.attr) {
928 if (efi_config_table == EFI_INVALID_TABLE_ADDR)
929 return 0;
930 }
931 return attr->mode;
932}
933
934enum efi_secureboot_mode __x86_ima_efi_boot_mode(void)
935{
936 return boot_params.secure_boot;
937}