Loading...
1/* memcontrol.c - Memory Controller
2 *
3 * Copyright IBM Corporation, 2007
4 * Author Balbir Singh <balbir@linux.vnet.ibm.com>
5 *
6 * Copyright 2007 OpenVZ SWsoft Inc
7 * Author: Pavel Emelianov <xemul@openvz.org>
8 *
9 * Memory thresholds
10 * Copyright (C) 2009 Nokia Corporation
11 * Author: Kirill A. Shutemov
12 *
13 * This program is free software; you can redistribute it and/or modify
14 * it under the terms of the GNU General Public License as published by
15 * the Free Software Foundation; either version 2 of the License, or
16 * (at your option) any later version.
17 *
18 * This program is distributed in the hope that it will be useful,
19 * but WITHOUT ANY WARRANTY; without even the implied warranty of
20 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
21 * GNU General Public License for more details.
22 */
23
24#include <linux/res_counter.h>
25#include <linux/memcontrol.h>
26#include <linux/cgroup.h>
27#include <linux/mm.h>
28#include <linux/hugetlb.h>
29#include <linux/pagemap.h>
30#include <linux/smp.h>
31#include <linux/page-flags.h>
32#include <linux/backing-dev.h>
33#include <linux/bit_spinlock.h>
34#include <linux/rcupdate.h>
35#include <linux/limits.h>
36#include <linux/mutex.h>
37#include <linux/rbtree.h>
38#include <linux/slab.h>
39#include <linux/swap.h>
40#include <linux/swapops.h>
41#include <linux/spinlock.h>
42#include <linux/eventfd.h>
43#include <linux/sort.h>
44#include <linux/fs.h>
45#include <linux/seq_file.h>
46#include <linux/vmalloc.h>
47#include <linux/mm_inline.h>
48#include <linux/page_cgroup.h>
49#include <linux/cpu.h>
50#include <linux/oom.h>
51#include "internal.h"
52
53#include <asm/uaccess.h>
54
55#include <trace/events/vmscan.h>
56
57struct cgroup_subsys mem_cgroup_subsys __read_mostly;
58#define MEM_CGROUP_RECLAIM_RETRIES 5
59struct mem_cgroup *root_mem_cgroup __read_mostly;
60
61#ifdef CONFIG_CGROUP_MEM_RES_CTLR_SWAP
62/* Turned on only when memory cgroup is enabled && really_do_swap_account = 1 */
63int do_swap_account __read_mostly;
64
65/* for remember boot option*/
66#ifdef CONFIG_CGROUP_MEM_RES_CTLR_SWAP_ENABLED
67static int really_do_swap_account __initdata = 1;
68#else
69static int really_do_swap_account __initdata = 0;
70#endif
71
72#else
73#define do_swap_account (0)
74#endif
75
76
77/*
78 * Statistics for memory cgroup.
79 */
80enum mem_cgroup_stat_index {
81 /*
82 * For MEM_CONTAINER_TYPE_ALL, usage = pagecache + rss.
83 */
84 MEM_CGROUP_STAT_CACHE, /* # of pages charged as cache */
85 MEM_CGROUP_STAT_RSS, /* # of pages charged as anon rss */
86 MEM_CGROUP_STAT_FILE_MAPPED, /* # of pages charged as file rss */
87 MEM_CGROUP_STAT_SWAPOUT, /* # of pages, swapped out */
88 MEM_CGROUP_STAT_DATA, /* end of data requires synchronization */
89 MEM_CGROUP_ON_MOVE, /* someone is moving account between groups */
90 MEM_CGROUP_STAT_NSTATS,
91};
92
93enum mem_cgroup_events_index {
94 MEM_CGROUP_EVENTS_PGPGIN, /* # of pages paged in */
95 MEM_CGROUP_EVENTS_PGPGOUT, /* # of pages paged out */
96 MEM_CGROUP_EVENTS_COUNT, /* # of pages paged in/out */
97 MEM_CGROUP_EVENTS_PGFAULT, /* # of page-faults */
98 MEM_CGROUP_EVENTS_PGMAJFAULT, /* # of major page-faults */
99 MEM_CGROUP_EVENTS_NSTATS,
100};
101/*
102 * Per memcg event counter is incremented at every pagein/pageout. With THP,
103 * it will be incremated by the number of pages. This counter is used for
104 * for trigger some periodic events. This is straightforward and better
105 * than using jiffies etc. to handle periodic memcg event.
106 */
107enum mem_cgroup_events_target {
108 MEM_CGROUP_TARGET_THRESH,
109 MEM_CGROUP_TARGET_SOFTLIMIT,
110 MEM_CGROUP_TARGET_NUMAINFO,
111 MEM_CGROUP_NTARGETS,
112};
113#define THRESHOLDS_EVENTS_TARGET (128)
114#define SOFTLIMIT_EVENTS_TARGET (1024)
115#define NUMAINFO_EVENTS_TARGET (1024)
116
117struct mem_cgroup_stat_cpu {
118 long count[MEM_CGROUP_STAT_NSTATS];
119 unsigned long events[MEM_CGROUP_EVENTS_NSTATS];
120 unsigned long targets[MEM_CGROUP_NTARGETS];
121};
122
123/*
124 * per-zone information in memory controller.
125 */
126struct mem_cgroup_per_zone {
127 /*
128 * spin_lock to protect the per cgroup LRU
129 */
130 struct list_head lists[NR_LRU_LISTS];
131 unsigned long count[NR_LRU_LISTS];
132
133 struct zone_reclaim_stat reclaim_stat;
134 struct rb_node tree_node; /* RB tree node */
135 unsigned long long usage_in_excess;/* Set to the value by which */
136 /* the soft limit is exceeded*/
137 bool on_tree;
138 struct mem_cgroup *mem; /* Back pointer, we cannot */
139 /* use container_of */
140};
141/* Macro for accessing counter */
142#define MEM_CGROUP_ZSTAT(mz, idx) ((mz)->count[(idx)])
143
144struct mem_cgroup_per_node {
145 struct mem_cgroup_per_zone zoneinfo[MAX_NR_ZONES];
146};
147
148struct mem_cgroup_lru_info {
149 struct mem_cgroup_per_node *nodeinfo[MAX_NUMNODES];
150};
151
152/*
153 * Cgroups above their limits are maintained in a RB-Tree, independent of
154 * their hierarchy representation
155 */
156
157struct mem_cgroup_tree_per_zone {
158 struct rb_root rb_root;
159 spinlock_t lock;
160};
161
162struct mem_cgroup_tree_per_node {
163 struct mem_cgroup_tree_per_zone rb_tree_per_zone[MAX_NR_ZONES];
164};
165
166struct mem_cgroup_tree {
167 struct mem_cgroup_tree_per_node *rb_tree_per_node[MAX_NUMNODES];
168};
169
170static struct mem_cgroup_tree soft_limit_tree __read_mostly;
171
172struct mem_cgroup_threshold {
173 struct eventfd_ctx *eventfd;
174 u64 threshold;
175};
176
177/* For threshold */
178struct mem_cgroup_threshold_ary {
179 /* An array index points to threshold just below usage. */
180 int current_threshold;
181 /* Size of entries[] */
182 unsigned int size;
183 /* Array of thresholds */
184 struct mem_cgroup_threshold entries[0];
185};
186
187struct mem_cgroup_thresholds {
188 /* Primary thresholds array */
189 struct mem_cgroup_threshold_ary *primary;
190 /*
191 * Spare threshold array.
192 * This is needed to make mem_cgroup_unregister_event() "never fail".
193 * It must be able to store at least primary->size - 1 entries.
194 */
195 struct mem_cgroup_threshold_ary *spare;
196};
197
198/* for OOM */
199struct mem_cgroup_eventfd_list {
200 struct list_head list;
201 struct eventfd_ctx *eventfd;
202};
203
204static void mem_cgroup_threshold(struct mem_cgroup *mem);
205static void mem_cgroup_oom_notify(struct mem_cgroup *mem);
206
207/*
208 * The memory controller data structure. The memory controller controls both
209 * page cache and RSS per cgroup. We would eventually like to provide
210 * statistics based on the statistics developed by Rik Van Riel for clock-pro,
211 * to help the administrator determine what knobs to tune.
212 *
213 * TODO: Add a water mark for the memory controller. Reclaim will begin when
214 * we hit the water mark. May be even add a low water mark, such that
215 * no reclaim occurs from a cgroup at it's low water mark, this is
216 * a feature that will be implemented much later in the future.
217 */
218struct mem_cgroup {
219 struct cgroup_subsys_state css;
220 /*
221 * the counter to account for memory usage
222 */
223 struct res_counter res;
224 /*
225 * the counter to account for mem+swap usage.
226 */
227 struct res_counter memsw;
228 /*
229 * Per cgroup active and inactive list, similar to the
230 * per zone LRU lists.
231 */
232 struct mem_cgroup_lru_info info;
233 /*
234 * While reclaiming in a hierarchy, we cache the last child we
235 * reclaimed from.
236 */
237 int last_scanned_child;
238 int last_scanned_node;
239#if MAX_NUMNODES > 1
240 nodemask_t scan_nodes;
241 atomic_t numainfo_events;
242 atomic_t numainfo_updating;
243#endif
244 /*
245 * Should the accounting and control be hierarchical, per subtree?
246 */
247 bool use_hierarchy;
248
249 bool oom_lock;
250 atomic_t under_oom;
251
252 atomic_t refcnt;
253
254 int swappiness;
255 /* OOM-Killer disable */
256 int oom_kill_disable;
257
258 /* set when res.limit == memsw.limit */
259 bool memsw_is_minimum;
260
261 /* protect arrays of thresholds */
262 struct mutex thresholds_lock;
263
264 /* thresholds for memory usage. RCU-protected */
265 struct mem_cgroup_thresholds thresholds;
266
267 /* thresholds for mem+swap usage. RCU-protected */
268 struct mem_cgroup_thresholds memsw_thresholds;
269
270 /* For oom notifier event fd */
271 struct list_head oom_notify;
272
273 /*
274 * Should we move charges of a task when a task is moved into this
275 * mem_cgroup ? And what type of charges should we move ?
276 */
277 unsigned long move_charge_at_immigrate;
278 /*
279 * percpu counter.
280 */
281 struct mem_cgroup_stat_cpu *stat;
282 /*
283 * used when a cpu is offlined or other synchronizations
284 * See mem_cgroup_read_stat().
285 */
286 struct mem_cgroup_stat_cpu nocpu_base;
287 spinlock_t pcp_counter_lock;
288};
289
290/* Stuffs for move charges at task migration. */
291/*
292 * Types of charges to be moved. "move_charge_at_immitgrate" is treated as a
293 * left-shifted bitmap of these types.
294 */
295enum move_type {
296 MOVE_CHARGE_TYPE_ANON, /* private anonymous page and swap of it */
297 MOVE_CHARGE_TYPE_FILE, /* file page(including tmpfs) and swap of it */
298 NR_MOVE_TYPE,
299};
300
301/* "mc" and its members are protected by cgroup_mutex */
302static struct move_charge_struct {
303 spinlock_t lock; /* for from, to */
304 struct mem_cgroup *from;
305 struct mem_cgroup *to;
306 unsigned long precharge;
307 unsigned long moved_charge;
308 unsigned long moved_swap;
309 struct task_struct *moving_task; /* a task moving charges */
310 wait_queue_head_t waitq; /* a waitq for other context */
311} mc = {
312 .lock = __SPIN_LOCK_UNLOCKED(mc.lock),
313 .waitq = __WAIT_QUEUE_HEAD_INITIALIZER(mc.waitq),
314};
315
316static bool move_anon(void)
317{
318 return test_bit(MOVE_CHARGE_TYPE_ANON,
319 &mc.to->move_charge_at_immigrate);
320}
321
322static bool move_file(void)
323{
324 return test_bit(MOVE_CHARGE_TYPE_FILE,
325 &mc.to->move_charge_at_immigrate);
326}
327
328/*
329 * Maximum loops in mem_cgroup_hierarchical_reclaim(), used for soft
330 * limit reclaim to prevent infinite loops, if they ever occur.
331 */
332#define MEM_CGROUP_MAX_RECLAIM_LOOPS (100)
333#define MEM_CGROUP_MAX_SOFT_LIMIT_RECLAIM_LOOPS (2)
334
335enum charge_type {
336 MEM_CGROUP_CHARGE_TYPE_CACHE = 0,
337 MEM_CGROUP_CHARGE_TYPE_MAPPED,
338 MEM_CGROUP_CHARGE_TYPE_SHMEM, /* used by page migration of shmem */
339 MEM_CGROUP_CHARGE_TYPE_FORCE, /* used by force_empty */
340 MEM_CGROUP_CHARGE_TYPE_SWAPOUT, /* for accounting swapcache */
341 MEM_CGROUP_CHARGE_TYPE_DROP, /* a page was unused swap cache */
342 NR_CHARGE_TYPE,
343};
344
345/* for encoding cft->private value on file */
346#define _MEM (0)
347#define _MEMSWAP (1)
348#define _OOM_TYPE (2)
349#define MEMFILE_PRIVATE(x, val) (((x) << 16) | (val))
350#define MEMFILE_TYPE(val) (((val) >> 16) & 0xffff)
351#define MEMFILE_ATTR(val) ((val) & 0xffff)
352/* Used for OOM nofiier */
353#define OOM_CONTROL (0)
354
355/*
356 * Reclaim flags for mem_cgroup_hierarchical_reclaim
357 */
358#define MEM_CGROUP_RECLAIM_NOSWAP_BIT 0x0
359#define MEM_CGROUP_RECLAIM_NOSWAP (1 << MEM_CGROUP_RECLAIM_NOSWAP_BIT)
360#define MEM_CGROUP_RECLAIM_SHRINK_BIT 0x1
361#define MEM_CGROUP_RECLAIM_SHRINK (1 << MEM_CGROUP_RECLAIM_SHRINK_BIT)
362#define MEM_CGROUP_RECLAIM_SOFT_BIT 0x2
363#define MEM_CGROUP_RECLAIM_SOFT (1 << MEM_CGROUP_RECLAIM_SOFT_BIT)
364
365static void mem_cgroup_get(struct mem_cgroup *mem);
366static void mem_cgroup_put(struct mem_cgroup *mem);
367static struct mem_cgroup *parent_mem_cgroup(struct mem_cgroup *mem);
368static void drain_all_stock_async(struct mem_cgroup *mem);
369
370static struct mem_cgroup_per_zone *
371mem_cgroup_zoneinfo(struct mem_cgroup *mem, int nid, int zid)
372{
373 return &mem->info.nodeinfo[nid]->zoneinfo[zid];
374}
375
376struct cgroup_subsys_state *mem_cgroup_css(struct mem_cgroup *mem)
377{
378 return &mem->css;
379}
380
381static struct mem_cgroup_per_zone *
382page_cgroup_zoneinfo(struct mem_cgroup *mem, struct page *page)
383{
384 int nid = page_to_nid(page);
385 int zid = page_zonenum(page);
386
387 return mem_cgroup_zoneinfo(mem, nid, zid);
388}
389
390static struct mem_cgroup_tree_per_zone *
391soft_limit_tree_node_zone(int nid, int zid)
392{
393 return &soft_limit_tree.rb_tree_per_node[nid]->rb_tree_per_zone[zid];
394}
395
396static struct mem_cgroup_tree_per_zone *
397soft_limit_tree_from_page(struct page *page)
398{
399 int nid = page_to_nid(page);
400 int zid = page_zonenum(page);
401
402 return &soft_limit_tree.rb_tree_per_node[nid]->rb_tree_per_zone[zid];
403}
404
405static void
406__mem_cgroup_insert_exceeded(struct mem_cgroup *mem,
407 struct mem_cgroup_per_zone *mz,
408 struct mem_cgroup_tree_per_zone *mctz,
409 unsigned long long new_usage_in_excess)
410{
411 struct rb_node **p = &mctz->rb_root.rb_node;
412 struct rb_node *parent = NULL;
413 struct mem_cgroup_per_zone *mz_node;
414
415 if (mz->on_tree)
416 return;
417
418 mz->usage_in_excess = new_usage_in_excess;
419 if (!mz->usage_in_excess)
420 return;
421 while (*p) {
422 parent = *p;
423 mz_node = rb_entry(parent, struct mem_cgroup_per_zone,
424 tree_node);
425 if (mz->usage_in_excess < mz_node->usage_in_excess)
426 p = &(*p)->rb_left;
427 /*
428 * We can't avoid mem cgroups that are over their soft
429 * limit by the same amount
430 */
431 else if (mz->usage_in_excess >= mz_node->usage_in_excess)
432 p = &(*p)->rb_right;
433 }
434 rb_link_node(&mz->tree_node, parent, p);
435 rb_insert_color(&mz->tree_node, &mctz->rb_root);
436 mz->on_tree = true;
437}
438
439static void
440__mem_cgroup_remove_exceeded(struct mem_cgroup *mem,
441 struct mem_cgroup_per_zone *mz,
442 struct mem_cgroup_tree_per_zone *mctz)
443{
444 if (!mz->on_tree)
445 return;
446 rb_erase(&mz->tree_node, &mctz->rb_root);
447 mz->on_tree = false;
448}
449
450static void
451mem_cgroup_remove_exceeded(struct mem_cgroup *mem,
452 struct mem_cgroup_per_zone *mz,
453 struct mem_cgroup_tree_per_zone *mctz)
454{
455 spin_lock(&mctz->lock);
456 __mem_cgroup_remove_exceeded(mem, mz, mctz);
457 spin_unlock(&mctz->lock);
458}
459
460
461static void mem_cgroup_update_tree(struct mem_cgroup *mem, struct page *page)
462{
463 unsigned long long excess;
464 struct mem_cgroup_per_zone *mz;
465 struct mem_cgroup_tree_per_zone *mctz;
466 int nid = page_to_nid(page);
467 int zid = page_zonenum(page);
468 mctz = soft_limit_tree_from_page(page);
469
470 /*
471 * Necessary to update all ancestors when hierarchy is used.
472 * because their event counter is not touched.
473 */
474 for (; mem; mem = parent_mem_cgroup(mem)) {
475 mz = mem_cgroup_zoneinfo(mem, nid, zid);
476 excess = res_counter_soft_limit_excess(&mem->res);
477 /*
478 * We have to update the tree if mz is on RB-tree or
479 * mem is over its softlimit.
480 */
481 if (excess || mz->on_tree) {
482 spin_lock(&mctz->lock);
483 /* if on-tree, remove it */
484 if (mz->on_tree)
485 __mem_cgroup_remove_exceeded(mem, mz, mctz);
486 /*
487 * Insert again. mz->usage_in_excess will be updated.
488 * If excess is 0, no tree ops.
489 */
490 __mem_cgroup_insert_exceeded(mem, mz, mctz, excess);
491 spin_unlock(&mctz->lock);
492 }
493 }
494}
495
496static void mem_cgroup_remove_from_trees(struct mem_cgroup *mem)
497{
498 int node, zone;
499 struct mem_cgroup_per_zone *mz;
500 struct mem_cgroup_tree_per_zone *mctz;
501
502 for_each_node_state(node, N_POSSIBLE) {
503 for (zone = 0; zone < MAX_NR_ZONES; zone++) {
504 mz = mem_cgroup_zoneinfo(mem, node, zone);
505 mctz = soft_limit_tree_node_zone(node, zone);
506 mem_cgroup_remove_exceeded(mem, mz, mctz);
507 }
508 }
509}
510
511static struct mem_cgroup_per_zone *
512__mem_cgroup_largest_soft_limit_node(struct mem_cgroup_tree_per_zone *mctz)
513{
514 struct rb_node *rightmost = NULL;
515 struct mem_cgroup_per_zone *mz;
516
517retry:
518 mz = NULL;
519 rightmost = rb_last(&mctz->rb_root);
520 if (!rightmost)
521 goto done; /* Nothing to reclaim from */
522
523 mz = rb_entry(rightmost, struct mem_cgroup_per_zone, tree_node);
524 /*
525 * Remove the node now but someone else can add it back,
526 * we will to add it back at the end of reclaim to its correct
527 * position in the tree.
528 */
529 __mem_cgroup_remove_exceeded(mz->mem, mz, mctz);
530 if (!res_counter_soft_limit_excess(&mz->mem->res) ||
531 !css_tryget(&mz->mem->css))
532 goto retry;
533done:
534 return mz;
535}
536
537static struct mem_cgroup_per_zone *
538mem_cgroup_largest_soft_limit_node(struct mem_cgroup_tree_per_zone *mctz)
539{
540 struct mem_cgroup_per_zone *mz;
541
542 spin_lock(&mctz->lock);
543 mz = __mem_cgroup_largest_soft_limit_node(mctz);
544 spin_unlock(&mctz->lock);
545 return mz;
546}
547
548/*
549 * Implementation Note: reading percpu statistics for memcg.
550 *
551 * Both of vmstat[] and percpu_counter has threshold and do periodic
552 * synchronization to implement "quick" read. There are trade-off between
553 * reading cost and precision of value. Then, we may have a chance to implement
554 * a periodic synchronizion of counter in memcg's counter.
555 *
556 * But this _read() function is used for user interface now. The user accounts
557 * memory usage by memory cgroup and he _always_ requires exact value because
558 * he accounts memory. Even if we provide quick-and-fuzzy read, we always
559 * have to visit all online cpus and make sum. So, for now, unnecessary
560 * synchronization is not implemented. (just implemented for cpu hotplug)
561 *
562 * If there are kernel internal actions which can make use of some not-exact
563 * value, and reading all cpu value can be performance bottleneck in some
564 * common workload, threashold and synchonization as vmstat[] should be
565 * implemented.
566 */
567static long mem_cgroup_read_stat(struct mem_cgroup *mem,
568 enum mem_cgroup_stat_index idx)
569{
570 long val = 0;
571 int cpu;
572
573 get_online_cpus();
574 for_each_online_cpu(cpu)
575 val += per_cpu(mem->stat->count[idx], cpu);
576#ifdef CONFIG_HOTPLUG_CPU
577 spin_lock(&mem->pcp_counter_lock);
578 val += mem->nocpu_base.count[idx];
579 spin_unlock(&mem->pcp_counter_lock);
580#endif
581 put_online_cpus();
582 return val;
583}
584
585static void mem_cgroup_swap_statistics(struct mem_cgroup *mem,
586 bool charge)
587{
588 int val = (charge) ? 1 : -1;
589 this_cpu_add(mem->stat->count[MEM_CGROUP_STAT_SWAPOUT], val);
590}
591
592void mem_cgroup_pgfault(struct mem_cgroup *mem, int val)
593{
594 this_cpu_add(mem->stat->events[MEM_CGROUP_EVENTS_PGFAULT], val);
595}
596
597void mem_cgroup_pgmajfault(struct mem_cgroup *mem, int val)
598{
599 this_cpu_add(mem->stat->events[MEM_CGROUP_EVENTS_PGMAJFAULT], val);
600}
601
602static unsigned long mem_cgroup_read_events(struct mem_cgroup *mem,
603 enum mem_cgroup_events_index idx)
604{
605 unsigned long val = 0;
606 int cpu;
607
608 for_each_online_cpu(cpu)
609 val += per_cpu(mem->stat->events[idx], cpu);
610#ifdef CONFIG_HOTPLUG_CPU
611 spin_lock(&mem->pcp_counter_lock);
612 val += mem->nocpu_base.events[idx];
613 spin_unlock(&mem->pcp_counter_lock);
614#endif
615 return val;
616}
617
618static void mem_cgroup_charge_statistics(struct mem_cgroup *mem,
619 bool file, int nr_pages)
620{
621 preempt_disable();
622
623 if (file)
624 __this_cpu_add(mem->stat->count[MEM_CGROUP_STAT_CACHE], nr_pages);
625 else
626 __this_cpu_add(mem->stat->count[MEM_CGROUP_STAT_RSS], nr_pages);
627
628 /* pagein of a big page is an event. So, ignore page size */
629 if (nr_pages > 0)
630 __this_cpu_inc(mem->stat->events[MEM_CGROUP_EVENTS_PGPGIN]);
631 else {
632 __this_cpu_inc(mem->stat->events[MEM_CGROUP_EVENTS_PGPGOUT]);
633 nr_pages = -nr_pages; /* for event */
634 }
635
636 __this_cpu_add(mem->stat->events[MEM_CGROUP_EVENTS_COUNT], nr_pages);
637
638 preempt_enable();
639}
640
641unsigned long
642mem_cgroup_zone_nr_lru_pages(struct mem_cgroup *mem, int nid, int zid,
643 unsigned int lru_mask)
644{
645 struct mem_cgroup_per_zone *mz;
646 enum lru_list l;
647 unsigned long ret = 0;
648
649 mz = mem_cgroup_zoneinfo(mem, nid, zid);
650
651 for_each_lru(l) {
652 if (BIT(l) & lru_mask)
653 ret += MEM_CGROUP_ZSTAT(mz, l);
654 }
655 return ret;
656}
657
658static unsigned long
659mem_cgroup_node_nr_lru_pages(struct mem_cgroup *mem,
660 int nid, unsigned int lru_mask)
661{
662 u64 total = 0;
663 int zid;
664
665 for (zid = 0; zid < MAX_NR_ZONES; zid++)
666 total += mem_cgroup_zone_nr_lru_pages(mem, nid, zid, lru_mask);
667
668 return total;
669}
670
671static unsigned long mem_cgroup_nr_lru_pages(struct mem_cgroup *mem,
672 unsigned int lru_mask)
673{
674 int nid;
675 u64 total = 0;
676
677 for_each_node_state(nid, N_HIGH_MEMORY)
678 total += mem_cgroup_node_nr_lru_pages(mem, nid, lru_mask);
679 return total;
680}
681
682static bool __memcg_event_check(struct mem_cgroup *mem, int target)
683{
684 unsigned long val, next;
685
686 val = this_cpu_read(mem->stat->events[MEM_CGROUP_EVENTS_COUNT]);
687 next = this_cpu_read(mem->stat->targets[target]);
688 /* from time_after() in jiffies.h */
689 return ((long)next - (long)val < 0);
690}
691
692static void __mem_cgroup_target_update(struct mem_cgroup *mem, int target)
693{
694 unsigned long val, next;
695
696 val = this_cpu_read(mem->stat->events[MEM_CGROUP_EVENTS_COUNT]);
697
698 switch (target) {
699 case MEM_CGROUP_TARGET_THRESH:
700 next = val + THRESHOLDS_EVENTS_TARGET;
701 break;
702 case MEM_CGROUP_TARGET_SOFTLIMIT:
703 next = val + SOFTLIMIT_EVENTS_TARGET;
704 break;
705 case MEM_CGROUP_TARGET_NUMAINFO:
706 next = val + NUMAINFO_EVENTS_TARGET;
707 break;
708 default:
709 return;
710 }
711
712 this_cpu_write(mem->stat->targets[target], next);
713}
714
715/*
716 * Check events in order.
717 *
718 */
719static void memcg_check_events(struct mem_cgroup *mem, struct page *page)
720{
721 /* threshold event is triggered in finer grain than soft limit */
722 if (unlikely(__memcg_event_check(mem, MEM_CGROUP_TARGET_THRESH))) {
723 mem_cgroup_threshold(mem);
724 __mem_cgroup_target_update(mem, MEM_CGROUP_TARGET_THRESH);
725 if (unlikely(__memcg_event_check(mem,
726 MEM_CGROUP_TARGET_SOFTLIMIT))) {
727 mem_cgroup_update_tree(mem, page);
728 __mem_cgroup_target_update(mem,
729 MEM_CGROUP_TARGET_SOFTLIMIT);
730 }
731#if MAX_NUMNODES > 1
732 if (unlikely(__memcg_event_check(mem,
733 MEM_CGROUP_TARGET_NUMAINFO))) {
734 atomic_inc(&mem->numainfo_events);
735 __mem_cgroup_target_update(mem,
736 MEM_CGROUP_TARGET_NUMAINFO);
737 }
738#endif
739 }
740}
741
742static struct mem_cgroup *mem_cgroup_from_cont(struct cgroup *cont)
743{
744 return container_of(cgroup_subsys_state(cont,
745 mem_cgroup_subsys_id), struct mem_cgroup,
746 css);
747}
748
749struct mem_cgroup *mem_cgroup_from_task(struct task_struct *p)
750{
751 /*
752 * mm_update_next_owner() may clear mm->owner to NULL
753 * if it races with swapoff, page migration, etc.
754 * So this can be called with p == NULL.
755 */
756 if (unlikely(!p))
757 return NULL;
758
759 return container_of(task_subsys_state(p, mem_cgroup_subsys_id),
760 struct mem_cgroup, css);
761}
762
763struct mem_cgroup *try_get_mem_cgroup_from_mm(struct mm_struct *mm)
764{
765 struct mem_cgroup *mem = NULL;
766
767 if (!mm)
768 return NULL;
769 /*
770 * Because we have no locks, mm->owner's may be being moved to other
771 * cgroup. We use css_tryget() here even if this looks
772 * pessimistic (rather than adding locks here).
773 */
774 rcu_read_lock();
775 do {
776 mem = mem_cgroup_from_task(rcu_dereference(mm->owner));
777 if (unlikely(!mem))
778 break;
779 } while (!css_tryget(&mem->css));
780 rcu_read_unlock();
781 return mem;
782}
783
784/* The caller has to guarantee "mem" exists before calling this */
785static struct mem_cgroup *mem_cgroup_start_loop(struct mem_cgroup *mem)
786{
787 struct cgroup_subsys_state *css;
788 int found;
789
790 if (!mem) /* ROOT cgroup has the smallest ID */
791 return root_mem_cgroup; /*css_put/get against root is ignored*/
792 if (!mem->use_hierarchy) {
793 if (css_tryget(&mem->css))
794 return mem;
795 return NULL;
796 }
797 rcu_read_lock();
798 /*
799 * searching a memory cgroup which has the smallest ID under given
800 * ROOT cgroup. (ID >= 1)
801 */
802 css = css_get_next(&mem_cgroup_subsys, 1, &mem->css, &found);
803 if (css && css_tryget(css))
804 mem = container_of(css, struct mem_cgroup, css);
805 else
806 mem = NULL;
807 rcu_read_unlock();
808 return mem;
809}
810
811static struct mem_cgroup *mem_cgroup_get_next(struct mem_cgroup *iter,
812 struct mem_cgroup *root,
813 bool cond)
814{
815 int nextid = css_id(&iter->css) + 1;
816 int found;
817 int hierarchy_used;
818 struct cgroup_subsys_state *css;
819
820 hierarchy_used = iter->use_hierarchy;
821
822 css_put(&iter->css);
823 /* If no ROOT, walk all, ignore hierarchy */
824 if (!cond || (root && !hierarchy_used))
825 return NULL;
826
827 if (!root)
828 root = root_mem_cgroup;
829
830 do {
831 iter = NULL;
832 rcu_read_lock();
833
834 css = css_get_next(&mem_cgroup_subsys, nextid,
835 &root->css, &found);
836 if (css && css_tryget(css))
837 iter = container_of(css, struct mem_cgroup, css);
838 rcu_read_unlock();
839 /* If css is NULL, no more cgroups will be found */
840 nextid = found + 1;
841 } while (css && !iter);
842
843 return iter;
844}
845/*
846 * for_eacn_mem_cgroup_tree() for visiting all cgroup under tree. Please
847 * be careful that "break" loop is not allowed. We have reference count.
848 * Instead of that modify "cond" to be false and "continue" to exit the loop.
849 */
850#define for_each_mem_cgroup_tree_cond(iter, root, cond) \
851 for (iter = mem_cgroup_start_loop(root);\
852 iter != NULL;\
853 iter = mem_cgroup_get_next(iter, root, cond))
854
855#define for_each_mem_cgroup_tree(iter, root) \
856 for_each_mem_cgroup_tree_cond(iter, root, true)
857
858#define for_each_mem_cgroup_all(iter) \
859 for_each_mem_cgroup_tree_cond(iter, NULL, true)
860
861
862static inline bool mem_cgroup_is_root(struct mem_cgroup *mem)
863{
864 return (mem == root_mem_cgroup);
865}
866
867void mem_cgroup_count_vm_event(struct mm_struct *mm, enum vm_event_item idx)
868{
869 struct mem_cgroup *mem;
870
871 if (!mm)
872 return;
873
874 rcu_read_lock();
875 mem = mem_cgroup_from_task(rcu_dereference(mm->owner));
876 if (unlikely(!mem))
877 goto out;
878
879 switch (idx) {
880 case PGMAJFAULT:
881 mem_cgroup_pgmajfault(mem, 1);
882 break;
883 case PGFAULT:
884 mem_cgroup_pgfault(mem, 1);
885 break;
886 default:
887 BUG();
888 }
889out:
890 rcu_read_unlock();
891}
892EXPORT_SYMBOL(mem_cgroup_count_vm_event);
893
894/*
895 * Following LRU functions are allowed to be used without PCG_LOCK.
896 * Operations are called by routine of global LRU independently from memcg.
897 * What we have to take care of here is validness of pc->mem_cgroup.
898 *
899 * Changes to pc->mem_cgroup happens when
900 * 1. charge
901 * 2. moving account
902 * In typical case, "charge" is done before add-to-lru. Exception is SwapCache.
903 * It is added to LRU before charge.
904 * If PCG_USED bit is not set, page_cgroup is not added to this private LRU.
905 * When moving account, the page is not on LRU. It's isolated.
906 */
907
908void mem_cgroup_del_lru_list(struct page *page, enum lru_list lru)
909{
910 struct page_cgroup *pc;
911 struct mem_cgroup_per_zone *mz;
912
913 if (mem_cgroup_disabled())
914 return;
915 pc = lookup_page_cgroup(page);
916 /* can happen while we handle swapcache. */
917 if (!TestClearPageCgroupAcctLRU(pc))
918 return;
919 VM_BUG_ON(!pc->mem_cgroup);
920 /*
921 * We don't check PCG_USED bit. It's cleared when the "page" is finally
922 * removed from global LRU.
923 */
924 mz = page_cgroup_zoneinfo(pc->mem_cgroup, page);
925 /* huge page split is done under lru_lock. so, we have no races. */
926 MEM_CGROUP_ZSTAT(mz, lru) -= 1 << compound_order(page);
927 if (mem_cgroup_is_root(pc->mem_cgroup))
928 return;
929 VM_BUG_ON(list_empty(&pc->lru));
930 list_del_init(&pc->lru);
931}
932
933void mem_cgroup_del_lru(struct page *page)
934{
935 mem_cgroup_del_lru_list(page, page_lru(page));
936}
937
938/*
939 * Writeback is about to end against a page which has been marked for immediate
940 * reclaim. If it still appears to be reclaimable, move it to the tail of the
941 * inactive list.
942 */
943void mem_cgroup_rotate_reclaimable_page(struct page *page)
944{
945 struct mem_cgroup_per_zone *mz;
946 struct page_cgroup *pc;
947 enum lru_list lru = page_lru(page);
948
949 if (mem_cgroup_disabled())
950 return;
951
952 pc = lookup_page_cgroup(page);
953 /* unused or root page is not rotated. */
954 if (!PageCgroupUsed(pc))
955 return;
956 /* Ensure pc->mem_cgroup is visible after reading PCG_USED. */
957 smp_rmb();
958 if (mem_cgroup_is_root(pc->mem_cgroup))
959 return;
960 mz = page_cgroup_zoneinfo(pc->mem_cgroup, page);
961 list_move_tail(&pc->lru, &mz->lists[lru]);
962}
963
964void mem_cgroup_rotate_lru_list(struct page *page, enum lru_list lru)
965{
966 struct mem_cgroup_per_zone *mz;
967 struct page_cgroup *pc;
968
969 if (mem_cgroup_disabled())
970 return;
971
972 pc = lookup_page_cgroup(page);
973 /* unused or root page is not rotated. */
974 if (!PageCgroupUsed(pc))
975 return;
976 /* Ensure pc->mem_cgroup is visible after reading PCG_USED. */
977 smp_rmb();
978 if (mem_cgroup_is_root(pc->mem_cgroup))
979 return;
980 mz = page_cgroup_zoneinfo(pc->mem_cgroup, page);
981 list_move(&pc->lru, &mz->lists[lru]);
982}
983
984void mem_cgroup_add_lru_list(struct page *page, enum lru_list lru)
985{
986 struct page_cgroup *pc;
987 struct mem_cgroup_per_zone *mz;
988
989 if (mem_cgroup_disabled())
990 return;
991 pc = lookup_page_cgroup(page);
992 VM_BUG_ON(PageCgroupAcctLRU(pc));
993 if (!PageCgroupUsed(pc))
994 return;
995 /* Ensure pc->mem_cgroup is visible after reading PCG_USED. */
996 smp_rmb();
997 mz = page_cgroup_zoneinfo(pc->mem_cgroup, page);
998 /* huge page split is done under lru_lock. so, we have no races. */
999 MEM_CGROUP_ZSTAT(mz, lru) += 1 << compound_order(page);
1000 SetPageCgroupAcctLRU(pc);
1001 if (mem_cgroup_is_root(pc->mem_cgroup))
1002 return;
1003 list_add(&pc->lru, &mz->lists[lru]);
1004}
1005
1006/*
1007 * At handling SwapCache and other FUSE stuff, pc->mem_cgroup may be changed
1008 * while it's linked to lru because the page may be reused after it's fully
1009 * uncharged. To handle that, unlink page_cgroup from LRU when charge it again.
1010 * It's done under lock_page and expected that zone->lru_lock isnever held.
1011 */
1012static void mem_cgroup_lru_del_before_commit(struct page *page)
1013{
1014 unsigned long flags;
1015 struct zone *zone = page_zone(page);
1016 struct page_cgroup *pc = lookup_page_cgroup(page);
1017
1018 /*
1019 * Doing this check without taking ->lru_lock seems wrong but this
1020 * is safe. Because if page_cgroup's USED bit is unset, the page
1021 * will not be added to any memcg's LRU. If page_cgroup's USED bit is
1022 * set, the commit after this will fail, anyway.
1023 * This all charge/uncharge is done under some mutual execustion.
1024 * So, we don't need to taking care of changes in USED bit.
1025 */
1026 if (likely(!PageLRU(page)))
1027 return;
1028
1029 spin_lock_irqsave(&zone->lru_lock, flags);
1030 /*
1031 * Forget old LRU when this page_cgroup is *not* used. This Used bit
1032 * is guarded by lock_page() because the page is SwapCache.
1033 */
1034 if (!PageCgroupUsed(pc))
1035 mem_cgroup_del_lru_list(page, page_lru(page));
1036 spin_unlock_irqrestore(&zone->lru_lock, flags);
1037}
1038
1039static void mem_cgroup_lru_add_after_commit(struct page *page)
1040{
1041 unsigned long flags;
1042 struct zone *zone = page_zone(page);
1043 struct page_cgroup *pc = lookup_page_cgroup(page);
1044
1045 /* taking care of that the page is added to LRU while we commit it */
1046 if (likely(!PageLRU(page)))
1047 return;
1048 spin_lock_irqsave(&zone->lru_lock, flags);
1049 /* link when the page is linked to LRU but page_cgroup isn't */
1050 if (PageLRU(page) && !PageCgroupAcctLRU(pc))
1051 mem_cgroup_add_lru_list(page, page_lru(page));
1052 spin_unlock_irqrestore(&zone->lru_lock, flags);
1053}
1054
1055
1056void mem_cgroup_move_lists(struct page *page,
1057 enum lru_list from, enum lru_list to)
1058{
1059 if (mem_cgroup_disabled())
1060 return;
1061 mem_cgroup_del_lru_list(page, from);
1062 mem_cgroup_add_lru_list(page, to);
1063}
1064
1065/*
1066 * Checks whether given mem is same or in the root_mem's
1067 * hierarchy subtree
1068 */
1069static bool mem_cgroup_same_or_subtree(const struct mem_cgroup *root_mem,
1070 struct mem_cgroup *mem)
1071{
1072 if (root_mem != mem) {
1073 return (root_mem->use_hierarchy &&
1074 css_is_ancestor(&mem->css, &root_mem->css));
1075 }
1076
1077 return true;
1078}
1079
1080int task_in_mem_cgroup(struct task_struct *task, const struct mem_cgroup *mem)
1081{
1082 int ret;
1083 struct mem_cgroup *curr = NULL;
1084 struct task_struct *p;
1085
1086 p = find_lock_task_mm(task);
1087 if (!p)
1088 return 0;
1089 curr = try_get_mem_cgroup_from_mm(p->mm);
1090 task_unlock(p);
1091 if (!curr)
1092 return 0;
1093 /*
1094 * We should check use_hierarchy of "mem" not "curr". Because checking
1095 * use_hierarchy of "curr" here make this function true if hierarchy is
1096 * enabled in "curr" and "curr" is a child of "mem" in *cgroup*
1097 * hierarchy(even if use_hierarchy is disabled in "mem").
1098 */
1099 ret = mem_cgroup_same_or_subtree(mem, curr);
1100 css_put(&curr->css);
1101 return ret;
1102}
1103
1104static int calc_inactive_ratio(struct mem_cgroup *memcg, unsigned long *present_pages)
1105{
1106 unsigned long active;
1107 unsigned long inactive;
1108 unsigned long gb;
1109 unsigned long inactive_ratio;
1110
1111 inactive = mem_cgroup_nr_lru_pages(memcg, BIT(LRU_INACTIVE_ANON));
1112 active = mem_cgroup_nr_lru_pages(memcg, BIT(LRU_ACTIVE_ANON));
1113
1114 gb = (inactive + active) >> (30 - PAGE_SHIFT);
1115 if (gb)
1116 inactive_ratio = int_sqrt(10 * gb);
1117 else
1118 inactive_ratio = 1;
1119
1120 if (present_pages) {
1121 present_pages[0] = inactive;
1122 present_pages[1] = active;
1123 }
1124
1125 return inactive_ratio;
1126}
1127
1128int mem_cgroup_inactive_anon_is_low(struct mem_cgroup *memcg)
1129{
1130 unsigned long active;
1131 unsigned long inactive;
1132 unsigned long present_pages[2];
1133 unsigned long inactive_ratio;
1134
1135 inactive_ratio = calc_inactive_ratio(memcg, present_pages);
1136
1137 inactive = present_pages[0];
1138 active = present_pages[1];
1139
1140 if (inactive * inactive_ratio < active)
1141 return 1;
1142
1143 return 0;
1144}
1145
1146int mem_cgroup_inactive_file_is_low(struct mem_cgroup *memcg)
1147{
1148 unsigned long active;
1149 unsigned long inactive;
1150
1151 inactive = mem_cgroup_nr_lru_pages(memcg, BIT(LRU_INACTIVE_FILE));
1152 active = mem_cgroup_nr_lru_pages(memcg, BIT(LRU_ACTIVE_FILE));
1153
1154 return (active > inactive);
1155}
1156
1157struct zone_reclaim_stat *mem_cgroup_get_reclaim_stat(struct mem_cgroup *memcg,
1158 struct zone *zone)
1159{
1160 int nid = zone_to_nid(zone);
1161 int zid = zone_idx(zone);
1162 struct mem_cgroup_per_zone *mz = mem_cgroup_zoneinfo(memcg, nid, zid);
1163
1164 return &mz->reclaim_stat;
1165}
1166
1167struct zone_reclaim_stat *
1168mem_cgroup_get_reclaim_stat_from_page(struct page *page)
1169{
1170 struct page_cgroup *pc;
1171 struct mem_cgroup_per_zone *mz;
1172
1173 if (mem_cgroup_disabled())
1174 return NULL;
1175
1176 pc = lookup_page_cgroup(page);
1177 if (!PageCgroupUsed(pc))
1178 return NULL;
1179 /* Ensure pc->mem_cgroup is visible after reading PCG_USED. */
1180 smp_rmb();
1181 mz = page_cgroup_zoneinfo(pc->mem_cgroup, page);
1182 return &mz->reclaim_stat;
1183}
1184
1185unsigned long mem_cgroup_isolate_pages(unsigned long nr_to_scan,
1186 struct list_head *dst,
1187 unsigned long *scanned, int order,
1188 int mode, struct zone *z,
1189 struct mem_cgroup *mem_cont,
1190 int active, int file)
1191{
1192 unsigned long nr_taken = 0;
1193 struct page *page;
1194 unsigned long scan;
1195 LIST_HEAD(pc_list);
1196 struct list_head *src;
1197 struct page_cgroup *pc, *tmp;
1198 int nid = zone_to_nid(z);
1199 int zid = zone_idx(z);
1200 struct mem_cgroup_per_zone *mz;
1201 int lru = LRU_FILE * file + active;
1202 int ret;
1203
1204 BUG_ON(!mem_cont);
1205 mz = mem_cgroup_zoneinfo(mem_cont, nid, zid);
1206 src = &mz->lists[lru];
1207
1208 scan = 0;
1209 list_for_each_entry_safe_reverse(pc, tmp, src, lru) {
1210 if (scan >= nr_to_scan)
1211 break;
1212
1213 if (unlikely(!PageCgroupUsed(pc)))
1214 continue;
1215
1216 page = lookup_cgroup_page(pc);
1217
1218 if (unlikely(!PageLRU(page)))
1219 continue;
1220
1221 scan++;
1222 ret = __isolate_lru_page(page, mode, file);
1223 switch (ret) {
1224 case 0:
1225 list_move(&page->lru, dst);
1226 mem_cgroup_del_lru(page);
1227 nr_taken += hpage_nr_pages(page);
1228 break;
1229 case -EBUSY:
1230 /* we don't affect global LRU but rotate in our LRU */
1231 mem_cgroup_rotate_lru_list(page, page_lru(page));
1232 break;
1233 default:
1234 break;
1235 }
1236 }
1237
1238 *scanned = scan;
1239
1240 trace_mm_vmscan_memcg_isolate(0, nr_to_scan, scan, nr_taken,
1241 0, 0, 0, mode);
1242
1243 return nr_taken;
1244}
1245
1246#define mem_cgroup_from_res_counter(counter, member) \
1247 container_of(counter, struct mem_cgroup, member)
1248
1249/**
1250 * mem_cgroup_margin - calculate chargeable space of a memory cgroup
1251 * @mem: the memory cgroup
1252 *
1253 * Returns the maximum amount of memory @mem can be charged with, in
1254 * pages.
1255 */
1256static unsigned long mem_cgroup_margin(struct mem_cgroup *mem)
1257{
1258 unsigned long long margin;
1259
1260 margin = res_counter_margin(&mem->res);
1261 if (do_swap_account)
1262 margin = min(margin, res_counter_margin(&mem->memsw));
1263 return margin >> PAGE_SHIFT;
1264}
1265
1266int mem_cgroup_swappiness(struct mem_cgroup *memcg)
1267{
1268 struct cgroup *cgrp = memcg->css.cgroup;
1269
1270 /* root ? */
1271 if (cgrp->parent == NULL)
1272 return vm_swappiness;
1273
1274 return memcg->swappiness;
1275}
1276
1277static void mem_cgroup_start_move(struct mem_cgroup *mem)
1278{
1279 int cpu;
1280
1281 get_online_cpus();
1282 spin_lock(&mem->pcp_counter_lock);
1283 for_each_online_cpu(cpu)
1284 per_cpu(mem->stat->count[MEM_CGROUP_ON_MOVE], cpu) += 1;
1285 mem->nocpu_base.count[MEM_CGROUP_ON_MOVE] += 1;
1286 spin_unlock(&mem->pcp_counter_lock);
1287 put_online_cpus();
1288
1289 synchronize_rcu();
1290}
1291
1292static void mem_cgroup_end_move(struct mem_cgroup *mem)
1293{
1294 int cpu;
1295
1296 if (!mem)
1297 return;
1298 get_online_cpus();
1299 spin_lock(&mem->pcp_counter_lock);
1300 for_each_online_cpu(cpu)
1301 per_cpu(mem->stat->count[MEM_CGROUP_ON_MOVE], cpu) -= 1;
1302 mem->nocpu_base.count[MEM_CGROUP_ON_MOVE] -= 1;
1303 spin_unlock(&mem->pcp_counter_lock);
1304 put_online_cpus();
1305}
1306/*
1307 * 2 routines for checking "mem" is under move_account() or not.
1308 *
1309 * mem_cgroup_stealed() - checking a cgroup is mc.from or not. This is used
1310 * for avoiding race in accounting. If true,
1311 * pc->mem_cgroup may be overwritten.
1312 *
1313 * mem_cgroup_under_move() - checking a cgroup is mc.from or mc.to or
1314 * under hierarchy of moving cgroups. This is for
1315 * waiting at hith-memory prressure caused by "move".
1316 */
1317
1318static bool mem_cgroup_stealed(struct mem_cgroup *mem)
1319{
1320 VM_BUG_ON(!rcu_read_lock_held());
1321 return this_cpu_read(mem->stat->count[MEM_CGROUP_ON_MOVE]) > 0;
1322}
1323
1324static bool mem_cgroup_under_move(struct mem_cgroup *mem)
1325{
1326 struct mem_cgroup *from;
1327 struct mem_cgroup *to;
1328 bool ret = false;
1329 /*
1330 * Unlike task_move routines, we access mc.to, mc.from not under
1331 * mutual exclusion by cgroup_mutex. Here, we take spinlock instead.
1332 */
1333 spin_lock(&mc.lock);
1334 from = mc.from;
1335 to = mc.to;
1336 if (!from)
1337 goto unlock;
1338
1339 ret = mem_cgroup_same_or_subtree(mem, from)
1340 || mem_cgroup_same_or_subtree(mem, to);
1341unlock:
1342 spin_unlock(&mc.lock);
1343 return ret;
1344}
1345
1346static bool mem_cgroup_wait_acct_move(struct mem_cgroup *mem)
1347{
1348 if (mc.moving_task && current != mc.moving_task) {
1349 if (mem_cgroup_under_move(mem)) {
1350 DEFINE_WAIT(wait);
1351 prepare_to_wait(&mc.waitq, &wait, TASK_INTERRUPTIBLE);
1352 /* moving charge context might have finished. */
1353 if (mc.moving_task)
1354 schedule();
1355 finish_wait(&mc.waitq, &wait);
1356 return true;
1357 }
1358 }
1359 return false;
1360}
1361
1362/**
1363 * mem_cgroup_print_oom_info: Called from OOM with tasklist_lock held in read mode.
1364 * @memcg: The memory cgroup that went over limit
1365 * @p: Task that is going to be killed
1366 *
1367 * NOTE: @memcg and @p's mem_cgroup can be different when hierarchy is
1368 * enabled
1369 */
1370void mem_cgroup_print_oom_info(struct mem_cgroup *memcg, struct task_struct *p)
1371{
1372 struct cgroup *task_cgrp;
1373 struct cgroup *mem_cgrp;
1374 /*
1375 * Need a buffer in BSS, can't rely on allocations. The code relies
1376 * on the assumption that OOM is serialized for memory controller.
1377 * If this assumption is broken, revisit this code.
1378 */
1379 static char memcg_name[PATH_MAX];
1380 int ret;
1381
1382 if (!memcg || !p)
1383 return;
1384
1385
1386 rcu_read_lock();
1387
1388 mem_cgrp = memcg->css.cgroup;
1389 task_cgrp = task_cgroup(p, mem_cgroup_subsys_id);
1390
1391 ret = cgroup_path(task_cgrp, memcg_name, PATH_MAX);
1392 if (ret < 0) {
1393 /*
1394 * Unfortunately, we are unable to convert to a useful name
1395 * But we'll still print out the usage information
1396 */
1397 rcu_read_unlock();
1398 goto done;
1399 }
1400 rcu_read_unlock();
1401
1402 printk(KERN_INFO "Task in %s killed", memcg_name);
1403
1404 rcu_read_lock();
1405 ret = cgroup_path(mem_cgrp, memcg_name, PATH_MAX);
1406 if (ret < 0) {
1407 rcu_read_unlock();
1408 goto done;
1409 }
1410 rcu_read_unlock();
1411
1412 /*
1413 * Continues from above, so we don't need an KERN_ level
1414 */
1415 printk(KERN_CONT " as a result of limit of %s\n", memcg_name);
1416done:
1417
1418 printk(KERN_INFO "memory: usage %llukB, limit %llukB, failcnt %llu\n",
1419 res_counter_read_u64(&memcg->res, RES_USAGE) >> 10,
1420 res_counter_read_u64(&memcg->res, RES_LIMIT) >> 10,
1421 res_counter_read_u64(&memcg->res, RES_FAILCNT));
1422 printk(KERN_INFO "memory+swap: usage %llukB, limit %llukB, "
1423 "failcnt %llu\n",
1424 res_counter_read_u64(&memcg->memsw, RES_USAGE) >> 10,
1425 res_counter_read_u64(&memcg->memsw, RES_LIMIT) >> 10,
1426 res_counter_read_u64(&memcg->memsw, RES_FAILCNT));
1427}
1428
1429/*
1430 * This function returns the number of memcg under hierarchy tree. Returns
1431 * 1(self count) if no children.
1432 */
1433static int mem_cgroup_count_children(struct mem_cgroup *mem)
1434{
1435 int num = 0;
1436 struct mem_cgroup *iter;
1437
1438 for_each_mem_cgroup_tree(iter, mem)
1439 num++;
1440 return num;
1441}
1442
1443/*
1444 * Return the memory (and swap, if configured) limit for a memcg.
1445 */
1446u64 mem_cgroup_get_limit(struct mem_cgroup *memcg)
1447{
1448 u64 limit;
1449 u64 memsw;
1450
1451 limit = res_counter_read_u64(&memcg->res, RES_LIMIT);
1452 limit += total_swap_pages << PAGE_SHIFT;
1453
1454 memsw = res_counter_read_u64(&memcg->memsw, RES_LIMIT);
1455 /*
1456 * If memsw is finite and limits the amount of swap space available
1457 * to this memcg, return that limit.
1458 */
1459 return min(limit, memsw);
1460}
1461
1462/*
1463 * Visit the first child (need not be the first child as per the ordering
1464 * of the cgroup list, since we track last_scanned_child) of @mem and use
1465 * that to reclaim free pages from.
1466 */
1467static struct mem_cgroup *
1468mem_cgroup_select_victim(struct mem_cgroup *root_mem)
1469{
1470 struct mem_cgroup *ret = NULL;
1471 struct cgroup_subsys_state *css;
1472 int nextid, found;
1473
1474 if (!root_mem->use_hierarchy) {
1475 css_get(&root_mem->css);
1476 ret = root_mem;
1477 }
1478
1479 while (!ret) {
1480 rcu_read_lock();
1481 nextid = root_mem->last_scanned_child + 1;
1482 css = css_get_next(&mem_cgroup_subsys, nextid, &root_mem->css,
1483 &found);
1484 if (css && css_tryget(css))
1485 ret = container_of(css, struct mem_cgroup, css);
1486
1487 rcu_read_unlock();
1488 /* Updates scanning parameter */
1489 if (!css) {
1490 /* this means start scan from ID:1 */
1491 root_mem->last_scanned_child = 0;
1492 } else
1493 root_mem->last_scanned_child = found;
1494 }
1495
1496 return ret;
1497}
1498
1499/**
1500 * test_mem_cgroup_node_reclaimable
1501 * @mem: the target memcg
1502 * @nid: the node ID to be checked.
1503 * @noswap : specify true here if the user wants flle only information.
1504 *
1505 * This function returns whether the specified memcg contains any
1506 * reclaimable pages on a node. Returns true if there are any reclaimable
1507 * pages in the node.
1508 */
1509static bool test_mem_cgroup_node_reclaimable(struct mem_cgroup *mem,
1510 int nid, bool noswap)
1511{
1512 if (mem_cgroup_node_nr_lru_pages(mem, nid, LRU_ALL_FILE))
1513 return true;
1514 if (noswap || !total_swap_pages)
1515 return false;
1516 if (mem_cgroup_node_nr_lru_pages(mem, nid, LRU_ALL_ANON))
1517 return true;
1518 return false;
1519
1520}
1521#if MAX_NUMNODES > 1
1522
1523/*
1524 * Always updating the nodemask is not very good - even if we have an empty
1525 * list or the wrong list here, we can start from some node and traverse all
1526 * nodes based on the zonelist. So update the list loosely once per 10 secs.
1527 *
1528 */
1529static void mem_cgroup_may_update_nodemask(struct mem_cgroup *mem)
1530{
1531 int nid;
1532 /*
1533 * numainfo_events > 0 means there was at least NUMAINFO_EVENTS_TARGET
1534 * pagein/pageout changes since the last update.
1535 */
1536 if (!atomic_read(&mem->numainfo_events))
1537 return;
1538 if (atomic_inc_return(&mem->numainfo_updating) > 1)
1539 return;
1540
1541 /* make a nodemask where this memcg uses memory from */
1542 mem->scan_nodes = node_states[N_HIGH_MEMORY];
1543
1544 for_each_node_mask(nid, node_states[N_HIGH_MEMORY]) {
1545
1546 if (!test_mem_cgroup_node_reclaimable(mem, nid, false))
1547 node_clear(nid, mem->scan_nodes);
1548 }
1549
1550 atomic_set(&mem->numainfo_events, 0);
1551 atomic_set(&mem->numainfo_updating, 0);
1552}
1553
1554/*
1555 * Selecting a node where we start reclaim from. Because what we need is just
1556 * reducing usage counter, start from anywhere is O,K. Considering
1557 * memory reclaim from current node, there are pros. and cons.
1558 *
1559 * Freeing memory from current node means freeing memory from a node which
1560 * we'll use or we've used. So, it may make LRU bad. And if several threads
1561 * hit limits, it will see a contention on a node. But freeing from remote
1562 * node means more costs for memory reclaim because of memory latency.
1563 *
1564 * Now, we use round-robin. Better algorithm is welcomed.
1565 */
1566int mem_cgroup_select_victim_node(struct mem_cgroup *mem)
1567{
1568 int node;
1569
1570 mem_cgroup_may_update_nodemask(mem);
1571 node = mem->last_scanned_node;
1572
1573 node = next_node(node, mem->scan_nodes);
1574 if (node == MAX_NUMNODES)
1575 node = first_node(mem->scan_nodes);
1576 /*
1577 * We call this when we hit limit, not when pages are added to LRU.
1578 * No LRU may hold pages because all pages are UNEVICTABLE or
1579 * memcg is too small and all pages are not on LRU. In that case,
1580 * we use curret node.
1581 */
1582 if (unlikely(node == MAX_NUMNODES))
1583 node = numa_node_id();
1584
1585 mem->last_scanned_node = node;
1586 return node;
1587}
1588
1589/*
1590 * Check all nodes whether it contains reclaimable pages or not.
1591 * For quick scan, we make use of scan_nodes. This will allow us to skip
1592 * unused nodes. But scan_nodes is lazily updated and may not cotain
1593 * enough new information. We need to do double check.
1594 */
1595bool mem_cgroup_reclaimable(struct mem_cgroup *mem, bool noswap)
1596{
1597 int nid;
1598
1599 /*
1600 * quick check...making use of scan_node.
1601 * We can skip unused nodes.
1602 */
1603 if (!nodes_empty(mem->scan_nodes)) {
1604 for (nid = first_node(mem->scan_nodes);
1605 nid < MAX_NUMNODES;
1606 nid = next_node(nid, mem->scan_nodes)) {
1607
1608 if (test_mem_cgroup_node_reclaimable(mem, nid, noswap))
1609 return true;
1610 }
1611 }
1612 /*
1613 * Check rest of nodes.
1614 */
1615 for_each_node_state(nid, N_HIGH_MEMORY) {
1616 if (node_isset(nid, mem->scan_nodes))
1617 continue;
1618 if (test_mem_cgroup_node_reclaimable(mem, nid, noswap))
1619 return true;
1620 }
1621 return false;
1622}
1623
1624#else
1625int mem_cgroup_select_victim_node(struct mem_cgroup *mem)
1626{
1627 return 0;
1628}
1629
1630bool mem_cgroup_reclaimable(struct mem_cgroup *mem, bool noswap)
1631{
1632 return test_mem_cgroup_node_reclaimable(mem, 0, noswap);
1633}
1634#endif
1635
1636/*
1637 * Scan the hierarchy if needed to reclaim memory. We remember the last child
1638 * we reclaimed from, so that we don't end up penalizing one child extensively
1639 * based on its position in the children list.
1640 *
1641 * root_mem is the original ancestor that we've been reclaim from.
1642 *
1643 * We give up and return to the caller when we visit root_mem twice.
1644 * (other groups can be removed while we're walking....)
1645 *
1646 * If shrink==true, for avoiding to free too much, this returns immedieately.
1647 */
1648static int mem_cgroup_hierarchical_reclaim(struct mem_cgroup *root_mem,
1649 struct zone *zone,
1650 gfp_t gfp_mask,
1651 unsigned long reclaim_options,
1652 unsigned long *total_scanned)
1653{
1654 struct mem_cgroup *victim;
1655 int ret, total = 0;
1656 int loop = 0;
1657 bool noswap = reclaim_options & MEM_CGROUP_RECLAIM_NOSWAP;
1658 bool shrink = reclaim_options & MEM_CGROUP_RECLAIM_SHRINK;
1659 bool check_soft = reclaim_options & MEM_CGROUP_RECLAIM_SOFT;
1660 unsigned long excess;
1661 unsigned long nr_scanned;
1662
1663 excess = res_counter_soft_limit_excess(&root_mem->res) >> PAGE_SHIFT;
1664
1665 /* If memsw_is_minimum==1, swap-out is of-no-use. */
1666 if (!check_soft && !shrink && root_mem->memsw_is_minimum)
1667 noswap = true;
1668
1669 while (1) {
1670 victim = mem_cgroup_select_victim(root_mem);
1671 if (victim == root_mem) {
1672 loop++;
1673 /*
1674 * We are not draining per cpu cached charges during
1675 * soft limit reclaim because global reclaim doesn't
1676 * care about charges. It tries to free some memory and
1677 * charges will not give any.
1678 */
1679 if (!check_soft && loop >= 1)
1680 drain_all_stock_async(root_mem);
1681 if (loop >= 2) {
1682 /*
1683 * If we have not been able to reclaim
1684 * anything, it might because there are
1685 * no reclaimable pages under this hierarchy
1686 */
1687 if (!check_soft || !total) {
1688 css_put(&victim->css);
1689 break;
1690 }
1691 /*
1692 * We want to do more targeted reclaim.
1693 * excess >> 2 is not to excessive so as to
1694 * reclaim too much, nor too less that we keep
1695 * coming back to reclaim from this cgroup
1696 */
1697 if (total >= (excess >> 2) ||
1698 (loop > MEM_CGROUP_MAX_RECLAIM_LOOPS)) {
1699 css_put(&victim->css);
1700 break;
1701 }
1702 }
1703 }
1704 if (!mem_cgroup_reclaimable(victim, noswap)) {
1705 /* this cgroup's local usage == 0 */
1706 css_put(&victim->css);
1707 continue;
1708 }
1709 /* we use swappiness of local cgroup */
1710 if (check_soft) {
1711 ret = mem_cgroup_shrink_node_zone(victim, gfp_mask,
1712 noswap, zone, &nr_scanned);
1713 *total_scanned += nr_scanned;
1714 } else
1715 ret = try_to_free_mem_cgroup_pages(victim, gfp_mask,
1716 noswap);
1717 css_put(&victim->css);
1718 /*
1719 * At shrinking usage, we can't check we should stop here or
1720 * reclaim more. It's depends on callers. last_scanned_child
1721 * will work enough for keeping fairness under tree.
1722 */
1723 if (shrink)
1724 return ret;
1725 total += ret;
1726 if (check_soft) {
1727 if (!res_counter_soft_limit_excess(&root_mem->res))
1728 return total;
1729 } else if (mem_cgroup_margin(root_mem))
1730 return total;
1731 }
1732 return total;
1733}
1734
1735/*
1736 * Check OOM-Killer is already running under our hierarchy.
1737 * If someone is running, return false.
1738 * Has to be called with memcg_oom_lock
1739 */
1740static bool mem_cgroup_oom_lock(struct mem_cgroup *mem)
1741{
1742 struct mem_cgroup *iter, *failed = NULL;
1743 bool cond = true;
1744
1745 for_each_mem_cgroup_tree_cond(iter, mem, cond) {
1746 if (iter->oom_lock) {
1747 /*
1748 * this subtree of our hierarchy is already locked
1749 * so we cannot give a lock.
1750 */
1751 failed = iter;
1752 cond = false;
1753 } else
1754 iter->oom_lock = true;
1755 }
1756
1757 if (!failed)
1758 return true;
1759
1760 /*
1761 * OK, we failed to lock the whole subtree so we have to clean up
1762 * what we set up to the failing subtree
1763 */
1764 cond = true;
1765 for_each_mem_cgroup_tree_cond(iter, mem, cond) {
1766 if (iter == failed) {
1767 cond = false;
1768 continue;
1769 }
1770 iter->oom_lock = false;
1771 }
1772 return false;
1773}
1774
1775/*
1776 * Has to be called with memcg_oom_lock
1777 */
1778static int mem_cgroup_oom_unlock(struct mem_cgroup *mem)
1779{
1780 struct mem_cgroup *iter;
1781
1782 for_each_mem_cgroup_tree(iter, mem)
1783 iter->oom_lock = false;
1784 return 0;
1785}
1786
1787static void mem_cgroup_mark_under_oom(struct mem_cgroup *mem)
1788{
1789 struct mem_cgroup *iter;
1790
1791 for_each_mem_cgroup_tree(iter, mem)
1792 atomic_inc(&iter->under_oom);
1793}
1794
1795static void mem_cgroup_unmark_under_oom(struct mem_cgroup *mem)
1796{
1797 struct mem_cgroup *iter;
1798
1799 /*
1800 * When a new child is created while the hierarchy is under oom,
1801 * mem_cgroup_oom_lock() may not be called. We have to use
1802 * atomic_add_unless() here.
1803 */
1804 for_each_mem_cgroup_tree(iter, mem)
1805 atomic_add_unless(&iter->under_oom, -1, 0);
1806}
1807
1808static DEFINE_SPINLOCK(memcg_oom_lock);
1809static DECLARE_WAIT_QUEUE_HEAD(memcg_oom_waitq);
1810
1811struct oom_wait_info {
1812 struct mem_cgroup *mem;
1813 wait_queue_t wait;
1814};
1815
1816static int memcg_oom_wake_function(wait_queue_t *wait,
1817 unsigned mode, int sync, void *arg)
1818{
1819 struct mem_cgroup *wake_mem = (struct mem_cgroup *)arg,
1820 *oom_wait_mem;
1821 struct oom_wait_info *oom_wait_info;
1822
1823 oom_wait_info = container_of(wait, struct oom_wait_info, wait);
1824 oom_wait_mem = oom_wait_info->mem;
1825
1826 /*
1827 * Both of oom_wait_info->mem and wake_mem are stable under us.
1828 * Then we can use css_is_ancestor without taking care of RCU.
1829 */
1830 if (!mem_cgroup_same_or_subtree(oom_wait_mem, wake_mem)
1831 && !mem_cgroup_same_or_subtree(wake_mem, oom_wait_mem))
1832 return 0;
1833 return autoremove_wake_function(wait, mode, sync, arg);
1834}
1835
1836static void memcg_wakeup_oom(struct mem_cgroup *mem)
1837{
1838 /* for filtering, pass "mem" as argument. */
1839 __wake_up(&memcg_oom_waitq, TASK_NORMAL, 0, mem);
1840}
1841
1842static void memcg_oom_recover(struct mem_cgroup *mem)
1843{
1844 if (mem && atomic_read(&mem->under_oom))
1845 memcg_wakeup_oom(mem);
1846}
1847
1848/*
1849 * try to call OOM killer. returns false if we should exit memory-reclaim loop.
1850 */
1851bool mem_cgroup_handle_oom(struct mem_cgroup *mem, gfp_t mask)
1852{
1853 struct oom_wait_info owait;
1854 bool locked, need_to_kill;
1855
1856 owait.mem = mem;
1857 owait.wait.flags = 0;
1858 owait.wait.func = memcg_oom_wake_function;
1859 owait.wait.private = current;
1860 INIT_LIST_HEAD(&owait.wait.task_list);
1861 need_to_kill = true;
1862 mem_cgroup_mark_under_oom(mem);
1863
1864 /* At first, try to OOM lock hierarchy under mem.*/
1865 spin_lock(&memcg_oom_lock);
1866 locked = mem_cgroup_oom_lock(mem);
1867 /*
1868 * Even if signal_pending(), we can't quit charge() loop without
1869 * accounting. So, UNINTERRUPTIBLE is appropriate. But SIGKILL
1870 * under OOM is always welcomed, use TASK_KILLABLE here.
1871 */
1872 prepare_to_wait(&memcg_oom_waitq, &owait.wait, TASK_KILLABLE);
1873 if (!locked || mem->oom_kill_disable)
1874 need_to_kill = false;
1875 if (locked)
1876 mem_cgroup_oom_notify(mem);
1877 spin_unlock(&memcg_oom_lock);
1878
1879 if (need_to_kill) {
1880 finish_wait(&memcg_oom_waitq, &owait.wait);
1881 mem_cgroup_out_of_memory(mem, mask);
1882 } else {
1883 schedule();
1884 finish_wait(&memcg_oom_waitq, &owait.wait);
1885 }
1886 spin_lock(&memcg_oom_lock);
1887 if (locked)
1888 mem_cgroup_oom_unlock(mem);
1889 memcg_wakeup_oom(mem);
1890 spin_unlock(&memcg_oom_lock);
1891
1892 mem_cgroup_unmark_under_oom(mem);
1893
1894 if (test_thread_flag(TIF_MEMDIE) || fatal_signal_pending(current))
1895 return false;
1896 /* Give chance to dying process */
1897 schedule_timeout(1);
1898 return true;
1899}
1900
1901/*
1902 * Currently used to update mapped file statistics, but the routine can be
1903 * generalized to update other statistics as well.
1904 *
1905 * Notes: Race condition
1906 *
1907 * We usually use page_cgroup_lock() for accessing page_cgroup member but
1908 * it tends to be costly. But considering some conditions, we doesn't need
1909 * to do so _always_.
1910 *
1911 * Considering "charge", lock_page_cgroup() is not required because all
1912 * file-stat operations happen after a page is attached to radix-tree. There
1913 * are no race with "charge".
1914 *
1915 * Considering "uncharge", we know that memcg doesn't clear pc->mem_cgroup
1916 * at "uncharge" intentionally. So, we always see valid pc->mem_cgroup even
1917 * if there are race with "uncharge". Statistics itself is properly handled
1918 * by flags.
1919 *
1920 * Considering "move", this is an only case we see a race. To make the race
1921 * small, we check MEM_CGROUP_ON_MOVE percpu value and detect there are
1922 * possibility of race condition. If there is, we take a lock.
1923 */
1924
1925void mem_cgroup_update_page_stat(struct page *page,
1926 enum mem_cgroup_page_stat_item idx, int val)
1927{
1928 struct mem_cgroup *mem;
1929 struct page_cgroup *pc = lookup_page_cgroup(page);
1930 bool need_unlock = false;
1931 unsigned long uninitialized_var(flags);
1932
1933 if (unlikely(!pc))
1934 return;
1935
1936 rcu_read_lock();
1937 mem = pc->mem_cgroup;
1938 if (unlikely(!mem || !PageCgroupUsed(pc)))
1939 goto out;
1940 /* pc->mem_cgroup is unstable ? */
1941 if (unlikely(mem_cgroup_stealed(mem)) || PageTransHuge(page)) {
1942 /* take a lock against to access pc->mem_cgroup */
1943 move_lock_page_cgroup(pc, &flags);
1944 need_unlock = true;
1945 mem = pc->mem_cgroup;
1946 if (!mem || !PageCgroupUsed(pc))
1947 goto out;
1948 }
1949
1950 switch (idx) {
1951 case MEMCG_NR_FILE_MAPPED:
1952 if (val > 0)
1953 SetPageCgroupFileMapped(pc);
1954 else if (!page_mapped(page))
1955 ClearPageCgroupFileMapped(pc);
1956 idx = MEM_CGROUP_STAT_FILE_MAPPED;
1957 break;
1958 default:
1959 BUG();
1960 }
1961
1962 this_cpu_add(mem->stat->count[idx], val);
1963
1964out:
1965 if (unlikely(need_unlock))
1966 move_unlock_page_cgroup(pc, &flags);
1967 rcu_read_unlock();
1968 return;
1969}
1970EXPORT_SYMBOL(mem_cgroup_update_page_stat);
1971
1972/*
1973 * size of first charge trial. "32" comes from vmscan.c's magic value.
1974 * TODO: maybe necessary to use big numbers in big irons.
1975 */
1976#define CHARGE_BATCH 32U
1977struct memcg_stock_pcp {
1978 struct mem_cgroup *cached; /* this never be root cgroup */
1979 unsigned int nr_pages;
1980 struct work_struct work;
1981 unsigned long flags;
1982#define FLUSHING_CACHED_CHARGE (0)
1983};
1984static DEFINE_PER_CPU(struct memcg_stock_pcp, memcg_stock);
1985static DEFINE_MUTEX(percpu_charge_mutex);
1986
1987/*
1988 * Try to consume stocked charge on this cpu. If success, one page is consumed
1989 * from local stock and true is returned. If the stock is 0 or charges from a
1990 * cgroup which is not current target, returns false. This stock will be
1991 * refilled.
1992 */
1993static bool consume_stock(struct mem_cgroup *mem)
1994{
1995 struct memcg_stock_pcp *stock;
1996 bool ret = true;
1997
1998 stock = &get_cpu_var(memcg_stock);
1999 if (mem == stock->cached && stock->nr_pages)
2000 stock->nr_pages--;
2001 else /* need to call res_counter_charge */
2002 ret = false;
2003 put_cpu_var(memcg_stock);
2004 return ret;
2005}
2006
2007/*
2008 * Returns stocks cached in percpu to res_counter and reset cached information.
2009 */
2010static void drain_stock(struct memcg_stock_pcp *stock)
2011{
2012 struct mem_cgroup *old = stock->cached;
2013
2014 if (stock->nr_pages) {
2015 unsigned long bytes = stock->nr_pages * PAGE_SIZE;
2016
2017 res_counter_uncharge(&old->res, bytes);
2018 if (do_swap_account)
2019 res_counter_uncharge(&old->memsw, bytes);
2020 stock->nr_pages = 0;
2021 }
2022 stock->cached = NULL;
2023}
2024
2025/*
2026 * This must be called under preempt disabled or must be called by
2027 * a thread which is pinned to local cpu.
2028 */
2029static void drain_local_stock(struct work_struct *dummy)
2030{
2031 struct memcg_stock_pcp *stock = &__get_cpu_var(memcg_stock);
2032 drain_stock(stock);
2033 clear_bit(FLUSHING_CACHED_CHARGE, &stock->flags);
2034}
2035
2036/*
2037 * Cache charges(val) which is from res_counter, to local per_cpu area.
2038 * This will be consumed by consume_stock() function, later.
2039 */
2040static void refill_stock(struct mem_cgroup *mem, unsigned int nr_pages)
2041{
2042 struct memcg_stock_pcp *stock = &get_cpu_var(memcg_stock);
2043
2044 if (stock->cached != mem) { /* reset if necessary */
2045 drain_stock(stock);
2046 stock->cached = mem;
2047 }
2048 stock->nr_pages += nr_pages;
2049 put_cpu_var(memcg_stock);
2050}
2051
2052/*
2053 * Drains all per-CPU charge caches for given root_mem resp. subtree
2054 * of the hierarchy under it. sync flag says whether we should block
2055 * until the work is done.
2056 */
2057static void drain_all_stock(struct mem_cgroup *root_mem, bool sync)
2058{
2059 int cpu, curcpu;
2060
2061 /* Notify other cpus that system-wide "drain" is running */
2062 get_online_cpus();
2063 curcpu = get_cpu();
2064 for_each_online_cpu(cpu) {
2065 struct memcg_stock_pcp *stock = &per_cpu(memcg_stock, cpu);
2066 struct mem_cgroup *mem;
2067
2068 mem = stock->cached;
2069 if (!mem || !stock->nr_pages)
2070 continue;
2071 if (!mem_cgroup_same_or_subtree(root_mem, mem))
2072 continue;
2073 if (!test_and_set_bit(FLUSHING_CACHED_CHARGE, &stock->flags)) {
2074 if (cpu == curcpu)
2075 drain_local_stock(&stock->work);
2076 else
2077 schedule_work_on(cpu, &stock->work);
2078 }
2079 }
2080 put_cpu();
2081
2082 if (!sync)
2083 goto out;
2084
2085 for_each_online_cpu(cpu) {
2086 struct memcg_stock_pcp *stock = &per_cpu(memcg_stock, cpu);
2087 if (test_bit(FLUSHING_CACHED_CHARGE, &stock->flags))
2088 flush_work(&stock->work);
2089 }
2090out:
2091 put_online_cpus();
2092}
2093
2094/*
2095 * Tries to drain stocked charges in other cpus. This function is asynchronous
2096 * and just put a work per cpu for draining localy on each cpu. Caller can
2097 * expects some charges will be back to res_counter later but cannot wait for
2098 * it.
2099 */
2100static void drain_all_stock_async(struct mem_cgroup *root_mem)
2101{
2102 /*
2103 * If someone calls draining, avoid adding more kworker runs.
2104 */
2105 if (!mutex_trylock(&percpu_charge_mutex))
2106 return;
2107 drain_all_stock(root_mem, false);
2108 mutex_unlock(&percpu_charge_mutex);
2109}
2110
2111/* This is a synchronous drain interface. */
2112static void drain_all_stock_sync(struct mem_cgroup *root_mem)
2113{
2114 /* called when force_empty is called */
2115 mutex_lock(&percpu_charge_mutex);
2116 drain_all_stock(root_mem, true);
2117 mutex_unlock(&percpu_charge_mutex);
2118}
2119
2120/*
2121 * This function drains percpu counter value from DEAD cpu and
2122 * move it to local cpu. Note that this function can be preempted.
2123 */
2124static void mem_cgroup_drain_pcp_counter(struct mem_cgroup *mem, int cpu)
2125{
2126 int i;
2127
2128 spin_lock(&mem->pcp_counter_lock);
2129 for (i = 0; i < MEM_CGROUP_STAT_DATA; i++) {
2130 long x = per_cpu(mem->stat->count[i], cpu);
2131
2132 per_cpu(mem->stat->count[i], cpu) = 0;
2133 mem->nocpu_base.count[i] += x;
2134 }
2135 for (i = 0; i < MEM_CGROUP_EVENTS_NSTATS; i++) {
2136 unsigned long x = per_cpu(mem->stat->events[i], cpu);
2137
2138 per_cpu(mem->stat->events[i], cpu) = 0;
2139 mem->nocpu_base.events[i] += x;
2140 }
2141 /* need to clear ON_MOVE value, works as a kind of lock. */
2142 per_cpu(mem->stat->count[MEM_CGROUP_ON_MOVE], cpu) = 0;
2143 spin_unlock(&mem->pcp_counter_lock);
2144}
2145
2146static void synchronize_mem_cgroup_on_move(struct mem_cgroup *mem, int cpu)
2147{
2148 int idx = MEM_CGROUP_ON_MOVE;
2149
2150 spin_lock(&mem->pcp_counter_lock);
2151 per_cpu(mem->stat->count[idx], cpu) = mem->nocpu_base.count[idx];
2152 spin_unlock(&mem->pcp_counter_lock);
2153}
2154
2155static int __cpuinit memcg_cpu_hotplug_callback(struct notifier_block *nb,
2156 unsigned long action,
2157 void *hcpu)
2158{
2159 int cpu = (unsigned long)hcpu;
2160 struct memcg_stock_pcp *stock;
2161 struct mem_cgroup *iter;
2162
2163 if ((action == CPU_ONLINE)) {
2164 for_each_mem_cgroup_all(iter)
2165 synchronize_mem_cgroup_on_move(iter, cpu);
2166 return NOTIFY_OK;
2167 }
2168
2169 if ((action != CPU_DEAD) || action != CPU_DEAD_FROZEN)
2170 return NOTIFY_OK;
2171
2172 for_each_mem_cgroup_all(iter)
2173 mem_cgroup_drain_pcp_counter(iter, cpu);
2174
2175 stock = &per_cpu(memcg_stock, cpu);
2176 drain_stock(stock);
2177 return NOTIFY_OK;
2178}
2179
2180
2181/* See __mem_cgroup_try_charge() for details */
2182enum {
2183 CHARGE_OK, /* success */
2184 CHARGE_RETRY, /* need to retry but retry is not bad */
2185 CHARGE_NOMEM, /* we can't do more. return -ENOMEM */
2186 CHARGE_WOULDBLOCK, /* GFP_WAIT wasn't set and no enough res. */
2187 CHARGE_OOM_DIE, /* the current is killed because of OOM */
2188};
2189
2190static int mem_cgroup_do_charge(struct mem_cgroup *mem, gfp_t gfp_mask,
2191 unsigned int nr_pages, bool oom_check)
2192{
2193 unsigned long csize = nr_pages * PAGE_SIZE;
2194 struct mem_cgroup *mem_over_limit;
2195 struct res_counter *fail_res;
2196 unsigned long flags = 0;
2197 int ret;
2198
2199 ret = res_counter_charge(&mem->res, csize, &fail_res);
2200
2201 if (likely(!ret)) {
2202 if (!do_swap_account)
2203 return CHARGE_OK;
2204 ret = res_counter_charge(&mem->memsw, csize, &fail_res);
2205 if (likely(!ret))
2206 return CHARGE_OK;
2207
2208 res_counter_uncharge(&mem->res, csize);
2209 mem_over_limit = mem_cgroup_from_res_counter(fail_res, memsw);
2210 flags |= MEM_CGROUP_RECLAIM_NOSWAP;
2211 } else
2212 mem_over_limit = mem_cgroup_from_res_counter(fail_res, res);
2213 /*
2214 * nr_pages can be either a huge page (HPAGE_PMD_NR), a batch
2215 * of regular pages (CHARGE_BATCH), or a single regular page (1).
2216 *
2217 * Never reclaim on behalf of optional batching, retry with a
2218 * single page instead.
2219 */
2220 if (nr_pages == CHARGE_BATCH)
2221 return CHARGE_RETRY;
2222
2223 if (!(gfp_mask & __GFP_WAIT))
2224 return CHARGE_WOULDBLOCK;
2225
2226 ret = mem_cgroup_hierarchical_reclaim(mem_over_limit, NULL,
2227 gfp_mask, flags, NULL);
2228 if (mem_cgroup_margin(mem_over_limit) >= nr_pages)
2229 return CHARGE_RETRY;
2230 /*
2231 * Even though the limit is exceeded at this point, reclaim
2232 * may have been able to free some pages. Retry the charge
2233 * before killing the task.
2234 *
2235 * Only for regular pages, though: huge pages are rather
2236 * unlikely to succeed so close to the limit, and we fall back
2237 * to regular pages anyway in case of failure.
2238 */
2239 if (nr_pages == 1 && ret)
2240 return CHARGE_RETRY;
2241
2242 /*
2243 * At task move, charge accounts can be doubly counted. So, it's
2244 * better to wait until the end of task_move if something is going on.
2245 */
2246 if (mem_cgroup_wait_acct_move(mem_over_limit))
2247 return CHARGE_RETRY;
2248
2249 /* If we don't need to call oom-killer at el, return immediately */
2250 if (!oom_check)
2251 return CHARGE_NOMEM;
2252 /* check OOM */
2253 if (!mem_cgroup_handle_oom(mem_over_limit, gfp_mask))
2254 return CHARGE_OOM_DIE;
2255
2256 return CHARGE_RETRY;
2257}
2258
2259/*
2260 * Unlike exported interface, "oom" parameter is added. if oom==true,
2261 * oom-killer can be invoked.
2262 */
2263static int __mem_cgroup_try_charge(struct mm_struct *mm,
2264 gfp_t gfp_mask,
2265 unsigned int nr_pages,
2266 struct mem_cgroup **memcg,
2267 bool oom)
2268{
2269 unsigned int batch = max(CHARGE_BATCH, nr_pages);
2270 int nr_oom_retries = MEM_CGROUP_RECLAIM_RETRIES;
2271 struct mem_cgroup *mem = NULL;
2272 int ret;
2273
2274 /*
2275 * Unlike gloval-vm's OOM-kill, we're not in memory shortage
2276 * in system level. So, allow to go ahead dying process in addition to
2277 * MEMDIE process.
2278 */
2279 if (unlikely(test_thread_flag(TIF_MEMDIE)
2280 || fatal_signal_pending(current)))
2281 goto bypass;
2282
2283 /*
2284 * We always charge the cgroup the mm_struct belongs to.
2285 * The mm_struct's mem_cgroup changes on task migration if the
2286 * thread group leader migrates. It's possible that mm is not
2287 * set, if so charge the init_mm (happens for pagecache usage).
2288 */
2289 if (!*memcg && !mm)
2290 goto bypass;
2291again:
2292 if (*memcg) { /* css should be a valid one */
2293 mem = *memcg;
2294 VM_BUG_ON(css_is_removed(&mem->css));
2295 if (mem_cgroup_is_root(mem))
2296 goto done;
2297 if (nr_pages == 1 && consume_stock(mem))
2298 goto done;
2299 css_get(&mem->css);
2300 } else {
2301 struct task_struct *p;
2302
2303 rcu_read_lock();
2304 p = rcu_dereference(mm->owner);
2305 /*
2306 * Because we don't have task_lock(), "p" can exit.
2307 * In that case, "mem" can point to root or p can be NULL with
2308 * race with swapoff. Then, we have small risk of mis-accouning.
2309 * But such kind of mis-account by race always happens because
2310 * we don't have cgroup_mutex(). It's overkill and we allo that
2311 * small race, here.
2312 * (*) swapoff at el will charge against mm-struct not against
2313 * task-struct. So, mm->owner can be NULL.
2314 */
2315 mem = mem_cgroup_from_task(p);
2316 if (!mem || mem_cgroup_is_root(mem)) {
2317 rcu_read_unlock();
2318 goto done;
2319 }
2320 if (nr_pages == 1 && consume_stock(mem)) {
2321 /*
2322 * It seems dagerous to access memcg without css_get().
2323 * But considering how consume_stok works, it's not
2324 * necessary. If consume_stock success, some charges
2325 * from this memcg are cached on this cpu. So, we
2326 * don't need to call css_get()/css_tryget() before
2327 * calling consume_stock().
2328 */
2329 rcu_read_unlock();
2330 goto done;
2331 }
2332 /* after here, we may be blocked. we need to get refcnt */
2333 if (!css_tryget(&mem->css)) {
2334 rcu_read_unlock();
2335 goto again;
2336 }
2337 rcu_read_unlock();
2338 }
2339
2340 do {
2341 bool oom_check;
2342
2343 /* If killed, bypass charge */
2344 if (fatal_signal_pending(current)) {
2345 css_put(&mem->css);
2346 goto bypass;
2347 }
2348
2349 oom_check = false;
2350 if (oom && !nr_oom_retries) {
2351 oom_check = true;
2352 nr_oom_retries = MEM_CGROUP_RECLAIM_RETRIES;
2353 }
2354
2355 ret = mem_cgroup_do_charge(mem, gfp_mask, batch, oom_check);
2356 switch (ret) {
2357 case CHARGE_OK:
2358 break;
2359 case CHARGE_RETRY: /* not in OOM situation but retry */
2360 batch = nr_pages;
2361 css_put(&mem->css);
2362 mem = NULL;
2363 goto again;
2364 case CHARGE_WOULDBLOCK: /* !__GFP_WAIT */
2365 css_put(&mem->css);
2366 goto nomem;
2367 case CHARGE_NOMEM: /* OOM routine works */
2368 if (!oom) {
2369 css_put(&mem->css);
2370 goto nomem;
2371 }
2372 /* If oom, we never return -ENOMEM */
2373 nr_oom_retries--;
2374 break;
2375 case CHARGE_OOM_DIE: /* Killed by OOM Killer */
2376 css_put(&mem->css);
2377 goto bypass;
2378 }
2379 } while (ret != CHARGE_OK);
2380
2381 if (batch > nr_pages)
2382 refill_stock(mem, batch - nr_pages);
2383 css_put(&mem->css);
2384done:
2385 *memcg = mem;
2386 return 0;
2387nomem:
2388 *memcg = NULL;
2389 return -ENOMEM;
2390bypass:
2391 *memcg = NULL;
2392 return 0;
2393}
2394
2395/*
2396 * Somemtimes we have to undo a charge we got by try_charge().
2397 * This function is for that and do uncharge, put css's refcnt.
2398 * gotten by try_charge().
2399 */
2400static void __mem_cgroup_cancel_charge(struct mem_cgroup *mem,
2401 unsigned int nr_pages)
2402{
2403 if (!mem_cgroup_is_root(mem)) {
2404 unsigned long bytes = nr_pages * PAGE_SIZE;
2405
2406 res_counter_uncharge(&mem->res, bytes);
2407 if (do_swap_account)
2408 res_counter_uncharge(&mem->memsw, bytes);
2409 }
2410}
2411
2412/*
2413 * A helper function to get mem_cgroup from ID. must be called under
2414 * rcu_read_lock(). The caller must check css_is_removed() or some if
2415 * it's concern. (dropping refcnt from swap can be called against removed
2416 * memcg.)
2417 */
2418static struct mem_cgroup *mem_cgroup_lookup(unsigned short id)
2419{
2420 struct cgroup_subsys_state *css;
2421
2422 /* ID 0 is unused ID */
2423 if (!id)
2424 return NULL;
2425 css = css_lookup(&mem_cgroup_subsys, id);
2426 if (!css)
2427 return NULL;
2428 return container_of(css, struct mem_cgroup, css);
2429}
2430
2431struct mem_cgroup *try_get_mem_cgroup_from_page(struct page *page)
2432{
2433 struct mem_cgroup *mem = NULL;
2434 struct page_cgroup *pc;
2435 unsigned short id;
2436 swp_entry_t ent;
2437
2438 VM_BUG_ON(!PageLocked(page));
2439
2440 pc = lookup_page_cgroup(page);
2441 lock_page_cgroup(pc);
2442 if (PageCgroupUsed(pc)) {
2443 mem = pc->mem_cgroup;
2444 if (mem && !css_tryget(&mem->css))
2445 mem = NULL;
2446 } else if (PageSwapCache(page)) {
2447 ent.val = page_private(page);
2448 id = lookup_swap_cgroup(ent);
2449 rcu_read_lock();
2450 mem = mem_cgroup_lookup(id);
2451 if (mem && !css_tryget(&mem->css))
2452 mem = NULL;
2453 rcu_read_unlock();
2454 }
2455 unlock_page_cgroup(pc);
2456 return mem;
2457}
2458
2459static void __mem_cgroup_commit_charge(struct mem_cgroup *mem,
2460 struct page *page,
2461 unsigned int nr_pages,
2462 struct page_cgroup *pc,
2463 enum charge_type ctype)
2464{
2465 lock_page_cgroup(pc);
2466 if (unlikely(PageCgroupUsed(pc))) {
2467 unlock_page_cgroup(pc);
2468 __mem_cgroup_cancel_charge(mem, nr_pages);
2469 return;
2470 }
2471 /*
2472 * we don't need page_cgroup_lock about tail pages, becase they are not
2473 * accessed by any other context at this point.
2474 */
2475 pc->mem_cgroup = mem;
2476 /*
2477 * We access a page_cgroup asynchronously without lock_page_cgroup().
2478 * Especially when a page_cgroup is taken from a page, pc->mem_cgroup
2479 * is accessed after testing USED bit. To make pc->mem_cgroup visible
2480 * before USED bit, we need memory barrier here.
2481 * See mem_cgroup_add_lru_list(), etc.
2482 */
2483 smp_wmb();
2484 switch (ctype) {
2485 case MEM_CGROUP_CHARGE_TYPE_CACHE:
2486 case MEM_CGROUP_CHARGE_TYPE_SHMEM:
2487 SetPageCgroupCache(pc);
2488 SetPageCgroupUsed(pc);
2489 break;
2490 case MEM_CGROUP_CHARGE_TYPE_MAPPED:
2491 ClearPageCgroupCache(pc);
2492 SetPageCgroupUsed(pc);
2493 break;
2494 default:
2495 break;
2496 }
2497
2498 mem_cgroup_charge_statistics(mem, PageCgroupCache(pc), nr_pages);
2499 unlock_page_cgroup(pc);
2500 /*
2501 * "charge_statistics" updated event counter. Then, check it.
2502 * Insert ancestor (and ancestor's ancestors), to softlimit RB-tree.
2503 * if they exceeds softlimit.
2504 */
2505 memcg_check_events(mem, page);
2506}
2507
2508#ifdef CONFIG_TRANSPARENT_HUGEPAGE
2509
2510#define PCGF_NOCOPY_AT_SPLIT ((1 << PCG_LOCK) | (1 << PCG_MOVE_LOCK) |\
2511 (1 << PCG_ACCT_LRU) | (1 << PCG_MIGRATION))
2512/*
2513 * Because tail pages are not marked as "used", set it. We're under
2514 * zone->lru_lock, 'splitting on pmd' and compund_lock.
2515 */
2516void mem_cgroup_split_huge_fixup(struct page *head, struct page *tail)
2517{
2518 struct page_cgroup *head_pc = lookup_page_cgroup(head);
2519 struct page_cgroup *tail_pc = lookup_page_cgroup(tail);
2520 unsigned long flags;
2521
2522 if (mem_cgroup_disabled())
2523 return;
2524 /*
2525 * We have no races with charge/uncharge but will have races with
2526 * page state accounting.
2527 */
2528 move_lock_page_cgroup(head_pc, &flags);
2529
2530 tail_pc->mem_cgroup = head_pc->mem_cgroup;
2531 smp_wmb(); /* see __commit_charge() */
2532 if (PageCgroupAcctLRU(head_pc)) {
2533 enum lru_list lru;
2534 struct mem_cgroup_per_zone *mz;
2535
2536 /*
2537 * LRU flags cannot be copied because we need to add tail
2538 *.page to LRU by generic call and our hook will be called.
2539 * We hold lru_lock, then, reduce counter directly.
2540 */
2541 lru = page_lru(head);
2542 mz = page_cgroup_zoneinfo(head_pc->mem_cgroup, head);
2543 MEM_CGROUP_ZSTAT(mz, lru) -= 1;
2544 }
2545 tail_pc->flags = head_pc->flags & ~PCGF_NOCOPY_AT_SPLIT;
2546 move_unlock_page_cgroup(head_pc, &flags);
2547}
2548#endif
2549
2550/**
2551 * mem_cgroup_move_account - move account of the page
2552 * @page: the page
2553 * @nr_pages: number of regular pages (>1 for huge pages)
2554 * @pc: page_cgroup of the page.
2555 * @from: mem_cgroup which the page is moved from.
2556 * @to: mem_cgroup which the page is moved to. @from != @to.
2557 * @uncharge: whether we should call uncharge and css_put against @from.
2558 *
2559 * The caller must confirm following.
2560 * - page is not on LRU (isolate_page() is useful.)
2561 * - compound_lock is held when nr_pages > 1
2562 *
2563 * This function doesn't do "charge" nor css_get to new cgroup. It should be
2564 * done by a caller(__mem_cgroup_try_charge would be useful). If @uncharge is
2565 * true, this function does "uncharge" from old cgroup, but it doesn't if
2566 * @uncharge is false, so a caller should do "uncharge".
2567 */
2568static int mem_cgroup_move_account(struct page *page,
2569 unsigned int nr_pages,
2570 struct page_cgroup *pc,
2571 struct mem_cgroup *from,
2572 struct mem_cgroup *to,
2573 bool uncharge)
2574{
2575 unsigned long flags;
2576 int ret;
2577
2578 VM_BUG_ON(from == to);
2579 VM_BUG_ON(PageLRU(page));
2580 /*
2581 * The page is isolated from LRU. So, collapse function
2582 * will not handle this page. But page splitting can happen.
2583 * Do this check under compound_page_lock(). The caller should
2584 * hold it.
2585 */
2586 ret = -EBUSY;
2587 if (nr_pages > 1 && !PageTransHuge(page))
2588 goto out;
2589
2590 lock_page_cgroup(pc);
2591
2592 ret = -EINVAL;
2593 if (!PageCgroupUsed(pc) || pc->mem_cgroup != from)
2594 goto unlock;
2595
2596 move_lock_page_cgroup(pc, &flags);
2597
2598 if (PageCgroupFileMapped(pc)) {
2599 /* Update mapped_file data for mem_cgroup */
2600 preempt_disable();
2601 __this_cpu_dec(from->stat->count[MEM_CGROUP_STAT_FILE_MAPPED]);
2602 __this_cpu_inc(to->stat->count[MEM_CGROUP_STAT_FILE_MAPPED]);
2603 preempt_enable();
2604 }
2605 mem_cgroup_charge_statistics(from, PageCgroupCache(pc), -nr_pages);
2606 if (uncharge)
2607 /* This is not "cancel", but cancel_charge does all we need. */
2608 __mem_cgroup_cancel_charge(from, nr_pages);
2609
2610 /* caller should have done css_get */
2611 pc->mem_cgroup = to;
2612 mem_cgroup_charge_statistics(to, PageCgroupCache(pc), nr_pages);
2613 /*
2614 * We charges against "to" which may not have any tasks. Then, "to"
2615 * can be under rmdir(). But in current implementation, caller of
2616 * this function is just force_empty() and move charge, so it's
2617 * guaranteed that "to" is never removed. So, we don't check rmdir
2618 * status here.
2619 */
2620 move_unlock_page_cgroup(pc, &flags);
2621 ret = 0;
2622unlock:
2623 unlock_page_cgroup(pc);
2624 /*
2625 * check events
2626 */
2627 memcg_check_events(to, page);
2628 memcg_check_events(from, page);
2629out:
2630 return ret;
2631}
2632
2633/*
2634 * move charges to its parent.
2635 */
2636
2637static int mem_cgroup_move_parent(struct page *page,
2638 struct page_cgroup *pc,
2639 struct mem_cgroup *child,
2640 gfp_t gfp_mask)
2641{
2642 struct cgroup *cg = child->css.cgroup;
2643 struct cgroup *pcg = cg->parent;
2644 struct mem_cgroup *parent;
2645 unsigned int nr_pages;
2646 unsigned long uninitialized_var(flags);
2647 int ret;
2648
2649 /* Is ROOT ? */
2650 if (!pcg)
2651 return -EINVAL;
2652
2653 ret = -EBUSY;
2654 if (!get_page_unless_zero(page))
2655 goto out;
2656 if (isolate_lru_page(page))
2657 goto put;
2658
2659 nr_pages = hpage_nr_pages(page);
2660
2661 parent = mem_cgroup_from_cont(pcg);
2662 ret = __mem_cgroup_try_charge(NULL, gfp_mask, nr_pages, &parent, false);
2663 if (ret || !parent)
2664 goto put_back;
2665
2666 if (nr_pages > 1)
2667 flags = compound_lock_irqsave(page);
2668
2669 ret = mem_cgroup_move_account(page, nr_pages, pc, child, parent, true);
2670 if (ret)
2671 __mem_cgroup_cancel_charge(parent, nr_pages);
2672
2673 if (nr_pages > 1)
2674 compound_unlock_irqrestore(page, flags);
2675put_back:
2676 putback_lru_page(page);
2677put:
2678 put_page(page);
2679out:
2680 return ret;
2681}
2682
2683/*
2684 * Charge the memory controller for page usage.
2685 * Return
2686 * 0 if the charge was successful
2687 * < 0 if the cgroup is over its limit
2688 */
2689static int mem_cgroup_charge_common(struct page *page, struct mm_struct *mm,
2690 gfp_t gfp_mask, enum charge_type ctype)
2691{
2692 struct mem_cgroup *mem = NULL;
2693 unsigned int nr_pages = 1;
2694 struct page_cgroup *pc;
2695 bool oom = true;
2696 int ret;
2697
2698 if (PageTransHuge(page)) {
2699 nr_pages <<= compound_order(page);
2700 VM_BUG_ON(!PageTransHuge(page));
2701 /*
2702 * Never OOM-kill a process for a huge page. The
2703 * fault handler will fall back to regular pages.
2704 */
2705 oom = false;
2706 }
2707
2708 pc = lookup_page_cgroup(page);
2709 BUG_ON(!pc); /* XXX: remove this and move pc lookup into commit */
2710
2711 ret = __mem_cgroup_try_charge(mm, gfp_mask, nr_pages, &mem, oom);
2712 if (ret || !mem)
2713 return ret;
2714
2715 __mem_cgroup_commit_charge(mem, page, nr_pages, pc, ctype);
2716 return 0;
2717}
2718
2719int mem_cgroup_newpage_charge(struct page *page,
2720 struct mm_struct *mm, gfp_t gfp_mask)
2721{
2722 if (mem_cgroup_disabled())
2723 return 0;
2724 /*
2725 * If already mapped, we don't have to account.
2726 * If page cache, page->mapping has address_space.
2727 * But page->mapping may have out-of-use anon_vma pointer,
2728 * detecit it by PageAnon() check. newly-mapped-anon's page->mapping
2729 * is NULL.
2730 */
2731 if (page_mapped(page) || (page->mapping && !PageAnon(page)))
2732 return 0;
2733 if (unlikely(!mm))
2734 mm = &init_mm;
2735 return mem_cgroup_charge_common(page, mm, gfp_mask,
2736 MEM_CGROUP_CHARGE_TYPE_MAPPED);
2737}
2738
2739static void
2740__mem_cgroup_commit_charge_swapin(struct page *page, struct mem_cgroup *ptr,
2741 enum charge_type ctype);
2742
2743static void
2744__mem_cgroup_commit_charge_lrucare(struct page *page, struct mem_cgroup *mem,
2745 enum charge_type ctype)
2746{
2747 struct page_cgroup *pc = lookup_page_cgroup(page);
2748 /*
2749 * In some case, SwapCache, FUSE(splice_buf->radixtree), the page
2750 * is already on LRU. It means the page may on some other page_cgroup's
2751 * LRU. Take care of it.
2752 */
2753 mem_cgroup_lru_del_before_commit(page);
2754 __mem_cgroup_commit_charge(mem, page, 1, pc, ctype);
2755 mem_cgroup_lru_add_after_commit(page);
2756 return;
2757}
2758
2759int mem_cgroup_cache_charge(struct page *page, struct mm_struct *mm,
2760 gfp_t gfp_mask)
2761{
2762 struct mem_cgroup *mem = NULL;
2763 int ret;
2764
2765 if (mem_cgroup_disabled())
2766 return 0;
2767 if (PageCompound(page))
2768 return 0;
2769
2770 if (unlikely(!mm))
2771 mm = &init_mm;
2772
2773 if (page_is_file_cache(page)) {
2774 ret = __mem_cgroup_try_charge(mm, gfp_mask, 1, &mem, true);
2775 if (ret || !mem)
2776 return ret;
2777
2778 /*
2779 * FUSE reuses pages without going through the final
2780 * put that would remove them from the LRU list, make
2781 * sure that they get relinked properly.
2782 */
2783 __mem_cgroup_commit_charge_lrucare(page, mem,
2784 MEM_CGROUP_CHARGE_TYPE_CACHE);
2785 return ret;
2786 }
2787 /* shmem */
2788 if (PageSwapCache(page)) {
2789 ret = mem_cgroup_try_charge_swapin(mm, page, gfp_mask, &mem);
2790 if (!ret)
2791 __mem_cgroup_commit_charge_swapin(page, mem,
2792 MEM_CGROUP_CHARGE_TYPE_SHMEM);
2793 } else
2794 ret = mem_cgroup_charge_common(page, mm, gfp_mask,
2795 MEM_CGROUP_CHARGE_TYPE_SHMEM);
2796
2797 return ret;
2798}
2799
2800/*
2801 * While swap-in, try_charge -> commit or cancel, the page is locked.
2802 * And when try_charge() successfully returns, one refcnt to memcg without
2803 * struct page_cgroup is acquired. This refcnt will be consumed by
2804 * "commit()" or removed by "cancel()"
2805 */
2806int mem_cgroup_try_charge_swapin(struct mm_struct *mm,
2807 struct page *page,
2808 gfp_t mask, struct mem_cgroup **ptr)
2809{
2810 struct mem_cgroup *mem;
2811 int ret;
2812
2813 *ptr = NULL;
2814
2815 if (mem_cgroup_disabled())
2816 return 0;
2817
2818 if (!do_swap_account)
2819 goto charge_cur_mm;
2820 /*
2821 * A racing thread's fault, or swapoff, may have already updated
2822 * the pte, and even removed page from swap cache: in those cases
2823 * do_swap_page()'s pte_same() test will fail; but there's also a
2824 * KSM case which does need to charge the page.
2825 */
2826 if (!PageSwapCache(page))
2827 goto charge_cur_mm;
2828 mem = try_get_mem_cgroup_from_page(page);
2829 if (!mem)
2830 goto charge_cur_mm;
2831 *ptr = mem;
2832 ret = __mem_cgroup_try_charge(NULL, mask, 1, ptr, true);
2833 css_put(&mem->css);
2834 return ret;
2835charge_cur_mm:
2836 if (unlikely(!mm))
2837 mm = &init_mm;
2838 return __mem_cgroup_try_charge(mm, mask, 1, ptr, true);
2839}
2840
2841static void
2842__mem_cgroup_commit_charge_swapin(struct page *page, struct mem_cgroup *ptr,
2843 enum charge_type ctype)
2844{
2845 if (mem_cgroup_disabled())
2846 return;
2847 if (!ptr)
2848 return;
2849 cgroup_exclude_rmdir(&ptr->css);
2850
2851 __mem_cgroup_commit_charge_lrucare(page, ptr, ctype);
2852 /*
2853 * Now swap is on-memory. This means this page may be
2854 * counted both as mem and swap....double count.
2855 * Fix it by uncharging from memsw. Basically, this SwapCache is stable
2856 * under lock_page(). But in do_swap_page()::memory.c, reuse_swap_page()
2857 * may call delete_from_swap_cache() before reach here.
2858 */
2859 if (do_swap_account && PageSwapCache(page)) {
2860 swp_entry_t ent = {.val = page_private(page)};
2861 unsigned short id;
2862 struct mem_cgroup *memcg;
2863
2864 id = swap_cgroup_record(ent, 0);
2865 rcu_read_lock();
2866 memcg = mem_cgroup_lookup(id);
2867 if (memcg) {
2868 /*
2869 * This recorded memcg can be obsolete one. So, avoid
2870 * calling css_tryget
2871 */
2872 if (!mem_cgroup_is_root(memcg))
2873 res_counter_uncharge(&memcg->memsw, PAGE_SIZE);
2874 mem_cgroup_swap_statistics(memcg, false);
2875 mem_cgroup_put(memcg);
2876 }
2877 rcu_read_unlock();
2878 }
2879 /*
2880 * At swapin, we may charge account against cgroup which has no tasks.
2881 * So, rmdir()->pre_destroy() can be called while we do this charge.
2882 * In that case, we need to call pre_destroy() again. check it here.
2883 */
2884 cgroup_release_and_wakeup_rmdir(&ptr->css);
2885}
2886
2887void mem_cgroup_commit_charge_swapin(struct page *page, struct mem_cgroup *ptr)
2888{
2889 __mem_cgroup_commit_charge_swapin(page, ptr,
2890 MEM_CGROUP_CHARGE_TYPE_MAPPED);
2891}
2892
2893void mem_cgroup_cancel_charge_swapin(struct mem_cgroup *mem)
2894{
2895 if (mem_cgroup_disabled())
2896 return;
2897 if (!mem)
2898 return;
2899 __mem_cgroup_cancel_charge(mem, 1);
2900}
2901
2902static void mem_cgroup_do_uncharge(struct mem_cgroup *mem,
2903 unsigned int nr_pages,
2904 const enum charge_type ctype)
2905{
2906 struct memcg_batch_info *batch = NULL;
2907 bool uncharge_memsw = true;
2908
2909 /* If swapout, usage of swap doesn't decrease */
2910 if (!do_swap_account || ctype == MEM_CGROUP_CHARGE_TYPE_SWAPOUT)
2911 uncharge_memsw = false;
2912
2913 batch = ¤t->memcg_batch;
2914 /*
2915 * In usual, we do css_get() when we remember memcg pointer.
2916 * But in this case, we keep res->usage until end of a series of
2917 * uncharges. Then, it's ok to ignore memcg's refcnt.
2918 */
2919 if (!batch->memcg)
2920 batch->memcg = mem;
2921 /*
2922 * do_batch > 0 when unmapping pages or inode invalidate/truncate.
2923 * In those cases, all pages freed continuously can be expected to be in
2924 * the same cgroup and we have chance to coalesce uncharges.
2925 * But we do uncharge one by one if this is killed by OOM(TIF_MEMDIE)
2926 * because we want to do uncharge as soon as possible.
2927 */
2928
2929 if (!batch->do_batch || test_thread_flag(TIF_MEMDIE))
2930 goto direct_uncharge;
2931
2932 if (nr_pages > 1)
2933 goto direct_uncharge;
2934
2935 /*
2936 * In typical case, batch->memcg == mem. This means we can
2937 * merge a series of uncharges to an uncharge of res_counter.
2938 * If not, we uncharge res_counter ony by one.
2939 */
2940 if (batch->memcg != mem)
2941 goto direct_uncharge;
2942 /* remember freed charge and uncharge it later */
2943 batch->nr_pages++;
2944 if (uncharge_memsw)
2945 batch->memsw_nr_pages++;
2946 return;
2947direct_uncharge:
2948 res_counter_uncharge(&mem->res, nr_pages * PAGE_SIZE);
2949 if (uncharge_memsw)
2950 res_counter_uncharge(&mem->memsw, nr_pages * PAGE_SIZE);
2951 if (unlikely(batch->memcg != mem))
2952 memcg_oom_recover(mem);
2953 return;
2954}
2955
2956/*
2957 * uncharge if !page_mapped(page)
2958 */
2959static struct mem_cgroup *
2960__mem_cgroup_uncharge_common(struct page *page, enum charge_type ctype)
2961{
2962 struct mem_cgroup *mem = NULL;
2963 unsigned int nr_pages = 1;
2964 struct page_cgroup *pc;
2965
2966 if (mem_cgroup_disabled())
2967 return NULL;
2968
2969 if (PageSwapCache(page))
2970 return NULL;
2971
2972 if (PageTransHuge(page)) {
2973 nr_pages <<= compound_order(page);
2974 VM_BUG_ON(!PageTransHuge(page));
2975 }
2976 /*
2977 * Check if our page_cgroup is valid
2978 */
2979 pc = lookup_page_cgroup(page);
2980 if (unlikely(!pc || !PageCgroupUsed(pc)))
2981 return NULL;
2982
2983 lock_page_cgroup(pc);
2984
2985 mem = pc->mem_cgroup;
2986
2987 if (!PageCgroupUsed(pc))
2988 goto unlock_out;
2989
2990 switch (ctype) {
2991 case MEM_CGROUP_CHARGE_TYPE_MAPPED:
2992 case MEM_CGROUP_CHARGE_TYPE_DROP:
2993 /* See mem_cgroup_prepare_migration() */
2994 if (page_mapped(page) || PageCgroupMigration(pc))
2995 goto unlock_out;
2996 break;
2997 case MEM_CGROUP_CHARGE_TYPE_SWAPOUT:
2998 if (!PageAnon(page)) { /* Shared memory */
2999 if (page->mapping && !page_is_file_cache(page))
3000 goto unlock_out;
3001 } else if (page_mapped(page)) /* Anon */
3002 goto unlock_out;
3003 break;
3004 default:
3005 break;
3006 }
3007
3008 mem_cgroup_charge_statistics(mem, PageCgroupCache(pc), -nr_pages);
3009
3010 ClearPageCgroupUsed(pc);
3011 /*
3012 * pc->mem_cgroup is not cleared here. It will be accessed when it's
3013 * freed from LRU. This is safe because uncharged page is expected not
3014 * to be reused (freed soon). Exception is SwapCache, it's handled by
3015 * special functions.
3016 */
3017
3018 unlock_page_cgroup(pc);
3019 /*
3020 * even after unlock, we have mem->res.usage here and this memcg
3021 * will never be freed.
3022 */
3023 memcg_check_events(mem, page);
3024 if (do_swap_account && ctype == MEM_CGROUP_CHARGE_TYPE_SWAPOUT) {
3025 mem_cgroup_swap_statistics(mem, true);
3026 mem_cgroup_get(mem);
3027 }
3028 if (!mem_cgroup_is_root(mem))
3029 mem_cgroup_do_uncharge(mem, nr_pages, ctype);
3030
3031 return mem;
3032
3033unlock_out:
3034 unlock_page_cgroup(pc);
3035 return NULL;
3036}
3037
3038void mem_cgroup_uncharge_page(struct page *page)
3039{
3040 /* early check. */
3041 if (page_mapped(page))
3042 return;
3043 if (page->mapping && !PageAnon(page))
3044 return;
3045 __mem_cgroup_uncharge_common(page, MEM_CGROUP_CHARGE_TYPE_MAPPED);
3046}
3047
3048void mem_cgroup_uncharge_cache_page(struct page *page)
3049{
3050 VM_BUG_ON(page_mapped(page));
3051 VM_BUG_ON(page->mapping);
3052 __mem_cgroup_uncharge_common(page, MEM_CGROUP_CHARGE_TYPE_CACHE);
3053}
3054
3055/*
3056 * Batch_start/batch_end is called in unmap_page_range/invlidate/trucate.
3057 * In that cases, pages are freed continuously and we can expect pages
3058 * are in the same memcg. All these calls itself limits the number of
3059 * pages freed at once, then uncharge_start/end() is called properly.
3060 * This may be called prural(2) times in a context,
3061 */
3062
3063void mem_cgroup_uncharge_start(void)
3064{
3065 current->memcg_batch.do_batch++;
3066 /* We can do nest. */
3067 if (current->memcg_batch.do_batch == 1) {
3068 current->memcg_batch.memcg = NULL;
3069 current->memcg_batch.nr_pages = 0;
3070 current->memcg_batch.memsw_nr_pages = 0;
3071 }
3072}
3073
3074void mem_cgroup_uncharge_end(void)
3075{
3076 struct memcg_batch_info *batch = ¤t->memcg_batch;
3077
3078 if (!batch->do_batch)
3079 return;
3080
3081 batch->do_batch--;
3082 if (batch->do_batch) /* If stacked, do nothing. */
3083 return;
3084
3085 if (!batch->memcg)
3086 return;
3087 /*
3088 * This "batch->memcg" is valid without any css_get/put etc...
3089 * bacause we hide charges behind us.
3090 */
3091 if (batch->nr_pages)
3092 res_counter_uncharge(&batch->memcg->res,
3093 batch->nr_pages * PAGE_SIZE);
3094 if (batch->memsw_nr_pages)
3095 res_counter_uncharge(&batch->memcg->memsw,
3096 batch->memsw_nr_pages * PAGE_SIZE);
3097 memcg_oom_recover(batch->memcg);
3098 /* forget this pointer (for sanity check) */
3099 batch->memcg = NULL;
3100}
3101
3102#ifdef CONFIG_SWAP
3103/*
3104 * called after __delete_from_swap_cache() and drop "page" account.
3105 * memcg information is recorded to swap_cgroup of "ent"
3106 */
3107void
3108mem_cgroup_uncharge_swapcache(struct page *page, swp_entry_t ent, bool swapout)
3109{
3110 struct mem_cgroup *memcg;
3111 int ctype = MEM_CGROUP_CHARGE_TYPE_SWAPOUT;
3112
3113 if (!swapout) /* this was a swap cache but the swap is unused ! */
3114 ctype = MEM_CGROUP_CHARGE_TYPE_DROP;
3115
3116 memcg = __mem_cgroup_uncharge_common(page, ctype);
3117
3118 /*
3119 * record memcg information, if swapout && memcg != NULL,
3120 * mem_cgroup_get() was called in uncharge().
3121 */
3122 if (do_swap_account && swapout && memcg)
3123 swap_cgroup_record(ent, css_id(&memcg->css));
3124}
3125#endif
3126
3127#ifdef CONFIG_CGROUP_MEM_RES_CTLR_SWAP
3128/*
3129 * called from swap_entry_free(). remove record in swap_cgroup and
3130 * uncharge "memsw" account.
3131 */
3132void mem_cgroup_uncharge_swap(swp_entry_t ent)
3133{
3134 struct mem_cgroup *memcg;
3135 unsigned short id;
3136
3137 if (!do_swap_account)
3138 return;
3139
3140 id = swap_cgroup_record(ent, 0);
3141 rcu_read_lock();
3142 memcg = mem_cgroup_lookup(id);
3143 if (memcg) {
3144 /*
3145 * We uncharge this because swap is freed.
3146 * This memcg can be obsolete one. We avoid calling css_tryget
3147 */
3148 if (!mem_cgroup_is_root(memcg))
3149 res_counter_uncharge(&memcg->memsw, PAGE_SIZE);
3150 mem_cgroup_swap_statistics(memcg, false);
3151 mem_cgroup_put(memcg);
3152 }
3153 rcu_read_unlock();
3154}
3155
3156/**
3157 * mem_cgroup_move_swap_account - move swap charge and swap_cgroup's record.
3158 * @entry: swap entry to be moved
3159 * @from: mem_cgroup which the entry is moved from
3160 * @to: mem_cgroup which the entry is moved to
3161 * @need_fixup: whether we should fixup res_counters and refcounts.
3162 *
3163 * It succeeds only when the swap_cgroup's record for this entry is the same
3164 * as the mem_cgroup's id of @from.
3165 *
3166 * Returns 0 on success, -EINVAL on failure.
3167 *
3168 * The caller must have charged to @to, IOW, called res_counter_charge() about
3169 * both res and memsw, and called css_get().
3170 */
3171static int mem_cgroup_move_swap_account(swp_entry_t entry,
3172 struct mem_cgroup *from, struct mem_cgroup *to, bool need_fixup)
3173{
3174 unsigned short old_id, new_id;
3175
3176 old_id = css_id(&from->css);
3177 new_id = css_id(&to->css);
3178
3179 if (swap_cgroup_cmpxchg(entry, old_id, new_id) == old_id) {
3180 mem_cgroup_swap_statistics(from, false);
3181 mem_cgroup_swap_statistics(to, true);
3182 /*
3183 * This function is only called from task migration context now.
3184 * It postpones res_counter and refcount handling till the end
3185 * of task migration(mem_cgroup_clear_mc()) for performance
3186 * improvement. But we cannot postpone mem_cgroup_get(to)
3187 * because if the process that has been moved to @to does
3188 * swap-in, the refcount of @to might be decreased to 0.
3189 */
3190 mem_cgroup_get(to);
3191 if (need_fixup) {
3192 if (!mem_cgroup_is_root(from))
3193 res_counter_uncharge(&from->memsw, PAGE_SIZE);
3194 mem_cgroup_put(from);
3195 /*
3196 * we charged both to->res and to->memsw, so we should
3197 * uncharge to->res.
3198 */
3199 if (!mem_cgroup_is_root(to))
3200 res_counter_uncharge(&to->res, PAGE_SIZE);
3201 }
3202 return 0;
3203 }
3204 return -EINVAL;
3205}
3206#else
3207static inline int mem_cgroup_move_swap_account(swp_entry_t entry,
3208 struct mem_cgroup *from, struct mem_cgroup *to, bool need_fixup)
3209{
3210 return -EINVAL;
3211}
3212#endif
3213
3214/*
3215 * Before starting migration, account PAGE_SIZE to mem_cgroup that the old
3216 * page belongs to.
3217 */
3218int mem_cgroup_prepare_migration(struct page *page,
3219 struct page *newpage, struct mem_cgroup **ptr, gfp_t gfp_mask)
3220{
3221 struct mem_cgroup *mem = NULL;
3222 struct page_cgroup *pc;
3223 enum charge_type ctype;
3224 int ret = 0;
3225
3226 *ptr = NULL;
3227
3228 VM_BUG_ON(PageTransHuge(page));
3229 if (mem_cgroup_disabled())
3230 return 0;
3231
3232 pc = lookup_page_cgroup(page);
3233 lock_page_cgroup(pc);
3234 if (PageCgroupUsed(pc)) {
3235 mem = pc->mem_cgroup;
3236 css_get(&mem->css);
3237 /*
3238 * At migrating an anonymous page, its mapcount goes down
3239 * to 0 and uncharge() will be called. But, even if it's fully
3240 * unmapped, migration may fail and this page has to be
3241 * charged again. We set MIGRATION flag here and delay uncharge
3242 * until end_migration() is called
3243 *
3244 * Corner Case Thinking
3245 * A)
3246 * When the old page was mapped as Anon and it's unmap-and-freed
3247 * while migration was ongoing.
3248 * If unmap finds the old page, uncharge() of it will be delayed
3249 * until end_migration(). If unmap finds a new page, it's
3250 * uncharged when it make mapcount to be 1->0. If unmap code
3251 * finds swap_migration_entry, the new page will not be mapped
3252 * and end_migration() will find it(mapcount==0).
3253 *
3254 * B)
3255 * When the old page was mapped but migraion fails, the kernel
3256 * remaps it. A charge for it is kept by MIGRATION flag even
3257 * if mapcount goes down to 0. We can do remap successfully
3258 * without charging it again.
3259 *
3260 * C)
3261 * The "old" page is under lock_page() until the end of
3262 * migration, so, the old page itself will not be swapped-out.
3263 * If the new page is swapped out before end_migraton, our
3264 * hook to usual swap-out path will catch the event.
3265 */
3266 if (PageAnon(page))
3267 SetPageCgroupMigration(pc);
3268 }
3269 unlock_page_cgroup(pc);
3270 /*
3271 * If the page is not charged at this point,
3272 * we return here.
3273 */
3274 if (!mem)
3275 return 0;
3276
3277 *ptr = mem;
3278 ret = __mem_cgroup_try_charge(NULL, gfp_mask, 1, ptr, false);
3279 css_put(&mem->css);/* drop extra refcnt */
3280 if (ret || *ptr == NULL) {
3281 if (PageAnon(page)) {
3282 lock_page_cgroup(pc);
3283 ClearPageCgroupMigration(pc);
3284 unlock_page_cgroup(pc);
3285 /*
3286 * The old page may be fully unmapped while we kept it.
3287 */
3288 mem_cgroup_uncharge_page(page);
3289 }
3290 return -ENOMEM;
3291 }
3292 /*
3293 * We charge new page before it's used/mapped. So, even if unlock_page()
3294 * is called before end_migration, we can catch all events on this new
3295 * page. In the case new page is migrated but not remapped, new page's
3296 * mapcount will be finally 0 and we call uncharge in end_migration().
3297 */
3298 pc = lookup_page_cgroup(newpage);
3299 if (PageAnon(page))
3300 ctype = MEM_CGROUP_CHARGE_TYPE_MAPPED;
3301 else if (page_is_file_cache(page))
3302 ctype = MEM_CGROUP_CHARGE_TYPE_CACHE;
3303 else
3304 ctype = MEM_CGROUP_CHARGE_TYPE_SHMEM;
3305 __mem_cgroup_commit_charge(mem, page, 1, pc, ctype);
3306 return ret;
3307}
3308
3309/* remove redundant charge if migration failed*/
3310void mem_cgroup_end_migration(struct mem_cgroup *mem,
3311 struct page *oldpage, struct page *newpage, bool migration_ok)
3312{
3313 struct page *used, *unused;
3314 struct page_cgroup *pc;
3315
3316 if (!mem)
3317 return;
3318 /* blocks rmdir() */
3319 cgroup_exclude_rmdir(&mem->css);
3320 if (!migration_ok) {
3321 used = oldpage;
3322 unused = newpage;
3323 } else {
3324 used = newpage;
3325 unused = oldpage;
3326 }
3327 /*
3328 * We disallowed uncharge of pages under migration because mapcount
3329 * of the page goes down to zero, temporarly.
3330 * Clear the flag and check the page should be charged.
3331 */
3332 pc = lookup_page_cgroup(oldpage);
3333 lock_page_cgroup(pc);
3334 ClearPageCgroupMigration(pc);
3335 unlock_page_cgroup(pc);
3336
3337 __mem_cgroup_uncharge_common(unused, MEM_CGROUP_CHARGE_TYPE_FORCE);
3338
3339 /*
3340 * If a page is a file cache, radix-tree replacement is very atomic
3341 * and we can skip this check. When it was an Anon page, its mapcount
3342 * goes down to 0. But because we added MIGRATION flage, it's not
3343 * uncharged yet. There are several case but page->mapcount check
3344 * and USED bit check in mem_cgroup_uncharge_page() will do enough
3345 * check. (see prepare_charge() also)
3346 */
3347 if (PageAnon(used))
3348 mem_cgroup_uncharge_page(used);
3349 /*
3350 * At migration, we may charge account against cgroup which has no
3351 * tasks.
3352 * So, rmdir()->pre_destroy() can be called while we do this charge.
3353 * In that case, we need to call pre_destroy() again. check it here.
3354 */
3355 cgroup_release_and_wakeup_rmdir(&mem->css);
3356}
3357
3358#ifdef CONFIG_DEBUG_VM
3359static struct page_cgroup *lookup_page_cgroup_used(struct page *page)
3360{
3361 struct page_cgroup *pc;
3362
3363 pc = lookup_page_cgroup(page);
3364 if (likely(pc) && PageCgroupUsed(pc))
3365 return pc;
3366 return NULL;
3367}
3368
3369bool mem_cgroup_bad_page_check(struct page *page)
3370{
3371 if (mem_cgroup_disabled())
3372 return false;
3373
3374 return lookup_page_cgroup_used(page) != NULL;
3375}
3376
3377void mem_cgroup_print_bad_page(struct page *page)
3378{
3379 struct page_cgroup *pc;
3380
3381 pc = lookup_page_cgroup_used(page);
3382 if (pc) {
3383 int ret = -1;
3384 char *path;
3385
3386 printk(KERN_ALERT "pc:%p pc->flags:%lx pc->mem_cgroup:%p",
3387 pc, pc->flags, pc->mem_cgroup);
3388
3389 path = kmalloc(PATH_MAX, GFP_KERNEL);
3390 if (path) {
3391 rcu_read_lock();
3392 ret = cgroup_path(pc->mem_cgroup->css.cgroup,
3393 path, PATH_MAX);
3394 rcu_read_unlock();
3395 }
3396
3397 printk(KERN_CONT "(%s)\n",
3398 (ret < 0) ? "cannot get the path" : path);
3399 kfree(path);
3400 }
3401}
3402#endif
3403
3404static DEFINE_MUTEX(set_limit_mutex);
3405
3406static int mem_cgroup_resize_limit(struct mem_cgroup *memcg,
3407 unsigned long long val)
3408{
3409 int retry_count;
3410 u64 memswlimit, memlimit;
3411 int ret = 0;
3412 int children = mem_cgroup_count_children(memcg);
3413 u64 curusage, oldusage;
3414 int enlarge;
3415
3416 /*
3417 * For keeping hierarchical_reclaim simple, how long we should retry
3418 * is depends on callers. We set our retry-count to be function
3419 * of # of children which we should visit in this loop.
3420 */
3421 retry_count = MEM_CGROUP_RECLAIM_RETRIES * children;
3422
3423 oldusage = res_counter_read_u64(&memcg->res, RES_USAGE);
3424
3425 enlarge = 0;
3426 while (retry_count) {
3427 if (signal_pending(current)) {
3428 ret = -EINTR;
3429 break;
3430 }
3431 /*
3432 * Rather than hide all in some function, I do this in
3433 * open coded manner. You see what this really does.
3434 * We have to guarantee mem->res.limit < mem->memsw.limit.
3435 */
3436 mutex_lock(&set_limit_mutex);
3437 memswlimit = res_counter_read_u64(&memcg->memsw, RES_LIMIT);
3438 if (memswlimit < val) {
3439 ret = -EINVAL;
3440 mutex_unlock(&set_limit_mutex);
3441 break;
3442 }
3443
3444 memlimit = res_counter_read_u64(&memcg->res, RES_LIMIT);
3445 if (memlimit < val)
3446 enlarge = 1;
3447
3448 ret = res_counter_set_limit(&memcg->res, val);
3449 if (!ret) {
3450 if (memswlimit == val)
3451 memcg->memsw_is_minimum = true;
3452 else
3453 memcg->memsw_is_minimum = false;
3454 }
3455 mutex_unlock(&set_limit_mutex);
3456
3457 if (!ret)
3458 break;
3459
3460 mem_cgroup_hierarchical_reclaim(memcg, NULL, GFP_KERNEL,
3461 MEM_CGROUP_RECLAIM_SHRINK,
3462 NULL);
3463 curusage = res_counter_read_u64(&memcg->res, RES_USAGE);
3464 /* Usage is reduced ? */
3465 if (curusage >= oldusage)
3466 retry_count--;
3467 else
3468 oldusage = curusage;
3469 }
3470 if (!ret && enlarge)
3471 memcg_oom_recover(memcg);
3472
3473 return ret;
3474}
3475
3476static int mem_cgroup_resize_memsw_limit(struct mem_cgroup *memcg,
3477 unsigned long long val)
3478{
3479 int retry_count;
3480 u64 memlimit, memswlimit, oldusage, curusage;
3481 int children = mem_cgroup_count_children(memcg);
3482 int ret = -EBUSY;
3483 int enlarge = 0;
3484
3485 /* see mem_cgroup_resize_res_limit */
3486 retry_count = children * MEM_CGROUP_RECLAIM_RETRIES;
3487 oldusage = res_counter_read_u64(&memcg->memsw, RES_USAGE);
3488 while (retry_count) {
3489 if (signal_pending(current)) {
3490 ret = -EINTR;
3491 break;
3492 }
3493 /*
3494 * Rather than hide all in some function, I do this in
3495 * open coded manner. You see what this really does.
3496 * We have to guarantee mem->res.limit < mem->memsw.limit.
3497 */
3498 mutex_lock(&set_limit_mutex);
3499 memlimit = res_counter_read_u64(&memcg->res, RES_LIMIT);
3500 if (memlimit > val) {
3501 ret = -EINVAL;
3502 mutex_unlock(&set_limit_mutex);
3503 break;
3504 }
3505 memswlimit = res_counter_read_u64(&memcg->memsw, RES_LIMIT);
3506 if (memswlimit < val)
3507 enlarge = 1;
3508 ret = res_counter_set_limit(&memcg->memsw, val);
3509 if (!ret) {
3510 if (memlimit == val)
3511 memcg->memsw_is_minimum = true;
3512 else
3513 memcg->memsw_is_minimum = false;
3514 }
3515 mutex_unlock(&set_limit_mutex);
3516
3517 if (!ret)
3518 break;
3519
3520 mem_cgroup_hierarchical_reclaim(memcg, NULL, GFP_KERNEL,
3521 MEM_CGROUP_RECLAIM_NOSWAP |
3522 MEM_CGROUP_RECLAIM_SHRINK,
3523 NULL);
3524 curusage = res_counter_read_u64(&memcg->memsw, RES_USAGE);
3525 /* Usage is reduced ? */
3526 if (curusage >= oldusage)
3527 retry_count--;
3528 else
3529 oldusage = curusage;
3530 }
3531 if (!ret && enlarge)
3532 memcg_oom_recover(memcg);
3533 return ret;
3534}
3535
3536unsigned long mem_cgroup_soft_limit_reclaim(struct zone *zone, int order,
3537 gfp_t gfp_mask,
3538 unsigned long *total_scanned)
3539{
3540 unsigned long nr_reclaimed = 0;
3541 struct mem_cgroup_per_zone *mz, *next_mz = NULL;
3542 unsigned long reclaimed;
3543 int loop = 0;
3544 struct mem_cgroup_tree_per_zone *mctz;
3545 unsigned long long excess;
3546 unsigned long nr_scanned;
3547
3548 if (order > 0)
3549 return 0;
3550
3551 mctz = soft_limit_tree_node_zone(zone_to_nid(zone), zone_idx(zone));
3552 /*
3553 * This loop can run a while, specially if mem_cgroup's continuously
3554 * keep exceeding their soft limit and putting the system under
3555 * pressure
3556 */
3557 do {
3558 if (next_mz)
3559 mz = next_mz;
3560 else
3561 mz = mem_cgroup_largest_soft_limit_node(mctz);
3562 if (!mz)
3563 break;
3564
3565 nr_scanned = 0;
3566 reclaimed = mem_cgroup_hierarchical_reclaim(mz->mem, zone,
3567 gfp_mask,
3568 MEM_CGROUP_RECLAIM_SOFT,
3569 &nr_scanned);
3570 nr_reclaimed += reclaimed;
3571 *total_scanned += nr_scanned;
3572 spin_lock(&mctz->lock);
3573
3574 /*
3575 * If we failed to reclaim anything from this memory cgroup
3576 * it is time to move on to the next cgroup
3577 */
3578 next_mz = NULL;
3579 if (!reclaimed) {
3580 do {
3581 /*
3582 * Loop until we find yet another one.
3583 *
3584 * By the time we get the soft_limit lock
3585 * again, someone might have aded the
3586 * group back on the RB tree. Iterate to
3587 * make sure we get a different mem.
3588 * mem_cgroup_largest_soft_limit_node returns
3589 * NULL if no other cgroup is present on
3590 * the tree
3591 */
3592 next_mz =
3593 __mem_cgroup_largest_soft_limit_node(mctz);
3594 if (next_mz == mz)
3595 css_put(&next_mz->mem->css);
3596 else /* next_mz == NULL or other memcg */
3597 break;
3598 } while (1);
3599 }
3600 __mem_cgroup_remove_exceeded(mz->mem, mz, mctz);
3601 excess = res_counter_soft_limit_excess(&mz->mem->res);
3602 /*
3603 * One school of thought says that we should not add
3604 * back the node to the tree if reclaim returns 0.
3605 * But our reclaim could return 0, simply because due
3606 * to priority we are exposing a smaller subset of
3607 * memory to reclaim from. Consider this as a longer
3608 * term TODO.
3609 */
3610 /* If excess == 0, no tree ops */
3611 __mem_cgroup_insert_exceeded(mz->mem, mz, mctz, excess);
3612 spin_unlock(&mctz->lock);
3613 css_put(&mz->mem->css);
3614 loop++;
3615 /*
3616 * Could not reclaim anything and there are no more
3617 * mem cgroups to try or we seem to be looping without
3618 * reclaiming anything.
3619 */
3620 if (!nr_reclaimed &&
3621 (next_mz == NULL ||
3622 loop > MEM_CGROUP_MAX_SOFT_LIMIT_RECLAIM_LOOPS))
3623 break;
3624 } while (!nr_reclaimed);
3625 if (next_mz)
3626 css_put(&next_mz->mem->css);
3627 return nr_reclaimed;
3628}
3629
3630/*
3631 * This routine traverse page_cgroup in given list and drop them all.
3632 * *And* this routine doesn't reclaim page itself, just removes page_cgroup.
3633 */
3634static int mem_cgroup_force_empty_list(struct mem_cgroup *mem,
3635 int node, int zid, enum lru_list lru)
3636{
3637 struct zone *zone;
3638 struct mem_cgroup_per_zone *mz;
3639 struct page_cgroup *pc, *busy;
3640 unsigned long flags, loop;
3641 struct list_head *list;
3642 int ret = 0;
3643
3644 zone = &NODE_DATA(node)->node_zones[zid];
3645 mz = mem_cgroup_zoneinfo(mem, node, zid);
3646 list = &mz->lists[lru];
3647
3648 loop = MEM_CGROUP_ZSTAT(mz, lru);
3649 /* give some margin against EBUSY etc...*/
3650 loop += 256;
3651 busy = NULL;
3652 while (loop--) {
3653 struct page *page;
3654
3655 ret = 0;
3656 spin_lock_irqsave(&zone->lru_lock, flags);
3657 if (list_empty(list)) {
3658 spin_unlock_irqrestore(&zone->lru_lock, flags);
3659 break;
3660 }
3661 pc = list_entry(list->prev, struct page_cgroup, lru);
3662 if (busy == pc) {
3663 list_move(&pc->lru, list);
3664 busy = NULL;
3665 spin_unlock_irqrestore(&zone->lru_lock, flags);
3666 continue;
3667 }
3668 spin_unlock_irqrestore(&zone->lru_lock, flags);
3669
3670 page = lookup_cgroup_page(pc);
3671
3672 ret = mem_cgroup_move_parent(page, pc, mem, GFP_KERNEL);
3673 if (ret == -ENOMEM)
3674 break;
3675
3676 if (ret == -EBUSY || ret == -EINVAL) {
3677 /* found lock contention or "pc" is obsolete. */
3678 busy = pc;
3679 cond_resched();
3680 } else
3681 busy = NULL;
3682 }
3683
3684 if (!ret && !list_empty(list))
3685 return -EBUSY;
3686 return ret;
3687}
3688
3689/*
3690 * make mem_cgroup's charge to be 0 if there is no task.
3691 * This enables deleting this mem_cgroup.
3692 */
3693static int mem_cgroup_force_empty(struct mem_cgroup *mem, bool free_all)
3694{
3695 int ret;
3696 int node, zid, shrink;
3697 int nr_retries = MEM_CGROUP_RECLAIM_RETRIES;
3698 struct cgroup *cgrp = mem->css.cgroup;
3699
3700 css_get(&mem->css);
3701
3702 shrink = 0;
3703 /* should free all ? */
3704 if (free_all)
3705 goto try_to_free;
3706move_account:
3707 do {
3708 ret = -EBUSY;
3709 if (cgroup_task_count(cgrp) || !list_empty(&cgrp->children))
3710 goto out;
3711 ret = -EINTR;
3712 if (signal_pending(current))
3713 goto out;
3714 /* This is for making all *used* pages to be on LRU. */
3715 lru_add_drain_all();
3716 drain_all_stock_sync(mem);
3717 ret = 0;
3718 mem_cgroup_start_move(mem);
3719 for_each_node_state(node, N_HIGH_MEMORY) {
3720 for (zid = 0; !ret && zid < MAX_NR_ZONES; zid++) {
3721 enum lru_list l;
3722 for_each_lru(l) {
3723 ret = mem_cgroup_force_empty_list(mem,
3724 node, zid, l);
3725 if (ret)
3726 break;
3727 }
3728 }
3729 if (ret)
3730 break;
3731 }
3732 mem_cgroup_end_move(mem);
3733 memcg_oom_recover(mem);
3734 /* it seems parent cgroup doesn't have enough mem */
3735 if (ret == -ENOMEM)
3736 goto try_to_free;
3737 cond_resched();
3738 /* "ret" should also be checked to ensure all lists are empty. */
3739 } while (mem->res.usage > 0 || ret);
3740out:
3741 css_put(&mem->css);
3742 return ret;
3743
3744try_to_free:
3745 /* returns EBUSY if there is a task or if we come here twice. */
3746 if (cgroup_task_count(cgrp) || !list_empty(&cgrp->children) || shrink) {
3747 ret = -EBUSY;
3748 goto out;
3749 }
3750 /* we call try-to-free pages for make this cgroup empty */
3751 lru_add_drain_all();
3752 /* try to free all pages in this cgroup */
3753 shrink = 1;
3754 while (nr_retries && mem->res.usage > 0) {
3755 int progress;
3756
3757 if (signal_pending(current)) {
3758 ret = -EINTR;
3759 goto out;
3760 }
3761 progress = try_to_free_mem_cgroup_pages(mem, GFP_KERNEL,
3762 false);
3763 if (!progress) {
3764 nr_retries--;
3765 /* maybe some writeback is necessary */
3766 congestion_wait(BLK_RW_ASYNC, HZ/10);
3767 }
3768
3769 }
3770 lru_add_drain();
3771 /* try move_account...there may be some *locked* pages. */
3772 goto move_account;
3773}
3774
3775int mem_cgroup_force_empty_write(struct cgroup *cont, unsigned int event)
3776{
3777 return mem_cgroup_force_empty(mem_cgroup_from_cont(cont), true);
3778}
3779
3780
3781static u64 mem_cgroup_hierarchy_read(struct cgroup *cont, struct cftype *cft)
3782{
3783 return mem_cgroup_from_cont(cont)->use_hierarchy;
3784}
3785
3786static int mem_cgroup_hierarchy_write(struct cgroup *cont, struct cftype *cft,
3787 u64 val)
3788{
3789 int retval = 0;
3790 struct mem_cgroup *mem = mem_cgroup_from_cont(cont);
3791 struct cgroup *parent = cont->parent;
3792 struct mem_cgroup *parent_mem = NULL;
3793
3794 if (parent)
3795 parent_mem = mem_cgroup_from_cont(parent);
3796
3797 cgroup_lock();
3798 /*
3799 * If parent's use_hierarchy is set, we can't make any modifications
3800 * in the child subtrees. If it is unset, then the change can
3801 * occur, provided the current cgroup has no children.
3802 *
3803 * For the root cgroup, parent_mem is NULL, we allow value to be
3804 * set if there are no children.
3805 */
3806 if ((!parent_mem || !parent_mem->use_hierarchy) &&
3807 (val == 1 || val == 0)) {
3808 if (list_empty(&cont->children))
3809 mem->use_hierarchy = val;
3810 else
3811 retval = -EBUSY;
3812 } else
3813 retval = -EINVAL;
3814 cgroup_unlock();
3815
3816 return retval;
3817}
3818
3819
3820static unsigned long mem_cgroup_recursive_stat(struct mem_cgroup *mem,
3821 enum mem_cgroup_stat_index idx)
3822{
3823 struct mem_cgroup *iter;
3824 long val = 0;
3825
3826 /* Per-cpu values can be negative, use a signed accumulator */
3827 for_each_mem_cgroup_tree(iter, mem)
3828 val += mem_cgroup_read_stat(iter, idx);
3829
3830 if (val < 0) /* race ? */
3831 val = 0;
3832 return val;
3833}
3834
3835static inline u64 mem_cgroup_usage(struct mem_cgroup *mem, bool swap)
3836{
3837 u64 val;
3838
3839 if (!mem_cgroup_is_root(mem)) {
3840 if (!swap)
3841 return res_counter_read_u64(&mem->res, RES_USAGE);
3842 else
3843 return res_counter_read_u64(&mem->memsw, RES_USAGE);
3844 }
3845
3846 val = mem_cgroup_recursive_stat(mem, MEM_CGROUP_STAT_CACHE);
3847 val += mem_cgroup_recursive_stat(mem, MEM_CGROUP_STAT_RSS);
3848
3849 if (swap)
3850 val += mem_cgroup_recursive_stat(mem, MEM_CGROUP_STAT_SWAPOUT);
3851
3852 return val << PAGE_SHIFT;
3853}
3854
3855static u64 mem_cgroup_read(struct cgroup *cont, struct cftype *cft)
3856{
3857 struct mem_cgroup *mem = mem_cgroup_from_cont(cont);
3858 u64 val;
3859 int type, name;
3860
3861 type = MEMFILE_TYPE(cft->private);
3862 name = MEMFILE_ATTR(cft->private);
3863 switch (type) {
3864 case _MEM:
3865 if (name == RES_USAGE)
3866 val = mem_cgroup_usage(mem, false);
3867 else
3868 val = res_counter_read_u64(&mem->res, name);
3869 break;
3870 case _MEMSWAP:
3871 if (name == RES_USAGE)
3872 val = mem_cgroup_usage(mem, true);
3873 else
3874 val = res_counter_read_u64(&mem->memsw, name);
3875 break;
3876 default:
3877 BUG();
3878 break;
3879 }
3880 return val;
3881}
3882/*
3883 * The user of this function is...
3884 * RES_LIMIT.
3885 */
3886static int mem_cgroup_write(struct cgroup *cont, struct cftype *cft,
3887 const char *buffer)
3888{
3889 struct mem_cgroup *memcg = mem_cgroup_from_cont(cont);
3890 int type, name;
3891 unsigned long long val;
3892 int ret;
3893
3894 type = MEMFILE_TYPE(cft->private);
3895 name = MEMFILE_ATTR(cft->private);
3896 switch (name) {
3897 case RES_LIMIT:
3898 if (mem_cgroup_is_root(memcg)) { /* Can't set limit on root */
3899 ret = -EINVAL;
3900 break;
3901 }
3902 /* This function does all necessary parse...reuse it */
3903 ret = res_counter_memparse_write_strategy(buffer, &val);
3904 if (ret)
3905 break;
3906 if (type == _MEM)
3907 ret = mem_cgroup_resize_limit(memcg, val);
3908 else
3909 ret = mem_cgroup_resize_memsw_limit(memcg, val);
3910 break;
3911 case RES_SOFT_LIMIT:
3912 ret = res_counter_memparse_write_strategy(buffer, &val);
3913 if (ret)
3914 break;
3915 /*
3916 * For memsw, soft limits are hard to implement in terms
3917 * of semantics, for now, we support soft limits for
3918 * control without swap
3919 */
3920 if (type == _MEM)
3921 ret = res_counter_set_soft_limit(&memcg->res, val);
3922 else
3923 ret = -EINVAL;
3924 break;
3925 default:
3926 ret = -EINVAL; /* should be BUG() ? */
3927 break;
3928 }
3929 return ret;
3930}
3931
3932static void memcg_get_hierarchical_limit(struct mem_cgroup *memcg,
3933 unsigned long long *mem_limit, unsigned long long *memsw_limit)
3934{
3935 struct cgroup *cgroup;
3936 unsigned long long min_limit, min_memsw_limit, tmp;
3937
3938 min_limit = res_counter_read_u64(&memcg->res, RES_LIMIT);
3939 min_memsw_limit = res_counter_read_u64(&memcg->memsw, RES_LIMIT);
3940 cgroup = memcg->css.cgroup;
3941 if (!memcg->use_hierarchy)
3942 goto out;
3943
3944 while (cgroup->parent) {
3945 cgroup = cgroup->parent;
3946 memcg = mem_cgroup_from_cont(cgroup);
3947 if (!memcg->use_hierarchy)
3948 break;
3949 tmp = res_counter_read_u64(&memcg->res, RES_LIMIT);
3950 min_limit = min(min_limit, tmp);
3951 tmp = res_counter_read_u64(&memcg->memsw, RES_LIMIT);
3952 min_memsw_limit = min(min_memsw_limit, tmp);
3953 }
3954out:
3955 *mem_limit = min_limit;
3956 *memsw_limit = min_memsw_limit;
3957 return;
3958}
3959
3960static int mem_cgroup_reset(struct cgroup *cont, unsigned int event)
3961{
3962 struct mem_cgroup *mem;
3963 int type, name;
3964
3965 mem = mem_cgroup_from_cont(cont);
3966 type = MEMFILE_TYPE(event);
3967 name = MEMFILE_ATTR(event);
3968 switch (name) {
3969 case RES_MAX_USAGE:
3970 if (type == _MEM)
3971 res_counter_reset_max(&mem->res);
3972 else
3973 res_counter_reset_max(&mem->memsw);
3974 break;
3975 case RES_FAILCNT:
3976 if (type == _MEM)
3977 res_counter_reset_failcnt(&mem->res);
3978 else
3979 res_counter_reset_failcnt(&mem->memsw);
3980 break;
3981 }
3982
3983 return 0;
3984}
3985
3986static u64 mem_cgroup_move_charge_read(struct cgroup *cgrp,
3987 struct cftype *cft)
3988{
3989 return mem_cgroup_from_cont(cgrp)->move_charge_at_immigrate;
3990}
3991
3992#ifdef CONFIG_MMU
3993static int mem_cgroup_move_charge_write(struct cgroup *cgrp,
3994 struct cftype *cft, u64 val)
3995{
3996 struct mem_cgroup *mem = mem_cgroup_from_cont(cgrp);
3997
3998 if (val >= (1 << NR_MOVE_TYPE))
3999 return -EINVAL;
4000 /*
4001 * We check this value several times in both in can_attach() and
4002 * attach(), so we need cgroup lock to prevent this value from being
4003 * inconsistent.
4004 */
4005 cgroup_lock();
4006 mem->move_charge_at_immigrate = val;
4007 cgroup_unlock();
4008
4009 return 0;
4010}
4011#else
4012static int mem_cgroup_move_charge_write(struct cgroup *cgrp,
4013 struct cftype *cft, u64 val)
4014{
4015 return -ENOSYS;
4016}
4017#endif
4018
4019
4020/* For read statistics */
4021enum {
4022 MCS_CACHE,
4023 MCS_RSS,
4024 MCS_FILE_MAPPED,
4025 MCS_PGPGIN,
4026 MCS_PGPGOUT,
4027 MCS_SWAP,
4028 MCS_PGFAULT,
4029 MCS_PGMAJFAULT,
4030 MCS_INACTIVE_ANON,
4031 MCS_ACTIVE_ANON,
4032 MCS_INACTIVE_FILE,
4033 MCS_ACTIVE_FILE,
4034 MCS_UNEVICTABLE,
4035 NR_MCS_STAT,
4036};
4037
4038struct mcs_total_stat {
4039 s64 stat[NR_MCS_STAT];
4040};
4041
4042struct {
4043 char *local_name;
4044 char *total_name;
4045} memcg_stat_strings[NR_MCS_STAT] = {
4046 {"cache", "total_cache"},
4047 {"rss", "total_rss"},
4048 {"mapped_file", "total_mapped_file"},
4049 {"pgpgin", "total_pgpgin"},
4050 {"pgpgout", "total_pgpgout"},
4051 {"swap", "total_swap"},
4052 {"pgfault", "total_pgfault"},
4053 {"pgmajfault", "total_pgmajfault"},
4054 {"inactive_anon", "total_inactive_anon"},
4055 {"active_anon", "total_active_anon"},
4056 {"inactive_file", "total_inactive_file"},
4057 {"active_file", "total_active_file"},
4058 {"unevictable", "total_unevictable"}
4059};
4060
4061
4062static void
4063mem_cgroup_get_local_stat(struct mem_cgroup *mem, struct mcs_total_stat *s)
4064{
4065 s64 val;
4066
4067 /* per cpu stat */
4068 val = mem_cgroup_read_stat(mem, MEM_CGROUP_STAT_CACHE);
4069 s->stat[MCS_CACHE] += val * PAGE_SIZE;
4070 val = mem_cgroup_read_stat(mem, MEM_CGROUP_STAT_RSS);
4071 s->stat[MCS_RSS] += val * PAGE_SIZE;
4072 val = mem_cgroup_read_stat(mem, MEM_CGROUP_STAT_FILE_MAPPED);
4073 s->stat[MCS_FILE_MAPPED] += val * PAGE_SIZE;
4074 val = mem_cgroup_read_events(mem, MEM_CGROUP_EVENTS_PGPGIN);
4075 s->stat[MCS_PGPGIN] += val;
4076 val = mem_cgroup_read_events(mem, MEM_CGROUP_EVENTS_PGPGOUT);
4077 s->stat[MCS_PGPGOUT] += val;
4078 if (do_swap_account) {
4079 val = mem_cgroup_read_stat(mem, MEM_CGROUP_STAT_SWAPOUT);
4080 s->stat[MCS_SWAP] += val * PAGE_SIZE;
4081 }
4082 val = mem_cgroup_read_events(mem, MEM_CGROUP_EVENTS_PGFAULT);
4083 s->stat[MCS_PGFAULT] += val;
4084 val = mem_cgroup_read_events(mem, MEM_CGROUP_EVENTS_PGMAJFAULT);
4085 s->stat[MCS_PGMAJFAULT] += val;
4086
4087 /* per zone stat */
4088 val = mem_cgroup_nr_lru_pages(mem, BIT(LRU_INACTIVE_ANON));
4089 s->stat[MCS_INACTIVE_ANON] += val * PAGE_SIZE;
4090 val = mem_cgroup_nr_lru_pages(mem, BIT(LRU_ACTIVE_ANON));
4091 s->stat[MCS_ACTIVE_ANON] += val * PAGE_SIZE;
4092 val = mem_cgroup_nr_lru_pages(mem, BIT(LRU_INACTIVE_FILE));
4093 s->stat[MCS_INACTIVE_FILE] += val * PAGE_SIZE;
4094 val = mem_cgroup_nr_lru_pages(mem, BIT(LRU_ACTIVE_FILE));
4095 s->stat[MCS_ACTIVE_FILE] += val * PAGE_SIZE;
4096 val = mem_cgroup_nr_lru_pages(mem, BIT(LRU_UNEVICTABLE));
4097 s->stat[MCS_UNEVICTABLE] += val * PAGE_SIZE;
4098}
4099
4100static void
4101mem_cgroup_get_total_stat(struct mem_cgroup *mem, struct mcs_total_stat *s)
4102{
4103 struct mem_cgroup *iter;
4104
4105 for_each_mem_cgroup_tree(iter, mem)
4106 mem_cgroup_get_local_stat(iter, s);
4107}
4108
4109#ifdef CONFIG_NUMA
4110static int mem_control_numa_stat_show(struct seq_file *m, void *arg)
4111{
4112 int nid;
4113 unsigned long total_nr, file_nr, anon_nr, unevictable_nr;
4114 unsigned long node_nr;
4115 struct cgroup *cont = m->private;
4116 struct mem_cgroup *mem_cont = mem_cgroup_from_cont(cont);
4117
4118 total_nr = mem_cgroup_nr_lru_pages(mem_cont, LRU_ALL);
4119 seq_printf(m, "total=%lu", total_nr);
4120 for_each_node_state(nid, N_HIGH_MEMORY) {
4121 node_nr = mem_cgroup_node_nr_lru_pages(mem_cont, nid, LRU_ALL);
4122 seq_printf(m, " N%d=%lu", nid, node_nr);
4123 }
4124 seq_putc(m, '\n');
4125
4126 file_nr = mem_cgroup_nr_lru_pages(mem_cont, LRU_ALL_FILE);
4127 seq_printf(m, "file=%lu", file_nr);
4128 for_each_node_state(nid, N_HIGH_MEMORY) {
4129 node_nr = mem_cgroup_node_nr_lru_pages(mem_cont, nid,
4130 LRU_ALL_FILE);
4131 seq_printf(m, " N%d=%lu", nid, node_nr);
4132 }
4133 seq_putc(m, '\n');
4134
4135 anon_nr = mem_cgroup_nr_lru_pages(mem_cont, LRU_ALL_ANON);
4136 seq_printf(m, "anon=%lu", anon_nr);
4137 for_each_node_state(nid, N_HIGH_MEMORY) {
4138 node_nr = mem_cgroup_node_nr_lru_pages(mem_cont, nid,
4139 LRU_ALL_ANON);
4140 seq_printf(m, " N%d=%lu", nid, node_nr);
4141 }
4142 seq_putc(m, '\n');
4143
4144 unevictable_nr = mem_cgroup_nr_lru_pages(mem_cont, BIT(LRU_UNEVICTABLE));
4145 seq_printf(m, "unevictable=%lu", unevictable_nr);
4146 for_each_node_state(nid, N_HIGH_MEMORY) {
4147 node_nr = mem_cgroup_node_nr_lru_pages(mem_cont, nid,
4148 BIT(LRU_UNEVICTABLE));
4149 seq_printf(m, " N%d=%lu", nid, node_nr);
4150 }
4151 seq_putc(m, '\n');
4152 return 0;
4153}
4154#endif /* CONFIG_NUMA */
4155
4156static int mem_control_stat_show(struct cgroup *cont, struct cftype *cft,
4157 struct cgroup_map_cb *cb)
4158{
4159 struct mem_cgroup *mem_cont = mem_cgroup_from_cont(cont);
4160 struct mcs_total_stat mystat;
4161 int i;
4162
4163 memset(&mystat, 0, sizeof(mystat));
4164 mem_cgroup_get_local_stat(mem_cont, &mystat);
4165
4166
4167 for (i = 0; i < NR_MCS_STAT; i++) {
4168 if (i == MCS_SWAP && !do_swap_account)
4169 continue;
4170 cb->fill(cb, memcg_stat_strings[i].local_name, mystat.stat[i]);
4171 }
4172
4173 /* Hierarchical information */
4174 {
4175 unsigned long long limit, memsw_limit;
4176 memcg_get_hierarchical_limit(mem_cont, &limit, &memsw_limit);
4177 cb->fill(cb, "hierarchical_memory_limit", limit);
4178 if (do_swap_account)
4179 cb->fill(cb, "hierarchical_memsw_limit", memsw_limit);
4180 }
4181
4182 memset(&mystat, 0, sizeof(mystat));
4183 mem_cgroup_get_total_stat(mem_cont, &mystat);
4184 for (i = 0; i < NR_MCS_STAT; i++) {
4185 if (i == MCS_SWAP && !do_swap_account)
4186 continue;
4187 cb->fill(cb, memcg_stat_strings[i].total_name, mystat.stat[i]);
4188 }
4189
4190#ifdef CONFIG_DEBUG_VM
4191 cb->fill(cb, "inactive_ratio", calc_inactive_ratio(mem_cont, NULL));
4192
4193 {
4194 int nid, zid;
4195 struct mem_cgroup_per_zone *mz;
4196 unsigned long recent_rotated[2] = {0, 0};
4197 unsigned long recent_scanned[2] = {0, 0};
4198
4199 for_each_online_node(nid)
4200 for (zid = 0; zid < MAX_NR_ZONES; zid++) {
4201 mz = mem_cgroup_zoneinfo(mem_cont, nid, zid);
4202
4203 recent_rotated[0] +=
4204 mz->reclaim_stat.recent_rotated[0];
4205 recent_rotated[1] +=
4206 mz->reclaim_stat.recent_rotated[1];
4207 recent_scanned[0] +=
4208 mz->reclaim_stat.recent_scanned[0];
4209 recent_scanned[1] +=
4210 mz->reclaim_stat.recent_scanned[1];
4211 }
4212 cb->fill(cb, "recent_rotated_anon", recent_rotated[0]);
4213 cb->fill(cb, "recent_rotated_file", recent_rotated[1]);
4214 cb->fill(cb, "recent_scanned_anon", recent_scanned[0]);
4215 cb->fill(cb, "recent_scanned_file", recent_scanned[1]);
4216 }
4217#endif
4218
4219 return 0;
4220}
4221
4222static u64 mem_cgroup_swappiness_read(struct cgroup *cgrp, struct cftype *cft)
4223{
4224 struct mem_cgroup *memcg = mem_cgroup_from_cont(cgrp);
4225
4226 return mem_cgroup_swappiness(memcg);
4227}
4228
4229static int mem_cgroup_swappiness_write(struct cgroup *cgrp, struct cftype *cft,
4230 u64 val)
4231{
4232 struct mem_cgroup *memcg = mem_cgroup_from_cont(cgrp);
4233 struct mem_cgroup *parent;
4234
4235 if (val > 100)
4236 return -EINVAL;
4237
4238 if (cgrp->parent == NULL)
4239 return -EINVAL;
4240
4241 parent = mem_cgroup_from_cont(cgrp->parent);
4242
4243 cgroup_lock();
4244
4245 /* If under hierarchy, only empty-root can set this value */
4246 if ((parent->use_hierarchy) ||
4247 (memcg->use_hierarchy && !list_empty(&cgrp->children))) {
4248 cgroup_unlock();
4249 return -EINVAL;
4250 }
4251
4252 memcg->swappiness = val;
4253
4254 cgroup_unlock();
4255
4256 return 0;
4257}
4258
4259static void __mem_cgroup_threshold(struct mem_cgroup *memcg, bool swap)
4260{
4261 struct mem_cgroup_threshold_ary *t;
4262 u64 usage;
4263 int i;
4264
4265 rcu_read_lock();
4266 if (!swap)
4267 t = rcu_dereference(memcg->thresholds.primary);
4268 else
4269 t = rcu_dereference(memcg->memsw_thresholds.primary);
4270
4271 if (!t)
4272 goto unlock;
4273
4274 usage = mem_cgroup_usage(memcg, swap);
4275
4276 /*
4277 * current_threshold points to threshold just below usage.
4278 * If it's not true, a threshold was crossed after last
4279 * call of __mem_cgroup_threshold().
4280 */
4281 i = t->current_threshold;
4282
4283 /*
4284 * Iterate backward over array of thresholds starting from
4285 * current_threshold and check if a threshold is crossed.
4286 * If none of thresholds below usage is crossed, we read
4287 * only one element of the array here.
4288 */
4289 for (; i >= 0 && unlikely(t->entries[i].threshold > usage); i--)
4290 eventfd_signal(t->entries[i].eventfd, 1);
4291
4292 /* i = current_threshold + 1 */
4293 i++;
4294
4295 /*
4296 * Iterate forward over array of thresholds starting from
4297 * current_threshold+1 and check if a threshold is crossed.
4298 * If none of thresholds above usage is crossed, we read
4299 * only one element of the array here.
4300 */
4301 for (; i < t->size && unlikely(t->entries[i].threshold <= usage); i++)
4302 eventfd_signal(t->entries[i].eventfd, 1);
4303
4304 /* Update current_threshold */
4305 t->current_threshold = i - 1;
4306unlock:
4307 rcu_read_unlock();
4308}
4309
4310static void mem_cgroup_threshold(struct mem_cgroup *memcg)
4311{
4312 while (memcg) {
4313 __mem_cgroup_threshold(memcg, false);
4314 if (do_swap_account)
4315 __mem_cgroup_threshold(memcg, true);
4316
4317 memcg = parent_mem_cgroup(memcg);
4318 }
4319}
4320
4321static int compare_thresholds(const void *a, const void *b)
4322{
4323 const struct mem_cgroup_threshold *_a = a;
4324 const struct mem_cgroup_threshold *_b = b;
4325
4326 return _a->threshold - _b->threshold;
4327}
4328
4329static int mem_cgroup_oom_notify_cb(struct mem_cgroup *mem)
4330{
4331 struct mem_cgroup_eventfd_list *ev;
4332
4333 list_for_each_entry(ev, &mem->oom_notify, list)
4334 eventfd_signal(ev->eventfd, 1);
4335 return 0;
4336}
4337
4338static void mem_cgroup_oom_notify(struct mem_cgroup *mem)
4339{
4340 struct mem_cgroup *iter;
4341
4342 for_each_mem_cgroup_tree(iter, mem)
4343 mem_cgroup_oom_notify_cb(iter);
4344}
4345
4346static int mem_cgroup_usage_register_event(struct cgroup *cgrp,
4347 struct cftype *cft, struct eventfd_ctx *eventfd, const char *args)
4348{
4349 struct mem_cgroup *memcg = mem_cgroup_from_cont(cgrp);
4350 struct mem_cgroup_thresholds *thresholds;
4351 struct mem_cgroup_threshold_ary *new;
4352 int type = MEMFILE_TYPE(cft->private);
4353 u64 threshold, usage;
4354 int i, size, ret;
4355
4356 ret = res_counter_memparse_write_strategy(args, &threshold);
4357 if (ret)
4358 return ret;
4359
4360 mutex_lock(&memcg->thresholds_lock);
4361
4362 if (type == _MEM)
4363 thresholds = &memcg->thresholds;
4364 else if (type == _MEMSWAP)
4365 thresholds = &memcg->memsw_thresholds;
4366 else
4367 BUG();
4368
4369 usage = mem_cgroup_usage(memcg, type == _MEMSWAP);
4370
4371 /* Check if a threshold crossed before adding a new one */
4372 if (thresholds->primary)
4373 __mem_cgroup_threshold(memcg, type == _MEMSWAP);
4374
4375 size = thresholds->primary ? thresholds->primary->size + 1 : 1;
4376
4377 /* Allocate memory for new array of thresholds */
4378 new = kmalloc(sizeof(*new) + size * sizeof(struct mem_cgroup_threshold),
4379 GFP_KERNEL);
4380 if (!new) {
4381 ret = -ENOMEM;
4382 goto unlock;
4383 }
4384 new->size = size;
4385
4386 /* Copy thresholds (if any) to new array */
4387 if (thresholds->primary) {
4388 memcpy(new->entries, thresholds->primary->entries, (size - 1) *
4389 sizeof(struct mem_cgroup_threshold));
4390 }
4391
4392 /* Add new threshold */
4393 new->entries[size - 1].eventfd = eventfd;
4394 new->entries[size - 1].threshold = threshold;
4395
4396 /* Sort thresholds. Registering of new threshold isn't time-critical */
4397 sort(new->entries, size, sizeof(struct mem_cgroup_threshold),
4398 compare_thresholds, NULL);
4399
4400 /* Find current threshold */
4401 new->current_threshold = -1;
4402 for (i = 0; i < size; i++) {
4403 if (new->entries[i].threshold < usage) {
4404 /*
4405 * new->current_threshold will not be used until
4406 * rcu_assign_pointer(), so it's safe to increment
4407 * it here.
4408 */
4409 ++new->current_threshold;
4410 }
4411 }
4412
4413 /* Free old spare buffer and save old primary buffer as spare */
4414 kfree(thresholds->spare);
4415 thresholds->spare = thresholds->primary;
4416
4417 rcu_assign_pointer(thresholds->primary, new);
4418
4419 /* To be sure that nobody uses thresholds */
4420 synchronize_rcu();
4421
4422unlock:
4423 mutex_unlock(&memcg->thresholds_lock);
4424
4425 return ret;
4426}
4427
4428static void mem_cgroup_usage_unregister_event(struct cgroup *cgrp,
4429 struct cftype *cft, struct eventfd_ctx *eventfd)
4430{
4431 struct mem_cgroup *memcg = mem_cgroup_from_cont(cgrp);
4432 struct mem_cgroup_thresholds *thresholds;
4433 struct mem_cgroup_threshold_ary *new;
4434 int type = MEMFILE_TYPE(cft->private);
4435 u64 usage;
4436 int i, j, size;
4437
4438 mutex_lock(&memcg->thresholds_lock);
4439 if (type == _MEM)
4440 thresholds = &memcg->thresholds;
4441 else if (type == _MEMSWAP)
4442 thresholds = &memcg->memsw_thresholds;
4443 else
4444 BUG();
4445
4446 /*
4447 * Something went wrong if we trying to unregister a threshold
4448 * if we don't have thresholds
4449 */
4450 BUG_ON(!thresholds);
4451
4452 usage = mem_cgroup_usage(memcg, type == _MEMSWAP);
4453
4454 /* Check if a threshold crossed before removing */
4455 __mem_cgroup_threshold(memcg, type == _MEMSWAP);
4456
4457 /* Calculate new number of threshold */
4458 size = 0;
4459 for (i = 0; i < thresholds->primary->size; i++) {
4460 if (thresholds->primary->entries[i].eventfd != eventfd)
4461 size++;
4462 }
4463
4464 new = thresholds->spare;
4465
4466 /* Set thresholds array to NULL if we don't have thresholds */
4467 if (!size) {
4468 kfree(new);
4469 new = NULL;
4470 goto swap_buffers;
4471 }
4472
4473 new->size = size;
4474
4475 /* Copy thresholds and find current threshold */
4476 new->current_threshold = -1;
4477 for (i = 0, j = 0; i < thresholds->primary->size; i++) {
4478 if (thresholds->primary->entries[i].eventfd == eventfd)
4479 continue;
4480
4481 new->entries[j] = thresholds->primary->entries[i];
4482 if (new->entries[j].threshold < usage) {
4483 /*
4484 * new->current_threshold will not be used
4485 * until rcu_assign_pointer(), so it's safe to increment
4486 * it here.
4487 */
4488 ++new->current_threshold;
4489 }
4490 j++;
4491 }
4492
4493swap_buffers:
4494 /* Swap primary and spare array */
4495 thresholds->spare = thresholds->primary;
4496 rcu_assign_pointer(thresholds->primary, new);
4497
4498 /* To be sure that nobody uses thresholds */
4499 synchronize_rcu();
4500
4501 mutex_unlock(&memcg->thresholds_lock);
4502}
4503
4504static int mem_cgroup_oom_register_event(struct cgroup *cgrp,
4505 struct cftype *cft, struct eventfd_ctx *eventfd, const char *args)
4506{
4507 struct mem_cgroup *memcg = mem_cgroup_from_cont(cgrp);
4508 struct mem_cgroup_eventfd_list *event;
4509 int type = MEMFILE_TYPE(cft->private);
4510
4511 BUG_ON(type != _OOM_TYPE);
4512 event = kmalloc(sizeof(*event), GFP_KERNEL);
4513 if (!event)
4514 return -ENOMEM;
4515
4516 spin_lock(&memcg_oom_lock);
4517
4518 event->eventfd = eventfd;
4519 list_add(&event->list, &memcg->oom_notify);
4520
4521 /* already in OOM ? */
4522 if (atomic_read(&memcg->under_oom))
4523 eventfd_signal(eventfd, 1);
4524 spin_unlock(&memcg_oom_lock);
4525
4526 return 0;
4527}
4528
4529static void mem_cgroup_oom_unregister_event(struct cgroup *cgrp,
4530 struct cftype *cft, struct eventfd_ctx *eventfd)
4531{
4532 struct mem_cgroup *mem = mem_cgroup_from_cont(cgrp);
4533 struct mem_cgroup_eventfd_list *ev, *tmp;
4534 int type = MEMFILE_TYPE(cft->private);
4535
4536 BUG_ON(type != _OOM_TYPE);
4537
4538 spin_lock(&memcg_oom_lock);
4539
4540 list_for_each_entry_safe(ev, tmp, &mem->oom_notify, list) {
4541 if (ev->eventfd == eventfd) {
4542 list_del(&ev->list);
4543 kfree(ev);
4544 }
4545 }
4546
4547 spin_unlock(&memcg_oom_lock);
4548}
4549
4550static int mem_cgroup_oom_control_read(struct cgroup *cgrp,
4551 struct cftype *cft, struct cgroup_map_cb *cb)
4552{
4553 struct mem_cgroup *mem = mem_cgroup_from_cont(cgrp);
4554
4555 cb->fill(cb, "oom_kill_disable", mem->oom_kill_disable);
4556
4557 if (atomic_read(&mem->under_oom))
4558 cb->fill(cb, "under_oom", 1);
4559 else
4560 cb->fill(cb, "under_oom", 0);
4561 return 0;
4562}
4563
4564static int mem_cgroup_oom_control_write(struct cgroup *cgrp,
4565 struct cftype *cft, u64 val)
4566{
4567 struct mem_cgroup *mem = mem_cgroup_from_cont(cgrp);
4568 struct mem_cgroup *parent;
4569
4570 /* cannot set to root cgroup and only 0 and 1 are allowed */
4571 if (!cgrp->parent || !((val == 0) || (val == 1)))
4572 return -EINVAL;
4573
4574 parent = mem_cgroup_from_cont(cgrp->parent);
4575
4576 cgroup_lock();
4577 /* oom-kill-disable is a flag for subhierarchy. */
4578 if ((parent->use_hierarchy) ||
4579 (mem->use_hierarchy && !list_empty(&cgrp->children))) {
4580 cgroup_unlock();
4581 return -EINVAL;
4582 }
4583 mem->oom_kill_disable = val;
4584 if (!val)
4585 memcg_oom_recover(mem);
4586 cgroup_unlock();
4587 return 0;
4588}
4589
4590#ifdef CONFIG_NUMA
4591static const struct file_operations mem_control_numa_stat_file_operations = {
4592 .read = seq_read,
4593 .llseek = seq_lseek,
4594 .release = single_release,
4595};
4596
4597static int mem_control_numa_stat_open(struct inode *unused, struct file *file)
4598{
4599 struct cgroup *cont = file->f_dentry->d_parent->d_fsdata;
4600
4601 file->f_op = &mem_control_numa_stat_file_operations;
4602 return single_open(file, mem_control_numa_stat_show, cont);
4603}
4604#endif /* CONFIG_NUMA */
4605
4606static struct cftype mem_cgroup_files[] = {
4607 {
4608 .name = "usage_in_bytes",
4609 .private = MEMFILE_PRIVATE(_MEM, RES_USAGE),
4610 .read_u64 = mem_cgroup_read,
4611 .register_event = mem_cgroup_usage_register_event,
4612 .unregister_event = mem_cgroup_usage_unregister_event,
4613 },
4614 {
4615 .name = "max_usage_in_bytes",
4616 .private = MEMFILE_PRIVATE(_MEM, RES_MAX_USAGE),
4617 .trigger = mem_cgroup_reset,
4618 .read_u64 = mem_cgroup_read,
4619 },
4620 {
4621 .name = "limit_in_bytes",
4622 .private = MEMFILE_PRIVATE(_MEM, RES_LIMIT),
4623 .write_string = mem_cgroup_write,
4624 .read_u64 = mem_cgroup_read,
4625 },
4626 {
4627 .name = "soft_limit_in_bytes",
4628 .private = MEMFILE_PRIVATE(_MEM, RES_SOFT_LIMIT),
4629 .write_string = mem_cgroup_write,
4630 .read_u64 = mem_cgroup_read,
4631 },
4632 {
4633 .name = "failcnt",
4634 .private = MEMFILE_PRIVATE(_MEM, RES_FAILCNT),
4635 .trigger = mem_cgroup_reset,
4636 .read_u64 = mem_cgroup_read,
4637 },
4638 {
4639 .name = "stat",
4640 .read_map = mem_control_stat_show,
4641 },
4642 {
4643 .name = "force_empty",
4644 .trigger = mem_cgroup_force_empty_write,
4645 },
4646 {
4647 .name = "use_hierarchy",
4648 .write_u64 = mem_cgroup_hierarchy_write,
4649 .read_u64 = mem_cgroup_hierarchy_read,
4650 },
4651 {
4652 .name = "swappiness",
4653 .read_u64 = mem_cgroup_swappiness_read,
4654 .write_u64 = mem_cgroup_swappiness_write,
4655 },
4656 {
4657 .name = "move_charge_at_immigrate",
4658 .read_u64 = mem_cgroup_move_charge_read,
4659 .write_u64 = mem_cgroup_move_charge_write,
4660 },
4661 {
4662 .name = "oom_control",
4663 .read_map = mem_cgroup_oom_control_read,
4664 .write_u64 = mem_cgroup_oom_control_write,
4665 .register_event = mem_cgroup_oom_register_event,
4666 .unregister_event = mem_cgroup_oom_unregister_event,
4667 .private = MEMFILE_PRIVATE(_OOM_TYPE, OOM_CONTROL),
4668 },
4669#ifdef CONFIG_NUMA
4670 {
4671 .name = "numa_stat",
4672 .open = mem_control_numa_stat_open,
4673 .mode = S_IRUGO,
4674 },
4675#endif
4676};
4677
4678#ifdef CONFIG_CGROUP_MEM_RES_CTLR_SWAP
4679static struct cftype memsw_cgroup_files[] = {
4680 {
4681 .name = "memsw.usage_in_bytes",
4682 .private = MEMFILE_PRIVATE(_MEMSWAP, RES_USAGE),
4683 .read_u64 = mem_cgroup_read,
4684 .register_event = mem_cgroup_usage_register_event,
4685 .unregister_event = mem_cgroup_usage_unregister_event,
4686 },
4687 {
4688 .name = "memsw.max_usage_in_bytes",
4689 .private = MEMFILE_PRIVATE(_MEMSWAP, RES_MAX_USAGE),
4690 .trigger = mem_cgroup_reset,
4691 .read_u64 = mem_cgroup_read,
4692 },
4693 {
4694 .name = "memsw.limit_in_bytes",
4695 .private = MEMFILE_PRIVATE(_MEMSWAP, RES_LIMIT),
4696 .write_string = mem_cgroup_write,
4697 .read_u64 = mem_cgroup_read,
4698 },
4699 {
4700 .name = "memsw.failcnt",
4701 .private = MEMFILE_PRIVATE(_MEMSWAP, RES_FAILCNT),
4702 .trigger = mem_cgroup_reset,
4703 .read_u64 = mem_cgroup_read,
4704 },
4705};
4706
4707static int register_memsw_files(struct cgroup *cont, struct cgroup_subsys *ss)
4708{
4709 if (!do_swap_account)
4710 return 0;
4711 return cgroup_add_files(cont, ss, memsw_cgroup_files,
4712 ARRAY_SIZE(memsw_cgroup_files));
4713};
4714#else
4715static int register_memsw_files(struct cgroup *cont, struct cgroup_subsys *ss)
4716{
4717 return 0;
4718}
4719#endif
4720
4721static int alloc_mem_cgroup_per_zone_info(struct mem_cgroup *mem, int node)
4722{
4723 struct mem_cgroup_per_node *pn;
4724 struct mem_cgroup_per_zone *mz;
4725 enum lru_list l;
4726 int zone, tmp = node;
4727 /*
4728 * This routine is called against possible nodes.
4729 * But it's BUG to call kmalloc() against offline node.
4730 *
4731 * TODO: this routine can waste much memory for nodes which will
4732 * never be onlined. It's better to use memory hotplug callback
4733 * function.
4734 */
4735 if (!node_state(node, N_NORMAL_MEMORY))
4736 tmp = -1;
4737 pn = kzalloc_node(sizeof(*pn), GFP_KERNEL, tmp);
4738 if (!pn)
4739 return 1;
4740
4741 mem->info.nodeinfo[node] = pn;
4742 for (zone = 0; zone < MAX_NR_ZONES; zone++) {
4743 mz = &pn->zoneinfo[zone];
4744 for_each_lru(l)
4745 INIT_LIST_HEAD(&mz->lists[l]);
4746 mz->usage_in_excess = 0;
4747 mz->on_tree = false;
4748 mz->mem = mem;
4749 }
4750 return 0;
4751}
4752
4753static void free_mem_cgroup_per_zone_info(struct mem_cgroup *mem, int node)
4754{
4755 kfree(mem->info.nodeinfo[node]);
4756}
4757
4758static struct mem_cgroup *mem_cgroup_alloc(void)
4759{
4760 struct mem_cgroup *mem;
4761 int size = sizeof(struct mem_cgroup);
4762
4763 /* Can be very big if MAX_NUMNODES is very big */
4764 if (size < PAGE_SIZE)
4765 mem = kzalloc(size, GFP_KERNEL);
4766 else
4767 mem = vzalloc(size);
4768
4769 if (!mem)
4770 return NULL;
4771
4772 mem->stat = alloc_percpu(struct mem_cgroup_stat_cpu);
4773 if (!mem->stat)
4774 goto out_free;
4775 spin_lock_init(&mem->pcp_counter_lock);
4776 return mem;
4777
4778out_free:
4779 if (size < PAGE_SIZE)
4780 kfree(mem);
4781 else
4782 vfree(mem);
4783 return NULL;
4784}
4785
4786/*
4787 * At destroying mem_cgroup, references from swap_cgroup can remain.
4788 * (scanning all at force_empty is too costly...)
4789 *
4790 * Instead of clearing all references at force_empty, we remember
4791 * the number of reference from swap_cgroup and free mem_cgroup when
4792 * it goes down to 0.
4793 *
4794 * Removal of cgroup itself succeeds regardless of refs from swap.
4795 */
4796
4797static void __mem_cgroup_free(struct mem_cgroup *mem)
4798{
4799 int node;
4800
4801 mem_cgroup_remove_from_trees(mem);
4802 free_css_id(&mem_cgroup_subsys, &mem->css);
4803
4804 for_each_node_state(node, N_POSSIBLE)
4805 free_mem_cgroup_per_zone_info(mem, node);
4806
4807 free_percpu(mem->stat);
4808 if (sizeof(struct mem_cgroup) < PAGE_SIZE)
4809 kfree(mem);
4810 else
4811 vfree(mem);
4812}
4813
4814static void mem_cgroup_get(struct mem_cgroup *mem)
4815{
4816 atomic_inc(&mem->refcnt);
4817}
4818
4819static void __mem_cgroup_put(struct mem_cgroup *mem, int count)
4820{
4821 if (atomic_sub_and_test(count, &mem->refcnt)) {
4822 struct mem_cgroup *parent = parent_mem_cgroup(mem);
4823 __mem_cgroup_free(mem);
4824 if (parent)
4825 mem_cgroup_put(parent);
4826 }
4827}
4828
4829static void mem_cgroup_put(struct mem_cgroup *mem)
4830{
4831 __mem_cgroup_put(mem, 1);
4832}
4833
4834/*
4835 * Returns the parent mem_cgroup in memcgroup hierarchy with hierarchy enabled.
4836 */
4837static struct mem_cgroup *parent_mem_cgroup(struct mem_cgroup *mem)
4838{
4839 if (!mem->res.parent)
4840 return NULL;
4841 return mem_cgroup_from_res_counter(mem->res.parent, res);
4842}
4843
4844#ifdef CONFIG_CGROUP_MEM_RES_CTLR_SWAP
4845static void __init enable_swap_cgroup(void)
4846{
4847 if (!mem_cgroup_disabled() && really_do_swap_account)
4848 do_swap_account = 1;
4849}
4850#else
4851static void __init enable_swap_cgroup(void)
4852{
4853}
4854#endif
4855
4856static int mem_cgroup_soft_limit_tree_init(void)
4857{
4858 struct mem_cgroup_tree_per_node *rtpn;
4859 struct mem_cgroup_tree_per_zone *rtpz;
4860 int tmp, node, zone;
4861
4862 for_each_node_state(node, N_POSSIBLE) {
4863 tmp = node;
4864 if (!node_state(node, N_NORMAL_MEMORY))
4865 tmp = -1;
4866 rtpn = kzalloc_node(sizeof(*rtpn), GFP_KERNEL, tmp);
4867 if (!rtpn)
4868 return 1;
4869
4870 soft_limit_tree.rb_tree_per_node[node] = rtpn;
4871
4872 for (zone = 0; zone < MAX_NR_ZONES; zone++) {
4873 rtpz = &rtpn->rb_tree_per_zone[zone];
4874 rtpz->rb_root = RB_ROOT;
4875 spin_lock_init(&rtpz->lock);
4876 }
4877 }
4878 return 0;
4879}
4880
4881static struct cgroup_subsys_state * __ref
4882mem_cgroup_create(struct cgroup_subsys *ss, struct cgroup *cont)
4883{
4884 struct mem_cgroup *mem, *parent;
4885 long error = -ENOMEM;
4886 int node;
4887
4888 mem = mem_cgroup_alloc();
4889 if (!mem)
4890 return ERR_PTR(error);
4891
4892 for_each_node_state(node, N_POSSIBLE)
4893 if (alloc_mem_cgroup_per_zone_info(mem, node))
4894 goto free_out;
4895
4896 /* root ? */
4897 if (cont->parent == NULL) {
4898 int cpu;
4899 enable_swap_cgroup();
4900 parent = NULL;
4901 root_mem_cgroup = mem;
4902 if (mem_cgroup_soft_limit_tree_init())
4903 goto free_out;
4904 for_each_possible_cpu(cpu) {
4905 struct memcg_stock_pcp *stock =
4906 &per_cpu(memcg_stock, cpu);
4907 INIT_WORK(&stock->work, drain_local_stock);
4908 }
4909 hotcpu_notifier(memcg_cpu_hotplug_callback, 0);
4910 } else {
4911 parent = mem_cgroup_from_cont(cont->parent);
4912 mem->use_hierarchy = parent->use_hierarchy;
4913 mem->oom_kill_disable = parent->oom_kill_disable;
4914 }
4915
4916 if (parent && parent->use_hierarchy) {
4917 res_counter_init(&mem->res, &parent->res);
4918 res_counter_init(&mem->memsw, &parent->memsw);
4919 /*
4920 * We increment refcnt of the parent to ensure that we can
4921 * safely access it on res_counter_charge/uncharge.
4922 * This refcnt will be decremented when freeing this
4923 * mem_cgroup(see mem_cgroup_put).
4924 */
4925 mem_cgroup_get(parent);
4926 } else {
4927 res_counter_init(&mem->res, NULL);
4928 res_counter_init(&mem->memsw, NULL);
4929 }
4930 mem->last_scanned_child = 0;
4931 mem->last_scanned_node = MAX_NUMNODES;
4932 INIT_LIST_HEAD(&mem->oom_notify);
4933
4934 if (parent)
4935 mem->swappiness = mem_cgroup_swappiness(parent);
4936 atomic_set(&mem->refcnt, 1);
4937 mem->move_charge_at_immigrate = 0;
4938 mutex_init(&mem->thresholds_lock);
4939 return &mem->css;
4940free_out:
4941 __mem_cgroup_free(mem);
4942 root_mem_cgroup = NULL;
4943 return ERR_PTR(error);
4944}
4945
4946static int mem_cgroup_pre_destroy(struct cgroup_subsys *ss,
4947 struct cgroup *cont)
4948{
4949 struct mem_cgroup *mem = mem_cgroup_from_cont(cont);
4950
4951 return mem_cgroup_force_empty(mem, false);
4952}
4953
4954static void mem_cgroup_destroy(struct cgroup_subsys *ss,
4955 struct cgroup *cont)
4956{
4957 struct mem_cgroup *mem = mem_cgroup_from_cont(cont);
4958
4959 mem_cgroup_put(mem);
4960}
4961
4962static int mem_cgroup_populate(struct cgroup_subsys *ss,
4963 struct cgroup *cont)
4964{
4965 int ret;
4966
4967 ret = cgroup_add_files(cont, ss, mem_cgroup_files,
4968 ARRAY_SIZE(mem_cgroup_files));
4969
4970 if (!ret)
4971 ret = register_memsw_files(cont, ss);
4972 return ret;
4973}
4974
4975#ifdef CONFIG_MMU
4976/* Handlers for move charge at task migration. */
4977#define PRECHARGE_COUNT_AT_ONCE 256
4978static int mem_cgroup_do_precharge(unsigned long count)
4979{
4980 int ret = 0;
4981 int batch_count = PRECHARGE_COUNT_AT_ONCE;
4982 struct mem_cgroup *mem = mc.to;
4983
4984 if (mem_cgroup_is_root(mem)) {
4985 mc.precharge += count;
4986 /* we don't need css_get for root */
4987 return ret;
4988 }
4989 /* try to charge at once */
4990 if (count > 1) {
4991 struct res_counter *dummy;
4992 /*
4993 * "mem" cannot be under rmdir() because we've already checked
4994 * by cgroup_lock_live_cgroup() that it is not removed and we
4995 * are still under the same cgroup_mutex. So we can postpone
4996 * css_get().
4997 */
4998 if (res_counter_charge(&mem->res, PAGE_SIZE * count, &dummy))
4999 goto one_by_one;
5000 if (do_swap_account && res_counter_charge(&mem->memsw,
5001 PAGE_SIZE * count, &dummy)) {
5002 res_counter_uncharge(&mem->res, PAGE_SIZE * count);
5003 goto one_by_one;
5004 }
5005 mc.precharge += count;
5006 return ret;
5007 }
5008one_by_one:
5009 /* fall back to one by one charge */
5010 while (count--) {
5011 if (signal_pending(current)) {
5012 ret = -EINTR;
5013 break;
5014 }
5015 if (!batch_count--) {
5016 batch_count = PRECHARGE_COUNT_AT_ONCE;
5017 cond_resched();
5018 }
5019 ret = __mem_cgroup_try_charge(NULL, GFP_KERNEL, 1, &mem, false);
5020 if (ret || !mem)
5021 /* mem_cgroup_clear_mc() will do uncharge later */
5022 return -ENOMEM;
5023 mc.precharge++;
5024 }
5025 return ret;
5026}
5027
5028/**
5029 * is_target_pte_for_mc - check a pte whether it is valid for move charge
5030 * @vma: the vma the pte to be checked belongs
5031 * @addr: the address corresponding to the pte to be checked
5032 * @ptent: the pte to be checked
5033 * @target: the pointer the target page or swap ent will be stored(can be NULL)
5034 *
5035 * Returns
5036 * 0(MC_TARGET_NONE): if the pte is not a target for move charge.
5037 * 1(MC_TARGET_PAGE): if the page corresponding to this pte is a target for
5038 * move charge. if @target is not NULL, the page is stored in target->page
5039 * with extra refcnt got(Callers should handle it).
5040 * 2(MC_TARGET_SWAP): if the swap entry corresponding to this pte is a
5041 * target for charge migration. if @target is not NULL, the entry is stored
5042 * in target->ent.
5043 *
5044 * Called with pte lock held.
5045 */
5046union mc_target {
5047 struct page *page;
5048 swp_entry_t ent;
5049};
5050
5051enum mc_target_type {
5052 MC_TARGET_NONE, /* not used */
5053 MC_TARGET_PAGE,
5054 MC_TARGET_SWAP,
5055};
5056
5057static struct page *mc_handle_present_pte(struct vm_area_struct *vma,
5058 unsigned long addr, pte_t ptent)
5059{
5060 struct page *page = vm_normal_page(vma, addr, ptent);
5061
5062 if (!page || !page_mapped(page))
5063 return NULL;
5064 if (PageAnon(page)) {
5065 /* we don't move shared anon */
5066 if (!move_anon() || page_mapcount(page) > 2)
5067 return NULL;
5068 } else if (!move_file())
5069 /* we ignore mapcount for file pages */
5070 return NULL;
5071 if (!get_page_unless_zero(page))
5072 return NULL;
5073
5074 return page;
5075}
5076
5077static struct page *mc_handle_swap_pte(struct vm_area_struct *vma,
5078 unsigned long addr, pte_t ptent, swp_entry_t *entry)
5079{
5080 int usage_count;
5081 struct page *page = NULL;
5082 swp_entry_t ent = pte_to_swp_entry(ptent);
5083
5084 if (!move_anon() || non_swap_entry(ent))
5085 return NULL;
5086 usage_count = mem_cgroup_count_swap_user(ent, &page);
5087 if (usage_count > 1) { /* we don't move shared anon */
5088 if (page)
5089 put_page(page);
5090 return NULL;
5091 }
5092 if (do_swap_account)
5093 entry->val = ent.val;
5094
5095 return page;
5096}
5097
5098static struct page *mc_handle_file_pte(struct vm_area_struct *vma,
5099 unsigned long addr, pte_t ptent, swp_entry_t *entry)
5100{
5101 struct page *page = NULL;
5102 struct inode *inode;
5103 struct address_space *mapping;
5104 pgoff_t pgoff;
5105
5106 if (!vma->vm_file) /* anonymous vma */
5107 return NULL;
5108 if (!move_file())
5109 return NULL;
5110
5111 inode = vma->vm_file->f_path.dentry->d_inode;
5112 mapping = vma->vm_file->f_mapping;
5113 if (pte_none(ptent))
5114 pgoff = linear_page_index(vma, addr);
5115 else /* pte_file(ptent) is true */
5116 pgoff = pte_to_pgoff(ptent);
5117
5118 /* page is moved even if it's not RSS of this task(page-faulted). */
5119 page = find_get_page(mapping, pgoff);
5120
5121#ifdef CONFIG_SWAP
5122 /* shmem/tmpfs may report page out on swap: account for that too. */
5123 if (radix_tree_exceptional_entry(page)) {
5124 swp_entry_t swap = radix_to_swp_entry(page);
5125 if (do_swap_account)
5126 *entry = swap;
5127 page = find_get_page(&swapper_space, swap.val);
5128 }
5129#endif
5130 return page;
5131}
5132
5133static int is_target_pte_for_mc(struct vm_area_struct *vma,
5134 unsigned long addr, pte_t ptent, union mc_target *target)
5135{
5136 struct page *page = NULL;
5137 struct page_cgroup *pc;
5138 int ret = 0;
5139 swp_entry_t ent = { .val = 0 };
5140
5141 if (pte_present(ptent))
5142 page = mc_handle_present_pte(vma, addr, ptent);
5143 else if (is_swap_pte(ptent))
5144 page = mc_handle_swap_pte(vma, addr, ptent, &ent);
5145 else if (pte_none(ptent) || pte_file(ptent))
5146 page = mc_handle_file_pte(vma, addr, ptent, &ent);
5147
5148 if (!page && !ent.val)
5149 return 0;
5150 if (page) {
5151 pc = lookup_page_cgroup(page);
5152 /*
5153 * Do only loose check w/o page_cgroup lock.
5154 * mem_cgroup_move_account() checks the pc is valid or not under
5155 * the lock.
5156 */
5157 if (PageCgroupUsed(pc) && pc->mem_cgroup == mc.from) {
5158 ret = MC_TARGET_PAGE;
5159 if (target)
5160 target->page = page;
5161 }
5162 if (!ret || !target)
5163 put_page(page);
5164 }
5165 /* There is a swap entry and a page doesn't exist or isn't charged */
5166 if (ent.val && !ret &&
5167 css_id(&mc.from->css) == lookup_swap_cgroup(ent)) {
5168 ret = MC_TARGET_SWAP;
5169 if (target)
5170 target->ent = ent;
5171 }
5172 return ret;
5173}
5174
5175static int mem_cgroup_count_precharge_pte_range(pmd_t *pmd,
5176 unsigned long addr, unsigned long end,
5177 struct mm_walk *walk)
5178{
5179 struct vm_area_struct *vma = walk->private;
5180 pte_t *pte;
5181 spinlock_t *ptl;
5182
5183 split_huge_page_pmd(walk->mm, pmd);
5184
5185 pte = pte_offset_map_lock(vma->vm_mm, pmd, addr, &ptl);
5186 for (; addr != end; pte++, addr += PAGE_SIZE)
5187 if (is_target_pte_for_mc(vma, addr, *pte, NULL))
5188 mc.precharge++; /* increment precharge temporarily */
5189 pte_unmap_unlock(pte - 1, ptl);
5190 cond_resched();
5191
5192 return 0;
5193}
5194
5195static unsigned long mem_cgroup_count_precharge(struct mm_struct *mm)
5196{
5197 unsigned long precharge;
5198 struct vm_area_struct *vma;
5199
5200 down_read(&mm->mmap_sem);
5201 for (vma = mm->mmap; vma; vma = vma->vm_next) {
5202 struct mm_walk mem_cgroup_count_precharge_walk = {
5203 .pmd_entry = mem_cgroup_count_precharge_pte_range,
5204 .mm = mm,
5205 .private = vma,
5206 };
5207 if (is_vm_hugetlb_page(vma))
5208 continue;
5209 walk_page_range(vma->vm_start, vma->vm_end,
5210 &mem_cgroup_count_precharge_walk);
5211 }
5212 up_read(&mm->mmap_sem);
5213
5214 precharge = mc.precharge;
5215 mc.precharge = 0;
5216
5217 return precharge;
5218}
5219
5220static int mem_cgroup_precharge_mc(struct mm_struct *mm)
5221{
5222 unsigned long precharge = mem_cgroup_count_precharge(mm);
5223
5224 VM_BUG_ON(mc.moving_task);
5225 mc.moving_task = current;
5226 return mem_cgroup_do_precharge(precharge);
5227}
5228
5229/* cancels all extra charges on mc.from and mc.to, and wakes up all waiters. */
5230static void __mem_cgroup_clear_mc(void)
5231{
5232 struct mem_cgroup *from = mc.from;
5233 struct mem_cgroup *to = mc.to;
5234
5235 /* we must uncharge all the leftover precharges from mc.to */
5236 if (mc.precharge) {
5237 __mem_cgroup_cancel_charge(mc.to, mc.precharge);
5238 mc.precharge = 0;
5239 }
5240 /*
5241 * we didn't uncharge from mc.from at mem_cgroup_move_account(), so
5242 * we must uncharge here.
5243 */
5244 if (mc.moved_charge) {
5245 __mem_cgroup_cancel_charge(mc.from, mc.moved_charge);
5246 mc.moved_charge = 0;
5247 }
5248 /* we must fixup refcnts and charges */
5249 if (mc.moved_swap) {
5250 /* uncharge swap account from the old cgroup */
5251 if (!mem_cgroup_is_root(mc.from))
5252 res_counter_uncharge(&mc.from->memsw,
5253 PAGE_SIZE * mc.moved_swap);
5254 __mem_cgroup_put(mc.from, mc.moved_swap);
5255
5256 if (!mem_cgroup_is_root(mc.to)) {
5257 /*
5258 * we charged both to->res and to->memsw, so we should
5259 * uncharge to->res.
5260 */
5261 res_counter_uncharge(&mc.to->res,
5262 PAGE_SIZE * mc.moved_swap);
5263 }
5264 /* we've already done mem_cgroup_get(mc.to) */
5265 mc.moved_swap = 0;
5266 }
5267 memcg_oom_recover(from);
5268 memcg_oom_recover(to);
5269 wake_up_all(&mc.waitq);
5270}
5271
5272static void mem_cgroup_clear_mc(void)
5273{
5274 struct mem_cgroup *from = mc.from;
5275
5276 /*
5277 * we must clear moving_task before waking up waiters at the end of
5278 * task migration.
5279 */
5280 mc.moving_task = NULL;
5281 __mem_cgroup_clear_mc();
5282 spin_lock(&mc.lock);
5283 mc.from = NULL;
5284 mc.to = NULL;
5285 spin_unlock(&mc.lock);
5286 mem_cgroup_end_move(from);
5287}
5288
5289static int mem_cgroup_can_attach(struct cgroup_subsys *ss,
5290 struct cgroup *cgroup,
5291 struct task_struct *p)
5292{
5293 int ret = 0;
5294 struct mem_cgroup *mem = mem_cgroup_from_cont(cgroup);
5295
5296 if (mem->move_charge_at_immigrate) {
5297 struct mm_struct *mm;
5298 struct mem_cgroup *from = mem_cgroup_from_task(p);
5299
5300 VM_BUG_ON(from == mem);
5301
5302 mm = get_task_mm(p);
5303 if (!mm)
5304 return 0;
5305 /* We move charges only when we move a owner of the mm */
5306 if (mm->owner == p) {
5307 VM_BUG_ON(mc.from);
5308 VM_BUG_ON(mc.to);
5309 VM_BUG_ON(mc.precharge);
5310 VM_BUG_ON(mc.moved_charge);
5311 VM_BUG_ON(mc.moved_swap);
5312 mem_cgroup_start_move(from);
5313 spin_lock(&mc.lock);
5314 mc.from = from;
5315 mc.to = mem;
5316 spin_unlock(&mc.lock);
5317 /* We set mc.moving_task later */
5318
5319 ret = mem_cgroup_precharge_mc(mm);
5320 if (ret)
5321 mem_cgroup_clear_mc();
5322 }
5323 mmput(mm);
5324 }
5325 return ret;
5326}
5327
5328static void mem_cgroup_cancel_attach(struct cgroup_subsys *ss,
5329 struct cgroup *cgroup,
5330 struct task_struct *p)
5331{
5332 mem_cgroup_clear_mc();
5333}
5334
5335static int mem_cgroup_move_charge_pte_range(pmd_t *pmd,
5336 unsigned long addr, unsigned long end,
5337 struct mm_walk *walk)
5338{
5339 int ret = 0;
5340 struct vm_area_struct *vma = walk->private;
5341 pte_t *pte;
5342 spinlock_t *ptl;
5343
5344 split_huge_page_pmd(walk->mm, pmd);
5345retry:
5346 pte = pte_offset_map_lock(vma->vm_mm, pmd, addr, &ptl);
5347 for (; addr != end; addr += PAGE_SIZE) {
5348 pte_t ptent = *(pte++);
5349 union mc_target target;
5350 int type;
5351 struct page *page;
5352 struct page_cgroup *pc;
5353 swp_entry_t ent;
5354
5355 if (!mc.precharge)
5356 break;
5357
5358 type = is_target_pte_for_mc(vma, addr, ptent, &target);
5359 switch (type) {
5360 case MC_TARGET_PAGE:
5361 page = target.page;
5362 if (isolate_lru_page(page))
5363 goto put;
5364 pc = lookup_page_cgroup(page);
5365 if (!mem_cgroup_move_account(page, 1, pc,
5366 mc.from, mc.to, false)) {
5367 mc.precharge--;
5368 /* we uncharge from mc.from later. */
5369 mc.moved_charge++;
5370 }
5371 putback_lru_page(page);
5372put: /* is_target_pte_for_mc() gets the page */
5373 put_page(page);
5374 break;
5375 case MC_TARGET_SWAP:
5376 ent = target.ent;
5377 if (!mem_cgroup_move_swap_account(ent,
5378 mc.from, mc.to, false)) {
5379 mc.precharge--;
5380 /* we fixup refcnts and charges later. */
5381 mc.moved_swap++;
5382 }
5383 break;
5384 default:
5385 break;
5386 }
5387 }
5388 pte_unmap_unlock(pte - 1, ptl);
5389 cond_resched();
5390
5391 if (addr != end) {
5392 /*
5393 * We have consumed all precharges we got in can_attach().
5394 * We try charge one by one, but don't do any additional
5395 * charges to mc.to if we have failed in charge once in attach()
5396 * phase.
5397 */
5398 ret = mem_cgroup_do_precharge(1);
5399 if (!ret)
5400 goto retry;
5401 }
5402
5403 return ret;
5404}
5405
5406static void mem_cgroup_move_charge(struct mm_struct *mm)
5407{
5408 struct vm_area_struct *vma;
5409
5410 lru_add_drain_all();
5411retry:
5412 if (unlikely(!down_read_trylock(&mm->mmap_sem))) {
5413 /*
5414 * Someone who are holding the mmap_sem might be waiting in
5415 * waitq. So we cancel all extra charges, wake up all waiters,
5416 * and retry. Because we cancel precharges, we might not be able
5417 * to move enough charges, but moving charge is a best-effort
5418 * feature anyway, so it wouldn't be a big problem.
5419 */
5420 __mem_cgroup_clear_mc();
5421 cond_resched();
5422 goto retry;
5423 }
5424 for (vma = mm->mmap; vma; vma = vma->vm_next) {
5425 int ret;
5426 struct mm_walk mem_cgroup_move_charge_walk = {
5427 .pmd_entry = mem_cgroup_move_charge_pte_range,
5428 .mm = mm,
5429 .private = vma,
5430 };
5431 if (is_vm_hugetlb_page(vma))
5432 continue;
5433 ret = walk_page_range(vma->vm_start, vma->vm_end,
5434 &mem_cgroup_move_charge_walk);
5435 if (ret)
5436 /*
5437 * means we have consumed all precharges and failed in
5438 * doing additional charge. Just abandon here.
5439 */
5440 break;
5441 }
5442 up_read(&mm->mmap_sem);
5443}
5444
5445static void mem_cgroup_move_task(struct cgroup_subsys *ss,
5446 struct cgroup *cont,
5447 struct cgroup *old_cont,
5448 struct task_struct *p)
5449{
5450 struct mm_struct *mm = get_task_mm(p);
5451
5452 if (mm) {
5453 if (mc.to)
5454 mem_cgroup_move_charge(mm);
5455 put_swap_token(mm);
5456 mmput(mm);
5457 }
5458 if (mc.to)
5459 mem_cgroup_clear_mc();
5460}
5461#else /* !CONFIG_MMU */
5462static int mem_cgroup_can_attach(struct cgroup_subsys *ss,
5463 struct cgroup *cgroup,
5464 struct task_struct *p)
5465{
5466 return 0;
5467}
5468static void mem_cgroup_cancel_attach(struct cgroup_subsys *ss,
5469 struct cgroup *cgroup,
5470 struct task_struct *p)
5471{
5472}
5473static void mem_cgroup_move_task(struct cgroup_subsys *ss,
5474 struct cgroup *cont,
5475 struct cgroup *old_cont,
5476 struct task_struct *p)
5477{
5478}
5479#endif
5480
5481struct cgroup_subsys mem_cgroup_subsys = {
5482 .name = "memory",
5483 .subsys_id = mem_cgroup_subsys_id,
5484 .create = mem_cgroup_create,
5485 .pre_destroy = mem_cgroup_pre_destroy,
5486 .destroy = mem_cgroup_destroy,
5487 .populate = mem_cgroup_populate,
5488 .can_attach = mem_cgroup_can_attach,
5489 .cancel_attach = mem_cgroup_cancel_attach,
5490 .attach = mem_cgroup_move_task,
5491 .early_init = 0,
5492 .use_id = 1,
5493};
5494
5495#ifdef CONFIG_CGROUP_MEM_RES_CTLR_SWAP
5496static int __init enable_swap_account(char *s)
5497{
5498 /* consider enabled if no parameter or 1 is given */
5499 if (!strcmp(s, "1"))
5500 really_do_swap_account = 1;
5501 else if (!strcmp(s, "0"))
5502 really_do_swap_account = 0;
5503 return 1;
5504}
5505__setup("swapaccount=", enable_swap_account);
5506
5507#endif
1// SPDX-License-Identifier: GPL-2.0-or-later
2/* memcontrol.c - Memory Controller
3 *
4 * Copyright IBM Corporation, 2007
5 * Author Balbir Singh <balbir@linux.vnet.ibm.com>
6 *
7 * Copyright 2007 OpenVZ SWsoft Inc
8 * Author: Pavel Emelianov <xemul@openvz.org>
9 *
10 * Memory thresholds
11 * Copyright (C) 2009 Nokia Corporation
12 * Author: Kirill A. Shutemov
13 *
14 * Kernel Memory Controller
15 * Copyright (C) 2012 Parallels Inc. and Google Inc.
16 * Authors: Glauber Costa and Suleiman Souhlal
17 *
18 * Native page reclaim
19 * Charge lifetime sanitation
20 * Lockless page tracking & accounting
21 * Unified hierarchy configuration model
22 * Copyright (C) 2015 Red Hat, Inc., Johannes Weiner
23 *
24 * Per memcg lru locking
25 * Copyright (C) 2020 Alibaba, Inc, Alex Shi
26 */
27
28#include <linux/cgroup-defs.h>
29#include <linux/page_counter.h>
30#include <linux/memcontrol.h>
31#include <linux/cgroup.h>
32#include <linux/sched/mm.h>
33#include <linux/shmem_fs.h>
34#include <linux/hugetlb.h>
35#include <linux/pagemap.h>
36#include <linux/pagevec.h>
37#include <linux/vm_event_item.h>
38#include <linux/smp.h>
39#include <linux/page-flags.h>
40#include <linux/backing-dev.h>
41#include <linux/bit_spinlock.h>
42#include <linux/rcupdate.h>
43#include <linux/limits.h>
44#include <linux/export.h>
45#include <linux/list.h>
46#include <linux/mutex.h>
47#include <linux/rbtree.h>
48#include <linux/slab.h>
49#include <linux/swapops.h>
50#include <linux/spinlock.h>
51#include <linux/fs.h>
52#include <linux/seq_file.h>
53#include <linux/parser.h>
54#include <linux/vmpressure.h>
55#include <linux/memremap.h>
56#include <linux/mm_inline.h>
57#include <linux/swap_cgroup.h>
58#include <linux/cpu.h>
59#include <linux/oom.h>
60#include <linux/lockdep.h>
61#include <linux/resume_user_mode.h>
62#include <linux/psi.h>
63#include <linux/seq_buf.h>
64#include <linux/sched/isolation.h>
65#include <linux/kmemleak.h>
66#include "internal.h"
67#include <net/sock.h>
68#include <net/ip.h>
69#include "slab.h"
70#include "memcontrol-v1.h"
71
72#include <linux/uaccess.h>
73
74#define CREATE_TRACE_POINTS
75#include <trace/events/memcg.h>
76#undef CREATE_TRACE_POINTS
77
78#include <trace/events/vmscan.h>
79
80struct cgroup_subsys memory_cgrp_subsys __read_mostly;
81EXPORT_SYMBOL(memory_cgrp_subsys);
82
83struct mem_cgroup *root_mem_cgroup __read_mostly;
84
85/* Active memory cgroup to use from an interrupt context */
86DEFINE_PER_CPU(struct mem_cgroup *, int_active_memcg);
87EXPORT_PER_CPU_SYMBOL_GPL(int_active_memcg);
88
89/* Socket memory accounting disabled? */
90static bool cgroup_memory_nosocket __ro_after_init;
91
92/* Kernel memory accounting disabled? */
93static bool cgroup_memory_nokmem __ro_after_init;
94
95/* BPF memory accounting disabled? */
96static bool cgroup_memory_nobpf __ro_after_init;
97
98#ifdef CONFIG_CGROUP_WRITEBACK
99static DECLARE_WAIT_QUEUE_HEAD(memcg_cgwb_frn_waitq);
100#endif
101
102static inline bool task_is_dying(void)
103{
104 return tsk_is_oom_victim(current) || fatal_signal_pending(current) ||
105 (current->flags & PF_EXITING);
106}
107
108/* Some nice accessors for the vmpressure. */
109struct vmpressure *memcg_to_vmpressure(struct mem_cgroup *memcg)
110{
111 if (!memcg)
112 memcg = root_mem_cgroup;
113 return &memcg->vmpressure;
114}
115
116struct mem_cgroup *vmpressure_to_memcg(struct vmpressure *vmpr)
117{
118 return container_of(vmpr, struct mem_cgroup, vmpressure);
119}
120
121#define SEQ_BUF_SIZE SZ_4K
122#define CURRENT_OBJCG_UPDATE_BIT 0
123#define CURRENT_OBJCG_UPDATE_FLAG (1UL << CURRENT_OBJCG_UPDATE_BIT)
124
125static DEFINE_SPINLOCK(objcg_lock);
126
127bool mem_cgroup_kmem_disabled(void)
128{
129 return cgroup_memory_nokmem;
130}
131
132static void obj_cgroup_uncharge_pages(struct obj_cgroup *objcg,
133 unsigned int nr_pages);
134
135static void obj_cgroup_release(struct percpu_ref *ref)
136{
137 struct obj_cgroup *objcg = container_of(ref, struct obj_cgroup, refcnt);
138 unsigned int nr_bytes;
139 unsigned int nr_pages;
140 unsigned long flags;
141
142 /*
143 * At this point all allocated objects are freed, and
144 * objcg->nr_charged_bytes can't have an arbitrary byte value.
145 * However, it can be PAGE_SIZE or (x * PAGE_SIZE).
146 *
147 * The following sequence can lead to it:
148 * 1) CPU0: objcg == stock->cached_objcg
149 * 2) CPU1: we do a small allocation (e.g. 92 bytes),
150 * PAGE_SIZE bytes are charged
151 * 3) CPU1: a process from another memcg is allocating something,
152 * the stock if flushed,
153 * objcg->nr_charged_bytes = PAGE_SIZE - 92
154 * 5) CPU0: we do release this object,
155 * 92 bytes are added to stock->nr_bytes
156 * 6) CPU0: stock is flushed,
157 * 92 bytes are added to objcg->nr_charged_bytes
158 *
159 * In the result, nr_charged_bytes == PAGE_SIZE.
160 * This page will be uncharged in obj_cgroup_release().
161 */
162 nr_bytes = atomic_read(&objcg->nr_charged_bytes);
163 WARN_ON_ONCE(nr_bytes & (PAGE_SIZE - 1));
164 nr_pages = nr_bytes >> PAGE_SHIFT;
165
166 if (nr_pages)
167 obj_cgroup_uncharge_pages(objcg, nr_pages);
168
169 spin_lock_irqsave(&objcg_lock, flags);
170 list_del(&objcg->list);
171 spin_unlock_irqrestore(&objcg_lock, flags);
172
173 percpu_ref_exit(ref);
174 kfree_rcu(objcg, rcu);
175}
176
177static struct obj_cgroup *obj_cgroup_alloc(void)
178{
179 struct obj_cgroup *objcg;
180 int ret;
181
182 objcg = kzalloc(sizeof(struct obj_cgroup), GFP_KERNEL);
183 if (!objcg)
184 return NULL;
185
186 ret = percpu_ref_init(&objcg->refcnt, obj_cgroup_release, 0,
187 GFP_KERNEL);
188 if (ret) {
189 kfree(objcg);
190 return NULL;
191 }
192 INIT_LIST_HEAD(&objcg->list);
193 return objcg;
194}
195
196static void memcg_reparent_objcgs(struct mem_cgroup *memcg,
197 struct mem_cgroup *parent)
198{
199 struct obj_cgroup *objcg, *iter;
200
201 objcg = rcu_replace_pointer(memcg->objcg, NULL, true);
202
203 spin_lock_irq(&objcg_lock);
204
205 /* 1) Ready to reparent active objcg. */
206 list_add(&objcg->list, &memcg->objcg_list);
207 /* 2) Reparent active objcg and already reparented objcgs to parent. */
208 list_for_each_entry(iter, &memcg->objcg_list, list)
209 WRITE_ONCE(iter->memcg, parent);
210 /* 3) Move already reparented objcgs to the parent's list */
211 list_splice(&memcg->objcg_list, &parent->objcg_list);
212
213 spin_unlock_irq(&objcg_lock);
214
215 percpu_ref_kill(&objcg->refcnt);
216}
217
218/*
219 * A lot of the calls to the cache allocation functions are expected to be
220 * inlined by the compiler. Since the calls to memcg_slab_post_alloc_hook() are
221 * conditional to this static branch, we'll have to allow modules that does
222 * kmem_cache_alloc and the such to see this symbol as well
223 */
224DEFINE_STATIC_KEY_FALSE(memcg_kmem_online_key);
225EXPORT_SYMBOL(memcg_kmem_online_key);
226
227DEFINE_STATIC_KEY_FALSE(memcg_bpf_enabled_key);
228EXPORT_SYMBOL(memcg_bpf_enabled_key);
229
230/**
231 * mem_cgroup_css_from_folio - css of the memcg associated with a folio
232 * @folio: folio of interest
233 *
234 * If memcg is bound to the default hierarchy, css of the memcg associated
235 * with @folio is returned. The returned css remains associated with @folio
236 * until it is released.
237 *
238 * If memcg is bound to a traditional hierarchy, the css of root_mem_cgroup
239 * is returned.
240 */
241struct cgroup_subsys_state *mem_cgroup_css_from_folio(struct folio *folio)
242{
243 struct mem_cgroup *memcg = folio_memcg(folio);
244
245 if (!memcg || !cgroup_subsys_on_dfl(memory_cgrp_subsys))
246 memcg = root_mem_cgroup;
247
248 return &memcg->css;
249}
250
251/**
252 * page_cgroup_ino - return inode number of the memcg a page is charged to
253 * @page: the page
254 *
255 * Look up the closest online ancestor of the memory cgroup @page is charged to
256 * and return its inode number or 0 if @page is not charged to any cgroup. It
257 * is safe to call this function without holding a reference to @page.
258 *
259 * Note, this function is inherently racy, because there is nothing to prevent
260 * the cgroup inode from getting torn down and potentially reallocated a moment
261 * after page_cgroup_ino() returns, so it only should be used by callers that
262 * do not care (such as procfs interfaces).
263 */
264ino_t page_cgroup_ino(struct page *page)
265{
266 struct mem_cgroup *memcg;
267 unsigned long ino = 0;
268
269 rcu_read_lock();
270 /* page_folio() is racy here, but the entire function is racy anyway */
271 memcg = folio_memcg_check(page_folio(page));
272
273 while (memcg && !(memcg->css.flags & CSS_ONLINE))
274 memcg = parent_mem_cgroup(memcg);
275 if (memcg)
276 ino = cgroup_ino(memcg->css.cgroup);
277 rcu_read_unlock();
278 return ino;
279}
280
281/* Subset of node_stat_item for memcg stats */
282static const unsigned int memcg_node_stat_items[] = {
283 NR_INACTIVE_ANON,
284 NR_ACTIVE_ANON,
285 NR_INACTIVE_FILE,
286 NR_ACTIVE_FILE,
287 NR_UNEVICTABLE,
288 NR_SLAB_RECLAIMABLE_B,
289 NR_SLAB_UNRECLAIMABLE_B,
290 WORKINGSET_REFAULT_ANON,
291 WORKINGSET_REFAULT_FILE,
292 WORKINGSET_ACTIVATE_ANON,
293 WORKINGSET_ACTIVATE_FILE,
294 WORKINGSET_RESTORE_ANON,
295 WORKINGSET_RESTORE_FILE,
296 WORKINGSET_NODERECLAIM,
297 NR_ANON_MAPPED,
298 NR_FILE_MAPPED,
299 NR_FILE_PAGES,
300 NR_FILE_DIRTY,
301 NR_WRITEBACK,
302 NR_SHMEM,
303 NR_SHMEM_THPS,
304 NR_FILE_THPS,
305 NR_ANON_THPS,
306 NR_KERNEL_STACK_KB,
307 NR_PAGETABLE,
308 NR_SECONDARY_PAGETABLE,
309#ifdef CONFIG_SWAP
310 NR_SWAPCACHE,
311#endif
312#ifdef CONFIG_NUMA_BALANCING
313 PGPROMOTE_SUCCESS,
314#endif
315 PGDEMOTE_KSWAPD,
316 PGDEMOTE_DIRECT,
317 PGDEMOTE_KHUGEPAGED,
318#ifdef CONFIG_HUGETLB_PAGE
319 NR_HUGETLB,
320#endif
321};
322
323static const unsigned int memcg_stat_items[] = {
324 MEMCG_SWAP,
325 MEMCG_SOCK,
326 MEMCG_PERCPU_B,
327 MEMCG_VMALLOC,
328 MEMCG_KMEM,
329 MEMCG_ZSWAP_B,
330 MEMCG_ZSWAPPED,
331};
332
333#define NR_MEMCG_NODE_STAT_ITEMS ARRAY_SIZE(memcg_node_stat_items)
334#define MEMCG_VMSTAT_SIZE (NR_MEMCG_NODE_STAT_ITEMS + \
335 ARRAY_SIZE(memcg_stat_items))
336#define BAD_STAT_IDX(index) ((u32)(index) >= U8_MAX)
337static u8 mem_cgroup_stats_index[MEMCG_NR_STAT] __read_mostly;
338
339static void init_memcg_stats(void)
340{
341 u8 i, j = 0;
342
343 BUILD_BUG_ON(MEMCG_NR_STAT >= U8_MAX);
344
345 memset(mem_cgroup_stats_index, U8_MAX, sizeof(mem_cgroup_stats_index));
346
347 for (i = 0; i < NR_MEMCG_NODE_STAT_ITEMS; ++i, ++j)
348 mem_cgroup_stats_index[memcg_node_stat_items[i]] = j;
349
350 for (i = 0; i < ARRAY_SIZE(memcg_stat_items); ++i, ++j)
351 mem_cgroup_stats_index[memcg_stat_items[i]] = j;
352}
353
354static inline int memcg_stats_index(int idx)
355{
356 return mem_cgroup_stats_index[idx];
357}
358
359struct lruvec_stats_percpu {
360 /* Local (CPU and cgroup) state */
361 long state[NR_MEMCG_NODE_STAT_ITEMS];
362
363 /* Delta calculation for lockless upward propagation */
364 long state_prev[NR_MEMCG_NODE_STAT_ITEMS];
365};
366
367struct lruvec_stats {
368 /* Aggregated (CPU and subtree) state */
369 long state[NR_MEMCG_NODE_STAT_ITEMS];
370
371 /* Non-hierarchical (CPU aggregated) state */
372 long state_local[NR_MEMCG_NODE_STAT_ITEMS];
373
374 /* Pending child counts during tree propagation */
375 long state_pending[NR_MEMCG_NODE_STAT_ITEMS];
376};
377
378unsigned long lruvec_page_state(struct lruvec *lruvec, enum node_stat_item idx)
379{
380 struct mem_cgroup_per_node *pn;
381 long x;
382 int i;
383
384 if (mem_cgroup_disabled())
385 return node_page_state(lruvec_pgdat(lruvec), idx);
386
387 i = memcg_stats_index(idx);
388 if (WARN_ONCE(BAD_STAT_IDX(i), "%s: missing stat item %d\n", __func__, idx))
389 return 0;
390
391 pn = container_of(lruvec, struct mem_cgroup_per_node, lruvec);
392 x = READ_ONCE(pn->lruvec_stats->state[i]);
393#ifdef CONFIG_SMP
394 if (x < 0)
395 x = 0;
396#endif
397 return x;
398}
399
400unsigned long lruvec_page_state_local(struct lruvec *lruvec,
401 enum node_stat_item idx)
402{
403 struct mem_cgroup_per_node *pn;
404 long x;
405 int i;
406
407 if (mem_cgroup_disabled())
408 return node_page_state(lruvec_pgdat(lruvec), idx);
409
410 i = memcg_stats_index(idx);
411 if (WARN_ONCE(BAD_STAT_IDX(i), "%s: missing stat item %d\n", __func__, idx))
412 return 0;
413
414 pn = container_of(lruvec, struct mem_cgroup_per_node, lruvec);
415 x = READ_ONCE(pn->lruvec_stats->state_local[i]);
416#ifdef CONFIG_SMP
417 if (x < 0)
418 x = 0;
419#endif
420 return x;
421}
422
423/* Subset of vm_event_item to report for memcg event stats */
424static const unsigned int memcg_vm_event_stat[] = {
425#ifdef CONFIG_MEMCG_V1
426 PGPGIN,
427 PGPGOUT,
428#endif
429 PSWPIN,
430 PSWPOUT,
431 PGSCAN_KSWAPD,
432 PGSCAN_DIRECT,
433 PGSCAN_KHUGEPAGED,
434 PGSTEAL_KSWAPD,
435 PGSTEAL_DIRECT,
436 PGSTEAL_KHUGEPAGED,
437 PGFAULT,
438 PGMAJFAULT,
439 PGREFILL,
440 PGACTIVATE,
441 PGDEACTIVATE,
442 PGLAZYFREE,
443 PGLAZYFREED,
444#ifdef CONFIG_SWAP
445 SWPIN_ZERO,
446 SWPOUT_ZERO,
447#endif
448#ifdef CONFIG_ZSWAP
449 ZSWPIN,
450 ZSWPOUT,
451 ZSWPWB,
452#endif
453#ifdef CONFIG_TRANSPARENT_HUGEPAGE
454 THP_FAULT_ALLOC,
455 THP_COLLAPSE_ALLOC,
456 THP_SWPOUT,
457 THP_SWPOUT_FALLBACK,
458#endif
459#ifdef CONFIG_NUMA_BALANCING
460 NUMA_PAGE_MIGRATE,
461 NUMA_PTE_UPDATES,
462 NUMA_HINT_FAULTS,
463#endif
464};
465
466#define NR_MEMCG_EVENTS ARRAY_SIZE(memcg_vm_event_stat)
467static u8 mem_cgroup_events_index[NR_VM_EVENT_ITEMS] __read_mostly;
468
469static void init_memcg_events(void)
470{
471 u8 i;
472
473 BUILD_BUG_ON(NR_VM_EVENT_ITEMS >= U8_MAX);
474
475 memset(mem_cgroup_events_index, U8_MAX,
476 sizeof(mem_cgroup_events_index));
477
478 for (i = 0; i < NR_MEMCG_EVENTS; ++i)
479 mem_cgroup_events_index[memcg_vm_event_stat[i]] = i;
480}
481
482static inline int memcg_events_index(enum vm_event_item idx)
483{
484 return mem_cgroup_events_index[idx];
485}
486
487struct memcg_vmstats_percpu {
488 /* Stats updates since the last flush */
489 unsigned int stats_updates;
490
491 /* Cached pointers for fast iteration in memcg_rstat_updated() */
492 struct memcg_vmstats_percpu *parent;
493 struct memcg_vmstats *vmstats;
494
495 /* The above should fit a single cacheline for memcg_rstat_updated() */
496
497 /* Local (CPU and cgroup) page state & events */
498 long state[MEMCG_VMSTAT_SIZE];
499 unsigned long events[NR_MEMCG_EVENTS];
500
501 /* Delta calculation for lockless upward propagation */
502 long state_prev[MEMCG_VMSTAT_SIZE];
503 unsigned long events_prev[NR_MEMCG_EVENTS];
504} ____cacheline_aligned;
505
506struct memcg_vmstats {
507 /* Aggregated (CPU and subtree) page state & events */
508 long state[MEMCG_VMSTAT_SIZE];
509 unsigned long events[NR_MEMCG_EVENTS];
510
511 /* Non-hierarchical (CPU aggregated) page state & events */
512 long state_local[MEMCG_VMSTAT_SIZE];
513 unsigned long events_local[NR_MEMCG_EVENTS];
514
515 /* Pending child counts during tree propagation */
516 long state_pending[MEMCG_VMSTAT_SIZE];
517 unsigned long events_pending[NR_MEMCG_EVENTS];
518
519 /* Stats updates since the last flush */
520 atomic64_t stats_updates;
521};
522
523/*
524 * memcg and lruvec stats flushing
525 *
526 * Many codepaths leading to stats update or read are performance sensitive and
527 * adding stats flushing in such codepaths is not desirable. So, to optimize the
528 * flushing the kernel does:
529 *
530 * 1) Periodically and asynchronously flush the stats every 2 seconds to not let
531 * rstat update tree grow unbounded.
532 *
533 * 2) Flush the stats synchronously on reader side only when there are more than
534 * (MEMCG_CHARGE_BATCH * nr_cpus) update events. Though this optimization
535 * will let stats be out of sync by atmost (MEMCG_CHARGE_BATCH * nr_cpus) but
536 * only for 2 seconds due to (1).
537 */
538static void flush_memcg_stats_dwork(struct work_struct *w);
539static DECLARE_DEFERRABLE_WORK(stats_flush_dwork, flush_memcg_stats_dwork);
540static u64 flush_last_time;
541
542#define FLUSH_TIME (2UL*HZ)
543
544/*
545 * Accessors to ensure that preemption is disabled on PREEMPT_RT because it can
546 * not rely on this as part of an acquired spinlock_t lock. These functions are
547 * never used in hardirq context on PREEMPT_RT and therefore disabling preemtion
548 * is sufficient.
549 */
550static void memcg_stats_lock(void)
551{
552 preempt_disable_nested();
553 VM_WARN_ON_IRQS_ENABLED();
554}
555
556static void __memcg_stats_lock(void)
557{
558 preempt_disable_nested();
559}
560
561static void memcg_stats_unlock(void)
562{
563 preempt_enable_nested();
564}
565
566
567static bool memcg_vmstats_needs_flush(struct memcg_vmstats *vmstats)
568{
569 return atomic64_read(&vmstats->stats_updates) >
570 MEMCG_CHARGE_BATCH * num_online_cpus();
571}
572
573static inline void memcg_rstat_updated(struct mem_cgroup *memcg, int val)
574{
575 struct memcg_vmstats_percpu *statc;
576 int cpu = smp_processor_id();
577 unsigned int stats_updates;
578
579 if (!val)
580 return;
581
582 cgroup_rstat_updated(memcg->css.cgroup, cpu);
583 statc = this_cpu_ptr(memcg->vmstats_percpu);
584 for (; statc; statc = statc->parent) {
585 stats_updates = READ_ONCE(statc->stats_updates) + abs(val);
586 WRITE_ONCE(statc->stats_updates, stats_updates);
587 if (stats_updates < MEMCG_CHARGE_BATCH)
588 continue;
589
590 /*
591 * If @memcg is already flush-able, increasing stats_updates is
592 * redundant. Avoid the overhead of the atomic update.
593 */
594 if (!memcg_vmstats_needs_flush(statc->vmstats))
595 atomic64_add(stats_updates,
596 &statc->vmstats->stats_updates);
597 WRITE_ONCE(statc->stats_updates, 0);
598 }
599}
600
601static void __mem_cgroup_flush_stats(struct mem_cgroup *memcg, bool force)
602{
603 bool needs_flush = memcg_vmstats_needs_flush(memcg->vmstats);
604
605 trace_memcg_flush_stats(memcg, atomic64_read(&memcg->vmstats->stats_updates),
606 force, needs_flush);
607
608 if (!force && !needs_flush)
609 return;
610
611 if (mem_cgroup_is_root(memcg))
612 WRITE_ONCE(flush_last_time, jiffies_64);
613
614 cgroup_rstat_flush(memcg->css.cgroup);
615}
616
617/*
618 * mem_cgroup_flush_stats - flush the stats of a memory cgroup subtree
619 * @memcg: root of the subtree to flush
620 *
621 * Flushing is serialized by the underlying global rstat lock. There is also a
622 * minimum amount of work to be done even if there are no stat updates to flush.
623 * Hence, we only flush the stats if the updates delta exceeds a threshold. This
624 * avoids unnecessary work and contention on the underlying lock.
625 */
626void mem_cgroup_flush_stats(struct mem_cgroup *memcg)
627{
628 if (mem_cgroup_disabled())
629 return;
630
631 if (!memcg)
632 memcg = root_mem_cgroup;
633
634 __mem_cgroup_flush_stats(memcg, false);
635}
636
637void mem_cgroup_flush_stats_ratelimited(struct mem_cgroup *memcg)
638{
639 /* Only flush if the periodic flusher is one full cycle late */
640 if (time_after64(jiffies_64, READ_ONCE(flush_last_time) + 2*FLUSH_TIME))
641 mem_cgroup_flush_stats(memcg);
642}
643
644static void flush_memcg_stats_dwork(struct work_struct *w)
645{
646 /*
647 * Deliberately ignore memcg_vmstats_needs_flush() here so that flushing
648 * in latency-sensitive paths is as cheap as possible.
649 */
650 __mem_cgroup_flush_stats(root_mem_cgroup, true);
651 queue_delayed_work(system_unbound_wq, &stats_flush_dwork, FLUSH_TIME);
652}
653
654unsigned long memcg_page_state(struct mem_cgroup *memcg, int idx)
655{
656 long x;
657 int i = memcg_stats_index(idx);
658
659 if (WARN_ONCE(BAD_STAT_IDX(i), "%s: missing stat item %d\n", __func__, idx))
660 return 0;
661
662 x = READ_ONCE(memcg->vmstats->state[i]);
663#ifdef CONFIG_SMP
664 if (x < 0)
665 x = 0;
666#endif
667 return x;
668}
669
670static int memcg_page_state_unit(int item);
671
672/*
673 * Normalize the value passed into memcg_rstat_updated() to be in pages. Round
674 * up non-zero sub-page updates to 1 page as zero page updates are ignored.
675 */
676static int memcg_state_val_in_pages(int idx, int val)
677{
678 int unit = memcg_page_state_unit(idx);
679
680 if (!val || unit == PAGE_SIZE)
681 return val;
682 else
683 return max(val * unit / PAGE_SIZE, 1UL);
684}
685
686/**
687 * __mod_memcg_state - update cgroup memory statistics
688 * @memcg: the memory cgroup
689 * @idx: the stat item - can be enum memcg_stat_item or enum node_stat_item
690 * @val: delta to add to the counter, can be negative
691 */
692void __mod_memcg_state(struct mem_cgroup *memcg, enum memcg_stat_item idx,
693 int val)
694{
695 int i = memcg_stats_index(idx);
696
697 if (mem_cgroup_disabled())
698 return;
699
700 if (WARN_ONCE(BAD_STAT_IDX(i), "%s: missing stat item %d\n", __func__, idx))
701 return;
702
703 __this_cpu_add(memcg->vmstats_percpu->state[i], val);
704 val = memcg_state_val_in_pages(idx, val);
705 memcg_rstat_updated(memcg, val);
706 trace_mod_memcg_state(memcg, idx, val);
707}
708
709/* idx can be of type enum memcg_stat_item or node_stat_item. */
710unsigned long memcg_page_state_local(struct mem_cgroup *memcg, int idx)
711{
712 long x;
713 int i = memcg_stats_index(idx);
714
715 if (WARN_ONCE(BAD_STAT_IDX(i), "%s: missing stat item %d\n", __func__, idx))
716 return 0;
717
718 x = READ_ONCE(memcg->vmstats->state_local[i]);
719#ifdef CONFIG_SMP
720 if (x < 0)
721 x = 0;
722#endif
723 return x;
724}
725
726static void __mod_memcg_lruvec_state(struct lruvec *lruvec,
727 enum node_stat_item idx,
728 int val)
729{
730 struct mem_cgroup_per_node *pn;
731 struct mem_cgroup *memcg;
732 int i = memcg_stats_index(idx);
733
734 if (WARN_ONCE(BAD_STAT_IDX(i), "%s: missing stat item %d\n", __func__, idx))
735 return;
736
737 pn = container_of(lruvec, struct mem_cgroup_per_node, lruvec);
738 memcg = pn->memcg;
739
740 /*
741 * The caller from rmap relies on disabled preemption because they never
742 * update their counter from in-interrupt context. For these two
743 * counters we check that the update is never performed from an
744 * interrupt context while other caller need to have disabled interrupt.
745 */
746 __memcg_stats_lock();
747 if (IS_ENABLED(CONFIG_DEBUG_VM)) {
748 switch (idx) {
749 case NR_ANON_MAPPED:
750 case NR_FILE_MAPPED:
751 case NR_ANON_THPS:
752 WARN_ON_ONCE(!in_task());
753 break;
754 default:
755 VM_WARN_ON_IRQS_ENABLED();
756 }
757 }
758
759 /* Update memcg */
760 __this_cpu_add(memcg->vmstats_percpu->state[i], val);
761
762 /* Update lruvec */
763 __this_cpu_add(pn->lruvec_stats_percpu->state[i], val);
764
765 val = memcg_state_val_in_pages(idx, val);
766 memcg_rstat_updated(memcg, val);
767 trace_mod_memcg_lruvec_state(memcg, idx, val);
768 memcg_stats_unlock();
769}
770
771/**
772 * __mod_lruvec_state - update lruvec memory statistics
773 * @lruvec: the lruvec
774 * @idx: the stat item
775 * @val: delta to add to the counter, can be negative
776 *
777 * The lruvec is the intersection of the NUMA node and a cgroup. This
778 * function updates the all three counters that are affected by a
779 * change of state at this level: per-node, per-cgroup, per-lruvec.
780 */
781void __mod_lruvec_state(struct lruvec *lruvec, enum node_stat_item idx,
782 int val)
783{
784 /* Update node */
785 __mod_node_page_state(lruvec_pgdat(lruvec), idx, val);
786
787 /* Update memcg and lruvec */
788 if (!mem_cgroup_disabled())
789 __mod_memcg_lruvec_state(lruvec, idx, val);
790}
791
792void __lruvec_stat_mod_folio(struct folio *folio, enum node_stat_item idx,
793 int val)
794{
795 struct mem_cgroup *memcg;
796 pg_data_t *pgdat = folio_pgdat(folio);
797 struct lruvec *lruvec;
798
799 rcu_read_lock();
800 memcg = folio_memcg(folio);
801 /* Untracked pages have no memcg, no lruvec. Update only the node */
802 if (!memcg) {
803 rcu_read_unlock();
804 __mod_node_page_state(pgdat, idx, val);
805 return;
806 }
807
808 lruvec = mem_cgroup_lruvec(memcg, pgdat);
809 __mod_lruvec_state(lruvec, idx, val);
810 rcu_read_unlock();
811}
812EXPORT_SYMBOL(__lruvec_stat_mod_folio);
813
814void __mod_lruvec_kmem_state(void *p, enum node_stat_item idx, int val)
815{
816 pg_data_t *pgdat = page_pgdat(virt_to_page(p));
817 struct mem_cgroup *memcg;
818 struct lruvec *lruvec;
819
820 rcu_read_lock();
821 memcg = mem_cgroup_from_slab_obj(p);
822
823 /*
824 * Untracked pages have no memcg, no lruvec. Update only the
825 * node. If we reparent the slab objects to the root memcg,
826 * when we free the slab object, we need to update the per-memcg
827 * vmstats to keep it correct for the root memcg.
828 */
829 if (!memcg) {
830 __mod_node_page_state(pgdat, idx, val);
831 } else {
832 lruvec = mem_cgroup_lruvec(memcg, pgdat);
833 __mod_lruvec_state(lruvec, idx, val);
834 }
835 rcu_read_unlock();
836}
837
838/**
839 * __count_memcg_events - account VM events in a cgroup
840 * @memcg: the memory cgroup
841 * @idx: the event item
842 * @count: the number of events that occurred
843 */
844void __count_memcg_events(struct mem_cgroup *memcg, enum vm_event_item idx,
845 unsigned long count)
846{
847 int i = memcg_events_index(idx);
848
849 if (mem_cgroup_disabled())
850 return;
851
852 if (WARN_ONCE(BAD_STAT_IDX(i), "%s: missing stat item %d\n", __func__, idx))
853 return;
854
855 memcg_stats_lock();
856 __this_cpu_add(memcg->vmstats_percpu->events[i], count);
857 memcg_rstat_updated(memcg, count);
858 trace_count_memcg_events(memcg, idx, count);
859 memcg_stats_unlock();
860}
861
862unsigned long memcg_events(struct mem_cgroup *memcg, int event)
863{
864 int i = memcg_events_index(event);
865
866 if (WARN_ONCE(BAD_STAT_IDX(i), "%s: missing stat item %d\n", __func__, event))
867 return 0;
868
869 return READ_ONCE(memcg->vmstats->events[i]);
870}
871
872unsigned long memcg_events_local(struct mem_cgroup *memcg, int event)
873{
874 int i = memcg_events_index(event);
875
876 if (WARN_ONCE(BAD_STAT_IDX(i), "%s: missing stat item %d\n", __func__, event))
877 return 0;
878
879 return READ_ONCE(memcg->vmstats->events_local[i]);
880}
881
882struct mem_cgroup *mem_cgroup_from_task(struct task_struct *p)
883{
884 /*
885 * mm_update_next_owner() may clear mm->owner to NULL
886 * if it races with swapoff, page migration, etc.
887 * So this can be called with p == NULL.
888 */
889 if (unlikely(!p))
890 return NULL;
891
892 return mem_cgroup_from_css(task_css(p, memory_cgrp_id));
893}
894EXPORT_SYMBOL(mem_cgroup_from_task);
895
896static __always_inline struct mem_cgroup *active_memcg(void)
897{
898 if (!in_task())
899 return this_cpu_read(int_active_memcg);
900 else
901 return current->active_memcg;
902}
903
904/**
905 * get_mem_cgroup_from_mm: Obtain a reference on given mm_struct's memcg.
906 * @mm: mm from which memcg should be extracted. It can be NULL.
907 *
908 * Obtain a reference on mm->memcg and returns it if successful. If mm
909 * is NULL, then the memcg is chosen as follows:
910 * 1) The active memcg, if set.
911 * 2) current->mm->memcg, if available
912 * 3) root memcg
913 * If mem_cgroup is disabled, NULL is returned.
914 */
915struct mem_cgroup *get_mem_cgroup_from_mm(struct mm_struct *mm)
916{
917 struct mem_cgroup *memcg;
918
919 if (mem_cgroup_disabled())
920 return NULL;
921
922 /*
923 * Page cache insertions can happen without an
924 * actual mm context, e.g. during disk probing
925 * on boot, loopback IO, acct() writes etc.
926 *
927 * No need to css_get on root memcg as the reference
928 * counting is disabled on the root level in the
929 * cgroup core. See CSS_NO_REF.
930 */
931 if (unlikely(!mm)) {
932 memcg = active_memcg();
933 if (unlikely(memcg)) {
934 /* remote memcg must hold a ref */
935 css_get(&memcg->css);
936 return memcg;
937 }
938 mm = current->mm;
939 if (unlikely(!mm))
940 return root_mem_cgroup;
941 }
942
943 rcu_read_lock();
944 do {
945 memcg = mem_cgroup_from_task(rcu_dereference(mm->owner));
946 if (unlikely(!memcg))
947 memcg = root_mem_cgroup;
948 } while (!css_tryget(&memcg->css));
949 rcu_read_unlock();
950 return memcg;
951}
952EXPORT_SYMBOL(get_mem_cgroup_from_mm);
953
954/**
955 * get_mem_cgroup_from_current - Obtain a reference on current task's memcg.
956 */
957struct mem_cgroup *get_mem_cgroup_from_current(void)
958{
959 struct mem_cgroup *memcg;
960
961 if (mem_cgroup_disabled())
962 return NULL;
963
964again:
965 rcu_read_lock();
966 memcg = mem_cgroup_from_task(current);
967 if (!css_tryget(&memcg->css)) {
968 rcu_read_unlock();
969 goto again;
970 }
971 rcu_read_unlock();
972 return memcg;
973}
974
975/**
976 * get_mem_cgroup_from_folio - Obtain a reference on a given folio's memcg.
977 * @folio: folio from which memcg should be extracted.
978 */
979struct mem_cgroup *get_mem_cgroup_from_folio(struct folio *folio)
980{
981 struct mem_cgroup *memcg = folio_memcg(folio);
982
983 if (mem_cgroup_disabled())
984 return NULL;
985
986 rcu_read_lock();
987 if (!memcg || WARN_ON_ONCE(!css_tryget(&memcg->css)))
988 memcg = root_mem_cgroup;
989 rcu_read_unlock();
990 return memcg;
991}
992
993/**
994 * mem_cgroup_iter - iterate over memory cgroup hierarchy
995 * @root: hierarchy root
996 * @prev: previously returned memcg, NULL on first invocation
997 * @reclaim: cookie for shared reclaim walks, NULL for full walks
998 *
999 * Returns references to children of the hierarchy below @root, or
1000 * @root itself, or %NULL after a full round-trip.
1001 *
1002 * Caller must pass the return value in @prev on subsequent
1003 * invocations for reference counting, or use mem_cgroup_iter_break()
1004 * to cancel a hierarchy walk before the round-trip is complete.
1005 *
1006 * Reclaimers can specify a node in @reclaim to divide up the memcgs
1007 * in the hierarchy among all concurrent reclaimers operating on the
1008 * same node.
1009 */
1010struct mem_cgroup *mem_cgroup_iter(struct mem_cgroup *root,
1011 struct mem_cgroup *prev,
1012 struct mem_cgroup_reclaim_cookie *reclaim)
1013{
1014 struct mem_cgroup_reclaim_iter *iter;
1015 struct cgroup_subsys_state *css;
1016 struct mem_cgroup *pos;
1017 struct mem_cgroup *next;
1018
1019 if (mem_cgroup_disabled())
1020 return NULL;
1021
1022 if (!root)
1023 root = root_mem_cgroup;
1024
1025 rcu_read_lock();
1026restart:
1027 next = NULL;
1028
1029 if (reclaim) {
1030 int gen;
1031 int nid = reclaim->pgdat->node_id;
1032
1033 iter = &root->nodeinfo[nid]->iter;
1034 gen = atomic_read(&iter->generation);
1035
1036 /*
1037 * On start, join the current reclaim iteration cycle.
1038 * Exit when a concurrent walker completes it.
1039 */
1040 if (!prev)
1041 reclaim->generation = gen;
1042 else if (reclaim->generation != gen)
1043 goto out_unlock;
1044
1045 pos = READ_ONCE(iter->position);
1046 } else
1047 pos = prev;
1048
1049 css = pos ? &pos->css : NULL;
1050
1051 while ((css = css_next_descendant_pre(css, &root->css))) {
1052 /*
1053 * Verify the css and acquire a reference. The root
1054 * is provided by the caller, so we know it's alive
1055 * and kicking, and don't take an extra reference.
1056 */
1057 if (css == &root->css || css_tryget(css))
1058 break;
1059 }
1060
1061 next = mem_cgroup_from_css(css);
1062
1063 if (reclaim) {
1064 /*
1065 * The position could have already been updated by a competing
1066 * thread, so check that the value hasn't changed since we read
1067 * it to avoid reclaiming from the same cgroup twice.
1068 */
1069 if (cmpxchg(&iter->position, pos, next) != pos) {
1070 if (css && css != &root->css)
1071 css_put(css);
1072 goto restart;
1073 }
1074
1075 if (!next) {
1076 atomic_inc(&iter->generation);
1077
1078 /*
1079 * Reclaimers share the hierarchy walk, and a
1080 * new one might jump in right at the end of
1081 * the hierarchy - make sure they see at least
1082 * one group and restart from the beginning.
1083 */
1084 if (!prev)
1085 goto restart;
1086 }
1087 }
1088
1089out_unlock:
1090 rcu_read_unlock();
1091 if (prev && prev != root)
1092 css_put(&prev->css);
1093
1094 return next;
1095}
1096
1097/**
1098 * mem_cgroup_iter_break - abort a hierarchy walk prematurely
1099 * @root: hierarchy root
1100 * @prev: last visited hierarchy member as returned by mem_cgroup_iter()
1101 */
1102void mem_cgroup_iter_break(struct mem_cgroup *root,
1103 struct mem_cgroup *prev)
1104{
1105 if (!root)
1106 root = root_mem_cgroup;
1107 if (prev && prev != root)
1108 css_put(&prev->css);
1109}
1110
1111static void __invalidate_reclaim_iterators(struct mem_cgroup *from,
1112 struct mem_cgroup *dead_memcg)
1113{
1114 struct mem_cgroup_reclaim_iter *iter;
1115 struct mem_cgroup_per_node *mz;
1116 int nid;
1117
1118 for_each_node(nid) {
1119 mz = from->nodeinfo[nid];
1120 iter = &mz->iter;
1121 cmpxchg(&iter->position, dead_memcg, NULL);
1122 }
1123}
1124
1125static void invalidate_reclaim_iterators(struct mem_cgroup *dead_memcg)
1126{
1127 struct mem_cgroup *memcg = dead_memcg;
1128 struct mem_cgroup *last;
1129
1130 do {
1131 __invalidate_reclaim_iterators(memcg, dead_memcg);
1132 last = memcg;
1133 } while ((memcg = parent_mem_cgroup(memcg)));
1134
1135 /*
1136 * When cgroup1 non-hierarchy mode is used,
1137 * parent_mem_cgroup() does not walk all the way up to the
1138 * cgroup root (root_mem_cgroup). So we have to handle
1139 * dead_memcg from cgroup root separately.
1140 */
1141 if (!mem_cgroup_is_root(last))
1142 __invalidate_reclaim_iterators(root_mem_cgroup,
1143 dead_memcg);
1144}
1145
1146/**
1147 * mem_cgroup_scan_tasks - iterate over tasks of a memory cgroup hierarchy
1148 * @memcg: hierarchy root
1149 * @fn: function to call for each task
1150 * @arg: argument passed to @fn
1151 *
1152 * This function iterates over tasks attached to @memcg or to any of its
1153 * descendants and calls @fn for each task. If @fn returns a non-zero
1154 * value, the function breaks the iteration loop. Otherwise, it will iterate
1155 * over all tasks and return 0.
1156 *
1157 * This function must not be called for the root memory cgroup.
1158 */
1159void mem_cgroup_scan_tasks(struct mem_cgroup *memcg,
1160 int (*fn)(struct task_struct *, void *), void *arg)
1161{
1162 struct mem_cgroup *iter;
1163 int ret = 0;
1164 int i = 0;
1165
1166 BUG_ON(mem_cgroup_is_root(memcg));
1167
1168 for_each_mem_cgroup_tree(iter, memcg) {
1169 struct css_task_iter it;
1170 struct task_struct *task;
1171
1172 css_task_iter_start(&iter->css, CSS_TASK_ITER_PROCS, &it);
1173 while (!ret && (task = css_task_iter_next(&it))) {
1174 /* Avoid potential softlockup warning */
1175 if ((++i & 1023) == 0)
1176 cond_resched();
1177 ret = fn(task, arg);
1178 }
1179 css_task_iter_end(&it);
1180 if (ret) {
1181 mem_cgroup_iter_break(memcg, iter);
1182 break;
1183 }
1184 }
1185}
1186
1187#ifdef CONFIG_DEBUG_VM
1188void lruvec_memcg_debug(struct lruvec *lruvec, struct folio *folio)
1189{
1190 struct mem_cgroup *memcg;
1191
1192 if (mem_cgroup_disabled())
1193 return;
1194
1195 memcg = folio_memcg(folio);
1196
1197 if (!memcg)
1198 VM_BUG_ON_FOLIO(!mem_cgroup_is_root(lruvec_memcg(lruvec)), folio);
1199 else
1200 VM_BUG_ON_FOLIO(lruvec_memcg(lruvec) != memcg, folio);
1201}
1202#endif
1203
1204/**
1205 * folio_lruvec_lock - Lock the lruvec for a folio.
1206 * @folio: Pointer to the folio.
1207 *
1208 * These functions are safe to use under any of the following conditions:
1209 * - folio locked
1210 * - folio_test_lru false
1211 * - folio frozen (refcount of 0)
1212 *
1213 * Return: The lruvec this folio is on with its lock held.
1214 */
1215struct lruvec *folio_lruvec_lock(struct folio *folio)
1216{
1217 struct lruvec *lruvec = folio_lruvec(folio);
1218
1219 spin_lock(&lruvec->lru_lock);
1220 lruvec_memcg_debug(lruvec, folio);
1221
1222 return lruvec;
1223}
1224
1225/**
1226 * folio_lruvec_lock_irq - Lock the lruvec for a folio.
1227 * @folio: Pointer to the folio.
1228 *
1229 * These functions are safe to use under any of the following conditions:
1230 * - folio locked
1231 * - folio_test_lru false
1232 * - folio frozen (refcount of 0)
1233 *
1234 * Return: The lruvec this folio is on with its lock held and interrupts
1235 * disabled.
1236 */
1237struct lruvec *folio_lruvec_lock_irq(struct folio *folio)
1238{
1239 struct lruvec *lruvec = folio_lruvec(folio);
1240
1241 spin_lock_irq(&lruvec->lru_lock);
1242 lruvec_memcg_debug(lruvec, folio);
1243
1244 return lruvec;
1245}
1246
1247/**
1248 * folio_lruvec_lock_irqsave - Lock the lruvec for a folio.
1249 * @folio: Pointer to the folio.
1250 * @flags: Pointer to irqsave flags.
1251 *
1252 * These functions are safe to use under any of the following conditions:
1253 * - folio locked
1254 * - folio_test_lru false
1255 * - folio frozen (refcount of 0)
1256 *
1257 * Return: The lruvec this folio is on with its lock held and interrupts
1258 * disabled.
1259 */
1260struct lruvec *folio_lruvec_lock_irqsave(struct folio *folio,
1261 unsigned long *flags)
1262{
1263 struct lruvec *lruvec = folio_lruvec(folio);
1264
1265 spin_lock_irqsave(&lruvec->lru_lock, *flags);
1266 lruvec_memcg_debug(lruvec, folio);
1267
1268 return lruvec;
1269}
1270
1271/**
1272 * mem_cgroup_update_lru_size - account for adding or removing an lru page
1273 * @lruvec: mem_cgroup per zone lru vector
1274 * @lru: index of lru list the page is sitting on
1275 * @zid: zone id of the accounted pages
1276 * @nr_pages: positive when adding or negative when removing
1277 *
1278 * This function must be called under lru_lock, just before a page is added
1279 * to or just after a page is removed from an lru list.
1280 */
1281void mem_cgroup_update_lru_size(struct lruvec *lruvec, enum lru_list lru,
1282 int zid, int nr_pages)
1283{
1284 struct mem_cgroup_per_node *mz;
1285 unsigned long *lru_size;
1286 long size;
1287
1288 if (mem_cgroup_disabled())
1289 return;
1290
1291 mz = container_of(lruvec, struct mem_cgroup_per_node, lruvec);
1292 lru_size = &mz->lru_zone_size[zid][lru];
1293
1294 if (nr_pages < 0)
1295 *lru_size += nr_pages;
1296
1297 size = *lru_size;
1298 if (WARN_ONCE(size < 0,
1299 "%s(%p, %d, %d): lru_size %ld\n",
1300 __func__, lruvec, lru, nr_pages, size)) {
1301 VM_BUG_ON(1);
1302 *lru_size = 0;
1303 }
1304
1305 if (nr_pages > 0)
1306 *lru_size += nr_pages;
1307}
1308
1309/**
1310 * mem_cgroup_margin - calculate chargeable space of a memory cgroup
1311 * @memcg: the memory cgroup
1312 *
1313 * Returns the maximum amount of memory @mem can be charged with, in
1314 * pages.
1315 */
1316static unsigned long mem_cgroup_margin(struct mem_cgroup *memcg)
1317{
1318 unsigned long margin = 0;
1319 unsigned long count;
1320 unsigned long limit;
1321
1322 count = page_counter_read(&memcg->memory);
1323 limit = READ_ONCE(memcg->memory.max);
1324 if (count < limit)
1325 margin = limit - count;
1326
1327 if (do_memsw_account()) {
1328 count = page_counter_read(&memcg->memsw);
1329 limit = READ_ONCE(memcg->memsw.max);
1330 if (count < limit)
1331 margin = min(margin, limit - count);
1332 else
1333 margin = 0;
1334 }
1335
1336 return margin;
1337}
1338
1339struct memory_stat {
1340 const char *name;
1341 unsigned int idx;
1342};
1343
1344static const struct memory_stat memory_stats[] = {
1345 { "anon", NR_ANON_MAPPED },
1346 { "file", NR_FILE_PAGES },
1347 { "kernel", MEMCG_KMEM },
1348 { "kernel_stack", NR_KERNEL_STACK_KB },
1349 { "pagetables", NR_PAGETABLE },
1350 { "sec_pagetables", NR_SECONDARY_PAGETABLE },
1351 { "percpu", MEMCG_PERCPU_B },
1352 { "sock", MEMCG_SOCK },
1353 { "vmalloc", MEMCG_VMALLOC },
1354 { "shmem", NR_SHMEM },
1355#ifdef CONFIG_ZSWAP
1356 { "zswap", MEMCG_ZSWAP_B },
1357 { "zswapped", MEMCG_ZSWAPPED },
1358#endif
1359 { "file_mapped", NR_FILE_MAPPED },
1360 { "file_dirty", NR_FILE_DIRTY },
1361 { "file_writeback", NR_WRITEBACK },
1362#ifdef CONFIG_SWAP
1363 { "swapcached", NR_SWAPCACHE },
1364#endif
1365#ifdef CONFIG_TRANSPARENT_HUGEPAGE
1366 { "anon_thp", NR_ANON_THPS },
1367 { "file_thp", NR_FILE_THPS },
1368 { "shmem_thp", NR_SHMEM_THPS },
1369#endif
1370 { "inactive_anon", NR_INACTIVE_ANON },
1371 { "active_anon", NR_ACTIVE_ANON },
1372 { "inactive_file", NR_INACTIVE_FILE },
1373 { "active_file", NR_ACTIVE_FILE },
1374 { "unevictable", NR_UNEVICTABLE },
1375 { "slab_reclaimable", NR_SLAB_RECLAIMABLE_B },
1376 { "slab_unreclaimable", NR_SLAB_UNRECLAIMABLE_B },
1377#ifdef CONFIG_HUGETLB_PAGE
1378 { "hugetlb", NR_HUGETLB },
1379#endif
1380
1381 /* The memory events */
1382 { "workingset_refault_anon", WORKINGSET_REFAULT_ANON },
1383 { "workingset_refault_file", WORKINGSET_REFAULT_FILE },
1384 { "workingset_activate_anon", WORKINGSET_ACTIVATE_ANON },
1385 { "workingset_activate_file", WORKINGSET_ACTIVATE_FILE },
1386 { "workingset_restore_anon", WORKINGSET_RESTORE_ANON },
1387 { "workingset_restore_file", WORKINGSET_RESTORE_FILE },
1388 { "workingset_nodereclaim", WORKINGSET_NODERECLAIM },
1389
1390 { "pgdemote_kswapd", PGDEMOTE_KSWAPD },
1391 { "pgdemote_direct", PGDEMOTE_DIRECT },
1392 { "pgdemote_khugepaged", PGDEMOTE_KHUGEPAGED },
1393#ifdef CONFIG_NUMA_BALANCING
1394 { "pgpromote_success", PGPROMOTE_SUCCESS },
1395#endif
1396};
1397
1398/* The actual unit of the state item, not the same as the output unit */
1399static int memcg_page_state_unit(int item)
1400{
1401 switch (item) {
1402 case MEMCG_PERCPU_B:
1403 case MEMCG_ZSWAP_B:
1404 case NR_SLAB_RECLAIMABLE_B:
1405 case NR_SLAB_UNRECLAIMABLE_B:
1406 return 1;
1407 case NR_KERNEL_STACK_KB:
1408 return SZ_1K;
1409 default:
1410 return PAGE_SIZE;
1411 }
1412}
1413
1414/* Translate stat items to the correct unit for memory.stat output */
1415static int memcg_page_state_output_unit(int item)
1416{
1417 /*
1418 * Workingset state is actually in pages, but we export it to userspace
1419 * as a scalar count of events, so special case it here.
1420 *
1421 * Demotion and promotion activities are exported in pages, consistent
1422 * with their global counterparts.
1423 */
1424 switch (item) {
1425 case WORKINGSET_REFAULT_ANON:
1426 case WORKINGSET_REFAULT_FILE:
1427 case WORKINGSET_ACTIVATE_ANON:
1428 case WORKINGSET_ACTIVATE_FILE:
1429 case WORKINGSET_RESTORE_ANON:
1430 case WORKINGSET_RESTORE_FILE:
1431 case WORKINGSET_NODERECLAIM:
1432 case PGDEMOTE_KSWAPD:
1433 case PGDEMOTE_DIRECT:
1434 case PGDEMOTE_KHUGEPAGED:
1435#ifdef CONFIG_NUMA_BALANCING
1436 case PGPROMOTE_SUCCESS:
1437#endif
1438 return 1;
1439 default:
1440 return memcg_page_state_unit(item);
1441 }
1442}
1443
1444unsigned long memcg_page_state_output(struct mem_cgroup *memcg, int item)
1445{
1446 return memcg_page_state(memcg, item) *
1447 memcg_page_state_output_unit(item);
1448}
1449
1450unsigned long memcg_page_state_local_output(struct mem_cgroup *memcg, int item)
1451{
1452 return memcg_page_state_local(memcg, item) *
1453 memcg_page_state_output_unit(item);
1454}
1455
1456static void memcg_stat_format(struct mem_cgroup *memcg, struct seq_buf *s)
1457{
1458 int i;
1459
1460 /*
1461 * Provide statistics on the state of the memory subsystem as
1462 * well as cumulative event counters that show past behavior.
1463 *
1464 * This list is ordered following a combination of these gradients:
1465 * 1) generic big picture -> specifics and details
1466 * 2) reflecting userspace activity -> reflecting kernel heuristics
1467 *
1468 * Current memory state:
1469 */
1470 mem_cgroup_flush_stats(memcg);
1471
1472 for (i = 0; i < ARRAY_SIZE(memory_stats); i++) {
1473 u64 size;
1474
1475#ifdef CONFIG_HUGETLB_PAGE
1476 if (unlikely(memory_stats[i].idx == NR_HUGETLB) &&
1477 !(cgrp_dfl_root.flags & CGRP_ROOT_MEMORY_HUGETLB_ACCOUNTING))
1478 continue;
1479#endif
1480 size = memcg_page_state_output(memcg, memory_stats[i].idx);
1481 seq_buf_printf(s, "%s %llu\n", memory_stats[i].name, size);
1482
1483 if (unlikely(memory_stats[i].idx == NR_SLAB_UNRECLAIMABLE_B)) {
1484 size += memcg_page_state_output(memcg,
1485 NR_SLAB_RECLAIMABLE_B);
1486 seq_buf_printf(s, "slab %llu\n", size);
1487 }
1488 }
1489
1490 /* Accumulated memory events */
1491 seq_buf_printf(s, "pgscan %lu\n",
1492 memcg_events(memcg, PGSCAN_KSWAPD) +
1493 memcg_events(memcg, PGSCAN_DIRECT) +
1494 memcg_events(memcg, PGSCAN_KHUGEPAGED));
1495 seq_buf_printf(s, "pgsteal %lu\n",
1496 memcg_events(memcg, PGSTEAL_KSWAPD) +
1497 memcg_events(memcg, PGSTEAL_DIRECT) +
1498 memcg_events(memcg, PGSTEAL_KHUGEPAGED));
1499
1500 for (i = 0; i < ARRAY_SIZE(memcg_vm_event_stat); i++) {
1501#ifdef CONFIG_MEMCG_V1
1502 if (memcg_vm_event_stat[i] == PGPGIN ||
1503 memcg_vm_event_stat[i] == PGPGOUT)
1504 continue;
1505#endif
1506 seq_buf_printf(s, "%s %lu\n",
1507 vm_event_name(memcg_vm_event_stat[i]),
1508 memcg_events(memcg, memcg_vm_event_stat[i]));
1509 }
1510}
1511
1512static void memory_stat_format(struct mem_cgroup *memcg, struct seq_buf *s)
1513{
1514 if (cgroup_subsys_on_dfl(memory_cgrp_subsys))
1515 memcg_stat_format(memcg, s);
1516 else
1517 memcg1_stat_format(memcg, s);
1518 if (seq_buf_has_overflowed(s))
1519 pr_warn("%s: Warning, stat buffer overflow, please report\n", __func__);
1520}
1521
1522/**
1523 * mem_cgroup_print_oom_context: Print OOM information relevant to
1524 * memory controller.
1525 * @memcg: The memory cgroup that went over limit
1526 * @p: Task that is going to be killed
1527 *
1528 * NOTE: @memcg and @p's mem_cgroup can be different when hierarchy is
1529 * enabled
1530 */
1531void mem_cgroup_print_oom_context(struct mem_cgroup *memcg, struct task_struct *p)
1532{
1533 rcu_read_lock();
1534
1535 if (memcg) {
1536 pr_cont(",oom_memcg=");
1537 pr_cont_cgroup_path(memcg->css.cgroup);
1538 } else
1539 pr_cont(",global_oom");
1540 if (p) {
1541 pr_cont(",task_memcg=");
1542 pr_cont_cgroup_path(task_cgroup(p, memory_cgrp_id));
1543 }
1544 rcu_read_unlock();
1545}
1546
1547/**
1548 * mem_cgroup_print_oom_meminfo: Print OOM memory information relevant to
1549 * memory controller.
1550 * @memcg: The memory cgroup that went over limit
1551 */
1552void mem_cgroup_print_oom_meminfo(struct mem_cgroup *memcg)
1553{
1554 /* Use static buffer, for the caller is holding oom_lock. */
1555 static char buf[SEQ_BUF_SIZE];
1556 struct seq_buf s;
1557
1558 lockdep_assert_held(&oom_lock);
1559
1560 pr_info("memory: usage %llukB, limit %llukB, failcnt %lu\n",
1561 K((u64)page_counter_read(&memcg->memory)),
1562 K((u64)READ_ONCE(memcg->memory.max)), memcg->memory.failcnt);
1563 if (cgroup_subsys_on_dfl(memory_cgrp_subsys))
1564 pr_info("swap: usage %llukB, limit %llukB, failcnt %lu\n",
1565 K((u64)page_counter_read(&memcg->swap)),
1566 K((u64)READ_ONCE(memcg->swap.max)), memcg->swap.failcnt);
1567#ifdef CONFIG_MEMCG_V1
1568 else {
1569 pr_info("memory+swap: usage %llukB, limit %llukB, failcnt %lu\n",
1570 K((u64)page_counter_read(&memcg->memsw)),
1571 K((u64)memcg->memsw.max), memcg->memsw.failcnt);
1572 pr_info("kmem: usage %llukB, limit %llukB, failcnt %lu\n",
1573 K((u64)page_counter_read(&memcg->kmem)),
1574 K((u64)memcg->kmem.max), memcg->kmem.failcnt);
1575 }
1576#endif
1577
1578 pr_info("Memory cgroup stats for ");
1579 pr_cont_cgroup_path(memcg->css.cgroup);
1580 pr_cont(":");
1581 seq_buf_init(&s, buf, SEQ_BUF_SIZE);
1582 memory_stat_format(memcg, &s);
1583 seq_buf_do_printk(&s, KERN_INFO);
1584}
1585
1586/*
1587 * Return the memory (and swap, if configured) limit for a memcg.
1588 */
1589unsigned long mem_cgroup_get_max(struct mem_cgroup *memcg)
1590{
1591 unsigned long max = READ_ONCE(memcg->memory.max);
1592
1593 if (do_memsw_account()) {
1594 if (mem_cgroup_swappiness(memcg)) {
1595 /* Calculate swap excess capacity from memsw limit */
1596 unsigned long swap = READ_ONCE(memcg->memsw.max) - max;
1597
1598 max += min(swap, (unsigned long)total_swap_pages);
1599 }
1600 } else {
1601 if (mem_cgroup_swappiness(memcg))
1602 max += min(READ_ONCE(memcg->swap.max),
1603 (unsigned long)total_swap_pages);
1604 }
1605 return max;
1606}
1607
1608unsigned long mem_cgroup_size(struct mem_cgroup *memcg)
1609{
1610 return page_counter_read(&memcg->memory);
1611}
1612
1613static bool mem_cgroup_out_of_memory(struct mem_cgroup *memcg, gfp_t gfp_mask,
1614 int order)
1615{
1616 struct oom_control oc = {
1617 .zonelist = NULL,
1618 .nodemask = NULL,
1619 .memcg = memcg,
1620 .gfp_mask = gfp_mask,
1621 .order = order,
1622 };
1623 bool ret = true;
1624
1625 if (mutex_lock_killable(&oom_lock))
1626 return true;
1627
1628 if (mem_cgroup_margin(memcg) >= (1 << order))
1629 goto unlock;
1630
1631 /*
1632 * A few threads which were not waiting at mutex_lock_killable() can
1633 * fail to bail out. Therefore, check again after holding oom_lock.
1634 */
1635 ret = task_is_dying() || out_of_memory(&oc);
1636
1637unlock:
1638 mutex_unlock(&oom_lock);
1639 return ret;
1640}
1641
1642/*
1643 * Returns true if successfully killed one or more processes. Though in some
1644 * corner cases it can return true even without killing any process.
1645 */
1646static bool mem_cgroup_oom(struct mem_cgroup *memcg, gfp_t mask, int order)
1647{
1648 bool locked, ret;
1649
1650 if (order > PAGE_ALLOC_COSTLY_ORDER)
1651 return false;
1652
1653 memcg_memory_event(memcg, MEMCG_OOM);
1654
1655 if (!memcg1_oom_prepare(memcg, &locked))
1656 return false;
1657
1658 ret = mem_cgroup_out_of_memory(memcg, mask, order);
1659
1660 memcg1_oom_finish(memcg, locked);
1661
1662 return ret;
1663}
1664
1665/**
1666 * mem_cgroup_get_oom_group - get a memory cgroup to clean up after OOM
1667 * @victim: task to be killed by the OOM killer
1668 * @oom_domain: memcg in case of memcg OOM, NULL in case of system-wide OOM
1669 *
1670 * Returns a pointer to a memory cgroup, which has to be cleaned up
1671 * by killing all belonging OOM-killable tasks.
1672 *
1673 * Caller has to call mem_cgroup_put() on the returned non-NULL memcg.
1674 */
1675struct mem_cgroup *mem_cgroup_get_oom_group(struct task_struct *victim,
1676 struct mem_cgroup *oom_domain)
1677{
1678 struct mem_cgroup *oom_group = NULL;
1679 struct mem_cgroup *memcg;
1680
1681 if (!cgroup_subsys_on_dfl(memory_cgrp_subsys))
1682 return NULL;
1683
1684 if (!oom_domain)
1685 oom_domain = root_mem_cgroup;
1686
1687 rcu_read_lock();
1688
1689 memcg = mem_cgroup_from_task(victim);
1690 if (mem_cgroup_is_root(memcg))
1691 goto out;
1692
1693 /*
1694 * If the victim task has been asynchronously moved to a different
1695 * memory cgroup, we might end up killing tasks outside oom_domain.
1696 * In this case it's better to ignore memory.group.oom.
1697 */
1698 if (unlikely(!mem_cgroup_is_descendant(memcg, oom_domain)))
1699 goto out;
1700
1701 /*
1702 * Traverse the memory cgroup hierarchy from the victim task's
1703 * cgroup up to the OOMing cgroup (or root) to find the
1704 * highest-level memory cgroup with oom.group set.
1705 */
1706 for (; memcg; memcg = parent_mem_cgroup(memcg)) {
1707 if (READ_ONCE(memcg->oom_group))
1708 oom_group = memcg;
1709
1710 if (memcg == oom_domain)
1711 break;
1712 }
1713
1714 if (oom_group)
1715 css_get(&oom_group->css);
1716out:
1717 rcu_read_unlock();
1718
1719 return oom_group;
1720}
1721
1722void mem_cgroup_print_oom_group(struct mem_cgroup *memcg)
1723{
1724 pr_info("Tasks in ");
1725 pr_cont_cgroup_path(memcg->css.cgroup);
1726 pr_cont(" are going to be killed due to memory.oom.group set\n");
1727}
1728
1729struct memcg_stock_pcp {
1730 local_lock_t stock_lock;
1731 struct mem_cgroup *cached; /* this never be root cgroup */
1732 unsigned int nr_pages;
1733
1734 struct obj_cgroup *cached_objcg;
1735 struct pglist_data *cached_pgdat;
1736 unsigned int nr_bytes;
1737 int nr_slab_reclaimable_b;
1738 int nr_slab_unreclaimable_b;
1739
1740 struct work_struct work;
1741 unsigned long flags;
1742#define FLUSHING_CACHED_CHARGE 0
1743};
1744static DEFINE_PER_CPU(struct memcg_stock_pcp, memcg_stock) = {
1745 .stock_lock = INIT_LOCAL_LOCK(stock_lock),
1746};
1747static DEFINE_MUTEX(percpu_charge_mutex);
1748
1749static struct obj_cgroup *drain_obj_stock(struct memcg_stock_pcp *stock);
1750static bool obj_stock_flush_required(struct memcg_stock_pcp *stock,
1751 struct mem_cgroup *root_memcg);
1752
1753/**
1754 * consume_stock: Try to consume stocked charge on this cpu.
1755 * @memcg: memcg to consume from.
1756 * @nr_pages: how many pages to charge.
1757 *
1758 * The charges will only happen if @memcg matches the current cpu's memcg
1759 * stock, and at least @nr_pages are available in that stock. Failure to
1760 * service an allocation will refill the stock.
1761 *
1762 * returns true if successful, false otherwise.
1763 */
1764static bool consume_stock(struct mem_cgroup *memcg, unsigned int nr_pages)
1765{
1766 struct memcg_stock_pcp *stock;
1767 unsigned int stock_pages;
1768 unsigned long flags;
1769 bool ret = false;
1770
1771 if (nr_pages > MEMCG_CHARGE_BATCH)
1772 return ret;
1773
1774 local_lock_irqsave(&memcg_stock.stock_lock, flags);
1775
1776 stock = this_cpu_ptr(&memcg_stock);
1777 stock_pages = READ_ONCE(stock->nr_pages);
1778 if (memcg == READ_ONCE(stock->cached) && stock_pages >= nr_pages) {
1779 WRITE_ONCE(stock->nr_pages, stock_pages - nr_pages);
1780 ret = true;
1781 }
1782
1783 local_unlock_irqrestore(&memcg_stock.stock_lock, flags);
1784
1785 return ret;
1786}
1787
1788/*
1789 * Returns stocks cached in percpu and reset cached information.
1790 */
1791static void drain_stock(struct memcg_stock_pcp *stock)
1792{
1793 unsigned int stock_pages = READ_ONCE(stock->nr_pages);
1794 struct mem_cgroup *old = READ_ONCE(stock->cached);
1795
1796 if (!old)
1797 return;
1798
1799 if (stock_pages) {
1800 page_counter_uncharge(&old->memory, stock_pages);
1801 if (do_memsw_account())
1802 page_counter_uncharge(&old->memsw, stock_pages);
1803
1804 WRITE_ONCE(stock->nr_pages, 0);
1805 }
1806
1807 css_put(&old->css);
1808 WRITE_ONCE(stock->cached, NULL);
1809}
1810
1811static void drain_local_stock(struct work_struct *dummy)
1812{
1813 struct memcg_stock_pcp *stock;
1814 struct obj_cgroup *old = NULL;
1815 unsigned long flags;
1816
1817 /*
1818 * The only protection from cpu hotplug (memcg_hotplug_cpu_dead) vs.
1819 * drain_stock races is that we always operate on local CPU stock
1820 * here with IRQ disabled
1821 */
1822 local_lock_irqsave(&memcg_stock.stock_lock, flags);
1823
1824 stock = this_cpu_ptr(&memcg_stock);
1825 old = drain_obj_stock(stock);
1826 drain_stock(stock);
1827 clear_bit(FLUSHING_CACHED_CHARGE, &stock->flags);
1828
1829 local_unlock_irqrestore(&memcg_stock.stock_lock, flags);
1830 obj_cgroup_put(old);
1831}
1832
1833/*
1834 * Cache charges(val) to local per_cpu area.
1835 * This will be consumed by consume_stock() function, later.
1836 */
1837static void __refill_stock(struct mem_cgroup *memcg, unsigned int nr_pages)
1838{
1839 struct memcg_stock_pcp *stock;
1840 unsigned int stock_pages;
1841
1842 stock = this_cpu_ptr(&memcg_stock);
1843 if (READ_ONCE(stock->cached) != memcg) { /* reset if necessary */
1844 drain_stock(stock);
1845 css_get(&memcg->css);
1846 WRITE_ONCE(stock->cached, memcg);
1847 }
1848 stock_pages = READ_ONCE(stock->nr_pages) + nr_pages;
1849 WRITE_ONCE(stock->nr_pages, stock_pages);
1850
1851 if (stock_pages > MEMCG_CHARGE_BATCH)
1852 drain_stock(stock);
1853}
1854
1855static void refill_stock(struct mem_cgroup *memcg, unsigned int nr_pages)
1856{
1857 unsigned long flags;
1858
1859 local_lock_irqsave(&memcg_stock.stock_lock, flags);
1860 __refill_stock(memcg, nr_pages);
1861 local_unlock_irqrestore(&memcg_stock.stock_lock, flags);
1862}
1863
1864/*
1865 * Drains all per-CPU charge caches for given root_memcg resp. subtree
1866 * of the hierarchy under it.
1867 */
1868void drain_all_stock(struct mem_cgroup *root_memcg)
1869{
1870 int cpu, curcpu;
1871
1872 /* If someone's already draining, avoid adding running more workers. */
1873 if (!mutex_trylock(&percpu_charge_mutex))
1874 return;
1875 /*
1876 * Notify other cpus that system-wide "drain" is running
1877 * We do not care about races with the cpu hotplug because cpu down
1878 * as well as workers from this path always operate on the local
1879 * per-cpu data. CPU up doesn't touch memcg_stock at all.
1880 */
1881 migrate_disable();
1882 curcpu = smp_processor_id();
1883 for_each_online_cpu(cpu) {
1884 struct memcg_stock_pcp *stock = &per_cpu(memcg_stock, cpu);
1885 struct mem_cgroup *memcg;
1886 bool flush = false;
1887
1888 rcu_read_lock();
1889 memcg = READ_ONCE(stock->cached);
1890 if (memcg && READ_ONCE(stock->nr_pages) &&
1891 mem_cgroup_is_descendant(memcg, root_memcg))
1892 flush = true;
1893 else if (obj_stock_flush_required(stock, root_memcg))
1894 flush = true;
1895 rcu_read_unlock();
1896
1897 if (flush &&
1898 !test_and_set_bit(FLUSHING_CACHED_CHARGE, &stock->flags)) {
1899 if (cpu == curcpu)
1900 drain_local_stock(&stock->work);
1901 else if (!cpu_is_isolated(cpu))
1902 schedule_work_on(cpu, &stock->work);
1903 }
1904 }
1905 migrate_enable();
1906 mutex_unlock(&percpu_charge_mutex);
1907}
1908
1909static int memcg_hotplug_cpu_dead(unsigned int cpu)
1910{
1911 struct memcg_stock_pcp *stock;
1912
1913 stock = &per_cpu(memcg_stock, cpu);
1914 drain_stock(stock);
1915
1916 return 0;
1917}
1918
1919static unsigned long reclaim_high(struct mem_cgroup *memcg,
1920 unsigned int nr_pages,
1921 gfp_t gfp_mask)
1922{
1923 unsigned long nr_reclaimed = 0;
1924
1925 do {
1926 unsigned long pflags;
1927
1928 if (page_counter_read(&memcg->memory) <=
1929 READ_ONCE(memcg->memory.high))
1930 continue;
1931
1932 memcg_memory_event(memcg, MEMCG_HIGH);
1933
1934 psi_memstall_enter(&pflags);
1935 nr_reclaimed += try_to_free_mem_cgroup_pages(memcg, nr_pages,
1936 gfp_mask,
1937 MEMCG_RECLAIM_MAY_SWAP,
1938 NULL);
1939 psi_memstall_leave(&pflags);
1940 } while ((memcg = parent_mem_cgroup(memcg)) &&
1941 !mem_cgroup_is_root(memcg));
1942
1943 return nr_reclaimed;
1944}
1945
1946static void high_work_func(struct work_struct *work)
1947{
1948 struct mem_cgroup *memcg;
1949
1950 memcg = container_of(work, struct mem_cgroup, high_work);
1951 reclaim_high(memcg, MEMCG_CHARGE_BATCH, GFP_KERNEL);
1952}
1953
1954/*
1955 * Clamp the maximum sleep time per allocation batch to 2 seconds. This is
1956 * enough to still cause a significant slowdown in most cases, while still
1957 * allowing diagnostics and tracing to proceed without becoming stuck.
1958 */
1959#define MEMCG_MAX_HIGH_DELAY_JIFFIES (2UL*HZ)
1960
1961/*
1962 * When calculating the delay, we use these either side of the exponentiation to
1963 * maintain precision and scale to a reasonable number of jiffies (see the table
1964 * below.
1965 *
1966 * - MEMCG_DELAY_PRECISION_SHIFT: Extra precision bits while translating the
1967 * overage ratio to a delay.
1968 * - MEMCG_DELAY_SCALING_SHIFT: The number of bits to scale down the
1969 * proposed penalty in order to reduce to a reasonable number of jiffies, and
1970 * to produce a reasonable delay curve.
1971 *
1972 * MEMCG_DELAY_SCALING_SHIFT just happens to be a number that produces a
1973 * reasonable delay curve compared to precision-adjusted overage, not
1974 * penalising heavily at first, but still making sure that growth beyond the
1975 * limit penalises misbehaviour cgroups by slowing them down exponentially. For
1976 * example, with a high of 100 megabytes:
1977 *
1978 * +-------+------------------------+
1979 * | usage | time to allocate in ms |
1980 * +-------+------------------------+
1981 * | 100M | 0 |
1982 * | 101M | 6 |
1983 * | 102M | 25 |
1984 * | 103M | 57 |
1985 * | 104M | 102 |
1986 * | 105M | 159 |
1987 * | 106M | 230 |
1988 * | 107M | 313 |
1989 * | 108M | 409 |
1990 * | 109M | 518 |
1991 * | 110M | 639 |
1992 * | 111M | 774 |
1993 * | 112M | 921 |
1994 * | 113M | 1081 |
1995 * | 114M | 1254 |
1996 * | 115M | 1439 |
1997 * | 116M | 1638 |
1998 * | 117M | 1849 |
1999 * | 118M | 2000 |
2000 * | 119M | 2000 |
2001 * | 120M | 2000 |
2002 * +-------+------------------------+
2003 */
2004 #define MEMCG_DELAY_PRECISION_SHIFT 20
2005 #define MEMCG_DELAY_SCALING_SHIFT 14
2006
2007static u64 calculate_overage(unsigned long usage, unsigned long high)
2008{
2009 u64 overage;
2010
2011 if (usage <= high)
2012 return 0;
2013
2014 /*
2015 * Prevent division by 0 in overage calculation by acting as if
2016 * it was a threshold of 1 page
2017 */
2018 high = max(high, 1UL);
2019
2020 overage = usage - high;
2021 overage <<= MEMCG_DELAY_PRECISION_SHIFT;
2022 return div64_u64(overage, high);
2023}
2024
2025static u64 mem_find_max_overage(struct mem_cgroup *memcg)
2026{
2027 u64 overage, max_overage = 0;
2028
2029 do {
2030 overage = calculate_overage(page_counter_read(&memcg->memory),
2031 READ_ONCE(memcg->memory.high));
2032 max_overage = max(overage, max_overage);
2033 } while ((memcg = parent_mem_cgroup(memcg)) &&
2034 !mem_cgroup_is_root(memcg));
2035
2036 return max_overage;
2037}
2038
2039static u64 swap_find_max_overage(struct mem_cgroup *memcg)
2040{
2041 u64 overage, max_overage = 0;
2042
2043 do {
2044 overage = calculate_overage(page_counter_read(&memcg->swap),
2045 READ_ONCE(memcg->swap.high));
2046 if (overage)
2047 memcg_memory_event(memcg, MEMCG_SWAP_HIGH);
2048 max_overage = max(overage, max_overage);
2049 } while ((memcg = parent_mem_cgroup(memcg)) &&
2050 !mem_cgroup_is_root(memcg));
2051
2052 return max_overage;
2053}
2054
2055/*
2056 * Get the number of jiffies that we should penalise a mischievous cgroup which
2057 * is exceeding its memory.high by checking both it and its ancestors.
2058 */
2059static unsigned long calculate_high_delay(struct mem_cgroup *memcg,
2060 unsigned int nr_pages,
2061 u64 max_overage)
2062{
2063 unsigned long penalty_jiffies;
2064
2065 if (!max_overage)
2066 return 0;
2067
2068 /*
2069 * We use overage compared to memory.high to calculate the number of
2070 * jiffies to sleep (penalty_jiffies). Ideally this value should be
2071 * fairly lenient on small overages, and increasingly harsh when the
2072 * memcg in question makes it clear that it has no intention of stopping
2073 * its crazy behaviour, so we exponentially increase the delay based on
2074 * overage amount.
2075 */
2076 penalty_jiffies = max_overage * max_overage * HZ;
2077 penalty_jiffies >>= MEMCG_DELAY_PRECISION_SHIFT;
2078 penalty_jiffies >>= MEMCG_DELAY_SCALING_SHIFT;
2079
2080 /*
2081 * Factor in the task's own contribution to the overage, such that four
2082 * N-sized allocations are throttled approximately the same as one
2083 * 4N-sized allocation.
2084 *
2085 * MEMCG_CHARGE_BATCH pages is nominal, so work out how much smaller or
2086 * larger the current charge patch is than that.
2087 */
2088 return penalty_jiffies * nr_pages / MEMCG_CHARGE_BATCH;
2089}
2090
2091/*
2092 * Reclaims memory over the high limit. Called directly from
2093 * try_charge() (context permitting), as well as from the userland
2094 * return path where reclaim is always able to block.
2095 */
2096void mem_cgroup_handle_over_high(gfp_t gfp_mask)
2097{
2098 unsigned long penalty_jiffies;
2099 unsigned long pflags;
2100 unsigned long nr_reclaimed;
2101 unsigned int nr_pages = current->memcg_nr_pages_over_high;
2102 int nr_retries = MAX_RECLAIM_RETRIES;
2103 struct mem_cgroup *memcg;
2104 bool in_retry = false;
2105
2106 if (likely(!nr_pages))
2107 return;
2108
2109 memcg = get_mem_cgroup_from_mm(current->mm);
2110 current->memcg_nr_pages_over_high = 0;
2111
2112retry_reclaim:
2113 /*
2114 * Bail if the task is already exiting. Unlike memory.max,
2115 * memory.high enforcement isn't as strict, and there is no
2116 * OOM killer involved, which means the excess could already
2117 * be much bigger (and still growing) than it could for
2118 * memory.max; the dying task could get stuck in fruitless
2119 * reclaim for a long time, which isn't desirable.
2120 */
2121 if (task_is_dying())
2122 goto out;
2123
2124 /*
2125 * The allocating task should reclaim at least the batch size, but for
2126 * subsequent retries we only want to do what's necessary to prevent oom
2127 * or breaching resource isolation.
2128 *
2129 * This is distinct from memory.max or page allocator behaviour because
2130 * memory.high is currently batched, whereas memory.max and the page
2131 * allocator run every time an allocation is made.
2132 */
2133 nr_reclaimed = reclaim_high(memcg,
2134 in_retry ? SWAP_CLUSTER_MAX : nr_pages,
2135 gfp_mask);
2136
2137 /*
2138 * memory.high is breached and reclaim is unable to keep up. Throttle
2139 * allocators proactively to slow down excessive growth.
2140 */
2141 penalty_jiffies = calculate_high_delay(memcg, nr_pages,
2142 mem_find_max_overage(memcg));
2143
2144 penalty_jiffies += calculate_high_delay(memcg, nr_pages,
2145 swap_find_max_overage(memcg));
2146
2147 /*
2148 * Clamp the max delay per usermode return so as to still keep the
2149 * application moving forwards and also permit diagnostics, albeit
2150 * extremely slowly.
2151 */
2152 penalty_jiffies = min(penalty_jiffies, MEMCG_MAX_HIGH_DELAY_JIFFIES);
2153
2154 /*
2155 * Don't sleep if the amount of jiffies this memcg owes us is so low
2156 * that it's not even worth doing, in an attempt to be nice to those who
2157 * go only a small amount over their memory.high value and maybe haven't
2158 * been aggressively reclaimed enough yet.
2159 */
2160 if (penalty_jiffies <= HZ / 100)
2161 goto out;
2162
2163 /*
2164 * If reclaim is making forward progress but we're still over
2165 * memory.high, we want to encourage that rather than doing allocator
2166 * throttling.
2167 */
2168 if (nr_reclaimed || nr_retries--) {
2169 in_retry = true;
2170 goto retry_reclaim;
2171 }
2172
2173 /*
2174 * Reclaim didn't manage to push usage below the limit, slow
2175 * this allocating task down.
2176 *
2177 * If we exit early, we're guaranteed to die (since
2178 * schedule_timeout_killable sets TASK_KILLABLE). This means we don't
2179 * need to account for any ill-begotten jiffies to pay them off later.
2180 */
2181 psi_memstall_enter(&pflags);
2182 schedule_timeout_killable(penalty_jiffies);
2183 psi_memstall_leave(&pflags);
2184
2185out:
2186 css_put(&memcg->css);
2187}
2188
2189int try_charge_memcg(struct mem_cgroup *memcg, gfp_t gfp_mask,
2190 unsigned int nr_pages)
2191{
2192 unsigned int batch = max(MEMCG_CHARGE_BATCH, nr_pages);
2193 int nr_retries = MAX_RECLAIM_RETRIES;
2194 struct mem_cgroup *mem_over_limit;
2195 struct page_counter *counter;
2196 unsigned long nr_reclaimed;
2197 bool passed_oom = false;
2198 unsigned int reclaim_options = MEMCG_RECLAIM_MAY_SWAP;
2199 bool drained = false;
2200 bool raised_max_event = false;
2201 unsigned long pflags;
2202
2203retry:
2204 if (consume_stock(memcg, nr_pages))
2205 return 0;
2206
2207 if (!do_memsw_account() ||
2208 page_counter_try_charge(&memcg->memsw, batch, &counter)) {
2209 if (page_counter_try_charge(&memcg->memory, batch, &counter))
2210 goto done_restock;
2211 if (do_memsw_account())
2212 page_counter_uncharge(&memcg->memsw, batch);
2213 mem_over_limit = mem_cgroup_from_counter(counter, memory);
2214 } else {
2215 mem_over_limit = mem_cgroup_from_counter(counter, memsw);
2216 reclaim_options &= ~MEMCG_RECLAIM_MAY_SWAP;
2217 }
2218
2219 if (batch > nr_pages) {
2220 batch = nr_pages;
2221 goto retry;
2222 }
2223
2224 /*
2225 * Prevent unbounded recursion when reclaim operations need to
2226 * allocate memory. This might exceed the limits temporarily,
2227 * but we prefer facilitating memory reclaim and getting back
2228 * under the limit over triggering OOM kills in these cases.
2229 */
2230 if (unlikely(current->flags & PF_MEMALLOC))
2231 goto force;
2232
2233 if (unlikely(task_in_memcg_oom(current)))
2234 goto nomem;
2235
2236 if (!gfpflags_allow_blocking(gfp_mask))
2237 goto nomem;
2238
2239 memcg_memory_event(mem_over_limit, MEMCG_MAX);
2240 raised_max_event = true;
2241
2242 psi_memstall_enter(&pflags);
2243 nr_reclaimed = try_to_free_mem_cgroup_pages(mem_over_limit, nr_pages,
2244 gfp_mask, reclaim_options, NULL);
2245 psi_memstall_leave(&pflags);
2246
2247 if (mem_cgroup_margin(mem_over_limit) >= nr_pages)
2248 goto retry;
2249
2250 if (!drained) {
2251 drain_all_stock(mem_over_limit);
2252 drained = true;
2253 goto retry;
2254 }
2255
2256 if (gfp_mask & __GFP_NORETRY)
2257 goto nomem;
2258 /*
2259 * Even though the limit is exceeded at this point, reclaim
2260 * may have been able to free some pages. Retry the charge
2261 * before killing the task.
2262 *
2263 * Only for regular pages, though: huge pages are rather
2264 * unlikely to succeed so close to the limit, and we fall back
2265 * to regular pages anyway in case of failure.
2266 */
2267 if (nr_reclaimed && nr_pages <= (1 << PAGE_ALLOC_COSTLY_ORDER))
2268 goto retry;
2269
2270 if (nr_retries--)
2271 goto retry;
2272
2273 if (gfp_mask & __GFP_RETRY_MAYFAIL)
2274 goto nomem;
2275
2276 /* Avoid endless loop for tasks bypassed by the oom killer */
2277 if (passed_oom && task_is_dying())
2278 goto nomem;
2279
2280 /*
2281 * keep retrying as long as the memcg oom killer is able to make
2282 * a forward progress or bypass the charge if the oom killer
2283 * couldn't make any progress.
2284 */
2285 if (mem_cgroup_oom(mem_over_limit, gfp_mask,
2286 get_order(nr_pages * PAGE_SIZE))) {
2287 passed_oom = true;
2288 nr_retries = MAX_RECLAIM_RETRIES;
2289 goto retry;
2290 }
2291nomem:
2292 /*
2293 * Memcg doesn't have a dedicated reserve for atomic
2294 * allocations. But like the global atomic pool, we need to
2295 * put the burden of reclaim on regular allocation requests
2296 * and let these go through as privileged allocations.
2297 */
2298 if (!(gfp_mask & (__GFP_NOFAIL | __GFP_HIGH)))
2299 return -ENOMEM;
2300force:
2301 /*
2302 * If the allocation has to be enforced, don't forget to raise
2303 * a MEMCG_MAX event.
2304 */
2305 if (!raised_max_event)
2306 memcg_memory_event(mem_over_limit, MEMCG_MAX);
2307
2308 /*
2309 * The allocation either can't fail or will lead to more memory
2310 * being freed very soon. Allow memory usage go over the limit
2311 * temporarily by force charging it.
2312 */
2313 page_counter_charge(&memcg->memory, nr_pages);
2314 if (do_memsw_account())
2315 page_counter_charge(&memcg->memsw, nr_pages);
2316
2317 return 0;
2318
2319done_restock:
2320 if (batch > nr_pages)
2321 refill_stock(memcg, batch - nr_pages);
2322
2323 /*
2324 * If the hierarchy is above the normal consumption range, schedule
2325 * reclaim on returning to userland. We can perform reclaim here
2326 * if __GFP_RECLAIM but let's always punt for simplicity and so that
2327 * GFP_KERNEL can consistently be used during reclaim. @memcg is
2328 * not recorded as it most likely matches current's and won't
2329 * change in the meantime. As high limit is checked again before
2330 * reclaim, the cost of mismatch is negligible.
2331 */
2332 do {
2333 bool mem_high, swap_high;
2334
2335 mem_high = page_counter_read(&memcg->memory) >
2336 READ_ONCE(memcg->memory.high);
2337 swap_high = page_counter_read(&memcg->swap) >
2338 READ_ONCE(memcg->swap.high);
2339
2340 /* Don't bother a random interrupted task */
2341 if (!in_task()) {
2342 if (mem_high) {
2343 schedule_work(&memcg->high_work);
2344 break;
2345 }
2346 continue;
2347 }
2348
2349 if (mem_high || swap_high) {
2350 /*
2351 * The allocating tasks in this cgroup will need to do
2352 * reclaim or be throttled to prevent further growth
2353 * of the memory or swap footprints.
2354 *
2355 * Target some best-effort fairness between the tasks,
2356 * and distribute reclaim work and delay penalties
2357 * based on how much each task is actually allocating.
2358 */
2359 current->memcg_nr_pages_over_high += batch;
2360 set_notify_resume(current);
2361 break;
2362 }
2363 } while ((memcg = parent_mem_cgroup(memcg)));
2364
2365 /*
2366 * Reclaim is set up above to be called from the userland
2367 * return path. But also attempt synchronous reclaim to avoid
2368 * excessive overrun while the task is still inside the
2369 * kernel. If this is successful, the return path will see it
2370 * when it rechecks the overage and simply bail out.
2371 */
2372 if (current->memcg_nr_pages_over_high > MEMCG_CHARGE_BATCH &&
2373 !(current->flags & PF_MEMALLOC) &&
2374 gfpflags_allow_blocking(gfp_mask))
2375 mem_cgroup_handle_over_high(gfp_mask);
2376 return 0;
2377}
2378
2379/**
2380 * mem_cgroup_cancel_charge() - cancel an uncommitted try_charge() call.
2381 * @memcg: memcg previously charged.
2382 * @nr_pages: number of pages previously charged.
2383 */
2384void mem_cgroup_cancel_charge(struct mem_cgroup *memcg, unsigned int nr_pages)
2385{
2386 if (mem_cgroup_is_root(memcg))
2387 return;
2388
2389 page_counter_uncharge(&memcg->memory, nr_pages);
2390 if (do_memsw_account())
2391 page_counter_uncharge(&memcg->memsw, nr_pages);
2392}
2393
2394static void commit_charge(struct folio *folio, struct mem_cgroup *memcg)
2395{
2396 VM_BUG_ON_FOLIO(folio_memcg_charged(folio), folio);
2397 /*
2398 * Any of the following ensures page's memcg stability:
2399 *
2400 * - the page lock
2401 * - LRU isolation
2402 * - exclusive reference
2403 */
2404 folio->memcg_data = (unsigned long)memcg;
2405}
2406
2407/**
2408 * mem_cgroup_commit_charge - commit a previously successful try_charge().
2409 * @folio: folio to commit the charge to.
2410 * @memcg: memcg previously charged.
2411 */
2412void mem_cgroup_commit_charge(struct folio *folio, struct mem_cgroup *memcg)
2413{
2414 css_get(&memcg->css);
2415 commit_charge(folio, memcg);
2416 memcg1_commit_charge(folio, memcg);
2417}
2418
2419static inline void __mod_objcg_mlstate(struct obj_cgroup *objcg,
2420 struct pglist_data *pgdat,
2421 enum node_stat_item idx, int nr)
2422{
2423 struct mem_cgroup *memcg;
2424 struct lruvec *lruvec;
2425
2426 rcu_read_lock();
2427 memcg = obj_cgroup_memcg(objcg);
2428 lruvec = mem_cgroup_lruvec(memcg, pgdat);
2429 __mod_memcg_lruvec_state(lruvec, idx, nr);
2430 rcu_read_unlock();
2431}
2432
2433static __always_inline
2434struct mem_cgroup *mem_cgroup_from_obj_folio(struct folio *folio, void *p)
2435{
2436 /*
2437 * Slab objects are accounted individually, not per-page.
2438 * Memcg membership data for each individual object is saved in
2439 * slab->obj_exts.
2440 */
2441 if (folio_test_slab(folio)) {
2442 struct slabobj_ext *obj_exts;
2443 struct slab *slab;
2444 unsigned int off;
2445
2446 slab = folio_slab(folio);
2447 obj_exts = slab_obj_exts(slab);
2448 if (!obj_exts)
2449 return NULL;
2450
2451 off = obj_to_index(slab->slab_cache, slab, p);
2452 if (obj_exts[off].objcg)
2453 return obj_cgroup_memcg(obj_exts[off].objcg);
2454
2455 return NULL;
2456 }
2457
2458 /*
2459 * folio_memcg_check() is used here, because in theory we can encounter
2460 * a folio where the slab flag has been cleared already, but
2461 * slab->obj_exts has not been freed yet
2462 * folio_memcg_check() will guarantee that a proper memory
2463 * cgroup pointer or NULL will be returned.
2464 */
2465 return folio_memcg_check(folio);
2466}
2467
2468/*
2469 * Returns a pointer to the memory cgroup to which the kernel object is charged.
2470 * It is not suitable for objects allocated using vmalloc().
2471 *
2472 * A passed kernel object must be a slab object or a generic kernel page.
2473 *
2474 * The caller must ensure the memcg lifetime, e.g. by taking rcu_read_lock(),
2475 * cgroup_mutex, etc.
2476 */
2477struct mem_cgroup *mem_cgroup_from_slab_obj(void *p)
2478{
2479 if (mem_cgroup_disabled())
2480 return NULL;
2481
2482 return mem_cgroup_from_obj_folio(virt_to_folio(p), p);
2483}
2484
2485static struct obj_cgroup *__get_obj_cgroup_from_memcg(struct mem_cgroup *memcg)
2486{
2487 struct obj_cgroup *objcg = NULL;
2488
2489 for (; !mem_cgroup_is_root(memcg); memcg = parent_mem_cgroup(memcg)) {
2490 objcg = rcu_dereference(memcg->objcg);
2491 if (likely(objcg && obj_cgroup_tryget(objcg)))
2492 break;
2493 objcg = NULL;
2494 }
2495 return objcg;
2496}
2497
2498static struct obj_cgroup *current_objcg_update(void)
2499{
2500 struct mem_cgroup *memcg;
2501 struct obj_cgroup *old, *objcg = NULL;
2502
2503 do {
2504 /* Atomically drop the update bit. */
2505 old = xchg(¤t->objcg, NULL);
2506 if (old) {
2507 old = (struct obj_cgroup *)
2508 ((unsigned long)old & ~CURRENT_OBJCG_UPDATE_FLAG);
2509 obj_cgroup_put(old);
2510
2511 old = NULL;
2512 }
2513
2514 /* If new objcg is NULL, no reason for the second atomic update. */
2515 if (!current->mm || (current->flags & PF_KTHREAD))
2516 return NULL;
2517
2518 /*
2519 * Release the objcg pointer from the previous iteration,
2520 * if try_cmpxcg() below fails.
2521 */
2522 if (unlikely(objcg)) {
2523 obj_cgroup_put(objcg);
2524 objcg = NULL;
2525 }
2526
2527 /*
2528 * Obtain the new objcg pointer. The current task can be
2529 * asynchronously moved to another memcg and the previous
2530 * memcg can be offlined. So let's get the memcg pointer
2531 * and try get a reference to objcg under a rcu read lock.
2532 */
2533
2534 rcu_read_lock();
2535 memcg = mem_cgroup_from_task(current);
2536 objcg = __get_obj_cgroup_from_memcg(memcg);
2537 rcu_read_unlock();
2538
2539 /*
2540 * Try set up a new objcg pointer atomically. If it
2541 * fails, it means the update flag was set concurrently, so
2542 * the whole procedure should be repeated.
2543 */
2544 } while (!try_cmpxchg(¤t->objcg, &old, objcg));
2545
2546 return objcg;
2547}
2548
2549__always_inline struct obj_cgroup *current_obj_cgroup(void)
2550{
2551 struct mem_cgroup *memcg;
2552 struct obj_cgroup *objcg;
2553
2554 if (in_task()) {
2555 memcg = current->active_memcg;
2556 if (unlikely(memcg))
2557 goto from_memcg;
2558
2559 objcg = READ_ONCE(current->objcg);
2560 if (unlikely((unsigned long)objcg & CURRENT_OBJCG_UPDATE_FLAG))
2561 objcg = current_objcg_update();
2562 /*
2563 * Objcg reference is kept by the task, so it's safe
2564 * to use the objcg by the current task.
2565 */
2566 return objcg;
2567 }
2568
2569 memcg = this_cpu_read(int_active_memcg);
2570 if (unlikely(memcg))
2571 goto from_memcg;
2572
2573 return NULL;
2574
2575from_memcg:
2576 objcg = NULL;
2577 for (; !mem_cgroup_is_root(memcg); memcg = parent_mem_cgroup(memcg)) {
2578 /*
2579 * Memcg pointer is protected by scope (see set_active_memcg())
2580 * and is pinning the corresponding objcg, so objcg can't go
2581 * away and can be used within the scope without any additional
2582 * protection.
2583 */
2584 objcg = rcu_dereference_check(memcg->objcg, 1);
2585 if (likely(objcg))
2586 break;
2587 }
2588
2589 return objcg;
2590}
2591
2592struct obj_cgroup *get_obj_cgroup_from_folio(struct folio *folio)
2593{
2594 struct obj_cgroup *objcg;
2595
2596 if (!memcg_kmem_online())
2597 return NULL;
2598
2599 if (folio_memcg_kmem(folio)) {
2600 objcg = __folio_objcg(folio);
2601 obj_cgroup_get(objcg);
2602 } else {
2603 struct mem_cgroup *memcg;
2604
2605 rcu_read_lock();
2606 memcg = __folio_memcg(folio);
2607 if (memcg)
2608 objcg = __get_obj_cgroup_from_memcg(memcg);
2609 else
2610 objcg = NULL;
2611 rcu_read_unlock();
2612 }
2613 return objcg;
2614}
2615
2616/*
2617 * obj_cgroup_uncharge_pages: uncharge a number of kernel pages from a objcg
2618 * @objcg: object cgroup to uncharge
2619 * @nr_pages: number of pages to uncharge
2620 */
2621static void obj_cgroup_uncharge_pages(struct obj_cgroup *objcg,
2622 unsigned int nr_pages)
2623{
2624 struct mem_cgroup *memcg;
2625
2626 memcg = get_mem_cgroup_from_objcg(objcg);
2627
2628 mod_memcg_state(memcg, MEMCG_KMEM, -nr_pages);
2629 memcg1_account_kmem(memcg, -nr_pages);
2630 refill_stock(memcg, nr_pages);
2631
2632 css_put(&memcg->css);
2633}
2634
2635/*
2636 * obj_cgroup_charge_pages: charge a number of kernel pages to a objcg
2637 * @objcg: object cgroup to charge
2638 * @gfp: reclaim mode
2639 * @nr_pages: number of pages to charge
2640 *
2641 * Returns 0 on success, an error code on failure.
2642 */
2643static int obj_cgroup_charge_pages(struct obj_cgroup *objcg, gfp_t gfp,
2644 unsigned int nr_pages)
2645{
2646 struct mem_cgroup *memcg;
2647 int ret;
2648
2649 memcg = get_mem_cgroup_from_objcg(objcg);
2650
2651 ret = try_charge_memcg(memcg, gfp, nr_pages);
2652 if (ret)
2653 goto out;
2654
2655 mod_memcg_state(memcg, MEMCG_KMEM, nr_pages);
2656 memcg1_account_kmem(memcg, nr_pages);
2657out:
2658 css_put(&memcg->css);
2659
2660 return ret;
2661}
2662
2663/**
2664 * __memcg_kmem_charge_page: charge a kmem page to the current memory cgroup
2665 * @page: page to charge
2666 * @gfp: reclaim mode
2667 * @order: allocation order
2668 *
2669 * Returns 0 on success, an error code on failure.
2670 */
2671int __memcg_kmem_charge_page(struct page *page, gfp_t gfp, int order)
2672{
2673 struct obj_cgroup *objcg;
2674 int ret = 0;
2675
2676 objcg = current_obj_cgroup();
2677 if (objcg) {
2678 ret = obj_cgroup_charge_pages(objcg, gfp, 1 << order);
2679 if (!ret) {
2680 obj_cgroup_get(objcg);
2681 page->memcg_data = (unsigned long)objcg |
2682 MEMCG_DATA_KMEM;
2683 return 0;
2684 }
2685 }
2686 return ret;
2687}
2688
2689/**
2690 * __memcg_kmem_uncharge_page: uncharge a kmem page
2691 * @page: page to uncharge
2692 * @order: allocation order
2693 */
2694void __memcg_kmem_uncharge_page(struct page *page, int order)
2695{
2696 struct folio *folio = page_folio(page);
2697 struct obj_cgroup *objcg;
2698 unsigned int nr_pages = 1 << order;
2699
2700 if (!folio_memcg_kmem(folio))
2701 return;
2702
2703 objcg = __folio_objcg(folio);
2704 obj_cgroup_uncharge_pages(objcg, nr_pages);
2705 folio->memcg_data = 0;
2706 obj_cgroup_put(objcg);
2707}
2708
2709static void mod_objcg_state(struct obj_cgroup *objcg, struct pglist_data *pgdat,
2710 enum node_stat_item idx, int nr)
2711{
2712 struct memcg_stock_pcp *stock;
2713 struct obj_cgroup *old = NULL;
2714 unsigned long flags;
2715 int *bytes;
2716
2717 local_lock_irqsave(&memcg_stock.stock_lock, flags);
2718 stock = this_cpu_ptr(&memcg_stock);
2719
2720 /*
2721 * Save vmstat data in stock and skip vmstat array update unless
2722 * accumulating over a page of vmstat data or when pgdat or idx
2723 * changes.
2724 */
2725 if (READ_ONCE(stock->cached_objcg) != objcg) {
2726 old = drain_obj_stock(stock);
2727 obj_cgroup_get(objcg);
2728 stock->nr_bytes = atomic_read(&objcg->nr_charged_bytes)
2729 ? atomic_xchg(&objcg->nr_charged_bytes, 0) : 0;
2730 WRITE_ONCE(stock->cached_objcg, objcg);
2731 stock->cached_pgdat = pgdat;
2732 } else if (stock->cached_pgdat != pgdat) {
2733 /* Flush the existing cached vmstat data */
2734 struct pglist_data *oldpg = stock->cached_pgdat;
2735
2736 if (stock->nr_slab_reclaimable_b) {
2737 __mod_objcg_mlstate(objcg, oldpg, NR_SLAB_RECLAIMABLE_B,
2738 stock->nr_slab_reclaimable_b);
2739 stock->nr_slab_reclaimable_b = 0;
2740 }
2741 if (stock->nr_slab_unreclaimable_b) {
2742 __mod_objcg_mlstate(objcg, oldpg, NR_SLAB_UNRECLAIMABLE_B,
2743 stock->nr_slab_unreclaimable_b);
2744 stock->nr_slab_unreclaimable_b = 0;
2745 }
2746 stock->cached_pgdat = pgdat;
2747 }
2748
2749 bytes = (idx == NR_SLAB_RECLAIMABLE_B) ? &stock->nr_slab_reclaimable_b
2750 : &stock->nr_slab_unreclaimable_b;
2751 /*
2752 * Even for large object >= PAGE_SIZE, the vmstat data will still be
2753 * cached locally at least once before pushing it out.
2754 */
2755 if (!*bytes) {
2756 *bytes = nr;
2757 nr = 0;
2758 } else {
2759 *bytes += nr;
2760 if (abs(*bytes) > PAGE_SIZE) {
2761 nr = *bytes;
2762 *bytes = 0;
2763 } else {
2764 nr = 0;
2765 }
2766 }
2767 if (nr)
2768 __mod_objcg_mlstate(objcg, pgdat, idx, nr);
2769
2770 local_unlock_irqrestore(&memcg_stock.stock_lock, flags);
2771 obj_cgroup_put(old);
2772}
2773
2774static bool consume_obj_stock(struct obj_cgroup *objcg, unsigned int nr_bytes)
2775{
2776 struct memcg_stock_pcp *stock;
2777 unsigned long flags;
2778 bool ret = false;
2779
2780 local_lock_irqsave(&memcg_stock.stock_lock, flags);
2781
2782 stock = this_cpu_ptr(&memcg_stock);
2783 if (objcg == READ_ONCE(stock->cached_objcg) && stock->nr_bytes >= nr_bytes) {
2784 stock->nr_bytes -= nr_bytes;
2785 ret = true;
2786 }
2787
2788 local_unlock_irqrestore(&memcg_stock.stock_lock, flags);
2789
2790 return ret;
2791}
2792
2793static struct obj_cgroup *drain_obj_stock(struct memcg_stock_pcp *stock)
2794{
2795 struct obj_cgroup *old = READ_ONCE(stock->cached_objcg);
2796
2797 if (!old)
2798 return NULL;
2799
2800 if (stock->nr_bytes) {
2801 unsigned int nr_pages = stock->nr_bytes >> PAGE_SHIFT;
2802 unsigned int nr_bytes = stock->nr_bytes & (PAGE_SIZE - 1);
2803
2804 if (nr_pages) {
2805 struct mem_cgroup *memcg;
2806
2807 memcg = get_mem_cgroup_from_objcg(old);
2808
2809 mod_memcg_state(memcg, MEMCG_KMEM, -nr_pages);
2810 memcg1_account_kmem(memcg, -nr_pages);
2811 __refill_stock(memcg, nr_pages);
2812
2813 css_put(&memcg->css);
2814 }
2815
2816 /*
2817 * The leftover is flushed to the centralized per-memcg value.
2818 * On the next attempt to refill obj stock it will be moved
2819 * to a per-cpu stock (probably, on an other CPU), see
2820 * refill_obj_stock().
2821 *
2822 * How often it's flushed is a trade-off between the memory
2823 * limit enforcement accuracy and potential CPU contention,
2824 * so it might be changed in the future.
2825 */
2826 atomic_add(nr_bytes, &old->nr_charged_bytes);
2827 stock->nr_bytes = 0;
2828 }
2829
2830 /*
2831 * Flush the vmstat data in current stock
2832 */
2833 if (stock->nr_slab_reclaimable_b || stock->nr_slab_unreclaimable_b) {
2834 if (stock->nr_slab_reclaimable_b) {
2835 __mod_objcg_mlstate(old, stock->cached_pgdat,
2836 NR_SLAB_RECLAIMABLE_B,
2837 stock->nr_slab_reclaimable_b);
2838 stock->nr_slab_reclaimable_b = 0;
2839 }
2840 if (stock->nr_slab_unreclaimable_b) {
2841 __mod_objcg_mlstate(old, stock->cached_pgdat,
2842 NR_SLAB_UNRECLAIMABLE_B,
2843 stock->nr_slab_unreclaimable_b);
2844 stock->nr_slab_unreclaimable_b = 0;
2845 }
2846 stock->cached_pgdat = NULL;
2847 }
2848
2849 WRITE_ONCE(stock->cached_objcg, NULL);
2850 /*
2851 * The `old' objects needs to be released by the caller via
2852 * obj_cgroup_put() outside of memcg_stock_pcp::stock_lock.
2853 */
2854 return old;
2855}
2856
2857static bool obj_stock_flush_required(struct memcg_stock_pcp *stock,
2858 struct mem_cgroup *root_memcg)
2859{
2860 struct obj_cgroup *objcg = READ_ONCE(stock->cached_objcg);
2861 struct mem_cgroup *memcg;
2862
2863 if (objcg) {
2864 memcg = obj_cgroup_memcg(objcg);
2865 if (memcg && mem_cgroup_is_descendant(memcg, root_memcg))
2866 return true;
2867 }
2868
2869 return false;
2870}
2871
2872static void refill_obj_stock(struct obj_cgroup *objcg, unsigned int nr_bytes,
2873 bool allow_uncharge)
2874{
2875 struct memcg_stock_pcp *stock;
2876 struct obj_cgroup *old = NULL;
2877 unsigned long flags;
2878 unsigned int nr_pages = 0;
2879
2880 local_lock_irqsave(&memcg_stock.stock_lock, flags);
2881
2882 stock = this_cpu_ptr(&memcg_stock);
2883 if (READ_ONCE(stock->cached_objcg) != objcg) { /* reset if necessary */
2884 old = drain_obj_stock(stock);
2885 obj_cgroup_get(objcg);
2886 WRITE_ONCE(stock->cached_objcg, objcg);
2887 stock->nr_bytes = atomic_read(&objcg->nr_charged_bytes)
2888 ? atomic_xchg(&objcg->nr_charged_bytes, 0) : 0;
2889 allow_uncharge = true; /* Allow uncharge when objcg changes */
2890 }
2891 stock->nr_bytes += nr_bytes;
2892
2893 if (allow_uncharge && (stock->nr_bytes > PAGE_SIZE)) {
2894 nr_pages = stock->nr_bytes >> PAGE_SHIFT;
2895 stock->nr_bytes &= (PAGE_SIZE - 1);
2896 }
2897
2898 local_unlock_irqrestore(&memcg_stock.stock_lock, flags);
2899 obj_cgroup_put(old);
2900
2901 if (nr_pages)
2902 obj_cgroup_uncharge_pages(objcg, nr_pages);
2903}
2904
2905int obj_cgroup_charge(struct obj_cgroup *objcg, gfp_t gfp, size_t size)
2906{
2907 unsigned int nr_pages, nr_bytes;
2908 int ret;
2909
2910 if (consume_obj_stock(objcg, size))
2911 return 0;
2912
2913 /*
2914 * In theory, objcg->nr_charged_bytes can have enough
2915 * pre-charged bytes to satisfy the allocation. However,
2916 * flushing objcg->nr_charged_bytes requires two atomic
2917 * operations, and objcg->nr_charged_bytes can't be big.
2918 * The shared objcg->nr_charged_bytes can also become a
2919 * performance bottleneck if all tasks of the same memcg are
2920 * trying to update it. So it's better to ignore it and try
2921 * grab some new pages. The stock's nr_bytes will be flushed to
2922 * objcg->nr_charged_bytes later on when objcg changes.
2923 *
2924 * The stock's nr_bytes may contain enough pre-charged bytes
2925 * to allow one less page from being charged, but we can't rely
2926 * on the pre-charged bytes not being changed outside of
2927 * consume_obj_stock() or refill_obj_stock(). So ignore those
2928 * pre-charged bytes as well when charging pages. To avoid a
2929 * page uncharge right after a page charge, we set the
2930 * allow_uncharge flag to false when calling refill_obj_stock()
2931 * to temporarily allow the pre-charged bytes to exceed the page
2932 * size limit. The maximum reachable value of the pre-charged
2933 * bytes is (sizeof(object) + PAGE_SIZE - 2) if there is no data
2934 * race.
2935 */
2936 nr_pages = size >> PAGE_SHIFT;
2937 nr_bytes = size & (PAGE_SIZE - 1);
2938
2939 if (nr_bytes)
2940 nr_pages += 1;
2941
2942 ret = obj_cgroup_charge_pages(objcg, gfp, nr_pages);
2943 if (!ret && nr_bytes)
2944 refill_obj_stock(objcg, PAGE_SIZE - nr_bytes, false);
2945
2946 return ret;
2947}
2948
2949void obj_cgroup_uncharge(struct obj_cgroup *objcg, size_t size)
2950{
2951 refill_obj_stock(objcg, size, true);
2952}
2953
2954static inline size_t obj_full_size(struct kmem_cache *s)
2955{
2956 /*
2957 * For each accounted object there is an extra space which is used
2958 * to store obj_cgroup membership. Charge it too.
2959 */
2960 return s->size + sizeof(struct obj_cgroup *);
2961}
2962
2963bool __memcg_slab_post_alloc_hook(struct kmem_cache *s, struct list_lru *lru,
2964 gfp_t flags, size_t size, void **p)
2965{
2966 struct obj_cgroup *objcg;
2967 struct slab *slab;
2968 unsigned long off;
2969 size_t i;
2970
2971 /*
2972 * The obtained objcg pointer is safe to use within the current scope,
2973 * defined by current task or set_active_memcg() pair.
2974 * obj_cgroup_get() is used to get a permanent reference.
2975 */
2976 objcg = current_obj_cgroup();
2977 if (!objcg)
2978 return true;
2979
2980 /*
2981 * slab_alloc_node() avoids the NULL check, so we might be called with a
2982 * single NULL object. kmem_cache_alloc_bulk() aborts if it can't fill
2983 * the whole requested size.
2984 * return success as there's nothing to free back
2985 */
2986 if (unlikely(*p == NULL))
2987 return true;
2988
2989 flags &= gfp_allowed_mask;
2990
2991 if (lru) {
2992 int ret;
2993 struct mem_cgroup *memcg;
2994
2995 memcg = get_mem_cgroup_from_objcg(objcg);
2996 ret = memcg_list_lru_alloc(memcg, lru, flags);
2997 css_put(&memcg->css);
2998
2999 if (ret)
3000 return false;
3001 }
3002
3003 if (obj_cgroup_charge(objcg, flags, size * obj_full_size(s)))
3004 return false;
3005
3006 for (i = 0; i < size; i++) {
3007 slab = virt_to_slab(p[i]);
3008
3009 if (!slab_obj_exts(slab) &&
3010 alloc_slab_obj_exts(slab, s, flags, false)) {
3011 obj_cgroup_uncharge(objcg, obj_full_size(s));
3012 continue;
3013 }
3014
3015 off = obj_to_index(s, slab, p[i]);
3016 obj_cgroup_get(objcg);
3017 slab_obj_exts(slab)[off].objcg = objcg;
3018 mod_objcg_state(objcg, slab_pgdat(slab),
3019 cache_vmstat_idx(s), obj_full_size(s));
3020 }
3021
3022 return true;
3023}
3024
3025void __memcg_slab_free_hook(struct kmem_cache *s, struct slab *slab,
3026 void **p, int objects, struct slabobj_ext *obj_exts)
3027{
3028 for (int i = 0; i < objects; i++) {
3029 struct obj_cgroup *objcg;
3030 unsigned int off;
3031
3032 off = obj_to_index(s, slab, p[i]);
3033 objcg = obj_exts[off].objcg;
3034 if (!objcg)
3035 continue;
3036
3037 obj_exts[off].objcg = NULL;
3038 obj_cgroup_uncharge(objcg, obj_full_size(s));
3039 mod_objcg_state(objcg, slab_pgdat(slab), cache_vmstat_idx(s),
3040 -obj_full_size(s));
3041 obj_cgroup_put(objcg);
3042 }
3043}
3044
3045/*
3046 * Because folio_memcg(head) is not set on tails, set it now.
3047 */
3048void split_page_memcg(struct page *head, int old_order, int new_order)
3049{
3050 struct folio *folio = page_folio(head);
3051 int i;
3052 unsigned int old_nr = 1 << old_order;
3053 unsigned int new_nr = 1 << new_order;
3054
3055 if (mem_cgroup_disabled() || !folio_memcg_charged(folio))
3056 return;
3057
3058 for (i = new_nr; i < old_nr; i += new_nr)
3059 folio_page(folio, i)->memcg_data = folio->memcg_data;
3060
3061 if (folio_memcg_kmem(folio))
3062 obj_cgroup_get_many(__folio_objcg(folio), old_nr / new_nr - 1);
3063 else
3064 css_get_many(&folio_memcg(folio)->css, old_nr / new_nr - 1);
3065}
3066
3067unsigned long mem_cgroup_usage(struct mem_cgroup *memcg, bool swap)
3068{
3069 unsigned long val;
3070
3071 if (mem_cgroup_is_root(memcg)) {
3072 /*
3073 * Approximate root's usage from global state. This isn't
3074 * perfect, but the root usage was always an approximation.
3075 */
3076 val = global_node_page_state(NR_FILE_PAGES) +
3077 global_node_page_state(NR_ANON_MAPPED);
3078 if (swap)
3079 val += total_swap_pages - get_nr_swap_pages();
3080 } else {
3081 if (!swap)
3082 val = page_counter_read(&memcg->memory);
3083 else
3084 val = page_counter_read(&memcg->memsw);
3085 }
3086 return val;
3087}
3088
3089static int memcg_online_kmem(struct mem_cgroup *memcg)
3090{
3091 struct obj_cgroup *objcg;
3092
3093 if (mem_cgroup_kmem_disabled())
3094 return 0;
3095
3096 if (unlikely(mem_cgroup_is_root(memcg)))
3097 return 0;
3098
3099 objcg = obj_cgroup_alloc();
3100 if (!objcg)
3101 return -ENOMEM;
3102
3103 objcg->memcg = memcg;
3104 rcu_assign_pointer(memcg->objcg, objcg);
3105 obj_cgroup_get(objcg);
3106 memcg->orig_objcg = objcg;
3107
3108 static_branch_enable(&memcg_kmem_online_key);
3109
3110 memcg->kmemcg_id = memcg->id.id;
3111
3112 return 0;
3113}
3114
3115static void memcg_offline_kmem(struct mem_cgroup *memcg)
3116{
3117 struct mem_cgroup *parent;
3118
3119 if (mem_cgroup_kmem_disabled())
3120 return;
3121
3122 if (unlikely(mem_cgroup_is_root(memcg)))
3123 return;
3124
3125 parent = parent_mem_cgroup(memcg);
3126 if (!parent)
3127 parent = root_mem_cgroup;
3128
3129 memcg_reparent_list_lrus(memcg, parent);
3130
3131 /*
3132 * Objcg's reparenting must be after list_lru's, make sure list_lru
3133 * helpers won't use parent's list_lru until child is drained.
3134 */
3135 memcg_reparent_objcgs(memcg, parent);
3136}
3137
3138#ifdef CONFIG_CGROUP_WRITEBACK
3139
3140#include <trace/events/writeback.h>
3141
3142static int memcg_wb_domain_init(struct mem_cgroup *memcg, gfp_t gfp)
3143{
3144 return wb_domain_init(&memcg->cgwb_domain, gfp);
3145}
3146
3147static void memcg_wb_domain_exit(struct mem_cgroup *memcg)
3148{
3149 wb_domain_exit(&memcg->cgwb_domain);
3150}
3151
3152static void memcg_wb_domain_size_changed(struct mem_cgroup *memcg)
3153{
3154 wb_domain_size_changed(&memcg->cgwb_domain);
3155}
3156
3157struct wb_domain *mem_cgroup_wb_domain(struct bdi_writeback *wb)
3158{
3159 struct mem_cgroup *memcg = mem_cgroup_from_css(wb->memcg_css);
3160
3161 if (!memcg->css.parent)
3162 return NULL;
3163
3164 return &memcg->cgwb_domain;
3165}
3166
3167/**
3168 * mem_cgroup_wb_stats - retrieve writeback related stats from its memcg
3169 * @wb: bdi_writeback in question
3170 * @pfilepages: out parameter for number of file pages
3171 * @pheadroom: out parameter for number of allocatable pages according to memcg
3172 * @pdirty: out parameter for number of dirty pages
3173 * @pwriteback: out parameter for number of pages under writeback
3174 *
3175 * Determine the numbers of file, headroom, dirty, and writeback pages in
3176 * @wb's memcg. File, dirty and writeback are self-explanatory. Headroom
3177 * is a bit more involved.
3178 *
3179 * A memcg's headroom is "min(max, high) - used". In the hierarchy, the
3180 * headroom is calculated as the lowest headroom of itself and the
3181 * ancestors. Note that this doesn't consider the actual amount of
3182 * available memory in the system. The caller should further cap
3183 * *@pheadroom accordingly.
3184 */
3185void mem_cgroup_wb_stats(struct bdi_writeback *wb, unsigned long *pfilepages,
3186 unsigned long *pheadroom, unsigned long *pdirty,
3187 unsigned long *pwriteback)
3188{
3189 struct mem_cgroup *memcg = mem_cgroup_from_css(wb->memcg_css);
3190 struct mem_cgroup *parent;
3191
3192 mem_cgroup_flush_stats_ratelimited(memcg);
3193
3194 *pdirty = memcg_page_state(memcg, NR_FILE_DIRTY);
3195 *pwriteback = memcg_page_state(memcg, NR_WRITEBACK);
3196 *pfilepages = memcg_page_state(memcg, NR_INACTIVE_FILE) +
3197 memcg_page_state(memcg, NR_ACTIVE_FILE);
3198
3199 *pheadroom = PAGE_COUNTER_MAX;
3200 while ((parent = parent_mem_cgroup(memcg))) {
3201 unsigned long ceiling = min(READ_ONCE(memcg->memory.max),
3202 READ_ONCE(memcg->memory.high));
3203 unsigned long used = page_counter_read(&memcg->memory);
3204
3205 *pheadroom = min(*pheadroom, ceiling - min(ceiling, used));
3206 memcg = parent;
3207 }
3208}
3209
3210/*
3211 * Foreign dirty flushing
3212 *
3213 * There's an inherent mismatch between memcg and writeback. The former
3214 * tracks ownership per-page while the latter per-inode. This was a
3215 * deliberate design decision because honoring per-page ownership in the
3216 * writeback path is complicated, may lead to higher CPU and IO overheads
3217 * and deemed unnecessary given that write-sharing an inode across
3218 * different cgroups isn't a common use-case.
3219 *
3220 * Combined with inode majority-writer ownership switching, this works well
3221 * enough in most cases but there are some pathological cases. For
3222 * example, let's say there are two cgroups A and B which keep writing to
3223 * different but confined parts of the same inode. B owns the inode and
3224 * A's memory is limited far below B's. A's dirty ratio can rise enough to
3225 * trigger balance_dirty_pages() sleeps but B's can be low enough to avoid
3226 * triggering background writeback. A will be slowed down without a way to
3227 * make writeback of the dirty pages happen.
3228 *
3229 * Conditions like the above can lead to a cgroup getting repeatedly and
3230 * severely throttled after making some progress after each
3231 * dirty_expire_interval while the underlying IO device is almost
3232 * completely idle.
3233 *
3234 * Solving this problem completely requires matching the ownership tracking
3235 * granularities between memcg and writeback in either direction. However,
3236 * the more egregious behaviors can be avoided by simply remembering the
3237 * most recent foreign dirtying events and initiating remote flushes on
3238 * them when local writeback isn't enough to keep the memory clean enough.
3239 *
3240 * The following two functions implement such mechanism. When a foreign
3241 * page - a page whose memcg and writeback ownerships don't match - is
3242 * dirtied, mem_cgroup_track_foreign_dirty() records the inode owning
3243 * bdi_writeback on the page owning memcg. When balance_dirty_pages()
3244 * decides that the memcg needs to sleep due to high dirty ratio, it calls
3245 * mem_cgroup_flush_foreign() which queues writeback on the recorded
3246 * foreign bdi_writebacks which haven't expired. Both the numbers of
3247 * recorded bdi_writebacks and concurrent in-flight foreign writebacks are
3248 * limited to MEMCG_CGWB_FRN_CNT.
3249 *
3250 * The mechanism only remembers IDs and doesn't hold any object references.
3251 * As being wrong occasionally doesn't matter, updates and accesses to the
3252 * records are lockless and racy.
3253 */
3254void mem_cgroup_track_foreign_dirty_slowpath(struct folio *folio,
3255 struct bdi_writeback *wb)
3256{
3257 struct mem_cgroup *memcg = folio_memcg(folio);
3258 struct memcg_cgwb_frn *frn;
3259 u64 now = get_jiffies_64();
3260 u64 oldest_at = now;
3261 int oldest = -1;
3262 int i;
3263
3264 trace_track_foreign_dirty(folio, wb);
3265
3266 /*
3267 * Pick the slot to use. If there is already a slot for @wb, keep
3268 * using it. If not replace the oldest one which isn't being
3269 * written out.
3270 */
3271 for (i = 0; i < MEMCG_CGWB_FRN_CNT; i++) {
3272 frn = &memcg->cgwb_frn[i];
3273 if (frn->bdi_id == wb->bdi->id &&
3274 frn->memcg_id == wb->memcg_css->id)
3275 break;
3276 if (time_before64(frn->at, oldest_at) &&
3277 atomic_read(&frn->done.cnt) == 1) {
3278 oldest = i;
3279 oldest_at = frn->at;
3280 }
3281 }
3282
3283 if (i < MEMCG_CGWB_FRN_CNT) {
3284 /*
3285 * Re-using an existing one. Update timestamp lazily to
3286 * avoid making the cacheline hot. We want them to be
3287 * reasonably up-to-date and significantly shorter than
3288 * dirty_expire_interval as that's what expires the record.
3289 * Use the shorter of 1s and dirty_expire_interval / 8.
3290 */
3291 unsigned long update_intv =
3292 min_t(unsigned long, HZ,
3293 msecs_to_jiffies(dirty_expire_interval * 10) / 8);
3294
3295 if (time_before64(frn->at, now - update_intv))
3296 frn->at = now;
3297 } else if (oldest >= 0) {
3298 /* replace the oldest free one */
3299 frn = &memcg->cgwb_frn[oldest];
3300 frn->bdi_id = wb->bdi->id;
3301 frn->memcg_id = wb->memcg_css->id;
3302 frn->at = now;
3303 }
3304}
3305
3306/* issue foreign writeback flushes for recorded foreign dirtying events */
3307void mem_cgroup_flush_foreign(struct bdi_writeback *wb)
3308{
3309 struct mem_cgroup *memcg = mem_cgroup_from_css(wb->memcg_css);
3310 unsigned long intv = msecs_to_jiffies(dirty_expire_interval * 10);
3311 u64 now = jiffies_64;
3312 int i;
3313
3314 for (i = 0; i < MEMCG_CGWB_FRN_CNT; i++) {
3315 struct memcg_cgwb_frn *frn = &memcg->cgwb_frn[i];
3316
3317 /*
3318 * If the record is older than dirty_expire_interval,
3319 * writeback on it has already started. No need to kick it
3320 * off again. Also, don't start a new one if there's
3321 * already one in flight.
3322 */
3323 if (time_after64(frn->at, now - intv) &&
3324 atomic_read(&frn->done.cnt) == 1) {
3325 frn->at = 0;
3326 trace_flush_foreign(wb, frn->bdi_id, frn->memcg_id);
3327 cgroup_writeback_by_id(frn->bdi_id, frn->memcg_id,
3328 WB_REASON_FOREIGN_FLUSH,
3329 &frn->done);
3330 }
3331 }
3332}
3333
3334#else /* CONFIG_CGROUP_WRITEBACK */
3335
3336static int memcg_wb_domain_init(struct mem_cgroup *memcg, gfp_t gfp)
3337{
3338 return 0;
3339}
3340
3341static void memcg_wb_domain_exit(struct mem_cgroup *memcg)
3342{
3343}
3344
3345static void memcg_wb_domain_size_changed(struct mem_cgroup *memcg)
3346{
3347}
3348
3349#endif /* CONFIG_CGROUP_WRITEBACK */
3350
3351/*
3352 * Private memory cgroup IDR
3353 *
3354 * Swap-out records and page cache shadow entries need to store memcg
3355 * references in constrained space, so we maintain an ID space that is
3356 * limited to 16 bit (MEM_CGROUP_ID_MAX), limiting the total number of
3357 * memory-controlled cgroups to 64k.
3358 *
3359 * However, there usually are many references to the offline CSS after
3360 * the cgroup has been destroyed, such as page cache or reclaimable
3361 * slab objects, that don't need to hang on to the ID. We want to keep
3362 * those dead CSS from occupying IDs, or we might quickly exhaust the
3363 * relatively small ID space and prevent the creation of new cgroups
3364 * even when there are much fewer than 64k cgroups - possibly none.
3365 *
3366 * Maintain a private 16-bit ID space for memcg, and allow the ID to
3367 * be freed and recycled when it's no longer needed, which is usually
3368 * when the CSS is offlined.
3369 *
3370 * The only exception to that are records of swapped out tmpfs/shmem
3371 * pages that need to be attributed to live ancestors on swapin. But
3372 * those references are manageable from userspace.
3373 */
3374
3375#define MEM_CGROUP_ID_MAX ((1UL << MEM_CGROUP_ID_SHIFT) - 1)
3376static DEFINE_XARRAY_ALLOC1(mem_cgroup_ids);
3377
3378static void mem_cgroup_id_remove(struct mem_cgroup *memcg)
3379{
3380 if (memcg->id.id > 0) {
3381 xa_erase(&mem_cgroup_ids, memcg->id.id);
3382 memcg->id.id = 0;
3383 }
3384}
3385
3386void __maybe_unused mem_cgroup_id_get_many(struct mem_cgroup *memcg,
3387 unsigned int n)
3388{
3389 refcount_add(n, &memcg->id.ref);
3390}
3391
3392void mem_cgroup_id_put_many(struct mem_cgroup *memcg, unsigned int n)
3393{
3394 if (refcount_sub_and_test(n, &memcg->id.ref)) {
3395 mem_cgroup_id_remove(memcg);
3396
3397 /* Memcg ID pins CSS */
3398 css_put(&memcg->css);
3399 }
3400}
3401
3402static inline void mem_cgroup_id_put(struct mem_cgroup *memcg)
3403{
3404 mem_cgroup_id_put_many(memcg, 1);
3405}
3406
3407/**
3408 * mem_cgroup_from_id - look up a memcg from a memcg id
3409 * @id: the memcg id to look up
3410 *
3411 * Caller must hold rcu_read_lock().
3412 */
3413struct mem_cgroup *mem_cgroup_from_id(unsigned short id)
3414{
3415 WARN_ON_ONCE(!rcu_read_lock_held());
3416 return xa_load(&mem_cgroup_ids, id);
3417}
3418
3419#ifdef CONFIG_SHRINKER_DEBUG
3420struct mem_cgroup *mem_cgroup_get_from_ino(unsigned long ino)
3421{
3422 struct cgroup *cgrp;
3423 struct cgroup_subsys_state *css;
3424 struct mem_cgroup *memcg;
3425
3426 cgrp = cgroup_get_from_id(ino);
3427 if (IS_ERR(cgrp))
3428 return ERR_CAST(cgrp);
3429
3430 css = cgroup_get_e_css(cgrp, &memory_cgrp_subsys);
3431 if (css)
3432 memcg = container_of(css, struct mem_cgroup, css);
3433 else
3434 memcg = ERR_PTR(-ENOENT);
3435
3436 cgroup_put(cgrp);
3437
3438 return memcg;
3439}
3440#endif
3441
3442static bool alloc_mem_cgroup_per_node_info(struct mem_cgroup *memcg, int node)
3443{
3444 struct mem_cgroup_per_node *pn;
3445
3446 pn = kzalloc_node(sizeof(*pn), GFP_KERNEL, node);
3447 if (!pn)
3448 return false;
3449
3450 pn->lruvec_stats = kzalloc_node(sizeof(struct lruvec_stats),
3451 GFP_KERNEL_ACCOUNT, node);
3452 if (!pn->lruvec_stats)
3453 goto fail;
3454
3455 pn->lruvec_stats_percpu = alloc_percpu_gfp(struct lruvec_stats_percpu,
3456 GFP_KERNEL_ACCOUNT);
3457 if (!pn->lruvec_stats_percpu)
3458 goto fail;
3459
3460 lruvec_init(&pn->lruvec);
3461 pn->memcg = memcg;
3462
3463 memcg->nodeinfo[node] = pn;
3464 return true;
3465fail:
3466 kfree(pn->lruvec_stats);
3467 kfree(pn);
3468 return false;
3469}
3470
3471static void free_mem_cgroup_per_node_info(struct mem_cgroup *memcg, int node)
3472{
3473 struct mem_cgroup_per_node *pn = memcg->nodeinfo[node];
3474
3475 if (!pn)
3476 return;
3477
3478 free_percpu(pn->lruvec_stats_percpu);
3479 kfree(pn->lruvec_stats);
3480 kfree(pn);
3481}
3482
3483static void __mem_cgroup_free(struct mem_cgroup *memcg)
3484{
3485 int node;
3486
3487 obj_cgroup_put(memcg->orig_objcg);
3488
3489 for_each_node(node)
3490 free_mem_cgroup_per_node_info(memcg, node);
3491 memcg1_free_events(memcg);
3492 kfree(memcg->vmstats);
3493 free_percpu(memcg->vmstats_percpu);
3494 kfree(memcg);
3495}
3496
3497static void mem_cgroup_free(struct mem_cgroup *memcg)
3498{
3499 lru_gen_exit_memcg(memcg);
3500 memcg_wb_domain_exit(memcg);
3501 __mem_cgroup_free(memcg);
3502}
3503
3504static struct mem_cgroup *mem_cgroup_alloc(struct mem_cgroup *parent)
3505{
3506 struct memcg_vmstats_percpu *statc, *pstatc;
3507 struct mem_cgroup *memcg;
3508 int node, cpu;
3509 int __maybe_unused i;
3510 long error;
3511
3512 memcg = kzalloc(struct_size(memcg, nodeinfo, nr_node_ids), GFP_KERNEL);
3513 if (!memcg)
3514 return ERR_PTR(-ENOMEM);
3515
3516 error = xa_alloc(&mem_cgroup_ids, &memcg->id.id, NULL,
3517 XA_LIMIT(1, MEM_CGROUP_ID_MAX), GFP_KERNEL);
3518 if (error)
3519 goto fail;
3520 error = -ENOMEM;
3521
3522 memcg->vmstats = kzalloc(sizeof(struct memcg_vmstats),
3523 GFP_KERNEL_ACCOUNT);
3524 if (!memcg->vmstats)
3525 goto fail;
3526
3527 memcg->vmstats_percpu = alloc_percpu_gfp(struct memcg_vmstats_percpu,
3528 GFP_KERNEL_ACCOUNT);
3529 if (!memcg->vmstats_percpu)
3530 goto fail;
3531
3532 if (!memcg1_alloc_events(memcg))
3533 goto fail;
3534
3535 for_each_possible_cpu(cpu) {
3536 if (parent)
3537 pstatc = per_cpu_ptr(parent->vmstats_percpu, cpu);
3538 statc = per_cpu_ptr(memcg->vmstats_percpu, cpu);
3539 statc->parent = parent ? pstatc : NULL;
3540 statc->vmstats = memcg->vmstats;
3541 }
3542
3543 for_each_node(node)
3544 if (!alloc_mem_cgroup_per_node_info(memcg, node))
3545 goto fail;
3546
3547 if (memcg_wb_domain_init(memcg, GFP_KERNEL))
3548 goto fail;
3549
3550 INIT_WORK(&memcg->high_work, high_work_func);
3551 vmpressure_init(&memcg->vmpressure);
3552 INIT_LIST_HEAD(&memcg->memory_peaks);
3553 INIT_LIST_HEAD(&memcg->swap_peaks);
3554 spin_lock_init(&memcg->peaks_lock);
3555 memcg->socket_pressure = jiffies;
3556 memcg1_memcg_init(memcg);
3557 memcg->kmemcg_id = -1;
3558 INIT_LIST_HEAD(&memcg->objcg_list);
3559#ifdef CONFIG_CGROUP_WRITEBACK
3560 INIT_LIST_HEAD(&memcg->cgwb_list);
3561 for (i = 0; i < MEMCG_CGWB_FRN_CNT; i++)
3562 memcg->cgwb_frn[i].done =
3563 __WB_COMPLETION_INIT(&memcg_cgwb_frn_waitq);
3564#endif
3565#ifdef CONFIG_TRANSPARENT_HUGEPAGE
3566 spin_lock_init(&memcg->deferred_split_queue.split_queue_lock);
3567 INIT_LIST_HEAD(&memcg->deferred_split_queue.split_queue);
3568 memcg->deferred_split_queue.split_queue_len = 0;
3569#endif
3570 lru_gen_init_memcg(memcg);
3571 return memcg;
3572fail:
3573 mem_cgroup_id_remove(memcg);
3574 __mem_cgroup_free(memcg);
3575 return ERR_PTR(error);
3576}
3577
3578static struct cgroup_subsys_state * __ref
3579mem_cgroup_css_alloc(struct cgroup_subsys_state *parent_css)
3580{
3581 struct mem_cgroup *parent = mem_cgroup_from_css(parent_css);
3582 struct mem_cgroup *memcg, *old_memcg;
3583
3584 old_memcg = set_active_memcg(parent);
3585 memcg = mem_cgroup_alloc(parent);
3586 set_active_memcg(old_memcg);
3587 if (IS_ERR(memcg))
3588 return ERR_CAST(memcg);
3589
3590 page_counter_set_high(&memcg->memory, PAGE_COUNTER_MAX);
3591 memcg1_soft_limit_reset(memcg);
3592#ifdef CONFIG_ZSWAP
3593 memcg->zswap_max = PAGE_COUNTER_MAX;
3594 WRITE_ONCE(memcg->zswap_writeback, true);
3595#endif
3596 page_counter_set_high(&memcg->swap, PAGE_COUNTER_MAX);
3597 if (parent) {
3598 WRITE_ONCE(memcg->swappiness, mem_cgroup_swappiness(parent));
3599
3600 page_counter_init(&memcg->memory, &parent->memory, true);
3601 page_counter_init(&memcg->swap, &parent->swap, false);
3602#ifdef CONFIG_MEMCG_V1
3603 WRITE_ONCE(memcg->oom_kill_disable, READ_ONCE(parent->oom_kill_disable));
3604 page_counter_init(&memcg->kmem, &parent->kmem, false);
3605 page_counter_init(&memcg->tcpmem, &parent->tcpmem, false);
3606#endif
3607 } else {
3608 init_memcg_stats();
3609 init_memcg_events();
3610 page_counter_init(&memcg->memory, NULL, true);
3611 page_counter_init(&memcg->swap, NULL, false);
3612#ifdef CONFIG_MEMCG_V1
3613 page_counter_init(&memcg->kmem, NULL, false);
3614 page_counter_init(&memcg->tcpmem, NULL, false);
3615#endif
3616 root_mem_cgroup = memcg;
3617 return &memcg->css;
3618 }
3619
3620 if (cgroup_subsys_on_dfl(memory_cgrp_subsys) && !cgroup_memory_nosocket)
3621 static_branch_inc(&memcg_sockets_enabled_key);
3622
3623 if (!cgroup_memory_nobpf)
3624 static_branch_inc(&memcg_bpf_enabled_key);
3625
3626 return &memcg->css;
3627}
3628
3629static int mem_cgroup_css_online(struct cgroup_subsys_state *css)
3630{
3631 struct mem_cgroup *memcg = mem_cgroup_from_css(css);
3632
3633 if (memcg_online_kmem(memcg))
3634 goto remove_id;
3635
3636 /*
3637 * A memcg must be visible for expand_shrinker_info()
3638 * by the time the maps are allocated. So, we allocate maps
3639 * here, when for_each_mem_cgroup() can't skip it.
3640 */
3641 if (alloc_shrinker_info(memcg))
3642 goto offline_kmem;
3643
3644 if (unlikely(mem_cgroup_is_root(memcg)) && !mem_cgroup_disabled())
3645 queue_delayed_work(system_unbound_wq, &stats_flush_dwork,
3646 FLUSH_TIME);
3647 lru_gen_online_memcg(memcg);
3648
3649 /* Online state pins memcg ID, memcg ID pins CSS */
3650 refcount_set(&memcg->id.ref, 1);
3651 css_get(css);
3652
3653 /*
3654 * Ensure mem_cgroup_from_id() works once we're fully online.
3655 *
3656 * We could do this earlier and require callers to filter with
3657 * css_tryget_online(). But right now there are no users that
3658 * need earlier access, and the workingset code relies on the
3659 * cgroup tree linkage (mem_cgroup_get_nr_swap_pages()). So
3660 * publish it here at the end of onlining. This matches the
3661 * regular ID destruction during offlining.
3662 */
3663 xa_store(&mem_cgroup_ids, memcg->id.id, memcg, GFP_KERNEL);
3664
3665 return 0;
3666offline_kmem:
3667 memcg_offline_kmem(memcg);
3668remove_id:
3669 mem_cgroup_id_remove(memcg);
3670 return -ENOMEM;
3671}
3672
3673static void mem_cgroup_css_offline(struct cgroup_subsys_state *css)
3674{
3675 struct mem_cgroup *memcg = mem_cgroup_from_css(css);
3676
3677 memcg1_css_offline(memcg);
3678
3679 page_counter_set_min(&memcg->memory, 0);
3680 page_counter_set_low(&memcg->memory, 0);
3681
3682 zswap_memcg_offline_cleanup(memcg);
3683
3684 memcg_offline_kmem(memcg);
3685 reparent_shrinker_deferred(memcg);
3686 wb_memcg_offline(memcg);
3687 lru_gen_offline_memcg(memcg);
3688
3689 drain_all_stock(memcg);
3690
3691 mem_cgroup_id_put(memcg);
3692}
3693
3694static void mem_cgroup_css_released(struct cgroup_subsys_state *css)
3695{
3696 struct mem_cgroup *memcg = mem_cgroup_from_css(css);
3697
3698 invalidate_reclaim_iterators(memcg);
3699 lru_gen_release_memcg(memcg);
3700}
3701
3702static void mem_cgroup_css_free(struct cgroup_subsys_state *css)
3703{
3704 struct mem_cgroup *memcg = mem_cgroup_from_css(css);
3705 int __maybe_unused i;
3706
3707#ifdef CONFIG_CGROUP_WRITEBACK
3708 for (i = 0; i < MEMCG_CGWB_FRN_CNT; i++)
3709 wb_wait_for_completion(&memcg->cgwb_frn[i].done);
3710#endif
3711 if (cgroup_subsys_on_dfl(memory_cgrp_subsys) && !cgroup_memory_nosocket)
3712 static_branch_dec(&memcg_sockets_enabled_key);
3713
3714 if (!cgroup_subsys_on_dfl(memory_cgrp_subsys) && memcg1_tcpmem_active(memcg))
3715 static_branch_dec(&memcg_sockets_enabled_key);
3716
3717 if (!cgroup_memory_nobpf)
3718 static_branch_dec(&memcg_bpf_enabled_key);
3719
3720 vmpressure_cleanup(&memcg->vmpressure);
3721 cancel_work_sync(&memcg->high_work);
3722 memcg1_remove_from_trees(memcg);
3723 free_shrinker_info(memcg);
3724 mem_cgroup_free(memcg);
3725}
3726
3727/**
3728 * mem_cgroup_css_reset - reset the states of a mem_cgroup
3729 * @css: the target css
3730 *
3731 * Reset the states of the mem_cgroup associated with @css. This is
3732 * invoked when the userland requests disabling on the default hierarchy
3733 * but the memcg is pinned through dependency. The memcg should stop
3734 * applying policies and should revert to the vanilla state as it may be
3735 * made visible again.
3736 *
3737 * The current implementation only resets the essential configurations.
3738 * This needs to be expanded to cover all the visible parts.
3739 */
3740static void mem_cgroup_css_reset(struct cgroup_subsys_state *css)
3741{
3742 struct mem_cgroup *memcg = mem_cgroup_from_css(css);
3743
3744 page_counter_set_max(&memcg->memory, PAGE_COUNTER_MAX);
3745 page_counter_set_max(&memcg->swap, PAGE_COUNTER_MAX);
3746#ifdef CONFIG_MEMCG_V1
3747 page_counter_set_max(&memcg->kmem, PAGE_COUNTER_MAX);
3748 page_counter_set_max(&memcg->tcpmem, PAGE_COUNTER_MAX);
3749#endif
3750 page_counter_set_min(&memcg->memory, 0);
3751 page_counter_set_low(&memcg->memory, 0);
3752 page_counter_set_high(&memcg->memory, PAGE_COUNTER_MAX);
3753 memcg1_soft_limit_reset(memcg);
3754 page_counter_set_high(&memcg->swap, PAGE_COUNTER_MAX);
3755 memcg_wb_domain_size_changed(memcg);
3756}
3757
3758struct aggregate_control {
3759 /* pointer to the aggregated (CPU and subtree aggregated) counters */
3760 long *aggregate;
3761 /* pointer to the non-hierarchichal (CPU aggregated) counters */
3762 long *local;
3763 /* pointer to the pending child counters during tree propagation */
3764 long *pending;
3765 /* pointer to the parent's pending counters, could be NULL */
3766 long *ppending;
3767 /* pointer to the percpu counters to be aggregated */
3768 long *cstat;
3769 /* pointer to the percpu counters of the last aggregation*/
3770 long *cstat_prev;
3771 /* size of the above counters */
3772 int size;
3773};
3774
3775static void mem_cgroup_stat_aggregate(struct aggregate_control *ac)
3776{
3777 int i;
3778 long delta, delta_cpu, v;
3779
3780 for (i = 0; i < ac->size; i++) {
3781 /*
3782 * Collect the aggregated propagation counts of groups
3783 * below us. We're in a per-cpu loop here and this is
3784 * a global counter, so the first cycle will get them.
3785 */
3786 delta = ac->pending[i];
3787 if (delta)
3788 ac->pending[i] = 0;
3789
3790 /* Add CPU changes on this level since the last flush */
3791 delta_cpu = 0;
3792 v = READ_ONCE(ac->cstat[i]);
3793 if (v != ac->cstat_prev[i]) {
3794 delta_cpu = v - ac->cstat_prev[i];
3795 delta += delta_cpu;
3796 ac->cstat_prev[i] = v;
3797 }
3798
3799 /* Aggregate counts on this level and propagate upwards */
3800 if (delta_cpu)
3801 ac->local[i] += delta_cpu;
3802
3803 if (delta) {
3804 ac->aggregate[i] += delta;
3805 if (ac->ppending)
3806 ac->ppending[i] += delta;
3807 }
3808 }
3809}
3810
3811static void mem_cgroup_css_rstat_flush(struct cgroup_subsys_state *css, int cpu)
3812{
3813 struct mem_cgroup *memcg = mem_cgroup_from_css(css);
3814 struct mem_cgroup *parent = parent_mem_cgroup(memcg);
3815 struct memcg_vmstats_percpu *statc;
3816 struct aggregate_control ac;
3817 int nid;
3818
3819 statc = per_cpu_ptr(memcg->vmstats_percpu, cpu);
3820
3821 ac = (struct aggregate_control) {
3822 .aggregate = memcg->vmstats->state,
3823 .local = memcg->vmstats->state_local,
3824 .pending = memcg->vmstats->state_pending,
3825 .ppending = parent ? parent->vmstats->state_pending : NULL,
3826 .cstat = statc->state,
3827 .cstat_prev = statc->state_prev,
3828 .size = MEMCG_VMSTAT_SIZE,
3829 };
3830 mem_cgroup_stat_aggregate(&ac);
3831
3832 ac = (struct aggregate_control) {
3833 .aggregate = memcg->vmstats->events,
3834 .local = memcg->vmstats->events_local,
3835 .pending = memcg->vmstats->events_pending,
3836 .ppending = parent ? parent->vmstats->events_pending : NULL,
3837 .cstat = statc->events,
3838 .cstat_prev = statc->events_prev,
3839 .size = NR_MEMCG_EVENTS,
3840 };
3841 mem_cgroup_stat_aggregate(&ac);
3842
3843 for_each_node_state(nid, N_MEMORY) {
3844 struct mem_cgroup_per_node *pn = memcg->nodeinfo[nid];
3845 struct lruvec_stats *lstats = pn->lruvec_stats;
3846 struct lruvec_stats *plstats = NULL;
3847 struct lruvec_stats_percpu *lstatc;
3848
3849 if (parent)
3850 plstats = parent->nodeinfo[nid]->lruvec_stats;
3851
3852 lstatc = per_cpu_ptr(pn->lruvec_stats_percpu, cpu);
3853
3854 ac = (struct aggregate_control) {
3855 .aggregate = lstats->state,
3856 .local = lstats->state_local,
3857 .pending = lstats->state_pending,
3858 .ppending = plstats ? plstats->state_pending : NULL,
3859 .cstat = lstatc->state,
3860 .cstat_prev = lstatc->state_prev,
3861 .size = NR_MEMCG_NODE_STAT_ITEMS,
3862 };
3863 mem_cgroup_stat_aggregate(&ac);
3864
3865 }
3866 WRITE_ONCE(statc->stats_updates, 0);
3867 /* We are in a per-cpu loop here, only do the atomic write once */
3868 if (atomic64_read(&memcg->vmstats->stats_updates))
3869 atomic64_set(&memcg->vmstats->stats_updates, 0);
3870}
3871
3872static void mem_cgroup_fork(struct task_struct *task)
3873{
3874 /*
3875 * Set the update flag to cause task->objcg to be initialized lazily
3876 * on the first allocation. It can be done without any synchronization
3877 * because it's always performed on the current task, so does
3878 * current_objcg_update().
3879 */
3880 task->objcg = (struct obj_cgroup *)CURRENT_OBJCG_UPDATE_FLAG;
3881}
3882
3883static void mem_cgroup_exit(struct task_struct *task)
3884{
3885 struct obj_cgroup *objcg = task->objcg;
3886
3887 objcg = (struct obj_cgroup *)
3888 ((unsigned long)objcg & ~CURRENT_OBJCG_UPDATE_FLAG);
3889 obj_cgroup_put(objcg);
3890
3891 /*
3892 * Some kernel allocations can happen after this point,
3893 * but let's ignore them. It can be done without any synchronization
3894 * because it's always performed on the current task, so does
3895 * current_objcg_update().
3896 */
3897 task->objcg = NULL;
3898}
3899
3900#ifdef CONFIG_LRU_GEN
3901static void mem_cgroup_lru_gen_attach(struct cgroup_taskset *tset)
3902{
3903 struct task_struct *task;
3904 struct cgroup_subsys_state *css;
3905
3906 /* find the first leader if there is any */
3907 cgroup_taskset_for_each_leader(task, css, tset)
3908 break;
3909
3910 if (!task)
3911 return;
3912
3913 task_lock(task);
3914 if (task->mm && READ_ONCE(task->mm->owner) == task)
3915 lru_gen_migrate_mm(task->mm);
3916 task_unlock(task);
3917}
3918#else
3919static void mem_cgroup_lru_gen_attach(struct cgroup_taskset *tset) {}
3920#endif /* CONFIG_LRU_GEN */
3921
3922static void mem_cgroup_kmem_attach(struct cgroup_taskset *tset)
3923{
3924 struct task_struct *task;
3925 struct cgroup_subsys_state *css;
3926
3927 cgroup_taskset_for_each(task, css, tset) {
3928 /* atomically set the update bit */
3929 set_bit(CURRENT_OBJCG_UPDATE_BIT, (unsigned long *)&task->objcg);
3930 }
3931}
3932
3933static void mem_cgroup_attach(struct cgroup_taskset *tset)
3934{
3935 mem_cgroup_lru_gen_attach(tset);
3936 mem_cgroup_kmem_attach(tset);
3937}
3938
3939static int seq_puts_memcg_tunable(struct seq_file *m, unsigned long value)
3940{
3941 if (value == PAGE_COUNTER_MAX)
3942 seq_puts(m, "max\n");
3943 else
3944 seq_printf(m, "%llu\n", (u64)value * PAGE_SIZE);
3945
3946 return 0;
3947}
3948
3949static u64 memory_current_read(struct cgroup_subsys_state *css,
3950 struct cftype *cft)
3951{
3952 struct mem_cgroup *memcg = mem_cgroup_from_css(css);
3953
3954 return (u64)page_counter_read(&memcg->memory) * PAGE_SIZE;
3955}
3956
3957#define OFP_PEAK_UNSET (((-1UL)))
3958
3959static int peak_show(struct seq_file *sf, void *v, struct page_counter *pc)
3960{
3961 struct cgroup_of_peak *ofp = of_peak(sf->private);
3962 u64 fd_peak = READ_ONCE(ofp->value), peak;
3963
3964 /* User wants global or local peak? */
3965 if (fd_peak == OFP_PEAK_UNSET)
3966 peak = pc->watermark;
3967 else
3968 peak = max(fd_peak, READ_ONCE(pc->local_watermark));
3969
3970 seq_printf(sf, "%llu\n", peak * PAGE_SIZE);
3971 return 0;
3972}
3973
3974static int memory_peak_show(struct seq_file *sf, void *v)
3975{
3976 struct mem_cgroup *memcg = mem_cgroup_from_css(seq_css(sf));
3977
3978 return peak_show(sf, v, &memcg->memory);
3979}
3980
3981static int peak_open(struct kernfs_open_file *of)
3982{
3983 struct cgroup_of_peak *ofp = of_peak(of);
3984
3985 ofp->value = OFP_PEAK_UNSET;
3986 return 0;
3987}
3988
3989static void peak_release(struct kernfs_open_file *of)
3990{
3991 struct mem_cgroup *memcg = mem_cgroup_from_css(of_css(of));
3992 struct cgroup_of_peak *ofp = of_peak(of);
3993
3994 if (ofp->value == OFP_PEAK_UNSET) {
3995 /* fast path (no writes on this fd) */
3996 return;
3997 }
3998 spin_lock(&memcg->peaks_lock);
3999 list_del(&ofp->list);
4000 spin_unlock(&memcg->peaks_lock);
4001}
4002
4003static ssize_t peak_write(struct kernfs_open_file *of, char *buf, size_t nbytes,
4004 loff_t off, struct page_counter *pc,
4005 struct list_head *watchers)
4006{
4007 unsigned long usage;
4008 struct cgroup_of_peak *peer_ctx;
4009 struct mem_cgroup *memcg = mem_cgroup_from_css(of_css(of));
4010 struct cgroup_of_peak *ofp = of_peak(of);
4011
4012 spin_lock(&memcg->peaks_lock);
4013
4014 usage = page_counter_read(pc);
4015 WRITE_ONCE(pc->local_watermark, usage);
4016
4017 list_for_each_entry(peer_ctx, watchers, list)
4018 if (usage > peer_ctx->value)
4019 WRITE_ONCE(peer_ctx->value, usage);
4020
4021 /* initial write, register watcher */
4022 if (ofp->value == -1)
4023 list_add(&ofp->list, watchers);
4024
4025 WRITE_ONCE(ofp->value, usage);
4026 spin_unlock(&memcg->peaks_lock);
4027
4028 return nbytes;
4029}
4030
4031static ssize_t memory_peak_write(struct kernfs_open_file *of, char *buf,
4032 size_t nbytes, loff_t off)
4033{
4034 struct mem_cgroup *memcg = mem_cgroup_from_css(of_css(of));
4035
4036 return peak_write(of, buf, nbytes, off, &memcg->memory,
4037 &memcg->memory_peaks);
4038}
4039
4040#undef OFP_PEAK_UNSET
4041
4042static int memory_min_show(struct seq_file *m, void *v)
4043{
4044 return seq_puts_memcg_tunable(m,
4045 READ_ONCE(mem_cgroup_from_seq(m)->memory.min));
4046}
4047
4048static ssize_t memory_min_write(struct kernfs_open_file *of,
4049 char *buf, size_t nbytes, loff_t off)
4050{
4051 struct mem_cgroup *memcg = mem_cgroup_from_css(of_css(of));
4052 unsigned long min;
4053 int err;
4054
4055 buf = strstrip(buf);
4056 err = page_counter_memparse(buf, "max", &min);
4057 if (err)
4058 return err;
4059
4060 page_counter_set_min(&memcg->memory, min);
4061
4062 return nbytes;
4063}
4064
4065static int memory_low_show(struct seq_file *m, void *v)
4066{
4067 return seq_puts_memcg_tunable(m,
4068 READ_ONCE(mem_cgroup_from_seq(m)->memory.low));
4069}
4070
4071static ssize_t memory_low_write(struct kernfs_open_file *of,
4072 char *buf, size_t nbytes, loff_t off)
4073{
4074 struct mem_cgroup *memcg = mem_cgroup_from_css(of_css(of));
4075 unsigned long low;
4076 int err;
4077
4078 buf = strstrip(buf);
4079 err = page_counter_memparse(buf, "max", &low);
4080 if (err)
4081 return err;
4082
4083 page_counter_set_low(&memcg->memory, low);
4084
4085 return nbytes;
4086}
4087
4088static int memory_high_show(struct seq_file *m, void *v)
4089{
4090 return seq_puts_memcg_tunable(m,
4091 READ_ONCE(mem_cgroup_from_seq(m)->memory.high));
4092}
4093
4094static ssize_t memory_high_write(struct kernfs_open_file *of,
4095 char *buf, size_t nbytes, loff_t off)
4096{
4097 struct mem_cgroup *memcg = mem_cgroup_from_css(of_css(of));
4098 unsigned int nr_retries = MAX_RECLAIM_RETRIES;
4099 bool drained = false;
4100 unsigned long high;
4101 int err;
4102
4103 buf = strstrip(buf);
4104 err = page_counter_memparse(buf, "max", &high);
4105 if (err)
4106 return err;
4107
4108 page_counter_set_high(&memcg->memory, high);
4109
4110 for (;;) {
4111 unsigned long nr_pages = page_counter_read(&memcg->memory);
4112 unsigned long reclaimed;
4113
4114 if (nr_pages <= high)
4115 break;
4116
4117 if (signal_pending(current))
4118 break;
4119
4120 if (!drained) {
4121 drain_all_stock(memcg);
4122 drained = true;
4123 continue;
4124 }
4125
4126 reclaimed = try_to_free_mem_cgroup_pages(memcg, nr_pages - high,
4127 GFP_KERNEL, MEMCG_RECLAIM_MAY_SWAP, NULL);
4128
4129 if (!reclaimed && !nr_retries--)
4130 break;
4131 }
4132
4133 memcg_wb_domain_size_changed(memcg);
4134 return nbytes;
4135}
4136
4137static int memory_max_show(struct seq_file *m, void *v)
4138{
4139 return seq_puts_memcg_tunable(m,
4140 READ_ONCE(mem_cgroup_from_seq(m)->memory.max));
4141}
4142
4143static ssize_t memory_max_write(struct kernfs_open_file *of,
4144 char *buf, size_t nbytes, loff_t off)
4145{
4146 struct mem_cgroup *memcg = mem_cgroup_from_css(of_css(of));
4147 unsigned int nr_reclaims = MAX_RECLAIM_RETRIES;
4148 bool drained = false;
4149 unsigned long max;
4150 int err;
4151
4152 buf = strstrip(buf);
4153 err = page_counter_memparse(buf, "max", &max);
4154 if (err)
4155 return err;
4156
4157 xchg(&memcg->memory.max, max);
4158
4159 for (;;) {
4160 unsigned long nr_pages = page_counter_read(&memcg->memory);
4161
4162 if (nr_pages <= max)
4163 break;
4164
4165 if (signal_pending(current))
4166 break;
4167
4168 if (!drained) {
4169 drain_all_stock(memcg);
4170 drained = true;
4171 continue;
4172 }
4173
4174 if (nr_reclaims) {
4175 if (!try_to_free_mem_cgroup_pages(memcg, nr_pages - max,
4176 GFP_KERNEL, MEMCG_RECLAIM_MAY_SWAP, NULL))
4177 nr_reclaims--;
4178 continue;
4179 }
4180
4181 memcg_memory_event(memcg, MEMCG_OOM);
4182 if (!mem_cgroup_out_of_memory(memcg, GFP_KERNEL, 0))
4183 break;
4184 }
4185
4186 memcg_wb_domain_size_changed(memcg);
4187 return nbytes;
4188}
4189
4190/*
4191 * Note: don't forget to update the 'samples/cgroup/memcg_event_listener'
4192 * if any new events become available.
4193 */
4194static void __memory_events_show(struct seq_file *m, atomic_long_t *events)
4195{
4196 seq_printf(m, "low %lu\n", atomic_long_read(&events[MEMCG_LOW]));
4197 seq_printf(m, "high %lu\n", atomic_long_read(&events[MEMCG_HIGH]));
4198 seq_printf(m, "max %lu\n", atomic_long_read(&events[MEMCG_MAX]));
4199 seq_printf(m, "oom %lu\n", atomic_long_read(&events[MEMCG_OOM]));
4200 seq_printf(m, "oom_kill %lu\n",
4201 atomic_long_read(&events[MEMCG_OOM_KILL]));
4202 seq_printf(m, "oom_group_kill %lu\n",
4203 atomic_long_read(&events[MEMCG_OOM_GROUP_KILL]));
4204}
4205
4206static int memory_events_show(struct seq_file *m, void *v)
4207{
4208 struct mem_cgroup *memcg = mem_cgroup_from_seq(m);
4209
4210 __memory_events_show(m, memcg->memory_events);
4211 return 0;
4212}
4213
4214static int memory_events_local_show(struct seq_file *m, void *v)
4215{
4216 struct mem_cgroup *memcg = mem_cgroup_from_seq(m);
4217
4218 __memory_events_show(m, memcg->memory_events_local);
4219 return 0;
4220}
4221
4222int memory_stat_show(struct seq_file *m, void *v)
4223{
4224 struct mem_cgroup *memcg = mem_cgroup_from_seq(m);
4225 char *buf = kmalloc(SEQ_BUF_SIZE, GFP_KERNEL);
4226 struct seq_buf s;
4227
4228 if (!buf)
4229 return -ENOMEM;
4230 seq_buf_init(&s, buf, SEQ_BUF_SIZE);
4231 memory_stat_format(memcg, &s);
4232 seq_puts(m, buf);
4233 kfree(buf);
4234 return 0;
4235}
4236
4237#ifdef CONFIG_NUMA
4238static inline unsigned long lruvec_page_state_output(struct lruvec *lruvec,
4239 int item)
4240{
4241 return lruvec_page_state(lruvec, item) *
4242 memcg_page_state_output_unit(item);
4243}
4244
4245static int memory_numa_stat_show(struct seq_file *m, void *v)
4246{
4247 int i;
4248 struct mem_cgroup *memcg = mem_cgroup_from_seq(m);
4249
4250 mem_cgroup_flush_stats(memcg);
4251
4252 for (i = 0; i < ARRAY_SIZE(memory_stats); i++) {
4253 int nid;
4254
4255 if (memory_stats[i].idx >= NR_VM_NODE_STAT_ITEMS)
4256 continue;
4257
4258 seq_printf(m, "%s", memory_stats[i].name);
4259 for_each_node_state(nid, N_MEMORY) {
4260 u64 size;
4261 struct lruvec *lruvec;
4262
4263 lruvec = mem_cgroup_lruvec(memcg, NODE_DATA(nid));
4264 size = lruvec_page_state_output(lruvec,
4265 memory_stats[i].idx);
4266 seq_printf(m, " N%d=%llu", nid, size);
4267 }
4268 seq_putc(m, '\n');
4269 }
4270
4271 return 0;
4272}
4273#endif
4274
4275static int memory_oom_group_show(struct seq_file *m, void *v)
4276{
4277 struct mem_cgroup *memcg = mem_cgroup_from_seq(m);
4278
4279 seq_printf(m, "%d\n", READ_ONCE(memcg->oom_group));
4280
4281 return 0;
4282}
4283
4284static ssize_t memory_oom_group_write(struct kernfs_open_file *of,
4285 char *buf, size_t nbytes, loff_t off)
4286{
4287 struct mem_cgroup *memcg = mem_cgroup_from_css(of_css(of));
4288 int ret, oom_group;
4289
4290 buf = strstrip(buf);
4291 if (!buf)
4292 return -EINVAL;
4293
4294 ret = kstrtoint(buf, 0, &oom_group);
4295 if (ret)
4296 return ret;
4297
4298 if (oom_group != 0 && oom_group != 1)
4299 return -EINVAL;
4300
4301 WRITE_ONCE(memcg->oom_group, oom_group);
4302
4303 return nbytes;
4304}
4305
4306enum {
4307 MEMORY_RECLAIM_SWAPPINESS = 0,
4308 MEMORY_RECLAIM_NULL,
4309};
4310
4311static const match_table_t tokens = {
4312 { MEMORY_RECLAIM_SWAPPINESS, "swappiness=%d"},
4313 { MEMORY_RECLAIM_NULL, NULL },
4314};
4315
4316static ssize_t memory_reclaim(struct kernfs_open_file *of, char *buf,
4317 size_t nbytes, loff_t off)
4318{
4319 struct mem_cgroup *memcg = mem_cgroup_from_css(of_css(of));
4320 unsigned int nr_retries = MAX_RECLAIM_RETRIES;
4321 unsigned long nr_to_reclaim, nr_reclaimed = 0;
4322 int swappiness = -1;
4323 unsigned int reclaim_options;
4324 char *old_buf, *start;
4325 substring_t args[MAX_OPT_ARGS];
4326
4327 buf = strstrip(buf);
4328
4329 old_buf = buf;
4330 nr_to_reclaim = memparse(buf, &buf) / PAGE_SIZE;
4331 if (buf == old_buf)
4332 return -EINVAL;
4333
4334 buf = strstrip(buf);
4335
4336 while ((start = strsep(&buf, " ")) != NULL) {
4337 if (!strlen(start))
4338 continue;
4339 switch (match_token(start, tokens, args)) {
4340 case MEMORY_RECLAIM_SWAPPINESS:
4341 if (match_int(&args[0], &swappiness))
4342 return -EINVAL;
4343 if (swappiness < MIN_SWAPPINESS || swappiness > MAX_SWAPPINESS)
4344 return -EINVAL;
4345 break;
4346 default:
4347 return -EINVAL;
4348 }
4349 }
4350
4351 reclaim_options = MEMCG_RECLAIM_MAY_SWAP | MEMCG_RECLAIM_PROACTIVE;
4352 while (nr_reclaimed < nr_to_reclaim) {
4353 /* Will converge on zero, but reclaim enforces a minimum */
4354 unsigned long batch_size = (nr_to_reclaim - nr_reclaimed) / 4;
4355 unsigned long reclaimed;
4356
4357 if (signal_pending(current))
4358 return -EINTR;
4359
4360 /*
4361 * This is the final attempt, drain percpu lru caches in the
4362 * hope of introducing more evictable pages for
4363 * try_to_free_mem_cgroup_pages().
4364 */
4365 if (!nr_retries)
4366 lru_add_drain_all();
4367
4368 reclaimed = try_to_free_mem_cgroup_pages(memcg,
4369 batch_size, GFP_KERNEL,
4370 reclaim_options,
4371 swappiness == -1 ? NULL : &swappiness);
4372
4373 if (!reclaimed && !nr_retries--)
4374 return -EAGAIN;
4375
4376 nr_reclaimed += reclaimed;
4377 }
4378
4379 return nbytes;
4380}
4381
4382static struct cftype memory_files[] = {
4383 {
4384 .name = "current",
4385 .flags = CFTYPE_NOT_ON_ROOT,
4386 .read_u64 = memory_current_read,
4387 },
4388 {
4389 .name = "peak",
4390 .flags = CFTYPE_NOT_ON_ROOT,
4391 .open = peak_open,
4392 .release = peak_release,
4393 .seq_show = memory_peak_show,
4394 .write = memory_peak_write,
4395 },
4396 {
4397 .name = "min",
4398 .flags = CFTYPE_NOT_ON_ROOT,
4399 .seq_show = memory_min_show,
4400 .write = memory_min_write,
4401 },
4402 {
4403 .name = "low",
4404 .flags = CFTYPE_NOT_ON_ROOT,
4405 .seq_show = memory_low_show,
4406 .write = memory_low_write,
4407 },
4408 {
4409 .name = "high",
4410 .flags = CFTYPE_NOT_ON_ROOT,
4411 .seq_show = memory_high_show,
4412 .write = memory_high_write,
4413 },
4414 {
4415 .name = "max",
4416 .flags = CFTYPE_NOT_ON_ROOT,
4417 .seq_show = memory_max_show,
4418 .write = memory_max_write,
4419 },
4420 {
4421 .name = "events",
4422 .flags = CFTYPE_NOT_ON_ROOT,
4423 .file_offset = offsetof(struct mem_cgroup, events_file),
4424 .seq_show = memory_events_show,
4425 },
4426 {
4427 .name = "events.local",
4428 .flags = CFTYPE_NOT_ON_ROOT,
4429 .file_offset = offsetof(struct mem_cgroup, events_local_file),
4430 .seq_show = memory_events_local_show,
4431 },
4432 {
4433 .name = "stat",
4434 .seq_show = memory_stat_show,
4435 },
4436#ifdef CONFIG_NUMA
4437 {
4438 .name = "numa_stat",
4439 .seq_show = memory_numa_stat_show,
4440 },
4441#endif
4442 {
4443 .name = "oom.group",
4444 .flags = CFTYPE_NOT_ON_ROOT | CFTYPE_NS_DELEGATABLE,
4445 .seq_show = memory_oom_group_show,
4446 .write = memory_oom_group_write,
4447 },
4448 {
4449 .name = "reclaim",
4450 .flags = CFTYPE_NS_DELEGATABLE,
4451 .write = memory_reclaim,
4452 },
4453 { } /* terminate */
4454};
4455
4456struct cgroup_subsys memory_cgrp_subsys = {
4457 .css_alloc = mem_cgroup_css_alloc,
4458 .css_online = mem_cgroup_css_online,
4459 .css_offline = mem_cgroup_css_offline,
4460 .css_released = mem_cgroup_css_released,
4461 .css_free = mem_cgroup_css_free,
4462 .css_reset = mem_cgroup_css_reset,
4463 .css_rstat_flush = mem_cgroup_css_rstat_flush,
4464 .attach = mem_cgroup_attach,
4465 .fork = mem_cgroup_fork,
4466 .exit = mem_cgroup_exit,
4467 .dfl_cftypes = memory_files,
4468#ifdef CONFIG_MEMCG_V1
4469 .legacy_cftypes = mem_cgroup_legacy_files,
4470#endif
4471 .early_init = 0,
4472};
4473
4474/**
4475 * mem_cgroup_calculate_protection - check if memory consumption is in the normal range
4476 * @root: the top ancestor of the sub-tree being checked
4477 * @memcg: the memory cgroup to check
4478 *
4479 * WARNING: This function is not stateless! It can only be used as part
4480 * of a top-down tree iteration, not for isolated queries.
4481 */
4482void mem_cgroup_calculate_protection(struct mem_cgroup *root,
4483 struct mem_cgroup *memcg)
4484{
4485 bool recursive_protection =
4486 cgrp_dfl_root.flags & CGRP_ROOT_MEMORY_RECURSIVE_PROT;
4487
4488 if (mem_cgroup_disabled())
4489 return;
4490
4491 if (!root)
4492 root = root_mem_cgroup;
4493
4494 page_counter_calculate_protection(&root->memory, &memcg->memory, recursive_protection);
4495}
4496
4497static int charge_memcg(struct folio *folio, struct mem_cgroup *memcg,
4498 gfp_t gfp)
4499{
4500 int ret;
4501
4502 ret = try_charge(memcg, gfp, folio_nr_pages(folio));
4503 if (ret)
4504 goto out;
4505
4506 mem_cgroup_commit_charge(folio, memcg);
4507out:
4508 return ret;
4509}
4510
4511int __mem_cgroup_charge(struct folio *folio, struct mm_struct *mm, gfp_t gfp)
4512{
4513 struct mem_cgroup *memcg;
4514 int ret;
4515
4516 memcg = get_mem_cgroup_from_mm(mm);
4517 ret = charge_memcg(folio, memcg, gfp);
4518 css_put(&memcg->css);
4519
4520 return ret;
4521}
4522
4523/**
4524 * mem_cgroup_hugetlb_try_charge - try to charge the memcg for a hugetlb folio
4525 * @memcg: memcg to charge.
4526 * @gfp: reclaim mode.
4527 * @nr_pages: number of pages to charge.
4528 *
4529 * This function is called when allocating a huge page folio to determine if
4530 * the memcg has the capacity for it. It does not commit the charge yet,
4531 * as the hugetlb folio itself has not been obtained from the hugetlb pool.
4532 *
4533 * Once we have obtained the hugetlb folio, we can call
4534 * mem_cgroup_commit_charge() to commit the charge. If we fail to obtain the
4535 * folio, we should instead call mem_cgroup_cancel_charge() to undo the effect
4536 * of try_charge().
4537 *
4538 * Returns 0 on success. Otherwise, an error code is returned.
4539 */
4540int mem_cgroup_hugetlb_try_charge(struct mem_cgroup *memcg, gfp_t gfp,
4541 long nr_pages)
4542{
4543 /*
4544 * If hugetlb memcg charging is not enabled, do not fail hugetlb allocation,
4545 * but do not attempt to commit charge later (or cancel on error) either.
4546 */
4547 if (mem_cgroup_disabled() || !memcg ||
4548 !cgroup_subsys_on_dfl(memory_cgrp_subsys) ||
4549 !(cgrp_dfl_root.flags & CGRP_ROOT_MEMORY_HUGETLB_ACCOUNTING))
4550 return -EOPNOTSUPP;
4551
4552 if (try_charge(memcg, gfp, nr_pages))
4553 return -ENOMEM;
4554
4555 return 0;
4556}
4557
4558/**
4559 * mem_cgroup_swapin_charge_folio - Charge a newly allocated folio for swapin.
4560 * @folio: folio to charge.
4561 * @mm: mm context of the victim
4562 * @gfp: reclaim mode
4563 * @entry: swap entry for which the folio is allocated
4564 *
4565 * This function charges a folio allocated for swapin. Please call this before
4566 * adding the folio to the swapcache.
4567 *
4568 * Returns 0 on success. Otherwise, an error code is returned.
4569 */
4570int mem_cgroup_swapin_charge_folio(struct folio *folio, struct mm_struct *mm,
4571 gfp_t gfp, swp_entry_t entry)
4572{
4573 struct mem_cgroup *memcg;
4574 unsigned short id;
4575 int ret;
4576
4577 if (mem_cgroup_disabled())
4578 return 0;
4579
4580 id = lookup_swap_cgroup_id(entry);
4581 rcu_read_lock();
4582 memcg = mem_cgroup_from_id(id);
4583 if (!memcg || !css_tryget_online(&memcg->css))
4584 memcg = get_mem_cgroup_from_mm(mm);
4585 rcu_read_unlock();
4586
4587 ret = charge_memcg(folio, memcg, gfp);
4588
4589 css_put(&memcg->css);
4590 return ret;
4591}
4592
4593/*
4594 * mem_cgroup_swapin_uncharge_swap - uncharge swap slot
4595 * @entry: the first swap entry for which the pages are charged
4596 * @nr_pages: number of pages which will be uncharged
4597 *
4598 * Call this function after successfully adding the charged page to swapcache.
4599 *
4600 * Note: This function assumes the page for which swap slot is being uncharged
4601 * is order 0 page.
4602 */
4603void mem_cgroup_swapin_uncharge_swap(swp_entry_t entry, unsigned int nr_pages)
4604{
4605 /*
4606 * Cgroup1's unified memory+swap counter has been charged with the
4607 * new swapcache page, finish the transfer by uncharging the swap
4608 * slot. The swap slot would also get uncharged when it dies, but
4609 * it can stick around indefinitely and we'd count the page twice
4610 * the entire time.
4611 *
4612 * Cgroup2 has separate resource counters for memory and swap,
4613 * so this is a non-issue here. Memory and swap charge lifetimes
4614 * correspond 1:1 to page and swap slot lifetimes: we charge the
4615 * page to memory here, and uncharge swap when the slot is freed.
4616 */
4617 if (!mem_cgroup_disabled() && do_memsw_account()) {
4618 /*
4619 * The swap entry might not get freed for a long time,
4620 * let's not wait for it. The page already received a
4621 * memory+swap charge, drop the swap entry duplicate.
4622 */
4623 mem_cgroup_uncharge_swap(entry, nr_pages);
4624 }
4625}
4626
4627struct uncharge_gather {
4628 struct mem_cgroup *memcg;
4629 unsigned long nr_memory;
4630 unsigned long pgpgout;
4631 unsigned long nr_kmem;
4632 int nid;
4633};
4634
4635static inline void uncharge_gather_clear(struct uncharge_gather *ug)
4636{
4637 memset(ug, 0, sizeof(*ug));
4638}
4639
4640static void uncharge_batch(const struct uncharge_gather *ug)
4641{
4642 if (ug->nr_memory) {
4643 page_counter_uncharge(&ug->memcg->memory, ug->nr_memory);
4644 if (do_memsw_account())
4645 page_counter_uncharge(&ug->memcg->memsw, ug->nr_memory);
4646 if (ug->nr_kmem) {
4647 mod_memcg_state(ug->memcg, MEMCG_KMEM, -ug->nr_kmem);
4648 memcg1_account_kmem(ug->memcg, -ug->nr_kmem);
4649 }
4650 memcg1_oom_recover(ug->memcg);
4651 }
4652
4653 memcg1_uncharge_batch(ug->memcg, ug->pgpgout, ug->nr_memory, ug->nid);
4654
4655 /* drop reference from uncharge_folio */
4656 css_put(&ug->memcg->css);
4657}
4658
4659static void uncharge_folio(struct folio *folio, struct uncharge_gather *ug)
4660{
4661 long nr_pages;
4662 struct mem_cgroup *memcg;
4663 struct obj_cgroup *objcg;
4664
4665 VM_BUG_ON_FOLIO(folio_test_lru(folio), folio);
4666
4667 /*
4668 * Nobody should be changing or seriously looking at
4669 * folio memcg or objcg at this point, we have fully
4670 * exclusive access to the folio.
4671 */
4672 if (folio_memcg_kmem(folio)) {
4673 objcg = __folio_objcg(folio);
4674 /*
4675 * This get matches the put at the end of the function and
4676 * kmem pages do not hold memcg references anymore.
4677 */
4678 memcg = get_mem_cgroup_from_objcg(objcg);
4679 } else {
4680 memcg = __folio_memcg(folio);
4681 }
4682
4683 if (!memcg)
4684 return;
4685
4686 if (ug->memcg != memcg) {
4687 if (ug->memcg) {
4688 uncharge_batch(ug);
4689 uncharge_gather_clear(ug);
4690 }
4691 ug->memcg = memcg;
4692 ug->nid = folio_nid(folio);
4693
4694 /* pairs with css_put in uncharge_batch */
4695 css_get(&memcg->css);
4696 }
4697
4698 nr_pages = folio_nr_pages(folio);
4699
4700 if (folio_memcg_kmem(folio)) {
4701 ug->nr_memory += nr_pages;
4702 ug->nr_kmem += nr_pages;
4703
4704 folio->memcg_data = 0;
4705 obj_cgroup_put(objcg);
4706 } else {
4707 /* LRU pages aren't accounted at the root level */
4708 if (!mem_cgroup_is_root(memcg))
4709 ug->nr_memory += nr_pages;
4710 ug->pgpgout++;
4711
4712 WARN_ON_ONCE(folio_unqueue_deferred_split(folio));
4713 folio->memcg_data = 0;
4714 }
4715
4716 css_put(&memcg->css);
4717}
4718
4719void __mem_cgroup_uncharge(struct folio *folio)
4720{
4721 struct uncharge_gather ug;
4722
4723 /* Don't touch folio->lru of any random page, pre-check: */
4724 if (!folio_memcg_charged(folio))
4725 return;
4726
4727 uncharge_gather_clear(&ug);
4728 uncharge_folio(folio, &ug);
4729 uncharge_batch(&ug);
4730}
4731
4732void __mem_cgroup_uncharge_folios(struct folio_batch *folios)
4733{
4734 struct uncharge_gather ug;
4735 unsigned int i;
4736
4737 uncharge_gather_clear(&ug);
4738 for (i = 0; i < folios->nr; i++)
4739 uncharge_folio(folios->folios[i], &ug);
4740 if (ug.memcg)
4741 uncharge_batch(&ug);
4742}
4743
4744/**
4745 * mem_cgroup_replace_folio - Charge a folio's replacement.
4746 * @old: Currently circulating folio.
4747 * @new: Replacement folio.
4748 *
4749 * Charge @new as a replacement folio for @old. @old will
4750 * be uncharged upon free.
4751 *
4752 * Both folios must be locked, @new->mapping must be set up.
4753 */
4754void mem_cgroup_replace_folio(struct folio *old, struct folio *new)
4755{
4756 struct mem_cgroup *memcg;
4757 long nr_pages = folio_nr_pages(new);
4758
4759 VM_BUG_ON_FOLIO(!folio_test_locked(old), old);
4760 VM_BUG_ON_FOLIO(!folio_test_locked(new), new);
4761 VM_BUG_ON_FOLIO(folio_test_anon(old) != folio_test_anon(new), new);
4762 VM_BUG_ON_FOLIO(folio_nr_pages(old) != nr_pages, new);
4763
4764 if (mem_cgroup_disabled())
4765 return;
4766
4767 /* Page cache replacement: new folio already charged? */
4768 if (folio_memcg_charged(new))
4769 return;
4770
4771 memcg = folio_memcg(old);
4772 VM_WARN_ON_ONCE_FOLIO(!memcg, old);
4773 if (!memcg)
4774 return;
4775
4776 /* Force-charge the new page. The old one will be freed soon */
4777 if (!mem_cgroup_is_root(memcg)) {
4778 page_counter_charge(&memcg->memory, nr_pages);
4779 if (do_memsw_account())
4780 page_counter_charge(&memcg->memsw, nr_pages);
4781 }
4782
4783 css_get(&memcg->css);
4784 commit_charge(new, memcg);
4785 memcg1_commit_charge(new, memcg);
4786}
4787
4788/**
4789 * mem_cgroup_migrate - Transfer the memcg data from the old to the new folio.
4790 * @old: Currently circulating folio.
4791 * @new: Replacement folio.
4792 *
4793 * Transfer the memcg data from the old folio to the new folio for migration.
4794 * The old folio's data info will be cleared. Note that the memory counters
4795 * will remain unchanged throughout the process.
4796 *
4797 * Both folios must be locked, @new->mapping must be set up.
4798 */
4799void mem_cgroup_migrate(struct folio *old, struct folio *new)
4800{
4801 struct mem_cgroup *memcg;
4802
4803 VM_BUG_ON_FOLIO(!folio_test_locked(old), old);
4804 VM_BUG_ON_FOLIO(!folio_test_locked(new), new);
4805 VM_BUG_ON_FOLIO(folio_test_anon(old) != folio_test_anon(new), new);
4806 VM_BUG_ON_FOLIO(folio_nr_pages(old) != folio_nr_pages(new), new);
4807 VM_BUG_ON_FOLIO(folio_test_lru(old), old);
4808
4809 if (mem_cgroup_disabled())
4810 return;
4811
4812 memcg = folio_memcg(old);
4813 /*
4814 * Note that it is normal to see !memcg for a hugetlb folio.
4815 * For e.g, itt could have been allocated when memory_hugetlb_accounting
4816 * was not selected.
4817 */
4818 VM_WARN_ON_ONCE_FOLIO(!folio_test_hugetlb(old) && !memcg, old);
4819 if (!memcg)
4820 return;
4821
4822 /* Transfer the charge and the css ref */
4823 commit_charge(new, memcg);
4824
4825 /* Warning should never happen, so don't worry about refcount non-0 */
4826 WARN_ON_ONCE(folio_unqueue_deferred_split(old));
4827 old->memcg_data = 0;
4828}
4829
4830DEFINE_STATIC_KEY_FALSE(memcg_sockets_enabled_key);
4831EXPORT_SYMBOL(memcg_sockets_enabled_key);
4832
4833void mem_cgroup_sk_alloc(struct sock *sk)
4834{
4835 struct mem_cgroup *memcg;
4836
4837 if (!mem_cgroup_sockets_enabled)
4838 return;
4839
4840 /* Do not associate the sock with unrelated interrupted task's memcg. */
4841 if (!in_task())
4842 return;
4843
4844 rcu_read_lock();
4845 memcg = mem_cgroup_from_task(current);
4846 if (mem_cgroup_is_root(memcg))
4847 goto out;
4848 if (!cgroup_subsys_on_dfl(memory_cgrp_subsys) && !memcg1_tcpmem_active(memcg))
4849 goto out;
4850 if (css_tryget(&memcg->css))
4851 sk->sk_memcg = memcg;
4852out:
4853 rcu_read_unlock();
4854}
4855
4856void mem_cgroup_sk_free(struct sock *sk)
4857{
4858 if (sk->sk_memcg)
4859 css_put(&sk->sk_memcg->css);
4860}
4861
4862/**
4863 * mem_cgroup_charge_skmem - charge socket memory
4864 * @memcg: memcg to charge
4865 * @nr_pages: number of pages to charge
4866 * @gfp_mask: reclaim mode
4867 *
4868 * Charges @nr_pages to @memcg. Returns %true if the charge fit within
4869 * @memcg's configured limit, %false if it doesn't.
4870 */
4871bool mem_cgroup_charge_skmem(struct mem_cgroup *memcg, unsigned int nr_pages,
4872 gfp_t gfp_mask)
4873{
4874 if (!cgroup_subsys_on_dfl(memory_cgrp_subsys))
4875 return memcg1_charge_skmem(memcg, nr_pages, gfp_mask);
4876
4877 if (try_charge(memcg, gfp_mask, nr_pages) == 0) {
4878 mod_memcg_state(memcg, MEMCG_SOCK, nr_pages);
4879 return true;
4880 }
4881
4882 return false;
4883}
4884
4885/**
4886 * mem_cgroup_uncharge_skmem - uncharge socket memory
4887 * @memcg: memcg to uncharge
4888 * @nr_pages: number of pages to uncharge
4889 */
4890void mem_cgroup_uncharge_skmem(struct mem_cgroup *memcg, unsigned int nr_pages)
4891{
4892 if (!cgroup_subsys_on_dfl(memory_cgrp_subsys)) {
4893 memcg1_uncharge_skmem(memcg, nr_pages);
4894 return;
4895 }
4896
4897 mod_memcg_state(memcg, MEMCG_SOCK, -nr_pages);
4898
4899 refill_stock(memcg, nr_pages);
4900}
4901
4902static int __init cgroup_memory(char *s)
4903{
4904 char *token;
4905
4906 while ((token = strsep(&s, ",")) != NULL) {
4907 if (!*token)
4908 continue;
4909 if (!strcmp(token, "nosocket"))
4910 cgroup_memory_nosocket = true;
4911 if (!strcmp(token, "nokmem"))
4912 cgroup_memory_nokmem = true;
4913 if (!strcmp(token, "nobpf"))
4914 cgroup_memory_nobpf = true;
4915 }
4916 return 1;
4917}
4918__setup("cgroup.memory=", cgroup_memory);
4919
4920/*
4921 * subsys_initcall() for memory controller.
4922 *
4923 * Some parts like memcg_hotplug_cpu_dead() have to be initialized from this
4924 * context because of lock dependencies (cgroup_lock -> cpu hotplug) but
4925 * basically everything that doesn't depend on a specific mem_cgroup structure
4926 * should be initialized from here.
4927 */
4928static int __init mem_cgroup_init(void)
4929{
4930 int cpu;
4931
4932 /*
4933 * Currently s32 type (can refer to struct batched_lruvec_stat) is
4934 * used for per-memcg-per-cpu caching of per-node statistics. In order
4935 * to work fine, we should make sure that the overfill threshold can't
4936 * exceed S32_MAX / PAGE_SIZE.
4937 */
4938 BUILD_BUG_ON(MEMCG_CHARGE_BATCH > S32_MAX / PAGE_SIZE);
4939
4940 cpuhp_setup_state_nocalls(CPUHP_MM_MEMCQ_DEAD, "mm/memctrl:dead", NULL,
4941 memcg_hotplug_cpu_dead);
4942
4943 for_each_possible_cpu(cpu)
4944 INIT_WORK(&per_cpu_ptr(&memcg_stock, cpu)->work,
4945 drain_local_stock);
4946
4947 return 0;
4948}
4949subsys_initcall(mem_cgroup_init);
4950
4951#ifdef CONFIG_SWAP
4952static struct mem_cgroup *mem_cgroup_id_get_online(struct mem_cgroup *memcg)
4953{
4954 while (!refcount_inc_not_zero(&memcg->id.ref)) {
4955 /*
4956 * The root cgroup cannot be destroyed, so it's refcount must
4957 * always be >= 1.
4958 */
4959 if (WARN_ON_ONCE(mem_cgroup_is_root(memcg))) {
4960 VM_BUG_ON(1);
4961 break;
4962 }
4963 memcg = parent_mem_cgroup(memcg);
4964 if (!memcg)
4965 memcg = root_mem_cgroup;
4966 }
4967 return memcg;
4968}
4969
4970/**
4971 * mem_cgroup_swapout - transfer a memsw charge to swap
4972 * @folio: folio whose memsw charge to transfer
4973 * @entry: swap entry to move the charge to
4974 *
4975 * Transfer the memsw charge of @folio to @entry.
4976 */
4977void mem_cgroup_swapout(struct folio *folio, swp_entry_t entry)
4978{
4979 struct mem_cgroup *memcg, *swap_memcg;
4980 unsigned int nr_entries;
4981 unsigned short oldid;
4982
4983 VM_BUG_ON_FOLIO(folio_test_lru(folio), folio);
4984 VM_BUG_ON_FOLIO(folio_ref_count(folio), folio);
4985
4986 if (mem_cgroup_disabled())
4987 return;
4988
4989 if (!do_memsw_account())
4990 return;
4991
4992 memcg = folio_memcg(folio);
4993
4994 VM_WARN_ON_ONCE_FOLIO(!memcg, folio);
4995 if (!memcg)
4996 return;
4997
4998 /*
4999 * In case the memcg owning these pages has been offlined and doesn't
5000 * have an ID allocated to it anymore, charge the closest online
5001 * ancestor for the swap instead and transfer the memory+swap charge.
5002 */
5003 swap_memcg = mem_cgroup_id_get_online(memcg);
5004 nr_entries = folio_nr_pages(folio);
5005 /* Get references for the tail pages, too */
5006 if (nr_entries > 1)
5007 mem_cgroup_id_get_many(swap_memcg, nr_entries - 1);
5008 oldid = swap_cgroup_record(entry, mem_cgroup_id(swap_memcg),
5009 nr_entries);
5010 VM_BUG_ON_FOLIO(oldid, folio);
5011 mod_memcg_state(swap_memcg, MEMCG_SWAP, nr_entries);
5012
5013 folio_unqueue_deferred_split(folio);
5014 folio->memcg_data = 0;
5015
5016 if (!mem_cgroup_is_root(memcg))
5017 page_counter_uncharge(&memcg->memory, nr_entries);
5018
5019 if (memcg != swap_memcg) {
5020 if (!mem_cgroup_is_root(swap_memcg))
5021 page_counter_charge(&swap_memcg->memsw, nr_entries);
5022 page_counter_uncharge(&memcg->memsw, nr_entries);
5023 }
5024
5025 memcg1_swapout(folio, memcg);
5026 css_put(&memcg->css);
5027}
5028
5029/**
5030 * __mem_cgroup_try_charge_swap - try charging swap space for a folio
5031 * @folio: folio being added to swap
5032 * @entry: swap entry to charge
5033 *
5034 * Try to charge @folio's memcg for the swap space at @entry.
5035 *
5036 * Returns 0 on success, -ENOMEM on failure.
5037 */
5038int __mem_cgroup_try_charge_swap(struct folio *folio, swp_entry_t entry)
5039{
5040 unsigned int nr_pages = folio_nr_pages(folio);
5041 struct page_counter *counter;
5042 struct mem_cgroup *memcg;
5043 unsigned short oldid;
5044
5045 if (do_memsw_account())
5046 return 0;
5047
5048 memcg = folio_memcg(folio);
5049
5050 VM_WARN_ON_ONCE_FOLIO(!memcg, folio);
5051 if (!memcg)
5052 return 0;
5053
5054 if (!entry.val) {
5055 memcg_memory_event(memcg, MEMCG_SWAP_FAIL);
5056 return 0;
5057 }
5058
5059 memcg = mem_cgroup_id_get_online(memcg);
5060
5061 if (!mem_cgroup_is_root(memcg) &&
5062 !page_counter_try_charge(&memcg->swap, nr_pages, &counter)) {
5063 memcg_memory_event(memcg, MEMCG_SWAP_MAX);
5064 memcg_memory_event(memcg, MEMCG_SWAP_FAIL);
5065 mem_cgroup_id_put(memcg);
5066 return -ENOMEM;
5067 }
5068
5069 /* Get references for the tail pages, too */
5070 if (nr_pages > 1)
5071 mem_cgroup_id_get_many(memcg, nr_pages - 1);
5072 oldid = swap_cgroup_record(entry, mem_cgroup_id(memcg), nr_pages);
5073 VM_BUG_ON_FOLIO(oldid, folio);
5074 mod_memcg_state(memcg, MEMCG_SWAP, nr_pages);
5075
5076 return 0;
5077}
5078
5079/**
5080 * __mem_cgroup_uncharge_swap - uncharge swap space
5081 * @entry: swap entry to uncharge
5082 * @nr_pages: the amount of swap space to uncharge
5083 */
5084void __mem_cgroup_uncharge_swap(swp_entry_t entry, unsigned int nr_pages)
5085{
5086 struct mem_cgroup *memcg;
5087 unsigned short id;
5088
5089 id = swap_cgroup_record(entry, 0, nr_pages);
5090 rcu_read_lock();
5091 memcg = mem_cgroup_from_id(id);
5092 if (memcg) {
5093 if (!mem_cgroup_is_root(memcg)) {
5094 if (do_memsw_account())
5095 page_counter_uncharge(&memcg->memsw, nr_pages);
5096 else
5097 page_counter_uncharge(&memcg->swap, nr_pages);
5098 }
5099 mod_memcg_state(memcg, MEMCG_SWAP, -nr_pages);
5100 mem_cgroup_id_put_many(memcg, nr_pages);
5101 }
5102 rcu_read_unlock();
5103}
5104
5105long mem_cgroup_get_nr_swap_pages(struct mem_cgroup *memcg)
5106{
5107 long nr_swap_pages = get_nr_swap_pages();
5108
5109 if (mem_cgroup_disabled() || do_memsw_account())
5110 return nr_swap_pages;
5111 for (; !mem_cgroup_is_root(memcg); memcg = parent_mem_cgroup(memcg))
5112 nr_swap_pages = min_t(long, nr_swap_pages,
5113 READ_ONCE(memcg->swap.max) -
5114 page_counter_read(&memcg->swap));
5115 return nr_swap_pages;
5116}
5117
5118bool mem_cgroup_swap_full(struct folio *folio)
5119{
5120 struct mem_cgroup *memcg;
5121
5122 VM_BUG_ON_FOLIO(!folio_test_locked(folio), folio);
5123
5124 if (vm_swap_full())
5125 return true;
5126 if (do_memsw_account())
5127 return false;
5128
5129 memcg = folio_memcg(folio);
5130 if (!memcg)
5131 return false;
5132
5133 for (; !mem_cgroup_is_root(memcg); memcg = parent_mem_cgroup(memcg)) {
5134 unsigned long usage = page_counter_read(&memcg->swap);
5135
5136 if (usage * 2 >= READ_ONCE(memcg->swap.high) ||
5137 usage * 2 >= READ_ONCE(memcg->swap.max))
5138 return true;
5139 }
5140
5141 return false;
5142}
5143
5144static int __init setup_swap_account(char *s)
5145{
5146 bool res;
5147
5148 if (!kstrtobool(s, &res) && !res)
5149 pr_warn_once("The swapaccount=0 commandline option is deprecated "
5150 "in favor of configuring swap control via cgroupfs. "
5151 "Please report your usecase to linux-mm@kvack.org if you "
5152 "depend on this functionality.\n");
5153 return 1;
5154}
5155__setup("swapaccount=", setup_swap_account);
5156
5157static u64 swap_current_read(struct cgroup_subsys_state *css,
5158 struct cftype *cft)
5159{
5160 struct mem_cgroup *memcg = mem_cgroup_from_css(css);
5161
5162 return (u64)page_counter_read(&memcg->swap) * PAGE_SIZE;
5163}
5164
5165static int swap_peak_show(struct seq_file *sf, void *v)
5166{
5167 struct mem_cgroup *memcg = mem_cgroup_from_css(seq_css(sf));
5168
5169 return peak_show(sf, v, &memcg->swap);
5170}
5171
5172static ssize_t swap_peak_write(struct kernfs_open_file *of, char *buf,
5173 size_t nbytes, loff_t off)
5174{
5175 struct mem_cgroup *memcg = mem_cgroup_from_css(of_css(of));
5176
5177 return peak_write(of, buf, nbytes, off, &memcg->swap,
5178 &memcg->swap_peaks);
5179}
5180
5181static int swap_high_show(struct seq_file *m, void *v)
5182{
5183 return seq_puts_memcg_tunable(m,
5184 READ_ONCE(mem_cgroup_from_seq(m)->swap.high));
5185}
5186
5187static ssize_t swap_high_write(struct kernfs_open_file *of,
5188 char *buf, size_t nbytes, loff_t off)
5189{
5190 struct mem_cgroup *memcg = mem_cgroup_from_css(of_css(of));
5191 unsigned long high;
5192 int err;
5193
5194 buf = strstrip(buf);
5195 err = page_counter_memparse(buf, "max", &high);
5196 if (err)
5197 return err;
5198
5199 page_counter_set_high(&memcg->swap, high);
5200
5201 return nbytes;
5202}
5203
5204static int swap_max_show(struct seq_file *m, void *v)
5205{
5206 return seq_puts_memcg_tunable(m,
5207 READ_ONCE(mem_cgroup_from_seq(m)->swap.max));
5208}
5209
5210static ssize_t swap_max_write(struct kernfs_open_file *of,
5211 char *buf, size_t nbytes, loff_t off)
5212{
5213 struct mem_cgroup *memcg = mem_cgroup_from_css(of_css(of));
5214 unsigned long max;
5215 int err;
5216
5217 buf = strstrip(buf);
5218 err = page_counter_memparse(buf, "max", &max);
5219 if (err)
5220 return err;
5221
5222 xchg(&memcg->swap.max, max);
5223
5224 return nbytes;
5225}
5226
5227static int swap_events_show(struct seq_file *m, void *v)
5228{
5229 struct mem_cgroup *memcg = mem_cgroup_from_seq(m);
5230
5231 seq_printf(m, "high %lu\n",
5232 atomic_long_read(&memcg->memory_events[MEMCG_SWAP_HIGH]));
5233 seq_printf(m, "max %lu\n",
5234 atomic_long_read(&memcg->memory_events[MEMCG_SWAP_MAX]));
5235 seq_printf(m, "fail %lu\n",
5236 atomic_long_read(&memcg->memory_events[MEMCG_SWAP_FAIL]));
5237
5238 return 0;
5239}
5240
5241static struct cftype swap_files[] = {
5242 {
5243 .name = "swap.current",
5244 .flags = CFTYPE_NOT_ON_ROOT,
5245 .read_u64 = swap_current_read,
5246 },
5247 {
5248 .name = "swap.high",
5249 .flags = CFTYPE_NOT_ON_ROOT,
5250 .seq_show = swap_high_show,
5251 .write = swap_high_write,
5252 },
5253 {
5254 .name = "swap.max",
5255 .flags = CFTYPE_NOT_ON_ROOT,
5256 .seq_show = swap_max_show,
5257 .write = swap_max_write,
5258 },
5259 {
5260 .name = "swap.peak",
5261 .flags = CFTYPE_NOT_ON_ROOT,
5262 .open = peak_open,
5263 .release = peak_release,
5264 .seq_show = swap_peak_show,
5265 .write = swap_peak_write,
5266 },
5267 {
5268 .name = "swap.events",
5269 .flags = CFTYPE_NOT_ON_ROOT,
5270 .file_offset = offsetof(struct mem_cgroup, swap_events_file),
5271 .seq_show = swap_events_show,
5272 },
5273 { } /* terminate */
5274};
5275
5276#ifdef CONFIG_ZSWAP
5277/**
5278 * obj_cgroup_may_zswap - check if this cgroup can zswap
5279 * @objcg: the object cgroup
5280 *
5281 * Check if the hierarchical zswap limit has been reached.
5282 *
5283 * This doesn't check for specific headroom, and it is not atomic
5284 * either. But with zswap, the size of the allocation is only known
5285 * once compression has occurred, and this optimistic pre-check avoids
5286 * spending cycles on compression when there is already no room left
5287 * or zswap is disabled altogether somewhere in the hierarchy.
5288 */
5289bool obj_cgroup_may_zswap(struct obj_cgroup *objcg)
5290{
5291 struct mem_cgroup *memcg, *original_memcg;
5292 bool ret = true;
5293
5294 if (!cgroup_subsys_on_dfl(memory_cgrp_subsys))
5295 return true;
5296
5297 original_memcg = get_mem_cgroup_from_objcg(objcg);
5298 for (memcg = original_memcg; !mem_cgroup_is_root(memcg);
5299 memcg = parent_mem_cgroup(memcg)) {
5300 unsigned long max = READ_ONCE(memcg->zswap_max);
5301 unsigned long pages;
5302
5303 if (max == PAGE_COUNTER_MAX)
5304 continue;
5305 if (max == 0) {
5306 ret = false;
5307 break;
5308 }
5309
5310 /* Force flush to get accurate stats for charging */
5311 __mem_cgroup_flush_stats(memcg, true);
5312 pages = memcg_page_state(memcg, MEMCG_ZSWAP_B) / PAGE_SIZE;
5313 if (pages < max)
5314 continue;
5315 ret = false;
5316 break;
5317 }
5318 mem_cgroup_put(original_memcg);
5319 return ret;
5320}
5321
5322/**
5323 * obj_cgroup_charge_zswap - charge compression backend memory
5324 * @objcg: the object cgroup
5325 * @size: size of compressed object
5326 *
5327 * This forces the charge after obj_cgroup_may_zswap() allowed
5328 * compression and storage in zwap for this cgroup to go ahead.
5329 */
5330void obj_cgroup_charge_zswap(struct obj_cgroup *objcg, size_t size)
5331{
5332 struct mem_cgroup *memcg;
5333
5334 if (!cgroup_subsys_on_dfl(memory_cgrp_subsys))
5335 return;
5336
5337 VM_WARN_ON_ONCE(!(current->flags & PF_MEMALLOC));
5338
5339 /* PF_MEMALLOC context, charging must succeed */
5340 if (obj_cgroup_charge(objcg, GFP_KERNEL, size))
5341 VM_WARN_ON_ONCE(1);
5342
5343 rcu_read_lock();
5344 memcg = obj_cgroup_memcg(objcg);
5345 mod_memcg_state(memcg, MEMCG_ZSWAP_B, size);
5346 mod_memcg_state(memcg, MEMCG_ZSWAPPED, 1);
5347 rcu_read_unlock();
5348}
5349
5350/**
5351 * obj_cgroup_uncharge_zswap - uncharge compression backend memory
5352 * @objcg: the object cgroup
5353 * @size: size of compressed object
5354 *
5355 * Uncharges zswap memory on page in.
5356 */
5357void obj_cgroup_uncharge_zswap(struct obj_cgroup *objcg, size_t size)
5358{
5359 struct mem_cgroup *memcg;
5360
5361 if (!cgroup_subsys_on_dfl(memory_cgrp_subsys))
5362 return;
5363
5364 obj_cgroup_uncharge(objcg, size);
5365
5366 rcu_read_lock();
5367 memcg = obj_cgroup_memcg(objcg);
5368 mod_memcg_state(memcg, MEMCG_ZSWAP_B, -size);
5369 mod_memcg_state(memcg, MEMCG_ZSWAPPED, -1);
5370 rcu_read_unlock();
5371}
5372
5373bool mem_cgroup_zswap_writeback_enabled(struct mem_cgroup *memcg)
5374{
5375 /* if zswap is disabled, do not block pages going to the swapping device */
5376 if (!zswap_is_enabled())
5377 return true;
5378
5379 for (; memcg; memcg = parent_mem_cgroup(memcg))
5380 if (!READ_ONCE(memcg->zswap_writeback))
5381 return false;
5382
5383 return true;
5384}
5385
5386static u64 zswap_current_read(struct cgroup_subsys_state *css,
5387 struct cftype *cft)
5388{
5389 struct mem_cgroup *memcg = mem_cgroup_from_css(css);
5390
5391 mem_cgroup_flush_stats(memcg);
5392 return memcg_page_state(memcg, MEMCG_ZSWAP_B);
5393}
5394
5395static int zswap_max_show(struct seq_file *m, void *v)
5396{
5397 return seq_puts_memcg_tunable(m,
5398 READ_ONCE(mem_cgroup_from_seq(m)->zswap_max));
5399}
5400
5401static ssize_t zswap_max_write(struct kernfs_open_file *of,
5402 char *buf, size_t nbytes, loff_t off)
5403{
5404 struct mem_cgroup *memcg = mem_cgroup_from_css(of_css(of));
5405 unsigned long max;
5406 int err;
5407
5408 buf = strstrip(buf);
5409 err = page_counter_memparse(buf, "max", &max);
5410 if (err)
5411 return err;
5412
5413 xchg(&memcg->zswap_max, max);
5414
5415 return nbytes;
5416}
5417
5418static int zswap_writeback_show(struct seq_file *m, void *v)
5419{
5420 struct mem_cgroup *memcg = mem_cgroup_from_seq(m);
5421
5422 seq_printf(m, "%d\n", READ_ONCE(memcg->zswap_writeback));
5423 return 0;
5424}
5425
5426static ssize_t zswap_writeback_write(struct kernfs_open_file *of,
5427 char *buf, size_t nbytes, loff_t off)
5428{
5429 struct mem_cgroup *memcg = mem_cgroup_from_css(of_css(of));
5430 int zswap_writeback;
5431 ssize_t parse_ret = kstrtoint(strstrip(buf), 0, &zswap_writeback);
5432
5433 if (parse_ret)
5434 return parse_ret;
5435
5436 if (zswap_writeback != 0 && zswap_writeback != 1)
5437 return -EINVAL;
5438
5439 WRITE_ONCE(memcg->zswap_writeback, zswap_writeback);
5440 return nbytes;
5441}
5442
5443static struct cftype zswap_files[] = {
5444 {
5445 .name = "zswap.current",
5446 .flags = CFTYPE_NOT_ON_ROOT,
5447 .read_u64 = zswap_current_read,
5448 },
5449 {
5450 .name = "zswap.max",
5451 .flags = CFTYPE_NOT_ON_ROOT,
5452 .seq_show = zswap_max_show,
5453 .write = zswap_max_write,
5454 },
5455 {
5456 .name = "zswap.writeback",
5457 .seq_show = zswap_writeback_show,
5458 .write = zswap_writeback_write,
5459 },
5460 { } /* terminate */
5461};
5462#endif /* CONFIG_ZSWAP */
5463
5464static int __init mem_cgroup_swap_init(void)
5465{
5466 if (mem_cgroup_disabled())
5467 return 0;
5468
5469 WARN_ON(cgroup_add_dfl_cftypes(&memory_cgrp_subsys, swap_files));
5470#ifdef CONFIG_MEMCG_V1
5471 WARN_ON(cgroup_add_legacy_cftypes(&memory_cgrp_subsys, memsw_files));
5472#endif
5473#ifdef CONFIG_ZSWAP
5474 WARN_ON(cgroup_add_dfl_cftypes(&memory_cgrp_subsys, zswap_files));
5475#endif
5476 return 0;
5477}
5478subsys_initcall(mem_cgroup_swap_init);
5479
5480#endif /* CONFIG_SWAP */