Linux Audio

Check our new training course

Loading...
v3.1
   1/* memcontrol.c - Memory Controller
   2 *
   3 * Copyright IBM Corporation, 2007
   4 * Author Balbir Singh <balbir@linux.vnet.ibm.com>
   5 *
   6 * Copyright 2007 OpenVZ SWsoft Inc
   7 * Author: Pavel Emelianov <xemul@openvz.org>
   8 *
   9 * Memory thresholds
  10 * Copyright (C) 2009 Nokia Corporation
  11 * Author: Kirill A. Shutemov
  12 *
 
 
 
 
 
 
 
 
 
 
  13 * This program is free software; you can redistribute it and/or modify
  14 * it under the terms of the GNU General Public License as published by
  15 * the Free Software Foundation; either version 2 of the License, or
  16 * (at your option) any later version.
  17 *
  18 * This program is distributed in the hope that it will be useful,
  19 * but WITHOUT ANY WARRANTY; without even the implied warranty of
  20 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
  21 * GNU General Public License for more details.
  22 */
  23
  24#include <linux/res_counter.h>
  25#include <linux/memcontrol.h>
  26#include <linux/cgroup.h>
  27#include <linux/mm.h>
  28#include <linux/hugetlb.h>
  29#include <linux/pagemap.h>
  30#include <linux/smp.h>
  31#include <linux/page-flags.h>
  32#include <linux/backing-dev.h>
  33#include <linux/bit_spinlock.h>
  34#include <linux/rcupdate.h>
  35#include <linux/limits.h>
 
  36#include <linux/mutex.h>
  37#include <linux/rbtree.h>
  38#include <linux/slab.h>
  39#include <linux/swap.h>
  40#include <linux/swapops.h>
  41#include <linux/spinlock.h>
  42#include <linux/eventfd.h>
 
  43#include <linux/sort.h>
  44#include <linux/fs.h>
  45#include <linux/seq_file.h>
  46#include <linux/vmalloc.h>
  47#include <linux/mm_inline.h>
  48#include <linux/page_cgroup.h>
  49#include <linux/cpu.h>
  50#include <linux/oom.h>
 
 
 
  51#include "internal.h"
 
 
 
  52
  53#include <asm/uaccess.h>
  54
  55#include <trace/events/vmscan.h>
  56
  57struct cgroup_subsys mem_cgroup_subsys __read_mostly;
  58#define MEM_CGROUP_RECLAIM_RETRIES	5
 
  59struct mem_cgroup *root_mem_cgroup __read_mostly;
  60
  61#ifdef CONFIG_CGROUP_MEM_RES_CTLR_SWAP
  62/* Turned on only when memory cgroup is enabled && really_do_swap_account = 1 */
  63int do_swap_account __read_mostly;
  64
  65/* for remember boot option*/
  66#ifdef CONFIG_CGROUP_MEM_RES_CTLR_SWAP_ENABLED
  67static int really_do_swap_account __initdata = 1;
  68#else
  69static int really_do_swap_account __initdata = 0;
  70#endif
  71
 
 
 
  72#else
  73#define do_swap_account		(0)
  74#endif
  75
 
 
 
 
 
  76
  77/*
  78 * Statistics for memory cgroup.
  79 */
  80enum mem_cgroup_stat_index {
  81	/*
  82	 * For MEM_CONTAINER_TYPE_ALL, usage = pagecache + rss.
  83	 */
  84	MEM_CGROUP_STAT_CACHE, 	   /* # of pages charged as cache */
  85	MEM_CGROUP_STAT_RSS,	   /* # of pages charged as anon rss */
  86	MEM_CGROUP_STAT_FILE_MAPPED,  /* # of pages charged as file rss */
  87	MEM_CGROUP_STAT_SWAPOUT, /* # of pages, swapped out */
  88	MEM_CGROUP_STAT_DATA, /* end of data requires synchronization */
  89	MEM_CGROUP_ON_MOVE,	/* someone is moving account between groups */
  90	MEM_CGROUP_STAT_NSTATS,
  91};
  92
  93enum mem_cgroup_events_index {
  94	MEM_CGROUP_EVENTS_PGPGIN,	/* # of pages paged in */
  95	MEM_CGROUP_EVENTS_PGPGOUT,	/* # of pages paged out */
  96	MEM_CGROUP_EVENTS_COUNT,	/* # of pages paged in/out */
  97	MEM_CGROUP_EVENTS_PGFAULT,	/* # of page-faults */
  98	MEM_CGROUP_EVENTS_PGMAJFAULT,	/* # of major page-faults */
  99	MEM_CGROUP_EVENTS_NSTATS,
 100};
 101/*
 102 * Per memcg event counter is incremented at every pagein/pageout. With THP,
 103 * it will be incremated by the number of pages. This counter is used for
 104 * for trigger some periodic events. This is straightforward and better
 105 * than using jiffies etc. to handle periodic memcg event.
 106 */
 107enum mem_cgroup_events_target {
 108	MEM_CGROUP_TARGET_THRESH,
 109	MEM_CGROUP_TARGET_SOFTLIMIT,
 110	MEM_CGROUP_TARGET_NUMAINFO,
 111	MEM_CGROUP_NTARGETS,
 112};
 113#define THRESHOLDS_EVENTS_TARGET (128)
 114#define SOFTLIMIT_EVENTS_TARGET (1024)
 115#define NUMAINFO_EVENTS_TARGET	(1024)
 116
 117struct mem_cgroup_stat_cpu {
 118	long count[MEM_CGROUP_STAT_NSTATS];
 119	unsigned long events[MEM_CGROUP_EVENTS_NSTATS];
 120	unsigned long targets[MEM_CGROUP_NTARGETS];
 121};
 122
 123/*
 124 * per-zone information in memory controller.
 125 */
 126struct mem_cgroup_per_zone {
 127	/*
 128	 * spin_lock to protect the per cgroup LRU
 129	 */
 130	struct list_head	lists[NR_LRU_LISTS];
 131	unsigned long		count[NR_LRU_LISTS];
 132
 133	struct zone_reclaim_stat reclaim_stat;
 134	struct rb_node		tree_node;	/* RB tree node */
 135	unsigned long long	usage_in_excess;/* Set to the value by which */
 136						/* the soft limit is exceeded*/
 137	bool			on_tree;
 138	struct mem_cgroup	*mem;		/* Back pointer, we cannot */
 139						/* use container_of	   */
 140};
 141/* Macro for accessing counter */
 142#define MEM_CGROUP_ZSTAT(mz, idx)	((mz)->count[(idx)])
 143
 144struct mem_cgroup_per_node {
 145	struct mem_cgroup_per_zone zoneinfo[MAX_NR_ZONES];
 
 
 
 
 146};
 147
 148struct mem_cgroup_lru_info {
 149	struct mem_cgroup_per_node *nodeinfo[MAX_NUMNODES];
 150};
 151
 152/*
 153 * Cgroups above their limits are maintained in a RB-Tree, independent of
 154 * their hierarchy representation
 155 */
 156
 157struct mem_cgroup_tree_per_zone {
 158	struct rb_root rb_root;
 159	spinlock_t lock;
 160};
 161
 162struct mem_cgroup_tree_per_node {
 163	struct mem_cgroup_tree_per_zone rb_tree_per_zone[MAX_NR_ZONES];
 164};
 165
 166struct mem_cgroup_tree {
 167	struct mem_cgroup_tree_per_node *rb_tree_per_node[MAX_NUMNODES];
 168};
 169
 170static struct mem_cgroup_tree soft_limit_tree __read_mostly;
 171
 172struct mem_cgroup_threshold {
 173	struct eventfd_ctx *eventfd;
 174	u64 threshold;
 175};
 176
 177/* For threshold */
 178struct mem_cgroup_threshold_ary {
 179	/* An array index points to threshold just below usage. */
 180	int current_threshold;
 181	/* Size of entries[] */
 182	unsigned int size;
 183	/* Array of thresholds */
 184	struct mem_cgroup_threshold entries[0];
 185};
 186
 187struct mem_cgroup_thresholds {
 188	/* Primary thresholds array */
 189	struct mem_cgroup_threshold_ary *primary;
 190	/*
 191	 * Spare threshold array.
 192	 * This is needed to make mem_cgroup_unregister_event() "never fail".
 193	 * It must be able to store at least primary->size - 1 entries.
 194	 */
 195	struct mem_cgroup_threshold_ary *spare;
 196};
 197
 198/* for OOM */
 199struct mem_cgroup_eventfd_list {
 200	struct list_head list;
 201	struct eventfd_ctx *eventfd;
 202};
 203
 204static void mem_cgroup_threshold(struct mem_cgroup *mem);
 205static void mem_cgroup_oom_notify(struct mem_cgroup *mem);
 206
 207/*
 208 * The memory controller data structure. The memory controller controls both
 209 * page cache and RSS per cgroup. We would eventually like to provide
 210 * statistics based on the statistics developed by Rik Van Riel for clock-pro,
 211 * to help the administrator determine what knobs to tune.
 212 *
 213 * TODO: Add a water mark for the memory controller. Reclaim will begin when
 214 * we hit the water mark. May be even add a low water mark, such that
 215 * no reclaim occurs from a cgroup at it's low water mark, this is
 216 * a feature that will be implemented much later in the future.
 217 */
 218struct mem_cgroup {
 219	struct cgroup_subsys_state css;
 220	/*
 221	 * the counter to account for memory usage
 222	 */
 223	struct res_counter res;
 224	/*
 225	 * the counter to account for mem+swap usage.
 226	 */
 227	struct res_counter memsw;
 228	/*
 229	 * Per cgroup active and inactive list, similar to the
 230	 * per zone LRU lists.
 231	 */
 232	struct mem_cgroup_lru_info info;
 233	/*
 234	 * While reclaiming in a hierarchy, we cache the last child we
 235	 * reclaimed from.
 236	 */
 237	int last_scanned_child;
 238	int last_scanned_node;
 239#if MAX_NUMNODES > 1
 240	nodemask_t	scan_nodes;
 241	atomic_t	numainfo_events;
 242	atomic_t	numainfo_updating;
 243#endif
 244	/*
 245	 * Should the accounting and control be hierarchical, per subtree?
 246	 */
 247	bool use_hierarchy;
 248
 249	bool		oom_lock;
 250	atomic_t	under_oom;
 251
 252	atomic_t	refcnt;
 253
 254	int	swappiness;
 255	/* OOM-Killer disable */
 256	int		oom_kill_disable;
 257
 258	/* set when res.limit == memsw.limit */
 259	bool		memsw_is_minimum;
 260
 261	/* protect arrays of thresholds */
 262	struct mutex thresholds_lock;
 263
 264	/* thresholds for memory usage. RCU-protected */
 265	struct mem_cgroup_thresholds thresholds;
 266
 267	/* thresholds for mem+swap usage. RCU-protected */
 268	struct mem_cgroup_thresholds memsw_thresholds;
 269
 270	/* For oom notifier event fd */
 271	struct list_head oom_notify;
 272
 273	/*
 274	 * Should we move charges of a task when a task is moved into this
 275	 * mem_cgroup ? And what type of charges should we move ?
 276	 */
 277	unsigned long 	move_charge_at_immigrate;
 278	/*
 279	 * percpu counter.
 280	 */
 281	struct mem_cgroup_stat_cpu *stat;
 282	/*
 283	 * used when a cpu is offlined or other synchronizations
 284	 * See mem_cgroup_read_stat().
 285	 */
 286	struct mem_cgroup_stat_cpu nocpu_base;
 287	spinlock_t pcp_counter_lock;
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 288};
 289
 
 
 
 290/* Stuffs for move charges at task migration. */
 291/*
 292 * Types of charges to be moved. "move_charge_at_immitgrate" is treated as a
 293 * left-shifted bitmap of these types.
 294 */
 295enum move_type {
 296	MOVE_CHARGE_TYPE_ANON,	/* private anonymous page and swap of it */
 297	MOVE_CHARGE_TYPE_FILE,	/* file page(including tmpfs) and swap of it */
 298	NR_MOVE_TYPE,
 299};
 300
 301/* "mc" and its members are protected by cgroup_mutex */
 302static struct move_charge_struct {
 303	spinlock_t	  lock; /* for from, to */
 
 304	struct mem_cgroup *from;
 305	struct mem_cgroup *to;
 
 306	unsigned long precharge;
 307	unsigned long moved_charge;
 308	unsigned long moved_swap;
 309	struct task_struct *moving_task;	/* a task moving charges */
 310	wait_queue_head_t waitq;		/* a waitq for other context */
 311} mc = {
 312	.lock = __SPIN_LOCK_UNLOCKED(mc.lock),
 313	.waitq = __WAIT_QUEUE_HEAD_INITIALIZER(mc.waitq),
 314};
 315
 316static bool move_anon(void)
 317{
 318	return test_bit(MOVE_CHARGE_TYPE_ANON,
 319					&mc.to->move_charge_at_immigrate);
 320}
 321
 322static bool move_file(void)
 323{
 324	return test_bit(MOVE_CHARGE_TYPE_FILE,
 325					&mc.to->move_charge_at_immigrate);
 326}
 327
 328/*
 329 * Maximum loops in mem_cgroup_hierarchical_reclaim(), used for soft
 330 * limit reclaim to prevent infinite loops, if they ever occur.
 331 */
 332#define	MEM_CGROUP_MAX_RECLAIM_LOOPS		(100)
 333#define	MEM_CGROUP_MAX_SOFT_LIMIT_RECLAIM_LOOPS	(2)
 334
 335enum charge_type {
 336	MEM_CGROUP_CHARGE_TYPE_CACHE = 0,
 337	MEM_CGROUP_CHARGE_TYPE_MAPPED,
 338	MEM_CGROUP_CHARGE_TYPE_SHMEM,	/* used by page migration of shmem */
 339	MEM_CGROUP_CHARGE_TYPE_FORCE,	/* used by force_empty */
 340	MEM_CGROUP_CHARGE_TYPE_SWAPOUT,	/* for accounting swapcache */
 341	MEM_CGROUP_CHARGE_TYPE_DROP,	/* a page was unused swap cache */
 342	NR_CHARGE_TYPE,
 343};
 344
 345/* for encoding cft->private value on file */
 346#define _MEM			(0)
 347#define _MEMSWAP		(1)
 348#define _OOM_TYPE		(2)
 349#define MEMFILE_PRIVATE(x, val)	(((x) << 16) | (val))
 350#define MEMFILE_TYPE(val)	(((val) >> 16) & 0xffff)
 
 
 
 
 
 351#define MEMFILE_ATTR(val)	((val) & 0xffff)
 352/* Used for OOM nofiier */
 353#define OOM_CONTROL		(0)
 354
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 355/*
 356 * Reclaim flags for mem_cgroup_hierarchical_reclaim
 
 
 
 
 
 
 
 
 
 357 */
 358#define MEM_CGROUP_RECLAIM_NOSWAP_BIT	0x0
 359#define MEM_CGROUP_RECLAIM_NOSWAP	(1 << MEM_CGROUP_RECLAIM_NOSWAP_BIT)
 360#define MEM_CGROUP_RECLAIM_SHRINK_BIT	0x1
 361#define MEM_CGROUP_RECLAIM_SHRINK	(1 << MEM_CGROUP_RECLAIM_SHRINK_BIT)
 362#define MEM_CGROUP_RECLAIM_SOFT_BIT	0x2
 363#define MEM_CGROUP_RECLAIM_SOFT		(1 << MEM_CGROUP_RECLAIM_SOFT_BIT)
 364
 365static void mem_cgroup_get(struct mem_cgroup *mem);
 366static void mem_cgroup_put(struct mem_cgroup *mem);
 367static struct mem_cgroup *parent_mem_cgroup(struct mem_cgroup *mem);
 368static void drain_all_stock_async(struct mem_cgroup *mem);
 
 
 369
 370static struct mem_cgroup_per_zone *
 371mem_cgroup_zoneinfo(struct mem_cgroup *mem, int nid, int zid)
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 372{
 373	return &mem->info.nodeinfo[nid]->zoneinfo[zid];
 
 
 
 
 
 
 
 374}
 375
 376struct cgroup_subsys_state *mem_cgroup_css(struct mem_cgroup *mem)
 
 
 
 
 
 
 
 
 
 
 
 
 
 377{
 378	return &mem->css;
 
 
 
 
 
 
 
 
 
 
 379}
 380
 381static struct mem_cgroup_per_zone *
 382page_cgroup_zoneinfo(struct mem_cgroup *mem, struct page *page)
 383{
 384	int nid = page_to_nid(page);
 385	int zid = page_zonenum(page);
 386
 387	return mem_cgroup_zoneinfo(mem, nid, zid);
 388}
 389
 390static struct mem_cgroup_tree_per_zone *
 391soft_limit_tree_node_zone(int nid, int zid)
 392{
 393	return &soft_limit_tree.rb_tree_per_node[nid]->rb_tree_per_zone[zid];
 394}
 395
 396static struct mem_cgroup_tree_per_zone *
 397soft_limit_tree_from_page(struct page *page)
 398{
 399	int nid = page_to_nid(page);
 400	int zid = page_zonenum(page);
 401
 402	return &soft_limit_tree.rb_tree_per_node[nid]->rb_tree_per_zone[zid];
 403}
 404
 405static void
 406__mem_cgroup_insert_exceeded(struct mem_cgroup *mem,
 407				struct mem_cgroup_per_zone *mz,
 408				struct mem_cgroup_tree_per_zone *mctz,
 409				unsigned long long new_usage_in_excess)
 410{
 411	struct rb_node **p = &mctz->rb_root.rb_node;
 412	struct rb_node *parent = NULL;
 413	struct mem_cgroup_per_zone *mz_node;
 414
 415	if (mz->on_tree)
 416		return;
 417
 418	mz->usage_in_excess = new_usage_in_excess;
 419	if (!mz->usage_in_excess)
 420		return;
 421	while (*p) {
 422		parent = *p;
 423		mz_node = rb_entry(parent, struct mem_cgroup_per_zone,
 424					tree_node);
 425		if (mz->usage_in_excess < mz_node->usage_in_excess)
 426			p = &(*p)->rb_left;
 427		/*
 428		 * We can't avoid mem cgroups that are over their soft
 429		 * limit by the same amount
 430		 */
 431		else if (mz->usage_in_excess >= mz_node->usage_in_excess)
 432			p = &(*p)->rb_right;
 433	}
 434	rb_link_node(&mz->tree_node, parent, p);
 435	rb_insert_color(&mz->tree_node, &mctz->rb_root);
 436	mz->on_tree = true;
 437}
 438
 439static void
 440__mem_cgroup_remove_exceeded(struct mem_cgroup *mem,
 441				struct mem_cgroup_per_zone *mz,
 442				struct mem_cgroup_tree_per_zone *mctz)
 443{
 444	if (!mz->on_tree)
 445		return;
 446	rb_erase(&mz->tree_node, &mctz->rb_root);
 447	mz->on_tree = false;
 448}
 449
 450static void
 451mem_cgroup_remove_exceeded(struct mem_cgroup *mem,
 452				struct mem_cgroup_per_zone *mz,
 453				struct mem_cgroup_tree_per_zone *mctz)
 454{
 455	spin_lock(&mctz->lock);
 456	__mem_cgroup_remove_exceeded(mem, mz, mctz);
 457	spin_unlock(&mctz->lock);
 
 
 458}
 459
 
 
 
 
 
 
 
 
 460
 461static void mem_cgroup_update_tree(struct mem_cgroup *mem, struct page *page)
 
 
 
 462{
 463	unsigned long long excess;
 464	struct mem_cgroup_per_zone *mz;
 465	struct mem_cgroup_tree_per_zone *mctz;
 466	int nid = page_to_nid(page);
 467	int zid = page_zonenum(page);
 468	mctz = soft_limit_tree_from_page(page);
 469
 
 470	/*
 471	 * Necessary to update all ancestors when hierarchy is used.
 472	 * because their event counter is not touched.
 473	 */
 474	for (; mem; mem = parent_mem_cgroup(mem)) {
 475		mz = mem_cgroup_zoneinfo(mem, nid, zid);
 476		excess = res_counter_soft_limit_excess(&mem->res);
 477		/*
 478		 * We have to update the tree if mz is on RB-tree or
 479		 * mem is over its softlimit.
 480		 */
 481		if (excess || mz->on_tree) {
 482			spin_lock(&mctz->lock);
 
 
 483			/* if on-tree, remove it */
 484			if (mz->on_tree)
 485				__mem_cgroup_remove_exceeded(mem, mz, mctz);
 486			/*
 487			 * Insert again. mz->usage_in_excess will be updated.
 488			 * If excess is 0, no tree ops.
 489			 */
 490			__mem_cgroup_insert_exceeded(mem, mz, mctz, excess);
 491			spin_unlock(&mctz->lock);
 492		}
 493	}
 494}
 495
 496static void mem_cgroup_remove_from_trees(struct mem_cgroup *mem)
 497{
 498	int node, zone;
 499	struct mem_cgroup_per_zone *mz;
 500	struct mem_cgroup_tree_per_zone *mctz;
 
 
 501
 502	for_each_node_state(node, N_POSSIBLE) {
 503		for (zone = 0; zone < MAX_NR_ZONES; zone++) {
 504			mz = mem_cgroup_zoneinfo(mem, node, zone);
 505			mctz = soft_limit_tree_node_zone(node, zone);
 506			mem_cgroup_remove_exceeded(mem, mz, mctz);
 507		}
 508	}
 509}
 510
 511static struct mem_cgroup_per_zone *
 512__mem_cgroup_largest_soft_limit_node(struct mem_cgroup_tree_per_zone *mctz)
 513{
 514	struct rb_node *rightmost = NULL;
 515	struct mem_cgroup_per_zone *mz;
 516
 517retry:
 518	mz = NULL;
 519	rightmost = rb_last(&mctz->rb_root);
 520	if (!rightmost)
 521		goto done;		/* Nothing to reclaim from */
 522
 523	mz = rb_entry(rightmost, struct mem_cgroup_per_zone, tree_node);
 524	/*
 525	 * Remove the node now but someone else can add it back,
 526	 * we will to add it back at the end of reclaim to its correct
 527	 * position in the tree.
 528	 */
 529	__mem_cgroup_remove_exceeded(mz->mem, mz, mctz);
 530	if (!res_counter_soft_limit_excess(&mz->mem->res) ||
 531		!css_tryget(&mz->mem->css))
 532		goto retry;
 533done:
 534	return mz;
 535}
 536
 537static struct mem_cgroup_per_zone *
 538mem_cgroup_largest_soft_limit_node(struct mem_cgroup_tree_per_zone *mctz)
 539{
 540	struct mem_cgroup_per_zone *mz;
 541
 542	spin_lock(&mctz->lock);
 543	mz = __mem_cgroup_largest_soft_limit_node(mctz);
 544	spin_unlock(&mctz->lock);
 545	return mz;
 546}
 547
 548/*
 
 
 549 * Implementation Note: reading percpu statistics for memcg.
 550 *
 551 * Both of vmstat[] and percpu_counter has threshold and do periodic
 552 * synchronization to implement "quick" read. There are trade-off between
 553 * reading cost and precision of value. Then, we may have a chance to implement
 554 * a periodic synchronizion of counter in memcg's counter.
 555 *
 556 * But this _read() function is used for user interface now. The user accounts
 557 * memory usage by memory cgroup and he _always_ requires exact value because
 558 * he accounts memory. Even if we provide quick-and-fuzzy read, we always
 559 * have to visit all online cpus and make sum. So, for now, unnecessary
 560 * synchronization is not implemented. (just implemented for cpu hotplug)
 561 *
 562 * If there are kernel internal actions which can make use of some not-exact
 563 * value, and reading all cpu value can be performance bottleneck in some
 564 * common workload, threashold and synchonization as vmstat[] should be
 565 * implemented.
 566 */
 567static long mem_cgroup_read_stat(struct mem_cgroup *mem,
 568				 enum mem_cgroup_stat_index idx)
 569{
 570	long val = 0;
 571	int cpu;
 572
 573	get_online_cpus();
 574	for_each_online_cpu(cpu)
 575		val += per_cpu(mem->stat->count[idx], cpu);
 576#ifdef CONFIG_HOTPLUG_CPU
 577	spin_lock(&mem->pcp_counter_lock);
 578	val += mem->nocpu_base.count[idx];
 579	spin_unlock(&mem->pcp_counter_lock);
 580#endif
 581	put_online_cpus();
 582	return val;
 583}
 584
 585static void mem_cgroup_swap_statistics(struct mem_cgroup *mem,
 586					 bool charge)
 587{
 588	int val = (charge) ? 1 : -1;
 589	this_cpu_add(mem->stat->count[MEM_CGROUP_STAT_SWAPOUT], val);
 590}
 591
 592void mem_cgroup_pgfault(struct mem_cgroup *mem, int val)
 593{
 594	this_cpu_add(mem->stat->events[MEM_CGROUP_EVENTS_PGFAULT], val);
 595}
 596
 597void mem_cgroup_pgmajfault(struct mem_cgroup *mem, int val)
 598{
 599	this_cpu_add(mem->stat->events[MEM_CGROUP_EVENTS_PGMAJFAULT], val);
 600}
 601
 602static unsigned long mem_cgroup_read_events(struct mem_cgroup *mem,
 603					    enum mem_cgroup_events_index idx)
 604{
 605	unsigned long val = 0;
 606	int cpu;
 607
 608	for_each_online_cpu(cpu)
 609		val += per_cpu(mem->stat->events[idx], cpu);
 610#ifdef CONFIG_HOTPLUG_CPU
 611	spin_lock(&mem->pcp_counter_lock);
 612	val += mem->nocpu_base.events[idx];
 613	spin_unlock(&mem->pcp_counter_lock);
 614#endif
 615	return val;
 616}
 617
 618static void mem_cgroup_charge_statistics(struct mem_cgroup *mem,
 619					 bool file, int nr_pages)
 
 620{
 621	preempt_disable();
 622
 623	if (file)
 624		__this_cpu_add(mem->stat->count[MEM_CGROUP_STAT_CACHE], nr_pages);
 
 
 
 625	else
 626		__this_cpu_add(mem->stat->count[MEM_CGROUP_STAT_RSS], nr_pages);
 
 
 
 
 
 
 
 627
 628	/* pagein of a big page is an event. So, ignore page size */
 629	if (nr_pages > 0)
 630		__this_cpu_inc(mem->stat->events[MEM_CGROUP_EVENTS_PGPGIN]);
 631	else {
 632		__this_cpu_inc(mem->stat->events[MEM_CGROUP_EVENTS_PGPGOUT]);
 633		nr_pages = -nr_pages; /* for event */
 634	}
 635
 636	__this_cpu_add(mem->stat->events[MEM_CGROUP_EVENTS_COUNT], nr_pages);
 637
 638	preempt_enable();
 639}
 640
 641unsigned long
 642mem_cgroup_zone_nr_lru_pages(struct mem_cgroup *mem, int nid, int zid,
 643			unsigned int lru_mask)
 644{
 645	struct mem_cgroup_per_zone *mz;
 646	enum lru_list l;
 647	unsigned long ret = 0;
 648
 649	mz = mem_cgroup_zoneinfo(mem, nid, zid);
 650
 651	for_each_lru(l) {
 652		if (BIT(l) & lru_mask)
 653			ret += MEM_CGROUP_ZSTAT(mz, l);
 654	}
 655	return ret;
 656}
 657
 658static unsigned long
 659mem_cgroup_node_nr_lru_pages(struct mem_cgroup *mem,
 660			int nid, unsigned int lru_mask)
 661{
 662	u64 total = 0;
 663	int zid;
 664
 665	for (zid = 0; zid < MAX_NR_ZONES; zid++)
 666		total += mem_cgroup_zone_nr_lru_pages(mem, nid, zid, lru_mask);
 667
 668	return total;
 
 
 
 
 
 
 
 
 
 
 
 669}
 670
 671static unsigned long mem_cgroup_nr_lru_pages(struct mem_cgroup *mem,
 672			unsigned int lru_mask)
 673{
 
 674	int nid;
 675	u64 total = 0;
 676
 677	for_each_node_state(nid, N_HIGH_MEMORY)
 678		total += mem_cgroup_node_nr_lru_pages(mem, nid, lru_mask);
 679	return total;
 680}
 681
 682static bool __memcg_event_check(struct mem_cgroup *mem, int target)
 
 683{
 684	unsigned long val, next;
 685
 686	val = this_cpu_read(mem->stat->events[MEM_CGROUP_EVENTS_COUNT]);
 687	next = this_cpu_read(mem->stat->targets[target]);
 688	/* from time_after() in jiffies.h */
 689	return ((long)next - (long)val < 0);
 690}
 691
 692static void __mem_cgroup_target_update(struct mem_cgroup *mem, int target)
 693{
 694	unsigned long val, next;
 695
 696	val = this_cpu_read(mem->stat->events[MEM_CGROUP_EVENTS_COUNT]);
 697
 698	switch (target) {
 699	case MEM_CGROUP_TARGET_THRESH:
 700		next = val + THRESHOLDS_EVENTS_TARGET;
 701		break;
 702	case MEM_CGROUP_TARGET_SOFTLIMIT:
 703		next = val + SOFTLIMIT_EVENTS_TARGET;
 704		break;
 705	case MEM_CGROUP_TARGET_NUMAINFO:
 706		next = val + NUMAINFO_EVENTS_TARGET;
 707		break;
 708	default:
 709		return;
 710	}
 711
 712	this_cpu_write(mem->stat->targets[target], next);
 713}
 714
 715/*
 716 * Check events in order.
 717 *
 718 */
 719static void memcg_check_events(struct mem_cgroup *mem, struct page *page)
 720{
 721	/* threshold event is triggered in finer grain than soft limit */
 722	if (unlikely(__memcg_event_check(mem, MEM_CGROUP_TARGET_THRESH))) {
 723		mem_cgroup_threshold(mem);
 724		__mem_cgroup_target_update(mem, MEM_CGROUP_TARGET_THRESH);
 725		if (unlikely(__memcg_event_check(mem,
 726			     MEM_CGROUP_TARGET_SOFTLIMIT))) {
 727			mem_cgroup_update_tree(mem, page);
 728			__mem_cgroup_target_update(mem,
 729						   MEM_CGROUP_TARGET_SOFTLIMIT);
 730		}
 731#if MAX_NUMNODES > 1
 732		if (unlikely(__memcg_event_check(mem,
 733			MEM_CGROUP_TARGET_NUMAINFO))) {
 734			atomic_inc(&mem->numainfo_events);
 735			__mem_cgroup_target_update(mem,
 736				MEM_CGROUP_TARGET_NUMAINFO);
 737		}
 
 
 
 738#endif
 739	}
 740}
 741
 742static struct mem_cgroup *mem_cgroup_from_cont(struct cgroup *cont)
 743{
 744	return container_of(cgroup_subsys_state(cont,
 745				mem_cgroup_subsys_id), struct mem_cgroup,
 746				css);
 747}
 748
 749struct mem_cgroup *mem_cgroup_from_task(struct task_struct *p)
 750{
 751	/*
 752	 * mm_update_next_owner() may clear mm->owner to NULL
 753	 * if it races with swapoff, page migration, etc.
 754	 * So this can be called with p == NULL.
 755	 */
 756	if (unlikely(!p))
 757		return NULL;
 758
 759	return container_of(task_subsys_state(p, mem_cgroup_subsys_id),
 760				struct mem_cgroup, css);
 761}
 
 762
 763struct mem_cgroup *try_get_mem_cgroup_from_mm(struct mm_struct *mm)
 764{
 765	struct mem_cgroup *mem = NULL;
 766
 767	if (!mm)
 768		return NULL;
 769	/*
 770	 * Because we have no locks, mm->owner's may be being moved to other
 771	 * cgroup. We use css_tryget() here even if this looks
 772	 * pessimistic (rather than adding locks here).
 773	 */
 774	rcu_read_lock();
 775	do {
 776		mem = mem_cgroup_from_task(rcu_dereference(mm->owner));
 777		if (unlikely(!mem))
 778			break;
 779	} while (!css_tryget(&mem->css));
 780	rcu_read_unlock();
 781	return mem;
 782}
 783
 784/* The caller has to guarantee "mem" exists before calling this */
 785static struct mem_cgroup *mem_cgroup_start_loop(struct mem_cgroup *mem)
 786{
 787	struct cgroup_subsys_state *css;
 788	int found;
 789
 790	if (!mem) /* ROOT cgroup has the smallest ID */
 791		return root_mem_cgroup; /*css_put/get against root is ignored*/
 792	if (!mem->use_hierarchy) {
 793		if (css_tryget(&mem->css))
 794			return mem;
 795		return NULL;
 796	}
 797	rcu_read_lock();
 798	/*
 799	 * searching a memory cgroup which has the smallest ID under given
 800	 * ROOT cgroup. (ID >= 1)
 801	 */
 802	css = css_get_next(&mem_cgroup_subsys, 1, &mem->css, &found);
 803	if (css && css_tryget(css))
 804		mem = container_of(css, struct mem_cgroup, css);
 805	else
 806		mem = NULL;
 807	rcu_read_unlock();
 808	return mem;
 809}
 810
 811static struct mem_cgroup *mem_cgroup_get_next(struct mem_cgroup *iter,
 812					struct mem_cgroup *root,
 813					bool cond)
 814{
 815	int nextid = css_id(&iter->css) + 1;
 816	int found;
 817	int hierarchy_used;
 818	struct cgroup_subsys_state *css;
 819
 820	hierarchy_used = iter->use_hierarchy;
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 821
 822	css_put(&iter->css);
 823	/* If no ROOT, walk all, ignore hierarchy */
 824	if (!cond || (root && !hierarchy_used))
 825		return NULL;
 826
 827	if (!root)
 828		root = root_mem_cgroup;
 829
 830	do {
 831		iter = NULL;
 832		rcu_read_lock();
 833
 834		css = css_get_next(&mem_cgroup_subsys, nextid,
 835				&root->css, &found);
 836		if (css && css_tryget(css))
 837			iter = container_of(css, struct mem_cgroup, css);
 838		rcu_read_unlock();
 839		/* If css is NULL, no more cgroups will be found */
 840		nextid = found + 1;
 841	} while (css && !iter);
 842
 843	return iter;
 844}
 845/*
 846 * for_eacn_mem_cgroup_tree() for visiting all cgroup under tree. Please
 847 * be careful that "break" loop is not allowed. We have reference count.
 848 * Instead of that modify "cond" to be false and "continue" to exit the loop.
 849 */
 850#define for_each_mem_cgroup_tree_cond(iter, root, cond)	\
 851	for (iter = mem_cgroup_start_loop(root);\
 852	     iter != NULL;\
 853	     iter = mem_cgroup_get_next(iter, root, cond))
 854
 855#define for_each_mem_cgroup_tree(iter, root) \
 856	for_each_mem_cgroup_tree_cond(iter, root, true)
 857
 858#define for_each_mem_cgroup_all(iter) \
 859	for_each_mem_cgroup_tree_cond(iter, NULL, true)
 860
 
 
 861
 862static inline bool mem_cgroup_is_root(struct mem_cgroup *mem)
 863{
 864	return (mem == root_mem_cgroup);
 865}
 
 
 
 
 
 
 
 
 
 
 
 866
 867void mem_cgroup_count_vm_event(struct mm_struct *mm, enum vm_event_item idx)
 868{
 869	struct mem_cgroup *mem;
 870
 871	if (!mm)
 872		return;
 
 
 
 
 
 
 
 
 
 
 
 873
 874	rcu_read_lock();
 875	mem = mem_cgroup_from_task(rcu_dereference(mm->owner));
 876	if (unlikely(!mem))
 877		goto out;
 
 
 878
 879	switch (idx) {
 880	case PGMAJFAULT:
 881		mem_cgroup_pgmajfault(mem, 1);
 882		break;
 883	case PGFAULT:
 884		mem_cgroup_pgfault(mem, 1);
 885		break;
 886	default:
 887		BUG();
 888	}
 889out:
 890	rcu_read_unlock();
 891}
 892EXPORT_SYMBOL(mem_cgroup_count_vm_event);
 893
 894/*
 895 * Following LRU functions are allowed to be used without PCG_LOCK.
 896 * Operations are called by routine of global LRU independently from memcg.
 897 * What we have to take care of here is validness of pc->mem_cgroup.
 898 *
 899 * Changes to pc->mem_cgroup happens when
 900 * 1. charge
 901 * 2. moving account
 902 * In typical case, "charge" is done before add-to-lru. Exception is SwapCache.
 903 * It is added to LRU before charge.
 904 * If PCG_USED bit is not set, page_cgroup is not added to this private LRU.
 905 * When moving account, the page is not on LRU. It's isolated.
 906 */
 907
 908void mem_cgroup_del_lru_list(struct page *page, enum lru_list lru)
 909{
 910	struct page_cgroup *pc;
 911	struct mem_cgroup_per_zone *mz;
 912
 913	if (mem_cgroup_disabled())
 914		return;
 915	pc = lookup_page_cgroup(page);
 916	/* can happen while we handle swapcache. */
 917	if (!TestClearPageCgroupAcctLRU(pc))
 918		return;
 919	VM_BUG_ON(!pc->mem_cgroup);
 920	/*
 921	 * We don't check PCG_USED bit. It's cleared when the "page" is finally
 922	 * removed from global LRU.
 923	 */
 924	mz = page_cgroup_zoneinfo(pc->mem_cgroup, page);
 925	/* huge page split is done under lru_lock. so, we have no races. */
 926	MEM_CGROUP_ZSTAT(mz, lru) -= 1 << compound_order(page);
 927	if (mem_cgroup_is_root(pc->mem_cgroup))
 928		return;
 929	VM_BUG_ON(list_empty(&pc->lru));
 930	list_del_init(&pc->lru);
 931}
 932
 933void mem_cgroup_del_lru(struct page *page)
 934{
 935	mem_cgroup_del_lru_list(page, page_lru(page));
 936}
 937
 938/*
 939 * Writeback is about to end against a page which has been marked for immediate
 940 * reclaim.  If it still appears to be reclaimable, move it to the tail of the
 941 * inactive list.
 942 */
 943void mem_cgroup_rotate_reclaimable_page(struct page *page)
 944{
 945	struct mem_cgroup_per_zone *mz;
 946	struct page_cgroup *pc;
 947	enum lru_list lru = page_lru(page);
 948
 949	if (mem_cgroup_disabled())
 950		return;
 
 
 
 951
 952	pc = lookup_page_cgroup(page);
 953	/* unused or root page is not rotated. */
 954	if (!PageCgroupUsed(pc))
 955		return;
 956	/* Ensure pc->mem_cgroup is visible after reading PCG_USED. */
 957	smp_rmb();
 958	if (mem_cgroup_is_root(pc->mem_cgroup))
 959		return;
 960	mz = page_cgroup_zoneinfo(pc->mem_cgroup, page);
 961	list_move_tail(&pc->lru, &mz->lists[lru]);
 962}
 963
 964void mem_cgroup_rotate_lru_list(struct page *page, enum lru_list lru)
 
 
 
 
 
 
 965{
 966	struct mem_cgroup_per_zone *mz;
 967	struct page_cgroup *pc;
 968
 969	if (mem_cgroup_disabled())
 970		return;
 971
 972	pc = lookup_page_cgroup(page);
 973	/* unused or root page is not rotated. */
 974	if (!PageCgroupUsed(pc))
 975		return;
 976	/* Ensure pc->mem_cgroup is visible after reading PCG_USED. */
 977	smp_rmb();
 978	if (mem_cgroup_is_root(pc->mem_cgroup))
 979		return;
 980	mz = page_cgroup_zoneinfo(pc->mem_cgroup, page);
 981	list_move(&pc->lru, &mz->lists[lru]);
 982}
 983
 984void mem_cgroup_add_lru_list(struct page *page, enum lru_list lru)
 985{
 986	struct page_cgroup *pc;
 
 987	struct mem_cgroup_per_zone *mz;
 
 
 988
 989	if (mem_cgroup_disabled())
 990		return;
 991	pc = lookup_page_cgroup(page);
 992	VM_BUG_ON(PageCgroupAcctLRU(pc));
 993	if (!PageCgroupUsed(pc))
 994		return;
 995	/* Ensure pc->mem_cgroup is visible after reading PCG_USED. */
 996	smp_rmb();
 997	mz = page_cgroup_zoneinfo(pc->mem_cgroup, page);
 998	/* huge page split is done under lru_lock. so, we have no races. */
 999	MEM_CGROUP_ZSTAT(mz, lru) += 1 << compound_order(page);
1000	SetPageCgroupAcctLRU(pc);
1001	if (mem_cgroup_is_root(pc->mem_cgroup))
1002		return;
1003	list_add(&pc->lru, &mz->lists[lru]);
1004}
1005
1006/*
1007 * At handling SwapCache and other FUSE stuff, pc->mem_cgroup may be changed
1008 * while it's linked to lru because the page may be reused after it's fully
1009 * uncharged. To handle that, unlink page_cgroup from LRU when charge it again.
1010 * It's done under lock_page and expected that zone->lru_lock isnever held.
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1011 */
1012static void mem_cgroup_lru_del_before_commit(struct page *page)
 
1013{
1014	unsigned long flags;
1015	struct zone *zone = page_zone(page);
1016	struct page_cgroup *pc = lookup_page_cgroup(page);
1017
1018	/*
1019	 * Doing this check without taking ->lru_lock seems wrong but this
1020	 * is safe. Because if page_cgroup's USED bit is unset, the page
1021	 * will not be added to any memcg's LRU. If page_cgroup's USED bit is
1022	 * set, the commit after this will fail, anyway.
1023	 * This all charge/uncharge is done under some mutual execustion.
1024	 * So, we don't need to taking care of changes in USED bit.
1025	 */
1026	if (likely(!PageLRU(page)))
1027		return;
1028
1029	spin_lock_irqsave(&zone->lru_lock, flags);
 
 
1030	/*
1031	 * Forget old LRU when this page_cgroup is *not* used. This Used bit
1032	 * is guarded by lock_page() because the page is SwapCache.
1033	 */
1034	if (!PageCgroupUsed(pc))
1035		mem_cgroup_del_lru_list(page, page_lru(page));
1036	spin_unlock_irqrestore(&zone->lru_lock, flags);
1037}
1038
1039static void mem_cgroup_lru_add_after_commit(struct page *page)
1040{
1041	unsigned long flags;
1042	struct zone *zone = page_zone(page);
1043	struct page_cgroup *pc = lookup_page_cgroup(page);
1044
1045	/* taking care of that the page is added to LRU while we commit it */
1046	if (likely(!PageLRU(page)))
1047		return;
1048	spin_lock_irqsave(&zone->lru_lock, flags);
1049	/* link when the page is linked to LRU but page_cgroup isn't */
1050	if (PageLRU(page) && !PageCgroupAcctLRU(pc))
1051		mem_cgroup_add_lru_list(page, page_lru(page));
1052	spin_unlock_irqrestore(&zone->lru_lock, flags);
1053}
1054
1055
1056void mem_cgroup_move_lists(struct page *page,
1057			   enum lru_list from, enum lru_list to)
1058{
1059	if (mem_cgroup_disabled())
1060		return;
1061	mem_cgroup_del_lru_list(page, from);
1062	mem_cgroup_add_lru_list(page, to);
1063}
1064
1065/*
1066 * Checks whether given mem is same or in the root_mem's
1067 * hierarchy subtree
 
 
 
 
 
1068 */
1069static bool mem_cgroup_same_or_subtree(const struct mem_cgroup *root_mem,
1070		struct mem_cgroup *mem)
1071{
1072	if (root_mem != mem) {
1073		return (root_mem->use_hierarchy &&
1074			css_is_ancestor(&mem->css, &root_mem->css));
1075	}
1076
1077	return true;
1078}
1079
1080int task_in_mem_cgroup(struct task_struct *task, const struct mem_cgroup *mem)
1081{
1082	int ret;
1083	struct mem_cgroup *curr = NULL;
1084	struct task_struct *p;
1085
1086	p = find_lock_task_mm(task);
1087	if (!p)
1088		return 0;
1089	curr = try_get_mem_cgroup_from_mm(p->mm);
1090	task_unlock(p);
1091	if (!curr)
1092		return 0;
1093	/*
1094	 * We should check use_hierarchy of "mem" not "curr". Because checking
1095	 * use_hierarchy of "curr" here make this function true if hierarchy is
1096	 * enabled in "curr" and "curr" is a child of "mem" in *cgroup*
1097	 * hierarchy(even if use_hierarchy is disabled in "mem").
1098	 */
1099	ret = mem_cgroup_same_or_subtree(mem, curr);
1100	css_put(&curr->css);
1101	return ret;
1102}
1103
1104static int calc_inactive_ratio(struct mem_cgroup *memcg, unsigned long *present_pages)
1105{
1106	unsigned long active;
1107	unsigned long inactive;
1108	unsigned long gb;
1109	unsigned long inactive_ratio;
1110
1111	inactive = mem_cgroup_nr_lru_pages(memcg, BIT(LRU_INACTIVE_ANON));
1112	active = mem_cgroup_nr_lru_pages(memcg, BIT(LRU_ACTIVE_ANON));
1113
1114	gb = (inactive + active) >> (30 - PAGE_SHIFT);
1115	if (gb)
1116		inactive_ratio = int_sqrt(10 * gb);
1117	else
1118		inactive_ratio = 1;
1119
1120	if (present_pages) {
1121		present_pages[0] = inactive;
1122		present_pages[1] = active;
1123	}
1124
1125	return inactive_ratio;
1126}
1127
1128int mem_cgroup_inactive_anon_is_low(struct mem_cgroup *memcg)
1129{
1130	unsigned long active;
1131	unsigned long inactive;
1132	unsigned long present_pages[2];
1133	unsigned long inactive_ratio;
1134
1135	inactive_ratio = calc_inactive_ratio(memcg, present_pages);
1136
1137	inactive = present_pages[0];
1138	active = present_pages[1];
1139
1140	if (inactive * inactive_ratio < active)
1141		return 1;
1142
1143	return 0;
1144}
1145
1146int mem_cgroup_inactive_file_is_low(struct mem_cgroup *memcg)
1147{
1148	unsigned long active;
1149	unsigned long inactive;
1150
1151	inactive = mem_cgroup_nr_lru_pages(memcg, BIT(LRU_INACTIVE_FILE));
1152	active = mem_cgroup_nr_lru_pages(memcg, BIT(LRU_ACTIVE_FILE));
1153
1154	return (active > inactive);
1155}
1156
1157struct zone_reclaim_stat *mem_cgroup_get_reclaim_stat(struct mem_cgroup *memcg,
1158						      struct zone *zone)
1159{
1160	int nid = zone_to_nid(zone);
1161	int zid = zone_idx(zone);
1162	struct mem_cgroup_per_zone *mz = mem_cgroup_zoneinfo(memcg, nid, zid);
1163
1164	return &mz->reclaim_stat;
 
 
 
 
 
 
 
 
 
 
1165}
1166
1167struct zone_reclaim_stat *
1168mem_cgroup_get_reclaim_stat_from_page(struct page *page)
 
 
 
 
 
 
 
 
 
1169{
1170	struct page_cgroup *pc;
1171	struct mem_cgroup_per_zone *mz;
 
1172
1173	if (mem_cgroup_disabled())
1174		return NULL;
1175
1176	pc = lookup_page_cgroup(page);
1177	if (!PageCgroupUsed(pc))
1178		return NULL;
1179	/* Ensure pc->mem_cgroup is visible after reading PCG_USED. */
1180	smp_rmb();
1181	mz = page_cgroup_zoneinfo(pc->mem_cgroup, page);
1182	return &mz->reclaim_stat;
1183}
1184
1185unsigned long mem_cgroup_isolate_pages(unsigned long nr_to_scan,
1186					struct list_head *dst,
1187					unsigned long *scanned, int order,
1188					int mode, struct zone *z,
1189					struct mem_cgroup *mem_cont,
1190					int active, int file)
1191{
1192	unsigned long nr_taken = 0;
1193	struct page *page;
1194	unsigned long scan;
1195	LIST_HEAD(pc_list);
1196	struct list_head *src;
1197	struct page_cgroup *pc, *tmp;
1198	int nid = zone_to_nid(z);
1199	int zid = zone_idx(z);
1200	struct mem_cgroup_per_zone *mz;
1201	int lru = LRU_FILE * file + active;
1202	int ret;
1203
1204	BUG_ON(!mem_cont);
1205	mz = mem_cgroup_zoneinfo(mem_cont, nid, zid);
1206	src = &mz->lists[lru];
1207
1208	scan = 0;
1209	list_for_each_entry_safe_reverse(pc, tmp, src, lru) {
1210		if (scan >= nr_to_scan)
1211			break;
1212
1213		if (unlikely(!PageCgroupUsed(pc)))
1214			continue;
1215
1216		page = lookup_cgroup_page(pc);
1217
1218		if (unlikely(!PageLRU(page)))
1219			continue;
1220
1221		scan++;
1222		ret = __isolate_lru_page(page, mode, file);
1223		switch (ret) {
1224		case 0:
1225			list_move(&page->lru, dst);
1226			mem_cgroup_del_lru(page);
1227			nr_taken += hpage_nr_pages(page);
1228			break;
1229		case -EBUSY:
1230			/* we don't affect global LRU but rotate in our LRU */
1231			mem_cgroup_rotate_lru_list(page, page_lru(page));
1232			break;
1233		default:
1234			break;
1235		}
1236	}
1237
1238	*scanned = scan;
1239
1240	trace_mm_vmscan_memcg_isolate(0, nr_to_scan, scan, nr_taken,
1241				      0, 0, 0, mode);
1242
1243	return nr_taken;
1244}
1245
1246#define mem_cgroup_from_res_counter(counter, member)	\
1247	container_of(counter, struct mem_cgroup, member)
1248
1249/**
1250 * mem_cgroup_margin - calculate chargeable space of a memory cgroup
1251 * @mem: the memory cgroup
1252 *
1253 * Returns the maximum amount of memory @mem can be charged with, in
1254 * pages.
1255 */
1256static unsigned long mem_cgroup_margin(struct mem_cgroup *mem)
1257{
1258	unsigned long long margin;
 
 
1259
1260	margin = res_counter_margin(&mem->res);
1261	if (do_swap_account)
1262		margin = min(margin, res_counter_margin(&mem->memsw));
1263	return margin >> PAGE_SHIFT;
1264}
1265
1266int mem_cgroup_swappiness(struct mem_cgroup *memcg)
1267{
1268	struct cgroup *cgrp = memcg->css.cgroup;
1269
1270	/* root ? */
1271	if (cgrp->parent == NULL)
1272		return vm_swappiness;
1273
1274	return memcg->swappiness;
1275}
1276
1277static void mem_cgroup_start_move(struct mem_cgroup *mem)
1278{
1279	int cpu;
1280
1281	get_online_cpus();
1282	spin_lock(&mem->pcp_counter_lock);
1283	for_each_online_cpu(cpu)
1284		per_cpu(mem->stat->count[MEM_CGROUP_ON_MOVE], cpu) += 1;
1285	mem->nocpu_base.count[MEM_CGROUP_ON_MOVE] += 1;
1286	spin_unlock(&mem->pcp_counter_lock);
1287	put_online_cpus();
1288
1289	synchronize_rcu();
1290}
1291
1292static void mem_cgroup_end_move(struct mem_cgroup *mem)
1293{
1294	int cpu;
1295
1296	if (!mem)
1297		return;
1298	get_online_cpus();
1299	spin_lock(&mem->pcp_counter_lock);
1300	for_each_online_cpu(cpu)
1301		per_cpu(mem->stat->count[MEM_CGROUP_ON_MOVE], cpu) -= 1;
1302	mem->nocpu_base.count[MEM_CGROUP_ON_MOVE] -= 1;
1303	spin_unlock(&mem->pcp_counter_lock);
1304	put_online_cpus();
1305}
1306/*
1307 * 2 routines for checking "mem" is under move_account() or not.
1308 *
1309 * mem_cgroup_stealed() - checking a cgroup is mc.from or not. This is used
1310 *			  for avoiding race in accounting. If true,
1311 *			  pc->mem_cgroup may be overwritten.
1312 *
1313 * mem_cgroup_under_move() - checking a cgroup is mc.from or mc.to or
1314 *			  under hierarchy of moving cgroups. This is for
1315 *			  waiting at hith-memory prressure caused by "move".
1316 */
1317
1318static bool mem_cgroup_stealed(struct mem_cgroup *mem)
1319{
1320	VM_BUG_ON(!rcu_read_lock_held());
1321	return this_cpu_read(mem->stat->count[MEM_CGROUP_ON_MOVE]) > 0;
1322}
1323
1324static bool mem_cgroup_under_move(struct mem_cgroup *mem)
1325{
1326	struct mem_cgroup *from;
1327	struct mem_cgroup *to;
1328	bool ret = false;
1329	/*
1330	 * Unlike task_move routines, we access mc.to, mc.from not under
1331	 * mutual exclusion by cgroup_mutex. Here, we take spinlock instead.
1332	 */
1333	spin_lock(&mc.lock);
1334	from = mc.from;
1335	to = mc.to;
1336	if (!from)
1337		goto unlock;
1338
1339	ret = mem_cgroup_same_or_subtree(mem, from)
1340		|| mem_cgroup_same_or_subtree(mem, to);
1341unlock:
1342	spin_unlock(&mc.lock);
1343	return ret;
1344}
1345
1346static bool mem_cgroup_wait_acct_move(struct mem_cgroup *mem)
1347{
1348	if (mc.moving_task && current != mc.moving_task) {
1349		if (mem_cgroup_under_move(mem)) {
1350			DEFINE_WAIT(wait);
1351			prepare_to_wait(&mc.waitq, &wait, TASK_INTERRUPTIBLE);
1352			/* moving charge context might have finished. */
1353			if (mc.moving_task)
1354				schedule();
1355			finish_wait(&mc.waitq, &wait);
1356			return true;
1357		}
1358	}
1359	return false;
1360}
1361
 
1362/**
1363 * mem_cgroup_print_oom_info: Called from OOM with tasklist_lock held in read mode.
1364 * @memcg: The memory cgroup that went over limit
1365 * @p: Task that is going to be killed
1366 *
1367 * NOTE: @memcg and @p's mem_cgroup can be different when hierarchy is
1368 * enabled
1369 */
1370void mem_cgroup_print_oom_info(struct mem_cgroup *memcg, struct task_struct *p)
1371{
1372	struct cgroup *task_cgrp;
1373	struct cgroup *mem_cgrp;
1374	/*
1375	 * Need a buffer in BSS, can't rely on allocations. The code relies
1376	 * on the assumption that OOM is serialized for memory controller.
1377	 * If this assumption is broken, revisit this code.
1378	 */
1379	static char memcg_name[PATH_MAX];
1380	int ret;
1381
1382	if (!memcg || !p)
1383		return;
1384
1385
1386	rcu_read_lock();
1387
1388	mem_cgrp = memcg->css.cgroup;
1389	task_cgrp = task_cgroup(p, mem_cgroup_subsys_id);
1390
1391	ret = cgroup_path(task_cgrp, memcg_name, PATH_MAX);
1392	if (ret < 0) {
1393		/*
1394		 * Unfortunately, we are unable to convert to a useful name
1395		 * But we'll still print out the usage information
1396		 */
1397		rcu_read_unlock();
1398		goto done;
1399	}
1400	rcu_read_unlock();
1401
1402	printk(KERN_INFO "Task in %s killed", memcg_name);
 
1403
1404	rcu_read_lock();
1405	ret = cgroup_path(mem_cgrp, memcg_name, PATH_MAX);
1406	if (ret < 0) {
1407		rcu_read_unlock();
1408		goto done;
1409	}
1410	rcu_read_unlock();
1411
1412	/*
1413	 * Continues from above, so we don't need an KERN_ level
1414	 */
1415	printk(KERN_CONT " as a result of limit of %s\n", memcg_name);
1416done:
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1417
1418	printk(KERN_INFO "memory: usage %llukB, limit %llukB, failcnt %llu\n",
1419		res_counter_read_u64(&memcg->res, RES_USAGE) >> 10,
1420		res_counter_read_u64(&memcg->res, RES_LIMIT) >> 10,
1421		res_counter_read_u64(&memcg->res, RES_FAILCNT));
1422	printk(KERN_INFO "memory+swap: usage %llukB, limit %llukB, "
1423		"failcnt %llu\n",
1424		res_counter_read_u64(&memcg->memsw, RES_USAGE) >> 10,
1425		res_counter_read_u64(&memcg->memsw, RES_LIMIT) >> 10,
1426		res_counter_read_u64(&memcg->memsw, RES_FAILCNT));
1427}
1428
1429/*
1430 * This function returns the number of memcg under hierarchy tree. Returns
1431 * 1(self count) if no children.
1432 */
1433static int mem_cgroup_count_children(struct mem_cgroup *mem)
1434{
1435	int num = 0;
1436	struct mem_cgroup *iter;
1437
1438	for_each_mem_cgroup_tree(iter, mem)
1439		num++;
1440	return num;
1441}
1442
1443/*
1444 * Return the memory (and swap, if configured) limit for a memcg.
1445 */
1446u64 mem_cgroup_get_limit(struct mem_cgroup *memcg)
1447{
1448	u64 limit;
1449	u64 memsw;
1450
1451	limit = res_counter_read_u64(&memcg->res, RES_LIMIT);
1452	limit += total_swap_pages << PAGE_SHIFT;
 
 
1453
1454	memsw = res_counter_read_u64(&memcg->memsw, RES_LIMIT);
1455	/*
1456	 * If memsw is finite and limits the amount of swap space available
1457	 * to this memcg, return that limit.
1458	 */
1459	return min(limit, memsw);
1460}
1461
1462/*
1463 * Visit the first child (need not be the first child as per the ordering
1464 * of the cgroup list, since we track last_scanned_child) of @mem and use
1465 * that to reclaim free pages from.
1466 */
1467static struct mem_cgroup *
1468mem_cgroup_select_victim(struct mem_cgroup *root_mem)
1469{
1470	struct mem_cgroup *ret = NULL;
1471	struct cgroup_subsys_state *css;
1472	int nextid, found;
1473
1474	if (!root_mem->use_hierarchy) {
1475		css_get(&root_mem->css);
1476		ret = root_mem;
1477	}
 
 
 
1478
1479	while (!ret) {
1480		rcu_read_lock();
1481		nextid = root_mem->last_scanned_child + 1;
1482		css = css_get_next(&mem_cgroup_subsys, nextid, &root_mem->css,
1483				   &found);
1484		if (css && css_tryget(css))
1485			ret = container_of(css, struct mem_cgroup, css);
1486
1487		rcu_read_unlock();
1488		/* Updates scanning parameter */
1489		if (!css) {
1490			/* this means start scan from ID:1 */
1491			root_mem->last_scanned_child = 0;
1492		} else
1493			root_mem->last_scanned_child = found;
 
1494	}
1495
1496	return ret;
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1497}
1498
 
 
1499/**
1500 * test_mem_cgroup_node_reclaimable
1501 * @mem: the target memcg
1502 * @nid: the node ID to be checked.
1503 * @noswap : specify true here if the user wants flle only information.
1504 *
1505 * This function returns whether the specified memcg contains any
1506 * reclaimable pages on a node. Returns true if there are any reclaimable
1507 * pages in the node.
1508 */
1509static bool test_mem_cgroup_node_reclaimable(struct mem_cgroup *mem,
1510		int nid, bool noswap)
1511{
1512	if (mem_cgroup_node_nr_lru_pages(mem, nid, LRU_ALL_FILE))
1513		return true;
1514	if (noswap || !total_swap_pages)
1515		return false;
1516	if (mem_cgroup_node_nr_lru_pages(mem, nid, LRU_ALL_ANON))
1517		return true;
1518	return false;
1519
1520}
1521#if MAX_NUMNODES > 1
1522
1523/*
1524 * Always updating the nodemask is not very good - even if we have an empty
1525 * list or the wrong list here, we can start from some node and traverse all
1526 * nodes based on the zonelist. So update the list loosely once per 10 secs.
1527 *
1528 */
1529static void mem_cgroup_may_update_nodemask(struct mem_cgroup *mem)
1530{
1531	int nid;
1532	/*
1533	 * numainfo_events > 0 means there was at least NUMAINFO_EVENTS_TARGET
1534	 * pagein/pageout changes since the last update.
1535	 */
1536	if (!atomic_read(&mem->numainfo_events))
1537		return;
1538	if (atomic_inc_return(&mem->numainfo_updating) > 1)
1539		return;
1540
1541	/* make a nodemask where this memcg uses memory from */
1542	mem->scan_nodes = node_states[N_HIGH_MEMORY];
1543
1544	for_each_node_mask(nid, node_states[N_HIGH_MEMORY]) {
1545
1546		if (!test_mem_cgroup_node_reclaimable(mem, nid, false))
1547			node_clear(nid, mem->scan_nodes);
1548	}
1549
1550	atomic_set(&mem->numainfo_events, 0);
1551	atomic_set(&mem->numainfo_updating, 0);
1552}
1553
1554/*
1555 * Selecting a node where we start reclaim from. Because what we need is just
1556 * reducing usage counter, start from anywhere is O,K. Considering
1557 * memory reclaim from current node, there are pros. and cons.
1558 *
1559 * Freeing memory from current node means freeing memory from a node which
1560 * we'll use or we've used. So, it may make LRU bad. And if several threads
1561 * hit limits, it will see a contention on a node. But freeing from remote
1562 * node means more costs for memory reclaim because of memory latency.
1563 *
1564 * Now, we use round-robin. Better algorithm is welcomed.
1565 */
1566int mem_cgroup_select_victim_node(struct mem_cgroup *mem)
1567{
1568	int node;
1569
1570	mem_cgroup_may_update_nodemask(mem);
1571	node = mem->last_scanned_node;
1572
1573	node = next_node(node, mem->scan_nodes);
1574	if (node == MAX_NUMNODES)
1575		node = first_node(mem->scan_nodes);
1576	/*
1577	 * We call this when we hit limit, not when pages are added to LRU.
1578	 * No LRU may hold pages because all pages are UNEVICTABLE or
1579	 * memcg is too small and all pages are not on LRU. In that case,
1580	 * we use curret node.
1581	 */
1582	if (unlikely(node == MAX_NUMNODES))
1583		node = numa_node_id();
1584
1585	mem->last_scanned_node = node;
1586	return node;
1587}
1588
1589/*
1590 * Check all nodes whether it contains reclaimable pages or not.
1591 * For quick scan, we make use of scan_nodes. This will allow us to skip
1592 * unused nodes. But scan_nodes is lazily updated and may not cotain
1593 * enough new information. We need to do double check.
1594 */
1595bool mem_cgroup_reclaimable(struct mem_cgroup *mem, bool noswap)
1596{
1597	int nid;
1598
1599	/*
1600	 * quick check...making use of scan_node.
1601	 * We can skip unused nodes.
1602	 */
1603	if (!nodes_empty(mem->scan_nodes)) {
1604		for (nid = first_node(mem->scan_nodes);
1605		     nid < MAX_NUMNODES;
1606		     nid = next_node(nid, mem->scan_nodes)) {
1607
1608			if (test_mem_cgroup_node_reclaimable(mem, nid, noswap))
1609				return true;
1610		}
1611	}
1612	/*
1613	 * Check rest of nodes.
1614	 */
1615	for_each_node_state(nid, N_HIGH_MEMORY) {
1616		if (node_isset(nid, mem->scan_nodes))
1617			continue;
1618		if (test_mem_cgroup_node_reclaimable(mem, nid, noswap))
1619			return true;
1620	}
1621	return false;
1622}
1623
1624#else
1625int mem_cgroup_select_victim_node(struct mem_cgroup *mem)
1626{
1627	return 0;
1628}
1629
1630bool mem_cgroup_reclaimable(struct mem_cgroup *mem, bool noswap)
1631{
1632	return test_mem_cgroup_node_reclaimable(mem, 0, noswap);
1633}
1634#endif
1635
1636/*
1637 * Scan the hierarchy if needed to reclaim memory. We remember the last child
1638 * we reclaimed from, so that we don't end up penalizing one child extensively
1639 * based on its position in the children list.
1640 *
1641 * root_mem is the original ancestor that we've been reclaim from.
1642 *
1643 * We give up and return to the caller when we visit root_mem twice.
1644 * (other groups can be removed while we're walking....)
1645 *
1646 * If shrink==true, for avoiding to free too much, this returns immedieately.
1647 */
1648static int mem_cgroup_hierarchical_reclaim(struct mem_cgroup *root_mem,
1649						struct zone *zone,
1650						gfp_t gfp_mask,
1651						unsigned long reclaim_options,
1652						unsigned long *total_scanned)
1653{
1654	struct mem_cgroup *victim;
1655	int ret, total = 0;
1656	int loop = 0;
1657	bool noswap = reclaim_options & MEM_CGROUP_RECLAIM_NOSWAP;
1658	bool shrink = reclaim_options & MEM_CGROUP_RECLAIM_SHRINK;
1659	bool check_soft = reclaim_options & MEM_CGROUP_RECLAIM_SOFT;
1660	unsigned long excess;
1661	unsigned long nr_scanned;
 
 
 
 
1662
1663	excess = res_counter_soft_limit_excess(&root_mem->res) >> PAGE_SHIFT;
1664
1665	/* If memsw_is_minimum==1, swap-out is of-no-use. */
1666	if (!check_soft && !shrink && root_mem->memsw_is_minimum)
1667		noswap = true;
1668
1669	while (1) {
1670		victim = mem_cgroup_select_victim(root_mem);
1671		if (victim == root_mem) {
1672			loop++;
1673			/*
1674			 * We are not draining per cpu cached charges during
1675			 * soft limit reclaim  because global reclaim doesn't
1676			 * care about charges. It tries to free some memory and
1677			 * charges will not give any.
1678			 */
1679			if (!check_soft && loop >= 1)
1680				drain_all_stock_async(root_mem);
1681			if (loop >= 2) {
1682				/*
1683				 * If we have not been able to reclaim
1684				 * anything, it might because there are
1685				 * no reclaimable pages under this hierarchy
1686				 */
1687				if (!check_soft || !total) {
1688					css_put(&victim->css);
1689					break;
1690				}
1691				/*
1692				 * We want to do more targeted reclaim.
1693				 * excess >> 2 is not to excessive so as to
1694				 * reclaim too much, nor too less that we keep
1695				 * coming back to reclaim from this cgroup
1696				 */
1697				if (total >= (excess >> 2) ||
1698					(loop > MEM_CGROUP_MAX_RECLAIM_LOOPS)) {
1699					css_put(&victim->css);
1700					break;
1701				}
1702			}
1703		}
1704		if (!mem_cgroup_reclaimable(victim, noswap)) {
1705			/* this cgroup's local usage == 0 */
1706			css_put(&victim->css);
1707			continue;
1708		}
1709		/* we use swappiness of local cgroup */
1710		if (check_soft) {
1711			ret = mem_cgroup_shrink_node_zone(victim, gfp_mask,
1712				noswap, zone, &nr_scanned);
1713			*total_scanned += nr_scanned;
1714		} else
1715			ret = try_to_free_mem_cgroup_pages(victim, gfp_mask,
1716						noswap);
1717		css_put(&victim->css);
1718		/*
1719		 * At shrinking usage, we can't check we should stop here or
1720		 * reclaim more. It's depends on callers. last_scanned_child
1721		 * will work enough for keeping fairness under tree.
1722		 */
1723		if (shrink)
1724			return ret;
1725		total += ret;
1726		if (check_soft) {
1727			if (!res_counter_soft_limit_excess(&root_mem->res))
1728				return total;
1729		} else if (mem_cgroup_margin(root_mem))
1730			return total;
1731	}
 
1732	return total;
1733}
1734
 
 
 
 
 
 
 
 
1735/*
1736 * Check OOM-Killer is already running under our hierarchy.
1737 * If someone is running, return false.
1738 * Has to be called with memcg_oom_lock
1739 */
1740static bool mem_cgroup_oom_lock(struct mem_cgroup *mem)
1741{
1742	struct mem_cgroup *iter, *failed = NULL;
1743	bool cond = true;
1744
1745	for_each_mem_cgroup_tree_cond(iter, mem, cond) {
 
 
1746		if (iter->oom_lock) {
1747			/*
1748			 * this subtree of our hierarchy is already locked
1749			 * so we cannot give a lock.
1750			 */
1751			failed = iter;
1752			cond = false;
 
1753		} else
1754			iter->oom_lock = true;
1755	}
1756
1757	if (!failed)
1758		return true;
1759
1760	/*
1761	 * OK, we failed to lock the whole subtree so we have to clean up
1762	 * what we set up to the failing subtree
1763	 */
1764	cond = true;
1765	for_each_mem_cgroup_tree_cond(iter, mem, cond) {
1766		if (iter == failed) {
1767			cond = false;
1768			continue;
1769		}
1770		iter->oom_lock = false;
1771	}
1772	return false;
 
 
 
1773}
1774
1775/*
1776 * Has to be called with memcg_oom_lock
1777 */
1778static int mem_cgroup_oom_unlock(struct mem_cgroup *mem)
1779{
1780	struct mem_cgroup *iter;
1781
1782	for_each_mem_cgroup_tree(iter, mem)
 
 
1783		iter->oom_lock = false;
1784	return 0;
1785}
1786
1787static void mem_cgroup_mark_under_oom(struct mem_cgroup *mem)
1788{
1789	struct mem_cgroup *iter;
1790
1791	for_each_mem_cgroup_tree(iter, mem)
1792		atomic_inc(&iter->under_oom);
 
 
1793}
1794
1795static void mem_cgroup_unmark_under_oom(struct mem_cgroup *mem)
1796{
1797	struct mem_cgroup *iter;
1798
1799	/*
1800	 * When a new child is created while the hierarchy is under oom,
1801	 * mem_cgroup_oom_lock() may not be called. We have to use
1802	 * atomic_add_unless() here.
1803	 */
1804	for_each_mem_cgroup_tree(iter, mem)
1805		atomic_add_unless(&iter->under_oom, -1, 0);
 
 
 
1806}
1807
1808static DEFINE_SPINLOCK(memcg_oom_lock);
1809static DECLARE_WAIT_QUEUE_HEAD(memcg_oom_waitq);
1810
1811struct oom_wait_info {
1812	struct mem_cgroup *mem;
1813	wait_queue_t	wait;
1814};
1815
1816static int memcg_oom_wake_function(wait_queue_t *wait,
1817	unsigned mode, int sync, void *arg)
1818{
1819	struct mem_cgroup *wake_mem = (struct mem_cgroup *)arg,
1820			  *oom_wait_mem;
1821	struct oom_wait_info *oom_wait_info;
1822
1823	oom_wait_info = container_of(wait, struct oom_wait_info, wait);
1824	oom_wait_mem = oom_wait_info->mem;
1825
1826	/*
1827	 * Both of oom_wait_info->mem and wake_mem are stable under us.
1828	 * Then we can use css_is_ancestor without taking care of RCU.
1829	 */
1830	if (!mem_cgroup_same_or_subtree(oom_wait_mem, wake_mem)
1831			&& !mem_cgroup_same_or_subtree(wake_mem, oom_wait_mem))
1832		return 0;
1833	return autoremove_wake_function(wait, mode, sync, arg);
1834}
1835
1836static void memcg_wakeup_oom(struct mem_cgroup *mem)
1837{
1838	/* for filtering, pass "mem" as argument. */
1839	__wake_up(&memcg_oom_waitq, TASK_NORMAL, 0, mem);
 
 
 
 
 
 
 
 
1840}
1841
1842static void memcg_oom_recover(struct mem_cgroup *mem)
1843{
1844	if (mem && atomic_read(&mem->under_oom))
1845		memcg_wakeup_oom(mem);
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1846}
1847
1848/*
1849 * try to call OOM killer. returns false if we should exit memory-reclaim loop.
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1850 */
1851bool mem_cgroup_handle_oom(struct mem_cgroup *mem, gfp_t mask)
1852{
 
1853	struct oom_wait_info owait;
1854	bool locked, need_to_kill;
 
 
 
 
1855
1856	owait.mem = mem;
 
 
 
1857	owait.wait.flags = 0;
1858	owait.wait.func = memcg_oom_wake_function;
1859	owait.wait.private = current;
1860	INIT_LIST_HEAD(&owait.wait.task_list);
1861	need_to_kill = true;
1862	mem_cgroup_mark_under_oom(mem);
1863
1864	/* At first, try to OOM lock hierarchy under mem.*/
1865	spin_lock(&memcg_oom_lock);
1866	locked = mem_cgroup_oom_lock(mem);
1867	/*
1868	 * Even if signal_pending(), we can't quit charge() loop without
1869	 * accounting. So, UNINTERRUPTIBLE is appropriate. But SIGKILL
1870	 * under OOM is always welcomed, use TASK_KILLABLE here.
1871	 */
1872	prepare_to_wait(&memcg_oom_waitq, &owait.wait, TASK_KILLABLE);
1873	if (!locked || mem->oom_kill_disable)
1874		need_to_kill = false;
 
 
1875	if (locked)
1876		mem_cgroup_oom_notify(mem);
1877	spin_unlock(&memcg_oom_lock);
1878
1879	if (need_to_kill) {
 
1880		finish_wait(&memcg_oom_waitq, &owait.wait);
1881		mem_cgroup_out_of_memory(mem, mask);
 
1882	} else {
1883		schedule();
 
1884		finish_wait(&memcg_oom_waitq, &owait.wait);
1885	}
1886	spin_lock(&memcg_oom_lock);
1887	if (locked)
1888		mem_cgroup_oom_unlock(mem);
1889	memcg_wakeup_oom(mem);
1890	spin_unlock(&memcg_oom_lock);
1891
1892	mem_cgroup_unmark_under_oom(mem);
1893
1894	if (test_thread_flag(TIF_MEMDIE) || fatal_signal_pending(current))
1895		return false;
1896	/* Give chance to dying process */
1897	schedule_timeout(1);
 
 
 
 
 
 
 
 
1898	return true;
1899}
1900
1901/*
1902 * Currently used to update mapped file statistics, but the routine can be
1903 * generalized to update other statistics as well.
1904 *
1905 * Notes: Race condition
1906 *
1907 * We usually use page_cgroup_lock() for accessing page_cgroup member but
1908 * it tends to be costly. But considering some conditions, we doesn't need
1909 * to do so _always_.
1910 *
1911 * Considering "charge", lock_page_cgroup() is not required because all
1912 * file-stat operations happen after a page is attached to radix-tree. There
1913 * are no race with "charge".
1914 *
1915 * Considering "uncharge", we know that memcg doesn't clear pc->mem_cgroup
1916 * at "uncharge" intentionally. So, we always see valid pc->mem_cgroup even
1917 * if there are race with "uncharge". Statistics itself is properly handled
1918 * by flags.
1919 *
1920 * Considering "move", this is an only case we see a race. To make the race
1921 * small, we check MEM_CGROUP_ON_MOVE percpu value and detect there are
1922 * possibility of race condition. If there is, we take a lock.
1923 */
1924
1925void mem_cgroup_update_page_stat(struct page *page,
1926				 enum mem_cgroup_page_stat_item idx, int val)
1927{
1928	struct mem_cgroup *mem;
1929	struct page_cgroup *pc = lookup_page_cgroup(page);
1930	bool need_unlock = false;
1931	unsigned long uninitialized_var(flags);
1932
1933	if (unlikely(!pc))
 
 
 
 
 
 
 
 
 
 
 
1934		return;
1935
1936	rcu_read_lock();
1937	mem = pc->mem_cgroup;
1938	if (unlikely(!mem || !PageCgroupUsed(pc)))
1939		goto out;
1940	/* pc->mem_cgroup is unstable ? */
1941	if (unlikely(mem_cgroup_stealed(mem)) || PageTransHuge(page)) {
1942		/* take a lock against to access pc->mem_cgroup */
1943		move_lock_page_cgroup(pc, &flags);
1944		need_unlock = true;
1945		mem = pc->mem_cgroup;
1946		if (!mem || !PageCgroupUsed(pc))
1947			goto out;
1948	}
1949
1950	switch (idx) {
1951	case MEMCG_NR_FILE_MAPPED:
1952		if (val > 0)
1953			SetPageCgroupFileMapped(pc);
1954		else if (!page_mapped(page))
1955			ClearPageCgroupFileMapped(pc);
1956		idx = MEM_CGROUP_STAT_FILE_MAPPED;
1957		break;
1958	default:
1959		BUG();
1960	}
1961
1962	this_cpu_add(mem->stat->count[idx], val);
 
 
 
 
 
 
1963
1964out:
1965	if (unlikely(need_unlock))
1966		move_unlock_page_cgroup(pc, &flags);
1967	rcu_read_unlock();
1968	return;
1969}
1970EXPORT_SYMBOL(mem_cgroup_update_page_stat);
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1971
1972/*
1973 * size of first charge trial. "32" comes from vmscan.c's magic value.
1974 * TODO: maybe necessary to use big numbers in big irons.
1975 */
1976#define CHARGE_BATCH	32U
1977struct memcg_stock_pcp {
1978	struct mem_cgroup *cached; /* this never be root cgroup */
1979	unsigned int nr_pages;
1980	struct work_struct work;
1981	unsigned long flags;
1982#define FLUSHING_CACHED_CHARGE	(0)
1983};
1984static DEFINE_PER_CPU(struct memcg_stock_pcp, memcg_stock);
1985static DEFINE_MUTEX(percpu_charge_mutex);
1986
1987/*
1988 * Try to consume stocked charge on this cpu. If success, one page is consumed
1989 * from local stock and true is returned. If the stock is 0 or charges from a
1990 * cgroup which is not current target, returns false. This stock will be
1991 * refilled.
 
 
 
 
 
1992 */
1993static bool consume_stock(struct mem_cgroup *mem)
1994{
1995	struct memcg_stock_pcp *stock;
1996	bool ret = true;
 
 
 
1997
1998	stock = &get_cpu_var(memcg_stock);
1999	if (mem == stock->cached && stock->nr_pages)
2000		stock->nr_pages--;
2001	else /* need to call res_counter_charge */
2002		ret = false;
2003	put_cpu_var(memcg_stock);
2004	return ret;
2005}
2006
2007/*
2008 * Returns stocks cached in percpu to res_counter and reset cached information.
2009 */
2010static void drain_stock(struct memcg_stock_pcp *stock)
2011{
2012	struct mem_cgroup *old = stock->cached;
2013
2014	if (stock->nr_pages) {
2015		unsigned long bytes = stock->nr_pages * PAGE_SIZE;
2016
2017		res_counter_uncharge(&old->res, bytes);
2018		if (do_swap_account)
2019			res_counter_uncharge(&old->memsw, bytes);
2020		stock->nr_pages = 0;
2021	}
2022	stock->cached = NULL;
2023}
2024
2025/*
2026 * This must be called under preempt disabled or must be called by
2027 * a thread which is pinned to local cpu.
2028 */
2029static void drain_local_stock(struct work_struct *dummy)
2030{
2031	struct memcg_stock_pcp *stock = &__get_cpu_var(memcg_stock);
2032	drain_stock(stock);
2033	clear_bit(FLUSHING_CACHED_CHARGE, &stock->flags);
2034}
2035
2036/*
2037 * Cache charges(val) which is from res_counter, to local per_cpu area.
2038 * This will be consumed by consume_stock() function, later.
2039 */
2040static void refill_stock(struct mem_cgroup *mem, unsigned int nr_pages)
2041{
2042	struct memcg_stock_pcp *stock = &get_cpu_var(memcg_stock);
2043
2044	if (stock->cached != mem) { /* reset if necessary */
2045		drain_stock(stock);
2046		stock->cached = mem;
2047	}
2048	stock->nr_pages += nr_pages;
2049	put_cpu_var(memcg_stock);
2050}
2051
2052/*
2053 * Drains all per-CPU charge caches for given root_mem resp. subtree
2054 * of the hierarchy under it. sync flag says whether we should block
2055 * until the work is done.
2056 */
2057static void drain_all_stock(struct mem_cgroup *root_mem, bool sync)
2058{
2059	int cpu, curcpu;
2060
 
 
 
2061	/* Notify other cpus that system-wide "drain" is running */
2062	get_online_cpus();
2063	curcpu = get_cpu();
2064	for_each_online_cpu(cpu) {
2065		struct memcg_stock_pcp *stock = &per_cpu(memcg_stock, cpu);
2066		struct mem_cgroup *mem;
2067
2068		mem = stock->cached;
2069		if (!mem || !stock->nr_pages)
2070			continue;
2071		if (!mem_cgroup_same_or_subtree(root_mem, mem))
2072			continue;
2073		if (!test_and_set_bit(FLUSHING_CACHED_CHARGE, &stock->flags)) {
2074			if (cpu == curcpu)
2075				drain_local_stock(&stock->work);
2076			else
2077				schedule_work_on(cpu, &stock->work);
2078		}
2079	}
2080	put_cpu();
 
 
 
2081
2082	if (!sync)
2083		goto out;
 
 
 
 
2084
2085	for_each_online_cpu(cpu) {
2086		struct memcg_stock_pcp *stock = &per_cpu(memcg_stock, cpu);
2087		if (test_bit(FLUSHING_CACHED_CHARGE, &stock->flags))
2088			flush_work(&stock->work);
2089	}
2090out:
2091 	put_online_cpus();
 
 
2092}
2093
2094/*
2095 * Tries to drain stocked charges in other cpus. This function is asynchronous
2096 * and just put a work per cpu for draining localy on each cpu. Caller can
2097 * expects some charges will be back to res_counter later but cannot wait for
2098 * it.
2099 */
2100static void drain_all_stock_async(struct mem_cgroup *root_mem)
2101{
2102	/*
2103	 * If someone calls draining, avoid adding more kworker runs.
2104	 */
2105	if (!mutex_trylock(&percpu_charge_mutex))
2106		return;
2107	drain_all_stock(root_mem, false);
2108	mutex_unlock(&percpu_charge_mutex);
2109}
2110
2111/* This is a synchronous drain interface. */
2112static void drain_all_stock_sync(struct mem_cgroup *root_mem)
2113{
2114	/* called when force_empty is called */
2115	mutex_lock(&percpu_charge_mutex);
2116	drain_all_stock(root_mem, true);
2117	mutex_unlock(&percpu_charge_mutex);
2118}
2119
2120/*
2121 * This function drains percpu counter value from DEAD cpu and
2122 * move it to local cpu. Note that this function can be preempted.
2123 */
2124static void mem_cgroup_drain_pcp_counter(struct mem_cgroup *mem, int cpu)
2125{
2126	int i;
2127
2128	spin_lock(&mem->pcp_counter_lock);
2129	for (i = 0; i < MEM_CGROUP_STAT_DATA; i++) {
2130		long x = per_cpu(mem->stat->count[i], cpu);
2131
2132		per_cpu(mem->stat->count[i], cpu) = 0;
2133		mem->nocpu_base.count[i] += x;
2134	}
2135	for (i = 0; i < MEM_CGROUP_EVENTS_NSTATS; i++) {
2136		unsigned long x = per_cpu(mem->stat->events[i], cpu);
2137
2138		per_cpu(mem->stat->events[i], cpu) = 0;
2139		mem->nocpu_base.events[i] += x;
2140	}
2141	/* need to clear ON_MOVE value, works as a kind of lock. */
2142	per_cpu(mem->stat->count[MEM_CGROUP_ON_MOVE], cpu) = 0;
2143	spin_unlock(&mem->pcp_counter_lock);
2144}
2145
2146static void synchronize_mem_cgroup_on_move(struct mem_cgroup *mem, int cpu)
 
2147{
2148	int idx = MEM_CGROUP_ON_MOVE;
2149
2150	spin_lock(&mem->pcp_counter_lock);
2151	per_cpu(mem->stat->count[idx], cpu) = mem->nocpu_base.count[idx];
2152	spin_unlock(&mem->pcp_counter_lock);
2153}
 
2154
2155static int __cpuinit memcg_cpu_hotplug_callback(struct notifier_block *nb,
2156					unsigned long action,
2157					void *hcpu)
2158{
2159	int cpu = (unsigned long)hcpu;
2160	struct memcg_stock_pcp *stock;
2161	struct mem_cgroup *iter;
2162
2163	if ((action == CPU_ONLINE)) {
2164		for_each_mem_cgroup_all(iter)
2165			synchronize_mem_cgroup_on_move(iter, cpu);
2166		return NOTIFY_OK;
 
 
 
 
 
 
2167	}
2168
2169	if ((action != CPU_DEAD) || action != CPU_DEAD_FROZEN)
2170		return NOTIFY_OK;
2171
2172	for_each_mem_cgroup_all(iter)
2173		mem_cgroup_drain_pcp_counter(iter, cpu);
2174
2175	stock = &per_cpu(memcg_stock, cpu);
2176	drain_stock(stock);
2177	return NOTIFY_OK;
2178}
2179
 
 
 
 
 
 
 
 
 
 
 
 
 
2180
2181/* See __mem_cgroup_try_charge() for details */
2182enum {
2183	CHARGE_OK,		/* success */
2184	CHARGE_RETRY,		/* need to retry but retry is not bad */
2185	CHARGE_NOMEM,		/* we can't do more. return -ENOMEM */
2186	CHARGE_WOULDBLOCK,	/* GFP_WAIT wasn't set and no enough res. */
2187	CHARGE_OOM_DIE,		/* the current is killed because of OOM */
2188};
2189
2190static int mem_cgroup_do_charge(struct mem_cgroup *mem, gfp_t gfp_mask,
2191				unsigned int nr_pages, bool oom_check)
2192{
2193	unsigned long csize = nr_pages * PAGE_SIZE;
2194	struct mem_cgroup *mem_over_limit;
2195	struct res_counter *fail_res;
2196	unsigned long flags = 0;
2197	int ret;
2198
2199	ret = res_counter_charge(&mem->res, csize, &fail_res);
 
2200
2201	if (likely(!ret)) {
2202		if (!do_swap_account)
2203			return CHARGE_OK;
2204		ret = res_counter_charge(&mem->memsw, csize, &fail_res);
2205		if (likely(!ret))
2206			return CHARGE_OK;
2207
2208		res_counter_uncharge(&mem->res, csize);
2209		mem_over_limit = mem_cgroup_from_res_counter(fail_res, memsw);
2210		flags |= MEM_CGROUP_RECLAIM_NOSWAP;
2211	} else
2212		mem_over_limit = mem_cgroup_from_res_counter(fail_res, res);
2213	/*
2214	 * nr_pages can be either a huge page (HPAGE_PMD_NR), a batch
2215	 * of regular pages (CHARGE_BATCH), or a single regular page (1).
2216	 *
2217	 * Never reclaim on behalf of optional batching, retry with a
2218	 * single page instead.
2219	 */
2220	if (nr_pages == CHARGE_BATCH)
2221		return CHARGE_RETRY;
2222
2223	if (!(gfp_mask & __GFP_WAIT))
2224		return CHARGE_WOULDBLOCK;
 
 
 
2225
2226	ret = mem_cgroup_hierarchical_reclaim(mem_over_limit, NULL,
2227					      gfp_mask, flags, NULL);
2228	if (mem_cgroup_margin(mem_over_limit) >= nr_pages)
2229		return CHARGE_RETRY;
2230	/*
2231	 * Even though the limit is exceeded at this point, reclaim
2232	 * may have been able to free some pages.  Retry the charge
2233	 * before killing the task.
2234	 *
2235	 * Only for regular pages, though: huge pages are rather
2236	 * unlikely to succeed so close to the limit, and we fall back
2237	 * to regular pages anyway in case of failure.
2238	 */
2239	if (nr_pages == 1 && ret)
2240		return CHARGE_RETRY;
2241
2242	/*
2243	 * At task move, charge accounts can be doubly counted. So, it's
2244	 * better to wait until the end of task_move if something is going on.
2245	 */
2246	if (mem_cgroup_wait_acct_move(mem_over_limit))
2247		return CHARGE_RETRY;
2248
2249	/* If we don't need to call oom-killer at el, return immediately */
2250	if (!oom_check)
2251		return CHARGE_NOMEM;
2252	/* check OOM */
2253	if (!mem_cgroup_handle_oom(mem_over_limit, gfp_mask))
2254		return CHARGE_OOM_DIE;
2255
2256	return CHARGE_RETRY;
2257}
2258
2259/*
2260 * Unlike exported interface, "oom" parameter is added. if oom==true,
2261 * oom-killer can be invoked.
2262 */
2263static int __mem_cgroup_try_charge(struct mm_struct *mm,
2264				   gfp_t gfp_mask,
2265				   unsigned int nr_pages,
2266				   struct mem_cgroup **memcg,
2267				   bool oom)
2268{
2269	unsigned int batch = max(CHARGE_BATCH, nr_pages);
2270	int nr_oom_retries = MEM_CGROUP_RECLAIM_RETRIES;
2271	struct mem_cgroup *mem = NULL;
2272	int ret;
2273
2274	/*
2275	 * Unlike gloval-vm's OOM-kill, we're not in memory shortage
2276	 * in system level. So, allow to go ahead dying process in addition to
2277	 * MEMDIE process.
2278	 */
2279	if (unlikely(test_thread_flag(TIF_MEMDIE)
2280		     || fatal_signal_pending(current)))
2281		goto bypass;
2282
2283	/*
2284	 * We always charge the cgroup the mm_struct belongs to.
2285	 * The mm_struct's mem_cgroup changes on task migration if the
2286	 * thread group leader migrates. It's possible that mm is not
2287	 * set, if so charge the init_mm (happens for pagecache usage).
2288	 */
2289	if (!*memcg && !mm)
2290		goto bypass;
2291again:
2292	if (*memcg) { /* css should be a valid one */
2293		mem = *memcg;
2294		VM_BUG_ON(css_is_removed(&mem->css));
2295		if (mem_cgroup_is_root(mem))
2296			goto done;
2297		if (nr_pages == 1 && consume_stock(mem))
2298			goto done;
2299		css_get(&mem->css);
2300	} else {
2301		struct task_struct *p;
2302
2303		rcu_read_lock();
2304		p = rcu_dereference(mm->owner);
2305		/*
2306		 * Because we don't have task_lock(), "p" can exit.
2307		 * In that case, "mem" can point to root or p can be NULL with
2308		 * race with swapoff. Then, we have small risk of mis-accouning.
2309		 * But such kind of mis-account by race always happens because
2310		 * we don't have cgroup_mutex(). It's overkill and we allo that
2311		 * small race, here.
2312		 * (*) swapoff at el will charge against mm-struct not against
2313		 * task-struct. So, mm->owner can be NULL.
2314		 */
2315		mem = mem_cgroup_from_task(p);
2316		if (!mem || mem_cgroup_is_root(mem)) {
2317			rcu_read_unlock();
2318			goto done;
2319		}
2320		if (nr_pages == 1 && consume_stock(mem)) {
2321			/*
2322			 * It seems dagerous to access memcg without css_get().
2323			 * But considering how consume_stok works, it's not
2324			 * necessary. If consume_stock success, some charges
2325			 * from this memcg are cached on this cpu. So, we
2326			 * don't need to call css_get()/css_tryget() before
2327			 * calling consume_stock().
2328			 */
2329			rcu_read_unlock();
2330			goto done;
2331		}
2332		/* after here, we may be blocked. we need to get refcnt */
2333		if (!css_tryget(&mem->css)) {
2334			rcu_read_unlock();
2335			goto again;
2336		}
2337		rcu_read_unlock();
2338	}
2339
2340	do {
2341		bool oom_check;
 
 
 
 
 
 
 
 
 
 
 
 
 
2342
2343		/* If killed, bypass charge */
2344		if (fatal_signal_pending(current)) {
2345			css_put(&mem->css);
2346			goto bypass;
2347		}
2348
2349		oom_check = false;
2350		if (oom && !nr_oom_retries) {
2351			oom_check = true;
2352			nr_oom_retries = MEM_CGROUP_RECLAIM_RETRIES;
2353		}
2354
2355		ret = mem_cgroup_do_charge(mem, gfp_mask, batch, oom_check);
2356		switch (ret) {
2357		case CHARGE_OK:
2358			break;
2359		case CHARGE_RETRY: /* not in OOM situation but retry */
2360			batch = nr_pages;
2361			css_put(&mem->css);
2362			mem = NULL;
2363			goto again;
2364		case CHARGE_WOULDBLOCK: /* !__GFP_WAIT */
2365			css_put(&mem->css);
2366			goto nomem;
2367		case CHARGE_NOMEM: /* OOM routine works */
2368			if (!oom) {
2369				css_put(&mem->css);
2370				goto nomem;
2371			}
2372			/* If oom, we never return -ENOMEM */
2373			nr_oom_retries--;
2374			break;
2375		case CHARGE_OOM_DIE: /* Killed by OOM Killer */
2376			css_put(&mem->css);
2377			goto bypass;
2378		}
2379	} while (ret != CHARGE_OK);
2380
2381	if (batch > nr_pages)
2382		refill_stock(mem, batch - nr_pages);
2383	css_put(&mem->css);
2384done:
2385	*memcg = mem;
2386	return 0;
2387nomem:
2388	*memcg = NULL;
2389	return -ENOMEM;
2390bypass:
2391	*memcg = NULL;
2392	return 0;
2393}
2394
2395/*
2396 * Somemtimes we have to undo a charge we got by try_charge().
2397 * This function is for that and do uncharge, put css's refcnt.
2398 * gotten by try_charge().
2399 */
2400static void __mem_cgroup_cancel_charge(struct mem_cgroup *mem,
2401				       unsigned int nr_pages)
2402{
2403	if (!mem_cgroup_is_root(mem)) {
2404		unsigned long bytes = nr_pages * PAGE_SIZE;
2405
2406		res_counter_uncharge(&mem->res, bytes);
2407		if (do_swap_account)
2408			res_counter_uncharge(&mem->memsw, bytes);
2409	}
2410}
2411
2412/*
2413 * A helper function to get mem_cgroup from ID. must be called under
2414 * rcu_read_lock(). The caller must check css_is_removed() or some if
2415 * it's concern. (dropping refcnt from swap can be called against removed
2416 * memcg.)
2417 */
2418static struct mem_cgroup *mem_cgroup_lookup(unsigned short id)
2419{
2420	struct cgroup_subsys_state *css;
2421
2422	/* ID 0 is unused ID */
2423	if (!id)
2424		return NULL;
2425	css = css_lookup(&mem_cgroup_subsys, id);
2426	if (!css)
2427		return NULL;
2428	return container_of(css, struct mem_cgroup, css);
2429}
2430
2431struct mem_cgroup *try_get_mem_cgroup_from_page(struct page *page)
2432{
2433	struct mem_cgroup *mem = NULL;
2434	struct page_cgroup *pc;
2435	unsigned short id;
2436	swp_entry_t ent;
2437
2438	VM_BUG_ON(!PageLocked(page));
 
 
2439
2440	pc = lookup_page_cgroup(page);
2441	lock_page_cgroup(pc);
2442	if (PageCgroupUsed(pc)) {
2443		mem = pc->mem_cgroup;
2444		if (mem && !css_tryget(&mem->css))
2445			mem = NULL;
2446	} else if (PageSwapCache(page)) {
2447		ent.val = page_private(page);
2448		id = lookup_swap_cgroup(ent);
2449		rcu_read_lock();
2450		mem = mem_cgroup_lookup(id);
2451		if (mem && !css_tryget(&mem->css))
2452			mem = NULL;
2453		rcu_read_unlock();
2454	}
2455	unlock_page_cgroup(pc);
2456	return mem;
2457}
2458
2459static void __mem_cgroup_commit_charge(struct mem_cgroup *mem,
2460				       struct page *page,
2461				       unsigned int nr_pages,
2462				       struct page_cgroup *pc,
2463				       enum charge_type ctype)
2464{
2465	lock_page_cgroup(pc);
2466	if (unlikely(PageCgroupUsed(pc))) {
2467		unlock_page_cgroup(pc);
2468		__mem_cgroup_cancel_charge(mem, nr_pages);
2469		return;
2470	}
2471	/*
2472	 * we don't need page_cgroup_lock about tail pages, becase they are not
2473	 * accessed by any other context at this point.
2474	 */
2475	pc->mem_cgroup = mem;
2476	/*
2477	 * We access a page_cgroup asynchronously without lock_page_cgroup().
2478	 * Especially when a page_cgroup is taken from a page, pc->mem_cgroup
2479	 * is accessed after testing USED bit. To make pc->mem_cgroup visible
2480	 * before USED bit, we need memory barrier here.
2481	 * See mem_cgroup_add_lru_list(), etc.
2482 	 */
2483	smp_wmb();
2484	switch (ctype) {
2485	case MEM_CGROUP_CHARGE_TYPE_CACHE:
2486	case MEM_CGROUP_CHARGE_TYPE_SHMEM:
2487		SetPageCgroupCache(pc);
2488		SetPageCgroupUsed(pc);
2489		break;
2490	case MEM_CGROUP_CHARGE_TYPE_MAPPED:
2491		ClearPageCgroupCache(pc);
2492		SetPageCgroupUsed(pc);
2493		break;
2494	default:
2495		break;
2496	}
2497
2498	mem_cgroup_charge_statistics(mem, PageCgroupCache(pc), nr_pages);
2499	unlock_page_cgroup(pc);
2500	/*
2501	 * "charge_statistics" updated event counter. Then, check it.
2502	 * Insert ancestor (and ancestor's ancestors), to softlimit RB-tree.
2503	 * if they exceeds softlimit.
2504	 */
2505	memcg_check_events(mem, page);
 
 
2506}
2507
2508#ifdef CONFIG_TRANSPARENT_HUGEPAGE
2509
2510#define PCGF_NOCOPY_AT_SPLIT ((1 << PCG_LOCK) | (1 << PCG_MOVE_LOCK) |\
2511			(1 << PCG_ACCT_LRU) | (1 << PCG_MIGRATION))
2512/*
2513 * Because tail pages are not marked as "used", set it. We're under
2514 * zone->lru_lock, 'splitting on pmd' and compund_lock.
2515 */
2516void mem_cgroup_split_huge_fixup(struct page *head, struct page *tail)
2517{
2518	struct page_cgroup *head_pc = lookup_page_cgroup(head);
2519	struct page_cgroup *tail_pc = lookup_page_cgroup(tail);
2520	unsigned long flags;
2521
2522	if (mem_cgroup_disabled())
2523		return;
2524	/*
2525	 * We have no races with charge/uncharge but will have races with
2526	 * page state accounting.
2527	 */
2528	move_lock_page_cgroup(head_pc, &flags);
2529
2530	tail_pc->mem_cgroup = head_pc->mem_cgroup;
2531	smp_wmb(); /* see __commit_charge() */
2532	if (PageCgroupAcctLRU(head_pc)) {
2533		enum lru_list lru;
2534		struct mem_cgroup_per_zone *mz;
2535
2536		/*
2537		 * LRU flags cannot be copied because we need to add tail
2538		 *.page to LRU by generic call and our hook will be called.
2539		 * We hold lru_lock, then, reduce counter directly.
2540		 */
2541		lru = page_lru(head);
2542		mz = page_cgroup_zoneinfo(head_pc->mem_cgroup, head);
2543		MEM_CGROUP_ZSTAT(mz, lru) -= 1;
2544	}
2545	tail_pc->flags = head_pc->flags & ~PCGF_NOCOPY_AT_SPLIT;
2546	move_unlock_page_cgroup(head_pc, &flags);
2547}
2548#endif
2549
2550/**
2551 * mem_cgroup_move_account - move account of the page
2552 * @page: the page
2553 * @nr_pages: number of regular pages (>1 for huge pages)
2554 * @pc:	page_cgroup of the page.
2555 * @from: mem_cgroup which the page is moved from.
2556 * @to:	mem_cgroup which the page is moved to. @from != @to.
2557 * @uncharge: whether we should call uncharge and css_put against @from.
2558 *
2559 * The caller must confirm following.
2560 * - page is not on LRU (isolate_page() is useful.)
2561 * - compound_lock is held when nr_pages > 1
2562 *
2563 * This function doesn't do "charge" nor css_get to new cgroup. It should be
2564 * done by a caller(__mem_cgroup_try_charge would be useful). If @uncharge is
2565 * true, this function does "uncharge" from old cgroup, but it doesn't if
2566 * @uncharge is false, so a caller should do "uncharge".
2567 */
2568static int mem_cgroup_move_account(struct page *page,
2569				   unsigned int nr_pages,
2570				   struct page_cgroup *pc,
2571				   struct mem_cgroup *from,
2572				   struct mem_cgroup *to,
2573				   bool uncharge)
2574{
2575	unsigned long flags;
2576	int ret;
2577
2578	VM_BUG_ON(from == to);
2579	VM_BUG_ON(PageLRU(page));
2580	/*
2581	 * The page is isolated from LRU. So, collapse function
2582	 * will not handle this page. But page splitting can happen.
2583	 * Do this check under compound_page_lock(). The caller should
2584	 * hold it.
2585	 */
2586	ret = -EBUSY;
2587	if (nr_pages > 1 && !PageTransHuge(page))
2588		goto out;
2589
2590	lock_page_cgroup(pc);
2591
2592	ret = -EINVAL;
2593	if (!PageCgroupUsed(pc) || pc->mem_cgroup != from)
2594		goto unlock;
2595
2596	move_lock_page_cgroup(pc, &flags);
2597
2598	if (PageCgroupFileMapped(pc)) {
2599		/* Update mapped_file data for mem_cgroup */
2600		preempt_disable();
2601		__this_cpu_dec(from->stat->count[MEM_CGROUP_STAT_FILE_MAPPED]);
2602		__this_cpu_inc(to->stat->count[MEM_CGROUP_STAT_FILE_MAPPED]);
2603		preempt_enable();
2604	}
2605	mem_cgroup_charge_statistics(from, PageCgroupCache(pc), -nr_pages);
2606	if (uncharge)
2607		/* This is not "cancel", but cancel_charge does all we need. */
2608		__mem_cgroup_cancel_charge(from, nr_pages);
2609
2610	/* caller should have done css_get */
2611	pc->mem_cgroup = to;
2612	mem_cgroup_charge_statistics(to, PageCgroupCache(pc), nr_pages);
2613	/*
2614	 * We charges against "to" which may not have any tasks. Then, "to"
2615	 * can be under rmdir(). But in current implementation, caller of
2616	 * this function is just force_empty() and move charge, so it's
2617	 * guaranteed that "to" is never removed. So, we don't check rmdir
2618	 * status here.
2619	 */
2620	move_unlock_page_cgroup(pc, &flags);
2621	ret = 0;
2622unlock:
2623	unlock_page_cgroup(pc);
2624	/*
2625	 * check events
 
 
 
 
 
 
 
 
 
 
 
2626	 */
2627	memcg_check_events(to, page);
2628	memcg_check_events(from, page);
2629out:
2630	return ret;
2631}
2632
2633/*
2634 * move charges to its parent.
2635 */
2636
2637static int mem_cgroup_move_parent(struct page *page,
2638				  struct page_cgroup *pc,
2639				  struct mem_cgroup *child,
2640				  gfp_t gfp_mask)
2641{
2642	struct cgroup *cg = child->css.cgroup;
2643	struct cgroup *pcg = cg->parent;
2644	struct mem_cgroup *parent;
2645	unsigned int nr_pages;
2646	unsigned long uninitialized_var(flags);
2647	int ret;
2648
2649	/* Is ROOT ? */
2650	if (!pcg)
2651		return -EINVAL;
2652
2653	ret = -EBUSY;
2654	if (!get_page_unless_zero(page))
2655		goto out;
2656	if (isolate_lru_page(page))
2657		goto put;
2658
2659	nr_pages = hpage_nr_pages(page);
 
 
 
2660
2661	parent = mem_cgroup_from_cont(pcg);
2662	ret = __mem_cgroup_try_charge(NULL, gfp_mask, nr_pages, &parent, false);
2663	if (ret || !parent)
2664		goto put_back;
2665
2666	if (nr_pages > 1)
2667		flags = compound_lock_irqsave(page);
 
 
 
2668
2669	ret = mem_cgroup_move_account(page, nr_pages, pc, child, parent, true);
2670	if (ret)
2671		__mem_cgroup_cancel_charge(parent, nr_pages);
 
 
2672
2673	if (nr_pages > 1)
2674		compound_unlock_irqrestore(page, flags);
2675put_back:
2676	putback_lru_page(page);
2677put:
2678	put_page(page);
2679out:
2680	return ret;
2681}
2682
2683/*
2684 * Charge the memory controller for page usage.
2685 * Return
2686 * 0 if the charge was successful
2687 * < 0 if the cgroup is over its limit
2688 */
2689static int mem_cgroup_charge_common(struct page *page, struct mm_struct *mm,
2690				gfp_t gfp_mask, enum charge_type ctype)
2691{
2692	struct mem_cgroup *mem = NULL;
2693	unsigned int nr_pages = 1;
2694	struct page_cgroup *pc;
2695	bool oom = true;
2696	int ret;
2697
2698	if (PageTransHuge(page)) {
2699		nr_pages <<= compound_order(page);
2700		VM_BUG_ON(!PageTransHuge(page));
2701		/*
2702		 * Never OOM-kill a process for a huge page.  The
2703		 * fault handler will fall back to regular pages.
2704		 */
2705		oom = false;
2706	}
2707
2708	pc = lookup_page_cgroup(page);
2709	BUG_ON(!pc); /* XXX: remove this and move pc lookup into commit */
2710
2711	ret = __mem_cgroup_try_charge(mm, gfp_mask, nr_pages, &mem, oom);
2712	if (ret || !mem)
2713		return ret;
2714
2715	__mem_cgroup_commit_charge(mem, page, nr_pages, pc, ctype);
2716	return 0;
2717}
2718
2719int mem_cgroup_newpage_charge(struct page *page,
2720			      struct mm_struct *mm, gfp_t gfp_mask)
2721{
2722	if (mem_cgroup_disabled())
2723		return 0;
2724	/*
2725	 * If already mapped, we don't have to account.
2726	 * If page cache, page->mapping has address_space.
2727	 * But page->mapping may have out-of-use anon_vma pointer,
2728	 * detecit it by PageAnon() check. newly-mapped-anon's page->mapping
2729	 * is NULL.
2730  	 */
2731	if (page_mapped(page) || (page->mapping && !PageAnon(page)))
2732		return 0;
2733	if (unlikely(!mm))
2734		mm = &init_mm;
2735	return mem_cgroup_charge_common(page, mm, gfp_mask,
2736				MEM_CGROUP_CHARGE_TYPE_MAPPED);
2737}
2738
2739static void
2740__mem_cgroup_commit_charge_swapin(struct page *page, struct mem_cgroup *ptr,
2741					enum charge_type ctype);
2742
2743static void
2744__mem_cgroup_commit_charge_lrucare(struct page *page, struct mem_cgroup *mem,
2745					enum charge_type ctype)
2746{
2747	struct page_cgroup *pc = lookup_page_cgroup(page);
2748	/*
2749	 * In some case, SwapCache, FUSE(splice_buf->radixtree), the page
2750	 * is already on LRU. It means the page may on some other page_cgroup's
2751	 * LRU. Take care of it.
2752	 */
2753	mem_cgroup_lru_del_before_commit(page);
2754	__mem_cgroup_commit_charge(mem, page, 1, pc, ctype);
2755	mem_cgroup_lru_add_after_commit(page);
2756	return;
2757}
2758
2759int mem_cgroup_cache_charge(struct page *page, struct mm_struct *mm,
2760				gfp_t gfp_mask)
2761{
2762	struct mem_cgroup *mem = NULL;
2763	int ret;
2764
2765	if (mem_cgroup_disabled())
2766		return 0;
2767	if (PageCompound(page))
2768		return 0;
2769
2770	if (unlikely(!mm))
2771		mm = &init_mm;
2772
2773	if (page_is_file_cache(page)) {
2774		ret = __mem_cgroup_try_charge(mm, gfp_mask, 1, &mem, true);
2775		if (ret || !mem)
2776			return ret;
2777
2778		/*
2779		 * FUSE reuses pages without going through the final
2780		 * put that would remove them from the LRU list, make
2781		 * sure that they get relinked properly.
2782		 */
2783		__mem_cgroup_commit_charge_lrucare(page, mem,
2784					MEM_CGROUP_CHARGE_TYPE_CACHE);
2785		return ret;
2786	}
2787	/* shmem */
2788	if (PageSwapCache(page)) {
2789		ret = mem_cgroup_try_charge_swapin(mm, page, gfp_mask, &mem);
2790		if (!ret)
2791			__mem_cgroup_commit_charge_swapin(page, mem,
2792					MEM_CGROUP_CHARGE_TYPE_SHMEM);
2793	} else
2794		ret = mem_cgroup_charge_common(page, mm, gfp_mask,
2795					MEM_CGROUP_CHARGE_TYPE_SHMEM);
2796
2797	return ret;
 
2798}
2799
2800/*
2801 * While swap-in, try_charge -> commit or cancel, the page is locked.
2802 * And when try_charge() successfully returns, one refcnt to memcg without
2803 * struct page_cgroup is acquired. This refcnt will be consumed by
2804 * "commit()" or removed by "cancel()"
2805 */
2806int mem_cgroup_try_charge_swapin(struct mm_struct *mm,
2807				 struct page *page,
2808				 gfp_t mask, struct mem_cgroup **ptr)
2809{
2810	struct mem_cgroup *mem;
2811	int ret;
2812
2813	*ptr = NULL;
2814
2815	if (mem_cgroup_disabled())
2816		return 0;
2817
2818	if (!do_swap_account)
2819		goto charge_cur_mm;
2820	/*
2821	 * A racing thread's fault, or swapoff, may have already updated
2822	 * the pte, and even removed page from swap cache: in those cases
2823	 * do_swap_page()'s pte_same() test will fail; but there's also a
2824	 * KSM case which does need to charge the page.
2825	 */
2826	if (!PageSwapCache(page))
2827		goto charge_cur_mm;
2828	mem = try_get_mem_cgroup_from_page(page);
2829	if (!mem)
2830		goto charge_cur_mm;
2831	*ptr = mem;
2832	ret = __mem_cgroup_try_charge(NULL, mask, 1, ptr, true);
2833	css_put(&mem->css);
2834	return ret;
2835charge_cur_mm:
2836	if (unlikely(!mm))
2837		mm = &init_mm;
2838	return __mem_cgroup_try_charge(mm, mask, 1, ptr, true);
2839}
2840
2841static void
2842__mem_cgroup_commit_charge_swapin(struct page *page, struct mem_cgroup *ptr,
2843					enum charge_type ctype)
2844{
2845	if (mem_cgroup_disabled())
2846		return;
2847	if (!ptr)
2848		return;
2849	cgroup_exclude_rmdir(&ptr->css);
2850
2851	__mem_cgroup_commit_charge_lrucare(page, ptr, ctype);
2852	/*
2853	 * Now swap is on-memory. This means this page may be
2854	 * counted both as mem and swap....double count.
2855	 * Fix it by uncharging from memsw. Basically, this SwapCache is stable
2856	 * under lock_page(). But in do_swap_page()::memory.c, reuse_swap_page()
2857	 * may call delete_from_swap_cache() before reach here.
2858	 */
2859	if (do_swap_account && PageSwapCache(page)) {
2860		swp_entry_t ent = {.val = page_private(page)};
2861		unsigned short id;
2862		struct mem_cgroup *memcg;
2863
2864		id = swap_cgroup_record(ent, 0);
2865		rcu_read_lock();
2866		memcg = mem_cgroup_lookup(id);
2867		if (memcg) {
2868			/*
2869			 * This recorded memcg can be obsolete one. So, avoid
2870			 * calling css_tryget
2871			 */
2872			if (!mem_cgroup_is_root(memcg))
2873				res_counter_uncharge(&memcg->memsw, PAGE_SIZE);
2874			mem_cgroup_swap_statistics(memcg, false);
2875			mem_cgroup_put(memcg);
2876		}
2877		rcu_read_unlock();
2878	}
2879	/*
2880	 * At swapin, we may charge account against cgroup which has no tasks.
2881	 * So, rmdir()->pre_destroy() can be called while we do this charge.
2882	 * In that case, we need to call pre_destroy() again. check it here.
2883	 */
2884	cgroup_release_and_wakeup_rmdir(&ptr->css);
2885}
2886
2887void mem_cgroup_commit_charge_swapin(struct page *page, struct mem_cgroup *ptr)
2888{
2889	__mem_cgroup_commit_charge_swapin(page, ptr,
2890					MEM_CGROUP_CHARGE_TYPE_MAPPED);
2891}
2892
2893void mem_cgroup_cancel_charge_swapin(struct mem_cgroup *mem)
2894{
2895	if (mem_cgroup_disabled())
2896		return;
2897	if (!mem)
2898		return;
2899	__mem_cgroup_cancel_charge(mem, 1);
2900}
2901
2902static void mem_cgroup_do_uncharge(struct mem_cgroup *mem,
2903				   unsigned int nr_pages,
2904				   const enum charge_type ctype)
2905{
2906	struct memcg_batch_info *batch = NULL;
2907	bool uncharge_memsw = true;
2908
2909	/* If swapout, usage of swap doesn't decrease */
2910	if (!do_swap_account || ctype == MEM_CGROUP_CHARGE_TYPE_SWAPOUT)
2911		uncharge_memsw = false;
2912
2913	batch = &current->memcg_batch;
2914	/*
2915	 * In usual, we do css_get() when we remember memcg pointer.
2916	 * But in this case, we keep res->usage until end of a series of
2917	 * uncharges. Then, it's ok to ignore memcg's refcnt.
2918	 */
2919	if (!batch->memcg)
2920		batch->memcg = mem;
2921	/*
2922	 * do_batch > 0 when unmapping pages or inode invalidate/truncate.
2923	 * In those cases, all pages freed continuously can be expected to be in
2924	 * the same cgroup and we have chance to coalesce uncharges.
2925	 * But we do uncharge one by one if this is killed by OOM(TIF_MEMDIE)
2926	 * because we want to do uncharge as soon as possible.
2927	 */
2928
2929	if (!batch->do_batch || test_thread_flag(TIF_MEMDIE))
2930		goto direct_uncharge;
2931
2932	if (nr_pages > 1)
2933		goto direct_uncharge;
2934
2935	/*
2936	 * In typical case, batch->memcg == mem. This means we can
2937	 * merge a series of uncharges to an uncharge of res_counter.
2938	 * If not, we uncharge res_counter ony by one.
 
 
 
 
 
 
2939	 */
2940	if (batch->memcg != mem)
2941		goto direct_uncharge;
2942	/* remember freed charge and uncharge it later */
2943	batch->nr_pages++;
2944	if (uncharge_memsw)
2945		batch->memsw_nr_pages++;
2946	return;
2947direct_uncharge:
2948	res_counter_uncharge(&mem->res, nr_pages * PAGE_SIZE);
2949	if (uncharge_memsw)
2950		res_counter_uncharge(&mem->memsw, nr_pages * PAGE_SIZE);
2951	if (unlikely(batch->memcg != mem))
2952		memcg_oom_recover(mem);
2953	return;
2954}
2955
2956/*
2957 * uncharge if !page_mapped(page)
 
 
 
 
 
 
 
 
 
 
2958 */
2959static struct mem_cgroup *
2960__mem_cgroup_uncharge_common(struct page *page, enum charge_type ctype)
2961{
2962	struct mem_cgroup *mem = NULL;
2963	unsigned int nr_pages = 1;
2964	struct page_cgroup *pc;
2965
2966	if (mem_cgroup_disabled())
2967		return NULL;
2968
2969	if (PageSwapCache(page))
2970		return NULL;
2971
2972	if (PageTransHuge(page)) {
2973		nr_pages <<= compound_order(page);
2974		VM_BUG_ON(!PageTransHuge(page));
2975	}
2976	/*
2977	 * Check if our page_cgroup is valid
2978	 */
2979	pc = lookup_page_cgroup(page);
2980	if (unlikely(!pc || !PageCgroupUsed(pc)))
2981		return NULL;
2982
2983	lock_page_cgroup(pc);
2984
2985	mem = pc->mem_cgroup;
 
2986
2987	if (!PageCgroupUsed(pc))
2988		goto unlock_out;
2989
2990	switch (ctype) {
2991	case MEM_CGROUP_CHARGE_TYPE_MAPPED:
2992	case MEM_CGROUP_CHARGE_TYPE_DROP:
2993		/* See mem_cgroup_prepare_migration() */
2994		if (page_mapped(page) || PageCgroupMigration(pc))
2995			goto unlock_out;
2996		break;
2997	case MEM_CGROUP_CHARGE_TYPE_SWAPOUT:
2998		if (!PageAnon(page)) {	/* Shared memory */
2999			if (page->mapping && !page_is_file_cache(page))
3000				goto unlock_out;
3001		} else if (page_mapped(page)) /* Anon */
3002				goto unlock_out;
3003		break;
3004	default:
3005		break;
3006	}
3007
3008	mem_cgroup_charge_statistics(mem, PageCgroupCache(pc), -nr_pages);
 
 
 
3009
3010	ClearPageCgroupUsed(pc);
3011	/*
3012	 * pc->mem_cgroup is not cleared here. It will be accessed when it's
3013	 * freed from LRU. This is safe because uncharged page is expected not
3014	 * to be reused (freed soon). Exception is SwapCache, it's handled by
3015	 * special functions.
3016	 */
3017
3018	unlock_page_cgroup(pc);
3019	/*
3020	 * even after unlock, we have mem->res.usage here and this memcg
3021	 * will never be freed.
 
 
 
 
 
 
 
 
3022	 */
3023	memcg_check_events(mem, page);
3024	if (do_swap_account && ctype == MEM_CGROUP_CHARGE_TYPE_SWAPOUT) {
3025		mem_cgroup_swap_statistics(mem, true);
3026		mem_cgroup_get(mem);
3027	}
3028	if (!mem_cgroup_is_root(mem))
3029		mem_cgroup_do_uncharge(mem, nr_pages, ctype);
3030
3031	return mem;
3032
3033unlock_out:
3034	unlock_page_cgroup(pc);
3035	return NULL;
3036}
3037
3038void mem_cgroup_uncharge_page(struct page *page)
3039{
3040	/* early check. */
3041	if (page_mapped(page))
3042		return;
3043	if (page->mapping && !PageAnon(page))
3044		return;
3045	__mem_cgroup_uncharge_common(page, MEM_CGROUP_CHARGE_TYPE_MAPPED);
3046}
3047
3048void mem_cgroup_uncharge_cache_page(struct page *page)
 
3049{
3050	VM_BUG_ON(page_mapped(page));
3051	VM_BUG_ON(page->mapping);
3052	__mem_cgroup_uncharge_common(page, MEM_CGROUP_CHARGE_TYPE_CACHE);
3053}
3054
3055/*
3056 * Batch_start/batch_end is called in unmap_page_range/invlidate/trucate.
3057 * In that cases, pages are freed continuously and we can expect pages
3058 * are in the same memcg. All these calls itself limits the number of
3059 * pages freed at once, then uncharge_start/end() is called properly.
3060 * This may be called prural(2) times in a context,
3061 */
3062
3063void mem_cgroup_uncharge_start(void)
3064{
3065	current->memcg_batch.do_batch++;
3066	/* We can do nest. */
3067	if (current->memcg_batch.do_batch == 1) {
3068		current->memcg_batch.memcg = NULL;
3069		current->memcg_batch.nr_pages = 0;
3070		current->memcg_batch.memsw_nr_pages = 0;
3071	}
 
 
 
 
3072}
3073
3074void mem_cgroup_uncharge_end(void)
3075{
3076	struct memcg_batch_info *batch = &current->memcg_batch;
 
3077
3078	if (!batch->do_batch)
3079		return;
 
 
 
 
3080
3081	batch->do_batch--;
3082	if (batch->do_batch) /* If stacked, do nothing. */
3083		return;
 
3084
3085	if (!batch->memcg)
3086		return;
3087	/*
3088	 * This "batch->memcg" is valid without any css_get/put etc...
3089	 * bacause we hide charges behind us.
3090	 */
3091	if (batch->nr_pages)
3092		res_counter_uncharge(&batch->memcg->res,
3093				     batch->nr_pages * PAGE_SIZE);
3094	if (batch->memsw_nr_pages)
3095		res_counter_uncharge(&batch->memcg->memsw,
3096				     batch->memsw_nr_pages * PAGE_SIZE);
3097	memcg_oom_recover(batch->memcg);
3098	/* forget this pointer (for sanity check) */
3099	batch->memcg = NULL;
3100}
3101
3102#ifdef CONFIG_SWAP
3103/*
3104 * called after __delete_from_swap_cache() and drop "page" account.
3105 * memcg information is recorded to swap_cgroup of "ent"
3106 */
3107void
3108mem_cgroup_uncharge_swapcache(struct page *page, swp_entry_t ent, bool swapout)
3109{
3110	struct mem_cgroup *memcg;
3111	int ctype = MEM_CGROUP_CHARGE_TYPE_SWAPOUT;
3112
3113	if (!swapout) /* this was a swap cache but the swap is unused ! */
3114		ctype = MEM_CGROUP_CHARGE_TYPE_DROP;
3115
3116	memcg = __mem_cgroup_uncharge_common(page, ctype);
 
 
3117
3118	/*
3119	 * record memcg information,  if swapout && memcg != NULL,
3120	 * mem_cgroup_get() was called in uncharge().
3121	 */
3122	if (do_swap_account && swapout && memcg)
3123		swap_cgroup_record(ent, css_id(&memcg->css));
3124}
3125#endif
 
 
3126
3127#ifdef CONFIG_CGROUP_MEM_RES_CTLR_SWAP
3128/*
3129 * called from swap_entry_free(). remove record in swap_cgroup and
3130 * uncharge "memsw" account.
3131 */
3132void mem_cgroup_uncharge_swap(swp_entry_t ent)
3133{
3134	struct mem_cgroup *memcg;
3135	unsigned short id;
3136
3137	if (!do_swap_account)
3138		return;
3139
3140	id = swap_cgroup_record(ent, 0);
3141	rcu_read_lock();
3142	memcg = mem_cgroup_lookup(id);
3143	if (memcg) {
3144		/*
3145		 * We uncharge this because swap is freed.
3146		 * This memcg can be obsolete one. We avoid calling css_tryget
3147		 */
3148		if (!mem_cgroup_is_root(memcg))
3149			res_counter_uncharge(&memcg->memsw, PAGE_SIZE);
3150		mem_cgroup_swap_statistics(memcg, false);
3151		mem_cgroup_put(memcg);
3152	}
3153	rcu_read_unlock();
3154}
3155
3156/**
3157 * mem_cgroup_move_swap_account - move swap charge and swap_cgroup's record.
3158 * @entry: swap entry to be moved
3159 * @from:  mem_cgroup which the entry is moved from
3160 * @to:  mem_cgroup which the entry is moved to
3161 * @need_fixup: whether we should fixup res_counters and refcounts.
3162 *
3163 * It succeeds only when the swap_cgroup's record for this entry is the same
3164 * as the mem_cgroup's id of @from.
3165 *
3166 * Returns 0 on success, -EINVAL on failure.
3167 *
3168 * The caller must have charged to @to, IOW, called res_counter_charge() about
3169 * both res and memsw, and called css_get().
3170 */
3171static int mem_cgroup_move_swap_account(swp_entry_t entry,
3172		struct mem_cgroup *from, struct mem_cgroup *to, bool need_fixup)
3173{
3174	unsigned short old_id, new_id;
3175
3176	old_id = css_id(&from->css);
3177	new_id = css_id(&to->css);
3178
3179	if (swap_cgroup_cmpxchg(entry, old_id, new_id) == old_id) {
3180		mem_cgroup_swap_statistics(from, false);
3181		mem_cgroup_swap_statistics(to, true);
3182		/*
3183		 * This function is only called from task migration context now.
3184		 * It postpones res_counter and refcount handling till the end
3185		 * of task migration(mem_cgroup_clear_mc()) for performance
3186		 * improvement. But we cannot postpone mem_cgroup_get(to)
3187		 * because if the process that has been moved to @to does
3188		 * swap-in, the refcount of @to might be decreased to 0.
3189		 */
3190		mem_cgroup_get(to);
3191		if (need_fixup) {
3192			if (!mem_cgroup_is_root(from))
3193				res_counter_uncharge(&from->memsw, PAGE_SIZE);
3194			mem_cgroup_put(from);
3195			/*
3196			 * we charged both to->res and to->memsw, so we should
3197			 * uncharge to->res.
3198			 */
3199			if (!mem_cgroup_is_root(to))
3200				res_counter_uncharge(&to->res, PAGE_SIZE);
3201		}
3202		return 0;
3203	}
3204	return -EINVAL;
3205}
3206#else
3207static inline int mem_cgroup_move_swap_account(swp_entry_t entry,
3208		struct mem_cgroup *from, struct mem_cgroup *to, bool need_fixup)
3209{
3210	return -EINVAL;
3211}
3212#endif
3213
3214/*
3215 * Before starting migration, account PAGE_SIZE to mem_cgroup that the old
3216 * page belongs to.
3217 */
3218int mem_cgroup_prepare_migration(struct page *page,
3219	struct page *newpage, struct mem_cgroup **ptr, gfp_t gfp_mask)
3220{
3221	struct mem_cgroup *mem = NULL;
3222	struct page_cgroup *pc;
3223	enum charge_type ctype;
3224	int ret = 0;
3225
3226	*ptr = NULL;
3227
3228	VM_BUG_ON(PageTransHuge(page));
3229	if (mem_cgroup_disabled())
3230		return 0;
3231
3232	pc = lookup_page_cgroup(page);
3233	lock_page_cgroup(pc);
3234	if (PageCgroupUsed(pc)) {
3235		mem = pc->mem_cgroup;
3236		css_get(&mem->css);
3237		/*
3238		 * At migrating an anonymous page, its mapcount goes down
3239		 * to 0 and uncharge() will be called. But, even if it's fully
3240		 * unmapped, migration may fail and this page has to be
3241		 * charged again. We set MIGRATION flag here and delay uncharge
3242		 * until end_migration() is called
3243		 *
3244		 * Corner Case Thinking
3245		 * A)
3246		 * When the old page was mapped as Anon and it's unmap-and-freed
3247		 * while migration was ongoing.
3248		 * If unmap finds the old page, uncharge() of it will be delayed
3249		 * until end_migration(). If unmap finds a new page, it's
3250		 * uncharged when it make mapcount to be 1->0. If unmap code
3251		 * finds swap_migration_entry, the new page will not be mapped
3252		 * and end_migration() will find it(mapcount==0).
3253		 *
3254		 * B)
3255		 * When the old page was mapped but migraion fails, the kernel
3256		 * remaps it. A charge for it is kept by MIGRATION flag even
3257		 * if mapcount goes down to 0. We can do remap successfully
3258		 * without charging it again.
3259		 *
3260		 * C)
3261		 * The "old" page is under lock_page() until the end of
3262		 * migration, so, the old page itself will not be swapped-out.
3263		 * If the new page is swapped out before end_migraton, our
3264		 * hook to usual swap-out path will catch the event.
3265		 */
3266		if (PageAnon(page))
3267			SetPageCgroupMigration(pc);
3268	}
3269	unlock_page_cgroup(pc);
3270	/*
3271	 * If the page is not charged at this point,
3272	 * we return here.
3273	 */
3274	if (!mem)
3275		return 0;
3276
3277	*ptr = mem;
3278	ret = __mem_cgroup_try_charge(NULL, gfp_mask, 1, ptr, false);
3279	css_put(&mem->css);/* drop extra refcnt */
3280	if (ret || *ptr == NULL) {
3281		if (PageAnon(page)) {
3282			lock_page_cgroup(pc);
3283			ClearPageCgroupMigration(pc);
3284			unlock_page_cgroup(pc);
3285			/*
3286			 * The old page may be fully unmapped while we kept it.
3287			 */
3288			mem_cgroup_uncharge_page(page);
3289		}
3290		return -ENOMEM;
3291	}
3292	/*
3293	 * We charge new page before it's used/mapped. So, even if unlock_page()
3294	 * is called before end_migration, we can catch all events on this new
3295	 * page. In the case new page is migrated but not remapped, new page's
3296	 * mapcount will be finally 0 and we call uncharge in end_migration().
3297	 */
3298	pc = lookup_page_cgroup(newpage);
3299	if (PageAnon(page))
3300		ctype = MEM_CGROUP_CHARGE_TYPE_MAPPED;
3301	else if (page_is_file_cache(page))
3302		ctype = MEM_CGROUP_CHARGE_TYPE_CACHE;
3303	else
3304		ctype = MEM_CGROUP_CHARGE_TYPE_SHMEM;
3305	__mem_cgroup_commit_charge(mem, page, 1, pc, ctype);
3306	return ret;
3307}
3308
3309/* remove redundant charge if migration failed*/
3310void mem_cgroup_end_migration(struct mem_cgroup *mem,
3311	struct page *oldpage, struct page *newpage, bool migration_ok)
3312{
3313	struct page *used, *unused;
3314	struct page_cgroup *pc;
3315
3316	if (!mem)
3317		return;
3318	/* blocks rmdir() */
3319	cgroup_exclude_rmdir(&mem->css);
3320	if (!migration_ok) {
3321		used = oldpage;
3322		unused = newpage;
3323	} else {
3324		used = newpage;
3325		unused = oldpage;
3326	}
3327	/*
3328	 * We disallowed uncharge of pages under migration because mapcount
3329	 * of the page goes down to zero, temporarly.
3330	 * Clear the flag and check the page should be charged.
3331	 */
3332	pc = lookup_page_cgroup(oldpage);
3333	lock_page_cgroup(pc);
3334	ClearPageCgroupMigration(pc);
3335	unlock_page_cgroup(pc);
3336
3337	__mem_cgroup_uncharge_common(unused, MEM_CGROUP_CHARGE_TYPE_FORCE);
3338
3339	/*
3340	 * If a page is a file cache, radix-tree replacement is very atomic
3341	 * and we can skip this check. When it was an Anon page, its mapcount
3342	 * goes down to 0. But because we added MIGRATION flage, it's not
3343	 * uncharged yet. There are several case but page->mapcount check
3344	 * and USED bit check in mem_cgroup_uncharge_page() will do enough
3345	 * check. (see prepare_charge() also)
3346	 */
3347	if (PageAnon(used))
3348		mem_cgroup_uncharge_page(used);
3349	/*
3350	 * At migration, we may charge account against cgroup which has no
3351	 * tasks.
3352	 * So, rmdir()->pre_destroy() can be called while we do this charge.
3353	 * In that case, we need to call pre_destroy() again. check it here.
3354	 */
3355	cgroup_release_and_wakeup_rmdir(&mem->css);
3356}
3357
3358#ifdef CONFIG_DEBUG_VM
3359static struct page_cgroup *lookup_page_cgroup_used(struct page *page)
3360{
3361	struct page_cgroup *pc;
3362
3363	pc = lookup_page_cgroup(page);
3364	if (likely(pc) && PageCgroupUsed(pc))
3365		return pc;
3366	return NULL;
3367}
3368
3369bool mem_cgroup_bad_page_check(struct page *page)
3370{
3371	if (mem_cgroup_disabled())
3372		return false;
3373
3374	return lookup_page_cgroup_used(page) != NULL;
3375}
3376
3377void mem_cgroup_print_bad_page(struct page *page)
3378{
3379	struct page_cgroup *pc;
3380
3381	pc = lookup_page_cgroup_used(page);
3382	if (pc) {
3383		int ret = -1;
3384		char *path;
3385
3386		printk(KERN_ALERT "pc:%p pc->flags:%lx pc->mem_cgroup:%p",
3387		       pc, pc->flags, pc->mem_cgroup);
3388
3389		path = kmalloc(PATH_MAX, GFP_KERNEL);
3390		if (path) {
3391			rcu_read_lock();
3392			ret = cgroup_path(pc->mem_cgroup->css.cgroup,
3393							path, PATH_MAX);
3394			rcu_read_unlock();
3395		}
3396
3397		printk(KERN_CONT "(%s)\n",
3398				(ret < 0) ? "cannot get the path" : path);
3399		kfree(path);
3400	}
3401}
3402#endif
3403
3404static DEFINE_MUTEX(set_limit_mutex);
3405
3406static int mem_cgroup_resize_limit(struct mem_cgroup *memcg,
3407				unsigned long long val)
3408{
 
 
 
3409	int retry_count;
3410	u64 memswlimit, memlimit;
3411	int ret = 0;
3412	int children = mem_cgroup_count_children(memcg);
3413	u64 curusage, oldusage;
3414	int enlarge;
3415
3416	/*
3417	 * For keeping hierarchical_reclaim simple, how long we should retry
3418	 * is depends on callers. We set our retry-count to be function
3419	 * of # of children which we should visit in this loop.
3420	 */
3421	retry_count = MEM_CGROUP_RECLAIM_RETRIES * children;
 
3422
3423	oldusage = res_counter_read_u64(&memcg->res, RES_USAGE);
3424
3425	enlarge = 0;
3426	while (retry_count) {
3427		if (signal_pending(current)) {
3428			ret = -EINTR;
3429			break;
3430		}
3431		/*
3432		 * Rather than hide all in some function, I do this in
3433		 * open coded manner. You see what this really does.
3434		 * We have to guarantee mem->res.limit < mem->memsw.limit.
3435		 */
3436		mutex_lock(&set_limit_mutex);
3437		memswlimit = res_counter_read_u64(&memcg->memsw, RES_LIMIT);
3438		if (memswlimit < val) {
3439			ret = -EINVAL;
3440			mutex_unlock(&set_limit_mutex);
3441			break;
3442		}
3443
3444		memlimit = res_counter_read_u64(&memcg->res, RES_LIMIT);
3445		if (memlimit < val)
3446			enlarge = 1;
3447
3448		ret = res_counter_set_limit(&memcg->res, val);
3449		if (!ret) {
3450			if (memswlimit == val)
3451				memcg->memsw_is_minimum = true;
3452			else
3453				memcg->memsw_is_minimum = false;
3454		}
3455		mutex_unlock(&set_limit_mutex);
3456
3457		if (!ret)
3458			break;
3459
3460		mem_cgroup_hierarchical_reclaim(memcg, NULL, GFP_KERNEL,
3461						MEM_CGROUP_RECLAIM_SHRINK,
3462						NULL);
3463		curusage = res_counter_read_u64(&memcg->res, RES_USAGE);
3464		/* Usage is reduced ? */
3465  		if (curusage >= oldusage)
3466			retry_count--;
3467		else
3468			oldusage = curusage;
3469	}
 
3470	if (!ret && enlarge)
3471		memcg_oom_recover(memcg);
3472
3473	return ret;
3474}
3475
3476static int mem_cgroup_resize_memsw_limit(struct mem_cgroup *memcg,
3477					unsigned long long val)
3478{
 
 
 
3479	int retry_count;
3480	u64 memlimit, memswlimit, oldusage, curusage;
3481	int children = mem_cgroup_count_children(memcg);
3482	int ret = -EBUSY;
3483	int enlarge = 0;
3484
3485	/* see mem_cgroup_resize_res_limit */
3486 	retry_count = children * MEM_CGROUP_RECLAIM_RETRIES;
3487	oldusage = res_counter_read_u64(&memcg->memsw, RES_USAGE);
3488	while (retry_count) {
 
 
 
3489		if (signal_pending(current)) {
3490			ret = -EINTR;
3491			break;
3492		}
3493		/*
3494		 * Rather than hide all in some function, I do this in
3495		 * open coded manner. You see what this really does.
3496		 * We have to guarantee mem->res.limit < mem->memsw.limit.
3497		 */
3498		mutex_lock(&set_limit_mutex);
3499		memlimit = res_counter_read_u64(&memcg->res, RES_LIMIT);
3500		if (memlimit > val) {
3501			ret = -EINVAL;
3502			mutex_unlock(&set_limit_mutex);
3503			break;
3504		}
3505		memswlimit = res_counter_read_u64(&memcg->memsw, RES_LIMIT);
3506		if (memswlimit < val)
3507			enlarge = 1;
3508		ret = res_counter_set_limit(&memcg->memsw, val);
3509		if (!ret) {
3510			if (memlimit == val)
3511				memcg->memsw_is_minimum = true;
3512			else
3513				memcg->memsw_is_minimum = false;
3514		}
3515		mutex_unlock(&set_limit_mutex);
3516
3517		if (!ret)
3518			break;
3519
3520		mem_cgroup_hierarchical_reclaim(memcg, NULL, GFP_KERNEL,
3521						MEM_CGROUP_RECLAIM_NOSWAP |
3522						MEM_CGROUP_RECLAIM_SHRINK,
3523						NULL);
3524		curusage = res_counter_read_u64(&memcg->memsw, RES_USAGE);
3525		/* Usage is reduced ? */
3526		if (curusage >= oldusage)
3527			retry_count--;
3528		else
3529			oldusage = curusage;
3530	}
 
3531	if (!ret && enlarge)
3532		memcg_oom_recover(memcg);
 
3533	return ret;
3534}
3535
3536unsigned long mem_cgroup_soft_limit_reclaim(struct zone *zone, int order,
3537					    gfp_t gfp_mask,
3538					    unsigned long *total_scanned)
3539{
3540	unsigned long nr_reclaimed = 0;
3541	struct mem_cgroup_per_zone *mz, *next_mz = NULL;
3542	unsigned long reclaimed;
3543	int loop = 0;
3544	struct mem_cgroup_tree_per_zone *mctz;
3545	unsigned long long excess;
3546	unsigned long nr_scanned;
3547
3548	if (order > 0)
3549		return 0;
3550
3551	mctz = soft_limit_tree_node_zone(zone_to_nid(zone), zone_idx(zone));
3552	/*
3553	 * This loop can run a while, specially if mem_cgroup's continuously
3554	 * keep exceeding their soft limit and putting the system under
3555	 * pressure
3556	 */
3557	do {
3558		if (next_mz)
3559			mz = next_mz;
3560		else
3561			mz = mem_cgroup_largest_soft_limit_node(mctz);
3562		if (!mz)
3563			break;
3564
3565		nr_scanned = 0;
3566		reclaimed = mem_cgroup_hierarchical_reclaim(mz->mem, zone,
3567						gfp_mask,
3568						MEM_CGROUP_RECLAIM_SOFT,
3569						&nr_scanned);
3570		nr_reclaimed += reclaimed;
3571		*total_scanned += nr_scanned;
3572		spin_lock(&mctz->lock);
 
3573
3574		/*
3575		 * If we failed to reclaim anything from this memory cgroup
3576		 * it is time to move on to the next cgroup
3577		 */
3578		next_mz = NULL;
3579		if (!reclaimed) {
3580			do {
3581				/*
3582				 * Loop until we find yet another one.
3583				 *
3584				 * By the time we get the soft_limit lock
3585				 * again, someone might have aded the
3586				 * group back on the RB tree. Iterate to
3587				 * make sure we get a different mem.
3588				 * mem_cgroup_largest_soft_limit_node returns
3589				 * NULL if no other cgroup is present on
3590				 * the tree
3591				 */
3592				next_mz =
3593				__mem_cgroup_largest_soft_limit_node(mctz);
3594				if (next_mz == mz)
3595					css_put(&next_mz->mem->css);
3596				else /* next_mz == NULL or other memcg */
3597					break;
3598			} while (1);
3599		}
3600		__mem_cgroup_remove_exceeded(mz->mem, mz, mctz);
3601		excess = res_counter_soft_limit_excess(&mz->mem->res);
3602		/*
3603		 * One school of thought says that we should not add
3604		 * back the node to the tree if reclaim returns 0.
3605		 * But our reclaim could return 0, simply because due
3606		 * to priority we are exposing a smaller subset of
3607		 * memory to reclaim from. Consider this as a longer
3608		 * term TODO.
3609		 */
3610		/* If excess == 0, no tree ops */
3611		__mem_cgroup_insert_exceeded(mz->mem, mz, mctz, excess);
3612		spin_unlock(&mctz->lock);
3613		css_put(&mz->mem->css);
3614		loop++;
3615		/*
3616		 * Could not reclaim anything and there are no more
3617		 * mem cgroups to try or we seem to be looping without
3618		 * reclaiming anything.
3619		 */
3620		if (!nr_reclaimed &&
3621			(next_mz == NULL ||
3622			loop > MEM_CGROUP_MAX_SOFT_LIMIT_RECLAIM_LOOPS))
3623			break;
3624	} while (!nr_reclaimed);
3625	if (next_mz)
3626		css_put(&next_mz->mem->css);
3627	return nr_reclaimed;
3628}
3629
3630/*
3631 * This routine traverse page_cgroup in given list and drop them all.
3632 * *And* this routine doesn't reclaim page itself, just removes page_cgroup.
 
 
3633 */
3634static int mem_cgroup_force_empty_list(struct mem_cgroup *mem,
3635				int node, int zid, enum lru_list lru)
3636{
3637	struct zone *zone;
3638	struct mem_cgroup_per_zone *mz;
3639	struct page_cgroup *pc, *busy;
3640	unsigned long flags, loop;
3641	struct list_head *list;
3642	int ret = 0;
3643
3644	zone = &NODE_DATA(node)->node_zones[zid];
3645	mz = mem_cgroup_zoneinfo(mem, node, zid);
3646	list = &mz->lists[lru];
3647
3648	loop = MEM_CGROUP_ZSTAT(mz, lru);
3649	/* give some margin against EBUSY etc...*/
3650	loop += 256;
3651	busy = NULL;
3652	while (loop--) {
3653		struct page *page;
3654
3655		ret = 0;
3656		spin_lock_irqsave(&zone->lru_lock, flags);
3657		if (list_empty(list)) {
3658			spin_unlock_irqrestore(&zone->lru_lock, flags);
3659			break;
3660		}
3661		pc = list_entry(list->prev, struct page_cgroup, lru);
3662		if (busy == pc) {
3663			list_move(&pc->lru, list);
3664			busy = NULL;
3665			spin_unlock_irqrestore(&zone->lru_lock, flags);
3666			continue;
3667		}
3668		spin_unlock_irqrestore(&zone->lru_lock, flags);
3669
3670		page = lookup_cgroup_page(pc);
3671
3672		ret = mem_cgroup_move_parent(page, pc, mem, GFP_KERNEL);
3673		if (ret == -ENOMEM)
3674			break;
3675
3676		if (ret == -EBUSY || ret == -EINVAL) {
3677			/* found lock contention or "pc" is obsolete. */
3678			busy = pc;
3679			cond_resched();
3680		} else
3681			busy = NULL;
3682	}
3683
3684	if (!ret && !list_empty(list))
3685		return -EBUSY;
 
3686	return ret;
3687}
3688
3689/*
3690 * make mem_cgroup's charge to be 0 if there is no task.
3691 * This enables deleting this mem_cgroup.
 
 
3692 */
3693static int mem_cgroup_force_empty(struct mem_cgroup *mem, bool free_all)
3694{
3695	int ret;
3696	int node, zid, shrink;
3697	int nr_retries = MEM_CGROUP_RECLAIM_RETRIES;
3698	struct cgroup *cgrp = mem->css.cgroup;
3699
3700	css_get(&mem->css);
3701
3702	shrink = 0;
3703	/* should free all ? */
3704	if (free_all)
3705		goto try_to_free;
3706move_account:
3707	do {
3708		ret = -EBUSY;
3709		if (cgroup_task_count(cgrp) || !list_empty(&cgrp->children))
3710			goto out;
3711		ret = -EINTR;
3712		if (signal_pending(current))
3713			goto out;
3714		/* This is for making all *used* pages to be on LRU. */
3715		lru_add_drain_all();
3716		drain_all_stock_sync(mem);
3717		ret = 0;
3718		mem_cgroup_start_move(mem);
3719		for_each_node_state(node, N_HIGH_MEMORY) {
3720			for (zid = 0; !ret && zid < MAX_NR_ZONES; zid++) {
3721				enum lru_list l;
3722				for_each_lru(l) {
3723					ret = mem_cgroup_force_empty_list(mem,
3724							node, zid, l);
3725					if (ret)
3726						break;
3727				}
3728			}
3729			if (ret)
3730				break;
3731		}
3732		mem_cgroup_end_move(mem);
3733		memcg_oom_recover(mem);
3734		/* it seems parent cgroup doesn't have enough mem */
3735		if (ret == -ENOMEM)
3736			goto try_to_free;
3737		cond_resched();
3738	/* "ret" should also be checked to ensure all lists are empty. */
3739	} while (mem->res.usage > 0 || ret);
3740out:
3741	css_put(&mem->css);
3742	return ret;
3743
3744try_to_free:
3745	/* returns EBUSY if there is a task or if we come here twice. */
3746	if (cgroup_task_count(cgrp) || !list_empty(&cgrp->children) || shrink) {
3747		ret = -EBUSY;
3748		goto out;
3749	}
3750	/* we call try-to-free pages for make this cgroup empty */
3751	lru_add_drain_all();
3752	/* try to free all pages in this cgroup */
3753	shrink = 1;
3754	while (nr_retries && mem->res.usage > 0) {
3755		int progress;
3756
3757		if (signal_pending(current)) {
3758			ret = -EINTR;
3759			goto out;
3760		}
3761		progress = try_to_free_mem_cgroup_pages(mem, GFP_KERNEL,
3762						false);
3763		if (!progress) {
3764			nr_retries--;
3765			/* maybe some writeback is necessary */
3766			congestion_wait(BLK_RW_ASYNC, HZ/10);
3767		}
3768
3769	}
3770	lru_add_drain();
3771	/* try move_account...there may be some *locked* pages. */
3772	goto move_account;
3773}
3774
3775int mem_cgroup_force_empty_write(struct cgroup *cont, unsigned int event)
 
 
3776{
3777	return mem_cgroup_force_empty(mem_cgroup_from_cont(cont), true);
3778}
3779
 
 
 
 
3780
3781static u64 mem_cgroup_hierarchy_read(struct cgroup *cont, struct cftype *cft)
 
3782{
3783	return mem_cgroup_from_cont(cont)->use_hierarchy;
3784}
3785
3786static int mem_cgroup_hierarchy_write(struct cgroup *cont, struct cftype *cft,
3787					u64 val)
3788{
3789	int retval = 0;
3790	struct mem_cgroup *mem = mem_cgroup_from_cont(cont);
3791	struct cgroup *parent = cont->parent;
3792	struct mem_cgroup *parent_mem = NULL;
3793
3794	if (parent)
3795		parent_mem = mem_cgroup_from_cont(parent);
3796
3797	cgroup_lock();
3798	/*
3799	 * If parent's use_hierarchy is set, we can't make any modifications
3800	 * in the child subtrees. If it is unset, then the change can
3801	 * occur, provided the current cgroup has no children.
3802	 *
3803	 * For the root cgroup, parent_mem is NULL, we allow value to be
3804	 * set if there are no children.
3805	 */
3806	if ((!parent_mem || !parent_mem->use_hierarchy) &&
3807				(val == 1 || val == 0)) {
3808		if (list_empty(&cont->children))
3809			mem->use_hierarchy = val;
3810		else
3811			retval = -EBUSY;
3812	} else
3813		retval = -EINVAL;
3814	cgroup_unlock();
3815
3816	return retval;
3817}
3818
3819
3820static unsigned long mem_cgroup_recursive_stat(struct mem_cgroup *mem,
3821					       enum mem_cgroup_stat_index idx)
3822{
3823	struct mem_cgroup *iter;
3824	long val = 0;
3825
3826	/* Per-cpu values can be negative, use a signed accumulator */
3827	for_each_mem_cgroup_tree(iter, mem)
3828		val += mem_cgroup_read_stat(iter, idx);
3829
3830	if (val < 0) /* race ? */
3831		val = 0;
3832	return val;
 
3833}
3834
3835static inline u64 mem_cgroup_usage(struct mem_cgroup *mem, bool swap)
3836{
3837	u64 val;
 
3838
3839	if (!mem_cgroup_is_root(mem)) {
3840		if (!swap)
3841			return res_counter_read_u64(&mem->res, RES_USAGE);
3842		else
3843			return res_counter_read_u64(&mem->memsw, RES_USAGE);
3844	}
 
3845
3846	val = mem_cgroup_recursive_stat(mem, MEM_CGROUP_STAT_CACHE);
3847	val += mem_cgroup_recursive_stat(mem, MEM_CGROUP_STAT_RSS);
 
3848
3849	if (swap)
3850		val += mem_cgroup_recursive_stat(mem, MEM_CGROUP_STAT_SWAPOUT);
3851
3852	return val << PAGE_SHIFT;
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
3853}
3854
3855static u64 mem_cgroup_read(struct cgroup *cont, struct cftype *cft)
 
 
 
 
 
 
 
 
 
3856{
3857	struct mem_cgroup *mem = mem_cgroup_from_cont(cont);
3858	u64 val;
3859	int type, name;
3860
3861	type = MEMFILE_TYPE(cft->private);
3862	name = MEMFILE_ATTR(cft->private);
3863	switch (type) {
3864	case _MEM:
3865		if (name == RES_USAGE)
3866			val = mem_cgroup_usage(mem, false);
3867		else
3868			val = res_counter_read_u64(&mem->res, name);
3869		break;
3870	case _MEMSWAP:
3871		if (name == RES_USAGE)
3872			val = mem_cgroup_usage(mem, true);
3873		else
3874			val = res_counter_read_u64(&mem->memsw, name);
 
 
 
3875		break;
3876	default:
3877		BUG();
3878		break;
3879	}
3880	return val;
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
3881}
 
3882/*
3883 * The user of this function is...
3884 * RES_LIMIT.
3885 */
3886static int mem_cgroup_write(struct cgroup *cont, struct cftype *cft,
3887			    const char *buffer)
3888{
3889	struct mem_cgroup *memcg = mem_cgroup_from_cont(cont);
3890	int type, name;
3891	unsigned long long val;
3892	int ret;
3893
3894	type = MEMFILE_TYPE(cft->private);
3895	name = MEMFILE_ATTR(cft->private);
3896	switch (name) {
 
 
 
3897	case RES_LIMIT:
3898		if (mem_cgroup_is_root(memcg)) { /* Can't set limit on root */
3899			ret = -EINVAL;
3900			break;
3901		}
3902		/* This function does all necessary parse...reuse it */
3903		ret = res_counter_memparse_write_strategy(buffer, &val);
3904		if (ret)
3905			break;
3906		if (type == _MEM)
3907			ret = mem_cgroup_resize_limit(memcg, val);
3908		else
3909			ret = mem_cgroup_resize_memsw_limit(memcg, val);
3910		break;
3911	case RES_SOFT_LIMIT:
3912		ret = res_counter_memparse_write_strategy(buffer, &val);
3913		if (ret)
3914			break;
3915		/*
3916		 * For memsw, soft limits are hard to implement in terms
3917		 * of semantics, for now, we support soft limits for
3918		 * control without swap
3919		 */
3920		if (type == _MEM)
3921			ret = res_counter_set_soft_limit(&memcg->res, val);
3922		else
3923			ret = -EINVAL;
3924		break;
3925	default:
3926		ret = -EINVAL; /* should be BUG() ? */
 
3927		break;
3928	}
3929	return ret;
3930}
3931
3932static void memcg_get_hierarchical_limit(struct mem_cgroup *memcg,
3933		unsigned long long *mem_limit, unsigned long long *memsw_limit)
3934{
3935	struct cgroup *cgroup;
3936	unsigned long long min_limit, min_memsw_limit, tmp;
3937
3938	min_limit = res_counter_read_u64(&memcg->res, RES_LIMIT);
3939	min_memsw_limit = res_counter_read_u64(&memcg->memsw, RES_LIMIT);
3940	cgroup = memcg->css.cgroup;
3941	if (!memcg->use_hierarchy)
3942		goto out;
3943
3944	while (cgroup->parent) {
3945		cgroup = cgroup->parent;
3946		memcg = mem_cgroup_from_cont(cgroup);
3947		if (!memcg->use_hierarchy)
3948			break;
3949		tmp = res_counter_read_u64(&memcg->res, RES_LIMIT);
3950		min_limit = min(min_limit, tmp);
3951		tmp = res_counter_read_u64(&memcg->memsw, RES_LIMIT);
3952		min_memsw_limit = min(min_memsw_limit, tmp);
3953	}
3954out:
3955	*mem_limit = min_limit;
3956	*memsw_limit = min_memsw_limit;
3957	return;
3958}
3959
3960static int mem_cgroup_reset(struct cgroup *cont, unsigned int event)
3961{
3962	struct mem_cgroup *mem;
3963	int type, name;
3964
3965	mem = mem_cgroup_from_cont(cont);
3966	type = MEMFILE_TYPE(event);
3967	name = MEMFILE_ATTR(event);
3968	switch (name) {
3969	case RES_MAX_USAGE:
3970		if (type == _MEM)
3971			res_counter_reset_max(&mem->res);
3972		else
3973			res_counter_reset_max(&mem->memsw);
3974		break;
3975	case RES_FAILCNT:
3976		if (type == _MEM)
3977			res_counter_reset_failcnt(&mem->res);
3978		else
3979			res_counter_reset_failcnt(&mem->memsw);
3980		break;
 
 
3981	}
3982
3983	return 0;
3984}
3985
3986static u64 mem_cgroup_move_charge_read(struct cgroup *cgrp,
3987					struct cftype *cft)
3988{
3989	return mem_cgroup_from_cont(cgrp)->move_charge_at_immigrate;
3990}
3991
3992#ifdef CONFIG_MMU
3993static int mem_cgroup_move_charge_write(struct cgroup *cgrp,
3994					struct cftype *cft, u64 val)
3995{
3996	struct mem_cgroup *mem = mem_cgroup_from_cont(cgrp);
3997
3998	if (val >= (1 << NR_MOVE_TYPE))
3999		return -EINVAL;
4000	/*
4001	 * We check this value several times in both in can_attach() and
4002	 * attach(), so we need cgroup lock to prevent this value from being
4003	 * inconsistent.
4004	 */
4005	cgroup_lock();
4006	mem->move_charge_at_immigrate = val;
4007	cgroup_unlock();
4008
 
 
 
 
 
 
 
4009	return 0;
4010}
4011#else
4012static int mem_cgroup_move_charge_write(struct cgroup *cgrp,
4013					struct cftype *cft, u64 val)
4014{
4015	return -ENOSYS;
4016}
4017#endif
4018
4019
4020/* For read statistics */
4021enum {
4022	MCS_CACHE,
4023	MCS_RSS,
4024	MCS_FILE_MAPPED,
4025	MCS_PGPGIN,
4026	MCS_PGPGOUT,
4027	MCS_SWAP,
4028	MCS_PGFAULT,
4029	MCS_PGMAJFAULT,
4030	MCS_INACTIVE_ANON,
4031	MCS_ACTIVE_ANON,
4032	MCS_INACTIVE_FILE,
4033	MCS_ACTIVE_FILE,
4034	MCS_UNEVICTABLE,
4035	NR_MCS_STAT,
4036};
4037
4038struct mcs_total_stat {
4039	s64 stat[NR_MCS_STAT];
4040};
4041
4042struct {
4043	char *local_name;
4044	char *total_name;
4045} memcg_stat_strings[NR_MCS_STAT] = {
4046	{"cache", "total_cache"},
4047	{"rss", "total_rss"},
4048	{"mapped_file", "total_mapped_file"},
4049	{"pgpgin", "total_pgpgin"},
4050	{"pgpgout", "total_pgpgout"},
4051	{"swap", "total_swap"},
4052	{"pgfault", "total_pgfault"},
4053	{"pgmajfault", "total_pgmajfault"},
4054	{"inactive_anon", "total_inactive_anon"},
4055	{"active_anon", "total_active_anon"},
4056	{"inactive_file", "total_inactive_file"},
4057	{"active_file", "total_active_file"},
4058	{"unevictable", "total_unevictable"}
4059};
4060
4061
4062static void
4063mem_cgroup_get_local_stat(struct mem_cgroup *mem, struct mcs_total_stat *s)
4064{
4065	s64 val;
4066
4067	/* per cpu stat */
4068	val = mem_cgroup_read_stat(mem, MEM_CGROUP_STAT_CACHE);
4069	s->stat[MCS_CACHE] += val * PAGE_SIZE;
4070	val = mem_cgroup_read_stat(mem, MEM_CGROUP_STAT_RSS);
4071	s->stat[MCS_RSS] += val * PAGE_SIZE;
4072	val = mem_cgroup_read_stat(mem, MEM_CGROUP_STAT_FILE_MAPPED);
4073	s->stat[MCS_FILE_MAPPED] += val * PAGE_SIZE;
4074	val = mem_cgroup_read_events(mem, MEM_CGROUP_EVENTS_PGPGIN);
4075	s->stat[MCS_PGPGIN] += val;
4076	val = mem_cgroup_read_events(mem, MEM_CGROUP_EVENTS_PGPGOUT);
4077	s->stat[MCS_PGPGOUT] += val;
4078	if (do_swap_account) {
4079		val = mem_cgroup_read_stat(mem, MEM_CGROUP_STAT_SWAPOUT);
4080		s->stat[MCS_SWAP] += val * PAGE_SIZE;
4081	}
4082	val = mem_cgroup_read_events(mem, MEM_CGROUP_EVENTS_PGFAULT);
4083	s->stat[MCS_PGFAULT] += val;
4084	val = mem_cgroup_read_events(mem, MEM_CGROUP_EVENTS_PGMAJFAULT);
4085	s->stat[MCS_PGMAJFAULT] += val;
4086
4087	/* per zone stat */
4088	val = mem_cgroup_nr_lru_pages(mem, BIT(LRU_INACTIVE_ANON));
4089	s->stat[MCS_INACTIVE_ANON] += val * PAGE_SIZE;
4090	val = mem_cgroup_nr_lru_pages(mem, BIT(LRU_ACTIVE_ANON));
4091	s->stat[MCS_ACTIVE_ANON] += val * PAGE_SIZE;
4092	val = mem_cgroup_nr_lru_pages(mem, BIT(LRU_INACTIVE_FILE));
4093	s->stat[MCS_INACTIVE_FILE] += val * PAGE_SIZE;
4094	val = mem_cgroup_nr_lru_pages(mem, BIT(LRU_ACTIVE_FILE));
4095	s->stat[MCS_ACTIVE_FILE] += val * PAGE_SIZE;
4096	val = mem_cgroup_nr_lru_pages(mem, BIT(LRU_UNEVICTABLE));
4097	s->stat[MCS_UNEVICTABLE] += val * PAGE_SIZE;
4098}
4099
4100static void
4101mem_cgroup_get_total_stat(struct mem_cgroup *mem, struct mcs_total_stat *s)
4102{
4103	struct mem_cgroup *iter;
4104
4105	for_each_mem_cgroup_tree(iter, mem)
4106		mem_cgroup_get_local_stat(iter, s);
4107}
4108
4109#ifdef CONFIG_NUMA
4110static int mem_control_numa_stat_show(struct seq_file *m, void *arg)
4111{
 
 
 
 
 
 
 
 
 
 
 
 
4112	int nid;
4113	unsigned long total_nr, file_nr, anon_nr, unevictable_nr;
4114	unsigned long node_nr;
4115	struct cgroup *cont = m->private;
4116	struct mem_cgroup *mem_cont = mem_cgroup_from_cont(cont);
4117
4118	total_nr = mem_cgroup_nr_lru_pages(mem_cont, LRU_ALL);
4119	seq_printf(m, "total=%lu", total_nr);
4120	for_each_node_state(nid, N_HIGH_MEMORY) {
4121		node_nr = mem_cgroup_node_nr_lru_pages(mem_cont, nid, LRU_ALL);
4122		seq_printf(m, " N%d=%lu", nid, node_nr);
4123	}
4124	seq_putc(m, '\n');
4125
4126	file_nr = mem_cgroup_nr_lru_pages(mem_cont, LRU_ALL_FILE);
4127	seq_printf(m, "file=%lu", file_nr);
4128	for_each_node_state(nid, N_HIGH_MEMORY) {
4129		node_nr = mem_cgroup_node_nr_lru_pages(mem_cont, nid,
4130				LRU_ALL_FILE);
4131		seq_printf(m, " N%d=%lu", nid, node_nr);
4132	}
4133	seq_putc(m, '\n');
4134
4135	anon_nr = mem_cgroup_nr_lru_pages(mem_cont, LRU_ALL_ANON);
4136	seq_printf(m, "anon=%lu", anon_nr);
4137	for_each_node_state(nid, N_HIGH_MEMORY) {
4138		node_nr = mem_cgroup_node_nr_lru_pages(mem_cont, nid,
4139				LRU_ALL_ANON);
4140		seq_printf(m, " N%d=%lu", nid, node_nr);
4141	}
4142	seq_putc(m, '\n');
4143
4144	unevictable_nr = mem_cgroup_nr_lru_pages(mem_cont, BIT(LRU_UNEVICTABLE));
4145	seq_printf(m, "unevictable=%lu", unevictable_nr);
4146	for_each_node_state(nid, N_HIGH_MEMORY) {
4147		node_nr = mem_cgroup_node_nr_lru_pages(mem_cont, nid,
4148				BIT(LRU_UNEVICTABLE));
4149		seq_printf(m, " N%d=%lu", nid, node_nr);
4150	}
4151	seq_putc(m, '\n');
4152	return 0;
4153}
4154#endif /* CONFIG_NUMA */
4155
4156static int mem_control_stat_show(struct cgroup *cont, struct cftype *cft,
4157				 struct cgroup_map_cb *cb)
4158{
4159	struct mem_cgroup *mem_cont = mem_cgroup_from_cont(cont);
4160	struct mcs_total_stat mystat;
4161	int i;
 
 
 
 
 
 
 
 
 
 
 
 
 
 
4162
4163	memset(&mystat, 0, sizeof(mystat));
4164	mem_cgroup_get_local_stat(mem_cont, &mystat);
 
4165
 
 
 
4166
4167	for (i = 0; i < NR_MCS_STAT; i++) {
4168		if (i == MCS_SWAP && !do_swap_account)
 
 
 
 
 
 
 
 
 
 
 
 
 
 
4169			continue;
4170		cb->fill(cb, memcg_stat_strings[i].local_name, mystat.stat[i]);
 
 
4171	}
4172
4173	/* Hierarchical information */
4174	{
4175		unsigned long long limit, memsw_limit;
4176		memcg_get_hierarchical_limit(mem_cont, &limit, &memsw_limit);
4177		cb->fill(cb, "hierarchical_memory_limit", limit);
4178		if (do_swap_account)
4179			cb->fill(cb, "hierarchical_memsw_limit", memsw_limit);
4180	}
4181
4182	memset(&mystat, 0, sizeof(mystat));
4183	mem_cgroup_get_total_stat(mem_cont, &mystat);
4184	for (i = 0; i < NR_MCS_STAT; i++) {
4185		if (i == MCS_SWAP && !do_swap_account)
4186			continue;
4187		cb->fill(cb, memcg_stat_strings[i].total_name, mystat.stat[i]);
4188	}
4189
4190#ifdef CONFIG_DEBUG_VM
4191	cb->fill(cb, "inactive_ratio", calc_inactive_ratio(mem_cont, NULL));
4192
4193	{
4194		int nid, zid;
4195		struct mem_cgroup_per_zone *mz;
 
4196		unsigned long recent_rotated[2] = {0, 0};
4197		unsigned long recent_scanned[2] = {0, 0};
4198
4199		for_each_online_node(nid)
4200			for (zid = 0; zid < MAX_NR_ZONES; zid++) {
4201				mz = mem_cgroup_zoneinfo(mem_cont, nid, zid);
 
4202
4203				recent_rotated[0] +=
4204					mz->reclaim_stat.recent_rotated[0];
4205				recent_rotated[1] +=
4206					mz->reclaim_stat.recent_rotated[1];
4207				recent_scanned[0] +=
4208					mz->reclaim_stat.recent_scanned[0];
4209				recent_scanned[1] +=
4210					mz->reclaim_stat.recent_scanned[1];
4211			}
4212		cb->fill(cb, "recent_rotated_anon", recent_rotated[0]);
4213		cb->fill(cb, "recent_rotated_file", recent_rotated[1]);
4214		cb->fill(cb, "recent_scanned_anon", recent_scanned[0]);
4215		cb->fill(cb, "recent_scanned_file", recent_scanned[1]);
4216	}
4217#endif
4218
4219	return 0;
4220}
4221
4222static u64 mem_cgroup_swappiness_read(struct cgroup *cgrp, struct cftype *cft)
 
4223{
4224	struct mem_cgroup *memcg = mem_cgroup_from_cont(cgrp);
4225
4226	return mem_cgroup_swappiness(memcg);
4227}
4228
4229static int mem_cgroup_swappiness_write(struct cgroup *cgrp, struct cftype *cft,
4230				       u64 val)
4231{
4232	struct mem_cgroup *memcg = mem_cgroup_from_cont(cgrp);
4233	struct mem_cgroup *parent;
4234
4235	if (val > 100)
4236		return -EINVAL;
4237
4238	if (cgrp->parent == NULL)
4239		return -EINVAL;
4240
4241	parent = mem_cgroup_from_cont(cgrp->parent);
4242
4243	cgroup_lock();
4244
4245	/* If under hierarchy, only empty-root can set this value */
4246	if ((parent->use_hierarchy) ||
4247	    (memcg->use_hierarchy && !list_empty(&cgrp->children))) {
4248		cgroup_unlock();
4249		return -EINVAL;
4250	}
4251
4252	memcg->swappiness = val;
4253
4254	cgroup_unlock();
4255
4256	return 0;
4257}
4258
4259static void __mem_cgroup_threshold(struct mem_cgroup *memcg, bool swap)
4260{
4261	struct mem_cgroup_threshold_ary *t;
4262	u64 usage;
4263	int i;
4264
4265	rcu_read_lock();
4266	if (!swap)
4267		t = rcu_dereference(memcg->thresholds.primary);
4268	else
4269		t = rcu_dereference(memcg->memsw_thresholds.primary);
4270
4271	if (!t)
4272		goto unlock;
4273
4274	usage = mem_cgroup_usage(memcg, swap);
4275
4276	/*
4277	 * current_threshold points to threshold just below usage.
4278	 * If it's not true, a threshold was crossed after last
4279	 * call of __mem_cgroup_threshold().
4280	 */
4281	i = t->current_threshold;
4282
4283	/*
4284	 * Iterate backward over array of thresholds starting from
4285	 * current_threshold and check if a threshold is crossed.
4286	 * If none of thresholds below usage is crossed, we read
4287	 * only one element of the array here.
4288	 */
4289	for (; i >= 0 && unlikely(t->entries[i].threshold > usage); i--)
4290		eventfd_signal(t->entries[i].eventfd, 1);
4291
4292	/* i = current_threshold + 1 */
4293	i++;
4294
4295	/*
4296	 * Iterate forward over array of thresholds starting from
4297	 * current_threshold+1 and check if a threshold is crossed.
4298	 * If none of thresholds above usage is crossed, we read
4299	 * only one element of the array here.
4300	 */
4301	for (; i < t->size && unlikely(t->entries[i].threshold <= usage); i++)
4302		eventfd_signal(t->entries[i].eventfd, 1);
4303
4304	/* Update current_threshold */
4305	t->current_threshold = i - 1;
4306unlock:
4307	rcu_read_unlock();
4308}
4309
4310static void mem_cgroup_threshold(struct mem_cgroup *memcg)
4311{
4312	while (memcg) {
4313		__mem_cgroup_threshold(memcg, false);
4314		if (do_swap_account)
4315			__mem_cgroup_threshold(memcg, true);
4316
4317		memcg = parent_mem_cgroup(memcg);
4318	}
4319}
4320
4321static int compare_thresholds(const void *a, const void *b)
4322{
4323	const struct mem_cgroup_threshold *_a = a;
4324	const struct mem_cgroup_threshold *_b = b;
4325
4326	return _a->threshold - _b->threshold;
 
 
 
 
 
 
4327}
4328
4329static int mem_cgroup_oom_notify_cb(struct mem_cgroup *mem)
4330{
4331	struct mem_cgroup_eventfd_list *ev;
4332
4333	list_for_each_entry(ev, &mem->oom_notify, list)
 
 
4334		eventfd_signal(ev->eventfd, 1);
 
 
4335	return 0;
4336}
4337
4338static void mem_cgroup_oom_notify(struct mem_cgroup *mem)
4339{
4340	struct mem_cgroup *iter;
4341
4342	for_each_mem_cgroup_tree(iter, mem)
4343		mem_cgroup_oom_notify_cb(iter);
4344}
4345
4346static int mem_cgroup_usage_register_event(struct cgroup *cgrp,
4347	struct cftype *cft, struct eventfd_ctx *eventfd, const char *args)
4348{
4349	struct mem_cgroup *memcg = mem_cgroup_from_cont(cgrp);
4350	struct mem_cgroup_thresholds *thresholds;
4351	struct mem_cgroup_threshold_ary *new;
4352	int type = MEMFILE_TYPE(cft->private);
4353	u64 threshold, usage;
4354	int i, size, ret;
4355
4356	ret = res_counter_memparse_write_strategy(args, &threshold);
4357	if (ret)
4358		return ret;
4359
4360	mutex_lock(&memcg->thresholds_lock);
4361
4362	if (type == _MEM)
4363		thresholds = &memcg->thresholds;
4364	else if (type == _MEMSWAP)
 
4365		thresholds = &memcg->memsw_thresholds;
4366	else
 
4367		BUG();
4368
4369	usage = mem_cgroup_usage(memcg, type == _MEMSWAP);
4370
4371	/* Check if a threshold crossed before adding a new one */
4372	if (thresholds->primary)
4373		__mem_cgroup_threshold(memcg, type == _MEMSWAP);
4374
4375	size = thresholds->primary ? thresholds->primary->size + 1 : 1;
4376
4377	/* Allocate memory for new array of thresholds */
4378	new = kmalloc(sizeof(*new) + size * sizeof(struct mem_cgroup_threshold),
4379			GFP_KERNEL);
4380	if (!new) {
4381		ret = -ENOMEM;
4382		goto unlock;
4383	}
4384	new->size = size;
4385
4386	/* Copy thresholds (if any) to new array */
4387	if (thresholds->primary) {
4388		memcpy(new->entries, thresholds->primary->entries, (size - 1) *
4389				sizeof(struct mem_cgroup_threshold));
4390	}
4391
4392	/* Add new threshold */
4393	new->entries[size - 1].eventfd = eventfd;
4394	new->entries[size - 1].threshold = threshold;
4395
4396	/* Sort thresholds. Registering of new threshold isn't time-critical */
4397	sort(new->entries, size, sizeof(struct mem_cgroup_threshold),
4398			compare_thresholds, NULL);
4399
4400	/* Find current threshold */
4401	new->current_threshold = -1;
4402	for (i = 0; i < size; i++) {
4403		if (new->entries[i].threshold < usage) {
4404			/*
4405			 * new->current_threshold will not be used until
4406			 * rcu_assign_pointer(), so it's safe to increment
4407			 * it here.
4408			 */
4409			++new->current_threshold;
4410		}
 
4411	}
4412
4413	/* Free old spare buffer and save old primary buffer as spare */
4414	kfree(thresholds->spare);
4415	thresholds->spare = thresholds->primary;
4416
4417	rcu_assign_pointer(thresholds->primary, new);
4418
4419	/* To be sure that nobody uses thresholds */
4420	synchronize_rcu();
4421
4422unlock:
4423	mutex_unlock(&memcg->thresholds_lock);
4424
4425	return ret;
4426}
4427
4428static void mem_cgroup_usage_unregister_event(struct cgroup *cgrp,
4429	struct cftype *cft, struct eventfd_ctx *eventfd)
 
 
 
 
 
 
 
 
 
 
 
 
4430{
4431	struct mem_cgroup *memcg = mem_cgroup_from_cont(cgrp);
4432	struct mem_cgroup_thresholds *thresholds;
4433	struct mem_cgroup_threshold_ary *new;
4434	int type = MEMFILE_TYPE(cft->private);
4435	u64 usage;
4436	int i, j, size;
4437
4438	mutex_lock(&memcg->thresholds_lock);
4439	if (type == _MEM)
 
4440		thresholds = &memcg->thresholds;
4441	else if (type == _MEMSWAP)
 
4442		thresholds = &memcg->memsw_thresholds;
4443	else
 
4444		BUG();
4445
4446	/*
4447	 * Something went wrong if we trying to unregister a threshold
4448	 * if we don't have thresholds
4449	 */
4450	BUG_ON(!thresholds);
4451
4452	usage = mem_cgroup_usage(memcg, type == _MEMSWAP);
4453
4454	/* Check if a threshold crossed before removing */
4455	__mem_cgroup_threshold(memcg, type == _MEMSWAP);
4456
4457	/* Calculate new number of threshold */
4458	size = 0;
4459	for (i = 0; i < thresholds->primary->size; i++) {
4460		if (thresholds->primary->entries[i].eventfd != eventfd)
4461			size++;
4462	}
4463
4464	new = thresholds->spare;
4465
4466	/* Set thresholds array to NULL if we don't have thresholds */
4467	if (!size) {
4468		kfree(new);
4469		new = NULL;
4470		goto swap_buffers;
4471	}
4472
4473	new->size = size;
4474
4475	/* Copy thresholds and find current threshold */
4476	new->current_threshold = -1;
4477	for (i = 0, j = 0; i < thresholds->primary->size; i++) {
4478		if (thresholds->primary->entries[i].eventfd == eventfd)
4479			continue;
4480
4481		new->entries[j] = thresholds->primary->entries[i];
4482		if (new->entries[j].threshold < usage) {
4483			/*
4484			 * new->current_threshold will not be used
4485			 * until rcu_assign_pointer(), so it's safe to increment
4486			 * it here.
4487			 */
4488			++new->current_threshold;
4489		}
4490		j++;
4491	}
4492
4493swap_buffers:
4494	/* Swap primary and spare array */
4495	thresholds->spare = thresholds->primary;
 
4496	rcu_assign_pointer(thresholds->primary, new);
4497
4498	/* To be sure that nobody uses thresholds */
4499	synchronize_rcu();
4500
 
 
 
 
 
 
4501	mutex_unlock(&memcg->thresholds_lock);
4502}
4503
4504static int mem_cgroup_oom_register_event(struct cgroup *cgrp,
4505	struct cftype *cft, struct eventfd_ctx *eventfd, const char *args)
 
 
 
 
 
 
 
 
 
 
 
 
4506{
4507	struct mem_cgroup *memcg = mem_cgroup_from_cont(cgrp);
4508	struct mem_cgroup_eventfd_list *event;
4509	int type = MEMFILE_TYPE(cft->private);
4510
4511	BUG_ON(type != _OOM_TYPE);
4512	event = kmalloc(sizeof(*event),	GFP_KERNEL);
4513	if (!event)
4514		return -ENOMEM;
4515
4516	spin_lock(&memcg_oom_lock);
4517
4518	event->eventfd = eventfd;
4519	list_add(&event->list, &memcg->oom_notify);
4520
4521	/* already in OOM ? */
4522	if (atomic_read(&memcg->under_oom))
4523		eventfd_signal(eventfd, 1);
4524	spin_unlock(&memcg_oom_lock);
4525
4526	return 0;
4527}
4528
4529static void mem_cgroup_oom_unregister_event(struct cgroup *cgrp,
4530	struct cftype *cft, struct eventfd_ctx *eventfd)
4531{
4532	struct mem_cgroup *mem = mem_cgroup_from_cont(cgrp);
4533	struct mem_cgroup_eventfd_list *ev, *tmp;
4534	int type = MEMFILE_TYPE(cft->private);
4535
4536	BUG_ON(type != _OOM_TYPE);
4537
4538	spin_lock(&memcg_oom_lock);
4539
4540	list_for_each_entry_safe(ev, tmp, &mem->oom_notify, list) {
4541		if (ev->eventfd == eventfd) {
4542			list_del(&ev->list);
4543			kfree(ev);
4544		}
4545	}
4546
4547	spin_unlock(&memcg_oom_lock);
4548}
4549
4550static int mem_cgroup_oom_control_read(struct cgroup *cgrp,
4551	struct cftype *cft,  struct cgroup_map_cb *cb)
4552{
4553	struct mem_cgroup *mem = mem_cgroup_from_cont(cgrp);
4554
4555	cb->fill(cb, "oom_kill_disable", mem->oom_kill_disable);
4556
4557	if (atomic_read(&mem->under_oom))
4558		cb->fill(cb, "under_oom", 1);
4559	else
4560		cb->fill(cb, "under_oom", 0);
4561	return 0;
4562}
4563
4564static int mem_cgroup_oom_control_write(struct cgroup *cgrp,
4565	struct cftype *cft, u64 val)
4566{
4567	struct mem_cgroup *mem = mem_cgroup_from_cont(cgrp);
4568	struct mem_cgroup *parent;
4569
4570	/* cannot set to root cgroup and only 0 and 1 are allowed */
4571	if (!cgrp->parent || !((val == 0) || (val == 1)))
4572		return -EINVAL;
4573
4574	parent = mem_cgroup_from_cont(cgrp->parent);
 
 
 
 
 
4575
4576	cgroup_lock();
4577	/* oom-kill-disable is a flag for subhierarchy. */
4578	if ((parent->use_hierarchy) ||
4579	    (mem->use_hierarchy && !list_empty(&cgrp->children))) {
4580		cgroup_unlock();
4581		return -EINVAL;
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
4582	}
4583	mem->oom_kill_disable = val;
4584	if (!val)
4585		memcg_oom_recover(mem);
4586	cgroup_unlock();
 
 
4587	return 0;
4588}
4589
4590#ifdef CONFIG_NUMA
4591static const struct file_operations mem_control_numa_stat_file_operations = {
4592	.read = seq_read,
4593	.llseek = seq_lseek,
4594	.release = single_release,
4595};
 
 
 
4596
4597static int mem_control_numa_stat_open(struct inode *unused, struct file *file)
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
4598{
4599	struct cgroup *cont = file->f_dentry->d_parent->d_fsdata;
 
 
4600
4601	file->f_op = &mem_control_numa_stat_file_operations;
4602	return single_open(file, mem_control_numa_stat_show, cont);
 
 
 
 
 
 
 
 
4603}
4604#endif /* CONFIG_NUMA */
4605
4606static struct cftype mem_cgroup_files[] = {
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
4607	{
4608		.name = "usage_in_bytes",
4609		.private = MEMFILE_PRIVATE(_MEM, RES_USAGE),
4610		.read_u64 = mem_cgroup_read,
4611		.register_event = mem_cgroup_usage_register_event,
4612		.unregister_event = mem_cgroup_usage_unregister_event,
4613	},
4614	{
4615		.name = "max_usage_in_bytes",
4616		.private = MEMFILE_PRIVATE(_MEM, RES_MAX_USAGE),
4617		.trigger = mem_cgroup_reset,
4618		.read_u64 = mem_cgroup_read,
4619	},
4620	{
4621		.name = "limit_in_bytes",
4622		.private = MEMFILE_PRIVATE(_MEM, RES_LIMIT),
4623		.write_string = mem_cgroup_write,
4624		.read_u64 = mem_cgroup_read,
4625	},
4626	{
4627		.name = "soft_limit_in_bytes",
4628		.private = MEMFILE_PRIVATE(_MEM, RES_SOFT_LIMIT),
4629		.write_string = mem_cgroup_write,
4630		.read_u64 = mem_cgroup_read,
4631	},
4632	{
4633		.name = "failcnt",
4634		.private = MEMFILE_PRIVATE(_MEM, RES_FAILCNT),
4635		.trigger = mem_cgroup_reset,
4636		.read_u64 = mem_cgroup_read,
4637	},
4638	{
4639		.name = "stat",
4640		.read_map = mem_control_stat_show,
4641	},
4642	{
4643		.name = "force_empty",
4644		.trigger = mem_cgroup_force_empty_write,
4645	},
4646	{
4647		.name = "use_hierarchy",
4648		.write_u64 = mem_cgroup_hierarchy_write,
4649		.read_u64 = mem_cgroup_hierarchy_read,
4650	},
4651	{
 
 
 
 
 
4652		.name = "swappiness",
4653		.read_u64 = mem_cgroup_swappiness_read,
4654		.write_u64 = mem_cgroup_swappiness_write,
4655	},
4656	{
4657		.name = "move_charge_at_immigrate",
4658		.read_u64 = mem_cgroup_move_charge_read,
4659		.write_u64 = mem_cgroup_move_charge_write,
4660	},
4661	{
4662		.name = "oom_control",
4663		.read_map = mem_cgroup_oom_control_read,
4664		.write_u64 = mem_cgroup_oom_control_write,
4665		.register_event = mem_cgroup_oom_register_event,
4666		.unregister_event = mem_cgroup_oom_unregister_event,
4667		.private = MEMFILE_PRIVATE(_OOM_TYPE, OOM_CONTROL),
4668	},
 
 
 
4669#ifdef CONFIG_NUMA
4670	{
4671		.name = "numa_stat",
4672		.open = mem_control_numa_stat_open,
4673		.mode = S_IRUGO,
4674	},
4675#endif
4676};
4677
4678#ifdef CONFIG_CGROUP_MEM_RES_CTLR_SWAP
4679static struct cftype memsw_cgroup_files[] = {
4680	{
4681		.name = "memsw.usage_in_bytes",
4682		.private = MEMFILE_PRIVATE(_MEMSWAP, RES_USAGE),
4683		.read_u64 = mem_cgroup_read,
4684		.register_event = mem_cgroup_usage_register_event,
4685		.unregister_event = mem_cgroup_usage_unregister_event,
4686	},
4687	{
4688		.name = "memsw.max_usage_in_bytes",
4689		.private = MEMFILE_PRIVATE(_MEMSWAP, RES_MAX_USAGE),
4690		.trigger = mem_cgroup_reset,
4691		.read_u64 = mem_cgroup_read,
4692	},
4693	{
4694		.name = "memsw.limit_in_bytes",
4695		.private = MEMFILE_PRIVATE(_MEMSWAP, RES_LIMIT),
4696		.write_string = mem_cgroup_write,
4697		.read_u64 = mem_cgroup_read,
4698	},
4699	{
4700		.name = "memsw.failcnt",
4701		.private = MEMFILE_PRIVATE(_MEMSWAP, RES_FAILCNT),
4702		.trigger = mem_cgroup_reset,
4703		.read_u64 = mem_cgroup_read,
 
 
 
 
 
 
 
 
4704	},
4705};
4706
4707static int register_memsw_files(struct cgroup *cont, struct cgroup_subsys *ss)
4708{
4709	if (!do_swap_account)
4710		return 0;
4711	return cgroup_add_files(cont, ss, memsw_cgroup_files,
4712				ARRAY_SIZE(memsw_cgroup_files));
4713};
4714#else
4715static int register_memsw_files(struct cgroup *cont, struct cgroup_subsys *ss)
4716{
4717	return 0;
4718}
4719#endif
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
4720
4721static int alloc_mem_cgroup_per_zone_info(struct mem_cgroup *mem, int node)
4722{
4723	struct mem_cgroup_per_node *pn;
4724	struct mem_cgroup_per_zone *mz;
4725	enum lru_list l;
4726	int zone, tmp = node;
4727	/*
4728	 * This routine is called against possible nodes.
4729	 * But it's BUG to call kmalloc() against offline node.
4730	 *
4731	 * TODO: this routine can waste much memory for nodes which will
4732	 *       never be onlined. It's better to use memory hotplug callback
4733	 *       function.
4734	 */
4735	if (!node_state(node, N_NORMAL_MEMORY))
4736		tmp = -1;
4737	pn = kzalloc_node(sizeof(*pn), GFP_KERNEL, tmp);
4738	if (!pn)
4739		return 1;
4740
4741	mem->info.nodeinfo[node] = pn;
4742	for (zone = 0; zone < MAX_NR_ZONES; zone++) {
4743		mz = &pn->zoneinfo[zone];
4744		for_each_lru(l)
4745			INIT_LIST_HEAD(&mz->lists[l]);
4746		mz->usage_in_excess = 0;
4747		mz->on_tree = false;
4748		mz->mem = mem;
4749	}
 
4750	return 0;
4751}
4752
4753static void free_mem_cgroup_per_zone_info(struct mem_cgroup *mem, int node)
4754{
4755	kfree(mem->info.nodeinfo[node]);
4756}
4757
4758static struct mem_cgroup *mem_cgroup_alloc(void)
4759{
4760	struct mem_cgroup *mem;
4761	int size = sizeof(struct mem_cgroup);
4762
4763	/* Can be very big if MAX_NUMNODES is very big */
4764	if (size < PAGE_SIZE)
4765		mem = kzalloc(size, GFP_KERNEL);
4766	else
4767		mem = vzalloc(size);
4768
4769	if (!mem)
4770		return NULL;
4771
4772	mem->stat = alloc_percpu(struct mem_cgroup_stat_cpu);
4773	if (!mem->stat)
4774		goto out_free;
4775	spin_lock_init(&mem->pcp_counter_lock);
4776	return mem;
4777
4778out_free:
4779	if (size < PAGE_SIZE)
4780		kfree(mem);
4781	else
4782		vfree(mem);
4783	return NULL;
4784}
4785
4786/*
4787 * At destroying mem_cgroup, references from swap_cgroup can remain.
4788 * (scanning all at force_empty is too costly...)
4789 *
4790 * Instead of clearing all references at force_empty, we remember
4791 * the number of reference from swap_cgroup and free mem_cgroup when
4792 * it goes down to 0.
4793 *
4794 * Removal of cgroup itself succeeds regardless of refs from swap.
4795 */
4796
4797static void __mem_cgroup_free(struct mem_cgroup *mem)
4798{
 
 
4799	int node;
4800
4801	mem_cgroup_remove_from_trees(mem);
4802	free_css_id(&mem_cgroup_subsys, &mem->css);
4803
4804	for_each_node_state(node, N_POSSIBLE)
4805		free_mem_cgroup_per_zone_info(mem, node);
 
4806
4807	free_percpu(mem->stat);
4808	if (sizeof(struct mem_cgroup) < PAGE_SIZE)
4809		kfree(mem);
4810	else
4811		vfree(mem);
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
4812}
4813
4814static void mem_cgroup_get(struct mem_cgroup *mem)
 
4815{
4816	atomic_inc(&mem->refcnt);
4817}
 
4818
4819static void __mem_cgroup_put(struct mem_cgroup *mem, int count)
4820{
4821	if (atomic_sub_and_test(count, &mem->refcnt)) {
4822		struct mem_cgroup *parent = parent_mem_cgroup(mem);
4823		__mem_cgroup_free(mem);
4824		if (parent)
4825			mem_cgroup_put(parent);
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
4826	}
4827}
4828
4829static void mem_cgroup_put(struct mem_cgroup *mem)
4830{
4831	__mem_cgroup_put(mem, 1);
4832}
 
4833
4834/*
4835 * Returns the parent mem_cgroup in memcgroup hierarchy with hierarchy enabled.
4836 */
4837static struct mem_cgroup *parent_mem_cgroup(struct mem_cgroup *mem)
4838{
4839	if (!mem->res.parent)
4840		return NULL;
4841	return mem_cgroup_from_res_counter(mem->res.parent, res);
4842}
4843
4844#ifdef CONFIG_CGROUP_MEM_RES_CTLR_SWAP
4845static void __init enable_swap_cgroup(void)
4846{
4847	if (!mem_cgroup_disabled() && really_do_swap_account)
4848		do_swap_account = 1;
4849}
4850#else
4851static void __init enable_swap_cgroup(void)
4852{
4853}
4854#endif
4855
4856static int mem_cgroup_soft_limit_tree_init(void)
 
4857{
4858	struct mem_cgroup_tree_per_node *rtpn;
4859	struct mem_cgroup_tree_per_zone *rtpz;
4860	int tmp, node, zone;
4861
4862	for_each_node_state(node, N_POSSIBLE) {
4863		tmp = node;
4864		if (!node_state(node, N_NORMAL_MEMORY))
4865			tmp = -1;
4866		rtpn = kzalloc_node(sizeof(*rtpn), GFP_KERNEL, tmp);
4867		if (!rtpn)
4868			return 1;
4869
4870		soft_limit_tree.rb_tree_per_node[node] = rtpn;
4871
4872		for (zone = 0; zone < MAX_NR_ZONES; zone++) {
4873			rtpz = &rtpn->rb_tree_per_zone[zone];
4874			rtpz->rb_root = RB_ROOT;
4875			spin_lock_init(&rtpz->lock);
4876		}
4877	}
4878	return 0;
4879}
4880
4881static struct cgroup_subsys_state * __ref
4882mem_cgroup_create(struct cgroup_subsys *ss, struct cgroup *cont)
4883{
4884	struct mem_cgroup *mem, *parent;
4885	long error = -ENOMEM;
4886	int node;
4887
4888	mem = mem_cgroup_alloc();
4889	if (!mem)
4890		return ERR_PTR(error);
4891
4892	for_each_node_state(node, N_POSSIBLE)
4893		if (alloc_mem_cgroup_per_zone_info(mem, node))
4894			goto free_out;
4895
4896	/* root ? */
4897	if (cont->parent == NULL) {
4898		int cpu;
4899		enable_swap_cgroup();
4900		parent = NULL;
4901		root_mem_cgroup = mem;
4902		if (mem_cgroup_soft_limit_tree_init())
4903			goto free_out;
4904		for_each_possible_cpu(cpu) {
4905			struct memcg_stock_pcp *stock =
4906						&per_cpu(memcg_stock, cpu);
4907			INIT_WORK(&stock->work, drain_local_stock);
4908		}
4909		hotcpu_notifier(memcg_cpu_hotplug_callback, 0);
4910	} else {
4911		parent = mem_cgroup_from_cont(cont->parent);
4912		mem->use_hierarchy = parent->use_hierarchy;
4913		mem->oom_kill_disable = parent->oom_kill_disable;
4914	}
4915
4916	if (parent && parent->use_hierarchy) {
4917		res_counter_init(&mem->res, &parent->res);
4918		res_counter_init(&mem->memsw, &parent->memsw);
4919		/*
4920		 * We increment refcnt of the parent to ensure that we can
4921		 * safely access it on res_counter_charge/uncharge.
4922		 * This refcnt will be decremented when freeing this
4923		 * mem_cgroup(see mem_cgroup_put).
4924		 */
4925		mem_cgroup_get(parent);
4926	} else {
4927		res_counter_init(&mem->res, NULL);
4928		res_counter_init(&mem->memsw, NULL);
4929	}
4930	mem->last_scanned_child = 0;
4931	mem->last_scanned_node = MAX_NUMNODES;
4932	INIT_LIST_HEAD(&mem->oom_notify);
4933
4934	if (parent)
4935		mem->swappiness = mem_cgroup_swappiness(parent);
4936	atomic_set(&mem->refcnt, 1);
4937	mem->move_charge_at_immigrate = 0;
4938	mutex_init(&mem->thresholds_lock);
4939	return &mem->css;
4940free_out:
4941	__mem_cgroup_free(mem);
4942	root_mem_cgroup = NULL;
4943	return ERR_PTR(error);
4944}
4945
4946static int mem_cgroup_pre_destroy(struct cgroup_subsys *ss,
4947					struct cgroup *cont)
4948{
4949	struct mem_cgroup *mem = mem_cgroup_from_cont(cont);
4950
4951	return mem_cgroup_force_empty(mem, false);
4952}
4953
4954static void mem_cgroup_destroy(struct cgroup_subsys *ss,
4955				struct cgroup *cont)
4956{
4957	struct mem_cgroup *mem = mem_cgroup_from_cont(cont);
 
 
 
 
 
 
4958
4959	mem_cgroup_put(mem);
 
 
 
 
4960}
4961
4962static int mem_cgroup_populate(struct cgroup_subsys *ss,
4963				struct cgroup *cont)
 
 
 
 
 
 
 
 
 
 
 
 
4964{
4965	int ret;
4966
4967	ret = cgroup_add_files(cont, ss, mem_cgroup_files,
4968				ARRAY_SIZE(mem_cgroup_files));
4969
4970	if (!ret)
4971		ret = register_memsw_files(cont, ss);
4972	return ret;
 
 
 
 
 
 
4973}
4974
4975#ifdef CONFIG_MMU
4976/* Handlers for move charge at task migration. */
4977#define PRECHARGE_COUNT_AT_ONCE	256
4978static int mem_cgroup_do_precharge(unsigned long count)
4979{
4980	int ret = 0;
4981	int batch_count = PRECHARGE_COUNT_AT_ONCE;
4982	struct mem_cgroup *mem = mc.to;
4983
4984	if (mem_cgroup_is_root(mem)) {
4985		mc.precharge += count;
4986		/* we don't need css_get for root */
4987		return ret;
4988	}
4989	/* try to charge at once */
4990	if (count > 1) {
4991		struct res_counter *dummy;
4992		/*
4993		 * "mem" cannot be under rmdir() because we've already checked
4994		 * by cgroup_lock_live_cgroup() that it is not removed and we
4995		 * are still under the same cgroup_mutex. So we can postpone
4996		 * css_get().
4997		 */
4998		if (res_counter_charge(&mem->res, PAGE_SIZE * count, &dummy))
4999			goto one_by_one;
5000		if (do_swap_account && res_counter_charge(&mem->memsw,
5001						PAGE_SIZE * count, &dummy)) {
5002			res_counter_uncharge(&mem->res, PAGE_SIZE * count);
5003			goto one_by_one;
5004		}
5005		mc.precharge += count;
5006		return ret;
5007	}
5008one_by_one:
5009	/* fall back to one by one charge */
5010	while (count--) {
5011		if (signal_pending(current)) {
5012			ret = -EINTR;
5013			break;
5014		}
5015		if (!batch_count--) {
5016			batch_count = PRECHARGE_COUNT_AT_ONCE;
5017			cond_resched();
5018		}
5019		ret = __mem_cgroup_try_charge(NULL, GFP_KERNEL, 1, &mem, false);
5020		if (ret || !mem)
5021			/* mem_cgroup_clear_mc() will do uncharge later */
5022			return -ENOMEM;
5023		mc.precharge++;
 
5024	}
5025	return ret;
5026}
5027
5028/**
5029 * is_target_pte_for_mc - check a pte whether it is valid for move charge
5030 * @vma: the vma the pte to be checked belongs
5031 * @addr: the address corresponding to the pte to be checked
5032 * @ptent: the pte to be checked
5033 * @target: the pointer the target page or swap ent will be stored(can be NULL)
5034 *
5035 * Returns
5036 *   0(MC_TARGET_NONE): if the pte is not a target for move charge.
5037 *   1(MC_TARGET_PAGE): if the page corresponding to this pte is a target for
5038 *     move charge. if @target is not NULL, the page is stored in target->page
5039 *     with extra refcnt got(Callers should handle it).
5040 *   2(MC_TARGET_SWAP): if the swap entry corresponding to this pte is a
5041 *     target for charge migration. if @target is not NULL, the entry is stored
5042 *     in target->ent.
5043 *
5044 * Called with pte lock held.
5045 */
5046union mc_target {
5047	struct page	*page;
5048	swp_entry_t	ent;
5049};
5050
5051enum mc_target_type {
5052	MC_TARGET_NONE,	/* not used */
5053	MC_TARGET_PAGE,
5054	MC_TARGET_SWAP,
5055};
5056
5057static struct page *mc_handle_present_pte(struct vm_area_struct *vma,
5058						unsigned long addr, pte_t ptent)
5059{
5060	struct page *page = vm_normal_page(vma, addr, ptent);
5061
5062	if (!page || !page_mapped(page))
5063		return NULL;
5064	if (PageAnon(page)) {
5065		/* we don't move shared anon */
5066		if (!move_anon() || page_mapcount(page) > 2)
5067			return NULL;
5068	} else if (!move_file())
5069		/* we ignore mapcount for file pages */
5070		return NULL;
 
5071	if (!get_page_unless_zero(page))
5072		return NULL;
5073
5074	return page;
5075}
5076
 
5077static struct page *mc_handle_swap_pte(struct vm_area_struct *vma,
5078			unsigned long addr, pte_t ptent, swp_entry_t *entry)
5079{
5080	int usage_count;
5081	struct page *page = NULL;
5082	swp_entry_t ent = pte_to_swp_entry(ptent);
5083
5084	if (!move_anon() || non_swap_entry(ent))
5085		return NULL;
5086	usage_count = mem_cgroup_count_swap_user(ent, &page);
5087	if (usage_count > 1) { /* we don't move shared anon */
5088		if (page)
5089			put_page(page);
5090		return NULL;
5091	}
5092	if (do_swap_account)
 
 
 
 
5093		entry->val = ent.val;
5094
5095	return page;
5096}
 
 
 
 
 
 
 
5097
5098static struct page *mc_handle_file_pte(struct vm_area_struct *vma,
5099			unsigned long addr, pte_t ptent, swp_entry_t *entry)
5100{
5101	struct page *page = NULL;
5102	struct inode *inode;
5103	struct address_space *mapping;
5104	pgoff_t pgoff;
5105
5106	if (!vma->vm_file) /* anonymous vma */
5107		return NULL;
5108	if (!move_file())
5109		return NULL;
5110
5111	inode = vma->vm_file->f_path.dentry->d_inode;
5112	mapping = vma->vm_file->f_mapping;
5113	if (pte_none(ptent))
5114		pgoff = linear_page_index(vma, addr);
5115	else /* pte_file(ptent) is true */
5116		pgoff = pte_to_pgoff(ptent);
5117
5118	/* page is moved even if it's not RSS of this task(page-faulted). */
5119	page = find_get_page(mapping, pgoff);
5120
5121#ifdef CONFIG_SWAP
5122	/* shmem/tmpfs may report page out on swap: account for that too. */
5123	if (radix_tree_exceptional_entry(page)) {
5124		swp_entry_t swap = radix_to_swp_entry(page);
5125		if (do_swap_account)
5126			*entry = swap;
5127		page = find_get_page(&swapper_space, swap.val);
5128	}
 
 
 
 
 
 
5129#endif
5130	return page;
5131}
5132
5133static int is_target_pte_for_mc(struct vm_area_struct *vma,
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
5134		unsigned long addr, pte_t ptent, union mc_target *target)
5135{
5136	struct page *page = NULL;
5137	struct page_cgroup *pc;
5138	int ret = 0;
5139	swp_entry_t ent = { .val = 0 };
5140
5141	if (pte_present(ptent))
5142		page = mc_handle_present_pte(vma, addr, ptent);
5143	else if (is_swap_pte(ptent))
5144		page = mc_handle_swap_pte(vma, addr, ptent, &ent);
5145	else if (pte_none(ptent) || pte_file(ptent))
5146		page = mc_handle_file_pte(vma, addr, ptent, &ent);
5147
5148	if (!page && !ent.val)
5149		return 0;
5150	if (page) {
5151		pc = lookup_page_cgroup(page);
5152		/*
5153		 * Do only loose check w/o page_cgroup lock.
5154		 * mem_cgroup_move_account() checks the pc is valid or not under
5155		 * the lock.
5156		 */
5157		if (PageCgroupUsed(pc) && pc->mem_cgroup == mc.from) {
5158			ret = MC_TARGET_PAGE;
5159			if (target)
5160				target->page = page;
5161		}
5162		if (!ret || !target)
5163			put_page(page);
5164	}
5165	/* There is a swap entry and a page doesn't exist or isn't charged */
5166	if (ent.val && !ret &&
5167			css_id(&mc.from->css) == lookup_swap_cgroup(ent)) {
5168		ret = MC_TARGET_SWAP;
5169		if (target)
5170			target->ent = ent;
5171	}
5172	return ret;
5173}
5174
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
5175static int mem_cgroup_count_precharge_pte_range(pmd_t *pmd,
5176					unsigned long addr, unsigned long end,
5177					struct mm_walk *walk)
5178{
5179	struct vm_area_struct *vma = walk->private;
5180	pte_t *pte;
5181	spinlock_t *ptl;
5182
5183	split_huge_page_pmd(walk->mm, pmd);
 
 
 
 
 
 
5184
 
 
5185	pte = pte_offset_map_lock(vma->vm_mm, pmd, addr, &ptl);
5186	for (; addr != end; pte++, addr += PAGE_SIZE)
5187		if (is_target_pte_for_mc(vma, addr, *pte, NULL))
5188			mc.precharge++;	/* increment precharge temporarily */
5189	pte_unmap_unlock(pte - 1, ptl);
5190	cond_resched();
5191
5192	return 0;
5193}
5194
5195static unsigned long mem_cgroup_count_precharge(struct mm_struct *mm)
5196{
5197	unsigned long precharge;
5198	struct vm_area_struct *vma;
5199
 
 
 
 
5200	down_read(&mm->mmap_sem);
5201	for (vma = mm->mmap; vma; vma = vma->vm_next) {
5202		struct mm_walk mem_cgroup_count_precharge_walk = {
5203			.pmd_entry = mem_cgroup_count_precharge_pte_range,
5204			.mm = mm,
5205			.private = vma,
5206		};
5207		if (is_vm_hugetlb_page(vma))
5208			continue;
5209		walk_page_range(vma->vm_start, vma->vm_end,
5210					&mem_cgroup_count_precharge_walk);
5211	}
5212	up_read(&mm->mmap_sem);
5213
5214	precharge = mc.precharge;
5215	mc.precharge = 0;
5216
5217	return precharge;
5218}
5219
5220static int mem_cgroup_precharge_mc(struct mm_struct *mm)
5221{
5222	unsigned long precharge = mem_cgroup_count_precharge(mm);
5223
5224	VM_BUG_ON(mc.moving_task);
5225	mc.moving_task = current;
5226	return mem_cgroup_do_precharge(precharge);
5227}
5228
5229/* cancels all extra charges on mc.from and mc.to, and wakes up all waiters. */
5230static void __mem_cgroup_clear_mc(void)
5231{
5232	struct mem_cgroup *from = mc.from;
5233	struct mem_cgroup *to = mc.to;
5234
5235	/* we must uncharge all the leftover precharges from mc.to */
5236	if (mc.precharge) {
5237		__mem_cgroup_cancel_charge(mc.to, mc.precharge);
5238		mc.precharge = 0;
5239	}
5240	/*
5241	 * we didn't uncharge from mc.from at mem_cgroup_move_account(), so
5242	 * we must uncharge here.
5243	 */
5244	if (mc.moved_charge) {
5245		__mem_cgroup_cancel_charge(mc.from, mc.moved_charge);
5246		mc.moved_charge = 0;
5247	}
5248	/* we must fixup refcnts and charges */
5249	if (mc.moved_swap) {
5250		/* uncharge swap account from the old cgroup */
5251		if (!mem_cgroup_is_root(mc.from))
5252			res_counter_uncharge(&mc.from->memsw,
5253						PAGE_SIZE * mc.moved_swap);
5254		__mem_cgroup_put(mc.from, mc.moved_swap);
5255
5256		if (!mem_cgroup_is_root(mc.to)) {
5257			/*
5258			 * we charged both to->res and to->memsw, so we should
5259			 * uncharge to->res.
5260			 */
5261			res_counter_uncharge(&mc.to->res,
5262						PAGE_SIZE * mc.moved_swap);
5263		}
5264		/* we've already done mem_cgroup_get(mc.to) */
 
5265		mc.moved_swap = 0;
5266	}
5267	memcg_oom_recover(from);
5268	memcg_oom_recover(to);
5269	wake_up_all(&mc.waitq);
5270}
5271
5272static void mem_cgroup_clear_mc(void)
5273{
5274	struct mem_cgroup *from = mc.from;
5275
5276	/*
5277	 * we must clear moving_task before waking up waiters at the end of
5278	 * task migration.
5279	 */
5280	mc.moving_task = NULL;
5281	__mem_cgroup_clear_mc();
5282	spin_lock(&mc.lock);
5283	mc.from = NULL;
5284	mc.to = NULL;
 
5285	spin_unlock(&mc.lock);
5286	mem_cgroup_end_move(from);
 
5287}
5288
5289static int mem_cgroup_can_attach(struct cgroup_subsys *ss,
5290				struct cgroup *cgroup,
5291				struct task_struct *p)
5292{
 
 
 
 
 
 
5293	int ret = 0;
5294	struct mem_cgroup *mem = mem_cgroup_from_cont(cgroup);
5295
5296	if (mem->move_charge_at_immigrate) {
5297		struct mm_struct *mm;
5298		struct mem_cgroup *from = mem_cgroup_from_task(p);
5299
5300		VM_BUG_ON(from == mem);
 
 
 
 
 
 
 
 
 
 
 
 
 
5301
5302		mm = get_task_mm(p);
5303		if (!mm)
5304			return 0;
5305		/* We move charges only when we move a owner of the mm */
5306		if (mm->owner == p) {
5307			VM_BUG_ON(mc.from);
5308			VM_BUG_ON(mc.to);
5309			VM_BUG_ON(mc.precharge);
5310			VM_BUG_ON(mc.moved_charge);
5311			VM_BUG_ON(mc.moved_swap);
5312			mem_cgroup_start_move(from);
5313			spin_lock(&mc.lock);
5314			mc.from = from;
5315			mc.to = mem;
5316			spin_unlock(&mc.lock);
5317			/* We set mc.moving_task later */
5318
5319			ret = mem_cgroup_precharge_mc(mm);
5320			if (ret)
5321				mem_cgroup_clear_mc();
5322		}
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
5323		mmput(mm);
5324	}
5325	return ret;
5326}
5327
5328static void mem_cgroup_cancel_attach(struct cgroup_subsys *ss,
5329				struct cgroup *cgroup,
5330				struct task_struct *p)
5331{
5332	mem_cgroup_clear_mc();
 
5333}
5334
5335static int mem_cgroup_move_charge_pte_range(pmd_t *pmd,
5336				unsigned long addr, unsigned long end,
5337				struct mm_walk *walk)
5338{
5339	int ret = 0;
5340	struct vm_area_struct *vma = walk->private;
5341	pte_t *pte;
5342	spinlock_t *ptl;
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
5343
5344	split_huge_page_pmd(walk->mm, pmd);
 
5345retry:
5346	pte = pte_offset_map_lock(vma->vm_mm, pmd, addr, &ptl);
5347	for (; addr != end; addr += PAGE_SIZE) {
5348		pte_t ptent = *(pte++);
5349		union mc_target target;
5350		int type;
5351		struct page *page;
5352		struct page_cgroup *pc;
5353		swp_entry_t ent;
5354
5355		if (!mc.precharge)
5356			break;
5357
5358		type = is_target_pte_for_mc(vma, addr, ptent, &target);
5359		switch (type) {
5360		case MC_TARGET_PAGE:
5361			page = target.page;
 
 
 
 
 
 
 
 
5362			if (isolate_lru_page(page))
5363				goto put;
5364			pc = lookup_page_cgroup(page);
5365			if (!mem_cgroup_move_account(page, 1, pc,
5366						     mc.from, mc.to, false)) {
5367				mc.precharge--;
5368				/* we uncharge from mc.from later. */
5369				mc.moved_charge++;
5370			}
5371			putback_lru_page(page);
5372put:			/* is_target_pte_for_mc() gets the page */
5373			put_page(page);
5374			break;
5375		case MC_TARGET_SWAP:
5376			ent = target.ent;
5377			if (!mem_cgroup_move_swap_account(ent,
5378						mc.from, mc.to, false)) {
5379				mc.precharge--;
5380				/* we fixup refcnts and charges later. */
5381				mc.moved_swap++;
5382			}
5383			break;
5384		default:
5385			break;
5386		}
5387	}
5388	pte_unmap_unlock(pte - 1, ptl);
5389	cond_resched();
5390
5391	if (addr != end) {
5392		/*
5393		 * We have consumed all precharges we got in can_attach().
5394		 * We try charge one by one, but don't do any additional
5395		 * charges to mc.to if we have failed in charge once in attach()
5396		 * phase.
5397		 */
5398		ret = mem_cgroup_do_precharge(1);
5399		if (!ret)
5400			goto retry;
5401	}
5402
5403	return ret;
5404}
5405
5406static void mem_cgroup_move_charge(struct mm_struct *mm)
5407{
5408	struct vm_area_struct *vma;
 
 
 
5409
5410	lru_add_drain_all();
 
 
 
 
 
 
 
5411retry:
5412	if (unlikely(!down_read_trylock(&mm->mmap_sem))) {
5413		/*
5414		 * Someone who are holding the mmap_sem might be waiting in
5415		 * waitq. So we cancel all extra charges, wake up all waiters,
5416		 * and retry. Because we cancel precharges, we might not be able
5417		 * to move enough charges, but moving charge is a best-effort
5418		 * feature anyway, so it wouldn't be a big problem.
5419		 */
5420		__mem_cgroup_clear_mc();
5421		cond_resched();
5422		goto retry;
5423	}
5424	for (vma = mm->mmap; vma; vma = vma->vm_next) {
5425		int ret;
5426		struct mm_walk mem_cgroup_move_charge_walk = {
5427			.pmd_entry = mem_cgroup_move_charge_pte_range,
5428			.mm = mm,
5429			.private = vma,
5430		};
5431		if (is_vm_hugetlb_page(vma))
5432			continue;
5433		ret = walk_page_range(vma->vm_start, vma->vm_end,
5434						&mem_cgroup_move_charge_walk);
5435		if (ret)
5436			/*
5437			 * means we have consumed all precharges and failed in
5438			 * doing additional charge. Just abandon here.
5439			 */
5440			break;
5441	}
5442	up_read(&mm->mmap_sem);
5443}
5444
5445static void mem_cgroup_move_task(struct cgroup_subsys *ss,
5446				struct cgroup *cont,
5447				struct cgroup *old_cont,
5448				struct task_struct *p)
5449{
5450	struct mm_struct *mm = get_task_mm(p);
5451
5452	if (mm) {
5453		if (mc.to)
5454			mem_cgroup_move_charge(mm);
5455		put_swap_token(mm);
5456		mmput(mm);
5457	}
5458	if (mc.to)
5459		mem_cgroup_clear_mc();
 
5460}
5461#else	/* !CONFIG_MMU */
5462static int mem_cgroup_can_attach(struct cgroup_subsys *ss,
5463				struct cgroup *cgroup,
5464				struct task_struct *p)
5465{
5466	return 0;
5467}
5468static void mem_cgroup_cancel_attach(struct cgroup_subsys *ss,
5469				struct cgroup *cgroup,
5470				struct task_struct *p)
5471{
5472}
5473static void mem_cgroup_move_task(struct cgroup_subsys *ss,
5474				struct cgroup *cont,
5475				struct cgroup *old_cont,
5476				struct task_struct *p)
5477{
5478}
5479#endif
5480
5481struct cgroup_subsys mem_cgroup_subsys = {
5482	.name = "memory",
5483	.subsys_id = mem_cgroup_subsys_id,
5484	.create = mem_cgroup_create,
5485	.pre_destroy = mem_cgroup_pre_destroy,
5486	.destroy = mem_cgroup_destroy,
5487	.populate = mem_cgroup_populate,
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
5488	.can_attach = mem_cgroup_can_attach,
5489	.cancel_attach = mem_cgroup_cancel_attach,
5490	.attach = mem_cgroup_move_task,
 
 
 
5491	.early_init = 0,
5492	.use_id = 1,
5493};
5494
5495#ifdef CONFIG_CGROUP_MEM_RES_CTLR_SWAP
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
5496static int __init enable_swap_account(char *s)
5497{
5498	/* consider enabled if no parameter or 1 is given */
5499	if (!strcmp(s, "1"))
5500		really_do_swap_account = 1;
5501	else if (!strcmp(s, "0"))
5502		really_do_swap_account = 0;
5503	return 1;
5504}
5505__setup("swapaccount=", enable_swap_account);
5506
5507#endif
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
v4.6
   1/* memcontrol.c - Memory Controller
   2 *
   3 * Copyright IBM Corporation, 2007
   4 * Author Balbir Singh <balbir@linux.vnet.ibm.com>
   5 *
   6 * Copyright 2007 OpenVZ SWsoft Inc
   7 * Author: Pavel Emelianov <xemul@openvz.org>
   8 *
   9 * Memory thresholds
  10 * Copyright (C) 2009 Nokia Corporation
  11 * Author: Kirill A. Shutemov
  12 *
  13 * Kernel Memory Controller
  14 * Copyright (C) 2012 Parallels Inc. and Google Inc.
  15 * Authors: Glauber Costa and Suleiman Souhlal
  16 *
  17 * Native page reclaim
  18 * Charge lifetime sanitation
  19 * Lockless page tracking & accounting
  20 * Unified hierarchy configuration model
  21 * Copyright (C) 2015 Red Hat, Inc., Johannes Weiner
  22 *
  23 * This program is free software; you can redistribute it and/or modify
  24 * it under the terms of the GNU General Public License as published by
  25 * the Free Software Foundation; either version 2 of the License, or
  26 * (at your option) any later version.
  27 *
  28 * This program is distributed in the hope that it will be useful,
  29 * but WITHOUT ANY WARRANTY; without even the implied warranty of
  30 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
  31 * GNU General Public License for more details.
  32 */
  33
  34#include <linux/page_counter.h>
  35#include <linux/memcontrol.h>
  36#include <linux/cgroup.h>
  37#include <linux/mm.h>
  38#include <linux/hugetlb.h>
  39#include <linux/pagemap.h>
  40#include <linux/smp.h>
  41#include <linux/page-flags.h>
  42#include <linux/backing-dev.h>
  43#include <linux/bit_spinlock.h>
  44#include <linux/rcupdate.h>
  45#include <linux/limits.h>
  46#include <linux/export.h>
  47#include <linux/mutex.h>
  48#include <linux/rbtree.h>
  49#include <linux/slab.h>
  50#include <linux/swap.h>
  51#include <linux/swapops.h>
  52#include <linux/spinlock.h>
  53#include <linux/eventfd.h>
  54#include <linux/poll.h>
  55#include <linux/sort.h>
  56#include <linux/fs.h>
  57#include <linux/seq_file.h>
  58#include <linux/vmpressure.h>
  59#include <linux/mm_inline.h>
  60#include <linux/swap_cgroup.h>
  61#include <linux/cpu.h>
  62#include <linux/oom.h>
  63#include <linux/lockdep.h>
  64#include <linux/file.h>
  65#include <linux/tracehook.h>
  66#include "internal.h"
  67#include <net/sock.h>
  68#include <net/ip.h>
  69#include "slab.h"
  70
  71#include <asm/uaccess.h>
  72
  73#include <trace/events/vmscan.h>
  74
  75struct cgroup_subsys memory_cgrp_subsys __read_mostly;
  76EXPORT_SYMBOL(memory_cgrp_subsys);
  77
  78struct mem_cgroup *root_mem_cgroup __read_mostly;
  79
  80#define MEM_CGROUP_RECLAIM_RETRIES	5
 
 
  81
  82/* Socket memory accounting disabled? */
  83static bool cgroup_memory_nosocket;
  84
  85/* Kernel memory accounting disabled? */
  86static bool cgroup_memory_nokmem;
 
  87
  88/* Whether the swap controller is active */
  89#ifdef CONFIG_MEMCG_SWAP
  90int do_swap_account __read_mostly;
  91#else
  92#define do_swap_account		0
  93#endif
  94
  95/* Whether legacy memory+swap accounting is active */
  96static bool do_memsw_account(void)
  97{
  98	return !cgroup_subsys_on_dfl(memory_cgrp_subsys) && do_swap_account;
  99}
 100
 101static const char * const mem_cgroup_stat_names[] = {
 102	"cache",
 103	"rss",
 104	"rss_huge",
 105	"mapped_file",
 106	"dirty",
 107	"writeback",
 108	"swap",
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 109};
 110
 111static const char * const mem_cgroup_events_names[] = {
 112	"pgpgin",
 113	"pgpgout",
 114	"pgfault",
 115	"pgmajfault",
 
 
 
 
 
 
 
 
 
 
 
 
 116};
 
 
 117
 118static const char * const mem_cgroup_lru_names[] = {
 119	"inactive_anon",
 120	"active_anon",
 121	"inactive_file",
 122	"active_file",
 123	"unevictable",
 124};
 125
 126#define THRESHOLDS_EVENTS_TARGET 128
 127#define SOFTLIMIT_EVENTS_TARGET 1024
 128#define NUMAINFO_EVENTS_TARGET	1024
 129
 130/*
 131 * Cgroups above their limits are maintained in a RB-Tree, independent of
 132 * their hierarchy representation
 133 */
 134
 135struct mem_cgroup_tree_per_zone {
 136	struct rb_root rb_root;
 137	spinlock_t lock;
 138};
 139
 140struct mem_cgroup_tree_per_node {
 141	struct mem_cgroup_tree_per_zone rb_tree_per_zone[MAX_NR_ZONES];
 142};
 143
 144struct mem_cgroup_tree {
 145	struct mem_cgroup_tree_per_node *rb_tree_per_node[MAX_NUMNODES];
 146};
 147
 148static struct mem_cgroup_tree soft_limit_tree __read_mostly;
 149
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 150/* for OOM */
 151struct mem_cgroup_eventfd_list {
 152	struct list_head list;
 153	struct eventfd_ctx *eventfd;
 154};
 155
 
 
 
 156/*
 157 * cgroup_event represents events which userspace want to receive.
 
 
 
 
 
 
 
 
 158 */
 159struct mem_cgroup_event {
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 160	/*
 161	 * memcg which the event belongs to.
 
 162	 */
 163	struct mem_cgroup *memcg;
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 164	/*
 165	 * eventfd to signal userspace about the event.
 
 166	 */
 167	struct eventfd_ctx *eventfd;
 168	/*
 169	 * Each of these stored in a list by the cgroup.
 170	 */
 171	struct list_head list;
 172	/*
 173	 * register_event() callback will be used to add new userspace
 174	 * waiter for changes related to this event.  Use eventfd_signal()
 175	 * on eventfd to send notification to userspace.
 176	 */
 177	int (*register_event)(struct mem_cgroup *memcg,
 178			      struct eventfd_ctx *eventfd, const char *args);
 179	/*
 180	 * unregister_event() callback will be called when userspace closes
 181	 * the eventfd or on cgroup removing.  This callback must be set,
 182	 * if you want provide notification functionality.
 183	 */
 184	void (*unregister_event)(struct mem_cgroup *memcg,
 185				 struct eventfd_ctx *eventfd);
 186	/*
 187	 * All fields below needed to unregister event when
 188	 * userspace closes eventfd.
 189	 */
 190	poll_table pt;
 191	wait_queue_head_t *wqh;
 192	wait_queue_t wait;
 193	struct work_struct remove;
 194};
 195
 196static void mem_cgroup_threshold(struct mem_cgroup *memcg);
 197static void mem_cgroup_oom_notify(struct mem_cgroup *memcg);
 198
 199/* Stuffs for move charges at task migration. */
 200/*
 201 * Types of charges to be moved.
 
 202 */
 203#define MOVE_ANON	0x1U
 204#define MOVE_FILE	0x2U
 205#define MOVE_MASK	(MOVE_ANON | MOVE_FILE)
 
 
 206
 207/* "mc" and its members are protected by cgroup_mutex */
 208static struct move_charge_struct {
 209	spinlock_t	  lock; /* for from, to */
 210	struct mm_struct  *mm;
 211	struct mem_cgroup *from;
 212	struct mem_cgroup *to;
 213	unsigned long flags;
 214	unsigned long precharge;
 215	unsigned long moved_charge;
 216	unsigned long moved_swap;
 217	struct task_struct *moving_task;	/* a task moving charges */
 218	wait_queue_head_t waitq;		/* a waitq for other context */
 219} mc = {
 220	.lock = __SPIN_LOCK_UNLOCKED(mc.lock),
 221	.waitq = __WAIT_QUEUE_HEAD_INITIALIZER(mc.waitq),
 222};
 223
 
 
 
 
 
 
 
 
 
 
 
 
 224/*
 225 * Maximum loops in mem_cgroup_hierarchical_reclaim(), used for soft
 226 * limit reclaim to prevent infinite loops, if they ever occur.
 227 */
 228#define	MEM_CGROUP_MAX_RECLAIM_LOOPS		100
 229#define	MEM_CGROUP_MAX_SOFT_LIMIT_RECLAIM_LOOPS	2
 230
 231enum charge_type {
 232	MEM_CGROUP_CHARGE_TYPE_CACHE = 0,
 233	MEM_CGROUP_CHARGE_TYPE_ANON,
 
 
 234	MEM_CGROUP_CHARGE_TYPE_SWAPOUT,	/* for accounting swapcache */
 235	MEM_CGROUP_CHARGE_TYPE_DROP,	/* a page was unused swap cache */
 236	NR_CHARGE_TYPE,
 237};
 238
 239/* for encoding cft->private value on file */
 240enum res_type {
 241	_MEM,
 242	_MEMSWAP,
 243	_OOM_TYPE,
 244	_KMEM,
 245	_TCP,
 246};
 247
 248#define MEMFILE_PRIVATE(x, val)	((x) << 16 | (val))
 249#define MEMFILE_TYPE(val)	((val) >> 16 & 0xffff)
 250#define MEMFILE_ATTR(val)	((val) & 0xffff)
 251/* Used for OOM nofiier */
 252#define OOM_CONTROL		(0)
 253
 254/* Some nice accessors for the vmpressure. */
 255struct vmpressure *memcg_to_vmpressure(struct mem_cgroup *memcg)
 256{
 257	if (!memcg)
 258		memcg = root_mem_cgroup;
 259	return &memcg->vmpressure;
 260}
 261
 262struct cgroup_subsys_state *vmpressure_to_css(struct vmpressure *vmpr)
 263{
 264	return &container_of(vmpr, struct mem_cgroup, vmpressure)->css;
 265}
 266
 267static inline bool mem_cgroup_is_root(struct mem_cgroup *memcg)
 268{
 269	return (memcg == root_mem_cgroup);
 270}
 271
 272#ifndef CONFIG_SLOB
 273/*
 274 * This will be the memcg's index in each cache's ->memcg_params.memcg_caches.
 275 * The main reason for not using cgroup id for this:
 276 *  this works better in sparse environments, where we have a lot of memcgs,
 277 *  but only a few kmem-limited. Or also, if we have, for instance, 200
 278 *  memcgs, and none but the 200th is kmem-limited, we'd have to have a
 279 *  200 entry array for that.
 280 *
 281 * The current size of the caches array is stored in memcg_nr_cache_ids. It
 282 * will double each time we have to increase it.
 283 */
 284static DEFINE_IDA(memcg_cache_ida);
 285int memcg_nr_cache_ids;
 286
 287/* Protects memcg_nr_cache_ids */
 288static DECLARE_RWSEM(memcg_cache_ids_sem);
 289
 290void memcg_get_cache_ids(void)
 291{
 292	down_read(&memcg_cache_ids_sem);
 293}
 294
 295void memcg_put_cache_ids(void)
 296{
 297	up_read(&memcg_cache_ids_sem);
 298}
 299
 300/*
 301 * MIN_SIZE is different than 1, because we would like to avoid going through
 302 * the alloc/free process all the time. In a small machine, 4 kmem-limited
 303 * cgroups is a reasonable guess. In the future, it could be a parameter or
 304 * tunable, but that is strictly not necessary.
 305 *
 306 * MAX_SIZE should be as large as the number of cgrp_ids. Ideally, we could get
 307 * this constant directly from cgroup, but it is understandable that this is
 308 * better kept as an internal representation in cgroup.c. In any case, the
 309 * cgrp_id space is not getting any smaller, and we don't have to necessarily
 310 * increase ours as well if it increases.
 311 */
 312#define MEMCG_CACHES_MIN_SIZE 4
 313#define MEMCG_CACHES_MAX_SIZE MEM_CGROUP_ID_MAX
 314
 315/*
 316 * A lot of the calls to the cache allocation functions are expected to be
 317 * inlined by the compiler. Since the calls to memcg_kmem_get_cache are
 318 * conditional to this static branch, we'll have to allow modules that does
 319 * kmem_cache_alloc and the such to see this symbol as well
 320 */
 321DEFINE_STATIC_KEY_FALSE(memcg_kmem_enabled_key);
 322EXPORT_SYMBOL(memcg_kmem_enabled_key);
 323
 324#endif /* !CONFIG_SLOB */
 325
 326static struct mem_cgroup_per_zone *
 327mem_cgroup_zone_zoneinfo(struct mem_cgroup *memcg, struct zone *zone)
 328{
 329	int nid = zone_to_nid(zone);
 330	int zid = zone_idx(zone);
 331
 332	return &memcg->nodeinfo[nid]->zoneinfo[zid];
 333}
 334
 335/**
 336 * mem_cgroup_css_from_page - css of the memcg associated with a page
 337 * @page: page of interest
 338 *
 339 * If memcg is bound to the default hierarchy, css of the memcg associated
 340 * with @page is returned.  The returned css remains associated with @page
 341 * until it is released.
 342 *
 343 * If memcg is bound to a traditional hierarchy, the css of root_mem_cgroup
 344 * is returned.
 345 */
 346struct cgroup_subsys_state *mem_cgroup_css_from_page(struct page *page)
 347{
 348	struct mem_cgroup *memcg;
 349
 350	memcg = page->mem_cgroup;
 351
 352	if (!memcg || !cgroup_subsys_on_dfl(memory_cgrp_subsys))
 353		memcg = root_mem_cgroup;
 354
 355	return &memcg->css;
 356}
 357
 358/**
 359 * page_cgroup_ino - return inode number of the memcg a page is charged to
 360 * @page: the page
 361 *
 362 * Look up the closest online ancestor of the memory cgroup @page is charged to
 363 * and return its inode number or 0 if @page is not charged to any cgroup. It
 364 * is safe to call this function without holding a reference to @page.
 365 *
 366 * Note, this function is inherently racy, because there is nothing to prevent
 367 * the cgroup inode from getting torn down and potentially reallocated a moment
 368 * after page_cgroup_ino() returns, so it only should be used by callers that
 369 * do not care (such as procfs interfaces).
 370 */
 371ino_t page_cgroup_ino(struct page *page)
 372{
 373	struct mem_cgroup *memcg;
 374	unsigned long ino = 0;
 375
 376	rcu_read_lock();
 377	memcg = READ_ONCE(page->mem_cgroup);
 378	while (memcg && !(memcg->css.flags & CSS_ONLINE))
 379		memcg = parent_mem_cgroup(memcg);
 380	if (memcg)
 381		ino = cgroup_ino(memcg->css.cgroup);
 382	rcu_read_unlock();
 383	return ino;
 384}
 385
 386static struct mem_cgroup_per_zone *
 387mem_cgroup_page_zoneinfo(struct mem_cgroup *memcg, struct page *page)
 388{
 389	int nid = page_to_nid(page);
 390	int zid = page_zonenum(page);
 391
 392	return &memcg->nodeinfo[nid]->zoneinfo[zid];
 393}
 394
 395static struct mem_cgroup_tree_per_zone *
 396soft_limit_tree_node_zone(int nid, int zid)
 397{
 398	return &soft_limit_tree.rb_tree_per_node[nid]->rb_tree_per_zone[zid];
 399}
 400
 401static struct mem_cgroup_tree_per_zone *
 402soft_limit_tree_from_page(struct page *page)
 403{
 404	int nid = page_to_nid(page);
 405	int zid = page_zonenum(page);
 406
 407	return &soft_limit_tree.rb_tree_per_node[nid]->rb_tree_per_zone[zid];
 408}
 409
 410static void __mem_cgroup_insert_exceeded(struct mem_cgroup_per_zone *mz,
 411					 struct mem_cgroup_tree_per_zone *mctz,
 412					 unsigned long new_usage_in_excess)
 
 
 413{
 414	struct rb_node **p = &mctz->rb_root.rb_node;
 415	struct rb_node *parent = NULL;
 416	struct mem_cgroup_per_zone *mz_node;
 417
 418	if (mz->on_tree)
 419		return;
 420
 421	mz->usage_in_excess = new_usage_in_excess;
 422	if (!mz->usage_in_excess)
 423		return;
 424	while (*p) {
 425		parent = *p;
 426		mz_node = rb_entry(parent, struct mem_cgroup_per_zone,
 427					tree_node);
 428		if (mz->usage_in_excess < mz_node->usage_in_excess)
 429			p = &(*p)->rb_left;
 430		/*
 431		 * We can't avoid mem cgroups that are over their soft
 432		 * limit by the same amount
 433		 */
 434		else if (mz->usage_in_excess >= mz_node->usage_in_excess)
 435			p = &(*p)->rb_right;
 436	}
 437	rb_link_node(&mz->tree_node, parent, p);
 438	rb_insert_color(&mz->tree_node, &mctz->rb_root);
 439	mz->on_tree = true;
 440}
 441
 442static void __mem_cgroup_remove_exceeded(struct mem_cgroup_per_zone *mz,
 443					 struct mem_cgroup_tree_per_zone *mctz)
 
 
 444{
 445	if (!mz->on_tree)
 446		return;
 447	rb_erase(&mz->tree_node, &mctz->rb_root);
 448	mz->on_tree = false;
 449}
 450
 451static void mem_cgroup_remove_exceeded(struct mem_cgroup_per_zone *mz,
 452				       struct mem_cgroup_tree_per_zone *mctz)
 
 
 453{
 454	unsigned long flags;
 455
 456	spin_lock_irqsave(&mctz->lock, flags);
 457	__mem_cgroup_remove_exceeded(mz, mctz);
 458	spin_unlock_irqrestore(&mctz->lock, flags);
 459}
 460
 461static unsigned long soft_limit_excess(struct mem_cgroup *memcg)
 462{
 463	unsigned long nr_pages = page_counter_read(&memcg->memory);
 464	unsigned long soft_limit = READ_ONCE(memcg->soft_limit);
 465	unsigned long excess = 0;
 466
 467	if (nr_pages > soft_limit)
 468		excess = nr_pages - soft_limit;
 469
 470	return excess;
 471}
 472
 473static void mem_cgroup_update_tree(struct mem_cgroup *memcg, struct page *page)
 474{
 475	unsigned long excess;
 476	struct mem_cgroup_per_zone *mz;
 477	struct mem_cgroup_tree_per_zone *mctz;
 
 
 
 478
 479	mctz = soft_limit_tree_from_page(page);
 480	/*
 481	 * Necessary to update all ancestors when hierarchy is used.
 482	 * because their event counter is not touched.
 483	 */
 484	for (; memcg; memcg = parent_mem_cgroup(memcg)) {
 485		mz = mem_cgroup_page_zoneinfo(memcg, page);
 486		excess = soft_limit_excess(memcg);
 487		/*
 488		 * We have to update the tree if mz is on RB-tree or
 489		 * mem is over its softlimit.
 490		 */
 491		if (excess || mz->on_tree) {
 492			unsigned long flags;
 493
 494			spin_lock_irqsave(&mctz->lock, flags);
 495			/* if on-tree, remove it */
 496			if (mz->on_tree)
 497				__mem_cgroup_remove_exceeded(mz, mctz);
 498			/*
 499			 * Insert again. mz->usage_in_excess will be updated.
 500			 * If excess is 0, no tree ops.
 501			 */
 502			__mem_cgroup_insert_exceeded(mz, mctz, excess);
 503			spin_unlock_irqrestore(&mctz->lock, flags);
 504		}
 505	}
 506}
 507
 508static void mem_cgroup_remove_from_trees(struct mem_cgroup *memcg)
 509{
 
 
 510	struct mem_cgroup_tree_per_zone *mctz;
 511	struct mem_cgroup_per_zone *mz;
 512	int nid, zid;
 513
 514	for_each_node(nid) {
 515		for (zid = 0; zid < MAX_NR_ZONES; zid++) {
 516			mz = &memcg->nodeinfo[nid]->zoneinfo[zid];
 517			mctz = soft_limit_tree_node_zone(nid, zid);
 518			mem_cgroup_remove_exceeded(mz, mctz);
 519		}
 520	}
 521}
 522
 523static struct mem_cgroup_per_zone *
 524__mem_cgroup_largest_soft_limit_node(struct mem_cgroup_tree_per_zone *mctz)
 525{
 526	struct rb_node *rightmost = NULL;
 527	struct mem_cgroup_per_zone *mz;
 528
 529retry:
 530	mz = NULL;
 531	rightmost = rb_last(&mctz->rb_root);
 532	if (!rightmost)
 533		goto done;		/* Nothing to reclaim from */
 534
 535	mz = rb_entry(rightmost, struct mem_cgroup_per_zone, tree_node);
 536	/*
 537	 * Remove the node now but someone else can add it back,
 538	 * we will to add it back at the end of reclaim to its correct
 539	 * position in the tree.
 540	 */
 541	__mem_cgroup_remove_exceeded(mz, mctz);
 542	if (!soft_limit_excess(mz->memcg) ||
 543	    !css_tryget_online(&mz->memcg->css))
 544		goto retry;
 545done:
 546	return mz;
 547}
 548
 549static struct mem_cgroup_per_zone *
 550mem_cgroup_largest_soft_limit_node(struct mem_cgroup_tree_per_zone *mctz)
 551{
 552	struct mem_cgroup_per_zone *mz;
 553
 554	spin_lock_irq(&mctz->lock);
 555	mz = __mem_cgroup_largest_soft_limit_node(mctz);
 556	spin_unlock_irq(&mctz->lock);
 557	return mz;
 558}
 559
 560/*
 561 * Return page count for single (non recursive) @memcg.
 562 *
 563 * Implementation Note: reading percpu statistics for memcg.
 564 *
 565 * Both of vmstat[] and percpu_counter has threshold and do periodic
 566 * synchronization to implement "quick" read. There are trade-off between
 567 * reading cost and precision of value. Then, we may have a chance to implement
 568 * a periodic synchronization of counter in memcg's counter.
 569 *
 570 * But this _read() function is used for user interface now. The user accounts
 571 * memory usage by memory cgroup and he _always_ requires exact value because
 572 * he accounts memory. Even if we provide quick-and-fuzzy read, we always
 573 * have to visit all online cpus and make sum. So, for now, unnecessary
 574 * synchronization is not implemented. (just implemented for cpu hotplug)
 575 *
 576 * If there are kernel internal actions which can make use of some not-exact
 577 * value, and reading all cpu value can be performance bottleneck in some
 578 * common workload, threshold and synchronization as vmstat[] should be
 579 * implemented.
 580 */
 581static unsigned long
 582mem_cgroup_read_stat(struct mem_cgroup *memcg, enum mem_cgroup_stat_index idx)
 583{
 584	long val = 0;
 585	int cpu;
 586
 587	/* Per-cpu values can be negative, use a signed accumulator */
 588	for_each_possible_cpu(cpu)
 589		val += per_cpu(memcg->stat->count[idx], cpu);
 590	/*
 591	 * Summing races with updates, so val may be negative.  Avoid exposing
 592	 * transient negative values.
 593	 */
 594	if (val < 0)
 595		val = 0;
 596	return val;
 597}
 598
 599static unsigned long mem_cgroup_read_events(struct mem_cgroup *memcg,
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 600					    enum mem_cgroup_events_index idx)
 601{
 602	unsigned long val = 0;
 603	int cpu;
 604
 605	for_each_possible_cpu(cpu)
 606		val += per_cpu(memcg->stat->events[idx], cpu);
 
 
 
 
 
 607	return val;
 608}
 609
 610static void mem_cgroup_charge_statistics(struct mem_cgroup *memcg,
 611					 struct page *page,
 612					 bool compound, int nr_pages)
 613{
 614	/*
 615	 * Here, RSS means 'mapped anon' and anon's SwapCache. Shmem/tmpfs is
 616	 * counted as CACHE even if it's on ANON LRU.
 617	 */
 618	if (PageAnon(page))
 619		__this_cpu_add(memcg->stat->count[MEM_CGROUP_STAT_RSS],
 620				nr_pages);
 621	else
 622		__this_cpu_add(memcg->stat->count[MEM_CGROUP_STAT_CACHE],
 623				nr_pages);
 624
 625	if (compound) {
 626		VM_BUG_ON_PAGE(!PageTransHuge(page), page);
 627		__this_cpu_add(memcg->stat->count[MEM_CGROUP_STAT_RSS_HUGE],
 628				nr_pages);
 629	}
 630
 631	/* pagein of a big page is an event. So, ignore page size */
 632	if (nr_pages > 0)
 633		__this_cpu_inc(memcg->stat->events[MEM_CGROUP_EVENTS_PGPGIN]);
 634	else {
 635		__this_cpu_inc(memcg->stat->events[MEM_CGROUP_EVENTS_PGPGOUT]);
 636		nr_pages = -nr_pages; /* for event */
 637	}
 638
 639	__this_cpu_add(memcg->stat->nr_page_events, nr_pages);
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 640}
 641
 642unsigned long mem_cgroup_node_nr_lru_pages(struct mem_cgroup *memcg,
 643					   int nid, unsigned int lru_mask)
 
 644{
 645	unsigned long nr = 0;
 646	int zid;
 647
 648	VM_BUG_ON((unsigned)nid >= nr_node_ids);
 
 649
 650	for (zid = 0; zid < MAX_NR_ZONES; zid++) {
 651		struct mem_cgroup_per_zone *mz;
 652		enum lru_list lru;
 653
 654		for_each_lru(lru) {
 655			if (!(BIT(lru) & lru_mask))
 656				continue;
 657			mz = &memcg->nodeinfo[nid]->zoneinfo[zid];
 658			nr += mz->lru_size[lru];
 659		}
 660	}
 661	return nr;
 662}
 663
 664static unsigned long mem_cgroup_nr_lru_pages(struct mem_cgroup *memcg,
 665			unsigned int lru_mask)
 666{
 667	unsigned long nr = 0;
 668	int nid;
 
 669
 670	for_each_node_state(nid, N_MEMORY)
 671		nr += mem_cgroup_node_nr_lru_pages(memcg, nid, lru_mask);
 672	return nr;
 673}
 674
 675static bool mem_cgroup_event_ratelimit(struct mem_cgroup *memcg,
 676				       enum mem_cgroup_events_target target)
 677{
 678	unsigned long val, next;
 679
 680	val = __this_cpu_read(memcg->stat->nr_page_events);
 681	next = __this_cpu_read(memcg->stat->targets[target]);
 682	/* from time_after() in jiffies.h */
 683	if ((long)next - (long)val < 0) {
 684		switch (target) {
 685		case MEM_CGROUP_TARGET_THRESH:
 686			next = val + THRESHOLDS_EVENTS_TARGET;
 687			break;
 688		case MEM_CGROUP_TARGET_SOFTLIMIT:
 689			next = val + SOFTLIMIT_EVENTS_TARGET;
 690			break;
 691		case MEM_CGROUP_TARGET_NUMAINFO:
 692			next = val + NUMAINFO_EVENTS_TARGET;
 693			break;
 694		default:
 695			break;
 696		}
 697		__this_cpu_write(memcg->stat->targets[target], next);
 698		return true;
 
 
 
 
 
 699	}
 700	return false;
 
 701}
 702
 703/*
 704 * Check events in order.
 705 *
 706 */
 707static void memcg_check_events(struct mem_cgroup *memcg, struct page *page)
 708{
 709	/* threshold event is triggered in finer grain than soft limit */
 710	if (unlikely(mem_cgroup_event_ratelimit(memcg,
 711						MEM_CGROUP_TARGET_THRESH))) {
 712		bool do_softlimit;
 713		bool do_numainfo __maybe_unused;
 714
 715		do_softlimit = mem_cgroup_event_ratelimit(memcg,
 716						MEM_CGROUP_TARGET_SOFTLIMIT);
 
 
 717#if MAX_NUMNODES > 1
 718		do_numainfo = mem_cgroup_event_ratelimit(memcg,
 719						MEM_CGROUP_TARGET_NUMAINFO);
 720#endif
 721		mem_cgroup_threshold(memcg);
 722		if (unlikely(do_softlimit))
 723			mem_cgroup_update_tree(memcg, page);
 724#if MAX_NUMNODES > 1
 725		if (unlikely(do_numainfo))
 726			atomic_inc(&memcg->numainfo_events);
 727#endif
 728	}
 729}
 730
 
 
 
 
 
 
 
 731struct mem_cgroup *mem_cgroup_from_task(struct task_struct *p)
 732{
 733	/*
 734	 * mm_update_next_owner() may clear mm->owner to NULL
 735	 * if it races with swapoff, page migration, etc.
 736	 * So this can be called with p == NULL.
 737	 */
 738	if (unlikely(!p))
 739		return NULL;
 740
 741	return mem_cgroup_from_css(task_css(p, memory_cgrp_id));
 
 742}
 743EXPORT_SYMBOL(mem_cgroup_from_task);
 744
 745static struct mem_cgroup *get_mem_cgroup_from_mm(struct mm_struct *mm)
 746{
 747	struct mem_cgroup *memcg = NULL;
 748
 
 
 
 
 
 
 
 749	rcu_read_lock();
 750	do {
 751		/*
 752		 * Page cache insertions can happen withou an
 753		 * actual mm context, e.g. during disk probing
 754		 * on boot, loopback IO, acct() writes etc.
 755		 */
 756		if (unlikely(!mm))
 757			memcg = root_mem_cgroup;
 758		else {
 759			memcg = mem_cgroup_from_task(rcu_dereference(mm->owner));
 760			if (unlikely(!memcg))
 761				memcg = root_mem_cgroup;
 762		}
 763	} while (!css_tryget_online(&memcg->css));
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 764	rcu_read_unlock();
 765	return memcg;
 766}
 767
 768/**
 769 * mem_cgroup_iter - iterate over memory cgroup hierarchy
 770 * @root: hierarchy root
 771 * @prev: previously returned memcg, NULL on first invocation
 772 * @reclaim: cookie for shared reclaim walks, NULL for full walks
 773 *
 774 * Returns references to children of the hierarchy below @root, or
 775 * @root itself, or %NULL after a full round-trip.
 776 *
 777 * Caller must pass the return value in @prev on subsequent
 778 * invocations for reference counting, or use mem_cgroup_iter_break()
 779 * to cancel a hierarchy walk before the round-trip is complete.
 780 *
 781 * Reclaimers can specify a zone and a priority level in @reclaim to
 782 * divide up the memcgs in the hierarchy among all concurrent
 783 * reclaimers operating on the same zone and priority.
 784 */
 785struct mem_cgroup *mem_cgroup_iter(struct mem_cgroup *root,
 786				   struct mem_cgroup *prev,
 787				   struct mem_cgroup_reclaim_cookie *reclaim)
 788{
 789	struct mem_cgroup_reclaim_iter *uninitialized_var(iter);
 790	struct cgroup_subsys_state *css = NULL;
 791	struct mem_cgroup *memcg = NULL;
 792	struct mem_cgroup *pos = NULL;
 793
 794	if (mem_cgroup_disabled())
 
 
 795		return NULL;
 796
 797	if (!root)
 798		root = root_mem_cgroup;
 799
 800	if (prev && !reclaim)
 801		pos = prev;
 
 802
 803	if (!root->use_hierarchy && root != root_mem_cgroup) {
 804		if (prev)
 805			goto out;
 806		return root;
 807	}
 
 
 
 808
 809	rcu_read_lock();
 
 
 
 
 
 
 
 
 
 
 810
 811	if (reclaim) {
 812		struct mem_cgroup_per_zone *mz;
 813
 814		mz = mem_cgroup_zone_zoneinfo(root, reclaim->zone);
 815		iter = &mz->iter[reclaim->priority];
 816
 817		if (prev && reclaim->generation != iter->generation)
 818			goto out_unlock;
 819
 820		while (1) {
 821			pos = READ_ONCE(iter->position);
 822			if (!pos || css_tryget(&pos->css))
 823				break;
 824			/*
 825			 * css reference reached zero, so iter->position will
 826			 * be cleared by ->css_released. However, we should not
 827			 * rely on this happening soon, because ->css_released
 828			 * is called from a work queue, and by busy-waiting we
 829			 * might block it. So we clear iter->position right
 830			 * away.
 831			 */
 832			(void)cmpxchg(&iter->position, pos, NULL);
 833		}
 834	}
 835
 836	if (pos)
 837		css = &pos->css;
 
 838
 839	for (;;) {
 840		css = css_next_descendant_pre(css, &root->css);
 841		if (!css) {
 842			/*
 843			 * Reclaimers share the hierarchy walk, and a
 844			 * new one might jump in right at the end of
 845			 * the hierarchy - make sure they see at least
 846			 * one group and restart from the beginning.
 847			 */
 848			if (!prev)
 849				continue;
 850			break;
 851		}
 852
 853		/*
 854		 * Verify the css and acquire a reference.  The root
 855		 * is provided by the caller, so we know it's alive
 856		 * and kicking, and don't take an extra reference.
 857		 */
 858		memcg = mem_cgroup_from_css(css);
 859
 860		if (css == &root->css)
 861			break;
 
 
 
 
 
 
 
 
 
 
 
 
 862
 863		if (css_tryget(css))
 864			break;
 
 
 
 
 
 
 
 
 
 
 
 865
 866		memcg = NULL;
 867	}
 
 
 868
 869	if (reclaim) {
 870		/*
 871		 * The position could have already been updated by a competing
 872		 * thread, so check that the value hasn't changed since we read
 873		 * it to avoid reclaiming from the same cgroup twice.
 874		 */
 875		(void)cmpxchg(&iter->position, pos, memcg);
 
 
 
 
 
 
 
 
 
 
 
 
 876
 877		if (pos)
 878			css_put(&pos->css);
 
 
 879
 880		if (!memcg)
 881			iter->generation++;
 882		else if (!prev)
 883			reclaim->generation = iter->generation;
 884	}
 
 
 
 
 
 885
 886out_unlock:
 887	rcu_read_unlock();
 888out:
 889	if (prev && prev != root)
 890		css_put(&prev->css);
 891
 892	return memcg;
 
 
 
 
 
 
 
 
 
 893}
 894
 895/**
 896 * mem_cgroup_iter_break - abort a hierarchy walk prematurely
 897 * @root: hierarchy root
 898 * @prev: last visited hierarchy member as returned by mem_cgroup_iter()
 899 */
 900void mem_cgroup_iter_break(struct mem_cgroup *root,
 901			   struct mem_cgroup *prev)
 902{
 903	if (!root)
 904		root = root_mem_cgroup;
 905	if (prev && prev != root)
 906		css_put(&prev->css);
 
 
 
 
 
 
 
 
 
 
 
 
 907}
 908
 909static void invalidate_reclaim_iterators(struct mem_cgroup *dead_memcg)
 910{
 911	struct mem_cgroup *memcg = dead_memcg;
 912	struct mem_cgroup_reclaim_iter *iter;
 913	struct mem_cgroup_per_zone *mz;
 914	int nid, zid;
 915	int i;
 916
 917	while ((memcg = parent_mem_cgroup(memcg))) {
 918		for_each_node(nid) {
 919			for (zid = 0; zid < MAX_NR_ZONES; zid++) {
 920				mz = &memcg->nodeinfo[nid]->zoneinfo[zid];
 921				for (i = 0; i <= DEF_PRIORITY; i++) {
 922					iter = &mz->iter[i];
 923					cmpxchg(&iter->position,
 924						dead_memcg, NULL);
 925				}
 926			}
 927		}
 928	}
 
 
 
 929}
 930
 931/*
 932 * Iteration constructs for visiting all cgroups (under a tree).  If
 933 * loops are exited prematurely (break), mem_cgroup_iter_break() must
 934 * be used for reference counting.
 935 */
 936#define for_each_mem_cgroup_tree(iter, root)		\
 937	for (iter = mem_cgroup_iter(root, NULL, NULL);	\
 938	     iter != NULL;				\
 939	     iter = mem_cgroup_iter(root, iter, NULL))
 940
 941#define for_each_mem_cgroup(iter)			\
 942	for (iter = mem_cgroup_iter(NULL, NULL, NULL);	\
 943	     iter != NULL;				\
 944	     iter = mem_cgroup_iter(NULL, iter, NULL))
 945
 946/**
 947 * mem_cgroup_zone_lruvec - get the lru list vector for a zone and memcg
 948 * @zone: zone of the wanted lruvec
 949 * @memcg: memcg of the wanted lruvec
 950 *
 951 * Returns the lru list vector holding pages for the given @zone and
 952 * @mem.  This can be the global zone lruvec, if the memory controller
 953 * is disabled.
 954 */
 955struct lruvec *mem_cgroup_zone_lruvec(struct zone *zone,
 956				      struct mem_cgroup *memcg)
 957{
 958	struct mem_cgroup_per_zone *mz;
 959	struct lruvec *lruvec;
 
 960
 961	if (mem_cgroup_disabled()) {
 962		lruvec = &zone->lruvec;
 963		goto out;
 964	}
 
 
 
 
 
 
 965
 966	mz = mem_cgroup_zone_zoneinfo(memcg, zone);
 967	lruvec = &mz->lruvec;
 968out:
 969	/*
 970	 * Since a node can be onlined after the mem_cgroup was created,
 971	 * we have to be prepared to initialize lruvec->zone here;
 972	 * and if offlined then reonlined, we need to reinitialize it.
 973	 */
 974	if (unlikely(lruvec->zone != zone))
 975		lruvec->zone = zone;
 976	return lruvec;
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 977}
 978
 979/**
 980 * mem_cgroup_page_lruvec - return lruvec for isolating/putting an LRU page
 981 * @page: the page
 982 * @zone: zone of the page
 983 *
 984 * This function is only safe when following the LRU page isolation
 985 * and putback protocol: the LRU lock must be held, and the page must
 986 * either be PageLRU() or the caller must have isolated/allocated it.
 987 */
 988struct lruvec *mem_cgroup_page_lruvec(struct page *page, struct zone *zone)
 
 989{
 990	struct mem_cgroup_per_zone *mz;
 991	struct mem_cgroup *memcg;
 992	struct lruvec *lruvec;
 
 
 
 
 993
 994	if (mem_cgroup_disabled()) {
 995		lruvec = &zone->lruvec;
 996		goto out;
 997	}
 
 998
 999	memcg = page->mem_cgroup;
 
 
 
 
 
 
1000	/*
1001	 * Swapcache readahead pages are added to the LRU - and
1002	 * possibly migrated - before they are charged.
 
 
1003	 */
1004	if (!memcg)
1005		memcg = root_mem_cgroup;
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1006
1007	mz = mem_cgroup_page_zoneinfo(memcg, page);
1008	lruvec = &mz->lruvec;
1009out:
1010	/*
1011	 * Since a node can be onlined after the mem_cgroup was created,
1012	 * we have to be prepared to initialize lruvec->zone here;
1013	 * and if offlined then reonlined, we need to reinitialize it.
1014	 */
1015	if (unlikely(lruvec->zone != zone))
1016		lruvec->zone = zone;
1017	return lruvec;
1018}
1019
1020/**
1021 * mem_cgroup_update_lru_size - account for adding or removing an lru page
1022 * @lruvec: mem_cgroup per zone lru vector
1023 * @lru: index of lru list the page is sitting on
1024 * @nr_pages: positive when adding or negative when removing
1025 *
1026 * This function must be called when a page is added to or removed from an
1027 * lru list.
1028 */
1029void mem_cgroup_update_lru_size(struct lruvec *lruvec, enum lru_list lru,
1030				int nr_pages)
1031{
 
1032	struct mem_cgroup_per_zone *mz;
1033	unsigned long *lru_size;
1034
1035	if (mem_cgroup_disabled())
1036		return;
1037
1038	mz = container_of(lruvec, struct mem_cgroup_per_zone, lruvec);
1039	lru_size = mz->lru_size + lru;
1040	*lru_size += nr_pages;
1041	VM_BUG_ON((long)(*lru_size) < 0);
 
 
 
1042}
1043
1044bool task_in_mem_cgroup(struct task_struct *task, struct mem_cgroup *memcg)
 
 
 
 
 
1045{
1046	struct mem_cgroup *task_memcg;
1047	struct task_struct *p;
1048	bool ret;
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1049
1050	p = find_lock_task_mm(task);
1051	if (p) {
1052		task_memcg = get_mem_cgroup_from_mm(p->mm);
1053		task_unlock(p);
1054	} else {
1055		/*
1056		 * All threads may have already detached their mm's, but the oom
1057		 * killer still needs to detect if they have already been oom
1058		 * killed to prevent needlessly killing additional tasks.
1059		 */
1060		rcu_read_lock();
1061		task_memcg = mem_cgroup_from_task(task);
1062		css_get(&task_memcg->css);
1063		rcu_read_unlock();
 
1064	}
1065	ret = mem_cgroup_is_descendant(task_memcg, memcg);
1066	css_put(&task_memcg->css);
1067	return ret;
 
 
 
 
1068}
1069
 
 
 
1070/**
1071 * mem_cgroup_margin - calculate chargeable space of a memory cgroup
1072 * @memcg: the memory cgroup
1073 *
1074 * Returns the maximum amount of memory @mem can be charged with, in
1075 * pages.
1076 */
1077static unsigned long mem_cgroup_margin(struct mem_cgroup *memcg)
1078{
1079	unsigned long margin = 0;
1080	unsigned long count;
1081	unsigned long limit;
1082
1083	count = page_counter_read(&memcg->memory);
1084	limit = READ_ONCE(memcg->memory.limit);
1085	if (count < limit)
1086		margin = limit - count;
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1087
1088	if (do_memsw_account()) {
1089		count = page_counter_read(&memcg->memsw);
1090		limit = READ_ONCE(memcg->memsw.limit);
1091		if (count <= limit)
1092			margin = min(margin, limit - count);
1093	}
 
1094
1095	return margin;
1096}
1097
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1098/*
1099 * A routine for checking "mem" is under move_account() or not.
 
 
 
 
1100 *
1101 * Checking a cgroup is mc.from or mc.to or under hierarchy of
1102 * moving cgroups. This is for waiting at high-memory pressure
1103 * caused by "move".
1104 */
1105static bool mem_cgroup_under_move(struct mem_cgroup *memcg)
 
 
 
 
 
 
 
1106{
1107	struct mem_cgroup *from;
1108	struct mem_cgroup *to;
1109	bool ret = false;
1110	/*
1111	 * Unlike task_move routines, we access mc.to, mc.from not under
1112	 * mutual exclusion by cgroup_mutex. Here, we take spinlock instead.
1113	 */
1114	spin_lock(&mc.lock);
1115	from = mc.from;
1116	to = mc.to;
1117	if (!from)
1118		goto unlock;
1119
1120	ret = mem_cgroup_is_descendant(from, memcg) ||
1121		mem_cgroup_is_descendant(to, memcg);
1122unlock:
1123	spin_unlock(&mc.lock);
1124	return ret;
1125}
1126
1127static bool mem_cgroup_wait_acct_move(struct mem_cgroup *memcg)
1128{
1129	if (mc.moving_task && current != mc.moving_task) {
1130		if (mem_cgroup_under_move(memcg)) {
1131			DEFINE_WAIT(wait);
1132			prepare_to_wait(&mc.waitq, &wait, TASK_INTERRUPTIBLE);
1133			/* moving charge context might have finished. */
1134			if (mc.moving_task)
1135				schedule();
1136			finish_wait(&mc.waitq, &wait);
1137			return true;
1138		}
1139	}
1140	return false;
1141}
1142
1143#define K(x) ((x) << (PAGE_SHIFT-10))
1144/**
1145 * mem_cgroup_print_oom_info: Print OOM information relevant to memory controller.
1146 * @memcg: The memory cgroup that went over limit
1147 * @p: Task that is going to be killed
1148 *
1149 * NOTE: @memcg and @p's mem_cgroup can be different when hierarchy is
1150 * enabled
1151 */
1152void mem_cgroup_print_oom_info(struct mem_cgroup *memcg, struct task_struct *p)
1153{
1154	struct mem_cgroup *iter;
1155	unsigned int i;
 
 
 
 
 
 
 
 
 
 
 
1156
1157	rcu_read_lock();
1158
1159	if (p) {
1160		pr_info("Task in ");
1161		pr_cont_cgroup_path(task_cgroup(p, memory_cgrp_id));
1162		pr_cont(" killed as a result of limit of ");
1163	} else {
1164		pr_info("Memory limit reached of cgroup ");
 
 
 
 
 
1165	}
 
1166
1167	pr_cont_cgroup_path(memcg->css.cgroup);
1168	pr_cont("\n");
1169
 
 
 
 
 
 
1170	rcu_read_unlock();
1171
1172	pr_info("memory: usage %llukB, limit %llukB, failcnt %lu\n",
1173		K((u64)page_counter_read(&memcg->memory)),
1174		K((u64)memcg->memory.limit), memcg->memory.failcnt);
1175	pr_info("memory+swap: usage %llukB, limit %llukB, failcnt %lu\n",
1176		K((u64)page_counter_read(&memcg->memsw)),
1177		K((u64)memcg->memsw.limit), memcg->memsw.failcnt);
1178	pr_info("kmem: usage %llukB, limit %llukB, failcnt %lu\n",
1179		K((u64)page_counter_read(&memcg->kmem)),
1180		K((u64)memcg->kmem.limit), memcg->kmem.failcnt);
1181
1182	for_each_mem_cgroup_tree(iter, memcg) {
1183		pr_info("Memory cgroup stats for ");
1184		pr_cont_cgroup_path(iter->css.cgroup);
1185		pr_cont(":");
1186
1187		for (i = 0; i < MEM_CGROUP_STAT_NSTATS; i++) {
1188			if (i == MEM_CGROUP_STAT_SWAP && !do_swap_account)
1189				continue;
1190			pr_cont(" %s:%luKB", mem_cgroup_stat_names[i],
1191				K(mem_cgroup_read_stat(iter, i)));
1192		}
1193
1194		for (i = 0; i < NR_LRU_LISTS; i++)
1195			pr_cont(" %s:%luKB", mem_cgroup_lru_names[i],
1196				K(mem_cgroup_nr_lru_pages(iter, BIT(i))));
1197
1198		pr_cont("\n");
1199	}
 
 
 
 
 
 
 
1200}
1201
1202/*
1203 * This function returns the number of memcg under hierarchy tree. Returns
1204 * 1(self count) if no children.
1205 */
1206static int mem_cgroup_count_children(struct mem_cgroup *memcg)
1207{
1208	int num = 0;
1209	struct mem_cgroup *iter;
1210
1211	for_each_mem_cgroup_tree(iter, memcg)
1212		num++;
1213	return num;
1214}
1215
1216/*
1217 * Return the memory (and swap, if configured) limit for a memcg.
1218 */
1219static unsigned long mem_cgroup_get_limit(struct mem_cgroup *memcg)
1220{
1221	unsigned long limit;
 
1222
1223	limit = memcg->memory.limit;
1224	if (mem_cgroup_swappiness(memcg)) {
1225		unsigned long memsw_limit;
1226		unsigned long swap_limit;
1227
1228		memsw_limit = memcg->memsw.limit;
1229		swap_limit = memcg->swap.limit;
1230		swap_limit = min(swap_limit, (unsigned long)total_swap_pages);
1231		limit = min(limit + swap_limit, memsw_limit);
1232	}
1233	return limit;
1234}
1235
1236static bool mem_cgroup_out_of_memory(struct mem_cgroup *memcg, gfp_t gfp_mask,
1237				     int order)
 
 
 
 
 
1238{
1239	struct oom_control oc = {
1240		.zonelist = NULL,
1241		.nodemask = NULL,
1242		.gfp_mask = gfp_mask,
1243		.order = order,
1244	};
1245	struct mem_cgroup *iter;
1246	unsigned long chosen_points = 0;
1247	unsigned long totalpages;
1248	unsigned int points = 0;
1249	struct task_struct *chosen = NULL;
1250
1251	mutex_lock(&oom_lock);
 
 
 
 
 
 
1252
1253	/*
1254	 * If current has a pending SIGKILL or is exiting, then automatically
1255	 * select it.  The goal is to allow it to allocate so that it may
1256	 * quickly exit and free its memory.
1257	 */
1258	if (fatal_signal_pending(current) || task_will_free_mem(current)) {
1259		mark_oom_victim(current);
1260		goto unlock;
1261	}
1262
1263	check_panic_on_oom(&oc, CONSTRAINT_MEMCG, memcg);
1264	totalpages = mem_cgroup_get_limit(memcg) ? : 1;
1265	for_each_mem_cgroup_tree(iter, memcg) {
1266		struct css_task_iter it;
1267		struct task_struct *task;
1268
1269		css_task_iter_start(&iter->css, &it);
1270		while ((task = css_task_iter_next(&it))) {
1271			switch (oom_scan_process_thread(&oc, task, totalpages)) {
1272			case OOM_SCAN_SELECT:
1273				if (chosen)
1274					put_task_struct(chosen);
1275				chosen = task;
1276				chosen_points = ULONG_MAX;
1277				get_task_struct(chosen);
1278				/* fall through */
1279			case OOM_SCAN_CONTINUE:
1280				continue;
1281			case OOM_SCAN_ABORT:
1282				css_task_iter_end(&it);
1283				mem_cgroup_iter_break(memcg, iter);
1284				if (chosen)
1285					put_task_struct(chosen);
1286				goto unlock;
1287			case OOM_SCAN_OK:
1288				break;
1289			};
1290			points = oom_badness(task, memcg, NULL, totalpages);
1291			if (!points || points < chosen_points)
1292				continue;
1293			/* Prefer thread group leaders for display purposes */
1294			if (points == chosen_points &&
1295			    thread_group_leader(chosen))
1296				continue;
1297
1298			if (chosen)
1299				put_task_struct(chosen);
1300			chosen = task;
1301			chosen_points = points;
1302			get_task_struct(chosen);
1303		}
1304		css_task_iter_end(&it);
1305	}
1306
1307	if (chosen) {
1308		points = chosen_points * 1000 / totalpages;
1309		oom_kill_process(&oc, chosen, points, totalpages, memcg,
1310				 "Memory cgroup out of memory");
1311	}
1312unlock:
1313	mutex_unlock(&oom_lock);
1314	return chosen;
1315}
1316
1317#if MAX_NUMNODES > 1
1318
1319/**
1320 * test_mem_cgroup_node_reclaimable
1321 * @memcg: the target memcg
1322 * @nid: the node ID to be checked.
1323 * @noswap : specify true here if the user wants flle only information.
1324 *
1325 * This function returns whether the specified memcg contains any
1326 * reclaimable pages on a node. Returns true if there are any reclaimable
1327 * pages in the node.
1328 */
1329static bool test_mem_cgroup_node_reclaimable(struct mem_cgroup *memcg,
1330		int nid, bool noswap)
1331{
1332	if (mem_cgroup_node_nr_lru_pages(memcg, nid, LRU_ALL_FILE))
1333		return true;
1334	if (noswap || !total_swap_pages)
1335		return false;
1336	if (mem_cgroup_node_nr_lru_pages(memcg, nid, LRU_ALL_ANON))
1337		return true;
1338	return false;
1339
1340}
 
1341
1342/*
1343 * Always updating the nodemask is not very good - even if we have an empty
1344 * list or the wrong list here, we can start from some node and traverse all
1345 * nodes based on the zonelist. So update the list loosely once per 10 secs.
1346 *
1347 */
1348static void mem_cgroup_may_update_nodemask(struct mem_cgroup *memcg)
1349{
1350	int nid;
1351	/*
1352	 * numainfo_events > 0 means there was at least NUMAINFO_EVENTS_TARGET
1353	 * pagein/pageout changes since the last update.
1354	 */
1355	if (!atomic_read(&memcg->numainfo_events))
1356		return;
1357	if (atomic_inc_return(&memcg->numainfo_updating) > 1)
1358		return;
1359
1360	/* make a nodemask where this memcg uses memory from */
1361	memcg->scan_nodes = node_states[N_MEMORY];
1362
1363	for_each_node_mask(nid, node_states[N_MEMORY]) {
1364
1365		if (!test_mem_cgroup_node_reclaimable(memcg, nid, false))
1366			node_clear(nid, memcg->scan_nodes);
1367	}
1368
1369	atomic_set(&memcg->numainfo_events, 0);
1370	atomic_set(&memcg->numainfo_updating, 0);
1371}
1372
1373/*
1374 * Selecting a node where we start reclaim from. Because what we need is just
1375 * reducing usage counter, start from anywhere is O,K. Considering
1376 * memory reclaim from current node, there are pros. and cons.
1377 *
1378 * Freeing memory from current node means freeing memory from a node which
1379 * we'll use or we've used. So, it may make LRU bad. And if several threads
1380 * hit limits, it will see a contention on a node. But freeing from remote
1381 * node means more costs for memory reclaim because of memory latency.
1382 *
1383 * Now, we use round-robin. Better algorithm is welcomed.
1384 */
1385int mem_cgroup_select_victim_node(struct mem_cgroup *memcg)
1386{
1387	int node;
1388
1389	mem_cgroup_may_update_nodemask(memcg);
1390	node = memcg->last_scanned_node;
1391
1392	node = next_node(node, memcg->scan_nodes);
1393	if (node == MAX_NUMNODES)
1394		node = first_node(memcg->scan_nodes);
1395	/*
1396	 * We call this when we hit limit, not when pages are added to LRU.
1397	 * No LRU may hold pages because all pages are UNEVICTABLE or
1398	 * memcg is too small and all pages are not on LRU. In that case,
1399	 * we use curret node.
1400	 */
1401	if (unlikely(node == MAX_NUMNODES))
1402		node = numa_node_id();
1403
1404	memcg->last_scanned_node = node;
1405	return node;
1406}
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1407#else
1408int mem_cgroup_select_victim_node(struct mem_cgroup *memcg)
1409{
1410	return 0;
1411}
 
 
 
 
 
1412#endif
1413
1414static int mem_cgroup_soft_reclaim(struct mem_cgroup *root_memcg,
1415				   struct zone *zone,
1416				   gfp_t gfp_mask,
1417				   unsigned long *total_scanned)
 
 
 
 
 
 
 
 
 
 
 
 
 
1418{
1419	struct mem_cgroup *victim = NULL;
1420	int total = 0;
1421	int loop = 0;
 
 
 
1422	unsigned long excess;
1423	unsigned long nr_scanned;
1424	struct mem_cgroup_reclaim_cookie reclaim = {
1425		.zone = zone,
1426		.priority = 0,
1427	};
1428
1429	excess = soft_limit_excess(root_memcg);
 
 
 
 
1430
1431	while (1) {
1432		victim = mem_cgroup_iter(root_memcg, victim, &reclaim);
1433		if (!victim) {
1434			loop++;
 
 
 
 
 
 
 
 
1435			if (loop >= 2) {
1436				/*
1437				 * If we have not been able to reclaim
1438				 * anything, it might because there are
1439				 * no reclaimable pages under this hierarchy
1440				 */
1441				if (!total)
 
1442					break;
 
1443				/*
1444				 * We want to do more targeted reclaim.
1445				 * excess >> 2 is not to excessive so as to
1446				 * reclaim too much, nor too less that we keep
1447				 * coming back to reclaim from this cgroup
1448				 */
1449				if (total >= (excess >> 2) ||
1450					(loop > MEM_CGROUP_MAX_RECLAIM_LOOPS))
 
1451					break;
 
1452			}
 
 
 
 
1453			continue;
1454		}
1455		total += mem_cgroup_shrink_node_zone(victim, gfp_mask, false,
1456						     zone, &nr_scanned);
1457		*total_scanned += nr_scanned;
1458		if (!soft_limit_excess(root_memcg))
1459			break;
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1460	}
1461	mem_cgroup_iter_break(root_memcg, victim);
1462	return total;
1463}
1464
1465#ifdef CONFIG_LOCKDEP
1466static struct lockdep_map memcg_oom_lock_dep_map = {
1467	.name = "memcg_oom_lock",
1468};
1469#endif
1470
1471static DEFINE_SPINLOCK(memcg_oom_lock);
1472
1473/*
1474 * Check OOM-Killer is already running under our hierarchy.
1475 * If someone is running, return false.
 
1476 */
1477static bool mem_cgroup_oom_trylock(struct mem_cgroup *memcg)
1478{
1479	struct mem_cgroup *iter, *failed = NULL;
 
1480
1481	spin_lock(&memcg_oom_lock);
1482
1483	for_each_mem_cgroup_tree(iter, memcg) {
1484		if (iter->oom_lock) {
1485			/*
1486			 * this subtree of our hierarchy is already locked
1487			 * so we cannot give a lock.
1488			 */
1489			failed = iter;
1490			mem_cgroup_iter_break(memcg, iter);
1491			break;
1492		} else
1493			iter->oom_lock = true;
1494	}
1495
1496	if (failed) {
1497		/*
1498		 * OK, we failed to lock the whole subtree so we have
1499		 * to clean up what we set up to the failing subtree
1500		 */
1501		for_each_mem_cgroup_tree(iter, memcg) {
1502			if (iter == failed) {
1503				mem_cgroup_iter_break(memcg, iter);
1504				break;
1505			}
1506			iter->oom_lock = false;
 
1507		}
1508	} else
1509		mutex_acquire(&memcg_oom_lock_dep_map, 0, 1, _RET_IP_);
1510
1511	spin_unlock(&memcg_oom_lock);
1512
1513	return !failed;
1514}
1515
1516static void mem_cgroup_oom_unlock(struct mem_cgroup *memcg)
 
 
 
1517{
1518	struct mem_cgroup *iter;
1519
1520	spin_lock(&memcg_oom_lock);
1521	mutex_release(&memcg_oom_lock_dep_map, 1, _RET_IP_);
1522	for_each_mem_cgroup_tree(iter, memcg)
1523		iter->oom_lock = false;
1524	spin_unlock(&memcg_oom_lock);
1525}
1526
1527static void mem_cgroup_mark_under_oom(struct mem_cgroup *memcg)
1528{
1529	struct mem_cgroup *iter;
1530
1531	spin_lock(&memcg_oom_lock);
1532	for_each_mem_cgroup_tree(iter, memcg)
1533		iter->under_oom++;
1534	spin_unlock(&memcg_oom_lock);
1535}
1536
1537static void mem_cgroup_unmark_under_oom(struct mem_cgroup *memcg)
1538{
1539	struct mem_cgroup *iter;
1540
1541	/*
1542	 * When a new child is created while the hierarchy is under oom,
1543	 * mem_cgroup_oom_lock() may not be called. Watch for underflow.
 
1544	 */
1545	spin_lock(&memcg_oom_lock);
1546	for_each_mem_cgroup_tree(iter, memcg)
1547		if (iter->under_oom > 0)
1548			iter->under_oom--;
1549	spin_unlock(&memcg_oom_lock);
1550}
1551
 
1552static DECLARE_WAIT_QUEUE_HEAD(memcg_oom_waitq);
1553
1554struct oom_wait_info {
1555	struct mem_cgroup *memcg;
1556	wait_queue_t	wait;
1557};
1558
1559static int memcg_oom_wake_function(wait_queue_t *wait,
1560	unsigned mode, int sync, void *arg)
1561{
1562	struct mem_cgroup *wake_memcg = (struct mem_cgroup *)arg;
1563	struct mem_cgroup *oom_wait_memcg;
1564	struct oom_wait_info *oom_wait_info;
1565
1566	oom_wait_info = container_of(wait, struct oom_wait_info, wait);
1567	oom_wait_memcg = oom_wait_info->memcg;
1568
1569	if (!mem_cgroup_is_descendant(wake_memcg, oom_wait_memcg) &&
1570	    !mem_cgroup_is_descendant(oom_wait_memcg, wake_memcg))
 
 
 
 
1571		return 0;
1572	return autoremove_wake_function(wait, mode, sync, arg);
1573}
1574
1575static void memcg_oom_recover(struct mem_cgroup *memcg)
1576{
1577	/*
1578	 * For the following lockless ->under_oom test, the only required
1579	 * guarantee is that it must see the state asserted by an OOM when
1580	 * this function is called as a result of userland actions
1581	 * triggered by the notification of the OOM.  This is trivially
1582	 * achieved by invoking mem_cgroup_mark_under_oom() before
1583	 * triggering notification.
1584	 */
1585	if (memcg && memcg->under_oom)
1586		__wake_up(&memcg_oom_waitq, TASK_NORMAL, 0, memcg);
1587}
1588
1589static void mem_cgroup_oom(struct mem_cgroup *memcg, gfp_t mask, int order)
1590{
1591	if (!current->memcg_may_oom)
1592		return;
1593	/*
1594	 * We are in the middle of the charge context here, so we
1595	 * don't want to block when potentially sitting on a callstack
1596	 * that holds all kinds of filesystem and mm locks.
1597	 *
1598	 * Also, the caller may handle a failed allocation gracefully
1599	 * (like optional page cache readahead) and so an OOM killer
1600	 * invocation might not even be necessary.
1601	 *
1602	 * That's why we don't do anything here except remember the
1603	 * OOM context and then deal with it at the end of the page
1604	 * fault when the stack is unwound, the locks are released,
1605	 * and when we know whether the fault was overall successful.
1606	 */
1607	css_get(&memcg->css);
1608	current->memcg_in_oom = memcg;
1609	current->memcg_oom_gfp_mask = mask;
1610	current->memcg_oom_order = order;
1611}
1612
1613/**
1614 * mem_cgroup_oom_synchronize - complete memcg OOM handling
1615 * @handle: actually kill/wait or just clean up the OOM state
1616 *
1617 * This has to be called at the end of a page fault if the memcg OOM
1618 * handler was enabled.
1619 *
1620 * Memcg supports userspace OOM handling where failed allocations must
1621 * sleep on a waitqueue until the userspace task resolves the
1622 * situation.  Sleeping directly in the charge context with all kinds
1623 * of locks held is not a good idea, instead we remember an OOM state
1624 * in the task and mem_cgroup_oom_synchronize() has to be called at
1625 * the end of the page fault to complete the OOM handling.
1626 *
1627 * Returns %true if an ongoing memcg OOM situation was detected and
1628 * completed, %false otherwise.
1629 */
1630bool mem_cgroup_oom_synchronize(bool handle)
1631{
1632	struct mem_cgroup *memcg = current->memcg_in_oom;
1633	struct oom_wait_info owait;
1634	bool locked;
1635
1636	/* OOM is global, do not handle */
1637	if (!memcg)
1638		return false;
1639
1640	if (!handle || oom_killer_disabled)
1641		goto cleanup;
1642
1643	owait.memcg = memcg;
1644	owait.wait.flags = 0;
1645	owait.wait.func = memcg_oom_wake_function;
1646	owait.wait.private = current;
1647	INIT_LIST_HEAD(&owait.wait.task_list);
 
 
1648
 
 
 
 
 
 
 
 
1649	prepare_to_wait(&memcg_oom_waitq, &owait.wait, TASK_KILLABLE);
1650	mem_cgroup_mark_under_oom(memcg);
1651
1652	locked = mem_cgroup_oom_trylock(memcg);
1653
1654	if (locked)
1655		mem_cgroup_oom_notify(memcg);
 
1656
1657	if (locked && !memcg->oom_kill_disable) {
1658		mem_cgroup_unmark_under_oom(memcg);
1659		finish_wait(&memcg_oom_waitq, &owait.wait);
1660		mem_cgroup_out_of_memory(memcg, current->memcg_oom_gfp_mask,
1661					 current->memcg_oom_order);
1662	} else {
1663		schedule();
1664		mem_cgroup_unmark_under_oom(memcg);
1665		finish_wait(&memcg_oom_waitq, &owait.wait);
1666	}
 
 
 
 
 
 
 
1667
1668	if (locked) {
1669		mem_cgroup_oom_unlock(memcg);
1670		/*
1671		 * There is no guarantee that an OOM-lock contender
1672		 * sees the wakeups triggered by the OOM kill
1673		 * uncharges.  Wake any sleepers explicitely.
1674		 */
1675		memcg_oom_recover(memcg);
1676	}
1677cleanup:
1678	current->memcg_in_oom = NULL;
1679	css_put(&memcg->css);
1680	return true;
1681}
1682
1683/**
1684 * lock_page_memcg - lock a page->mem_cgroup binding
1685 * @page: the page
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1686 *
1687 * This function protects unlocked LRU pages from being moved to
1688 * another cgroup and stabilizes their page->mem_cgroup binding.
 
1689 */
1690void lock_page_memcg(struct page *page)
 
 
1691{
1692	struct mem_cgroup *memcg;
1693	unsigned long flags;
 
 
1694
1695	/*
1696	 * The RCU lock is held throughout the transaction.  The fast
1697	 * path can get away without acquiring the memcg->move_lock
1698	 * because page moving starts with an RCU grace period.
1699	 */
1700	rcu_read_lock();
1701
1702	if (mem_cgroup_disabled())
1703		return;
1704again:
1705	memcg = page->mem_cgroup;
1706	if (unlikely(!memcg))
1707		return;
1708
1709	if (atomic_read(&memcg->moving_account) <= 0)
1710		return;
 
 
 
 
 
 
 
 
 
 
 
1711
1712	spin_lock_irqsave(&memcg->move_lock, flags);
1713	if (memcg != page->mem_cgroup) {
1714		spin_unlock_irqrestore(&memcg->move_lock, flags);
1715		goto again;
 
 
 
 
 
 
1716	}
1717
1718	/*
1719	 * When charge migration first begins, we can have locked and
1720	 * unlocked page stat updates happening concurrently.  Track
1721	 * the task who has the lock for unlock_page_memcg().
1722	 */
1723	memcg->move_lock_task = current;
1724	memcg->move_lock_flags = flags;
1725
 
 
 
 
1726	return;
1727}
1728EXPORT_SYMBOL(lock_page_memcg);
1729
1730/**
1731 * unlock_page_memcg - unlock a page->mem_cgroup binding
1732 * @page: the page
1733 */
1734void unlock_page_memcg(struct page *page)
1735{
1736	struct mem_cgroup *memcg = page->mem_cgroup;
1737
1738	if (memcg && memcg->move_lock_task == current) {
1739		unsigned long flags = memcg->move_lock_flags;
1740
1741		memcg->move_lock_task = NULL;
1742		memcg->move_lock_flags = 0;
1743
1744		spin_unlock_irqrestore(&memcg->move_lock, flags);
1745	}
1746
1747	rcu_read_unlock();
1748}
1749EXPORT_SYMBOL(unlock_page_memcg);
1750
1751/*
1752 * size of first charge trial. "32" comes from vmscan.c's magic value.
1753 * TODO: maybe necessary to use big numbers in big irons.
1754 */
1755#define CHARGE_BATCH	32U
1756struct memcg_stock_pcp {
1757	struct mem_cgroup *cached; /* this never be root cgroup */
1758	unsigned int nr_pages;
1759	struct work_struct work;
1760	unsigned long flags;
1761#define FLUSHING_CACHED_CHARGE	0
1762};
1763static DEFINE_PER_CPU(struct memcg_stock_pcp, memcg_stock);
1764static DEFINE_MUTEX(percpu_charge_mutex);
1765
1766/**
1767 * consume_stock: Try to consume stocked charge on this cpu.
1768 * @memcg: memcg to consume from.
1769 * @nr_pages: how many pages to charge.
1770 *
1771 * The charges will only happen if @memcg matches the current cpu's memcg
1772 * stock, and at least @nr_pages are available in that stock.  Failure to
1773 * service an allocation will refill the stock.
1774 *
1775 * returns true if successful, false otherwise.
1776 */
1777static bool consume_stock(struct mem_cgroup *memcg, unsigned int nr_pages)
1778{
1779	struct memcg_stock_pcp *stock;
1780	bool ret = false;
1781
1782	if (nr_pages > CHARGE_BATCH)
1783		return ret;
1784
1785	stock = &get_cpu_var(memcg_stock);
1786	if (memcg == stock->cached && stock->nr_pages >= nr_pages) {
1787		stock->nr_pages -= nr_pages;
1788		ret = true;
1789	}
1790	put_cpu_var(memcg_stock);
1791	return ret;
1792}
1793
1794/*
1795 * Returns stocks cached in percpu and reset cached information.
1796 */
1797static void drain_stock(struct memcg_stock_pcp *stock)
1798{
1799	struct mem_cgroup *old = stock->cached;
1800
1801	if (stock->nr_pages) {
1802		page_counter_uncharge(&old->memory, stock->nr_pages);
1803		if (do_memsw_account())
1804			page_counter_uncharge(&old->memsw, stock->nr_pages);
1805		css_put_many(&old->css, stock->nr_pages);
 
1806		stock->nr_pages = 0;
1807	}
1808	stock->cached = NULL;
1809}
1810
1811/*
1812 * This must be called under preempt disabled or must be called by
1813 * a thread which is pinned to local cpu.
1814 */
1815static void drain_local_stock(struct work_struct *dummy)
1816{
1817	struct memcg_stock_pcp *stock = this_cpu_ptr(&memcg_stock);
1818	drain_stock(stock);
1819	clear_bit(FLUSHING_CACHED_CHARGE, &stock->flags);
1820}
1821
1822/*
1823 * Cache charges(val) to local per_cpu area.
1824 * This will be consumed by consume_stock() function, later.
1825 */
1826static void refill_stock(struct mem_cgroup *memcg, unsigned int nr_pages)
1827{
1828	struct memcg_stock_pcp *stock = &get_cpu_var(memcg_stock);
1829
1830	if (stock->cached != memcg) { /* reset if necessary */
1831		drain_stock(stock);
1832		stock->cached = memcg;
1833	}
1834	stock->nr_pages += nr_pages;
1835	put_cpu_var(memcg_stock);
1836}
1837
1838/*
1839 * Drains all per-CPU charge caches for given root_memcg resp. subtree
1840 * of the hierarchy under it.
 
1841 */
1842static void drain_all_stock(struct mem_cgroup *root_memcg)
1843{
1844	int cpu, curcpu;
1845
1846	/* If someone's already draining, avoid adding running more workers. */
1847	if (!mutex_trylock(&percpu_charge_mutex))
1848		return;
1849	/* Notify other cpus that system-wide "drain" is running */
1850	get_online_cpus();
1851	curcpu = get_cpu();
1852	for_each_online_cpu(cpu) {
1853		struct memcg_stock_pcp *stock = &per_cpu(memcg_stock, cpu);
1854		struct mem_cgroup *memcg;
1855
1856		memcg = stock->cached;
1857		if (!memcg || !stock->nr_pages)
1858			continue;
1859		if (!mem_cgroup_is_descendant(memcg, root_memcg))
1860			continue;
1861		if (!test_and_set_bit(FLUSHING_CACHED_CHARGE, &stock->flags)) {
1862			if (cpu == curcpu)
1863				drain_local_stock(&stock->work);
1864			else
1865				schedule_work_on(cpu, &stock->work);
1866		}
1867	}
1868	put_cpu();
1869	put_online_cpus();
1870	mutex_unlock(&percpu_charge_mutex);
1871}
1872
1873static int memcg_cpu_hotplug_callback(struct notifier_block *nb,
1874					unsigned long action,
1875					void *hcpu)
1876{
1877	int cpu = (unsigned long)hcpu;
1878	struct memcg_stock_pcp *stock;
1879
1880	if (action == CPU_ONLINE)
1881		return NOTIFY_OK;
1882
1883	if (action != CPU_DEAD && action != CPU_DEAD_FROZEN)
1884		return NOTIFY_OK;
1885
1886	stock = &per_cpu(memcg_stock, cpu);
1887	drain_stock(stock);
1888	return NOTIFY_OK;
1889}
1890
1891static void reclaim_high(struct mem_cgroup *memcg,
1892			 unsigned int nr_pages,
1893			 gfp_t gfp_mask)
 
 
 
 
1894{
1895	do {
1896		if (page_counter_read(&memcg->memory) <= memcg->high)
1897			continue;
1898		mem_cgroup_events(memcg, MEMCG_HIGH, 1);
1899		try_to_free_mem_cgroup_pages(memcg, nr_pages, gfp_mask, true);
1900	} while ((memcg = parent_mem_cgroup(memcg)));
 
1901}
1902
1903static void high_work_func(struct work_struct *work)
 
1904{
1905	struct mem_cgroup *memcg;
1906
1907	memcg = container_of(work, struct mem_cgroup, high_work);
1908	reclaim_high(memcg, CHARGE_BATCH, GFP_KERNEL);
1909}
1910
1911/*
1912 * Scheduled by try_charge() to be executed from the userland return path
1913 * and reclaims memory over the high limit.
1914 */
1915void mem_cgroup_handle_over_high(void)
1916{
1917	unsigned int nr_pages = current->memcg_nr_pages_over_high;
1918	struct mem_cgroup *memcg;
 
 
 
1919
1920	if (likely(!nr_pages))
1921		return;
 
 
 
1922
1923	memcg = get_mem_cgroup_from_mm(current->mm);
1924	reclaim_high(memcg, nr_pages, GFP_KERNEL);
1925	css_put(&memcg->css);
1926	current->memcg_nr_pages_over_high = 0;
 
 
1927}
1928
1929static int try_charge(struct mem_cgroup *memcg, gfp_t gfp_mask,
1930		      unsigned int nr_pages)
1931{
1932	unsigned int batch = max(CHARGE_BATCH, nr_pages);
1933	int nr_retries = MEM_CGROUP_RECLAIM_RETRIES;
1934	struct mem_cgroup *mem_over_limit;
1935	struct page_counter *counter;
1936	unsigned long nr_reclaimed;
1937	bool may_swap = true;
1938	bool drained = false;
1939
1940	if (mem_cgroup_is_root(memcg))
1941		return 0;
1942retry:
1943	if (consume_stock(memcg, nr_pages))
1944		return 0;
 
 
1945
1946	if (!do_memsw_account() ||
1947	    page_counter_try_charge(&memcg->memsw, batch, &counter)) {
1948		if (page_counter_try_charge(&memcg->memory, batch, &counter))
1949			goto done_restock;
1950		if (do_memsw_account())
1951			page_counter_uncharge(&memcg->memsw, batch);
1952		mem_over_limit = mem_cgroup_from_counter(counter, memory);
1953	} else {
1954		mem_over_limit = mem_cgroup_from_counter(counter, memsw);
1955		may_swap = false;
1956	}
1957
1958	if (batch > nr_pages) {
1959		batch = nr_pages;
1960		goto retry;
1961	}
 
 
 
 
 
 
1962
1963	/*
1964	 * Unlike in global OOM situations, memcg is not in a physical
1965	 * memory shortage.  Allow dying and OOM-killed tasks to
1966	 * bypass the last charges so that they can exit quickly and
1967	 * free their memory.
1968	 */
1969	if (unlikely(test_thread_flag(TIF_MEMDIE) ||
1970		     fatal_signal_pending(current) ||
1971		     current->flags & PF_EXITING))
1972		goto force;
1973
1974	if (unlikely(task_in_memcg_oom(current)))
1975		goto nomem;
1976
1977	if (!gfpflags_allow_blocking(gfp_mask))
1978		goto nomem;
 
 
 
 
 
 
1979
1980	mem_cgroup_events(mem_over_limit, MEMCG_MAX, 1);
 
 
 
 
 
 
 
1981
1982	nr_reclaimed = try_to_free_mem_cgroup_pages(mem_over_limit, nr_pages,
1983						    gfp_mask, may_swap);
1984
1985	if (mem_cgroup_margin(mem_over_limit) >= nr_pages)
1986		goto retry;
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1987
1988	if (!drained) {
1989		drain_all_stock(mem_over_limit);
1990		drained = true;
1991		goto retry;
1992	}
1993
1994	if (gfp_mask & __GFP_NORETRY)
1995		goto nomem;
 
 
1996	/*
1997	 * Even though the limit is exceeded at this point, reclaim
1998	 * may have been able to free some pages.  Retry the charge
1999	 * before killing the task.
2000	 *
2001	 * Only for regular pages, though: huge pages are rather
2002	 * unlikely to succeed so close to the limit, and we fall back
2003	 * to regular pages anyway in case of failure.
2004	 */
2005	if (nr_reclaimed && nr_pages <= (1 << PAGE_ALLOC_COSTLY_ORDER))
2006		goto retry;
 
2007	/*
2008	 * At task move, charge accounts can be doubly counted. So, it's
2009	 * better to wait until the end of task_move if something is going on.
2010	 */
2011	if (mem_cgroup_wait_acct_move(mem_over_limit))
2012		goto retry;
 
 
 
 
 
 
 
2013
2014	if (nr_retries--)
2015		goto retry;
2016
2017	if (gfp_mask & __GFP_NOFAIL)
2018		goto force;
 
 
 
 
 
 
 
 
 
 
 
 
2019
2020	if (fatal_signal_pending(current))
2021		goto force;
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
2022
2023	mem_cgroup_events(mem_over_limit, MEMCG_OOM, 1);
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
2024
2025	mem_cgroup_oom(mem_over_limit, gfp_mask,
2026		       get_order(nr_pages * PAGE_SIZE));
2027nomem:
2028	if (!(gfp_mask & __GFP_NOFAIL))
2029		return -ENOMEM;
2030force:
2031	/*
2032	 * The allocation either can't fail or will lead to more memory
2033	 * being freed very soon.  Allow memory usage go over the limit
2034	 * temporarily by force charging it.
2035	 */
2036	page_counter_charge(&memcg->memory, nr_pages);
2037	if (do_memsw_account())
2038		page_counter_charge(&memcg->memsw, nr_pages);
2039	css_get_many(&memcg->css, nr_pages);
2040
2041	return 0;
 
 
 
 
2042
2043done_restock:
2044	css_get_many(&memcg->css, batch);
2045	if (batch > nr_pages)
2046		refill_stock(memcg, batch - nr_pages);
 
2047
2048	/*
2049	 * If the hierarchy is above the normal consumption range, schedule
2050	 * reclaim on returning to userland.  We can perform reclaim here
2051	 * if __GFP_RECLAIM but let's always punt for simplicity and so that
2052	 * GFP_KERNEL can consistently be used during reclaim.  @memcg is
2053	 * not recorded as it most likely matches current's and won't
2054	 * change in the meantime.  As high limit is checked again before
2055	 * reclaim, the cost of mismatch is negligible.
2056	 */
2057	do {
2058		if (page_counter_read(&memcg->memory) > memcg->high) {
2059			/* Don't bother a random interrupted task */
2060			if (in_interrupt()) {
2061				schedule_work(&memcg->high_work);
2062				break;
 
2063			}
2064			current->memcg_nr_pages_over_high += batch;
2065			set_notify_resume(current);
2066			break;
 
 
 
2067		}
2068	} while ((memcg = parent_mem_cgroup(memcg)));
2069
 
 
 
 
 
 
 
 
 
 
 
2070	return 0;
2071}
2072
2073static void cancel_charge(struct mem_cgroup *memcg, unsigned int nr_pages)
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
2074{
2075	if (mem_cgroup_is_root(memcg))
2076		return;
 
 
2077
2078	page_counter_uncharge(&memcg->memory, nr_pages);
2079	if (do_memsw_account())
2080		page_counter_uncharge(&memcg->memsw, nr_pages);
2081
2082	css_put_many(&memcg->css, nr_pages);
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
2083}
2084
2085static void lock_page_lru(struct page *page, int *isolated)
2086{
2087	struct zone *zone = page_zone(page);
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
2088
2089	spin_lock_irq(&zone->lru_lock);
2090	if (PageLRU(page)) {
2091		struct lruvec *lruvec;
2092
2093		lruvec = mem_cgroup_page_lruvec(page, zone);
2094		ClearPageLRU(page);
2095		del_page_from_lru_list(page, lruvec, page_lru(page));
2096		*isolated = 1;
2097	} else
2098		*isolated = 0;
2099}
2100
2101static void unlock_page_lru(struct page *page, int isolated)
 
 
 
 
 
 
 
 
2102{
2103	struct zone *zone = page_zone(page);
 
 
 
 
 
 
 
 
 
 
2104
2105	if (isolated) {
2106		struct lruvec *lruvec;
 
 
 
2107
2108		lruvec = mem_cgroup_page_lruvec(page, zone);
2109		VM_BUG_ON_PAGE(PageLRU(page), page);
2110		SetPageLRU(page);
2111		add_page_to_lru_list(page, lruvec, page_lru(page));
 
 
 
 
2112	}
2113	spin_unlock_irq(&zone->lru_lock);
 
2114}
 
2115
2116static void commit_charge(struct page *page, struct mem_cgroup *memcg,
2117			  bool lrucare)
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
2118{
2119	int isolated;
 
2120
2121	VM_BUG_ON_PAGE(page->mem_cgroup, page);
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
2122
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
2123	/*
2124	 * In some cases, SwapCache and FUSE(splice_buf->radixtree), the page
2125	 * may already be on some other mem_cgroup's LRU.  Take care of it.
 
 
 
2126	 */
2127	if (lrucare)
2128		lock_page_lru(page, &isolated);
2129
 
2130	/*
2131	 * Nobody should be changing or seriously looking at
2132	 * page->mem_cgroup at this point:
2133	 *
2134	 * - the page is uncharged
2135	 *
2136	 * - the page is off-LRU
2137	 *
2138	 * - an anonymous fault has exclusive page access, except for
2139	 *   a locked page table
2140	 *
2141	 * - a page cache insertion, a swapin fault, or a migration
2142	 *   have the page locked
2143	 */
2144	page->mem_cgroup = memcg;
 
 
 
 
2145
2146	if (lrucare)
2147		unlock_page_lru(page, isolated);
2148}
2149
2150#ifndef CONFIG_SLOB
2151static int memcg_alloc_cache_id(void)
 
 
2152{
2153	int id, size;
2154	int err;
 
 
 
 
 
 
 
 
 
 
 
 
 
 
2155
2156	id = ida_simple_get(&memcg_cache_ida,
2157			    0, MEMCG_CACHES_MAX_SIZE, GFP_KERNEL);
2158	if (id < 0)
2159		return id;
2160
2161	if (id < memcg_nr_cache_ids)
2162		return id;
 
 
2163
2164	/*
2165	 * There's no space for the new id in memcg_caches arrays,
2166	 * so we have to grow them.
2167	 */
2168	down_write(&memcg_cache_ids_sem);
2169
2170	size = 2 * (id + 1);
2171	if (size < MEMCG_CACHES_MIN_SIZE)
2172		size = MEMCG_CACHES_MIN_SIZE;
2173	else if (size > MEMCG_CACHES_MAX_SIZE)
2174		size = MEMCG_CACHES_MAX_SIZE;
2175
2176	err = memcg_update_all_caches(size);
2177	if (!err)
2178		err = memcg_update_all_list_lrus(size);
2179	if (!err)
2180		memcg_nr_cache_ids = size;
 
 
 
 
2181
2182	up_write(&memcg_cache_ids_sem);
 
 
 
 
 
 
 
 
 
 
 
 
 
2183
2184	if (err) {
2185		ida_simple_remove(&memcg_cache_ida, id);
2186		return err;
 
 
 
 
 
2187	}
2188	return id;
 
 
 
 
 
 
 
 
 
2189}
2190
2191static void memcg_free_cache_id(int id)
 
2192{
2193	ida_simple_remove(&memcg_cache_ida, id);
 
 
 
 
 
 
 
 
 
 
 
 
 
 
2194}
2195
2196struct memcg_kmem_cache_create_work {
2197	struct mem_cgroup *memcg;
2198	struct kmem_cache *cachep;
2199	struct work_struct work;
2200};
 
 
 
 
 
 
 
 
 
 
 
 
 
 
2201
2202static void memcg_kmem_cache_create_func(struct work_struct *w)
 
2203{
2204	struct memcg_kmem_cache_create_work *cw =
2205		container_of(w, struct memcg_kmem_cache_create_work, work);
2206	struct mem_cgroup *memcg = cw->memcg;
2207	struct kmem_cache *cachep = cw->cachep;
 
 
 
 
 
 
 
 
 
 
 
2208
2209	memcg_create_kmem_cache(memcg, cachep);
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
2210
2211	css_put(&memcg->css);
2212	kfree(cw);
2213}
2214
2215/*
2216 * Enqueue the creation of a per-memcg kmem_cache.
2217 */
2218static void __memcg_schedule_kmem_cache_create(struct mem_cgroup *memcg,
2219					       struct kmem_cache *cachep)
 
 
 
 
2220{
2221	struct memcg_kmem_cache_create_work *cw;
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
2222
2223	cw = kmalloc(sizeof(*cw), GFP_NOWAIT);
2224	if (!cw)
 
 
 
2225		return;
 
 
 
2226
2227	css_get(&memcg->css);
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
2228
2229	cw->memcg = memcg;
2230	cw->cachep = cachep;
2231	INIT_WORK(&cw->work, memcg_kmem_cache_create_func);
 
 
2232
2233	schedule_work(&cw->work);
 
 
 
 
 
 
2234}
2235
2236static void memcg_schedule_kmem_cache_create(struct mem_cgroup *memcg,
2237					     struct kmem_cache *cachep)
 
2238{
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
2239	/*
2240	 * We need to stop accounting when we kmalloc, because if the
2241	 * corresponding kmalloc cache is not yet created, the first allocation
2242	 * in __memcg_schedule_kmem_cache_create will recurse.
2243	 *
2244	 * However, it is better to enclose the whole function. Depending on
2245	 * the debugging options enabled, INIT_WORK(), for instance, can
2246	 * trigger an allocation. This too, will make us recurse. Because at
2247	 * this point we can't allow ourselves back into memcg_kmem_get_cache,
2248	 * the safest choice is to do it like this, wrapping the whole function.
2249	 */
2250	current->memcg_kmem_skip_account = 1;
2251	__memcg_schedule_kmem_cache_create(memcg, cachep);
2252	current->memcg_kmem_skip_account = 0;
 
 
 
 
 
 
 
 
 
 
 
2253}
2254
2255/*
2256 * Return the kmem_cache we're supposed to use for a slab allocation.
2257 * We try to use the current memcg's version of the cache.
2258 *
2259 * If the cache does not exist yet, if we are the first user of it,
2260 * we either create it immediately, if possible, or create it asynchronously
2261 * in a workqueue.
2262 * In the latter case, we will let the current allocation go through with
2263 * the original cache.
2264 *
2265 * Can't be called in interrupt context or from kernel threads.
2266 * This function needs to be called with rcu_read_lock() held.
2267 */
2268struct kmem_cache *__memcg_kmem_get_cache(struct kmem_cache *cachep, gfp_t gfp)
 
2269{
2270	struct mem_cgroup *memcg;
2271	struct kmem_cache *memcg_cachep;
2272	int kmemcg_id;
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
2273
2274	VM_BUG_ON(!is_root_cache(cachep));
2275
2276	if (cachep->flags & SLAB_ACCOUNT)
2277		gfp |= __GFP_ACCOUNT;
2278
2279	if (!(gfp & __GFP_ACCOUNT))
2280		return cachep;
2281
2282	if (current->memcg_kmem_skip_account)
2283		return cachep;
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
2284
2285	memcg = get_mem_cgroup_from_mm(current->mm);
2286	kmemcg_id = READ_ONCE(memcg->kmemcg_id);
2287	if (kmemcg_id < 0)
2288		goto out;
2289
2290	memcg_cachep = cache_from_memcg_idx(cachep, kmemcg_id);
2291	if (likely(memcg_cachep))
2292		return memcg_cachep;
 
 
 
 
2293
 
2294	/*
2295	 * If we are in a safe context (can wait, and not in interrupt
2296	 * context), we could be be predictable and return right away.
2297	 * This would guarantee that the allocation being performed
2298	 * already belongs in the new cache.
2299	 *
2300	 * However, there are some clashes that can arrive from locking.
2301	 * For instance, because we acquire the slab_mutex while doing
2302	 * memcg_create_kmem_cache, this means no further allocation
2303	 * could happen with the slab_mutex held. So it's better to
2304	 * defer everything.
2305	 */
2306	memcg_schedule_kmem_cache_create(memcg, cachep);
2307out:
2308	css_put(&memcg->css);
2309	return cachep;
 
 
 
 
 
 
 
 
 
2310}
2311
2312void __memcg_kmem_put_cache(struct kmem_cache *cachep)
2313{
2314	if (!is_root_cache(cachep))
2315		css_put(&cachep->memcg_params.memcg->css);
 
 
 
 
2316}
2317
2318int __memcg_kmem_charge_memcg(struct page *page, gfp_t gfp, int order,
2319			      struct mem_cgroup *memcg)
2320{
2321	unsigned int nr_pages = 1 << order;
2322	struct page_counter *counter;
2323	int ret;
 
2324
2325	ret = try_charge(memcg, gfp, nr_pages);
2326	if (ret)
2327		return ret;
 
 
 
 
2328
2329	if (!cgroup_subsys_on_dfl(memory_cgrp_subsys) &&
2330	    !page_counter_try_charge(&memcg->kmem, nr_pages, &counter)) {
2331		cancel_charge(memcg, nr_pages);
2332		return -ENOMEM;
 
 
 
 
2333	}
2334
2335	page->mem_cgroup = memcg;
2336
2337	return 0;
2338}
2339
2340int __memcg_kmem_charge(struct page *page, gfp_t gfp, int order)
2341{
2342	struct mem_cgroup *memcg;
2343	int ret = 0;
2344
2345	memcg = get_mem_cgroup_from_mm(current->mm);
2346	if (!mem_cgroup_is_root(memcg))
2347		ret = __memcg_kmem_charge_memcg(page, gfp, order, memcg);
2348	css_put(&memcg->css);
2349	return ret;
2350}
2351
2352void __memcg_kmem_uncharge(struct page *page, int order)
2353{
2354	struct mem_cgroup *memcg = page->mem_cgroup;
2355	unsigned int nr_pages = 1 << order;
2356
2357	if (!memcg)
2358		return;
 
 
 
 
 
 
 
 
 
 
 
 
 
 
2359
2360	VM_BUG_ON_PAGE(mem_cgroup_is_root(memcg), page);
 
 
 
 
 
 
 
 
 
2361
2362	if (!cgroup_subsys_on_dfl(memory_cgrp_subsys))
2363		page_counter_uncharge(&memcg->kmem, nr_pages);
2364
2365	page_counter_uncharge(&memcg->memory, nr_pages);
2366	if (do_memsw_account())
2367		page_counter_uncharge(&memcg->memsw, nr_pages);
2368
2369	page->mem_cgroup = NULL;
2370	css_put_many(&memcg->css, nr_pages);
 
 
 
 
2371}
2372#endif /* !CONFIG_SLOB */
2373
2374#ifdef CONFIG_TRANSPARENT_HUGEPAGE
2375
 
2376/*
2377 * Because tail pages are not marked as "used", set it. We're under
2378 * zone->lru_lock and migration entries setup in all page mappings.
2379 */
2380void mem_cgroup_split_huge_fixup(struct page *head)
2381{
2382	int i;
 
2383
2384	if (mem_cgroup_disabled())
2385		return;
2386
2387	for (i = 1; i < HPAGE_PMD_NR; i++)
2388		head[i].mem_cgroup = head->mem_cgroup;
2389
2390	__this_cpu_sub(head->mem_cgroup->stat->count[MEM_CGROUP_STAT_RSS_HUGE],
2391		       HPAGE_PMD_NR);
2392}
2393#endif /* CONFIG_TRANSPARENT_HUGEPAGE */
2394
2395#ifdef CONFIG_MEMCG_SWAP
2396static void mem_cgroup_swap_statistics(struct mem_cgroup *memcg,
2397					 bool charge)
2398{
2399	int val = (charge) ? 1 : -1;
2400	this_cpu_add(memcg->stat->count[MEM_CGROUP_STAT_SWAP], val);
2401}
2402
2403/**
2404 * mem_cgroup_move_swap_account - move swap charge and swap_cgroup's record.
2405 * @entry: swap entry to be moved
2406 * @from:  mem_cgroup which the entry is moved from
2407 * @to:  mem_cgroup which the entry is moved to
 
2408 *
2409 * It succeeds only when the swap_cgroup's record for this entry is the same
2410 * as the mem_cgroup's id of @from.
2411 *
2412 * Returns 0 on success, -EINVAL on failure.
2413 *
2414 * The caller must have charged to @to, IOW, called page_counter_charge() about
2415 * both res and memsw, and called css_get().
2416 */
2417static int mem_cgroup_move_swap_account(swp_entry_t entry,
2418				struct mem_cgroup *from, struct mem_cgroup *to)
2419{
2420	unsigned short old_id, new_id;
2421
2422	old_id = mem_cgroup_id(from);
2423	new_id = mem_cgroup_id(to);
2424
2425	if (swap_cgroup_cmpxchg(entry, old_id, new_id) == old_id) {
2426		mem_cgroup_swap_statistics(from, false);
2427		mem_cgroup_swap_statistics(to, true);
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
2428		return 0;
2429	}
2430	return -EINVAL;
2431}
2432#else
2433static inline int mem_cgroup_move_swap_account(swp_entry_t entry,
2434				struct mem_cgroup *from, struct mem_cgroup *to)
2435{
2436	return -EINVAL;
2437}
2438#endif
2439
2440static DEFINE_MUTEX(memcg_limit_mutex);
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
2441
2442static int mem_cgroup_resize_limit(struct mem_cgroup *memcg,
2443				   unsigned long limit)
2444{
2445	unsigned long curusage;
2446	unsigned long oldusage;
2447	bool enlarge = false;
2448	int retry_count;
2449	int ret;
 
 
 
 
2450
2451	/*
2452	 * For keeping hierarchical_reclaim simple, how long we should retry
2453	 * is depends on callers. We set our retry-count to be function
2454	 * of # of children which we should visit in this loop.
2455	 */
2456	retry_count = MEM_CGROUP_RECLAIM_RETRIES *
2457		      mem_cgroup_count_children(memcg);
2458
2459	oldusage = page_counter_read(&memcg->memory);
2460
2461	do {
 
2462		if (signal_pending(current)) {
2463			ret = -EINTR;
2464			break;
2465		}
2466
2467		mutex_lock(&memcg_limit_mutex);
2468		if (limit > memcg->memsw.limit) {
2469			mutex_unlock(&memcg_limit_mutex);
 
 
 
 
2470			ret = -EINVAL;
 
2471			break;
2472		}
2473		if (limit > memcg->memory.limit)
2474			enlarge = true;
2475		ret = page_counter_limit(&memcg->memory, limit);
2476		mutex_unlock(&memcg_limit_mutex);
 
 
 
 
 
 
 
 
 
2477
2478		if (!ret)
2479			break;
2480
2481		try_to_free_mem_cgroup_pages(memcg, 1, GFP_KERNEL, true);
2482
2483		curusage = page_counter_read(&memcg->memory);
 
2484		/* Usage is reduced ? */
2485		if (curusage >= oldusage)
2486			retry_count--;
2487		else
2488			oldusage = curusage;
2489	} while (retry_count);
2490
2491	if (!ret && enlarge)
2492		memcg_oom_recover(memcg);
2493
2494	return ret;
2495}
2496
2497static int mem_cgroup_resize_memsw_limit(struct mem_cgroup *memcg,
2498					 unsigned long limit)
2499{
2500	unsigned long curusage;
2501	unsigned long oldusage;
2502	bool enlarge = false;
2503	int retry_count;
2504	int ret;
 
 
 
2505
2506	/* see mem_cgroup_resize_res_limit */
2507	retry_count = MEM_CGROUP_RECLAIM_RETRIES *
2508		      mem_cgroup_count_children(memcg);
2509
2510	oldusage = page_counter_read(&memcg->memsw);
2511
2512	do {
2513		if (signal_pending(current)) {
2514			ret = -EINTR;
2515			break;
2516		}
2517
2518		mutex_lock(&memcg_limit_mutex);
2519		if (limit < memcg->memory.limit) {
2520			mutex_unlock(&memcg_limit_mutex);
 
 
 
 
2521			ret = -EINVAL;
 
2522			break;
2523		}
2524		if (limit > memcg->memsw.limit)
2525			enlarge = true;
2526		ret = page_counter_limit(&memcg->memsw, limit);
2527		mutex_unlock(&memcg_limit_mutex);
 
 
 
 
 
 
 
2528
2529		if (!ret)
2530			break;
2531
2532		try_to_free_mem_cgroup_pages(memcg, 1, GFP_KERNEL, false);
2533
2534		curusage = page_counter_read(&memcg->memsw);
 
 
2535		/* Usage is reduced ? */
2536		if (curusage >= oldusage)
2537			retry_count--;
2538		else
2539			oldusage = curusage;
2540	} while (retry_count);
2541
2542	if (!ret && enlarge)
2543		memcg_oom_recover(memcg);
2544
2545	return ret;
2546}
2547
2548unsigned long mem_cgroup_soft_limit_reclaim(struct zone *zone, int order,
2549					    gfp_t gfp_mask,
2550					    unsigned long *total_scanned)
2551{
2552	unsigned long nr_reclaimed = 0;
2553	struct mem_cgroup_per_zone *mz, *next_mz = NULL;
2554	unsigned long reclaimed;
2555	int loop = 0;
2556	struct mem_cgroup_tree_per_zone *mctz;
2557	unsigned long excess;
2558	unsigned long nr_scanned;
2559
2560	if (order > 0)
2561		return 0;
2562
2563	mctz = soft_limit_tree_node_zone(zone_to_nid(zone), zone_idx(zone));
2564	/*
2565	 * This loop can run a while, specially if mem_cgroup's continuously
2566	 * keep exceeding their soft limit and putting the system under
2567	 * pressure
2568	 */
2569	do {
2570		if (next_mz)
2571			mz = next_mz;
2572		else
2573			mz = mem_cgroup_largest_soft_limit_node(mctz);
2574		if (!mz)
2575			break;
2576
2577		nr_scanned = 0;
2578		reclaimed = mem_cgroup_soft_reclaim(mz->memcg, zone,
2579						    gfp_mask, &nr_scanned);
 
 
2580		nr_reclaimed += reclaimed;
2581		*total_scanned += nr_scanned;
2582		spin_lock_irq(&mctz->lock);
2583		__mem_cgroup_remove_exceeded(mz, mctz);
2584
2585		/*
2586		 * If we failed to reclaim anything from this memory cgroup
2587		 * it is time to move on to the next cgroup
2588		 */
2589		next_mz = NULL;
2590		if (!reclaimed)
2591			next_mz = __mem_cgroup_largest_soft_limit_node(mctz);
2592
2593		excess = soft_limit_excess(mz->memcg);
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
2594		/*
2595		 * One school of thought says that we should not add
2596		 * back the node to the tree if reclaim returns 0.
2597		 * But our reclaim could return 0, simply because due
2598		 * to priority we are exposing a smaller subset of
2599		 * memory to reclaim from. Consider this as a longer
2600		 * term TODO.
2601		 */
2602		/* If excess == 0, no tree ops */
2603		__mem_cgroup_insert_exceeded(mz, mctz, excess);
2604		spin_unlock_irq(&mctz->lock);
2605		css_put(&mz->memcg->css);
2606		loop++;
2607		/*
2608		 * Could not reclaim anything and there are no more
2609		 * mem cgroups to try or we seem to be looping without
2610		 * reclaiming anything.
2611		 */
2612		if (!nr_reclaimed &&
2613			(next_mz == NULL ||
2614			loop > MEM_CGROUP_MAX_SOFT_LIMIT_RECLAIM_LOOPS))
2615			break;
2616	} while (!nr_reclaimed);
2617	if (next_mz)
2618		css_put(&next_mz->memcg->css);
2619	return nr_reclaimed;
2620}
2621
2622/*
2623 * Test whether @memcg has children, dead or alive.  Note that this
2624 * function doesn't care whether @memcg has use_hierarchy enabled and
2625 * returns %true if there are child csses according to the cgroup
2626 * hierarchy.  Testing use_hierarchy is the caller's responsiblity.
2627 */
2628static inline bool memcg_has_children(struct mem_cgroup *memcg)
 
2629{
2630	bool ret;
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
2631
2632	rcu_read_lock();
2633	ret = css_next_child(NULL, &memcg->css);
2634	rcu_read_unlock();
2635	return ret;
2636}
2637
2638/*
2639 * Reclaims as many pages from the given memcg as possible and moves
2640 * the rest to the parent.
2641 *
2642 * Caller is responsible for holding css reference for memcg.
2643 */
2644static int mem_cgroup_force_empty(struct mem_cgroup *memcg)
2645{
 
 
2646	int nr_retries = MEM_CGROUP_RECLAIM_RETRIES;
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
2647
 
 
 
 
 
 
2648	/* we call try-to-free pages for make this cgroup empty */
2649	lru_add_drain_all();
2650	/* try to free all pages in this cgroup */
2651	while (nr_retries && page_counter_read(&memcg->memory)) {
 
2652		int progress;
2653
2654		if (signal_pending(current))
2655			return -EINTR;
2656
2657		progress = try_to_free_mem_cgroup_pages(memcg, 1,
2658							GFP_KERNEL, true);
 
2659		if (!progress) {
2660			nr_retries--;
2661			/* maybe some writeback is necessary */
2662			congestion_wait(BLK_RW_ASYNC, HZ/10);
2663		}
2664
2665	}
2666
2667	return 0;
 
2668}
2669
2670static ssize_t mem_cgroup_force_empty_write(struct kernfs_open_file *of,
2671					    char *buf, size_t nbytes,
2672					    loff_t off)
2673{
2674	struct mem_cgroup *memcg = mem_cgroup_from_css(of_css(of));
 
2675
2676	if (mem_cgroup_is_root(memcg))
2677		return -EINVAL;
2678	return mem_cgroup_force_empty(memcg) ?: nbytes;
2679}
2680
2681static u64 mem_cgroup_hierarchy_read(struct cgroup_subsys_state *css,
2682				     struct cftype *cft)
2683{
2684	return mem_cgroup_from_css(css)->use_hierarchy;
2685}
2686
2687static int mem_cgroup_hierarchy_write(struct cgroup_subsys_state *css,
2688				      struct cftype *cft, u64 val)
2689{
2690	int retval = 0;
2691	struct mem_cgroup *memcg = mem_cgroup_from_css(css);
2692	struct mem_cgroup *parent_memcg = mem_cgroup_from_css(memcg->css.parent);
 
2693
2694	if (memcg->use_hierarchy == val)
2695		return 0;
2696
 
2697	/*
2698	 * If parent's use_hierarchy is set, we can't make any modifications
2699	 * in the child subtrees. If it is unset, then the change can
2700	 * occur, provided the current cgroup has no children.
2701	 *
2702	 * For the root cgroup, parent_mem is NULL, we allow value to be
2703	 * set if there are no children.
2704	 */
2705	if ((!parent_memcg || !parent_memcg->use_hierarchy) &&
2706				(val == 1 || val == 0)) {
2707		if (!memcg_has_children(memcg))
2708			memcg->use_hierarchy = val;
2709		else
2710			retval = -EBUSY;
2711	} else
2712		retval = -EINVAL;
 
2713
2714	return retval;
2715}
2716
2717static void tree_stat(struct mem_cgroup *memcg, unsigned long *stat)
 
 
2718{
2719	struct mem_cgroup *iter;
2720	int i;
2721
2722	memset(stat, 0, sizeof(*stat) * MEMCG_NR_STAT);
 
 
2723
2724	for_each_mem_cgroup_tree(iter, memcg) {
2725		for (i = 0; i < MEMCG_NR_STAT; i++)
2726			stat[i] += mem_cgroup_read_stat(iter, i);
2727	}
2728}
2729
2730static void tree_events(struct mem_cgroup *memcg, unsigned long *events)
2731{
2732	struct mem_cgroup *iter;
2733	int i;
2734
2735	memset(events, 0, sizeof(*events) * MEMCG_NR_EVENTS);
2736
2737	for_each_mem_cgroup_tree(iter, memcg) {
2738		for (i = 0; i < MEMCG_NR_EVENTS; i++)
2739			events[i] += mem_cgroup_read_events(iter, i);
2740	}
2741}
2742
2743static unsigned long mem_cgroup_usage(struct mem_cgroup *memcg, bool swap)
2744{
2745	unsigned long val = 0;
2746
2747	if (mem_cgroup_is_root(memcg)) {
2748		struct mem_cgroup *iter;
2749
2750		for_each_mem_cgroup_tree(iter, memcg) {
2751			val += mem_cgroup_read_stat(iter,
2752					MEM_CGROUP_STAT_CACHE);
2753			val += mem_cgroup_read_stat(iter,
2754					MEM_CGROUP_STAT_RSS);
2755			if (swap)
2756				val += mem_cgroup_read_stat(iter,
2757						MEM_CGROUP_STAT_SWAP);
2758		}
2759	} else {
2760		if (!swap)
2761			val = page_counter_read(&memcg->memory);
2762		else
2763			val = page_counter_read(&memcg->memsw);
2764	}
2765	return val;
2766}
2767
2768enum {
2769	RES_USAGE,
2770	RES_LIMIT,
2771	RES_MAX_USAGE,
2772	RES_FAILCNT,
2773	RES_SOFT_LIMIT,
2774};
2775
2776static u64 mem_cgroup_read_u64(struct cgroup_subsys_state *css,
2777			       struct cftype *cft)
2778{
2779	struct mem_cgroup *memcg = mem_cgroup_from_css(css);
2780	struct page_counter *counter;
 
2781
2782	switch (MEMFILE_TYPE(cft->private)) {
 
 
2783	case _MEM:
2784		counter = &memcg->memory;
 
 
 
2785		break;
2786	case _MEMSWAP:
2787		counter = &memcg->memsw;
2788		break;
2789	case _KMEM:
2790		counter = &memcg->kmem;
2791		break;
2792	case _TCP:
2793		counter = &memcg->tcpmem;
2794		break;
2795	default:
2796		BUG();
 
2797	}
2798
2799	switch (MEMFILE_ATTR(cft->private)) {
2800	case RES_USAGE:
2801		if (counter == &memcg->memory)
2802			return (u64)mem_cgroup_usage(memcg, false) * PAGE_SIZE;
2803		if (counter == &memcg->memsw)
2804			return (u64)mem_cgroup_usage(memcg, true) * PAGE_SIZE;
2805		return (u64)page_counter_read(counter) * PAGE_SIZE;
2806	case RES_LIMIT:
2807		return (u64)counter->limit * PAGE_SIZE;
2808	case RES_MAX_USAGE:
2809		return (u64)counter->watermark * PAGE_SIZE;
2810	case RES_FAILCNT:
2811		return counter->failcnt;
2812	case RES_SOFT_LIMIT:
2813		return (u64)memcg->soft_limit * PAGE_SIZE;
2814	default:
2815		BUG();
2816	}
2817}
2818
2819#ifndef CONFIG_SLOB
2820static int memcg_online_kmem(struct mem_cgroup *memcg)
2821{
2822	int memcg_id;
2823
2824	if (cgroup_memory_nokmem)
2825		return 0;
2826
2827	BUG_ON(memcg->kmemcg_id >= 0);
2828	BUG_ON(memcg->kmem_state);
2829
2830	memcg_id = memcg_alloc_cache_id();
2831	if (memcg_id < 0)
2832		return memcg_id;
2833
2834	static_branch_inc(&memcg_kmem_enabled_key);
2835	/*
2836	 * A memory cgroup is considered kmem-online as soon as it gets
2837	 * kmemcg_id. Setting the id after enabling static branching will
2838	 * guarantee no one starts accounting before all call sites are
2839	 * patched.
2840	 */
2841	memcg->kmemcg_id = memcg_id;
2842	memcg->kmem_state = KMEM_ONLINE;
2843
2844	return 0;
2845}
2846
2847static void memcg_offline_kmem(struct mem_cgroup *memcg)
2848{
2849	struct cgroup_subsys_state *css;
2850	struct mem_cgroup *parent, *child;
2851	int kmemcg_id;
2852
2853	if (memcg->kmem_state != KMEM_ONLINE)
2854		return;
2855	/*
2856	 * Clear the online state before clearing memcg_caches array
2857	 * entries. The slab_mutex in memcg_deactivate_kmem_caches()
2858	 * guarantees that no cache will be created for this cgroup
2859	 * after we are done (see memcg_create_kmem_cache()).
2860	 */
2861	memcg->kmem_state = KMEM_ALLOCATED;
2862
2863	memcg_deactivate_kmem_caches(memcg);
2864
2865	kmemcg_id = memcg->kmemcg_id;
2866	BUG_ON(kmemcg_id < 0);
2867
2868	parent = parent_mem_cgroup(memcg);
2869	if (!parent)
2870		parent = root_mem_cgroup;
2871
2872	/*
2873	 * Change kmemcg_id of this cgroup and all its descendants to the
2874	 * parent's id, and then move all entries from this cgroup's list_lrus
2875	 * to ones of the parent. After we have finished, all list_lrus
2876	 * corresponding to this cgroup are guaranteed to remain empty. The
2877	 * ordering is imposed by list_lru_node->lock taken by
2878	 * memcg_drain_all_list_lrus().
2879	 */
2880	css_for_each_descendant_pre(css, &memcg->css) {
2881		child = mem_cgroup_from_css(css);
2882		BUG_ON(child->kmemcg_id != kmemcg_id);
2883		child->kmemcg_id = parent->kmemcg_id;
2884		if (!memcg->use_hierarchy)
2885			break;
2886	}
2887	memcg_drain_all_list_lrus(kmemcg_id, parent->kmemcg_id);
2888
2889	memcg_free_cache_id(kmemcg_id);
2890}
2891
2892static void memcg_free_kmem(struct mem_cgroup *memcg)
2893{
2894	/* css_alloc() failed, offlining didn't happen */
2895	if (unlikely(memcg->kmem_state == KMEM_ONLINE))
2896		memcg_offline_kmem(memcg);
2897
2898	if (memcg->kmem_state == KMEM_ALLOCATED) {
2899		memcg_destroy_kmem_caches(memcg);
2900		static_branch_dec(&memcg_kmem_enabled_key);
2901		WARN_ON(page_counter_read(&memcg->kmem));
2902	}
2903}
2904#else
2905static int memcg_online_kmem(struct mem_cgroup *memcg)
2906{
2907	return 0;
2908}
2909static void memcg_offline_kmem(struct mem_cgroup *memcg)
2910{
2911}
2912static void memcg_free_kmem(struct mem_cgroup *memcg)
2913{
2914}
2915#endif /* !CONFIG_SLOB */
2916
2917static int memcg_update_kmem_limit(struct mem_cgroup *memcg,
2918				   unsigned long limit)
2919{
2920	int ret;
2921
2922	mutex_lock(&memcg_limit_mutex);
2923	ret = page_counter_limit(&memcg->kmem, limit);
2924	mutex_unlock(&memcg_limit_mutex);
2925	return ret;
2926}
2927
2928static int memcg_update_tcp_limit(struct mem_cgroup *memcg, unsigned long limit)
2929{
2930	int ret;
2931
2932	mutex_lock(&memcg_limit_mutex);
2933
2934	ret = page_counter_limit(&memcg->tcpmem, limit);
2935	if (ret)
2936		goto out;
2937
2938	if (!memcg->tcpmem_active) {
2939		/*
2940		 * The active flag needs to be written after the static_key
2941		 * update. This is what guarantees that the socket activation
2942		 * function is the last one to run. See sock_update_memcg() for
2943		 * details, and note that we don't mark any socket as belonging
2944		 * to this memcg until that flag is up.
2945		 *
2946		 * We need to do this, because static_keys will span multiple
2947		 * sites, but we can't control their order. If we mark a socket
2948		 * as accounted, but the accounting functions are not patched in
2949		 * yet, we'll lose accounting.
2950		 *
2951		 * We never race with the readers in sock_update_memcg(),
2952		 * because when this value change, the code to process it is not
2953		 * patched in yet.
2954		 */
2955		static_branch_inc(&memcg_sockets_enabled_key);
2956		memcg->tcpmem_active = true;
2957	}
2958out:
2959	mutex_unlock(&memcg_limit_mutex);
2960	return ret;
2961}
2962
2963/*
2964 * The user of this function is...
2965 * RES_LIMIT.
2966 */
2967static ssize_t mem_cgroup_write(struct kernfs_open_file *of,
2968				char *buf, size_t nbytes, loff_t off)
2969{
2970	struct mem_cgroup *memcg = mem_cgroup_from_css(of_css(of));
2971	unsigned long nr_pages;
 
2972	int ret;
2973
2974	buf = strstrip(buf);
2975	ret = page_counter_memparse(buf, "-1", &nr_pages);
2976	if (ret)
2977		return ret;
2978
2979	switch (MEMFILE_ATTR(of_cft(of)->private)) {
2980	case RES_LIMIT:
2981		if (mem_cgroup_is_root(memcg)) { /* Can't set limit on root */
2982			ret = -EINVAL;
2983			break;
2984		}
2985		switch (MEMFILE_TYPE(of_cft(of)->private)) {
2986		case _MEM:
2987			ret = mem_cgroup_resize_limit(memcg, nr_pages);
2988			break;
2989		case _MEMSWAP:
2990			ret = mem_cgroup_resize_memsw_limit(memcg, nr_pages);
 
 
 
 
 
 
2991			break;
2992		case _KMEM:
2993			ret = memcg_update_kmem_limit(memcg, nr_pages);
2994			break;
2995		case _TCP:
2996			ret = memcg_update_tcp_limit(memcg, nr_pages);
2997			break;
2998		}
 
 
2999		break;
3000	case RES_SOFT_LIMIT:
3001		memcg->soft_limit = nr_pages;
3002		ret = 0;
3003		break;
3004	}
3005	return ret ?: nbytes;
3006}
3007
3008static ssize_t mem_cgroup_reset(struct kernfs_open_file *of, char *buf,
3009				size_t nbytes, loff_t off)
3010{
3011	struct mem_cgroup *memcg = mem_cgroup_from_css(of_css(of));
3012	struct page_counter *counter;
3013
3014	switch (MEMFILE_TYPE(of_cft(of)->private)) {
3015	case _MEM:
3016		counter = &memcg->memory;
3017		break;
3018	case _MEMSWAP:
3019		counter = &memcg->memsw;
3020		break;
3021	case _KMEM:
3022		counter = &memcg->kmem;
3023		break;
3024	case _TCP:
3025		counter = &memcg->tcpmem;
3026		break;
3027	default:
3028		BUG();
3029	}
 
 
 
 
 
 
 
 
 
 
3030
3031	switch (MEMFILE_ATTR(of_cft(of)->private)) {
 
 
 
3032	case RES_MAX_USAGE:
3033		page_counter_reset_watermark(counter);
 
 
 
3034		break;
3035	case RES_FAILCNT:
3036		counter->failcnt = 0;
 
 
 
3037		break;
3038	default:
3039		BUG();
3040	}
3041
3042	return nbytes;
3043}
3044
3045static u64 mem_cgroup_move_charge_read(struct cgroup_subsys_state *css,
3046					struct cftype *cft)
3047{
3048	return mem_cgroup_from_css(css)->move_charge_at_immigrate;
3049}
3050
3051#ifdef CONFIG_MMU
3052static int mem_cgroup_move_charge_write(struct cgroup_subsys_state *css,
3053					struct cftype *cft, u64 val)
3054{
3055	struct mem_cgroup *memcg = mem_cgroup_from_css(css);
3056
3057	if (val & ~MOVE_MASK)
3058		return -EINVAL;
 
 
 
 
 
 
 
 
3059
3060	/*
3061	 * No kind of locking is needed in here, because ->can_attach() will
3062	 * check this value once in the beginning of the process, and then carry
3063	 * on with stale data. This means that changes to this value will only
3064	 * affect task migrations starting after the change.
3065	 */
3066	memcg->move_charge_at_immigrate = val;
3067	return 0;
3068}
3069#else
3070static int mem_cgroup_move_charge_write(struct cgroup_subsys_state *css,
3071					struct cftype *cft, u64 val)
3072{
3073	return -ENOSYS;
3074}
3075#endif
3076
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
3077#ifdef CONFIG_NUMA
3078static int memcg_numa_stat_show(struct seq_file *m, void *v)
3079{
3080	struct numa_stat {
3081		const char *name;
3082		unsigned int lru_mask;
3083	};
3084
3085	static const struct numa_stat stats[] = {
3086		{ "total", LRU_ALL },
3087		{ "file", LRU_ALL_FILE },
3088		{ "anon", LRU_ALL_ANON },
3089		{ "unevictable", BIT(LRU_UNEVICTABLE) },
3090	};
3091	const struct numa_stat *stat;
3092	int nid;
3093	unsigned long nr;
3094	struct mem_cgroup *memcg = mem_cgroup_from_css(seq_css(m));
3095
3096	for (stat = stats; stat < stats + ARRAY_SIZE(stats); stat++) {
3097		nr = mem_cgroup_nr_lru_pages(memcg, stat->lru_mask);
3098		seq_printf(m, "%s=%lu", stat->name, nr);
3099		for_each_node_state(nid, N_MEMORY) {
3100			nr = mem_cgroup_node_nr_lru_pages(memcg, nid,
3101							  stat->lru_mask);
3102			seq_printf(m, " N%d=%lu", nid, nr);
3103		}
3104		seq_putc(m, '\n');
3105	}
3106
3107	for (stat = stats; stat < stats + ARRAY_SIZE(stats); stat++) {
3108		struct mem_cgroup *iter;
3109
3110		nr = 0;
3111		for_each_mem_cgroup_tree(iter, memcg)
3112			nr += mem_cgroup_nr_lru_pages(iter, stat->lru_mask);
3113		seq_printf(m, "hierarchical_%s=%lu", stat->name, nr);
3114		for_each_node_state(nid, N_MEMORY) {
3115			nr = 0;
3116			for_each_mem_cgroup_tree(iter, memcg)
3117				nr += mem_cgroup_node_nr_lru_pages(
3118					iter, nid, stat->lru_mask);
3119			seq_printf(m, " N%d=%lu", nid, nr);
3120		}
3121		seq_putc(m, '\n');
 
 
 
 
 
 
 
 
3122	}
3123
3124	return 0;
3125}
3126#endif /* CONFIG_NUMA */
3127
3128static int memcg_stat_show(struct seq_file *m, void *v)
 
3129{
3130	struct mem_cgroup *memcg = mem_cgroup_from_css(seq_css(m));
3131	unsigned long memory, memsw;
3132	struct mem_cgroup *mi;
3133	unsigned int i;
3134
3135	BUILD_BUG_ON(ARRAY_SIZE(mem_cgroup_stat_names) !=
3136		     MEM_CGROUP_STAT_NSTATS);
3137	BUILD_BUG_ON(ARRAY_SIZE(mem_cgroup_events_names) !=
3138		     MEM_CGROUP_EVENTS_NSTATS);
3139	BUILD_BUG_ON(ARRAY_SIZE(mem_cgroup_lru_names) != NR_LRU_LISTS);
3140
3141	for (i = 0; i < MEM_CGROUP_STAT_NSTATS; i++) {
3142		if (i == MEM_CGROUP_STAT_SWAP && !do_memsw_account())
3143			continue;
3144		seq_printf(m, "%s %lu\n", mem_cgroup_stat_names[i],
3145			   mem_cgroup_read_stat(memcg, i) * PAGE_SIZE);
3146	}
3147
3148	for (i = 0; i < MEM_CGROUP_EVENTS_NSTATS; i++)
3149		seq_printf(m, "%s %lu\n", mem_cgroup_events_names[i],
3150			   mem_cgroup_read_events(memcg, i));
3151
3152	for (i = 0; i < NR_LRU_LISTS; i++)
3153		seq_printf(m, "%s %lu\n", mem_cgroup_lru_names[i],
3154			   mem_cgroup_nr_lru_pages(memcg, BIT(i)) * PAGE_SIZE);
3155
3156	/* Hierarchical information */
3157	memory = memsw = PAGE_COUNTER_MAX;
3158	for (mi = memcg; mi; mi = parent_mem_cgroup(mi)) {
3159		memory = min(memory, mi->memory.limit);
3160		memsw = min(memsw, mi->memsw.limit);
3161	}
3162	seq_printf(m, "hierarchical_memory_limit %llu\n",
3163		   (u64)memory * PAGE_SIZE);
3164	if (do_memsw_account())
3165		seq_printf(m, "hierarchical_memsw_limit %llu\n",
3166			   (u64)memsw * PAGE_SIZE);
3167
3168	for (i = 0; i < MEM_CGROUP_STAT_NSTATS; i++) {
3169		unsigned long long val = 0;
3170
3171		if (i == MEM_CGROUP_STAT_SWAP && !do_memsw_account())
3172			continue;
3173		for_each_mem_cgroup_tree(mi, memcg)
3174			val += mem_cgroup_read_stat(mi, i) * PAGE_SIZE;
3175		seq_printf(m, "total_%s %llu\n", mem_cgroup_stat_names[i], val);
3176	}
3177
3178	for (i = 0; i < MEM_CGROUP_EVENTS_NSTATS; i++) {
3179		unsigned long long val = 0;
3180
3181		for_each_mem_cgroup_tree(mi, memcg)
3182			val += mem_cgroup_read_events(mi, i);
3183		seq_printf(m, "total_%s %llu\n",
3184			   mem_cgroup_events_names[i], val);
3185	}
3186
3187	for (i = 0; i < NR_LRU_LISTS; i++) {
3188		unsigned long long val = 0;
3189
3190		for_each_mem_cgroup_tree(mi, memcg)
3191			val += mem_cgroup_nr_lru_pages(mi, BIT(i)) * PAGE_SIZE;
3192		seq_printf(m, "total_%s %llu\n", mem_cgroup_lru_names[i], val);
3193	}
3194
3195#ifdef CONFIG_DEBUG_VM
 
 
3196	{
3197		int nid, zid;
3198		struct mem_cgroup_per_zone *mz;
3199		struct zone_reclaim_stat *rstat;
3200		unsigned long recent_rotated[2] = {0, 0};
3201		unsigned long recent_scanned[2] = {0, 0};
3202
3203		for_each_online_node(nid)
3204			for (zid = 0; zid < MAX_NR_ZONES; zid++) {
3205				mz = &memcg->nodeinfo[nid]->zoneinfo[zid];
3206				rstat = &mz->lruvec.reclaim_stat;
3207
3208				recent_rotated[0] += rstat->recent_rotated[0];
3209				recent_rotated[1] += rstat->recent_rotated[1];
3210				recent_scanned[0] += rstat->recent_scanned[0];
3211				recent_scanned[1] += rstat->recent_scanned[1];
 
 
 
 
3212			}
3213		seq_printf(m, "recent_rotated_anon %lu\n", recent_rotated[0]);
3214		seq_printf(m, "recent_rotated_file %lu\n", recent_rotated[1]);
3215		seq_printf(m, "recent_scanned_anon %lu\n", recent_scanned[0]);
3216		seq_printf(m, "recent_scanned_file %lu\n", recent_scanned[1]);
3217	}
3218#endif
3219
3220	return 0;
3221}
3222
3223static u64 mem_cgroup_swappiness_read(struct cgroup_subsys_state *css,
3224				      struct cftype *cft)
3225{
3226	struct mem_cgroup *memcg = mem_cgroup_from_css(css);
3227
3228	return mem_cgroup_swappiness(memcg);
3229}
3230
3231static int mem_cgroup_swappiness_write(struct cgroup_subsys_state *css,
3232				       struct cftype *cft, u64 val)
3233{
3234	struct mem_cgroup *memcg = mem_cgroup_from_css(css);
 
3235
3236	if (val > 100)
3237		return -EINVAL;
3238
3239	if (css->parent)
3240		memcg->swappiness = val;
3241	else
3242		vm_swappiness = val;
 
 
 
 
 
 
 
 
 
 
 
 
 
3243
3244	return 0;
3245}
3246
3247static void __mem_cgroup_threshold(struct mem_cgroup *memcg, bool swap)
3248{
3249	struct mem_cgroup_threshold_ary *t;
3250	unsigned long usage;
3251	int i;
3252
3253	rcu_read_lock();
3254	if (!swap)
3255		t = rcu_dereference(memcg->thresholds.primary);
3256	else
3257		t = rcu_dereference(memcg->memsw_thresholds.primary);
3258
3259	if (!t)
3260		goto unlock;
3261
3262	usage = mem_cgroup_usage(memcg, swap);
3263
3264	/*
3265	 * current_threshold points to threshold just below or equal to usage.
3266	 * If it's not true, a threshold was crossed after last
3267	 * call of __mem_cgroup_threshold().
3268	 */
3269	i = t->current_threshold;
3270
3271	/*
3272	 * Iterate backward over array of thresholds starting from
3273	 * current_threshold and check if a threshold is crossed.
3274	 * If none of thresholds below usage is crossed, we read
3275	 * only one element of the array here.
3276	 */
3277	for (; i >= 0 && unlikely(t->entries[i].threshold > usage); i--)
3278		eventfd_signal(t->entries[i].eventfd, 1);
3279
3280	/* i = current_threshold + 1 */
3281	i++;
3282
3283	/*
3284	 * Iterate forward over array of thresholds starting from
3285	 * current_threshold+1 and check if a threshold is crossed.
3286	 * If none of thresholds above usage is crossed, we read
3287	 * only one element of the array here.
3288	 */
3289	for (; i < t->size && unlikely(t->entries[i].threshold <= usage); i++)
3290		eventfd_signal(t->entries[i].eventfd, 1);
3291
3292	/* Update current_threshold */
3293	t->current_threshold = i - 1;
3294unlock:
3295	rcu_read_unlock();
3296}
3297
3298static void mem_cgroup_threshold(struct mem_cgroup *memcg)
3299{
3300	while (memcg) {
3301		__mem_cgroup_threshold(memcg, false);
3302		if (do_memsw_account())
3303			__mem_cgroup_threshold(memcg, true);
3304
3305		memcg = parent_mem_cgroup(memcg);
3306	}
3307}
3308
3309static int compare_thresholds(const void *a, const void *b)
3310{
3311	const struct mem_cgroup_threshold *_a = a;
3312	const struct mem_cgroup_threshold *_b = b;
3313
3314	if (_a->threshold > _b->threshold)
3315		return 1;
3316
3317	if (_a->threshold < _b->threshold)
3318		return -1;
3319
3320	return 0;
3321}
3322
3323static int mem_cgroup_oom_notify_cb(struct mem_cgroup *memcg)
3324{
3325	struct mem_cgroup_eventfd_list *ev;
3326
3327	spin_lock(&memcg_oom_lock);
3328
3329	list_for_each_entry(ev, &memcg->oom_notify, list)
3330		eventfd_signal(ev->eventfd, 1);
3331
3332	spin_unlock(&memcg_oom_lock);
3333	return 0;
3334}
3335
3336static void mem_cgroup_oom_notify(struct mem_cgroup *memcg)
3337{
3338	struct mem_cgroup *iter;
3339
3340	for_each_mem_cgroup_tree(iter, memcg)
3341		mem_cgroup_oom_notify_cb(iter);
3342}
3343
3344static int __mem_cgroup_usage_register_event(struct mem_cgroup *memcg,
3345	struct eventfd_ctx *eventfd, const char *args, enum res_type type)
3346{
 
3347	struct mem_cgroup_thresholds *thresholds;
3348	struct mem_cgroup_threshold_ary *new;
3349	unsigned long threshold;
3350	unsigned long usage;
3351	int i, size, ret;
3352
3353	ret = page_counter_memparse(args, "-1", &threshold);
3354	if (ret)
3355		return ret;
3356
3357	mutex_lock(&memcg->thresholds_lock);
3358
3359	if (type == _MEM) {
3360		thresholds = &memcg->thresholds;
3361		usage = mem_cgroup_usage(memcg, false);
3362	} else if (type == _MEMSWAP) {
3363		thresholds = &memcg->memsw_thresholds;
3364		usage = mem_cgroup_usage(memcg, true);
3365	} else
3366		BUG();
3367
 
 
3368	/* Check if a threshold crossed before adding a new one */
3369	if (thresholds->primary)
3370		__mem_cgroup_threshold(memcg, type == _MEMSWAP);
3371
3372	size = thresholds->primary ? thresholds->primary->size + 1 : 1;
3373
3374	/* Allocate memory for new array of thresholds */
3375	new = kmalloc(sizeof(*new) + size * sizeof(struct mem_cgroup_threshold),
3376			GFP_KERNEL);
3377	if (!new) {
3378		ret = -ENOMEM;
3379		goto unlock;
3380	}
3381	new->size = size;
3382
3383	/* Copy thresholds (if any) to new array */
3384	if (thresholds->primary) {
3385		memcpy(new->entries, thresholds->primary->entries, (size - 1) *
3386				sizeof(struct mem_cgroup_threshold));
3387	}
3388
3389	/* Add new threshold */
3390	new->entries[size - 1].eventfd = eventfd;
3391	new->entries[size - 1].threshold = threshold;
3392
3393	/* Sort thresholds. Registering of new threshold isn't time-critical */
3394	sort(new->entries, size, sizeof(struct mem_cgroup_threshold),
3395			compare_thresholds, NULL);
3396
3397	/* Find current threshold */
3398	new->current_threshold = -1;
3399	for (i = 0; i < size; i++) {
3400		if (new->entries[i].threshold <= usage) {
3401			/*
3402			 * new->current_threshold will not be used until
3403			 * rcu_assign_pointer(), so it's safe to increment
3404			 * it here.
3405			 */
3406			++new->current_threshold;
3407		} else
3408			break;
3409	}
3410
3411	/* Free old spare buffer and save old primary buffer as spare */
3412	kfree(thresholds->spare);
3413	thresholds->spare = thresholds->primary;
3414
3415	rcu_assign_pointer(thresholds->primary, new);
3416
3417	/* To be sure that nobody uses thresholds */
3418	synchronize_rcu();
3419
3420unlock:
3421	mutex_unlock(&memcg->thresholds_lock);
3422
3423	return ret;
3424}
3425
3426static int mem_cgroup_usage_register_event(struct mem_cgroup *memcg,
3427	struct eventfd_ctx *eventfd, const char *args)
3428{
3429	return __mem_cgroup_usage_register_event(memcg, eventfd, args, _MEM);
3430}
3431
3432static int memsw_cgroup_usage_register_event(struct mem_cgroup *memcg,
3433	struct eventfd_ctx *eventfd, const char *args)
3434{
3435	return __mem_cgroup_usage_register_event(memcg, eventfd, args, _MEMSWAP);
3436}
3437
3438static void __mem_cgroup_usage_unregister_event(struct mem_cgroup *memcg,
3439	struct eventfd_ctx *eventfd, enum res_type type)
3440{
 
3441	struct mem_cgroup_thresholds *thresholds;
3442	struct mem_cgroup_threshold_ary *new;
3443	unsigned long usage;
 
3444	int i, j, size;
3445
3446	mutex_lock(&memcg->thresholds_lock);
3447
3448	if (type == _MEM) {
3449		thresholds = &memcg->thresholds;
3450		usage = mem_cgroup_usage(memcg, false);
3451	} else if (type == _MEMSWAP) {
3452		thresholds = &memcg->memsw_thresholds;
3453		usage = mem_cgroup_usage(memcg, true);
3454	} else
3455		BUG();
3456
3457	if (!thresholds->primary)
3458		goto unlock;
 
 
 
 
 
3459
3460	/* Check if a threshold crossed before removing */
3461	__mem_cgroup_threshold(memcg, type == _MEMSWAP);
3462
3463	/* Calculate new number of threshold */
3464	size = 0;
3465	for (i = 0; i < thresholds->primary->size; i++) {
3466		if (thresholds->primary->entries[i].eventfd != eventfd)
3467			size++;
3468	}
3469
3470	new = thresholds->spare;
3471
3472	/* Set thresholds array to NULL if we don't have thresholds */
3473	if (!size) {
3474		kfree(new);
3475		new = NULL;
3476		goto swap_buffers;
3477	}
3478
3479	new->size = size;
3480
3481	/* Copy thresholds and find current threshold */
3482	new->current_threshold = -1;
3483	for (i = 0, j = 0; i < thresholds->primary->size; i++) {
3484		if (thresholds->primary->entries[i].eventfd == eventfd)
3485			continue;
3486
3487		new->entries[j] = thresholds->primary->entries[i];
3488		if (new->entries[j].threshold <= usage) {
3489			/*
3490			 * new->current_threshold will not be used
3491			 * until rcu_assign_pointer(), so it's safe to increment
3492			 * it here.
3493			 */
3494			++new->current_threshold;
3495		}
3496		j++;
3497	}
3498
3499swap_buffers:
3500	/* Swap primary and spare array */
3501	thresholds->spare = thresholds->primary;
3502
3503	rcu_assign_pointer(thresholds->primary, new);
3504
3505	/* To be sure that nobody uses thresholds */
3506	synchronize_rcu();
3507
3508	/* If all events are unregistered, free the spare array */
3509	if (!new) {
3510		kfree(thresholds->spare);
3511		thresholds->spare = NULL;
3512	}
3513unlock:
3514	mutex_unlock(&memcg->thresholds_lock);
3515}
3516
3517static void mem_cgroup_usage_unregister_event(struct mem_cgroup *memcg,
3518	struct eventfd_ctx *eventfd)
3519{
3520	return __mem_cgroup_usage_unregister_event(memcg, eventfd, _MEM);
3521}
3522
3523static void memsw_cgroup_usage_unregister_event(struct mem_cgroup *memcg,
3524	struct eventfd_ctx *eventfd)
3525{
3526	return __mem_cgroup_usage_unregister_event(memcg, eventfd, _MEMSWAP);
3527}
3528
3529static int mem_cgroup_oom_register_event(struct mem_cgroup *memcg,
3530	struct eventfd_ctx *eventfd, const char *args)
3531{
 
3532	struct mem_cgroup_eventfd_list *event;
 
3533
 
3534	event = kmalloc(sizeof(*event),	GFP_KERNEL);
3535	if (!event)
3536		return -ENOMEM;
3537
3538	spin_lock(&memcg_oom_lock);
3539
3540	event->eventfd = eventfd;
3541	list_add(&event->list, &memcg->oom_notify);
3542
3543	/* already in OOM ? */
3544	if (memcg->under_oom)
3545		eventfd_signal(eventfd, 1);
3546	spin_unlock(&memcg_oom_lock);
3547
3548	return 0;
3549}
3550
3551static void mem_cgroup_oom_unregister_event(struct mem_cgroup *memcg,
3552	struct eventfd_ctx *eventfd)
3553{
 
3554	struct mem_cgroup_eventfd_list *ev, *tmp;
 
 
 
3555
3556	spin_lock(&memcg_oom_lock);
3557
3558	list_for_each_entry_safe(ev, tmp, &memcg->oom_notify, list) {
3559		if (ev->eventfd == eventfd) {
3560			list_del(&ev->list);
3561			kfree(ev);
3562		}
3563	}
3564
3565	spin_unlock(&memcg_oom_lock);
3566}
3567
3568static int mem_cgroup_oom_control_read(struct seq_file *sf, void *v)
 
3569{
3570	struct mem_cgroup *memcg = mem_cgroup_from_css(seq_css(sf));
 
 
3571
3572	seq_printf(sf, "oom_kill_disable %d\n", memcg->oom_kill_disable);
3573	seq_printf(sf, "under_oom %d\n", (bool)memcg->under_oom);
 
 
3574	return 0;
3575}
3576
3577static int mem_cgroup_oom_control_write(struct cgroup_subsys_state *css,
3578	struct cftype *cft, u64 val)
3579{
3580	struct mem_cgroup *memcg = mem_cgroup_from_css(css);
 
3581
3582	/* cannot set to root cgroup and only 0 and 1 are allowed */
3583	if (!css->parent || !((val == 0) || (val == 1)))
3584		return -EINVAL;
3585
3586	memcg->oom_kill_disable = val;
3587	if (!val)
3588		memcg_oom_recover(memcg);
3589
3590	return 0;
3591}
3592
3593#ifdef CONFIG_CGROUP_WRITEBACK
3594
3595struct list_head *mem_cgroup_cgwb_list(struct mem_cgroup *memcg)
3596{
3597	return &memcg->cgwb_list;
3598}
3599
3600static int memcg_wb_domain_init(struct mem_cgroup *memcg, gfp_t gfp)
3601{
3602	return wb_domain_init(&memcg->cgwb_domain, gfp);
3603}
3604
3605static void memcg_wb_domain_exit(struct mem_cgroup *memcg)
3606{
3607	wb_domain_exit(&memcg->cgwb_domain);
3608}
3609
3610static void memcg_wb_domain_size_changed(struct mem_cgroup *memcg)
3611{
3612	wb_domain_size_changed(&memcg->cgwb_domain);
3613}
3614
3615struct wb_domain *mem_cgroup_wb_domain(struct bdi_writeback *wb)
3616{
3617	struct mem_cgroup *memcg = mem_cgroup_from_css(wb->memcg_css);
3618
3619	if (!memcg->css.parent)
3620		return NULL;
3621
3622	return &memcg->cgwb_domain;
3623}
3624
3625/**
3626 * mem_cgroup_wb_stats - retrieve writeback related stats from its memcg
3627 * @wb: bdi_writeback in question
3628 * @pfilepages: out parameter for number of file pages
3629 * @pheadroom: out parameter for number of allocatable pages according to memcg
3630 * @pdirty: out parameter for number of dirty pages
3631 * @pwriteback: out parameter for number of pages under writeback
3632 *
3633 * Determine the numbers of file, headroom, dirty, and writeback pages in
3634 * @wb's memcg.  File, dirty and writeback are self-explanatory.  Headroom
3635 * is a bit more involved.
3636 *
3637 * A memcg's headroom is "min(max, high) - used".  In the hierarchy, the
3638 * headroom is calculated as the lowest headroom of itself and the
3639 * ancestors.  Note that this doesn't consider the actual amount of
3640 * available memory in the system.  The caller should further cap
3641 * *@pheadroom accordingly.
3642 */
3643void mem_cgroup_wb_stats(struct bdi_writeback *wb, unsigned long *pfilepages,
3644			 unsigned long *pheadroom, unsigned long *pdirty,
3645			 unsigned long *pwriteback)
3646{
3647	struct mem_cgroup *memcg = mem_cgroup_from_css(wb->memcg_css);
3648	struct mem_cgroup *parent;
3649
3650	*pdirty = mem_cgroup_read_stat(memcg, MEM_CGROUP_STAT_DIRTY);
3651
3652	/* this should eventually include NR_UNSTABLE_NFS */
3653	*pwriteback = mem_cgroup_read_stat(memcg, MEM_CGROUP_STAT_WRITEBACK);
3654	*pfilepages = mem_cgroup_nr_lru_pages(memcg, (1 << LRU_INACTIVE_FILE) |
3655						     (1 << LRU_ACTIVE_FILE));
3656	*pheadroom = PAGE_COUNTER_MAX;
3657
3658	while ((parent = parent_mem_cgroup(memcg))) {
3659		unsigned long ceiling = min(memcg->memory.limit, memcg->high);
3660		unsigned long used = page_counter_read(&memcg->memory);
3661
3662		*pheadroom = min(*pheadroom, ceiling - min(ceiling, used));
3663		memcg = parent;
3664	}
3665}
3666
3667#else	/* CONFIG_CGROUP_WRITEBACK */
3668
3669static int memcg_wb_domain_init(struct mem_cgroup *memcg, gfp_t gfp)
3670{
3671	return 0;
3672}
3673
3674static void memcg_wb_domain_exit(struct mem_cgroup *memcg)
3675{
3676}
3677
3678static void memcg_wb_domain_size_changed(struct mem_cgroup *memcg)
3679{
3680}
3681
3682#endif	/* CONFIG_CGROUP_WRITEBACK */
3683
3684/*
3685 * DO NOT USE IN NEW FILES.
3686 *
3687 * "cgroup.event_control" implementation.
3688 *
3689 * This is way over-engineered.  It tries to support fully configurable
3690 * events for each user.  Such level of flexibility is completely
3691 * unnecessary especially in the light of the planned unified hierarchy.
3692 *
3693 * Please deprecate this and replace with something simpler if at all
3694 * possible.
3695 */
3696
3697/*
3698 * Unregister event and free resources.
3699 *
3700 * Gets called from workqueue.
3701 */
3702static void memcg_event_remove(struct work_struct *work)
3703{
3704	struct mem_cgroup_event *event =
3705		container_of(work, struct mem_cgroup_event, remove);
3706	struct mem_cgroup *memcg = event->memcg;
3707
3708	remove_wait_queue(event->wqh, &event->wait);
3709
3710	event->unregister_event(memcg, event->eventfd);
3711
3712	/* Notify userspace the event is going away. */
3713	eventfd_signal(event->eventfd, 1);
3714
3715	eventfd_ctx_put(event->eventfd);
3716	kfree(event);
3717	css_put(&memcg->css);
3718}
 
3719
3720/*
3721 * Gets called on POLLHUP on eventfd when user closes it.
3722 *
3723 * Called with wqh->lock held and interrupts disabled.
3724 */
3725static int memcg_event_wake(wait_queue_t *wait, unsigned mode,
3726			    int sync, void *key)
3727{
3728	struct mem_cgroup_event *event =
3729		container_of(wait, struct mem_cgroup_event, wait);
3730	struct mem_cgroup *memcg = event->memcg;
3731	unsigned long flags = (unsigned long)key;
3732
3733	if (flags & POLLHUP) {
3734		/*
3735		 * If the event has been detached at cgroup removal, we
3736		 * can simply return knowing the other side will cleanup
3737		 * for us.
3738		 *
3739		 * We can't race against event freeing since the other
3740		 * side will require wqh->lock via remove_wait_queue(),
3741		 * which we hold.
3742		 */
3743		spin_lock(&memcg->event_list_lock);
3744		if (!list_empty(&event->list)) {
3745			list_del_init(&event->list);
3746			/*
3747			 * We are in atomic context, but cgroup_event_remove()
3748			 * may sleep, so we have to call it in workqueue.
3749			 */
3750			schedule_work(&event->remove);
3751		}
3752		spin_unlock(&memcg->event_list_lock);
3753	}
3754
3755	return 0;
3756}
3757
3758static void memcg_event_ptable_queue_proc(struct file *file,
3759		wait_queue_head_t *wqh, poll_table *pt)
3760{
3761	struct mem_cgroup_event *event =
3762		container_of(pt, struct mem_cgroup_event, pt);
3763
3764	event->wqh = wqh;
3765	add_wait_queue(wqh, &event->wait);
3766}
3767
3768/*
3769 * DO NOT USE IN NEW FILES.
3770 *
3771 * Parse input and register new cgroup event handler.
3772 *
3773 * Input must be in format '<event_fd> <control_fd> <args>'.
3774 * Interpretation of args is defined by control file implementation.
3775 */
3776static ssize_t memcg_write_event_control(struct kernfs_open_file *of,
3777					 char *buf, size_t nbytes, loff_t off)
3778{
3779	struct cgroup_subsys_state *css = of_css(of);
3780	struct mem_cgroup *memcg = mem_cgroup_from_css(css);
3781	struct mem_cgroup_event *event;
3782	struct cgroup_subsys_state *cfile_css;
3783	unsigned int efd, cfd;
3784	struct fd efile;
3785	struct fd cfile;
3786	const char *name;
3787	char *endp;
3788	int ret;
3789
3790	buf = strstrip(buf);
3791
3792	efd = simple_strtoul(buf, &endp, 10);
3793	if (*endp != ' ')
3794		return -EINVAL;
3795	buf = endp + 1;
3796
3797	cfd = simple_strtoul(buf, &endp, 10);
3798	if ((*endp != ' ') && (*endp != '\0'))
3799		return -EINVAL;
3800	buf = endp + 1;
3801
3802	event = kzalloc(sizeof(*event), GFP_KERNEL);
3803	if (!event)
3804		return -ENOMEM;
3805
3806	event->memcg = memcg;
3807	INIT_LIST_HEAD(&event->list);
3808	init_poll_funcptr(&event->pt, memcg_event_ptable_queue_proc);
3809	init_waitqueue_func_entry(&event->wait, memcg_event_wake);
3810	INIT_WORK(&event->remove, memcg_event_remove);
3811
3812	efile = fdget(efd);
3813	if (!efile.file) {
3814		ret = -EBADF;
3815		goto out_kfree;
3816	}
3817
3818	event->eventfd = eventfd_ctx_fileget(efile.file);
3819	if (IS_ERR(event->eventfd)) {
3820		ret = PTR_ERR(event->eventfd);
3821		goto out_put_efile;
3822	}
3823
3824	cfile = fdget(cfd);
3825	if (!cfile.file) {
3826		ret = -EBADF;
3827		goto out_put_eventfd;
3828	}
3829
3830	/* the process need read permission on control file */
3831	/* AV: shouldn't we check that it's been opened for read instead? */
3832	ret = inode_permission(file_inode(cfile.file), MAY_READ);
3833	if (ret < 0)
3834		goto out_put_cfile;
3835
3836	/*
3837	 * Determine the event callbacks and set them in @event.  This used
3838	 * to be done via struct cftype but cgroup core no longer knows
3839	 * about these events.  The following is crude but the whole thing
3840	 * is for compatibility anyway.
3841	 *
3842	 * DO NOT ADD NEW FILES.
3843	 */
3844	name = cfile.file->f_path.dentry->d_name.name;
3845
3846	if (!strcmp(name, "memory.usage_in_bytes")) {
3847		event->register_event = mem_cgroup_usage_register_event;
3848		event->unregister_event = mem_cgroup_usage_unregister_event;
3849	} else if (!strcmp(name, "memory.oom_control")) {
3850		event->register_event = mem_cgroup_oom_register_event;
3851		event->unregister_event = mem_cgroup_oom_unregister_event;
3852	} else if (!strcmp(name, "memory.pressure_level")) {
3853		event->register_event = vmpressure_register_event;
3854		event->unregister_event = vmpressure_unregister_event;
3855	} else if (!strcmp(name, "memory.memsw.usage_in_bytes")) {
3856		event->register_event = memsw_cgroup_usage_register_event;
3857		event->unregister_event = memsw_cgroup_usage_unregister_event;
3858	} else {
3859		ret = -EINVAL;
3860		goto out_put_cfile;
3861	}
3862
3863	/*
3864	 * Verify @cfile should belong to @css.  Also, remaining events are
3865	 * automatically removed on cgroup destruction but the removal is
3866	 * asynchronous, so take an extra ref on @css.
3867	 */
3868	cfile_css = css_tryget_online_from_dir(cfile.file->f_path.dentry->d_parent,
3869					       &memory_cgrp_subsys);
3870	ret = -EINVAL;
3871	if (IS_ERR(cfile_css))
3872		goto out_put_cfile;
3873	if (cfile_css != css) {
3874		css_put(cfile_css);
3875		goto out_put_cfile;
3876	}
3877
3878	ret = event->register_event(memcg, event->eventfd, buf);
3879	if (ret)
3880		goto out_put_css;
3881
3882	efile.file->f_op->poll(efile.file, &event->pt);
3883
3884	spin_lock(&memcg->event_list_lock);
3885	list_add(&event->list, &memcg->event_list);
3886	spin_unlock(&memcg->event_list_lock);
3887
3888	fdput(cfile);
3889	fdput(efile);
3890
3891	return nbytes;
3892
3893out_put_css:
3894	css_put(css);
3895out_put_cfile:
3896	fdput(cfile);
3897out_put_eventfd:
3898	eventfd_ctx_put(event->eventfd);
3899out_put_efile:
3900	fdput(efile);
3901out_kfree:
3902	kfree(event);
3903
3904	return ret;
3905}
3906
3907static struct cftype mem_cgroup_legacy_files[] = {
3908	{
3909		.name = "usage_in_bytes",
3910		.private = MEMFILE_PRIVATE(_MEM, RES_USAGE),
3911		.read_u64 = mem_cgroup_read_u64,
 
 
3912	},
3913	{
3914		.name = "max_usage_in_bytes",
3915		.private = MEMFILE_PRIVATE(_MEM, RES_MAX_USAGE),
3916		.write = mem_cgroup_reset,
3917		.read_u64 = mem_cgroup_read_u64,
3918	},
3919	{
3920		.name = "limit_in_bytes",
3921		.private = MEMFILE_PRIVATE(_MEM, RES_LIMIT),
3922		.write = mem_cgroup_write,
3923		.read_u64 = mem_cgroup_read_u64,
3924	},
3925	{
3926		.name = "soft_limit_in_bytes",
3927		.private = MEMFILE_PRIVATE(_MEM, RES_SOFT_LIMIT),
3928		.write = mem_cgroup_write,
3929		.read_u64 = mem_cgroup_read_u64,
3930	},
3931	{
3932		.name = "failcnt",
3933		.private = MEMFILE_PRIVATE(_MEM, RES_FAILCNT),
3934		.write = mem_cgroup_reset,
3935		.read_u64 = mem_cgroup_read_u64,
3936	},
3937	{
3938		.name = "stat",
3939		.seq_show = memcg_stat_show,
3940	},
3941	{
3942		.name = "force_empty",
3943		.write = mem_cgroup_force_empty_write,
3944	},
3945	{
3946		.name = "use_hierarchy",
3947		.write_u64 = mem_cgroup_hierarchy_write,
3948		.read_u64 = mem_cgroup_hierarchy_read,
3949	},
3950	{
3951		.name = "cgroup.event_control",		/* XXX: for compat */
3952		.write = memcg_write_event_control,
3953		.flags = CFTYPE_NO_PREFIX | CFTYPE_WORLD_WRITABLE,
3954	},
3955	{
3956		.name = "swappiness",
3957		.read_u64 = mem_cgroup_swappiness_read,
3958		.write_u64 = mem_cgroup_swappiness_write,
3959	},
3960	{
3961		.name = "move_charge_at_immigrate",
3962		.read_u64 = mem_cgroup_move_charge_read,
3963		.write_u64 = mem_cgroup_move_charge_write,
3964	},
3965	{
3966		.name = "oom_control",
3967		.seq_show = mem_cgroup_oom_control_read,
3968		.write_u64 = mem_cgroup_oom_control_write,
 
 
3969		.private = MEMFILE_PRIVATE(_OOM_TYPE, OOM_CONTROL),
3970	},
3971	{
3972		.name = "pressure_level",
3973	},
3974#ifdef CONFIG_NUMA
3975	{
3976		.name = "numa_stat",
3977		.seq_show = memcg_numa_stat_show,
 
3978	},
3979#endif
 
 
 
 
3980	{
3981		.name = "kmem.limit_in_bytes",
3982		.private = MEMFILE_PRIVATE(_KMEM, RES_LIMIT),
3983		.write = mem_cgroup_write,
3984		.read_u64 = mem_cgroup_read_u64,
 
3985	},
3986	{
3987		.name = "kmem.usage_in_bytes",
3988		.private = MEMFILE_PRIVATE(_KMEM, RES_USAGE),
3989		.read_u64 = mem_cgroup_read_u64,
 
3990	},
3991	{
3992		.name = "kmem.failcnt",
3993		.private = MEMFILE_PRIVATE(_KMEM, RES_FAILCNT),
3994		.write = mem_cgroup_reset,
3995		.read_u64 = mem_cgroup_read_u64,
3996	},
3997	{
3998		.name = "kmem.max_usage_in_bytes",
3999		.private = MEMFILE_PRIVATE(_KMEM, RES_MAX_USAGE),
4000		.write = mem_cgroup_reset,
4001		.read_u64 = mem_cgroup_read_u64,
4002	},
4003#ifdef CONFIG_SLABINFO
4004	{
4005		.name = "kmem.slabinfo",
4006		.seq_start = slab_start,
4007		.seq_next = slab_next,
4008		.seq_stop = slab_stop,
4009		.seq_show = memcg_slab_show,
4010	},
 
 
 
 
 
 
 
 
 
 
 
 
 
 
4011#endif
4012	{
4013		.name = "kmem.tcp.limit_in_bytes",
4014		.private = MEMFILE_PRIVATE(_TCP, RES_LIMIT),
4015		.write = mem_cgroup_write,
4016		.read_u64 = mem_cgroup_read_u64,
4017	},
4018	{
4019		.name = "kmem.tcp.usage_in_bytes",
4020		.private = MEMFILE_PRIVATE(_TCP, RES_USAGE),
4021		.read_u64 = mem_cgroup_read_u64,
4022	},
4023	{
4024		.name = "kmem.tcp.failcnt",
4025		.private = MEMFILE_PRIVATE(_TCP, RES_FAILCNT),
4026		.write = mem_cgroup_reset,
4027		.read_u64 = mem_cgroup_read_u64,
4028	},
4029	{
4030		.name = "kmem.tcp.max_usage_in_bytes",
4031		.private = MEMFILE_PRIVATE(_TCP, RES_MAX_USAGE),
4032		.write = mem_cgroup_reset,
4033		.read_u64 = mem_cgroup_read_u64,
4034	},
4035	{ },	/* terminate */
4036};
4037
4038static int alloc_mem_cgroup_per_zone_info(struct mem_cgroup *memcg, int node)
4039{
4040	struct mem_cgroup_per_node *pn;
4041	struct mem_cgroup_per_zone *mz;
 
4042	int zone, tmp = node;
4043	/*
4044	 * This routine is called against possible nodes.
4045	 * But it's BUG to call kmalloc() against offline node.
4046	 *
4047	 * TODO: this routine can waste much memory for nodes which will
4048	 *       never be onlined. It's better to use memory hotplug callback
4049	 *       function.
4050	 */
4051	if (!node_state(node, N_NORMAL_MEMORY))
4052		tmp = -1;
4053	pn = kzalloc_node(sizeof(*pn), GFP_KERNEL, tmp);
4054	if (!pn)
4055		return 1;
4056
 
4057	for (zone = 0; zone < MAX_NR_ZONES; zone++) {
4058		mz = &pn->zoneinfo[zone];
4059		lruvec_init(&mz->lruvec);
 
4060		mz->usage_in_excess = 0;
4061		mz->on_tree = false;
4062		mz->memcg = memcg;
4063	}
4064	memcg->nodeinfo[node] = pn;
4065	return 0;
4066}
4067
4068static void free_mem_cgroup_per_zone_info(struct mem_cgroup *memcg, int node)
4069{
4070	kfree(memcg->nodeinfo[node]);
4071}
4072
4073static void mem_cgroup_free(struct mem_cgroup *memcg)
4074{
4075	int node;
 
 
 
 
 
 
 
 
 
 
4076
4077	memcg_wb_domain_exit(memcg);
4078	for_each_node(node)
4079		free_mem_cgroup_per_zone_info(memcg, node);
4080	free_percpu(memcg->stat);
4081	kfree(memcg);
 
 
 
 
 
 
 
4082}
4083
4084static struct mem_cgroup *mem_cgroup_alloc(void)
 
 
 
 
 
 
 
 
 
 
 
4085{
4086	struct mem_cgroup *memcg;
4087	size_t size;
4088	int node;
4089
4090	size = sizeof(struct mem_cgroup);
4091	size += nr_node_ids * sizeof(struct mem_cgroup_per_node *);
4092
4093	memcg = kzalloc(size, GFP_KERNEL);
4094	if (!memcg)
4095		return NULL;
4096
4097	memcg->stat = alloc_percpu(struct mem_cgroup_stat_cpu);
4098	if (!memcg->stat)
4099		goto fail;
4100
4101	for_each_node(node)
4102		if (alloc_mem_cgroup_per_zone_info(memcg, node))
4103			goto fail;
4104
4105	if (memcg_wb_domain_init(memcg, GFP_KERNEL))
4106		goto fail;
4107
4108	INIT_WORK(&memcg->high_work, high_work_func);
4109	memcg->last_scanned_node = MAX_NUMNODES;
4110	INIT_LIST_HEAD(&memcg->oom_notify);
4111	mutex_init(&memcg->thresholds_lock);
4112	spin_lock_init(&memcg->move_lock);
4113	vmpressure_init(&memcg->vmpressure);
4114	INIT_LIST_HEAD(&memcg->event_list);
4115	spin_lock_init(&memcg->event_list_lock);
4116	memcg->socket_pressure = jiffies;
4117#ifndef CONFIG_SLOB
4118	memcg->kmemcg_id = -1;
4119#endif
4120#ifdef CONFIG_CGROUP_WRITEBACK
4121	INIT_LIST_HEAD(&memcg->cgwb_list);
4122#endif
4123	return memcg;
4124fail:
4125	mem_cgroup_free(memcg);
4126	return NULL;
4127}
4128
4129static struct cgroup_subsys_state * __ref
4130mem_cgroup_css_alloc(struct cgroup_subsys_state *parent_css)
4131{
4132	struct mem_cgroup *parent = mem_cgroup_from_css(parent_css);
4133	struct mem_cgroup *memcg;
4134	long error = -ENOMEM;
4135
4136	memcg = mem_cgroup_alloc();
4137	if (!memcg)
4138		return ERR_PTR(error);
4139
4140	memcg->high = PAGE_COUNTER_MAX;
4141	memcg->soft_limit = PAGE_COUNTER_MAX;
4142	if (parent) {
4143		memcg->swappiness = mem_cgroup_swappiness(parent);
4144		memcg->oom_kill_disable = parent->oom_kill_disable;
4145	}
4146	if (parent && parent->use_hierarchy) {
4147		memcg->use_hierarchy = true;
4148		page_counter_init(&memcg->memory, &parent->memory);
4149		page_counter_init(&memcg->swap, &parent->swap);
4150		page_counter_init(&memcg->memsw, &parent->memsw);
4151		page_counter_init(&memcg->kmem, &parent->kmem);
4152		page_counter_init(&memcg->tcpmem, &parent->tcpmem);
4153	} else {
4154		page_counter_init(&memcg->memory, NULL);
4155		page_counter_init(&memcg->swap, NULL);
4156		page_counter_init(&memcg->memsw, NULL);
4157		page_counter_init(&memcg->kmem, NULL);
4158		page_counter_init(&memcg->tcpmem, NULL);
4159		/*
4160		 * Deeper hierachy with use_hierarchy == false doesn't make
4161		 * much sense so let cgroup subsystem know about this
4162		 * unfortunate state in our controller.
4163		 */
4164		if (parent != root_mem_cgroup)
4165			memory_cgrp_subsys.broken_hierarchy = true;
4166	}
 
4167
4168	/* The following stuff does not apply to the root */
4169	if (!parent) {
4170		root_mem_cgroup = memcg;
4171		return &memcg->css;
4172	}
4173
4174	error = memcg_online_kmem(memcg);
4175	if (error)
4176		goto fail;
 
 
 
 
 
 
4177
4178	if (cgroup_subsys_on_dfl(memory_cgrp_subsys) && !cgroup_memory_nosocket)
4179		static_branch_inc(&memcg_sockets_enabled_key);
4180
4181	return &memcg->css;
4182fail:
4183	mem_cgroup_free(memcg);
4184	return NULL;
 
 
4185}
 
4186
4187static int
4188mem_cgroup_css_online(struct cgroup_subsys_state *css)
4189{
4190	if (css->id > MEM_CGROUP_ID_MAX)
4191		return -ENOSPC;
 
 
 
 
 
 
 
 
 
 
 
4192
 
 
 
 
 
 
4193	return 0;
4194}
4195
4196static void mem_cgroup_css_offline(struct cgroup_subsys_state *css)
 
4197{
4198	struct mem_cgroup *memcg = mem_cgroup_from_css(css);
4199	struct mem_cgroup_event *event, *tmp;
 
4200
4201	/*
4202	 * Unregister events and notify userspace.
4203	 * Notify userspace about cgroup removing only after rmdir of cgroup
4204	 * directory to avoid race between userspace and kernelspace.
4205	 */
4206	spin_lock(&memcg->event_list_lock);
4207	list_for_each_entry_safe(event, tmp, &memcg->event_list, list) {
4208		list_del_init(&event->list);
4209		schedule_work(&event->remove);
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
4210	}
4211	spin_unlock(&memcg->event_list_lock);
 
 
4212
4213	memcg_offline_kmem(memcg);
4214	wb_memcg_offline(memcg);
 
 
 
 
 
 
 
 
4215}
4216
4217static void mem_cgroup_css_released(struct cgroup_subsys_state *css)
 
4218{
4219	struct mem_cgroup *memcg = mem_cgroup_from_css(css);
4220
4221	invalidate_reclaim_iterators(memcg);
4222}
4223
4224static void mem_cgroup_css_free(struct cgroup_subsys_state *css)
 
4225{
4226	struct mem_cgroup *memcg = mem_cgroup_from_css(css);
4227
4228	if (cgroup_subsys_on_dfl(memory_cgrp_subsys) && !cgroup_memory_nosocket)
4229		static_branch_dec(&memcg_sockets_enabled_key);
4230
4231	if (!cgroup_subsys_on_dfl(memory_cgrp_subsys) && memcg->tcpmem_active)
4232		static_branch_dec(&memcg_sockets_enabled_key);
4233
4234	vmpressure_cleanup(&memcg->vmpressure);
4235	cancel_work_sync(&memcg->high_work);
4236	mem_cgroup_remove_from_trees(memcg);
4237	memcg_free_kmem(memcg);
4238	mem_cgroup_free(memcg);
4239}
4240
4241/**
4242 * mem_cgroup_css_reset - reset the states of a mem_cgroup
4243 * @css: the target css
4244 *
4245 * Reset the states of the mem_cgroup associated with @css.  This is
4246 * invoked when the userland requests disabling on the default hierarchy
4247 * but the memcg is pinned through dependency.  The memcg should stop
4248 * applying policies and should revert to the vanilla state as it may be
4249 * made visible again.
4250 *
4251 * The current implementation only resets the essential configurations.
4252 * This needs to be expanded to cover all the visible parts.
4253 */
4254static void mem_cgroup_css_reset(struct cgroup_subsys_state *css)
4255{
4256	struct mem_cgroup *memcg = mem_cgroup_from_css(css);
 
 
 
4257
4258	page_counter_limit(&memcg->memory, PAGE_COUNTER_MAX);
4259	page_counter_limit(&memcg->swap, PAGE_COUNTER_MAX);
4260	page_counter_limit(&memcg->memsw, PAGE_COUNTER_MAX);
4261	page_counter_limit(&memcg->kmem, PAGE_COUNTER_MAX);
4262	page_counter_limit(&memcg->tcpmem, PAGE_COUNTER_MAX);
4263	memcg->low = 0;
4264	memcg->high = PAGE_COUNTER_MAX;
4265	memcg->soft_limit = PAGE_COUNTER_MAX;
4266	memcg_wb_domain_size_changed(memcg);
4267}
4268
4269#ifdef CONFIG_MMU
4270/* Handlers for move charge at task migration. */
 
4271static int mem_cgroup_do_precharge(unsigned long count)
4272{
4273	int ret;
 
 
4274
4275	/* Try a single bulk charge without reclaim first, kswapd may wake */
4276	ret = try_charge(mc.to, GFP_KERNEL & ~__GFP_DIRECT_RECLAIM, count);
4277	if (!ret) {
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
4278		mc.precharge += count;
4279		return ret;
4280	}
4281
4282	/* Try charges one by one with reclaim */
4283	while (count--) {
4284		ret = try_charge(mc.to, GFP_KERNEL & ~__GFP_NORETRY, 1);
4285		if (ret)
4286			return ret;
 
 
 
 
 
 
 
 
 
4287		mc.precharge++;
4288		cond_resched();
4289	}
4290	return 0;
4291}
4292
4293/**
4294 * get_mctgt_type - get target type of moving charge
4295 * @vma: the vma the pte to be checked belongs
4296 * @addr: the address corresponding to the pte to be checked
4297 * @ptent: the pte to be checked
4298 * @target: the pointer the target page or swap ent will be stored(can be NULL)
4299 *
4300 * Returns
4301 *   0(MC_TARGET_NONE): if the pte is not a target for move charge.
4302 *   1(MC_TARGET_PAGE): if the page corresponding to this pte is a target for
4303 *     move charge. if @target is not NULL, the page is stored in target->page
4304 *     with extra refcnt got(Callers should handle it).
4305 *   2(MC_TARGET_SWAP): if the swap entry corresponding to this pte is a
4306 *     target for charge migration. if @target is not NULL, the entry is stored
4307 *     in target->ent.
4308 *
4309 * Called with pte lock held.
4310 */
4311union mc_target {
4312	struct page	*page;
4313	swp_entry_t	ent;
4314};
4315
4316enum mc_target_type {
4317	MC_TARGET_NONE = 0,
4318	MC_TARGET_PAGE,
4319	MC_TARGET_SWAP,
4320};
4321
4322static struct page *mc_handle_present_pte(struct vm_area_struct *vma,
4323						unsigned long addr, pte_t ptent)
4324{
4325	struct page *page = vm_normal_page(vma, addr, ptent);
4326
4327	if (!page || !page_mapped(page))
4328		return NULL;
4329	if (PageAnon(page)) {
4330		if (!(mc.flags & MOVE_ANON))
 
4331			return NULL;
4332	} else {
4333		if (!(mc.flags & MOVE_FILE))
4334			return NULL;
4335	}
4336	if (!get_page_unless_zero(page))
4337		return NULL;
4338
4339	return page;
4340}
4341
4342#ifdef CONFIG_SWAP
4343static struct page *mc_handle_swap_pte(struct vm_area_struct *vma,
4344			unsigned long addr, pte_t ptent, swp_entry_t *entry)
4345{
 
4346	struct page *page = NULL;
4347	swp_entry_t ent = pte_to_swp_entry(ptent);
4348
4349	if (!(mc.flags & MOVE_ANON) || non_swap_entry(ent))
 
 
 
 
 
4350		return NULL;
4351	/*
4352	 * Because lookup_swap_cache() updates some statistics counter,
4353	 * we call find_get_page() with swapper_space directly.
4354	 */
4355	page = find_get_page(swap_address_space(ent), ent.val);
4356	if (do_memsw_account())
4357		entry->val = ent.val;
4358
4359	return page;
4360}
4361#else
4362static struct page *mc_handle_swap_pte(struct vm_area_struct *vma,
4363			unsigned long addr, pte_t ptent, swp_entry_t *entry)
4364{
4365	return NULL;
4366}
4367#endif
4368
4369static struct page *mc_handle_file_pte(struct vm_area_struct *vma,
4370			unsigned long addr, pte_t ptent, swp_entry_t *entry)
4371{
4372	struct page *page = NULL;
 
4373	struct address_space *mapping;
4374	pgoff_t pgoff;
4375
4376	if (!vma->vm_file) /* anonymous vma */
4377		return NULL;
4378	if (!(mc.flags & MOVE_FILE))
4379		return NULL;
4380
 
4381	mapping = vma->vm_file->f_mapping;
4382	pgoff = linear_page_index(vma, addr);
 
 
 
4383
4384	/* page is moved even if it's not RSS of this task(page-faulted). */
 
 
4385#ifdef CONFIG_SWAP
4386	/* shmem/tmpfs may report page out on swap: account for that too. */
4387	if (shmem_mapping(mapping)) {
4388		page = find_get_entry(mapping, pgoff);
4389		if (radix_tree_exceptional_entry(page)) {
4390			swp_entry_t swp = radix_to_swp_entry(page);
4391			if (do_memsw_account())
4392				*entry = swp;
4393			page = find_get_page(swap_address_space(swp), swp.val);
4394		}
4395	} else
4396		page = find_get_page(mapping, pgoff);
4397#else
4398	page = find_get_page(mapping, pgoff);
4399#endif
4400	return page;
4401}
4402
4403/**
4404 * mem_cgroup_move_account - move account of the page
4405 * @page: the page
4406 * @nr_pages: number of regular pages (>1 for huge pages)
4407 * @from: mem_cgroup which the page is moved from.
4408 * @to:	mem_cgroup which the page is moved to. @from != @to.
4409 *
4410 * The caller must make sure the page is not on LRU (isolate_page() is useful.)
4411 *
4412 * This function doesn't do "charge" to new cgroup and doesn't do "uncharge"
4413 * from old cgroup.
4414 */
4415static int mem_cgroup_move_account(struct page *page,
4416				   bool compound,
4417				   struct mem_cgroup *from,
4418				   struct mem_cgroup *to)
4419{
4420	unsigned long flags;
4421	unsigned int nr_pages = compound ? hpage_nr_pages(page) : 1;
4422	int ret;
4423	bool anon;
4424
4425	VM_BUG_ON(from == to);
4426	VM_BUG_ON_PAGE(PageLRU(page), page);
4427	VM_BUG_ON(compound && !PageTransHuge(page));
4428
4429	/*
4430	 * Prevent mem_cgroup_migrate() from looking at
4431	 * page->mem_cgroup of its source page while we change it.
4432	 */
4433	ret = -EBUSY;
4434	if (!trylock_page(page))
4435		goto out;
4436
4437	ret = -EINVAL;
4438	if (page->mem_cgroup != from)
4439		goto out_unlock;
4440
4441	anon = PageAnon(page);
4442
4443	spin_lock_irqsave(&from->move_lock, flags);
4444
4445	if (!anon && page_mapped(page)) {
4446		__this_cpu_sub(from->stat->count[MEM_CGROUP_STAT_FILE_MAPPED],
4447			       nr_pages);
4448		__this_cpu_add(to->stat->count[MEM_CGROUP_STAT_FILE_MAPPED],
4449			       nr_pages);
4450	}
4451
4452	/*
4453	 * move_lock grabbed above and caller set from->moving_account, so
4454	 * mem_cgroup_update_page_stat() will serialize updates to PageDirty.
4455	 * So mapping should be stable for dirty pages.
4456	 */
4457	if (!anon && PageDirty(page)) {
4458		struct address_space *mapping = page_mapping(page);
4459
4460		if (mapping_cap_account_dirty(mapping)) {
4461			__this_cpu_sub(from->stat->count[MEM_CGROUP_STAT_DIRTY],
4462				       nr_pages);
4463			__this_cpu_add(to->stat->count[MEM_CGROUP_STAT_DIRTY],
4464				       nr_pages);
4465		}
4466	}
4467
4468	if (PageWriteback(page)) {
4469		__this_cpu_sub(from->stat->count[MEM_CGROUP_STAT_WRITEBACK],
4470			       nr_pages);
4471		__this_cpu_add(to->stat->count[MEM_CGROUP_STAT_WRITEBACK],
4472			       nr_pages);
4473	}
4474
4475	/*
4476	 * It is safe to change page->mem_cgroup here because the page
4477	 * is referenced, charged, and isolated - we can't race with
4478	 * uncharging, charging, migration, or LRU putback.
4479	 */
4480
4481	/* caller should have done css_get */
4482	page->mem_cgroup = to;
4483	spin_unlock_irqrestore(&from->move_lock, flags);
4484
4485	ret = 0;
4486
4487	local_irq_disable();
4488	mem_cgroup_charge_statistics(to, page, compound, nr_pages);
4489	memcg_check_events(to, page);
4490	mem_cgroup_charge_statistics(from, page, compound, -nr_pages);
4491	memcg_check_events(from, page);
4492	local_irq_enable();
4493out_unlock:
4494	unlock_page(page);
4495out:
4496	return ret;
4497}
4498
4499static enum mc_target_type get_mctgt_type(struct vm_area_struct *vma,
4500		unsigned long addr, pte_t ptent, union mc_target *target)
4501{
4502	struct page *page = NULL;
4503	enum mc_target_type ret = MC_TARGET_NONE;
 
4504	swp_entry_t ent = { .val = 0 };
4505
4506	if (pte_present(ptent))
4507		page = mc_handle_present_pte(vma, addr, ptent);
4508	else if (is_swap_pte(ptent))
4509		page = mc_handle_swap_pte(vma, addr, ptent, &ent);
4510	else if (pte_none(ptent))
4511		page = mc_handle_file_pte(vma, addr, ptent, &ent);
4512
4513	if (!page && !ent.val)
4514		return ret;
4515	if (page) {
 
4516		/*
4517		 * Do only loose check w/o serialization.
4518		 * mem_cgroup_move_account() checks the page is valid or
4519		 * not under LRU exclusion.
4520		 */
4521		if (page->mem_cgroup == mc.from) {
4522			ret = MC_TARGET_PAGE;
4523			if (target)
4524				target->page = page;
4525		}
4526		if (!ret || !target)
4527			put_page(page);
4528	}
4529	/* There is a swap entry and a page doesn't exist or isn't charged */
4530	if (ent.val && !ret &&
4531	    mem_cgroup_id(mc.from) == lookup_swap_cgroup_id(ent)) {
4532		ret = MC_TARGET_SWAP;
4533		if (target)
4534			target->ent = ent;
4535	}
4536	return ret;
4537}
4538
4539#ifdef CONFIG_TRANSPARENT_HUGEPAGE
4540/*
4541 * We don't consider swapping or file mapped pages because THP does not
4542 * support them for now.
4543 * Caller should make sure that pmd_trans_huge(pmd) is true.
4544 */
4545static enum mc_target_type get_mctgt_type_thp(struct vm_area_struct *vma,
4546		unsigned long addr, pmd_t pmd, union mc_target *target)
4547{
4548	struct page *page = NULL;
4549	enum mc_target_type ret = MC_TARGET_NONE;
4550
4551	page = pmd_page(pmd);
4552	VM_BUG_ON_PAGE(!page || !PageHead(page), page);
4553	if (!(mc.flags & MOVE_ANON))
4554		return ret;
4555	if (page->mem_cgroup == mc.from) {
4556		ret = MC_TARGET_PAGE;
4557		if (target) {
4558			get_page(page);
4559			target->page = page;
4560		}
4561	}
4562	return ret;
4563}
4564#else
4565static inline enum mc_target_type get_mctgt_type_thp(struct vm_area_struct *vma,
4566		unsigned long addr, pmd_t pmd, union mc_target *target)
4567{
4568	return MC_TARGET_NONE;
4569}
4570#endif
4571
4572static int mem_cgroup_count_precharge_pte_range(pmd_t *pmd,
4573					unsigned long addr, unsigned long end,
4574					struct mm_walk *walk)
4575{
4576	struct vm_area_struct *vma = walk->vma;
4577	pte_t *pte;
4578	spinlock_t *ptl;
4579
4580	ptl = pmd_trans_huge_lock(pmd, vma);
4581	if (ptl) {
4582		if (get_mctgt_type_thp(vma, addr, *pmd, NULL) == MC_TARGET_PAGE)
4583			mc.precharge += HPAGE_PMD_NR;
4584		spin_unlock(ptl);
4585		return 0;
4586	}
4587
4588	if (pmd_trans_unstable(pmd))
4589		return 0;
4590	pte = pte_offset_map_lock(vma->vm_mm, pmd, addr, &ptl);
4591	for (; addr != end; pte++, addr += PAGE_SIZE)
4592		if (get_mctgt_type(vma, addr, *pte, NULL))
4593			mc.precharge++;	/* increment precharge temporarily */
4594	pte_unmap_unlock(pte - 1, ptl);
4595	cond_resched();
4596
4597	return 0;
4598}
4599
4600static unsigned long mem_cgroup_count_precharge(struct mm_struct *mm)
4601{
4602	unsigned long precharge;
 
4603
4604	struct mm_walk mem_cgroup_count_precharge_walk = {
4605		.pmd_entry = mem_cgroup_count_precharge_pte_range,
4606		.mm = mm,
4607	};
4608	down_read(&mm->mmap_sem);
4609	walk_page_range(0, ~0UL, &mem_cgroup_count_precharge_walk);
 
 
 
 
 
 
 
 
 
 
4610	up_read(&mm->mmap_sem);
4611
4612	precharge = mc.precharge;
4613	mc.precharge = 0;
4614
4615	return precharge;
4616}
4617
4618static int mem_cgroup_precharge_mc(struct mm_struct *mm)
4619{
4620	unsigned long precharge = mem_cgroup_count_precharge(mm);
4621
4622	VM_BUG_ON(mc.moving_task);
4623	mc.moving_task = current;
4624	return mem_cgroup_do_precharge(precharge);
4625}
4626
4627/* cancels all extra charges on mc.from and mc.to, and wakes up all waiters. */
4628static void __mem_cgroup_clear_mc(void)
4629{
4630	struct mem_cgroup *from = mc.from;
4631	struct mem_cgroup *to = mc.to;
4632
4633	/* we must uncharge all the leftover precharges from mc.to */
4634	if (mc.precharge) {
4635		cancel_charge(mc.to, mc.precharge);
4636		mc.precharge = 0;
4637	}
4638	/*
4639	 * we didn't uncharge from mc.from at mem_cgroup_move_account(), so
4640	 * we must uncharge here.
4641	 */
4642	if (mc.moved_charge) {
4643		cancel_charge(mc.from, mc.moved_charge);
4644		mc.moved_charge = 0;
4645	}
4646	/* we must fixup refcnts and charges */
4647	if (mc.moved_swap) {
4648		/* uncharge swap account from the old cgroup */
4649		if (!mem_cgroup_is_root(mc.from))
4650			page_counter_uncharge(&mc.from->memsw, mc.moved_swap);
 
 
4651
4652		/*
4653		 * we charged both to->memory and to->memsw, so we
4654		 * should uncharge to->memory.
4655		 */
4656		if (!mem_cgroup_is_root(mc.to))
4657			page_counter_uncharge(&mc.to->memory, mc.moved_swap);
4658
4659		css_put_many(&mc.from->css, mc.moved_swap);
4660
4661		/* we've already done css_get(mc.to) */
4662		mc.moved_swap = 0;
4663	}
4664	memcg_oom_recover(from);
4665	memcg_oom_recover(to);
4666	wake_up_all(&mc.waitq);
4667}
4668
4669static void mem_cgroup_clear_mc(void)
4670{
4671	struct mm_struct *mm = mc.mm;
4672
4673	/*
4674	 * we must clear moving_task before waking up waiters at the end of
4675	 * task migration.
4676	 */
4677	mc.moving_task = NULL;
4678	__mem_cgroup_clear_mc();
4679	spin_lock(&mc.lock);
4680	mc.from = NULL;
4681	mc.to = NULL;
4682	mc.mm = NULL;
4683	spin_unlock(&mc.lock);
4684
4685	mmput(mm);
4686}
4687
4688static int mem_cgroup_can_attach(struct cgroup_taskset *tset)
 
 
4689{
4690	struct cgroup_subsys_state *css;
4691	struct mem_cgroup *memcg = NULL; /* unneeded init to make gcc happy */
4692	struct mem_cgroup *from;
4693	struct task_struct *leader, *p;
4694	struct mm_struct *mm;
4695	unsigned long move_flags;
4696	int ret = 0;
 
4697
4698	/* charge immigration isn't supported on the default hierarchy */
4699	if (cgroup_subsys_on_dfl(memory_cgrp_subsys))
4700		return 0;
4701
4702	/*
4703	 * Multi-process migrations only happen on the default hierarchy
4704	 * where charge immigration is not used.  Perform charge
4705	 * immigration if @tset contains a leader and whine if there are
4706	 * multiple.
4707	 */
4708	p = NULL;
4709	cgroup_taskset_for_each_leader(leader, css, tset) {
4710		WARN_ON_ONCE(p);
4711		p = leader;
4712		memcg = mem_cgroup_from_css(css);
4713	}
4714	if (!p)
4715		return 0;
4716
4717	/*
4718	 * We are now commited to this value whatever it is. Changes in this
4719	 * tunable will only affect upcoming migrations, not the current one.
4720	 * So we need to save it, and keep it going.
4721	 */
4722	move_flags = READ_ONCE(memcg->move_charge_at_immigrate);
4723	if (!move_flags)
4724		return 0;
4725
4726	from = mem_cgroup_from_task(p);
4727
4728	VM_BUG_ON(from == memcg);
4729
4730	mm = get_task_mm(p);
4731	if (!mm)
4732		return 0;
4733	/* We move charges only when we move a owner of the mm */
4734	if (mm->owner == p) {
4735		VM_BUG_ON(mc.from);
4736		VM_BUG_ON(mc.to);
4737		VM_BUG_ON(mc.precharge);
4738		VM_BUG_ON(mc.moved_charge);
4739		VM_BUG_ON(mc.moved_swap);
4740
4741		spin_lock(&mc.lock);
4742		mc.mm = mm;
4743		mc.from = from;
4744		mc.to = memcg;
4745		mc.flags = move_flags;
4746		spin_unlock(&mc.lock);
4747		/* We set mc.moving_task later */
4748
4749		ret = mem_cgroup_precharge_mc(mm);
4750		if (ret)
4751			mem_cgroup_clear_mc();
4752	} else {
4753		mmput(mm);
4754	}
4755	return ret;
4756}
4757
4758static void mem_cgroup_cancel_attach(struct cgroup_taskset *tset)
 
 
4759{
4760	if (mc.to)
4761		mem_cgroup_clear_mc();
4762}
4763
4764static int mem_cgroup_move_charge_pte_range(pmd_t *pmd,
4765				unsigned long addr, unsigned long end,
4766				struct mm_walk *walk)
4767{
4768	int ret = 0;
4769	struct vm_area_struct *vma = walk->vma;
4770	pte_t *pte;
4771	spinlock_t *ptl;
4772	enum mc_target_type target_type;
4773	union mc_target target;
4774	struct page *page;
4775
4776	ptl = pmd_trans_huge_lock(pmd, vma);
4777	if (ptl) {
4778		if (mc.precharge < HPAGE_PMD_NR) {
4779			spin_unlock(ptl);
4780			return 0;
4781		}
4782		target_type = get_mctgt_type_thp(vma, addr, *pmd, &target);
4783		if (target_type == MC_TARGET_PAGE) {
4784			page = target.page;
4785			if (!isolate_lru_page(page)) {
4786				if (!mem_cgroup_move_account(page, true,
4787							     mc.from, mc.to)) {
4788					mc.precharge -= HPAGE_PMD_NR;
4789					mc.moved_charge += HPAGE_PMD_NR;
4790				}
4791				putback_lru_page(page);
4792			}
4793			put_page(page);
4794		}
4795		spin_unlock(ptl);
4796		return 0;
4797	}
4798
4799	if (pmd_trans_unstable(pmd))
4800		return 0;
4801retry:
4802	pte = pte_offset_map_lock(vma->vm_mm, pmd, addr, &ptl);
4803	for (; addr != end; addr += PAGE_SIZE) {
4804		pte_t ptent = *(pte++);
 
 
 
 
4805		swp_entry_t ent;
4806
4807		if (!mc.precharge)
4808			break;
4809
4810		switch (get_mctgt_type(vma, addr, ptent, &target)) {
 
4811		case MC_TARGET_PAGE:
4812			page = target.page;
4813			/*
4814			 * We can have a part of the split pmd here. Moving it
4815			 * can be done but it would be too convoluted so simply
4816			 * ignore such a partial THP and keep it in original
4817			 * memcg. There should be somebody mapping the head.
4818			 */
4819			if (PageTransCompound(page))
4820				goto put;
4821			if (isolate_lru_page(page))
4822				goto put;
4823			if (!mem_cgroup_move_account(page, false,
4824						mc.from, mc.to)) {
 
4825				mc.precharge--;
4826				/* we uncharge from mc.from later. */
4827				mc.moved_charge++;
4828			}
4829			putback_lru_page(page);
4830put:			/* get_mctgt_type() gets the page */
4831			put_page(page);
4832			break;
4833		case MC_TARGET_SWAP:
4834			ent = target.ent;
4835			if (!mem_cgroup_move_swap_account(ent, mc.from, mc.to)) {
 
4836				mc.precharge--;
4837				/* we fixup refcnts and charges later. */
4838				mc.moved_swap++;
4839			}
4840			break;
4841		default:
4842			break;
4843		}
4844	}
4845	pte_unmap_unlock(pte - 1, ptl);
4846	cond_resched();
4847
4848	if (addr != end) {
4849		/*
4850		 * We have consumed all precharges we got in can_attach().
4851		 * We try charge one by one, but don't do any additional
4852		 * charges to mc.to if we have failed in charge once in attach()
4853		 * phase.
4854		 */
4855		ret = mem_cgroup_do_precharge(1);
4856		if (!ret)
4857			goto retry;
4858	}
4859
4860	return ret;
4861}
4862
4863static void mem_cgroup_move_charge(void)
4864{
4865	struct mm_walk mem_cgroup_move_charge_walk = {
4866		.pmd_entry = mem_cgroup_move_charge_pte_range,
4867		.mm = mc.mm,
4868	};
4869
4870	lru_add_drain_all();
4871	/*
4872	 * Signal lock_page_memcg() to take the memcg's move_lock
4873	 * while we're moving its pages to another memcg. Then wait
4874	 * for already started RCU-only updates to finish.
4875	 */
4876	atomic_inc(&mc.from->moving_account);
4877	synchronize_rcu();
4878retry:
4879	if (unlikely(!down_read_trylock(&mc.mm->mmap_sem))) {
4880		/*
4881		 * Someone who are holding the mmap_sem might be waiting in
4882		 * waitq. So we cancel all extra charges, wake up all waiters,
4883		 * and retry. Because we cancel precharges, we might not be able
4884		 * to move enough charges, but moving charge is a best-effort
4885		 * feature anyway, so it wouldn't be a big problem.
4886		 */
4887		__mem_cgroup_clear_mc();
4888		cond_resched();
4889		goto retry;
4890	}
4891	/*
4892	 * When we have consumed all precharges and failed in doing
4893	 * additional charge, the page walk just aborts.
4894	 */
4895	walk_page_range(0, ~0UL, &mem_cgroup_move_charge_walk);
4896	up_read(&mc.mm->mmap_sem);
4897	atomic_dec(&mc.from->moving_account);
 
 
 
 
 
 
 
 
 
 
 
 
4898}
4899
4900static void mem_cgroup_move_task(void)
4901{
4902	if (mc.to) {
4903		mem_cgroup_move_charge();
 
 
 
 
 
 
 
 
 
 
4904		mem_cgroup_clear_mc();
4905	}
4906}
4907#else	/* !CONFIG_MMU */
4908static int mem_cgroup_can_attach(struct cgroup_taskset *tset)
 
 
4909{
4910	return 0;
4911}
4912static void mem_cgroup_cancel_attach(struct cgroup_taskset *tset)
 
 
4913{
4914}
4915static void mem_cgroup_move_task(void)
 
 
 
4916{
4917}
4918#endif
4919
4920/*
4921 * Cgroup retains root cgroups across [un]mount cycles making it necessary
4922 * to verify whether we're attached to the default hierarchy on each mount
4923 * attempt.
4924 */
4925static void mem_cgroup_bind(struct cgroup_subsys_state *root_css)
4926{
4927	/*
4928	 * use_hierarchy is forced on the default hierarchy.  cgroup core
4929	 * guarantees that @root doesn't have any children, so turning it
4930	 * on for the root memcg is enough.
4931	 */
4932	if (cgroup_subsys_on_dfl(memory_cgrp_subsys))
4933		root_mem_cgroup->use_hierarchy = true;
4934	else
4935		root_mem_cgroup->use_hierarchy = false;
4936}
4937
4938static u64 memory_current_read(struct cgroup_subsys_state *css,
4939			       struct cftype *cft)
4940{
4941	struct mem_cgroup *memcg = mem_cgroup_from_css(css);
4942
4943	return (u64)page_counter_read(&memcg->memory) * PAGE_SIZE;
4944}
4945
4946static int memory_low_show(struct seq_file *m, void *v)
4947{
4948	struct mem_cgroup *memcg = mem_cgroup_from_css(seq_css(m));
4949	unsigned long low = READ_ONCE(memcg->low);
4950
4951	if (low == PAGE_COUNTER_MAX)
4952		seq_puts(m, "max\n");
4953	else
4954		seq_printf(m, "%llu\n", (u64)low * PAGE_SIZE);
4955
4956	return 0;
4957}
4958
4959static ssize_t memory_low_write(struct kernfs_open_file *of,
4960				char *buf, size_t nbytes, loff_t off)
4961{
4962	struct mem_cgroup *memcg = mem_cgroup_from_css(of_css(of));
4963	unsigned long low;
4964	int err;
4965
4966	buf = strstrip(buf);
4967	err = page_counter_memparse(buf, "max", &low);
4968	if (err)
4969		return err;
4970
4971	memcg->low = low;
4972
4973	return nbytes;
4974}
4975
4976static int memory_high_show(struct seq_file *m, void *v)
4977{
4978	struct mem_cgroup *memcg = mem_cgroup_from_css(seq_css(m));
4979	unsigned long high = READ_ONCE(memcg->high);
4980
4981	if (high == PAGE_COUNTER_MAX)
4982		seq_puts(m, "max\n");
4983	else
4984		seq_printf(m, "%llu\n", (u64)high * PAGE_SIZE);
4985
4986	return 0;
4987}
4988
4989static ssize_t memory_high_write(struct kernfs_open_file *of,
4990				 char *buf, size_t nbytes, loff_t off)
4991{
4992	struct mem_cgroup *memcg = mem_cgroup_from_css(of_css(of));
4993	unsigned long nr_pages;
4994	unsigned long high;
4995	int err;
4996
4997	buf = strstrip(buf);
4998	err = page_counter_memparse(buf, "max", &high);
4999	if (err)
5000		return err;
5001
5002	memcg->high = high;
5003
5004	nr_pages = page_counter_read(&memcg->memory);
5005	if (nr_pages > high)
5006		try_to_free_mem_cgroup_pages(memcg, nr_pages - high,
5007					     GFP_KERNEL, true);
5008
5009	memcg_wb_domain_size_changed(memcg);
5010	return nbytes;
5011}
5012
5013static int memory_max_show(struct seq_file *m, void *v)
5014{
5015	struct mem_cgroup *memcg = mem_cgroup_from_css(seq_css(m));
5016	unsigned long max = READ_ONCE(memcg->memory.limit);
5017
5018	if (max == PAGE_COUNTER_MAX)
5019		seq_puts(m, "max\n");
5020	else
5021		seq_printf(m, "%llu\n", (u64)max * PAGE_SIZE);
5022
5023	return 0;
5024}
5025
5026static ssize_t memory_max_write(struct kernfs_open_file *of,
5027				char *buf, size_t nbytes, loff_t off)
5028{
5029	struct mem_cgroup *memcg = mem_cgroup_from_css(of_css(of));
5030	unsigned int nr_reclaims = MEM_CGROUP_RECLAIM_RETRIES;
5031	bool drained = false;
5032	unsigned long max;
5033	int err;
5034
5035	buf = strstrip(buf);
5036	err = page_counter_memparse(buf, "max", &max);
5037	if (err)
5038		return err;
5039
5040	xchg(&memcg->memory.limit, max);
5041
5042	for (;;) {
5043		unsigned long nr_pages = page_counter_read(&memcg->memory);
5044
5045		if (nr_pages <= max)
5046			break;
5047
5048		if (signal_pending(current)) {
5049			err = -EINTR;
5050			break;
5051		}
5052
5053		if (!drained) {
5054			drain_all_stock(memcg);
5055			drained = true;
5056			continue;
5057		}
5058
5059		if (nr_reclaims) {
5060			if (!try_to_free_mem_cgroup_pages(memcg, nr_pages - max,
5061							  GFP_KERNEL, true))
5062				nr_reclaims--;
5063			continue;
5064		}
5065
5066		mem_cgroup_events(memcg, MEMCG_OOM, 1);
5067		if (!mem_cgroup_out_of_memory(memcg, GFP_KERNEL, 0))
5068			break;
5069	}
5070
5071	memcg_wb_domain_size_changed(memcg);
5072	return nbytes;
5073}
5074
5075static int memory_events_show(struct seq_file *m, void *v)
5076{
5077	struct mem_cgroup *memcg = mem_cgroup_from_css(seq_css(m));
5078
5079	seq_printf(m, "low %lu\n", mem_cgroup_read_events(memcg, MEMCG_LOW));
5080	seq_printf(m, "high %lu\n", mem_cgroup_read_events(memcg, MEMCG_HIGH));
5081	seq_printf(m, "max %lu\n", mem_cgroup_read_events(memcg, MEMCG_MAX));
5082	seq_printf(m, "oom %lu\n", mem_cgroup_read_events(memcg, MEMCG_OOM));
5083
5084	return 0;
5085}
5086
5087static int memory_stat_show(struct seq_file *m, void *v)
5088{
5089	struct mem_cgroup *memcg = mem_cgroup_from_css(seq_css(m));
5090	unsigned long stat[MEMCG_NR_STAT];
5091	unsigned long events[MEMCG_NR_EVENTS];
5092	int i;
5093
5094	/*
5095	 * Provide statistics on the state of the memory subsystem as
5096	 * well as cumulative event counters that show past behavior.
5097	 *
5098	 * This list is ordered following a combination of these gradients:
5099	 * 1) generic big picture -> specifics and details
5100	 * 2) reflecting userspace activity -> reflecting kernel heuristics
5101	 *
5102	 * Current memory state:
5103	 */
5104
5105	tree_stat(memcg, stat);
5106	tree_events(memcg, events);
5107
5108	seq_printf(m, "anon %llu\n",
5109		   (u64)stat[MEM_CGROUP_STAT_RSS] * PAGE_SIZE);
5110	seq_printf(m, "file %llu\n",
5111		   (u64)stat[MEM_CGROUP_STAT_CACHE] * PAGE_SIZE);
5112	seq_printf(m, "kernel_stack %llu\n",
5113		   (u64)stat[MEMCG_KERNEL_STACK] * PAGE_SIZE);
5114	seq_printf(m, "slab %llu\n",
5115		   (u64)(stat[MEMCG_SLAB_RECLAIMABLE] +
5116			 stat[MEMCG_SLAB_UNRECLAIMABLE]) * PAGE_SIZE);
5117	seq_printf(m, "sock %llu\n",
5118		   (u64)stat[MEMCG_SOCK] * PAGE_SIZE);
5119
5120	seq_printf(m, "file_mapped %llu\n",
5121		   (u64)stat[MEM_CGROUP_STAT_FILE_MAPPED] * PAGE_SIZE);
5122	seq_printf(m, "file_dirty %llu\n",
5123		   (u64)stat[MEM_CGROUP_STAT_DIRTY] * PAGE_SIZE);
5124	seq_printf(m, "file_writeback %llu\n",
5125		   (u64)stat[MEM_CGROUP_STAT_WRITEBACK] * PAGE_SIZE);
5126
5127	for (i = 0; i < NR_LRU_LISTS; i++) {
5128		struct mem_cgroup *mi;
5129		unsigned long val = 0;
5130
5131		for_each_mem_cgroup_tree(mi, memcg)
5132			val += mem_cgroup_nr_lru_pages(mi, BIT(i));
5133		seq_printf(m, "%s %llu\n",
5134			   mem_cgroup_lru_names[i], (u64)val * PAGE_SIZE);
5135	}
5136
5137	seq_printf(m, "slab_reclaimable %llu\n",
5138		   (u64)stat[MEMCG_SLAB_RECLAIMABLE] * PAGE_SIZE);
5139	seq_printf(m, "slab_unreclaimable %llu\n",
5140		   (u64)stat[MEMCG_SLAB_UNRECLAIMABLE] * PAGE_SIZE);
5141
5142	/* Accumulated memory events */
5143
5144	seq_printf(m, "pgfault %lu\n",
5145		   events[MEM_CGROUP_EVENTS_PGFAULT]);
5146	seq_printf(m, "pgmajfault %lu\n",
5147		   events[MEM_CGROUP_EVENTS_PGMAJFAULT]);
5148
5149	return 0;
5150}
5151
5152static struct cftype memory_files[] = {
5153	{
5154		.name = "current",
5155		.flags = CFTYPE_NOT_ON_ROOT,
5156		.read_u64 = memory_current_read,
5157	},
5158	{
5159		.name = "low",
5160		.flags = CFTYPE_NOT_ON_ROOT,
5161		.seq_show = memory_low_show,
5162		.write = memory_low_write,
5163	},
5164	{
5165		.name = "high",
5166		.flags = CFTYPE_NOT_ON_ROOT,
5167		.seq_show = memory_high_show,
5168		.write = memory_high_write,
5169	},
5170	{
5171		.name = "max",
5172		.flags = CFTYPE_NOT_ON_ROOT,
5173		.seq_show = memory_max_show,
5174		.write = memory_max_write,
5175	},
5176	{
5177		.name = "events",
5178		.flags = CFTYPE_NOT_ON_ROOT,
5179		.file_offset = offsetof(struct mem_cgroup, events_file),
5180		.seq_show = memory_events_show,
5181	},
5182	{
5183		.name = "stat",
5184		.flags = CFTYPE_NOT_ON_ROOT,
5185		.seq_show = memory_stat_show,
5186	},
5187	{ }	/* terminate */
5188};
5189
5190struct cgroup_subsys memory_cgrp_subsys = {
5191	.css_alloc = mem_cgroup_css_alloc,
5192	.css_online = mem_cgroup_css_online,
5193	.css_offline = mem_cgroup_css_offline,
5194	.css_released = mem_cgroup_css_released,
5195	.css_free = mem_cgroup_css_free,
5196	.css_reset = mem_cgroup_css_reset,
5197	.can_attach = mem_cgroup_can_attach,
5198	.cancel_attach = mem_cgroup_cancel_attach,
5199	.post_attach = mem_cgroup_move_task,
5200	.bind = mem_cgroup_bind,
5201	.dfl_cftypes = memory_files,
5202	.legacy_cftypes = mem_cgroup_legacy_files,
5203	.early_init = 0,
 
5204};
5205
5206/**
5207 * mem_cgroup_low - check if memory consumption is below the normal range
5208 * @root: the highest ancestor to consider
5209 * @memcg: the memory cgroup to check
5210 *
5211 * Returns %true if memory consumption of @memcg, and that of all
5212 * configurable ancestors up to @root, is below the normal range.
5213 */
5214bool mem_cgroup_low(struct mem_cgroup *root, struct mem_cgroup *memcg)
5215{
5216	if (mem_cgroup_disabled())
5217		return false;
5218
5219	/*
5220	 * The toplevel group doesn't have a configurable range, so
5221	 * it's never low when looked at directly, and it is not
5222	 * considered an ancestor when assessing the hierarchy.
5223	 */
5224
5225	if (memcg == root_mem_cgroup)
5226		return false;
5227
5228	if (page_counter_read(&memcg->memory) >= memcg->low)
5229		return false;
5230
5231	while (memcg != root) {
5232		memcg = parent_mem_cgroup(memcg);
5233
5234		if (memcg == root_mem_cgroup)
5235			break;
5236
5237		if (page_counter_read(&memcg->memory) >= memcg->low)
5238			return false;
5239	}
5240	return true;
5241}
5242
5243/**
5244 * mem_cgroup_try_charge - try charging a page
5245 * @page: page to charge
5246 * @mm: mm context of the victim
5247 * @gfp_mask: reclaim mode
5248 * @memcgp: charged memcg return
5249 *
5250 * Try to charge @page to the memcg that @mm belongs to, reclaiming
5251 * pages according to @gfp_mask if necessary.
5252 *
5253 * Returns 0 on success, with *@memcgp pointing to the charged memcg.
5254 * Otherwise, an error code is returned.
5255 *
5256 * After page->mapping has been set up, the caller must finalize the
5257 * charge with mem_cgroup_commit_charge().  Or abort the transaction
5258 * with mem_cgroup_cancel_charge() in case page instantiation fails.
5259 */
5260int mem_cgroup_try_charge(struct page *page, struct mm_struct *mm,
5261			  gfp_t gfp_mask, struct mem_cgroup **memcgp,
5262			  bool compound)
5263{
5264	struct mem_cgroup *memcg = NULL;
5265	unsigned int nr_pages = compound ? hpage_nr_pages(page) : 1;
5266	int ret = 0;
5267
5268	if (mem_cgroup_disabled())
5269		goto out;
5270
5271	if (PageSwapCache(page)) {
5272		/*
5273		 * Every swap fault against a single page tries to charge the
5274		 * page, bail as early as possible.  shmem_unuse() encounters
5275		 * already charged pages, too.  The USED bit is protected by
5276		 * the page lock, which serializes swap cache removal, which
5277		 * in turn serializes uncharging.
5278		 */
5279		VM_BUG_ON_PAGE(!PageLocked(page), page);
5280		if (page->mem_cgroup)
5281			goto out;
5282
5283		if (do_swap_account) {
5284			swp_entry_t ent = { .val = page_private(page), };
5285			unsigned short id = lookup_swap_cgroup_id(ent);
5286
5287			rcu_read_lock();
5288			memcg = mem_cgroup_from_id(id);
5289			if (memcg && !css_tryget_online(&memcg->css))
5290				memcg = NULL;
5291			rcu_read_unlock();
5292		}
5293	}
5294
5295	if (!memcg)
5296		memcg = get_mem_cgroup_from_mm(mm);
5297
5298	ret = try_charge(memcg, gfp_mask, nr_pages);
5299
5300	css_put(&memcg->css);
5301out:
5302	*memcgp = memcg;
5303	return ret;
5304}
5305
5306/**
5307 * mem_cgroup_commit_charge - commit a page charge
5308 * @page: page to charge
5309 * @memcg: memcg to charge the page to
5310 * @lrucare: page might be on LRU already
5311 *
5312 * Finalize a charge transaction started by mem_cgroup_try_charge(),
5313 * after page->mapping has been set up.  This must happen atomically
5314 * as part of the page instantiation, i.e. under the page table lock
5315 * for anonymous pages, under the page lock for page and swap cache.
5316 *
5317 * In addition, the page must not be on the LRU during the commit, to
5318 * prevent racing with task migration.  If it might be, use @lrucare.
5319 *
5320 * Use mem_cgroup_cancel_charge() to cancel the transaction instead.
5321 */
5322void mem_cgroup_commit_charge(struct page *page, struct mem_cgroup *memcg,
5323			      bool lrucare, bool compound)
5324{
5325	unsigned int nr_pages = compound ? hpage_nr_pages(page) : 1;
5326
5327	VM_BUG_ON_PAGE(!page->mapping, page);
5328	VM_BUG_ON_PAGE(PageLRU(page) && !lrucare, page);
5329
5330	if (mem_cgroup_disabled())
5331		return;
5332	/*
5333	 * Swap faults will attempt to charge the same page multiple
5334	 * times.  But reuse_swap_page() might have removed the page
5335	 * from swapcache already, so we can't check PageSwapCache().
5336	 */
5337	if (!memcg)
5338		return;
5339
5340	commit_charge(page, memcg, lrucare);
5341
5342	local_irq_disable();
5343	mem_cgroup_charge_statistics(memcg, page, compound, nr_pages);
5344	memcg_check_events(memcg, page);
5345	local_irq_enable();
5346
5347	if (do_memsw_account() && PageSwapCache(page)) {
5348		swp_entry_t entry = { .val = page_private(page) };
5349		/*
5350		 * The swap entry might not get freed for a long time,
5351		 * let's not wait for it.  The page already received a
5352		 * memory+swap charge, drop the swap entry duplicate.
5353		 */
5354		mem_cgroup_uncharge_swap(entry);
5355	}
5356}
5357
5358/**
5359 * mem_cgroup_cancel_charge - cancel a page charge
5360 * @page: page to charge
5361 * @memcg: memcg to charge the page to
5362 *
5363 * Cancel a charge transaction started by mem_cgroup_try_charge().
5364 */
5365void mem_cgroup_cancel_charge(struct page *page, struct mem_cgroup *memcg,
5366		bool compound)
5367{
5368	unsigned int nr_pages = compound ? hpage_nr_pages(page) : 1;
5369
5370	if (mem_cgroup_disabled())
5371		return;
5372	/*
5373	 * Swap faults will attempt to charge the same page multiple
5374	 * times.  But reuse_swap_page() might have removed the page
5375	 * from swapcache already, so we can't check PageSwapCache().
5376	 */
5377	if (!memcg)
5378		return;
5379
5380	cancel_charge(memcg, nr_pages);
5381}
5382
5383static void uncharge_batch(struct mem_cgroup *memcg, unsigned long pgpgout,
5384			   unsigned long nr_anon, unsigned long nr_file,
5385			   unsigned long nr_huge, struct page *dummy_page)
5386{
5387	unsigned long nr_pages = nr_anon + nr_file;
5388	unsigned long flags;
5389
5390	if (!mem_cgroup_is_root(memcg)) {
5391		page_counter_uncharge(&memcg->memory, nr_pages);
5392		if (do_memsw_account())
5393			page_counter_uncharge(&memcg->memsw, nr_pages);
5394		memcg_oom_recover(memcg);
5395	}
5396
5397	local_irq_save(flags);
5398	__this_cpu_sub(memcg->stat->count[MEM_CGROUP_STAT_RSS], nr_anon);
5399	__this_cpu_sub(memcg->stat->count[MEM_CGROUP_STAT_CACHE], nr_file);
5400	__this_cpu_sub(memcg->stat->count[MEM_CGROUP_STAT_RSS_HUGE], nr_huge);
5401	__this_cpu_add(memcg->stat->events[MEM_CGROUP_EVENTS_PGPGOUT], pgpgout);
5402	__this_cpu_add(memcg->stat->nr_page_events, nr_pages);
5403	memcg_check_events(memcg, dummy_page);
5404	local_irq_restore(flags);
5405
5406	if (!mem_cgroup_is_root(memcg))
5407		css_put_many(&memcg->css, nr_pages);
5408}
5409
5410static void uncharge_list(struct list_head *page_list)
5411{
5412	struct mem_cgroup *memcg = NULL;
5413	unsigned long nr_anon = 0;
5414	unsigned long nr_file = 0;
5415	unsigned long nr_huge = 0;
5416	unsigned long pgpgout = 0;
5417	struct list_head *next;
5418	struct page *page;
5419
5420	/*
5421	 * Note that the list can be a single page->lru; hence the
5422	 * do-while loop instead of a simple list_for_each_entry().
5423	 */
5424	next = page_list->next;
5425	do {
5426		unsigned int nr_pages = 1;
5427
5428		page = list_entry(next, struct page, lru);
5429		next = page->lru.next;
5430
5431		VM_BUG_ON_PAGE(PageLRU(page), page);
5432		VM_BUG_ON_PAGE(page_count(page), page);
5433
5434		if (!page->mem_cgroup)
5435			continue;
5436
5437		/*
5438		 * Nobody should be changing or seriously looking at
5439		 * page->mem_cgroup at this point, we have fully
5440		 * exclusive access to the page.
5441		 */
5442
5443		if (memcg != page->mem_cgroup) {
5444			if (memcg) {
5445				uncharge_batch(memcg, pgpgout, nr_anon, nr_file,
5446					       nr_huge, page);
5447				pgpgout = nr_anon = nr_file = nr_huge = 0;
5448			}
5449			memcg = page->mem_cgroup;
5450		}
5451
5452		if (PageTransHuge(page)) {
5453			nr_pages <<= compound_order(page);
5454			VM_BUG_ON_PAGE(!PageTransHuge(page), page);
5455			nr_huge += nr_pages;
5456		}
5457
5458		if (PageAnon(page))
5459			nr_anon += nr_pages;
5460		else
5461			nr_file += nr_pages;
5462
5463		page->mem_cgroup = NULL;
5464
5465		pgpgout++;
5466	} while (next != page_list);
5467
5468	if (memcg)
5469		uncharge_batch(memcg, pgpgout, nr_anon, nr_file,
5470			       nr_huge, page);
5471}
5472
5473/**
5474 * mem_cgroup_uncharge - uncharge a page
5475 * @page: page to uncharge
5476 *
5477 * Uncharge a page previously charged with mem_cgroup_try_charge() and
5478 * mem_cgroup_commit_charge().
5479 */
5480void mem_cgroup_uncharge(struct page *page)
5481{
5482	if (mem_cgroup_disabled())
5483		return;
5484
5485	/* Don't touch page->lru of any random page, pre-check: */
5486	if (!page->mem_cgroup)
5487		return;
5488
5489	INIT_LIST_HEAD(&page->lru);
5490	uncharge_list(&page->lru);
5491}
5492
5493/**
5494 * mem_cgroup_uncharge_list - uncharge a list of page
5495 * @page_list: list of pages to uncharge
5496 *
5497 * Uncharge a list of pages previously charged with
5498 * mem_cgroup_try_charge() and mem_cgroup_commit_charge().
5499 */
5500void mem_cgroup_uncharge_list(struct list_head *page_list)
5501{
5502	if (mem_cgroup_disabled())
5503		return;
5504
5505	if (!list_empty(page_list))
5506		uncharge_list(page_list);
5507}
5508
5509/**
5510 * mem_cgroup_migrate - charge a page's replacement
5511 * @oldpage: currently circulating page
5512 * @newpage: replacement page
5513 *
5514 * Charge @newpage as a replacement page for @oldpage. @oldpage will
5515 * be uncharged upon free.
5516 *
5517 * Both pages must be locked, @newpage->mapping must be set up.
5518 */
5519void mem_cgroup_migrate(struct page *oldpage, struct page *newpage)
5520{
5521	struct mem_cgroup *memcg;
5522	unsigned int nr_pages;
5523	bool compound;
5524
5525	VM_BUG_ON_PAGE(!PageLocked(oldpage), oldpage);
5526	VM_BUG_ON_PAGE(!PageLocked(newpage), newpage);
5527	VM_BUG_ON_PAGE(PageAnon(oldpage) != PageAnon(newpage), newpage);
5528	VM_BUG_ON_PAGE(PageTransHuge(oldpage) != PageTransHuge(newpage),
5529		       newpage);
5530
5531	if (mem_cgroup_disabled())
5532		return;
5533
5534	/* Page cache replacement: new page already charged? */
5535	if (newpage->mem_cgroup)
5536		return;
5537
5538	/* Swapcache readahead pages can get replaced before being charged */
5539	memcg = oldpage->mem_cgroup;
5540	if (!memcg)
5541		return;
5542
5543	/* Force-charge the new page. The old one will be freed soon */
5544	compound = PageTransHuge(newpage);
5545	nr_pages = compound ? hpage_nr_pages(newpage) : 1;
5546
5547	page_counter_charge(&memcg->memory, nr_pages);
5548	if (do_memsw_account())
5549		page_counter_charge(&memcg->memsw, nr_pages);
5550	css_get_many(&memcg->css, nr_pages);
5551
5552	commit_charge(newpage, memcg, false);
5553
5554	local_irq_disable();
5555	mem_cgroup_charge_statistics(memcg, newpage, compound, nr_pages);
5556	memcg_check_events(memcg, newpage);
5557	local_irq_enable();
5558}
5559
5560DEFINE_STATIC_KEY_FALSE(memcg_sockets_enabled_key);
5561EXPORT_SYMBOL(memcg_sockets_enabled_key);
5562
5563void sock_update_memcg(struct sock *sk)
5564{
5565	struct mem_cgroup *memcg;
5566
5567	/* Socket cloning can throw us here with sk_cgrp already
5568	 * filled. It won't however, necessarily happen from
5569	 * process context. So the test for root memcg given
5570	 * the current task's memcg won't help us in this case.
5571	 *
5572	 * Respecting the original socket's memcg is a better
5573	 * decision in this case.
5574	 */
5575	if (sk->sk_memcg) {
5576		BUG_ON(mem_cgroup_is_root(sk->sk_memcg));
5577		css_get(&sk->sk_memcg->css);
5578		return;
5579	}
5580
5581	rcu_read_lock();
5582	memcg = mem_cgroup_from_task(current);
5583	if (memcg == root_mem_cgroup)
5584		goto out;
5585	if (!cgroup_subsys_on_dfl(memory_cgrp_subsys) && !memcg->tcpmem_active)
5586		goto out;
5587	if (css_tryget_online(&memcg->css))
5588		sk->sk_memcg = memcg;
5589out:
5590	rcu_read_unlock();
5591}
5592EXPORT_SYMBOL(sock_update_memcg);
5593
5594void sock_release_memcg(struct sock *sk)
5595{
5596	WARN_ON(!sk->sk_memcg);
5597	css_put(&sk->sk_memcg->css);
5598}
5599
5600/**
5601 * mem_cgroup_charge_skmem - charge socket memory
5602 * @memcg: memcg to charge
5603 * @nr_pages: number of pages to charge
5604 *
5605 * Charges @nr_pages to @memcg. Returns %true if the charge fit within
5606 * @memcg's configured limit, %false if the charge had to be forced.
5607 */
5608bool mem_cgroup_charge_skmem(struct mem_cgroup *memcg, unsigned int nr_pages)
5609{
5610	gfp_t gfp_mask = GFP_KERNEL;
5611
5612	if (!cgroup_subsys_on_dfl(memory_cgrp_subsys)) {
5613		struct page_counter *fail;
5614
5615		if (page_counter_try_charge(&memcg->tcpmem, nr_pages, &fail)) {
5616			memcg->tcpmem_pressure = 0;
5617			return true;
5618		}
5619		page_counter_charge(&memcg->tcpmem, nr_pages);
5620		memcg->tcpmem_pressure = 1;
5621		return false;
5622	}
5623
5624	/* Don't block in the packet receive path */
5625	if (in_softirq())
5626		gfp_mask = GFP_NOWAIT;
5627
5628	this_cpu_add(memcg->stat->count[MEMCG_SOCK], nr_pages);
5629
5630	if (try_charge(memcg, gfp_mask, nr_pages) == 0)
5631		return true;
5632
5633	try_charge(memcg, gfp_mask|__GFP_NOFAIL, nr_pages);
5634	return false;
5635}
5636
5637/**
5638 * mem_cgroup_uncharge_skmem - uncharge socket memory
5639 * @memcg - memcg to uncharge
5640 * @nr_pages - number of pages to uncharge
5641 */
5642void mem_cgroup_uncharge_skmem(struct mem_cgroup *memcg, unsigned int nr_pages)
5643{
5644	if (!cgroup_subsys_on_dfl(memory_cgrp_subsys)) {
5645		page_counter_uncharge(&memcg->tcpmem, nr_pages);
5646		return;
5647	}
5648
5649	this_cpu_sub(memcg->stat->count[MEMCG_SOCK], nr_pages);
5650
5651	page_counter_uncharge(&memcg->memory, nr_pages);
5652	css_put_many(&memcg->css, nr_pages);
5653}
5654
5655static int __init cgroup_memory(char *s)
5656{
5657	char *token;
5658
5659	while ((token = strsep(&s, ",")) != NULL) {
5660		if (!*token)
5661			continue;
5662		if (!strcmp(token, "nosocket"))
5663			cgroup_memory_nosocket = true;
5664		if (!strcmp(token, "nokmem"))
5665			cgroup_memory_nokmem = true;
5666	}
5667	return 0;
5668}
5669__setup("cgroup.memory=", cgroup_memory);
5670
5671/*
5672 * subsys_initcall() for memory controller.
5673 *
5674 * Some parts like hotcpu_notifier() have to be initialized from this context
5675 * because of lock dependencies (cgroup_lock -> cpu hotplug) but basically
5676 * everything that doesn't depend on a specific mem_cgroup structure should
5677 * be initialized from here.
5678 */
5679static int __init mem_cgroup_init(void)
5680{
5681	int cpu, node;
5682
5683	hotcpu_notifier(memcg_cpu_hotplug_callback, 0);
5684
5685	for_each_possible_cpu(cpu)
5686		INIT_WORK(&per_cpu_ptr(&memcg_stock, cpu)->work,
5687			  drain_local_stock);
5688
5689	for_each_node(node) {
5690		struct mem_cgroup_tree_per_node *rtpn;
5691		int zone;
5692
5693		rtpn = kzalloc_node(sizeof(*rtpn), GFP_KERNEL,
5694				    node_online(node) ? node : NUMA_NO_NODE);
5695
5696		for (zone = 0; zone < MAX_NR_ZONES; zone++) {
5697			struct mem_cgroup_tree_per_zone *rtpz;
5698
5699			rtpz = &rtpn->rb_tree_per_zone[zone];
5700			rtpz->rb_root = RB_ROOT;
5701			spin_lock_init(&rtpz->lock);
5702		}
5703		soft_limit_tree.rb_tree_per_node[node] = rtpn;
5704	}
5705
5706	return 0;
5707}
5708subsys_initcall(mem_cgroup_init);
5709
5710#ifdef CONFIG_MEMCG_SWAP
5711/**
5712 * mem_cgroup_swapout - transfer a memsw charge to swap
5713 * @page: page whose memsw charge to transfer
5714 * @entry: swap entry to move the charge to
5715 *
5716 * Transfer the memsw charge of @page to @entry.
5717 */
5718void mem_cgroup_swapout(struct page *page, swp_entry_t entry)
5719{
5720	struct mem_cgroup *memcg;
5721	unsigned short oldid;
5722
5723	VM_BUG_ON_PAGE(PageLRU(page), page);
5724	VM_BUG_ON_PAGE(page_count(page), page);
5725
5726	if (!do_memsw_account())
5727		return;
5728
5729	memcg = page->mem_cgroup;
5730
5731	/* Readahead page, never charged */
5732	if (!memcg)
5733		return;
5734
5735	oldid = swap_cgroup_record(entry, mem_cgroup_id(memcg));
5736	VM_BUG_ON_PAGE(oldid, page);
5737	mem_cgroup_swap_statistics(memcg, true);
5738
5739	page->mem_cgroup = NULL;
5740
5741	if (!mem_cgroup_is_root(memcg))
5742		page_counter_uncharge(&memcg->memory, 1);
5743
5744	/*
5745	 * Interrupts should be disabled here because the caller holds the
5746	 * mapping->tree_lock lock which is taken with interrupts-off. It is
5747	 * important here to have the interrupts disabled because it is the
5748	 * only synchronisation we have for udpating the per-CPU variables.
5749	 */
5750	VM_BUG_ON(!irqs_disabled());
5751	mem_cgroup_charge_statistics(memcg, page, false, -1);
5752	memcg_check_events(memcg, page);
5753}
5754
5755/*
5756 * mem_cgroup_try_charge_swap - try charging a swap entry
5757 * @page: page being added to swap
5758 * @entry: swap entry to charge
5759 *
5760 * Try to charge @entry to the memcg that @page belongs to.
5761 *
5762 * Returns 0 on success, -ENOMEM on failure.
5763 */
5764int mem_cgroup_try_charge_swap(struct page *page, swp_entry_t entry)
5765{
5766	struct mem_cgroup *memcg;
5767	struct page_counter *counter;
5768	unsigned short oldid;
5769
5770	if (!cgroup_subsys_on_dfl(memory_cgrp_subsys) || !do_swap_account)
5771		return 0;
5772
5773	memcg = page->mem_cgroup;
5774
5775	/* Readahead page, never charged */
5776	if (!memcg)
5777		return 0;
5778
5779	if (!mem_cgroup_is_root(memcg) &&
5780	    !page_counter_try_charge(&memcg->swap, 1, &counter))
5781		return -ENOMEM;
5782
5783	oldid = swap_cgroup_record(entry, mem_cgroup_id(memcg));
5784	VM_BUG_ON_PAGE(oldid, page);
5785	mem_cgroup_swap_statistics(memcg, true);
5786
5787	css_get(&memcg->css);
5788	return 0;
5789}
5790
5791/**
5792 * mem_cgroup_uncharge_swap - uncharge a swap entry
5793 * @entry: swap entry to uncharge
5794 *
5795 * Drop the swap charge associated with @entry.
5796 */
5797void mem_cgroup_uncharge_swap(swp_entry_t entry)
5798{
5799	struct mem_cgroup *memcg;
5800	unsigned short id;
5801
5802	if (!do_swap_account)
5803		return;
5804
5805	id = swap_cgroup_record(entry, 0);
5806	rcu_read_lock();
5807	memcg = mem_cgroup_from_id(id);
5808	if (memcg) {
5809		if (!mem_cgroup_is_root(memcg)) {
5810			if (cgroup_subsys_on_dfl(memory_cgrp_subsys))
5811				page_counter_uncharge(&memcg->swap, 1);
5812			else
5813				page_counter_uncharge(&memcg->memsw, 1);
5814		}
5815		mem_cgroup_swap_statistics(memcg, false);
5816		css_put(&memcg->css);
5817	}
5818	rcu_read_unlock();
5819}
5820
5821long mem_cgroup_get_nr_swap_pages(struct mem_cgroup *memcg)
5822{
5823	long nr_swap_pages = get_nr_swap_pages();
5824
5825	if (!do_swap_account || !cgroup_subsys_on_dfl(memory_cgrp_subsys))
5826		return nr_swap_pages;
5827	for (; memcg != root_mem_cgroup; memcg = parent_mem_cgroup(memcg))
5828		nr_swap_pages = min_t(long, nr_swap_pages,
5829				      READ_ONCE(memcg->swap.limit) -
5830				      page_counter_read(&memcg->swap));
5831	return nr_swap_pages;
5832}
5833
5834bool mem_cgroup_swap_full(struct page *page)
5835{
5836	struct mem_cgroup *memcg;
5837
5838	VM_BUG_ON_PAGE(!PageLocked(page), page);
5839
5840	if (vm_swap_full())
5841		return true;
5842	if (!do_swap_account || !cgroup_subsys_on_dfl(memory_cgrp_subsys))
5843		return false;
5844
5845	memcg = page->mem_cgroup;
5846	if (!memcg)
5847		return false;
5848
5849	for (; memcg != root_mem_cgroup; memcg = parent_mem_cgroup(memcg))
5850		if (page_counter_read(&memcg->swap) * 2 >= memcg->swap.limit)
5851			return true;
5852
5853	return false;
5854}
5855
5856/* for remember boot option*/
5857#ifdef CONFIG_MEMCG_SWAP_ENABLED
5858static int really_do_swap_account __initdata = 1;
5859#else
5860static int really_do_swap_account __initdata;
5861#endif
5862
5863static int __init enable_swap_account(char *s)
5864{
 
5865	if (!strcmp(s, "1"))
5866		really_do_swap_account = 1;
5867	else if (!strcmp(s, "0"))
5868		really_do_swap_account = 0;
5869	return 1;
5870}
5871__setup("swapaccount=", enable_swap_account);
5872
5873static u64 swap_current_read(struct cgroup_subsys_state *css,
5874			     struct cftype *cft)
5875{
5876	struct mem_cgroup *memcg = mem_cgroup_from_css(css);
5877
5878	return (u64)page_counter_read(&memcg->swap) * PAGE_SIZE;
5879}
5880
5881static int swap_max_show(struct seq_file *m, void *v)
5882{
5883	struct mem_cgroup *memcg = mem_cgroup_from_css(seq_css(m));
5884	unsigned long max = READ_ONCE(memcg->swap.limit);
5885
5886	if (max == PAGE_COUNTER_MAX)
5887		seq_puts(m, "max\n");
5888	else
5889		seq_printf(m, "%llu\n", (u64)max * PAGE_SIZE);
5890
5891	return 0;
5892}
5893
5894static ssize_t swap_max_write(struct kernfs_open_file *of,
5895			      char *buf, size_t nbytes, loff_t off)
5896{
5897	struct mem_cgroup *memcg = mem_cgroup_from_css(of_css(of));
5898	unsigned long max;
5899	int err;
5900
5901	buf = strstrip(buf);
5902	err = page_counter_memparse(buf, "max", &max);
5903	if (err)
5904		return err;
5905
5906	mutex_lock(&memcg_limit_mutex);
5907	err = page_counter_limit(&memcg->swap, max);
5908	mutex_unlock(&memcg_limit_mutex);
5909	if (err)
5910		return err;
5911
5912	return nbytes;
5913}
5914
5915static struct cftype swap_files[] = {
5916	{
5917		.name = "swap.current",
5918		.flags = CFTYPE_NOT_ON_ROOT,
5919		.read_u64 = swap_current_read,
5920	},
5921	{
5922		.name = "swap.max",
5923		.flags = CFTYPE_NOT_ON_ROOT,
5924		.seq_show = swap_max_show,
5925		.write = swap_max_write,
5926	},
5927	{ }	/* terminate */
5928};
5929
5930static struct cftype memsw_cgroup_files[] = {
5931	{
5932		.name = "memsw.usage_in_bytes",
5933		.private = MEMFILE_PRIVATE(_MEMSWAP, RES_USAGE),
5934		.read_u64 = mem_cgroup_read_u64,
5935	},
5936	{
5937		.name = "memsw.max_usage_in_bytes",
5938		.private = MEMFILE_PRIVATE(_MEMSWAP, RES_MAX_USAGE),
5939		.write = mem_cgroup_reset,
5940		.read_u64 = mem_cgroup_read_u64,
5941	},
5942	{
5943		.name = "memsw.limit_in_bytes",
5944		.private = MEMFILE_PRIVATE(_MEMSWAP, RES_LIMIT),
5945		.write = mem_cgroup_write,
5946		.read_u64 = mem_cgroup_read_u64,
5947	},
5948	{
5949		.name = "memsw.failcnt",
5950		.private = MEMFILE_PRIVATE(_MEMSWAP, RES_FAILCNT),
5951		.write = mem_cgroup_reset,
5952		.read_u64 = mem_cgroup_read_u64,
5953	},
5954	{ },	/* terminate */
5955};
5956
5957static int __init mem_cgroup_swap_init(void)
5958{
5959	if (!mem_cgroup_disabled() && really_do_swap_account) {
5960		do_swap_account = 1;
5961		WARN_ON(cgroup_add_dfl_cftypes(&memory_cgrp_subsys,
5962					       swap_files));
5963		WARN_ON(cgroup_add_legacy_cftypes(&memory_cgrp_subsys,
5964						  memsw_cgroup_files));
5965	}
5966	return 0;
5967}
5968subsys_initcall(mem_cgroup_swap_init);
5969
5970#endif /* CONFIG_MEMCG_SWAP */