Linux Audio

Check our new training course

Loading...
v3.1
 
  1/*
  2 * Common EFI (Extensible Firmware Interface) support functions
  3 * Based on Extensible Firmware Interface Specification version 1.0
  4 *
  5 * Copyright (C) 1999 VA Linux Systems
  6 * Copyright (C) 1999 Walt Drummond <drummond@valinux.com>
  7 * Copyright (C) 1999-2002 Hewlett-Packard Co.
  8 *	David Mosberger-Tang <davidm@hpl.hp.com>
  9 *	Stephane Eranian <eranian@hpl.hp.com>
 10 * Copyright (C) 2005-2008 Intel Co.
 11 *	Fenghua Yu <fenghua.yu@intel.com>
 12 *	Bibo Mao <bibo.mao@intel.com>
 13 *	Chandramouli Narayanan <mouli@linux.intel.com>
 14 *	Huang Ying <ying.huang@intel.com>
 
 
 15 *
 16 * Copied from efi_32.c to eliminate the duplicated code between EFI
 17 * 32/64 support code. --ying 2007-10-26
 18 *
 19 * All EFI Runtime Services are not implemented yet as EFI only
 20 * supports physical mode addressing on SoftSDV. This is to be fixed
 21 * in a future version.  --drummond 1999-07-20
 22 *
 23 * Implemented EFI runtime services and virtual mode calls.  --davidm
 24 *
 25 * Goutham Rao: <goutham.rao@intel.com>
 26 *	Skip non-WB memory and ignore empty memory ranges.
 27 */
 28
 
 
 29#include <linux/kernel.h>
 30#include <linux/init.h>
 31#include <linux/efi.h>
 
 
 32#include <linux/bootmem.h>
 
 33#include <linux/memblock.h>
 34#include <linux/spinlock.h>
 35#include <linux/uaccess.h>
 36#include <linux/time.h>
 37#include <linux/io.h>
 38#include <linux/reboot.h>
 39#include <linux/bcd.h>
 40
 41#include <asm/setup.h>
 42#include <asm/efi.h>
 
 43#include <asm/time.h>
 44#include <asm/cacheflush.h>
 45#include <asm/tlbflush.h>
 46#include <asm/x86_init.h>
 47
 48#define EFI_DEBUG	1
 49#define PFX 		"EFI: "
 50
 51int efi_enabled;
 52EXPORT_SYMBOL(efi_enabled);
 53
 54struct efi __read_mostly efi = {
 55	.mps        = EFI_INVALID_TABLE_ADDR,
 56	.acpi       = EFI_INVALID_TABLE_ADDR,
 57	.acpi20     = EFI_INVALID_TABLE_ADDR,
 58	.smbios     = EFI_INVALID_TABLE_ADDR,
 59	.sal_systab = EFI_INVALID_TABLE_ADDR,
 60	.boot_info  = EFI_INVALID_TABLE_ADDR,
 61	.hcdp       = EFI_INVALID_TABLE_ADDR,
 62	.uga        = EFI_INVALID_TABLE_ADDR,
 63	.uv_systab  = EFI_INVALID_TABLE_ADDR,
 64};
 65EXPORT_SYMBOL(efi);
 66
 67struct efi_memory_map memmap;
 68
 69static struct efi efi_phys __initdata;
 70static efi_system_table_t efi_systab __initdata;
 71
 72static int __init setup_noefi(char *arg)
 73{
 74	efi_enabled = 0;
 75	return 0;
 76}
 77early_param("noefi", setup_noefi);
 78
 79int add_efi_memmap;
 80EXPORT_SYMBOL(add_efi_memmap);
 81
 
 82static int __init setup_add_efi_memmap(char *arg)
 83{
 84	add_efi_memmap = 1;
 85	return 0;
 86}
 87early_param("add_efi_memmap", setup_add_efi_memmap);
 88
 89
 90static efi_status_t virt_efi_get_time(efi_time_t *tm, efi_time_cap_t *tc)
 91{
 92	unsigned long flags;
 93	efi_status_t status;
 94
 95	spin_lock_irqsave(&rtc_lock, flags);
 96	status = efi_call_virt2(get_time, tm, tc);
 97	spin_unlock_irqrestore(&rtc_lock, flags);
 98	return status;
 99}
100
101static efi_status_t virt_efi_set_time(efi_time_t *tm)
102{
103	unsigned long flags;
104	efi_status_t status;
105
106	spin_lock_irqsave(&rtc_lock, flags);
107	status = efi_call_virt1(set_time, tm);
108	spin_unlock_irqrestore(&rtc_lock, flags);
109	return status;
110}
111
112static efi_status_t virt_efi_get_wakeup_time(efi_bool_t *enabled,
113					     efi_bool_t *pending,
114					     efi_time_t *tm)
115{
116	unsigned long flags;
117	efi_status_t status;
118
119	spin_lock_irqsave(&rtc_lock, flags);
120	status = efi_call_virt3(get_wakeup_time,
121				enabled, pending, tm);
122	spin_unlock_irqrestore(&rtc_lock, flags);
123	return status;
124}
125
126static efi_status_t virt_efi_set_wakeup_time(efi_bool_t enabled, efi_time_t *tm)
127{
128	unsigned long flags;
129	efi_status_t status;
130
131	spin_lock_irqsave(&rtc_lock, flags);
132	status = efi_call_virt2(set_wakeup_time,
133				enabled, tm);
134	spin_unlock_irqrestore(&rtc_lock, flags);
135	return status;
136}
137
138static efi_status_t virt_efi_get_variable(efi_char16_t *name,
139					  efi_guid_t *vendor,
140					  u32 *attr,
141					  unsigned long *data_size,
142					  void *data)
143{
144	return efi_call_virt5(get_variable,
145			      name, vendor, attr,
146			      data_size, data);
147}
148
149static efi_status_t virt_efi_get_next_variable(unsigned long *name_size,
150					       efi_char16_t *name,
151					       efi_guid_t *vendor)
152{
153	return efi_call_virt3(get_next_variable,
154			      name_size, name, vendor);
155}
156
157static efi_status_t virt_efi_set_variable(efi_char16_t *name,
158					  efi_guid_t *vendor,
159					  u32 attr,
160					  unsigned long data_size,
161					  void *data)
162{
163	return efi_call_virt5(set_variable,
164			      name, vendor, attr,
165			      data_size, data);
166}
167
168static efi_status_t virt_efi_query_variable_info(u32 attr,
169						 u64 *storage_space,
170						 u64 *remaining_space,
171						 u64 *max_variable_size)
172{
173	if (efi.runtime_version < EFI_2_00_SYSTEM_TABLE_REVISION)
174		return EFI_UNSUPPORTED;
175
176	return efi_call_virt4(query_variable_info, attr, storage_space,
177			      remaining_space, max_variable_size);
178}
179
180static efi_status_t virt_efi_get_next_high_mono_count(u32 *count)
181{
182	return efi_call_virt1(get_next_high_mono_count, count);
183}
184
185static void virt_efi_reset_system(int reset_type,
186				  efi_status_t status,
187				  unsigned long data_size,
188				  efi_char16_t *data)
189{
190	efi_call_virt4(reset_system, reset_type, status,
191		       data_size, data);
192}
193
194static efi_status_t virt_efi_update_capsule(efi_capsule_header_t **capsules,
195					    unsigned long count,
196					    unsigned long sg_list)
197{
198	if (efi.runtime_version < EFI_2_00_SYSTEM_TABLE_REVISION)
199		return EFI_UNSUPPORTED;
200
201	return efi_call_virt3(update_capsule, capsules, count, sg_list);
202}
203
204static efi_status_t virt_efi_query_capsule_caps(efi_capsule_header_t **capsules,
205						unsigned long count,
206						u64 *max_size,
207						int *reset_type)
208{
209	if (efi.runtime_version < EFI_2_00_SYSTEM_TABLE_REVISION)
210		return EFI_UNSUPPORTED;
211
212	return efi_call_virt4(query_capsule_caps, capsules, count, max_size,
213			      reset_type);
214}
215
216static efi_status_t __init phys_efi_set_virtual_address_map(
217	unsigned long memory_map_size,
218	unsigned long descriptor_size,
219	u32 descriptor_version,
220	efi_memory_desc_t *virtual_map)
221{
222	efi_status_t status;
223
224	efi_call_phys_prelog();
225	status = efi_call_phys4(efi_phys.set_virtual_address_map,
226				memory_map_size, descriptor_size,
227				descriptor_version, virtual_map);
228	efi_call_phys_epilog();
229	return status;
230}
231
232static efi_status_t __init phys_efi_get_time(efi_time_t *tm,
233					     efi_time_cap_t *tc)
234{
235	unsigned long flags;
236	efi_status_t status;
237
238	spin_lock_irqsave(&rtc_lock, flags);
239	efi_call_phys_prelog();
240	status = efi_call_phys2(efi_phys.get_time, tm, tc);
241	efi_call_phys_epilog();
242	spin_unlock_irqrestore(&rtc_lock, flags);
243	return status;
244}
245
246int efi_set_rtc_mmss(unsigned long nowtime)
247{
248	int real_seconds, real_minutes;
249	efi_status_t 	status;
250	efi_time_t 	eft;
251	efi_time_cap_t 	cap;
252
253	status = efi.get_time(&eft, &cap);
254	if (status != EFI_SUCCESS) {
255		printk(KERN_ERR "Oops: efitime: can't read time!\n");
256		return -1;
257	}
 
258
259	real_seconds = nowtime % 60;
260	real_minutes = nowtime / 60;
261	if (((abs(real_minutes - eft.minute) + 15)/30) & 1)
262		real_minutes += 30;
263	real_minutes %= 60;
264	eft.minute = real_minutes;
265	eft.second = real_seconds;
266
267	status = efi.set_time(&eft);
268	if (status != EFI_SUCCESS) {
269		printk(KERN_ERR "Oops: efitime: can't write time!\n");
270		return -1;
271	}
272	return 0;
273}
274
275unsigned long efi_get_time(void)
276{
277	efi_status_t status;
278	efi_time_t eft;
279	efi_time_cap_t cap;
280
281	status = efi.get_time(&eft, &cap);
282	if (status != EFI_SUCCESS)
283		printk(KERN_ERR "Oops: efitime: can't read time!\n");
284
285	return mktime(eft.year, eft.month, eft.day, eft.hour,
286		      eft.minute, eft.second);
 
 
 
 
 
 
 
287}
288
289/*
290 * Tell the kernel about the EFI memory map.  This might include
291 * more than the max 128 entries that can fit in the e820 legacy
292 * (zeropage) memory map.
293 */
294
295static void __init do_add_efi_memmap(void)
296{
297	void *p;
298
299	for (p = memmap.map; p < memmap.map_end; p += memmap.desc_size) {
300		efi_memory_desc_t *md = p;
301		unsigned long long start = md->phys_addr;
302		unsigned long long size = md->num_pages << EFI_PAGE_SHIFT;
303		int e820_type;
304
305		switch (md->type) {
306		case EFI_LOADER_CODE:
307		case EFI_LOADER_DATA:
308		case EFI_BOOT_SERVICES_CODE:
309		case EFI_BOOT_SERVICES_DATA:
310		case EFI_CONVENTIONAL_MEMORY:
311			if (md->attribute & EFI_MEMORY_WB)
312				e820_type = E820_RAM;
313			else
314				e820_type = E820_RESERVED;
315			break;
316		case EFI_ACPI_RECLAIM_MEMORY:
317			e820_type = E820_ACPI;
318			break;
319		case EFI_ACPI_MEMORY_NVS:
320			e820_type = E820_NVS;
321			break;
322		case EFI_UNUSABLE_MEMORY:
323			e820_type = E820_UNUSABLE;
 
 
 
324			break;
325		default:
326			/*
327			 * EFI_RESERVED_TYPE EFI_RUNTIME_SERVICES_CODE
328			 * EFI_RUNTIME_SERVICES_DATA EFI_MEMORY_MAPPED_IO
329			 * EFI_MEMORY_MAPPED_IO_PORT_SPACE EFI_PAL_CODE
330			 */
331			e820_type = E820_RESERVED;
332			break;
333		}
334		e820_add_region(start, size, e820_type);
335	}
336	sanitize_e820_map(e820.map, ARRAY_SIZE(e820.map), &e820.nr_map);
337}
338
339void __init efi_memblock_x86_reserve_range(void)
340{
341	unsigned long pmap;
 
 
 
 
 
 
342
343#ifdef CONFIG_X86_32
344	pmap = boot_params.efi_info.efi_memmap;
 
 
 
 
 
345#else
346	pmap = (boot_params.efi_info.efi_memmap |
347		((__u64)boot_params.efi_info.efi_memmap_hi<<32));
348#endif
349	memmap.phys_map = (void *)pmap;
350	memmap.nr_map = boot_params.efi_info.efi_memmap_size /
351		boot_params.efi_info.efi_memdesc_size;
352	memmap.desc_version = boot_params.efi_info.efi_memdesc_version;
353	memmap.desc_size = boot_params.efi_info.efi_memdesc_size;
354	memblock_x86_reserve_range(pmap, pmap + memmap.nr_map * memmap.desc_size,
355		      "EFI memmap");
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
356}
357
358#if EFI_DEBUG
359static void __init print_efi_memmap(void)
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
360{
361	efi_memory_desc_t *md;
362	void *p;
363	int i;
364
365	for (p = memmap.map, i = 0;
366	     p < memmap.map_end;
367	     p += memmap.desc_size, i++) {
368		md = p;
369		printk(KERN_INFO PFX "mem%02u: type=%u, attr=0x%llx, "
370			"range=[0x%016llx-0x%016llx) (%lluMB)\n",
371			i, md->type, md->attribute, md->phys_addr,
372			md->phys_addr + (md->num_pages << EFI_PAGE_SHIFT),
373			(md->num_pages >> (20 - EFI_PAGE_SHIFT)));
374	}
375}
376#endif  /*  EFI_DEBUG  */
377
378void __init efi_reserve_boot_services(void)
379{
380	void *p;
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
381
382	for (p = memmap.map; p < memmap.map_end; p += memmap.desc_size) {
383		efi_memory_desc_t *md = p;
384		u64 start = md->phys_addr;
385		u64 size = md->num_pages << EFI_PAGE_SHIFT;
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
386
387		if (md->type != EFI_BOOT_SERVICES_CODE &&
388		    md->type != EFI_BOOT_SERVICES_DATA)
389			continue;
390		/* Only reserve where possible:
391		 * - Not within any already allocated areas
392		 * - Not over any memory area (really needed, if above?)
393		 * - Not within any part of the kernel
394		 * - Not the bios reserved area
395		*/
396		if ((start+size >= virt_to_phys(_text)
397				&& start <= virt_to_phys(_end)) ||
398			!e820_all_mapped(start, start+size, E820_RAM) ||
399			memblock_x86_check_reserved_size(&start, &size,
400							1<<EFI_PAGE_SHIFT)) {
401			/* Could not reserve, skip it */
402			md->num_pages = 0;
403			memblock_dbg(PFX "Could not reserve boot range "
404					"[0x%010llx-0x%010llx]\n",
405						start, start+size-1);
406		} else
407			memblock_x86_reserve_range(start, start+size,
408							"EFI Boot");
 
 
 
 
 
 
 
 
 
 
409	}
 
 
 
 
 
 
410}
411
412static void __init efi_free_boot_services(void)
413{
414	void *p;
415
416	for (p = memmap.map; p < memmap.map_end; p += memmap.desc_size) {
417		efi_memory_desc_t *md = p;
418		unsigned long long start = md->phys_addr;
419		unsigned long long size = md->num_pages << EFI_PAGE_SHIFT;
 
 
420
421		if (md->type != EFI_BOOT_SERVICES_CODE &&
422		    md->type != EFI_BOOT_SERVICES_DATA)
423			continue;
 
 
 
 
 
 
424
425		/* Could not reserve boot area */
426		if (!size)
427			continue;
428
429		free_bootmem_late(start, size);
 
 
 
 
 
 
 
 
430	}
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
431}
432
433void __init efi_init(void)
434{
435	efi_config_table_t *config_tables;
436	efi_runtime_services_t *runtime;
437	efi_char16_t *c16;
438	char vendor[100] = "unknown";
439	int i = 0;
440	void *tmp;
441
442#ifdef CONFIG_X86_32
 
 
 
 
 
443	efi_phys.systab = (efi_system_table_t *)boot_params.efi_info.efi_systab;
444#else
445	efi_phys.systab = (efi_system_table_t *)
446		(boot_params.efi_info.efi_systab |
447		 ((__u64)boot_params.efi_info.efi_systab_hi<<32));
448#endif
449
450	efi.systab = early_ioremap((unsigned long)efi_phys.systab,
451				   sizeof(efi_system_table_t));
452	if (efi.systab == NULL)
453		printk(KERN_ERR "Couldn't map the EFI system table!\n");
454	memcpy(&efi_systab, efi.systab, sizeof(efi_system_table_t));
455	early_iounmap(efi.systab, sizeof(efi_system_table_t));
456	efi.systab = &efi_systab;
457
458	/*
459	 * Verify the EFI Table
460	 */
461	if (efi.systab->hdr.signature != EFI_SYSTEM_TABLE_SIGNATURE)
462		printk(KERN_ERR "EFI system table signature incorrect!\n");
463	if ((efi.systab->hdr.revision >> 16) == 0)
464		printk(KERN_ERR "Warning: EFI system table version "
465		       "%d.%02d, expected 1.00 or greater!\n",
466		       efi.systab->hdr.revision >> 16,
467		       efi.systab->hdr.revision & 0xffff);
468
469	/*
470	 * Show what we know for posterity
471	 */
472	c16 = tmp = early_ioremap(efi.systab->fw_vendor, 2);
473	if (c16) {
474		for (i = 0; i < sizeof(vendor) - 1 && *c16; ++i)
475			vendor[i] = *c16++;
476		vendor[i] = '\0';
477	} else
478		printk(KERN_ERR PFX "Could not map the firmware vendor!\n");
479	early_iounmap(tmp, 2);
480
481	printk(KERN_INFO "EFI v%u.%.02u by %s\n",
482	       efi.systab->hdr.revision >> 16,
483	       efi.systab->hdr.revision & 0xffff, vendor);
484
485	/*
486	 * Let's see what config tables the firmware passed to us.
487	 */
488	config_tables = early_ioremap(
489		efi.systab->tables,
490		efi.systab->nr_tables * sizeof(efi_config_table_t));
491	if (config_tables == NULL)
492		printk(KERN_ERR "Could not map EFI Configuration Table!\n");
493
494	printk(KERN_INFO);
495	for (i = 0; i < efi.systab->nr_tables; i++) {
496		if (!efi_guidcmp(config_tables[i].guid, MPS_TABLE_GUID)) {
497			efi.mps = config_tables[i].table;
498			printk(" MPS=0x%lx ", config_tables[i].table);
499		} else if (!efi_guidcmp(config_tables[i].guid,
500					ACPI_20_TABLE_GUID)) {
501			efi.acpi20 = config_tables[i].table;
502			printk(" ACPI 2.0=0x%lx ", config_tables[i].table);
503		} else if (!efi_guidcmp(config_tables[i].guid,
504					ACPI_TABLE_GUID)) {
505			efi.acpi = config_tables[i].table;
506			printk(" ACPI=0x%lx ", config_tables[i].table);
507		} else if (!efi_guidcmp(config_tables[i].guid,
508					SMBIOS_TABLE_GUID)) {
509			efi.smbios = config_tables[i].table;
510			printk(" SMBIOS=0x%lx ", config_tables[i].table);
511#ifdef CONFIG_X86_UV
512		} else if (!efi_guidcmp(config_tables[i].guid,
513					UV_SYSTEM_TABLE_GUID)) {
514			efi.uv_systab = config_tables[i].table;
515			printk(" UVsystab=0x%lx ", config_tables[i].table);
516#endif
517		} else if (!efi_guidcmp(config_tables[i].guid,
518					HCDP_TABLE_GUID)) {
519			efi.hcdp = config_tables[i].table;
520			printk(" HCDP=0x%lx ", config_tables[i].table);
521		} else if (!efi_guidcmp(config_tables[i].guid,
522					UGA_IO_PROTOCOL_GUID)) {
523			efi.uga = config_tables[i].table;
524			printk(" UGA=0x%lx ", config_tables[i].table);
525		}
526	}
527	printk("\n");
528	early_iounmap(config_tables,
529			  efi.systab->nr_tables * sizeof(efi_config_table_t));
530
531	/*
532	 * Check out the runtime services table. We need to map
533	 * the runtime services table so that we can grab the physical
534	 * address of several of the EFI runtime functions, needed to
535	 * set the firmware into virtual mode.
536	 */
537	runtime = early_ioremap((unsigned long)efi.systab->runtime,
538				sizeof(efi_runtime_services_t));
539	if (runtime != NULL) {
540		/*
541		 * We will only need *early* access to the following
542		 * two EFI runtime services before set_virtual_address_map
543		 * is invoked.
544		 */
545		efi_phys.get_time = (efi_get_time_t *)runtime->get_time;
546		efi_phys.set_virtual_address_map =
547			(efi_set_virtual_address_map_t *)
548			runtime->set_virtual_address_map;
549		/*
550		 * Make efi_get_time can be called before entering
551		 * virtual mode.
552		 */
553		efi.get_time = phys_efi_get_time;
554	} else
555		printk(KERN_ERR "Could not map the EFI runtime service "
556		       "table!\n");
557	early_iounmap(runtime, sizeof(efi_runtime_services_t));
558
559	/* Map the EFI memory map */
560	memmap.map = early_ioremap((unsigned long)memmap.phys_map,
561				   memmap.nr_map * memmap.desc_size);
562	if (memmap.map == NULL)
563		printk(KERN_ERR "Could not map the EFI memory map!\n");
564	memmap.map_end = memmap.map + (memmap.nr_map * memmap.desc_size);
565
566	if (memmap.desc_size != sizeof(efi_memory_desc_t))
567		printk(KERN_WARNING
568		  "Kernel-defined memdesc doesn't match the one from EFI!\n");
569
570	if (add_efi_memmap)
571		do_add_efi_memmap();
 
 
 
 
 
 
572
573#ifdef CONFIG_X86_32
574	x86_platform.get_wallclock = efi_get_time;
575	x86_platform.set_wallclock = efi_set_rtc_mmss;
576#endif
577
578#if EFI_DEBUG
579	print_efi_memmap();
580#endif
581}
582
583void __init efi_set_executable(efi_memory_desc_t *md, bool executable)
584{
585	u64 addr, npages;
586
587	addr = md->virt_addr;
588	npages = md->num_pages;
589
590	memrange_efi_to_native(&addr, &npages);
591
592	if (executable)
593		set_memory_x(addr, npages);
594	else
595		set_memory_nx(addr, npages);
596}
597
598static void __init runtime_code_page_mkexec(void)
599{
600	efi_memory_desc_t *md;
601	void *p;
602
603	/* Make EFI runtime service code area executable */
604	for (p = memmap.map; p < memmap.map_end; p += memmap.desc_size) {
605		md = p;
606
607		if (md->type != EFI_RUNTIME_SERVICES_CODE)
608			continue;
609
610		efi_set_executable(md, true);
611	}
612}
613
614/*
615 * This function will switch the EFI runtime services to virtual mode.
616 * Essentially, look through the EFI memmap and map every region that
617 * has the runtime attribute bit set in its memory descriptor and update
618 * that memory descriptor with the virtual address obtained from ioremap().
619 * This enables the runtime services to be called without having to
620 * thunk back into physical mode for every invocation.
621 */
622void __init efi_enter_virtual_mode(void)
623{
624	efi_memory_desc_t *md, *prev_md = NULL;
625	efi_status_t status;
 
 
 
 
 
 
 
 
 
626	unsigned long size;
627	u64 end, systab, addr, npages, end_pfn;
628	void *p, *va, *new_memmap = NULL;
629	int count = 0;
630
631	efi.systab = NULL;
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
632
633	/* Merge contiguous regions of the same type and attribute */
634	for (p = memmap.map; p < memmap.map_end; p += memmap.desc_size) {
 
 
 
 
635		u64 prev_size;
636		md = p;
637
638		if (!prev_md) {
639			prev_md = md;
640			continue;
641		}
642
643		if (prev_md->type != md->type ||
644		    prev_md->attribute != md->attribute) {
645			prev_md = md;
646			continue;
647		}
648
649		prev_size = prev_md->num_pages << EFI_PAGE_SHIFT;
650
651		if (md->phys_addr == (prev_md->phys_addr + prev_size)) {
652			prev_md->num_pages += md->num_pages;
653			md->type = EFI_RESERVED_TYPE;
654			md->attribute = 0;
655			continue;
656		}
657		prev_md = md;
658	}
 
659
660	for (p = memmap.map; p < memmap.map_end; p += memmap.desc_size) {
661		md = p;
662		if (!(md->attribute & EFI_MEMORY_RUNTIME) &&
663		    md->type != EFI_BOOT_SERVICES_CODE &&
664		    md->type != EFI_BOOT_SERVICES_DATA)
665			continue;
666
667		size = md->num_pages << EFI_PAGE_SHIFT;
668		end = md->phys_addr + size;
 
 
 
 
 
 
669
670		end_pfn = PFN_UP(end);
671		if (end_pfn <= max_low_pfn_mapped
672		    || (end_pfn > (1UL << (32 - PAGE_SHIFT))
673			&& end_pfn <= max_pfn_mapped))
674			va = __va(md->phys_addr);
675		else
676			va = efi_ioremap(md->phys_addr, size, md->type);
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
677
678		md->virt_addr = (u64) (unsigned long) va;
 
 
679
680		if (!va) {
681			printk(KERN_ERR PFX "ioremap of 0x%llX failed!\n",
682			       (unsigned long long)md->phys_addr);
683			continue;
 
 
 
 
 
 
 
 
 
 
 
684		}
685
686		if (!(md->attribute & EFI_MEMORY_WB)) {
687			addr = md->virt_addr;
688			npages = md->num_pages;
689			memrange_efi_to_native(&addr, &npages);
690			set_memory_uc(addr, npages);
691		}
692
693		systab = (u64) (unsigned long) efi_phys.systab;
694		if (md->phys_addr <= systab && systab < end) {
695			systab += md->virt_addr - md->phys_addr;
696			efi.systab = (efi_system_table_t *) (unsigned long) systab;
697		}
698		new_memmap = krealloc(new_memmap,
699				      (count + 1) * memmap.desc_size,
700				      GFP_KERNEL);
701		memcpy(new_memmap + (count * memmap.desc_size), md,
702		       memmap.desc_size);
703		count++;
704	}
705
706	BUG_ON(!efi.systab);
 
707
708	status = phys_efi_set_virtual_address_map(
709		memmap.desc_size * count,
710		memmap.desc_size,
711		memmap.desc_version,
712		(efi_memory_desc_t *)__pa(new_memmap));
713
714	if (status != EFI_SUCCESS) {
715		printk(KERN_ALERT "Unable to switch EFI into virtual mode "
716		       "(status=%lx)!\n", status);
717		panic("EFI call to SetVirtualAddressMap() failed!");
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
718	}
719
720	/*
721	 * Thankfully, it does seem that no runtime services other than
722	 * SetVirtualAddressMap() will touch boot services code, so we can
723	 * get rid of it all at this point
724	 */
725	efi_free_boot_services();
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
726
727	/*
728	 * Now that EFI is in virtual mode, update the function
729	 * pointers in the runtime service table to the new virtual addresses.
730	 *
731	 * Call EFI services through wrapper functions.
732	 */
733	efi.get_time = virt_efi_get_time;
734	efi.set_time = virt_efi_set_time;
735	efi.get_wakeup_time = virt_efi_get_wakeup_time;
736	efi.set_wakeup_time = virt_efi_set_wakeup_time;
737	efi.get_variable = virt_efi_get_variable;
738	efi.get_next_variable = virt_efi_get_next_variable;
739	efi.set_variable = virt_efi_set_variable;
740	efi.get_next_high_mono_count = virt_efi_get_next_high_mono_count;
741	efi.reset_system = virt_efi_reset_system;
742	efi.set_virtual_address_map = NULL;
743	efi.query_variable_info = virt_efi_query_variable_info;
744	efi.update_capsule = virt_efi_update_capsule;
745	efi.query_capsule_caps = virt_efi_query_capsule_caps;
746	if (__supported_pte_mask & _PAGE_NX)
747		runtime_code_page_mkexec();
748	early_iounmap(memmap.map, memmap.nr_map * memmap.desc_size);
749	memmap.map = NULL;
750	kfree(new_memmap);
 
751}
752
753/*
754 * Convenience functions to obtain memory types and attributes
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
755 */
756u32 efi_mem_type(unsigned long phys_addr)
757{
758	efi_memory_desc_t *md;
759	void *p;
 
 
760
761	for (p = memmap.map; p < memmap.map_end; p += memmap.desc_size) {
762		md = p;
763		if ((md->phys_addr <= phys_addr) &&
764		    (phys_addr < (md->phys_addr +
765				  (md->num_pages << EFI_PAGE_SHIFT))))
766			return md->type;
767	}
768	return 0;
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
769}
770
771u64 efi_mem_attributes(unsigned long phys_addr)
772{
773	efi_memory_desc_t *md;
774	void *p;
775
776	for (p = memmap.map; p < memmap.map_end; p += memmap.desc_size) {
777		md = p;
778		if ((md->phys_addr <= phys_addr) &&
779		    (phys_addr < (md->phys_addr +
780				  (md->num_pages << EFI_PAGE_SHIFT))))
781			return md->attribute;
 
 
 
 
 
 
 
782	}
 
 
 
 
783	return 0;
784}
v4.17
   1// SPDX-License-Identifier: GPL-2.0
   2/*
   3 * Common EFI (Extensible Firmware Interface) support functions
   4 * Based on Extensible Firmware Interface Specification version 1.0
   5 *
   6 * Copyright (C) 1999 VA Linux Systems
   7 * Copyright (C) 1999 Walt Drummond <drummond@valinux.com>
   8 * Copyright (C) 1999-2002 Hewlett-Packard Co.
   9 *	David Mosberger-Tang <davidm@hpl.hp.com>
  10 *	Stephane Eranian <eranian@hpl.hp.com>
  11 * Copyright (C) 2005-2008 Intel Co.
  12 *	Fenghua Yu <fenghua.yu@intel.com>
  13 *	Bibo Mao <bibo.mao@intel.com>
  14 *	Chandramouli Narayanan <mouli@linux.intel.com>
  15 *	Huang Ying <ying.huang@intel.com>
  16 * Copyright (C) 2013 SuSE Labs
  17 *	Borislav Petkov <bp@suse.de> - runtime services VA mapping
  18 *
  19 * Copied from efi_32.c to eliminate the duplicated code between EFI
  20 * 32/64 support code. --ying 2007-10-26
  21 *
  22 * All EFI Runtime Services are not implemented yet as EFI only
  23 * supports physical mode addressing on SoftSDV. This is to be fixed
  24 * in a future version.  --drummond 1999-07-20
  25 *
  26 * Implemented EFI runtime services and virtual mode calls.  --davidm
  27 *
  28 * Goutham Rao: <goutham.rao@intel.com>
  29 *	Skip non-WB memory and ignore empty memory ranges.
  30 */
  31
  32#define pr_fmt(fmt) KBUILD_MODNAME ": " fmt
  33
  34#include <linux/kernel.h>
  35#include <linux/init.h>
  36#include <linux/efi.h>
  37#include <linux/efi-bgrt.h>
  38#include <linux/export.h>
  39#include <linux/bootmem.h>
  40#include <linux/slab.h>
  41#include <linux/memblock.h>
  42#include <linux/spinlock.h>
  43#include <linux/uaccess.h>
  44#include <linux/time.h>
  45#include <linux/io.h>
  46#include <linux/reboot.h>
  47#include <linux/bcd.h>
  48
  49#include <asm/setup.h>
  50#include <asm/efi.h>
  51#include <asm/e820/api.h>
  52#include <asm/time.h>
  53#include <asm/set_memory.h>
  54#include <asm/tlbflush.h>
  55#include <asm/x86_init.h>
  56#include <asm/uv/uv.h>
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
  57
  58static struct efi efi_phys __initdata;
  59static efi_system_table_t efi_systab __initdata;
  60
  61static efi_config_table_type_t arch_tables[] __initdata = {
  62#ifdef CONFIG_X86_UV
  63	{UV_SYSTEM_TABLE_GUID, "UVsystab", &efi.uv_systab},
  64#endif
  65	{NULL_GUID, NULL, NULL},
  66};
  67
  68u64 efi_setup;		/* efi setup_data physical address */
 
  69
  70static int add_efi_memmap __initdata;
  71static int __init setup_add_efi_memmap(char *arg)
  72{
  73	add_efi_memmap = 1;
  74	return 0;
  75}
  76early_param("add_efi_memmap", setup_add_efi_memmap);
  77
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
  78static efi_status_t __init phys_efi_set_virtual_address_map(
  79	unsigned long memory_map_size,
  80	unsigned long descriptor_size,
  81	u32 descriptor_version,
  82	efi_memory_desc_t *virtual_map)
  83{
  84	efi_status_t status;
 
 
 
 
 
 
 
 
 
 
 
 
  85	unsigned long flags;
  86	pgd_t *save_pgd;
 
 
 
 
 
 
 
 
  87
  88	save_pgd = efi_call_phys_prolog();
 
 
 
 
 
  89
  90	/* Disable interrupts around EFI calls: */
  91	local_irq_save(flags);
  92	status = efi_call_phys(efi_phys.set_virtual_address_map,
  93			       memory_map_size, descriptor_size,
  94			       descriptor_version, virtual_map);
  95	local_irq_restore(flags);
  96
  97	efi_call_phys_epilog(save_pgd);
 
 
 
 
 
 
  98
  99	return status;
 
 
 
 
 
 100}
 101
 102void __init efi_find_mirror(void)
 103{
 104	efi_memory_desc_t *md;
 105	u64 mirror_size = 0, total_size = 0;
 
 106
 107	for_each_efi_memory_desc(md) {
 108		unsigned long long start = md->phys_addr;
 109		unsigned long long size = md->num_pages << EFI_PAGE_SHIFT;
 110
 111		total_size += size;
 112		if (md->attribute & EFI_MEMORY_MORE_RELIABLE) {
 113			memblock_mark_mirror(start, size);
 114			mirror_size += size;
 115		}
 116	}
 117	if (mirror_size)
 118		pr_info("Memory: %lldM/%lldM mirrored memory\n",
 119			mirror_size>>20, total_size>>20);
 120}
 121
 122/*
 123 * Tell the kernel about the EFI memory map.  This might include
 124 * more than the max 128 entries that can fit in the e820 legacy
 125 * (zeropage) memory map.
 126 */
 127
 128static void __init do_add_efi_memmap(void)
 129{
 130	efi_memory_desc_t *md;
 131
 132	for_each_efi_memory_desc(md) {
 
 133		unsigned long long start = md->phys_addr;
 134		unsigned long long size = md->num_pages << EFI_PAGE_SHIFT;
 135		int e820_type;
 136
 137		switch (md->type) {
 138		case EFI_LOADER_CODE:
 139		case EFI_LOADER_DATA:
 140		case EFI_BOOT_SERVICES_CODE:
 141		case EFI_BOOT_SERVICES_DATA:
 142		case EFI_CONVENTIONAL_MEMORY:
 143			if (md->attribute & EFI_MEMORY_WB)
 144				e820_type = E820_TYPE_RAM;
 145			else
 146				e820_type = E820_TYPE_RESERVED;
 147			break;
 148		case EFI_ACPI_RECLAIM_MEMORY:
 149			e820_type = E820_TYPE_ACPI;
 150			break;
 151		case EFI_ACPI_MEMORY_NVS:
 152			e820_type = E820_TYPE_NVS;
 153			break;
 154		case EFI_UNUSABLE_MEMORY:
 155			e820_type = E820_TYPE_UNUSABLE;
 156			break;
 157		case EFI_PERSISTENT_MEMORY:
 158			e820_type = E820_TYPE_PMEM;
 159			break;
 160		default:
 161			/*
 162			 * EFI_RESERVED_TYPE EFI_RUNTIME_SERVICES_CODE
 163			 * EFI_RUNTIME_SERVICES_DATA EFI_MEMORY_MAPPED_IO
 164			 * EFI_MEMORY_MAPPED_IO_PORT_SPACE EFI_PAL_CODE
 165			 */
 166			e820_type = E820_TYPE_RESERVED;
 167			break;
 168		}
 169		e820__range_add(start, size, e820_type);
 170	}
 171	e820__update_table(e820_table);
 172}
 173
 174int __init efi_memblock_x86_reserve_range(void)
 175{
 176	struct efi_info *e = &boot_params.efi_info;
 177	struct efi_memory_map_data data;
 178	phys_addr_t pmap;
 179	int rv;
 180
 181	if (efi_enabled(EFI_PARAVIRT))
 182		return 0;
 183
 184#ifdef CONFIG_X86_32
 185	/* Can't handle data above 4GB at this time */
 186	if (e->efi_memmap_hi) {
 187		pr_err("Memory map is above 4GB, disabling EFI.\n");
 188		return -EINVAL;
 189	}
 190	pmap =  e->efi_memmap;
 191#else
 192	pmap = (e->efi_memmap |	((__u64)e->efi_memmap_hi << 32));
 
 193#endif
 194	data.phys_map		= pmap;
 195	data.size 		= e->efi_memmap_size;
 196	data.desc_size		= e->efi_memdesc_size;
 197	data.desc_version	= e->efi_memdesc_version;
 198
 199	rv = efi_memmap_init_early(&data);
 200	if (rv)
 201		return rv;
 202
 203	if (add_efi_memmap)
 204		do_add_efi_memmap();
 205
 206	WARN(efi.memmap.desc_version != 1,
 207	     "Unexpected EFI_MEMORY_DESCRIPTOR version %ld",
 208	     efi.memmap.desc_version);
 209
 210	memblock_reserve(pmap, efi.memmap.nr_map * efi.memmap.desc_size);
 211
 212	return 0;
 213}
 214
 215#define OVERFLOW_ADDR_SHIFT	(64 - EFI_PAGE_SHIFT)
 216#define OVERFLOW_ADDR_MASK	(U64_MAX << OVERFLOW_ADDR_SHIFT)
 217#define U64_HIGH_BIT		(~(U64_MAX >> 1))
 218
 219static bool __init efi_memmap_entry_valid(const efi_memory_desc_t *md, int i)
 220{
 221	u64 end = (md->num_pages << EFI_PAGE_SHIFT) + md->phys_addr - 1;
 222	u64 end_hi = 0;
 223	char buf[64];
 224
 225	if (md->num_pages == 0) {
 226		end = 0;
 227	} else if (md->num_pages > EFI_PAGES_MAX ||
 228		   EFI_PAGES_MAX - md->num_pages <
 229		   (md->phys_addr >> EFI_PAGE_SHIFT)) {
 230		end_hi = (md->num_pages & OVERFLOW_ADDR_MASK)
 231			>> OVERFLOW_ADDR_SHIFT;
 232
 233		if ((md->phys_addr & U64_HIGH_BIT) && !(end & U64_HIGH_BIT))
 234			end_hi += 1;
 235	} else {
 236		return true;
 237	}
 238
 239	pr_warn_once(FW_BUG "Invalid EFI memory map entries:\n");
 240
 241	if (end_hi) {
 242		pr_warn("mem%02u: %s range=[0x%016llx-0x%llx%016llx] (invalid)\n",
 243			i, efi_md_typeattr_format(buf, sizeof(buf), md),
 244			md->phys_addr, end_hi, end);
 245	} else {
 246		pr_warn("mem%02u: %s range=[0x%016llx-0x%016llx] (invalid)\n",
 247			i, efi_md_typeattr_format(buf, sizeof(buf), md),
 248			md->phys_addr, end);
 249	}
 250	return false;
 251}
 252
 253static void __init efi_clean_memmap(void)
 254{
 255	efi_memory_desc_t *out = efi.memmap.map;
 256	const efi_memory_desc_t *in = out;
 257	const efi_memory_desc_t *end = efi.memmap.map_end;
 258	int i, n_removal;
 259
 260	for (i = n_removal = 0; in < end; i++) {
 261		if (efi_memmap_entry_valid(in, i)) {
 262			if (out != in)
 263				memcpy(out, in, efi.memmap.desc_size);
 264			out = (void *)out + efi.memmap.desc_size;
 265		} else {
 266			n_removal++;
 267		}
 268		in = (void *)in + efi.memmap.desc_size;
 269	}
 270
 271	if (n_removal > 0) {
 272		u64 size = efi.memmap.nr_map - n_removal;
 273
 274		pr_warn("Removing %d invalid memory map entries.\n", n_removal);
 275		efi_memmap_install(efi.memmap.phys_map, size);
 276	}
 277}
 278
 279void __init efi_print_memmap(void)
 280{
 281	efi_memory_desc_t *md;
 282	int i = 0;
 
 283
 284	for_each_efi_memory_desc(md) {
 285		char buf[64];
 286
 287		pr_info("mem%02u: %s range=[0x%016llx-0x%016llx] (%lluMB)\n",
 288			i++, efi_md_typeattr_format(buf, sizeof(buf), md),
 289			md->phys_addr,
 290			md->phys_addr + (md->num_pages << EFI_PAGE_SHIFT) - 1,
 
 291			(md->num_pages >> (20 - EFI_PAGE_SHIFT)));
 292	}
 293}
 
 294
 295static int __init efi_systab_init(void *phys)
 296{
 297	if (efi_enabled(EFI_64BIT)) {
 298		efi_system_table_64_t *systab64;
 299		struct efi_setup_data *data = NULL;
 300		u64 tmp = 0;
 301
 302		if (efi_setup) {
 303			data = early_memremap(efi_setup, sizeof(*data));
 304			if (!data)
 305				return -ENOMEM;
 306		}
 307		systab64 = early_memremap((unsigned long)phys,
 308					 sizeof(*systab64));
 309		if (systab64 == NULL) {
 310			pr_err("Couldn't map the system table!\n");
 311			if (data)
 312				early_memunmap(data, sizeof(*data));
 313			return -ENOMEM;
 314		}
 315
 316		efi_systab.hdr = systab64->hdr;
 317		efi_systab.fw_vendor = data ? (unsigned long)data->fw_vendor :
 318					      systab64->fw_vendor;
 319		tmp |= data ? data->fw_vendor : systab64->fw_vendor;
 320		efi_systab.fw_revision = systab64->fw_revision;
 321		efi_systab.con_in_handle = systab64->con_in_handle;
 322		tmp |= systab64->con_in_handle;
 323		efi_systab.con_in = systab64->con_in;
 324		tmp |= systab64->con_in;
 325		efi_systab.con_out_handle = systab64->con_out_handle;
 326		tmp |= systab64->con_out_handle;
 327		efi_systab.con_out = systab64->con_out;
 328		tmp |= systab64->con_out;
 329		efi_systab.stderr_handle = systab64->stderr_handle;
 330		tmp |= systab64->stderr_handle;
 331		efi_systab.stderr = systab64->stderr;
 332		tmp |= systab64->stderr;
 333		efi_systab.runtime = data ?
 334				     (void *)(unsigned long)data->runtime :
 335				     (void *)(unsigned long)systab64->runtime;
 336		tmp |= data ? data->runtime : systab64->runtime;
 337		efi_systab.boottime = (void *)(unsigned long)systab64->boottime;
 338		tmp |= systab64->boottime;
 339		efi_systab.nr_tables = systab64->nr_tables;
 340		efi_systab.tables = data ? (unsigned long)data->tables :
 341					   systab64->tables;
 342		tmp |= data ? data->tables : systab64->tables;
 343
 344		early_memunmap(systab64, sizeof(*systab64));
 345		if (data)
 346			early_memunmap(data, sizeof(*data));
 347#ifdef CONFIG_X86_32
 348		if (tmp >> 32) {
 349			pr_err("EFI data located above 4GB, disabling EFI.\n");
 350			return -EINVAL;
 351		}
 352#endif
 353	} else {
 354		efi_system_table_32_t *systab32;
 355
 356		systab32 = early_memremap((unsigned long)phys,
 357					 sizeof(*systab32));
 358		if (systab32 == NULL) {
 359			pr_err("Couldn't map the system table!\n");
 360			return -ENOMEM;
 361		}
 362
 363		efi_systab.hdr = systab32->hdr;
 364		efi_systab.fw_vendor = systab32->fw_vendor;
 365		efi_systab.fw_revision = systab32->fw_revision;
 366		efi_systab.con_in_handle = systab32->con_in_handle;
 367		efi_systab.con_in = systab32->con_in;
 368		efi_systab.con_out_handle = systab32->con_out_handle;
 369		efi_systab.con_out = systab32->con_out;
 370		efi_systab.stderr_handle = systab32->stderr_handle;
 371		efi_systab.stderr = systab32->stderr;
 372		efi_systab.runtime = (void *)(unsigned long)systab32->runtime;
 373		efi_systab.boottime = (void *)(unsigned long)systab32->boottime;
 374		efi_systab.nr_tables = systab32->nr_tables;
 375		efi_systab.tables = systab32->tables;
 376
 377		early_memunmap(systab32, sizeof(*systab32));
 378	}
 379
 380	efi.systab = &efi_systab;
 381
 382	/*
 383	 * Verify the EFI Table
 384	 */
 385	if (efi.systab->hdr.signature != EFI_SYSTEM_TABLE_SIGNATURE) {
 386		pr_err("System table signature incorrect!\n");
 387		return -EINVAL;
 388	}
 389	if ((efi.systab->hdr.revision >> 16) == 0)
 390		pr_err("Warning: System table version %d.%02d, expected 1.00 or greater!\n",
 391		       efi.systab->hdr.revision >> 16,
 392		       efi.systab->hdr.revision & 0xffff);
 393
 394	return 0;
 395}
 396
 397static int __init efi_runtime_init32(void)
 398{
 399	efi_runtime_services_32_t *runtime;
 400
 401	runtime = early_memremap((unsigned long)efi.systab->runtime,
 402			sizeof(efi_runtime_services_32_t));
 403	if (!runtime) {
 404		pr_err("Could not map the runtime service table!\n");
 405		return -ENOMEM;
 406	}
 407
 408	/*
 409	 * We will only need *early* access to the SetVirtualAddressMap
 410	 * EFI runtime service. All other runtime services will be called
 411	 * via the virtual mapping.
 412	 */
 413	efi_phys.set_virtual_address_map =
 414			(efi_set_virtual_address_map_t *)
 415			(unsigned long)runtime->set_virtual_address_map;
 416	early_memunmap(runtime, sizeof(efi_runtime_services_32_t));
 417
 418	return 0;
 419}
 
 420
 421static int __init efi_runtime_init64(void)
 422{
 423	efi_runtime_services_64_t *runtime;
 424
 425	runtime = early_memremap((unsigned long)efi.systab->runtime,
 426			sizeof(efi_runtime_services_64_t));
 427	if (!runtime) {
 428		pr_err("Could not map the runtime service table!\n");
 429		return -ENOMEM;
 430	}
 431
 432	/*
 433	 * We will only need *early* access to the SetVirtualAddressMap
 434	 * EFI runtime service. All other runtime services will be called
 435	 * via the virtual mapping.
 436	 */
 437	efi_phys.set_virtual_address_map =
 438			(efi_set_virtual_address_map_t *)
 439			(unsigned long)runtime->set_virtual_address_map;
 440	early_memunmap(runtime, sizeof(efi_runtime_services_64_t));
 441
 442	return 0;
 443}
 444
 445static int __init efi_runtime_init(void)
 446{
 447	int rv;
 448
 449	/*
 450	 * Check out the runtime services table. We need to map
 451	 * the runtime services table so that we can grab the physical
 452	 * address of several of the EFI runtime functions, needed to
 453	 * set the firmware into virtual mode.
 454	 *
 455	 * When EFI_PARAVIRT is in force then we could not map runtime
 456	 * service memory region because we do not have direct access to it.
 457	 * However, runtime services are available through proxy functions
 458	 * (e.g. in case of Xen dom0 EFI implementation they call special
 459	 * hypercall which executes relevant EFI functions) and that is why
 460	 * they are always enabled.
 461	 */
 462
 463	if (!efi_enabled(EFI_PARAVIRT)) {
 464		if (efi_enabled(EFI_64BIT))
 465			rv = efi_runtime_init64();
 466		else
 467			rv = efi_runtime_init32();
 468
 469		if (rv)
 470			return rv;
 471	}
 472
 473	set_bit(EFI_RUNTIME_SERVICES, &efi.flags);
 474
 475	return 0;
 476}
 477
 478void __init efi_init(void)
 479{
 
 
 480	efi_char16_t *c16;
 481	char vendor[100] = "unknown";
 482	int i = 0;
 483	void *tmp;
 484
 485#ifdef CONFIG_X86_32
 486	if (boot_params.efi_info.efi_systab_hi ||
 487	    boot_params.efi_info.efi_memmap_hi) {
 488		pr_info("Table located above 4GB, disabling EFI.\n");
 489		return;
 490	}
 491	efi_phys.systab = (efi_system_table_t *)boot_params.efi_info.efi_systab;
 492#else
 493	efi_phys.systab = (efi_system_table_t *)
 494			  (boot_params.efi_info.efi_systab |
 495			  ((__u64)boot_params.efi_info.efi_systab_hi<<32));
 496#endif
 497
 498	if (efi_systab_init(efi_phys.systab))
 499		return;
 
 
 
 
 
 500
 501	efi.config_table = (unsigned long)efi.systab->tables;
 502	efi.fw_vendor	 = (unsigned long)efi.systab->fw_vendor;
 503	efi.runtime	 = (unsigned long)efi.systab->runtime;
 
 
 
 
 
 
 
 504
 505	/*
 506	 * Show what we know for posterity
 507	 */
 508	c16 = tmp = early_memremap(efi.systab->fw_vendor, 2);
 509	if (c16) {
 510		for (i = 0; i < sizeof(vendor) - 1 && *c16; ++i)
 511			vendor[i] = *c16++;
 512		vendor[i] = '\0';
 513	} else
 514		pr_err("Could not map the firmware vendor!\n");
 515	early_memunmap(tmp, 2);
 516
 517	pr_info("EFI v%u.%.02u by %s\n",
 518		efi.systab->hdr.revision >> 16,
 519		efi.systab->hdr.revision & 0xffff, vendor);
 520
 521	if (efi_reuse_config(efi.systab->tables, efi.systab->nr_tables))
 522		return;
 523
 524	if (efi_config_init(arch_tables))
 525		return;
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 526
 527	/*
 528	 * Note: We currently don't support runtime services on an EFI
 529	 * that doesn't match the kernel 32/64-bit mode.
 
 
 530	 */
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 531
 532	if (!efi_runtime_supported())
 533		pr_info("No EFI runtime due to 32/64-bit mismatch with kernel\n");
 534	else {
 535		if (efi_runtime_disabled() || efi_runtime_init()) {
 536			efi_memmap_unmap();
 537			return;
 538		}
 539	}
 540
 541	efi_clean_memmap();
 
 
 
 542
 543	if (efi_enabled(EFI_DBG))
 544		efi_print_memmap();
 
 545}
 546
 547void __init efi_set_executable(efi_memory_desc_t *md, bool executable)
 548{
 549	u64 addr, npages;
 550
 551	addr = md->virt_addr;
 552	npages = md->num_pages;
 553
 554	memrange_efi_to_native(&addr, &npages);
 555
 556	if (executable)
 557		set_memory_x(addr, npages);
 558	else
 559		set_memory_nx(addr, npages);
 560}
 561
 562void __init runtime_code_page_mkexec(void)
 563{
 564	efi_memory_desc_t *md;
 
 565
 566	/* Make EFI runtime service code area executable */
 567	for_each_efi_memory_desc(md) {
 
 
 568		if (md->type != EFI_RUNTIME_SERVICES_CODE)
 569			continue;
 570
 571		efi_set_executable(md, true);
 572	}
 573}
 574
 575void __init efi_memory_uc(u64 addr, unsigned long size)
 
 
 
 
 
 
 
 
 576{
 577	unsigned long page_shift = 1UL << EFI_PAGE_SHIFT;
 578	u64 npages;
 579
 580	npages = round_up(size, page_shift) / page_shift;
 581	memrange_efi_to_native(&addr, &npages);
 582	set_memory_uc(addr, npages);
 583}
 584
 585void __init old_map_region(efi_memory_desc_t *md)
 586{
 587	u64 start_pfn, end_pfn, end;
 588	unsigned long size;
 589	void *va;
 
 
 590
 591	start_pfn = PFN_DOWN(md->phys_addr);
 592	size	  = md->num_pages << PAGE_SHIFT;
 593	end	  = md->phys_addr + size;
 594	end_pfn   = PFN_UP(end);
 595
 596	if (pfn_range_is_mapped(start_pfn, end_pfn)) {
 597		va = __va(md->phys_addr);
 598
 599		if (!(md->attribute & EFI_MEMORY_WB))
 600			efi_memory_uc((u64)(unsigned long)va, size);
 601	} else
 602		va = efi_ioremap(md->phys_addr, size,
 603				 md->type, md->attribute);
 604
 605	md->virt_addr = (u64) (unsigned long) va;
 606	if (!va)
 607		pr_err("ioremap of 0x%llX failed!\n",
 608		       (unsigned long long)md->phys_addr);
 609}
 610
 611/* Merge contiguous regions of the same type and attribute */
 612static void __init efi_merge_regions(void)
 613{
 614	efi_memory_desc_t *md, *prev_md = NULL;
 615
 616	for_each_efi_memory_desc(md) {
 617		u64 prev_size;
 
 618
 619		if (!prev_md) {
 620			prev_md = md;
 621			continue;
 622		}
 623
 624		if (prev_md->type != md->type ||
 625		    prev_md->attribute != md->attribute) {
 626			prev_md = md;
 627			continue;
 628		}
 629
 630		prev_size = prev_md->num_pages << EFI_PAGE_SHIFT;
 631
 632		if (md->phys_addr == (prev_md->phys_addr + prev_size)) {
 633			prev_md->num_pages += md->num_pages;
 634			md->type = EFI_RESERVED_TYPE;
 635			md->attribute = 0;
 636			continue;
 637		}
 638		prev_md = md;
 639	}
 640}
 641
 642static void __init get_systab_virt_addr(efi_memory_desc_t *md)
 643{
 644	unsigned long size;
 645	u64 end, systab;
 
 
 646
 647	size = md->num_pages << EFI_PAGE_SHIFT;
 648	end = md->phys_addr + size;
 649	systab = (u64)(unsigned long)efi_phys.systab;
 650	if (md->phys_addr <= systab && systab < end) {
 651		systab += md->virt_addr - md->phys_addr;
 652		efi.systab = (efi_system_table_t *)(unsigned long)systab;
 653	}
 654}
 655
 656static void *realloc_pages(void *old_memmap, int old_shift)
 657{
 658	void *ret;
 659
 660	ret = (void *)__get_free_pages(GFP_KERNEL, old_shift + 1);
 661	if (!ret)
 662		goto out;
 663
 664	/*
 665	 * A first-time allocation doesn't have anything to copy.
 666	 */
 667	if (!old_memmap)
 668		return ret;
 669
 670	memcpy(ret, old_memmap, PAGE_SIZE << old_shift);
 671
 672out:
 673	free_pages((unsigned long)old_memmap, old_shift);
 674	return ret;
 675}
 676
 677/*
 678 * Iterate the EFI memory map in reverse order because the regions
 679 * will be mapped top-down. The end result is the same as if we had
 680 * mapped things forward, but doesn't require us to change the
 681 * existing implementation of efi_map_region().
 682 */
 683static inline void *efi_map_next_entry_reverse(void *entry)
 684{
 685	/* Initial call */
 686	if (!entry)
 687		return efi.memmap.map_end - efi.memmap.desc_size;
 688
 689	entry -= efi.memmap.desc_size;
 690	if (entry < efi.memmap.map)
 691		return NULL;
 692
 693	return entry;
 694}
 695
 696/*
 697 * efi_map_next_entry - Return the next EFI memory map descriptor
 698 * @entry: Previous EFI memory map descriptor
 699 *
 700 * This is a helper function to iterate over the EFI memory map, which
 701 * we do in different orders depending on the current configuration.
 702 *
 703 * To begin traversing the memory map @entry must be %NULL.
 704 *
 705 * Returns %NULL when we reach the end of the memory map.
 706 */
 707static void *efi_map_next_entry(void *entry)
 708{
 709	if (!efi_enabled(EFI_OLD_MEMMAP) && efi_enabled(EFI_64BIT)) {
 710		/*
 711		 * Starting in UEFI v2.5 the EFI_PROPERTIES_TABLE
 712		 * config table feature requires us to map all entries
 713		 * in the same order as they appear in the EFI memory
 714		 * map. That is to say, entry N must have a lower
 715		 * virtual address than entry N+1. This is because the
 716		 * firmware toolchain leaves relative references in
 717		 * the code/data sections, which are split and become
 718		 * separate EFI memory regions. Mapping things
 719		 * out-of-order leads to the firmware accessing
 720		 * unmapped addresses.
 721		 *
 722		 * Since we need to map things this way whether or not
 723		 * the kernel actually makes use of
 724		 * EFI_PROPERTIES_TABLE, let's just switch to this
 725		 * scheme by default for 64-bit.
 726		 */
 727		return efi_map_next_entry_reverse(entry);
 728	}
 729
 730	/* Initial call */
 731	if (!entry)
 732		return efi.memmap.map;
 733
 734	entry += efi.memmap.desc_size;
 735	if (entry >= efi.memmap.map_end)
 736		return NULL;
 737
 738	return entry;
 739}
 740
 741static bool should_map_region(efi_memory_desc_t *md)
 742{
 743	/*
 744	 * Runtime regions always require runtime mappings (obviously).
 745	 */
 746	if (md->attribute & EFI_MEMORY_RUNTIME)
 747		return true;
 748
 749	/*
 750	 * 32-bit EFI doesn't suffer from the bug that requires us to
 751	 * reserve boot services regions, and mixed mode support
 752	 * doesn't exist for 32-bit kernels.
 753	 */
 754	if (IS_ENABLED(CONFIG_X86_32))
 755		return false;
 756
 757	/*
 758	 * Map all of RAM so that we can access arguments in the 1:1
 759	 * mapping when making EFI runtime calls.
 760	 */
 761	if (IS_ENABLED(CONFIG_EFI_MIXED) && !efi_is_native()) {
 762		if (md->type == EFI_CONVENTIONAL_MEMORY ||
 763		    md->type == EFI_LOADER_DATA ||
 764		    md->type == EFI_LOADER_CODE)
 765			return true;
 766	}
 767
 768	/*
 769	 * Map boot services regions as a workaround for buggy
 770	 * firmware that accesses them even when they shouldn't.
 771	 *
 772	 * See efi_{reserve,free}_boot_services().
 773	 */
 774	if (md->type == EFI_BOOT_SERVICES_CODE ||
 775	    md->type == EFI_BOOT_SERVICES_DATA)
 776		return true;
 777
 778	return false;
 779}
 780
 781/*
 782 * Map the efi memory ranges of the runtime services and update new_mmap with
 783 * virtual addresses.
 784 */
 785static void * __init efi_map_regions(int *count, int *pg_shift)
 786{
 787	void *p, *new_memmap = NULL;
 788	unsigned long left = 0;
 789	unsigned long desc_size;
 790	efi_memory_desc_t *md;
 791
 792	desc_size = efi.memmap.desc_size;
 793
 794	p = NULL;
 795	while ((p = efi_map_next_entry(p))) {
 796		md = p;
 797
 798		if (!should_map_region(md))
 
 
 799			continue;
 800
 801		efi_map_region(md);
 802		get_systab_virt_addr(md);
 803
 804		if (left < desc_size) {
 805			new_memmap = realloc_pages(new_memmap, *pg_shift);
 806			if (!new_memmap)
 807				return NULL;
 808
 809			left += PAGE_SIZE << *pg_shift;
 810			(*pg_shift)++;
 811		}
 812
 813		memcpy(new_memmap + (*count * desc_size), md, desc_size);
 814
 815		left -= desc_size;
 816		(*count)++;
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 817	}
 818
 819	return new_memmap;
 820}
 821
 822static void __init kexec_enter_virtual_mode(void)
 823{
 824#ifdef CONFIG_KEXEC_CORE
 825	efi_memory_desc_t *md;
 826	unsigned int num_pages;
 827
 828	efi.systab = NULL;
 829
 830	/*
 831	 * We don't do virtual mode, since we don't do runtime services, on
 832	 * non-native EFI. With efi=old_map, we don't do runtime services in
 833	 * kexec kernel because in the initial boot something else might
 834	 * have been mapped at these virtual addresses.
 835	 */
 836	if (!efi_is_native() || efi_enabled(EFI_OLD_MEMMAP)) {
 837		efi_memmap_unmap();
 838		clear_bit(EFI_RUNTIME_SERVICES, &efi.flags);
 839		return;
 840	}
 841
 842	if (efi_alloc_page_tables()) {
 843		pr_err("Failed to allocate EFI page tables\n");
 844		clear_bit(EFI_RUNTIME_SERVICES, &efi.flags);
 845		return;
 846	}
 847
 848	/*
 849	* Map efi regions which were passed via setup_data. The virt_addr is a
 850	* fixed addr which was used in first kernel of a kexec boot.
 851	*/
 852	for_each_efi_memory_desc(md) {
 853		efi_map_region_fixed(md); /* FIXME: add error handling */
 854		get_systab_virt_addr(md);
 855	}
 856
 857	/*
 858	 * Unregister the early EFI memmap from efi_init() and install
 859	 * the new EFI memory map.
 
 860	 */
 861	efi_memmap_unmap();
 862
 863	if (efi_memmap_init_late(efi.memmap.phys_map,
 864				 efi.memmap.desc_size * efi.memmap.nr_map)) {
 865		pr_err("Failed to remap late EFI memory map\n");
 866		clear_bit(EFI_RUNTIME_SERVICES, &efi.flags);
 867		return;
 868	}
 869
 870	BUG_ON(!efi.systab);
 871
 872	num_pages = ALIGN(efi.memmap.nr_map * efi.memmap.desc_size, PAGE_SIZE);
 873	num_pages >>= PAGE_SHIFT;
 874
 875	if (efi_setup_page_tables(efi.memmap.phys_map, num_pages)) {
 876		clear_bit(EFI_RUNTIME_SERVICES, &efi.flags);
 877		return;
 878	}
 879
 880	efi_sync_low_kernel_mappings();
 881
 882	/*
 883	 * Now that EFI is in virtual mode, update the function
 884	 * pointers in the runtime service table to the new virtual addresses.
 885	 *
 886	 * Call EFI services through wrapper functions.
 887	 */
 888	efi.runtime_version = efi_systab.hdr.revision;
 889
 890	efi_native_runtime_setup();
 891
 
 
 
 
 
 892	efi.set_virtual_address_map = NULL;
 893
 894	if (efi_enabled(EFI_OLD_MEMMAP) && (__supported_pte_mask & _PAGE_NX))
 
 
 895		runtime_code_page_mkexec();
 896
 897	/* clean DUMMY object */
 898	efi_delete_dummy_variable();
 899#endif
 900}
 901
 902/*
 903 * This function will switch the EFI runtime services to virtual mode.
 904 * Essentially, we look through the EFI memmap and map every region that
 905 * has the runtime attribute bit set in its memory descriptor into the
 906 * efi_pgd page table.
 907 *
 908 * The old method which used to update that memory descriptor with the
 909 * virtual address obtained from ioremap() is still supported when the
 910 * kernel is booted with efi=old_map on its command line. Same old
 911 * method enabled the runtime services to be called without having to
 912 * thunk back into physical mode for every invocation.
 913 *
 914 * The new method does a pagetable switch in a preemption-safe manner
 915 * so that we're in a different address space when calling a runtime
 916 * function. For function arguments passing we do copy the PUDs of the
 917 * kernel page table into efi_pgd prior to each call.
 918 *
 919 * Specially for kexec boot, efi runtime maps in previous kernel should
 920 * be passed in via setup_data. In that case runtime ranges will be mapped
 921 * to the same virtual addresses as the first kernel, see
 922 * kexec_enter_virtual_mode().
 923 */
 924static void __init __efi_enter_virtual_mode(void)
 925{
 926	int count = 0, pg_shift = 0;
 927	void *new_memmap = NULL;
 928	efi_status_t status;
 929	unsigned long pa;
 930
 931	efi.systab = NULL;
 932
 933	if (efi_alloc_page_tables()) {
 934		pr_err("Failed to allocate EFI page tables\n");
 935		clear_bit(EFI_RUNTIME_SERVICES, &efi.flags);
 936		return;
 937	}
 938
 939	efi_merge_regions();
 940	new_memmap = efi_map_regions(&count, &pg_shift);
 941	if (!new_memmap) {
 942		pr_err("Error reallocating memory, EFI runtime non-functional!\n");
 943		clear_bit(EFI_RUNTIME_SERVICES, &efi.flags);
 944		return;
 945	}
 946
 947	pa = __pa(new_memmap);
 948
 949	/*
 950	 * Unregister the early EFI memmap from efi_init() and install
 951	 * the new EFI memory map that we are about to pass to the
 952	 * firmware via SetVirtualAddressMap().
 953	 */
 954	efi_memmap_unmap();
 955
 956	if (efi_memmap_init_late(pa, efi.memmap.desc_size * count)) {
 957		pr_err("Failed to remap late EFI memory map\n");
 958		clear_bit(EFI_RUNTIME_SERVICES, &efi.flags);
 959		return;
 960	}
 961
 962	if (efi_enabled(EFI_DBG)) {
 963		pr_info("EFI runtime memory map:\n");
 964		efi_print_memmap();
 965	}
 966
 967	BUG_ON(!efi.systab);
 968
 969	if (efi_setup_page_tables(pa, 1 << pg_shift)) {
 970		clear_bit(EFI_RUNTIME_SERVICES, &efi.flags);
 971		return;
 972	}
 973
 974	efi_sync_low_kernel_mappings();
 975
 976	if (efi_is_native()) {
 977		status = phys_efi_set_virtual_address_map(
 978				efi.memmap.desc_size * count,
 979				efi.memmap.desc_size,
 980				efi.memmap.desc_version,
 981				(efi_memory_desc_t *)pa);
 982	} else {
 983		status = efi_thunk_set_virtual_address_map(
 984				efi_phys.set_virtual_address_map,
 985				efi.memmap.desc_size * count,
 986				efi.memmap.desc_size,
 987				efi.memmap.desc_version,
 988				(efi_memory_desc_t *)pa);
 989	}
 990
 991	if (status != EFI_SUCCESS) {
 992		pr_alert("Unable to switch EFI into virtual mode (status=%lx)!\n",
 993			 status);
 994		panic("EFI call to SetVirtualAddressMap() failed!");
 995	}
 996
 997	/*
 998	 * Now that EFI is in virtual mode, update the function
 999	 * pointers in the runtime service table to the new virtual addresses.
1000	 *
1001	 * Call EFI services through wrapper functions.
1002	 */
1003	efi.runtime_version = efi_systab.hdr.revision;
1004
1005	if (efi_is_native())
1006		efi_native_runtime_setup();
1007	else
1008		efi_thunk_runtime_setup();
1009
1010	efi.set_virtual_address_map = NULL;
1011
1012	/*
1013	 * Apply more restrictive page table mapping attributes now that
1014	 * SVAM() has been called and the firmware has performed all
1015	 * necessary relocation fixups for the new virtual addresses.
1016	 */
1017	efi_runtime_update_mappings();
1018
1019	/* clean DUMMY object */
1020	efi_delete_dummy_variable();
1021}
1022
1023void __init efi_enter_virtual_mode(void)
1024{
1025	if (efi_enabled(EFI_PARAVIRT))
1026		return;
1027
1028	if (efi_setup)
1029		kexec_enter_virtual_mode();
1030	else
1031		__efi_enter_virtual_mode();
1032
1033	efi_dump_pagetable();
1034}
1035
1036static int __init arch_parse_efi_cmdline(char *str)
1037{
1038	if (!str) {
1039		pr_warn("need at least one option\n");
1040		return -EINVAL;
1041	}
1042
1043	if (parse_option_str(str, "old_map"))
1044		set_bit(EFI_OLD_MEMMAP, &efi.flags);
1045
1046	return 0;
1047}
1048early_param("efi", arch_parse_efi_cmdline);