Loading...
1/*
2 * Common EFI (Extensible Firmware Interface) support functions
3 * Based on Extensible Firmware Interface Specification version 1.0
4 *
5 * Copyright (C) 1999 VA Linux Systems
6 * Copyright (C) 1999 Walt Drummond <drummond@valinux.com>
7 * Copyright (C) 1999-2002 Hewlett-Packard Co.
8 * David Mosberger-Tang <davidm@hpl.hp.com>
9 * Stephane Eranian <eranian@hpl.hp.com>
10 * Copyright (C) 2005-2008 Intel Co.
11 * Fenghua Yu <fenghua.yu@intel.com>
12 * Bibo Mao <bibo.mao@intel.com>
13 * Chandramouli Narayanan <mouli@linux.intel.com>
14 * Huang Ying <ying.huang@intel.com>
15 *
16 * Copied from efi_32.c to eliminate the duplicated code between EFI
17 * 32/64 support code. --ying 2007-10-26
18 *
19 * All EFI Runtime Services are not implemented yet as EFI only
20 * supports physical mode addressing on SoftSDV. This is to be fixed
21 * in a future version. --drummond 1999-07-20
22 *
23 * Implemented EFI runtime services and virtual mode calls. --davidm
24 *
25 * Goutham Rao: <goutham.rao@intel.com>
26 * Skip non-WB memory and ignore empty memory ranges.
27 */
28
29#include <linux/kernel.h>
30#include <linux/init.h>
31#include <linux/efi.h>
32#include <linux/bootmem.h>
33#include <linux/memblock.h>
34#include <linux/spinlock.h>
35#include <linux/uaccess.h>
36#include <linux/time.h>
37#include <linux/io.h>
38#include <linux/reboot.h>
39#include <linux/bcd.h>
40
41#include <asm/setup.h>
42#include <asm/efi.h>
43#include <asm/time.h>
44#include <asm/cacheflush.h>
45#include <asm/tlbflush.h>
46#include <asm/x86_init.h>
47
48#define EFI_DEBUG 1
49#define PFX "EFI: "
50
51int efi_enabled;
52EXPORT_SYMBOL(efi_enabled);
53
54struct efi __read_mostly efi = {
55 .mps = EFI_INVALID_TABLE_ADDR,
56 .acpi = EFI_INVALID_TABLE_ADDR,
57 .acpi20 = EFI_INVALID_TABLE_ADDR,
58 .smbios = EFI_INVALID_TABLE_ADDR,
59 .sal_systab = EFI_INVALID_TABLE_ADDR,
60 .boot_info = EFI_INVALID_TABLE_ADDR,
61 .hcdp = EFI_INVALID_TABLE_ADDR,
62 .uga = EFI_INVALID_TABLE_ADDR,
63 .uv_systab = EFI_INVALID_TABLE_ADDR,
64};
65EXPORT_SYMBOL(efi);
66
67struct efi_memory_map memmap;
68
69static struct efi efi_phys __initdata;
70static efi_system_table_t efi_systab __initdata;
71
72static int __init setup_noefi(char *arg)
73{
74 efi_enabled = 0;
75 return 0;
76}
77early_param("noefi", setup_noefi);
78
79int add_efi_memmap;
80EXPORT_SYMBOL(add_efi_memmap);
81
82static int __init setup_add_efi_memmap(char *arg)
83{
84 add_efi_memmap = 1;
85 return 0;
86}
87early_param("add_efi_memmap", setup_add_efi_memmap);
88
89
90static efi_status_t virt_efi_get_time(efi_time_t *tm, efi_time_cap_t *tc)
91{
92 unsigned long flags;
93 efi_status_t status;
94
95 spin_lock_irqsave(&rtc_lock, flags);
96 status = efi_call_virt2(get_time, tm, tc);
97 spin_unlock_irqrestore(&rtc_lock, flags);
98 return status;
99}
100
101static efi_status_t virt_efi_set_time(efi_time_t *tm)
102{
103 unsigned long flags;
104 efi_status_t status;
105
106 spin_lock_irqsave(&rtc_lock, flags);
107 status = efi_call_virt1(set_time, tm);
108 spin_unlock_irqrestore(&rtc_lock, flags);
109 return status;
110}
111
112static efi_status_t virt_efi_get_wakeup_time(efi_bool_t *enabled,
113 efi_bool_t *pending,
114 efi_time_t *tm)
115{
116 unsigned long flags;
117 efi_status_t status;
118
119 spin_lock_irqsave(&rtc_lock, flags);
120 status = efi_call_virt3(get_wakeup_time,
121 enabled, pending, tm);
122 spin_unlock_irqrestore(&rtc_lock, flags);
123 return status;
124}
125
126static efi_status_t virt_efi_set_wakeup_time(efi_bool_t enabled, efi_time_t *tm)
127{
128 unsigned long flags;
129 efi_status_t status;
130
131 spin_lock_irqsave(&rtc_lock, flags);
132 status = efi_call_virt2(set_wakeup_time,
133 enabled, tm);
134 spin_unlock_irqrestore(&rtc_lock, flags);
135 return status;
136}
137
138static efi_status_t virt_efi_get_variable(efi_char16_t *name,
139 efi_guid_t *vendor,
140 u32 *attr,
141 unsigned long *data_size,
142 void *data)
143{
144 return efi_call_virt5(get_variable,
145 name, vendor, attr,
146 data_size, data);
147}
148
149static efi_status_t virt_efi_get_next_variable(unsigned long *name_size,
150 efi_char16_t *name,
151 efi_guid_t *vendor)
152{
153 return efi_call_virt3(get_next_variable,
154 name_size, name, vendor);
155}
156
157static efi_status_t virt_efi_set_variable(efi_char16_t *name,
158 efi_guid_t *vendor,
159 u32 attr,
160 unsigned long data_size,
161 void *data)
162{
163 return efi_call_virt5(set_variable,
164 name, vendor, attr,
165 data_size, data);
166}
167
168static efi_status_t virt_efi_query_variable_info(u32 attr,
169 u64 *storage_space,
170 u64 *remaining_space,
171 u64 *max_variable_size)
172{
173 if (efi.runtime_version < EFI_2_00_SYSTEM_TABLE_REVISION)
174 return EFI_UNSUPPORTED;
175
176 return efi_call_virt4(query_variable_info, attr, storage_space,
177 remaining_space, max_variable_size);
178}
179
180static efi_status_t virt_efi_get_next_high_mono_count(u32 *count)
181{
182 return efi_call_virt1(get_next_high_mono_count, count);
183}
184
185static void virt_efi_reset_system(int reset_type,
186 efi_status_t status,
187 unsigned long data_size,
188 efi_char16_t *data)
189{
190 efi_call_virt4(reset_system, reset_type, status,
191 data_size, data);
192}
193
194static efi_status_t virt_efi_update_capsule(efi_capsule_header_t **capsules,
195 unsigned long count,
196 unsigned long sg_list)
197{
198 if (efi.runtime_version < EFI_2_00_SYSTEM_TABLE_REVISION)
199 return EFI_UNSUPPORTED;
200
201 return efi_call_virt3(update_capsule, capsules, count, sg_list);
202}
203
204static efi_status_t virt_efi_query_capsule_caps(efi_capsule_header_t **capsules,
205 unsigned long count,
206 u64 *max_size,
207 int *reset_type)
208{
209 if (efi.runtime_version < EFI_2_00_SYSTEM_TABLE_REVISION)
210 return EFI_UNSUPPORTED;
211
212 return efi_call_virt4(query_capsule_caps, capsules, count, max_size,
213 reset_type);
214}
215
216static efi_status_t __init phys_efi_set_virtual_address_map(
217 unsigned long memory_map_size,
218 unsigned long descriptor_size,
219 u32 descriptor_version,
220 efi_memory_desc_t *virtual_map)
221{
222 efi_status_t status;
223
224 efi_call_phys_prelog();
225 status = efi_call_phys4(efi_phys.set_virtual_address_map,
226 memory_map_size, descriptor_size,
227 descriptor_version, virtual_map);
228 efi_call_phys_epilog();
229 return status;
230}
231
232static efi_status_t __init phys_efi_get_time(efi_time_t *tm,
233 efi_time_cap_t *tc)
234{
235 unsigned long flags;
236 efi_status_t status;
237
238 spin_lock_irqsave(&rtc_lock, flags);
239 efi_call_phys_prelog();
240 status = efi_call_phys2(efi_phys.get_time, tm, tc);
241 efi_call_phys_epilog();
242 spin_unlock_irqrestore(&rtc_lock, flags);
243 return status;
244}
245
246int efi_set_rtc_mmss(unsigned long nowtime)
247{
248 int real_seconds, real_minutes;
249 efi_status_t status;
250 efi_time_t eft;
251 efi_time_cap_t cap;
252
253 status = efi.get_time(&eft, &cap);
254 if (status != EFI_SUCCESS) {
255 printk(KERN_ERR "Oops: efitime: can't read time!\n");
256 return -1;
257 }
258
259 real_seconds = nowtime % 60;
260 real_minutes = nowtime / 60;
261 if (((abs(real_minutes - eft.minute) + 15)/30) & 1)
262 real_minutes += 30;
263 real_minutes %= 60;
264 eft.minute = real_minutes;
265 eft.second = real_seconds;
266
267 status = efi.set_time(&eft);
268 if (status != EFI_SUCCESS) {
269 printk(KERN_ERR "Oops: efitime: can't write time!\n");
270 return -1;
271 }
272 return 0;
273}
274
275unsigned long efi_get_time(void)
276{
277 efi_status_t status;
278 efi_time_t eft;
279 efi_time_cap_t cap;
280
281 status = efi.get_time(&eft, &cap);
282 if (status != EFI_SUCCESS)
283 printk(KERN_ERR "Oops: efitime: can't read time!\n");
284
285 return mktime(eft.year, eft.month, eft.day, eft.hour,
286 eft.minute, eft.second);
287}
288
289/*
290 * Tell the kernel about the EFI memory map. This might include
291 * more than the max 128 entries that can fit in the e820 legacy
292 * (zeropage) memory map.
293 */
294
295static void __init do_add_efi_memmap(void)
296{
297 void *p;
298
299 for (p = memmap.map; p < memmap.map_end; p += memmap.desc_size) {
300 efi_memory_desc_t *md = p;
301 unsigned long long start = md->phys_addr;
302 unsigned long long size = md->num_pages << EFI_PAGE_SHIFT;
303 int e820_type;
304
305 switch (md->type) {
306 case EFI_LOADER_CODE:
307 case EFI_LOADER_DATA:
308 case EFI_BOOT_SERVICES_CODE:
309 case EFI_BOOT_SERVICES_DATA:
310 case EFI_CONVENTIONAL_MEMORY:
311 if (md->attribute & EFI_MEMORY_WB)
312 e820_type = E820_RAM;
313 else
314 e820_type = E820_RESERVED;
315 break;
316 case EFI_ACPI_RECLAIM_MEMORY:
317 e820_type = E820_ACPI;
318 break;
319 case EFI_ACPI_MEMORY_NVS:
320 e820_type = E820_NVS;
321 break;
322 case EFI_UNUSABLE_MEMORY:
323 e820_type = E820_UNUSABLE;
324 break;
325 default:
326 /*
327 * EFI_RESERVED_TYPE EFI_RUNTIME_SERVICES_CODE
328 * EFI_RUNTIME_SERVICES_DATA EFI_MEMORY_MAPPED_IO
329 * EFI_MEMORY_MAPPED_IO_PORT_SPACE EFI_PAL_CODE
330 */
331 e820_type = E820_RESERVED;
332 break;
333 }
334 e820_add_region(start, size, e820_type);
335 }
336 sanitize_e820_map(e820.map, ARRAY_SIZE(e820.map), &e820.nr_map);
337}
338
339void __init efi_memblock_x86_reserve_range(void)
340{
341 unsigned long pmap;
342
343#ifdef CONFIG_X86_32
344 pmap = boot_params.efi_info.efi_memmap;
345#else
346 pmap = (boot_params.efi_info.efi_memmap |
347 ((__u64)boot_params.efi_info.efi_memmap_hi<<32));
348#endif
349 memmap.phys_map = (void *)pmap;
350 memmap.nr_map = boot_params.efi_info.efi_memmap_size /
351 boot_params.efi_info.efi_memdesc_size;
352 memmap.desc_version = boot_params.efi_info.efi_memdesc_version;
353 memmap.desc_size = boot_params.efi_info.efi_memdesc_size;
354 memblock_x86_reserve_range(pmap, pmap + memmap.nr_map * memmap.desc_size,
355 "EFI memmap");
356}
357
358#if EFI_DEBUG
359static void __init print_efi_memmap(void)
360{
361 efi_memory_desc_t *md;
362 void *p;
363 int i;
364
365 for (p = memmap.map, i = 0;
366 p < memmap.map_end;
367 p += memmap.desc_size, i++) {
368 md = p;
369 printk(KERN_INFO PFX "mem%02u: type=%u, attr=0x%llx, "
370 "range=[0x%016llx-0x%016llx) (%lluMB)\n",
371 i, md->type, md->attribute, md->phys_addr,
372 md->phys_addr + (md->num_pages << EFI_PAGE_SHIFT),
373 (md->num_pages >> (20 - EFI_PAGE_SHIFT)));
374 }
375}
376#endif /* EFI_DEBUG */
377
378void __init efi_reserve_boot_services(void)
379{
380 void *p;
381
382 for (p = memmap.map; p < memmap.map_end; p += memmap.desc_size) {
383 efi_memory_desc_t *md = p;
384 u64 start = md->phys_addr;
385 u64 size = md->num_pages << EFI_PAGE_SHIFT;
386
387 if (md->type != EFI_BOOT_SERVICES_CODE &&
388 md->type != EFI_BOOT_SERVICES_DATA)
389 continue;
390 /* Only reserve where possible:
391 * - Not within any already allocated areas
392 * - Not over any memory area (really needed, if above?)
393 * - Not within any part of the kernel
394 * - Not the bios reserved area
395 */
396 if ((start+size >= virt_to_phys(_text)
397 && start <= virt_to_phys(_end)) ||
398 !e820_all_mapped(start, start+size, E820_RAM) ||
399 memblock_x86_check_reserved_size(&start, &size,
400 1<<EFI_PAGE_SHIFT)) {
401 /* Could not reserve, skip it */
402 md->num_pages = 0;
403 memblock_dbg(PFX "Could not reserve boot range "
404 "[0x%010llx-0x%010llx]\n",
405 start, start+size-1);
406 } else
407 memblock_x86_reserve_range(start, start+size,
408 "EFI Boot");
409 }
410}
411
412static void __init efi_free_boot_services(void)
413{
414 void *p;
415
416 for (p = memmap.map; p < memmap.map_end; p += memmap.desc_size) {
417 efi_memory_desc_t *md = p;
418 unsigned long long start = md->phys_addr;
419 unsigned long long size = md->num_pages << EFI_PAGE_SHIFT;
420
421 if (md->type != EFI_BOOT_SERVICES_CODE &&
422 md->type != EFI_BOOT_SERVICES_DATA)
423 continue;
424
425 /* Could not reserve boot area */
426 if (!size)
427 continue;
428
429 free_bootmem_late(start, size);
430 }
431}
432
433void __init efi_init(void)
434{
435 efi_config_table_t *config_tables;
436 efi_runtime_services_t *runtime;
437 efi_char16_t *c16;
438 char vendor[100] = "unknown";
439 int i = 0;
440 void *tmp;
441
442#ifdef CONFIG_X86_32
443 efi_phys.systab = (efi_system_table_t *)boot_params.efi_info.efi_systab;
444#else
445 efi_phys.systab = (efi_system_table_t *)
446 (boot_params.efi_info.efi_systab |
447 ((__u64)boot_params.efi_info.efi_systab_hi<<32));
448#endif
449
450 efi.systab = early_ioremap((unsigned long)efi_phys.systab,
451 sizeof(efi_system_table_t));
452 if (efi.systab == NULL)
453 printk(KERN_ERR "Couldn't map the EFI system table!\n");
454 memcpy(&efi_systab, efi.systab, sizeof(efi_system_table_t));
455 early_iounmap(efi.systab, sizeof(efi_system_table_t));
456 efi.systab = &efi_systab;
457
458 /*
459 * Verify the EFI Table
460 */
461 if (efi.systab->hdr.signature != EFI_SYSTEM_TABLE_SIGNATURE)
462 printk(KERN_ERR "EFI system table signature incorrect!\n");
463 if ((efi.systab->hdr.revision >> 16) == 0)
464 printk(KERN_ERR "Warning: EFI system table version "
465 "%d.%02d, expected 1.00 or greater!\n",
466 efi.systab->hdr.revision >> 16,
467 efi.systab->hdr.revision & 0xffff);
468
469 /*
470 * Show what we know for posterity
471 */
472 c16 = tmp = early_ioremap(efi.systab->fw_vendor, 2);
473 if (c16) {
474 for (i = 0; i < sizeof(vendor) - 1 && *c16; ++i)
475 vendor[i] = *c16++;
476 vendor[i] = '\0';
477 } else
478 printk(KERN_ERR PFX "Could not map the firmware vendor!\n");
479 early_iounmap(tmp, 2);
480
481 printk(KERN_INFO "EFI v%u.%.02u by %s\n",
482 efi.systab->hdr.revision >> 16,
483 efi.systab->hdr.revision & 0xffff, vendor);
484
485 /*
486 * Let's see what config tables the firmware passed to us.
487 */
488 config_tables = early_ioremap(
489 efi.systab->tables,
490 efi.systab->nr_tables * sizeof(efi_config_table_t));
491 if (config_tables == NULL)
492 printk(KERN_ERR "Could not map EFI Configuration Table!\n");
493
494 printk(KERN_INFO);
495 for (i = 0; i < efi.systab->nr_tables; i++) {
496 if (!efi_guidcmp(config_tables[i].guid, MPS_TABLE_GUID)) {
497 efi.mps = config_tables[i].table;
498 printk(" MPS=0x%lx ", config_tables[i].table);
499 } else if (!efi_guidcmp(config_tables[i].guid,
500 ACPI_20_TABLE_GUID)) {
501 efi.acpi20 = config_tables[i].table;
502 printk(" ACPI 2.0=0x%lx ", config_tables[i].table);
503 } else if (!efi_guidcmp(config_tables[i].guid,
504 ACPI_TABLE_GUID)) {
505 efi.acpi = config_tables[i].table;
506 printk(" ACPI=0x%lx ", config_tables[i].table);
507 } else if (!efi_guidcmp(config_tables[i].guid,
508 SMBIOS_TABLE_GUID)) {
509 efi.smbios = config_tables[i].table;
510 printk(" SMBIOS=0x%lx ", config_tables[i].table);
511#ifdef CONFIG_X86_UV
512 } else if (!efi_guidcmp(config_tables[i].guid,
513 UV_SYSTEM_TABLE_GUID)) {
514 efi.uv_systab = config_tables[i].table;
515 printk(" UVsystab=0x%lx ", config_tables[i].table);
516#endif
517 } else if (!efi_guidcmp(config_tables[i].guid,
518 HCDP_TABLE_GUID)) {
519 efi.hcdp = config_tables[i].table;
520 printk(" HCDP=0x%lx ", config_tables[i].table);
521 } else if (!efi_guidcmp(config_tables[i].guid,
522 UGA_IO_PROTOCOL_GUID)) {
523 efi.uga = config_tables[i].table;
524 printk(" UGA=0x%lx ", config_tables[i].table);
525 }
526 }
527 printk("\n");
528 early_iounmap(config_tables,
529 efi.systab->nr_tables * sizeof(efi_config_table_t));
530
531 /*
532 * Check out the runtime services table. We need to map
533 * the runtime services table so that we can grab the physical
534 * address of several of the EFI runtime functions, needed to
535 * set the firmware into virtual mode.
536 */
537 runtime = early_ioremap((unsigned long)efi.systab->runtime,
538 sizeof(efi_runtime_services_t));
539 if (runtime != NULL) {
540 /*
541 * We will only need *early* access to the following
542 * two EFI runtime services before set_virtual_address_map
543 * is invoked.
544 */
545 efi_phys.get_time = (efi_get_time_t *)runtime->get_time;
546 efi_phys.set_virtual_address_map =
547 (efi_set_virtual_address_map_t *)
548 runtime->set_virtual_address_map;
549 /*
550 * Make efi_get_time can be called before entering
551 * virtual mode.
552 */
553 efi.get_time = phys_efi_get_time;
554 } else
555 printk(KERN_ERR "Could not map the EFI runtime service "
556 "table!\n");
557 early_iounmap(runtime, sizeof(efi_runtime_services_t));
558
559 /* Map the EFI memory map */
560 memmap.map = early_ioremap((unsigned long)memmap.phys_map,
561 memmap.nr_map * memmap.desc_size);
562 if (memmap.map == NULL)
563 printk(KERN_ERR "Could not map the EFI memory map!\n");
564 memmap.map_end = memmap.map + (memmap.nr_map * memmap.desc_size);
565
566 if (memmap.desc_size != sizeof(efi_memory_desc_t))
567 printk(KERN_WARNING
568 "Kernel-defined memdesc doesn't match the one from EFI!\n");
569
570 if (add_efi_memmap)
571 do_add_efi_memmap();
572
573#ifdef CONFIG_X86_32
574 x86_platform.get_wallclock = efi_get_time;
575 x86_platform.set_wallclock = efi_set_rtc_mmss;
576#endif
577
578#if EFI_DEBUG
579 print_efi_memmap();
580#endif
581}
582
583void __init efi_set_executable(efi_memory_desc_t *md, bool executable)
584{
585 u64 addr, npages;
586
587 addr = md->virt_addr;
588 npages = md->num_pages;
589
590 memrange_efi_to_native(&addr, &npages);
591
592 if (executable)
593 set_memory_x(addr, npages);
594 else
595 set_memory_nx(addr, npages);
596}
597
598static void __init runtime_code_page_mkexec(void)
599{
600 efi_memory_desc_t *md;
601 void *p;
602
603 /* Make EFI runtime service code area executable */
604 for (p = memmap.map; p < memmap.map_end; p += memmap.desc_size) {
605 md = p;
606
607 if (md->type != EFI_RUNTIME_SERVICES_CODE)
608 continue;
609
610 efi_set_executable(md, true);
611 }
612}
613
614/*
615 * This function will switch the EFI runtime services to virtual mode.
616 * Essentially, look through the EFI memmap and map every region that
617 * has the runtime attribute bit set in its memory descriptor and update
618 * that memory descriptor with the virtual address obtained from ioremap().
619 * This enables the runtime services to be called without having to
620 * thunk back into physical mode for every invocation.
621 */
622void __init efi_enter_virtual_mode(void)
623{
624 efi_memory_desc_t *md, *prev_md = NULL;
625 efi_status_t status;
626 unsigned long size;
627 u64 end, systab, addr, npages, end_pfn;
628 void *p, *va, *new_memmap = NULL;
629 int count = 0;
630
631 efi.systab = NULL;
632
633 /* Merge contiguous regions of the same type and attribute */
634 for (p = memmap.map; p < memmap.map_end; p += memmap.desc_size) {
635 u64 prev_size;
636 md = p;
637
638 if (!prev_md) {
639 prev_md = md;
640 continue;
641 }
642
643 if (prev_md->type != md->type ||
644 prev_md->attribute != md->attribute) {
645 prev_md = md;
646 continue;
647 }
648
649 prev_size = prev_md->num_pages << EFI_PAGE_SHIFT;
650
651 if (md->phys_addr == (prev_md->phys_addr + prev_size)) {
652 prev_md->num_pages += md->num_pages;
653 md->type = EFI_RESERVED_TYPE;
654 md->attribute = 0;
655 continue;
656 }
657 prev_md = md;
658 }
659
660 for (p = memmap.map; p < memmap.map_end; p += memmap.desc_size) {
661 md = p;
662 if (!(md->attribute & EFI_MEMORY_RUNTIME) &&
663 md->type != EFI_BOOT_SERVICES_CODE &&
664 md->type != EFI_BOOT_SERVICES_DATA)
665 continue;
666
667 size = md->num_pages << EFI_PAGE_SHIFT;
668 end = md->phys_addr + size;
669
670 end_pfn = PFN_UP(end);
671 if (end_pfn <= max_low_pfn_mapped
672 || (end_pfn > (1UL << (32 - PAGE_SHIFT))
673 && end_pfn <= max_pfn_mapped))
674 va = __va(md->phys_addr);
675 else
676 va = efi_ioremap(md->phys_addr, size, md->type);
677
678 md->virt_addr = (u64) (unsigned long) va;
679
680 if (!va) {
681 printk(KERN_ERR PFX "ioremap of 0x%llX failed!\n",
682 (unsigned long long)md->phys_addr);
683 continue;
684 }
685
686 if (!(md->attribute & EFI_MEMORY_WB)) {
687 addr = md->virt_addr;
688 npages = md->num_pages;
689 memrange_efi_to_native(&addr, &npages);
690 set_memory_uc(addr, npages);
691 }
692
693 systab = (u64) (unsigned long) efi_phys.systab;
694 if (md->phys_addr <= systab && systab < end) {
695 systab += md->virt_addr - md->phys_addr;
696 efi.systab = (efi_system_table_t *) (unsigned long) systab;
697 }
698 new_memmap = krealloc(new_memmap,
699 (count + 1) * memmap.desc_size,
700 GFP_KERNEL);
701 memcpy(new_memmap + (count * memmap.desc_size), md,
702 memmap.desc_size);
703 count++;
704 }
705
706 BUG_ON(!efi.systab);
707
708 status = phys_efi_set_virtual_address_map(
709 memmap.desc_size * count,
710 memmap.desc_size,
711 memmap.desc_version,
712 (efi_memory_desc_t *)__pa(new_memmap));
713
714 if (status != EFI_SUCCESS) {
715 printk(KERN_ALERT "Unable to switch EFI into virtual mode "
716 "(status=%lx)!\n", status);
717 panic("EFI call to SetVirtualAddressMap() failed!");
718 }
719
720 /*
721 * Thankfully, it does seem that no runtime services other than
722 * SetVirtualAddressMap() will touch boot services code, so we can
723 * get rid of it all at this point
724 */
725 efi_free_boot_services();
726
727 /*
728 * Now that EFI is in virtual mode, update the function
729 * pointers in the runtime service table to the new virtual addresses.
730 *
731 * Call EFI services through wrapper functions.
732 */
733 efi.get_time = virt_efi_get_time;
734 efi.set_time = virt_efi_set_time;
735 efi.get_wakeup_time = virt_efi_get_wakeup_time;
736 efi.set_wakeup_time = virt_efi_set_wakeup_time;
737 efi.get_variable = virt_efi_get_variable;
738 efi.get_next_variable = virt_efi_get_next_variable;
739 efi.set_variable = virt_efi_set_variable;
740 efi.get_next_high_mono_count = virt_efi_get_next_high_mono_count;
741 efi.reset_system = virt_efi_reset_system;
742 efi.set_virtual_address_map = NULL;
743 efi.query_variable_info = virt_efi_query_variable_info;
744 efi.update_capsule = virt_efi_update_capsule;
745 efi.query_capsule_caps = virt_efi_query_capsule_caps;
746 if (__supported_pte_mask & _PAGE_NX)
747 runtime_code_page_mkexec();
748 early_iounmap(memmap.map, memmap.nr_map * memmap.desc_size);
749 memmap.map = NULL;
750 kfree(new_memmap);
751}
752
753/*
754 * Convenience functions to obtain memory types and attributes
755 */
756u32 efi_mem_type(unsigned long phys_addr)
757{
758 efi_memory_desc_t *md;
759 void *p;
760
761 for (p = memmap.map; p < memmap.map_end; p += memmap.desc_size) {
762 md = p;
763 if ((md->phys_addr <= phys_addr) &&
764 (phys_addr < (md->phys_addr +
765 (md->num_pages << EFI_PAGE_SHIFT))))
766 return md->type;
767 }
768 return 0;
769}
770
771u64 efi_mem_attributes(unsigned long phys_addr)
772{
773 efi_memory_desc_t *md;
774 void *p;
775
776 for (p = memmap.map; p < memmap.map_end; p += memmap.desc_size) {
777 md = p;
778 if ((md->phys_addr <= phys_addr) &&
779 (phys_addr < (md->phys_addr +
780 (md->num_pages << EFI_PAGE_SHIFT))))
781 return md->attribute;
782 }
783 return 0;
784}
1// SPDX-License-Identifier: GPL-2.0
2/*
3 * Common EFI (Extensible Firmware Interface) support functions
4 * Based on Extensible Firmware Interface Specification version 1.0
5 *
6 * Copyright (C) 1999 VA Linux Systems
7 * Copyright (C) 1999 Walt Drummond <drummond@valinux.com>
8 * Copyright (C) 1999-2002 Hewlett-Packard Co.
9 * David Mosberger-Tang <davidm@hpl.hp.com>
10 * Stephane Eranian <eranian@hpl.hp.com>
11 * Copyright (C) 2005-2008 Intel Co.
12 * Fenghua Yu <fenghua.yu@intel.com>
13 * Bibo Mao <bibo.mao@intel.com>
14 * Chandramouli Narayanan <mouli@linux.intel.com>
15 * Huang Ying <ying.huang@intel.com>
16 * Copyright (C) 2013 SuSE Labs
17 * Borislav Petkov <bp@suse.de> - runtime services VA mapping
18 *
19 * Copied from efi_32.c to eliminate the duplicated code between EFI
20 * 32/64 support code. --ying 2007-10-26
21 *
22 * All EFI Runtime Services are not implemented yet as EFI only
23 * supports physical mode addressing on SoftSDV. This is to be fixed
24 * in a future version. --drummond 1999-07-20
25 *
26 * Implemented EFI runtime services and virtual mode calls. --davidm
27 *
28 * Goutham Rao: <goutham.rao@intel.com>
29 * Skip non-WB memory and ignore empty memory ranges.
30 */
31
32#define pr_fmt(fmt) KBUILD_MODNAME ": " fmt
33
34#include <linux/kernel.h>
35#include <linux/init.h>
36#include <linux/efi.h>
37#include <linux/efi-bgrt.h>
38#include <linux/export.h>
39#include <linux/memblock.h>
40#include <linux/slab.h>
41#include <linux/spinlock.h>
42#include <linux/uaccess.h>
43#include <linux/time.h>
44#include <linux/io.h>
45#include <linux/reboot.h>
46#include <linux/bcd.h>
47
48#include <asm/setup.h>
49#include <asm/efi.h>
50#include <asm/e820/api.h>
51#include <asm/time.h>
52#include <asm/set_memory.h>
53#include <asm/tlbflush.h>
54#include <asm/x86_init.h>
55#include <asm/uv/uv.h>
56
57static struct efi efi_phys __initdata;
58static efi_system_table_t efi_systab __initdata;
59
60static efi_config_table_type_t arch_tables[] __initdata = {
61#ifdef CONFIG_X86_UV
62 {UV_SYSTEM_TABLE_GUID, "UVsystab", &uv_systab_phys},
63#endif
64 {NULL_GUID, NULL, NULL},
65};
66
67static const unsigned long * const efi_tables[] = {
68 &efi.mps,
69 &efi.acpi,
70 &efi.acpi20,
71 &efi.smbios,
72 &efi.smbios3,
73 &efi.boot_info,
74 &efi.hcdp,
75 &efi.uga,
76#ifdef CONFIG_X86_UV
77 &uv_systab_phys,
78#endif
79 &efi.fw_vendor,
80 &efi.runtime,
81 &efi.config_table,
82 &efi.esrt,
83 &efi.properties_table,
84 &efi.mem_attr_table,
85#ifdef CONFIG_EFI_RCI2_TABLE
86 &rci2_table_phys,
87#endif
88};
89
90u64 efi_setup; /* efi setup_data physical address */
91
92static int add_efi_memmap __initdata;
93static int __init setup_add_efi_memmap(char *arg)
94{
95 add_efi_memmap = 1;
96 return 0;
97}
98early_param("add_efi_memmap", setup_add_efi_memmap);
99
100static efi_status_t __init phys_efi_set_virtual_address_map(
101 unsigned long memory_map_size,
102 unsigned long descriptor_size,
103 u32 descriptor_version,
104 efi_memory_desc_t *virtual_map)
105{
106 efi_status_t status;
107 unsigned long flags;
108 pgd_t *save_pgd;
109
110 save_pgd = efi_call_phys_prolog();
111 if (!save_pgd)
112 return EFI_ABORTED;
113
114 /* Disable interrupts around EFI calls: */
115 local_irq_save(flags);
116 status = efi_call_phys(efi_phys.set_virtual_address_map,
117 memory_map_size, descriptor_size,
118 descriptor_version, virtual_map);
119 local_irq_restore(flags);
120
121 efi_call_phys_epilog(save_pgd);
122
123 return status;
124}
125
126void __init efi_find_mirror(void)
127{
128 efi_memory_desc_t *md;
129 u64 mirror_size = 0, total_size = 0;
130
131 for_each_efi_memory_desc(md) {
132 unsigned long long start = md->phys_addr;
133 unsigned long long size = md->num_pages << EFI_PAGE_SHIFT;
134
135 total_size += size;
136 if (md->attribute & EFI_MEMORY_MORE_RELIABLE) {
137 memblock_mark_mirror(start, size);
138 mirror_size += size;
139 }
140 }
141 if (mirror_size)
142 pr_info("Memory: %lldM/%lldM mirrored memory\n",
143 mirror_size>>20, total_size>>20);
144}
145
146/*
147 * Tell the kernel about the EFI memory map. This might include
148 * more than the max 128 entries that can fit in the e820 legacy
149 * (zeropage) memory map.
150 */
151
152static void __init do_add_efi_memmap(void)
153{
154 efi_memory_desc_t *md;
155
156 for_each_efi_memory_desc(md) {
157 unsigned long long start = md->phys_addr;
158 unsigned long long size = md->num_pages << EFI_PAGE_SHIFT;
159 int e820_type;
160
161 switch (md->type) {
162 case EFI_LOADER_CODE:
163 case EFI_LOADER_DATA:
164 case EFI_BOOT_SERVICES_CODE:
165 case EFI_BOOT_SERVICES_DATA:
166 case EFI_CONVENTIONAL_MEMORY:
167 if (md->attribute & EFI_MEMORY_WB)
168 e820_type = E820_TYPE_RAM;
169 else
170 e820_type = E820_TYPE_RESERVED;
171 break;
172 case EFI_ACPI_RECLAIM_MEMORY:
173 e820_type = E820_TYPE_ACPI;
174 break;
175 case EFI_ACPI_MEMORY_NVS:
176 e820_type = E820_TYPE_NVS;
177 break;
178 case EFI_UNUSABLE_MEMORY:
179 e820_type = E820_TYPE_UNUSABLE;
180 break;
181 case EFI_PERSISTENT_MEMORY:
182 e820_type = E820_TYPE_PMEM;
183 break;
184 default:
185 /*
186 * EFI_RESERVED_TYPE EFI_RUNTIME_SERVICES_CODE
187 * EFI_RUNTIME_SERVICES_DATA EFI_MEMORY_MAPPED_IO
188 * EFI_MEMORY_MAPPED_IO_PORT_SPACE EFI_PAL_CODE
189 */
190 e820_type = E820_TYPE_RESERVED;
191 break;
192 }
193 e820__range_add(start, size, e820_type);
194 }
195 e820__update_table(e820_table);
196}
197
198int __init efi_memblock_x86_reserve_range(void)
199{
200 struct efi_info *e = &boot_params.efi_info;
201 struct efi_memory_map_data data;
202 phys_addr_t pmap;
203 int rv;
204
205 if (efi_enabled(EFI_PARAVIRT))
206 return 0;
207
208#ifdef CONFIG_X86_32
209 /* Can't handle data above 4GB at this time */
210 if (e->efi_memmap_hi) {
211 pr_err("Memory map is above 4GB, disabling EFI.\n");
212 return -EINVAL;
213 }
214 pmap = e->efi_memmap;
215#else
216 pmap = (e->efi_memmap | ((__u64)e->efi_memmap_hi << 32));
217#endif
218 data.phys_map = pmap;
219 data.size = e->efi_memmap_size;
220 data.desc_size = e->efi_memdesc_size;
221 data.desc_version = e->efi_memdesc_version;
222
223 rv = efi_memmap_init_early(&data);
224 if (rv)
225 return rv;
226
227 if (add_efi_memmap)
228 do_add_efi_memmap();
229
230 WARN(efi.memmap.desc_version != 1,
231 "Unexpected EFI_MEMORY_DESCRIPTOR version %ld",
232 efi.memmap.desc_version);
233
234 memblock_reserve(pmap, efi.memmap.nr_map * efi.memmap.desc_size);
235
236 return 0;
237}
238
239#define OVERFLOW_ADDR_SHIFT (64 - EFI_PAGE_SHIFT)
240#define OVERFLOW_ADDR_MASK (U64_MAX << OVERFLOW_ADDR_SHIFT)
241#define U64_HIGH_BIT (~(U64_MAX >> 1))
242
243static bool __init efi_memmap_entry_valid(const efi_memory_desc_t *md, int i)
244{
245 u64 end = (md->num_pages << EFI_PAGE_SHIFT) + md->phys_addr - 1;
246 u64 end_hi = 0;
247 char buf[64];
248
249 if (md->num_pages == 0) {
250 end = 0;
251 } else if (md->num_pages > EFI_PAGES_MAX ||
252 EFI_PAGES_MAX - md->num_pages <
253 (md->phys_addr >> EFI_PAGE_SHIFT)) {
254 end_hi = (md->num_pages & OVERFLOW_ADDR_MASK)
255 >> OVERFLOW_ADDR_SHIFT;
256
257 if ((md->phys_addr & U64_HIGH_BIT) && !(end & U64_HIGH_BIT))
258 end_hi += 1;
259 } else {
260 return true;
261 }
262
263 pr_warn_once(FW_BUG "Invalid EFI memory map entries:\n");
264
265 if (end_hi) {
266 pr_warn("mem%02u: %s range=[0x%016llx-0x%llx%016llx] (invalid)\n",
267 i, efi_md_typeattr_format(buf, sizeof(buf), md),
268 md->phys_addr, end_hi, end);
269 } else {
270 pr_warn("mem%02u: %s range=[0x%016llx-0x%016llx] (invalid)\n",
271 i, efi_md_typeattr_format(buf, sizeof(buf), md),
272 md->phys_addr, end);
273 }
274 return false;
275}
276
277static void __init efi_clean_memmap(void)
278{
279 efi_memory_desc_t *out = efi.memmap.map;
280 const efi_memory_desc_t *in = out;
281 const efi_memory_desc_t *end = efi.memmap.map_end;
282 int i, n_removal;
283
284 for (i = n_removal = 0; in < end; i++) {
285 if (efi_memmap_entry_valid(in, i)) {
286 if (out != in)
287 memcpy(out, in, efi.memmap.desc_size);
288 out = (void *)out + efi.memmap.desc_size;
289 } else {
290 n_removal++;
291 }
292 in = (void *)in + efi.memmap.desc_size;
293 }
294
295 if (n_removal > 0) {
296 u64 size = efi.memmap.nr_map - n_removal;
297
298 pr_warn("Removing %d invalid memory map entries.\n", n_removal);
299 efi_memmap_install(efi.memmap.phys_map, size);
300 }
301}
302
303void __init efi_print_memmap(void)
304{
305 efi_memory_desc_t *md;
306 int i = 0;
307
308 for_each_efi_memory_desc(md) {
309 char buf[64];
310
311 pr_info("mem%02u: %s range=[0x%016llx-0x%016llx] (%lluMB)\n",
312 i++, efi_md_typeattr_format(buf, sizeof(buf), md),
313 md->phys_addr,
314 md->phys_addr + (md->num_pages << EFI_PAGE_SHIFT) - 1,
315 (md->num_pages >> (20 - EFI_PAGE_SHIFT)));
316 }
317}
318
319static int __init efi_systab_init(void *phys)
320{
321 if (efi_enabled(EFI_64BIT)) {
322 efi_system_table_64_t *systab64;
323 struct efi_setup_data *data = NULL;
324 u64 tmp = 0;
325
326 if (efi_setup) {
327 data = early_memremap(efi_setup, sizeof(*data));
328 if (!data)
329 return -ENOMEM;
330 }
331 systab64 = early_memremap((unsigned long)phys,
332 sizeof(*systab64));
333 if (systab64 == NULL) {
334 pr_err("Couldn't map the system table!\n");
335 if (data)
336 early_memunmap(data, sizeof(*data));
337 return -ENOMEM;
338 }
339
340 efi_systab.hdr = systab64->hdr;
341 efi_systab.fw_vendor = data ? (unsigned long)data->fw_vendor :
342 systab64->fw_vendor;
343 tmp |= data ? data->fw_vendor : systab64->fw_vendor;
344 efi_systab.fw_revision = systab64->fw_revision;
345 efi_systab.con_in_handle = systab64->con_in_handle;
346 tmp |= systab64->con_in_handle;
347 efi_systab.con_in = systab64->con_in;
348 tmp |= systab64->con_in;
349 efi_systab.con_out_handle = systab64->con_out_handle;
350 tmp |= systab64->con_out_handle;
351 efi_systab.con_out = systab64->con_out;
352 tmp |= systab64->con_out;
353 efi_systab.stderr_handle = systab64->stderr_handle;
354 tmp |= systab64->stderr_handle;
355 efi_systab.stderr = systab64->stderr;
356 tmp |= systab64->stderr;
357 efi_systab.runtime = data ?
358 (void *)(unsigned long)data->runtime :
359 (void *)(unsigned long)systab64->runtime;
360 tmp |= data ? data->runtime : systab64->runtime;
361 efi_systab.boottime = (void *)(unsigned long)systab64->boottime;
362 tmp |= systab64->boottime;
363 efi_systab.nr_tables = systab64->nr_tables;
364 efi_systab.tables = data ? (unsigned long)data->tables :
365 systab64->tables;
366 tmp |= data ? data->tables : systab64->tables;
367
368 early_memunmap(systab64, sizeof(*systab64));
369 if (data)
370 early_memunmap(data, sizeof(*data));
371#ifdef CONFIG_X86_32
372 if (tmp >> 32) {
373 pr_err("EFI data located above 4GB, disabling EFI.\n");
374 return -EINVAL;
375 }
376#endif
377 } else {
378 efi_system_table_32_t *systab32;
379
380 systab32 = early_memremap((unsigned long)phys,
381 sizeof(*systab32));
382 if (systab32 == NULL) {
383 pr_err("Couldn't map the system table!\n");
384 return -ENOMEM;
385 }
386
387 efi_systab.hdr = systab32->hdr;
388 efi_systab.fw_vendor = systab32->fw_vendor;
389 efi_systab.fw_revision = systab32->fw_revision;
390 efi_systab.con_in_handle = systab32->con_in_handle;
391 efi_systab.con_in = systab32->con_in;
392 efi_systab.con_out_handle = systab32->con_out_handle;
393 efi_systab.con_out = systab32->con_out;
394 efi_systab.stderr_handle = systab32->stderr_handle;
395 efi_systab.stderr = systab32->stderr;
396 efi_systab.runtime = (void *)(unsigned long)systab32->runtime;
397 efi_systab.boottime = (void *)(unsigned long)systab32->boottime;
398 efi_systab.nr_tables = systab32->nr_tables;
399 efi_systab.tables = systab32->tables;
400
401 early_memunmap(systab32, sizeof(*systab32));
402 }
403
404 efi.systab = &efi_systab;
405
406 /*
407 * Verify the EFI Table
408 */
409 if (efi.systab->hdr.signature != EFI_SYSTEM_TABLE_SIGNATURE) {
410 pr_err("System table signature incorrect!\n");
411 return -EINVAL;
412 }
413 if ((efi.systab->hdr.revision >> 16) == 0)
414 pr_err("Warning: System table version %d.%02d, expected 1.00 or greater!\n",
415 efi.systab->hdr.revision >> 16,
416 efi.systab->hdr.revision & 0xffff);
417
418 return 0;
419}
420
421static int __init efi_runtime_init32(void)
422{
423 efi_runtime_services_32_t *runtime;
424
425 runtime = early_memremap((unsigned long)efi.systab->runtime,
426 sizeof(efi_runtime_services_32_t));
427 if (!runtime) {
428 pr_err("Could not map the runtime service table!\n");
429 return -ENOMEM;
430 }
431
432 /*
433 * We will only need *early* access to the SetVirtualAddressMap
434 * EFI runtime service. All other runtime services will be called
435 * via the virtual mapping.
436 */
437 efi_phys.set_virtual_address_map =
438 (efi_set_virtual_address_map_t *)
439 (unsigned long)runtime->set_virtual_address_map;
440 early_memunmap(runtime, sizeof(efi_runtime_services_32_t));
441
442 return 0;
443}
444
445static int __init efi_runtime_init64(void)
446{
447 efi_runtime_services_64_t *runtime;
448
449 runtime = early_memremap((unsigned long)efi.systab->runtime,
450 sizeof(efi_runtime_services_64_t));
451 if (!runtime) {
452 pr_err("Could not map the runtime service table!\n");
453 return -ENOMEM;
454 }
455
456 /*
457 * We will only need *early* access to the SetVirtualAddressMap
458 * EFI runtime service. All other runtime services will be called
459 * via the virtual mapping.
460 */
461 efi_phys.set_virtual_address_map =
462 (efi_set_virtual_address_map_t *)
463 (unsigned long)runtime->set_virtual_address_map;
464 early_memunmap(runtime, sizeof(efi_runtime_services_64_t));
465
466 return 0;
467}
468
469static int __init efi_runtime_init(void)
470{
471 int rv;
472
473 /*
474 * Check out the runtime services table. We need to map
475 * the runtime services table so that we can grab the physical
476 * address of several of the EFI runtime functions, needed to
477 * set the firmware into virtual mode.
478 *
479 * When EFI_PARAVIRT is in force then we could not map runtime
480 * service memory region because we do not have direct access to it.
481 * However, runtime services are available through proxy functions
482 * (e.g. in case of Xen dom0 EFI implementation they call special
483 * hypercall which executes relevant EFI functions) and that is why
484 * they are always enabled.
485 */
486
487 if (!efi_enabled(EFI_PARAVIRT)) {
488 if (efi_enabled(EFI_64BIT))
489 rv = efi_runtime_init64();
490 else
491 rv = efi_runtime_init32();
492
493 if (rv)
494 return rv;
495 }
496
497 set_bit(EFI_RUNTIME_SERVICES, &efi.flags);
498
499 return 0;
500}
501
502void __init efi_init(void)
503{
504 efi_char16_t *c16;
505 char vendor[100] = "unknown";
506 int i = 0;
507 void *tmp;
508
509#ifdef CONFIG_X86_32
510 if (boot_params.efi_info.efi_systab_hi ||
511 boot_params.efi_info.efi_memmap_hi) {
512 pr_info("Table located above 4GB, disabling EFI.\n");
513 return;
514 }
515 efi_phys.systab = (efi_system_table_t *)boot_params.efi_info.efi_systab;
516#else
517 efi_phys.systab = (efi_system_table_t *)
518 (boot_params.efi_info.efi_systab |
519 ((__u64)boot_params.efi_info.efi_systab_hi<<32));
520#endif
521
522 if (efi_systab_init(efi_phys.systab))
523 return;
524
525 efi.config_table = (unsigned long)efi.systab->tables;
526 efi.fw_vendor = (unsigned long)efi.systab->fw_vendor;
527 efi.runtime = (unsigned long)efi.systab->runtime;
528
529 /*
530 * Show what we know for posterity
531 */
532 c16 = tmp = early_memremap(efi.systab->fw_vendor, 2);
533 if (c16) {
534 for (i = 0; i < sizeof(vendor) - 1 && *c16; ++i)
535 vendor[i] = *c16++;
536 vendor[i] = '\0';
537 } else
538 pr_err("Could not map the firmware vendor!\n");
539 early_memunmap(tmp, 2);
540
541 pr_info("EFI v%u.%.02u by %s\n",
542 efi.systab->hdr.revision >> 16,
543 efi.systab->hdr.revision & 0xffff, vendor);
544
545 if (efi_reuse_config(efi.systab->tables, efi.systab->nr_tables))
546 return;
547
548 if (efi_config_init(arch_tables))
549 return;
550
551 /*
552 * Note: We currently don't support runtime services on an EFI
553 * that doesn't match the kernel 32/64-bit mode.
554 */
555
556 if (!efi_runtime_supported())
557 pr_info("No EFI runtime due to 32/64-bit mismatch with kernel\n");
558 else {
559 if (efi_runtime_disabled() || efi_runtime_init()) {
560 efi_memmap_unmap();
561 return;
562 }
563 }
564
565 efi_clean_memmap();
566
567 if (efi_enabled(EFI_DBG))
568 efi_print_memmap();
569}
570
571void __init efi_set_executable(efi_memory_desc_t *md, bool executable)
572{
573 u64 addr, npages;
574
575 addr = md->virt_addr;
576 npages = md->num_pages;
577
578 memrange_efi_to_native(&addr, &npages);
579
580 if (executable)
581 set_memory_x(addr, npages);
582 else
583 set_memory_nx(addr, npages);
584}
585
586void __init runtime_code_page_mkexec(void)
587{
588 efi_memory_desc_t *md;
589
590 /* Make EFI runtime service code area executable */
591 for_each_efi_memory_desc(md) {
592 if (md->type != EFI_RUNTIME_SERVICES_CODE)
593 continue;
594
595 efi_set_executable(md, true);
596 }
597}
598
599void __init efi_memory_uc(u64 addr, unsigned long size)
600{
601 unsigned long page_shift = 1UL << EFI_PAGE_SHIFT;
602 u64 npages;
603
604 npages = round_up(size, page_shift) / page_shift;
605 memrange_efi_to_native(&addr, &npages);
606 set_memory_uc(addr, npages);
607}
608
609void __init old_map_region(efi_memory_desc_t *md)
610{
611 u64 start_pfn, end_pfn, end;
612 unsigned long size;
613 void *va;
614
615 start_pfn = PFN_DOWN(md->phys_addr);
616 size = md->num_pages << PAGE_SHIFT;
617 end = md->phys_addr + size;
618 end_pfn = PFN_UP(end);
619
620 if (pfn_range_is_mapped(start_pfn, end_pfn)) {
621 va = __va(md->phys_addr);
622
623 if (!(md->attribute & EFI_MEMORY_WB))
624 efi_memory_uc((u64)(unsigned long)va, size);
625 } else
626 va = efi_ioremap(md->phys_addr, size,
627 md->type, md->attribute);
628
629 md->virt_addr = (u64) (unsigned long) va;
630 if (!va)
631 pr_err("ioremap of 0x%llX failed!\n",
632 (unsigned long long)md->phys_addr);
633}
634
635/* Merge contiguous regions of the same type and attribute */
636static void __init efi_merge_regions(void)
637{
638 efi_memory_desc_t *md, *prev_md = NULL;
639
640 for_each_efi_memory_desc(md) {
641 u64 prev_size;
642
643 if (!prev_md) {
644 prev_md = md;
645 continue;
646 }
647
648 if (prev_md->type != md->type ||
649 prev_md->attribute != md->attribute) {
650 prev_md = md;
651 continue;
652 }
653
654 prev_size = prev_md->num_pages << EFI_PAGE_SHIFT;
655
656 if (md->phys_addr == (prev_md->phys_addr + prev_size)) {
657 prev_md->num_pages += md->num_pages;
658 md->type = EFI_RESERVED_TYPE;
659 md->attribute = 0;
660 continue;
661 }
662 prev_md = md;
663 }
664}
665
666static void __init get_systab_virt_addr(efi_memory_desc_t *md)
667{
668 unsigned long size;
669 u64 end, systab;
670
671 size = md->num_pages << EFI_PAGE_SHIFT;
672 end = md->phys_addr + size;
673 systab = (u64)(unsigned long)efi_phys.systab;
674 if (md->phys_addr <= systab && systab < end) {
675 systab += md->virt_addr - md->phys_addr;
676 efi.systab = (efi_system_table_t *)(unsigned long)systab;
677 }
678}
679
680static void *realloc_pages(void *old_memmap, int old_shift)
681{
682 void *ret;
683
684 ret = (void *)__get_free_pages(GFP_KERNEL, old_shift + 1);
685 if (!ret)
686 goto out;
687
688 /*
689 * A first-time allocation doesn't have anything to copy.
690 */
691 if (!old_memmap)
692 return ret;
693
694 memcpy(ret, old_memmap, PAGE_SIZE << old_shift);
695
696out:
697 free_pages((unsigned long)old_memmap, old_shift);
698 return ret;
699}
700
701/*
702 * Iterate the EFI memory map in reverse order because the regions
703 * will be mapped top-down. The end result is the same as if we had
704 * mapped things forward, but doesn't require us to change the
705 * existing implementation of efi_map_region().
706 */
707static inline void *efi_map_next_entry_reverse(void *entry)
708{
709 /* Initial call */
710 if (!entry)
711 return efi.memmap.map_end - efi.memmap.desc_size;
712
713 entry -= efi.memmap.desc_size;
714 if (entry < efi.memmap.map)
715 return NULL;
716
717 return entry;
718}
719
720/*
721 * efi_map_next_entry - Return the next EFI memory map descriptor
722 * @entry: Previous EFI memory map descriptor
723 *
724 * This is a helper function to iterate over the EFI memory map, which
725 * we do in different orders depending on the current configuration.
726 *
727 * To begin traversing the memory map @entry must be %NULL.
728 *
729 * Returns %NULL when we reach the end of the memory map.
730 */
731static void *efi_map_next_entry(void *entry)
732{
733 if (!efi_enabled(EFI_OLD_MEMMAP) && efi_enabled(EFI_64BIT)) {
734 /*
735 * Starting in UEFI v2.5 the EFI_PROPERTIES_TABLE
736 * config table feature requires us to map all entries
737 * in the same order as they appear in the EFI memory
738 * map. That is to say, entry N must have a lower
739 * virtual address than entry N+1. This is because the
740 * firmware toolchain leaves relative references in
741 * the code/data sections, which are split and become
742 * separate EFI memory regions. Mapping things
743 * out-of-order leads to the firmware accessing
744 * unmapped addresses.
745 *
746 * Since we need to map things this way whether or not
747 * the kernel actually makes use of
748 * EFI_PROPERTIES_TABLE, let's just switch to this
749 * scheme by default for 64-bit.
750 */
751 return efi_map_next_entry_reverse(entry);
752 }
753
754 /* Initial call */
755 if (!entry)
756 return efi.memmap.map;
757
758 entry += efi.memmap.desc_size;
759 if (entry >= efi.memmap.map_end)
760 return NULL;
761
762 return entry;
763}
764
765static bool should_map_region(efi_memory_desc_t *md)
766{
767 /*
768 * Runtime regions always require runtime mappings (obviously).
769 */
770 if (md->attribute & EFI_MEMORY_RUNTIME)
771 return true;
772
773 /*
774 * 32-bit EFI doesn't suffer from the bug that requires us to
775 * reserve boot services regions, and mixed mode support
776 * doesn't exist for 32-bit kernels.
777 */
778 if (IS_ENABLED(CONFIG_X86_32))
779 return false;
780
781 /*
782 * Map all of RAM so that we can access arguments in the 1:1
783 * mapping when making EFI runtime calls.
784 */
785 if (IS_ENABLED(CONFIG_EFI_MIXED) && !efi_is_native()) {
786 if (md->type == EFI_CONVENTIONAL_MEMORY ||
787 md->type == EFI_LOADER_DATA ||
788 md->type == EFI_LOADER_CODE)
789 return true;
790 }
791
792 /*
793 * Map boot services regions as a workaround for buggy
794 * firmware that accesses them even when they shouldn't.
795 *
796 * See efi_{reserve,free}_boot_services().
797 */
798 if (md->type == EFI_BOOT_SERVICES_CODE ||
799 md->type == EFI_BOOT_SERVICES_DATA)
800 return true;
801
802 return false;
803}
804
805/*
806 * Map the efi memory ranges of the runtime services and update new_mmap with
807 * virtual addresses.
808 */
809static void * __init efi_map_regions(int *count, int *pg_shift)
810{
811 void *p, *new_memmap = NULL;
812 unsigned long left = 0;
813 unsigned long desc_size;
814 efi_memory_desc_t *md;
815
816 desc_size = efi.memmap.desc_size;
817
818 p = NULL;
819 while ((p = efi_map_next_entry(p))) {
820 md = p;
821
822 if (!should_map_region(md))
823 continue;
824
825 efi_map_region(md);
826 get_systab_virt_addr(md);
827
828 if (left < desc_size) {
829 new_memmap = realloc_pages(new_memmap, *pg_shift);
830 if (!new_memmap)
831 return NULL;
832
833 left += PAGE_SIZE << *pg_shift;
834 (*pg_shift)++;
835 }
836
837 memcpy(new_memmap + (*count * desc_size), md, desc_size);
838
839 left -= desc_size;
840 (*count)++;
841 }
842
843 return new_memmap;
844}
845
846static void __init kexec_enter_virtual_mode(void)
847{
848#ifdef CONFIG_KEXEC_CORE
849 efi_memory_desc_t *md;
850 unsigned int num_pages;
851
852 efi.systab = NULL;
853
854 /*
855 * We don't do virtual mode, since we don't do runtime services, on
856 * non-native EFI. With efi=old_map, we don't do runtime services in
857 * kexec kernel because in the initial boot something else might
858 * have been mapped at these virtual addresses.
859 */
860 if (!efi_is_native() || efi_enabled(EFI_OLD_MEMMAP)) {
861 efi_memmap_unmap();
862 clear_bit(EFI_RUNTIME_SERVICES, &efi.flags);
863 return;
864 }
865
866 if (efi_alloc_page_tables()) {
867 pr_err("Failed to allocate EFI page tables\n");
868 clear_bit(EFI_RUNTIME_SERVICES, &efi.flags);
869 return;
870 }
871
872 /*
873 * Map efi regions which were passed via setup_data. The virt_addr is a
874 * fixed addr which was used in first kernel of a kexec boot.
875 */
876 for_each_efi_memory_desc(md) {
877 efi_map_region_fixed(md); /* FIXME: add error handling */
878 get_systab_virt_addr(md);
879 }
880
881 /*
882 * Unregister the early EFI memmap from efi_init() and install
883 * the new EFI memory map.
884 */
885 efi_memmap_unmap();
886
887 if (efi_memmap_init_late(efi.memmap.phys_map,
888 efi.memmap.desc_size * efi.memmap.nr_map)) {
889 pr_err("Failed to remap late EFI memory map\n");
890 clear_bit(EFI_RUNTIME_SERVICES, &efi.flags);
891 return;
892 }
893
894 BUG_ON(!efi.systab);
895
896 num_pages = ALIGN(efi.memmap.nr_map * efi.memmap.desc_size, PAGE_SIZE);
897 num_pages >>= PAGE_SHIFT;
898
899 if (efi_setup_page_tables(efi.memmap.phys_map, num_pages)) {
900 clear_bit(EFI_RUNTIME_SERVICES, &efi.flags);
901 return;
902 }
903
904 efi_sync_low_kernel_mappings();
905
906 /*
907 * Now that EFI is in virtual mode, update the function
908 * pointers in the runtime service table to the new virtual addresses.
909 *
910 * Call EFI services through wrapper functions.
911 */
912 efi.runtime_version = efi_systab.hdr.revision;
913
914 efi_native_runtime_setup();
915
916 efi.set_virtual_address_map = NULL;
917
918 if (efi_enabled(EFI_OLD_MEMMAP) && (__supported_pte_mask & _PAGE_NX))
919 runtime_code_page_mkexec();
920#endif
921}
922
923/*
924 * This function will switch the EFI runtime services to virtual mode.
925 * Essentially, we look through the EFI memmap and map every region that
926 * has the runtime attribute bit set in its memory descriptor into the
927 * efi_pgd page table.
928 *
929 * The old method which used to update that memory descriptor with the
930 * virtual address obtained from ioremap() is still supported when the
931 * kernel is booted with efi=old_map on its command line. Same old
932 * method enabled the runtime services to be called without having to
933 * thunk back into physical mode for every invocation.
934 *
935 * The new method does a pagetable switch in a preemption-safe manner
936 * so that we're in a different address space when calling a runtime
937 * function. For function arguments passing we do copy the PUDs of the
938 * kernel page table into efi_pgd prior to each call.
939 *
940 * Specially for kexec boot, efi runtime maps in previous kernel should
941 * be passed in via setup_data. In that case runtime ranges will be mapped
942 * to the same virtual addresses as the first kernel, see
943 * kexec_enter_virtual_mode().
944 */
945static void __init __efi_enter_virtual_mode(void)
946{
947 int count = 0, pg_shift = 0;
948 void *new_memmap = NULL;
949 efi_status_t status;
950 unsigned long pa;
951
952 efi.systab = NULL;
953
954 if (efi_alloc_page_tables()) {
955 pr_err("Failed to allocate EFI page tables\n");
956 clear_bit(EFI_RUNTIME_SERVICES, &efi.flags);
957 return;
958 }
959
960 efi_merge_regions();
961 new_memmap = efi_map_regions(&count, &pg_shift);
962 if (!new_memmap) {
963 pr_err("Error reallocating memory, EFI runtime non-functional!\n");
964 clear_bit(EFI_RUNTIME_SERVICES, &efi.flags);
965 return;
966 }
967
968 pa = __pa(new_memmap);
969
970 /*
971 * Unregister the early EFI memmap from efi_init() and install
972 * the new EFI memory map that we are about to pass to the
973 * firmware via SetVirtualAddressMap().
974 */
975 efi_memmap_unmap();
976
977 if (efi_memmap_init_late(pa, efi.memmap.desc_size * count)) {
978 pr_err("Failed to remap late EFI memory map\n");
979 clear_bit(EFI_RUNTIME_SERVICES, &efi.flags);
980 return;
981 }
982
983 if (efi_enabled(EFI_DBG)) {
984 pr_info("EFI runtime memory map:\n");
985 efi_print_memmap();
986 }
987
988 BUG_ON(!efi.systab);
989
990 if (efi_setup_page_tables(pa, 1 << pg_shift)) {
991 clear_bit(EFI_RUNTIME_SERVICES, &efi.flags);
992 return;
993 }
994
995 efi_sync_low_kernel_mappings();
996
997 if (efi_is_native()) {
998 status = phys_efi_set_virtual_address_map(
999 efi.memmap.desc_size * count,
1000 efi.memmap.desc_size,
1001 efi.memmap.desc_version,
1002 (efi_memory_desc_t *)pa);
1003 } else {
1004 status = efi_thunk_set_virtual_address_map(
1005 efi_phys.set_virtual_address_map,
1006 efi.memmap.desc_size * count,
1007 efi.memmap.desc_size,
1008 efi.memmap.desc_version,
1009 (efi_memory_desc_t *)pa);
1010 }
1011
1012 if (status != EFI_SUCCESS) {
1013 pr_alert("Unable to switch EFI into virtual mode (status=%lx)!\n",
1014 status);
1015 panic("EFI call to SetVirtualAddressMap() failed!");
1016 }
1017
1018 efi_free_boot_services();
1019
1020 /*
1021 * Now that EFI is in virtual mode, update the function
1022 * pointers in the runtime service table to the new virtual addresses.
1023 *
1024 * Call EFI services through wrapper functions.
1025 */
1026 efi.runtime_version = efi_systab.hdr.revision;
1027
1028 if (efi_is_native())
1029 efi_native_runtime_setup();
1030 else
1031 efi_thunk_runtime_setup();
1032
1033 efi.set_virtual_address_map = NULL;
1034
1035 /*
1036 * Apply more restrictive page table mapping attributes now that
1037 * SVAM() has been called and the firmware has performed all
1038 * necessary relocation fixups for the new virtual addresses.
1039 */
1040 efi_runtime_update_mappings();
1041
1042 /* clean DUMMY object */
1043 efi_delete_dummy_variable();
1044}
1045
1046void __init efi_enter_virtual_mode(void)
1047{
1048 if (efi_enabled(EFI_PARAVIRT))
1049 return;
1050
1051 if (efi_setup)
1052 kexec_enter_virtual_mode();
1053 else
1054 __efi_enter_virtual_mode();
1055
1056 efi_dump_pagetable();
1057}
1058
1059static int __init arch_parse_efi_cmdline(char *str)
1060{
1061 if (!str) {
1062 pr_warn("need at least one option\n");
1063 return -EINVAL;
1064 }
1065
1066 if (parse_option_str(str, "old_map"))
1067 set_bit(EFI_OLD_MEMMAP, &efi.flags);
1068
1069 return 0;
1070}
1071early_param("efi", arch_parse_efi_cmdline);
1072
1073bool efi_is_table_address(unsigned long phys_addr)
1074{
1075 unsigned int i;
1076
1077 if (phys_addr == EFI_INVALID_TABLE_ADDR)
1078 return false;
1079
1080 for (i = 0; i < ARRAY_SIZE(efi_tables); i++)
1081 if (*(efi_tables[i]) == phys_addr)
1082 return true;
1083
1084 return false;
1085}