Linux Audio

Check our new training course

Loading...
v3.1
 
  1/*
  2 * Common EFI (Extensible Firmware Interface) support functions
  3 * Based on Extensible Firmware Interface Specification version 1.0
  4 *
  5 * Copyright (C) 1999 VA Linux Systems
  6 * Copyright (C) 1999 Walt Drummond <drummond@valinux.com>
  7 * Copyright (C) 1999-2002 Hewlett-Packard Co.
  8 *	David Mosberger-Tang <davidm@hpl.hp.com>
  9 *	Stephane Eranian <eranian@hpl.hp.com>
 10 * Copyright (C) 2005-2008 Intel Co.
 11 *	Fenghua Yu <fenghua.yu@intel.com>
 12 *	Bibo Mao <bibo.mao@intel.com>
 13 *	Chandramouli Narayanan <mouli@linux.intel.com>
 14 *	Huang Ying <ying.huang@intel.com>
 
 
 15 *
 16 * Copied from efi_32.c to eliminate the duplicated code between EFI
 17 * 32/64 support code. --ying 2007-10-26
 18 *
 19 * All EFI Runtime Services are not implemented yet as EFI only
 20 * supports physical mode addressing on SoftSDV. This is to be fixed
 21 * in a future version.  --drummond 1999-07-20
 22 *
 23 * Implemented EFI runtime services and virtual mode calls.  --davidm
 24 *
 25 * Goutham Rao: <goutham.rao@intel.com>
 26 *	Skip non-WB memory and ignore empty memory ranges.
 27 */
 28
 
 
 29#include <linux/kernel.h>
 30#include <linux/init.h>
 31#include <linux/efi.h>
 32#include <linux/bootmem.h>
 
 33#include <linux/memblock.h>
 
 34#include <linux/spinlock.h>
 35#include <linux/uaccess.h>
 36#include <linux/time.h>
 37#include <linux/io.h>
 38#include <linux/reboot.h>
 39#include <linux/bcd.h>
 40
 41#include <asm/setup.h>
 42#include <asm/efi.h>
 
 43#include <asm/time.h>
 44#include <asm/cacheflush.h>
 45#include <asm/tlbflush.h>
 46#include <asm/x86_init.h>
 47
 48#define EFI_DEBUG	1
 49#define PFX 		"EFI: "
 50
 51int efi_enabled;
 52EXPORT_SYMBOL(efi_enabled);
 53
 54struct efi __read_mostly efi = {
 55	.mps        = EFI_INVALID_TABLE_ADDR,
 56	.acpi       = EFI_INVALID_TABLE_ADDR,
 57	.acpi20     = EFI_INVALID_TABLE_ADDR,
 58	.smbios     = EFI_INVALID_TABLE_ADDR,
 59	.sal_systab = EFI_INVALID_TABLE_ADDR,
 60	.boot_info  = EFI_INVALID_TABLE_ADDR,
 61	.hcdp       = EFI_INVALID_TABLE_ADDR,
 62	.uga        = EFI_INVALID_TABLE_ADDR,
 63	.uv_systab  = EFI_INVALID_TABLE_ADDR,
 64};
 65EXPORT_SYMBOL(efi);
 66
 67struct efi_memory_map memmap;
 68
 69static struct efi efi_phys __initdata;
 70static efi_system_table_t efi_systab __initdata;
 71
 72static int __init setup_noefi(char *arg)
 73{
 74	efi_enabled = 0;
 75	return 0;
 76}
 77early_param("noefi", setup_noefi);
 78
 79int add_efi_memmap;
 80EXPORT_SYMBOL(add_efi_memmap);
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 81
 
 
 
 82static int __init setup_add_efi_memmap(char *arg)
 83{
 84	add_efi_memmap = 1;
 85	return 0;
 86}
 87early_param("add_efi_memmap", setup_add_efi_memmap);
 88
 89
 90static efi_status_t virt_efi_get_time(efi_time_t *tm, efi_time_cap_t *tc)
 91{
 92	unsigned long flags;
 93	efi_status_t status;
 94
 95	spin_lock_irqsave(&rtc_lock, flags);
 96	status = efi_call_virt2(get_time, tm, tc);
 97	spin_unlock_irqrestore(&rtc_lock, flags);
 98	return status;
 99}
100
101static efi_status_t virt_efi_set_time(efi_time_t *tm)
102{
103	unsigned long flags;
104	efi_status_t status;
105
106	spin_lock_irqsave(&rtc_lock, flags);
107	status = efi_call_virt1(set_time, tm);
108	spin_unlock_irqrestore(&rtc_lock, flags);
109	return status;
110}
111
112static efi_status_t virt_efi_get_wakeup_time(efi_bool_t *enabled,
113					     efi_bool_t *pending,
114					     efi_time_t *tm)
115{
116	unsigned long flags;
117	efi_status_t status;
118
119	spin_lock_irqsave(&rtc_lock, flags);
120	status = efi_call_virt3(get_wakeup_time,
121				enabled, pending, tm);
122	spin_unlock_irqrestore(&rtc_lock, flags);
123	return status;
124}
125
126static efi_status_t virt_efi_set_wakeup_time(efi_bool_t enabled, efi_time_t *tm)
127{
128	unsigned long flags;
129	efi_status_t status;
130
131	spin_lock_irqsave(&rtc_lock, flags);
132	status = efi_call_virt2(set_wakeup_time,
133				enabled, tm);
134	spin_unlock_irqrestore(&rtc_lock, flags);
135	return status;
136}
137
138static efi_status_t virt_efi_get_variable(efi_char16_t *name,
139					  efi_guid_t *vendor,
140					  u32 *attr,
141					  unsigned long *data_size,
142					  void *data)
143{
144	return efi_call_virt5(get_variable,
145			      name, vendor, attr,
146			      data_size, data);
147}
148
149static efi_status_t virt_efi_get_next_variable(unsigned long *name_size,
150					       efi_char16_t *name,
151					       efi_guid_t *vendor)
152{
153	return efi_call_virt3(get_next_variable,
154			      name_size, name, vendor);
155}
156
157static efi_status_t virt_efi_set_variable(efi_char16_t *name,
158					  efi_guid_t *vendor,
159					  u32 attr,
160					  unsigned long data_size,
161					  void *data)
162{
163	return efi_call_virt5(set_variable,
164			      name, vendor, attr,
165			      data_size, data);
166}
167
168static efi_status_t virt_efi_query_variable_info(u32 attr,
169						 u64 *storage_space,
170						 u64 *remaining_space,
171						 u64 *max_variable_size)
172{
173	if (efi.runtime_version < EFI_2_00_SYSTEM_TABLE_REVISION)
174		return EFI_UNSUPPORTED;
175
176	return efi_call_virt4(query_variable_info, attr, storage_space,
177			      remaining_space, max_variable_size);
178}
179
180static efi_status_t virt_efi_get_next_high_mono_count(u32 *count)
181{
182	return efi_call_virt1(get_next_high_mono_count, count);
183}
184
185static void virt_efi_reset_system(int reset_type,
186				  efi_status_t status,
187				  unsigned long data_size,
188				  efi_char16_t *data)
189{
190	efi_call_virt4(reset_system, reset_type, status,
191		       data_size, data);
192}
193
194static efi_status_t virt_efi_update_capsule(efi_capsule_header_t **capsules,
195					    unsigned long count,
196					    unsigned long sg_list)
197{
198	if (efi.runtime_version < EFI_2_00_SYSTEM_TABLE_REVISION)
199		return EFI_UNSUPPORTED;
200
201	return efi_call_virt3(update_capsule, capsules, count, sg_list);
202}
203
204static efi_status_t virt_efi_query_capsule_caps(efi_capsule_header_t **capsules,
205						unsigned long count,
206						u64 *max_size,
207						int *reset_type)
208{
209	if (efi.runtime_version < EFI_2_00_SYSTEM_TABLE_REVISION)
210		return EFI_UNSUPPORTED;
211
212	return efi_call_virt4(query_capsule_caps, capsules, count, max_size,
213			      reset_type);
214}
215
216static efi_status_t __init phys_efi_set_virtual_address_map(
217	unsigned long memory_map_size,
218	unsigned long descriptor_size,
219	u32 descriptor_version,
220	efi_memory_desc_t *virtual_map)
221{
222	efi_status_t status;
 
 
223
224	efi_call_phys_prelog();
225	status = efi_call_phys4(efi_phys.set_virtual_address_map,
226				memory_map_size, descriptor_size,
227				descriptor_version, virtual_map);
228	efi_call_phys_epilog();
229	return status;
230}
 
 
 
231
232static efi_status_t __init phys_efi_get_time(efi_time_t *tm,
233					     efi_time_cap_t *tc)
234{
235	unsigned long flags;
236	efi_status_t status;
237
238	spin_lock_irqsave(&rtc_lock, flags);
239	efi_call_phys_prelog();
240	status = efi_call_phys2(efi_phys.get_time, tm, tc);
241	efi_call_phys_epilog();
242	spin_unlock_irqrestore(&rtc_lock, flags);
243	return status;
244}
245
246int efi_set_rtc_mmss(unsigned long nowtime)
247{
248	int real_seconds, real_minutes;
249	efi_status_t 	status;
250	efi_time_t 	eft;
251	efi_time_cap_t 	cap;
252
253	status = efi.get_time(&eft, &cap);
254	if (status != EFI_SUCCESS) {
255		printk(KERN_ERR "Oops: efitime: can't read time!\n");
256		return -1;
257	}
258
259	real_seconds = nowtime % 60;
260	real_minutes = nowtime / 60;
261	if (((abs(real_minutes - eft.minute) + 15)/30) & 1)
262		real_minutes += 30;
263	real_minutes %= 60;
264	eft.minute = real_minutes;
265	eft.second = real_seconds;
266
267	status = efi.set_time(&eft);
268	if (status != EFI_SUCCESS) {
269		printk(KERN_ERR "Oops: efitime: can't write time!\n");
270		return -1;
 
271	}
272	return 0;
273}
274
275unsigned long efi_get_time(void)
276{
277	efi_status_t status;
278	efi_time_t eft;
279	efi_time_cap_t cap;
280
281	status = efi.get_time(&eft, &cap);
282	if (status != EFI_SUCCESS)
283		printk(KERN_ERR "Oops: efitime: can't read time!\n");
284
285	return mktime(eft.year, eft.month, eft.day, eft.hour,
286		      eft.minute, eft.second);
287}
288
289/*
290 * Tell the kernel about the EFI memory map.  This might include
291 * more than the max 128 entries that can fit in the e820 legacy
292 * (zeropage) memory map.
293 */
294
295static void __init do_add_efi_memmap(void)
296{
297	void *p;
298
299	for (p = memmap.map; p < memmap.map_end; p += memmap.desc_size) {
300		efi_memory_desc_t *md = p;
301		unsigned long long start = md->phys_addr;
302		unsigned long long size = md->num_pages << EFI_PAGE_SHIFT;
303		int e820_type;
304
305		switch (md->type) {
306		case EFI_LOADER_CODE:
307		case EFI_LOADER_DATA:
308		case EFI_BOOT_SERVICES_CODE:
309		case EFI_BOOT_SERVICES_DATA:
310		case EFI_CONVENTIONAL_MEMORY:
311			if (md->attribute & EFI_MEMORY_WB)
312				e820_type = E820_RAM;
313			else
314				e820_type = E820_RESERVED;
315			break;
316		case EFI_ACPI_RECLAIM_MEMORY:
317			e820_type = E820_ACPI;
318			break;
319		case EFI_ACPI_MEMORY_NVS:
320			e820_type = E820_NVS;
321			break;
322		case EFI_UNUSABLE_MEMORY:
323			e820_type = E820_UNUSABLE;
 
 
 
324			break;
325		default:
326			/*
327			 * EFI_RESERVED_TYPE EFI_RUNTIME_SERVICES_CODE
328			 * EFI_RUNTIME_SERVICES_DATA EFI_MEMORY_MAPPED_IO
329			 * EFI_MEMORY_MAPPED_IO_PORT_SPACE EFI_PAL_CODE
330			 */
331			e820_type = E820_RESERVED;
332			break;
333		}
334		e820_add_region(start, size, e820_type);
335	}
336	sanitize_e820_map(e820.map, ARRAY_SIZE(e820.map), &e820.nr_map);
337}
338
339void __init efi_memblock_x86_reserve_range(void)
340{
341	unsigned long pmap;
 
 
 
 
 
 
342
343#ifdef CONFIG_X86_32
344	pmap = boot_params.efi_info.efi_memmap;
 
 
 
 
 
345#else
346	pmap = (boot_params.efi_info.efi_memmap |
347		((__u64)boot_params.efi_info.efi_memmap_hi<<32));
348#endif
349	memmap.phys_map = (void *)pmap;
350	memmap.nr_map = boot_params.efi_info.efi_memmap_size /
351		boot_params.efi_info.efi_memdesc_size;
352	memmap.desc_version = boot_params.efi_info.efi_memdesc_version;
353	memmap.desc_size = boot_params.efi_info.efi_memdesc_size;
354	memblock_x86_reserve_range(pmap, pmap + memmap.nr_map * memmap.desc_size,
355		      "EFI memmap");
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
356}
357
358#if EFI_DEBUG
359static void __init print_efi_memmap(void)
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
360{
361	efi_memory_desc_t *md;
362	void *p;
363	int i;
364
365	for (p = memmap.map, i = 0;
366	     p < memmap.map_end;
367	     p += memmap.desc_size, i++) {
368		md = p;
369		printk(KERN_INFO PFX "mem%02u: type=%u, attr=0x%llx, "
370			"range=[0x%016llx-0x%016llx) (%lluMB)\n",
371			i, md->type, md->attribute, md->phys_addr,
372			md->phys_addr + (md->num_pages << EFI_PAGE_SHIFT),
373			(md->num_pages >> (20 - EFI_PAGE_SHIFT)));
374	}
375}
376#endif  /*  EFI_DEBUG  */
377
378void __init efi_reserve_boot_services(void)
379{
380	void *p;
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
381
382	for (p = memmap.map; p < memmap.map_end; p += memmap.desc_size) {
383		efi_memory_desc_t *md = p;
384		u64 start = md->phys_addr;
385		u64 size = md->num_pages << EFI_PAGE_SHIFT;
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
386
387		if (md->type != EFI_BOOT_SERVICES_CODE &&
388		    md->type != EFI_BOOT_SERVICES_DATA)
389			continue;
390		/* Only reserve where possible:
391		 * - Not within any already allocated areas
392		 * - Not over any memory area (really needed, if above?)
393		 * - Not within any part of the kernel
394		 * - Not the bios reserved area
395		*/
396		if ((start+size >= virt_to_phys(_text)
397				&& start <= virt_to_phys(_end)) ||
398			!e820_all_mapped(start, start+size, E820_RAM) ||
399			memblock_x86_check_reserved_size(&start, &size,
400							1<<EFI_PAGE_SHIFT)) {
401			/* Could not reserve, skip it */
402			md->num_pages = 0;
403			memblock_dbg(PFX "Could not reserve boot range "
404					"[0x%010llx-0x%010llx]\n",
405						start, start+size-1);
406		} else
407			memblock_x86_reserve_range(start, start+size,
408							"EFI Boot");
 
 
 
 
 
 
 
 
 
 
409	}
 
 
 
 
 
 
410}
411
412static void __init efi_free_boot_services(void)
413{
414	void *p;
415
416	for (p = memmap.map; p < memmap.map_end; p += memmap.desc_size) {
417		efi_memory_desc_t *md = p;
418		unsigned long long start = md->phys_addr;
419		unsigned long long size = md->num_pages << EFI_PAGE_SHIFT;
 
 
420
421		if (md->type != EFI_BOOT_SERVICES_CODE &&
422		    md->type != EFI_BOOT_SERVICES_DATA)
423			continue;
 
 
 
 
 
 
424
425		/* Could not reserve boot area */
426		if (!size)
427			continue;
428
429		free_bootmem_late(start, size);
 
 
 
 
 
 
 
 
430	}
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
431}
432
433void __init efi_init(void)
434{
435	efi_config_table_t *config_tables;
436	efi_runtime_services_t *runtime;
437	efi_char16_t *c16;
438	char vendor[100] = "unknown";
439	int i = 0;
440	void *tmp;
441
442#ifdef CONFIG_X86_32
 
 
 
 
 
443	efi_phys.systab = (efi_system_table_t *)boot_params.efi_info.efi_systab;
444#else
445	efi_phys.systab = (efi_system_table_t *)
446		(boot_params.efi_info.efi_systab |
447		 ((__u64)boot_params.efi_info.efi_systab_hi<<32));
448#endif
449
450	efi.systab = early_ioremap((unsigned long)efi_phys.systab,
451				   sizeof(efi_system_table_t));
452	if (efi.systab == NULL)
453		printk(KERN_ERR "Couldn't map the EFI system table!\n");
454	memcpy(&efi_systab, efi.systab, sizeof(efi_system_table_t));
455	early_iounmap(efi.systab, sizeof(efi_system_table_t));
456	efi.systab = &efi_systab;
457
458	/*
459	 * Verify the EFI Table
460	 */
461	if (efi.systab->hdr.signature != EFI_SYSTEM_TABLE_SIGNATURE)
462		printk(KERN_ERR "EFI system table signature incorrect!\n");
463	if ((efi.systab->hdr.revision >> 16) == 0)
464		printk(KERN_ERR "Warning: EFI system table version "
465		       "%d.%02d, expected 1.00 or greater!\n",
466		       efi.systab->hdr.revision >> 16,
467		       efi.systab->hdr.revision & 0xffff);
468
469	/*
470	 * Show what we know for posterity
471	 */
472	c16 = tmp = early_ioremap(efi.systab->fw_vendor, 2);
473	if (c16) {
474		for (i = 0; i < sizeof(vendor) - 1 && *c16; ++i)
475			vendor[i] = *c16++;
476		vendor[i] = '\0';
477	} else
478		printk(KERN_ERR PFX "Could not map the firmware vendor!\n");
479	early_iounmap(tmp, 2);
480
481	printk(KERN_INFO "EFI v%u.%.02u by %s\n",
482	       efi.systab->hdr.revision >> 16,
483	       efi.systab->hdr.revision & 0xffff, vendor);
484
485	/*
486	 * Let's see what config tables the firmware passed to us.
487	 */
488	config_tables = early_ioremap(
489		efi.systab->tables,
490		efi.systab->nr_tables * sizeof(efi_config_table_t));
491	if (config_tables == NULL)
492		printk(KERN_ERR "Could not map EFI Configuration Table!\n");
493
494	printk(KERN_INFO);
495	for (i = 0; i < efi.systab->nr_tables; i++) {
496		if (!efi_guidcmp(config_tables[i].guid, MPS_TABLE_GUID)) {
497			efi.mps = config_tables[i].table;
498			printk(" MPS=0x%lx ", config_tables[i].table);
499		} else if (!efi_guidcmp(config_tables[i].guid,
500					ACPI_20_TABLE_GUID)) {
501			efi.acpi20 = config_tables[i].table;
502			printk(" ACPI 2.0=0x%lx ", config_tables[i].table);
503		} else if (!efi_guidcmp(config_tables[i].guid,
504					ACPI_TABLE_GUID)) {
505			efi.acpi = config_tables[i].table;
506			printk(" ACPI=0x%lx ", config_tables[i].table);
507		} else if (!efi_guidcmp(config_tables[i].guid,
508					SMBIOS_TABLE_GUID)) {
509			efi.smbios = config_tables[i].table;
510			printk(" SMBIOS=0x%lx ", config_tables[i].table);
511#ifdef CONFIG_X86_UV
512		} else if (!efi_guidcmp(config_tables[i].guid,
513					UV_SYSTEM_TABLE_GUID)) {
514			efi.uv_systab = config_tables[i].table;
515			printk(" UVsystab=0x%lx ", config_tables[i].table);
516#endif
517		} else if (!efi_guidcmp(config_tables[i].guid,
518					HCDP_TABLE_GUID)) {
519			efi.hcdp = config_tables[i].table;
520			printk(" HCDP=0x%lx ", config_tables[i].table);
521		} else if (!efi_guidcmp(config_tables[i].guid,
522					UGA_IO_PROTOCOL_GUID)) {
523			efi.uga = config_tables[i].table;
524			printk(" UGA=0x%lx ", config_tables[i].table);
525		}
526	}
527	printk("\n");
528	early_iounmap(config_tables,
529			  efi.systab->nr_tables * sizeof(efi_config_table_t));
530
531	/*
532	 * Check out the runtime services table. We need to map
533	 * the runtime services table so that we can grab the physical
534	 * address of several of the EFI runtime functions, needed to
535	 * set the firmware into virtual mode.
536	 */
537	runtime = early_ioremap((unsigned long)efi.systab->runtime,
538				sizeof(efi_runtime_services_t));
539	if (runtime != NULL) {
540		/*
541		 * We will only need *early* access to the following
542		 * two EFI runtime services before set_virtual_address_map
543		 * is invoked.
544		 */
545		efi_phys.get_time = (efi_get_time_t *)runtime->get_time;
546		efi_phys.set_virtual_address_map =
547			(efi_set_virtual_address_map_t *)
548			runtime->set_virtual_address_map;
549		/*
550		 * Make efi_get_time can be called before entering
551		 * virtual mode.
552		 */
553		efi.get_time = phys_efi_get_time;
554	} else
555		printk(KERN_ERR "Could not map the EFI runtime service "
556		       "table!\n");
557	early_iounmap(runtime, sizeof(efi_runtime_services_t));
558
559	/* Map the EFI memory map */
560	memmap.map = early_ioremap((unsigned long)memmap.phys_map,
561				   memmap.nr_map * memmap.desc_size);
562	if (memmap.map == NULL)
563		printk(KERN_ERR "Could not map the EFI memory map!\n");
564	memmap.map_end = memmap.map + (memmap.nr_map * memmap.desc_size);
565
566	if (memmap.desc_size != sizeof(efi_memory_desc_t))
567		printk(KERN_WARNING
568		  "Kernel-defined memdesc doesn't match the one from EFI!\n");
569
570	if (add_efi_memmap)
571		do_add_efi_memmap();
 
 
 
 
 
 
572
573#ifdef CONFIG_X86_32
574	x86_platform.get_wallclock = efi_get_time;
575	x86_platform.set_wallclock = efi_set_rtc_mmss;
576#endif
577
578#if EFI_DEBUG
579	print_efi_memmap();
580#endif
581}
582
583void __init efi_set_executable(efi_memory_desc_t *md, bool executable)
584{
585	u64 addr, npages;
586
587	addr = md->virt_addr;
588	npages = md->num_pages;
589
590	memrange_efi_to_native(&addr, &npages);
591
592	if (executable)
593		set_memory_x(addr, npages);
594	else
595		set_memory_nx(addr, npages);
596}
597
598static void __init runtime_code_page_mkexec(void)
599{
600	efi_memory_desc_t *md;
601	void *p;
602
603	/* Make EFI runtime service code area executable */
604	for (p = memmap.map; p < memmap.map_end; p += memmap.desc_size) {
605		md = p;
606
607		if (md->type != EFI_RUNTIME_SERVICES_CODE)
608			continue;
609
610		efi_set_executable(md, true);
611	}
612}
613
614/*
615 * This function will switch the EFI runtime services to virtual mode.
616 * Essentially, look through the EFI memmap and map every region that
617 * has the runtime attribute bit set in its memory descriptor and update
618 * that memory descriptor with the virtual address obtained from ioremap().
619 * This enables the runtime services to be called without having to
620 * thunk back into physical mode for every invocation.
621 */
622void __init efi_enter_virtual_mode(void)
623{
624	efi_memory_desc_t *md, *prev_md = NULL;
625	efi_status_t status;
 
 
 
 
 
 
 
 
 
626	unsigned long size;
627	u64 end, systab, addr, npages, end_pfn;
628	void *p, *va, *new_memmap = NULL;
629	int count = 0;
630
631	efi.systab = NULL;
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
632
633	/* Merge contiguous regions of the same type and attribute */
634	for (p = memmap.map; p < memmap.map_end; p += memmap.desc_size) {
635		u64 prev_size;
636		md = p;
637
638		if (!prev_md) {
639			prev_md = md;
640			continue;
641		}
642
643		if (prev_md->type != md->type ||
644		    prev_md->attribute != md->attribute) {
645			prev_md = md;
646			continue;
647		}
648
649		prev_size = prev_md->num_pages << EFI_PAGE_SHIFT;
650
651		if (md->phys_addr == (prev_md->phys_addr + prev_size)) {
652			prev_md->num_pages += md->num_pages;
653			md->type = EFI_RESERVED_TYPE;
654			md->attribute = 0;
655			continue;
656		}
657		prev_md = md;
658	}
 
659
660	for (p = memmap.map; p < memmap.map_end; p += memmap.desc_size) {
661		md = p;
662		if (!(md->attribute & EFI_MEMORY_RUNTIME) &&
663		    md->type != EFI_BOOT_SERVICES_CODE &&
664		    md->type != EFI_BOOT_SERVICES_DATA)
665			continue;
666
667		size = md->num_pages << EFI_PAGE_SHIFT;
668		end = md->phys_addr + size;
 
 
 
 
 
 
669
670		end_pfn = PFN_UP(end);
671		if (end_pfn <= max_low_pfn_mapped
672		    || (end_pfn > (1UL << (32 - PAGE_SHIFT))
673			&& end_pfn <= max_pfn_mapped))
674			va = __va(md->phys_addr);
675		else
676			va = efi_ioremap(md->phys_addr, size, md->type);
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
677
678		md->virt_addr = (u64) (unsigned long) va;
 
 
679
680		if (!va) {
681			printk(KERN_ERR PFX "ioremap of 0x%llX failed!\n",
682			       (unsigned long long)md->phys_addr);
683			continue;
 
 
 
 
 
 
 
 
 
 
 
684		}
685
686		if (!(md->attribute & EFI_MEMORY_WB)) {
687			addr = md->virt_addr;
688			npages = md->num_pages;
689			memrange_efi_to_native(&addr, &npages);
690			set_memory_uc(addr, npages);
691		}
692
693		systab = (u64) (unsigned long) efi_phys.systab;
694		if (md->phys_addr <= systab && systab < end) {
695			systab += md->virt_addr - md->phys_addr;
696			efi.systab = (efi_system_table_t *) (unsigned long) systab;
697		}
698		new_memmap = krealloc(new_memmap,
699				      (count + 1) * memmap.desc_size,
700				      GFP_KERNEL);
701		memcpy(new_memmap + (count * memmap.desc_size), md,
702		       memmap.desc_size);
703		count++;
704	}
705
706	BUG_ON(!efi.systab);
 
707
708	status = phys_efi_set_virtual_address_map(
709		memmap.desc_size * count,
710		memmap.desc_size,
711		memmap.desc_version,
712		(efi_memory_desc_t *)__pa(new_memmap));
713
714	if (status != EFI_SUCCESS) {
715		printk(KERN_ALERT "Unable to switch EFI into virtual mode "
716		       "(status=%lx)!\n", status);
717		panic("EFI call to SetVirtualAddressMap() failed!");
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
718	}
719
720	/*
721	 * Thankfully, it does seem that no runtime services other than
722	 * SetVirtualAddressMap() will touch boot services code, so we can
723	 * get rid of it all at this point
724	 */
725	efi_free_boot_services();
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
726
727	/*
728	 * Now that EFI is in virtual mode, update the function
729	 * pointers in the runtime service table to the new virtual addresses.
730	 *
731	 * Call EFI services through wrapper functions.
732	 */
733	efi.get_time = virt_efi_get_time;
734	efi.set_time = virt_efi_set_time;
735	efi.get_wakeup_time = virt_efi_get_wakeup_time;
736	efi.set_wakeup_time = virt_efi_set_wakeup_time;
737	efi.get_variable = virt_efi_get_variable;
738	efi.get_next_variable = virt_efi_get_next_variable;
739	efi.set_variable = virt_efi_set_variable;
740	efi.get_next_high_mono_count = virt_efi_get_next_high_mono_count;
741	efi.reset_system = virt_efi_reset_system;
742	efi.set_virtual_address_map = NULL;
743	efi.query_variable_info = virt_efi_query_variable_info;
744	efi.update_capsule = virt_efi_update_capsule;
745	efi.query_capsule_caps = virt_efi_query_capsule_caps;
746	if (__supported_pte_mask & _PAGE_NX)
747		runtime_code_page_mkexec();
748	early_iounmap(memmap.map, memmap.nr_map * memmap.desc_size);
749	memmap.map = NULL;
750	kfree(new_memmap);
751}
752
753/*
754 * Convenience functions to obtain memory types and attributes
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
755 */
756u32 efi_mem_type(unsigned long phys_addr)
757{
758	efi_memory_desc_t *md;
759	void *p;
 
 
760
761	for (p = memmap.map; p < memmap.map_end; p += memmap.desc_size) {
762		md = p;
763		if ((md->phys_addr <= phys_addr) &&
764		    (phys_addr < (md->phys_addr +
765				  (md->num_pages << EFI_PAGE_SHIFT))))
766			return md->type;
767	}
768	return 0;
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
769}
770
771u64 efi_mem_attributes(unsigned long phys_addr)
772{
773	efi_memory_desc_t *md;
774	void *p;
775
776	for (p = memmap.map; p < memmap.map_end; p += memmap.desc_size) {
777		md = p;
778		if ((md->phys_addr <= phys_addr) &&
779		    (phys_addr < (md->phys_addr +
780				  (md->num_pages << EFI_PAGE_SHIFT))))
781			return md->attribute;
 
 
 
 
 
 
 
782	}
 
 
 
 
783	return 0;
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
784}
v5.4
   1// SPDX-License-Identifier: GPL-2.0
   2/*
   3 * Common EFI (Extensible Firmware Interface) support functions
   4 * Based on Extensible Firmware Interface Specification version 1.0
   5 *
   6 * Copyright (C) 1999 VA Linux Systems
   7 * Copyright (C) 1999 Walt Drummond <drummond@valinux.com>
   8 * Copyright (C) 1999-2002 Hewlett-Packard Co.
   9 *	David Mosberger-Tang <davidm@hpl.hp.com>
  10 *	Stephane Eranian <eranian@hpl.hp.com>
  11 * Copyright (C) 2005-2008 Intel Co.
  12 *	Fenghua Yu <fenghua.yu@intel.com>
  13 *	Bibo Mao <bibo.mao@intel.com>
  14 *	Chandramouli Narayanan <mouli@linux.intel.com>
  15 *	Huang Ying <ying.huang@intel.com>
  16 * Copyright (C) 2013 SuSE Labs
  17 *	Borislav Petkov <bp@suse.de> - runtime services VA mapping
  18 *
  19 * Copied from efi_32.c to eliminate the duplicated code between EFI
  20 * 32/64 support code. --ying 2007-10-26
  21 *
  22 * All EFI Runtime Services are not implemented yet as EFI only
  23 * supports physical mode addressing on SoftSDV. This is to be fixed
  24 * in a future version.  --drummond 1999-07-20
  25 *
  26 * Implemented EFI runtime services and virtual mode calls.  --davidm
  27 *
  28 * Goutham Rao: <goutham.rao@intel.com>
  29 *	Skip non-WB memory and ignore empty memory ranges.
  30 */
  31
  32#define pr_fmt(fmt) KBUILD_MODNAME ": " fmt
  33
  34#include <linux/kernel.h>
  35#include <linux/init.h>
  36#include <linux/efi.h>
  37#include <linux/efi-bgrt.h>
  38#include <linux/export.h>
  39#include <linux/memblock.h>
  40#include <linux/slab.h>
  41#include <linux/spinlock.h>
  42#include <linux/uaccess.h>
  43#include <linux/time.h>
  44#include <linux/io.h>
  45#include <linux/reboot.h>
  46#include <linux/bcd.h>
  47
  48#include <asm/setup.h>
  49#include <asm/efi.h>
  50#include <asm/e820/api.h>
  51#include <asm/time.h>
  52#include <asm/set_memory.h>
  53#include <asm/tlbflush.h>
  54#include <asm/x86_init.h>
  55#include <asm/uv/uv.h>
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
  56
  57static struct efi efi_phys __initdata;
  58static efi_system_table_t efi_systab __initdata;
  59
  60static efi_config_table_type_t arch_tables[] __initdata = {
  61#ifdef CONFIG_X86_UV
  62	{UV_SYSTEM_TABLE_GUID, "UVsystab", &uv_systab_phys},
  63#endif
  64	{NULL_GUID, NULL, NULL},
  65};
  66
  67static const unsigned long * const efi_tables[] = {
  68	&efi.mps,
  69	&efi.acpi,
  70	&efi.acpi20,
  71	&efi.smbios,
  72	&efi.smbios3,
  73	&efi.boot_info,
  74	&efi.hcdp,
  75	&efi.uga,
  76#ifdef CONFIG_X86_UV
  77	&uv_systab_phys,
  78#endif
  79	&efi.fw_vendor,
  80	&efi.runtime,
  81	&efi.config_table,
  82	&efi.esrt,
  83	&efi.properties_table,
  84	&efi.mem_attr_table,
  85#ifdef CONFIG_EFI_RCI2_TABLE
  86	&rci2_table_phys,
  87#endif
  88};
  89
  90u64 efi_setup;		/* efi setup_data physical address */
  91
  92static int add_efi_memmap __initdata;
  93static int __init setup_add_efi_memmap(char *arg)
  94{
  95	add_efi_memmap = 1;
  96	return 0;
  97}
  98early_param("add_efi_memmap", setup_add_efi_memmap);
  99
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 100static efi_status_t __init phys_efi_set_virtual_address_map(
 101	unsigned long memory_map_size,
 102	unsigned long descriptor_size,
 103	u32 descriptor_version,
 104	efi_memory_desc_t *virtual_map)
 105{
 106	efi_status_t status;
 107	unsigned long flags;
 108	pgd_t *save_pgd;
 109
 110	save_pgd = efi_call_phys_prolog();
 111	if (!save_pgd)
 112		return EFI_ABORTED;
 113
 114	/* Disable interrupts around EFI calls: */
 115	local_irq_save(flags);
 116	status = efi_call_phys(efi_phys.set_virtual_address_map,
 117			       memory_map_size, descriptor_size,
 118			       descriptor_version, virtual_map);
 119	local_irq_restore(flags);
 120
 121	efi_call_phys_epilog(save_pgd);
 
 
 
 
 122
 
 
 
 
 
 123	return status;
 124}
 125
 126void __init efi_find_mirror(void)
 127{
 128	efi_memory_desc_t *md;
 129	u64 mirror_size = 0, total_size = 0;
 
 
 
 
 
 
 
 
 130
 131	for_each_efi_memory_desc(md) {
 132		unsigned long long start = md->phys_addr;
 133		unsigned long long size = md->num_pages << EFI_PAGE_SHIFT;
 
 
 
 
 134
 135		total_size += size;
 136		if (md->attribute & EFI_MEMORY_MORE_RELIABLE) {
 137			memblock_mark_mirror(start, size);
 138			mirror_size += size;
 139		}
 140	}
 141	if (mirror_size)
 142		pr_info("Memory: %lldM/%lldM mirrored memory\n",
 143			mirror_size>>20, total_size>>20);
 
 
 
 
 
 
 
 
 
 
 
 
 144}
 145
 146/*
 147 * Tell the kernel about the EFI memory map.  This might include
 148 * more than the max 128 entries that can fit in the e820 legacy
 149 * (zeropage) memory map.
 150 */
 151
 152static void __init do_add_efi_memmap(void)
 153{
 154	efi_memory_desc_t *md;
 155
 156	for_each_efi_memory_desc(md) {
 
 157		unsigned long long start = md->phys_addr;
 158		unsigned long long size = md->num_pages << EFI_PAGE_SHIFT;
 159		int e820_type;
 160
 161		switch (md->type) {
 162		case EFI_LOADER_CODE:
 163		case EFI_LOADER_DATA:
 164		case EFI_BOOT_SERVICES_CODE:
 165		case EFI_BOOT_SERVICES_DATA:
 166		case EFI_CONVENTIONAL_MEMORY:
 167			if (md->attribute & EFI_MEMORY_WB)
 168				e820_type = E820_TYPE_RAM;
 169			else
 170				e820_type = E820_TYPE_RESERVED;
 171			break;
 172		case EFI_ACPI_RECLAIM_MEMORY:
 173			e820_type = E820_TYPE_ACPI;
 174			break;
 175		case EFI_ACPI_MEMORY_NVS:
 176			e820_type = E820_TYPE_NVS;
 177			break;
 178		case EFI_UNUSABLE_MEMORY:
 179			e820_type = E820_TYPE_UNUSABLE;
 180			break;
 181		case EFI_PERSISTENT_MEMORY:
 182			e820_type = E820_TYPE_PMEM;
 183			break;
 184		default:
 185			/*
 186			 * EFI_RESERVED_TYPE EFI_RUNTIME_SERVICES_CODE
 187			 * EFI_RUNTIME_SERVICES_DATA EFI_MEMORY_MAPPED_IO
 188			 * EFI_MEMORY_MAPPED_IO_PORT_SPACE EFI_PAL_CODE
 189			 */
 190			e820_type = E820_TYPE_RESERVED;
 191			break;
 192		}
 193		e820__range_add(start, size, e820_type);
 194	}
 195	e820__update_table(e820_table);
 196}
 197
 198int __init efi_memblock_x86_reserve_range(void)
 199{
 200	struct efi_info *e = &boot_params.efi_info;
 201	struct efi_memory_map_data data;
 202	phys_addr_t pmap;
 203	int rv;
 204
 205	if (efi_enabled(EFI_PARAVIRT))
 206		return 0;
 207
 208#ifdef CONFIG_X86_32
 209	/* Can't handle data above 4GB at this time */
 210	if (e->efi_memmap_hi) {
 211		pr_err("Memory map is above 4GB, disabling EFI.\n");
 212		return -EINVAL;
 213	}
 214	pmap =  e->efi_memmap;
 215#else
 216	pmap = (e->efi_memmap |	((__u64)e->efi_memmap_hi << 32));
 
 217#endif
 218	data.phys_map		= pmap;
 219	data.size 		= e->efi_memmap_size;
 220	data.desc_size		= e->efi_memdesc_size;
 221	data.desc_version	= e->efi_memdesc_version;
 222
 223	rv = efi_memmap_init_early(&data);
 224	if (rv)
 225		return rv;
 226
 227	if (add_efi_memmap)
 228		do_add_efi_memmap();
 229
 230	WARN(efi.memmap.desc_version != 1,
 231	     "Unexpected EFI_MEMORY_DESCRIPTOR version %ld",
 232	     efi.memmap.desc_version);
 233
 234	memblock_reserve(pmap, efi.memmap.nr_map * efi.memmap.desc_size);
 235
 236	return 0;
 237}
 238
 239#define OVERFLOW_ADDR_SHIFT	(64 - EFI_PAGE_SHIFT)
 240#define OVERFLOW_ADDR_MASK	(U64_MAX << OVERFLOW_ADDR_SHIFT)
 241#define U64_HIGH_BIT		(~(U64_MAX >> 1))
 242
 243static bool __init efi_memmap_entry_valid(const efi_memory_desc_t *md, int i)
 244{
 245	u64 end = (md->num_pages << EFI_PAGE_SHIFT) + md->phys_addr - 1;
 246	u64 end_hi = 0;
 247	char buf[64];
 248
 249	if (md->num_pages == 0) {
 250		end = 0;
 251	} else if (md->num_pages > EFI_PAGES_MAX ||
 252		   EFI_PAGES_MAX - md->num_pages <
 253		   (md->phys_addr >> EFI_PAGE_SHIFT)) {
 254		end_hi = (md->num_pages & OVERFLOW_ADDR_MASK)
 255			>> OVERFLOW_ADDR_SHIFT;
 256
 257		if ((md->phys_addr & U64_HIGH_BIT) && !(end & U64_HIGH_BIT))
 258			end_hi += 1;
 259	} else {
 260		return true;
 261	}
 262
 263	pr_warn_once(FW_BUG "Invalid EFI memory map entries:\n");
 264
 265	if (end_hi) {
 266		pr_warn("mem%02u: %s range=[0x%016llx-0x%llx%016llx] (invalid)\n",
 267			i, efi_md_typeattr_format(buf, sizeof(buf), md),
 268			md->phys_addr, end_hi, end);
 269	} else {
 270		pr_warn("mem%02u: %s range=[0x%016llx-0x%016llx] (invalid)\n",
 271			i, efi_md_typeattr_format(buf, sizeof(buf), md),
 272			md->phys_addr, end);
 273	}
 274	return false;
 275}
 276
 277static void __init efi_clean_memmap(void)
 278{
 279	efi_memory_desc_t *out = efi.memmap.map;
 280	const efi_memory_desc_t *in = out;
 281	const efi_memory_desc_t *end = efi.memmap.map_end;
 282	int i, n_removal;
 283
 284	for (i = n_removal = 0; in < end; i++) {
 285		if (efi_memmap_entry_valid(in, i)) {
 286			if (out != in)
 287				memcpy(out, in, efi.memmap.desc_size);
 288			out = (void *)out + efi.memmap.desc_size;
 289		} else {
 290			n_removal++;
 291		}
 292		in = (void *)in + efi.memmap.desc_size;
 293	}
 294
 295	if (n_removal > 0) {
 296		u64 size = efi.memmap.nr_map - n_removal;
 297
 298		pr_warn("Removing %d invalid memory map entries.\n", n_removal);
 299		efi_memmap_install(efi.memmap.phys_map, size);
 300	}
 301}
 302
 303void __init efi_print_memmap(void)
 304{
 305	efi_memory_desc_t *md;
 306	int i = 0;
 
 307
 308	for_each_efi_memory_desc(md) {
 309		char buf[64];
 310
 311		pr_info("mem%02u: %s range=[0x%016llx-0x%016llx] (%lluMB)\n",
 312			i++, efi_md_typeattr_format(buf, sizeof(buf), md),
 313			md->phys_addr,
 314			md->phys_addr + (md->num_pages << EFI_PAGE_SHIFT) - 1,
 
 315			(md->num_pages >> (20 - EFI_PAGE_SHIFT)));
 316	}
 317}
 
 318
 319static int __init efi_systab_init(void *phys)
 320{
 321	if (efi_enabled(EFI_64BIT)) {
 322		efi_system_table_64_t *systab64;
 323		struct efi_setup_data *data = NULL;
 324		u64 tmp = 0;
 325
 326		if (efi_setup) {
 327			data = early_memremap(efi_setup, sizeof(*data));
 328			if (!data)
 329				return -ENOMEM;
 330		}
 331		systab64 = early_memremap((unsigned long)phys,
 332					 sizeof(*systab64));
 333		if (systab64 == NULL) {
 334			pr_err("Couldn't map the system table!\n");
 335			if (data)
 336				early_memunmap(data, sizeof(*data));
 337			return -ENOMEM;
 338		}
 339
 340		efi_systab.hdr = systab64->hdr;
 341		efi_systab.fw_vendor = data ? (unsigned long)data->fw_vendor :
 342					      systab64->fw_vendor;
 343		tmp |= data ? data->fw_vendor : systab64->fw_vendor;
 344		efi_systab.fw_revision = systab64->fw_revision;
 345		efi_systab.con_in_handle = systab64->con_in_handle;
 346		tmp |= systab64->con_in_handle;
 347		efi_systab.con_in = systab64->con_in;
 348		tmp |= systab64->con_in;
 349		efi_systab.con_out_handle = systab64->con_out_handle;
 350		tmp |= systab64->con_out_handle;
 351		efi_systab.con_out = systab64->con_out;
 352		tmp |= systab64->con_out;
 353		efi_systab.stderr_handle = systab64->stderr_handle;
 354		tmp |= systab64->stderr_handle;
 355		efi_systab.stderr = systab64->stderr;
 356		tmp |= systab64->stderr;
 357		efi_systab.runtime = data ?
 358				     (void *)(unsigned long)data->runtime :
 359				     (void *)(unsigned long)systab64->runtime;
 360		tmp |= data ? data->runtime : systab64->runtime;
 361		efi_systab.boottime = (void *)(unsigned long)systab64->boottime;
 362		tmp |= systab64->boottime;
 363		efi_systab.nr_tables = systab64->nr_tables;
 364		efi_systab.tables = data ? (unsigned long)data->tables :
 365					   systab64->tables;
 366		tmp |= data ? data->tables : systab64->tables;
 367
 368		early_memunmap(systab64, sizeof(*systab64));
 369		if (data)
 370			early_memunmap(data, sizeof(*data));
 371#ifdef CONFIG_X86_32
 372		if (tmp >> 32) {
 373			pr_err("EFI data located above 4GB, disabling EFI.\n");
 374			return -EINVAL;
 375		}
 376#endif
 377	} else {
 378		efi_system_table_32_t *systab32;
 379
 380		systab32 = early_memremap((unsigned long)phys,
 381					 sizeof(*systab32));
 382		if (systab32 == NULL) {
 383			pr_err("Couldn't map the system table!\n");
 384			return -ENOMEM;
 385		}
 386
 387		efi_systab.hdr = systab32->hdr;
 388		efi_systab.fw_vendor = systab32->fw_vendor;
 389		efi_systab.fw_revision = systab32->fw_revision;
 390		efi_systab.con_in_handle = systab32->con_in_handle;
 391		efi_systab.con_in = systab32->con_in;
 392		efi_systab.con_out_handle = systab32->con_out_handle;
 393		efi_systab.con_out = systab32->con_out;
 394		efi_systab.stderr_handle = systab32->stderr_handle;
 395		efi_systab.stderr = systab32->stderr;
 396		efi_systab.runtime = (void *)(unsigned long)systab32->runtime;
 397		efi_systab.boottime = (void *)(unsigned long)systab32->boottime;
 398		efi_systab.nr_tables = systab32->nr_tables;
 399		efi_systab.tables = systab32->tables;
 400
 401		early_memunmap(systab32, sizeof(*systab32));
 402	}
 403
 404	efi.systab = &efi_systab;
 405
 406	/*
 407	 * Verify the EFI Table
 408	 */
 409	if (efi.systab->hdr.signature != EFI_SYSTEM_TABLE_SIGNATURE) {
 410		pr_err("System table signature incorrect!\n");
 411		return -EINVAL;
 412	}
 413	if ((efi.systab->hdr.revision >> 16) == 0)
 414		pr_err("Warning: System table version %d.%02d, expected 1.00 or greater!\n",
 415		       efi.systab->hdr.revision >> 16,
 416		       efi.systab->hdr.revision & 0xffff);
 417
 418	return 0;
 419}
 420
 421static int __init efi_runtime_init32(void)
 422{
 423	efi_runtime_services_32_t *runtime;
 424
 425	runtime = early_memremap((unsigned long)efi.systab->runtime,
 426			sizeof(efi_runtime_services_32_t));
 427	if (!runtime) {
 428		pr_err("Could not map the runtime service table!\n");
 429		return -ENOMEM;
 430	}
 431
 432	/*
 433	 * We will only need *early* access to the SetVirtualAddressMap
 434	 * EFI runtime service. All other runtime services will be called
 435	 * via the virtual mapping.
 436	 */
 437	efi_phys.set_virtual_address_map =
 438			(efi_set_virtual_address_map_t *)
 439			(unsigned long)runtime->set_virtual_address_map;
 440	early_memunmap(runtime, sizeof(efi_runtime_services_32_t));
 441
 442	return 0;
 443}
 
 444
 445static int __init efi_runtime_init64(void)
 446{
 447	efi_runtime_services_64_t *runtime;
 448
 449	runtime = early_memremap((unsigned long)efi.systab->runtime,
 450			sizeof(efi_runtime_services_64_t));
 451	if (!runtime) {
 452		pr_err("Could not map the runtime service table!\n");
 453		return -ENOMEM;
 454	}
 455
 456	/*
 457	 * We will only need *early* access to the SetVirtualAddressMap
 458	 * EFI runtime service. All other runtime services will be called
 459	 * via the virtual mapping.
 460	 */
 461	efi_phys.set_virtual_address_map =
 462			(efi_set_virtual_address_map_t *)
 463			(unsigned long)runtime->set_virtual_address_map;
 464	early_memunmap(runtime, sizeof(efi_runtime_services_64_t));
 465
 466	return 0;
 467}
 468
 469static int __init efi_runtime_init(void)
 470{
 471	int rv;
 472
 473	/*
 474	 * Check out the runtime services table. We need to map
 475	 * the runtime services table so that we can grab the physical
 476	 * address of several of the EFI runtime functions, needed to
 477	 * set the firmware into virtual mode.
 478	 *
 479	 * When EFI_PARAVIRT is in force then we could not map runtime
 480	 * service memory region because we do not have direct access to it.
 481	 * However, runtime services are available through proxy functions
 482	 * (e.g. in case of Xen dom0 EFI implementation they call special
 483	 * hypercall which executes relevant EFI functions) and that is why
 484	 * they are always enabled.
 485	 */
 486
 487	if (!efi_enabled(EFI_PARAVIRT)) {
 488		if (efi_enabled(EFI_64BIT))
 489			rv = efi_runtime_init64();
 490		else
 491			rv = efi_runtime_init32();
 492
 493		if (rv)
 494			return rv;
 495	}
 496
 497	set_bit(EFI_RUNTIME_SERVICES, &efi.flags);
 498
 499	return 0;
 500}
 501
 502void __init efi_init(void)
 503{
 
 
 504	efi_char16_t *c16;
 505	char vendor[100] = "unknown";
 506	int i = 0;
 507	void *tmp;
 508
 509#ifdef CONFIG_X86_32
 510	if (boot_params.efi_info.efi_systab_hi ||
 511	    boot_params.efi_info.efi_memmap_hi) {
 512		pr_info("Table located above 4GB, disabling EFI.\n");
 513		return;
 514	}
 515	efi_phys.systab = (efi_system_table_t *)boot_params.efi_info.efi_systab;
 516#else
 517	efi_phys.systab = (efi_system_table_t *)
 518			  (boot_params.efi_info.efi_systab |
 519			  ((__u64)boot_params.efi_info.efi_systab_hi<<32));
 520#endif
 521
 522	if (efi_systab_init(efi_phys.systab))
 523		return;
 
 
 
 
 
 524
 525	efi.config_table = (unsigned long)efi.systab->tables;
 526	efi.fw_vendor	 = (unsigned long)efi.systab->fw_vendor;
 527	efi.runtime	 = (unsigned long)efi.systab->runtime;
 
 
 
 
 
 
 
 528
 529	/*
 530	 * Show what we know for posterity
 531	 */
 532	c16 = tmp = early_memremap(efi.systab->fw_vendor, 2);
 533	if (c16) {
 534		for (i = 0; i < sizeof(vendor) - 1 && *c16; ++i)
 535			vendor[i] = *c16++;
 536		vendor[i] = '\0';
 537	} else
 538		pr_err("Could not map the firmware vendor!\n");
 539	early_memunmap(tmp, 2);
 540
 541	pr_info("EFI v%u.%.02u by %s\n",
 542		efi.systab->hdr.revision >> 16,
 543		efi.systab->hdr.revision & 0xffff, vendor);
 544
 545	if (efi_reuse_config(efi.systab->tables, efi.systab->nr_tables))
 546		return;
 547
 548	if (efi_config_init(arch_tables))
 549		return;
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 550
 551	/*
 552	 * Note: We currently don't support runtime services on an EFI
 553	 * that doesn't match the kernel 32/64-bit mode.
 
 
 554	 */
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 555
 556	if (!efi_runtime_supported())
 557		pr_info("No EFI runtime due to 32/64-bit mismatch with kernel\n");
 558	else {
 559		if (efi_runtime_disabled() || efi_runtime_init()) {
 560			efi_memmap_unmap();
 561			return;
 562		}
 563	}
 564
 565	efi_clean_memmap();
 
 
 
 566
 567	if (efi_enabled(EFI_DBG))
 568		efi_print_memmap();
 
 569}
 570
 571void __init efi_set_executable(efi_memory_desc_t *md, bool executable)
 572{
 573	u64 addr, npages;
 574
 575	addr = md->virt_addr;
 576	npages = md->num_pages;
 577
 578	memrange_efi_to_native(&addr, &npages);
 579
 580	if (executable)
 581		set_memory_x(addr, npages);
 582	else
 583		set_memory_nx(addr, npages);
 584}
 585
 586void __init runtime_code_page_mkexec(void)
 587{
 588	efi_memory_desc_t *md;
 
 589
 590	/* Make EFI runtime service code area executable */
 591	for_each_efi_memory_desc(md) {
 
 
 592		if (md->type != EFI_RUNTIME_SERVICES_CODE)
 593			continue;
 594
 595		efi_set_executable(md, true);
 596	}
 597}
 598
 599void __init efi_memory_uc(u64 addr, unsigned long size)
 
 
 
 
 
 
 
 
 600{
 601	unsigned long page_shift = 1UL << EFI_PAGE_SHIFT;
 602	u64 npages;
 603
 604	npages = round_up(size, page_shift) / page_shift;
 605	memrange_efi_to_native(&addr, &npages);
 606	set_memory_uc(addr, npages);
 607}
 608
 609void __init old_map_region(efi_memory_desc_t *md)
 610{
 611	u64 start_pfn, end_pfn, end;
 612	unsigned long size;
 613	void *va;
 
 
 614
 615	start_pfn = PFN_DOWN(md->phys_addr);
 616	size	  = md->num_pages << PAGE_SHIFT;
 617	end	  = md->phys_addr + size;
 618	end_pfn   = PFN_UP(end);
 619
 620	if (pfn_range_is_mapped(start_pfn, end_pfn)) {
 621		va = __va(md->phys_addr);
 622
 623		if (!(md->attribute & EFI_MEMORY_WB))
 624			efi_memory_uc((u64)(unsigned long)va, size);
 625	} else
 626		va = efi_ioremap(md->phys_addr, size,
 627				 md->type, md->attribute);
 628
 629	md->virt_addr = (u64) (unsigned long) va;
 630	if (!va)
 631		pr_err("ioremap of 0x%llX failed!\n",
 632		       (unsigned long long)md->phys_addr);
 633}
 634
 635/* Merge contiguous regions of the same type and attribute */
 636static void __init efi_merge_regions(void)
 637{
 638	efi_memory_desc_t *md, *prev_md = NULL;
 639
 640	for_each_efi_memory_desc(md) {
 
 641		u64 prev_size;
 
 642
 643		if (!prev_md) {
 644			prev_md = md;
 645			continue;
 646		}
 647
 648		if (prev_md->type != md->type ||
 649		    prev_md->attribute != md->attribute) {
 650			prev_md = md;
 651			continue;
 652		}
 653
 654		prev_size = prev_md->num_pages << EFI_PAGE_SHIFT;
 655
 656		if (md->phys_addr == (prev_md->phys_addr + prev_size)) {
 657			prev_md->num_pages += md->num_pages;
 658			md->type = EFI_RESERVED_TYPE;
 659			md->attribute = 0;
 660			continue;
 661		}
 662		prev_md = md;
 663	}
 664}
 665
 666static void __init get_systab_virt_addr(efi_memory_desc_t *md)
 667{
 668	unsigned long size;
 669	u64 end, systab;
 
 
 670
 671	size = md->num_pages << EFI_PAGE_SHIFT;
 672	end = md->phys_addr + size;
 673	systab = (u64)(unsigned long)efi_phys.systab;
 674	if (md->phys_addr <= systab && systab < end) {
 675		systab += md->virt_addr - md->phys_addr;
 676		efi.systab = (efi_system_table_t *)(unsigned long)systab;
 677	}
 678}
 679
 680static void *realloc_pages(void *old_memmap, int old_shift)
 681{
 682	void *ret;
 683
 684	ret = (void *)__get_free_pages(GFP_KERNEL, old_shift + 1);
 685	if (!ret)
 686		goto out;
 687
 688	/*
 689	 * A first-time allocation doesn't have anything to copy.
 690	 */
 691	if (!old_memmap)
 692		return ret;
 693
 694	memcpy(ret, old_memmap, PAGE_SIZE << old_shift);
 695
 696out:
 697	free_pages((unsigned long)old_memmap, old_shift);
 698	return ret;
 699}
 700
 701/*
 702 * Iterate the EFI memory map in reverse order because the regions
 703 * will be mapped top-down. The end result is the same as if we had
 704 * mapped things forward, but doesn't require us to change the
 705 * existing implementation of efi_map_region().
 706 */
 707static inline void *efi_map_next_entry_reverse(void *entry)
 708{
 709	/* Initial call */
 710	if (!entry)
 711		return efi.memmap.map_end - efi.memmap.desc_size;
 712
 713	entry -= efi.memmap.desc_size;
 714	if (entry < efi.memmap.map)
 715		return NULL;
 716
 717	return entry;
 718}
 719
 720/*
 721 * efi_map_next_entry - Return the next EFI memory map descriptor
 722 * @entry: Previous EFI memory map descriptor
 723 *
 724 * This is a helper function to iterate over the EFI memory map, which
 725 * we do in different orders depending on the current configuration.
 726 *
 727 * To begin traversing the memory map @entry must be %NULL.
 728 *
 729 * Returns %NULL when we reach the end of the memory map.
 730 */
 731static void *efi_map_next_entry(void *entry)
 732{
 733	if (!efi_enabled(EFI_OLD_MEMMAP) && efi_enabled(EFI_64BIT)) {
 734		/*
 735		 * Starting in UEFI v2.5 the EFI_PROPERTIES_TABLE
 736		 * config table feature requires us to map all entries
 737		 * in the same order as they appear in the EFI memory
 738		 * map. That is to say, entry N must have a lower
 739		 * virtual address than entry N+1. This is because the
 740		 * firmware toolchain leaves relative references in
 741		 * the code/data sections, which are split and become
 742		 * separate EFI memory regions. Mapping things
 743		 * out-of-order leads to the firmware accessing
 744		 * unmapped addresses.
 745		 *
 746		 * Since we need to map things this way whether or not
 747		 * the kernel actually makes use of
 748		 * EFI_PROPERTIES_TABLE, let's just switch to this
 749		 * scheme by default for 64-bit.
 750		 */
 751		return efi_map_next_entry_reverse(entry);
 752	}
 753
 754	/* Initial call */
 755	if (!entry)
 756		return efi.memmap.map;
 757
 758	entry += efi.memmap.desc_size;
 759	if (entry >= efi.memmap.map_end)
 760		return NULL;
 761
 762	return entry;
 763}
 764
 765static bool should_map_region(efi_memory_desc_t *md)
 766{
 767	/*
 768	 * Runtime regions always require runtime mappings (obviously).
 769	 */
 770	if (md->attribute & EFI_MEMORY_RUNTIME)
 771		return true;
 772
 773	/*
 774	 * 32-bit EFI doesn't suffer from the bug that requires us to
 775	 * reserve boot services regions, and mixed mode support
 776	 * doesn't exist for 32-bit kernels.
 777	 */
 778	if (IS_ENABLED(CONFIG_X86_32))
 779		return false;
 780
 781	/*
 782	 * Map all of RAM so that we can access arguments in the 1:1
 783	 * mapping when making EFI runtime calls.
 784	 */
 785	if (IS_ENABLED(CONFIG_EFI_MIXED) && !efi_is_native()) {
 786		if (md->type == EFI_CONVENTIONAL_MEMORY ||
 787		    md->type == EFI_LOADER_DATA ||
 788		    md->type == EFI_LOADER_CODE)
 789			return true;
 790	}
 791
 792	/*
 793	 * Map boot services regions as a workaround for buggy
 794	 * firmware that accesses them even when they shouldn't.
 795	 *
 796	 * See efi_{reserve,free}_boot_services().
 797	 */
 798	if (md->type == EFI_BOOT_SERVICES_CODE ||
 799	    md->type == EFI_BOOT_SERVICES_DATA)
 800		return true;
 801
 802	return false;
 803}
 804
 805/*
 806 * Map the efi memory ranges of the runtime services and update new_mmap with
 807 * virtual addresses.
 808 */
 809static void * __init efi_map_regions(int *count, int *pg_shift)
 810{
 811	void *p, *new_memmap = NULL;
 812	unsigned long left = 0;
 813	unsigned long desc_size;
 814	efi_memory_desc_t *md;
 815
 816	desc_size = efi.memmap.desc_size;
 817
 818	p = NULL;
 819	while ((p = efi_map_next_entry(p))) {
 820		md = p;
 821
 822		if (!should_map_region(md))
 
 
 823			continue;
 824
 825		efi_map_region(md);
 826		get_systab_virt_addr(md);
 827
 828		if (left < desc_size) {
 829			new_memmap = realloc_pages(new_memmap, *pg_shift);
 830			if (!new_memmap)
 831				return NULL;
 832
 833			left += PAGE_SIZE << *pg_shift;
 834			(*pg_shift)++;
 835		}
 836
 837		memcpy(new_memmap + (*count * desc_size), md, desc_size);
 838
 839		left -= desc_size;
 840		(*count)++;
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 841	}
 842
 843	return new_memmap;
 844}
 845
 846static void __init kexec_enter_virtual_mode(void)
 847{
 848#ifdef CONFIG_KEXEC_CORE
 849	efi_memory_desc_t *md;
 850	unsigned int num_pages;
 851
 852	efi.systab = NULL;
 853
 854	/*
 855	 * We don't do virtual mode, since we don't do runtime services, on
 856	 * non-native EFI. With efi=old_map, we don't do runtime services in
 857	 * kexec kernel because in the initial boot something else might
 858	 * have been mapped at these virtual addresses.
 859	 */
 860	if (!efi_is_native() || efi_enabled(EFI_OLD_MEMMAP)) {
 861		efi_memmap_unmap();
 862		clear_bit(EFI_RUNTIME_SERVICES, &efi.flags);
 863		return;
 864	}
 865
 866	if (efi_alloc_page_tables()) {
 867		pr_err("Failed to allocate EFI page tables\n");
 868		clear_bit(EFI_RUNTIME_SERVICES, &efi.flags);
 869		return;
 870	}
 871
 872	/*
 873	* Map efi regions which were passed via setup_data. The virt_addr is a
 874	* fixed addr which was used in first kernel of a kexec boot.
 875	*/
 876	for_each_efi_memory_desc(md) {
 877		efi_map_region_fixed(md); /* FIXME: add error handling */
 878		get_systab_virt_addr(md);
 879	}
 880
 881	/*
 882	 * Unregister the early EFI memmap from efi_init() and install
 883	 * the new EFI memory map.
 
 884	 */
 885	efi_memmap_unmap();
 886
 887	if (efi_memmap_init_late(efi.memmap.phys_map,
 888				 efi.memmap.desc_size * efi.memmap.nr_map)) {
 889		pr_err("Failed to remap late EFI memory map\n");
 890		clear_bit(EFI_RUNTIME_SERVICES, &efi.flags);
 891		return;
 892	}
 893
 894	BUG_ON(!efi.systab);
 895
 896	num_pages = ALIGN(efi.memmap.nr_map * efi.memmap.desc_size, PAGE_SIZE);
 897	num_pages >>= PAGE_SHIFT;
 898
 899	if (efi_setup_page_tables(efi.memmap.phys_map, num_pages)) {
 900		clear_bit(EFI_RUNTIME_SERVICES, &efi.flags);
 901		return;
 902	}
 903
 904	efi_sync_low_kernel_mappings();
 905
 906	/*
 907	 * Now that EFI is in virtual mode, update the function
 908	 * pointers in the runtime service table to the new virtual addresses.
 909	 *
 910	 * Call EFI services through wrapper functions.
 911	 */
 912	efi.runtime_version = efi_systab.hdr.revision;
 913
 914	efi_native_runtime_setup();
 915
 
 
 
 
 
 916	efi.set_virtual_address_map = NULL;
 917
 918	if (efi_enabled(EFI_OLD_MEMMAP) && (__supported_pte_mask & _PAGE_NX))
 
 
 919		runtime_code_page_mkexec();
 920#endif
 
 
 921}
 922
 923/*
 924 * This function will switch the EFI runtime services to virtual mode.
 925 * Essentially, we look through the EFI memmap and map every region that
 926 * has the runtime attribute bit set in its memory descriptor into the
 927 * efi_pgd page table.
 928 *
 929 * The old method which used to update that memory descriptor with the
 930 * virtual address obtained from ioremap() is still supported when the
 931 * kernel is booted with efi=old_map on its command line. Same old
 932 * method enabled the runtime services to be called without having to
 933 * thunk back into physical mode for every invocation.
 934 *
 935 * The new method does a pagetable switch in a preemption-safe manner
 936 * so that we're in a different address space when calling a runtime
 937 * function. For function arguments passing we do copy the PUDs of the
 938 * kernel page table into efi_pgd prior to each call.
 939 *
 940 * Specially for kexec boot, efi runtime maps in previous kernel should
 941 * be passed in via setup_data. In that case runtime ranges will be mapped
 942 * to the same virtual addresses as the first kernel, see
 943 * kexec_enter_virtual_mode().
 944 */
 945static void __init __efi_enter_virtual_mode(void)
 946{
 947	int count = 0, pg_shift = 0;
 948	void *new_memmap = NULL;
 949	efi_status_t status;
 950	unsigned long pa;
 951
 952	efi.systab = NULL;
 953
 954	if (efi_alloc_page_tables()) {
 955		pr_err("Failed to allocate EFI page tables\n");
 956		clear_bit(EFI_RUNTIME_SERVICES, &efi.flags);
 957		return;
 958	}
 959
 960	efi_merge_regions();
 961	new_memmap = efi_map_regions(&count, &pg_shift);
 962	if (!new_memmap) {
 963		pr_err("Error reallocating memory, EFI runtime non-functional!\n");
 964		clear_bit(EFI_RUNTIME_SERVICES, &efi.flags);
 965		return;
 966	}
 967
 968	pa = __pa(new_memmap);
 969
 970	/*
 971	 * Unregister the early EFI memmap from efi_init() and install
 972	 * the new EFI memory map that we are about to pass to the
 973	 * firmware via SetVirtualAddressMap().
 974	 */
 975	efi_memmap_unmap();
 976
 977	if (efi_memmap_init_late(pa, efi.memmap.desc_size * count)) {
 978		pr_err("Failed to remap late EFI memory map\n");
 979		clear_bit(EFI_RUNTIME_SERVICES, &efi.flags);
 980		return;
 981	}
 982
 983	if (efi_enabled(EFI_DBG)) {
 984		pr_info("EFI runtime memory map:\n");
 985		efi_print_memmap();
 986	}
 987
 988	BUG_ON(!efi.systab);
 989
 990	if (efi_setup_page_tables(pa, 1 << pg_shift)) {
 991		clear_bit(EFI_RUNTIME_SERVICES, &efi.flags);
 992		return;
 993	}
 994
 995	efi_sync_low_kernel_mappings();
 996
 997	if (efi_is_native()) {
 998		status = phys_efi_set_virtual_address_map(
 999				efi.memmap.desc_size * count,
1000				efi.memmap.desc_size,
1001				efi.memmap.desc_version,
1002				(efi_memory_desc_t *)pa);
1003	} else {
1004		status = efi_thunk_set_virtual_address_map(
1005				efi_phys.set_virtual_address_map,
1006				efi.memmap.desc_size * count,
1007				efi.memmap.desc_size,
1008				efi.memmap.desc_version,
1009				(efi_memory_desc_t *)pa);
1010	}
1011
1012	if (status != EFI_SUCCESS) {
1013		pr_alert("Unable to switch EFI into virtual mode (status=%lx)!\n",
1014			 status);
1015		panic("EFI call to SetVirtualAddressMap() failed!");
1016	}
1017
1018	efi_free_boot_services();
1019
1020	/*
1021	 * Now that EFI is in virtual mode, update the function
1022	 * pointers in the runtime service table to the new virtual addresses.
1023	 *
1024	 * Call EFI services through wrapper functions.
1025	 */
1026	efi.runtime_version = efi_systab.hdr.revision;
1027
1028	if (efi_is_native())
1029		efi_native_runtime_setup();
1030	else
1031		efi_thunk_runtime_setup();
1032
1033	efi.set_virtual_address_map = NULL;
1034
1035	/*
1036	 * Apply more restrictive page table mapping attributes now that
1037	 * SVAM() has been called and the firmware has performed all
1038	 * necessary relocation fixups for the new virtual addresses.
1039	 */
1040	efi_runtime_update_mappings();
1041
1042	/* clean DUMMY object */
1043	efi_delete_dummy_variable();
1044}
1045
1046void __init efi_enter_virtual_mode(void)
1047{
1048	if (efi_enabled(EFI_PARAVIRT))
1049		return;
1050
1051	if (efi_setup)
1052		kexec_enter_virtual_mode();
1053	else
1054		__efi_enter_virtual_mode();
1055
1056	efi_dump_pagetable();
1057}
1058
1059static int __init arch_parse_efi_cmdline(char *str)
1060{
1061	if (!str) {
1062		pr_warn("need at least one option\n");
1063		return -EINVAL;
1064	}
1065
1066	if (parse_option_str(str, "old_map"))
1067		set_bit(EFI_OLD_MEMMAP, &efi.flags);
1068
1069	return 0;
1070}
1071early_param("efi", arch_parse_efi_cmdline);
1072
1073bool efi_is_table_address(unsigned long phys_addr)
1074{
1075	unsigned int i;
1076
1077	if (phys_addr == EFI_INVALID_TABLE_ADDR)
1078		return false;
1079
1080	for (i = 0; i < ARRAY_SIZE(efi_tables); i++)
1081		if (*(efi_tables[i]) == phys_addr)
1082			return true;
1083
1084	return false;
1085}