Linux Audio

Check our new training course

Loading...
v3.1
 
  1/*
  2 * Common EFI (Extensible Firmware Interface) support functions
  3 * Based on Extensible Firmware Interface Specification version 1.0
  4 *
  5 * Copyright (C) 1999 VA Linux Systems
  6 * Copyright (C) 1999 Walt Drummond <drummond@valinux.com>
  7 * Copyright (C) 1999-2002 Hewlett-Packard Co.
  8 *	David Mosberger-Tang <davidm@hpl.hp.com>
  9 *	Stephane Eranian <eranian@hpl.hp.com>
 10 * Copyright (C) 2005-2008 Intel Co.
 11 *	Fenghua Yu <fenghua.yu@intel.com>
 12 *	Bibo Mao <bibo.mao@intel.com>
 13 *	Chandramouli Narayanan <mouli@linux.intel.com>
 14 *	Huang Ying <ying.huang@intel.com>
 
 
 15 *
 16 * Copied from efi_32.c to eliminate the duplicated code between EFI
 17 * 32/64 support code. --ying 2007-10-26
 18 *
 19 * All EFI Runtime Services are not implemented yet as EFI only
 20 * supports physical mode addressing on SoftSDV. This is to be fixed
 21 * in a future version.  --drummond 1999-07-20
 22 *
 23 * Implemented EFI runtime services and virtual mode calls.  --davidm
 24 *
 25 * Goutham Rao: <goutham.rao@intel.com>
 26 *	Skip non-WB memory and ignore empty memory ranges.
 27 */
 28
 
 
 29#include <linux/kernel.h>
 30#include <linux/init.h>
 31#include <linux/efi.h>
 32#include <linux/bootmem.h>
 
 33#include <linux/memblock.h>
 
 34#include <linux/spinlock.h>
 35#include <linux/uaccess.h>
 36#include <linux/time.h>
 37#include <linux/io.h>
 38#include <linux/reboot.h>
 39#include <linux/bcd.h>
 40
 41#include <asm/setup.h>
 42#include <asm/efi.h>
 
 43#include <asm/time.h>
 44#include <asm/cacheflush.h>
 45#include <asm/tlbflush.h>
 46#include <asm/x86_init.h>
 
 47
 48#define EFI_DEBUG	1
 49#define PFX 		"EFI: "
 50
 51int efi_enabled;
 52EXPORT_SYMBOL(efi_enabled);
 53
 54struct efi __read_mostly efi = {
 55	.mps        = EFI_INVALID_TABLE_ADDR,
 56	.acpi       = EFI_INVALID_TABLE_ADDR,
 57	.acpi20     = EFI_INVALID_TABLE_ADDR,
 58	.smbios     = EFI_INVALID_TABLE_ADDR,
 59	.sal_systab = EFI_INVALID_TABLE_ADDR,
 60	.boot_info  = EFI_INVALID_TABLE_ADDR,
 61	.hcdp       = EFI_INVALID_TABLE_ADDR,
 62	.uga        = EFI_INVALID_TABLE_ADDR,
 63	.uv_systab  = EFI_INVALID_TABLE_ADDR,
 64};
 65EXPORT_SYMBOL(efi);
 66
 67struct efi_memory_map memmap;
 68
 69static struct efi efi_phys __initdata;
 70static efi_system_table_t efi_systab __initdata;
 71
 72static int __init setup_noefi(char *arg)
 73{
 74	efi_enabled = 0;
 75	return 0;
 76}
 77early_param("noefi", setup_noefi);
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 78
 79int add_efi_memmap;
 80EXPORT_SYMBOL(add_efi_memmap);
 81
 
 82static int __init setup_add_efi_memmap(char *arg)
 83{
 84	add_efi_memmap = 1;
 85	return 0;
 86}
 87early_param("add_efi_memmap", setup_add_efi_memmap);
 88
 89
 90static efi_status_t virt_efi_get_time(efi_time_t *tm, efi_time_cap_t *tc)
 91{
 92	unsigned long flags;
 93	efi_status_t status;
 94
 95	spin_lock_irqsave(&rtc_lock, flags);
 96	status = efi_call_virt2(get_time, tm, tc);
 97	spin_unlock_irqrestore(&rtc_lock, flags);
 98	return status;
 99}
100
101static efi_status_t virt_efi_set_time(efi_time_t *tm)
102{
103	unsigned long flags;
104	efi_status_t status;
105
106	spin_lock_irqsave(&rtc_lock, flags);
107	status = efi_call_virt1(set_time, tm);
108	spin_unlock_irqrestore(&rtc_lock, flags);
109	return status;
110}
111
112static efi_status_t virt_efi_get_wakeup_time(efi_bool_t *enabled,
113					     efi_bool_t *pending,
114					     efi_time_t *tm)
115{
116	unsigned long flags;
117	efi_status_t status;
118
119	spin_lock_irqsave(&rtc_lock, flags);
120	status = efi_call_virt3(get_wakeup_time,
121				enabled, pending, tm);
122	spin_unlock_irqrestore(&rtc_lock, flags);
123	return status;
124}
125
126static efi_status_t virt_efi_set_wakeup_time(efi_bool_t enabled, efi_time_t *tm)
127{
128	unsigned long flags;
129	efi_status_t status;
130
131	spin_lock_irqsave(&rtc_lock, flags);
132	status = efi_call_virt2(set_wakeup_time,
133				enabled, tm);
134	spin_unlock_irqrestore(&rtc_lock, flags);
135	return status;
136}
137
138static efi_status_t virt_efi_get_variable(efi_char16_t *name,
139					  efi_guid_t *vendor,
140					  u32 *attr,
141					  unsigned long *data_size,
142					  void *data)
143{
144	return efi_call_virt5(get_variable,
145			      name, vendor, attr,
146			      data_size, data);
147}
148
149static efi_status_t virt_efi_get_next_variable(unsigned long *name_size,
150					       efi_char16_t *name,
151					       efi_guid_t *vendor)
152{
153	return efi_call_virt3(get_next_variable,
154			      name_size, name, vendor);
155}
156
157static efi_status_t virt_efi_set_variable(efi_char16_t *name,
158					  efi_guid_t *vendor,
159					  u32 attr,
160					  unsigned long data_size,
161					  void *data)
162{
163	return efi_call_virt5(set_variable,
164			      name, vendor, attr,
165			      data_size, data);
166}
167
168static efi_status_t virt_efi_query_variable_info(u32 attr,
169						 u64 *storage_space,
170						 u64 *remaining_space,
171						 u64 *max_variable_size)
172{
173	if (efi.runtime_version < EFI_2_00_SYSTEM_TABLE_REVISION)
174		return EFI_UNSUPPORTED;
175
176	return efi_call_virt4(query_variable_info, attr, storage_space,
177			      remaining_space, max_variable_size);
178}
179
180static efi_status_t virt_efi_get_next_high_mono_count(u32 *count)
181{
182	return efi_call_virt1(get_next_high_mono_count, count);
183}
184
185static void virt_efi_reset_system(int reset_type,
186				  efi_status_t status,
187				  unsigned long data_size,
188				  efi_char16_t *data)
189{
190	efi_call_virt4(reset_system, reset_type, status,
191		       data_size, data);
192}
193
194static efi_status_t virt_efi_update_capsule(efi_capsule_header_t **capsules,
195					    unsigned long count,
196					    unsigned long sg_list)
197{
198	if (efi.runtime_version < EFI_2_00_SYSTEM_TABLE_REVISION)
199		return EFI_UNSUPPORTED;
200
201	return efi_call_virt3(update_capsule, capsules, count, sg_list);
202}
203
204static efi_status_t virt_efi_query_capsule_caps(efi_capsule_header_t **capsules,
205						unsigned long count,
206						u64 *max_size,
207						int *reset_type)
208{
209	if (efi.runtime_version < EFI_2_00_SYSTEM_TABLE_REVISION)
210		return EFI_UNSUPPORTED;
211
212	return efi_call_virt4(query_capsule_caps, capsules, count, max_size,
213			      reset_type);
214}
215
216static efi_status_t __init phys_efi_set_virtual_address_map(
217	unsigned long memory_map_size,
218	unsigned long descriptor_size,
219	u32 descriptor_version,
220	efi_memory_desc_t *virtual_map)
221{
222	efi_status_t status;
223
224	efi_call_phys_prelog();
225	status = efi_call_phys4(efi_phys.set_virtual_address_map,
226				memory_map_size, descriptor_size,
227				descriptor_version, virtual_map);
228	efi_call_phys_epilog();
229	return status;
230}
231
232static efi_status_t __init phys_efi_get_time(efi_time_t *tm,
233					     efi_time_cap_t *tc)
234{
235	unsigned long flags;
236	efi_status_t status;
237
238	spin_lock_irqsave(&rtc_lock, flags);
239	efi_call_phys_prelog();
240	status = efi_call_phys2(efi_phys.get_time, tm, tc);
241	efi_call_phys_epilog();
242	spin_unlock_irqrestore(&rtc_lock, flags);
243	return status;
244}
245
246int efi_set_rtc_mmss(unsigned long nowtime)
247{
248	int real_seconds, real_minutes;
249	efi_status_t 	status;
250	efi_time_t 	eft;
251	efi_time_cap_t 	cap;
252
253	status = efi.get_time(&eft, &cap);
254	if (status != EFI_SUCCESS) {
255		printk(KERN_ERR "Oops: efitime: can't read time!\n");
256		return -1;
257	}
258
259	real_seconds = nowtime % 60;
260	real_minutes = nowtime / 60;
261	if (((abs(real_minutes - eft.minute) + 15)/30) & 1)
262		real_minutes += 30;
263	real_minutes %= 60;
264	eft.minute = real_minutes;
265	eft.second = real_seconds;
266
267	status = efi.set_time(&eft);
268	if (status != EFI_SUCCESS) {
269		printk(KERN_ERR "Oops: efitime: can't write time!\n");
270		return -1;
271	}
272	return 0;
273}
274
275unsigned long efi_get_time(void)
276{
277	efi_status_t status;
278	efi_time_t eft;
279	efi_time_cap_t cap;
280
281	status = efi.get_time(&eft, &cap);
282	if (status != EFI_SUCCESS)
283		printk(KERN_ERR "Oops: efitime: can't read time!\n");
284
285	return mktime(eft.year, eft.month, eft.day, eft.hour,
286		      eft.minute, eft.second);
287}
288
289/*
290 * Tell the kernel about the EFI memory map.  This might include
291 * more than the max 128 entries that can fit in the e820 legacy
292 * (zeropage) memory map.
 
293 */
294
295static void __init do_add_efi_memmap(void)
296{
297	void *p;
298
299	for (p = memmap.map; p < memmap.map_end; p += memmap.desc_size) {
300		efi_memory_desc_t *md = p;
 
 
301		unsigned long long start = md->phys_addr;
302		unsigned long long size = md->num_pages << EFI_PAGE_SHIFT;
303		int e820_type;
304
305		switch (md->type) {
306		case EFI_LOADER_CODE:
307		case EFI_LOADER_DATA:
308		case EFI_BOOT_SERVICES_CODE:
309		case EFI_BOOT_SERVICES_DATA:
310		case EFI_CONVENTIONAL_MEMORY:
311			if (md->attribute & EFI_MEMORY_WB)
312				e820_type = E820_RAM;
 
 
 
313			else
314				e820_type = E820_RESERVED;
315			break;
316		case EFI_ACPI_RECLAIM_MEMORY:
317			e820_type = E820_ACPI;
318			break;
319		case EFI_ACPI_MEMORY_NVS:
320			e820_type = E820_NVS;
321			break;
322		case EFI_UNUSABLE_MEMORY:
323			e820_type = E820_UNUSABLE;
 
 
 
324			break;
325		default:
326			/*
327			 * EFI_RESERVED_TYPE EFI_RUNTIME_SERVICES_CODE
328			 * EFI_RUNTIME_SERVICES_DATA EFI_MEMORY_MAPPED_IO
329			 * EFI_MEMORY_MAPPED_IO_PORT_SPACE EFI_PAL_CODE
330			 */
331			e820_type = E820_RESERVED;
332			break;
333		}
334		e820_add_region(start, size, e820_type);
 
335	}
336	sanitize_e820_map(e820.map, ARRAY_SIZE(e820.map), &e820.nr_map);
337}
338
339void __init efi_memblock_x86_reserve_range(void)
 
 
 
 
 
 
 
340{
341	unsigned long pmap;
342
343#ifdef CONFIG_X86_32
344	pmap = boot_params.efi_info.efi_memmap;
345#else
346	pmap = (boot_params.efi_info.efi_memmap |
347		((__u64)boot_params.efi_info.efi_memmap_hi<<32));
348#endif
349	memmap.phys_map = (void *)pmap;
350	memmap.nr_map = boot_params.efi_info.efi_memmap_size /
351		boot_params.efi_info.efi_memdesc_size;
352	memmap.desc_version = boot_params.efi_info.efi_memdesc_version;
353	memmap.desc_size = boot_params.efi_info.efi_memdesc_size;
354	memblock_x86_reserve_range(pmap, pmap + memmap.nr_map * memmap.desc_size,
355		      "EFI memmap");
356}
357
358#if EFI_DEBUG
359static void __init print_efi_memmap(void)
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
360{
361	efi_memory_desc_t *md;
362	void *p;
363	int i;
364
365	for (p = memmap.map, i = 0;
366	     p < memmap.map_end;
367	     p += memmap.desc_size, i++) {
368		md = p;
369		printk(KERN_INFO PFX "mem%02u: type=%u, attr=0x%llx, "
370			"range=[0x%016llx-0x%016llx) (%lluMB)\n",
371			i, md->type, md->attribute, md->phys_addr,
372			md->phys_addr + (md->num_pages << EFI_PAGE_SHIFT),
373			(md->num_pages >> (20 - EFI_PAGE_SHIFT)));
 
 
 
 
 
 
 
374	}
375}
376#endif  /*  EFI_DEBUG  */
377
378void __init efi_reserve_boot_services(void)
379{
380	void *p;
 
381
382	for (p = memmap.map; p < memmap.map_end; p += memmap.desc_size) {
383		efi_memory_desc_t *md = p;
384		u64 start = md->phys_addr;
385		u64 size = md->num_pages << EFI_PAGE_SHIFT;
386
387		if (md->type != EFI_BOOT_SERVICES_CODE &&
388		    md->type != EFI_BOOT_SERVICES_DATA)
389			continue;
390		/* Only reserve where possible:
391		 * - Not within any already allocated areas
392		 * - Not over any memory area (really needed, if above?)
393		 * - Not within any part of the kernel
394		 * - Not the bios reserved area
395		*/
396		if ((start+size >= virt_to_phys(_text)
397				&& start <= virt_to_phys(_end)) ||
398			!e820_all_mapped(start, start+size, E820_RAM) ||
399			memblock_x86_check_reserved_size(&start, &size,
400							1<<EFI_PAGE_SHIFT)) {
401			/* Could not reserve, skip it */
402			md->num_pages = 0;
403			memblock_dbg(PFX "Could not reserve boot range "
404					"[0x%010llx-0x%010llx]\n",
405						start, start+size-1);
406		} else
407			memblock_x86_reserve_range(start, start+size,
408							"EFI Boot");
409	}
410}
411
412static void __init efi_free_boot_services(void)
413{
 
 
 
 
414	void *p;
 
415
416	for (p = memmap.map; p < memmap.map_end; p += memmap.desc_size) {
417		efi_memory_desc_t *md = p;
418		unsigned long long start = md->phys_addr;
419		unsigned long long size = md->num_pages << EFI_PAGE_SHIFT;
 
420
421		if (md->type != EFI_BOOT_SERVICES_CODE &&
422		    md->type != EFI_BOOT_SERVICES_DATA)
423			continue;
 
 
424
425		/* Could not reserve boot area */
426		if (!size)
427			continue;
 
 
 
 
 
 
 
 
 
 
 
 
 
 
428
429		free_bootmem_late(start, size);
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
430	}
 
 
431}
432
433void __init efi_init(void)
434{
435	efi_config_table_t *config_tables;
436	efi_runtime_services_t *runtime;
437	efi_char16_t *c16;
438	char vendor[100] = "unknown";
439	int i = 0;
440	void *tmp;
441
442#ifdef CONFIG_X86_32
443	efi_phys.systab = (efi_system_table_t *)boot_params.efi_info.efi_systab;
444#else
445	efi_phys.systab = (efi_system_table_t *)
446		(boot_params.efi_info.efi_systab |
447		 ((__u64)boot_params.efi_info.efi_systab_hi<<32));
448#endif
449
450	efi.systab = early_ioremap((unsigned long)efi_phys.systab,
451				   sizeof(efi_system_table_t));
452	if (efi.systab == NULL)
453		printk(KERN_ERR "Couldn't map the EFI system table!\n");
454	memcpy(&efi_systab, efi.systab, sizeof(efi_system_table_t));
455	early_iounmap(efi.systab, sizeof(efi_system_table_t));
456	efi.systab = &efi_systab;
457
458	/*
459	 * Verify the EFI Table
460	 */
461	if (efi.systab->hdr.signature != EFI_SYSTEM_TABLE_SIGNATURE)
462		printk(KERN_ERR "EFI system table signature incorrect!\n");
463	if ((efi.systab->hdr.revision >> 16) == 0)
464		printk(KERN_ERR "Warning: EFI system table version "
465		       "%d.%02d, expected 1.00 or greater!\n",
466		       efi.systab->hdr.revision >> 16,
467		       efi.systab->hdr.revision & 0xffff);
468
469	/*
470	 * Show what we know for posterity
471	 */
472	c16 = tmp = early_ioremap(efi.systab->fw_vendor, 2);
473	if (c16) {
474		for (i = 0; i < sizeof(vendor) - 1 && *c16; ++i)
475			vendor[i] = *c16++;
476		vendor[i] = '\0';
477	} else
478		printk(KERN_ERR PFX "Could not map the firmware vendor!\n");
479	early_iounmap(tmp, 2);
480
481	printk(KERN_INFO "EFI v%u.%.02u by %s\n",
482	       efi.systab->hdr.revision >> 16,
483	       efi.systab->hdr.revision & 0xffff, vendor);
484
485	/*
486	 * Let's see what config tables the firmware passed to us.
487	 */
488	config_tables = early_ioremap(
489		efi.systab->tables,
490		efi.systab->nr_tables * sizeof(efi_config_table_t));
491	if (config_tables == NULL)
492		printk(KERN_ERR "Could not map EFI Configuration Table!\n");
493
494	printk(KERN_INFO);
495	for (i = 0; i < efi.systab->nr_tables; i++) {
496		if (!efi_guidcmp(config_tables[i].guid, MPS_TABLE_GUID)) {
497			efi.mps = config_tables[i].table;
498			printk(" MPS=0x%lx ", config_tables[i].table);
499		} else if (!efi_guidcmp(config_tables[i].guid,
500					ACPI_20_TABLE_GUID)) {
501			efi.acpi20 = config_tables[i].table;
502			printk(" ACPI 2.0=0x%lx ", config_tables[i].table);
503		} else if (!efi_guidcmp(config_tables[i].guid,
504					ACPI_TABLE_GUID)) {
505			efi.acpi = config_tables[i].table;
506			printk(" ACPI=0x%lx ", config_tables[i].table);
507		} else if (!efi_guidcmp(config_tables[i].guid,
508					SMBIOS_TABLE_GUID)) {
509			efi.smbios = config_tables[i].table;
510			printk(" SMBIOS=0x%lx ", config_tables[i].table);
511#ifdef CONFIG_X86_UV
512		} else if (!efi_guidcmp(config_tables[i].guid,
513					UV_SYSTEM_TABLE_GUID)) {
514			efi.uv_systab = config_tables[i].table;
515			printk(" UVsystab=0x%lx ", config_tables[i].table);
516#endif
517		} else if (!efi_guidcmp(config_tables[i].guid,
518					HCDP_TABLE_GUID)) {
519			efi.hcdp = config_tables[i].table;
520			printk(" HCDP=0x%lx ", config_tables[i].table);
521		} else if (!efi_guidcmp(config_tables[i].guid,
522					UGA_IO_PROTOCOL_GUID)) {
523			efi.uga = config_tables[i].table;
524			printk(" UGA=0x%lx ", config_tables[i].table);
525		}
526	}
527	printk("\n");
528	early_iounmap(config_tables,
529			  efi.systab->nr_tables * sizeof(efi_config_table_t));
530
531	/*
532	 * Check out the runtime services table. We need to map
533	 * the runtime services table so that we can grab the physical
534	 * address of several of the EFI runtime functions, needed to
535	 * set the firmware into virtual mode.
536	 */
537	runtime = early_ioremap((unsigned long)efi.systab->runtime,
538				sizeof(efi_runtime_services_t));
539	if (runtime != NULL) {
540		/*
541		 * We will only need *early* access to the following
542		 * two EFI runtime services before set_virtual_address_map
543		 * is invoked.
544		 */
545		efi_phys.get_time = (efi_get_time_t *)runtime->get_time;
546		efi_phys.set_virtual_address_map =
547			(efi_set_virtual_address_map_t *)
548			runtime->set_virtual_address_map;
549		/*
550		 * Make efi_get_time can be called before entering
551		 * virtual mode.
552		 */
553		efi.get_time = phys_efi_get_time;
554	} else
555		printk(KERN_ERR "Could not map the EFI runtime service "
556		       "table!\n");
557	early_iounmap(runtime, sizeof(efi_runtime_services_t));
558
559	/* Map the EFI memory map */
560	memmap.map = early_ioremap((unsigned long)memmap.phys_map,
561				   memmap.nr_map * memmap.desc_size);
562	if (memmap.map == NULL)
563		printk(KERN_ERR "Could not map the EFI memory map!\n");
564	memmap.map_end = memmap.map + (memmap.nr_map * memmap.desc_size);
565
566	if (memmap.desc_size != sizeof(efi_memory_desc_t))
567		printk(KERN_WARNING
568		  "Kernel-defined memdesc doesn't match the one from EFI!\n");
569
570	if (add_efi_memmap)
571		do_add_efi_memmap();
572
573#ifdef CONFIG_X86_32
574	x86_platform.get_wallclock = efi_get_time;
575	x86_platform.set_wallclock = efi_set_rtc_mmss;
576#endif
577
578#if EFI_DEBUG
579	print_efi_memmap();
580#endif
581}
582
583void __init efi_set_executable(efi_memory_desc_t *md, bool executable)
584{
585	u64 addr, npages;
 
 
 
 
 
586
587	addr = md->virt_addr;
588	npages = md->num_pages;
589
590	memrange_efi_to_native(&addr, &npages);
 
591
592	if (executable)
593		set_memory_x(addr, npages);
594	else
595		set_memory_nx(addr, npages);
596}
597
598static void __init runtime_code_page_mkexec(void)
599{
600	efi_memory_desc_t *md;
601	void *p;
602
603	/* Make EFI runtime service code area executable */
604	for (p = memmap.map; p < memmap.map_end; p += memmap.desc_size) {
605		md = p;
 
606
607		if (md->type != EFI_RUNTIME_SERVICES_CODE)
608			continue;
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
609
610		efi_set_executable(md, true);
 
611	}
 
 
 
 
 
 
 
 
612}
613
614/*
615 * This function will switch the EFI runtime services to virtual mode.
616 * Essentially, look through the EFI memmap and map every region that
617 * has the runtime attribute bit set in its memory descriptor and update
618 * that memory descriptor with the virtual address obtained from ioremap().
619 * This enables the runtime services to be called without having to
620 * thunk back into physical mode for every invocation.
621 */
622void __init efi_enter_virtual_mode(void)
623{
624	efi_memory_desc_t *md, *prev_md = NULL;
625	efi_status_t status;
626	unsigned long size;
627	u64 end, systab, addr, npages, end_pfn;
628	void *p, *va, *new_memmap = NULL;
629	int count = 0;
630
631	efi.systab = NULL;
632
633	/* Merge contiguous regions of the same type and attribute */
634	for (p = memmap.map; p < memmap.map_end; p += memmap.desc_size) {
635		u64 prev_size;
636		md = p;
637
638		if (!prev_md) {
639			prev_md = md;
640			continue;
641		}
642
643		if (prev_md->type != md->type ||
644		    prev_md->attribute != md->attribute) {
645			prev_md = md;
646			continue;
647		}
648
649		prev_size = prev_md->num_pages << EFI_PAGE_SHIFT;
650
651		if (md->phys_addr == (prev_md->phys_addr + prev_size)) {
652			prev_md->num_pages += md->num_pages;
653			md->type = EFI_RESERVED_TYPE;
654			md->attribute = 0;
655			continue;
656		}
657		prev_md = md;
658	}
 
659
660	for (p = memmap.map; p < memmap.map_end; p += memmap.desc_size) {
661		md = p;
662		if (!(md->attribute & EFI_MEMORY_RUNTIME) &&
663		    md->type != EFI_BOOT_SERVICES_CODE &&
664		    md->type != EFI_BOOT_SERVICES_DATA)
665			continue;
666
667		size = md->num_pages << EFI_PAGE_SHIFT;
668		end = md->phys_addr + size;
 
669
670		end_pfn = PFN_UP(end);
671		if (end_pfn <= max_low_pfn_mapped
672		    || (end_pfn > (1UL << (32 - PAGE_SHIFT))
673			&& end_pfn <= max_pfn_mapped))
674			va = __va(md->phys_addr);
675		else
676			va = efi_ioremap(md->phys_addr, size, md->type);
677
678		md->virt_addr = (u64) (unsigned long) va;
679
680		if (!va) {
681			printk(KERN_ERR PFX "ioremap of 0x%llX failed!\n",
682			       (unsigned long long)md->phys_addr);
683			continue;
684		}
685
686		if (!(md->attribute & EFI_MEMORY_WB)) {
687			addr = md->virt_addr;
688			npages = md->num_pages;
689			memrange_efi_to_native(&addr, &npages);
690			set_memory_uc(addr, npages);
691		}
692
693		systab = (u64) (unsigned long) efi_phys.systab;
694		if (md->phys_addr <= systab && systab < end) {
695			systab += md->virt_addr - md->phys_addr;
696			efi.systab = (efi_system_table_t *) (unsigned long) systab;
697		}
698		new_memmap = krealloc(new_memmap,
699				      (count + 1) * memmap.desc_size,
700				      GFP_KERNEL);
701		memcpy(new_memmap + (count * memmap.desc_size), md,
702		       memmap.desc_size);
703		count++;
704	}
705
706	BUG_ON(!efi.systab);
707
708	status = phys_efi_set_virtual_address_map(
709		memmap.desc_size * count,
710		memmap.desc_size,
711		memmap.desc_version,
712		(efi_memory_desc_t *)__pa(new_memmap));
 
 
 
 
713
714	if (status != EFI_SUCCESS) {
715		printk(KERN_ALERT "Unable to switch EFI into virtual mode "
716		       "(status=%lx)!\n", status);
717		panic("EFI call to SetVirtualAddressMap() failed!");
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
718	}
719
 
 
 
 
 
 
 
 
 
 
 
 
 
720	/*
721	 * Thankfully, it does seem that no runtime services other than
722	 * SetVirtualAddressMap() will touch boot services code, so we can
723	 * get rid of it all at this point
724	 */
725	efi_free_boot_services();
 
726
727	/*
728	 * Now that EFI is in virtual mode, update the function
729	 * pointers in the runtime service table to the new virtual addresses.
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
730	 *
731	 * Call EFI services through wrapper functions.
732	 */
733	efi.get_time = virt_efi_get_time;
734	efi.set_time = virt_efi_set_time;
735	efi.get_wakeup_time = virt_efi_get_wakeup_time;
736	efi.set_wakeup_time = virt_efi_set_wakeup_time;
737	efi.get_variable = virt_efi_get_variable;
738	efi.get_next_variable = virt_efi_get_next_variable;
739	efi.set_variable = virt_efi_set_variable;
740	efi.get_next_high_mono_count = virt_efi_get_next_high_mono_count;
741	efi.reset_system = virt_efi_reset_system;
742	efi.set_virtual_address_map = NULL;
743	efi.query_variable_info = virt_efi_query_variable_info;
744	efi.update_capsule = virt_efi_update_capsule;
745	efi.query_capsule_caps = virt_efi_query_capsule_caps;
746	if (__supported_pte_mask & _PAGE_NX)
747		runtime_code_page_mkexec();
748	early_iounmap(memmap.map, memmap.nr_map * memmap.desc_size);
749	memmap.map = NULL;
750	kfree(new_memmap);
751}
752
753/*
754 * Convenience functions to obtain memory types and attributes
 
755 */
756u32 efi_mem_type(unsigned long phys_addr)
757{
 
 
 
758	efi_memory_desc_t *md;
759	void *p;
760
761	for (p = memmap.map; p < memmap.map_end; p += memmap.desc_size) {
 
 
 
762		md = p;
763		if ((md->phys_addr <= phys_addr) &&
764		    (phys_addr < (md->phys_addr +
765				  (md->num_pages << EFI_PAGE_SHIFT))))
766			return md->type;
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
767	}
768	return 0;
 
769}
770
771u64 efi_mem_attributes(unsigned long phys_addr)
772{
 
773	efi_memory_desc_t *md;
774	void *p;
775
776	for (p = memmap.map; p < memmap.map_end; p += memmap.desc_size) {
777		md = p;
778		if ((md->phys_addr <= phys_addr) &&
779		    (phys_addr < (md->phys_addr +
780				  (md->num_pages << EFI_PAGE_SHIFT))))
781			return md->attribute;
 
 
782	}
783	return 0;
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
784}
v6.2
  1// SPDX-License-Identifier: GPL-2.0
  2/*
  3 * Common EFI (Extensible Firmware Interface) support functions
  4 * Based on Extensible Firmware Interface Specification version 1.0
  5 *
  6 * Copyright (C) 1999 VA Linux Systems
  7 * Copyright (C) 1999 Walt Drummond <drummond@valinux.com>
  8 * Copyright (C) 1999-2002 Hewlett-Packard Co.
  9 *	David Mosberger-Tang <davidm@hpl.hp.com>
 10 *	Stephane Eranian <eranian@hpl.hp.com>
 11 * Copyright (C) 2005-2008 Intel Co.
 12 *	Fenghua Yu <fenghua.yu@intel.com>
 13 *	Bibo Mao <bibo.mao@intel.com>
 14 *	Chandramouli Narayanan <mouli@linux.intel.com>
 15 *	Huang Ying <ying.huang@intel.com>
 16 * Copyright (C) 2013 SuSE Labs
 17 *	Borislav Petkov <bp@suse.de> - runtime services VA mapping
 18 *
 19 * Copied from efi_32.c to eliminate the duplicated code between EFI
 20 * 32/64 support code. --ying 2007-10-26
 21 *
 22 * All EFI Runtime Services are not implemented yet as EFI only
 23 * supports physical mode addressing on SoftSDV. This is to be fixed
 24 * in a future version.  --drummond 1999-07-20
 25 *
 26 * Implemented EFI runtime services and virtual mode calls.  --davidm
 27 *
 28 * Goutham Rao: <goutham.rao@intel.com>
 29 *	Skip non-WB memory and ignore empty memory ranges.
 30 */
 31
 32#define pr_fmt(fmt) KBUILD_MODNAME ": " fmt
 33
 34#include <linux/kernel.h>
 35#include <linux/init.h>
 36#include <linux/efi.h>
 37#include <linux/efi-bgrt.h>
 38#include <linux/export.h>
 39#include <linux/memblock.h>
 40#include <linux/slab.h>
 41#include <linux/spinlock.h>
 42#include <linux/uaccess.h>
 43#include <linux/time.h>
 44#include <linux/io.h>
 45#include <linux/reboot.h>
 46#include <linux/bcd.h>
 47
 48#include <asm/setup.h>
 49#include <asm/efi.h>
 50#include <asm/e820/api.h>
 51#include <asm/time.h>
 
 52#include <asm/tlbflush.h>
 53#include <asm/x86_init.h>
 54#include <asm/uv/uv.h>
 55
 56static unsigned long efi_systab_phys __initdata;
 57static unsigned long prop_phys = EFI_INVALID_TABLE_ADDR;
 58static unsigned long uga_phys = EFI_INVALID_TABLE_ADDR;
 59static unsigned long efi_runtime, efi_nr_tables;
 60
 61unsigned long efi_fw_vendor, efi_config_table;
 62
 63static const efi_config_table_type_t arch_tables[] __initconst = {
 64	{EFI_PROPERTIES_TABLE_GUID,	&prop_phys,		"PROP"		},
 65	{UGA_IO_PROTOCOL_GUID,		&uga_phys,		"UGA"		},
 66#ifdef CONFIG_X86_UV
 67	{UV_SYSTEM_TABLE_GUID,		&uv_systab_phys,	"UVsystab"	},
 68#endif
 69	{},
 
 
 70};
 
 
 
 71
 72static const unsigned long * const efi_tables[] = {
 73	&efi.acpi,
 74	&efi.acpi20,
 75	&efi.smbios,
 76	&efi.smbios3,
 77	&uga_phys,
 78#ifdef CONFIG_X86_UV
 79	&uv_systab_phys,
 80#endif
 81	&efi_fw_vendor,
 82	&efi_runtime,
 83	&efi_config_table,
 84	&efi.esrt,
 85	&prop_phys,
 86	&efi_mem_attr_table,
 87#ifdef CONFIG_EFI_RCI2_TABLE
 88	&rci2_table_phys,
 89#endif
 90	&efi.tpm_log,
 91	&efi.tpm_final_log,
 92	&efi_rng_seed,
 93#ifdef CONFIG_LOAD_UEFI_KEYS
 94	&efi.mokvar_table,
 95#endif
 96#ifdef CONFIG_EFI_COCO_SECRET
 97	&efi.coco_secret,
 98#endif
 99};
100
101u64 efi_setup;		/* efi setup_data physical address */
 
102
103static int add_efi_memmap __initdata;
104static int __init setup_add_efi_memmap(char *arg)
105{
106	add_efi_memmap = 1;
107	return 0;
108}
109early_param("add_efi_memmap", setup_add_efi_memmap);
110
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
111/*
112 * Tell the kernel about the EFI memory map.  This might include
113 * more than the max 128 entries that can fit in the passed in e820
114 * legacy (zeropage) memory map, but the kernel's e820 table can hold
115 * E820_MAX_ENTRIES.
116 */
117
118static void __init do_add_efi_memmap(void)
119{
120	efi_memory_desc_t *md;
121
122	if (!efi_enabled(EFI_MEMMAP))
123		return;
124
125	for_each_efi_memory_desc(md) {
126		unsigned long long start = md->phys_addr;
127		unsigned long long size = md->num_pages << EFI_PAGE_SHIFT;
128		int e820_type;
129
130		switch (md->type) {
131		case EFI_LOADER_CODE:
132		case EFI_LOADER_DATA:
133		case EFI_BOOT_SERVICES_CODE:
134		case EFI_BOOT_SERVICES_DATA:
135		case EFI_CONVENTIONAL_MEMORY:
136			if (efi_soft_reserve_enabled()
137			    && (md->attribute & EFI_MEMORY_SP))
138				e820_type = E820_TYPE_SOFT_RESERVED;
139			else if (md->attribute & EFI_MEMORY_WB)
140				e820_type = E820_TYPE_RAM;
141			else
142				e820_type = E820_TYPE_RESERVED;
143			break;
144		case EFI_ACPI_RECLAIM_MEMORY:
145			e820_type = E820_TYPE_ACPI;
146			break;
147		case EFI_ACPI_MEMORY_NVS:
148			e820_type = E820_TYPE_NVS;
149			break;
150		case EFI_UNUSABLE_MEMORY:
151			e820_type = E820_TYPE_UNUSABLE;
152			break;
153		case EFI_PERSISTENT_MEMORY:
154			e820_type = E820_TYPE_PMEM;
155			break;
156		default:
157			/*
158			 * EFI_RESERVED_TYPE EFI_RUNTIME_SERVICES_CODE
159			 * EFI_RUNTIME_SERVICES_DATA EFI_MEMORY_MAPPED_IO
160			 * EFI_MEMORY_MAPPED_IO_PORT_SPACE EFI_PAL_CODE
161			 */
162			e820_type = E820_TYPE_RESERVED;
163			break;
164		}
165
166		e820__range_add(start, size, e820_type);
167	}
168	e820__update_table(e820_table);
169}
170
171/*
172 * Given add_efi_memmap defaults to 0 and there is no alternative
173 * e820 mechanism for soft-reserved memory, import the full EFI memory
174 * map if soft reservations are present and enabled. Otherwise, the
175 * mechanism to disable the kernel's consideration of EFI_MEMORY_SP is
176 * the efi=nosoftreserve option.
177 */
178static bool do_efi_soft_reserve(void)
179{
180	efi_memory_desc_t *md;
181
182	if (!efi_enabled(EFI_MEMMAP))
183		return false;
184
185	if (!efi_soft_reserve_enabled())
186		return false;
187
188	for_each_efi_memory_desc(md)
189		if (md->type == EFI_CONVENTIONAL_MEMORY &&
190		    (md->attribute & EFI_MEMORY_SP))
191			return true;
192	return false;
 
 
193}
194
195int __init efi_memblock_x86_reserve_range(void)
196{
197	struct efi_info *e = &boot_params.efi_info;
198	struct efi_memory_map_data data;
199	phys_addr_t pmap;
200	int rv;
201
202	if (efi_enabled(EFI_PARAVIRT))
203		return 0;
204
205	/* Can't handle firmware tables above 4GB on i386 */
206	if (IS_ENABLED(CONFIG_X86_32) && e->efi_memmap_hi > 0) {
207		pr_err("Memory map is above 4GB, disabling EFI.\n");
208		return -EINVAL;
209	}
210	pmap = (phys_addr_t)(e->efi_memmap | ((u64)e->efi_memmap_hi << 32));
211
212	data.phys_map		= pmap;
213	data.size 		= e->efi_memmap_size;
214	data.desc_size		= e->efi_memdesc_size;
215	data.desc_version	= e->efi_memdesc_version;
216
217	if (!efi_enabled(EFI_PARAVIRT)) {
218		rv = efi_memmap_init_early(&data);
219		if (rv)
220			return rv;
221	}
222
223	if (add_efi_memmap || do_efi_soft_reserve())
224		do_add_efi_memmap();
225
226	efi_fake_memmap_early();
227
228	WARN(efi.memmap.desc_version != 1,
229	     "Unexpected EFI_MEMORY_DESCRIPTOR version %ld",
230	     efi.memmap.desc_version);
231
232	memblock_reserve(pmap, efi.memmap.nr_map * efi.memmap.desc_size);
233	set_bit(EFI_PRESERVE_BS_REGIONS, &efi.flags);
234
235	return 0;
236}
237
238#define OVERFLOW_ADDR_SHIFT	(64 - EFI_PAGE_SHIFT)
239#define OVERFLOW_ADDR_MASK	(U64_MAX << OVERFLOW_ADDR_SHIFT)
240#define U64_HIGH_BIT		(~(U64_MAX >> 1))
241
242static bool __init efi_memmap_entry_valid(const efi_memory_desc_t *md, int i)
243{
244	u64 end = (md->num_pages << EFI_PAGE_SHIFT) + md->phys_addr - 1;
245	u64 end_hi = 0;
246	char buf[64];
247
248	if (md->num_pages == 0) {
249		end = 0;
250	} else if (md->num_pages > EFI_PAGES_MAX ||
251		   EFI_PAGES_MAX - md->num_pages <
252		   (md->phys_addr >> EFI_PAGE_SHIFT)) {
253		end_hi = (md->num_pages & OVERFLOW_ADDR_MASK)
254			>> OVERFLOW_ADDR_SHIFT;
255
256		if ((md->phys_addr & U64_HIGH_BIT) && !(end & U64_HIGH_BIT))
257			end_hi += 1;
258	} else {
259		return true;
260	}
261
262	pr_warn_once(FW_BUG "Invalid EFI memory map entries:\n");
263
264	if (end_hi) {
265		pr_warn("mem%02u: %s range=[0x%016llx-0x%llx%016llx] (invalid)\n",
266			i, efi_md_typeattr_format(buf, sizeof(buf), md),
267			md->phys_addr, end_hi, end);
268	} else {
269		pr_warn("mem%02u: %s range=[0x%016llx-0x%016llx] (invalid)\n",
270			i, efi_md_typeattr_format(buf, sizeof(buf), md),
271			md->phys_addr, end);
272	}
273	return false;
274}
275
276static void __init efi_clean_memmap(void)
277{
278	efi_memory_desc_t *out = efi.memmap.map;
279	const efi_memory_desc_t *in = out;
280	const efi_memory_desc_t *end = efi.memmap.map_end;
281	int i, n_removal;
282
283	for (i = n_removal = 0; in < end; i++) {
284		if (efi_memmap_entry_valid(in, i)) {
285			if (out != in)
286				memcpy(out, in, efi.memmap.desc_size);
287			out = (void *)out + efi.memmap.desc_size;
288		} else {
289			n_removal++;
290		}
291		in = (void *)in + efi.memmap.desc_size;
292	}
293
294	if (n_removal > 0) {
295		struct efi_memory_map_data data = {
296			.phys_map	= efi.memmap.phys_map,
297			.desc_version	= efi.memmap.desc_version,
298			.desc_size	= efi.memmap.desc_size,
299			.size		= efi.memmap.desc_size * (efi.memmap.nr_map - n_removal),
300			.flags		= 0,
301		};
302
303		pr_warn("Removing %d invalid memory map entries.\n", n_removal);
304		efi_memmap_install(&data);
305	}
306}
307
308/*
309 * Firmware can use EfiMemoryMappedIO to request that MMIO regions be
310 * mapped by the OS so they can be accessed by EFI runtime services, but
311 * should have no other significance to the OS (UEFI r2.10, sec 7.2).
312 * However, most bootloaders and EFI stubs convert EfiMemoryMappedIO
313 * regions to E820_TYPE_RESERVED entries, which prevent Linux from
314 * allocating space from them (see remove_e820_regions()).
315 *
316 * Some platforms use EfiMemoryMappedIO entries for PCI MMCONFIG space and
317 * PCI host bridge windows, which means Linux can't allocate BAR space for
318 * hot-added devices.
319 *
320 * Remove large EfiMemoryMappedIO regions from the E820 map to avoid this
321 * problem.
322 *
323 * Retain small EfiMemoryMappedIO regions because on some platforms, these
324 * describe non-window space that's included in host bridge _CRS.  If we
325 * assign that space to PCI devices, they don't work.
326 */
327static void __init efi_remove_e820_mmio(void)
328{
329	efi_memory_desc_t *md;
330	u64 size, start, end;
331	int i = 0;
332
333	for_each_efi_memory_desc(md) {
334		if (md->type == EFI_MEMORY_MAPPED_IO) {
335			size = md->num_pages << EFI_PAGE_SHIFT;
336			start = md->phys_addr;
337			end = start + size - 1;
338			if (size >= 256*1024) {
339				pr_info("Remove mem%02u: MMIO range=[0x%08llx-0x%08llx] (%lluMB) from e820 map\n",
340					i, start, end, size >> 20);
341				e820__range_remove(start, size,
342						   E820_TYPE_RESERVED, 1);
343			} else {
344				pr_info("Not removing mem%02u: MMIO range=[0x%08llx-0x%08llx] (%lluKB) from e820 map\n",
345					i, start, end, size >> 10);
346			}
347		}
348		i++;
349	}
350}
 
351
352void __init efi_print_memmap(void)
353{
354	efi_memory_desc_t *md;
355	int i = 0;
356
357	for_each_efi_memory_desc(md) {
358		char buf[64];
 
 
359
360		pr_info("mem%02u: %s range=[0x%016llx-0x%016llx] (%lluMB)\n",
361			i++, efi_md_typeattr_format(buf, sizeof(buf), md),
362			md->phys_addr,
363			md->phys_addr + (md->num_pages << EFI_PAGE_SHIFT) - 1,
364			(md->num_pages >> (20 - EFI_PAGE_SHIFT)));
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
365	}
366}
367
368static int __init efi_systab_init(unsigned long phys)
369{
370	int size = efi_enabled(EFI_64BIT) ? sizeof(efi_system_table_64_t)
371					  : sizeof(efi_system_table_32_t);
372	const efi_table_hdr_t *hdr;
373	bool over4g = false;
374	void *p;
375	int ret;
376
377	hdr = p = early_memremap_ro(phys, size);
378	if (p == NULL) {
379		pr_err("Couldn't map the system table!\n");
380		return -ENOMEM;
381	}
382
383	ret = efi_systab_check_header(hdr, 1);
384	if (ret) {
385		early_memunmap(p, size);
386		return ret;
387	}
388
389	if (efi_enabled(EFI_64BIT)) {
390		const efi_system_table_64_t *systab64 = p;
391
392		efi_runtime	= systab64->runtime;
393		over4g		= systab64->runtime > U32_MAX;
394
395		if (efi_setup) {
396			struct efi_setup_data *data;
397
398			data = early_memremap_ro(efi_setup, sizeof(*data));
399			if (!data) {
400				early_memunmap(p, size);
401				return -ENOMEM;
402			}
403
404			efi_fw_vendor		= (unsigned long)data->fw_vendor;
405			efi_config_table	= (unsigned long)data->tables;
406
407			over4g |= data->fw_vendor	> U32_MAX ||
408				  data->tables		> U32_MAX;
409
410			early_memunmap(data, sizeof(*data));
411		} else {
412			efi_fw_vendor		= systab64->fw_vendor;
413			efi_config_table	= systab64->tables;
414
415			over4g |= systab64->fw_vendor	> U32_MAX ||
416				  systab64->tables	> U32_MAX;
417		}
418		efi_nr_tables = systab64->nr_tables;
419	} else {
420		const efi_system_table_32_t *systab32 = p;
421
422		efi_fw_vendor		= systab32->fw_vendor;
423		efi_runtime		= systab32->runtime;
424		efi_config_table	= systab32->tables;
425		efi_nr_tables		= systab32->nr_tables;
426	}
427
428	efi.runtime_version = hdr->revision;
429
430	efi_systab_report_header(hdr, efi_fw_vendor);
431	early_memunmap(p, size);
432
433	if (IS_ENABLED(CONFIG_X86_32) && over4g) {
434		pr_err("EFI data located above 4GB, disabling EFI.\n");
435		return -EINVAL;
436	}
437
438	return 0;
439}
440
441static int __init efi_config_init(const efi_config_table_type_t *arch_tables)
442{
443	void *config_tables;
444	int sz, ret;
 
 
 
 
445
446	if (efi_nr_tables == 0)
447		return 0;
 
 
 
 
 
448
449	if (efi_enabled(EFI_64BIT))
450		sz = sizeof(efi_config_table_64_t);
451	else
452		sz = sizeof(efi_config_table_32_t);
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
453
454	/*
455	 * Let's see what config tables the firmware passed to us.
456	 */
457	config_tables = early_memremap(efi_config_table, efi_nr_tables * sz);
458	if (config_tables == NULL) {
459		pr_err("Could not map Configuration table!\n");
460		return -ENOMEM;
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
461	}
 
 
 
462
463	ret = efi_config_parse_tables(config_tables, efi_nr_tables,
464				      arch_tables);
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
465
466	early_memunmap(config_tables, efi_nr_tables * sz);
467	return ret;
 
468}
469
470void __init efi_init(void)
471{
472	if (IS_ENABLED(CONFIG_X86_32) &&
473	    (boot_params.efi_info.efi_systab_hi ||
474	     boot_params.efi_info.efi_memmap_hi)) {
475		pr_info("Table located above 4GB, disabling EFI.\n");
476		return;
477	}
478
479	efi_systab_phys = boot_params.efi_info.efi_systab |
480			  ((__u64)boot_params.efi_info.efi_systab_hi << 32);
481
482	if (efi_systab_init(efi_systab_phys))
483		return;
484
485	if (efi_reuse_config(efi_config_table, efi_nr_tables))
486		return;
 
 
 
487
488	if (efi_config_init(arch_tables))
489		return;
 
 
490
491	/*
492	 * Note: We currently don't support runtime services on an EFI
493	 * that doesn't match the kernel 32/64-bit mode.
494	 */
495
496	if (!efi_runtime_supported())
497		pr_err("No EFI runtime due to 32/64-bit mismatch with kernel\n");
498
499	if (!efi_runtime_supported() || efi_runtime_disabled()) {
500		efi_memmap_unmap();
501		return;
502	}
503
504	/* Parse the EFI Properties table if it exists */
505	if (prop_phys != EFI_INVALID_TABLE_ADDR) {
506		efi_properties_table_t *tbl;
507
508		tbl = early_memremap_ro(prop_phys, sizeof(*tbl));
509		if (tbl == NULL) {
510			pr_err("Could not map Properties table!\n");
511		} else {
512			if (tbl->memory_protection_attribute &
513			    EFI_PROPERTIES_RUNTIME_MEMORY_PROTECTION_NON_EXECUTABLE_PE_DATA)
514				set_bit(EFI_NX_PE_DATA, &efi.flags);
515
516			early_memunmap(tbl, sizeof(*tbl));
517		}
518	}
519
520	set_bit(EFI_RUNTIME_SERVICES, &efi.flags);
521	efi_clean_memmap();
522
523	efi_remove_e820_mmio();
524
525	if (efi_enabled(EFI_DBG))
526		efi_print_memmap();
527}
528
529/* Merge contiguous regions of the same type and attribute */
530static void __init efi_merge_regions(void)
 
 
 
 
 
 
 
531{
532	efi_memory_desc_t *md, *prev_md = NULL;
 
 
 
 
 
 
 
533
534	for_each_efi_memory_desc(md) {
 
535		u64 prev_size;
 
536
537		if (!prev_md) {
538			prev_md = md;
539			continue;
540		}
541
542		if (prev_md->type != md->type ||
543		    prev_md->attribute != md->attribute) {
544			prev_md = md;
545			continue;
546		}
547
548		prev_size = prev_md->num_pages << EFI_PAGE_SHIFT;
549
550		if (md->phys_addr == (prev_md->phys_addr + prev_size)) {
551			prev_md->num_pages += md->num_pages;
552			md->type = EFI_RESERVED_TYPE;
553			md->attribute = 0;
554			continue;
555		}
556		prev_md = md;
557	}
558}
559
560static void *realloc_pages(void *old_memmap, int old_shift)
561{
562	void *ret;
 
 
 
563
564	ret = (void *)__get_free_pages(GFP_KERNEL, old_shift + 1);
565	if (!ret)
566		goto out;
567
568	/*
569	 * A first-time allocation doesn't have anything to copy.
570	 */
571	if (!old_memmap)
572		return ret;
 
 
 
 
 
 
 
 
 
 
573
574	memcpy(ret, old_memmap, PAGE_SIZE << old_shift);
 
 
 
 
 
575
576out:
577	free_pages((unsigned long)old_memmap, old_shift);
578	return ret;
579}
 
 
 
 
 
 
 
 
580
581/*
582 * Iterate the EFI memory map in reverse order because the regions
583 * will be mapped top-down. The end result is the same as if we had
584 * mapped things forward, but doesn't require us to change the
585 * existing implementation of efi_map_region().
586 */
587static inline void *efi_map_next_entry_reverse(void *entry)
588{
589	/* Initial call */
590	if (!entry)
591		return efi.memmap.map_end - efi.memmap.desc_size;
592
593	entry -= efi.memmap.desc_size;
594	if (entry < efi.memmap.map)
595		return NULL;
596
597	return entry;
598}
599
600/*
601 * efi_map_next_entry - Return the next EFI memory map descriptor
602 * @entry: Previous EFI memory map descriptor
603 *
604 * This is a helper function to iterate over the EFI memory map, which
605 * we do in different orders depending on the current configuration.
606 *
607 * To begin traversing the memory map @entry must be %NULL.
608 *
609 * Returns %NULL when we reach the end of the memory map.
610 */
611static void *efi_map_next_entry(void *entry)
612{
613	if (efi_enabled(EFI_64BIT)) {
614		/*
615		 * Starting in UEFI v2.5 the EFI_PROPERTIES_TABLE
616		 * config table feature requires us to map all entries
617		 * in the same order as they appear in the EFI memory
618		 * map. That is to say, entry N must have a lower
619		 * virtual address than entry N+1. This is because the
620		 * firmware toolchain leaves relative references in
621		 * the code/data sections, which are split and become
622		 * separate EFI memory regions. Mapping things
623		 * out-of-order leads to the firmware accessing
624		 * unmapped addresses.
625		 *
626		 * Since we need to map things this way whether or not
627		 * the kernel actually makes use of
628		 * EFI_PROPERTIES_TABLE, let's just switch to this
629		 * scheme by default for 64-bit.
630		 */
631		return efi_map_next_entry_reverse(entry);
632	}
633
634	/* Initial call */
635	if (!entry)
636		return efi.memmap.map;
637
638	entry += efi.memmap.desc_size;
639	if (entry >= efi.memmap.map_end)
640		return NULL;
641
642	return entry;
643}
644
645static bool should_map_region(efi_memory_desc_t *md)
646{
647	/*
648	 * Runtime regions always require runtime mappings (obviously).
 
 
649	 */
650	if (md->attribute & EFI_MEMORY_RUNTIME)
651		return true;
652
653	/*
654	 * 32-bit EFI doesn't suffer from the bug that requires us to
655	 * reserve boot services regions, and mixed mode support
656	 * doesn't exist for 32-bit kernels.
657	 */
658	if (IS_ENABLED(CONFIG_X86_32))
659		return false;
660
661	/*
662	 * EFI specific purpose memory may be reserved by default
663	 * depending on kernel config and boot options.
664	 */
665	if (md->type == EFI_CONVENTIONAL_MEMORY &&
666	    efi_soft_reserve_enabled() &&
667	    (md->attribute & EFI_MEMORY_SP))
668		return false;
669
670	/*
671	 * Map all of RAM so that we can access arguments in the 1:1
672	 * mapping when making EFI runtime calls.
673	 */
674	if (efi_is_mixed()) {
675		if (md->type == EFI_CONVENTIONAL_MEMORY ||
676		    md->type == EFI_LOADER_DATA ||
677		    md->type == EFI_LOADER_CODE)
678			return true;
679	}
680
681	/*
682	 * Map boot services regions as a workaround for buggy
683	 * firmware that accesses them even when they shouldn't.
684	 *
685	 * See efi_{reserve,free}_boot_services().
686	 */
687	if (md->type == EFI_BOOT_SERVICES_CODE ||
688	    md->type == EFI_BOOT_SERVICES_DATA)
689		return true;
690
691	return false;
 
 
 
 
 
 
 
 
 
 
 
 
 
692}
693
694/*
695 * Map the efi memory ranges of the runtime services and update new_mmap with
696 * virtual addresses.
697 */
698static void * __init efi_map_regions(int *count, int *pg_shift)
699{
700	void *p, *new_memmap = NULL;
701	unsigned long left = 0;
702	unsigned long desc_size;
703	efi_memory_desc_t *md;
 
704
705	desc_size = efi.memmap.desc_size;
706
707	p = NULL;
708	while ((p = efi_map_next_entry(p))) {
709		md = p;
710
711		if (!should_map_region(md))
712			continue;
713
714		efi_map_region(md);
715
716		if (left < desc_size) {
717			new_memmap = realloc_pages(new_memmap, *pg_shift);
718			if (!new_memmap)
719				return NULL;
720
721			left += PAGE_SIZE << *pg_shift;
722			(*pg_shift)++;
723		}
724
725		memcpy(new_memmap + (*count * desc_size), md, desc_size);
726
727		left -= desc_size;
728		(*count)++;
729	}
730
731	return new_memmap;
732}
733
734static void __init kexec_enter_virtual_mode(void)
735{
736#ifdef CONFIG_KEXEC_CORE
737	efi_memory_desc_t *md;
738	unsigned int num_pages;
739
740	/*
741	 * We don't do virtual mode, since we don't do runtime services, on
742	 * non-native EFI.
743	 */
744	if (efi_is_mixed()) {
745		efi_memmap_unmap();
746		clear_bit(EFI_RUNTIME_SERVICES, &efi.flags);
747		return;
748	}
749
750	if (efi_alloc_page_tables()) {
751		pr_err("Failed to allocate EFI page tables\n");
752		clear_bit(EFI_RUNTIME_SERVICES, &efi.flags);
753		return;
754	}
755
756	/*
757	* Map efi regions which were passed via setup_data. The virt_addr is a
758	* fixed addr which was used in first kernel of a kexec boot.
759	*/
760	for_each_efi_memory_desc(md)
761		efi_map_region_fixed(md); /* FIXME: add error handling */
762
763	/*
764	 * Unregister the early EFI memmap from efi_init() and install
765	 * the new EFI memory map.
766	 */
767	efi_memmap_unmap();
768
769	if (efi_memmap_init_late(efi.memmap.phys_map,
770				 efi.memmap.desc_size * efi.memmap.nr_map)) {
771		pr_err("Failed to remap late EFI memory map\n");
772		clear_bit(EFI_RUNTIME_SERVICES, &efi.flags);
773		return;
774	}
775
776	num_pages = ALIGN(efi.memmap.nr_map * efi.memmap.desc_size, PAGE_SIZE);
777	num_pages >>= PAGE_SHIFT;
778
779	if (efi_setup_page_tables(efi.memmap.phys_map, num_pages)) {
780		clear_bit(EFI_RUNTIME_SERVICES, &efi.flags);
781		return;
782	}
783
784	efi_sync_low_kernel_mappings();
785	efi_native_runtime_setup();
786#endif
787}
788
789/*
790 * This function will switch the EFI runtime services to virtual mode.
791 * Essentially, we look through the EFI memmap and map every region that
792 * has the runtime attribute bit set in its memory descriptor into the
793 * efi_pgd page table.
794 *
795 * The new method does a pagetable switch in a preemption-safe manner
796 * so that we're in a different address space when calling a runtime
797 * function. For function arguments passing we do copy the PUDs of the
798 * kernel page table into efi_pgd prior to each call.
799 *
800 * Specially for kexec boot, efi runtime maps in previous kernel should
801 * be passed in via setup_data. In that case runtime ranges will be mapped
802 * to the same virtual addresses as the first kernel, see
803 * kexec_enter_virtual_mode().
804 */
805static void __init __efi_enter_virtual_mode(void)
806{
807	int count = 0, pg_shift = 0;
808	void *new_memmap = NULL;
809	efi_status_t status;
810	unsigned long pa;
811
812	if (efi_alloc_page_tables()) {
813		pr_err("Failed to allocate EFI page tables\n");
814		goto err;
815	}
816
817	efi_merge_regions();
818	new_memmap = efi_map_regions(&count, &pg_shift);
819	if (!new_memmap) {
820		pr_err("Error reallocating memory, EFI runtime non-functional!\n");
821		goto err;
822	}
823
824	pa = __pa(new_memmap);
825
826	/*
827	 * Unregister the early EFI memmap from efi_init() and install
828	 * the new EFI memory map that we are about to pass to the
829	 * firmware via SetVirtualAddressMap().
830	 */
831	efi_memmap_unmap();
832
833	if (efi_memmap_init_late(pa, efi.memmap.desc_size * count)) {
834		pr_err("Failed to remap late EFI memory map\n");
835		goto err;
836	}
837
838	if (efi_enabled(EFI_DBG)) {
839		pr_info("EFI runtime memory map:\n");
840		efi_print_memmap();
841	}
842
843	if (efi_setup_page_tables(pa, 1 << pg_shift))
844		goto err;
845
846	efi_sync_low_kernel_mappings();
847
848	status = efi_set_virtual_address_map(efi.memmap.desc_size * count,
849					     efi.memmap.desc_size,
850					     efi.memmap.desc_version,
851					     (efi_memory_desc_t *)pa,
852					     efi_systab_phys);
853	if (status != EFI_SUCCESS) {
854		pr_err("Unable to switch EFI into virtual mode (status=%lx)!\n",
855		       status);
856		goto err;
857	}
858
859	efi_check_for_embedded_firmwares();
860	efi_free_boot_services();
861
862	if (!efi_is_mixed())
863		efi_native_runtime_setup();
864	else
865		efi_thunk_runtime_setup();
866
867	/*
868	 * Apply more restrictive page table mapping attributes now that
869	 * SVAM() has been called and the firmware has performed all
870	 * necessary relocation fixups for the new virtual addresses.
871	 */
872	efi_runtime_update_mappings();
873
874	/* clean DUMMY object */
875	efi_delete_dummy_variable();
876	return;
877
878err:
879	clear_bit(EFI_RUNTIME_SERVICES, &efi.flags);
880}
881
882void __init efi_enter_virtual_mode(void)
883{
884	if (efi_enabled(EFI_PARAVIRT))
885		return;
886
887	efi.runtime = (efi_runtime_services_t *)efi_runtime;
888
889	if (efi_setup)
890		kexec_enter_virtual_mode();
891	else
892		__efi_enter_virtual_mode();
893
894	efi_dump_pagetable();
895}
896
897bool efi_is_table_address(unsigned long phys_addr)
898{
899	unsigned int i;
900
901	if (phys_addr == EFI_INVALID_TABLE_ADDR)
902		return false;
903
904	for (i = 0; i < ARRAY_SIZE(efi_tables); i++)
905		if (*(efi_tables[i]) == phys_addr)
906			return true;
907
908	return false;
909}
910
911char *efi_systab_show_arch(char *str)
912{
913	if (uga_phys != EFI_INVALID_TABLE_ADDR)
914		str += sprintf(str, "UGA=0x%lx\n", uga_phys);
915	return str;
916}
917
918#define EFI_FIELD(var) efi_ ## var
919
920#define EFI_ATTR_SHOW(name) \
921static ssize_t name##_show(struct kobject *kobj, \
922				struct kobj_attribute *attr, char *buf) \
923{ \
924	return sprintf(buf, "0x%lx\n", EFI_FIELD(name)); \
925}
926
927EFI_ATTR_SHOW(fw_vendor);
928EFI_ATTR_SHOW(runtime);
929EFI_ATTR_SHOW(config_table);
930
931struct kobj_attribute efi_attr_fw_vendor = __ATTR_RO(fw_vendor);
932struct kobj_attribute efi_attr_runtime = __ATTR_RO(runtime);
933struct kobj_attribute efi_attr_config_table = __ATTR_RO(config_table);
934
935umode_t efi_attr_is_visible(struct kobject *kobj, struct attribute *attr, int n)
936{
937	if (attr == &efi_attr_fw_vendor.attr) {
938		if (efi_enabled(EFI_PARAVIRT) ||
939				efi_fw_vendor == EFI_INVALID_TABLE_ADDR)
940			return 0;
941	} else if (attr == &efi_attr_runtime.attr) {
942		if (efi_runtime == EFI_INVALID_TABLE_ADDR)
943			return 0;
944	} else if (attr == &efi_attr_config_table.attr) {
945		if (efi_config_table == EFI_INVALID_TABLE_ADDR)
946			return 0;
947	}
948	return attr->mode;
949}