Linux Audio

Check our new training course

Loading...
v3.1
 
   1/* memcontrol.c - Memory Controller
   2 *
   3 * Copyright IBM Corporation, 2007
   4 * Author Balbir Singh <balbir@linux.vnet.ibm.com>
   5 *
   6 * Copyright 2007 OpenVZ SWsoft Inc
   7 * Author: Pavel Emelianov <xemul@openvz.org>
   8 *
   9 * Memory thresholds
  10 * Copyright (C) 2009 Nokia Corporation
  11 * Author: Kirill A. Shutemov
  12 *
  13 * This program is free software; you can redistribute it and/or modify
  14 * it under the terms of the GNU General Public License as published by
  15 * the Free Software Foundation; either version 2 of the License, or
  16 * (at your option) any later version.
  17 *
  18 * This program is distributed in the hope that it will be useful,
  19 * but WITHOUT ANY WARRANTY; without even the implied warranty of
  20 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
  21 * GNU General Public License for more details.
  22 */
  23
  24#include <linux/res_counter.h>
  25#include <linux/memcontrol.h>
  26#include <linux/cgroup.h>
  27#include <linux/mm.h>
 
 
  28#include <linux/hugetlb.h>
  29#include <linux/pagemap.h>
 
  30#include <linux/smp.h>
  31#include <linux/page-flags.h>
  32#include <linux/backing-dev.h>
  33#include <linux/bit_spinlock.h>
  34#include <linux/rcupdate.h>
  35#include <linux/limits.h>
 
  36#include <linux/mutex.h>
  37#include <linux/rbtree.h>
  38#include <linux/slab.h>
  39#include <linux/swap.h>
  40#include <linux/swapops.h>
  41#include <linux/spinlock.h>
  42#include <linux/eventfd.h>
 
  43#include <linux/sort.h>
  44#include <linux/fs.h>
  45#include <linux/seq_file.h>
  46#include <linux/vmalloc.h>
  47#include <linux/mm_inline.h>
  48#include <linux/page_cgroup.h>
  49#include <linux/cpu.h>
  50#include <linux/oom.h>
 
 
 
 
 
  51#include "internal.h"
 
 
 
  52
  53#include <asm/uaccess.h>
  54
  55#include <trace/events/vmscan.h>
  56
  57struct cgroup_subsys mem_cgroup_subsys __read_mostly;
  58#define MEM_CGROUP_RECLAIM_RETRIES	5
 
  59struct mem_cgroup *root_mem_cgroup __read_mostly;
  60
  61#ifdef CONFIG_CGROUP_MEM_RES_CTLR_SWAP
  62/* Turned on only when memory cgroup is enabled && really_do_swap_account = 1 */
  63int do_swap_account __read_mostly;
  64
  65/* for remember boot option*/
  66#ifdef CONFIG_CGROUP_MEM_RES_CTLR_SWAP_ENABLED
  67static int really_do_swap_account __initdata = 1;
  68#else
  69static int really_do_swap_account __initdata = 0;
  70#endif
  71
 
 
 
 
 
 
  72#else
  73#define do_swap_account		(0)
  74#endif
  75
 
 
 
  76
  77/*
  78 * Statistics for memory cgroup.
  79 */
  80enum mem_cgroup_stat_index {
  81	/*
  82	 * For MEM_CONTAINER_TYPE_ALL, usage = pagecache + rss.
  83	 */
  84	MEM_CGROUP_STAT_CACHE, 	   /* # of pages charged as cache */
  85	MEM_CGROUP_STAT_RSS,	   /* # of pages charged as anon rss */
  86	MEM_CGROUP_STAT_FILE_MAPPED,  /* # of pages charged as file rss */
  87	MEM_CGROUP_STAT_SWAPOUT, /* # of pages, swapped out */
  88	MEM_CGROUP_STAT_DATA, /* end of data requires synchronization */
  89	MEM_CGROUP_ON_MOVE,	/* someone is moving account between groups */
  90	MEM_CGROUP_STAT_NSTATS,
  91};
  92
  93enum mem_cgroup_events_index {
  94	MEM_CGROUP_EVENTS_PGPGIN,	/* # of pages paged in */
  95	MEM_CGROUP_EVENTS_PGPGOUT,	/* # of pages paged out */
  96	MEM_CGROUP_EVENTS_COUNT,	/* # of pages paged in/out */
  97	MEM_CGROUP_EVENTS_PGFAULT,	/* # of page-faults */
  98	MEM_CGROUP_EVENTS_PGMAJFAULT,	/* # of major page-faults */
  99	MEM_CGROUP_EVENTS_NSTATS,
 100};
 101/*
 102 * Per memcg event counter is incremented at every pagein/pageout. With THP,
 103 * it will be incremated by the number of pages. This counter is used for
 104 * for trigger some periodic events. This is straightforward and better
 105 * than using jiffies etc. to handle periodic memcg event.
 106 */
 107enum mem_cgroup_events_target {
 108	MEM_CGROUP_TARGET_THRESH,
 109	MEM_CGROUP_TARGET_SOFTLIMIT,
 110	MEM_CGROUP_TARGET_NUMAINFO,
 111	MEM_CGROUP_NTARGETS,
 112};
 113#define THRESHOLDS_EVENTS_TARGET (128)
 114#define SOFTLIMIT_EVENTS_TARGET (1024)
 115#define NUMAINFO_EVENTS_TARGET	(1024)
 116
 117struct mem_cgroup_stat_cpu {
 118	long count[MEM_CGROUP_STAT_NSTATS];
 119	unsigned long events[MEM_CGROUP_EVENTS_NSTATS];
 120	unsigned long targets[MEM_CGROUP_NTARGETS];
 121};
 122
 123/*
 124 * per-zone information in memory controller.
 125 */
 126struct mem_cgroup_per_zone {
 127	/*
 128	 * spin_lock to protect the per cgroup LRU
 129	 */
 130	struct list_head	lists[NR_LRU_LISTS];
 131	unsigned long		count[NR_LRU_LISTS];
 132
 133	struct zone_reclaim_stat reclaim_stat;
 134	struct rb_node		tree_node;	/* RB tree node */
 135	unsigned long long	usage_in_excess;/* Set to the value by which */
 136						/* the soft limit is exceeded*/
 137	bool			on_tree;
 138	struct mem_cgroup	*mem;		/* Back pointer, we cannot */
 139						/* use container_of	   */
 140};
 141/* Macro for accessing counter */
 142#define MEM_CGROUP_ZSTAT(mz, idx)	((mz)->count[(idx)])
 143
 144struct mem_cgroup_per_node {
 145	struct mem_cgroup_per_zone zoneinfo[MAX_NR_ZONES];
 
 
 
 
 146};
 147
 148struct mem_cgroup_lru_info {
 149	struct mem_cgroup_per_node *nodeinfo[MAX_NUMNODES];
 150};
 151
 152/*
 153 * Cgroups above their limits are maintained in a RB-Tree, independent of
 154 * their hierarchy representation
 155 */
 156
 157struct mem_cgroup_tree_per_zone {
 158	struct rb_root rb_root;
 
 159	spinlock_t lock;
 160};
 161
 162struct mem_cgroup_tree_per_node {
 163	struct mem_cgroup_tree_per_zone rb_tree_per_zone[MAX_NR_ZONES];
 164};
 165
 166struct mem_cgroup_tree {
 167	struct mem_cgroup_tree_per_node *rb_tree_per_node[MAX_NUMNODES];
 168};
 169
 170static struct mem_cgroup_tree soft_limit_tree __read_mostly;
 171
 172struct mem_cgroup_threshold {
 173	struct eventfd_ctx *eventfd;
 174	u64 threshold;
 175};
 176
 177/* For threshold */
 178struct mem_cgroup_threshold_ary {
 179	/* An array index points to threshold just below usage. */
 180	int current_threshold;
 181	/* Size of entries[] */
 182	unsigned int size;
 183	/* Array of thresholds */
 184	struct mem_cgroup_threshold entries[0];
 185};
 186
 187struct mem_cgroup_thresholds {
 188	/* Primary thresholds array */
 189	struct mem_cgroup_threshold_ary *primary;
 190	/*
 191	 * Spare threshold array.
 192	 * This is needed to make mem_cgroup_unregister_event() "never fail".
 193	 * It must be able to store at least primary->size - 1 entries.
 194	 */
 195	struct mem_cgroup_threshold_ary *spare;
 196};
 197
 198/* for OOM */
 199struct mem_cgroup_eventfd_list {
 200	struct list_head list;
 201	struct eventfd_ctx *eventfd;
 202};
 203
 204static void mem_cgroup_threshold(struct mem_cgroup *mem);
 205static void mem_cgroup_oom_notify(struct mem_cgroup *mem);
 206
 207/*
 208 * The memory controller data structure. The memory controller controls both
 209 * page cache and RSS per cgroup. We would eventually like to provide
 210 * statistics based on the statistics developed by Rik Van Riel for clock-pro,
 211 * to help the administrator determine what knobs to tune.
 212 *
 213 * TODO: Add a water mark for the memory controller. Reclaim will begin when
 214 * we hit the water mark. May be even add a low water mark, such that
 215 * no reclaim occurs from a cgroup at it's low water mark, this is
 216 * a feature that will be implemented much later in the future.
 217 */
 218struct mem_cgroup {
 219	struct cgroup_subsys_state css;
 220	/*
 221	 * the counter to account for memory usage
 222	 */
 223	struct res_counter res;
 224	/*
 225	 * the counter to account for mem+swap usage.
 226	 */
 227	struct res_counter memsw;
 228	/*
 229	 * Per cgroup active and inactive list, similar to the
 230	 * per zone LRU lists.
 231	 */
 232	struct mem_cgroup_lru_info info;
 233	/*
 234	 * While reclaiming in a hierarchy, we cache the last child we
 235	 * reclaimed from.
 236	 */
 237	int last_scanned_child;
 238	int last_scanned_node;
 239#if MAX_NUMNODES > 1
 240	nodemask_t	scan_nodes;
 241	atomic_t	numainfo_events;
 242	atomic_t	numainfo_updating;
 243#endif
 244	/*
 245	 * Should the accounting and control be hierarchical, per subtree?
 246	 */
 247	bool use_hierarchy;
 248
 249	bool		oom_lock;
 250	atomic_t	under_oom;
 251
 252	atomic_t	refcnt;
 253
 254	int	swappiness;
 255	/* OOM-Killer disable */
 256	int		oom_kill_disable;
 257
 258	/* set when res.limit == memsw.limit */
 259	bool		memsw_is_minimum;
 260
 261	/* protect arrays of thresholds */
 262	struct mutex thresholds_lock;
 263
 264	/* thresholds for memory usage. RCU-protected */
 265	struct mem_cgroup_thresholds thresholds;
 266
 267	/* thresholds for mem+swap usage. RCU-protected */
 268	struct mem_cgroup_thresholds memsw_thresholds;
 269
 270	/* For oom notifier event fd */
 271	struct list_head oom_notify;
 272
 273	/*
 274	 * Should we move charges of a task when a task is moved into this
 275	 * mem_cgroup ? And what type of charges should we move ?
 276	 */
 277	unsigned long 	move_charge_at_immigrate;
 278	/*
 279	 * percpu counter.
 280	 */
 281	struct mem_cgroup_stat_cpu *stat;
 282	/*
 283	 * used when a cpu is offlined or other synchronizations
 284	 * See mem_cgroup_read_stat().
 285	 */
 286	struct mem_cgroup_stat_cpu nocpu_base;
 287	spinlock_t pcp_counter_lock;
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 288};
 289
 
 
 
 290/* Stuffs for move charges at task migration. */
 291/*
 292 * Types of charges to be moved. "move_charge_at_immitgrate" is treated as a
 293 * left-shifted bitmap of these types.
 294 */
 295enum move_type {
 296	MOVE_CHARGE_TYPE_ANON,	/* private anonymous page and swap of it */
 297	MOVE_CHARGE_TYPE_FILE,	/* file page(including tmpfs) and swap of it */
 298	NR_MOVE_TYPE,
 299};
 300
 301/* "mc" and its members are protected by cgroup_mutex */
 302static struct move_charge_struct {
 303	spinlock_t	  lock; /* for from, to */
 
 304	struct mem_cgroup *from;
 305	struct mem_cgroup *to;
 
 306	unsigned long precharge;
 307	unsigned long moved_charge;
 308	unsigned long moved_swap;
 309	struct task_struct *moving_task;	/* a task moving charges */
 310	wait_queue_head_t waitq;		/* a waitq for other context */
 311} mc = {
 312	.lock = __SPIN_LOCK_UNLOCKED(mc.lock),
 313	.waitq = __WAIT_QUEUE_HEAD_INITIALIZER(mc.waitq),
 314};
 315
 316static bool move_anon(void)
 317{
 318	return test_bit(MOVE_CHARGE_TYPE_ANON,
 319					&mc.to->move_charge_at_immigrate);
 320}
 321
 322static bool move_file(void)
 323{
 324	return test_bit(MOVE_CHARGE_TYPE_FILE,
 325					&mc.to->move_charge_at_immigrate);
 326}
 327
 328/*
 329 * Maximum loops in mem_cgroup_hierarchical_reclaim(), used for soft
 330 * limit reclaim to prevent infinite loops, if they ever occur.
 331 */
 332#define	MEM_CGROUP_MAX_RECLAIM_LOOPS		(100)
 333#define	MEM_CGROUP_MAX_SOFT_LIMIT_RECLAIM_LOOPS	(2)
 334
 335enum charge_type {
 336	MEM_CGROUP_CHARGE_TYPE_CACHE = 0,
 337	MEM_CGROUP_CHARGE_TYPE_MAPPED,
 338	MEM_CGROUP_CHARGE_TYPE_SHMEM,	/* used by page migration of shmem */
 339	MEM_CGROUP_CHARGE_TYPE_FORCE,	/* used by force_empty */
 340	MEM_CGROUP_CHARGE_TYPE_SWAPOUT,	/* for accounting swapcache */
 341	MEM_CGROUP_CHARGE_TYPE_DROP,	/* a page was unused swap cache */
 342	NR_CHARGE_TYPE,
 343};
 344
 345/* for encoding cft->private value on file */
 346#define _MEM			(0)
 347#define _MEMSWAP		(1)
 348#define _OOM_TYPE		(2)
 349#define MEMFILE_PRIVATE(x, val)	(((x) << 16) | (val))
 350#define MEMFILE_TYPE(val)	(((val) >> 16) & 0xffff)
 
 
 
 
 
 351#define MEMFILE_ATTR(val)	((val) & 0xffff)
 352/* Used for OOM nofiier */
 353#define OOM_CONTROL		(0)
 354
 355/*
 356 * Reclaim flags for mem_cgroup_hierarchical_reclaim
 
 
 357 */
 358#define MEM_CGROUP_RECLAIM_NOSWAP_BIT	0x0
 359#define MEM_CGROUP_RECLAIM_NOSWAP	(1 << MEM_CGROUP_RECLAIM_NOSWAP_BIT)
 360#define MEM_CGROUP_RECLAIM_SHRINK_BIT	0x1
 361#define MEM_CGROUP_RECLAIM_SHRINK	(1 << MEM_CGROUP_RECLAIM_SHRINK_BIT)
 362#define MEM_CGROUP_RECLAIM_SOFT_BIT	0x2
 363#define MEM_CGROUP_RECLAIM_SOFT		(1 << MEM_CGROUP_RECLAIM_SOFT_BIT)
 
 
 
 364
 365static void mem_cgroup_get(struct mem_cgroup *mem);
 366static void mem_cgroup_put(struct mem_cgroup *mem);
 367static struct mem_cgroup *parent_mem_cgroup(struct mem_cgroup *mem);
 368static void drain_all_stock_async(struct mem_cgroup *mem);
 
 
 
 
 
 
 
 
 
 369
 370static struct mem_cgroup_per_zone *
 371mem_cgroup_zoneinfo(struct mem_cgroup *mem, int nid, int zid)
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 372{
 373	return &mem->info.nodeinfo[nid]->zoneinfo[zid];
 
 
 
 
 
 
 
 374}
 375
 376struct cgroup_subsys_state *mem_cgroup_css(struct mem_cgroup *mem)
 
 
 
 
 
 
 
 
 
 
 
 
 
 377{
 378	return &mem->css;
 
 
 
 
 
 
 
 
 
 
 
 
 
 379}
 380
 381static struct mem_cgroup_per_zone *
 382page_cgroup_zoneinfo(struct mem_cgroup *mem, struct page *page)
 383{
 384	int nid = page_to_nid(page);
 385	int zid = page_zonenum(page);
 386
 387	return mem_cgroup_zoneinfo(mem, nid, zid);
 388}
 389
 390static struct mem_cgroup_tree_per_zone *
 391soft_limit_tree_node_zone(int nid, int zid)
 392{
 393	return &soft_limit_tree.rb_tree_per_node[nid]->rb_tree_per_zone[zid];
 394}
 395
 396static struct mem_cgroup_tree_per_zone *
 397soft_limit_tree_from_page(struct page *page)
 398{
 399	int nid = page_to_nid(page);
 400	int zid = page_zonenum(page);
 401
 402	return &soft_limit_tree.rb_tree_per_node[nid]->rb_tree_per_zone[zid];
 403}
 404
 405static void
 406__mem_cgroup_insert_exceeded(struct mem_cgroup *mem,
 407				struct mem_cgroup_per_zone *mz,
 408				struct mem_cgroup_tree_per_zone *mctz,
 409				unsigned long long new_usage_in_excess)
 410{
 411	struct rb_node **p = &mctz->rb_root.rb_node;
 412	struct rb_node *parent = NULL;
 413	struct mem_cgroup_per_zone *mz_node;
 
 414
 415	if (mz->on_tree)
 416		return;
 417
 418	mz->usage_in_excess = new_usage_in_excess;
 419	if (!mz->usage_in_excess)
 420		return;
 421	while (*p) {
 422		parent = *p;
 423		mz_node = rb_entry(parent, struct mem_cgroup_per_zone,
 424					tree_node);
 425		if (mz->usage_in_excess < mz_node->usage_in_excess)
 426			p = &(*p)->rb_left;
 
 
 
 427		/*
 428		 * We can't avoid mem cgroups that are over their soft
 429		 * limit by the same amount
 430		 */
 431		else if (mz->usage_in_excess >= mz_node->usage_in_excess)
 432			p = &(*p)->rb_right;
 433	}
 
 
 
 
 434	rb_link_node(&mz->tree_node, parent, p);
 435	rb_insert_color(&mz->tree_node, &mctz->rb_root);
 436	mz->on_tree = true;
 437}
 438
 439static void
 440__mem_cgroup_remove_exceeded(struct mem_cgroup *mem,
 441				struct mem_cgroup_per_zone *mz,
 442				struct mem_cgroup_tree_per_zone *mctz)
 443{
 444	if (!mz->on_tree)
 445		return;
 
 
 
 
 446	rb_erase(&mz->tree_node, &mctz->rb_root);
 447	mz->on_tree = false;
 448}
 449
 450static void
 451mem_cgroup_remove_exceeded(struct mem_cgroup *mem,
 452				struct mem_cgroup_per_zone *mz,
 453				struct mem_cgroup_tree_per_zone *mctz)
 454{
 455	spin_lock(&mctz->lock);
 456	__mem_cgroup_remove_exceeded(mem, mz, mctz);
 457	spin_unlock(&mctz->lock);
 
 
 458}
 459
 
 
 
 
 
 
 
 
 
 
 
 460
 461static void mem_cgroup_update_tree(struct mem_cgroup *mem, struct page *page)
 462{
 463	unsigned long long excess;
 464	struct mem_cgroup_per_zone *mz;
 465	struct mem_cgroup_tree_per_zone *mctz;
 466	int nid = page_to_nid(page);
 467	int zid = page_zonenum(page);
 468	mctz = soft_limit_tree_from_page(page);
 469
 
 
 
 470	/*
 471	 * Necessary to update all ancestors when hierarchy is used.
 472	 * because their event counter is not touched.
 473	 */
 474	for (; mem; mem = parent_mem_cgroup(mem)) {
 475		mz = mem_cgroup_zoneinfo(mem, nid, zid);
 476		excess = res_counter_soft_limit_excess(&mem->res);
 477		/*
 478		 * We have to update the tree if mz is on RB-tree or
 479		 * mem is over its softlimit.
 480		 */
 481		if (excess || mz->on_tree) {
 482			spin_lock(&mctz->lock);
 
 
 483			/* if on-tree, remove it */
 484			if (mz->on_tree)
 485				__mem_cgroup_remove_exceeded(mem, mz, mctz);
 486			/*
 487			 * Insert again. mz->usage_in_excess will be updated.
 488			 * If excess is 0, no tree ops.
 489			 */
 490			__mem_cgroup_insert_exceeded(mem, mz, mctz, excess);
 491			spin_unlock(&mctz->lock);
 492		}
 493	}
 494}
 495
 496static void mem_cgroup_remove_from_trees(struct mem_cgroup *mem)
 497{
 498	int node, zone;
 499	struct mem_cgroup_per_zone *mz;
 500	struct mem_cgroup_tree_per_zone *mctz;
 501
 502	for_each_node_state(node, N_POSSIBLE) {
 503		for (zone = 0; zone < MAX_NR_ZONES; zone++) {
 504			mz = mem_cgroup_zoneinfo(mem, node, zone);
 505			mctz = soft_limit_tree_node_zone(node, zone);
 506			mem_cgroup_remove_exceeded(mem, mz, mctz);
 507		}
 508	}
 509}
 510
 511static struct mem_cgroup_per_zone *
 512__mem_cgroup_largest_soft_limit_node(struct mem_cgroup_tree_per_zone *mctz)
 513{
 514	struct rb_node *rightmost = NULL;
 515	struct mem_cgroup_per_zone *mz;
 516
 517retry:
 518	mz = NULL;
 519	rightmost = rb_last(&mctz->rb_root);
 520	if (!rightmost)
 521		goto done;		/* Nothing to reclaim from */
 522
 523	mz = rb_entry(rightmost, struct mem_cgroup_per_zone, tree_node);
 
 524	/*
 525	 * Remove the node now but someone else can add it back,
 526	 * we will to add it back at the end of reclaim to its correct
 527	 * position in the tree.
 528	 */
 529	__mem_cgroup_remove_exceeded(mz->mem, mz, mctz);
 530	if (!res_counter_soft_limit_excess(&mz->mem->res) ||
 531		!css_tryget(&mz->mem->css))
 532		goto retry;
 533done:
 534	return mz;
 535}
 536
 537static struct mem_cgroup_per_zone *
 538mem_cgroup_largest_soft_limit_node(struct mem_cgroup_tree_per_zone *mctz)
 539{
 540	struct mem_cgroup_per_zone *mz;
 541
 542	spin_lock(&mctz->lock);
 543	mz = __mem_cgroup_largest_soft_limit_node(mctz);
 544	spin_unlock(&mctz->lock);
 545	return mz;
 546}
 547
 548/*
 549 * Implementation Note: reading percpu statistics for memcg.
 550 *
 551 * Both of vmstat[] and percpu_counter has threshold and do periodic
 552 * synchronization to implement "quick" read. There are trade-off between
 553 * reading cost and precision of value. Then, we may have a chance to implement
 554 * a periodic synchronizion of counter in memcg's counter.
 555 *
 556 * But this _read() function is used for user interface now. The user accounts
 557 * memory usage by memory cgroup and he _always_ requires exact value because
 558 * he accounts memory. Even if we provide quick-and-fuzzy read, we always
 559 * have to visit all online cpus and make sum. So, for now, unnecessary
 560 * synchronization is not implemented. (just implemented for cpu hotplug)
 561 *
 562 * If there are kernel internal actions which can make use of some not-exact
 563 * value, and reading all cpu value can be performance bottleneck in some
 564 * common workload, threashold and synchonization as vmstat[] should be
 565 * implemented.
 566 */
 567static long mem_cgroup_read_stat(struct mem_cgroup *mem,
 568				 enum mem_cgroup_stat_index idx)
 569{
 570	long val = 0;
 571	int cpu;
 572
 573	get_online_cpus();
 574	for_each_online_cpu(cpu)
 575		val += per_cpu(mem->stat->count[idx], cpu);
 576#ifdef CONFIG_HOTPLUG_CPU
 577	spin_lock(&mem->pcp_counter_lock);
 578	val += mem->nocpu_base.count[idx];
 579	spin_unlock(&mem->pcp_counter_lock);
 580#endif
 581	put_online_cpus();
 582	return val;
 583}
 584
 585static void mem_cgroup_swap_statistics(struct mem_cgroup *mem,
 586					 bool charge)
 587{
 588	int val = (charge) ? 1 : -1;
 589	this_cpu_add(mem->stat->count[MEM_CGROUP_STAT_SWAPOUT], val);
 590}
 591
 592void mem_cgroup_pgfault(struct mem_cgroup *mem, int val)
 593{
 594	this_cpu_add(mem->stat->events[MEM_CGROUP_EVENTS_PGFAULT], val);
 
 
 
 
 
 
 
 595}
 596
 597void mem_cgroup_pgmajfault(struct mem_cgroup *mem, int val)
 
 598{
 599	this_cpu_add(mem->stat->events[MEM_CGROUP_EVENTS_PGMAJFAULT], val);
 
 
 
 
 
 600}
 601
 602static unsigned long mem_cgroup_read_events(struct mem_cgroup *mem,
 603					    enum mem_cgroup_events_index idx)
 
 
 
 
 
 
 
 
 
 
 604{
 605	unsigned long val = 0;
 606	int cpu;
 
 
 607
 608	for_each_online_cpu(cpu)
 609		val += per_cpu(mem->stat->events[idx], cpu);
 610#ifdef CONFIG_HOTPLUG_CPU
 611	spin_lock(&mem->pcp_counter_lock);
 612	val += mem->nocpu_base.events[idx];
 613	spin_unlock(&mem->pcp_counter_lock);
 614#endif
 615	return val;
 616}
 617
 618static void mem_cgroup_charge_statistics(struct mem_cgroup *mem,
 619					 bool file, int nr_pages)
 620{
 621	preempt_disable();
 622
 623	if (file)
 624		__this_cpu_add(mem->stat->count[MEM_CGROUP_STAT_CACHE], nr_pages);
 625	else
 626		__this_cpu_add(mem->stat->count[MEM_CGROUP_STAT_RSS], nr_pages);
 627
 628	/* pagein of a big page is an event. So, ignore page size */
 629	if (nr_pages > 0)
 630		__this_cpu_inc(mem->stat->events[MEM_CGROUP_EVENTS_PGPGIN]);
 631	else {
 632		__this_cpu_inc(mem->stat->events[MEM_CGROUP_EVENTS_PGPGOUT]);
 633		nr_pages = -nr_pages; /* for event */
 634	}
 635
 636	__this_cpu_add(mem->stat->events[MEM_CGROUP_EVENTS_COUNT], nr_pages);
 
 
 637
 638	preempt_enable();
 
 
 
 
 639}
 640
 641unsigned long
 642mem_cgroup_zone_nr_lru_pages(struct mem_cgroup *mem, int nid, int zid,
 643			unsigned int lru_mask)
 644{
 645	struct mem_cgroup_per_zone *mz;
 646	enum lru_list l;
 647	unsigned long ret = 0;
 
 648
 649	mz = mem_cgroup_zoneinfo(mem, nid, zid);
 
 650
 651	for_each_lru(l) {
 652		if (BIT(l) & lru_mask)
 653			ret += MEM_CGROUP_ZSTAT(mz, l);
 
 
 
 654	}
 655	return ret;
 656}
 657
 658static unsigned long
 659mem_cgroup_node_nr_lru_pages(struct mem_cgroup *mem,
 660			int nid, unsigned int lru_mask)
 
 
 
 
 
 661{
 662	u64 total = 0;
 663	int zid;
 664
 665	for (zid = 0; zid < MAX_NR_ZONES; zid++)
 666		total += mem_cgroup_zone_nr_lru_pages(mem, nid, zid, lru_mask);
 667
 668	return total;
 
 
 
 
 
 
 
 
 
 
 
 
 
 669}
 670
 671static unsigned long mem_cgroup_nr_lru_pages(struct mem_cgroup *mem,
 672			unsigned int lru_mask)
 673{
 674	int nid;
 675	u64 total = 0;
 676
 677	for_each_node_state(nid, N_HIGH_MEMORY)
 678		total += mem_cgroup_node_nr_lru_pages(mem, nid, lru_mask);
 679	return total;
 680}
 681
 682static bool __memcg_event_check(struct mem_cgroup *mem, int target)
 683{
 684	unsigned long val, next;
 
 685
 686	val = this_cpu_read(mem->stat->events[MEM_CGROUP_EVENTS_COUNT]);
 687	next = this_cpu_read(mem->stat->targets[target]);
 688	/* from time_after() in jiffies.h */
 689	return ((long)next - (long)val < 0);
 690}
 691
 692static void __mem_cgroup_target_update(struct mem_cgroup *mem, int target)
 
 
 693{
 694	unsigned long val, next;
 
 
 
 
 
 
 
 
 
 
 695
 696	val = this_cpu_read(mem->stat->events[MEM_CGROUP_EVENTS_COUNT]);
 
 
 
 697
 698	switch (target) {
 699	case MEM_CGROUP_TARGET_THRESH:
 700		next = val + THRESHOLDS_EVENTS_TARGET;
 701		break;
 702	case MEM_CGROUP_TARGET_SOFTLIMIT:
 703		next = val + SOFTLIMIT_EVENTS_TARGET;
 704		break;
 705	case MEM_CGROUP_TARGET_NUMAINFO:
 706		next = val + NUMAINFO_EVENTS_TARGET;
 707		break;
 708	default:
 709		return;
 710	}
 711
 712	this_cpu_write(mem->stat->targets[target], next);
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 713}
 714
 715/*
 716 * Check events in order.
 717 *
 718 */
 719static void memcg_check_events(struct mem_cgroup *mem, struct page *page)
 720{
 721	/* threshold event is triggered in finer grain than soft limit */
 722	if (unlikely(__memcg_event_check(mem, MEM_CGROUP_TARGET_THRESH))) {
 723		mem_cgroup_threshold(mem);
 724		__mem_cgroup_target_update(mem, MEM_CGROUP_TARGET_THRESH);
 725		if (unlikely(__memcg_event_check(mem,
 726			     MEM_CGROUP_TARGET_SOFTLIMIT))) {
 727			mem_cgroup_update_tree(mem, page);
 728			__mem_cgroup_target_update(mem,
 729						   MEM_CGROUP_TARGET_SOFTLIMIT);
 730		}
 731#if MAX_NUMNODES > 1
 732		if (unlikely(__memcg_event_check(mem,
 733			MEM_CGROUP_TARGET_NUMAINFO))) {
 734			atomic_inc(&mem->numainfo_events);
 735			__mem_cgroup_target_update(mem,
 736				MEM_CGROUP_TARGET_NUMAINFO);
 737		}
 
 
 
 738#endif
 739	}
 740}
 741
 742static struct mem_cgroup *mem_cgroup_from_cont(struct cgroup *cont)
 743{
 744	return container_of(cgroup_subsys_state(cont,
 745				mem_cgroup_subsys_id), struct mem_cgroup,
 746				css);
 747}
 748
 749struct mem_cgroup *mem_cgroup_from_task(struct task_struct *p)
 750{
 751	/*
 752	 * mm_update_next_owner() may clear mm->owner to NULL
 753	 * if it races with swapoff, page migration, etc.
 754	 * So this can be called with p == NULL.
 755	 */
 756	if (unlikely(!p))
 757		return NULL;
 758
 759	return container_of(task_subsys_state(p, mem_cgroup_subsys_id),
 760				struct mem_cgroup, css);
 761}
 
 762
 763struct mem_cgroup *try_get_mem_cgroup_from_mm(struct mm_struct *mm)
 
 
 
 
 
 
 
 
 764{
 765	struct mem_cgroup *mem = NULL;
 766
 767	if (!mm)
 768		return NULL;
 769	/*
 770	 * Because we have no locks, mm->owner's may be being moved to other
 771	 * cgroup. We use css_tryget() here even if this looks
 772	 * pessimistic (rather than adding locks here).
 773	 */
 774	rcu_read_lock();
 775	do {
 776		mem = mem_cgroup_from_task(rcu_dereference(mm->owner));
 777		if (unlikely(!mem))
 778			break;
 779	} while (!css_tryget(&mem->css));
 
 
 
 
 
 
 
 
 
 780	rcu_read_unlock();
 781	return mem;
 782}
 
 783
 784/* The caller has to guarantee "mem" exists before calling this */
 785static struct mem_cgroup *mem_cgroup_start_loop(struct mem_cgroup *mem)
 
 
 
 
 
 
 786{
 787	struct cgroup_subsys_state *css;
 788	int found;
 789
 790	if (!mem) /* ROOT cgroup has the smallest ID */
 791		return root_mem_cgroup; /*css_put/get against root is ignored*/
 792	if (!mem->use_hierarchy) {
 793		if (css_tryget(&mem->css))
 794			return mem;
 795		return NULL;
 796	}
 797	rcu_read_lock();
 798	/*
 799	 * searching a memory cgroup which has the smallest ID under given
 800	 * ROOT cgroup. (ID >= 1)
 801	 */
 802	css = css_get_next(&mem_cgroup_subsys, 1, &mem->css, &found);
 803	if (css && css_tryget(css))
 804		mem = container_of(css, struct mem_cgroup, css);
 805	else
 806		mem = NULL;
 807	rcu_read_unlock();
 808	return mem;
 809}
 
 810
 811static struct mem_cgroup *mem_cgroup_get_next(struct mem_cgroup *iter,
 812					struct mem_cgroup *root,
 813					bool cond)
 
 814{
 815	int nextid = css_id(&iter->css) + 1;
 816	int found;
 817	int hierarchy_used;
 818	struct cgroup_subsys_state *css;
 819
 820	hierarchy_used = iter->use_hierarchy;
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 821
 822	css_put(&iter->css);
 823	/* If no ROOT, walk all, ignore hierarchy */
 824	if (!cond || (root && !hierarchy_used))
 825		return NULL;
 826
 827	if (!root)
 828		root = root_mem_cgroup;
 829
 830	do {
 831		iter = NULL;
 832		rcu_read_lock();
 833
 834		css = css_get_next(&mem_cgroup_subsys, nextid,
 835				&root->css, &found);
 836		if (css && css_tryget(css))
 837			iter = container_of(css, struct mem_cgroup, css);
 838		rcu_read_unlock();
 839		/* If css is NULL, no more cgroups will be found */
 840		nextid = found + 1;
 841	} while (css && !iter);
 842
 843	return iter;
 844}
 845/*
 846 * for_eacn_mem_cgroup_tree() for visiting all cgroup under tree. Please
 847 * be careful that "break" loop is not allowed. We have reference count.
 848 * Instead of that modify "cond" to be false and "continue" to exit the loop.
 849 */
 850#define for_each_mem_cgroup_tree_cond(iter, root, cond)	\
 851	for (iter = mem_cgroup_start_loop(root);\
 852	     iter != NULL;\
 853	     iter = mem_cgroup_get_next(iter, root, cond))
 854
 855#define for_each_mem_cgroup_tree(iter, root) \
 856	for_each_mem_cgroup_tree_cond(iter, root, true)
 857
 858#define for_each_mem_cgroup_all(iter) \
 859	for_each_mem_cgroup_tree_cond(iter, NULL, true)
 860
 
 
 861
 862static inline bool mem_cgroup_is_root(struct mem_cgroup *mem)
 863{
 864	return (mem == root_mem_cgroup);
 865}
 
 
 
 
 
 
 
 
 
 
 
 866
 867void mem_cgroup_count_vm_event(struct mm_struct *mm, enum vm_event_item idx)
 868{
 869	struct mem_cgroup *mem;
 870
 871	if (!mm)
 872		return;
 
 
 
 
 
 
 
 
 
 
 
 873
 874	rcu_read_lock();
 875	mem = mem_cgroup_from_task(rcu_dereference(mm->owner));
 876	if (unlikely(!mem))
 877		goto out;
 
 
 878
 879	switch (idx) {
 880	case PGMAJFAULT:
 881		mem_cgroup_pgmajfault(mem, 1);
 882		break;
 883	case PGFAULT:
 884		mem_cgroup_pgfault(mem, 1);
 885		break;
 886	default:
 887		BUG();
 888	}
 889out:
 890	rcu_read_unlock();
 891}
 892EXPORT_SYMBOL(mem_cgroup_count_vm_event);
 893
 894/*
 895 * Following LRU functions are allowed to be used without PCG_LOCK.
 896 * Operations are called by routine of global LRU independently from memcg.
 897 * What we have to take care of here is validness of pc->mem_cgroup.
 898 *
 899 * Changes to pc->mem_cgroup happens when
 900 * 1. charge
 901 * 2. moving account
 902 * In typical case, "charge" is done before add-to-lru. Exception is SwapCache.
 903 * It is added to LRU before charge.
 904 * If PCG_USED bit is not set, page_cgroup is not added to this private LRU.
 905 * When moving account, the page is not on LRU. It's isolated.
 906 */
 907
 908void mem_cgroup_del_lru_list(struct page *page, enum lru_list lru)
 909{
 910	struct page_cgroup *pc;
 911	struct mem_cgroup_per_zone *mz;
 912
 913	if (mem_cgroup_disabled())
 914		return;
 915	pc = lookup_page_cgroup(page);
 916	/* can happen while we handle swapcache. */
 917	if (!TestClearPageCgroupAcctLRU(pc))
 918		return;
 919	VM_BUG_ON(!pc->mem_cgroup);
 920	/*
 921	 * We don't check PCG_USED bit. It's cleared when the "page" is finally
 922	 * removed from global LRU.
 923	 */
 924	mz = page_cgroup_zoneinfo(pc->mem_cgroup, page);
 925	/* huge page split is done under lru_lock. so, we have no races. */
 926	MEM_CGROUP_ZSTAT(mz, lru) -= 1 << compound_order(page);
 927	if (mem_cgroup_is_root(pc->mem_cgroup))
 928		return;
 929	VM_BUG_ON(list_empty(&pc->lru));
 930	list_del_init(&pc->lru);
 931}
 932
 933void mem_cgroup_del_lru(struct page *page)
 934{
 935	mem_cgroup_del_lru_list(page, page_lru(page));
 936}
 937
 938/*
 939 * Writeback is about to end against a page which has been marked for immediate
 940 * reclaim.  If it still appears to be reclaimable, move it to the tail of the
 941 * inactive list.
 942 */
 943void mem_cgroup_rotate_reclaimable_page(struct page *page)
 944{
 945	struct mem_cgroup_per_zone *mz;
 946	struct page_cgroup *pc;
 947	enum lru_list lru = page_lru(page);
 948
 949	if (mem_cgroup_disabled())
 950		return;
 
 
 
 951
 952	pc = lookup_page_cgroup(page);
 953	/* unused or root page is not rotated. */
 954	if (!PageCgroupUsed(pc))
 955		return;
 956	/* Ensure pc->mem_cgroup is visible after reading PCG_USED. */
 957	smp_rmb();
 958	if (mem_cgroup_is_root(pc->mem_cgroup))
 959		return;
 960	mz = page_cgroup_zoneinfo(pc->mem_cgroup, page);
 961	list_move_tail(&pc->lru, &mz->lists[lru]);
 962}
 963
 964void mem_cgroup_rotate_lru_list(struct page *page, enum lru_list lru)
 
 
 
 
 
 
 965{
 966	struct mem_cgroup_per_zone *mz;
 967	struct page_cgroup *pc;
 968
 969	if (mem_cgroup_disabled())
 970		return;
 971
 972	pc = lookup_page_cgroup(page);
 973	/* unused or root page is not rotated. */
 974	if (!PageCgroupUsed(pc))
 975		return;
 976	/* Ensure pc->mem_cgroup is visible after reading PCG_USED. */
 977	smp_rmb();
 978	if (mem_cgroup_is_root(pc->mem_cgroup))
 979		return;
 980	mz = page_cgroup_zoneinfo(pc->mem_cgroup, page);
 981	list_move(&pc->lru, &mz->lists[lru]);
 982}
 983
 984void mem_cgroup_add_lru_list(struct page *page, enum lru_list lru)
 
 985{
 986	struct page_cgroup *pc;
 987	struct mem_cgroup_per_zone *mz;
 
 
 988
 989	if (mem_cgroup_disabled())
 990		return;
 991	pc = lookup_page_cgroup(page);
 992	VM_BUG_ON(PageCgroupAcctLRU(pc));
 993	if (!PageCgroupUsed(pc))
 994		return;
 995	/* Ensure pc->mem_cgroup is visible after reading PCG_USED. */
 996	smp_rmb();
 997	mz = page_cgroup_zoneinfo(pc->mem_cgroup, page);
 998	/* huge page split is done under lru_lock. so, we have no races. */
 999	MEM_CGROUP_ZSTAT(mz, lru) += 1 << compound_order(page);
1000	SetPageCgroupAcctLRU(pc);
1001	if (mem_cgroup_is_root(pc->mem_cgroup))
1002		return;
1003	list_add(&pc->lru, &mz->lists[lru]);
1004}
1005
1006/*
1007 * At handling SwapCache and other FUSE stuff, pc->mem_cgroup may be changed
1008 * while it's linked to lru because the page may be reused after it's fully
1009 * uncharged. To handle that, unlink page_cgroup from LRU when charge it again.
1010 * It's done under lock_page and expected that zone->lru_lock isnever held.
1011 */
1012static void mem_cgroup_lru_del_before_commit(struct page *page)
1013{
1014	unsigned long flags;
1015	struct zone *zone = page_zone(page);
1016	struct page_cgroup *pc = lookup_page_cgroup(page);
1017
1018	/*
1019	 * Doing this check without taking ->lru_lock seems wrong but this
1020	 * is safe. Because if page_cgroup's USED bit is unset, the page
1021	 * will not be added to any memcg's LRU. If page_cgroup's USED bit is
1022	 * set, the commit after this will fail, anyway.
1023	 * This all charge/uncharge is done under some mutual execustion.
1024	 * So, we don't need to taking care of changes in USED bit.
1025	 */
1026	if (likely(!PageLRU(page)))
1027		return;
1028
1029	spin_lock_irqsave(&zone->lru_lock, flags);
1030	/*
1031	 * Forget old LRU when this page_cgroup is *not* used. This Used bit
1032	 * is guarded by lock_page() because the page is SwapCache.
1033	 */
1034	if (!PageCgroupUsed(pc))
1035		mem_cgroup_del_lru_list(page, page_lru(page));
1036	spin_unlock_irqrestore(&zone->lru_lock, flags);
 
 
1037}
1038
1039static void mem_cgroup_lru_add_after_commit(struct page *page)
1040{
1041	unsigned long flags;
1042	struct zone *zone = page_zone(page);
1043	struct page_cgroup *pc = lookup_page_cgroup(page);
1044
1045	/* taking care of that the page is added to LRU while we commit it */
1046	if (likely(!PageLRU(page)))
1047		return;
1048	spin_lock_irqsave(&zone->lru_lock, flags);
1049	/* link when the page is linked to LRU but page_cgroup isn't */
1050	if (PageLRU(page) && !PageCgroupAcctLRU(pc))
1051		mem_cgroup_add_lru_list(page, page_lru(page));
1052	spin_unlock_irqrestore(&zone->lru_lock, flags);
1053}
1054
1055
1056void mem_cgroup_move_lists(struct page *page,
1057			   enum lru_list from, enum lru_list to)
1058{
1059	if (mem_cgroup_disabled())
1060		return;
1061	mem_cgroup_del_lru_list(page, from);
1062	mem_cgroup_add_lru_list(page, to);
1063}
1064
1065/*
1066 * Checks whether given mem is same or in the root_mem's
1067 * hierarchy subtree
1068 */
1069static bool mem_cgroup_same_or_subtree(const struct mem_cgroup *root_mem,
1070		struct mem_cgroup *mem)
1071{
1072	if (root_mem != mem) {
1073		return (root_mem->use_hierarchy &&
1074			css_is_ancestor(&mem->css, &root_mem->css));
1075	}
1076
1077	return true;
1078}
1079
1080int task_in_mem_cgroup(struct task_struct *task, const struct mem_cgroup *mem)
1081{
1082	int ret;
1083	struct mem_cgroup *curr = NULL;
1084	struct task_struct *p;
1085
1086	p = find_lock_task_mm(task);
1087	if (!p)
1088		return 0;
1089	curr = try_get_mem_cgroup_from_mm(p->mm);
1090	task_unlock(p);
1091	if (!curr)
1092		return 0;
1093	/*
1094	 * We should check use_hierarchy of "mem" not "curr". Because checking
1095	 * use_hierarchy of "curr" here make this function true if hierarchy is
1096	 * enabled in "curr" and "curr" is a child of "mem" in *cgroup*
1097	 * hierarchy(even if use_hierarchy is disabled in "mem").
1098	 */
1099	ret = mem_cgroup_same_or_subtree(mem, curr);
1100	css_put(&curr->css);
1101	return ret;
1102}
1103
1104static int calc_inactive_ratio(struct mem_cgroup *memcg, unsigned long *present_pages)
 
 
 
 
 
 
 
 
 
1105{
1106	unsigned long active;
1107	unsigned long inactive;
1108	unsigned long gb;
1109	unsigned long inactive_ratio;
1110
1111	inactive = mem_cgroup_nr_lru_pages(memcg, BIT(LRU_INACTIVE_ANON));
1112	active = mem_cgroup_nr_lru_pages(memcg, BIT(LRU_ACTIVE_ANON));
1113
1114	gb = (inactive + active) >> (30 - PAGE_SHIFT);
1115	if (gb)
1116		inactive_ratio = int_sqrt(10 * gb);
1117	else
1118		inactive_ratio = 1;
1119
1120	if (present_pages) {
1121		present_pages[0] = inactive;
1122		present_pages[1] = active;
1123	}
1124
1125	return inactive_ratio;
1126}
1127
1128int mem_cgroup_inactive_anon_is_low(struct mem_cgroup *memcg)
1129{
1130	unsigned long active;
1131	unsigned long inactive;
1132	unsigned long present_pages[2];
1133	unsigned long inactive_ratio;
1134
1135	inactive_ratio = calc_inactive_ratio(memcg, present_pages);
1136
1137	inactive = present_pages[0];
1138	active = present_pages[1];
1139
1140	if (inactive * inactive_ratio < active)
1141		return 1;
1142
1143	return 0;
1144}
1145
1146int mem_cgroup_inactive_file_is_low(struct mem_cgroup *memcg)
1147{
1148	unsigned long active;
1149	unsigned long inactive;
1150
1151	inactive = mem_cgroup_nr_lru_pages(memcg, BIT(LRU_INACTIVE_FILE));
1152	active = mem_cgroup_nr_lru_pages(memcg, BIT(LRU_ACTIVE_FILE));
1153
1154	return (active > inactive);
1155}
1156
1157struct zone_reclaim_stat *mem_cgroup_get_reclaim_stat(struct mem_cgroup *memcg,
1158						      struct zone *zone)
1159{
1160	int nid = zone_to_nid(zone);
1161	int zid = zone_idx(zone);
1162	struct mem_cgroup_per_zone *mz = mem_cgroup_zoneinfo(memcg, nid, zid);
1163
1164	return &mz->reclaim_stat;
 
 
 
 
 
 
 
 
 
 
1165}
1166
1167struct zone_reclaim_stat *
1168mem_cgroup_get_reclaim_stat_from_page(struct page *page)
1169{
1170	struct page_cgroup *pc;
1171	struct mem_cgroup_per_zone *mz;
 
 
 
 
 
 
 
 
 
 
 
 
1172
1173	if (mem_cgroup_disabled())
1174		return NULL;
1175
1176	pc = lookup_page_cgroup(page);
1177	if (!PageCgroupUsed(pc))
1178		return NULL;
1179	/* Ensure pc->mem_cgroup is visible after reading PCG_USED. */
1180	smp_rmb();
1181	mz = page_cgroup_zoneinfo(pc->mem_cgroup, page);
1182	return &mz->reclaim_stat;
1183}
1184
1185unsigned long mem_cgroup_isolate_pages(unsigned long nr_to_scan,
1186					struct list_head *dst,
1187					unsigned long *scanned, int order,
1188					int mode, struct zone *z,
1189					struct mem_cgroup *mem_cont,
1190					int active, int file)
1191{
1192	unsigned long nr_taken = 0;
1193	struct page *page;
1194	unsigned long scan;
1195	LIST_HEAD(pc_list);
1196	struct list_head *src;
1197	struct page_cgroup *pc, *tmp;
1198	int nid = zone_to_nid(z);
1199	int zid = zone_idx(z);
1200	struct mem_cgroup_per_zone *mz;
1201	int lru = LRU_FILE * file + active;
1202	int ret;
1203
1204	BUG_ON(!mem_cont);
1205	mz = mem_cgroup_zoneinfo(mem_cont, nid, zid);
1206	src = &mz->lists[lru];
1207
1208	scan = 0;
1209	list_for_each_entry_safe_reverse(pc, tmp, src, lru) {
1210		if (scan >= nr_to_scan)
1211			break;
1212
1213		if (unlikely(!PageCgroupUsed(pc)))
1214			continue;
1215
1216		page = lookup_cgroup_page(pc);
 
1217
1218		if (unlikely(!PageLRU(page)))
1219			continue;
1220
1221		scan++;
1222		ret = __isolate_lru_page(page, mode, file);
1223		switch (ret) {
1224		case 0:
1225			list_move(&page->lru, dst);
1226			mem_cgroup_del_lru(page);
1227			nr_taken += hpage_nr_pages(page);
1228			break;
1229		case -EBUSY:
1230			/* we don't affect global LRU but rotate in our LRU */
1231			mem_cgroup_rotate_lru_list(page, page_lru(page));
1232			break;
1233		default:
1234			break;
1235		}
1236	}
1237
1238	*scanned = scan;
1239
1240	trace_mm_vmscan_memcg_isolate(0, nr_to_scan, scan, nr_taken,
1241				      0, 0, 0, mode);
1242
1243	return nr_taken;
1244}
1245
1246#define mem_cgroup_from_res_counter(counter, member)	\
1247	container_of(counter, struct mem_cgroup, member)
1248
1249/**
1250 * mem_cgroup_margin - calculate chargeable space of a memory cgroup
1251 * @mem: the memory cgroup
1252 *
1253 * Returns the maximum amount of memory @mem can be charged with, in
1254 * pages.
1255 */
1256static unsigned long mem_cgroup_margin(struct mem_cgroup *mem)
1257{
1258	unsigned long long margin;
1259
1260	margin = res_counter_margin(&mem->res);
1261	if (do_swap_account)
1262		margin = min(margin, res_counter_margin(&mem->memsw));
1263	return margin >> PAGE_SHIFT;
1264}
1265
1266int mem_cgroup_swappiness(struct mem_cgroup *memcg)
1267{
1268	struct cgroup *cgrp = memcg->css.cgroup;
1269
1270	/* root ? */
1271	if (cgrp->parent == NULL)
1272		return vm_swappiness;
1273
1274	return memcg->swappiness;
1275}
1276
1277static void mem_cgroup_start_move(struct mem_cgroup *mem)
1278{
1279	int cpu;
1280
1281	get_online_cpus();
1282	spin_lock(&mem->pcp_counter_lock);
1283	for_each_online_cpu(cpu)
1284		per_cpu(mem->stat->count[MEM_CGROUP_ON_MOVE], cpu) += 1;
1285	mem->nocpu_base.count[MEM_CGROUP_ON_MOVE] += 1;
1286	spin_unlock(&mem->pcp_counter_lock);
1287	put_online_cpus();
1288
1289	synchronize_rcu();
1290}
1291
1292static void mem_cgroup_end_move(struct mem_cgroup *mem)
1293{
1294	int cpu;
1295
1296	if (!mem)
1297		return;
1298	get_online_cpus();
1299	spin_lock(&mem->pcp_counter_lock);
1300	for_each_online_cpu(cpu)
1301		per_cpu(mem->stat->count[MEM_CGROUP_ON_MOVE], cpu) -= 1;
1302	mem->nocpu_base.count[MEM_CGROUP_ON_MOVE] -= 1;
1303	spin_unlock(&mem->pcp_counter_lock);
1304	put_online_cpus();
1305}
1306/*
1307 * 2 routines for checking "mem" is under move_account() or not.
1308 *
1309 * mem_cgroup_stealed() - checking a cgroup is mc.from or not. This is used
1310 *			  for avoiding race in accounting. If true,
1311 *			  pc->mem_cgroup may be overwritten.
1312 *
1313 * mem_cgroup_under_move() - checking a cgroup is mc.from or mc.to or
1314 *			  under hierarchy of moving cgroups. This is for
1315 *			  waiting at hith-memory prressure caused by "move".
1316 */
1317
1318static bool mem_cgroup_stealed(struct mem_cgroup *mem)
1319{
1320	VM_BUG_ON(!rcu_read_lock_held());
1321	return this_cpu_read(mem->stat->count[MEM_CGROUP_ON_MOVE]) > 0;
1322}
1323
1324static bool mem_cgroup_under_move(struct mem_cgroup *mem)
1325{
1326	struct mem_cgroup *from;
1327	struct mem_cgroup *to;
1328	bool ret = false;
1329	/*
1330	 * Unlike task_move routines, we access mc.to, mc.from not under
1331	 * mutual exclusion by cgroup_mutex. Here, we take spinlock instead.
1332	 */
1333	spin_lock(&mc.lock);
1334	from = mc.from;
1335	to = mc.to;
1336	if (!from)
1337		goto unlock;
1338
1339	ret = mem_cgroup_same_or_subtree(mem, from)
1340		|| mem_cgroup_same_or_subtree(mem, to);
1341unlock:
1342	spin_unlock(&mc.lock);
1343	return ret;
1344}
1345
1346static bool mem_cgroup_wait_acct_move(struct mem_cgroup *mem)
1347{
1348	if (mc.moving_task && current != mc.moving_task) {
1349		if (mem_cgroup_under_move(mem)) {
1350			DEFINE_WAIT(wait);
1351			prepare_to_wait(&mc.waitq, &wait, TASK_INTERRUPTIBLE);
1352			/* moving charge context might have finished. */
1353			if (mc.moving_task)
1354				schedule();
1355			finish_wait(&mc.waitq, &wait);
1356			return true;
1357		}
1358	}
1359	return false;
1360}
1361
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1362/**
1363 * mem_cgroup_print_oom_info: Called from OOM with tasklist_lock held in read mode.
 
1364 * @memcg: The memory cgroup that went over limit
1365 * @p: Task that is going to be killed
1366 *
1367 * NOTE: @memcg and @p's mem_cgroup can be different when hierarchy is
1368 * enabled
1369 */
1370void mem_cgroup_print_oom_info(struct mem_cgroup *memcg, struct task_struct *p)
1371{
1372	struct cgroup *task_cgrp;
1373	struct cgroup *mem_cgrp;
1374	/*
1375	 * Need a buffer in BSS, can't rely on allocations. The code relies
1376	 * on the assumption that OOM is serialized for memory controller.
1377	 * If this assumption is broken, revisit this code.
1378	 */
1379	static char memcg_name[PATH_MAX];
1380	int ret;
1381
1382	if (!memcg || !p)
1383		return;
1384
1385
1386	rcu_read_lock();
1387
1388	mem_cgrp = memcg->css.cgroup;
1389	task_cgrp = task_cgroup(p, mem_cgroup_subsys_id);
1390
1391	ret = cgroup_path(task_cgrp, memcg_name, PATH_MAX);
1392	if (ret < 0) {
1393		/*
1394		 * Unfortunately, we are unable to convert to a useful name
1395		 * But we'll still print out the usage information
1396		 */
1397		rcu_read_unlock();
1398		goto done;
1399	}
1400	rcu_read_unlock();
1401
1402	printk(KERN_INFO "Task in %s killed", memcg_name);
1403
1404	rcu_read_lock();
1405	ret = cgroup_path(mem_cgrp, memcg_name, PATH_MAX);
1406	if (ret < 0) {
1407		rcu_read_unlock();
1408		goto done;
1409	}
1410	rcu_read_unlock();
1411
1412	/*
1413	 * Continues from above, so we don't need an KERN_ level
1414	 */
1415	printk(KERN_CONT " as a result of limit of %s\n", memcg_name);
1416done:
1417
1418	printk(KERN_INFO "memory: usage %llukB, limit %llukB, failcnt %llu\n",
1419		res_counter_read_u64(&memcg->res, RES_USAGE) >> 10,
1420		res_counter_read_u64(&memcg->res, RES_LIMIT) >> 10,
1421		res_counter_read_u64(&memcg->res, RES_FAILCNT));
1422	printk(KERN_INFO "memory+swap: usage %llukB, limit %llukB, "
1423		"failcnt %llu\n",
1424		res_counter_read_u64(&memcg->memsw, RES_USAGE) >> 10,
1425		res_counter_read_u64(&memcg->memsw, RES_LIMIT) >> 10,
1426		res_counter_read_u64(&memcg->memsw, RES_FAILCNT));
1427}
1428
1429/*
1430 * This function returns the number of memcg under hierarchy tree. Returns
1431 * 1(self count) if no children.
 
1432 */
1433static int mem_cgroup_count_children(struct mem_cgroup *mem)
1434{
1435	int num = 0;
1436	struct mem_cgroup *iter;
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1437
1438	for_each_mem_cgroup_tree(iter, mem)
1439		num++;
1440	return num;
 
 
 
 
 
1441}
1442
1443/*
1444 * Return the memory (and swap, if configured) limit for a memcg.
1445 */
1446u64 mem_cgroup_get_limit(struct mem_cgroup *memcg)
1447{
1448	u64 limit;
1449	u64 memsw;
1450
1451	limit = res_counter_read_u64(&memcg->res, RES_LIMIT);
1452	limit += total_swap_pages << PAGE_SHIFT;
 
 
1453
1454	memsw = res_counter_read_u64(&memcg->memsw, RES_LIMIT);
1455	/*
1456	 * If memsw is finite and limits the amount of swap space available
1457	 * to this memcg, return that limit.
1458	 */
1459	return min(limit, memsw);
1460}
1461
1462/*
1463 * Visit the first child (need not be the first child as per the ordering
1464 * of the cgroup list, since we track last_scanned_child) of @mem and use
1465 * that to reclaim free pages from.
1466 */
1467static struct mem_cgroup *
1468mem_cgroup_select_victim(struct mem_cgroup *root_mem)
1469{
1470	struct mem_cgroup *ret = NULL;
1471	struct cgroup_subsys_state *css;
1472	int nextid, found;
1473
1474	if (!root_mem->use_hierarchy) {
1475		css_get(&root_mem->css);
1476		ret = root_mem;
1477	}
1478
1479	while (!ret) {
1480		rcu_read_lock();
1481		nextid = root_mem->last_scanned_child + 1;
1482		css = css_get_next(&mem_cgroup_subsys, nextid, &root_mem->css,
1483				   &found);
1484		if (css && css_tryget(css))
1485			ret = container_of(css, struct mem_cgroup, css);
1486
1487		rcu_read_unlock();
1488		/* Updates scanning parameter */
1489		if (!css) {
1490			/* this means start scan from ID:1 */
1491			root_mem->last_scanned_child = 0;
1492		} else
1493			root_mem->last_scanned_child = found;
1494	}
 
 
 
1495
 
 
 
 
 
 
 
 
1496	return ret;
1497}
1498
 
 
1499/**
1500 * test_mem_cgroup_node_reclaimable
1501 * @mem: the target memcg
1502 * @nid: the node ID to be checked.
1503 * @noswap : specify true here if the user wants flle only information.
1504 *
1505 * This function returns whether the specified memcg contains any
1506 * reclaimable pages on a node. Returns true if there are any reclaimable
1507 * pages in the node.
1508 */
1509static bool test_mem_cgroup_node_reclaimable(struct mem_cgroup *mem,
1510		int nid, bool noswap)
1511{
1512	if (mem_cgroup_node_nr_lru_pages(mem, nid, LRU_ALL_FILE))
 
 
 
1513		return true;
1514	if (noswap || !total_swap_pages)
1515		return false;
1516	if (mem_cgroup_node_nr_lru_pages(mem, nid, LRU_ALL_ANON))
 
1517		return true;
1518	return false;
1519
1520}
1521#if MAX_NUMNODES > 1
1522
1523/*
1524 * Always updating the nodemask is not very good - even if we have an empty
1525 * list or the wrong list here, we can start from some node and traverse all
1526 * nodes based on the zonelist. So update the list loosely once per 10 secs.
1527 *
1528 */
1529static void mem_cgroup_may_update_nodemask(struct mem_cgroup *mem)
1530{
1531	int nid;
1532	/*
1533	 * numainfo_events > 0 means there was at least NUMAINFO_EVENTS_TARGET
1534	 * pagein/pageout changes since the last update.
1535	 */
1536	if (!atomic_read(&mem->numainfo_events))
1537		return;
1538	if (atomic_inc_return(&mem->numainfo_updating) > 1)
1539		return;
1540
1541	/* make a nodemask where this memcg uses memory from */
1542	mem->scan_nodes = node_states[N_HIGH_MEMORY];
1543
1544	for_each_node_mask(nid, node_states[N_HIGH_MEMORY]) {
1545
1546		if (!test_mem_cgroup_node_reclaimable(mem, nid, false))
1547			node_clear(nid, mem->scan_nodes);
1548	}
1549
1550	atomic_set(&mem->numainfo_events, 0);
1551	atomic_set(&mem->numainfo_updating, 0);
1552}
1553
1554/*
1555 * Selecting a node where we start reclaim from. Because what we need is just
1556 * reducing usage counter, start from anywhere is O,K. Considering
1557 * memory reclaim from current node, there are pros. and cons.
1558 *
1559 * Freeing memory from current node means freeing memory from a node which
1560 * we'll use or we've used. So, it may make LRU bad. And if several threads
1561 * hit limits, it will see a contention on a node. But freeing from remote
1562 * node means more costs for memory reclaim because of memory latency.
1563 *
1564 * Now, we use round-robin. Better algorithm is welcomed.
1565 */
1566int mem_cgroup_select_victim_node(struct mem_cgroup *mem)
1567{
1568	int node;
1569
1570	mem_cgroup_may_update_nodemask(mem);
1571	node = mem->last_scanned_node;
1572
1573	node = next_node(node, mem->scan_nodes);
1574	if (node == MAX_NUMNODES)
1575		node = first_node(mem->scan_nodes);
1576	/*
1577	 * We call this when we hit limit, not when pages are added to LRU.
1578	 * No LRU may hold pages because all pages are UNEVICTABLE or
1579	 * memcg is too small and all pages are not on LRU. In that case,
1580	 * we use curret node.
1581	 */
1582	if (unlikely(node == MAX_NUMNODES))
1583		node = numa_node_id();
1584
1585	mem->last_scanned_node = node;
1586	return node;
1587}
1588
1589/*
1590 * Check all nodes whether it contains reclaimable pages or not.
1591 * For quick scan, we make use of scan_nodes. This will allow us to skip
1592 * unused nodes. But scan_nodes is lazily updated and may not cotain
1593 * enough new information. We need to do double check.
1594 */
1595bool mem_cgroup_reclaimable(struct mem_cgroup *mem, bool noswap)
1596{
1597	int nid;
1598
1599	/*
1600	 * quick check...making use of scan_node.
1601	 * We can skip unused nodes.
1602	 */
1603	if (!nodes_empty(mem->scan_nodes)) {
1604		for (nid = first_node(mem->scan_nodes);
1605		     nid < MAX_NUMNODES;
1606		     nid = next_node(nid, mem->scan_nodes)) {
1607
1608			if (test_mem_cgroup_node_reclaimable(mem, nid, noswap))
1609				return true;
1610		}
1611	}
1612	/*
1613	 * Check rest of nodes.
1614	 */
1615	for_each_node_state(nid, N_HIGH_MEMORY) {
1616		if (node_isset(nid, mem->scan_nodes))
1617			continue;
1618		if (test_mem_cgroup_node_reclaimable(mem, nid, noswap))
1619			return true;
1620	}
1621	return false;
1622}
1623
1624#else
1625int mem_cgroup_select_victim_node(struct mem_cgroup *mem)
1626{
1627	return 0;
1628}
1629
1630bool mem_cgroup_reclaimable(struct mem_cgroup *mem, bool noswap)
1631{
1632	return test_mem_cgroup_node_reclaimable(mem, 0, noswap);
1633}
1634#endif
1635
1636/*
1637 * Scan the hierarchy if needed to reclaim memory. We remember the last child
1638 * we reclaimed from, so that we don't end up penalizing one child extensively
1639 * based on its position in the children list.
1640 *
1641 * root_mem is the original ancestor that we've been reclaim from.
1642 *
1643 * We give up and return to the caller when we visit root_mem twice.
1644 * (other groups can be removed while we're walking....)
1645 *
1646 * If shrink==true, for avoiding to free too much, this returns immedieately.
1647 */
1648static int mem_cgroup_hierarchical_reclaim(struct mem_cgroup *root_mem,
1649						struct zone *zone,
1650						gfp_t gfp_mask,
1651						unsigned long reclaim_options,
1652						unsigned long *total_scanned)
1653{
1654	struct mem_cgroup *victim;
1655	int ret, total = 0;
1656	int loop = 0;
1657	bool noswap = reclaim_options & MEM_CGROUP_RECLAIM_NOSWAP;
1658	bool shrink = reclaim_options & MEM_CGROUP_RECLAIM_SHRINK;
1659	bool check_soft = reclaim_options & MEM_CGROUP_RECLAIM_SOFT;
1660	unsigned long excess;
1661	unsigned long nr_scanned;
 
 
 
 
1662
1663	excess = res_counter_soft_limit_excess(&root_mem->res) >> PAGE_SHIFT;
1664
1665	/* If memsw_is_minimum==1, swap-out is of-no-use. */
1666	if (!check_soft && !shrink && root_mem->memsw_is_minimum)
1667		noswap = true;
1668
1669	while (1) {
1670		victim = mem_cgroup_select_victim(root_mem);
1671		if (victim == root_mem) {
1672			loop++;
1673			/*
1674			 * We are not draining per cpu cached charges during
1675			 * soft limit reclaim  because global reclaim doesn't
1676			 * care about charges. It tries to free some memory and
1677			 * charges will not give any.
1678			 */
1679			if (!check_soft && loop >= 1)
1680				drain_all_stock_async(root_mem);
1681			if (loop >= 2) {
1682				/*
1683				 * If we have not been able to reclaim
1684				 * anything, it might because there are
1685				 * no reclaimable pages under this hierarchy
1686				 */
1687				if (!check_soft || !total) {
1688					css_put(&victim->css);
1689					break;
1690				}
1691				/*
1692				 * We want to do more targeted reclaim.
1693				 * excess >> 2 is not to excessive so as to
1694				 * reclaim too much, nor too less that we keep
1695				 * coming back to reclaim from this cgroup
1696				 */
1697				if (total >= (excess >> 2) ||
1698					(loop > MEM_CGROUP_MAX_RECLAIM_LOOPS)) {
1699					css_put(&victim->css);
1700					break;
1701				}
1702			}
1703		}
1704		if (!mem_cgroup_reclaimable(victim, noswap)) {
1705			/* this cgroup's local usage == 0 */
1706			css_put(&victim->css);
1707			continue;
1708		}
1709		/* we use swappiness of local cgroup */
1710		if (check_soft) {
1711			ret = mem_cgroup_shrink_node_zone(victim, gfp_mask,
1712				noswap, zone, &nr_scanned);
1713			*total_scanned += nr_scanned;
1714		} else
1715			ret = try_to_free_mem_cgroup_pages(victim, gfp_mask,
1716						noswap);
1717		css_put(&victim->css);
1718		/*
1719		 * At shrinking usage, we can't check we should stop here or
1720		 * reclaim more. It's depends on callers. last_scanned_child
1721		 * will work enough for keeping fairness under tree.
1722		 */
1723		if (shrink)
1724			return ret;
1725		total += ret;
1726		if (check_soft) {
1727			if (!res_counter_soft_limit_excess(&root_mem->res))
1728				return total;
1729		} else if (mem_cgroup_margin(root_mem))
1730			return total;
1731	}
 
1732	return total;
1733}
1734
 
 
 
 
 
 
 
 
1735/*
1736 * Check OOM-Killer is already running under our hierarchy.
1737 * If someone is running, return false.
1738 * Has to be called with memcg_oom_lock
1739 */
1740static bool mem_cgroup_oom_lock(struct mem_cgroup *mem)
1741{
1742	struct mem_cgroup *iter, *failed = NULL;
1743	bool cond = true;
1744
1745	for_each_mem_cgroup_tree_cond(iter, mem, cond) {
 
 
1746		if (iter->oom_lock) {
1747			/*
1748			 * this subtree of our hierarchy is already locked
1749			 * so we cannot give a lock.
1750			 */
1751			failed = iter;
1752			cond = false;
 
1753		} else
1754			iter->oom_lock = true;
1755	}
1756
1757	if (!failed)
1758		return true;
1759
1760	/*
1761	 * OK, we failed to lock the whole subtree so we have to clean up
1762	 * what we set up to the failing subtree
1763	 */
1764	cond = true;
1765	for_each_mem_cgroup_tree_cond(iter, mem, cond) {
1766		if (iter == failed) {
1767			cond = false;
1768			continue;
1769		}
1770		iter->oom_lock = false;
1771	}
1772	return false;
 
 
 
1773}
1774
1775/*
1776 * Has to be called with memcg_oom_lock
1777 */
1778static int mem_cgroup_oom_unlock(struct mem_cgroup *mem)
1779{
1780	struct mem_cgroup *iter;
1781
1782	for_each_mem_cgroup_tree(iter, mem)
 
 
1783		iter->oom_lock = false;
1784	return 0;
1785}
1786
1787static void mem_cgroup_mark_under_oom(struct mem_cgroup *mem)
1788{
1789	struct mem_cgroup *iter;
1790
1791	for_each_mem_cgroup_tree(iter, mem)
1792		atomic_inc(&iter->under_oom);
 
 
1793}
1794
1795static void mem_cgroup_unmark_under_oom(struct mem_cgroup *mem)
1796{
1797	struct mem_cgroup *iter;
1798
1799	/*
1800	 * When a new child is created while the hierarchy is under oom,
1801	 * mem_cgroup_oom_lock() may not be called. We have to use
1802	 * atomic_add_unless() here.
1803	 */
1804	for_each_mem_cgroup_tree(iter, mem)
1805		atomic_add_unless(&iter->under_oom, -1, 0);
 
 
 
1806}
1807
1808static DEFINE_SPINLOCK(memcg_oom_lock);
1809static DECLARE_WAIT_QUEUE_HEAD(memcg_oom_waitq);
1810
1811struct oom_wait_info {
1812	struct mem_cgroup *mem;
1813	wait_queue_t	wait;
1814};
1815
1816static int memcg_oom_wake_function(wait_queue_t *wait,
1817	unsigned mode, int sync, void *arg)
1818{
1819	struct mem_cgroup *wake_mem = (struct mem_cgroup *)arg,
1820			  *oom_wait_mem;
1821	struct oom_wait_info *oom_wait_info;
1822
1823	oom_wait_info = container_of(wait, struct oom_wait_info, wait);
1824	oom_wait_mem = oom_wait_info->mem;
1825
1826	/*
1827	 * Both of oom_wait_info->mem and wake_mem are stable under us.
1828	 * Then we can use css_is_ancestor without taking care of RCU.
1829	 */
1830	if (!mem_cgroup_same_or_subtree(oom_wait_mem, wake_mem)
1831			&& !mem_cgroup_same_or_subtree(wake_mem, oom_wait_mem))
1832		return 0;
1833	return autoremove_wake_function(wait, mode, sync, arg);
1834}
1835
1836static void memcg_wakeup_oom(struct mem_cgroup *mem)
1837{
1838	/* for filtering, pass "mem" as argument. */
1839	__wake_up(&memcg_oom_waitq, TASK_NORMAL, 0, mem);
 
 
 
 
 
 
 
 
1840}
1841
1842static void memcg_oom_recover(struct mem_cgroup *mem)
 
 
 
 
 
 
 
1843{
1844	if (mem && atomic_read(&mem->under_oom))
1845		memcg_wakeup_oom(mem);
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1846}
1847
1848/*
1849 * try to call OOM killer. returns false if we should exit memory-reclaim loop.
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1850 */
1851bool mem_cgroup_handle_oom(struct mem_cgroup *mem, gfp_t mask)
1852{
 
1853	struct oom_wait_info owait;
1854	bool locked, need_to_kill;
 
 
 
 
1855
1856	owait.mem = mem;
 
 
 
1857	owait.wait.flags = 0;
1858	owait.wait.func = memcg_oom_wake_function;
1859	owait.wait.private = current;
1860	INIT_LIST_HEAD(&owait.wait.task_list);
1861	need_to_kill = true;
1862	mem_cgroup_mark_under_oom(mem);
1863
1864	/* At first, try to OOM lock hierarchy under mem.*/
1865	spin_lock(&memcg_oom_lock);
1866	locked = mem_cgroup_oom_lock(mem);
1867	/*
1868	 * Even if signal_pending(), we can't quit charge() loop without
1869	 * accounting. So, UNINTERRUPTIBLE is appropriate. But SIGKILL
1870	 * under OOM is always welcomed, use TASK_KILLABLE here.
1871	 */
1872	prepare_to_wait(&memcg_oom_waitq, &owait.wait, TASK_KILLABLE);
1873	if (!locked || mem->oom_kill_disable)
1874		need_to_kill = false;
 
 
1875	if (locked)
1876		mem_cgroup_oom_notify(mem);
1877	spin_unlock(&memcg_oom_lock);
1878
1879	if (need_to_kill) {
 
1880		finish_wait(&memcg_oom_waitq, &owait.wait);
1881		mem_cgroup_out_of_memory(mem, mask);
 
1882	} else {
1883		schedule();
 
1884		finish_wait(&memcg_oom_waitq, &owait.wait);
1885	}
1886	spin_lock(&memcg_oom_lock);
1887	if (locked)
1888		mem_cgroup_oom_unlock(mem);
1889	memcg_wakeup_oom(mem);
1890	spin_unlock(&memcg_oom_lock);
1891
1892	mem_cgroup_unmark_under_oom(mem);
1893
1894	if (test_thread_flag(TIF_MEMDIE) || fatal_signal_pending(current))
1895		return false;
1896	/* Give chance to dying process */
1897	schedule_timeout(1);
 
 
 
 
 
 
 
 
1898	return true;
1899}
1900
1901/*
1902 * Currently used to update mapped file statistics, but the routine can be
1903 * generalized to update other statistics as well.
1904 *
1905 * Notes: Race condition
1906 *
1907 * We usually use page_cgroup_lock() for accessing page_cgroup member but
1908 * it tends to be costly. But considering some conditions, we doesn't need
1909 * to do so _always_.
1910 *
1911 * Considering "charge", lock_page_cgroup() is not required because all
1912 * file-stat operations happen after a page is attached to radix-tree. There
1913 * are no race with "charge".
1914 *
1915 * Considering "uncharge", we know that memcg doesn't clear pc->mem_cgroup
1916 * at "uncharge" intentionally. So, we always see valid pc->mem_cgroup even
1917 * if there are race with "uncharge". Statistics itself is properly handled
1918 * by flags.
1919 *
1920 * Considering "move", this is an only case we see a race. To make the race
1921 * small, we check MEM_CGROUP_ON_MOVE percpu value and detect there are
1922 * possibility of race condition. If there is, we take a lock.
1923 */
1924
1925void mem_cgroup_update_page_stat(struct page *page,
1926				 enum mem_cgroup_page_stat_item idx, int val)
1927{
1928	struct mem_cgroup *mem;
1929	struct page_cgroup *pc = lookup_page_cgroup(page);
1930	bool need_unlock = false;
1931	unsigned long uninitialized_var(flags);
1932
1933	if (unlikely(!pc))
1934		return;
 
 
 
1935
1936	rcu_read_lock();
1937	mem = pc->mem_cgroup;
1938	if (unlikely(!mem || !PageCgroupUsed(pc)))
 
1939		goto out;
1940	/* pc->mem_cgroup is unstable ? */
1941	if (unlikely(mem_cgroup_stealed(mem)) || PageTransHuge(page)) {
1942		/* take a lock against to access pc->mem_cgroup */
1943		move_lock_page_cgroup(pc, &flags);
1944		need_unlock = true;
1945		mem = pc->mem_cgroup;
1946		if (!mem || !PageCgroupUsed(pc))
1947			goto out;
 
 
 
 
1948	}
1949
1950	switch (idx) {
1951	case MEMCG_NR_FILE_MAPPED:
1952		if (val > 0)
1953			SetPageCgroupFileMapped(pc);
1954		else if (!page_mapped(page))
1955			ClearPageCgroupFileMapped(pc);
1956		idx = MEM_CGROUP_STAT_FILE_MAPPED;
1957		break;
1958	default:
1959		BUG();
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1960	}
1961
1962	this_cpu_add(mem->stat->count[idx], val);
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1963
1964out:
1965	if (unlikely(need_unlock))
1966		move_unlock_page_cgroup(pc, &flags);
1967	rcu_read_unlock();
1968	return;
1969}
1970EXPORT_SYMBOL(mem_cgroup_update_page_stat);
1971
1972/*
1973 * size of first charge trial. "32" comes from vmscan.c's magic value.
1974 * TODO: maybe necessary to use big numbers in big irons.
1975 */
1976#define CHARGE_BATCH	32U
 
 
 
 
 
1977struct memcg_stock_pcp {
1978	struct mem_cgroup *cached; /* this never be root cgroup */
1979	unsigned int nr_pages;
1980	struct work_struct work;
1981	unsigned long flags;
1982#define FLUSHING_CACHED_CHARGE	(0)
1983};
1984static DEFINE_PER_CPU(struct memcg_stock_pcp, memcg_stock);
1985static DEFINE_MUTEX(percpu_charge_mutex);
1986
1987/*
1988 * Try to consume stocked charge on this cpu. If success, one page is consumed
1989 * from local stock and true is returned. If the stock is 0 or charges from a
1990 * cgroup which is not current target, returns false. This stock will be
1991 * refilled.
 
 
 
 
 
1992 */
1993static bool consume_stock(struct mem_cgroup *mem)
1994{
1995	struct memcg_stock_pcp *stock;
1996	bool ret = true;
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1997
1998	stock = &get_cpu_var(memcg_stock);
1999	if (mem == stock->cached && stock->nr_pages)
2000		stock->nr_pages--;
2001	else /* need to call res_counter_charge */
2002		ret = false;
2003	put_cpu_var(memcg_stock);
2004	return ret;
2005}
2006
2007/*
2008 * Returns stocks cached in percpu to res_counter and reset cached information.
2009 */
2010static void drain_stock(struct memcg_stock_pcp *stock)
2011{
2012	struct mem_cgroup *old = stock->cached;
2013
2014	if (stock->nr_pages) {
2015		unsigned long bytes = stock->nr_pages * PAGE_SIZE;
2016
2017		res_counter_uncharge(&old->res, bytes);
2018		if (do_swap_account)
2019			res_counter_uncharge(&old->memsw, bytes);
2020		stock->nr_pages = 0;
2021	}
2022	stock->cached = NULL;
2023}
2024
2025/*
2026 * This must be called under preempt disabled or must be called by
2027 * a thread which is pinned to local cpu.
2028 */
2029static void drain_local_stock(struct work_struct *dummy)
2030{
2031	struct memcg_stock_pcp *stock = &__get_cpu_var(memcg_stock);
 
 
 
 
 
 
 
 
 
2032	drain_stock(stock);
2033	clear_bit(FLUSHING_CACHED_CHARGE, &stock->flags);
 
 
2034}
2035
2036/*
2037 * Cache charges(val) which is from res_counter, to local per_cpu area.
2038 * This will be consumed by consume_stock() function, later.
2039 */
2040static void refill_stock(struct mem_cgroup *mem, unsigned int nr_pages)
2041{
2042	struct memcg_stock_pcp *stock = &get_cpu_var(memcg_stock);
 
2043
2044	if (stock->cached != mem) { /* reset if necessary */
 
 
 
2045		drain_stock(stock);
2046		stock->cached = mem;
2047	}
2048	stock->nr_pages += nr_pages;
2049	put_cpu_var(memcg_stock);
 
 
 
 
2050}
2051
2052/*
2053 * Drains all per-CPU charge caches for given root_mem resp. subtree
2054 * of the hierarchy under it. sync flag says whether we should block
2055 * until the work is done.
2056 */
2057static void drain_all_stock(struct mem_cgroup *root_mem, bool sync)
2058{
2059	int cpu, curcpu;
2060
2061	/* Notify other cpus that system-wide "drain" is running */
2062	get_online_cpus();
 
 
 
 
 
 
 
2063	curcpu = get_cpu();
2064	for_each_online_cpu(cpu) {
2065		struct memcg_stock_pcp *stock = &per_cpu(memcg_stock, cpu);
2066		struct mem_cgroup *mem;
 
2067
2068		mem = stock->cached;
2069		if (!mem || !stock->nr_pages)
2070			continue;
2071		if (!mem_cgroup_same_or_subtree(root_mem, mem))
2072			continue;
2073		if (!test_and_set_bit(FLUSHING_CACHED_CHARGE, &stock->flags)) {
 
 
 
2074			if (cpu == curcpu)
2075				drain_local_stock(&stock->work);
2076			else
2077				schedule_work_on(cpu, &stock->work);
2078		}
2079	}
2080	put_cpu();
 
 
2081
2082	if (!sync)
2083		goto out;
 
 
2084
2085	for_each_online_cpu(cpu) {
2086		struct memcg_stock_pcp *stock = &per_cpu(memcg_stock, cpu);
2087		if (test_bit(FLUSHING_CACHED_CHARGE, &stock->flags))
2088			flush_work(&stock->work);
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
2089	}
2090out:
2091 	put_online_cpus();
2092}
2093
2094/*
2095 * Tries to drain stocked charges in other cpus. This function is asynchronous
2096 * and just put a work per cpu for draining localy on each cpu. Caller can
2097 * expects some charges will be back to res_counter later but cannot wait for
2098 * it.
2099 */
2100static void drain_all_stock_async(struct mem_cgroup *root_mem)
2101{
2102	/*
2103	 * If someone calls draining, avoid adding more kworker runs.
2104	 */
2105	if (!mutex_trylock(&percpu_charge_mutex))
2106		return;
2107	drain_all_stock(root_mem, false);
2108	mutex_unlock(&percpu_charge_mutex);
2109}
2110
2111/* This is a synchronous drain interface. */
2112static void drain_all_stock_sync(struct mem_cgroup *root_mem)
2113{
2114	/* called when force_empty is called */
2115	mutex_lock(&percpu_charge_mutex);
2116	drain_all_stock(root_mem, true);
2117	mutex_unlock(&percpu_charge_mutex);
2118}
2119
2120/*
2121 * This function drains percpu counter value from DEAD cpu and
2122 * move it to local cpu. Note that this function can be preempted.
 
2123 */
2124static void mem_cgroup_drain_pcp_counter(struct mem_cgroup *mem, int cpu)
2125{
2126	int i;
2127
2128	spin_lock(&mem->pcp_counter_lock);
2129	for (i = 0; i < MEM_CGROUP_STAT_DATA; i++) {
2130		long x = per_cpu(mem->stat->count[i], cpu);
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
2131
2132		per_cpu(mem->stat->count[i], cpu) = 0;
2133		mem->nocpu_base.count[i] += x;
2134	}
2135	for (i = 0; i < MEM_CGROUP_EVENTS_NSTATS; i++) {
2136		unsigned long x = per_cpu(mem->stat->events[i], cpu);
2137
2138		per_cpu(mem->stat->events[i], cpu) = 0;
2139		mem->nocpu_base.events[i] += x;
2140	}
2141	/* need to clear ON_MOVE value, works as a kind of lock. */
2142	per_cpu(mem->stat->count[MEM_CGROUP_ON_MOVE], cpu) = 0;
2143	spin_unlock(&mem->pcp_counter_lock);
2144}
2145
2146static void synchronize_mem_cgroup_on_move(struct mem_cgroup *mem, int cpu)
2147{
2148	int idx = MEM_CGROUP_ON_MOVE;
 
 
 
 
 
 
 
 
2149
2150	spin_lock(&mem->pcp_counter_lock);
2151	per_cpu(mem->stat->count[idx], cpu) = mem->nocpu_base.count[idx];
2152	spin_unlock(&mem->pcp_counter_lock);
2153}
2154
2155static int __cpuinit memcg_cpu_hotplug_callback(struct notifier_block *nb,
2156					unsigned long action,
2157					void *hcpu)
2158{
2159	int cpu = (unsigned long)hcpu;
2160	struct memcg_stock_pcp *stock;
2161	struct mem_cgroup *iter;
2162
2163	if ((action == CPU_ONLINE)) {
2164		for_each_mem_cgroup_all(iter)
2165			synchronize_mem_cgroup_on_move(iter, cpu);
2166		return NOTIFY_OK;
2167	}
2168
2169	if ((action != CPU_DEAD) || action != CPU_DEAD_FROZEN)
2170		return NOTIFY_OK;
2171
2172	for_each_mem_cgroup_all(iter)
2173		mem_cgroup_drain_pcp_counter(iter, cpu);
2174
2175	stock = &per_cpu(memcg_stock, cpu);
2176	drain_stock(stock);
2177	return NOTIFY_OK;
2178}
 
 
 
 
 
2179
 
 
 
 
 
 
2180
2181/* See __mem_cgroup_try_charge() for details */
2182enum {
2183	CHARGE_OK,		/* success */
2184	CHARGE_RETRY,		/* need to retry but retry is not bad */
2185	CHARGE_NOMEM,		/* we can't do more. return -ENOMEM */
2186	CHARGE_WOULDBLOCK,	/* GFP_WAIT wasn't set and no enough res. */
2187	CHARGE_OOM_DIE,		/* the current is killed because of OOM */
2188};
2189
2190static int mem_cgroup_do_charge(struct mem_cgroup *mem, gfp_t gfp_mask,
2191				unsigned int nr_pages, bool oom_check)
 
 
 
 
 
 
 
 
 
 
 
 
 
2192{
2193	unsigned long csize = nr_pages * PAGE_SIZE;
 
2194	struct mem_cgroup *mem_over_limit;
2195	struct res_counter *fail_res;
2196	unsigned long flags = 0;
2197	int ret;
 
 
2198
2199	ret = res_counter_charge(&mem->res, csize, &fail_res);
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
2200
2201	if (likely(!ret)) {
2202		if (!do_swap_account)
2203			return CHARGE_OK;
2204		ret = res_counter_charge(&mem->memsw, csize, &fail_res);
2205		if (likely(!ret))
2206			return CHARGE_OK;
2207
2208		res_counter_uncharge(&mem->res, csize);
2209		mem_over_limit = mem_cgroup_from_res_counter(fail_res, memsw);
2210		flags |= MEM_CGROUP_RECLAIM_NOSWAP;
2211	} else
2212		mem_over_limit = mem_cgroup_from_res_counter(fail_res, res);
2213	/*
2214	 * nr_pages can be either a huge page (HPAGE_PMD_NR), a batch
2215	 * of regular pages (CHARGE_BATCH), or a single regular page (1).
2216	 *
2217	 * Never reclaim on behalf of optional batching, retry with a
2218	 * single page instead.
2219	 */
2220	if (nr_pages == CHARGE_BATCH)
2221		return CHARGE_RETRY;
2222
2223	if (!(gfp_mask & __GFP_WAIT))
2224		return CHARGE_WOULDBLOCK;
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
2225
2226	ret = mem_cgroup_hierarchical_reclaim(mem_over_limit, NULL,
2227					      gfp_mask, flags, NULL);
2228	if (mem_cgroup_margin(mem_over_limit) >= nr_pages)
2229		return CHARGE_RETRY;
 
 
 
 
 
 
 
 
 
2230	/*
2231	 * Even though the limit is exceeded at this point, reclaim
2232	 * may have been able to free some pages.  Retry the charge
2233	 * before killing the task.
2234	 *
2235	 * Only for regular pages, though: huge pages are rather
2236	 * unlikely to succeed so close to the limit, and we fall back
2237	 * to regular pages anyway in case of failure.
2238	 */
2239	if (nr_pages == 1 && ret)
2240		return CHARGE_RETRY;
2241
2242	/*
2243	 * At task move, charge accounts can be doubly counted. So, it's
2244	 * better to wait until the end of task_move if something is going on.
2245	 */
2246	if (mem_cgroup_wait_acct_move(mem_over_limit))
2247		return CHARGE_RETRY;
2248
2249	/* If we don't need to call oom-killer at el, return immediately */
2250	if (!oom_check)
2251		return CHARGE_NOMEM;
2252	/* check OOM */
2253	if (!mem_cgroup_handle_oom(mem_over_limit, gfp_mask))
2254		return CHARGE_OOM_DIE;
2255
2256	return CHARGE_RETRY;
2257}
2258
2259/*
2260 * Unlike exported interface, "oom" parameter is added. if oom==true,
2261 * oom-killer can be invoked.
2262 */
2263static int __mem_cgroup_try_charge(struct mm_struct *mm,
2264				   gfp_t gfp_mask,
2265				   unsigned int nr_pages,
2266				   struct mem_cgroup **memcg,
2267				   bool oom)
2268{
2269	unsigned int batch = max(CHARGE_BATCH, nr_pages);
2270	int nr_oom_retries = MEM_CGROUP_RECLAIM_RETRIES;
2271	struct mem_cgroup *mem = NULL;
2272	int ret;
2273
2274	/*
2275	 * Unlike gloval-vm's OOM-kill, we're not in memory shortage
2276	 * in system level. So, allow to go ahead dying process in addition to
2277	 * MEMDIE process.
2278	 */
2279	if (unlikely(test_thread_flag(TIF_MEMDIE)
2280		     || fatal_signal_pending(current)))
2281		goto bypass;
2282
2283	/*
2284	 * We always charge the cgroup the mm_struct belongs to.
2285	 * The mm_struct's mem_cgroup changes on task migration if the
2286	 * thread group leader migrates. It's possible that mm is not
2287	 * set, if so charge the init_mm (happens for pagecache usage).
2288	 */
2289	if (!*memcg && !mm)
2290		goto bypass;
2291again:
2292	if (*memcg) { /* css should be a valid one */
2293		mem = *memcg;
2294		VM_BUG_ON(css_is_removed(&mem->css));
2295		if (mem_cgroup_is_root(mem))
2296			goto done;
2297		if (nr_pages == 1 && consume_stock(mem))
2298			goto done;
2299		css_get(&mem->css);
2300	} else {
2301		struct task_struct *p;
2302
2303		rcu_read_lock();
2304		p = rcu_dereference(mm->owner);
2305		/*
2306		 * Because we don't have task_lock(), "p" can exit.
2307		 * In that case, "mem" can point to root or p can be NULL with
2308		 * race with swapoff. Then, we have small risk of mis-accouning.
2309		 * But such kind of mis-account by race always happens because
2310		 * we don't have cgroup_mutex(). It's overkill and we allo that
2311		 * small race, here.
2312		 * (*) swapoff at el will charge against mm-struct not against
2313		 * task-struct. So, mm->owner can be NULL.
2314		 */
2315		mem = mem_cgroup_from_task(p);
2316		if (!mem || mem_cgroup_is_root(mem)) {
2317			rcu_read_unlock();
2318			goto done;
2319		}
2320		if (nr_pages == 1 && consume_stock(mem)) {
2321			/*
2322			 * It seems dagerous to access memcg without css_get().
2323			 * But considering how consume_stok works, it's not
2324			 * necessary. If consume_stock success, some charges
2325			 * from this memcg are cached on this cpu. So, we
2326			 * don't need to call css_get()/css_tryget() before
2327			 * calling consume_stock().
2328			 */
2329			rcu_read_unlock();
2330			goto done;
2331		}
2332		/* after here, we may be blocked. we need to get refcnt */
2333		if (!css_tryget(&mem->css)) {
2334			rcu_read_unlock();
2335			goto again;
2336		}
2337		rcu_read_unlock();
2338	}
 
 
 
 
 
 
 
 
 
 
 
 
 
2339
2340	do {
2341		bool oom_check;
2342
2343		/* If killed, bypass charge */
2344		if (fatal_signal_pending(current)) {
2345			css_put(&mem->css);
2346			goto bypass;
2347		}
2348
2349		oom_check = false;
2350		if (oom && !nr_oom_retries) {
2351			oom_check = true;
2352			nr_oom_retries = MEM_CGROUP_RECLAIM_RETRIES;
2353		}
2354
2355		ret = mem_cgroup_do_charge(mem, gfp_mask, batch, oom_check);
2356		switch (ret) {
2357		case CHARGE_OK:
2358			break;
2359		case CHARGE_RETRY: /* not in OOM situation but retry */
2360			batch = nr_pages;
2361			css_put(&mem->css);
2362			mem = NULL;
2363			goto again;
2364		case CHARGE_WOULDBLOCK: /* !__GFP_WAIT */
2365			css_put(&mem->css);
2366			goto nomem;
2367		case CHARGE_NOMEM: /* OOM routine works */
2368			if (!oom) {
2369				css_put(&mem->css);
2370				goto nomem;
2371			}
2372			/* If oom, we never return -ENOMEM */
2373			nr_oom_retries--;
2374			break;
2375		case CHARGE_OOM_DIE: /* Killed by OOM Killer */
2376			css_put(&mem->css);
2377			goto bypass;
2378		}
2379	} while (ret != CHARGE_OK);
2380
2381	if (batch > nr_pages)
2382		refill_stock(mem, batch - nr_pages);
2383	css_put(&mem->css);
2384done:
2385	*memcg = mem;
2386	return 0;
2387nomem:
2388	*memcg = NULL;
2389	return -ENOMEM;
2390bypass:
2391	*memcg = NULL;
2392	return 0;
2393}
2394
2395/*
2396 * Somemtimes we have to undo a charge we got by try_charge().
2397 * This function is for that and do uncharge, put css's refcnt.
2398 * gotten by try_charge().
2399 */
2400static void __mem_cgroup_cancel_charge(struct mem_cgroup *mem,
2401				       unsigned int nr_pages)
2402{
2403	if (!mem_cgroup_is_root(mem)) {
2404		unsigned long bytes = nr_pages * PAGE_SIZE;
2405
2406		res_counter_uncharge(&mem->res, bytes);
2407		if (do_swap_account)
2408			res_counter_uncharge(&mem->memsw, bytes);
2409	}
2410}
2411
2412/*
2413 * A helper function to get mem_cgroup from ID. must be called under
2414 * rcu_read_lock(). The caller must check css_is_removed() or some if
2415 * it's concern. (dropping refcnt from swap can be called against removed
2416 * memcg.)
2417 */
2418static struct mem_cgroup *mem_cgroup_lookup(unsigned short id)
2419{
2420	struct cgroup_subsys_state *css;
 
2421
2422	/* ID 0 is unused ID */
2423	if (!id)
2424		return NULL;
2425	css = css_lookup(&mem_cgroup_subsys, id);
2426	if (!css)
2427		return NULL;
2428	return container_of(css, struct mem_cgroup, css);
2429}
2430
2431struct mem_cgroup *try_get_mem_cgroup_from_page(struct page *page)
2432{
2433	struct mem_cgroup *mem = NULL;
2434	struct page_cgroup *pc;
2435	unsigned short id;
2436	swp_entry_t ent;
2437
2438	VM_BUG_ON(!PageLocked(page));
2439
2440	pc = lookup_page_cgroup(page);
2441	lock_page_cgroup(pc);
2442	if (PageCgroupUsed(pc)) {
2443		mem = pc->mem_cgroup;
2444		if (mem && !css_tryget(&mem->css))
2445			mem = NULL;
2446	} else if (PageSwapCache(page)) {
2447		ent.val = page_private(page);
2448		id = lookup_swap_cgroup(ent);
2449		rcu_read_lock();
2450		mem = mem_cgroup_lookup(id);
2451		if (mem && !css_tryget(&mem->css))
2452			mem = NULL;
2453		rcu_read_unlock();
2454	}
2455	unlock_page_cgroup(pc);
2456	return mem;
2457}
2458
2459static void __mem_cgroup_commit_charge(struct mem_cgroup *mem,
2460				       struct page *page,
2461				       unsigned int nr_pages,
2462				       struct page_cgroup *pc,
2463				       enum charge_type ctype)
2464{
2465	lock_page_cgroup(pc);
2466	if (unlikely(PageCgroupUsed(pc))) {
2467		unlock_page_cgroup(pc);
2468		__mem_cgroup_cancel_charge(mem, nr_pages);
2469		return;
2470	}
2471	/*
2472	 * we don't need page_cgroup_lock about tail pages, becase they are not
2473	 * accessed by any other context at this point.
2474	 */
2475	pc->mem_cgroup = mem;
2476	/*
2477	 * We access a page_cgroup asynchronously without lock_page_cgroup().
2478	 * Especially when a page_cgroup is taken from a page, pc->mem_cgroup
2479	 * is accessed after testing USED bit. To make pc->mem_cgroup visible
2480	 * before USED bit, we need memory barrier here.
2481	 * See mem_cgroup_add_lru_list(), etc.
2482 	 */
2483	smp_wmb();
2484	switch (ctype) {
2485	case MEM_CGROUP_CHARGE_TYPE_CACHE:
2486	case MEM_CGROUP_CHARGE_TYPE_SHMEM:
2487		SetPageCgroupCache(pc);
2488		SetPageCgroupUsed(pc);
2489		break;
2490	case MEM_CGROUP_CHARGE_TYPE_MAPPED:
2491		ClearPageCgroupCache(pc);
2492		SetPageCgroupUsed(pc);
2493		break;
2494	default:
2495		break;
2496	}
2497
2498	mem_cgroup_charge_statistics(mem, PageCgroupCache(pc), nr_pages);
2499	unlock_page_cgroup(pc);
2500	/*
2501	 * "charge_statistics" updated event counter. Then, check it.
2502	 * Insert ancestor (and ancestor's ancestors), to softlimit RB-tree.
2503	 * if they exceeds softlimit.
2504	 */
2505	memcg_check_events(mem, page);
2506}
2507
2508#ifdef CONFIG_TRANSPARENT_HUGEPAGE
2509
2510#define PCGF_NOCOPY_AT_SPLIT ((1 << PCG_LOCK) | (1 << PCG_MOVE_LOCK) |\
2511			(1 << PCG_ACCT_LRU) | (1 << PCG_MIGRATION))
2512/*
2513 * Because tail pages are not marked as "used", set it. We're under
2514 * zone->lru_lock, 'splitting on pmd' and compund_lock.
2515 */
2516void mem_cgroup_split_huge_fixup(struct page *head, struct page *tail)
2517{
2518	struct page_cgroup *head_pc = lookup_page_cgroup(head);
2519	struct page_cgroup *tail_pc = lookup_page_cgroup(tail);
2520	unsigned long flags;
2521
2522	if (mem_cgroup_disabled())
2523		return;
2524	/*
2525	 * We have no races with charge/uncharge but will have races with
2526	 * page state accounting.
2527	 */
2528	move_lock_page_cgroup(head_pc, &flags);
2529
2530	tail_pc->mem_cgroup = head_pc->mem_cgroup;
2531	smp_wmb(); /* see __commit_charge() */
2532	if (PageCgroupAcctLRU(head_pc)) {
2533		enum lru_list lru;
2534		struct mem_cgroup_per_zone *mz;
2535
2536		/*
2537		 * LRU flags cannot be copied because we need to add tail
2538		 *.page to LRU by generic call and our hook will be called.
2539		 * We hold lru_lock, then, reduce counter directly.
2540		 */
2541		lru = page_lru(head);
2542		mz = page_cgroup_zoneinfo(head_pc->mem_cgroup, head);
2543		MEM_CGROUP_ZSTAT(mz, lru) -= 1;
2544	}
2545	tail_pc->flags = head_pc->flags & ~PCGF_NOCOPY_AT_SPLIT;
2546	move_unlock_page_cgroup(head_pc, &flags);
2547}
2548#endif
2549
2550/**
2551 * mem_cgroup_move_account - move account of the page
2552 * @page: the page
2553 * @nr_pages: number of regular pages (>1 for huge pages)
2554 * @pc:	page_cgroup of the page.
2555 * @from: mem_cgroup which the page is moved from.
2556 * @to:	mem_cgroup which the page is moved to. @from != @to.
2557 * @uncharge: whether we should call uncharge and css_put against @from.
2558 *
2559 * The caller must confirm following.
2560 * - page is not on LRU (isolate_page() is useful.)
2561 * - compound_lock is held when nr_pages > 1
2562 *
2563 * This function doesn't do "charge" nor css_get to new cgroup. It should be
2564 * done by a caller(__mem_cgroup_try_charge would be useful). If @uncharge is
2565 * true, this function does "uncharge" from old cgroup, but it doesn't if
2566 * @uncharge is false, so a caller should do "uncharge".
2567 */
2568static int mem_cgroup_move_account(struct page *page,
2569				   unsigned int nr_pages,
2570				   struct page_cgroup *pc,
2571				   struct mem_cgroup *from,
2572				   struct mem_cgroup *to,
2573				   bool uncharge)
2574{
2575	unsigned long flags;
2576	int ret;
2577
2578	VM_BUG_ON(from == to);
2579	VM_BUG_ON(PageLRU(page));
2580	/*
2581	 * The page is isolated from LRU. So, collapse function
2582	 * will not handle this page. But page splitting can happen.
2583	 * Do this check under compound_page_lock(). The caller should
2584	 * hold it.
2585	 */
2586	ret = -EBUSY;
2587	if (nr_pages > 1 && !PageTransHuge(page))
2588		goto out;
2589
2590	lock_page_cgroup(pc);
2591
2592	ret = -EINVAL;
2593	if (!PageCgroupUsed(pc) || pc->mem_cgroup != from)
2594		goto unlock;
2595
2596	move_lock_page_cgroup(pc, &flags);
2597
2598	if (PageCgroupFileMapped(pc)) {
2599		/* Update mapped_file data for mem_cgroup */
2600		preempt_disable();
2601		__this_cpu_dec(from->stat->count[MEM_CGROUP_STAT_FILE_MAPPED]);
2602		__this_cpu_inc(to->stat->count[MEM_CGROUP_STAT_FILE_MAPPED]);
2603		preempt_enable();
2604	}
2605	mem_cgroup_charge_statistics(from, PageCgroupCache(pc), -nr_pages);
2606	if (uncharge)
2607		/* This is not "cancel", but cancel_charge does all we need. */
2608		__mem_cgroup_cancel_charge(from, nr_pages);
2609
2610	/* caller should have done css_get */
2611	pc->mem_cgroup = to;
2612	mem_cgroup_charge_statistics(to, PageCgroupCache(pc), nr_pages);
2613	/*
2614	 * We charges against "to" which may not have any tasks. Then, "to"
2615	 * can be under rmdir(). But in current implementation, caller of
2616	 * this function is just force_empty() and move charge, so it's
2617	 * guaranteed that "to" is never removed. So, we don't check rmdir
2618	 * status here.
2619	 */
2620	move_unlock_page_cgroup(pc, &flags);
2621	ret = 0;
2622unlock:
2623	unlock_page_cgroup(pc);
2624	/*
2625	 * check events
 
 
 
 
 
 
 
 
 
 
 
2626	 */
2627	memcg_check_events(to, page);
2628	memcg_check_events(from, page);
2629out:
2630	return ret;
2631}
2632
2633/*
2634 * move charges to its parent.
2635 */
2636
2637static int mem_cgroup_move_parent(struct page *page,
2638				  struct page_cgroup *pc,
2639				  struct mem_cgroup *child,
2640				  gfp_t gfp_mask)
2641{
2642	struct cgroup *cg = child->css.cgroup;
2643	struct cgroup *pcg = cg->parent;
2644	struct mem_cgroup *parent;
2645	unsigned int nr_pages;
2646	unsigned long uninitialized_var(flags);
2647	int ret;
2648
2649	/* Is ROOT ? */
2650	if (!pcg)
2651		return -EINVAL;
 
2652
2653	ret = -EBUSY;
2654	if (!get_page_unless_zero(page))
2655		goto out;
2656	if (isolate_lru_page(page))
2657		goto put;
2658
2659	nr_pages = hpage_nr_pages(page);
 
 
 
 
2660
2661	parent = mem_cgroup_from_cont(pcg);
2662	ret = __mem_cgroup_try_charge(NULL, gfp_mask, nr_pages, &parent, false);
2663	if (ret || !parent)
2664		goto put_back;
 
2665
2666	if (nr_pages > 1)
2667		flags = compound_lock_irqsave(page);
 
 
 
2668
2669	ret = mem_cgroup_move_account(page, nr_pages, pc, child, parent, true);
2670	if (ret)
2671		__mem_cgroup_cancel_charge(parent, nr_pages);
2672
2673	if (nr_pages > 1)
2674		compound_unlock_irqrestore(page, flags);
2675put_back:
2676	putback_lru_page(page);
2677put:
2678	put_page(page);
2679out:
2680	return ret;
2681}
2682
2683/*
2684 * Charge the memory controller for page usage.
2685 * Return
2686 * 0 if the charge was successful
2687 * < 0 if the cgroup is over its limit
2688 */
2689static int mem_cgroup_charge_common(struct page *page, struct mm_struct *mm,
2690				gfp_t gfp_mask, enum charge_type ctype)
2691{
2692	struct mem_cgroup *mem = NULL;
2693	unsigned int nr_pages = 1;
2694	struct page_cgroup *pc;
2695	bool oom = true;
2696	int ret;
2697
2698	if (PageTransHuge(page)) {
2699		nr_pages <<= compound_order(page);
2700		VM_BUG_ON(!PageTransHuge(page));
2701		/*
2702		 * Never OOM-kill a process for a huge page.  The
2703		 * fault handler will fall back to regular pages.
2704		 */
2705		oom = false;
2706	}
2707
2708	pc = lookup_page_cgroup(page);
2709	BUG_ON(!pc); /* XXX: remove this and move pc lookup into commit */
2710
2711	ret = __mem_cgroup_try_charge(mm, gfp_mask, nr_pages, &mem, oom);
2712	if (ret || !mem)
2713		return ret;
2714
2715	__mem_cgroup_commit_charge(mem, page, nr_pages, pc, ctype);
2716	return 0;
2717}
2718
2719int mem_cgroup_newpage_charge(struct page *page,
2720			      struct mm_struct *mm, gfp_t gfp_mask)
2721{
2722	if (mem_cgroup_disabled())
2723		return 0;
2724	/*
2725	 * If already mapped, we don't have to account.
2726	 * If page cache, page->mapping has address_space.
2727	 * But page->mapping may have out-of-use anon_vma pointer,
2728	 * detecit it by PageAnon() check. newly-mapped-anon's page->mapping
2729	 * is NULL.
2730  	 */
2731	if (page_mapped(page) || (page->mapping && !PageAnon(page)))
2732		return 0;
2733	if (unlikely(!mm))
2734		mm = &init_mm;
2735	return mem_cgroup_charge_common(page, mm, gfp_mask,
2736				MEM_CGROUP_CHARGE_TYPE_MAPPED);
2737}
2738
2739static void
2740__mem_cgroup_commit_charge_swapin(struct page *page, struct mem_cgroup *ptr,
2741					enum charge_type ctype);
2742
2743static void
2744__mem_cgroup_commit_charge_lrucare(struct page *page, struct mem_cgroup *mem,
2745					enum charge_type ctype)
2746{
2747	struct page_cgroup *pc = lookup_page_cgroup(page);
2748	/*
2749	 * In some case, SwapCache, FUSE(splice_buf->radixtree), the page
2750	 * is already on LRU. It means the page may on some other page_cgroup's
2751	 * LRU. Take care of it.
2752	 */
2753	mem_cgroup_lru_del_before_commit(page);
2754	__mem_cgroup_commit_charge(mem, page, 1, pc, ctype);
2755	mem_cgroup_lru_add_after_commit(page);
2756	return;
2757}
2758
2759int mem_cgroup_cache_charge(struct page *page, struct mm_struct *mm,
2760				gfp_t gfp_mask)
2761{
2762	struct mem_cgroup *mem = NULL;
2763	int ret;
 
 
2764
2765	if (mem_cgroup_disabled())
2766		return 0;
2767	if (PageCompound(page))
2768		return 0;
2769
2770	if (unlikely(!mm))
2771		mm = &init_mm;
2772
2773	if (page_is_file_cache(page)) {
2774		ret = __mem_cgroup_try_charge(mm, gfp_mask, 1, &mem, true);
2775		if (ret || !mem)
2776			return ret;
2777
2778		/*
2779		 * FUSE reuses pages without going through the final
2780		 * put that would remove them from the LRU list, make
2781		 * sure that they get relinked properly.
2782		 */
2783		__mem_cgroup_commit_charge_lrucare(page, mem,
2784					MEM_CGROUP_CHARGE_TYPE_CACHE);
2785		return ret;
2786	}
2787	/* shmem */
2788	if (PageSwapCache(page)) {
2789		ret = mem_cgroup_try_charge_swapin(mm, page, gfp_mask, &mem);
2790		if (!ret)
2791			__mem_cgroup_commit_charge_swapin(page, mem,
2792					MEM_CGROUP_CHARGE_TYPE_SHMEM);
2793	} else
2794		ret = mem_cgroup_charge_common(page, mm, gfp_mask,
2795					MEM_CGROUP_CHARGE_TYPE_SHMEM);
2796
2797	return ret;
2798}
2799
2800/*
2801 * While swap-in, try_charge -> commit or cancel, the page is locked.
2802 * And when try_charge() successfully returns, one refcnt to memcg without
2803 * struct page_cgroup is acquired. This refcnt will be consumed by
2804 * "commit()" or removed by "cancel()"
2805 */
2806int mem_cgroup_try_charge_swapin(struct mm_struct *mm,
2807				 struct page *page,
2808				 gfp_t mask, struct mem_cgroup **ptr)
2809{
2810	struct mem_cgroup *mem;
2811	int ret;
2812
2813	*ptr = NULL;
2814
2815	if (mem_cgroup_disabled())
2816		return 0;
2817
2818	if (!do_swap_account)
2819		goto charge_cur_mm;
2820	/*
2821	 * A racing thread's fault, or swapoff, may have already updated
2822	 * the pte, and even removed page from swap cache: in those cases
2823	 * do_swap_page()'s pte_same() test will fail; but there's also a
2824	 * KSM case which does need to charge the page.
2825	 */
2826	if (!PageSwapCache(page))
2827		goto charge_cur_mm;
2828	mem = try_get_mem_cgroup_from_page(page);
2829	if (!mem)
2830		goto charge_cur_mm;
2831	*ptr = mem;
2832	ret = __mem_cgroup_try_charge(NULL, mask, 1, ptr, true);
2833	css_put(&mem->css);
2834	return ret;
2835charge_cur_mm:
2836	if (unlikely(!mm))
2837		mm = &init_mm;
2838	return __mem_cgroup_try_charge(mm, mask, 1, ptr, true);
2839}
2840
2841static void
2842__mem_cgroup_commit_charge_swapin(struct page *page, struct mem_cgroup *ptr,
2843					enum charge_type ctype)
2844{
2845	if (mem_cgroup_disabled())
2846		return;
2847	if (!ptr)
2848		return;
2849	cgroup_exclude_rmdir(&ptr->css);
2850
2851	__mem_cgroup_commit_charge_lrucare(page, ptr, ctype);
2852	/*
2853	 * Now swap is on-memory. This means this page may be
2854	 * counted both as mem and swap....double count.
2855	 * Fix it by uncharging from memsw. Basically, this SwapCache is stable
2856	 * under lock_page(). But in do_swap_page()::memory.c, reuse_swap_page()
2857	 * may call delete_from_swap_cache() before reach here.
2858	 */
2859	if (do_swap_account && PageSwapCache(page)) {
2860		swp_entry_t ent = {.val = page_private(page)};
2861		unsigned short id;
2862		struct mem_cgroup *memcg;
2863
2864		id = swap_cgroup_record(ent, 0);
2865		rcu_read_lock();
2866		memcg = mem_cgroup_lookup(id);
2867		if (memcg) {
2868			/*
2869			 * This recorded memcg can be obsolete one. So, avoid
2870			 * calling css_tryget
2871			 */
2872			if (!mem_cgroup_is_root(memcg))
2873				res_counter_uncharge(&memcg->memsw, PAGE_SIZE);
2874			mem_cgroup_swap_statistics(memcg, false);
2875			mem_cgroup_put(memcg);
2876		}
2877		rcu_read_unlock();
2878	}
2879	/*
2880	 * At swapin, we may charge account against cgroup which has no tasks.
2881	 * So, rmdir()->pre_destroy() can be called while we do this charge.
2882	 * In that case, we need to call pre_destroy() again. check it here.
2883	 */
2884	cgroup_release_and_wakeup_rmdir(&ptr->css);
2885}
2886
2887void mem_cgroup_commit_charge_swapin(struct page *page, struct mem_cgroup *ptr)
2888{
2889	__mem_cgroup_commit_charge_swapin(page, ptr,
2890					MEM_CGROUP_CHARGE_TYPE_MAPPED);
2891}
2892
2893void mem_cgroup_cancel_charge_swapin(struct mem_cgroup *mem)
2894{
2895	if (mem_cgroup_disabled())
2896		return;
2897	if (!mem)
2898		return;
2899	__mem_cgroup_cancel_charge(mem, 1);
2900}
2901
2902static void mem_cgroup_do_uncharge(struct mem_cgroup *mem,
2903				   unsigned int nr_pages,
2904				   const enum charge_type ctype)
2905{
2906	struct memcg_batch_info *batch = NULL;
2907	bool uncharge_memsw = true;
2908
2909	/* If swapout, usage of swap doesn't decrease */
2910	if (!do_swap_account || ctype == MEM_CGROUP_CHARGE_TYPE_SWAPOUT)
2911		uncharge_memsw = false;
2912
2913	batch = &current->memcg_batch;
2914	/*
2915	 * In usual, we do css_get() when we remember memcg pointer.
2916	 * But in this case, we keep res->usage until end of a series of
2917	 * uncharges. Then, it's ok to ignore memcg's refcnt.
2918	 */
2919	if (!batch->memcg)
2920		batch->memcg = mem;
2921	/*
2922	 * do_batch > 0 when unmapping pages or inode invalidate/truncate.
2923	 * In those cases, all pages freed continuously can be expected to be in
2924	 * the same cgroup and we have chance to coalesce uncharges.
2925	 * But we do uncharge one by one if this is killed by OOM(TIF_MEMDIE)
2926	 * because we want to do uncharge as soon as possible.
2927	 */
2928
2929	if (!batch->do_batch || test_thread_flag(TIF_MEMDIE))
2930		goto direct_uncharge;
2931
2932	if (nr_pages > 1)
2933		goto direct_uncharge;
2934
2935	/*
2936	 * In typical case, batch->memcg == mem. This means we can
2937	 * merge a series of uncharges to an uncharge of res_counter.
2938	 * If not, we uncharge res_counter ony by one.
2939	 */
2940	if (batch->memcg != mem)
2941		goto direct_uncharge;
2942	/* remember freed charge and uncharge it later */
2943	batch->nr_pages++;
2944	if (uncharge_memsw)
2945		batch->memsw_nr_pages++;
2946	return;
2947direct_uncharge:
2948	res_counter_uncharge(&mem->res, nr_pages * PAGE_SIZE);
2949	if (uncharge_memsw)
2950		res_counter_uncharge(&mem->memsw, nr_pages * PAGE_SIZE);
2951	if (unlikely(batch->memcg != mem))
2952		memcg_oom_recover(mem);
2953	return;
2954}
2955
2956/*
2957 * uncharge if !page_mapped(page)
 
 
 
 
 
 
 
 
 
 
 
 
 
2958 */
2959static struct mem_cgroup *
2960__mem_cgroup_uncharge_common(struct page *page, enum charge_type ctype)
2961{
2962	struct mem_cgroup *mem = NULL;
2963	unsigned int nr_pages = 1;
2964	struct page_cgroup *pc;
2965
2966	if (mem_cgroup_disabled())
2967		return NULL;
2968
2969	if (PageSwapCache(page))
2970		return NULL;
2971
2972	if (PageTransHuge(page)) {
2973		nr_pages <<= compound_order(page);
2974		VM_BUG_ON(!PageTransHuge(page));
2975	}
2976	/*
2977	 * Check if our page_cgroup is valid
2978	 */
2979	pc = lookup_page_cgroup(page);
2980	if (unlikely(!pc || !PageCgroupUsed(pc)))
2981		return NULL;
2982
2983	lock_page_cgroup(pc);
2984
2985	mem = pc->mem_cgroup;
 
 
 
2986
2987	if (!PageCgroupUsed(pc))
2988		goto unlock_out;
2989
2990	switch (ctype) {
2991	case MEM_CGROUP_CHARGE_TYPE_MAPPED:
2992	case MEM_CGROUP_CHARGE_TYPE_DROP:
2993		/* See mem_cgroup_prepare_migration() */
2994		if (page_mapped(page) || PageCgroupMigration(pc))
2995			goto unlock_out;
2996		break;
2997	case MEM_CGROUP_CHARGE_TYPE_SWAPOUT:
2998		if (!PageAnon(page)) {	/* Shared memory */
2999			if (page->mapping && !page_is_file_cache(page))
3000				goto unlock_out;
3001		} else if (page_mapped(page)) /* Anon */
3002				goto unlock_out;
3003		break;
3004	default:
3005		break;
3006	}
3007
3008	mem_cgroup_charge_statistics(mem, PageCgroupCache(pc), -nr_pages);
3009
3010	ClearPageCgroupUsed(pc);
3011	/*
3012	 * pc->mem_cgroup is not cleared here. It will be accessed when it's
3013	 * freed from LRU. This is safe because uncharged page is expected not
3014	 * to be reused (freed soon). Exception is SwapCache, it's handled by
3015	 * special functions.
3016	 */
 
3017
3018	unlock_page_cgroup(pc);
3019	/*
3020	 * even after unlock, we have mem->res.usage here and this memcg
3021	 * will never be freed.
3022	 */
3023	memcg_check_events(mem, page);
3024	if (do_swap_account && ctype == MEM_CGROUP_CHARGE_TYPE_SWAPOUT) {
3025		mem_cgroup_swap_statistics(mem, true);
3026		mem_cgroup_get(mem);
3027	}
3028	if (!mem_cgroup_is_root(mem))
3029		mem_cgroup_do_uncharge(mem, nr_pages, ctype);
3030
3031	return mem;
3032
3033unlock_out:
3034	unlock_page_cgroup(pc);
3035	return NULL;
 
 
 
 
 
 
 
 
 
3036}
3037
3038void mem_cgroup_uncharge_page(struct page *page)
 
 
 
 
3039{
3040	/* early check. */
3041	if (page_mapped(page))
3042		return;
3043	if (page->mapping && !PageAnon(page))
3044		return;
3045	__mem_cgroup_uncharge_common(page, MEM_CGROUP_CHARGE_TYPE_MAPPED);
3046}
3047
3048void mem_cgroup_uncharge_cache_page(struct page *page)
 
 
 
 
 
 
 
 
 
 
3049{
3050	VM_BUG_ON(page_mapped(page));
3051	VM_BUG_ON(page->mapping);
3052	__mem_cgroup_uncharge_common(page, MEM_CGROUP_CHARGE_TYPE_CACHE);
3053}
3054
3055/*
3056 * Batch_start/batch_end is called in unmap_page_range/invlidate/trucate.
3057 * In that cases, pages are freed continuously and we can expect pages
3058 * are in the same memcg. All these calls itself limits the number of
3059 * pages freed at once, then uncharge_start/end() is called properly.
3060 * This may be called prural(2) times in a context,
3061 */
3062
3063void mem_cgroup_uncharge_start(void)
3064{
3065	current->memcg_batch.do_batch++;
3066	/* We can do nest. */
3067	if (current->memcg_batch.do_batch == 1) {
3068		current->memcg_batch.memcg = NULL;
3069		current->memcg_batch.nr_pages = 0;
3070		current->memcg_batch.memsw_nr_pages = 0;
 
 
 
 
 
 
3071	}
 
3072}
3073
3074void mem_cgroup_uncharge_end(void)
 
 
 
 
 
 
 
 
3075{
3076	struct memcg_batch_info *batch = &current->memcg_batch;
3077
3078	if (!batch->do_batch)
3079		return;
3080
3081	batch->do_batch--;
3082	if (batch->do_batch) /* If stacked, do nothing. */
3083		return;
3084
3085	if (!batch->memcg)
3086		return;
3087	/*
3088	 * This "batch->memcg" is valid without any css_get/put etc...
3089	 * bacause we hide charges behind us.
3090	 */
3091	if (batch->nr_pages)
3092		res_counter_uncharge(&batch->memcg->res,
3093				     batch->nr_pages * PAGE_SIZE);
3094	if (batch->memsw_nr_pages)
3095		res_counter_uncharge(&batch->memcg->memsw,
3096				     batch->memsw_nr_pages * PAGE_SIZE);
3097	memcg_oom_recover(batch->memcg);
3098	/* forget this pointer (for sanity check) */
3099	batch->memcg = NULL;
3100}
3101
3102#ifdef CONFIG_SWAP
3103/*
3104 * called after __delete_from_swap_cache() and drop "page" account.
3105 * memcg information is recorded to swap_cgroup of "ent"
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
3106 */
3107void
3108mem_cgroup_uncharge_swapcache(struct page *page, swp_entry_t ent, bool swapout)
3109{
3110	struct mem_cgroup *memcg;
3111	int ctype = MEM_CGROUP_CHARGE_TYPE_SWAPOUT;
3112
3113	if (!swapout) /* this was a swap cache but the swap is unused ! */
3114		ctype = MEM_CGROUP_CHARGE_TYPE_DROP;
3115
3116	memcg = __mem_cgroup_uncharge_common(page, ctype);
 
 
3117
3118	/*
3119	 * record memcg information,  if swapout && memcg != NULL,
3120	 * mem_cgroup_get() was called in uncharge().
3121	 */
3122	if (do_swap_account && swapout && memcg)
3123		swap_cgroup_record(ent, css_id(&memcg->css));
3124}
3125#endif
 
 
3126
3127#ifdef CONFIG_CGROUP_MEM_RES_CTLR_SWAP
3128/*
3129 * called from swap_entry_free(). remove record in swap_cgroup and
3130 * uncharge "memsw" account.
3131 */
3132void mem_cgroup_uncharge_swap(swp_entry_t ent)
3133{
3134	struct mem_cgroup *memcg;
3135	unsigned short id;
3136
3137	if (!do_swap_account)
3138		return;
3139
3140	id = swap_cgroup_record(ent, 0);
3141	rcu_read_lock();
3142	memcg = mem_cgroup_lookup(id);
3143	if (memcg) {
3144		/*
3145		 * We uncharge this because swap is freed.
3146		 * This memcg can be obsolete one. We avoid calling css_tryget
3147		 */
3148		if (!mem_cgroup_is_root(memcg))
3149			res_counter_uncharge(&memcg->memsw, PAGE_SIZE);
3150		mem_cgroup_swap_statistics(memcg, false);
3151		mem_cgroup_put(memcg);
3152	}
3153	rcu_read_unlock();
3154}
 
3155
 
3156/**
3157 * mem_cgroup_move_swap_account - move swap charge and swap_cgroup's record.
3158 * @entry: swap entry to be moved
3159 * @from:  mem_cgroup which the entry is moved from
3160 * @to:  mem_cgroup which the entry is moved to
3161 * @need_fixup: whether we should fixup res_counters and refcounts.
3162 *
3163 * It succeeds only when the swap_cgroup's record for this entry is the same
3164 * as the mem_cgroup's id of @from.
3165 *
3166 * Returns 0 on success, -EINVAL on failure.
3167 *
3168 * The caller must have charged to @to, IOW, called res_counter_charge() about
3169 * both res and memsw, and called css_get().
3170 */
3171static int mem_cgroup_move_swap_account(swp_entry_t entry,
3172		struct mem_cgroup *from, struct mem_cgroup *to, bool need_fixup)
3173{
3174	unsigned short old_id, new_id;
3175
3176	old_id = css_id(&from->css);
3177	new_id = css_id(&to->css);
3178
3179	if (swap_cgroup_cmpxchg(entry, old_id, new_id) == old_id) {
3180		mem_cgroup_swap_statistics(from, false);
3181		mem_cgroup_swap_statistics(to, true);
3182		/*
3183		 * This function is only called from task migration context now.
3184		 * It postpones res_counter and refcount handling till the end
3185		 * of task migration(mem_cgroup_clear_mc()) for performance
3186		 * improvement. But we cannot postpone mem_cgroup_get(to)
3187		 * because if the process that has been moved to @to does
3188		 * swap-in, the refcount of @to might be decreased to 0.
3189		 */
3190		mem_cgroup_get(to);
3191		if (need_fixup) {
3192			if (!mem_cgroup_is_root(from))
3193				res_counter_uncharge(&from->memsw, PAGE_SIZE);
3194			mem_cgroup_put(from);
3195			/*
3196			 * we charged both to->res and to->memsw, so we should
3197			 * uncharge to->res.
3198			 */
3199			if (!mem_cgroup_is_root(to))
3200				res_counter_uncharge(&to->res, PAGE_SIZE);
3201		}
3202		return 0;
3203	}
3204	return -EINVAL;
3205}
3206#else
3207static inline int mem_cgroup_move_swap_account(swp_entry_t entry,
3208		struct mem_cgroup *from, struct mem_cgroup *to, bool need_fixup)
3209{
3210	return -EINVAL;
3211}
3212#endif
3213
3214/*
3215 * Before starting migration, account PAGE_SIZE to mem_cgroup that the old
3216 * page belongs to.
3217 */
3218int mem_cgroup_prepare_migration(struct page *page,
3219	struct page *newpage, struct mem_cgroup **ptr, gfp_t gfp_mask)
3220{
3221	struct mem_cgroup *mem = NULL;
3222	struct page_cgroup *pc;
3223	enum charge_type ctype;
3224	int ret = 0;
3225
3226	*ptr = NULL;
3227
3228	VM_BUG_ON(PageTransHuge(page));
3229	if (mem_cgroup_disabled())
3230		return 0;
3231
3232	pc = lookup_page_cgroup(page);
3233	lock_page_cgroup(pc);
3234	if (PageCgroupUsed(pc)) {
3235		mem = pc->mem_cgroup;
3236		css_get(&mem->css);
3237		/*
3238		 * At migrating an anonymous page, its mapcount goes down
3239		 * to 0 and uncharge() will be called. But, even if it's fully
3240		 * unmapped, migration may fail and this page has to be
3241		 * charged again. We set MIGRATION flag here and delay uncharge
3242		 * until end_migration() is called
3243		 *
3244		 * Corner Case Thinking
3245		 * A)
3246		 * When the old page was mapped as Anon and it's unmap-and-freed
3247		 * while migration was ongoing.
3248		 * If unmap finds the old page, uncharge() of it will be delayed
3249		 * until end_migration(). If unmap finds a new page, it's
3250		 * uncharged when it make mapcount to be 1->0. If unmap code
3251		 * finds swap_migration_entry, the new page will not be mapped
3252		 * and end_migration() will find it(mapcount==0).
3253		 *
3254		 * B)
3255		 * When the old page was mapped but migraion fails, the kernel
3256		 * remaps it. A charge for it is kept by MIGRATION flag even
3257		 * if mapcount goes down to 0. We can do remap successfully
3258		 * without charging it again.
3259		 *
3260		 * C)
3261		 * The "old" page is under lock_page() until the end of
3262		 * migration, so, the old page itself will not be swapped-out.
3263		 * If the new page is swapped out before end_migraton, our
3264		 * hook to usual swap-out path will catch the event.
3265		 */
3266		if (PageAnon(page))
3267			SetPageCgroupMigration(pc);
3268	}
3269	unlock_page_cgroup(pc);
3270	/*
3271	 * If the page is not charged at this point,
3272	 * we return here.
3273	 */
3274	if (!mem)
3275		return 0;
3276
3277	*ptr = mem;
3278	ret = __mem_cgroup_try_charge(NULL, gfp_mask, 1, ptr, false);
3279	css_put(&mem->css);/* drop extra refcnt */
3280	if (ret || *ptr == NULL) {
3281		if (PageAnon(page)) {
3282			lock_page_cgroup(pc);
3283			ClearPageCgroupMigration(pc);
3284			unlock_page_cgroup(pc);
3285			/*
3286			 * The old page may be fully unmapped while we kept it.
3287			 */
3288			mem_cgroup_uncharge_page(page);
3289		}
3290		return -ENOMEM;
3291	}
3292	/*
3293	 * We charge new page before it's used/mapped. So, even if unlock_page()
3294	 * is called before end_migration, we can catch all events on this new
3295	 * page. In the case new page is migrated but not remapped, new page's
3296	 * mapcount will be finally 0 and we call uncharge in end_migration().
3297	 */
3298	pc = lookup_page_cgroup(newpage);
3299	if (PageAnon(page))
3300		ctype = MEM_CGROUP_CHARGE_TYPE_MAPPED;
3301	else if (page_is_file_cache(page))
3302		ctype = MEM_CGROUP_CHARGE_TYPE_CACHE;
3303	else
3304		ctype = MEM_CGROUP_CHARGE_TYPE_SHMEM;
3305	__mem_cgroup_commit_charge(mem, page, 1, pc, ctype);
3306	return ret;
3307}
3308
3309/* remove redundant charge if migration failed*/
3310void mem_cgroup_end_migration(struct mem_cgroup *mem,
3311	struct page *oldpage, struct page *newpage, bool migration_ok)
3312{
3313	struct page *used, *unused;
3314	struct page_cgroup *pc;
3315
3316	if (!mem)
3317		return;
3318	/* blocks rmdir() */
3319	cgroup_exclude_rmdir(&mem->css);
3320	if (!migration_ok) {
3321		used = oldpage;
3322		unused = newpage;
3323	} else {
3324		used = newpage;
3325		unused = oldpage;
3326	}
3327	/*
3328	 * We disallowed uncharge of pages under migration because mapcount
3329	 * of the page goes down to zero, temporarly.
3330	 * Clear the flag and check the page should be charged.
3331	 */
3332	pc = lookup_page_cgroup(oldpage);
3333	lock_page_cgroup(pc);
3334	ClearPageCgroupMigration(pc);
3335	unlock_page_cgroup(pc);
3336
3337	__mem_cgroup_uncharge_common(unused, MEM_CGROUP_CHARGE_TYPE_FORCE);
3338
3339	/*
3340	 * If a page is a file cache, radix-tree replacement is very atomic
3341	 * and we can skip this check. When it was an Anon page, its mapcount
3342	 * goes down to 0. But because we added MIGRATION flage, it's not
3343	 * uncharged yet. There are several case but page->mapcount check
3344	 * and USED bit check in mem_cgroup_uncharge_page() will do enough
3345	 * check. (see prepare_charge() also)
3346	 */
3347	if (PageAnon(used))
3348		mem_cgroup_uncharge_page(used);
3349	/*
3350	 * At migration, we may charge account against cgroup which has no
3351	 * tasks.
3352	 * So, rmdir()->pre_destroy() can be called while we do this charge.
3353	 * In that case, we need to call pre_destroy() again. check it here.
3354	 */
3355	cgroup_release_and_wakeup_rmdir(&mem->css);
3356}
3357
3358#ifdef CONFIG_DEBUG_VM
3359static struct page_cgroup *lookup_page_cgroup_used(struct page *page)
3360{
3361	struct page_cgroup *pc;
3362
3363	pc = lookup_page_cgroup(page);
3364	if (likely(pc) && PageCgroupUsed(pc))
3365		return pc;
3366	return NULL;
3367}
3368
3369bool mem_cgroup_bad_page_check(struct page *page)
3370{
3371	if (mem_cgroup_disabled())
3372		return false;
3373
3374	return lookup_page_cgroup_used(page) != NULL;
3375}
3376
3377void mem_cgroup_print_bad_page(struct page *page)
3378{
3379	struct page_cgroup *pc;
3380
3381	pc = lookup_page_cgroup_used(page);
3382	if (pc) {
3383		int ret = -1;
3384		char *path;
3385
3386		printk(KERN_ALERT "pc:%p pc->flags:%lx pc->mem_cgroup:%p",
3387		       pc, pc->flags, pc->mem_cgroup);
3388
3389		path = kmalloc(PATH_MAX, GFP_KERNEL);
3390		if (path) {
3391			rcu_read_lock();
3392			ret = cgroup_path(pc->mem_cgroup->css.cgroup,
3393							path, PATH_MAX);
3394			rcu_read_unlock();
3395		}
3396
3397		printk(KERN_CONT "(%s)\n",
3398				(ret < 0) ? "cannot get the path" : path);
3399		kfree(path);
3400	}
3401}
3402#endif
3403
3404static DEFINE_MUTEX(set_limit_mutex);
3405
3406static int mem_cgroup_resize_limit(struct mem_cgroup *memcg,
3407				unsigned long long val)
3408{
3409	int retry_count;
3410	u64 memswlimit, memlimit;
3411	int ret = 0;
3412	int children = mem_cgroup_count_children(memcg);
3413	u64 curusage, oldusage;
3414	int enlarge;
3415
3416	/*
3417	 * For keeping hierarchical_reclaim simple, how long we should retry
3418	 * is depends on callers. We set our retry-count to be function
3419	 * of # of children which we should visit in this loop.
3420	 */
3421	retry_count = MEM_CGROUP_RECLAIM_RETRIES * children;
3422
3423	oldusage = res_counter_read_u64(&memcg->res, RES_USAGE);
3424
3425	enlarge = 0;
3426	while (retry_count) {
3427		if (signal_pending(current)) {
3428			ret = -EINTR;
3429			break;
3430		}
 
 
3431		/*
3432		 * Rather than hide all in some function, I do this in
3433		 * open coded manner. You see what this really does.
3434		 * We have to guarantee mem->res.limit < mem->memsw.limit.
3435		 */
3436		mutex_lock(&set_limit_mutex);
3437		memswlimit = res_counter_read_u64(&memcg->memsw, RES_LIMIT);
3438		if (memswlimit < val) {
 
3439			ret = -EINVAL;
3440			mutex_unlock(&set_limit_mutex);
3441			break;
3442		}
3443
3444		memlimit = res_counter_read_u64(&memcg->res, RES_LIMIT);
3445		if (memlimit < val)
3446			enlarge = 1;
3447
3448		ret = res_counter_set_limit(&memcg->res, val);
3449		if (!ret) {
3450			if (memswlimit == val)
3451				memcg->memsw_is_minimum = true;
3452			else
3453				memcg->memsw_is_minimum = false;
3454		}
3455		mutex_unlock(&set_limit_mutex);
3456
3457		if (!ret)
3458			break;
3459
3460		mem_cgroup_hierarchical_reclaim(memcg, NULL, GFP_KERNEL,
3461						MEM_CGROUP_RECLAIM_SHRINK,
3462						NULL);
3463		curusage = res_counter_read_u64(&memcg->res, RES_USAGE);
3464		/* Usage is reduced ? */
3465  		if (curusage >= oldusage)
3466			retry_count--;
3467		else
3468			oldusage = curusage;
3469	}
3470	if (!ret && enlarge)
3471		memcg_oom_recover(memcg);
3472
3473	return ret;
3474}
3475
3476static int mem_cgroup_resize_memsw_limit(struct mem_cgroup *memcg,
3477					unsigned long long val)
3478{
3479	int retry_count;
3480	u64 memlimit, memswlimit, oldusage, curusage;
3481	int children = mem_cgroup_count_children(memcg);
3482	int ret = -EBUSY;
3483	int enlarge = 0;
3484
3485	/* see mem_cgroup_resize_res_limit */
3486 	retry_count = children * MEM_CGROUP_RECLAIM_RETRIES;
3487	oldusage = res_counter_read_u64(&memcg->memsw, RES_USAGE);
3488	while (retry_count) {
3489		if (signal_pending(current)) {
3490			ret = -EINTR;
3491			break;
3492		}
3493		/*
3494		 * Rather than hide all in some function, I do this in
3495		 * open coded manner. You see what this really does.
3496		 * We have to guarantee mem->res.limit < mem->memsw.limit.
3497		 */
3498		mutex_lock(&set_limit_mutex);
3499		memlimit = res_counter_read_u64(&memcg->res, RES_LIMIT);
3500		if (memlimit > val) {
3501			ret = -EINVAL;
3502			mutex_unlock(&set_limit_mutex);
3503			break;
3504		}
3505		memswlimit = res_counter_read_u64(&memcg->memsw, RES_LIMIT);
3506		if (memswlimit < val)
3507			enlarge = 1;
3508		ret = res_counter_set_limit(&memcg->memsw, val);
3509		if (!ret) {
3510			if (memlimit == val)
3511				memcg->memsw_is_minimum = true;
3512			else
3513				memcg->memsw_is_minimum = false;
3514		}
3515		mutex_unlock(&set_limit_mutex);
3516
3517		if (!ret)
 
 
3518			break;
 
 
3519
3520		mem_cgroup_hierarchical_reclaim(memcg, NULL, GFP_KERNEL,
3521						MEM_CGROUP_RECLAIM_NOSWAP |
3522						MEM_CGROUP_RECLAIM_SHRINK,
3523						NULL);
3524		curusage = res_counter_read_u64(&memcg->memsw, RES_USAGE);
3525		/* Usage is reduced ? */
3526		if (curusage >= oldusage)
3527			retry_count--;
3528		else
3529			oldusage = curusage;
3530	}
3531	if (!ret && enlarge)
3532		memcg_oom_recover(memcg);
 
3533	return ret;
3534}
3535
3536unsigned long mem_cgroup_soft_limit_reclaim(struct zone *zone, int order,
3537					    gfp_t gfp_mask,
3538					    unsigned long *total_scanned)
3539{
3540	unsigned long nr_reclaimed = 0;
3541	struct mem_cgroup_per_zone *mz, *next_mz = NULL;
3542	unsigned long reclaimed;
3543	int loop = 0;
3544	struct mem_cgroup_tree_per_zone *mctz;
3545	unsigned long long excess;
3546	unsigned long nr_scanned;
3547
3548	if (order > 0)
3549		return 0;
3550
3551	mctz = soft_limit_tree_node_zone(zone_to_nid(zone), zone_idx(zone));
 
 
 
 
 
 
 
 
 
3552	/*
3553	 * This loop can run a while, specially if mem_cgroup's continuously
3554	 * keep exceeding their soft limit and putting the system under
3555	 * pressure
3556	 */
3557	do {
3558		if (next_mz)
3559			mz = next_mz;
3560		else
3561			mz = mem_cgroup_largest_soft_limit_node(mctz);
3562		if (!mz)
3563			break;
3564
3565		nr_scanned = 0;
3566		reclaimed = mem_cgroup_hierarchical_reclaim(mz->mem, zone,
3567						gfp_mask,
3568						MEM_CGROUP_RECLAIM_SOFT,
3569						&nr_scanned);
3570		nr_reclaimed += reclaimed;
3571		*total_scanned += nr_scanned;
3572		spin_lock(&mctz->lock);
 
3573
3574		/*
3575		 * If we failed to reclaim anything from this memory cgroup
3576		 * it is time to move on to the next cgroup
3577		 */
3578		next_mz = NULL;
3579		if (!reclaimed) {
3580			do {
3581				/*
3582				 * Loop until we find yet another one.
3583				 *
3584				 * By the time we get the soft_limit lock
3585				 * again, someone might have aded the
3586				 * group back on the RB tree. Iterate to
3587				 * make sure we get a different mem.
3588				 * mem_cgroup_largest_soft_limit_node returns
3589				 * NULL if no other cgroup is present on
3590				 * the tree
3591				 */
3592				next_mz =
3593				__mem_cgroup_largest_soft_limit_node(mctz);
3594				if (next_mz == mz)
3595					css_put(&next_mz->mem->css);
3596				else /* next_mz == NULL or other memcg */
3597					break;
3598			} while (1);
3599		}
3600		__mem_cgroup_remove_exceeded(mz->mem, mz, mctz);
3601		excess = res_counter_soft_limit_excess(&mz->mem->res);
3602		/*
3603		 * One school of thought says that we should not add
3604		 * back the node to the tree if reclaim returns 0.
3605		 * But our reclaim could return 0, simply because due
3606		 * to priority we are exposing a smaller subset of
3607		 * memory to reclaim from. Consider this as a longer
3608		 * term TODO.
3609		 */
3610		/* If excess == 0, no tree ops */
3611		__mem_cgroup_insert_exceeded(mz->mem, mz, mctz, excess);
3612		spin_unlock(&mctz->lock);
3613		css_put(&mz->mem->css);
3614		loop++;
3615		/*
3616		 * Could not reclaim anything and there are no more
3617		 * mem cgroups to try or we seem to be looping without
3618		 * reclaiming anything.
3619		 */
3620		if (!nr_reclaimed &&
3621			(next_mz == NULL ||
3622			loop > MEM_CGROUP_MAX_SOFT_LIMIT_RECLAIM_LOOPS))
3623			break;
3624	} while (!nr_reclaimed);
3625	if (next_mz)
3626		css_put(&next_mz->mem->css);
3627	return nr_reclaimed;
3628}
3629
3630/*
3631 * This routine traverse page_cgroup in given list and drop them all.
3632 * *And* this routine doesn't reclaim page itself, just removes page_cgroup.
 
 
3633 */
3634static int mem_cgroup_force_empty_list(struct mem_cgroup *mem,
3635				int node, int zid, enum lru_list lru)
3636{
3637	struct zone *zone;
3638	struct mem_cgroup_per_zone *mz;
3639	struct page_cgroup *pc, *busy;
3640	unsigned long flags, loop;
3641	struct list_head *list;
3642	int ret = 0;
3643
3644	zone = &NODE_DATA(node)->node_zones[zid];
3645	mz = mem_cgroup_zoneinfo(mem, node, zid);
3646	list = &mz->lists[lru];
3647
3648	loop = MEM_CGROUP_ZSTAT(mz, lru);
3649	/* give some margin against EBUSY etc...*/
3650	loop += 256;
3651	busy = NULL;
3652	while (loop--) {
3653		struct page *page;
3654
3655		ret = 0;
3656		spin_lock_irqsave(&zone->lru_lock, flags);
3657		if (list_empty(list)) {
3658			spin_unlock_irqrestore(&zone->lru_lock, flags);
3659			break;
3660		}
3661		pc = list_entry(list->prev, struct page_cgroup, lru);
3662		if (busy == pc) {
3663			list_move(&pc->lru, list);
3664			busy = NULL;
3665			spin_unlock_irqrestore(&zone->lru_lock, flags);
3666			continue;
3667		}
3668		spin_unlock_irqrestore(&zone->lru_lock, flags);
3669
3670		page = lookup_cgroup_page(pc);
3671
3672		ret = mem_cgroup_move_parent(page, pc, mem, GFP_KERNEL);
3673		if (ret == -ENOMEM)
3674			break;
3675
3676		if (ret == -EBUSY || ret == -EINVAL) {
3677			/* found lock contention or "pc" is obsolete. */
3678			busy = pc;
3679			cond_resched();
3680		} else
3681			busy = NULL;
3682	}
3683
3684	if (!ret && !list_empty(list))
3685		return -EBUSY;
3686	return ret;
3687}
3688
3689/*
3690 * make mem_cgroup's charge to be 0 if there is no task.
3691 * This enables deleting this mem_cgroup.
 
3692 */
3693static int mem_cgroup_force_empty(struct mem_cgroup *mem, bool free_all)
3694{
3695	int ret;
3696	int node, zid, shrink;
3697	int nr_retries = MEM_CGROUP_RECLAIM_RETRIES;
3698	struct cgroup *cgrp = mem->css.cgroup;
3699
3700	css_get(&mem->css);
3701
3702	shrink = 0;
3703	/* should free all ? */
3704	if (free_all)
3705		goto try_to_free;
3706move_account:
3707	do {
3708		ret = -EBUSY;
3709		if (cgroup_task_count(cgrp) || !list_empty(&cgrp->children))
3710			goto out;
3711		ret = -EINTR;
3712		if (signal_pending(current))
3713			goto out;
3714		/* This is for making all *used* pages to be on LRU. */
3715		lru_add_drain_all();
3716		drain_all_stock_sync(mem);
3717		ret = 0;
3718		mem_cgroup_start_move(mem);
3719		for_each_node_state(node, N_HIGH_MEMORY) {
3720			for (zid = 0; !ret && zid < MAX_NR_ZONES; zid++) {
3721				enum lru_list l;
3722				for_each_lru(l) {
3723					ret = mem_cgroup_force_empty_list(mem,
3724							node, zid, l);
3725					if (ret)
3726						break;
3727				}
3728			}
3729			if (ret)
3730				break;
3731		}
3732		mem_cgroup_end_move(mem);
3733		memcg_oom_recover(mem);
3734		/* it seems parent cgroup doesn't have enough mem */
3735		if (ret == -ENOMEM)
3736			goto try_to_free;
3737		cond_resched();
3738	/* "ret" should also be checked to ensure all lists are empty. */
3739	} while (mem->res.usage > 0 || ret);
3740out:
3741	css_put(&mem->css);
3742	return ret;
3743
3744try_to_free:
3745	/* returns EBUSY if there is a task or if we come here twice. */
3746	if (cgroup_task_count(cgrp) || !list_empty(&cgrp->children) || shrink) {
3747		ret = -EBUSY;
3748		goto out;
3749	}
3750	/* we call try-to-free pages for make this cgroup empty */
3751	lru_add_drain_all();
 
 
 
3752	/* try to free all pages in this cgroup */
3753	shrink = 1;
3754	while (nr_retries && mem->res.usage > 0) {
3755		int progress;
3756
3757		if (signal_pending(current)) {
3758			ret = -EINTR;
3759			goto out;
3760		}
3761		progress = try_to_free_mem_cgroup_pages(mem, GFP_KERNEL,
3762						false);
3763		if (!progress) {
3764			nr_retries--;
3765			/* maybe some writeback is necessary */
3766			congestion_wait(BLK_RW_ASYNC, HZ/10);
3767		}
3768
3769	}
3770	lru_add_drain();
3771	/* try move_account...there may be some *locked* pages. */
3772	goto move_account;
3773}
3774
3775int mem_cgroup_force_empty_write(struct cgroup *cont, unsigned int event)
 
 
3776{
3777	return mem_cgroup_force_empty(mem_cgroup_from_cont(cont), true);
3778}
3779
 
 
 
 
3780
3781static u64 mem_cgroup_hierarchy_read(struct cgroup *cont, struct cftype *cft)
 
3782{
3783	return mem_cgroup_from_cont(cont)->use_hierarchy;
3784}
3785
3786static int mem_cgroup_hierarchy_write(struct cgroup *cont, struct cftype *cft,
3787					u64 val)
3788{
3789	int retval = 0;
3790	struct mem_cgroup *mem = mem_cgroup_from_cont(cont);
3791	struct cgroup *parent = cont->parent;
3792	struct mem_cgroup *parent_mem = NULL;
3793
3794	if (parent)
3795		parent_mem = mem_cgroup_from_cont(parent);
3796
3797	cgroup_lock();
3798	/*
3799	 * If parent's use_hierarchy is set, we can't make any modifications
3800	 * in the child subtrees. If it is unset, then the change can
3801	 * occur, provided the current cgroup has no children.
3802	 *
3803	 * For the root cgroup, parent_mem is NULL, we allow value to be
3804	 * set if there are no children.
3805	 */
3806	if ((!parent_mem || !parent_mem->use_hierarchy) &&
3807				(val == 1 || val == 0)) {
3808		if (list_empty(&cont->children))
3809			mem->use_hierarchy = val;
3810		else
3811			retval = -EBUSY;
3812	} else
3813		retval = -EINVAL;
3814	cgroup_unlock();
3815
3816	return retval;
3817}
3818
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
3819
3820static unsigned long mem_cgroup_recursive_stat(struct mem_cgroup *mem,
3821					       enum mem_cgroup_stat_index idx)
3822{
3823	struct mem_cgroup *iter;
3824	long val = 0;
3825
3826	/* Per-cpu values can be negative, use a signed accumulator */
3827	for_each_mem_cgroup_tree(iter, mem)
3828		val += mem_cgroup_read_stat(iter, idx);
 
 
 
 
 
 
 
 
 
 
 
 
 
3829
3830	if (val < 0) /* race ? */
3831		val = 0;
3832	return val;
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
3833}
3834
3835static inline u64 mem_cgroup_usage(struct mem_cgroup *mem, bool swap)
3836{
3837	u64 val;
 
 
 
 
 
 
 
 
 
 
 
3838
3839	if (!mem_cgroup_is_root(mem)) {
3840		if (!swap)
3841			return res_counter_read_u64(&mem->res, RES_USAGE);
3842		else
3843			return res_counter_read_u64(&mem->memsw, RES_USAGE);
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
3844	}
 
3845
3846	val = mem_cgroup_recursive_stat(mem, MEM_CGROUP_STAT_CACHE);
3847	val += mem_cgroup_recursive_stat(mem, MEM_CGROUP_STAT_RSS);
 
 
 
3848
3849	if (swap)
3850		val += mem_cgroup_recursive_stat(mem, MEM_CGROUP_STAT_SWAPOUT);
3851
3852	return val << PAGE_SHIFT;
 
 
 
 
 
 
 
3853}
3854
3855static u64 mem_cgroup_read(struct cgroup *cont, struct cftype *cft)
 
3856{
3857	struct mem_cgroup *mem = mem_cgroup_from_cont(cont);
3858	u64 val;
3859	int type, name;
3860
3861	type = MEMFILE_TYPE(cft->private);
3862	name = MEMFILE_ATTR(cft->private);
3863	switch (type) {
3864	case _MEM:
3865		if (name == RES_USAGE)
3866			val = mem_cgroup_usage(mem, false);
3867		else
3868			val = res_counter_read_u64(&mem->res, name);
3869		break;
3870	case _MEMSWAP:
3871		if (name == RES_USAGE)
3872			val = mem_cgroup_usage(mem, true);
3873		else
3874			val = res_counter_read_u64(&mem->memsw, name);
3875		break;
3876	default:
3877		BUG();
3878		break;
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
3879	}
3880	return val;
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
3881}
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
3882/*
3883 * The user of this function is...
3884 * RES_LIMIT.
3885 */
3886static int mem_cgroup_write(struct cgroup *cont, struct cftype *cft,
3887			    const char *buffer)
3888{
3889	struct mem_cgroup *memcg = mem_cgroup_from_cont(cont);
3890	int type, name;
3891	unsigned long long val;
3892	int ret;
3893
3894	type = MEMFILE_TYPE(cft->private);
3895	name = MEMFILE_ATTR(cft->private);
3896	switch (name) {
 
 
 
3897	case RES_LIMIT:
3898		if (mem_cgroup_is_root(memcg)) { /* Can't set limit on root */
3899			ret = -EINVAL;
3900			break;
3901		}
3902		/* This function does all necessary parse...reuse it */
3903		ret = res_counter_memparse_write_strategy(buffer, &val);
3904		if (ret)
3905			break;
3906		if (type == _MEM)
3907			ret = mem_cgroup_resize_limit(memcg, val);
3908		else
3909			ret = mem_cgroup_resize_memsw_limit(memcg, val);
3910		break;
3911	case RES_SOFT_LIMIT:
3912		ret = res_counter_memparse_write_strategy(buffer, &val);
3913		if (ret)
3914			break;
3915		/*
3916		 * For memsw, soft limits are hard to implement in terms
3917		 * of semantics, for now, we support soft limits for
3918		 * control without swap
3919		 */
3920		if (type == _MEM)
3921			ret = res_counter_set_soft_limit(&memcg->res, val);
3922		else
3923			ret = -EINVAL;
 
3924		break;
3925	default:
3926		ret = -EINVAL; /* should be BUG() ? */
 
3927		break;
3928	}
3929	return ret;
3930}
3931
3932static void memcg_get_hierarchical_limit(struct mem_cgroup *memcg,
3933		unsigned long long *mem_limit, unsigned long long *memsw_limit)
3934{
3935	struct cgroup *cgroup;
3936	unsigned long long min_limit, min_memsw_limit, tmp;
3937
3938	min_limit = res_counter_read_u64(&memcg->res, RES_LIMIT);
3939	min_memsw_limit = res_counter_read_u64(&memcg->memsw, RES_LIMIT);
3940	cgroup = memcg->css.cgroup;
3941	if (!memcg->use_hierarchy)
3942		goto out;
3943
3944	while (cgroup->parent) {
3945		cgroup = cgroup->parent;
3946		memcg = mem_cgroup_from_cont(cgroup);
3947		if (!memcg->use_hierarchy)
3948			break;
3949		tmp = res_counter_read_u64(&memcg->res, RES_LIMIT);
3950		min_limit = min(min_limit, tmp);
3951		tmp = res_counter_read_u64(&memcg->memsw, RES_LIMIT);
3952		min_memsw_limit = min(min_memsw_limit, tmp);
3953	}
3954out:
3955	*mem_limit = min_limit;
3956	*memsw_limit = min_memsw_limit;
3957	return;
3958}
3959
3960static int mem_cgroup_reset(struct cgroup *cont, unsigned int event)
3961{
3962	struct mem_cgroup *mem;
3963	int type, name;
3964
3965	mem = mem_cgroup_from_cont(cont);
3966	type = MEMFILE_TYPE(event);
3967	name = MEMFILE_ATTR(event);
3968	switch (name) {
3969	case RES_MAX_USAGE:
3970		if (type == _MEM)
3971			res_counter_reset_max(&mem->res);
3972		else
3973			res_counter_reset_max(&mem->memsw);
3974		break;
3975	case RES_FAILCNT:
3976		if (type == _MEM)
3977			res_counter_reset_failcnt(&mem->res);
3978		else
3979			res_counter_reset_failcnt(&mem->memsw);
3980		break;
 
 
3981	}
3982
3983	return 0;
3984}
3985
3986static u64 mem_cgroup_move_charge_read(struct cgroup *cgrp,
3987					struct cftype *cft)
3988{
3989	return mem_cgroup_from_cont(cgrp)->move_charge_at_immigrate;
3990}
3991
3992#ifdef CONFIG_MMU
3993static int mem_cgroup_move_charge_write(struct cgroup *cgrp,
3994					struct cftype *cft, u64 val)
3995{
3996	struct mem_cgroup *mem = mem_cgroup_from_cont(cgrp);
3997
3998	if (val >= (1 << NR_MOVE_TYPE))
3999		return -EINVAL;
4000	/*
4001	 * We check this value several times in both in can_attach() and
4002	 * attach(), so we need cgroup lock to prevent this value from being
4003	 * inconsistent.
4004	 */
4005	cgroup_lock();
4006	mem->move_charge_at_immigrate = val;
4007	cgroup_unlock();
4008
 
 
 
 
 
 
 
4009	return 0;
4010}
4011#else
4012static int mem_cgroup_move_charge_write(struct cgroup *cgrp,
4013					struct cftype *cft, u64 val)
4014{
4015	return -ENOSYS;
4016}
4017#endif
4018
 
4019
4020/* For read statistics */
4021enum {
4022	MCS_CACHE,
4023	MCS_RSS,
4024	MCS_FILE_MAPPED,
4025	MCS_PGPGIN,
4026	MCS_PGPGOUT,
4027	MCS_SWAP,
4028	MCS_PGFAULT,
4029	MCS_PGMAJFAULT,
4030	MCS_INACTIVE_ANON,
4031	MCS_ACTIVE_ANON,
4032	MCS_INACTIVE_FILE,
4033	MCS_ACTIVE_FILE,
4034	MCS_UNEVICTABLE,
4035	NR_MCS_STAT,
4036};
4037
4038struct mcs_total_stat {
4039	s64 stat[NR_MCS_STAT];
4040};
4041
4042struct {
4043	char *local_name;
4044	char *total_name;
4045} memcg_stat_strings[NR_MCS_STAT] = {
4046	{"cache", "total_cache"},
4047	{"rss", "total_rss"},
4048	{"mapped_file", "total_mapped_file"},
4049	{"pgpgin", "total_pgpgin"},
4050	{"pgpgout", "total_pgpgout"},
4051	{"swap", "total_swap"},
4052	{"pgfault", "total_pgfault"},
4053	{"pgmajfault", "total_pgmajfault"},
4054	{"inactive_anon", "total_inactive_anon"},
4055	{"active_anon", "total_active_anon"},
4056	{"inactive_file", "total_inactive_file"},
4057	{"active_file", "total_active_file"},
4058	{"unevictable", "total_unevictable"}
4059};
4060
4061
4062static void
4063mem_cgroup_get_local_stat(struct mem_cgroup *mem, struct mcs_total_stat *s)
4064{
4065	s64 val;
 
 
 
 
4066
4067	/* per cpu stat */
4068	val = mem_cgroup_read_stat(mem, MEM_CGROUP_STAT_CACHE);
4069	s->stat[MCS_CACHE] += val * PAGE_SIZE;
4070	val = mem_cgroup_read_stat(mem, MEM_CGROUP_STAT_RSS);
4071	s->stat[MCS_RSS] += val * PAGE_SIZE;
4072	val = mem_cgroup_read_stat(mem, MEM_CGROUP_STAT_FILE_MAPPED);
4073	s->stat[MCS_FILE_MAPPED] += val * PAGE_SIZE;
4074	val = mem_cgroup_read_events(mem, MEM_CGROUP_EVENTS_PGPGIN);
4075	s->stat[MCS_PGPGIN] += val;
4076	val = mem_cgroup_read_events(mem, MEM_CGROUP_EVENTS_PGPGOUT);
4077	s->stat[MCS_PGPGOUT] += val;
4078	if (do_swap_account) {
4079		val = mem_cgroup_read_stat(mem, MEM_CGROUP_STAT_SWAPOUT);
4080		s->stat[MCS_SWAP] += val * PAGE_SIZE;
4081	}
4082	val = mem_cgroup_read_events(mem, MEM_CGROUP_EVENTS_PGFAULT);
4083	s->stat[MCS_PGFAULT] += val;
4084	val = mem_cgroup_read_events(mem, MEM_CGROUP_EVENTS_PGMAJFAULT);
4085	s->stat[MCS_PGMAJFAULT] += val;
4086
4087	/* per zone stat */
4088	val = mem_cgroup_nr_lru_pages(mem, BIT(LRU_INACTIVE_ANON));
4089	s->stat[MCS_INACTIVE_ANON] += val * PAGE_SIZE;
4090	val = mem_cgroup_nr_lru_pages(mem, BIT(LRU_ACTIVE_ANON));
4091	s->stat[MCS_ACTIVE_ANON] += val * PAGE_SIZE;
4092	val = mem_cgroup_nr_lru_pages(mem, BIT(LRU_INACTIVE_FILE));
4093	s->stat[MCS_INACTIVE_FILE] += val * PAGE_SIZE;
4094	val = mem_cgroup_nr_lru_pages(mem, BIT(LRU_ACTIVE_FILE));
4095	s->stat[MCS_ACTIVE_FILE] += val * PAGE_SIZE;
4096	val = mem_cgroup_nr_lru_pages(mem, BIT(LRU_UNEVICTABLE));
4097	s->stat[MCS_UNEVICTABLE] += val * PAGE_SIZE;
4098}
4099
4100static void
4101mem_cgroup_get_total_stat(struct mem_cgroup *mem, struct mcs_total_stat *s)
4102{
4103	struct mem_cgroup *iter;
 
4104
4105	for_each_mem_cgroup_tree(iter, mem)
4106		mem_cgroup_get_local_stat(iter, s);
 
 
 
 
4107}
4108
4109#ifdef CONFIG_NUMA
4110static int mem_control_numa_stat_show(struct seq_file *m, void *arg)
4111{
 
 
 
 
 
 
 
 
 
 
 
 
4112	int nid;
4113	unsigned long total_nr, file_nr, anon_nr, unevictable_nr;
4114	unsigned long node_nr;
4115	struct cgroup *cont = m->private;
4116	struct mem_cgroup *mem_cont = mem_cgroup_from_cont(cont);
4117
4118	total_nr = mem_cgroup_nr_lru_pages(mem_cont, LRU_ALL);
4119	seq_printf(m, "total=%lu", total_nr);
4120	for_each_node_state(nid, N_HIGH_MEMORY) {
4121		node_nr = mem_cgroup_node_nr_lru_pages(mem_cont, nid, LRU_ALL);
4122		seq_printf(m, " N%d=%lu", nid, node_nr);
4123	}
4124	seq_putc(m, '\n');
4125
4126	file_nr = mem_cgroup_nr_lru_pages(mem_cont, LRU_ALL_FILE);
4127	seq_printf(m, "file=%lu", file_nr);
4128	for_each_node_state(nid, N_HIGH_MEMORY) {
4129		node_nr = mem_cgroup_node_nr_lru_pages(mem_cont, nid,
4130				LRU_ALL_FILE);
4131		seq_printf(m, " N%d=%lu", nid, node_nr);
4132	}
4133	seq_putc(m, '\n');
4134
4135	anon_nr = mem_cgroup_nr_lru_pages(mem_cont, LRU_ALL_ANON);
4136	seq_printf(m, "anon=%lu", anon_nr);
4137	for_each_node_state(nid, N_HIGH_MEMORY) {
4138		node_nr = mem_cgroup_node_nr_lru_pages(mem_cont, nid,
4139				LRU_ALL_ANON);
4140		seq_printf(m, " N%d=%lu", nid, node_nr);
4141	}
4142	seq_putc(m, '\n');
4143
4144	unevictable_nr = mem_cgroup_nr_lru_pages(mem_cont, BIT(LRU_UNEVICTABLE));
4145	seq_printf(m, "unevictable=%lu", unevictable_nr);
4146	for_each_node_state(nid, N_HIGH_MEMORY) {
4147		node_nr = mem_cgroup_node_nr_lru_pages(mem_cont, nid,
4148				BIT(LRU_UNEVICTABLE));
4149		seq_printf(m, " N%d=%lu", nid, node_nr);
4150	}
4151	seq_putc(m, '\n');
4152	return 0;
4153}
4154#endif /* CONFIG_NUMA */
4155
4156static int mem_control_stat_show(struct cgroup *cont, struct cftype *cft,
4157				 struct cgroup_map_cb *cb)
4158{
4159	struct mem_cgroup *mem_cont = mem_cgroup_from_cont(cont);
4160	struct mcs_total_stat mystat;
4161	int i;
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
4162
4163	memset(&mystat, 0, sizeof(mystat));
4164	mem_cgroup_get_local_stat(mem_cont, &mystat);
 
 
 
 
4165
 
 
4166
4167	for (i = 0; i < NR_MCS_STAT; i++) {
4168		if (i == MCS_SWAP && !do_swap_account)
4169			continue;
4170		cb->fill(cb, memcg_stat_strings[i].local_name, mystat.stat[i]);
 
 
4171	}
4172
 
 
 
 
 
 
 
 
 
4173	/* Hierarchical information */
4174	{
4175		unsigned long long limit, memsw_limit;
4176		memcg_get_hierarchical_limit(mem_cont, &limit, &memsw_limit);
4177		cb->fill(cb, "hierarchical_memory_limit", limit);
4178		if (do_swap_account)
4179			cb->fill(cb, "hierarchical_memsw_limit", memsw_limit);
4180	}
 
 
 
4181
4182	memset(&mystat, 0, sizeof(mystat));
4183	mem_cgroup_get_total_stat(mem_cont, &mystat);
4184	for (i = 0; i < NR_MCS_STAT; i++) {
4185		if (i == MCS_SWAP && !do_swap_account)
4186			continue;
4187		cb->fill(cb, memcg_stat_strings[i].total_name, mystat.stat[i]);
 
 
4188	}
4189
4190#ifdef CONFIG_DEBUG_VM
4191	cb->fill(cb, "inactive_ratio", calc_inactive_ratio(mem_cont, NULL));
 
 
 
 
 
 
4192
 
4193	{
4194		int nid, zid;
4195		struct mem_cgroup_per_zone *mz;
 
4196		unsigned long recent_rotated[2] = {0, 0};
4197		unsigned long recent_scanned[2] = {0, 0};
4198
4199		for_each_online_node(nid)
4200			for (zid = 0; zid < MAX_NR_ZONES; zid++) {
4201				mz = mem_cgroup_zoneinfo(mem_cont, nid, zid);
4202
4203				recent_rotated[0] +=
4204					mz->reclaim_stat.recent_rotated[0];
4205				recent_rotated[1] +=
4206					mz->reclaim_stat.recent_rotated[1];
4207				recent_scanned[0] +=
4208					mz->reclaim_stat.recent_scanned[0];
4209				recent_scanned[1] +=
4210					mz->reclaim_stat.recent_scanned[1];
4211			}
4212		cb->fill(cb, "recent_rotated_anon", recent_rotated[0]);
4213		cb->fill(cb, "recent_rotated_file", recent_rotated[1]);
4214		cb->fill(cb, "recent_scanned_anon", recent_scanned[0]);
4215		cb->fill(cb, "recent_scanned_file", recent_scanned[1]);
4216	}
4217#endif
4218
4219	return 0;
4220}
4221
4222static u64 mem_cgroup_swappiness_read(struct cgroup *cgrp, struct cftype *cft)
 
4223{
4224	struct mem_cgroup *memcg = mem_cgroup_from_cont(cgrp);
4225
4226	return mem_cgroup_swappiness(memcg);
4227}
4228
4229static int mem_cgroup_swappiness_write(struct cgroup *cgrp, struct cftype *cft,
4230				       u64 val)
4231{
4232	struct mem_cgroup *memcg = mem_cgroup_from_cont(cgrp);
4233	struct mem_cgroup *parent;
4234
4235	if (val > 100)
4236		return -EINVAL;
4237
4238	if (cgrp->parent == NULL)
4239		return -EINVAL;
4240
4241	parent = mem_cgroup_from_cont(cgrp->parent);
4242
4243	cgroup_lock();
4244
4245	/* If under hierarchy, only empty-root can set this value */
4246	if ((parent->use_hierarchy) ||
4247	    (memcg->use_hierarchy && !list_empty(&cgrp->children))) {
4248		cgroup_unlock();
4249		return -EINVAL;
4250	}
4251
4252	memcg->swappiness = val;
4253
4254	cgroup_unlock();
4255
4256	return 0;
4257}
4258
4259static void __mem_cgroup_threshold(struct mem_cgroup *memcg, bool swap)
4260{
4261	struct mem_cgroup_threshold_ary *t;
4262	u64 usage;
4263	int i;
4264
4265	rcu_read_lock();
4266	if (!swap)
4267		t = rcu_dereference(memcg->thresholds.primary);
4268	else
4269		t = rcu_dereference(memcg->memsw_thresholds.primary);
4270
4271	if (!t)
4272		goto unlock;
4273
4274	usage = mem_cgroup_usage(memcg, swap);
4275
4276	/*
4277	 * current_threshold points to threshold just below usage.
4278	 * If it's not true, a threshold was crossed after last
4279	 * call of __mem_cgroup_threshold().
4280	 */
4281	i = t->current_threshold;
4282
4283	/*
4284	 * Iterate backward over array of thresholds starting from
4285	 * current_threshold and check if a threshold is crossed.
4286	 * If none of thresholds below usage is crossed, we read
4287	 * only one element of the array here.
4288	 */
4289	for (; i >= 0 && unlikely(t->entries[i].threshold > usage); i--)
4290		eventfd_signal(t->entries[i].eventfd, 1);
4291
4292	/* i = current_threshold + 1 */
4293	i++;
4294
4295	/*
4296	 * Iterate forward over array of thresholds starting from
4297	 * current_threshold+1 and check if a threshold is crossed.
4298	 * If none of thresholds above usage is crossed, we read
4299	 * only one element of the array here.
4300	 */
4301	for (; i < t->size && unlikely(t->entries[i].threshold <= usage); i++)
4302		eventfd_signal(t->entries[i].eventfd, 1);
4303
4304	/* Update current_threshold */
4305	t->current_threshold = i - 1;
4306unlock:
4307	rcu_read_unlock();
4308}
4309
4310static void mem_cgroup_threshold(struct mem_cgroup *memcg)
4311{
4312	while (memcg) {
4313		__mem_cgroup_threshold(memcg, false);
4314		if (do_swap_account)
4315			__mem_cgroup_threshold(memcg, true);
4316
4317		memcg = parent_mem_cgroup(memcg);
4318	}
4319}
4320
4321static int compare_thresholds(const void *a, const void *b)
4322{
4323	const struct mem_cgroup_threshold *_a = a;
4324	const struct mem_cgroup_threshold *_b = b;
4325
4326	return _a->threshold - _b->threshold;
 
 
 
 
 
 
4327}
4328
4329static int mem_cgroup_oom_notify_cb(struct mem_cgroup *mem)
4330{
4331	struct mem_cgroup_eventfd_list *ev;
4332
4333	list_for_each_entry(ev, &mem->oom_notify, list)
 
 
4334		eventfd_signal(ev->eventfd, 1);
 
 
4335	return 0;
4336}
4337
4338static void mem_cgroup_oom_notify(struct mem_cgroup *mem)
4339{
4340	struct mem_cgroup *iter;
4341
4342	for_each_mem_cgroup_tree(iter, mem)
4343		mem_cgroup_oom_notify_cb(iter);
4344}
4345
4346static int mem_cgroup_usage_register_event(struct cgroup *cgrp,
4347	struct cftype *cft, struct eventfd_ctx *eventfd, const char *args)
4348{
4349	struct mem_cgroup *memcg = mem_cgroup_from_cont(cgrp);
4350	struct mem_cgroup_thresholds *thresholds;
4351	struct mem_cgroup_threshold_ary *new;
4352	int type = MEMFILE_TYPE(cft->private);
4353	u64 threshold, usage;
4354	int i, size, ret;
4355
4356	ret = res_counter_memparse_write_strategy(args, &threshold);
4357	if (ret)
4358		return ret;
4359
4360	mutex_lock(&memcg->thresholds_lock);
4361
4362	if (type == _MEM)
4363		thresholds = &memcg->thresholds;
4364	else if (type == _MEMSWAP)
 
4365		thresholds = &memcg->memsw_thresholds;
4366	else
 
4367		BUG();
4368
4369	usage = mem_cgroup_usage(memcg, type == _MEMSWAP);
4370
4371	/* Check if a threshold crossed before adding a new one */
4372	if (thresholds->primary)
4373		__mem_cgroup_threshold(memcg, type == _MEMSWAP);
4374
4375	size = thresholds->primary ? thresholds->primary->size + 1 : 1;
4376
4377	/* Allocate memory for new array of thresholds */
4378	new = kmalloc(sizeof(*new) + size * sizeof(struct mem_cgroup_threshold),
4379			GFP_KERNEL);
4380	if (!new) {
4381		ret = -ENOMEM;
4382		goto unlock;
4383	}
4384	new->size = size;
4385
4386	/* Copy thresholds (if any) to new array */
4387	if (thresholds->primary) {
4388		memcpy(new->entries, thresholds->primary->entries, (size - 1) *
4389				sizeof(struct mem_cgroup_threshold));
4390	}
4391
4392	/* Add new threshold */
4393	new->entries[size - 1].eventfd = eventfd;
4394	new->entries[size - 1].threshold = threshold;
4395
4396	/* Sort thresholds. Registering of new threshold isn't time-critical */
4397	sort(new->entries, size, sizeof(struct mem_cgroup_threshold),
4398			compare_thresholds, NULL);
4399
4400	/* Find current threshold */
4401	new->current_threshold = -1;
4402	for (i = 0; i < size; i++) {
4403		if (new->entries[i].threshold < usage) {
4404			/*
4405			 * new->current_threshold will not be used until
4406			 * rcu_assign_pointer(), so it's safe to increment
4407			 * it here.
4408			 */
4409			++new->current_threshold;
4410		}
 
4411	}
4412
4413	/* Free old spare buffer and save old primary buffer as spare */
4414	kfree(thresholds->spare);
4415	thresholds->spare = thresholds->primary;
4416
4417	rcu_assign_pointer(thresholds->primary, new);
4418
4419	/* To be sure that nobody uses thresholds */
4420	synchronize_rcu();
4421
4422unlock:
4423	mutex_unlock(&memcg->thresholds_lock);
4424
4425	return ret;
4426}
4427
4428static void mem_cgroup_usage_unregister_event(struct cgroup *cgrp,
4429	struct cftype *cft, struct eventfd_ctx *eventfd)
 
 
 
 
 
 
 
 
 
 
 
 
4430{
4431	struct mem_cgroup *memcg = mem_cgroup_from_cont(cgrp);
4432	struct mem_cgroup_thresholds *thresholds;
4433	struct mem_cgroup_threshold_ary *new;
4434	int type = MEMFILE_TYPE(cft->private);
4435	u64 usage;
4436	int i, j, size;
4437
4438	mutex_lock(&memcg->thresholds_lock);
4439	if (type == _MEM)
 
4440		thresholds = &memcg->thresholds;
4441	else if (type == _MEMSWAP)
 
4442		thresholds = &memcg->memsw_thresholds;
4443	else
 
4444		BUG();
4445
4446	/*
4447	 * Something went wrong if we trying to unregister a threshold
4448	 * if we don't have thresholds
4449	 */
4450	BUG_ON(!thresholds);
4451
4452	usage = mem_cgroup_usage(memcg, type == _MEMSWAP);
4453
4454	/* Check if a threshold crossed before removing */
4455	__mem_cgroup_threshold(memcg, type == _MEMSWAP);
4456
4457	/* Calculate new number of threshold */
4458	size = 0;
4459	for (i = 0; i < thresholds->primary->size; i++) {
4460		if (thresholds->primary->entries[i].eventfd != eventfd)
4461			size++;
4462	}
4463
4464	new = thresholds->spare;
4465
4466	/* Set thresholds array to NULL if we don't have thresholds */
4467	if (!size) {
4468		kfree(new);
4469		new = NULL;
4470		goto swap_buffers;
4471	}
4472
4473	new->size = size;
4474
4475	/* Copy thresholds and find current threshold */
4476	new->current_threshold = -1;
4477	for (i = 0, j = 0; i < thresholds->primary->size; i++) {
4478		if (thresholds->primary->entries[i].eventfd == eventfd)
4479			continue;
4480
4481		new->entries[j] = thresholds->primary->entries[i];
4482		if (new->entries[j].threshold < usage) {
4483			/*
4484			 * new->current_threshold will not be used
4485			 * until rcu_assign_pointer(), so it's safe to increment
4486			 * it here.
4487			 */
4488			++new->current_threshold;
4489		}
4490		j++;
4491	}
4492
4493swap_buffers:
4494	/* Swap primary and spare array */
4495	thresholds->spare = thresholds->primary;
 
4496	rcu_assign_pointer(thresholds->primary, new);
4497
4498	/* To be sure that nobody uses thresholds */
4499	synchronize_rcu();
4500
 
 
 
 
 
 
4501	mutex_unlock(&memcg->thresholds_lock);
4502}
4503
4504static int mem_cgroup_oom_register_event(struct cgroup *cgrp,
4505	struct cftype *cft, struct eventfd_ctx *eventfd, const char *args)
 
 
 
 
 
 
 
 
 
 
 
 
4506{
4507	struct mem_cgroup *memcg = mem_cgroup_from_cont(cgrp);
4508	struct mem_cgroup_eventfd_list *event;
4509	int type = MEMFILE_TYPE(cft->private);
4510
4511	BUG_ON(type != _OOM_TYPE);
4512	event = kmalloc(sizeof(*event),	GFP_KERNEL);
4513	if (!event)
4514		return -ENOMEM;
4515
4516	spin_lock(&memcg_oom_lock);
4517
4518	event->eventfd = eventfd;
4519	list_add(&event->list, &memcg->oom_notify);
4520
4521	/* already in OOM ? */
4522	if (atomic_read(&memcg->under_oom))
4523		eventfd_signal(eventfd, 1);
4524	spin_unlock(&memcg_oom_lock);
4525
4526	return 0;
4527}
4528
4529static void mem_cgroup_oom_unregister_event(struct cgroup *cgrp,
4530	struct cftype *cft, struct eventfd_ctx *eventfd)
4531{
4532	struct mem_cgroup *mem = mem_cgroup_from_cont(cgrp);
4533	struct mem_cgroup_eventfd_list *ev, *tmp;
4534	int type = MEMFILE_TYPE(cft->private);
4535
4536	BUG_ON(type != _OOM_TYPE);
4537
4538	spin_lock(&memcg_oom_lock);
4539
4540	list_for_each_entry_safe(ev, tmp, &mem->oom_notify, list) {
4541		if (ev->eventfd == eventfd) {
4542			list_del(&ev->list);
4543			kfree(ev);
4544		}
4545	}
4546
4547	spin_unlock(&memcg_oom_lock);
4548}
4549
4550static int mem_cgroup_oom_control_read(struct cgroup *cgrp,
4551	struct cftype *cft,  struct cgroup_map_cb *cb)
4552{
4553	struct mem_cgroup *mem = mem_cgroup_from_cont(cgrp);
4554
4555	cb->fill(cb, "oom_kill_disable", mem->oom_kill_disable);
4556
4557	if (atomic_read(&mem->under_oom))
4558		cb->fill(cb, "under_oom", 1);
4559	else
4560		cb->fill(cb, "under_oom", 0);
4561	return 0;
4562}
4563
4564static int mem_cgroup_oom_control_write(struct cgroup *cgrp,
4565	struct cftype *cft, u64 val)
4566{
4567	struct mem_cgroup *mem = mem_cgroup_from_cont(cgrp);
4568	struct mem_cgroup *parent;
4569
4570	/* cannot set to root cgroup and only 0 and 1 are allowed */
4571	if (!cgrp->parent || !((val == 0) || (val == 1)))
4572		return -EINVAL;
4573
4574	parent = mem_cgroup_from_cont(cgrp->parent);
 
 
4575
4576	cgroup_lock();
4577	/* oom-kill-disable is a flag for subhierarchy. */
4578	if ((parent->use_hierarchy) ||
4579	    (mem->use_hierarchy && !list_empty(&cgrp->children))) {
4580		cgroup_unlock();
4581		return -EINVAL;
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
4582	}
4583	mem->oom_kill_disable = val;
4584	if (!val)
4585		memcg_oom_recover(mem);
4586	cgroup_unlock();
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
4587	return 0;
4588}
4589
4590#ifdef CONFIG_NUMA
4591static const struct file_operations mem_control_numa_stat_file_operations = {
4592	.read = seq_read,
4593	.llseek = seq_lseek,
4594	.release = single_release,
4595};
4596
4597static int mem_control_numa_stat_open(struct inode *unused, struct file *file)
4598{
4599	struct cgroup *cont = file->f_dentry->d_parent->d_fsdata;
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
4600
4601	file->f_op = &mem_control_numa_stat_file_operations;
4602	return single_open(file, mem_control_numa_stat_show, cont);
 
 
 
 
 
 
4603}
4604#endif /* CONFIG_NUMA */
4605
4606static struct cftype mem_cgroup_files[] = {
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
4607	{
4608		.name = "usage_in_bytes",
4609		.private = MEMFILE_PRIVATE(_MEM, RES_USAGE),
4610		.read_u64 = mem_cgroup_read,
4611		.register_event = mem_cgroup_usage_register_event,
4612		.unregister_event = mem_cgroup_usage_unregister_event,
4613	},
4614	{
4615		.name = "max_usage_in_bytes",
4616		.private = MEMFILE_PRIVATE(_MEM, RES_MAX_USAGE),
4617		.trigger = mem_cgroup_reset,
4618		.read_u64 = mem_cgroup_read,
4619	},
4620	{
4621		.name = "limit_in_bytes",
4622		.private = MEMFILE_PRIVATE(_MEM, RES_LIMIT),
4623		.write_string = mem_cgroup_write,
4624		.read_u64 = mem_cgroup_read,
4625	},
4626	{
4627		.name = "soft_limit_in_bytes",
4628		.private = MEMFILE_PRIVATE(_MEM, RES_SOFT_LIMIT),
4629		.write_string = mem_cgroup_write,
4630		.read_u64 = mem_cgroup_read,
4631	},
4632	{
4633		.name = "failcnt",
4634		.private = MEMFILE_PRIVATE(_MEM, RES_FAILCNT),
4635		.trigger = mem_cgroup_reset,
4636		.read_u64 = mem_cgroup_read,
4637	},
4638	{
4639		.name = "stat",
4640		.read_map = mem_control_stat_show,
4641	},
4642	{
4643		.name = "force_empty",
4644		.trigger = mem_cgroup_force_empty_write,
4645	},
4646	{
4647		.name = "use_hierarchy",
4648		.write_u64 = mem_cgroup_hierarchy_write,
4649		.read_u64 = mem_cgroup_hierarchy_read,
4650	},
4651	{
 
 
 
 
 
4652		.name = "swappiness",
4653		.read_u64 = mem_cgroup_swappiness_read,
4654		.write_u64 = mem_cgroup_swappiness_write,
4655	},
4656	{
4657		.name = "move_charge_at_immigrate",
4658		.read_u64 = mem_cgroup_move_charge_read,
4659		.write_u64 = mem_cgroup_move_charge_write,
4660	},
4661	{
4662		.name = "oom_control",
4663		.read_map = mem_cgroup_oom_control_read,
4664		.write_u64 = mem_cgroup_oom_control_write,
4665		.register_event = mem_cgroup_oom_register_event,
4666		.unregister_event = mem_cgroup_oom_unregister_event,
4667		.private = MEMFILE_PRIVATE(_OOM_TYPE, OOM_CONTROL),
4668	},
 
 
 
4669#ifdef CONFIG_NUMA
4670	{
4671		.name = "numa_stat",
4672		.open = mem_control_numa_stat_open,
4673		.mode = S_IRUGO,
4674	},
4675#endif
4676};
4677
4678#ifdef CONFIG_CGROUP_MEM_RES_CTLR_SWAP
4679static struct cftype memsw_cgroup_files[] = {
4680	{
4681		.name = "memsw.usage_in_bytes",
4682		.private = MEMFILE_PRIVATE(_MEMSWAP, RES_USAGE),
4683		.read_u64 = mem_cgroup_read,
4684		.register_event = mem_cgroup_usage_register_event,
4685		.unregister_event = mem_cgroup_usage_unregister_event,
4686	},
4687	{
4688		.name = "memsw.max_usage_in_bytes",
4689		.private = MEMFILE_PRIVATE(_MEMSWAP, RES_MAX_USAGE),
4690		.trigger = mem_cgroup_reset,
4691		.read_u64 = mem_cgroup_read,
4692	},
4693	{
4694		.name = "memsw.limit_in_bytes",
4695		.private = MEMFILE_PRIVATE(_MEMSWAP, RES_LIMIT),
4696		.write_string = mem_cgroup_write,
4697		.read_u64 = mem_cgroup_read,
4698	},
4699	{
4700		.name = "memsw.failcnt",
4701		.private = MEMFILE_PRIVATE(_MEMSWAP, RES_FAILCNT),
4702		.trigger = mem_cgroup_reset,
4703		.read_u64 = mem_cgroup_read,
 
 
 
 
 
 
 
 
4704	},
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
4705};
4706
4707static int register_memsw_files(struct cgroup *cont, struct cgroup_subsys *ss)
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
4708{
4709	if (!do_swap_account)
4710		return 0;
4711	return cgroup_add_files(cont, ss, memsw_cgroup_files,
4712				ARRAY_SIZE(memsw_cgroup_files));
4713};
4714#else
4715static int register_memsw_files(struct cgroup *cont, struct cgroup_subsys *ss)
4716{
4717	return 0;
4718}
4719#endif
4720
4721static int alloc_mem_cgroup_per_zone_info(struct mem_cgroup *mem, int node)
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
4722{
4723	struct mem_cgroup_per_node *pn;
4724	struct mem_cgroup_per_zone *mz;
4725	enum lru_list l;
4726	int zone, tmp = node;
4727	/*
4728	 * This routine is called against possible nodes.
4729	 * But it's BUG to call kmalloc() against offline node.
4730	 *
4731	 * TODO: this routine can waste much memory for nodes which will
4732	 *       never be onlined. It's better to use memory hotplug callback
4733	 *       function.
4734	 */
4735	if (!node_state(node, N_NORMAL_MEMORY))
4736		tmp = -1;
4737	pn = kzalloc_node(sizeof(*pn), GFP_KERNEL, tmp);
4738	if (!pn)
4739		return 1;
4740
4741	mem->info.nodeinfo[node] = pn;
4742	for (zone = 0; zone < MAX_NR_ZONES; zone++) {
4743		mz = &pn->zoneinfo[zone];
4744		for_each_lru(l)
4745			INIT_LIST_HEAD(&mz->lists[l]);
4746		mz->usage_in_excess = 0;
4747		mz->on_tree = false;
4748		mz->mem = mem;
4749	}
4750	return 0;
4751}
4752
4753static void free_mem_cgroup_per_zone_info(struct mem_cgroup *mem, int node)
4754{
4755	kfree(mem->info.nodeinfo[node]);
 
 
 
 
 
 
 
 
 
 
 
4756}
4757
4758static struct mem_cgroup *mem_cgroup_alloc(void)
4759{
4760	struct mem_cgroup *mem;
4761	int size = sizeof(struct mem_cgroup);
4762
4763	/* Can be very big if MAX_NUMNODES is very big */
4764	if (size < PAGE_SIZE)
4765		mem = kzalloc(size, GFP_KERNEL);
4766	else
4767		mem = vzalloc(size);
4768
4769	if (!mem)
4770		return NULL;
4771
4772	mem->stat = alloc_percpu(struct mem_cgroup_stat_cpu);
4773	if (!mem->stat)
4774		goto out_free;
4775	spin_lock_init(&mem->pcp_counter_lock);
4776	return mem;
4777
4778out_free:
4779	if (size < PAGE_SIZE)
4780		kfree(mem);
4781	else
4782		vfree(mem);
4783	return NULL;
4784}
4785
4786/*
4787 * At destroying mem_cgroup, references from swap_cgroup can remain.
4788 * (scanning all at force_empty is too costly...)
4789 *
4790 * Instead of clearing all references at force_empty, we remember
4791 * the number of reference from swap_cgroup and free mem_cgroup when
4792 * it goes down to 0.
4793 *
4794 * Removal of cgroup itself succeeds regardless of refs from swap.
4795 */
4796
4797static void __mem_cgroup_free(struct mem_cgroup *mem)
4798{
4799	int node;
4800
4801	mem_cgroup_remove_from_trees(mem);
4802	free_css_id(&mem_cgroup_subsys, &mem->css);
4803
4804	for_each_node_state(node, N_POSSIBLE)
4805		free_mem_cgroup_per_zone_info(mem, node);
4806
4807	free_percpu(mem->stat);
4808	if (sizeof(struct mem_cgroup) < PAGE_SIZE)
4809		kfree(mem);
4810	else
4811		vfree(mem);
4812}
4813
4814static void mem_cgroup_get(struct mem_cgroup *mem)
4815{
4816	atomic_inc(&mem->refcnt);
 
 
 
 
 
 
 
4817}
4818
4819static void __mem_cgroup_put(struct mem_cgroup *mem, int count)
4820{
4821	if (atomic_sub_and_test(count, &mem->refcnt)) {
4822		struct mem_cgroup *parent = parent_mem_cgroup(mem);
4823		__mem_cgroup_free(mem);
4824		if (parent)
4825			mem_cgroup_put(parent);
4826	}
4827}
4828
4829static void mem_cgroup_put(struct mem_cgroup *mem)
4830{
4831	__mem_cgroup_put(mem, 1);
4832}
4833
4834/*
4835 * Returns the parent mem_cgroup in memcgroup hierarchy with hierarchy enabled.
4836 */
4837static struct mem_cgroup *parent_mem_cgroup(struct mem_cgroup *mem)
4838{
4839	if (!mem->res.parent)
4840		return NULL;
4841	return mem_cgroup_from_res_counter(mem->res.parent, res);
4842}
4843
4844#ifdef CONFIG_CGROUP_MEM_RES_CTLR_SWAP
4845static void __init enable_swap_cgroup(void)
4846{
4847	if (!mem_cgroup_disabled() && really_do_swap_account)
4848		do_swap_account = 1;
4849}
4850#else
4851static void __init enable_swap_cgroup(void)
4852{
4853}
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
4854#endif
4855
4856static int mem_cgroup_soft_limit_tree_init(void)
4857{
4858	struct mem_cgroup_tree_per_node *rtpn;
4859	struct mem_cgroup_tree_per_zone *rtpz;
4860	int tmp, node, zone;
4861
4862	for_each_node_state(node, N_POSSIBLE) {
4863		tmp = node;
4864		if (!node_state(node, N_NORMAL_MEMORY))
4865			tmp = -1;
4866		rtpn = kzalloc_node(sizeof(*rtpn), GFP_KERNEL, tmp);
4867		if (!rtpn)
4868			return 1;
4869
4870		soft_limit_tree.rb_tree_per_node[node] = rtpn;
4871
4872		for (zone = 0; zone < MAX_NR_ZONES; zone++) {
4873			rtpz = &rtpn->rb_tree_per_zone[zone];
4874			rtpz->rb_root = RB_ROOT;
4875			spin_lock_init(&rtpz->lock);
4876		}
4877	}
4878	return 0;
4879}
4880
4881static struct cgroup_subsys_state * __ref
4882mem_cgroup_create(struct cgroup_subsys *ss, struct cgroup *cont)
4883{
4884	struct mem_cgroup *mem, *parent;
 
4885	long error = -ENOMEM;
4886	int node;
4887
4888	mem = mem_cgroup_alloc();
4889	if (!mem)
4890		return ERR_PTR(error);
4891
4892	for_each_node_state(node, N_POSSIBLE)
4893		if (alloc_mem_cgroup_per_zone_info(mem, node))
4894			goto free_out;
4895
4896	/* root ? */
4897	if (cont->parent == NULL) {
4898		int cpu;
4899		enable_swap_cgroup();
4900		parent = NULL;
4901		root_mem_cgroup = mem;
4902		if (mem_cgroup_soft_limit_tree_init())
4903			goto free_out;
4904		for_each_possible_cpu(cpu) {
4905			struct memcg_stock_pcp *stock =
4906						&per_cpu(memcg_stock, cpu);
4907			INIT_WORK(&stock->work, drain_local_stock);
4908		}
4909		hotcpu_notifier(memcg_cpu_hotplug_callback, 0);
4910	} else {
4911		parent = mem_cgroup_from_cont(cont->parent);
4912		mem->use_hierarchy = parent->use_hierarchy;
4913		mem->oom_kill_disable = parent->oom_kill_disable;
4914	}
4915
4916	if (parent && parent->use_hierarchy) {
4917		res_counter_init(&mem->res, &parent->res);
4918		res_counter_init(&mem->memsw, &parent->memsw);
 
 
 
 
 
 
 
 
 
 
4919		/*
4920		 * We increment refcnt of the parent to ensure that we can
4921		 * safely access it on res_counter_charge/uncharge.
4922		 * This refcnt will be decremented when freeing this
4923		 * mem_cgroup(see mem_cgroup_put).
4924		 */
4925		mem_cgroup_get(parent);
4926	} else {
4927		res_counter_init(&mem->res, NULL);
4928		res_counter_init(&mem->memsw, NULL);
4929	}
4930	mem->last_scanned_child = 0;
4931	mem->last_scanned_node = MAX_NUMNODES;
4932	INIT_LIST_HEAD(&mem->oom_notify);
4933
4934	if (parent)
4935		mem->swappiness = mem_cgroup_swappiness(parent);
4936	atomic_set(&mem->refcnt, 1);
4937	mem->move_charge_at_immigrate = 0;
4938	mutex_init(&mem->thresholds_lock);
4939	return &mem->css;
4940free_out:
4941	__mem_cgroup_free(mem);
4942	root_mem_cgroup = NULL;
4943	return ERR_PTR(error);
 
 
 
 
 
 
 
 
 
 
 
4944}
4945
4946static int mem_cgroup_pre_destroy(struct cgroup_subsys *ss,
4947					struct cgroup *cont)
4948{
4949	struct mem_cgroup *mem = mem_cgroup_from_cont(cont);
 
 
 
 
 
 
 
 
 
 
4950
4951	return mem_cgroup_force_empty(mem, false);
 
 
 
4952}
4953
4954static void mem_cgroup_destroy(struct cgroup_subsys *ss,
4955				struct cgroup *cont)
4956{
4957	struct mem_cgroup *mem = mem_cgroup_from_cont(cont);
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
4958
4959	mem_cgroup_put(mem);
 
 
4960}
4961
4962static int mem_cgroup_populate(struct cgroup_subsys *ss,
4963				struct cgroup *cont)
4964{
4965	int ret;
4966
4967	ret = cgroup_add_files(cont, ss, mem_cgroup_files,
4968				ARRAY_SIZE(mem_cgroup_files));
4969
4970	if (!ret)
4971		ret = register_memsw_files(cont, ss);
4972	return ret;
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
4973}
4974
4975#ifdef CONFIG_MMU
4976/* Handlers for move charge at task migration. */
4977#define PRECHARGE_COUNT_AT_ONCE	256
4978static int mem_cgroup_do_precharge(unsigned long count)
4979{
4980	int ret = 0;
4981	int batch_count = PRECHARGE_COUNT_AT_ONCE;
4982	struct mem_cgroup *mem = mc.to;
4983
4984	if (mem_cgroup_is_root(mem)) {
 
 
4985		mc.precharge += count;
4986		/* we don't need css_get for root */
4987		return ret;
4988	}
4989	/* try to charge at once */
4990	if (count > 1) {
4991		struct res_counter *dummy;
4992		/*
4993		 * "mem" cannot be under rmdir() because we've already checked
4994		 * by cgroup_lock_live_cgroup() that it is not removed and we
4995		 * are still under the same cgroup_mutex. So we can postpone
4996		 * css_get().
4997		 */
4998		if (res_counter_charge(&mem->res, PAGE_SIZE * count, &dummy))
4999			goto one_by_one;
5000		if (do_swap_account && res_counter_charge(&mem->memsw,
5001						PAGE_SIZE * count, &dummy)) {
5002			res_counter_uncharge(&mem->res, PAGE_SIZE * count);
5003			goto one_by_one;
5004		}
5005		mc.precharge += count;
5006		return ret;
5007	}
5008one_by_one:
5009	/* fall back to one by one charge */
5010	while (count--) {
5011		if (signal_pending(current)) {
5012			ret = -EINTR;
5013			break;
5014		}
5015		if (!batch_count--) {
5016			batch_count = PRECHARGE_COUNT_AT_ONCE;
5017			cond_resched();
5018		}
5019		ret = __mem_cgroup_try_charge(NULL, GFP_KERNEL, 1, &mem, false);
5020		if (ret || !mem)
5021			/* mem_cgroup_clear_mc() will do uncharge later */
5022			return -ENOMEM;
5023		mc.precharge++;
 
5024	}
5025	return ret;
5026}
5027
5028/**
5029 * is_target_pte_for_mc - check a pte whether it is valid for move charge
5030 * @vma: the vma the pte to be checked belongs
5031 * @addr: the address corresponding to the pte to be checked
5032 * @ptent: the pte to be checked
5033 * @target: the pointer the target page or swap ent will be stored(can be NULL)
5034 *
5035 * Returns
5036 *   0(MC_TARGET_NONE): if the pte is not a target for move charge.
5037 *   1(MC_TARGET_PAGE): if the page corresponding to this pte is a target for
5038 *     move charge. if @target is not NULL, the page is stored in target->page
5039 *     with extra refcnt got(Callers should handle it).
5040 *   2(MC_TARGET_SWAP): if the swap entry corresponding to this pte is a
5041 *     target for charge migration. if @target is not NULL, the entry is stored
5042 *     in target->ent.
5043 *
5044 * Called with pte lock held.
5045 */
5046union mc_target {
5047	struct page	*page;
5048	swp_entry_t	ent;
5049};
5050
5051enum mc_target_type {
5052	MC_TARGET_NONE,	/* not used */
5053	MC_TARGET_PAGE,
5054	MC_TARGET_SWAP,
 
5055};
5056
5057static struct page *mc_handle_present_pte(struct vm_area_struct *vma,
5058						unsigned long addr, pte_t ptent)
5059{
5060	struct page *page = vm_normal_page(vma, addr, ptent);
5061
5062	if (!page || !page_mapped(page))
5063		return NULL;
5064	if (PageAnon(page)) {
5065		/* we don't move shared anon */
5066		if (!move_anon() || page_mapcount(page) > 2)
5067			return NULL;
5068	} else if (!move_file())
5069		/* we ignore mapcount for file pages */
5070		return NULL;
 
5071	if (!get_page_unless_zero(page))
5072		return NULL;
5073
5074	return page;
5075}
5076
 
5077static struct page *mc_handle_swap_pte(struct vm_area_struct *vma,
5078			unsigned long addr, pte_t ptent, swp_entry_t *entry)
5079{
5080	int usage_count;
5081	struct page *page = NULL;
5082	swp_entry_t ent = pte_to_swp_entry(ptent);
5083
5084	if (!move_anon() || non_swap_entry(ent))
5085		return NULL;
5086	usage_count = mem_cgroup_count_swap_user(ent, &page);
5087	if (usage_count > 1) { /* we don't move shared anon */
5088		if (page)
5089			put_page(page);
5090		return NULL;
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
5091	}
5092	if (do_swap_account)
 
 
 
 
 
 
5093		entry->val = ent.val;
5094
5095	return page;
5096}
 
 
 
 
 
 
 
5097
5098static struct page *mc_handle_file_pte(struct vm_area_struct *vma,
5099			unsigned long addr, pte_t ptent, swp_entry_t *entry)
5100{
5101	struct page *page = NULL;
5102	struct inode *inode;
5103	struct address_space *mapping;
5104	pgoff_t pgoff;
5105
5106	if (!vma->vm_file) /* anonymous vma */
5107		return NULL;
5108	if (!move_file())
5109		return NULL;
5110
5111	inode = vma->vm_file->f_path.dentry->d_inode;
5112	mapping = vma->vm_file->f_mapping;
5113	if (pte_none(ptent))
5114		pgoff = linear_page_index(vma, addr);
5115	else /* pte_file(ptent) is true */
5116		pgoff = pte_to_pgoff(ptent);
5117
5118	/* page is moved even if it's not RSS of this task(page-faulted). */
5119	page = find_get_page(mapping, pgoff);
5120
5121#ifdef CONFIG_SWAP
5122	/* shmem/tmpfs may report page out on swap: account for that too. */
5123	if (radix_tree_exceptional_entry(page)) {
5124		swp_entry_t swap = radix_to_swp_entry(page);
5125		if (do_swap_account)
5126			*entry = swap;
5127		page = find_get_page(&swapper_space, swap.val);
5128	}
 
 
 
 
 
 
 
5129#endif
5130	return page;
5131}
5132
5133static int is_target_pte_for_mc(struct vm_area_struct *vma,
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
5134		unsigned long addr, pte_t ptent, union mc_target *target)
5135{
5136	struct page *page = NULL;
5137	struct page_cgroup *pc;
5138	int ret = 0;
5139	swp_entry_t ent = { .val = 0 };
5140
5141	if (pte_present(ptent))
5142		page = mc_handle_present_pte(vma, addr, ptent);
5143	else if (is_swap_pte(ptent))
5144		page = mc_handle_swap_pte(vma, addr, ptent, &ent);
5145	else if (pte_none(ptent) || pte_file(ptent))
5146		page = mc_handle_file_pte(vma, addr, ptent, &ent);
5147
5148	if (!page && !ent.val)
5149		return 0;
5150	if (page) {
5151		pc = lookup_page_cgroup(page);
5152		/*
5153		 * Do only loose check w/o page_cgroup lock.
5154		 * mem_cgroup_move_account() checks the pc is valid or not under
5155		 * the lock.
5156		 */
5157		if (PageCgroupUsed(pc) && pc->mem_cgroup == mc.from) {
5158			ret = MC_TARGET_PAGE;
 
 
5159			if (target)
5160				target->page = page;
5161		}
5162		if (!ret || !target)
5163			put_page(page);
5164	}
5165	/* There is a swap entry and a page doesn't exist or isn't charged */
5166	if (ent.val && !ret &&
5167			css_id(&mc.from->css) == lookup_swap_cgroup(ent)) {
 
 
 
5168		ret = MC_TARGET_SWAP;
5169		if (target)
5170			target->ent = ent;
5171	}
5172	return ret;
5173}
5174
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
5175static int mem_cgroup_count_precharge_pte_range(pmd_t *pmd,
5176					unsigned long addr, unsigned long end,
5177					struct mm_walk *walk)
5178{
5179	struct vm_area_struct *vma = walk->private;
5180	pte_t *pte;
5181	spinlock_t *ptl;
5182
5183	split_huge_page_pmd(walk->mm, pmd);
 
 
 
 
 
 
 
 
 
 
 
5184
 
 
5185	pte = pte_offset_map_lock(vma->vm_mm, pmd, addr, &ptl);
5186	for (; addr != end; pte++, addr += PAGE_SIZE)
5187		if (is_target_pte_for_mc(vma, addr, *pte, NULL))
5188			mc.precharge++;	/* increment precharge temporarily */
5189	pte_unmap_unlock(pte - 1, ptl);
5190	cond_resched();
5191
5192	return 0;
5193}
5194
 
 
 
 
5195static unsigned long mem_cgroup_count_precharge(struct mm_struct *mm)
5196{
5197	unsigned long precharge;
5198	struct vm_area_struct *vma;
5199
5200	down_read(&mm->mmap_sem);
5201	for (vma = mm->mmap; vma; vma = vma->vm_next) {
5202		struct mm_walk mem_cgroup_count_precharge_walk = {
5203			.pmd_entry = mem_cgroup_count_precharge_pte_range,
5204			.mm = mm,
5205			.private = vma,
5206		};
5207		if (is_vm_hugetlb_page(vma))
5208			continue;
5209		walk_page_range(vma->vm_start, vma->vm_end,
5210					&mem_cgroup_count_precharge_walk);
5211	}
5212	up_read(&mm->mmap_sem);
5213
5214	precharge = mc.precharge;
5215	mc.precharge = 0;
5216
5217	return precharge;
5218}
5219
5220static int mem_cgroup_precharge_mc(struct mm_struct *mm)
5221{
5222	unsigned long precharge = mem_cgroup_count_precharge(mm);
5223
5224	VM_BUG_ON(mc.moving_task);
5225	mc.moving_task = current;
5226	return mem_cgroup_do_precharge(precharge);
5227}
5228
5229/* cancels all extra charges on mc.from and mc.to, and wakes up all waiters. */
5230static void __mem_cgroup_clear_mc(void)
5231{
5232	struct mem_cgroup *from = mc.from;
5233	struct mem_cgroup *to = mc.to;
5234
5235	/* we must uncharge all the leftover precharges from mc.to */
5236	if (mc.precharge) {
5237		__mem_cgroup_cancel_charge(mc.to, mc.precharge);
5238		mc.precharge = 0;
5239	}
5240	/*
5241	 * we didn't uncharge from mc.from at mem_cgroup_move_account(), so
5242	 * we must uncharge here.
5243	 */
5244	if (mc.moved_charge) {
5245		__mem_cgroup_cancel_charge(mc.from, mc.moved_charge);
5246		mc.moved_charge = 0;
5247	}
5248	/* we must fixup refcnts and charges */
5249	if (mc.moved_swap) {
5250		/* uncharge swap account from the old cgroup */
5251		if (!mem_cgroup_is_root(mc.from))
5252			res_counter_uncharge(&mc.from->memsw,
5253						PAGE_SIZE * mc.moved_swap);
5254		__mem_cgroup_put(mc.from, mc.moved_swap);
 
 
 
 
 
 
 
 
 
 
5255
5256		if (!mem_cgroup_is_root(mc.to)) {
5257			/*
5258			 * we charged both to->res and to->memsw, so we should
5259			 * uncharge to->res.
5260			 */
5261			res_counter_uncharge(&mc.to->res,
5262						PAGE_SIZE * mc.moved_swap);
5263		}
5264		/* we've already done mem_cgroup_get(mc.to) */
5265		mc.moved_swap = 0;
5266	}
5267	memcg_oom_recover(from);
5268	memcg_oom_recover(to);
5269	wake_up_all(&mc.waitq);
5270}
5271
5272static void mem_cgroup_clear_mc(void)
5273{
5274	struct mem_cgroup *from = mc.from;
5275
5276	/*
5277	 * we must clear moving_task before waking up waiters at the end of
5278	 * task migration.
5279	 */
5280	mc.moving_task = NULL;
5281	__mem_cgroup_clear_mc();
5282	spin_lock(&mc.lock);
5283	mc.from = NULL;
5284	mc.to = NULL;
 
5285	spin_unlock(&mc.lock);
5286	mem_cgroup_end_move(from);
 
5287}
5288
5289static int mem_cgroup_can_attach(struct cgroup_subsys *ss,
5290				struct cgroup *cgroup,
5291				struct task_struct *p)
5292{
 
 
 
 
 
 
5293	int ret = 0;
5294	struct mem_cgroup *mem = mem_cgroup_from_cont(cgroup);
5295
5296	if (mem->move_charge_at_immigrate) {
5297		struct mm_struct *mm;
5298		struct mem_cgroup *from = mem_cgroup_from_task(p);
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
5299
5300		VM_BUG_ON(from == mem);
 
 
 
 
 
 
 
5301
5302		mm = get_task_mm(p);
5303		if (!mm)
5304			return 0;
5305		/* We move charges only when we move a owner of the mm */
5306		if (mm->owner == p) {
5307			VM_BUG_ON(mc.from);
5308			VM_BUG_ON(mc.to);
5309			VM_BUG_ON(mc.precharge);
5310			VM_BUG_ON(mc.moved_charge);
5311			VM_BUG_ON(mc.moved_swap);
5312			mem_cgroup_start_move(from);
5313			spin_lock(&mc.lock);
5314			mc.from = from;
5315			mc.to = mem;
5316			spin_unlock(&mc.lock);
5317			/* We set mc.moving_task later */
5318
5319			ret = mem_cgroup_precharge_mc(mm);
5320			if (ret)
5321				mem_cgroup_clear_mc();
5322		}
 
 
 
 
 
 
5323		mmput(mm);
5324	}
5325	return ret;
5326}
5327
5328static void mem_cgroup_cancel_attach(struct cgroup_subsys *ss,
5329				struct cgroup *cgroup,
5330				struct task_struct *p)
5331{
5332	mem_cgroup_clear_mc();
 
5333}
5334
5335static int mem_cgroup_move_charge_pte_range(pmd_t *pmd,
5336				unsigned long addr, unsigned long end,
5337				struct mm_walk *walk)
5338{
5339	int ret = 0;
5340	struct vm_area_struct *vma = walk->private;
5341	pte_t *pte;
5342	spinlock_t *ptl;
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
5343
5344	split_huge_page_pmd(walk->mm, pmd);
 
5345retry:
5346	pte = pte_offset_map_lock(vma->vm_mm, pmd, addr, &ptl);
5347	for (; addr != end; addr += PAGE_SIZE) {
5348		pte_t ptent = *(pte++);
5349		union mc_target target;
5350		int type;
5351		struct page *page;
5352		struct page_cgroup *pc;
5353		swp_entry_t ent;
5354
5355		if (!mc.precharge)
5356			break;
5357
5358		type = is_target_pte_for_mc(vma, addr, ptent, &target);
5359		switch (type) {
 
 
5360		case MC_TARGET_PAGE:
5361			page = target.page;
5362			if (isolate_lru_page(page))
 
 
 
 
 
 
 
 
5363				goto put;
5364			pc = lookup_page_cgroup(page);
5365			if (!mem_cgroup_move_account(page, 1, pc,
5366						     mc.from, mc.to, false)) {
5367				mc.precharge--;
5368				/* we uncharge from mc.from later. */
5369				mc.moved_charge++;
5370			}
5371			putback_lru_page(page);
5372put:			/* is_target_pte_for_mc() gets the page */
 
5373			put_page(page);
5374			break;
5375		case MC_TARGET_SWAP:
5376			ent = target.ent;
5377			if (!mem_cgroup_move_swap_account(ent,
5378						mc.from, mc.to, false)) {
5379				mc.precharge--;
5380				/* we fixup refcnts and charges later. */
5381				mc.moved_swap++;
5382			}
5383			break;
5384		default:
5385			break;
5386		}
5387	}
5388	pte_unmap_unlock(pte - 1, ptl);
5389	cond_resched();
5390
5391	if (addr != end) {
5392		/*
5393		 * We have consumed all precharges we got in can_attach().
5394		 * We try charge one by one, but don't do any additional
5395		 * charges to mc.to if we have failed in charge once in attach()
5396		 * phase.
5397		 */
5398		ret = mem_cgroup_do_precharge(1);
5399		if (!ret)
5400			goto retry;
5401	}
5402
5403	return ret;
5404}
5405
5406static void mem_cgroup_move_charge(struct mm_struct *mm)
5407{
5408	struct vm_area_struct *vma;
5409
 
 
5410	lru_add_drain_all();
 
 
 
 
 
 
 
5411retry:
5412	if (unlikely(!down_read_trylock(&mm->mmap_sem))) {
5413		/*
5414		 * Someone who are holding the mmap_sem might be waiting in
5415		 * waitq. So we cancel all extra charges, wake up all waiters,
5416		 * and retry. Because we cancel precharges, we might not be able
5417		 * to move enough charges, but moving charge is a best-effort
5418		 * feature anyway, so it wouldn't be a big problem.
5419		 */
5420		__mem_cgroup_clear_mc();
5421		cond_resched();
5422		goto retry;
5423	}
5424	for (vma = mm->mmap; vma; vma = vma->vm_next) {
5425		int ret;
5426		struct mm_walk mem_cgroup_move_charge_walk = {
5427			.pmd_entry = mem_cgroup_move_charge_pte_range,
5428			.mm = mm,
5429			.private = vma,
5430		};
5431		if (is_vm_hugetlb_page(vma))
5432			continue;
5433		ret = walk_page_range(vma->vm_start, vma->vm_end,
5434						&mem_cgroup_move_charge_walk);
5435		if (ret)
5436			/*
5437			 * means we have consumed all precharges and failed in
5438			 * doing additional charge. Just abandon here.
5439			 */
5440			break;
5441	}
5442	up_read(&mm->mmap_sem);
5443}
5444
5445static void mem_cgroup_move_task(struct cgroup_subsys *ss,
5446				struct cgroup *cont,
5447				struct cgroup *old_cont,
5448				struct task_struct *p)
5449{
5450	struct mm_struct *mm = get_task_mm(p);
5451
5452	if (mm) {
5453		if (mc.to)
5454			mem_cgroup_move_charge(mm);
5455		put_swap_token(mm);
5456		mmput(mm);
5457	}
5458	if (mc.to)
5459		mem_cgroup_clear_mc();
 
5460}
5461#else	/* !CONFIG_MMU */
5462static int mem_cgroup_can_attach(struct cgroup_subsys *ss,
5463				struct cgroup *cgroup,
5464				struct task_struct *p)
5465{
5466	return 0;
5467}
5468static void mem_cgroup_cancel_attach(struct cgroup_subsys *ss,
5469				struct cgroup *cgroup,
5470				struct task_struct *p)
5471{
5472}
5473static void mem_cgroup_move_task(struct cgroup_subsys *ss,
5474				struct cgroup *cont,
5475				struct cgroup *old_cont,
5476				struct task_struct *p)
5477{
5478}
5479#endif
5480
5481struct cgroup_subsys mem_cgroup_subsys = {
5482	.name = "memory",
5483	.subsys_id = mem_cgroup_subsys_id,
5484	.create = mem_cgroup_create,
5485	.pre_destroy = mem_cgroup_pre_destroy,
5486	.destroy = mem_cgroup_destroy,
5487	.populate = mem_cgroup_populate,
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
5488	.can_attach = mem_cgroup_can_attach,
5489	.cancel_attach = mem_cgroup_cancel_attach,
5490	.attach = mem_cgroup_move_task,
 
 
 
5491	.early_init = 0,
5492	.use_id = 1,
5493};
5494
5495#ifdef CONFIG_CGROUP_MEM_RES_CTLR_SWAP
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
5496static int __init enable_swap_account(char *s)
5497{
5498	/* consider enabled if no parameter or 1 is given */
5499	if (!strcmp(s, "1"))
5500		really_do_swap_account = 1;
5501	else if (!strcmp(s, "0"))
5502		really_do_swap_account = 0;
5503	return 1;
5504}
5505__setup("swapaccount=", enable_swap_account);
5506
5507#endif
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
v5.4
   1// SPDX-License-Identifier: GPL-2.0-or-later
   2/* memcontrol.c - Memory Controller
   3 *
   4 * Copyright IBM Corporation, 2007
   5 * Author Balbir Singh <balbir@linux.vnet.ibm.com>
   6 *
   7 * Copyright 2007 OpenVZ SWsoft Inc
   8 * Author: Pavel Emelianov <xemul@openvz.org>
   9 *
  10 * Memory thresholds
  11 * Copyright (C) 2009 Nokia Corporation
  12 * Author: Kirill A. Shutemov
  13 *
  14 * Kernel Memory Controller
  15 * Copyright (C) 2012 Parallels Inc. and Google Inc.
  16 * Authors: Glauber Costa and Suleiman Souhlal
  17 *
  18 * Native page reclaim
  19 * Charge lifetime sanitation
  20 * Lockless page tracking & accounting
  21 * Unified hierarchy configuration model
  22 * Copyright (C) 2015 Red Hat, Inc., Johannes Weiner
  23 */
  24
  25#include <linux/page_counter.h>
  26#include <linux/memcontrol.h>
  27#include <linux/cgroup.h>
  28#include <linux/pagewalk.h>
  29#include <linux/sched/mm.h>
  30#include <linux/shmem_fs.h>
  31#include <linux/hugetlb.h>
  32#include <linux/pagemap.h>
  33#include <linux/vm_event_item.h>
  34#include <linux/smp.h>
  35#include <linux/page-flags.h>
  36#include <linux/backing-dev.h>
  37#include <linux/bit_spinlock.h>
  38#include <linux/rcupdate.h>
  39#include <linux/limits.h>
  40#include <linux/export.h>
  41#include <linux/mutex.h>
  42#include <linux/rbtree.h>
  43#include <linux/slab.h>
  44#include <linux/swap.h>
  45#include <linux/swapops.h>
  46#include <linux/spinlock.h>
  47#include <linux/eventfd.h>
  48#include <linux/poll.h>
  49#include <linux/sort.h>
  50#include <linux/fs.h>
  51#include <linux/seq_file.h>
  52#include <linux/vmpressure.h>
  53#include <linux/mm_inline.h>
  54#include <linux/swap_cgroup.h>
  55#include <linux/cpu.h>
  56#include <linux/oom.h>
  57#include <linux/lockdep.h>
  58#include <linux/file.h>
  59#include <linux/tracehook.h>
  60#include <linux/psi.h>
  61#include <linux/seq_buf.h>
  62#include "internal.h"
  63#include <net/sock.h>
  64#include <net/ip.h>
  65#include "slab.h"
  66
  67#include <linux/uaccess.h>
  68
  69#include <trace/events/vmscan.h>
  70
  71struct cgroup_subsys memory_cgrp_subsys __read_mostly;
  72EXPORT_SYMBOL(memory_cgrp_subsys);
  73
  74struct mem_cgroup *root_mem_cgroup __read_mostly;
  75
  76#define MEM_CGROUP_RECLAIM_RETRIES	5
 
 
  77
  78/* Socket memory accounting disabled? */
  79static bool cgroup_memory_nosocket;
 
 
 
 
  80
  81/* Kernel memory accounting disabled? */
  82static bool cgroup_memory_nokmem;
  83
  84/* Whether the swap controller is active */
  85#ifdef CONFIG_MEMCG_SWAP
  86int do_swap_account __read_mostly;
  87#else
  88#define do_swap_account		0
  89#endif
  90
  91#ifdef CONFIG_CGROUP_WRITEBACK
  92static DECLARE_WAIT_QUEUE_HEAD(memcg_cgwb_frn_waitq);
  93#endif
  94
  95/* Whether legacy memory+swap accounting is active */
  96static bool do_memsw_account(void)
  97{
  98	return !cgroup_subsys_on_dfl(memory_cgrp_subsys) && do_swap_account;
  99}
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 100
 101static const char *const mem_cgroup_lru_names[] = {
 102	"inactive_anon",
 103	"active_anon",
 104	"inactive_file",
 105	"active_file",
 106	"unevictable",
 107};
 108
 109#define THRESHOLDS_EVENTS_TARGET 128
 110#define SOFTLIMIT_EVENTS_TARGET 1024
 111#define NUMAINFO_EVENTS_TARGET	1024
 112
 113/*
 114 * Cgroups above their limits are maintained in a RB-Tree, independent of
 115 * their hierarchy representation
 116 */
 117
 118struct mem_cgroup_tree_per_node {
 119	struct rb_root rb_root;
 120	struct rb_node *rb_rightmost;
 121	spinlock_t lock;
 122};
 123
 
 
 
 
 124struct mem_cgroup_tree {
 125	struct mem_cgroup_tree_per_node *rb_tree_per_node[MAX_NUMNODES];
 126};
 127
 128static struct mem_cgroup_tree soft_limit_tree __read_mostly;
 129
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 130/* for OOM */
 131struct mem_cgroup_eventfd_list {
 132	struct list_head list;
 133	struct eventfd_ctx *eventfd;
 134};
 135
 
 
 
 136/*
 137 * cgroup_event represents events which userspace want to receive.
 
 
 
 
 
 
 
 
 138 */
 139struct mem_cgroup_event {
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 140	/*
 141	 * memcg which the event belongs to.
 142	 */
 143	struct mem_cgroup *memcg;
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 144	/*
 145	 * eventfd to signal userspace about the event.
 
 146	 */
 147	struct eventfd_ctx *eventfd;
 148	/*
 149	 * Each of these stored in a list by the cgroup.
 150	 */
 151	struct list_head list;
 152	/*
 153	 * register_event() callback will be used to add new userspace
 154	 * waiter for changes related to this event.  Use eventfd_signal()
 155	 * on eventfd to send notification to userspace.
 156	 */
 157	int (*register_event)(struct mem_cgroup *memcg,
 158			      struct eventfd_ctx *eventfd, const char *args);
 159	/*
 160	 * unregister_event() callback will be called when userspace closes
 161	 * the eventfd or on cgroup removing.  This callback must be set,
 162	 * if you want provide notification functionality.
 163	 */
 164	void (*unregister_event)(struct mem_cgroup *memcg,
 165				 struct eventfd_ctx *eventfd);
 166	/*
 167	 * All fields below needed to unregister event when
 168	 * userspace closes eventfd.
 169	 */
 170	poll_table pt;
 171	wait_queue_head_t *wqh;
 172	wait_queue_entry_t wait;
 173	struct work_struct remove;
 174};
 175
 176static void mem_cgroup_threshold(struct mem_cgroup *memcg);
 177static void mem_cgroup_oom_notify(struct mem_cgroup *memcg);
 178
 179/* Stuffs for move charges at task migration. */
 180/*
 181 * Types of charges to be moved.
 
 182 */
 183#define MOVE_ANON	0x1U
 184#define MOVE_FILE	0x2U
 185#define MOVE_MASK	(MOVE_ANON | MOVE_FILE)
 
 
 186
 187/* "mc" and its members are protected by cgroup_mutex */
 188static struct move_charge_struct {
 189	spinlock_t	  lock; /* for from, to */
 190	struct mm_struct  *mm;
 191	struct mem_cgroup *from;
 192	struct mem_cgroup *to;
 193	unsigned long flags;
 194	unsigned long precharge;
 195	unsigned long moved_charge;
 196	unsigned long moved_swap;
 197	struct task_struct *moving_task;	/* a task moving charges */
 198	wait_queue_head_t waitq;		/* a waitq for other context */
 199} mc = {
 200	.lock = __SPIN_LOCK_UNLOCKED(mc.lock),
 201	.waitq = __WAIT_QUEUE_HEAD_INITIALIZER(mc.waitq),
 202};
 203
 
 
 
 
 
 
 
 
 
 
 
 
 204/*
 205 * Maximum loops in mem_cgroup_hierarchical_reclaim(), used for soft
 206 * limit reclaim to prevent infinite loops, if they ever occur.
 207 */
 208#define	MEM_CGROUP_MAX_RECLAIM_LOOPS		100
 209#define	MEM_CGROUP_MAX_SOFT_LIMIT_RECLAIM_LOOPS	2
 210
 211enum charge_type {
 212	MEM_CGROUP_CHARGE_TYPE_CACHE = 0,
 213	MEM_CGROUP_CHARGE_TYPE_ANON,
 
 
 214	MEM_CGROUP_CHARGE_TYPE_SWAPOUT,	/* for accounting swapcache */
 215	MEM_CGROUP_CHARGE_TYPE_DROP,	/* a page was unused swap cache */
 216	NR_CHARGE_TYPE,
 217};
 218
 219/* for encoding cft->private value on file */
 220enum res_type {
 221	_MEM,
 222	_MEMSWAP,
 223	_OOM_TYPE,
 224	_KMEM,
 225	_TCP,
 226};
 227
 228#define MEMFILE_PRIVATE(x, val)	((x) << 16 | (val))
 229#define MEMFILE_TYPE(val)	((val) >> 16 & 0xffff)
 230#define MEMFILE_ATTR(val)	((val) & 0xffff)
 231/* Used for OOM nofiier */
 232#define OOM_CONTROL		(0)
 233
 234/*
 235 * Iteration constructs for visiting all cgroups (under a tree).  If
 236 * loops are exited prematurely (break), mem_cgroup_iter_break() must
 237 * be used for reference counting.
 238 */
 239#define for_each_mem_cgroup_tree(iter, root)		\
 240	for (iter = mem_cgroup_iter(root, NULL, NULL);	\
 241	     iter != NULL;				\
 242	     iter = mem_cgroup_iter(root, iter, NULL))
 243
 244#define for_each_mem_cgroup(iter)			\
 245	for (iter = mem_cgroup_iter(NULL, NULL, NULL);	\
 246	     iter != NULL;				\
 247	     iter = mem_cgroup_iter(NULL, iter, NULL))
 248
 249static inline bool should_force_charge(void)
 250{
 251	return tsk_is_oom_victim(current) || fatal_signal_pending(current) ||
 252		(current->flags & PF_EXITING);
 253}
 254
 255/* Some nice accessors for the vmpressure. */
 256struct vmpressure *memcg_to_vmpressure(struct mem_cgroup *memcg)
 257{
 258	if (!memcg)
 259		memcg = root_mem_cgroup;
 260	return &memcg->vmpressure;
 261}
 262
 263struct cgroup_subsys_state *vmpressure_to_css(struct vmpressure *vmpr)
 264{
 265	return &container_of(vmpr, struct mem_cgroup, vmpressure)->css;
 266}
 267
 268#ifdef CONFIG_MEMCG_KMEM
 269/*
 270 * This will be the memcg's index in each cache's ->memcg_params.memcg_caches.
 271 * The main reason for not using cgroup id for this:
 272 *  this works better in sparse environments, where we have a lot of memcgs,
 273 *  but only a few kmem-limited. Or also, if we have, for instance, 200
 274 *  memcgs, and none but the 200th is kmem-limited, we'd have to have a
 275 *  200 entry array for that.
 276 *
 277 * The current size of the caches array is stored in memcg_nr_cache_ids. It
 278 * will double each time we have to increase it.
 279 */
 280static DEFINE_IDA(memcg_cache_ida);
 281int memcg_nr_cache_ids;
 282
 283/* Protects memcg_nr_cache_ids */
 284static DECLARE_RWSEM(memcg_cache_ids_sem);
 285
 286void memcg_get_cache_ids(void)
 287{
 288	down_read(&memcg_cache_ids_sem);
 289}
 290
 291void memcg_put_cache_ids(void)
 292{
 293	up_read(&memcg_cache_ids_sem);
 294}
 295
 296/*
 297 * MIN_SIZE is different than 1, because we would like to avoid going through
 298 * the alloc/free process all the time. In a small machine, 4 kmem-limited
 299 * cgroups is a reasonable guess. In the future, it could be a parameter or
 300 * tunable, but that is strictly not necessary.
 301 *
 302 * MAX_SIZE should be as large as the number of cgrp_ids. Ideally, we could get
 303 * this constant directly from cgroup, but it is understandable that this is
 304 * better kept as an internal representation in cgroup.c. In any case, the
 305 * cgrp_id space is not getting any smaller, and we don't have to necessarily
 306 * increase ours as well if it increases.
 307 */
 308#define MEMCG_CACHES_MIN_SIZE 4
 309#define MEMCG_CACHES_MAX_SIZE MEM_CGROUP_ID_MAX
 310
 311/*
 312 * A lot of the calls to the cache allocation functions are expected to be
 313 * inlined by the compiler. Since the calls to memcg_kmem_get_cache are
 314 * conditional to this static branch, we'll have to allow modules that does
 315 * kmem_cache_alloc and the such to see this symbol as well
 316 */
 317DEFINE_STATIC_KEY_FALSE(memcg_kmem_enabled_key);
 318EXPORT_SYMBOL(memcg_kmem_enabled_key);
 319
 320struct workqueue_struct *memcg_kmem_cache_wq;
 321#endif
 322
 323static int memcg_shrinker_map_size;
 324static DEFINE_MUTEX(memcg_shrinker_map_mutex);
 325
 326static void memcg_free_shrinker_map_rcu(struct rcu_head *head)
 327{
 328	kvfree(container_of(head, struct memcg_shrinker_map, rcu));
 329}
 330
 331static int memcg_expand_one_shrinker_map(struct mem_cgroup *memcg,
 332					 int size, int old_size)
 333{
 334	struct memcg_shrinker_map *new, *old;
 335	int nid;
 336
 337	lockdep_assert_held(&memcg_shrinker_map_mutex);
 338
 339	for_each_node(nid) {
 340		old = rcu_dereference_protected(
 341			mem_cgroup_nodeinfo(memcg, nid)->shrinker_map, true);
 342		/* Not yet online memcg */
 343		if (!old)
 344			return 0;
 345
 346		new = kvmalloc(sizeof(*new) + size, GFP_KERNEL);
 347		if (!new)
 348			return -ENOMEM;
 349
 350		/* Set all old bits, clear all new bits */
 351		memset(new->map, (int)0xff, old_size);
 352		memset((void *)new->map + old_size, 0, size - old_size);
 353
 354		rcu_assign_pointer(memcg->nodeinfo[nid]->shrinker_map, new);
 355		call_rcu(&old->rcu, memcg_free_shrinker_map_rcu);
 356	}
 357
 358	return 0;
 359}
 360
 361static void memcg_free_shrinker_maps(struct mem_cgroup *memcg)
 362{
 363	struct mem_cgroup_per_node *pn;
 364	struct memcg_shrinker_map *map;
 365	int nid;
 366
 367	if (mem_cgroup_is_root(memcg))
 368		return;
 369
 370	for_each_node(nid) {
 371		pn = mem_cgroup_nodeinfo(memcg, nid);
 372		map = rcu_dereference_protected(pn->shrinker_map, true);
 373		if (map)
 374			kvfree(map);
 375		rcu_assign_pointer(pn->shrinker_map, NULL);
 376	}
 377}
 378
 379static int memcg_alloc_shrinker_maps(struct mem_cgroup *memcg)
 380{
 381	struct memcg_shrinker_map *map;
 382	int nid, size, ret = 0;
 383
 384	if (mem_cgroup_is_root(memcg))
 385		return 0;
 386
 387	mutex_lock(&memcg_shrinker_map_mutex);
 388	size = memcg_shrinker_map_size;
 389	for_each_node(nid) {
 390		map = kvzalloc(sizeof(*map) + size, GFP_KERNEL);
 391		if (!map) {
 392			memcg_free_shrinker_maps(memcg);
 393			ret = -ENOMEM;
 394			break;
 395		}
 396		rcu_assign_pointer(memcg->nodeinfo[nid]->shrinker_map, map);
 397	}
 398	mutex_unlock(&memcg_shrinker_map_mutex);
 399
 400	return ret;
 401}
 402
 403int memcg_expand_shrinker_maps(int new_id)
 404{
 405	int size, old_size, ret = 0;
 406	struct mem_cgroup *memcg;
 407
 408	size = DIV_ROUND_UP(new_id + 1, BITS_PER_LONG) * sizeof(unsigned long);
 409	old_size = memcg_shrinker_map_size;
 410	if (size <= old_size)
 411		return 0;
 412
 413	mutex_lock(&memcg_shrinker_map_mutex);
 414	if (!root_mem_cgroup)
 415		goto unlock;
 416
 417	for_each_mem_cgroup(memcg) {
 418		if (mem_cgroup_is_root(memcg))
 419			continue;
 420		ret = memcg_expand_one_shrinker_map(memcg, size, old_size);
 421		if (ret)
 422			goto unlock;
 423	}
 424unlock:
 425	if (!ret)
 426		memcg_shrinker_map_size = size;
 427	mutex_unlock(&memcg_shrinker_map_mutex);
 428	return ret;
 429}
 430
 431void memcg_set_shrinker_bit(struct mem_cgroup *memcg, int nid, int shrinker_id)
 432{
 433	if (shrinker_id >= 0 && memcg && !mem_cgroup_is_root(memcg)) {
 434		struct memcg_shrinker_map *map;
 435
 436		rcu_read_lock();
 437		map = rcu_dereference(memcg->nodeinfo[nid]->shrinker_map);
 438		/* Pairs with smp mb in shrink_slab() */
 439		smp_mb__before_atomic();
 440		set_bit(shrinker_id, map->map);
 441		rcu_read_unlock();
 442	}
 443}
 444
 445/**
 446 * mem_cgroup_css_from_page - css of the memcg associated with a page
 447 * @page: page of interest
 448 *
 449 * If memcg is bound to the default hierarchy, css of the memcg associated
 450 * with @page is returned.  The returned css remains associated with @page
 451 * until it is released.
 452 *
 453 * If memcg is bound to a traditional hierarchy, the css of root_mem_cgroup
 454 * is returned.
 455 */
 456struct cgroup_subsys_state *mem_cgroup_css_from_page(struct page *page)
 457{
 458	struct mem_cgroup *memcg;
 459
 460	memcg = page->mem_cgroup;
 461
 462	if (!memcg || !cgroup_subsys_on_dfl(memory_cgrp_subsys))
 463		memcg = root_mem_cgroup;
 464
 465	return &memcg->css;
 466}
 467
 468/**
 469 * page_cgroup_ino - return inode number of the memcg a page is charged to
 470 * @page: the page
 471 *
 472 * Look up the closest online ancestor of the memory cgroup @page is charged to
 473 * and return its inode number or 0 if @page is not charged to any cgroup. It
 474 * is safe to call this function without holding a reference to @page.
 475 *
 476 * Note, this function is inherently racy, because there is nothing to prevent
 477 * the cgroup inode from getting torn down and potentially reallocated a moment
 478 * after page_cgroup_ino() returns, so it only should be used by callers that
 479 * do not care (such as procfs interfaces).
 480 */
 481ino_t page_cgroup_ino(struct page *page)
 482{
 483	struct mem_cgroup *memcg;
 484	unsigned long ino = 0;
 485
 486	rcu_read_lock();
 487	if (PageSlab(page) && !PageTail(page))
 488		memcg = memcg_from_slab_page(page);
 489	else
 490		memcg = READ_ONCE(page->mem_cgroup);
 491	while (memcg && !(memcg->css.flags & CSS_ONLINE))
 492		memcg = parent_mem_cgroup(memcg);
 493	if (memcg)
 494		ino = cgroup_ino(memcg->css.cgroup);
 495	rcu_read_unlock();
 496	return ino;
 497}
 498
 499static struct mem_cgroup_per_node *
 500mem_cgroup_page_nodeinfo(struct mem_cgroup *memcg, struct page *page)
 501{
 502	int nid = page_to_nid(page);
 
 503
 504	return memcg->nodeinfo[nid];
 505}
 506
 507static struct mem_cgroup_tree_per_node *
 508soft_limit_tree_node(int nid)
 509{
 510	return soft_limit_tree.rb_tree_per_node[nid];
 511}
 512
 513static struct mem_cgroup_tree_per_node *
 514soft_limit_tree_from_page(struct page *page)
 515{
 516	int nid = page_to_nid(page);
 
 517
 518	return soft_limit_tree.rb_tree_per_node[nid];
 519}
 520
 521static void __mem_cgroup_insert_exceeded(struct mem_cgroup_per_node *mz,
 522					 struct mem_cgroup_tree_per_node *mctz,
 523					 unsigned long new_usage_in_excess)
 
 
 524{
 525	struct rb_node **p = &mctz->rb_root.rb_node;
 526	struct rb_node *parent = NULL;
 527	struct mem_cgroup_per_node *mz_node;
 528	bool rightmost = true;
 529
 530	if (mz->on_tree)
 531		return;
 532
 533	mz->usage_in_excess = new_usage_in_excess;
 534	if (!mz->usage_in_excess)
 535		return;
 536	while (*p) {
 537		parent = *p;
 538		mz_node = rb_entry(parent, struct mem_cgroup_per_node,
 539					tree_node);
 540		if (mz->usage_in_excess < mz_node->usage_in_excess) {
 541			p = &(*p)->rb_left;
 542			rightmost = false;
 543		}
 544
 545		/*
 546		 * We can't avoid mem cgroups that are over their soft
 547		 * limit by the same amount
 548		 */
 549		else if (mz->usage_in_excess >= mz_node->usage_in_excess)
 550			p = &(*p)->rb_right;
 551	}
 552
 553	if (rightmost)
 554		mctz->rb_rightmost = &mz->tree_node;
 555
 556	rb_link_node(&mz->tree_node, parent, p);
 557	rb_insert_color(&mz->tree_node, &mctz->rb_root);
 558	mz->on_tree = true;
 559}
 560
 561static void __mem_cgroup_remove_exceeded(struct mem_cgroup_per_node *mz,
 562					 struct mem_cgroup_tree_per_node *mctz)
 
 
 563{
 564	if (!mz->on_tree)
 565		return;
 566
 567	if (&mz->tree_node == mctz->rb_rightmost)
 568		mctz->rb_rightmost = rb_prev(&mz->tree_node);
 569
 570	rb_erase(&mz->tree_node, &mctz->rb_root);
 571	mz->on_tree = false;
 572}
 573
 574static void mem_cgroup_remove_exceeded(struct mem_cgroup_per_node *mz,
 575				       struct mem_cgroup_tree_per_node *mctz)
 
 
 576{
 577	unsigned long flags;
 578
 579	spin_lock_irqsave(&mctz->lock, flags);
 580	__mem_cgroup_remove_exceeded(mz, mctz);
 581	spin_unlock_irqrestore(&mctz->lock, flags);
 582}
 583
 584static unsigned long soft_limit_excess(struct mem_cgroup *memcg)
 585{
 586	unsigned long nr_pages = page_counter_read(&memcg->memory);
 587	unsigned long soft_limit = READ_ONCE(memcg->soft_limit);
 588	unsigned long excess = 0;
 589
 590	if (nr_pages > soft_limit)
 591		excess = nr_pages - soft_limit;
 592
 593	return excess;
 594}
 595
 596static void mem_cgroup_update_tree(struct mem_cgroup *memcg, struct page *page)
 597{
 598	unsigned long excess;
 599	struct mem_cgroup_per_node *mz;
 600	struct mem_cgroup_tree_per_node *mctz;
 
 
 
 601
 602	mctz = soft_limit_tree_from_page(page);
 603	if (!mctz)
 604		return;
 605	/*
 606	 * Necessary to update all ancestors when hierarchy is used.
 607	 * because their event counter is not touched.
 608	 */
 609	for (; memcg; memcg = parent_mem_cgroup(memcg)) {
 610		mz = mem_cgroup_page_nodeinfo(memcg, page);
 611		excess = soft_limit_excess(memcg);
 612		/*
 613		 * We have to update the tree if mz is on RB-tree or
 614		 * mem is over its softlimit.
 615		 */
 616		if (excess || mz->on_tree) {
 617			unsigned long flags;
 618
 619			spin_lock_irqsave(&mctz->lock, flags);
 620			/* if on-tree, remove it */
 621			if (mz->on_tree)
 622				__mem_cgroup_remove_exceeded(mz, mctz);
 623			/*
 624			 * Insert again. mz->usage_in_excess will be updated.
 625			 * If excess is 0, no tree ops.
 626			 */
 627			__mem_cgroup_insert_exceeded(mz, mctz, excess);
 628			spin_unlock_irqrestore(&mctz->lock, flags);
 629		}
 630	}
 631}
 632
 633static void mem_cgroup_remove_from_trees(struct mem_cgroup *memcg)
 634{
 635	struct mem_cgroup_tree_per_node *mctz;
 636	struct mem_cgroup_per_node *mz;
 637	int nid;
 638
 639	for_each_node(nid) {
 640		mz = mem_cgroup_nodeinfo(memcg, nid);
 641		mctz = soft_limit_tree_node(nid);
 642		if (mctz)
 643			mem_cgroup_remove_exceeded(mz, mctz);
 
 644	}
 645}
 646
 647static struct mem_cgroup_per_node *
 648__mem_cgroup_largest_soft_limit_node(struct mem_cgroup_tree_per_node *mctz)
 649{
 650	struct mem_cgroup_per_node *mz;
 
 651
 652retry:
 653	mz = NULL;
 654	if (!mctz->rb_rightmost)
 
 655		goto done;		/* Nothing to reclaim from */
 656
 657	mz = rb_entry(mctz->rb_rightmost,
 658		      struct mem_cgroup_per_node, tree_node);
 659	/*
 660	 * Remove the node now but someone else can add it back,
 661	 * we will to add it back at the end of reclaim to its correct
 662	 * position in the tree.
 663	 */
 664	__mem_cgroup_remove_exceeded(mz, mctz);
 665	if (!soft_limit_excess(mz->memcg) ||
 666	    !css_tryget_online(&mz->memcg->css))
 667		goto retry;
 668done:
 669	return mz;
 670}
 671
 672static struct mem_cgroup_per_node *
 673mem_cgroup_largest_soft_limit_node(struct mem_cgroup_tree_per_node *mctz)
 674{
 675	struct mem_cgroup_per_node *mz;
 676
 677	spin_lock_irq(&mctz->lock);
 678	mz = __mem_cgroup_largest_soft_limit_node(mctz);
 679	spin_unlock_irq(&mctz->lock);
 680	return mz;
 681}
 682
 683/**
 684 * __mod_memcg_state - update cgroup memory statistics
 685 * @memcg: the memory cgroup
 686 * @idx: the stat item - can be enum memcg_stat_item or enum node_stat_item
 687 * @val: delta to add to the counter, can be negative
 
 
 
 
 
 
 
 
 
 
 
 
 
 688 */
 689void __mod_memcg_state(struct mem_cgroup *memcg, int idx, int val)
 
 690{
 691	long x;
 
 692
 693	if (mem_cgroup_disabled())
 694		return;
 
 
 
 
 
 
 
 
 
 695
 696	x = val + __this_cpu_read(memcg->vmstats_percpu->stat[idx]);
 697	if (unlikely(abs(x) > MEMCG_CHARGE_BATCH)) {
 698		struct mem_cgroup *mi;
 
 
 
 699
 700		/*
 701		 * Batch local counters to keep them in sync with
 702		 * the hierarchical ones.
 703		 */
 704		__this_cpu_add(memcg->vmstats_local->stat[idx], x);
 705		for (mi = memcg; mi; mi = parent_mem_cgroup(mi))
 706			atomic_long_add(x, &mi->vmstats[idx]);
 707		x = 0;
 708	}
 709	__this_cpu_write(memcg->vmstats_percpu->stat[idx], x);
 710}
 711
 712static struct mem_cgroup_per_node *
 713parent_nodeinfo(struct mem_cgroup_per_node *pn, int nid)
 714{
 715	struct mem_cgroup *parent;
 716
 717	parent = parent_mem_cgroup(pn->memcg);
 718	if (!parent)
 719		return NULL;
 720	return mem_cgroup_nodeinfo(parent, nid);
 721}
 722
 723/**
 724 * __mod_lruvec_state - update lruvec memory statistics
 725 * @lruvec: the lruvec
 726 * @idx: the stat item
 727 * @val: delta to add to the counter, can be negative
 728 *
 729 * The lruvec is the intersection of the NUMA node and a cgroup. This
 730 * function updates the all three counters that are affected by a
 731 * change of state at this level: per-node, per-cgroup, per-lruvec.
 732 */
 733void __mod_lruvec_state(struct lruvec *lruvec, enum node_stat_item idx,
 734			int val)
 735{
 736	pg_data_t *pgdat = lruvec_pgdat(lruvec);
 737	struct mem_cgroup_per_node *pn;
 738	struct mem_cgroup *memcg;
 739	long x;
 740
 741	/* Update node */
 742	__mod_node_page_state(pgdat, idx, val);
 
 
 
 
 
 
 
 743
 744	if (mem_cgroup_disabled())
 745		return;
 
 
 746
 747	pn = container_of(lruvec, struct mem_cgroup_per_node, lruvec);
 748	memcg = pn->memcg;
 
 
 749
 750	/* Update memcg */
 751	__mod_memcg_state(memcg, idx, val);
 752
 753	/* Update lruvec */
 754	__this_cpu_add(pn->lruvec_stat_local->count[idx], val);
 
 
 755
 756	x = val + __this_cpu_read(pn->lruvec_stat_cpu->count[idx]);
 757	if (unlikely(abs(x) > MEMCG_CHARGE_BATCH)) {
 758		struct mem_cgroup_per_node *pi;
 759
 760		for (pi = pn; pi; pi = parent_nodeinfo(pi, pgdat->node_id))
 761			atomic_long_add(x, &pi->lruvec_stat[idx]);
 762		x = 0;
 763	}
 764	__this_cpu_write(pn->lruvec_stat_cpu->count[idx], x);
 765}
 766
 767void __mod_lruvec_slab_state(void *p, enum node_stat_item idx, int val)
 
 
 768{
 769	struct page *page = virt_to_head_page(p);
 770	pg_data_t *pgdat = page_pgdat(page);
 771	struct mem_cgroup *memcg;
 772	struct lruvec *lruvec;
 773
 774	rcu_read_lock();
 775	memcg = memcg_from_slab_page(page);
 776
 777	/* Untracked pages have no memcg, no lruvec. Update only the node */
 778	if (!memcg || memcg == root_mem_cgroup) {
 779		__mod_node_page_state(pgdat, idx, val);
 780	} else {
 781		lruvec = mem_cgroup_lruvec(pgdat, memcg);
 782		__mod_lruvec_state(lruvec, idx, val);
 783	}
 784	rcu_read_unlock();
 785}
 786
 787/**
 788 * __count_memcg_events - account VM events in a cgroup
 789 * @memcg: the memory cgroup
 790 * @idx: the event item
 791 * @count: the number of events that occured
 792 */
 793void __count_memcg_events(struct mem_cgroup *memcg, enum vm_event_item idx,
 794			  unsigned long count)
 795{
 796	unsigned long x;
 
 797
 798	if (mem_cgroup_disabled())
 799		return;
 800
 801	x = count + __this_cpu_read(memcg->vmstats_percpu->events[idx]);
 802	if (unlikely(x > MEMCG_CHARGE_BATCH)) {
 803		struct mem_cgroup *mi;
 804
 805		/*
 806		 * Batch local counters to keep them in sync with
 807		 * the hierarchical ones.
 808		 */
 809		__this_cpu_add(memcg->vmstats_local->events[idx], x);
 810		for (mi = memcg; mi; mi = parent_mem_cgroup(mi))
 811			atomic_long_add(x, &mi->vmevents[idx]);
 812		x = 0;
 813	}
 814	__this_cpu_write(memcg->vmstats_percpu->events[idx], x);
 815}
 816
 817static unsigned long memcg_events(struct mem_cgroup *memcg, int event)
 
 818{
 819	return atomic_long_read(&memcg->vmevents[event]);
 
 
 
 
 
 820}
 821
 822static unsigned long memcg_events_local(struct mem_cgroup *memcg, int event)
 823{
 824	long x = 0;
 825	int cpu;
 826
 827	for_each_possible_cpu(cpu)
 828		x += per_cpu(memcg->vmstats_local->events[event], cpu);
 829	return x;
 
 830}
 831
 832static void mem_cgroup_charge_statistics(struct mem_cgroup *memcg,
 833					 struct page *page,
 834					 bool compound, int nr_pages)
 835{
 836	/*
 837	 * Here, RSS means 'mapped anon' and anon's SwapCache. Shmem/tmpfs is
 838	 * counted as CACHE even if it's on ANON LRU.
 839	 */
 840	if (PageAnon(page))
 841		__mod_memcg_state(memcg, MEMCG_RSS, nr_pages);
 842	else {
 843		__mod_memcg_state(memcg, MEMCG_CACHE, nr_pages);
 844		if (PageSwapBacked(page))
 845			__mod_memcg_state(memcg, NR_SHMEM, nr_pages);
 846	}
 847
 848	if (compound) {
 849		VM_BUG_ON_PAGE(!PageTransHuge(page), page);
 850		__mod_memcg_state(memcg, MEMCG_RSS_HUGE, nr_pages);
 851	}
 852
 853	/* pagein of a big page is an event. So, ignore page size */
 854	if (nr_pages > 0)
 855		__count_memcg_events(memcg, PGPGIN, 1);
 856	else {
 857		__count_memcg_events(memcg, PGPGOUT, 1);
 858		nr_pages = -nr_pages; /* for event */
 
 
 
 
 
 
 859	}
 860
 861	__this_cpu_add(memcg->vmstats_percpu->nr_page_events, nr_pages);
 862}
 863
 864static bool mem_cgroup_event_ratelimit(struct mem_cgroup *memcg,
 865				       enum mem_cgroup_events_target target)
 866{
 867	unsigned long val, next;
 868
 869	val = __this_cpu_read(memcg->vmstats_percpu->nr_page_events);
 870	next = __this_cpu_read(memcg->vmstats_percpu->targets[target]);
 871	/* from time_after() in jiffies.h */
 872	if ((long)(next - val) < 0) {
 873		switch (target) {
 874		case MEM_CGROUP_TARGET_THRESH:
 875			next = val + THRESHOLDS_EVENTS_TARGET;
 876			break;
 877		case MEM_CGROUP_TARGET_SOFTLIMIT:
 878			next = val + SOFTLIMIT_EVENTS_TARGET;
 879			break;
 880		case MEM_CGROUP_TARGET_NUMAINFO:
 881			next = val + NUMAINFO_EVENTS_TARGET;
 882			break;
 883		default:
 884			break;
 885		}
 886		__this_cpu_write(memcg->vmstats_percpu->targets[target], next);
 887		return true;
 888	}
 889	return false;
 890}
 891
 892/*
 893 * Check events in order.
 894 *
 895 */
 896static void memcg_check_events(struct mem_cgroup *memcg, struct page *page)
 897{
 898	/* threshold event is triggered in finer grain than soft limit */
 899	if (unlikely(mem_cgroup_event_ratelimit(memcg,
 900						MEM_CGROUP_TARGET_THRESH))) {
 901		bool do_softlimit;
 902		bool do_numainfo __maybe_unused;
 903
 904		do_softlimit = mem_cgroup_event_ratelimit(memcg,
 905						MEM_CGROUP_TARGET_SOFTLIMIT);
 
 
 906#if MAX_NUMNODES > 1
 907		do_numainfo = mem_cgroup_event_ratelimit(memcg,
 908						MEM_CGROUP_TARGET_NUMAINFO);
 909#endif
 910		mem_cgroup_threshold(memcg);
 911		if (unlikely(do_softlimit))
 912			mem_cgroup_update_tree(memcg, page);
 913#if MAX_NUMNODES > 1
 914		if (unlikely(do_numainfo))
 915			atomic_inc(&memcg->numainfo_events);
 916#endif
 917	}
 918}
 919
 
 
 
 
 
 
 
 920struct mem_cgroup *mem_cgroup_from_task(struct task_struct *p)
 921{
 922	/*
 923	 * mm_update_next_owner() may clear mm->owner to NULL
 924	 * if it races with swapoff, page migration, etc.
 925	 * So this can be called with p == NULL.
 926	 */
 927	if (unlikely(!p))
 928		return NULL;
 929
 930	return mem_cgroup_from_css(task_css(p, memory_cgrp_id));
 
 931}
 932EXPORT_SYMBOL(mem_cgroup_from_task);
 933
 934/**
 935 * get_mem_cgroup_from_mm: Obtain a reference on given mm_struct's memcg.
 936 * @mm: mm from which memcg should be extracted. It can be NULL.
 937 *
 938 * Obtain a reference on mm->memcg and returns it if successful. Otherwise
 939 * root_mem_cgroup is returned. However if mem_cgroup is disabled, NULL is
 940 * returned.
 941 */
 942struct mem_cgroup *get_mem_cgroup_from_mm(struct mm_struct *mm)
 943{
 944	struct mem_cgroup *memcg;
 945
 946	if (mem_cgroup_disabled())
 947		return NULL;
 948
 
 
 
 
 949	rcu_read_lock();
 950	do {
 951		/*
 952		 * Page cache insertions can happen withou an
 953		 * actual mm context, e.g. during disk probing
 954		 * on boot, loopback IO, acct() writes etc.
 955		 */
 956		if (unlikely(!mm))
 957			memcg = root_mem_cgroup;
 958		else {
 959			memcg = mem_cgroup_from_task(rcu_dereference(mm->owner));
 960			if (unlikely(!memcg))
 961				memcg = root_mem_cgroup;
 962		}
 963	} while (!css_tryget(&memcg->css));
 964	rcu_read_unlock();
 965	return memcg;
 966}
 967EXPORT_SYMBOL(get_mem_cgroup_from_mm);
 968
 969/**
 970 * get_mem_cgroup_from_page: Obtain a reference on given page's memcg.
 971 * @page: page from which memcg should be extracted.
 972 *
 973 * Obtain a reference on page->memcg and returns it if successful. Otherwise
 974 * root_mem_cgroup is returned.
 975 */
 976struct mem_cgroup *get_mem_cgroup_from_page(struct page *page)
 977{
 978	struct mem_cgroup *memcg = page->mem_cgroup;
 
 979
 980	if (mem_cgroup_disabled())
 
 
 
 
 981		return NULL;
 982
 983	rcu_read_lock();
 984	if (!memcg || !css_tryget_online(&memcg->css))
 985		memcg = root_mem_cgroup;
 
 
 
 
 
 
 
 986	rcu_read_unlock();
 987	return memcg;
 988}
 989EXPORT_SYMBOL(get_mem_cgroup_from_page);
 990
 991/**
 992 * If current->active_memcg is non-NULL, do not fallback to current->mm->memcg.
 993 */
 994static __always_inline struct mem_cgroup *get_mem_cgroup_from_current(void)
 995{
 996	if (unlikely(current->active_memcg)) {
 997		struct mem_cgroup *memcg = root_mem_cgroup;
 
 
 998
 999		rcu_read_lock();
1000		if (css_tryget_online(&current->active_memcg->css))
1001			memcg = current->active_memcg;
1002		rcu_read_unlock();
1003		return memcg;
1004	}
1005	return get_mem_cgroup_from_mm(current->mm);
1006}
1007
1008/**
1009 * mem_cgroup_iter - iterate over memory cgroup hierarchy
1010 * @root: hierarchy root
1011 * @prev: previously returned memcg, NULL on first invocation
1012 * @reclaim: cookie for shared reclaim walks, NULL for full walks
1013 *
1014 * Returns references to children of the hierarchy below @root, or
1015 * @root itself, or %NULL after a full round-trip.
1016 *
1017 * Caller must pass the return value in @prev on subsequent
1018 * invocations for reference counting, or use mem_cgroup_iter_break()
1019 * to cancel a hierarchy walk before the round-trip is complete.
1020 *
1021 * Reclaimers can specify a node and a priority level in @reclaim to
1022 * divide up the memcgs in the hierarchy among all concurrent
1023 * reclaimers operating on the same node and priority.
1024 */
1025struct mem_cgroup *mem_cgroup_iter(struct mem_cgroup *root,
1026				   struct mem_cgroup *prev,
1027				   struct mem_cgroup_reclaim_cookie *reclaim)
1028{
1029	struct mem_cgroup_reclaim_iter *uninitialized_var(iter);
1030	struct cgroup_subsys_state *css = NULL;
1031	struct mem_cgroup *memcg = NULL;
1032	struct mem_cgroup *pos = NULL;
1033
1034	if (mem_cgroup_disabled())
 
 
1035		return NULL;
1036
1037	if (!root)
1038		root = root_mem_cgroup;
1039
1040	if (prev && !reclaim)
1041		pos = prev;
 
1042
1043	if (!root->use_hierarchy && root != root_mem_cgroup) {
1044		if (prev)
1045			goto out;
1046		return root;
1047	}
 
 
 
1048
1049	rcu_read_lock();
 
 
 
 
 
 
 
 
 
 
1050
1051	if (reclaim) {
1052		struct mem_cgroup_per_node *mz;
1053
1054		mz = mem_cgroup_nodeinfo(root, reclaim->pgdat->node_id);
1055		iter = &mz->iter[reclaim->priority];
1056
1057		if (prev && reclaim->generation != iter->generation)
1058			goto out_unlock;
1059
1060		while (1) {
1061			pos = READ_ONCE(iter->position);
1062			if (!pos || css_tryget(&pos->css))
1063				break;
1064			/*
1065			 * css reference reached zero, so iter->position will
1066			 * be cleared by ->css_released. However, we should not
1067			 * rely on this happening soon, because ->css_released
1068			 * is called from a work queue, and by busy-waiting we
1069			 * might block it. So we clear iter->position right
1070			 * away.
1071			 */
1072			(void)cmpxchg(&iter->position, pos, NULL);
1073		}
1074	}
1075
1076	if (pos)
1077		css = &pos->css;
 
1078
1079	for (;;) {
1080		css = css_next_descendant_pre(css, &root->css);
1081		if (!css) {
1082			/*
1083			 * Reclaimers share the hierarchy walk, and a
1084			 * new one might jump in right at the end of
1085			 * the hierarchy - make sure they see at least
1086			 * one group and restart from the beginning.
1087			 */
1088			if (!prev)
1089				continue;
1090			break;
1091		}
1092
1093		/*
1094		 * Verify the css and acquire a reference.  The root
1095		 * is provided by the caller, so we know it's alive
1096		 * and kicking, and don't take an extra reference.
1097		 */
1098		memcg = mem_cgroup_from_css(css);
1099
1100		if (css == &root->css)
1101			break;
 
 
 
 
 
 
 
 
 
 
 
 
1102
1103		if (css_tryget(css))
1104			break;
 
 
 
 
 
 
 
 
 
 
 
1105
1106		memcg = NULL;
1107	}
 
 
1108
1109	if (reclaim) {
1110		/*
1111		 * The position could have already been updated by a competing
1112		 * thread, so check that the value hasn't changed since we read
1113		 * it to avoid reclaiming from the same cgroup twice.
1114		 */
1115		(void)cmpxchg(&iter->position, pos, memcg);
 
 
 
 
 
 
 
 
 
 
 
 
1116
1117		if (pos)
1118			css_put(&pos->css);
 
 
1119
1120		if (!memcg)
1121			iter->generation++;
1122		else if (!prev)
1123			reclaim->generation = iter->generation;
1124	}
 
 
 
 
 
1125
1126out_unlock:
1127	rcu_read_unlock();
1128out:
1129	if (prev && prev != root)
1130		css_put(&prev->css);
1131
1132	return memcg;
 
 
 
 
 
 
 
 
 
1133}
1134
1135/**
1136 * mem_cgroup_iter_break - abort a hierarchy walk prematurely
1137 * @root: hierarchy root
1138 * @prev: last visited hierarchy member as returned by mem_cgroup_iter()
1139 */
1140void mem_cgroup_iter_break(struct mem_cgroup *root,
1141			   struct mem_cgroup *prev)
1142{
1143	if (!root)
1144		root = root_mem_cgroup;
1145	if (prev && prev != root)
1146		css_put(&prev->css);
 
 
 
 
 
 
 
 
 
 
 
 
1147}
1148
1149static void __invalidate_reclaim_iterators(struct mem_cgroup *from,
1150					struct mem_cgroup *dead_memcg)
1151{
1152	struct mem_cgroup_reclaim_iter *iter;
1153	struct mem_cgroup_per_node *mz;
1154	int nid;
1155	int i;
1156
1157	for_each_node(nid) {
1158		mz = mem_cgroup_nodeinfo(from, nid);
1159		for (i = 0; i <= DEF_PRIORITY; i++) {
1160			iter = &mz->iter[i];
1161			cmpxchg(&iter->position,
1162				dead_memcg, NULL);
1163		}
1164	}
 
 
 
 
 
 
 
1165}
1166
1167static void invalidate_reclaim_iterators(struct mem_cgroup *dead_memcg)
 
 
 
 
 
 
1168{
1169	struct mem_cgroup *memcg = dead_memcg;
1170	struct mem_cgroup *last;
 
1171
1172	do {
1173		__invalidate_reclaim_iterators(memcg, dead_memcg);
1174		last = memcg;
1175	} while ((memcg = parent_mem_cgroup(memcg)));
 
 
 
 
 
 
1176
 
1177	/*
1178	 * When cgruop1 non-hierarchy mode is used,
1179	 * parent_mem_cgroup() does not walk all the way up to the
1180	 * cgroup root (root_mem_cgroup). So we have to handle
1181	 * dead_memcg from cgroup root separately.
1182	 */
1183	if (last != root_mem_cgroup)
1184		__invalidate_reclaim_iterators(root_mem_cgroup,
1185						dead_memcg);
1186}
1187
1188/**
1189 * mem_cgroup_scan_tasks - iterate over tasks of a memory cgroup hierarchy
1190 * @memcg: hierarchy root
1191 * @fn: function to call for each task
1192 * @arg: argument passed to @fn
1193 *
1194 * This function iterates over tasks attached to @memcg or to any of its
1195 * descendants and calls @fn for each task. If @fn returns a non-zero
1196 * value, the function breaks the iteration loop and returns the value.
1197 * Otherwise, it will iterate over all tasks and return 0.
1198 *
1199 * This function must not be called for the root memory cgroup.
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1200 */
1201int mem_cgroup_scan_tasks(struct mem_cgroup *memcg,
1202			  int (*fn)(struct task_struct *, void *), void *arg)
1203{
1204	struct mem_cgroup *iter;
1205	int ret = 0;
 
 
 
 
 
1206
1207	BUG_ON(memcg == root_mem_cgroup);
 
 
 
 
1208
1209	for_each_mem_cgroup_tree(iter, memcg) {
1210		struct css_task_iter it;
1211		struct task_struct *task;
1212
1213		css_task_iter_start(&iter->css, CSS_TASK_ITER_PROCS, &it);
1214		while (!ret && (task = css_task_iter_next(&it)))
1215			ret = fn(task, arg);
1216		css_task_iter_end(&it);
1217		if (ret) {
1218			mem_cgroup_iter_break(memcg, iter);
1219			break;
1220		}
1221	}
 
 
1222	return ret;
1223}
1224
1225/**
1226 * mem_cgroup_page_lruvec - return lruvec for isolating/putting an LRU page
1227 * @page: the page
1228 * @pgdat: pgdat of the page
1229 *
1230 * This function is only safe when following the LRU page isolation
1231 * and putback protocol: the LRU lock must be held, and the page must
1232 * either be PageLRU() or the caller must have isolated/allocated it.
1233 */
1234struct lruvec *mem_cgroup_page_lruvec(struct page *page, struct pglist_data *pgdat)
1235{
1236	struct mem_cgroup_per_node *mz;
1237	struct mem_cgroup *memcg;
1238	struct lruvec *lruvec;
 
 
 
 
 
 
 
 
 
 
1239
1240	if (mem_cgroup_disabled()) {
1241		lruvec = &pgdat->lruvec;
1242		goto out;
1243	}
1244
1245	memcg = page->mem_cgroup;
1246	/*
1247	 * Swapcache readahead pages are added to the LRU - and
1248	 * possibly migrated - before they are charged.
1249	 */
1250	if (!memcg)
1251		memcg = root_mem_cgroup;
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1252
1253	mz = mem_cgroup_page_nodeinfo(memcg, page);
1254	lruvec = &mz->lruvec;
1255out:
1256	/*
1257	 * Since a node can be onlined after the mem_cgroup was created,
1258	 * we have to be prepared to initialize lruvec->zone here;
1259	 * and if offlined then reonlined, we need to reinitialize it.
1260	 */
1261	if (unlikely(lruvec->pgdat != pgdat))
1262		lruvec->pgdat = pgdat;
1263	return lruvec;
1264}
1265
1266/**
1267 * mem_cgroup_update_lru_size - account for adding or removing an lru page
1268 * @lruvec: mem_cgroup per zone lru vector
1269 * @lru: index of lru list the page is sitting on
1270 * @zid: zone id of the accounted pages
1271 * @nr_pages: positive when adding or negative when removing
1272 *
1273 * This function must be called under lru_lock, just before a page is added
1274 * to or just after a page is removed from an lru list (that ordering being
1275 * so as to allow it to check that lru_size 0 is consistent with list_empty).
1276 */
1277void mem_cgroup_update_lru_size(struct lruvec *lruvec, enum lru_list lru,
1278				int zid, int nr_pages)
1279{
1280	struct mem_cgroup_per_node *mz;
1281	unsigned long *lru_size;
1282	long size;
1283
1284	if (mem_cgroup_disabled())
1285		return;
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1286
1287	mz = container_of(lruvec, struct mem_cgroup_per_node, lruvec);
1288	lru_size = &mz->lru_zone_size[zid][lru];
1289
1290	if (nr_pages < 0)
1291		*lru_size += nr_pages;
1292
1293	size = *lru_size;
1294	if (WARN_ONCE(size < 0,
1295		"%s(%p, %d, %d): lru_size %ld\n",
1296		__func__, lruvec, lru, nr_pages, size)) {
1297		VM_BUG_ON(1);
1298		*lru_size = 0;
 
 
 
 
 
 
 
 
 
 
 
 
1299	}
1300
1301	if (nr_pages > 0)
1302		*lru_size += nr_pages;
 
 
 
 
1303}
1304
 
 
 
1305/**
1306 * mem_cgroup_margin - calculate chargeable space of a memory cgroup
1307 * @memcg: the memory cgroup
1308 *
1309 * Returns the maximum amount of memory @mem can be charged with, in
1310 * pages.
1311 */
1312static unsigned long mem_cgroup_margin(struct mem_cgroup *memcg)
 
 
 
 
 
 
 
 
 
 
1313{
1314	unsigned long margin = 0;
1315	unsigned long count;
1316	unsigned long limit;
1317
1318	count = page_counter_read(&memcg->memory);
1319	limit = READ_ONCE(memcg->memory.max);
1320	if (count < limit)
1321		margin = limit - count;
1322
1323	if (do_memsw_account()) {
1324		count = page_counter_read(&memcg->memsw);
1325		limit = READ_ONCE(memcg->memsw.max);
1326		if (count <= limit)
1327			margin = min(margin, limit - count);
1328		else
1329			margin = 0;
1330	}
 
 
 
1331
1332	return margin;
1333}
1334
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1335/*
1336 * A routine for checking "mem" is under move_account() or not.
 
 
 
 
1337 *
1338 * Checking a cgroup is mc.from or mc.to or under hierarchy of
1339 * moving cgroups. This is for waiting at high-memory pressure
1340 * caused by "move".
1341 */
1342static bool mem_cgroup_under_move(struct mem_cgroup *memcg)
 
 
 
 
 
 
 
1343{
1344	struct mem_cgroup *from;
1345	struct mem_cgroup *to;
1346	bool ret = false;
1347	/*
1348	 * Unlike task_move routines, we access mc.to, mc.from not under
1349	 * mutual exclusion by cgroup_mutex. Here, we take spinlock instead.
1350	 */
1351	spin_lock(&mc.lock);
1352	from = mc.from;
1353	to = mc.to;
1354	if (!from)
1355		goto unlock;
1356
1357	ret = mem_cgroup_is_descendant(from, memcg) ||
1358		mem_cgroup_is_descendant(to, memcg);
1359unlock:
1360	spin_unlock(&mc.lock);
1361	return ret;
1362}
1363
1364static bool mem_cgroup_wait_acct_move(struct mem_cgroup *memcg)
1365{
1366	if (mc.moving_task && current != mc.moving_task) {
1367		if (mem_cgroup_under_move(memcg)) {
1368			DEFINE_WAIT(wait);
1369			prepare_to_wait(&mc.waitq, &wait, TASK_INTERRUPTIBLE);
1370			/* moving charge context might have finished. */
1371			if (mc.moving_task)
1372				schedule();
1373			finish_wait(&mc.waitq, &wait);
1374			return true;
1375		}
1376	}
1377	return false;
1378}
1379
1380static char *memory_stat_format(struct mem_cgroup *memcg)
1381{
1382	struct seq_buf s;
1383	int i;
1384
1385	seq_buf_init(&s, kmalloc(PAGE_SIZE, GFP_KERNEL), PAGE_SIZE);
1386	if (!s.buffer)
1387		return NULL;
1388
1389	/*
1390	 * Provide statistics on the state of the memory subsystem as
1391	 * well as cumulative event counters that show past behavior.
1392	 *
1393	 * This list is ordered following a combination of these gradients:
1394	 * 1) generic big picture -> specifics and details
1395	 * 2) reflecting userspace activity -> reflecting kernel heuristics
1396	 *
1397	 * Current memory state:
1398	 */
1399
1400	seq_buf_printf(&s, "anon %llu\n",
1401		       (u64)memcg_page_state(memcg, MEMCG_RSS) *
1402		       PAGE_SIZE);
1403	seq_buf_printf(&s, "file %llu\n",
1404		       (u64)memcg_page_state(memcg, MEMCG_CACHE) *
1405		       PAGE_SIZE);
1406	seq_buf_printf(&s, "kernel_stack %llu\n",
1407		       (u64)memcg_page_state(memcg, MEMCG_KERNEL_STACK_KB) *
1408		       1024);
1409	seq_buf_printf(&s, "slab %llu\n",
1410		       (u64)(memcg_page_state(memcg, NR_SLAB_RECLAIMABLE) +
1411			     memcg_page_state(memcg, NR_SLAB_UNRECLAIMABLE)) *
1412		       PAGE_SIZE);
1413	seq_buf_printf(&s, "sock %llu\n",
1414		       (u64)memcg_page_state(memcg, MEMCG_SOCK) *
1415		       PAGE_SIZE);
1416
1417	seq_buf_printf(&s, "shmem %llu\n",
1418		       (u64)memcg_page_state(memcg, NR_SHMEM) *
1419		       PAGE_SIZE);
1420	seq_buf_printf(&s, "file_mapped %llu\n",
1421		       (u64)memcg_page_state(memcg, NR_FILE_MAPPED) *
1422		       PAGE_SIZE);
1423	seq_buf_printf(&s, "file_dirty %llu\n",
1424		       (u64)memcg_page_state(memcg, NR_FILE_DIRTY) *
1425		       PAGE_SIZE);
1426	seq_buf_printf(&s, "file_writeback %llu\n",
1427		       (u64)memcg_page_state(memcg, NR_WRITEBACK) *
1428		       PAGE_SIZE);
1429
1430	/*
1431	 * TODO: We should eventually replace our own MEMCG_RSS_HUGE counter
1432	 * with the NR_ANON_THP vm counter, but right now it's a pain in the
1433	 * arse because it requires migrating the work out of rmap to a place
1434	 * where the page->mem_cgroup is set up and stable.
1435	 */
1436	seq_buf_printf(&s, "anon_thp %llu\n",
1437		       (u64)memcg_page_state(memcg, MEMCG_RSS_HUGE) *
1438		       PAGE_SIZE);
1439
1440	for (i = 0; i < NR_LRU_LISTS; i++)
1441		seq_buf_printf(&s, "%s %llu\n", mem_cgroup_lru_names[i],
1442			       (u64)memcg_page_state(memcg, NR_LRU_BASE + i) *
1443			       PAGE_SIZE);
1444
1445	seq_buf_printf(&s, "slab_reclaimable %llu\n",
1446		       (u64)memcg_page_state(memcg, NR_SLAB_RECLAIMABLE) *
1447		       PAGE_SIZE);
1448	seq_buf_printf(&s, "slab_unreclaimable %llu\n",
1449		       (u64)memcg_page_state(memcg, NR_SLAB_UNRECLAIMABLE) *
1450		       PAGE_SIZE);
1451
1452	/* Accumulated memory events */
1453
1454	seq_buf_printf(&s, "pgfault %lu\n", memcg_events(memcg, PGFAULT));
1455	seq_buf_printf(&s, "pgmajfault %lu\n", memcg_events(memcg, PGMAJFAULT));
1456
1457	seq_buf_printf(&s, "workingset_refault %lu\n",
1458		       memcg_page_state(memcg, WORKINGSET_REFAULT));
1459	seq_buf_printf(&s, "workingset_activate %lu\n",
1460		       memcg_page_state(memcg, WORKINGSET_ACTIVATE));
1461	seq_buf_printf(&s, "workingset_nodereclaim %lu\n",
1462		       memcg_page_state(memcg, WORKINGSET_NODERECLAIM));
1463
1464	seq_buf_printf(&s, "pgrefill %lu\n", memcg_events(memcg, PGREFILL));
1465	seq_buf_printf(&s, "pgscan %lu\n",
1466		       memcg_events(memcg, PGSCAN_KSWAPD) +
1467		       memcg_events(memcg, PGSCAN_DIRECT));
1468	seq_buf_printf(&s, "pgsteal %lu\n",
1469		       memcg_events(memcg, PGSTEAL_KSWAPD) +
1470		       memcg_events(memcg, PGSTEAL_DIRECT));
1471	seq_buf_printf(&s, "pgactivate %lu\n", memcg_events(memcg, PGACTIVATE));
1472	seq_buf_printf(&s, "pgdeactivate %lu\n", memcg_events(memcg, PGDEACTIVATE));
1473	seq_buf_printf(&s, "pglazyfree %lu\n", memcg_events(memcg, PGLAZYFREE));
1474	seq_buf_printf(&s, "pglazyfreed %lu\n", memcg_events(memcg, PGLAZYFREED));
1475
1476#ifdef CONFIG_TRANSPARENT_HUGEPAGE
1477	seq_buf_printf(&s, "thp_fault_alloc %lu\n",
1478		       memcg_events(memcg, THP_FAULT_ALLOC));
1479	seq_buf_printf(&s, "thp_collapse_alloc %lu\n",
1480		       memcg_events(memcg, THP_COLLAPSE_ALLOC));
1481#endif /* CONFIG_TRANSPARENT_HUGEPAGE */
1482
1483	/* The above should easily fit into one page */
1484	WARN_ON_ONCE(seq_buf_has_overflowed(&s));
1485
1486	return s.buffer;
1487}
1488
1489#define K(x) ((x) << (PAGE_SHIFT-10))
1490/**
1491 * mem_cgroup_print_oom_context: Print OOM information relevant to
1492 * memory controller.
1493 * @memcg: The memory cgroup that went over limit
1494 * @p: Task that is going to be killed
1495 *
1496 * NOTE: @memcg and @p's mem_cgroup can be different when hierarchy is
1497 * enabled
1498 */
1499void mem_cgroup_print_oom_context(struct mem_cgroup *memcg, struct task_struct *p)
1500{
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1501	rcu_read_lock();
1502
1503	if (memcg) {
1504		pr_cont(",oom_memcg=");
1505		pr_cont_cgroup_path(memcg->css.cgroup);
1506	} else
1507		pr_cont(",global_oom");
1508	if (p) {
1509		pr_cont(",task_memcg=");
1510		pr_cont_cgroup_path(task_cgroup(p, memory_cgrp_id));
 
 
 
 
 
 
 
 
 
 
 
 
 
1511	}
1512	rcu_read_unlock();
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1513}
1514
1515/**
1516 * mem_cgroup_print_oom_meminfo: Print OOM memory information relevant to
1517 * memory controller.
1518 * @memcg: The memory cgroup that went over limit
1519 */
1520void mem_cgroup_print_oom_meminfo(struct mem_cgroup *memcg)
1521{
1522	char *buf;
1523
1524	pr_info("memory: usage %llukB, limit %llukB, failcnt %lu\n",
1525		K((u64)page_counter_read(&memcg->memory)),
1526		K((u64)memcg->memory.max), memcg->memory.failcnt);
1527	if (cgroup_subsys_on_dfl(memory_cgrp_subsys))
1528		pr_info("swap: usage %llukB, limit %llukB, failcnt %lu\n",
1529			K((u64)page_counter_read(&memcg->swap)),
1530			K((u64)memcg->swap.max), memcg->swap.failcnt);
1531	else {
1532		pr_info("memory+swap: usage %llukB, limit %llukB, failcnt %lu\n",
1533			K((u64)page_counter_read(&memcg->memsw)),
1534			K((u64)memcg->memsw.max), memcg->memsw.failcnt);
1535		pr_info("kmem: usage %llukB, limit %llukB, failcnt %lu\n",
1536			K((u64)page_counter_read(&memcg->kmem)),
1537			K((u64)memcg->kmem.max), memcg->kmem.failcnt);
1538	}
1539
1540	pr_info("Memory cgroup stats for ");
1541	pr_cont_cgroup_path(memcg->css.cgroup);
1542	pr_cont(":");
1543	buf = memory_stat_format(memcg);
1544	if (!buf)
1545		return;
1546	pr_info("%s", buf);
1547	kfree(buf);
1548}
1549
1550/*
1551 * Return the memory (and swap, if configured) limit for a memcg.
1552 */
1553unsigned long mem_cgroup_get_max(struct mem_cgroup *memcg)
1554{
1555	unsigned long max;
 
1556
1557	max = memcg->memory.max;
1558	if (mem_cgroup_swappiness(memcg)) {
1559		unsigned long memsw_max;
1560		unsigned long swap_max;
1561
1562		memsw_max = memcg->memsw.max;
1563		swap_max = memcg->swap.max;
1564		swap_max = min(swap_max, (unsigned long)total_swap_pages);
1565		max = min(max + swap_max, memsw_max);
1566	}
1567	return max;
1568}
1569
1570unsigned long mem_cgroup_size(struct mem_cgroup *memcg)
 
 
 
 
 
 
1571{
1572	return page_counter_read(&memcg->memory);
1573}
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1574
1575static bool mem_cgroup_out_of_memory(struct mem_cgroup *memcg, gfp_t gfp_mask,
1576				     int order)
1577{
1578	struct oom_control oc = {
1579		.zonelist = NULL,
1580		.nodemask = NULL,
1581		.memcg = memcg,
1582		.gfp_mask = gfp_mask,
1583		.order = order,
1584	};
1585	bool ret;
1586
1587	if (mutex_lock_killable(&oom_lock))
1588		return true;
1589	/*
1590	 * A few threads which were not waiting at mutex_lock_killable() can
1591	 * fail to bail out. Therefore, check again after holding oom_lock.
1592	 */
1593	ret = should_force_charge() || out_of_memory(&oc);
1594	mutex_unlock(&oom_lock);
1595	return ret;
1596}
1597
1598#if MAX_NUMNODES > 1
1599
1600/**
1601 * test_mem_cgroup_node_reclaimable
1602 * @memcg: the target memcg
1603 * @nid: the node ID to be checked.
1604 * @noswap : specify true here if the user wants flle only information.
1605 *
1606 * This function returns whether the specified memcg contains any
1607 * reclaimable pages on a node. Returns true if there are any reclaimable
1608 * pages in the node.
1609 */
1610static bool test_mem_cgroup_node_reclaimable(struct mem_cgroup *memcg,
1611		int nid, bool noswap)
1612{
1613	struct lruvec *lruvec = mem_cgroup_lruvec(NODE_DATA(nid), memcg);
1614
1615	if (lruvec_page_state(lruvec, NR_INACTIVE_FILE) ||
1616	    lruvec_page_state(lruvec, NR_ACTIVE_FILE))
1617		return true;
1618	if (noswap || !total_swap_pages)
1619		return false;
1620	if (lruvec_page_state(lruvec, NR_INACTIVE_ANON) ||
1621	    lruvec_page_state(lruvec, NR_ACTIVE_ANON))
1622		return true;
1623	return false;
1624
1625}
 
1626
1627/*
1628 * Always updating the nodemask is not very good - even if we have an empty
1629 * list or the wrong list here, we can start from some node and traverse all
1630 * nodes based on the zonelist. So update the list loosely once per 10 secs.
1631 *
1632 */
1633static void mem_cgroup_may_update_nodemask(struct mem_cgroup *memcg)
1634{
1635	int nid;
1636	/*
1637	 * numainfo_events > 0 means there was at least NUMAINFO_EVENTS_TARGET
1638	 * pagein/pageout changes since the last update.
1639	 */
1640	if (!atomic_read(&memcg->numainfo_events))
1641		return;
1642	if (atomic_inc_return(&memcg->numainfo_updating) > 1)
1643		return;
1644
1645	/* make a nodemask where this memcg uses memory from */
1646	memcg->scan_nodes = node_states[N_MEMORY];
1647
1648	for_each_node_mask(nid, node_states[N_MEMORY]) {
1649
1650		if (!test_mem_cgroup_node_reclaimable(memcg, nid, false))
1651			node_clear(nid, memcg->scan_nodes);
1652	}
1653
1654	atomic_set(&memcg->numainfo_events, 0);
1655	atomic_set(&memcg->numainfo_updating, 0);
1656}
1657
1658/*
1659 * Selecting a node where we start reclaim from. Because what we need is just
1660 * reducing usage counter, start from anywhere is O,K. Considering
1661 * memory reclaim from current node, there are pros. and cons.
1662 *
1663 * Freeing memory from current node means freeing memory from a node which
1664 * we'll use or we've used. So, it may make LRU bad. And if several threads
1665 * hit limits, it will see a contention on a node. But freeing from remote
1666 * node means more costs for memory reclaim because of memory latency.
1667 *
1668 * Now, we use round-robin. Better algorithm is welcomed.
1669 */
1670int mem_cgroup_select_victim_node(struct mem_cgroup *memcg)
1671{
1672	int node;
1673
1674	mem_cgroup_may_update_nodemask(memcg);
1675	node = memcg->last_scanned_node;
1676
1677	node = next_node_in(node, memcg->scan_nodes);
1678	/*
1679	 * mem_cgroup_may_update_nodemask might have seen no reclaimmable pages
1680	 * last time it really checked all the LRUs due to rate limiting.
1681	 * Fallback to the current node in that case for simplicity.
 
 
 
1682	 */
1683	if (unlikely(node == MAX_NUMNODES))
1684		node = numa_node_id();
1685
1686	memcg->last_scanned_node = node;
1687	return node;
1688}
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1689#else
1690int mem_cgroup_select_victim_node(struct mem_cgroup *memcg)
1691{
1692	return 0;
1693}
 
 
 
 
 
1694#endif
1695
1696static int mem_cgroup_soft_reclaim(struct mem_cgroup *root_memcg,
1697				   pg_data_t *pgdat,
1698				   gfp_t gfp_mask,
1699				   unsigned long *total_scanned)
 
 
 
 
 
 
 
 
 
 
 
 
 
1700{
1701	struct mem_cgroup *victim = NULL;
1702	int total = 0;
1703	int loop = 0;
 
 
 
1704	unsigned long excess;
1705	unsigned long nr_scanned;
1706	struct mem_cgroup_reclaim_cookie reclaim = {
1707		.pgdat = pgdat,
1708		.priority = 0,
1709	};
1710
1711	excess = soft_limit_excess(root_memcg);
 
 
 
 
1712
1713	while (1) {
1714		victim = mem_cgroup_iter(root_memcg, victim, &reclaim);
1715		if (!victim) {
1716			loop++;
 
 
 
 
 
 
 
 
1717			if (loop >= 2) {
1718				/*
1719				 * If we have not been able to reclaim
1720				 * anything, it might because there are
1721				 * no reclaimable pages under this hierarchy
1722				 */
1723				if (!total)
 
1724					break;
 
1725				/*
1726				 * We want to do more targeted reclaim.
1727				 * excess >> 2 is not to excessive so as to
1728				 * reclaim too much, nor too less that we keep
1729				 * coming back to reclaim from this cgroup
1730				 */
1731				if (total >= (excess >> 2) ||
1732					(loop > MEM_CGROUP_MAX_RECLAIM_LOOPS))
 
1733					break;
 
1734			}
 
 
 
 
1735			continue;
1736		}
1737		total += mem_cgroup_shrink_node(victim, gfp_mask, false,
1738					pgdat, &nr_scanned);
1739		*total_scanned += nr_scanned;
1740		if (!soft_limit_excess(root_memcg))
1741			break;
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1742	}
1743	mem_cgroup_iter_break(root_memcg, victim);
1744	return total;
1745}
1746
1747#ifdef CONFIG_LOCKDEP
1748static struct lockdep_map memcg_oom_lock_dep_map = {
1749	.name = "memcg_oom_lock",
1750};
1751#endif
1752
1753static DEFINE_SPINLOCK(memcg_oom_lock);
1754
1755/*
1756 * Check OOM-Killer is already running under our hierarchy.
1757 * If someone is running, return false.
 
1758 */
1759static bool mem_cgroup_oom_trylock(struct mem_cgroup *memcg)
1760{
1761	struct mem_cgroup *iter, *failed = NULL;
 
1762
1763	spin_lock(&memcg_oom_lock);
1764
1765	for_each_mem_cgroup_tree(iter, memcg) {
1766		if (iter->oom_lock) {
1767			/*
1768			 * this subtree of our hierarchy is already locked
1769			 * so we cannot give a lock.
1770			 */
1771			failed = iter;
1772			mem_cgroup_iter_break(memcg, iter);
1773			break;
1774		} else
1775			iter->oom_lock = true;
1776	}
1777
1778	if (failed) {
1779		/*
1780		 * OK, we failed to lock the whole subtree so we have
1781		 * to clean up what we set up to the failing subtree
1782		 */
1783		for_each_mem_cgroup_tree(iter, memcg) {
1784			if (iter == failed) {
1785				mem_cgroup_iter_break(memcg, iter);
1786				break;
1787			}
1788			iter->oom_lock = false;
 
1789		}
1790	} else
1791		mutex_acquire(&memcg_oom_lock_dep_map, 0, 1, _RET_IP_);
1792
1793	spin_unlock(&memcg_oom_lock);
1794
1795	return !failed;
1796}
1797
1798static void mem_cgroup_oom_unlock(struct mem_cgroup *memcg)
 
 
 
1799{
1800	struct mem_cgroup *iter;
1801
1802	spin_lock(&memcg_oom_lock);
1803	mutex_release(&memcg_oom_lock_dep_map, 1, _RET_IP_);
1804	for_each_mem_cgroup_tree(iter, memcg)
1805		iter->oom_lock = false;
1806	spin_unlock(&memcg_oom_lock);
1807}
1808
1809static void mem_cgroup_mark_under_oom(struct mem_cgroup *memcg)
1810{
1811	struct mem_cgroup *iter;
1812
1813	spin_lock(&memcg_oom_lock);
1814	for_each_mem_cgroup_tree(iter, memcg)
1815		iter->under_oom++;
1816	spin_unlock(&memcg_oom_lock);
1817}
1818
1819static void mem_cgroup_unmark_under_oom(struct mem_cgroup *memcg)
1820{
1821	struct mem_cgroup *iter;
1822
1823	/*
1824	 * When a new child is created while the hierarchy is under oom,
1825	 * mem_cgroup_oom_lock() may not be called. Watch for underflow.
 
1826	 */
1827	spin_lock(&memcg_oom_lock);
1828	for_each_mem_cgroup_tree(iter, memcg)
1829		if (iter->under_oom > 0)
1830			iter->under_oom--;
1831	spin_unlock(&memcg_oom_lock);
1832}
1833
 
1834static DECLARE_WAIT_QUEUE_HEAD(memcg_oom_waitq);
1835
1836struct oom_wait_info {
1837	struct mem_cgroup *memcg;
1838	wait_queue_entry_t	wait;
1839};
1840
1841static int memcg_oom_wake_function(wait_queue_entry_t *wait,
1842	unsigned mode, int sync, void *arg)
1843{
1844	struct mem_cgroup *wake_memcg = (struct mem_cgroup *)arg;
1845	struct mem_cgroup *oom_wait_memcg;
1846	struct oom_wait_info *oom_wait_info;
1847
1848	oom_wait_info = container_of(wait, struct oom_wait_info, wait);
1849	oom_wait_memcg = oom_wait_info->memcg;
1850
1851	if (!mem_cgroup_is_descendant(wake_memcg, oom_wait_memcg) &&
1852	    !mem_cgroup_is_descendant(oom_wait_memcg, wake_memcg))
 
 
 
 
1853		return 0;
1854	return autoremove_wake_function(wait, mode, sync, arg);
1855}
1856
1857static void memcg_oom_recover(struct mem_cgroup *memcg)
1858{
1859	/*
1860	 * For the following lockless ->under_oom test, the only required
1861	 * guarantee is that it must see the state asserted by an OOM when
1862	 * this function is called as a result of userland actions
1863	 * triggered by the notification of the OOM.  This is trivially
1864	 * achieved by invoking mem_cgroup_mark_under_oom() before
1865	 * triggering notification.
1866	 */
1867	if (memcg && memcg->under_oom)
1868		__wake_up(&memcg_oom_waitq, TASK_NORMAL, 0, memcg);
1869}
1870
1871enum oom_status {
1872	OOM_SUCCESS,
1873	OOM_FAILED,
1874	OOM_ASYNC,
1875	OOM_SKIPPED
1876};
1877
1878static enum oom_status mem_cgroup_oom(struct mem_cgroup *memcg, gfp_t mask, int order)
1879{
1880	enum oom_status ret;
1881	bool locked;
1882
1883	if (order > PAGE_ALLOC_COSTLY_ORDER)
1884		return OOM_SKIPPED;
1885
1886	memcg_memory_event(memcg, MEMCG_OOM);
1887
1888	/*
1889	 * We are in the middle of the charge context here, so we
1890	 * don't want to block when potentially sitting on a callstack
1891	 * that holds all kinds of filesystem and mm locks.
1892	 *
1893	 * cgroup1 allows disabling the OOM killer and waiting for outside
1894	 * handling until the charge can succeed; remember the context and put
1895	 * the task to sleep at the end of the page fault when all locks are
1896	 * released.
1897	 *
1898	 * On the other hand, in-kernel OOM killer allows for an async victim
1899	 * memory reclaim (oom_reaper) and that means that we are not solely
1900	 * relying on the oom victim to make a forward progress and we can
1901	 * invoke the oom killer here.
1902	 *
1903	 * Please note that mem_cgroup_out_of_memory might fail to find a
1904	 * victim and then we have to bail out from the charge path.
1905	 */
1906	if (memcg->oom_kill_disable) {
1907		if (!current->in_user_fault)
1908			return OOM_SKIPPED;
1909		css_get(&memcg->css);
1910		current->memcg_in_oom = memcg;
1911		current->memcg_oom_gfp_mask = mask;
1912		current->memcg_oom_order = order;
1913
1914		return OOM_ASYNC;
1915	}
1916
1917	mem_cgroup_mark_under_oom(memcg);
1918
1919	locked = mem_cgroup_oom_trylock(memcg);
1920
1921	if (locked)
1922		mem_cgroup_oom_notify(memcg);
1923
1924	mem_cgroup_unmark_under_oom(memcg);
1925	if (mem_cgroup_out_of_memory(memcg, mask, order))
1926		ret = OOM_SUCCESS;
1927	else
1928		ret = OOM_FAILED;
1929
1930	if (locked)
1931		mem_cgroup_oom_unlock(memcg);
1932
1933	return ret;
1934}
1935
1936/**
1937 * mem_cgroup_oom_synchronize - complete memcg OOM handling
1938 * @handle: actually kill/wait or just clean up the OOM state
1939 *
1940 * This has to be called at the end of a page fault if the memcg OOM
1941 * handler was enabled.
1942 *
1943 * Memcg supports userspace OOM handling where failed allocations must
1944 * sleep on a waitqueue until the userspace task resolves the
1945 * situation.  Sleeping directly in the charge context with all kinds
1946 * of locks held is not a good idea, instead we remember an OOM state
1947 * in the task and mem_cgroup_oom_synchronize() has to be called at
1948 * the end of the page fault to complete the OOM handling.
1949 *
1950 * Returns %true if an ongoing memcg OOM situation was detected and
1951 * completed, %false otherwise.
1952 */
1953bool mem_cgroup_oom_synchronize(bool handle)
1954{
1955	struct mem_cgroup *memcg = current->memcg_in_oom;
1956	struct oom_wait_info owait;
1957	bool locked;
1958
1959	/* OOM is global, do not handle */
1960	if (!memcg)
1961		return false;
1962
1963	if (!handle)
1964		goto cleanup;
1965
1966	owait.memcg = memcg;
1967	owait.wait.flags = 0;
1968	owait.wait.func = memcg_oom_wake_function;
1969	owait.wait.private = current;
1970	INIT_LIST_HEAD(&owait.wait.entry);
 
 
1971
 
 
 
 
 
 
 
 
1972	prepare_to_wait(&memcg_oom_waitq, &owait.wait, TASK_KILLABLE);
1973	mem_cgroup_mark_under_oom(memcg);
1974
1975	locked = mem_cgroup_oom_trylock(memcg);
1976
1977	if (locked)
1978		mem_cgroup_oom_notify(memcg);
 
1979
1980	if (locked && !memcg->oom_kill_disable) {
1981		mem_cgroup_unmark_under_oom(memcg);
1982		finish_wait(&memcg_oom_waitq, &owait.wait);
1983		mem_cgroup_out_of_memory(memcg, current->memcg_oom_gfp_mask,
1984					 current->memcg_oom_order);
1985	} else {
1986		schedule();
1987		mem_cgroup_unmark_under_oom(memcg);
1988		finish_wait(&memcg_oom_waitq, &owait.wait);
1989	}
 
 
 
 
 
 
 
1990
1991	if (locked) {
1992		mem_cgroup_oom_unlock(memcg);
1993		/*
1994		 * There is no guarantee that an OOM-lock contender
1995		 * sees the wakeups triggered by the OOM kill
1996		 * uncharges.  Wake any sleepers explicitely.
1997		 */
1998		memcg_oom_recover(memcg);
1999	}
2000cleanup:
2001	current->memcg_in_oom = NULL;
2002	css_put(&memcg->css);
2003	return true;
2004}
2005
2006/**
2007 * mem_cgroup_get_oom_group - get a memory cgroup to clean up after OOM
2008 * @victim: task to be killed by the OOM killer
2009 * @oom_domain: memcg in case of memcg OOM, NULL in case of system-wide OOM
 
 
 
 
 
 
 
 
 
2010 *
2011 * Returns a pointer to a memory cgroup, which has to be cleaned up
2012 * by killing all belonging OOM-killable tasks.
 
 
2013 *
2014 * Caller has to call mem_cgroup_put() on the returned non-NULL memcg.
 
 
2015 */
2016struct mem_cgroup *mem_cgroup_get_oom_group(struct task_struct *victim,
2017					    struct mem_cgroup *oom_domain)
 
2018{
2019	struct mem_cgroup *oom_group = NULL;
2020	struct mem_cgroup *memcg;
 
 
2021
2022	if (!cgroup_subsys_on_dfl(memory_cgrp_subsys))
2023		return NULL;
2024
2025	if (!oom_domain)
2026		oom_domain = root_mem_cgroup;
2027
2028	rcu_read_lock();
2029
2030	memcg = mem_cgroup_from_task(victim);
2031	if (memcg == root_mem_cgroup)
2032		goto out;
2033
2034	/*
2035	 * Traverse the memory cgroup hierarchy from the victim task's
2036	 * cgroup up to the OOMing cgroup (or root) to find the
2037	 * highest-level memory cgroup with oom.group set.
2038	 */
2039	for (; memcg; memcg = parent_mem_cgroup(memcg)) {
2040		if (memcg->oom_group)
2041			oom_group = memcg;
2042
2043		if (memcg == oom_domain)
2044			break;
2045	}
2046
2047	if (oom_group)
2048		css_get(&oom_group->css);
2049out:
2050	rcu_read_unlock();
2051
2052	return oom_group;
2053}
2054
2055void mem_cgroup_print_oom_group(struct mem_cgroup *memcg)
2056{
2057	pr_info("Tasks in ");
2058	pr_cont_cgroup_path(memcg->css.cgroup);
2059	pr_cont(" are going to be killed due to memory.oom.group set\n");
2060}
2061
2062/**
2063 * lock_page_memcg - lock a page->mem_cgroup binding
2064 * @page: the page
2065 *
2066 * This function protects unlocked LRU pages from being moved to
2067 * another cgroup.
2068 *
2069 * It ensures lifetime of the returned memcg. Caller is responsible
2070 * for the lifetime of the page; __unlock_page_memcg() is available
2071 * when @page might get freed inside the locked section.
2072 */
2073struct mem_cgroup *lock_page_memcg(struct page *page)
2074{
2075	struct mem_cgroup *memcg;
2076	unsigned long flags;
2077
2078	/*
2079	 * The RCU lock is held throughout the transaction.  The fast
2080	 * path can get away without acquiring the memcg->move_lock
2081	 * because page moving starts with an RCU grace period.
2082	 *
2083	 * The RCU lock also protects the memcg from being freed when
2084	 * the page state that is going to change is the only thing
2085	 * preventing the page itself from being freed. E.g. writeback
2086	 * doesn't hold a page reference and relies on PG_writeback to
2087	 * keep off truncation, migration and so forth.
2088         */
2089	rcu_read_lock();
2090
2091	if (mem_cgroup_disabled())
2092		return NULL;
2093again:
2094	memcg = page->mem_cgroup;
2095	if (unlikely(!memcg))
2096		return NULL;
2097
2098	if (atomic_read(&memcg->moving_account) <= 0)
2099		return memcg;
2100
2101	spin_lock_irqsave(&memcg->move_lock, flags);
2102	if (memcg != page->mem_cgroup) {
2103		spin_unlock_irqrestore(&memcg->move_lock, flags);
2104		goto again;
2105	}
2106
2107	/*
2108	 * When charge migration first begins, we can have locked and
2109	 * unlocked page stat updates happening concurrently.  Track
2110	 * the task who has the lock for unlock_page_memcg().
2111	 */
2112	memcg->move_lock_task = current;
2113	memcg->move_lock_flags = flags;
2114
2115	return memcg;
2116}
2117EXPORT_SYMBOL(lock_page_memcg);
2118
2119/**
2120 * __unlock_page_memcg - unlock and unpin a memcg
2121 * @memcg: the memcg
2122 *
2123 * Unlock and unpin a memcg returned by lock_page_memcg().
2124 */
2125void __unlock_page_memcg(struct mem_cgroup *memcg)
2126{
2127	if (memcg && memcg->move_lock_task == current) {
2128		unsigned long flags = memcg->move_lock_flags;
2129
2130		memcg->move_lock_task = NULL;
2131		memcg->move_lock_flags = 0;
2132
2133		spin_unlock_irqrestore(&memcg->move_lock, flags);
2134	}
2135
 
 
 
2136	rcu_read_unlock();
 
2137}
 
2138
2139/**
2140 * unlock_page_memcg - unlock a page->mem_cgroup binding
2141 * @page: the page
2142 */
2143void unlock_page_memcg(struct page *page)
2144{
2145	__unlock_page_memcg(page->mem_cgroup);
2146}
2147EXPORT_SYMBOL(unlock_page_memcg);
2148
2149struct memcg_stock_pcp {
2150	struct mem_cgroup *cached; /* this never be root cgroup */
2151	unsigned int nr_pages;
2152	struct work_struct work;
2153	unsigned long flags;
2154#define FLUSHING_CACHED_CHARGE	0
2155};
2156static DEFINE_PER_CPU(struct memcg_stock_pcp, memcg_stock);
2157static DEFINE_MUTEX(percpu_charge_mutex);
2158
2159/**
2160 * consume_stock: Try to consume stocked charge on this cpu.
2161 * @memcg: memcg to consume from.
2162 * @nr_pages: how many pages to charge.
2163 *
2164 * The charges will only happen if @memcg matches the current cpu's memcg
2165 * stock, and at least @nr_pages are available in that stock.  Failure to
2166 * service an allocation will refill the stock.
2167 *
2168 * returns true if successful, false otherwise.
2169 */
2170static bool consume_stock(struct mem_cgroup *memcg, unsigned int nr_pages)
2171{
2172	struct memcg_stock_pcp *stock;
2173	unsigned long flags;
2174	bool ret = false;
2175
2176	if (nr_pages > MEMCG_CHARGE_BATCH)
2177		return ret;
2178
2179	local_irq_save(flags);
2180
2181	stock = this_cpu_ptr(&memcg_stock);
2182	if (memcg == stock->cached && stock->nr_pages >= nr_pages) {
2183		stock->nr_pages -= nr_pages;
2184		ret = true;
2185	}
2186
2187	local_irq_restore(flags);
2188
 
 
 
 
 
 
2189	return ret;
2190}
2191
2192/*
2193 * Returns stocks cached in percpu and reset cached information.
2194 */
2195static void drain_stock(struct memcg_stock_pcp *stock)
2196{
2197	struct mem_cgroup *old = stock->cached;
2198
2199	if (stock->nr_pages) {
2200		page_counter_uncharge(&old->memory, stock->nr_pages);
2201		if (do_memsw_account())
2202			page_counter_uncharge(&old->memsw, stock->nr_pages);
2203		css_put_many(&old->css, stock->nr_pages);
 
2204		stock->nr_pages = 0;
2205	}
2206	stock->cached = NULL;
2207}
2208
 
 
 
 
2209static void drain_local_stock(struct work_struct *dummy)
2210{
2211	struct memcg_stock_pcp *stock;
2212	unsigned long flags;
2213
2214	/*
2215	 * The only protection from memory hotplug vs. drain_stock races is
2216	 * that we always operate on local CPU stock here with IRQ disabled
2217	 */
2218	local_irq_save(flags);
2219
2220	stock = this_cpu_ptr(&memcg_stock);
2221	drain_stock(stock);
2222	clear_bit(FLUSHING_CACHED_CHARGE, &stock->flags);
2223
2224	local_irq_restore(flags);
2225}
2226
2227/*
2228 * Cache charges(val) to local per_cpu area.
2229 * This will be consumed by consume_stock() function, later.
2230 */
2231static void refill_stock(struct mem_cgroup *memcg, unsigned int nr_pages)
2232{
2233	struct memcg_stock_pcp *stock;
2234	unsigned long flags;
2235
2236	local_irq_save(flags);
2237
2238	stock = this_cpu_ptr(&memcg_stock);
2239	if (stock->cached != memcg) { /* reset if necessary */
2240		drain_stock(stock);
2241		stock->cached = memcg;
2242	}
2243	stock->nr_pages += nr_pages;
2244
2245	if (stock->nr_pages > MEMCG_CHARGE_BATCH)
2246		drain_stock(stock);
2247
2248	local_irq_restore(flags);
2249}
2250
2251/*
2252 * Drains all per-CPU charge caches for given root_memcg resp. subtree
2253 * of the hierarchy under it.
 
2254 */
2255static void drain_all_stock(struct mem_cgroup *root_memcg)
2256{
2257	int cpu, curcpu;
2258
2259	/* If someone's already draining, avoid adding running more workers. */
2260	if (!mutex_trylock(&percpu_charge_mutex))
2261		return;
2262	/*
2263	 * Notify other cpus that system-wide "drain" is running
2264	 * We do not care about races with the cpu hotplug because cpu down
2265	 * as well as workers from this path always operate on the local
2266	 * per-cpu data. CPU up doesn't touch memcg_stock at all.
2267	 */
2268	curcpu = get_cpu();
2269	for_each_online_cpu(cpu) {
2270		struct memcg_stock_pcp *stock = &per_cpu(memcg_stock, cpu);
2271		struct mem_cgroup *memcg;
2272		bool flush = false;
2273
2274		rcu_read_lock();
2275		memcg = stock->cached;
2276		if (memcg && stock->nr_pages &&
2277		    mem_cgroup_is_descendant(memcg, root_memcg))
2278			flush = true;
2279		rcu_read_unlock();
2280
2281		if (flush &&
2282		    !test_and_set_bit(FLUSHING_CACHED_CHARGE, &stock->flags)) {
2283			if (cpu == curcpu)
2284				drain_local_stock(&stock->work);
2285			else
2286				schedule_work_on(cpu, &stock->work);
2287		}
2288	}
2289	put_cpu();
2290	mutex_unlock(&percpu_charge_mutex);
2291}
2292
2293static int memcg_hotplug_cpu_dead(unsigned int cpu)
2294{
2295	struct memcg_stock_pcp *stock;
2296	struct mem_cgroup *memcg, *mi;
2297
2298	stock = &per_cpu(memcg_stock, cpu);
2299	drain_stock(stock);
2300
2301	for_each_mem_cgroup(memcg) {
2302		int i;
2303
2304		for (i = 0; i < MEMCG_NR_STAT; i++) {
2305			int nid;
2306			long x;
2307
2308			x = this_cpu_xchg(memcg->vmstats_percpu->stat[i], 0);
2309			if (x)
2310				for (mi = memcg; mi; mi = parent_mem_cgroup(mi))
2311					atomic_long_add(x, &memcg->vmstats[i]);
2312
2313			if (i >= NR_VM_NODE_STAT_ITEMS)
2314				continue;
2315
2316			for_each_node(nid) {
2317				struct mem_cgroup_per_node *pn;
2318
2319				pn = mem_cgroup_nodeinfo(memcg, nid);
2320				x = this_cpu_xchg(pn->lruvec_stat_cpu->count[i], 0);
2321				if (x)
2322					do {
2323						atomic_long_add(x, &pn->lruvec_stat[i]);
2324					} while ((pn = parent_nodeinfo(pn, nid)));
2325			}
2326		}
2327
2328		for (i = 0; i < NR_VM_EVENT_ITEMS; i++) {
2329			long x;
2330
2331			x = this_cpu_xchg(memcg->vmstats_percpu->events[i], 0);
2332			if (x)
2333				for (mi = memcg; mi; mi = parent_mem_cgroup(mi))
2334					atomic_long_add(x, &memcg->vmevents[i]);
2335		}
2336	}
2337
2338	return 0;
2339}
2340
2341static void reclaim_high(struct mem_cgroup *memcg,
2342			 unsigned int nr_pages,
2343			 gfp_t gfp_mask)
 
 
 
 
2344{
2345	do {
2346		if (page_counter_read(&memcg->memory) <= memcg->high)
2347			continue;
2348		memcg_memory_event(memcg, MEMCG_HIGH);
2349		try_to_free_mem_cgroup_pages(memcg, nr_pages, gfp_mask, true);
2350	} while ((memcg = parent_mem_cgroup(memcg)));
 
2351}
2352
2353static void high_work_func(struct work_struct *work)
 
2354{
2355	struct mem_cgroup *memcg;
2356
2357	memcg = container_of(work, struct mem_cgroup, high_work);
2358	reclaim_high(memcg, MEMCG_CHARGE_BATCH, GFP_KERNEL);
2359}
2360
2361/*
2362 * Clamp the maximum sleep time per allocation batch to 2 seconds. This is
2363 * enough to still cause a significant slowdown in most cases, while still
2364 * allowing diagnostics and tracing to proceed without becoming stuck.
2365 */
2366#define MEMCG_MAX_HIGH_DELAY_JIFFIES (2UL*HZ)
 
 
2367
2368/*
2369 * When calculating the delay, we use these either side of the exponentiation to
2370 * maintain precision and scale to a reasonable number of jiffies (see the table
2371 * below.
2372 *
2373 * - MEMCG_DELAY_PRECISION_SHIFT: Extra precision bits while translating the
2374 *   overage ratio to a delay.
2375 * - MEMCG_DELAY_SCALING_SHIFT: The number of bits to scale down down the
2376 *   proposed penalty in order to reduce to a reasonable number of jiffies, and
2377 *   to produce a reasonable delay curve.
2378 *
2379 * MEMCG_DELAY_SCALING_SHIFT just happens to be a number that produces a
2380 * reasonable delay curve compared to precision-adjusted overage, not
2381 * penalising heavily at first, but still making sure that growth beyond the
2382 * limit penalises misbehaviour cgroups by slowing them down exponentially. For
2383 * example, with a high of 100 megabytes:
2384 *
2385 *  +-------+------------------------+
2386 *  | usage | time to allocate in ms |
2387 *  +-------+------------------------+
2388 *  | 100M  |                      0 |
2389 *  | 101M  |                      6 |
2390 *  | 102M  |                     25 |
2391 *  | 103M  |                     57 |
2392 *  | 104M  |                    102 |
2393 *  | 105M  |                    159 |
2394 *  | 106M  |                    230 |
2395 *  | 107M  |                    313 |
2396 *  | 108M  |                    409 |
2397 *  | 109M  |                    518 |
2398 *  | 110M  |                    639 |
2399 *  | 111M  |                    774 |
2400 *  | 112M  |                    921 |
2401 *  | 113M  |                   1081 |
2402 *  | 114M  |                   1254 |
2403 *  | 115M  |                   1439 |
2404 *  | 116M  |                   1638 |
2405 *  | 117M  |                   1849 |
2406 *  | 118M  |                   2000 |
2407 *  | 119M  |                   2000 |
2408 *  | 120M  |                   2000 |
2409 *  +-------+------------------------+
2410 */
2411 #define MEMCG_DELAY_PRECISION_SHIFT 20
2412 #define MEMCG_DELAY_SCALING_SHIFT 14
2413
2414/*
2415 * Scheduled by try_charge() to be executed from the userland return path
2416 * and reclaims memory over the high limit.
2417 */
2418void mem_cgroup_handle_over_high(void)
2419{
2420	unsigned long usage, high, clamped_high;
2421	unsigned long pflags;
2422	unsigned long penalty_jiffies, overage;
2423	unsigned int nr_pages = current->memcg_nr_pages_over_high;
2424	struct mem_cgroup *memcg;
2425
2426	if (likely(!nr_pages))
2427		return;
 
 
 
2428
2429	memcg = get_mem_cgroup_from_mm(current->mm);
2430	reclaim_high(memcg, nr_pages, GFP_KERNEL);
2431	current->memcg_nr_pages_over_high = 0;
 
 
 
 
2432
2433	/*
2434	 * memory.high is breached and reclaim is unable to keep up. Throttle
2435	 * allocators proactively to slow down excessive growth.
2436	 *
2437	 * We use overage compared to memory.high to calculate the number of
2438	 * jiffies to sleep (penalty_jiffies). Ideally this value should be
2439	 * fairly lenient on small overages, and increasingly harsh when the
2440	 * memcg in question makes it clear that it has no intention of stopping
2441	 * its crazy behaviour, so we exponentially increase the delay based on
2442	 * overage amount.
2443	 */
2444
2445	usage = page_counter_read(&memcg->memory);
2446	high = READ_ONCE(memcg->high);
 
 
2447
2448	if (usage <= high)
2449		goto out;
 
 
 
 
 
2450
2451	/*
2452	 * Prevent division by 0 in overage calculation by acting as if it was a
2453	 * threshold of 1 page
2454	 */
2455	clamped_high = max(high, 1UL);
2456
2457	overage = div_u64((u64)(usage - high) << MEMCG_DELAY_PRECISION_SHIFT,
2458			  clamped_high);
2459
2460	penalty_jiffies = ((u64)overage * overage * HZ)
2461		>> (MEMCG_DELAY_PRECISION_SHIFT + MEMCG_DELAY_SCALING_SHIFT);
2462
2463	/*
2464	 * Factor in the task's own contribution to the overage, such that four
2465	 * N-sized allocations are throttled approximately the same as one
2466	 * 4N-sized allocation.
2467	 *
2468	 * MEMCG_CHARGE_BATCH pages is nominal, so work out how much smaller or
2469	 * larger the current charge patch is than that.
2470	 */
2471	penalty_jiffies = penalty_jiffies * nr_pages / MEMCG_CHARGE_BATCH;
2472
2473	/*
2474	 * Clamp the max delay per usermode return so as to still keep the
2475	 * application moving forwards and also permit diagnostics, albeit
2476	 * extremely slowly.
2477	 */
2478	penalty_jiffies = min(penalty_jiffies, MEMCG_MAX_HIGH_DELAY_JIFFIES);
2479
2480	/*
2481	 * Don't sleep if the amount of jiffies this memcg owes us is so low
2482	 * that it's not even worth doing, in an attempt to be nice to those who
2483	 * go only a small amount over their memory.high value and maybe haven't
2484	 * been aggressively reclaimed enough yet.
2485	 */
2486	if (penalty_jiffies <= HZ / 100)
2487		goto out;
2488
2489	/*
2490	 * If we exit early, we're guaranteed to die (since
2491	 * schedule_timeout_killable sets TASK_KILLABLE). This means we don't
2492	 * need to account for any ill-begotten jiffies to pay them off later.
2493	 */
2494	psi_memstall_enter(&pflags);
2495	schedule_timeout_killable(penalty_jiffies);
2496	psi_memstall_leave(&pflags);
2497
2498out:
2499	css_put(&memcg->css);
2500}
2501
2502static int try_charge(struct mem_cgroup *memcg, gfp_t gfp_mask,
2503		      unsigned int nr_pages)
2504{
2505	unsigned int batch = max(MEMCG_CHARGE_BATCH, nr_pages);
2506	int nr_retries = MEM_CGROUP_RECLAIM_RETRIES;
2507	struct mem_cgroup *mem_over_limit;
2508	struct page_counter *counter;
2509	unsigned long nr_reclaimed;
2510	bool may_swap = true;
2511	bool drained = false;
2512	enum oom_status oom_status;
2513
2514	if (mem_cgroup_is_root(memcg))
2515		return 0;
2516retry:
2517	if (consume_stock(memcg, nr_pages))
2518		return 0;
2519
2520	if (!do_memsw_account() ||
2521	    page_counter_try_charge(&memcg->memsw, batch, &counter)) {
2522		if (page_counter_try_charge(&memcg->memory, batch, &counter))
2523			goto done_restock;
2524		if (do_memsw_account())
2525			page_counter_uncharge(&memcg->memsw, batch);
2526		mem_over_limit = mem_cgroup_from_counter(counter, memory);
2527	} else {
2528		mem_over_limit = mem_cgroup_from_counter(counter, memsw);
2529		may_swap = false;
2530	}
2531
2532	if (batch > nr_pages) {
2533		batch = nr_pages;
2534		goto retry;
2535	}
2536
 
 
 
 
 
 
 
 
 
 
 
 
2537	/*
2538	 * Memcg doesn't have a dedicated reserve for atomic
2539	 * allocations. But like the global atomic pool, we need to
2540	 * put the burden of reclaim on regular allocation requests
2541	 * and let these go through as privileged allocations.
 
2542	 */
2543	if (gfp_mask & __GFP_ATOMIC)
2544		goto force;
2545
2546	/*
2547	 * Unlike in global OOM situations, memcg is not in a physical
2548	 * memory shortage.  Allow dying and OOM-killed tasks to
2549	 * bypass the last charges so that they can exit quickly and
2550	 * free their memory.
2551	 */
2552	if (unlikely(should_force_charge()))
2553		goto force;
2554
2555	/*
2556	 * Prevent unbounded recursion when reclaim operations need to
2557	 * allocate memory. This might exceed the limits temporarily,
2558	 * but we prefer facilitating memory reclaim and getting back
2559	 * under the limit over triggering OOM kills in these cases.
2560	 */
2561	if (unlikely(current->flags & PF_MEMALLOC))
2562		goto force;
2563
2564	if (unlikely(task_in_memcg_oom(current)))
2565		goto nomem;
2566
2567	if (!gfpflags_allow_blocking(gfp_mask))
2568		goto nomem;
2569
2570	memcg_memory_event(mem_over_limit, MEMCG_MAX);
2571
2572	nr_reclaimed = try_to_free_mem_cgroup_pages(mem_over_limit, nr_pages,
2573						    gfp_mask, may_swap);
2574
 
 
2575	if (mem_cgroup_margin(mem_over_limit) >= nr_pages)
2576		goto retry;
2577
2578	if (!drained) {
2579		drain_all_stock(mem_over_limit);
2580		drained = true;
2581		goto retry;
2582	}
2583
2584	if (gfp_mask & __GFP_NORETRY)
2585		goto nomem;
2586	/*
2587	 * Even though the limit is exceeded at this point, reclaim
2588	 * may have been able to free some pages.  Retry the charge
2589	 * before killing the task.
2590	 *
2591	 * Only for regular pages, though: huge pages are rather
2592	 * unlikely to succeed so close to the limit, and we fall back
2593	 * to regular pages anyway in case of failure.
2594	 */
2595	if (nr_reclaimed && nr_pages <= (1 << PAGE_ALLOC_COSTLY_ORDER))
2596		goto retry;
 
2597	/*
2598	 * At task move, charge accounts can be doubly counted. So, it's
2599	 * better to wait until the end of task_move if something is going on.
2600	 */
2601	if (mem_cgroup_wait_acct_move(mem_over_limit))
2602		goto retry;
2603
2604	if (nr_retries--)
2605		goto retry;
 
 
 
 
2606
2607	if (gfp_mask & __GFP_RETRY_MAYFAIL)
2608		goto nomem;
2609
2610	if (gfp_mask & __GFP_NOFAIL)
2611		goto force;
2612
2613	if (fatal_signal_pending(current))
2614		goto force;
 
 
 
 
 
 
 
 
 
2615
2616	/*
2617	 * keep retrying as long as the memcg oom killer is able to make
2618	 * a forward progress or bypass the charge if the oom killer
2619	 * couldn't make any progress.
 
 
 
 
 
 
 
 
 
 
2620	 */
2621	oom_status = mem_cgroup_oom(mem_over_limit, gfp_mask,
2622		       get_order(nr_pages * PAGE_SIZE));
2623	switch (oom_status) {
2624	case OOM_SUCCESS:
2625		nr_retries = MEM_CGROUP_RECLAIM_RETRIES;
2626		goto retry;
2627	case OOM_FAILED:
2628		goto force;
2629	default:
2630		goto nomem;
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
2631	}
2632nomem:
2633	if (!(gfp_mask & __GFP_NOFAIL))
2634		return -ENOMEM;
2635force:
2636	/*
2637	 * The allocation either can't fail or will lead to more memory
2638	 * being freed very soon.  Allow memory usage go over the limit
2639	 * temporarily by force charging it.
2640	 */
2641	page_counter_charge(&memcg->memory, nr_pages);
2642	if (do_memsw_account())
2643		page_counter_charge(&memcg->memsw, nr_pages);
2644	css_get_many(&memcg->css, nr_pages);
2645
2646	return 0;
 
 
 
 
 
 
 
2647
2648done_restock:
2649	css_get_many(&memcg->css, batch);
2650	if (batch > nr_pages)
2651		refill_stock(memcg, batch - nr_pages);
 
2652
2653	/*
2654	 * If the hierarchy is above the normal consumption range, schedule
2655	 * reclaim on returning to userland.  We can perform reclaim here
2656	 * if __GFP_RECLAIM but let's always punt for simplicity and so that
2657	 * GFP_KERNEL can consistently be used during reclaim.  @memcg is
2658	 * not recorded as it most likely matches current's and won't
2659	 * change in the meantime.  As high limit is checked again before
2660	 * reclaim, the cost of mismatch is negligible.
2661	 */
2662	do {
2663		if (page_counter_read(&memcg->memory) > memcg->high) {
2664			/* Don't bother a random interrupted task */
2665			if (in_interrupt()) {
2666				schedule_work(&memcg->high_work);
2667				break;
 
2668			}
2669			current->memcg_nr_pages_over_high += batch;
2670			set_notify_resume(current);
2671			break;
 
 
 
2672		}
2673	} while ((memcg = parent_mem_cgroup(memcg)));
2674
 
 
 
 
 
2675	return 0;
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
2676}
2677
2678static void cancel_charge(struct mem_cgroup *memcg, unsigned int nr_pages)
 
 
 
 
 
 
2679{
2680	if (mem_cgroup_is_root(memcg))
2681		return;
2682
2683	page_counter_uncharge(&memcg->memory, nr_pages);
2684	if (do_memsw_account())
2685		page_counter_uncharge(&memcg->memsw, nr_pages);
2686
2687	css_put_many(&memcg->css, nr_pages);
 
 
2688}
2689
2690static void lock_page_lru(struct page *page, int *isolated)
2691{
2692	pg_data_t *pgdat = page_pgdat(page);
 
 
 
2693
2694	spin_lock_irq(&pgdat->lru_lock);
2695	if (PageLRU(page)) {
2696		struct lruvec *lruvec;
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
2697
2698		lruvec = mem_cgroup_page_lruvec(page, pgdat);
2699		ClearPageLRU(page);
2700		del_page_from_lru_list(page, lruvec, page_lru(page));
2701		*isolated = 1;
2702	} else
2703		*isolated = 0;
 
 
2704}
2705
2706static void unlock_page_lru(struct page *page, int isolated)
 
 
 
 
 
 
 
 
2707{
2708	pg_data_t *pgdat = page_pgdat(page);
 
 
 
 
 
 
 
 
 
 
2709
2710	if (isolated) {
2711		struct lruvec *lruvec;
 
 
 
2712
2713		lruvec = mem_cgroup_page_lruvec(page, pgdat);
2714		VM_BUG_ON_PAGE(PageLRU(page), page);
2715		SetPageLRU(page);
2716		add_page_to_lru_list(page, lruvec, page_lru(page));
 
 
 
 
2717	}
2718	spin_unlock_irq(&pgdat->lru_lock);
 
2719}
 
2720
2721static void commit_charge(struct page *page, struct mem_cgroup *memcg,
2722			  bool lrucare)
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
2723{
2724	int isolated;
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
2725
2726	VM_BUG_ON_PAGE(page->mem_cgroup, page);
 
 
 
 
2727
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
2728	/*
2729	 * In some cases, SwapCache and FUSE(splice_buf->radixtree), the page
2730	 * may already be on some other mem_cgroup's LRU.  Take care of it.
 
 
 
2731	 */
2732	if (lrucare)
2733		lock_page_lru(page, &isolated);
2734
 
2735	/*
2736	 * Nobody should be changing or seriously looking at
2737	 * page->mem_cgroup at this point:
2738	 *
2739	 * - the page is uncharged
2740	 *
2741	 * - the page is off-LRU
2742	 *
2743	 * - an anonymous fault has exclusive page access, except for
2744	 *   a locked page table
2745	 *
2746	 * - a page cache insertion, a swapin fault, or a migration
2747	 *   have the page locked
2748	 */
2749	page->mem_cgroup = memcg;
 
 
 
 
2750
2751	if (lrucare)
2752		unlock_page_lru(page, isolated);
2753}
2754
2755#ifdef CONFIG_MEMCG_KMEM
2756static int memcg_alloc_cache_id(void)
 
 
2757{
2758	int id, size;
2759	int err;
 
 
 
 
2760
2761	id = ida_simple_get(&memcg_cache_ida,
2762			    0, MEMCG_CACHES_MAX_SIZE, GFP_KERNEL);
2763	if (id < 0)
2764		return id;
2765
2766	if (id < memcg_nr_cache_ids)
2767		return id;
 
 
 
2768
2769	/*
2770	 * There's no space for the new id in memcg_caches arrays,
2771	 * so we have to grow them.
2772	 */
2773	down_write(&memcg_cache_ids_sem);
2774
2775	size = 2 * (id + 1);
2776	if (size < MEMCG_CACHES_MIN_SIZE)
2777		size = MEMCG_CACHES_MIN_SIZE;
2778	else if (size > MEMCG_CACHES_MAX_SIZE)
2779		size = MEMCG_CACHES_MAX_SIZE;
2780
2781	err = memcg_update_all_caches(size);
2782	if (!err)
2783		err = memcg_update_all_list_lrus(size);
2784	if (!err)
2785		memcg_nr_cache_ids = size;
2786
2787	up_write(&memcg_cache_ids_sem);
 
 
2788
2789	if (err) {
2790		ida_simple_remove(&memcg_cache_ida, id);
2791		return err;
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
2792	}
2793	return id;
 
 
 
 
 
 
 
 
 
2794}
2795
2796static void memcg_free_cache_id(int id)
 
2797{
2798	ida_simple_remove(&memcg_cache_ida, id);
 
 
 
 
 
 
 
 
 
 
 
 
 
 
2799}
2800
2801struct memcg_kmem_cache_create_work {
2802	struct mem_cgroup *memcg;
2803	struct kmem_cache *cachep;
2804	struct work_struct work;
2805};
 
 
 
 
 
 
 
 
 
 
 
 
 
 
2806
2807static void memcg_kmem_cache_create_func(struct work_struct *w)
 
2808{
2809	struct memcg_kmem_cache_create_work *cw =
2810		container_of(w, struct memcg_kmem_cache_create_work, work);
2811	struct mem_cgroup *memcg = cw->memcg;
2812	struct kmem_cache *cachep = cw->cachep;
2813
2814	memcg_create_kmem_cache(memcg, cachep);
 
 
 
 
 
 
2815
2816	css_put(&memcg->css);
2817	kfree(cw);
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
2818}
2819
2820/*
2821 * Enqueue the creation of a per-memcg kmem_cache.
2822 */
2823static void memcg_schedule_kmem_cache_create(struct mem_cgroup *memcg,
2824					       struct kmem_cache *cachep)
 
 
 
 
2825{
2826	struct memcg_kmem_cache_create_work *cw;
 
2827
2828	if (!css_tryget_online(&memcg->css))
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
2829		return;
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
2830
2831	cw = kmalloc(sizeof(*cw), GFP_NOWAIT | __GFP_NOWARN);
2832	if (!cw)
2833		return;
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
2834
2835	cw->memcg = memcg;
2836	cw->cachep = cachep;
2837	INIT_WORK(&cw->work, memcg_kmem_cache_create_func);
 
 
2838
2839	queue_work(memcg_kmem_cache_wq, &cw->work);
 
 
 
 
 
 
2840}
2841
2842static inline bool memcg_kmem_bypass(void)
 
 
2843{
2844	if (in_interrupt() || !current->mm || (current->flags & PF_KTHREAD))
2845		return true;
2846	return false;
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
2847}
2848
2849/**
2850 * memcg_kmem_get_cache: select the correct per-memcg cache for allocation
2851 * @cachep: the original global kmem cache
2852 *
2853 * Return the kmem_cache we're supposed to use for a slab allocation.
2854 * We try to use the current memcg's version of the cache.
2855 *
2856 * If the cache does not exist yet, if we are the first user of it, we
2857 * create it asynchronously in a workqueue and let the current allocation
2858 * go through with the original cache.
2859 *
2860 * This function takes a reference to the cache it returns to assure it
2861 * won't get destroyed while we are working with it. Once the caller is
2862 * done with it, memcg_kmem_put_cache() must be called to release the
2863 * reference.
2864 */
2865struct kmem_cache *memcg_kmem_get_cache(struct kmem_cache *cachep)
 
2866{
2867	struct mem_cgroup *memcg;
2868	struct kmem_cache *memcg_cachep;
2869	struct memcg_cache_array *arr;
2870	int kmemcg_id;
 
 
2871
2872	VM_BUG_ON(!is_root_cache(cachep));
 
2873
2874	if (memcg_kmem_bypass())
2875		return cachep;
 
 
 
 
 
 
 
 
2876
2877	rcu_read_lock();
2878
2879	if (unlikely(current->active_memcg))
2880		memcg = current->active_memcg;
2881	else
2882		memcg = mem_cgroup_from_task(current);
2883
2884	if (!memcg || memcg == root_mem_cgroup)
2885		goto out_unlock;
2886
2887	kmemcg_id = READ_ONCE(memcg->kmemcg_id);
2888	if (kmemcg_id < 0)
2889		goto out_unlock;
 
 
 
 
 
 
 
 
 
 
 
 
 
 
2890
2891	arr = rcu_dereference(cachep->memcg_params.memcg_caches);
2892
 
2893	/*
2894	 * Make sure we will access the up-to-date value. The code updating
2895	 * memcg_caches issues a write barrier to match the data dependency
2896	 * barrier inside READ_ONCE() (see memcg_create_kmem_cache()).
 
2897	 */
2898	memcg_cachep = READ_ONCE(arr->entries[kmemcg_id]);
2899
 
2900	/*
2901	 * If we are in a safe context (can wait, and not in interrupt
2902	 * context), we could be be predictable and return right away.
2903	 * This would guarantee that the allocation being performed
2904	 * already belongs in the new cache.
2905	 *
2906	 * However, there are some clashes that can arrive from locking.
2907	 * For instance, because we acquire the slab_mutex while doing
2908	 * memcg_create_kmem_cache, this means no further allocation
2909	 * could happen with the slab_mutex held. So it's better to
2910	 * defer everything.
2911	 *
2912	 * If the memcg is dying or memcg_cache is about to be released,
2913	 * don't bother creating new kmem_caches. Because memcg_cachep
2914	 * is ZEROed as the fist step of kmem offlining, we don't need
2915	 * percpu_ref_tryget_live() here. css_tryget_online() check in
2916	 * memcg_schedule_kmem_cache_create() will prevent us from
2917	 * creation of a new kmem_cache.
2918	 */
2919	if (unlikely(!memcg_cachep))
2920		memcg_schedule_kmem_cache_create(memcg, cachep);
2921	else if (percpu_ref_tryget(&memcg_cachep->memcg_params.refcnt))
2922		cachep = memcg_cachep;
2923out_unlock:
2924	rcu_read_unlock();
2925	return cachep;
2926}
2927
2928/**
2929 * memcg_kmem_put_cache: drop reference taken by memcg_kmem_get_cache
2930 * @cachep: the cache returned by memcg_kmem_get_cache
2931 */
2932void memcg_kmem_put_cache(struct kmem_cache *cachep)
2933{
2934	if (!is_root_cache(cachep))
2935		percpu_ref_put(&cachep->memcg_params.refcnt);
 
 
 
 
2936}
2937
2938/**
2939 * __memcg_kmem_charge_memcg: charge a kmem page
2940 * @page: page to charge
2941 * @gfp: reclaim mode
2942 * @order: allocation order
2943 * @memcg: memory cgroup to charge
2944 *
2945 * Returns 0 on success, an error code on failure.
2946 */
2947int __memcg_kmem_charge_memcg(struct page *page, gfp_t gfp, int order,
2948			    struct mem_cgroup *memcg)
2949{
2950	unsigned int nr_pages = 1 << order;
2951	struct page_counter *counter;
2952	int ret;
 
2953
2954	ret = try_charge(memcg, gfp, nr_pages);
2955	if (ret)
2956		return ret;
 
 
 
 
2957
2958	if (!cgroup_subsys_on_dfl(memory_cgrp_subsys) &&
2959	    !page_counter_try_charge(&memcg->kmem, nr_pages, &counter)) {
2960
2961		/*
2962		 * Enforce __GFP_NOFAIL allocation because callers are not
2963		 * prepared to see failures and likely do not have any failure
2964		 * handling code.
2965		 */
2966		if (gfp & __GFP_NOFAIL) {
2967			page_counter_charge(&memcg->kmem, nr_pages);
2968			return 0;
2969		}
2970		cancel_charge(memcg, nr_pages);
2971		return -ENOMEM;
2972	}
2973	return 0;
2974}
2975
2976/**
2977 * __memcg_kmem_charge: charge a kmem page to the current memory cgroup
2978 * @page: page to charge
2979 * @gfp: reclaim mode
2980 * @order: allocation order
2981 *
2982 * Returns 0 on success, an error code on failure.
2983 */
2984int __memcg_kmem_charge(struct page *page, gfp_t gfp, int order)
2985{
2986	struct mem_cgroup *memcg;
2987	int ret = 0;
 
 
2988
2989	if (memcg_kmem_bypass())
2990		return 0;
 
2991
2992	memcg = get_mem_cgroup_from_current();
2993	if (!mem_cgroup_is_root(memcg)) {
2994		ret = __memcg_kmem_charge_memcg(page, gfp, order, memcg);
2995		if (!ret) {
2996			page->mem_cgroup = memcg;
2997			__SetPageKmemcg(page);
2998		}
2999	}
3000	css_put(&memcg->css);
3001	return ret;
 
 
 
 
 
3002}
3003
3004/**
3005 * __memcg_kmem_uncharge_memcg: uncharge a kmem page
3006 * @memcg: memcg to uncharge
3007 * @nr_pages: number of pages to uncharge
3008 */
3009void __memcg_kmem_uncharge_memcg(struct mem_cgroup *memcg,
3010				 unsigned int nr_pages)
3011{
3012	if (!cgroup_subsys_on_dfl(memory_cgrp_subsys))
3013		page_counter_uncharge(&memcg->kmem, nr_pages);
3014
3015	page_counter_uncharge(&memcg->memory, nr_pages);
3016	if (do_memsw_account())
3017		page_counter_uncharge(&memcg->memsw, nr_pages);
3018}
3019/**
3020 * __memcg_kmem_uncharge: uncharge a kmem page
3021 * @page: page to uncharge
3022 * @order: allocation order
3023 */
3024void __memcg_kmem_uncharge(struct page *page, int order)
 
3025{
3026	struct mem_cgroup *memcg = page->mem_cgroup;
3027	unsigned int nr_pages = 1 << order;
3028
3029	if (!memcg)
3030		return;
3031
3032	VM_BUG_ON_PAGE(mem_cgroup_is_root(memcg), page);
3033	__memcg_kmem_uncharge_memcg(memcg, nr_pages);
3034	page->mem_cgroup = NULL;
3035
3036	/* slab pages do not have PageKmemcg flag set */
3037	if (PageKmemcg(page))
3038		__ClearPageKmemcg(page);
3039
3040	css_put_many(&memcg->css, nr_pages);
 
3041}
3042#endif /* CONFIG_MEMCG_KMEM */
3043
3044#ifdef CONFIG_TRANSPARENT_HUGEPAGE
3045
 
3046/*
3047 * Because tail pages are not marked as "used", set it. We're under
3048 * pgdat->lru_lock and migration entries setup in all page mappings.
3049 */
3050void mem_cgroup_split_huge_fixup(struct page *head)
3051{
3052	int i;
 
3053
3054	if (mem_cgroup_disabled())
3055		return;
3056
3057	for (i = 1; i < HPAGE_PMD_NR; i++)
3058		head[i].mem_cgroup = head->mem_cgroup;
3059
3060	__mod_memcg_state(head->mem_cgroup, MEMCG_RSS_HUGE, -HPAGE_PMD_NR);
 
 
 
 
 
 
 
 
 
 
3061}
3062#endif /* CONFIG_TRANSPARENT_HUGEPAGE */
3063
3064#ifdef CONFIG_MEMCG_SWAP
3065/**
3066 * mem_cgroup_move_swap_account - move swap charge and swap_cgroup's record.
3067 * @entry: swap entry to be moved
3068 * @from:  mem_cgroup which the entry is moved from
3069 * @to:  mem_cgroup which the entry is moved to
 
3070 *
3071 * It succeeds only when the swap_cgroup's record for this entry is the same
3072 * as the mem_cgroup's id of @from.
3073 *
3074 * Returns 0 on success, -EINVAL on failure.
3075 *
3076 * The caller must have charged to @to, IOW, called page_counter_charge() about
3077 * both res and memsw, and called css_get().
3078 */
3079static int mem_cgroup_move_swap_account(swp_entry_t entry,
3080				struct mem_cgroup *from, struct mem_cgroup *to)
3081{
3082	unsigned short old_id, new_id;
3083
3084	old_id = mem_cgroup_id(from);
3085	new_id = mem_cgroup_id(to);
3086
3087	if (swap_cgroup_cmpxchg(entry, old_id, new_id) == old_id) {
3088		mod_memcg_state(from, MEMCG_SWAP, -1);
3089		mod_memcg_state(to, MEMCG_SWAP, 1);
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
3090		return 0;
3091	}
3092	return -EINVAL;
3093}
3094#else
3095static inline int mem_cgroup_move_swap_account(swp_entry_t entry,
3096				struct mem_cgroup *from, struct mem_cgroup *to)
3097{
3098	return -EINVAL;
3099}
3100#endif
3101
3102static DEFINE_MUTEX(memcg_max_mutex);
 
 
 
 
 
 
 
 
 
 
 
 
3103
3104static int mem_cgroup_resize_max(struct mem_cgroup *memcg,
3105				 unsigned long max, bool memsw)
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
3106{
3107	bool enlarge = false;
3108	bool drained = false;
3109	int ret;
3110	bool limits_invariant;
3111	struct page_counter *counter = memsw ? &memcg->memsw : &memcg->memory;
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
3112
3113	do {
 
3114		if (signal_pending(current)) {
3115			ret = -EINTR;
3116			break;
3117		}
3118
3119		mutex_lock(&memcg_max_mutex);
3120		/*
3121		 * Make sure that the new limit (memsw or memory limit) doesn't
3122		 * break our basic invariant rule memory.max <= memsw.max.
 
3123		 */
3124		limits_invariant = memsw ? max >= memcg->memory.max :
3125					   max <= memcg->memsw.max;
3126		if (!limits_invariant) {
3127			mutex_unlock(&memcg_max_mutex);
3128			ret = -EINVAL;
 
3129			break;
3130		}
3131		if (max > counter->max)
3132			enlarge = true;
3133		ret = page_counter_set_max(counter, max);
3134		mutex_unlock(&memcg_max_mutex);
 
 
 
 
 
 
 
 
 
3135
3136		if (!ret)
3137			break;
3138
3139		if (!drained) {
3140			drain_all_stock(memcg);
3141			drained = true;
3142			continue;
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
3143		}
 
3144
3145		if (!try_to_free_mem_cgroup_pages(memcg, 1,
3146					GFP_KERNEL, !memsw)) {
3147			ret = -EBUSY;
3148			break;
3149		}
3150	} while (true);
3151
 
 
 
 
 
 
 
 
 
 
 
3152	if (!ret && enlarge)
3153		memcg_oom_recover(memcg);
3154
3155	return ret;
3156}
3157
3158unsigned long mem_cgroup_soft_limit_reclaim(pg_data_t *pgdat, int order,
3159					    gfp_t gfp_mask,
3160					    unsigned long *total_scanned)
3161{
3162	unsigned long nr_reclaimed = 0;
3163	struct mem_cgroup_per_node *mz, *next_mz = NULL;
3164	unsigned long reclaimed;
3165	int loop = 0;
3166	struct mem_cgroup_tree_per_node *mctz;
3167	unsigned long excess;
3168	unsigned long nr_scanned;
3169
3170	if (order > 0)
3171		return 0;
3172
3173	mctz = soft_limit_tree_node(pgdat->node_id);
3174
3175	/*
3176	 * Do not even bother to check the largest node if the root
3177	 * is empty. Do it lockless to prevent lock bouncing. Races
3178	 * are acceptable as soft limit is best effort anyway.
3179	 */
3180	if (!mctz || RB_EMPTY_ROOT(&mctz->rb_root))
3181		return 0;
3182
3183	/*
3184	 * This loop can run a while, specially if mem_cgroup's continuously
3185	 * keep exceeding their soft limit and putting the system under
3186	 * pressure
3187	 */
3188	do {
3189		if (next_mz)
3190			mz = next_mz;
3191		else
3192			mz = mem_cgroup_largest_soft_limit_node(mctz);
3193		if (!mz)
3194			break;
3195
3196		nr_scanned = 0;
3197		reclaimed = mem_cgroup_soft_reclaim(mz->memcg, pgdat,
3198						    gfp_mask, &nr_scanned);
 
 
3199		nr_reclaimed += reclaimed;
3200		*total_scanned += nr_scanned;
3201		spin_lock_irq(&mctz->lock);
3202		__mem_cgroup_remove_exceeded(mz, mctz);
3203
3204		/*
3205		 * If we failed to reclaim anything from this memory cgroup
3206		 * it is time to move on to the next cgroup
3207		 */
3208		next_mz = NULL;
3209		if (!reclaimed)
3210			next_mz = __mem_cgroup_largest_soft_limit_node(mctz);
3211
3212		excess = soft_limit_excess(mz->memcg);
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
3213		/*
3214		 * One school of thought says that we should not add
3215		 * back the node to the tree if reclaim returns 0.
3216		 * But our reclaim could return 0, simply because due
3217		 * to priority we are exposing a smaller subset of
3218		 * memory to reclaim from. Consider this as a longer
3219		 * term TODO.
3220		 */
3221		/* If excess == 0, no tree ops */
3222		__mem_cgroup_insert_exceeded(mz, mctz, excess);
3223		spin_unlock_irq(&mctz->lock);
3224		css_put(&mz->memcg->css);
3225		loop++;
3226		/*
3227		 * Could not reclaim anything and there are no more
3228		 * mem cgroups to try or we seem to be looping without
3229		 * reclaiming anything.
3230		 */
3231		if (!nr_reclaimed &&
3232			(next_mz == NULL ||
3233			loop > MEM_CGROUP_MAX_SOFT_LIMIT_RECLAIM_LOOPS))
3234			break;
3235	} while (!nr_reclaimed);
3236	if (next_mz)
3237		css_put(&next_mz->memcg->css);
3238	return nr_reclaimed;
3239}
3240
3241/*
3242 * Test whether @memcg has children, dead or alive.  Note that this
3243 * function doesn't care whether @memcg has use_hierarchy enabled and
3244 * returns %true if there are child csses according to the cgroup
3245 * hierarchy.  Testing use_hierarchy is the caller's responsiblity.
3246 */
3247static inline bool memcg_has_children(struct mem_cgroup *memcg)
 
3248{
3249	bool ret;
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
3250
3251	rcu_read_lock();
3252	ret = css_next_child(NULL, &memcg->css);
3253	rcu_read_unlock();
 
 
 
 
 
 
 
3254	return ret;
3255}
3256
3257/*
3258 * Reclaims as many pages from the given memcg as possible.
3259 *
3260 * Caller is responsible for holding css reference for memcg.
3261 */
3262static int mem_cgroup_force_empty(struct mem_cgroup *memcg)
3263{
 
 
3264	int nr_retries = MEM_CGROUP_RECLAIM_RETRIES;
 
3265
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
3266	/* we call try-to-free pages for make this cgroup empty */
3267	lru_add_drain_all();
3268
3269	drain_all_stock(memcg);
3270
3271	/* try to free all pages in this cgroup */
3272	while (nr_retries && page_counter_read(&memcg->memory)) {
 
3273		int progress;
3274
3275		if (signal_pending(current))
3276			return -EINTR;
3277
3278		progress = try_to_free_mem_cgroup_pages(memcg, 1,
3279							GFP_KERNEL, true);
 
3280		if (!progress) {
3281			nr_retries--;
3282			/* maybe some writeback is necessary */
3283			congestion_wait(BLK_RW_ASYNC, HZ/10);
3284		}
3285
3286	}
3287
3288	return 0;
 
3289}
3290
3291static ssize_t mem_cgroup_force_empty_write(struct kernfs_open_file *of,
3292					    char *buf, size_t nbytes,
3293					    loff_t off)
3294{
3295	struct mem_cgroup *memcg = mem_cgroup_from_css(of_css(of));
 
3296
3297	if (mem_cgroup_is_root(memcg))
3298		return -EINVAL;
3299	return mem_cgroup_force_empty(memcg) ?: nbytes;
3300}
3301
3302static u64 mem_cgroup_hierarchy_read(struct cgroup_subsys_state *css,
3303				     struct cftype *cft)
3304{
3305	return mem_cgroup_from_css(css)->use_hierarchy;
3306}
3307
3308static int mem_cgroup_hierarchy_write(struct cgroup_subsys_state *css,
3309				      struct cftype *cft, u64 val)
3310{
3311	int retval = 0;
3312	struct mem_cgroup *memcg = mem_cgroup_from_css(css);
3313	struct mem_cgroup *parent_memcg = mem_cgroup_from_css(memcg->css.parent);
 
3314
3315	if (memcg->use_hierarchy == val)
3316		return 0;
3317
 
3318	/*
3319	 * If parent's use_hierarchy is set, we can't make any modifications
3320	 * in the child subtrees. If it is unset, then the change can
3321	 * occur, provided the current cgroup has no children.
3322	 *
3323	 * For the root cgroup, parent_mem is NULL, we allow value to be
3324	 * set if there are no children.
3325	 */
3326	if ((!parent_memcg || !parent_memcg->use_hierarchy) &&
3327				(val == 1 || val == 0)) {
3328		if (!memcg_has_children(memcg))
3329			memcg->use_hierarchy = val;
3330		else
3331			retval = -EBUSY;
3332	} else
3333		retval = -EINVAL;
 
3334
3335	return retval;
3336}
3337
3338static unsigned long mem_cgroup_usage(struct mem_cgroup *memcg, bool swap)
3339{
3340	unsigned long val;
3341
3342	if (mem_cgroup_is_root(memcg)) {
3343		val = memcg_page_state(memcg, MEMCG_CACHE) +
3344			memcg_page_state(memcg, MEMCG_RSS);
3345		if (swap)
3346			val += memcg_page_state(memcg, MEMCG_SWAP);
3347	} else {
3348		if (!swap)
3349			val = page_counter_read(&memcg->memory);
3350		else
3351			val = page_counter_read(&memcg->memsw);
3352	}
3353	return val;
3354}
3355
3356enum {
3357	RES_USAGE,
3358	RES_LIMIT,
3359	RES_MAX_USAGE,
3360	RES_FAILCNT,
3361	RES_SOFT_LIMIT,
3362};
3363
3364static u64 mem_cgroup_read_u64(struct cgroup_subsys_state *css,
3365			       struct cftype *cft)
3366{
3367	struct mem_cgroup *memcg = mem_cgroup_from_css(css);
3368	struct page_counter *counter;
3369
3370	switch (MEMFILE_TYPE(cft->private)) {
3371	case _MEM:
3372		counter = &memcg->memory;
3373		break;
3374	case _MEMSWAP:
3375		counter = &memcg->memsw;
3376		break;
3377	case _KMEM:
3378		counter = &memcg->kmem;
3379		break;
3380	case _TCP:
3381		counter = &memcg->tcpmem;
3382		break;
3383	default:
3384		BUG();
3385	}
3386
3387	switch (MEMFILE_ATTR(cft->private)) {
3388	case RES_USAGE:
3389		if (counter == &memcg->memory)
3390			return (u64)mem_cgroup_usage(memcg, false) * PAGE_SIZE;
3391		if (counter == &memcg->memsw)
3392			return (u64)mem_cgroup_usage(memcg, true) * PAGE_SIZE;
3393		return (u64)page_counter_read(counter) * PAGE_SIZE;
3394	case RES_LIMIT:
3395		return (u64)counter->max * PAGE_SIZE;
3396	case RES_MAX_USAGE:
3397		return (u64)counter->watermark * PAGE_SIZE;
3398	case RES_FAILCNT:
3399		return counter->failcnt;
3400	case RES_SOFT_LIMIT:
3401		return (u64)memcg->soft_limit * PAGE_SIZE;
3402	default:
3403		BUG();
3404	}
3405}
3406
3407static void memcg_flush_percpu_vmstats(struct mem_cgroup *memcg, bool slab_only)
3408{
3409	unsigned long stat[MEMCG_NR_STAT];
3410	struct mem_cgroup *mi;
3411	int node, cpu, i;
3412	int min_idx, max_idx;
3413
3414	if (slab_only) {
3415		min_idx = NR_SLAB_RECLAIMABLE;
3416		max_idx = NR_SLAB_UNRECLAIMABLE;
3417	} else {
3418		min_idx = 0;
3419		max_idx = MEMCG_NR_STAT;
3420	}
3421
3422	for (i = min_idx; i < max_idx; i++)
3423		stat[i] = 0;
3424
3425	for_each_online_cpu(cpu)
3426		for (i = min_idx; i < max_idx; i++)
3427			stat[i] += per_cpu(memcg->vmstats_percpu->stat[i], cpu);
3428
3429	for (mi = memcg; mi; mi = parent_mem_cgroup(mi))
3430		for (i = min_idx; i < max_idx; i++)
3431			atomic_long_add(stat[i], &mi->vmstats[i]);
3432
3433	if (!slab_only)
3434		max_idx = NR_VM_NODE_STAT_ITEMS;
3435
3436	for_each_node(node) {
3437		struct mem_cgroup_per_node *pn = memcg->nodeinfo[node];
3438		struct mem_cgroup_per_node *pi;
3439
3440		for (i = min_idx; i < max_idx; i++)
3441			stat[i] = 0;
3442
3443		for_each_online_cpu(cpu)
3444			for (i = min_idx; i < max_idx; i++)
3445				stat[i] += per_cpu(
3446					pn->lruvec_stat_cpu->count[i], cpu);
3447
3448		for (pi = pn; pi; pi = parent_nodeinfo(pi, node))
3449			for (i = min_idx; i < max_idx; i++)
3450				atomic_long_add(stat[i], &pi->lruvec_stat[i]);
3451	}
3452}
3453
3454static void memcg_flush_percpu_vmevents(struct mem_cgroup *memcg)
3455{
3456	unsigned long events[NR_VM_EVENT_ITEMS];
3457	struct mem_cgroup *mi;
3458	int cpu, i;
3459
3460	for (i = 0; i < NR_VM_EVENT_ITEMS; i++)
3461		events[i] = 0;
3462
3463	for_each_online_cpu(cpu)
3464		for (i = 0; i < NR_VM_EVENT_ITEMS; i++)
3465			events[i] += per_cpu(memcg->vmstats_percpu->events[i],
3466					     cpu);
3467
3468	for (mi = memcg; mi; mi = parent_mem_cgroup(mi))
3469		for (i = 0; i < NR_VM_EVENT_ITEMS; i++)
3470			atomic_long_add(events[i], &mi->vmevents[i]);
3471}
3472
3473#ifdef CONFIG_MEMCG_KMEM
3474static int memcg_online_kmem(struct mem_cgroup *memcg)
3475{
3476	int memcg_id;
 
 
3477
3478	if (cgroup_memory_nokmem)
3479		return 0;
3480
3481	BUG_ON(memcg->kmemcg_id >= 0);
3482	BUG_ON(memcg->kmem_state);
3483
3484	memcg_id = memcg_alloc_cache_id();
3485	if (memcg_id < 0)
3486		return memcg_id;
3487
3488	static_branch_inc(&memcg_kmem_enabled_key);
3489	/*
3490	 * A memory cgroup is considered kmem-online as soon as it gets
3491	 * kmemcg_id. Setting the id after enabling static branching will
3492	 * guarantee no one starts accounting before all call sites are
3493	 * patched.
3494	 */
3495	memcg->kmemcg_id = memcg_id;
3496	memcg->kmem_state = KMEM_ONLINE;
3497	INIT_LIST_HEAD(&memcg->kmem_caches);
3498
3499	return 0;
3500}
3501
3502static void memcg_offline_kmem(struct mem_cgroup *memcg)
3503{
3504	struct cgroup_subsys_state *css;
3505	struct mem_cgroup *parent, *child;
3506	int kmemcg_id;
3507
3508	if (memcg->kmem_state != KMEM_ONLINE)
3509		return;
3510	/*
3511	 * Clear the online state before clearing memcg_caches array
3512	 * entries. The slab_mutex in memcg_deactivate_kmem_caches()
3513	 * guarantees that no cache will be created for this cgroup
3514	 * after we are done (see memcg_create_kmem_cache()).
3515	 */
3516	memcg->kmem_state = KMEM_ALLOCATED;
3517
3518	parent = parent_mem_cgroup(memcg);
3519	if (!parent)
3520		parent = root_mem_cgroup;
3521
3522	/*
3523	 * Deactivate and reparent kmem_caches. Then flush percpu
3524	 * slab statistics to have precise values at the parent and
3525	 * all ancestor levels. It's required to keep slab stats
3526	 * accurate after the reparenting of kmem_caches.
3527	 */
3528	memcg_deactivate_kmem_caches(memcg, parent);
3529	memcg_flush_percpu_vmstats(memcg, true);
3530
3531	kmemcg_id = memcg->kmemcg_id;
3532	BUG_ON(kmemcg_id < 0);
3533
3534	/*
3535	 * Change kmemcg_id of this cgroup and all its descendants to the
3536	 * parent's id, and then move all entries from this cgroup's list_lrus
3537	 * to ones of the parent. After we have finished, all list_lrus
3538	 * corresponding to this cgroup are guaranteed to remain empty. The
3539	 * ordering is imposed by list_lru_node->lock taken by
3540	 * memcg_drain_all_list_lrus().
3541	 */
3542	rcu_read_lock(); /* can be called from css_free w/o cgroup_mutex */
3543	css_for_each_descendant_pre(css, &memcg->css) {
3544		child = mem_cgroup_from_css(css);
3545		BUG_ON(child->kmemcg_id != kmemcg_id);
3546		child->kmemcg_id = parent->kmemcg_id;
3547		if (!memcg->use_hierarchy)
3548			break;
3549	}
3550	rcu_read_unlock();
3551
3552	memcg_drain_all_list_lrus(kmemcg_id, parent);
3553
3554	memcg_free_cache_id(kmemcg_id);
3555}
3556
3557static void memcg_free_kmem(struct mem_cgroup *memcg)
3558{
3559	/* css_alloc() failed, offlining didn't happen */
3560	if (unlikely(memcg->kmem_state == KMEM_ONLINE))
3561		memcg_offline_kmem(memcg);
3562
3563	if (memcg->kmem_state == KMEM_ALLOCATED) {
3564		WARN_ON(!list_empty(&memcg->kmem_caches));
3565		static_branch_dec(&memcg_kmem_enabled_key);
3566	}
3567}
3568#else
3569static int memcg_online_kmem(struct mem_cgroup *memcg)
3570{
3571	return 0;
3572}
3573static void memcg_offline_kmem(struct mem_cgroup *memcg)
3574{
3575}
3576static void memcg_free_kmem(struct mem_cgroup *memcg)
3577{
3578}
3579#endif /* CONFIG_MEMCG_KMEM */
3580
3581static int memcg_update_kmem_max(struct mem_cgroup *memcg,
3582				 unsigned long max)
3583{
3584	int ret;
3585
3586	mutex_lock(&memcg_max_mutex);
3587	ret = page_counter_set_max(&memcg->kmem, max);
3588	mutex_unlock(&memcg_max_mutex);
3589	return ret;
3590}
3591
3592static int memcg_update_tcp_max(struct mem_cgroup *memcg, unsigned long max)
3593{
3594	int ret;
3595
3596	mutex_lock(&memcg_max_mutex);
3597
3598	ret = page_counter_set_max(&memcg->tcpmem, max);
3599	if (ret)
3600		goto out;
3601
3602	if (!memcg->tcpmem_active) {
3603		/*
3604		 * The active flag needs to be written after the static_key
3605		 * update. This is what guarantees that the socket activation
3606		 * function is the last one to run. See mem_cgroup_sk_alloc()
3607		 * for details, and note that we don't mark any socket as
3608		 * belonging to this memcg until that flag is up.
3609		 *
3610		 * We need to do this, because static_keys will span multiple
3611		 * sites, but we can't control their order. If we mark a socket
3612		 * as accounted, but the accounting functions are not patched in
3613		 * yet, we'll lose accounting.
3614		 *
3615		 * We never race with the readers in mem_cgroup_sk_alloc(),
3616		 * because when this value change, the code to process it is not
3617		 * patched in yet.
3618		 */
3619		static_branch_inc(&memcg_sockets_enabled_key);
3620		memcg->tcpmem_active = true;
3621	}
3622out:
3623	mutex_unlock(&memcg_max_mutex);
3624	return ret;
3625}
3626
3627/*
3628 * The user of this function is...
3629 * RES_LIMIT.
3630 */
3631static ssize_t mem_cgroup_write(struct kernfs_open_file *of,
3632				char *buf, size_t nbytes, loff_t off)
3633{
3634	struct mem_cgroup *memcg = mem_cgroup_from_css(of_css(of));
3635	unsigned long nr_pages;
 
3636	int ret;
3637
3638	buf = strstrip(buf);
3639	ret = page_counter_memparse(buf, "-1", &nr_pages);
3640	if (ret)
3641		return ret;
3642
3643	switch (MEMFILE_ATTR(of_cft(of)->private)) {
3644	case RES_LIMIT:
3645		if (mem_cgroup_is_root(memcg)) { /* Can't set limit on root */
3646			ret = -EINVAL;
3647			break;
3648		}
3649		switch (MEMFILE_TYPE(of_cft(of)->private)) {
3650		case _MEM:
3651			ret = mem_cgroup_resize_max(memcg, nr_pages, false);
3652			break;
3653		case _MEMSWAP:
3654			ret = mem_cgroup_resize_max(memcg, nr_pages, true);
 
 
 
 
 
 
3655			break;
3656		case _KMEM:
3657			pr_warn_once("kmem.limit_in_bytes is deprecated and will be removed. "
3658				     "Please report your usecase to linux-mm@kvack.org if you "
3659				     "depend on this functionality.\n");
3660			ret = memcg_update_kmem_max(memcg, nr_pages);
3661			break;
3662		case _TCP:
3663			ret = memcg_update_tcp_max(memcg, nr_pages);
3664			break;
3665		}
3666		break;
3667	case RES_SOFT_LIMIT:
3668		memcg->soft_limit = nr_pages;
3669		ret = 0;
3670		break;
3671	}
3672	return ret ?: nbytes;
3673}
3674
3675static ssize_t mem_cgroup_reset(struct kernfs_open_file *of, char *buf,
3676				size_t nbytes, loff_t off)
3677{
3678	struct mem_cgroup *memcg = mem_cgroup_from_css(of_css(of));
3679	struct page_counter *counter;
3680
3681	switch (MEMFILE_TYPE(of_cft(of)->private)) {
3682	case _MEM:
3683		counter = &memcg->memory;
3684		break;
3685	case _MEMSWAP:
3686		counter = &memcg->memsw;
3687		break;
3688	case _KMEM:
3689		counter = &memcg->kmem;
3690		break;
3691	case _TCP:
3692		counter = &memcg->tcpmem;
3693		break;
3694	default:
3695		BUG();
3696	}
 
 
 
 
 
 
 
 
 
 
3697
3698	switch (MEMFILE_ATTR(of_cft(of)->private)) {
 
 
 
3699	case RES_MAX_USAGE:
3700		page_counter_reset_watermark(counter);
 
 
 
3701		break;
3702	case RES_FAILCNT:
3703		counter->failcnt = 0;
 
 
 
3704		break;
3705	default:
3706		BUG();
3707	}
3708
3709	return nbytes;
3710}
3711
3712static u64 mem_cgroup_move_charge_read(struct cgroup_subsys_state *css,
3713					struct cftype *cft)
3714{
3715	return mem_cgroup_from_css(css)->move_charge_at_immigrate;
3716}
3717
3718#ifdef CONFIG_MMU
3719static int mem_cgroup_move_charge_write(struct cgroup_subsys_state *css,
3720					struct cftype *cft, u64 val)
3721{
3722	struct mem_cgroup *memcg = mem_cgroup_from_css(css);
3723
3724	if (val & ~MOVE_MASK)
3725		return -EINVAL;
 
 
 
 
 
 
 
 
3726
3727	/*
3728	 * No kind of locking is needed in here, because ->can_attach() will
3729	 * check this value once in the beginning of the process, and then carry
3730	 * on with stale data. This means that changes to this value will only
3731	 * affect task migrations starting after the change.
3732	 */
3733	memcg->move_charge_at_immigrate = val;
3734	return 0;
3735}
3736#else
3737static int mem_cgroup_move_charge_write(struct cgroup_subsys_state *css,
3738					struct cftype *cft, u64 val)
3739{
3740	return -ENOSYS;
3741}
3742#endif
3743
3744#ifdef CONFIG_NUMA
3745
3746#define LRU_ALL_FILE (BIT(LRU_INACTIVE_FILE) | BIT(LRU_ACTIVE_FILE))
3747#define LRU_ALL_ANON (BIT(LRU_INACTIVE_ANON) | BIT(LRU_ACTIVE_ANON))
3748#define LRU_ALL	     ((1 << NR_LRU_LISTS) - 1)
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
3749
3750static unsigned long mem_cgroup_node_nr_lru_pages(struct mem_cgroup *memcg,
3751					   int nid, unsigned int lru_mask)
3752{
3753	struct lruvec *lruvec = mem_cgroup_lruvec(NODE_DATA(nid), memcg);
3754	unsigned long nr = 0;
3755	enum lru_list lru;
3756
3757	VM_BUG_ON((unsigned)nid >= nr_node_ids);
3758
3759	for_each_lru(lru) {
3760		if (!(BIT(lru) & lru_mask))
3761			continue;
3762		nr += lruvec_page_state_local(lruvec, NR_LRU_BASE + lru);
3763	}
3764	return nr;
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
3765}
3766
3767static unsigned long mem_cgroup_nr_lru_pages(struct mem_cgroup *memcg,
3768					     unsigned int lru_mask)
3769{
3770	unsigned long nr = 0;
3771	enum lru_list lru;
3772
3773	for_each_lru(lru) {
3774		if (!(BIT(lru) & lru_mask))
3775			continue;
3776		nr += memcg_page_state_local(memcg, NR_LRU_BASE + lru);
3777	}
3778	return nr;
3779}
3780
3781static int memcg_numa_stat_show(struct seq_file *m, void *v)
 
3782{
3783	struct numa_stat {
3784		const char *name;
3785		unsigned int lru_mask;
3786	};
3787
3788	static const struct numa_stat stats[] = {
3789		{ "total", LRU_ALL },
3790		{ "file", LRU_ALL_FILE },
3791		{ "anon", LRU_ALL_ANON },
3792		{ "unevictable", BIT(LRU_UNEVICTABLE) },
3793	};
3794	const struct numa_stat *stat;
3795	int nid;
3796	unsigned long nr;
3797	struct mem_cgroup *memcg = mem_cgroup_from_seq(m);
3798
3799	for (stat = stats; stat < stats + ARRAY_SIZE(stats); stat++) {
3800		nr = mem_cgroup_nr_lru_pages(memcg, stat->lru_mask);
3801		seq_printf(m, "%s=%lu", stat->name, nr);
3802		for_each_node_state(nid, N_MEMORY) {
3803			nr = mem_cgroup_node_nr_lru_pages(memcg, nid,
3804							  stat->lru_mask);
3805			seq_printf(m, " N%d=%lu", nid, nr);
3806		}
3807		seq_putc(m, '\n');
3808	}
3809
3810	for (stat = stats; stat < stats + ARRAY_SIZE(stats); stat++) {
3811		struct mem_cgroup *iter;
3812
3813		nr = 0;
3814		for_each_mem_cgroup_tree(iter, memcg)
3815			nr += mem_cgroup_nr_lru_pages(iter, stat->lru_mask);
3816		seq_printf(m, "hierarchical_%s=%lu", stat->name, nr);
3817		for_each_node_state(nid, N_MEMORY) {
3818			nr = 0;
3819			for_each_mem_cgroup_tree(iter, memcg)
3820				nr += mem_cgroup_node_nr_lru_pages(
3821					iter, nid, stat->lru_mask);
3822			seq_printf(m, " N%d=%lu", nid, nr);
3823		}
3824		seq_putc(m, '\n');
 
 
 
 
 
 
 
 
3825	}
3826
3827	return 0;
3828}
3829#endif /* CONFIG_NUMA */
3830
3831static const unsigned int memcg1_stats[] = {
3832	MEMCG_CACHE,
3833	MEMCG_RSS,
3834	MEMCG_RSS_HUGE,
3835	NR_SHMEM,
3836	NR_FILE_MAPPED,
3837	NR_FILE_DIRTY,
3838	NR_WRITEBACK,
3839	MEMCG_SWAP,
3840};
3841
3842static const char *const memcg1_stat_names[] = {
3843	"cache",
3844	"rss",
3845	"rss_huge",
3846	"shmem",
3847	"mapped_file",
3848	"dirty",
3849	"writeback",
3850	"swap",
3851};
3852
3853/* Universal VM events cgroup1 shows, original sort order */
3854static const unsigned int memcg1_events[] = {
3855	PGPGIN,
3856	PGPGOUT,
3857	PGFAULT,
3858	PGMAJFAULT,
3859};
3860
3861static const char *const memcg1_event_names[] = {
3862	"pgpgin",
3863	"pgpgout",
3864	"pgfault",
3865	"pgmajfault",
3866};
3867
3868static int memcg_stat_show(struct seq_file *m, void *v)
3869{
3870	struct mem_cgroup *memcg = mem_cgroup_from_seq(m);
3871	unsigned long memory, memsw;
3872	struct mem_cgroup *mi;
3873	unsigned int i;
3874
3875	BUILD_BUG_ON(ARRAY_SIZE(memcg1_stat_names) != ARRAY_SIZE(memcg1_stats));
3876	BUILD_BUG_ON(ARRAY_SIZE(mem_cgroup_lru_names) != NR_LRU_LISTS);
3877
3878	for (i = 0; i < ARRAY_SIZE(memcg1_stats); i++) {
3879		if (memcg1_stats[i] == MEMCG_SWAP && !do_memsw_account())
3880			continue;
3881		seq_printf(m, "%s %lu\n", memcg1_stat_names[i],
3882			   memcg_page_state_local(memcg, memcg1_stats[i]) *
3883			   PAGE_SIZE);
3884	}
3885
3886	for (i = 0; i < ARRAY_SIZE(memcg1_events); i++)
3887		seq_printf(m, "%s %lu\n", memcg1_event_names[i],
3888			   memcg_events_local(memcg, memcg1_events[i]));
3889
3890	for (i = 0; i < NR_LRU_LISTS; i++)
3891		seq_printf(m, "%s %lu\n", mem_cgroup_lru_names[i],
3892			   memcg_page_state_local(memcg, NR_LRU_BASE + i) *
3893			   PAGE_SIZE);
3894
3895	/* Hierarchical information */
3896	memory = memsw = PAGE_COUNTER_MAX;
3897	for (mi = memcg; mi; mi = parent_mem_cgroup(mi)) {
3898		memory = min(memory, mi->memory.max);
3899		memsw = min(memsw, mi->memsw.max);
3900	}
3901	seq_printf(m, "hierarchical_memory_limit %llu\n",
3902		   (u64)memory * PAGE_SIZE);
3903	if (do_memsw_account())
3904		seq_printf(m, "hierarchical_memsw_limit %llu\n",
3905			   (u64)memsw * PAGE_SIZE);
3906
3907	for (i = 0; i < ARRAY_SIZE(memcg1_stats); i++) {
3908		if (memcg1_stats[i] == MEMCG_SWAP && !do_memsw_account())
 
 
3909			continue;
3910		seq_printf(m, "total_%s %llu\n", memcg1_stat_names[i],
3911			   (u64)memcg_page_state(memcg, memcg1_stats[i]) *
3912			   PAGE_SIZE);
3913	}
3914
3915	for (i = 0; i < ARRAY_SIZE(memcg1_events); i++)
3916		seq_printf(m, "total_%s %llu\n", memcg1_event_names[i],
3917			   (u64)memcg_events(memcg, memcg1_events[i]));
3918
3919	for (i = 0; i < NR_LRU_LISTS; i++)
3920		seq_printf(m, "total_%s %llu\n", mem_cgroup_lru_names[i],
3921			   (u64)memcg_page_state(memcg, NR_LRU_BASE + i) *
3922			   PAGE_SIZE);
3923
3924#ifdef CONFIG_DEBUG_VM
3925	{
3926		pg_data_t *pgdat;
3927		struct mem_cgroup_per_node *mz;
3928		struct zone_reclaim_stat *rstat;
3929		unsigned long recent_rotated[2] = {0, 0};
3930		unsigned long recent_scanned[2] = {0, 0};
3931
3932		for_each_online_pgdat(pgdat) {
3933			mz = mem_cgroup_nodeinfo(memcg, pgdat->node_id);
3934			rstat = &mz->lruvec.reclaim_stat;
3935
3936			recent_rotated[0] += rstat->recent_rotated[0];
3937			recent_rotated[1] += rstat->recent_rotated[1];
3938			recent_scanned[0] += rstat->recent_scanned[0];
3939			recent_scanned[1] += rstat->recent_scanned[1];
3940		}
3941		seq_printf(m, "recent_rotated_anon %lu\n", recent_rotated[0]);
3942		seq_printf(m, "recent_rotated_file %lu\n", recent_rotated[1]);
3943		seq_printf(m, "recent_scanned_anon %lu\n", recent_scanned[0]);
3944		seq_printf(m, "recent_scanned_file %lu\n", recent_scanned[1]);
 
 
 
 
3945	}
3946#endif
3947
3948	return 0;
3949}
3950
3951static u64 mem_cgroup_swappiness_read(struct cgroup_subsys_state *css,
3952				      struct cftype *cft)
3953{
3954	struct mem_cgroup *memcg = mem_cgroup_from_css(css);
3955
3956	return mem_cgroup_swappiness(memcg);
3957}
3958
3959static int mem_cgroup_swappiness_write(struct cgroup_subsys_state *css,
3960				       struct cftype *cft, u64 val)
3961{
3962	struct mem_cgroup *memcg = mem_cgroup_from_css(css);
 
3963
3964	if (val > 100)
3965		return -EINVAL;
3966
3967	if (css->parent)
3968		memcg->swappiness = val;
3969	else
3970		vm_swappiness = val;
 
 
 
 
 
 
 
 
 
 
 
 
 
3971
3972	return 0;
3973}
3974
3975static void __mem_cgroup_threshold(struct mem_cgroup *memcg, bool swap)
3976{
3977	struct mem_cgroup_threshold_ary *t;
3978	unsigned long usage;
3979	int i;
3980
3981	rcu_read_lock();
3982	if (!swap)
3983		t = rcu_dereference(memcg->thresholds.primary);
3984	else
3985		t = rcu_dereference(memcg->memsw_thresholds.primary);
3986
3987	if (!t)
3988		goto unlock;
3989
3990	usage = mem_cgroup_usage(memcg, swap);
3991
3992	/*
3993	 * current_threshold points to threshold just below or equal to usage.
3994	 * If it's not true, a threshold was crossed after last
3995	 * call of __mem_cgroup_threshold().
3996	 */
3997	i = t->current_threshold;
3998
3999	/*
4000	 * Iterate backward over array of thresholds starting from
4001	 * current_threshold and check if a threshold is crossed.
4002	 * If none of thresholds below usage is crossed, we read
4003	 * only one element of the array here.
4004	 */
4005	for (; i >= 0 && unlikely(t->entries[i].threshold > usage); i--)
4006		eventfd_signal(t->entries[i].eventfd, 1);
4007
4008	/* i = current_threshold + 1 */
4009	i++;
4010
4011	/*
4012	 * Iterate forward over array of thresholds starting from
4013	 * current_threshold+1 and check if a threshold is crossed.
4014	 * If none of thresholds above usage is crossed, we read
4015	 * only one element of the array here.
4016	 */
4017	for (; i < t->size && unlikely(t->entries[i].threshold <= usage); i++)
4018		eventfd_signal(t->entries[i].eventfd, 1);
4019
4020	/* Update current_threshold */
4021	t->current_threshold = i - 1;
4022unlock:
4023	rcu_read_unlock();
4024}
4025
4026static void mem_cgroup_threshold(struct mem_cgroup *memcg)
4027{
4028	while (memcg) {
4029		__mem_cgroup_threshold(memcg, false);
4030		if (do_memsw_account())
4031			__mem_cgroup_threshold(memcg, true);
4032
4033		memcg = parent_mem_cgroup(memcg);
4034	}
4035}
4036
4037static int compare_thresholds(const void *a, const void *b)
4038{
4039	const struct mem_cgroup_threshold *_a = a;
4040	const struct mem_cgroup_threshold *_b = b;
4041
4042	if (_a->threshold > _b->threshold)
4043		return 1;
4044
4045	if (_a->threshold < _b->threshold)
4046		return -1;
4047
4048	return 0;
4049}
4050
4051static int mem_cgroup_oom_notify_cb(struct mem_cgroup *memcg)
4052{
4053	struct mem_cgroup_eventfd_list *ev;
4054
4055	spin_lock(&memcg_oom_lock);
4056
4057	list_for_each_entry(ev, &memcg->oom_notify, list)
4058		eventfd_signal(ev->eventfd, 1);
4059
4060	spin_unlock(&memcg_oom_lock);
4061	return 0;
4062}
4063
4064static void mem_cgroup_oom_notify(struct mem_cgroup *memcg)
4065{
4066	struct mem_cgroup *iter;
4067
4068	for_each_mem_cgroup_tree(iter, memcg)
4069		mem_cgroup_oom_notify_cb(iter);
4070}
4071
4072static int __mem_cgroup_usage_register_event(struct mem_cgroup *memcg,
4073	struct eventfd_ctx *eventfd, const char *args, enum res_type type)
4074{
 
4075	struct mem_cgroup_thresholds *thresholds;
4076	struct mem_cgroup_threshold_ary *new;
4077	unsigned long threshold;
4078	unsigned long usage;
4079	int i, size, ret;
4080
4081	ret = page_counter_memparse(args, "-1", &threshold);
4082	if (ret)
4083		return ret;
4084
4085	mutex_lock(&memcg->thresholds_lock);
4086
4087	if (type == _MEM) {
4088		thresholds = &memcg->thresholds;
4089		usage = mem_cgroup_usage(memcg, false);
4090	} else if (type == _MEMSWAP) {
4091		thresholds = &memcg->memsw_thresholds;
4092		usage = mem_cgroup_usage(memcg, true);
4093	} else
4094		BUG();
4095
 
 
4096	/* Check if a threshold crossed before adding a new one */
4097	if (thresholds->primary)
4098		__mem_cgroup_threshold(memcg, type == _MEMSWAP);
4099
4100	size = thresholds->primary ? thresholds->primary->size + 1 : 1;
4101
4102	/* Allocate memory for new array of thresholds */
4103	new = kmalloc(struct_size(new, entries, size), GFP_KERNEL);
 
4104	if (!new) {
4105		ret = -ENOMEM;
4106		goto unlock;
4107	}
4108	new->size = size;
4109
4110	/* Copy thresholds (if any) to new array */
4111	if (thresholds->primary) {
4112		memcpy(new->entries, thresholds->primary->entries, (size - 1) *
4113				sizeof(struct mem_cgroup_threshold));
4114	}
4115
4116	/* Add new threshold */
4117	new->entries[size - 1].eventfd = eventfd;
4118	new->entries[size - 1].threshold = threshold;
4119
4120	/* Sort thresholds. Registering of new threshold isn't time-critical */
4121	sort(new->entries, size, sizeof(struct mem_cgroup_threshold),
4122			compare_thresholds, NULL);
4123
4124	/* Find current threshold */
4125	new->current_threshold = -1;
4126	for (i = 0; i < size; i++) {
4127		if (new->entries[i].threshold <= usage) {
4128			/*
4129			 * new->current_threshold will not be used until
4130			 * rcu_assign_pointer(), so it's safe to increment
4131			 * it here.
4132			 */
4133			++new->current_threshold;
4134		} else
4135			break;
4136	}
4137
4138	/* Free old spare buffer and save old primary buffer as spare */
4139	kfree(thresholds->spare);
4140	thresholds->spare = thresholds->primary;
4141
4142	rcu_assign_pointer(thresholds->primary, new);
4143
4144	/* To be sure that nobody uses thresholds */
4145	synchronize_rcu();
4146
4147unlock:
4148	mutex_unlock(&memcg->thresholds_lock);
4149
4150	return ret;
4151}
4152
4153static int mem_cgroup_usage_register_event(struct mem_cgroup *memcg,
4154	struct eventfd_ctx *eventfd, const char *args)
4155{
4156	return __mem_cgroup_usage_register_event(memcg, eventfd, args, _MEM);
4157}
4158
4159static int memsw_cgroup_usage_register_event(struct mem_cgroup *memcg,
4160	struct eventfd_ctx *eventfd, const char *args)
4161{
4162	return __mem_cgroup_usage_register_event(memcg, eventfd, args, _MEMSWAP);
4163}
4164
4165static void __mem_cgroup_usage_unregister_event(struct mem_cgroup *memcg,
4166	struct eventfd_ctx *eventfd, enum res_type type)
4167{
 
4168	struct mem_cgroup_thresholds *thresholds;
4169	struct mem_cgroup_threshold_ary *new;
4170	unsigned long usage;
 
4171	int i, j, size;
4172
4173	mutex_lock(&memcg->thresholds_lock);
4174
4175	if (type == _MEM) {
4176		thresholds = &memcg->thresholds;
4177		usage = mem_cgroup_usage(memcg, false);
4178	} else if (type == _MEMSWAP) {
4179		thresholds = &memcg->memsw_thresholds;
4180		usage = mem_cgroup_usage(memcg, true);
4181	} else
4182		BUG();
4183
4184	if (!thresholds->primary)
4185		goto unlock;
 
 
 
 
 
4186
4187	/* Check if a threshold crossed before removing */
4188	__mem_cgroup_threshold(memcg, type == _MEMSWAP);
4189
4190	/* Calculate new number of threshold */
4191	size = 0;
4192	for (i = 0; i < thresholds->primary->size; i++) {
4193		if (thresholds->primary->entries[i].eventfd != eventfd)
4194			size++;
4195	}
4196
4197	new = thresholds->spare;
4198
4199	/* Set thresholds array to NULL if we don't have thresholds */
4200	if (!size) {
4201		kfree(new);
4202		new = NULL;
4203		goto swap_buffers;
4204	}
4205
4206	new->size = size;
4207
4208	/* Copy thresholds and find current threshold */
4209	new->current_threshold = -1;
4210	for (i = 0, j = 0; i < thresholds->primary->size; i++) {
4211		if (thresholds->primary->entries[i].eventfd == eventfd)
4212			continue;
4213
4214		new->entries[j] = thresholds->primary->entries[i];
4215		if (new->entries[j].threshold <= usage) {
4216			/*
4217			 * new->current_threshold will not be used
4218			 * until rcu_assign_pointer(), so it's safe to increment
4219			 * it here.
4220			 */
4221			++new->current_threshold;
4222		}
4223		j++;
4224	}
4225
4226swap_buffers:
4227	/* Swap primary and spare array */
4228	thresholds->spare = thresholds->primary;
4229
4230	rcu_assign_pointer(thresholds->primary, new);
4231
4232	/* To be sure that nobody uses thresholds */
4233	synchronize_rcu();
4234
4235	/* If all events are unregistered, free the spare array */
4236	if (!new) {
4237		kfree(thresholds->spare);
4238		thresholds->spare = NULL;
4239	}
4240unlock:
4241	mutex_unlock(&memcg->thresholds_lock);
4242}
4243
4244static void mem_cgroup_usage_unregister_event(struct mem_cgroup *memcg,
4245	struct eventfd_ctx *eventfd)
4246{
4247	return __mem_cgroup_usage_unregister_event(memcg, eventfd, _MEM);
4248}
4249
4250static void memsw_cgroup_usage_unregister_event(struct mem_cgroup *memcg,
4251	struct eventfd_ctx *eventfd)
4252{
4253	return __mem_cgroup_usage_unregister_event(memcg, eventfd, _MEMSWAP);
4254}
4255
4256static int mem_cgroup_oom_register_event(struct mem_cgroup *memcg,
4257	struct eventfd_ctx *eventfd, const char *args)
4258{
 
4259	struct mem_cgroup_eventfd_list *event;
 
4260
 
4261	event = kmalloc(sizeof(*event),	GFP_KERNEL);
4262	if (!event)
4263		return -ENOMEM;
4264
4265	spin_lock(&memcg_oom_lock);
4266
4267	event->eventfd = eventfd;
4268	list_add(&event->list, &memcg->oom_notify);
4269
4270	/* already in OOM ? */
4271	if (memcg->under_oom)
4272		eventfd_signal(eventfd, 1);
4273	spin_unlock(&memcg_oom_lock);
4274
4275	return 0;
4276}
4277
4278static void mem_cgroup_oom_unregister_event(struct mem_cgroup *memcg,
4279	struct eventfd_ctx *eventfd)
4280{
 
4281	struct mem_cgroup_eventfd_list *ev, *tmp;
 
 
 
4282
4283	spin_lock(&memcg_oom_lock);
4284
4285	list_for_each_entry_safe(ev, tmp, &memcg->oom_notify, list) {
4286		if (ev->eventfd == eventfd) {
4287			list_del(&ev->list);
4288			kfree(ev);
4289		}
4290	}
4291
4292	spin_unlock(&memcg_oom_lock);
4293}
4294
4295static int mem_cgroup_oom_control_read(struct seq_file *sf, void *v)
 
4296{
4297	struct mem_cgroup *memcg = mem_cgroup_from_seq(sf);
 
 
4298
4299	seq_printf(sf, "oom_kill_disable %d\n", memcg->oom_kill_disable);
4300	seq_printf(sf, "under_oom %d\n", (bool)memcg->under_oom);
4301	seq_printf(sf, "oom_kill %lu\n",
4302		   atomic_long_read(&memcg->memory_events[MEMCG_OOM_KILL]));
4303	return 0;
4304}
4305
4306static int mem_cgroup_oom_control_write(struct cgroup_subsys_state *css,
4307	struct cftype *cft, u64 val)
4308{
4309	struct mem_cgroup *memcg = mem_cgroup_from_css(css);
 
4310
4311	/* cannot set to root cgroup and only 0 and 1 are allowed */
4312	if (!css->parent || !((val == 0) || (val == 1)))
4313		return -EINVAL;
4314
4315	memcg->oom_kill_disable = val;
4316	if (!val)
4317		memcg_oom_recover(memcg);
4318
4319	return 0;
4320}
4321
4322#ifdef CONFIG_CGROUP_WRITEBACK
4323
4324#include <trace/events/writeback.h>
4325
4326static int memcg_wb_domain_init(struct mem_cgroup *memcg, gfp_t gfp)
4327{
4328	return wb_domain_init(&memcg->cgwb_domain, gfp);
4329}
4330
4331static void memcg_wb_domain_exit(struct mem_cgroup *memcg)
4332{
4333	wb_domain_exit(&memcg->cgwb_domain);
4334}
4335
4336static void memcg_wb_domain_size_changed(struct mem_cgroup *memcg)
4337{
4338	wb_domain_size_changed(&memcg->cgwb_domain);
4339}
4340
4341struct wb_domain *mem_cgroup_wb_domain(struct bdi_writeback *wb)
4342{
4343	struct mem_cgroup *memcg = mem_cgroup_from_css(wb->memcg_css);
4344
4345	if (!memcg->css.parent)
4346		return NULL;
4347
4348	return &memcg->cgwb_domain;
4349}
4350
4351/*
4352 * idx can be of type enum memcg_stat_item or node_stat_item.
4353 * Keep in sync with memcg_exact_page().
4354 */
4355static unsigned long memcg_exact_page_state(struct mem_cgroup *memcg, int idx)
4356{
4357	long x = atomic_long_read(&memcg->vmstats[idx]);
4358	int cpu;
4359
4360	for_each_online_cpu(cpu)
4361		x += per_cpu_ptr(memcg->vmstats_percpu, cpu)->stat[idx];
4362	if (x < 0)
4363		x = 0;
4364	return x;
4365}
4366
4367/**
4368 * mem_cgroup_wb_stats - retrieve writeback related stats from its memcg
4369 * @wb: bdi_writeback in question
4370 * @pfilepages: out parameter for number of file pages
4371 * @pheadroom: out parameter for number of allocatable pages according to memcg
4372 * @pdirty: out parameter for number of dirty pages
4373 * @pwriteback: out parameter for number of pages under writeback
4374 *
4375 * Determine the numbers of file, headroom, dirty, and writeback pages in
4376 * @wb's memcg.  File, dirty and writeback are self-explanatory.  Headroom
4377 * is a bit more involved.
4378 *
4379 * A memcg's headroom is "min(max, high) - used".  In the hierarchy, the
4380 * headroom is calculated as the lowest headroom of itself and the
4381 * ancestors.  Note that this doesn't consider the actual amount of
4382 * available memory in the system.  The caller should further cap
4383 * *@pheadroom accordingly.
4384 */
4385void mem_cgroup_wb_stats(struct bdi_writeback *wb, unsigned long *pfilepages,
4386			 unsigned long *pheadroom, unsigned long *pdirty,
4387			 unsigned long *pwriteback)
4388{
4389	struct mem_cgroup *memcg = mem_cgroup_from_css(wb->memcg_css);
4390	struct mem_cgroup *parent;
4391
4392	*pdirty = memcg_exact_page_state(memcg, NR_FILE_DIRTY);
4393
4394	/* this should eventually include NR_UNSTABLE_NFS */
4395	*pwriteback = memcg_exact_page_state(memcg, NR_WRITEBACK);
4396	*pfilepages = memcg_exact_page_state(memcg, NR_INACTIVE_FILE) +
4397			memcg_exact_page_state(memcg, NR_ACTIVE_FILE);
4398	*pheadroom = PAGE_COUNTER_MAX;
4399
4400	while ((parent = parent_mem_cgroup(memcg))) {
4401		unsigned long ceiling = min(memcg->memory.max, memcg->high);
4402		unsigned long used = page_counter_read(&memcg->memory);
4403
4404		*pheadroom = min(*pheadroom, ceiling - min(ceiling, used));
4405		memcg = parent;
4406	}
4407}
4408
4409/*
4410 * Foreign dirty flushing
4411 *
4412 * There's an inherent mismatch between memcg and writeback.  The former
4413 * trackes ownership per-page while the latter per-inode.  This was a
4414 * deliberate design decision because honoring per-page ownership in the
4415 * writeback path is complicated, may lead to higher CPU and IO overheads
4416 * and deemed unnecessary given that write-sharing an inode across
4417 * different cgroups isn't a common use-case.
4418 *
4419 * Combined with inode majority-writer ownership switching, this works well
4420 * enough in most cases but there are some pathological cases.  For
4421 * example, let's say there are two cgroups A and B which keep writing to
4422 * different but confined parts of the same inode.  B owns the inode and
4423 * A's memory is limited far below B's.  A's dirty ratio can rise enough to
4424 * trigger balance_dirty_pages() sleeps but B's can be low enough to avoid
4425 * triggering background writeback.  A will be slowed down without a way to
4426 * make writeback of the dirty pages happen.
4427 *
4428 * Conditions like the above can lead to a cgroup getting repatedly and
4429 * severely throttled after making some progress after each
4430 * dirty_expire_interval while the underyling IO device is almost
4431 * completely idle.
4432 *
4433 * Solving this problem completely requires matching the ownership tracking
4434 * granularities between memcg and writeback in either direction.  However,
4435 * the more egregious behaviors can be avoided by simply remembering the
4436 * most recent foreign dirtying events and initiating remote flushes on
4437 * them when local writeback isn't enough to keep the memory clean enough.
4438 *
4439 * The following two functions implement such mechanism.  When a foreign
4440 * page - a page whose memcg and writeback ownerships don't match - is
4441 * dirtied, mem_cgroup_track_foreign_dirty() records the inode owning
4442 * bdi_writeback on the page owning memcg.  When balance_dirty_pages()
4443 * decides that the memcg needs to sleep due to high dirty ratio, it calls
4444 * mem_cgroup_flush_foreign() which queues writeback on the recorded
4445 * foreign bdi_writebacks which haven't expired.  Both the numbers of
4446 * recorded bdi_writebacks and concurrent in-flight foreign writebacks are
4447 * limited to MEMCG_CGWB_FRN_CNT.
4448 *
4449 * The mechanism only remembers IDs and doesn't hold any object references.
4450 * As being wrong occasionally doesn't matter, updates and accesses to the
4451 * records are lockless and racy.
4452 */
4453void mem_cgroup_track_foreign_dirty_slowpath(struct page *page,
4454					     struct bdi_writeback *wb)
4455{
4456	struct mem_cgroup *memcg = page->mem_cgroup;
4457	struct memcg_cgwb_frn *frn;
4458	u64 now = get_jiffies_64();
4459	u64 oldest_at = now;
4460	int oldest = -1;
4461	int i;
4462
4463	trace_track_foreign_dirty(page, wb);
4464
4465	/*
4466	 * Pick the slot to use.  If there is already a slot for @wb, keep
4467	 * using it.  If not replace the oldest one which isn't being
4468	 * written out.
4469	 */
4470	for (i = 0; i < MEMCG_CGWB_FRN_CNT; i++) {
4471		frn = &memcg->cgwb_frn[i];
4472		if (frn->bdi_id == wb->bdi->id &&
4473		    frn->memcg_id == wb->memcg_css->id)
4474			break;
4475		if (time_before64(frn->at, oldest_at) &&
4476		    atomic_read(&frn->done.cnt) == 1) {
4477			oldest = i;
4478			oldest_at = frn->at;
4479		}
4480	}
4481
4482	if (i < MEMCG_CGWB_FRN_CNT) {
4483		/*
4484		 * Re-using an existing one.  Update timestamp lazily to
4485		 * avoid making the cacheline hot.  We want them to be
4486		 * reasonably up-to-date and significantly shorter than
4487		 * dirty_expire_interval as that's what expires the record.
4488		 * Use the shorter of 1s and dirty_expire_interval / 8.
4489		 */
4490		unsigned long update_intv =
4491			min_t(unsigned long, HZ,
4492			      msecs_to_jiffies(dirty_expire_interval * 10) / 8);
4493
4494		if (time_before64(frn->at, now - update_intv))
4495			frn->at = now;
4496	} else if (oldest >= 0) {
4497		/* replace the oldest free one */
4498		frn = &memcg->cgwb_frn[oldest];
4499		frn->bdi_id = wb->bdi->id;
4500		frn->memcg_id = wb->memcg_css->id;
4501		frn->at = now;
4502	}
4503}
4504
4505/* issue foreign writeback flushes for recorded foreign dirtying events */
4506void mem_cgroup_flush_foreign(struct bdi_writeback *wb)
4507{
4508	struct mem_cgroup *memcg = mem_cgroup_from_css(wb->memcg_css);
4509	unsigned long intv = msecs_to_jiffies(dirty_expire_interval * 10);
4510	u64 now = jiffies_64;
4511	int i;
4512
4513	for (i = 0; i < MEMCG_CGWB_FRN_CNT; i++) {
4514		struct memcg_cgwb_frn *frn = &memcg->cgwb_frn[i];
4515
4516		/*
4517		 * If the record is older than dirty_expire_interval,
4518		 * writeback on it has already started.  No need to kick it
4519		 * off again.  Also, don't start a new one if there's
4520		 * already one in flight.
4521		 */
4522		if (time_after64(frn->at, now - intv) &&
4523		    atomic_read(&frn->done.cnt) == 1) {
4524			frn->at = 0;
4525			trace_flush_foreign(wb, frn->bdi_id, frn->memcg_id);
4526			cgroup_writeback_by_id(frn->bdi_id, frn->memcg_id, 0,
4527					       WB_REASON_FOREIGN_FLUSH,
4528					       &frn->done);
4529		}
4530	}
4531}
4532
4533#else	/* CONFIG_CGROUP_WRITEBACK */
4534
4535static int memcg_wb_domain_init(struct mem_cgroup *memcg, gfp_t gfp)
4536{
4537	return 0;
4538}
4539
4540static void memcg_wb_domain_exit(struct mem_cgroup *memcg)
4541{
4542}
 
 
 
4543
4544static void memcg_wb_domain_size_changed(struct mem_cgroup *memcg)
4545{
4546}
4547
4548#endif	/* CONFIG_CGROUP_WRITEBACK */
4549
4550/*
4551 * DO NOT USE IN NEW FILES.
4552 *
4553 * "cgroup.event_control" implementation.
4554 *
4555 * This is way over-engineered.  It tries to support fully configurable
4556 * events for each user.  Such level of flexibility is completely
4557 * unnecessary especially in the light of the planned unified hierarchy.
4558 *
4559 * Please deprecate this and replace with something simpler if at all
4560 * possible.
4561 */
4562
4563/*
4564 * Unregister event and free resources.
4565 *
4566 * Gets called from workqueue.
4567 */
4568static void memcg_event_remove(struct work_struct *work)
4569{
4570	struct mem_cgroup_event *event =
4571		container_of(work, struct mem_cgroup_event, remove);
4572	struct mem_cgroup *memcg = event->memcg;
4573
4574	remove_wait_queue(event->wqh, &event->wait);
4575
4576	event->unregister_event(memcg, event->eventfd);
4577
4578	/* Notify userspace the event is going away. */
4579	eventfd_signal(event->eventfd, 1);
4580
4581	eventfd_ctx_put(event->eventfd);
4582	kfree(event);
4583	css_put(&memcg->css);
4584}
 
4585
4586/*
4587 * Gets called on EPOLLHUP on eventfd when user closes it.
4588 *
4589 * Called with wqh->lock held and interrupts disabled.
4590 */
4591static int memcg_event_wake(wait_queue_entry_t *wait, unsigned mode,
4592			    int sync, void *key)
4593{
4594	struct mem_cgroup_event *event =
4595		container_of(wait, struct mem_cgroup_event, wait);
4596	struct mem_cgroup *memcg = event->memcg;
4597	__poll_t flags = key_to_poll(key);
4598
4599	if (flags & EPOLLHUP) {
4600		/*
4601		 * If the event has been detached at cgroup removal, we
4602		 * can simply return knowing the other side will cleanup
4603		 * for us.
4604		 *
4605		 * We can't race against event freeing since the other
4606		 * side will require wqh->lock via remove_wait_queue(),
4607		 * which we hold.
4608		 */
4609		spin_lock(&memcg->event_list_lock);
4610		if (!list_empty(&event->list)) {
4611			list_del_init(&event->list);
4612			/*
4613			 * We are in atomic context, but cgroup_event_remove()
4614			 * may sleep, so we have to call it in workqueue.
4615			 */
4616			schedule_work(&event->remove);
4617		}
4618		spin_unlock(&memcg->event_list_lock);
4619	}
4620
4621	return 0;
4622}
4623
4624static void memcg_event_ptable_queue_proc(struct file *file,
4625		wait_queue_head_t *wqh, poll_table *pt)
4626{
4627	struct mem_cgroup_event *event =
4628		container_of(pt, struct mem_cgroup_event, pt);
4629
4630	event->wqh = wqh;
4631	add_wait_queue(wqh, &event->wait);
4632}
4633
4634/*
4635 * DO NOT USE IN NEW FILES.
4636 *
4637 * Parse input and register new cgroup event handler.
4638 *
4639 * Input must be in format '<event_fd> <control_fd> <args>'.
4640 * Interpretation of args is defined by control file implementation.
4641 */
4642static ssize_t memcg_write_event_control(struct kernfs_open_file *of,
4643					 char *buf, size_t nbytes, loff_t off)
4644{
4645	struct cgroup_subsys_state *css = of_css(of);
4646	struct mem_cgroup *memcg = mem_cgroup_from_css(css);
4647	struct mem_cgroup_event *event;
4648	struct cgroup_subsys_state *cfile_css;
4649	unsigned int efd, cfd;
4650	struct fd efile;
4651	struct fd cfile;
4652	const char *name;
4653	char *endp;
4654	int ret;
4655
4656	buf = strstrip(buf);
4657
4658	efd = simple_strtoul(buf, &endp, 10);
4659	if (*endp != ' ')
4660		return -EINVAL;
4661	buf = endp + 1;
4662
4663	cfd = simple_strtoul(buf, &endp, 10);
4664	if ((*endp != ' ') && (*endp != '\0'))
4665		return -EINVAL;
4666	buf = endp + 1;
4667
4668	event = kzalloc(sizeof(*event), GFP_KERNEL);
4669	if (!event)
4670		return -ENOMEM;
4671
4672	event->memcg = memcg;
4673	INIT_LIST_HEAD(&event->list);
4674	init_poll_funcptr(&event->pt, memcg_event_ptable_queue_proc);
4675	init_waitqueue_func_entry(&event->wait, memcg_event_wake);
4676	INIT_WORK(&event->remove, memcg_event_remove);
4677
4678	efile = fdget(efd);
4679	if (!efile.file) {
4680		ret = -EBADF;
4681		goto out_kfree;
4682	}
4683
4684	event->eventfd = eventfd_ctx_fileget(efile.file);
4685	if (IS_ERR(event->eventfd)) {
4686		ret = PTR_ERR(event->eventfd);
4687		goto out_put_efile;
4688	}
4689
4690	cfile = fdget(cfd);
4691	if (!cfile.file) {
4692		ret = -EBADF;
4693		goto out_put_eventfd;
4694	}
4695
4696	/* the process need read permission on control file */
4697	/* AV: shouldn't we check that it's been opened for read instead? */
4698	ret = inode_permission(file_inode(cfile.file), MAY_READ);
4699	if (ret < 0)
4700		goto out_put_cfile;
4701
4702	/*
4703	 * Determine the event callbacks and set them in @event.  This used
4704	 * to be done via struct cftype but cgroup core no longer knows
4705	 * about these events.  The following is crude but the whole thing
4706	 * is for compatibility anyway.
4707	 *
4708	 * DO NOT ADD NEW FILES.
4709	 */
4710	name = cfile.file->f_path.dentry->d_name.name;
4711
4712	if (!strcmp(name, "memory.usage_in_bytes")) {
4713		event->register_event = mem_cgroup_usage_register_event;
4714		event->unregister_event = mem_cgroup_usage_unregister_event;
4715	} else if (!strcmp(name, "memory.oom_control")) {
4716		event->register_event = mem_cgroup_oom_register_event;
4717		event->unregister_event = mem_cgroup_oom_unregister_event;
4718	} else if (!strcmp(name, "memory.pressure_level")) {
4719		event->register_event = vmpressure_register_event;
4720		event->unregister_event = vmpressure_unregister_event;
4721	} else if (!strcmp(name, "memory.memsw.usage_in_bytes")) {
4722		event->register_event = memsw_cgroup_usage_register_event;
4723		event->unregister_event = memsw_cgroup_usage_unregister_event;
4724	} else {
4725		ret = -EINVAL;
4726		goto out_put_cfile;
4727	}
4728
4729	/*
4730	 * Verify @cfile should belong to @css.  Also, remaining events are
4731	 * automatically removed on cgroup destruction but the removal is
4732	 * asynchronous, so take an extra ref on @css.
4733	 */
4734	cfile_css = css_tryget_online_from_dir(cfile.file->f_path.dentry->d_parent,
4735					       &memory_cgrp_subsys);
4736	ret = -EINVAL;
4737	if (IS_ERR(cfile_css))
4738		goto out_put_cfile;
4739	if (cfile_css != css) {
4740		css_put(cfile_css);
4741		goto out_put_cfile;
4742	}
4743
4744	ret = event->register_event(memcg, event->eventfd, buf);
4745	if (ret)
4746		goto out_put_css;
4747
4748	vfs_poll(efile.file, &event->pt);
4749
4750	spin_lock(&memcg->event_list_lock);
4751	list_add(&event->list, &memcg->event_list);
4752	spin_unlock(&memcg->event_list_lock);
4753
4754	fdput(cfile);
4755	fdput(efile);
4756
4757	return nbytes;
4758
4759out_put_css:
4760	css_put(css);
4761out_put_cfile:
4762	fdput(cfile);
4763out_put_eventfd:
4764	eventfd_ctx_put(event->eventfd);
4765out_put_efile:
4766	fdput(efile);
4767out_kfree:
4768	kfree(event);
4769
4770	return ret;
4771}
4772
4773static struct cftype mem_cgroup_legacy_files[] = {
4774	{
4775		.name = "usage_in_bytes",
4776		.private = MEMFILE_PRIVATE(_MEM, RES_USAGE),
4777		.read_u64 = mem_cgroup_read_u64,
 
 
4778	},
4779	{
4780		.name = "max_usage_in_bytes",
4781		.private = MEMFILE_PRIVATE(_MEM, RES_MAX_USAGE),
4782		.write = mem_cgroup_reset,
4783		.read_u64 = mem_cgroup_read_u64,
4784	},
4785	{
4786		.name = "limit_in_bytes",
4787		.private = MEMFILE_PRIVATE(_MEM, RES_LIMIT),
4788		.write = mem_cgroup_write,
4789		.read_u64 = mem_cgroup_read_u64,
4790	},
4791	{
4792		.name = "soft_limit_in_bytes",
4793		.private = MEMFILE_PRIVATE(_MEM, RES_SOFT_LIMIT),
4794		.write = mem_cgroup_write,
4795		.read_u64 = mem_cgroup_read_u64,
4796	},
4797	{
4798		.name = "failcnt",
4799		.private = MEMFILE_PRIVATE(_MEM, RES_FAILCNT),
4800		.write = mem_cgroup_reset,
4801		.read_u64 = mem_cgroup_read_u64,
4802	},
4803	{
4804		.name = "stat",
4805		.seq_show = memcg_stat_show,
4806	},
4807	{
4808		.name = "force_empty",
4809		.write = mem_cgroup_force_empty_write,
4810	},
4811	{
4812		.name = "use_hierarchy",
4813		.write_u64 = mem_cgroup_hierarchy_write,
4814		.read_u64 = mem_cgroup_hierarchy_read,
4815	},
4816	{
4817		.name = "cgroup.event_control",		/* XXX: for compat */
4818		.write = memcg_write_event_control,
4819		.flags = CFTYPE_NO_PREFIX | CFTYPE_WORLD_WRITABLE,
4820	},
4821	{
4822		.name = "swappiness",
4823		.read_u64 = mem_cgroup_swappiness_read,
4824		.write_u64 = mem_cgroup_swappiness_write,
4825	},
4826	{
4827		.name = "move_charge_at_immigrate",
4828		.read_u64 = mem_cgroup_move_charge_read,
4829		.write_u64 = mem_cgroup_move_charge_write,
4830	},
4831	{
4832		.name = "oom_control",
4833		.seq_show = mem_cgroup_oom_control_read,
4834		.write_u64 = mem_cgroup_oom_control_write,
 
 
4835		.private = MEMFILE_PRIVATE(_OOM_TYPE, OOM_CONTROL),
4836	},
4837	{
4838		.name = "pressure_level",
4839	},
4840#ifdef CONFIG_NUMA
4841	{
4842		.name = "numa_stat",
4843		.seq_show = memcg_numa_stat_show,
 
4844	},
4845#endif
 
 
 
 
4846	{
4847		.name = "kmem.limit_in_bytes",
4848		.private = MEMFILE_PRIVATE(_KMEM, RES_LIMIT),
4849		.write = mem_cgroup_write,
4850		.read_u64 = mem_cgroup_read_u64,
 
4851	},
4852	{
4853		.name = "kmem.usage_in_bytes",
4854		.private = MEMFILE_PRIVATE(_KMEM, RES_USAGE),
4855		.read_u64 = mem_cgroup_read_u64,
 
4856	},
4857	{
4858		.name = "kmem.failcnt",
4859		.private = MEMFILE_PRIVATE(_KMEM, RES_FAILCNT),
4860		.write = mem_cgroup_reset,
4861		.read_u64 = mem_cgroup_read_u64,
4862	},
4863	{
4864		.name = "kmem.max_usage_in_bytes",
4865		.private = MEMFILE_PRIVATE(_KMEM, RES_MAX_USAGE),
4866		.write = mem_cgroup_reset,
4867		.read_u64 = mem_cgroup_read_u64,
4868	},
4869#if defined(CONFIG_SLAB) || defined(CONFIG_SLUB_DEBUG)
4870	{
4871		.name = "kmem.slabinfo",
4872		.seq_start = memcg_slab_start,
4873		.seq_next = memcg_slab_next,
4874		.seq_stop = memcg_slab_stop,
4875		.seq_show = memcg_slab_show,
4876	},
4877#endif
4878	{
4879		.name = "kmem.tcp.limit_in_bytes",
4880		.private = MEMFILE_PRIVATE(_TCP, RES_LIMIT),
4881		.write = mem_cgroup_write,
4882		.read_u64 = mem_cgroup_read_u64,
4883	},
4884	{
4885		.name = "kmem.tcp.usage_in_bytes",
4886		.private = MEMFILE_PRIVATE(_TCP, RES_USAGE),
4887		.read_u64 = mem_cgroup_read_u64,
4888	},
4889	{
4890		.name = "kmem.tcp.failcnt",
4891		.private = MEMFILE_PRIVATE(_TCP, RES_FAILCNT),
4892		.write = mem_cgroup_reset,
4893		.read_u64 = mem_cgroup_read_u64,
4894	},
4895	{
4896		.name = "kmem.tcp.max_usage_in_bytes",
4897		.private = MEMFILE_PRIVATE(_TCP, RES_MAX_USAGE),
4898		.write = mem_cgroup_reset,
4899		.read_u64 = mem_cgroup_read_u64,
4900	},
4901	{ },	/* terminate */
4902};
4903
4904/*
4905 * Private memory cgroup IDR
4906 *
4907 * Swap-out records and page cache shadow entries need to store memcg
4908 * references in constrained space, so we maintain an ID space that is
4909 * limited to 16 bit (MEM_CGROUP_ID_MAX), limiting the total number of
4910 * memory-controlled cgroups to 64k.
4911 *
4912 * However, there usually are many references to the oflline CSS after
4913 * the cgroup has been destroyed, such as page cache or reclaimable
4914 * slab objects, that don't need to hang on to the ID. We want to keep
4915 * those dead CSS from occupying IDs, or we might quickly exhaust the
4916 * relatively small ID space and prevent the creation of new cgroups
4917 * even when there are much fewer than 64k cgroups - possibly none.
4918 *
4919 * Maintain a private 16-bit ID space for memcg, and allow the ID to
4920 * be freed and recycled when it's no longer needed, which is usually
4921 * when the CSS is offlined.
4922 *
4923 * The only exception to that are records of swapped out tmpfs/shmem
4924 * pages that need to be attributed to live ancestors on swapin. But
4925 * those references are manageable from userspace.
4926 */
4927
4928static DEFINE_IDR(mem_cgroup_idr);
4929
4930static void mem_cgroup_id_remove(struct mem_cgroup *memcg)
4931{
4932	if (memcg->id.id > 0) {
4933		idr_remove(&mem_cgroup_idr, memcg->id.id);
4934		memcg->id.id = 0;
4935	}
4936}
4937
4938static void mem_cgroup_id_get_many(struct mem_cgroup *memcg, unsigned int n)
4939{
4940	refcount_add(n, &memcg->id.ref);
4941}
 
4942
4943static void mem_cgroup_id_put_many(struct mem_cgroup *memcg, unsigned int n)
4944{
4945	if (refcount_sub_and_test(n, &memcg->id.ref)) {
4946		mem_cgroup_id_remove(memcg);
4947
4948		/* Memcg ID pins CSS */
4949		css_put(&memcg->css);
4950	}
4951}
4952
4953static inline void mem_cgroup_id_put(struct mem_cgroup *memcg)
4954{
4955	mem_cgroup_id_put_many(memcg, 1);
4956}
4957
4958/**
4959 * mem_cgroup_from_id - look up a memcg from a memcg id
4960 * @id: the memcg id to look up
4961 *
4962 * Caller must hold rcu_read_lock().
4963 */
4964struct mem_cgroup *mem_cgroup_from_id(unsigned short id)
4965{
4966	WARN_ON_ONCE(!rcu_read_lock_held());
4967	return idr_find(&mem_cgroup_idr, id);
4968}
4969
4970static int alloc_mem_cgroup_per_node_info(struct mem_cgroup *memcg, int node)
4971{
4972	struct mem_cgroup_per_node *pn;
4973	int tmp = node;
 
 
4974	/*
4975	 * This routine is called against possible nodes.
4976	 * But it's BUG to call kmalloc() against offline node.
4977	 *
4978	 * TODO: this routine can waste much memory for nodes which will
4979	 *       never be onlined. It's better to use memory hotplug callback
4980	 *       function.
4981	 */
4982	if (!node_state(node, N_NORMAL_MEMORY))
4983		tmp = -1;
4984	pn = kzalloc_node(sizeof(*pn), GFP_KERNEL, tmp);
4985	if (!pn)
4986		return 1;
4987
4988	pn->lruvec_stat_local = alloc_percpu(struct lruvec_stat);
4989	if (!pn->lruvec_stat_local) {
4990		kfree(pn);
4991		return 1;
 
 
 
 
4992	}
 
 
4993
4994	pn->lruvec_stat_cpu = alloc_percpu(struct lruvec_stat);
4995	if (!pn->lruvec_stat_cpu) {
4996		free_percpu(pn->lruvec_stat_local);
4997		kfree(pn);
4998		return 1;
4999	}
5000
5001	lruvec_init(&pn->lruvec);
5002	pn->usage_in_excess = 0;
5003	pn->on_tree = false;
5004	pn->memcg = memcg;
5005
5006	memcg->nodeinfo[node] = pn;
5007	return 0;
5008}
5009
5010static void free_mem_cgroup_per_node_info(struct mem_cgroup *memcg, int node)
5011{
5012	struct mem_cgroup_per_node *pn = memcg->nodeinfo[node];
 
5013
5014	if (!pn)
5015		return;
 
 
 
 
 
 
5016
5017	free_percpu(pn->lruvec_stat_cpu);
5018	free_percpu(pn->lruvec_stat_local);
5019	kfree(pn);
 
 
 
 
 
 
 
 
 
5020}
5021
5022static void __mem_cgroup_free(struct mem_cgroup *memcg)
 
 
 
 
 
 
 
 
 
 
 
5023{
5024	int node;
5025
5026	for_each_node(node)
5027		free_mem_cgroup_per_node_info(memcg, node);
5028	free_percpu(memcg->vmstats_percpu);
5029	free_percpu(memcg->vmstats_local);
5030	kfree(memcg);
 
 
 
 
 
 
5031}
5032
5033static void mem_cgroup_free(struct mem_cgroup *memcg)
5034{
5035	memcg_wb_domain_exit(memcg);
5036	/*
5037	 * Flush percpu vmstats and vmevents to guarantee the value correctness
5038	 * on parent's and all ancestor levels.
5039	 */
5040	memcg_flush_percpu_vmstats(memcg, false);
5041	memcg_flush_percpu_vmevents(memcg);
5042	__mem_cgroup_free(memcg);
5043}
5044
5045static struct mem_cgroup *mem_cgroup_alloc(void)
5046{
5047	struct mem_cgroup *memcg;
5048	unsigned int size;
5049	int node;
5050	int __maybe_unused i;
 
 
 
5051
5052	size = sizeof(struct mem_cgroup);
5053	size += nr_node_ids * sizeof(struct mem_cgroup_per_node *);
 
 
5054
5055	memcg = kzalloc(size, GFP_KERNEL);
5056	if (!memcg)
 
 
 
 
5057		return NULL;
 
 
5058
5059	memcg->id.id = idr_alloc(&mem_cgroup_idr, NULL,
5060				 1, MEM_CGROUP_ID_MAX,
5061				 GFP_KERNEL);
5062	if (memcg->id.id < 0)
5063		goto fail;
5064
5065	memcg->vmstats_local = alloc_percpu(struct memcg_vmstats_percpu);
5066	if (!memcg->vmstats_local)
5067		goto fail;
5068
5069	memcg->vmstats_percpu = alloc_percpu(struct memcg_vmstats_percpu);
5070	if (!memcg->vmstats_percpu)
5071		goto fail;
5072
5073	for_each_node(node)
5074		if (alloc_mem_cgroup_per_node_info(memcg, node))
5075			goto fail;
5076
5077	if (memcg_wb_domain_init(memcg, GFP_KERNEL))
5078		goto fail;
5079
5080	INIT_WORK(&memcg->high_work, high_work_func);
5081	memcg->last_scanned_node = MAX_NUMNODES;
5082	INIT_LIST_HEAD(&memcg->oom_notify);
5083	mutex_init(&memcg->thresholds_lock);
5084	spin_lock_init(&memcg->move_lock);
5085	vmpressure_init(&memcg->vmpressure);
5086	INIT_LIST_HEAD(&memcg->event_list);
5087	spin_lock_init(&memcg->event_list_lock);
5088	memcg->socket_pressure = jiffies;
5089#ifdef CONFIG_MEMCG_KMEM
5090	memcg->kmemcg_id = -1;
5091#endif
5092#ifdef CONFIG_CGROUP_WRITEBACK
5093	INIT_LIST_HEAD(&memcg->cgwb_list);
5094	for (i = 0; i < MEMCG_CGWB_FRN_CNT; i++)
5095		memcg->cgwb_frn[i].done =
5096			__WB_COMPLETION_INIT(&memcg_cgwb_frn_waitq);
5097#endif
5098#ifdef CONFIG_TRANSPARENT_HUGEPAGE
5099	spin_lock_init(&memcg->deferred_split_queue.split_queue_lock);
5100	INIT_LIST_HEAD(&memcg->deferred_split_queue.split_queue);
5101	memcg->deferred_split_queue.split_queue_len = 0;
5102#endif
5103	idr_replace(&mem_cgroup_idr, memcg, memcg->id.id);
5104	return memcg;
5105fail:
5106	mem_cgroup_id_remove(memcg);
5107	__mem_cgroup_free(memcg);
5108	return NULL;
 
 
 
 
 
 
 
5109}
5110
5111static struct cgroup_subsys_state * __ref
5112mem_cgroup_css_alloc(struct cgroup_subsys_state *parent_css)
5113{
5114	struct mem_cgroup *parent = mem_cgroup_from_css(parent_css);
5115	struct mem_cgroup *memcg;
5116	long error = -ENOMEM;
 
5117
5118	memcg = mem_cgroup_alloc();
5119	if (!memcg)
5120		return ERR_PTR(error);
5121
5122	memcg->high = PAGE_COUNTER_MAX;
5123	memcg->soft_limit = PAGE_COUNTER_MAX;
5124	if (parent) {
5125		memcg->swappiness = mem_cgroup_swappiness(parent);
5126		memcg->oom_kill_disable = parent->oom_kill_disable;
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
5127	}
 
5128	if (parent && parent->use_hierarchy) {
5129		memcg->use_hierarchy = true;
5130		page_counter_init(&memcg->memory, &parent->memory);
5131		page_counter_init(&memcg->swap, &parent->swap);
5132		page_counter_init(&memcg->memsw, &parent->memsw);
5133		page_counter_init(&memcg->kmem, &parent->kmem);
5134		page_counter_init(&memcg->tcpmem, &parent->tcpmem);
5135	} else {
5136		page_counter_init(&memcg->memory, NULL);
5137		page_counter_init(&memcg->swap, NULL);
5138		page_counter_init(&memcg->memsw, NULL);
5139		page_counter_init(&memcg->kmem, NULL);
5140		page_counter_init(&memcg->tcpmem, NULL);
5141		/*
5142		 * Deeper hierachy with use_hierarchy == false doesn't make
5143		 * much sense so let cgroup subsystem know about this
5144		 * unfortunate state in our controller.
 
5145		 */
5146		if (parent != root_mem_cgroup)
5147			memory_cgrp_subsys.broken_hierarchy = true;
 
 
5148	}
 
 
 
5149
5150	/* The following stuff does not apply to the root */
5151	if (!parent) {
5152#ifdef CONFIG_MEMCG_KMEM
5153		INIT_LIST_HEAD(&memcg->kmem_caches);
5154#endif
5155		root_mem_cgroup = memcg;
5156		return &memcg->css;
5157	}
5158
5159	error = memcg_online_kmem(memcg);
5160	if (error)
5161		goto fail;
5162
5163	if (cgroup_subsys_on_dfl(memory_cgrp_subsys) && !cgroup_memory_nosocket)
5164		static_branch_inc(&memcg_sockets_enabled_key);
5165
5166	return &memcg->css;
5167fail:
5168	mem_cgroup_id_remove(memcg);
5169	mem_cgroup_free(memcg);
5170	return ERR_PTR(-ENOMEM);
5171}
5172
5173static int mem_cgroup_css_online(struct cgroup_subsys_state *css)
 
5174{
5175	struct mem_cgroup *memcg = mem_cgroup_from_css(css);
5176
5177	/*
5178	 * A memcg must be visible for memcg_expand_shrinker_maps()
5179	 * by the time the maps are allocated. So, we allocate maps
5180	 * here, when for_each_mem_cgroup() can't skip it.
5181	 */
5182	if (memcg_alloc_shrinker_maps(memcg)) {
5183		mem_cgroup_id_remove(memcg);
5184		return -ENOMEM;
5185	}
5186
5187	/* Online state pins memcg ID, memcg ID pins CSS */
5188	refcount_set(&memcg->id.ref, 1);
5189	css_get(css);
5190	return 0;
5191}
5192
5193static void mem_cgroup_css_offline(struct cgroup_subsys_state *css)
 
5194{
5195	struct mem_cgroup *memcg = mem_cgroup_from_css(css);
5196	struct mem_cgroup_event *event, *tmp;
5197
5198	/*
5199	 * Unregister events and notify userspace.
5200	 * Notify userspace about cgroup removing only after rmdir of cgroup
5201	 * directory to avoid race between userspace and kernelspace.
5202	 */
5203	spin_lock(&memcg->event_list_lock);
5204	list_for_each_entry_safe(event, tmp, &memcg->event_list, list) {
5205		list_del_init(&event->list);
5206		schedule_work(&event->remove);
5207	}
5208	spin_unlock(&memcg->event_list_lock);
5209
5210	page_counter_set_min(&memcg->memory, 0);
5211	page_counter_set_low(&memcg->memory, 0);
5212
5213	memcg_offline_kmem(memcg);
5214	wb_memcg_offline(memcg);
5215
5216	drain_all_stock(memcg);
5217
5218	mem_cgroup_id_put(memcg);
5219}
5220
5221static void mem_cgroup_css_released(struct cgroup_subsys_state *css)
 
5222{
5223	struct mem_cgroup *memcg = mem_cgroup_from_css(css);
5224
5225	invalidate_reclaim_iterators(memcg);
5226}
5227
5228static void mem_cgroup_css_free(struct cgroup_subsys_state *css)
5229{
5230	struct mem_cgroup *memcg = mem_cgroup_from_css(css);
5231	int __maybe_unused i;
5232
5233#ifdef CONFIG_CGROUP_WRITEBACK
5234	for (i = 0; i < MEMCG_CGWB_FRN_CNT; i++)
5235		wb_wait_for_completion(&memcg->cgwb_frn[i].done);
5236#endif
5237	if (cgroup_subsys_on_dfl(memory_cgrp_subsys) && !cgroup_memory_nosocket)
5238		static_branch_dec(&memcg_sockets_enabled_key);
5239
5240	if (!cgroup_subsys_on_dfl(memory_cgrp_subsys) && memcg->tcpmem_active)
5241		static_branch_dec(&memcg_sockets_enabled_key);
5242
5243	vmpressure_cleanup(&memcg->vmpressure);
5244	cancel_work_sync(&memcg->high_work);
5245	mem_cgroup_remove_from_trees(memcg);
5246	memcg_free_shrinker_maps(memcg);
5247	memcg_free_kmem(memcg);
5248	mem_cgroup_free(memcg);
5249}
5250
5251/**
5252 * mem_cgroup_css_reset - reset the states of a mem_cgroup
5253 * @css: the target css
5254 *
5255 * Reset the states of the mem_cgroup associated with @css.  This is
5256 * invoked when the userland requests disabling on the default hierarchy
5257 * but the memcg is pinned through dependency.  The memcg should stop
5258 * applying policies and should revert to the vanilla state as it may be
5259 * made visible again.
5260 *
5261 * The current implementation only resets the essential configurations.
5262 * This needs to be expanded to cover all the visible parts.
5263 */
5264static void mem_cgroup_css_reset(struct cgroup_subsys_state *css)
5265{
5266	struct mem_cgroup *memcg = mem_cgroup_from_css(css);
5267
5268	page_counter_set_max(&memcg->memory, PAGE_COUNTER_MAX);
5269	page_counter_set_max(&memcg->swap, PAGE_COUNTER_MAX);
5270	page_counter_set_max(&memcg->memsw, PAGE_COUNTER_MAX);
5271	page_counter_set_max(&memcg->kmem, PAGE_COUNTER_MAX);
5272	page_counter_set_max(&memcg->tcpmem, PAGE_COUNTER_MAX);
5273	page_counter_set_min(&memcg->memory, 0);
5274	page_counter_set_low(&memcg->memory, 0);
5275	memcg->high = PAGE_COUNTER_MAX;
5276	memcg->soft_limit = PAGE_COUNTER_MAX;
5277	memcg_wb_domain_size_changed(memcg);
5278}
5279
5280#ifdef CONFIG_MMU
5281/* Handlers for move charge at task migration. */
 
5282static int mem_cgroup_do_precharge(unsigned long count)
5283{
5284	int ret;
 
 
5285
5286	/* Try a single bulk charge without reclaim first, kswapd may wake */
5287	ret = try_charge(mc.to, GFP_KERNEL & ~__GFP_DIRECT_RECLAIM, count);
5288	if (!ret) {
5289		mc.precharge += count;
 
5290		return ret;
5291	}
5292
5293	/* Try charges one by one with reclaim, but do not retry */
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
5294	while (count--) {
5295		ret = try_charge(mc.to, GFP_KERNEL | __GFP_NORETRY, 1);
5296		if (ret)
5297			return ret;
 
 
 
 
 
 
 
 
 
5298		mc.precharge++;
5299		cond_resched();
5300	}
5301	return 0;
5302}
5303
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
5304union mc_target {
5305	struct page	*page;
5306	swp_entry_t	ent;
5307};
5308
5309enum mc_target_type {
5310	MC_TARGET_NONE = 0,
5311	MC_TARGET_PAGE,
5312	MC_TARGET_SWAP,
5313	MC_TARGET_DEVICE,
5314};
5315
5316static struct page *mc_handle_present_pte(struct vm_area_struct *vma,
5317						unsigned long addr, pte_t ptent)
5318{
5319	struct page *page = vm_normal_page(vma, addr, ptent);
5320
5321	if (!page || !page_mapped(page))
5322		return NULL;
5323	if (PageAnon(page)) {
5324		if (!(mc.flags & MOVE_ANON))
 
5325			return NULL;
5326	} else {
5327		if (!(mc.flags & MOVE_FILE))
5328			return NULL;
5329	}
5330	if (!get_page_unless_zero(page))
5331		return NULL;
5332
5333	return page;
5334}
5335
5336#if defined(CONFIG_SWAP) || defined(CONFIG_DEVICE_PRIVATE)
5337static struct page *mc_handle_swap_pte(struct vm_area_struct *vma,
5338			pte_t ptent, swp_entry_t *entry)
5339{
 
5340	struct page *page = NULL;
5341	swp_entry_t ent = pte_to_swp_entry(ptent);
5342
5343	if (!(mc.flags & MOVE_ANON) || non_swap_entry(ent))
 
 
 
 
 
5344		return NULL;
5345
5346	/*
5347	 * Handle MEMORY_DEVICE_PRIVATE which are ZONE_DEVICE page belonging to
5348	 * a device and because they are not accessible by CPU they are store
5349	 * as special swap entry in the CPU page table.
5350	 */
5351	if (is_device_private_entry(ent)) {
5352		page = device_private_entry_to_page(ent);
5353		/*
5354		 * MEMORY_DEVICE_PRIVATE means ZONE_DEVICE page and which have
5355		 * a refcount of 1 when free (unlike normal page)
5356		 */
5357		if (!page_ref_add_unless(page, 1, 1))
5358			return NULL;
5359		return page;
5360	}
5361
5362	/*
5363	 * Because lookup_swap_cache() updates some statistics counter,
5364	 * we call find_get_page() with swapper_space directly.
5365	 */
5366	page = find_get_page(swap_address_space(ent), swp_offset(ent));
5367	if (do_memsw_account())
5368		entry->val = ent.val;
5369
5370	return page;
5371}
5372#else
5373static struct page *mc_handle_swap_pte(struct vm_area_struct *vma,
5374			pte_t ptent, swp_entry_t *entry)
5375{
5376	return NULL;
5377}
5378#endif
5379
5380static struct page *mc_handle_file_pte(struct vm_area_struct *vma,
5381			unsigned long addr, pte_t ptent, swp_entry_t *entry)
5382{
5383	struct page *page = NULL;
 
5384	struct address_space *mapping;
5385	pgoff_t pgoff;
5386
5387	if (!vma->vm_file) /* anonymous vma */
5388		return NULL;
5389	if (!(mc.flags & MOVE_FILE))
5390		return NULL;
5391
 
5392	mapping = vma->vm_file->f_mapping;
5393	pgoff = linear_page_index(vma, addr);
 
 
 
5394
5395	/* page is moved even if it's not RSS of this task(page-faulted). */
 
 
5396#ifdef CONFIG_SWAP
5397	/* shmem/tmpfs may report page out on swap: account for that too. */
5398	if (shmem_mapping(mapping)) {
5399		page = find_get_entry(mapping, pgoff);
5400		if (xa_is_value(page)) {
5401			swp_entry_t swp = radix_to_swp_entry(page);
5402			if (do_memsw_account())
5403				*entry = swp;
5404			page = find_get_page(swap_address_space(swp),
5405					     swp_offset(swp));
5406		}
5407	} else
5408		page = find_get_page(mapping, pgoff);
5409#else
5410	page = find_get_page(mapping, pgoff);
5411#endif
5412	return page;
5413}
5414
5415/**
5416 * mem_cgroup_move_account - move account of the page
5417 * @page: the page
5418 * @compound: charge the page as compound or small page
5419 * @from: mem_cgroup which the page is moved from.
5420 * @to:	mem_cgroup which the page is moved to. @from != @to.
5421 *
5422 * The caller must make sure the page is not on LRU (isolate_page() is useful.)
5423 *
5424 * This function doesn't do "charge" to new cgroup and doesn't do "uncharge"
5425 * from old cgroup.
5426 */
5427static int mem_cgroup_move_account(struct page *page,
5428				   bool compound,
5429				   struct mem_cgroup *from,
5430				   struct mem_cgroup *to)
5431{
5432	struct lruvec *from_vec, *to_vec;
5433	struct pglist_data *pgdat;
5434	unsigned long flags;
5435	unsigned int nr_pages = compound ? hpage_nr_pages(page) : 1;
5436	int ret;
5437	bool anon;
5438
5439	VM_BUG_ON(from == to);
5440	VM_BUG_ON_PAGE(PageLRU(page), page);
5441	VM_BUG_ON(compound && !PageTransHuge(page));
5442
5443	/*
5444	 * Prevent mem_cgroup_migrate() from looking at
5445	 * page->mem_cgroup of its source page while we change it.
5446	 */
5447	ret = -EBUSY;
5448	if (!trylock_page(page))
5449		goto out;
5450
5451	ret = -EINVAL;
5452	if (page->mem_cgroup != from)
5453		goto out_unlock;
5454
5455	anon = PageAnon(page);
5456
5457	pgdat = page_pgdat(page);
5458	from_vec = mem_cgroup_lruvec(pgdat, from);
5459	to_vec = mem_cgroup_lruvec(pgdat, to);
5460
5461	spin_lock_irqsave(&from->move_lock, flags);
5462
5463	if (!anon && page_mapped(page)) {
5464		__mod_lruvec_state(from_vec, NR_FILE_MAPPED, -nr_pages);
5465		__mod_lruvec_state(to_vec, NR_FILE_MAPPED, nr_pages);
5466	}
5467
5468	/*
5469	 * move_lock grabbed above and caller set from->moving_account, so
5470	 * mod_memcg_page_state will serialize updates to PageDirty.
5471	 * So mapping should be stable for dirty pages.
5472	 */
5473	if (!anon && PageDirty(page)) {
5474		struct address_space *mapping = page_mapping(page);
5475
5476		if (mapping_cap_account_dirty(mapping)) {
5477			__mod_lruvec_state(from_vec, NR_FILE_DIRTY, -nr_pages);
5478			__mod_lruvec_state(to_vec, NR_FILE_DIRTY, nr_pages);
5479		}
5480	}
5481
5482	if (PageWriteback(page)) {
5483		__mod_lruvec_state(from_vec, NR_WRITEBACK, -nr_pages);
5484		__mod_lruvec_state(to_vec, NR_WRITEBACK, nr_pages);
5485	}
5486
5487#ifdef CONFIG_TRANSPARENT_HUGEPAGE
5488	if (compound && !list_empty(page_deferred_list(page))) {
5489		spin_lock(&from->deferred_split_queue.split_queue_lock);
5490		list_del_init(page_deferred_list(page));
5491		from->deferred_split_queue.split_queue_len--;
5492		spin_unlock(&from->deferred_split_queue.split_queue_lock);
5493	}
5494#endif
5495	/*
5496	 * It is safe to change page->mem_cgroup here because the page
5497	 * is referenced, charged, and isolated - we can't race with
5498	 * uncharging, charging, migration, or LRU putback.
5499	 */
5500
5501	/* caller should have done css_get */
5502	page->mem_cgroup = to;
5503
5504#ifdef CONFIG_TRANSPARENT_HUGEPAGE
5505	if (compound && list_empty(page_deferred_list(page))) {
5506		spin_lock(&to->deferred_split_queue.split_queue_lock);
5507		list_add_tail(page_deferred_list(page),
5508			      &to->deferred_split_queue.split_queue);
5509		to->deferred_split_queue.split_queue_len++;
5510		spin_unlock(&to->deferred_split_queue.split_queue_lock);
5511	}
5512#endif
5513
5514	spin_unlock_irqrestore(&from->move_lock, flags);
5515
5516	ret = 0;
5517
5518	local_irq_disable();
5519	mem_cgroup_charge_statistics(to, page, compound, nr_pages);
5520	memcg_check_events(to, page);
5521	mem_cgroup_charge_statistics(from, page, compound, -nr_pages);
5522	memcg_check_events(from, page);
5523	local_irq_enable();
5524out_unlock:
5525	unlock_page(page);
5526out:
5527	return ret;
5528}
5529
5530/**
5531 * get_mctgt_type - get target type of moving charge
5532 * @vma: the vma the pte to be checked belongs
5533 * @addr: the address corresponding to the pte to be checked
5534 * @ptent: the pte to be checked
5535 * @target: the pointer the target page or swap ent will be stored(can be NULL)
5536 *
5537 * Returns
5538 *   0(MC_TARGET_NONE): if the pte is not a target for move charge.
5539 *   1(MC_TARGET_PAGE): if the page corresponding to this pte is a target for
5540 *     move charge. if @target is not NULL, the page is stored in target->page
5541 *     with extra refcnt got(Callers should handle it).
5542 *   2(MC_TARGET_SWAP): if the swap entry corresponding to this pte is a
5543 *     target for charge migration. if @target is not NULL, the entry is stored
5544 *     in target->ent.
5545 *   3(MC_TARGET_DEVICE): like MC_TARGET_PAGE  but page is MEMORY_DEVICE_PRIVATE
5546 *     (so ZONE_DEVICE page and thus not on the lru).
5547 *     For now we such page is charge like a regular page would be as for all
5548 *     intent and purposes it is just special memory taking the place of a
5549 *     regular page.
5550 *
5551 *     See Documentations/vm/hmm.txt and include/linux/hmm.h
5552 *
5553 * Called with pte lock held.
5554 */
5555
5556static enum mc_target_type get_mctgt_type(struct vm_area_struct *vma,
5557		unsigned long addr, pte_t ptent, union mc_target *target)
5558{
5559	struct page *page = NULL;
5560	enum mc_target_type ret = MC_TARGET_NONE;
 
5561	swp_entry_t ent = { .val = 0 };
5562
5563	if (pte_present(ptent))
5564		page = mc_handle_present_pte(vma, addr, ptent);
5565	else if (is_swap_pte(ptent))
5566		page = mc_handle_swap_pte(vma, ptent, &ent);
5567	else if (pte_none(ptent))
5568		page = mc_handle_file_pte(vma, addr, ptent, &ent);
5569
5570	if (!page && !ent.val)
5571		return ret;
5572	if (page) {
 
5573		/*
5574		 * Do only loose check w/o serialization.
5575		 * mem_cgroup_move_account() checks the page is valid or
5576		 * not under LRU exclusion.
5577		 */
5578		if (page->mem_cgroup == mc.from) {
5579			ret = MC_TARGET_PAGE;
5580			if (is_device_private_page(page))
5581				ret = MC_TARGET_DEVICE;
5582			if (target)
5583				target->page = page;
5584		}
5585		if (!ret || !target)
5586			put_page(page);
5587	}
5588	/*
5589	 * There is a swap entry and a page doesn't exist or isn't charged.
5590	 * But we cannot move a tail-page in a THP.
5591	 */
5592	if (ent.val && !ret && (!page || !PageTransCompound(page)) &&
5593	    mem_cgroup_id(mc.from) == lookup_swap_cgroup_id(ent)) {
5594		ret = MC_TARGET_SWAP;
5595		if (target)
5596			target->ent = ent;
5597	}
5598	return ret;
5599}
5600
5601#ifdef CONFIG_TRANSPARENT_HUGEPAGE
5602/*
5603 * We don't consider PMD mapped swapping or file mapped pages because THP does
5604 * not support them for now.
5605 * Caller should make sure that pmd_trans_huge(pmd) is true.
5606 */
5607static enum mc_target_type get_mctgt_type_thp(struct vm_area_struct *vma,
5608		unsigned long addr, pmd_t pmd, union mc_target *target)
5609{
5610	struct page *page = NULL;
5611	enum mc_target_type ret = MC_TARGET_NONE;
5612
5613	if (unlikely(is_swap_pmd(pmd))) {
5614		VM_BUG_ON(thp_migration_supported() &&
5615				  !is_pmd_migration_entry(pmd));
5616		return ret;
5617	}
5618	page = pmd_page(pmd);
5619	VM_BUG_ON_PAGE(!page || !PageHead(page), page);
5620	if (!(mc.flags & MOVE_ANON))
5621		return ret;
5622	if (page->mem_cgroup == mc.from) {
5623		ret = MC_TARGET_PAGE;
5624		if (target) {
5625			get_page(page);
5626			target->page = page;
5627		}
5628	}
5629	return ret;
5630}
5631#else
5632static inline enum mc_target_type get_mctgt_type_thp(struct vm_area_struct *vma,
5633		unsigned long addr, pmd_t pmd, union mc_target *target)
5634{
5635	return MC_TARGET_NONE;
5636}
5637#endif
5638
5639static int mem_cgroup_count_precharge_pte_range(pmd_t *pmd,
5640					unsigned long addr, unsigned long end,
5641					struct mm_walk *walk)
5642{
5643	struct vm_area_struct *vma = walk->vma;
5644	pte_t *pte;
5645	spinlock_t *ptl;
5646
5647	ptl = pmd_trans_huge_lock(pmd, vma);
5648	if (ptl) {
5649		/*
5650		 * Note their can not be MC_TARGET_DEVICE for now as we do not
5651		 * support transparent huge page with MEMORY_DEVICE_PRIVATE but
5652		 * this might change.
5653		 */
5654		if (get_mctgt_type_thp(vma, addr, *pmd, NULL) == MC_TARGET_PAGE)
5655			mc.precharge += HPAGE_PMD_NR;
5656		spin_unlock(ptl);
5657		return 0;
5658	}
5659
5660	if (pmd_trans_unstable(pmd))
5661		return 0;
5662	pte = pte_offset_map_lock(vma->vm_mm, pmd, addr, &ptl);
5663	for (; addr != end; pte++, addr += PAGE_SIZE)
5664		if (get_mctgt_type(vma, addr, *pte, NULL))
5665			mc.precharge++;	/* increment precharge temporarily */
5666	pte_unmap_unlock(pte - 1, ptl);
5667	cond_resched();
5668
5669	return 0;
5670}
5671
5672static const struct mm_walk_ops precharge_walk_ops = {
5673	.pmd_entry	= mem_cgroup_count_precharge_pte_range,
5674};
5675
5676static unsigned long mem_cgroup_count_precharge(struct mm_struct *mm)
5677{
5678	unsigned long precharge;
 
5679
5680	down_read(&mm->mmap_sem);
5681	walk_page_range(mm, 0, mm->highest_vm_end, &precharge_walk_ops, NULL);
 
 
 
 
 
 
 
 
 
 
5682	up_read(&mm->mmap_sem);
5683
5684	precharge = mc.precharge;
5685	mc.precharge = 0;
5686
5687	return precharge;
5688}
5689
5690static int mem_cgroup_precharge_mc(struct mm_struct *mm)
5691{
5692	unsigned long precharge = mem_cgroup_count_precharge(mm);
5693
5694	VM_BUG_ON(mc.moving_task);
5695	mc.moving_task = current;
5696	return mem_cgroup_do_precharge(precharge);
5697}
5698
5699/* cancels all extra charges on mc.from and mc.to, and wakes up all waiters. */
5700static void __mem_cgroup_clear_mc(void)
5701{
5702	struct mem_cgroup *from = mc.from;
5703	struct mem_cgroup *to = mc.to;
5704
5705	/* we must uncharge all the leftover precharges from mc.to */
5706	if (mc.precharge) {
5707		cancel_charge(mc.to, mc.precharge);
5708		mc.precharge = 0;
5709	}
5710	/*
5711	 * we didn't uncharge from mc.from at mem_cgroup_move_account(), so
5712	 * we must uncharge here.
5713	 */
5714	if (mc.moved_charge) {
5715		cancel_charge(mc.from, mc.moved_charge);
5716		mc.moved_charge = 0;
5717	}
5718	/* we must fixup refcnts and charges */
5719	if (mc.moved_swap) {
5720		/* uncharge swap account from the old cgroup */
5721		if (!mem_cgroup_is_root(mc.from))
5722			page_counter_uncharge(&mc.from->memsw, mc.moved_swap);
5723
5724		mem_cgroup_id_put_many(mc.from, mc.moved_swap);
5725
5726		/*
5727		 * we charged both to->memory and to->memsw, so we
5728		 * should uncharge to->memory.
5729		 */
5730		if (!mem_cgroup_is_root(mc.to))
5731			page_counter_uncharge(&mc.to->memory, mc.moved_swap);
5732
5733		mem_cgroup_id_get_many(mc.to, mc.moved_swap);
5734		css_put_many(&mc.to->css, mc.moved_swap);
5735
 
 
 
 
 
 
 
 
 
5736		mc.moved_swap = 0;
5737	}
5738	memcg_oom_recover(from);
5739	memcg_oom_recover(to);
5740	wake_up_all(&mc.waitq);
5741}
5742
5743static void mem_cgroup_clear_mc(void)
5744{
5745	struct mm_struct *mm = mc.mm;
5746
5747	/*
5748	 * we must clear moving_task before waking up waiters at the end of
5749	 * task migration.
5750	 */
5751	mc.moving_task = NULL;
5752	__mem_cgroup_clear_mc();
5753	spin_lock(&mc.lock);
5754	mc.from = NULL;
5755	mc.to = NULL;
5756	mc.mm = NULL;
5757	spin_unlock(&mc.lock);
5758
5759	mmput(mm);
5760}
5761
5762static int mem_cgroup_can_attach(struct cgroup_taskset *tset)
 
 
5763{
5764	struct cgroup_subsys_state *css;
5765	struct mem_cgroup *memcg = NULL; /* unneeded init to make gcc happy */
5766	struct mem_cgroup *from;
5767	struct task_struct *leader, *p;
5768	struct mm_struct *mm;
5769	unsigned long move_flags;
5770	int ret = 0;
 
5771
5772	/* charge immigration isn't supported on the default hierarchy */
5773	if (cgroup_subsys_on_dfl(memory_cgrp_subsys))
5774		return 0;
5775
5776	/*
5777	 * Multi-process migrations only happen on the default hierarchy
5778	 * where charge immigration is not used.  Perform charge
5779	 * immigration if @tset contains a leader and whine if there are
5780	 * multiple.
5781	 */
5782	p = NULL;
5783	cgroup_taskset_for_each_leader(leader, css, tset) {
5784		WARN_ON_ONCE(p);
5785		p = leader;
5786		memcg = mem_cgroup_from_css(css);
5787	}
5788	if (!p)
5789		return 0;
5790
5791	/*
5792	 * We are now commited to this value whatever it is. Changes in this
5793	 * tunable will only affect upcoming migrations, not the current one.
5794	 * So we need to save it, and keep it going.
5795	 */
5796	move_flags = READ_ONCE(memcg->move_charge_at_immigrate);
5797	if (!move_flags)
5798		return 0;
5799
5800	from = mem_cgroup_from_task(p);
5801
5802	VM_BUG_ON(from == memcg);
5803
5804	mm = get_task_mm(p);
5805	if (!mm)
5806		return 0;
5807	/* We move charges only when we move a owner of the mm */
5808	if (mm->owner == p) {
5809		VM_BUG_ON(mc.from);
5810		VM_BUG_ON(mc.to);
5811		VM_BUG_ON(mc.precharge);
5812		VM_BUG_ON(mc.moved_charge);
5813		VM_BUG_ON(mc.moved_swap);
5814
5815		spin_lock(&mc.lock);
5816		mc.mm = mm;
5817		mc.from = from;
5818		mc.to = memcg;
5819		mc.flags = move_flags;
5820		spin_unlock(&mc.lock);
5821		/* We set mc.moving_task later */
5822
5823		ret = mem_cgroup_precharge_mc(mm);
5824		if (ret)
5825			mem_cgroup_clear_mc();
5826	} else {
5827		mmput(mm);
5828	}
5829	return ret;
5830}
5831
5832static void mem_cgroup_cancel_attach(struct cgroup_taskset *tset)
 
 
5833{
5834	if (mc.to)
5835		mem_cgroup_clear_mc();
5836}
5837
5838static int mem_cgroup_move_charge_pte_range(pmd_t *pmd,
5839				unsigned long addr, unsigned long end,
5840				struct mm_walk *walk)
5841{
5842	int ret = 0;
5843	struct vm_area_struct *vma = walk->vma;
5844	pte_t *pte;
5845	spinlock_t *ptl;
5846	enum mc_target_type target_type;
5847	union mc_target target;
5848	struct page *page;
5849
5850	ptl = pmd_trans_huge_lock(pmd, vma);
5851	if (ptl) {
5852		if (mc.precharge < HPAGE_PMD_NR) {
5853			spin_unlock(ptl);
5854			return 0;
5855		}
5856		target_type = get_mctgt_type_thp(vma, addr, *pmd, &target);
5857		if (target_type == MC_TARGET_PAGE) {
5858			page = target.page;
5859			if (!isolate_lru_page(page)) {
5860				if (!mem_cgroup_move_account(page, true,
5861							     mc.from, mc.to)) {
5862					mc.precharge -= HPAGE_PMD_NR;
5863					mc.moved_charge += HPAGE_PMD_NR;
5864				}
5865				putback_lru_page(page);
5866			}
5867			put_page(page);
5868		} else if (target_type == MC_TARGET_DEVICE) {
5869			page = target.page;
5870			if (!mem_cgroup_move_account(page, true,
5871						     mc.from, mc.to)) {
5872				mc.precharge -= HPAGE_PMD_NR;
5873				mc.moved_charge += HPAGE_PMD_NR;
5874			}
5875			put_page(page);
5876		}
5877		spin_unlock(ptl);
5878		return 0;
5879	}
5880
5881	if (pmd_trans_unstable(pmd))
5882		return 0;
5883retry:
5884	pte = pte_offset_map_lock(vma->vm_mm, pmd, addr, &ptl);
5885	for (; addr != end; addr += PAGE_SIZE) {
5886		pte_t ptent = *(pte++);
5887		bool device = false;
 
 
 
5888		swp_entry_t ent;
5889
5890		if (!mc.precharge)
5891			break;
5892
5893		switch (get_mctgt_type(vma, addr, ptent, &target)) {
5894		case MC_TARGET_DEVICE:
5895			device = true;
5896			/* fall through */
5897		case MC_TARGET_PAGE:
5898			page = target.page;
5899			/*
5900			 * We can have a part of the split pmd here. Moving it
5901			 * can be done but it would be too convoluted so simply
5902			 * ignore such a partial THP and keep it in original
5903			 * memcg. There should be somebody mapping the head.
5904			 */
5905			if (PageTransCompound(page))
5906				goto put;
5907			if (!device && isolate_lru_page(page))
5908				goto put;
5909			if (!mem_cgroup_move_account(page, false,
5910						mc.from, mc.to)) {
 
5911				mc.precharge--;
5912				/* we uncharge from mc.from later. */
5913				mc.moved_charge++;
5914			}
5915			if (!device)
5916				putback_lru_page(page);
5917put:			/* get_mctgt_type() gets the page */
5918			put_page(page);
5919			break;
5920		case MC_TARGET_SWAP:
5921			ent = target.ent;
5922			if (!mem_cgroup_move_swap_account(ent, mc.from, mc.to)) {
 
5923				mc.precharge--;
5924				/* we fixup refcnts and charges later. */
5925				mc.moved_swap++;
5926			}
5927			break;
5928		default:
5929			break;
5930		}
5931	}
5932	pte_unmap_unlock(pte - 1, ptl);
5933	cond_resched();
5934
5935	if (addr != end) {
5936		/*
5937		 * We have consumed all precharges we got in can_attach().
5938		 * We try charge one by one, but don't do any additional
5939		 * charges to mc.to if we have failed in charge once in attach()
5940		 * phase.
5941		 */
5942		ret = mem_cgroup_do_precharge(1);
5943		if (!ret)
5944			goto retry;
5945	}
5946
5947	return ret;
5948}
5949
5950static const struct mm_walk_ops charge_walk_ops = {
5951	.pmd_entry	= mem_cgroup_move_charge_pte_range,
5952};
5953
5954static void mem_cgroup_move_charge(void)
5955{
5956	lru_add_drain_all();
5957	/*
5958	 * Signal lock_page_memcg() to take the memcg's move_lock
5959	 * while we're moving its pages to another memcg. Then wait
5960	 * for already started RCU-only updates to finish.
5961	 */
5962	atomic_inc(&mc.from->moving_account);
5963	synchronize_rcu();
5964retry:
5965	if (unlikely(!down_read_trylock(&mc.mm->mmap_sem))) {
5966		/*
5967		 * Someone who are holding the mmap_sem might be waiting in
5968		 * waitq. So we cancel all extra charges, wake up all waiters,
5969		 * and retry. Because we cancel precharges, we might not be able
5970		 * to move enough charges, but moving charge is a best-effort
5971		 * feature anyway, so it wouldn't be a big problem.
5972		 */
5973		__mem_cgroup_clear_mc();
5974		cond_resched();
5975		goto retry;
5976	}
5977	/*
5978	 * When we have consumed all precharges and failed in doing
5979	 * additional charge, the page walk just aborts.
5980	 */
5981	walk_page_range(mc.mm, 0, mc.mm->highest_vm_end, &charge_walk_ops,
5982			NULL);
5983
5984	up_read(&mc.mm->mmap_sem);
5985	atomic_dec(&mc.from->moving_account);
 
 
 
 
 
 
 
 
 
 
5986}
5987
5988static void mem_cgroup_move_task(void)
5989{
5990	if (mc.to) {
5991		mem_cgroup_move_charge();
 
 
 
 
 
 
 
 
 
 
5992		mem_cgroup_clear_mc();
5993	}
5994}
5995#else	/* !CONFIG_MMU */
5996static int mem_cgroup_can_attach(struct cgroup_taskset *tset)
 
 
5997{
5998	return 0;
5999}
6000static void mem_cgroup_cancel_attach(struct cgroup_taskset *tset)
 
 
6001{
6002}
6003static void mem_cgroup_move_task(void)
 
 
 
6004{
6005}
6006#endif
6007
6008/*
6009 * Cgroup retains root cgroups across [un]mount cycles making it necessary
6010 * to verify whether we're attached to the default hierarchy on each mount
6011 * attempt.
6012 */
6013static void mem_cgroup_bind(struct cgroup_subsys_state *root_css)
6014{
6015	/*
6016	 * use_hierarchy is forced on the default hierarchy.  cgroup core
6017	 * guarantees that @root doesn't have any children, so turning it
6018	 * on for the root memcg is enough.
6019	 */
6020	if (cgroup_subsys_on_dfl(memory_cgrp_subsys))
6021		root_mem_cgroup->use_hierarchy = true;
6022	else
6023		root_mem_cgroup->use_hierarchy = false;
6024}
6025
6026static int seq_puts_memcg_tunable(struct seq_file *m, unsigned long value)
6027{
6028	if (value == PAGE_COUNTER_MAX)
6029		seq_puts(m, "max\n");
6030	else
6031		seq_printf(m, "%llu\n", (u64)value * PAGE_SIZE);
6032
6033	return 0;
6034}
6035
6036static u64 memory_current_read(struct cgroup_subsys_state *css,
6037			       struct cftype *cft)
6038{
6039	struct mem_cgroup *memcg = mem_cgroup_from_css(css);
6040
6041	return (u64)page_counter_read(&memcg->memory) * PAGE_SIZE;
6042}
6043
6044static int memory_min_show(struct seq_file *m, void *v)
6045{
6046	return seq_puts_memcg_tunable(m,
6047		READ_ONCE(mem_cgroup_from_seq(m)->memory.min));
6048}
6049
6050static ssize_t memory_min_write(struct kernfs_open_file *of,
6051				char *buf, size_t nbytes, loff_t off)
6052{
6053	struct mem_cgroup *memcg = mem_cgroup_from_css(of_css(of));
6054	unsigned long min;
6055	int err;
6056
6057	buf = strstrip(buf);
6058	err = page_counter_memparse(buf, "max", &min);
6059	if (err)
6060		return err;
6061
6062	page_counter_set_min(&memcg->memory, min);
6063
6064	return nbytes;
6065}
6066
6067static int memory_low_show(struct seq_file *m, void *v)
6068{
6069	return seq_puts_memcg_tunable(m,
6070		READ_ONCE(mem_cgroup_from_seq(m)->memory.low));
6071}
6072
6073static ssize_t memory_low_write(struct kernfs_open_file *of,
6074				char *buf, size_t nbytes, loff_t off)
6075{
6076	struct mem_cgroup *memcg = mem_cgroup_from_css(of_css(of));
6077	unsigned long low;
6078	int err;
6079
6080	buf = strstrip(buf);
6081	err = page_counter_memparse(buf, "max", &low);
6082	if (err)
6083		return err;
6084
6085	page_counter_set_low(&memcg->memory, low);
6086
6087	return nbytes;
6088}
6089
6090static int memory_high_show(struct seq_file *m, void *v)
6091{
6092	return seq_puts_memcg_tunable(m, READ_ONCE(mem_cgroup_from_seq(m)->high));
6093}
6094
6095static ssize_t memory_high_write(struct kernfs_open_file *of,
6096				 char *buf, size_t nbytes, loff_t off)
6097{
6098	struct mem_cgroup *memcg = mem_cgroup_from_css(of_css(of));
6099	unsigned long nr_pages;
6100	unsigned long high;
6101	int err;
6102
6103	buf = strstrip(buf);
6104	err = page_counter_memparse(buf, "max", &high);
6105	if (err)
6106		return err;
6107
6108	memcg->high = high;
6109
6110	nr_pages = page_counter_read(&memcg->memory);
6111	if (nr_pages > high)
6112		try_to_free_mem_cgroup_pages(memcg, nr_pages - high,
6113					     GFP_KERNEL, true);
6114
6115	memcg_wb_domain_size_changed(memcg);
6116	return nbytes;
6117}
6118
6119static int memory_max_show(struct seq_file *m, void *v)
6120{
6121	return seq_puts_memcg_tunable(m,
6122		READ_ONCE(mem_cgroup_from_seq(m)->memory.max));
6123}
6124
6125static ssize_t memory_max_write(struct kernfs_open_file *of,
6126				char *buf, size_t nbytes, loff_t off)
6127{
6128	struct mem_cgroup *memcg = mem_cgroup_from_css(of_css(of));
6129	unsigned int nr_reclaims = MEM_CGROUP_RECLAIM_RETRIES;
6130	bool drained = false;
6131	unsigned long max;
6132	int err;
6133
6134	buf = strstrip(buf);
6135	err = page_counter_memparse(buf, "max", &max);
6136	if (err)
6137		return err;
6138
6139	xchg(&memcg->memory.max, max);
6140
6141	for (;;) {
6142		unsigned long nr_pages = page_counter_read(&memcg->memory);
6143
6144		if (nr_pages <= max)
6145			break;
6146
6147		if (signal_pending(current)) {
6148			err = -EINTR;
6149			break;
6150		}
6151
6152		if (!drained) {
6153			drain_all_stock(memcg);
6154			drained = true;
6155			continue;
6156		}
6157
6158		if (nr_reclaims) {
6159			if (!try_to_free_mem_cgroup_pages(memcg, nr_pages - max,
6160							  GFP_KERNEL, true))
6161				nr_reclaims--;
6162			continue;
6163		}
6164
6165		memcg_memory_event(memcg, MEMCG_OOM);
6166		if (!mem_cgroup_out_of_memory(memcg, GFP_KERNEL, 0))
6167			break;
6168	}
6169
6170	memcg_wb_domain_size_changed(memcg);
6171	return nbytes;
6172}
6173
6174static void __memory_events_show(struct seq_file *m, atomic_long_t *events)
6175{
6176	seq_printf(m, "low %lu\n", atomic_long_read(&events[MEMCG_LOW]));
6177	seq_printf(m, "high %lu\n", atomic_long_read(&events[MEMCG_HIGH]));
6178	seq_printf(m, "max %lu\n", atomic_long_read(&events[MEMCG_MAX]));
6179	seq_printf(m, "oom %lu\n", atomic_long_read(&events[MEMCG_OOM]));
6180	seq_printf(m, "oom_kill %lu\n",
6181		   atomic_long_read(&events[MEMCG_OOM_KILL]));
6182}
6183
6184static int memory_events_show(struct seq_file *m, void *v)
6185{
6186	struct mem_cgroup *memcg = mem_cgroup_from_seq(m);
6187
6188	__memory_events_show(m, memcg->memory_events);
6189	return 0;
6190}
6191
6192static int memory_events_local_show(struct seq_file *m, void *v)
6193{
6194	struct mem_cgroup *memcg = mem_cgroup_from_seq(m);
6195
6196	__memory_events_show(m, memcg->memory_events_local);
6197	return 0;
6198}
6199
6200static int memory_stat_show(struct seq_file *m, void *v)
6201{
6202	struct mem_cgroup *memcg = mem_cgroup_from_seq(m);
6203	char *buf;
6204
6205	buf = memory_stat_format(memcg);
6206	if (!buf)
6207		return -ENOMEM;
6208	seq_puts(m, buf);
6209	kfree(buf);
6210	return 0;
6211}
6212
6213static int memory_oom_group_show(struct seq_file *m, void *v)
6214{
6215	struct mem_cgroup *memcg = mem_cgroup_from_seq(m);
6216
6217	seq_printf(m, "%d\n", memcg->oom_group);
6218
6219	return 0;
6220}
6221
6222static ssize_t memory_oom_group_write(struct kernfs_open_file *of,
6223				      char *buf, size_t nbytes, loff_t off)
6224{
6225	struct mem_cgroup *memcg = mem_cgroup_from_css(of_css(of));
6226	int ret, oom_group;
6227
6228	buf = strstrip(buf);
6229	if (!buf)
6230		return -EINVAL;
6231
6232	ret = kstrtoint(buf, 0, &oom_group);
6233	if (ret)
6234		return ret;
6235
6236	if (oom_group != 0 && oom_group != 1)
6237		return -EINVAL;
6238
6239	memcg->oom_group = oom_group;
6240
6241	return nbytes;
6242}
6243
6244static struct cftype memory_files[] = {
6245	{
6246		.name = "current",
6247		.flags = CFTYPE_NOT_ON_ROOT,
6248		.read_u64 = memory_current_read,
6249	},
6250	{
6251		.name = "min",
6252		.flags = CFTYPE_NOT_ON_ROOT,
6253		.seq_show = memory_min_show,
6254		.write = memory_min_write,
6255	},
6256	{
6257		.name = "low",
6258		.flags = CFTYPE_NOT_ON_ROOT,
6259		.seq_show = memory_low_show,
6260		.write = memory_low_write,
6261	},
6262	{
6263		.name = "high",
6264		.flags = CFTYPE_NOT_ON_ROOT,
6265		.seq_show = memory_high_show,
6266		.write = memory_high_write,
6267	},
6268	{
6269		.name = "max",
6270		.flags = CFTYPE_NOT_ON_ROOT,
6271		.seq_show = memory_max_show,
6272		.write = memory_max_write,
6273	},
6274	{
6275		.name = "events",
6276		.flags = CFTYPE_NOT_ON_ROOT,
6277		.file_offset = offsetof(struct mem_cgroup, events_file),
6278		.seq_show = memory_events_show,
6279	},
6280	{
6281		.name = "events.local",
6282		.flags = CFTYPE_NOT_ON_ROOT,
6283		.file_offset = offsetof(struct mem_cgroup, events_local_file),
6284		.seq_show = memory_events_local_show,
6285	},
6286	{
6287		.name = "stat",
6288		.flags = CFTYPE_NOT_ON_ROOT,
6289		.seq_show = memory_stat_show,
6290	},
6291	{
6292		.name = "oom.group",
6293		.flags = CFTYPE_NOT_ON_ROOT | CFTYPE_NS_DELEGATABLE,
6294		.seq_show = memory_oom_group_show,
6295		.write = memory_oom_group_write,
6296	},
6297	{ }	/* terminate */
6298};
6299
6300struct cgroup_subsys memory_cgrp_subsys = {
6301	.css_alloc = mem_cgroup_css_alloc,
6302	.css_online = mem_cgroup_css_online,
6303	.css_offline = mem_cgroup_css_offline,
6304	.css_released = mem_cgroup_css_released,
6305	.css_free = mem_cgroup_css_free,
6306	.css_reset = mem_cgroup_css_reset,
6307	.can_attach = mem_cgroup_can_attach,
6308	.cancel_attach = mem_cgroup_cancel_attach,
6309	.post_attach = mem_cgroup_move_task,
6310	.bind = mem_cgroup_bind,
6311	.dfl_cftypes = memory_files,
6312	.legacy_cftypes = mem_cgroup_legacy_files,
6313	.early_init = 0,
 
6314};
6315
6316/**
6317 * mem_cgroup_protected - check if memory consumption is in the normal range
6318 * @root: the top ancestor of the sub-tree being checked
6319 * @memcg: the memory cgroup to check
6320 *
6321 * WARNING: This function is not stateless! It can only be used as part
6322 *          of a top-down tree iteration, not for isolated queries.
6323 *
6324 * Returns one of the following:
6325 *   MEMCG_PROT_NONE: cgroup memory is not protected
6326 *   MEMCG_PROT_LOW: cgroup memory is protected as long there is
6327 *     an unprotected supply of reclaimable memory from other cgroups.
6328 *   MEMCG_PROT_MIN: cgroup memory is protected
6329 *
6330 * @root is exclusive; it is never protected when looked at directly
6331 *
6332 * To provide a proper hierarchical behavior, effective memory.min/low values
6333 * are used. Below is the description of how effective memory.low is calculated.
6334 * Effective memory.min values is calculated in the same way.
6335 *
6336 * Effective memory.low is always equal or less than the original memory.low.
6337 * If there is no memory.low overcommittment (which is always true for
6338 * top-level memory cgroups), these two values are equal.
6339 * Otherwise, it's a part of parent's effective memory.low,
6340 * calculated as a cgroup's memory.low usage divided by sum of sibling's
6341 * memory.low usages, where memory.low usage is the size of actually
6342 * protected memory.
6343 *
6344 *                                             low_usage
6345 * elow = min( memory.low, parent->elow * ------------------ ),
6346 *                                        siblings_low_usage
6347 *
6348 *             | memory.current, if memory.current < memory.low
6349 * low_usage = |
6350 *	       | 0, otherwise.
6351 *
6352 *
6353 * Such definition of the effective memory.low provides the expected
6354 * hierarchical behavior: parent's memory.low value is limiting
6355 * children, unprotected memory is reclaimed first and cgroups,
6356 * which are not using their guarantee do not affect actual memory
6357 * distribution.
6358 *
6359 * For example, if there are memcgs A, A/B, A/C, A/D and A/E:
6360 *
6361 *     A      A/memory.low = 2G, A/memory.current = 6G
6362 *    //\\
6363 *   BC  DE   B/memory.low = 3G  B/memory.current = 2G
6364 *            C/memory.low = 1G  C/memory.current = 2G
6365 *            D/memory.low = 0   D/memory.current = 2G
6366 *            E/memory.low = 10G E/memory.current = 0
6367 *
6368 * and the memory pressure is applied, the following memory distribution
6369 * is expected (approximately):
6370 *
6371 *     A/memory.current = 2G
6372 *
6373 *     B/memory.current = 1.3G
6374 *     C/memory.current = 0.6G
6375 *     D/memory.current = 0
6376 *     E/memory.current = 0
6377 *
6378 * These calculations require constant tracking of the actual low usages
6379 * (see propagate_protected_usage()), as well as recursive calculation of
6380 * effective memory.low values. But as we do call mem_cgroup_protected()
6381 * path for each memory cgroup top-down from the reclaim,
6382 * it's possible to optimize this part, and save calculated elow
6383 * for next usage. This part is intentionally racy, but it's ok,
6384 * as memory.low is a best-effort mechanism.
6385 */
6386enum mem_cgroup_protection mem_cgroup_protected(struct mem_cgroup *root,
6387						struct mem_cgroup *memcg)
6388{
6389	struct mem_cgroup *parent;
6390	unsigned long emin, parent_emin;
6391	unsigned long elow, parent_elow;
6392	unsigned long usage;
6393
6394	if (mem_cgroup_disabled())
6395		return MEMCG_PROT_NONE;
6396
6397	if (!root)
6398		root = root_mem_cgroup;
6399	if (memcg == root)
6400		return MEMCG_PROT_NONE;
6401
6402	usage = page_counter_read(&memcg->memory);
6403	if (!usage)
6404		return MEMCG_PROT_NONE;
6405
6406	emin = memcg->memory.min;
6407	elow = memcg->memory.low;
6408
6409	parent = parent_mem_cgroup(memcg);
6410	/* No parent means a non-hierarchical mode on v1 memcg */
6411	if (!parent)
6412		return MEMCG_PROT_NONE;
6413
6414	if (parent == root)
6415		goto exit;
6416
6417	parent_emin = READ_ONCE(parent->memory.emin);
6418	emin = min(emin, parent_emin);
6419	if (emin && parent_emin) {
6420		unsigned long min_usage, siblings_min_usage;
6421
6422		min_usage = min(usage, memcg->memory.min);
6423		siblings_min_usage = atomic_long_read(
6424			&parent->memory.children_min_usage);
6425
6426		if (min_usage && siblings_min_usage)
6427			emin = min(emin, parent_emin * min_usage /
6428				   siblings_min_usage);
6429	}
6430
6431	parent_elow = READ_ONCE(parent->memory.elow);
6432	elow = min(elow, parent_elow);
6433	if (elow && parent_elow) {
6434		unsigned long low_usage, siblings_low_usage;
6435
6436		low_usage = min(usage, memcg->memory.low);
6437		siblings_low_usage = atomic_long_read(
6438			&parent->memory.children_low_usage);
6439
6440		if (low_usage && siblings_low_usage)
6441			elow = min(elow, parent_elow * low_usage /
6442				   siblings_low_usage);
6443	}
6444
6445exit:
6446	memcg->memory.emin = emin;
6447	memcg->memory.elow = elow;
6448
6449	if (usage <= emin)
6450		return MEMCG_PROT_MIN;
6451	else if (usage <= elow)
6452		return MEMCG_PROT_LOW;
6453	else
6454		return MEMCG_PROT_NONE;
6455}
6456
6457/**
6458 * mem_cgroup_try_charge - try charging a page
6459 * @page: page to charge
6460 * @mm: mm context of the victim
6461 * @gfp_mask: reclaim mode
6462 * @memcgp: charged memcg return
6463 * @compound: charge the page as compound or small page
6464 *
6465 * Try to charge @page to the memcg that @mm belongs to, reclaiming
6466 * pages according to @gfp_mask if necessary.
6467 *
6468 * Returns 0 on success, with *@memcgp pointing to the charged memcg.
6469 * Otherwise, an error code is returned.
6470 *
6471 * After page->mapping has been set up, the caller must finalize the
6472 * charge with mem_cgroup_commit_charge().  Or abort the transaction
6473 * with mem_cgroup_cancel_charge() in case page instantiation fails.
6474 */
6475int mem_cgroup_try_charge(struct page *page, struct mm_struct *mm,
6476			  gfp_t gfp_mask, struct mem_cgroup **memcgp,
6477			  bool compound)
6478{
6479	struct mem_cgroup *memcg = NULL;
6480	unsigned int nr_pages = compound ? hpage_nr_pages(page) : 1;
6481	int ret = 0;
6482
6483	if (mem_cgroup_disabled())
6484		goto out;
6485
6486	if (PageSwapCache(page)) {
6487		/*
6488		 * Every swap fault against a single page tries to charge the
6489		 * page, bail as early as possible.  shmem_unuse() encounters
6490		 * already charged pages, too.  The USED bit is protected by
6491		 * the page lock, which serializes swap cache removal, which
6492		 * in turn serializes uncharging.
6493		 */
6494		VM_BUG_ON_PAGE(!PageLocked(page), page);
6495		if (compound_head(page)->mem_cgroup)
6496			goto out;
6497
6498		if (do_swap_account) {
6499			swp_entry_t ent = { .val = page_private(page), };
6500			unsigned short id = lookup_swap_cgroup_id(ent);
6501
6502			rcu_read_lock();
6503			memcg = mem_cgroup_from_id(id);
6504			if (memcg && !css_tryget_online(&memcg->css))
6505				memcg = NULL;
6506			rcu_read_unlock();
6507		}
6508	}
6509
6510	if (!memcg)
6511		memcg = get_mem_cgroup_from_mm(mm);
6512
6513	ret = try_charge(memcg, gfp_mask, nr_pages);
6514
6515	css_put(&memcg->css);
6516out:
6517	*memcgp = memcg;
6518	return ret;
6519}
6520
6521int mem_cgroup_try_charge_delay(struct page *page, struct mm_struct *mm,
6522			  gfp_t gfp_mask, struct mem_cgroup **memcgp,
6523			  bool compound)
6524{
6525	struct mem_cgroup *memcg;
6526	int ret;
6527
6528	ret = mem_cgroup_try_charge(page, mm, gfp_mask, memcgp, compound);
6529	memcg = *memcgp;
6530	mem_cgroup_throttle_swaprate(memcg, page_to_nid(page), gfp_mask);
6531	return ret;
6532}
6533
6534/**
6535 * mem_cgroup_commit_charge - commit a page charge
6536 * @page: page to charge
6537 * @memcg: memcg to charge the page to
6538 * @lrucare: page might be on LRU already
6539 * @compound: charge the page as compound or small page
6540 *
6541 * Finalize a charge transaction started by mem_cgroup_try_charge(),
6542 * after page->mapping has been set up.  This must happen atomically
6543 * as part of the page instantiation, i.e. under the page table lock
6544 * for anonymous pages, under the page lock for page and swap cache.
6545 *
6546 * In addition, the page must not be on the LRU during the commit, to
6547 * prevent racing with task migration.  If it might be, use @lrucare.
6548 *
6549 * Use mem_cgroup_cancel_charge() to cancel the transaction instead.
6550 */
6551void mem_cgroup_commit_charge(struct page *page, struct mem_cgroup *memcg,
6552			      bool lrucare, bool compound)
6553{
6554	unsigned int nr_pages = compound ? hpage_nr_pages(page) : 1;
6555
6556	VM_BUG_ON_PAGE(!page->mapping, page);
6557	VM_BUG_ON_PAGE(PageLRU(page) && !lrucare, page);
6558
6559	if (mem_cgroup_disabled())
6560		return;
6561	/*
6562	 * Swap faults will attempt to charge the same page multiple
6563	 * times.  But reuse_swap_page() might have removed the page
6564	 * from swapcache already, so we can't check PageSwapCache().
6565	 */
6566	if (!memcg)
6567		return;
6568
6569	commit_charge(page, memcg, lrucare);
6570
6571	local_irq_disable();
6572	mem_cgroup_charge_statistics(memcg, page, compound, nr_pages);
6573	memcg_check_events(memcg, page);
6574	local_irq_enable();
6575
6576	if (do_memsw_account() && PageSwapCache(page)) {
6577		swp_entry_t entry = { .val = page_private(page) };
6578		/*
6579		 * The swap entry might not get freed for a long time,
6580		 * let's not wait for it.  The page already received a
6581		 * memory+swap charge, drop the swap entry duplicate.
6582		 */
6583		mem_cgroup_uncharge_swap(entry, nr_pages);
6584	}
6585}
6586
6587/**
6588 * mem_cgroup_cancel_charge - cancel a page charge
6589 * @page: page to charge
6590 * @memcg: memcg to charge the page to
6591 * @compound: charge the page as compound or small page
6592 *
6593 * Cancel a charge transaction started by mem_cgroup_try_charge().
6594 */
6595void mem_cgroup_cancel_charge(struct page *page, struct mem_cgroup *memcg,
6596		bool compound)
6597{
6598	unsigned int nr_pages = compound ? hpage_nr_pages(page) : 1;
6599
6600	if (mem_cgroup_disabled())
6601		return;
6602	/*
6603	 * Swap faults will attempt to charge the same page multiple
6604	 * times.  But reuse_swap_page() might have removed the page
6605	 * from swapcache already, so we can't check PageSwapCache().
6606	 */
6607	if (!memcg)
6608		return;
6609
6610	cancel_charge(memcg, nr_pages);
6611}
6612
6613struct uncharge_gather {
6614	struct mem_cgroup *memcg;
6615	unsigned long pgpgout;
6616	unsigned long nr_anon;
6617	unsigned long nr_file;
6618	unsigned long nr_kmem;
6619	unsigned long nr_huge;
6620	unsigned long nr_shmem;
6621	struct page *dummy_page;
6622};
6623
6624static inline void uncharge_gather_clear(struct uncharge_gather *ug)
6625{
6626	memset(ug, 0, sizeof(*ug));
6627}
6628
6629static void uncharge_batch(const struct uncharge_gather *ug)
6630{
6631	unsigned long nr_pages = ug->nr_anon + ug->nr_file + ug->nr_kmem;
6632	unsigned long flags;
6633
6634	if (!mem_cgroup_is_root(ug->memcg)) {
6635		page_counter_uncharge(&ug->memcg->memory, nr_pages);
6636		if (do_memsw_account())
6637			page_counter_uncharge(&ug->memcg->memsw, nr_pages);
6638		if (!cgroup_subsys_on_dfl(memory_cgrp_subsys) && ug->nr_kmem)
6639			page_counter_uncharge(&ug->memcg->kmem, ug->nr_kmem);
6640		memcg_oom_recover(ug->memcg);
6641	}
6642
6643	local_irq_save(flags);
6644	__mod_memcg_state(ug->memcg, MEMCG_RSS, -ug->nr_anon);
6645	__mod_memcg_state(ug->memcg, MEMCG_CACHE, -ug->nr_file);
6646	__mod_memcg_state(ug->memcg, MEMCG_RSS_HUGE, -ug->nr_huge);
6647	__mod_memcg_state(ug->memcg, NR_SHMEM, -ug->nr_shmem);
6648	__count_memcg_events(ug->memcg, PGPGOUT, ug->pgpgout);
6649	__this_cpu_add(ug->memcg->vmstats_percpu->nr_page_events, nr_pages);
6650	memcg_check_events(ug->memcg, ug->dummy_page);
6651	local_irq_restore(flags);
6652
6653	if (!mem_cgroup_is_root(ug->memcg))
6654		css_put_many(&ug->memcg->css, nr_pages);
6655}
6656
6657static void uncharge_page(struct page *page, struct uncharge_gather *ug)
6658{
6659	VM_BUG_ON_PAGE(PageLRU(page), page);
6660	VM_BUG_ON_PAGE(page_count(page) && !is_zone_device_page(page) &&
6661			!PageHWPoison(page) , page);
6662
6663	if (!page->mem_cgroup)
6664		return;
6665
6666	/*
6667	 * Nobody should be changing or seriously looking at
6668	 * page->mem_cgroup at this point, we have fully
6669	 * exclusive access to the page.
6670	 */
6671
6672	if (ug->memcg != page->mem_cgroup) {
6673		if (ug->memcg) {
6674			uncharge_batch(ug);
6675			uncharge_gather_clear(ug);
6676		}
6677		ug->memcg = page->mem_cgroup;
6678	}
6679
6680	if (!PageKmemcg(page)) {
6681		unsigned int nr_pages = 1;
6682
6683		if (PageTransHuge(page)) {
6684			nr_pages = compound_nr(page);
6685			ug->nr_huge += nr_pages;
6686		}
6687		if (PageAnon(page))
6688			ug->nr_anon += nr_pages;
6689		else {
6690			ug->nr_file += nr_pages;
6691			if (PageSwapBacked(page))
6692				ug->nr_shmem += nr_pages;
6693		}
6694		ug->pgpgout++;
6695	} else {
6696		ug->nr_kmem += compound_nr(page);
6697		__ClearPageKmemcg(page);
6698	}
6699
6700	ug->dummy_page = page;
6701	page->mem_cgroup = NULL;
6702}
6703
6704static void uncharge_list(struct list_head *page_list)
6705{
6706	struct uncharge_gather ug;
6707	struct list_head *next;
6708
6709	uncharge_gather_clear(&ug);
6710
6711	/*
6712	 * Note that the list can be a single page->lru; hence the
6713	 * do-while loop instead of a simple list_for_each_entry().
6714	 */
6715	next = page_list->next;
6716	do {
6717		struct page *page;
6718
6719		page = list_entry(next, struct page, lru);
6720		next = page->lru.next;
6721
6722		uncharge_page(page, &ug);
6723	} while (next != page_list);
6724
6725	if (ug.memcg)
6726		uncharge_batch(&ug);
6727}
6728
6729/**
6730 * mem_cgroup_uncharge - uncharge a page
6731 * @page: page to uncharge
6732 *
6733 * Uncharge a page previously charged with mem_cgroup_try_charge() and
6734 * mem_cgroup_commit_charge().
6735 */
6736void mem_cgroup_uncharge(struct page *page)
6737{
6738	struct uncharge_gather ug;
6739
6740	if (mem_cgroup_disabled())
6741		return;
6742
6743	/* Don't touch page->lru of any random page, pre-check: */
6744	if (!page->mem_cgroup)
6745		return;
6746
6747	uncharge_gather_clear(&ug);
6748	uncharge_page(page, &ug);
6749	uncharge_batch(&ug);
6750}
6751
6752/**
6753 * mem_cgroup_uncharge_list - uncharge a list of page
6754 * @page_list: list of pages to uncharge
6755 *
6756 * Uncharge a list of pages previously charged with
6757 * mem_cgroup_try_charge() and mem_cgroup_commit_charge().
6758 */
6759void mem_cgroup_uncharge_list(struct list_head *page_list)
6760{
6761	if (mem_cgroup_disabled())
6762		return;
6763
6764	if (!list_empty(page_list))
6765		uncharge_list(page_list);
6766}
6767
6768/**
6769 * mem_cgroup_migrate - charge a page's replacement
6770 * @oldpage: currently circulating page
6771 * @newpage: replacement page
6772 *
6773 * Charge @newpage as a replacement page for @oldpage. @oldpage will
6774 * be uncharged upon free.
6775 *
6776 * Both pages must be locked, @newpage->mapping must be set up.
6777 */
6778void mem_cgroup_migrate(struct page *oldpage, struct page *newpage)
6779{
6780	struct mem_cgroup *memcg;
6781	unsigned int nr_pages;
6782	bool compound;
6783	unsigned long flags;
6784
6785	VM_BUG_ON_PAGE(!PageLocked(oldpage), oldpage);
6786	VM_BUG_ON_PAGE(!PageLocked(newpage), newpage);
6787	VM_BUG_ON_PAGE(PageAnon(oldpage) != PageAnon(newpage), newpage);
6788	VM_BUG_ON_PAGE(PageTransHuge(oldpage) != PageTransHuge(newpage),
6789		       newpage);
6790
6791	if (mem_cgroup_disabled())
6792		return;
6793
6794	/* Page cache replacement: new page already charged? */
6795	if (newpage->mem_cgroup)
6796		return;
6797
6798	/* Swapcache readahead pages can get replaced before being charged */
6799	memcg = oldpage->mem_cgroup;
6800	if (!memcg)
6801		return;
6802
6803	/* Force-charge the new page. The old one will be freed soon */
6804	compound = PageTransHuge(newpage);
6805	nr_pages = compound ? hpage_nr_pages(newpage) : 1;
6806
6807	page_counter_charge(&memcg->memory, nr_pages);
6808	if (do_memsw_account())
6809		page_counter_charge(&memcg->memsw, nr_pages);
6810	css_get_many(&memcg->css, nr_pages);
6811
6812	commit_charge(newpage, memcg, false);
6813
6814	local_irq_save(flags);
6815	mem_cgroup_charge_statistics(memcg, newpage, compound, nr_pages);
6816	memcg_check_events(memcg, newpage);
6817	local_irq_restore(flags);
6818}
6819
6820DEFINE_STATIC_KEY_FALSE(memcg_sockets_enabled_key);
6821EXPORT_SYMBOL(memcg_sockets_enabled_key);
6822
6823void mem_cgroup_sk_alloc(struct sock *sk)
6824{
6825	struct mem_cgroup *memcg;
6826
6827	if (!mem_cgroup_sockets_enabled)
6828		return;
6829
6830	/*
6831	 * Socket cloning can throw us here with sk_memcg already
6832	 * filled. It won't however, necessarily happen from
6833	 * process context. So the test for root memcg given
6834	 * the current task's memcg won't help us in this case.
6835	 *
6836	 * Respecting the original socket's memcg is a better
6837	 * decision in this case.
6838	 */
6839	if (sk->sk_memcg) {
6840		css_get(&sk->sk_memcg->css);
6841		return;
6842	}
6843
6844	rcu_read_lock();
6845	memcg = mem_cgroup_from_task(current);
6846	if (memcg == root_mem_cgroup)
6847		goto out;
6848	if (!cgroup_subsys_on_dfl(memory_cgrp_subsys) && !memcg->tcpmem_active)
6849		goto out;
6850	if (css_tryget_online(&memcg->css))
6851		sk->sk_memcg = memcg;
6852out:
6853	rcu_read_unlock();
6854}
6855
6856void mem_cgroup_sk_free(struct sock *sk)
6857{
6858	if (sk->sk_memcg)
6859		css_put(&sk->sk_memcg->css);
6860}
6861
6862/**
6863 * mem_cgroup_charge_skmem - charge socket memory
6864 * @memcg: memcg to charge
6865 * @nr_pages: number of pages to charge
6866 *
6867 * Charges @nr_pages to @memcg. Returns %true if the charge fit within
6868 * @memcg's configured limit, %false if the charge had to be forced.
6869 */
6870bool mem_cgroup_charge_skmem(struct mem_cgroup *memcg, unsigned int nr_pages)
6871{
6872	gfp_t gfp_mask = GFP_KERNEL;
6873
6874	if (!cgroup_subsys_on_dfl(memory_cgrp_subsys)) {
6875		struct page_counter *fail;
6876
6877		if (page_counter_try_charge(&memcg->tcpmem, nr_pages, &fail)) {
6878			memcg->tcpmem_pressure = 0;
6879			return true;
6880		}
6881		page_counter_charge(&memcg->tcpmem, nr_pages);
6882		memcg->tcpmem_pressure = 1;
6883		return false;
6884	}
6885
6886	/* Don't block in the packet receive path */
6887	if (in_softirq())
6888		gfp_mask = GFP_NOWAIT;
6889
6890	mod_memcg_state(memcg, MEMCG_SOCK, nr_pages);
6891
6892	if (try_charge(memcg, gfp_mask, nr_pages) == 0)
6893		return true;
6894
6895	try_charge(memcg, gfp_mask|__GFP_NOFAIL, nr_pages);
6896	return false;
6897}
6898
6899/**
6900 * mem_cgroup_uncharge_skmem - uncharge socket memory
6901 * @memcg: memcg to uncharge
6902 * @nr_pages: number of pages to uncharge
6903 */
6904void mem_cgroup_uncharge_skmem(struct mem_cgroup *memcg, unsigned int nr_pages)
6905{
6906	if (!cgroup_subsys_on_dfl(memory_cgrp_subsys)) {
6907		page_counter_uncharge(&memcg->tcpmem, nr_pages);
6908		return;
6909	}
6910
6911	mod_memcg_state(memcg, MEMCG_SOCK, -nr_pages);
6912
6913	refill_stock(memcg, nr_pages);
6914}
6915
6916static int __init cgroup_memory(char *s)
6917{
6918	char *token;
6919
6920	while ((token = strsep(&s, ",")) != NULL) {
6921		if (!*token)
6922			continue;
6923		if (!strcmp(token, "nosocket"))
6924			cgroup_memory_nosocket = true;
6925		if (!strcmp(token, "nokmem"))
6926			cgroup_memory_nokmem = true;
6927	}
6928	return 0;
6929}
6930__setup("cgroup.memory=", cgroup_memory);
6931
6932/*
6933 * subsys_initcall() for memory controller.
6934 *
6935 * Some parts like memcg_hotplug_cpu_dead() have to be initialized from this
6936 * context because of lock dependencies (cgroup_lock -> cpu hotplug) but
6937 * basically everything that doesn't depend on a specific mem_cgroup structure
6938 * should be initialized from here.
6939 */
6940static int __init mem_cgroup_init(void)
6941{
6942	int cpu, node;
6943
6944#ifdef CONFIG_MEMCG_KMEM
6945	/*
6946	 * Kmem cache creation is mostly done with the slab_mutex held,
6947	 * so use a workqueue with limited concurrency to avoid stalling
6948	 * all worker threads in case lots of cgroups are created and
6949	 * destroyed simultaneously.
6950	 */
6951	memcg_kmem_cache_wq = alloc_workqueue("memcg_kmem_cache", 0, 1);
6952	BUG_ON(!memcg_kmem_cache_wq);
6953#endif
6954
6955	cpuhp_setup_state_nocalls(CPUHP_MM_MEMCQ_DEAD, "mm/memctrl:dead", NULL,
6956				  memcg_hotplug_cpu_dead);
6957
6958	for_each_possible_cpu(cpu)
6959		INIT_WORK(&per_cpu_ptr(&memcg_stock, cpu)->work,
6960			  drain_local_stock);
6961
6962	for_each_node(node) {
6963		struct mem_cgroup_tree_per_node *rtpn;
6964
6965		rtpn = kzalloc_node(sizeof(*rtpn), GFP_KERNEL,
6966				    node_online(node) ? node : NUMA_NO_NODE);
6967
6968		rtpn->rb_root = RB_ROOT;
6969		rtpn->rb_rightmost = NULL;
6970		spin_lock_init(&rtpn->lock);
6971		soft_limit_tree.rb_tree_per_node[node] = rtpn;
6972	}
6973
6974	return 0;
6975}
6976subsys_initcall(mem_cgroup_init);
6977
6978#ifdef CONFIG_MEMCG_SWAP
6979static struct mem_cgroup *mem_cgroup_id_get_online(struct mem_cgroup *memcg)
6980{
6981	while (!refcount_inc_not_zero(&memcg->id.ref)) {
6982		/*
6983		 * The root cgroup cannot be destroyed, so it's refcount must
6984		 * always be >= 1.
6985		 */
6986		if (WARN_ON_ONCE(memcg == root_mem_cgroup)) {
6987			VM_BUG_ON(1);
6988			break;
6989		}
6990		memcg = parent_mem_cgroup(memcg);
6991		if (!memcg)
6992			memcg = root_mem_cgroup;
6993	}
6994	return memcg;
6995}
6996
6997/**
6998 * mem_cgroup_swapout - transfer a memsw charge to swap
6999 * @page: page whose memsw charge to transfer
7000 * @entry: swap entry to move the charge to
7001 *
7002 * Transfer the memsw charge of @page to @entry.
7003 */
7004void mem_cgroup_swapout(struct page *page, swp_entry_t entry)
7005{
7006	struct mem_cgroup *memcg, *swap_memcg;
7007	unsigned int nr_entries;
7008	unsigned short oldid;
7009
7010	VM_BUG_ON_PAGE(PageLRU(page), page);
7011	VM_BUG_ON_PAGE(page_count(page), page);
7012
7013	if (!do_memsw_account())
7014		return;
7015
7016	memcg = page->mem_cgroup;
7017
7018	/* Readahead page, never charged */
7019	if (!memcg)
7020		return;
7021
7022	/*
7023	 * In case the memcg owning these pages has been offlined and doesn't
7024	 * have an ID allocated to it anymore, charge the closest online
7025	 * ancestor for the swap instead and transfer the memory+swap charge.
7026	 */
7027	swap_memcg = mem_cgroup_id_get_online(memcg);
7028	nr_entries = hpage_nr_pages(page);
7029	/* Get references for the tail pages, too */
7030	if (nr_entries > 1)
7031		mem_cgroup_id_get_many(swap_memcg, nr_entries - 1);
7032	oldid = swap_cgroup_record(entry, mem_cgroup_id(swap_memcg),
7033				   nr_entries);
7034	VM_BUG_ON_PAGE(oldid, page);
7035	mod_memcg_state(swap_memcg, MEMCG_SWAP, nr_entries);
7036
7037	page->mem_cgroup = NULL;
7038
7039	if (!mem_cgroup_is_root(memcg))
7040		page_counter_uncharge(&memcg->memory, nr_entries);
7041
7042	if (memcg != swap_memcg) {
7043		if (!mem_cgroup_is_root(swap_memcg))
7044			page_counter_charge(&swap_memcg->memsw, nr_entries);
7045		page_counter_uncharge(&memcg->memsw, nr_entries);
7046	}
7047
7048	/*
7049	 * Interrupts should be disabled here because the caller holds the
7050	 * i_pages lock which is taken with interrupts-off. It is
7051	 * important here to have the interrupts disabled because it is the
7052	 * only synchronisation we have for updating the per-CPU variables.
7053	 */
7054	VM_BUG_ON(!irqs_disabled());
7055	mem_cgroup_charge_statistics(memcg, page, PageTransHuge(page),
7056				     -nr_entries);
7057	memcg_check_events(memcg, page);
7058
7059	if (!mem_cgroup_is_root(memcg))
7060		css_put_many(&memcg->css, nr_entries);
7061}
7062
7063/**
7064 * mem_cgroup_try_charge_swap - try charging swap space for a page
7065 * @page: page being added to swap
7066 * @entry: swap entry to charge
7067 *
7068 * Try to charge @page's memcg for the swap space at @entry.
7069 *
7070 * Returns 0 on success, -ENOMEM on failure.
7071 */
7072int mem_cgroup_try_charge_swap(struct page *page, swp_entry_t entry)
7073{
7074	unsigned int nr_pages = hpage_nr_pages(page);
7075	struct page_counter *counter;
7076	struct mem_cgroup *memcg;
7077	unsigned short oldid;
7078
7079	if (!cgroup_subsys_on_dfl(memory_cgrp_subsys) || !do_swap_account)
7080		return 0;
7081
7082	memcg = page->mem_cgroup;
7083
7084	/* Readahead page, never charged */
7085	if (!memcg)
7086		return 0;
7087
7088	if (!entry.val) {
7089		memcg_memory_event(memcg, MEMCG_SWAP_FAIL);
7090		return 0;
7091	}
7092
7093	memcg = mem_cgroup_id_get_online(memcg);
7094
7095	if (!mem_cgroup_is_root(memcg) &&
7096	    !page_counter_try_charge(&memcg->swap, nr_pages, &counter)) {
7097		memcg_memory_event(memcg, MEMCG_SWAP_MAX);
7098		memcg_memory_event(memcg, MEMCG_SWAP_FAIL);
7099		mem_cgroup_id_put(memcg);
7100		return -ENOMEM;
7101	}
7102
7103	/* Get references for the tail pages, too */
7104	if (nr_pages > 1)
7105		mem_cgroup_id_get_many(memcg, nr_pages - 1);
7106	oldid = swap_cgroup_record(entry, mem_cgroup_id(memcg), nr_pages);
7107	VM_BUG_ON_PAGE(oldid, page);
7108	mod_memcg_state(memcg, MEMCG_SWAP, nr_pages);
7109
7110	return 0;
7111}
7112
7113/**
7114 * mem_cgroup_uncharge_swap - uncharge swap space
7115 * @entry: swap entry to uncharge
7116 * @nr_pages: the amount of swap space to uncharge
7117 */
7118void mem_cgroup_uncharge_swap(swp_entry_t entry, unsigned int nr_pages)
7119{
7120	struct mem_cgroup *memcg;
7121	unsigned short id;
7122
7123	if (!do_swap_account)
7124		return;
7125
7126	id = swap_cgroup_record(entry, 0, nr_pages);
7127	rcu_read_lock();
7128	memcg = mem_cgroup_from_id(id);
7129	if (memcg) {
7130		if (!mem_cgroup_is_root(memcg)) {
7131			if (cgroup_subsys_on_dfl(memory_cgrp_subsys))
7132				page_counter_uncharge(&memcg->swap, nr_pages);
7133			else
7134				page_counter_uncharge(&memcg->memsw, nr_pages);
7135		}
7136		mod_memcg_state(memcg, MEMCG_SWAP, -nr_pages);
7137		mem_cgroup_id_put_many(memcg, nr_pages);
7138	}
7139	rcu_read_unlock();
7140}
7141
7142long mem_cgroup_get_nr_swap_pages(struct mem_cgroup *memcg)
7143{
7144	long nr_swap_pages = get_nr_swap_pages();
7145
7146	if (!do_swap_account || !cgroup_subsys_on_dfl(memory_cgrp_subsys))
7147		return nr_swap_pages;
7148	for (; memcg != root_mem_cgroup; memcg = parent_mem_cgroup(memcg))
7149		nr_swap_pages = min_t(long, nr_swap_pages,
7150				      READ_ONCE(memcg->swap.max) -
7151				      page_counter_read(&memcg->swap));
7152	return nr_swap_pages;
7153}
7154
7155bool mem_cgroup_swap_full(struct page *page)
7156{
7157	struct mem_cgroup *memcg;
7158
7159	VM_BUG_ON_PAGE(!PageLocked(page), page);
7160
7161	if (vm_swap_full())
7162		return true;
7163	if (!do_swap_account || !cgroup_subsys_on_dfl(memory_cgrp_subsys))
7164		return false;
7165
7166	memcg = page->mem_cgroup;
7167	if (!memcg)
7168		return false;
7169
7170	for (; memcg != root_mem_cgroup; memcg = parent_mem_cgroup(memcg))
7171		if (page_counter_read(&memcg->swap) * 2 >= memcg->swap.max)
7172			return true;
7173
7174	return false;
7175}
7176
7177/* for remember boot option*/
7178#ifdef CONFIG_MEMCG_SWAP_ENABLED
7179static int really_do_swap_account __initdata = 1;
7180#else
7181static int really_do_swap_account __initdata;
7182#endif
7183
7184static int __init enable_swap_account(char *s)
7185{
 
7186	if (!strcmp(s, "1"))
7187		really_do_swap_account = 1;
7188	else if (!strcmp(s, "0"))
7189		really_do_swap_account = 0;
7190	return 1;
7191}
7192__setup("swapaccount=", enable_swap_account);
7193
7194static u64 swap_current_read(struct cgroup_subsys_state *css,
7195			     struct cftype *cft)
7196{
7197	struct mem_cgroup *memcg = mem_cgroup_from_css(css);
7198
7199	return (u64)page_counter_read(&memcg->swap) * PAGE_SIZE;
7200}
7201
7202static int swap_max_show(struct seq_file *m, void *v)
7203{
7204	return seq_puts_memcg_tunable(m,
7205		READ_ONCE(mem_cgroup_from_seq(m)->swap.max));
7206}
7207
7208static ssize_t swap_max_write(struct kernfs_open_file *of,
7209			      char *buf, size_t nbytes, loff_t off)
7210{
7211	struct mem_cgroup *memcg = mem_cgroup_from_css(of_css(of));
7212	unsigned long max;
7213	int err;
7214
7215	buf = strstrip(buf);
7216	err = page_counter_memparse(buf, "max", &max);
7217	if (err)
7218		return err;
7219
7220	xchg(&memcg->swap.max, max);
7221
7222	return nbytes;
7223}
7224
7225static int swap_events_show(struct seq_file *m, void *v)
7226{
7227	struct mem_cgroup *memcg = mem_cgroup_from_seq(m);
7228
7229	seq_printf(m, "max %lu\n",
7230		   atomic_long_read(&memcg->memory_events[MEMCG_SWAP_MAX]));
7231	seq_printf(m, "fail %lu\n",
7232		   atomic_long_read(&memcg->memory_events[MEMCG_SWAP_FAIL]));
7233
7234	return 0;
7235}
7236
7237static struct cftype swap_files[] = {
7238	{
7239		.name = "swap.current",
7240		.flags = CFTYPE_NOT_ON_ROOT,
7241		.read_u64 = swap_current_read,
7242	},
7243	{
7244		.name = "swap.max",
7245		.flags = CFTYPE_NOT_ON_ROOT,
7246		.seq_show = swap_max_show,
7247		.write = swap_max_write,
7248	},
7249	{
7250		.name = "swap.events",
7251		.flags = CFTYPE_NOT_ON_ROOT,
7252		.file_offset = offsetof(struct mem_cgroup, swap_events_file),
7253		.seq_show = swap_events_show,
7254	},
7255	{ }	/* terminate */
7256};
7257
7258static struct cftype memsw_cgroup_files[] = {
7259	{
7260		.name = "memsw.usage_in_bytes",
7261		.private = MEMFILE_PRIVATE(_MEMSWAP, RES_USAGE),
7262		.read_u64 = mem_cgroup_read_u64,
7263	},
7264	{
7265		.name = "memsw.max_usage_in_bytes",
7266		.private = MEMFILE_PRIVATE(_MEMSWAP, RES_MAX_USAGE),
7267		.write = mem_cgroup_reset,
7268		.read_u64 = mem_cgroup_read_u64,
7269	},
7270	{
7271		.name = "memsw.limit_in_bytes",
7272		.private = MEMFILE_PRIVATE(_MEMSWAP, RES_LIMIT),
7273		.write = mem_cgroup_write,
7274		.read_u64 = mem_cgroup_read_u64,
7275	},
7276	{
7277		.name = "memsw.failcnt",
7278		.private = MEMFILE_PRIVATE(_MEMSWAP, RES_FAILCNT),
7279		.write = mem_cgroup_reset,
7280		.read_u64 = mem_cgroup_read_u64,
7281	},
7282	{ },	/* terminate */
7283};
7284
7285static int __init mem_cgroup_swap_init(void)
7286{
7287	if (!mem_cgroup_disabled() && really_do_swap_account) {
7288		do_swap_account = 1;
7289		WARN_ON(cgroup_add_dfl_cftypes(&memory_cgrp_subsys,
7290					       swap_files));
7291		WARN_ON(cgroup_add_legacy_cftypes(&memory_cgrp_subsys,
7292						  memsw_cgroup_files));
7293	}
7294	return 0;
7295}
7296subsys_initcall(mem_cgroup_swap_init);
7297
7298#endif /* CONFIG_MEMCG_SWAP */