Linux Audio

Check our new training course

Loading...
v3.1
 
   1/* memcontrol.c - Memory Controller
   2 *
   3 * Copyright IBM Corporation, 2007
   4 * Author Balbir Singh <balbir@linux.vnet.ibm.com>
   5 *
   6 * Copyright 2007 OpenVZ SWsoft Inc
   7 * Author: Pavel Emelianov <xemul@openvz.org>
   8 *
   9 * Memory thresholds
  10 * Copyright (C) 2009 Nokia Corporation
  11 * Author: Kirill A. Shutemov
  12 *
  13 * This program is free software; you can redistribute it and/or modify
  14 * it under the terms of the GNU General Public License as published by
  15 * the Free Software Foundation; either version 2 of the License, or
  16 * (at your option) any later version.
  17 *
  18 * This program is distributed in the hope that it will be useful,
  19 * but WITHOUT ANY WARRANTY; without even the implied warranty of
  20 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
  21 * GNU General Public License for more details.
  22 */
  23
  24#include <linux/res_counter.h>
  25#include <linux/memcontrol.h>
  26#include <linux/cgroup.h>
  27#include <linux/mm.h>
 
 
  28#include <linux/hugetlb.h>
  29#include <linux/pagemap.h>
 
  30#include <linux/smp.h>
  31#include <linux/page-flags.h>
  32#include <linux/backing-dev.h>
  33#include <linux/bit_spinlock.h>
  34#include <linux/rcupdate.h>
  35#include <linux/limits.h>
 
  36#include <linux/mutex.h>
  37#include <linux/rbtree.h>
  38#include <linux/slab.h>
  39#include <linux/swap.h>
  40#include <linux/swapops.h>
  41#include <linux/spinlock.h>
  42#include <linux/eventfd.h>
 
  43#include <linux/sort.h>
  44#include <linux/fs.h>
  45#include <linux/seq_file.h>
  46#include <linux/vmalloc.h>
  47#include <linux/mm_inline.h>
  48#include <linux/page_cgroup.h>
  49#include <linux/cpu.h>
  50#include <linux/oom.h>
 
 
 
 
 
  51#include "internal.h"
 
 
 
  52
  53#include <asm/uaccess.h>
  54
  55#include <trace/events/vmscan.h>
  56
  57struct cgroup_subsys mem_cgroup_subsys __read_mostly;
  58#define MEM_CGROUP_RECLAIM_RETRIES	5
 
  59struct mem_cgroup *root_mem_cgroup __read_mostly;
  60
  61#ifdef CONFIG_CGROUP_MEM_RES_CTLR_SWAP
  62/* Turned on only when memory cgroup is enabled && really_do_swap_account = 1 */
  63int do_swap_account __read_mostly;
  64
  65/* for remember boot option*/
  66#ifdef CONFIG_CGROUP_MEM_RES_CTLR_SWAP_ENABLED
  67static int really_do_swap_account __initdata = 1;
  68#else
  69static int really_do_swap_account __initdata = 0;
  70#endif
  71
 
 
 
  72#else
  73#define do_swap_account		(0)
  74#endif
  75
 
 
 
  76
  77/*
  78 * Statistics for memory cgroup.
  79 */
  80enum mem_cgroup_stat_index {
  81	/*
  82	 * For MEM_CONTAINER_TYPE_ALL, usage = pagecache + rss.
  83	 */
  84	MEM_CGROUP_STAT_CACHE, 	   /* # of pages charged as cache */
  85	MEM_CGROUP_STAT_RSS,	   /* # of pages charged as anon rss */
  86	MEM_CGROUP_STAT_FILE_MAPPED,  /* # of pages charged as file rss */
  87	MEM_CGROUP_STAT_SWAPOUT, /* # of pages, swapped out */
  88	MEM_CGROUP_STAT_DATA, /* end of data requires synchronization */
  89	MEM_CGROUP_ON_MOVE,	/* someone is moving account between groups */
  90	MEM_CGROUP_STAT_NSTATS,
  91};
  92
  93enum mem_cgroup_events_index {
  94	MEM_CGROUP_EVENTS_PGPGIN,	/* # of pages paged in */
  95	MEM_CGROUP_EVENTS_PGPGOUT,	/* # of pages paged out */
  96	MEM_CGROUP_EVENTS_COUNT,	/* # of pages paged in/out */
  97	MEM_CGROUP_EVENTS_PGFAULT,	/* # of page-faults */
  98	MEM_CGROUP_EVENTS_PGMAJFAULT,	/* # of major page-faults */
  99	MEM_CGROUP_EVENTS_NSTATS,
 100};
 101/*
 102 * Per memcg event counter is incremented at every pagein/pageout. With THP,
 103 * it will be incremated by the number of pages. This counter is used for
 104 * for trigger some periodic events. This is straightforward and better
 105 * than using jiffies etc. to handle periodic memcg event.
 106 */
 107enum mem_cgroup_events_target {
 108	MEM_CGROUP_TARGET_THRESH,
 109	MEM_CGROUP_TARGET_SOFTLIMIT,
 110	MEM_CGROUP_TARGET_NUMAINFO,
 111	MEM_CGROUP_NTARGETS,
 112};
 113#define THRESHOLDS_EVENTS_TARGET (128)
 114#define SOFTLIMIT_EVENTS_TARGET (1024)
 115#define NUMAINFO_EVENTS_TARGET	(1024)
 116
 117struct mem_cgroup_stat_cpu {
 118	long count[MEM_CGROUP_STAT_NSTATS];
 119	unsigned long events[MEM_CGROUP_EVENTS_NSTATS];
 120	unsigned long targets[MEM_CGROUP_NTARGETS];
 121};
 122
 123/*
 124 * per-zone information in memory controller.
 125 */
 126struct mem_cgroup_per_zone {
 127	/*
 128	 * spin_lock to protect the per cgroup LRU
 129	 */
 130	struct list_head	lists[NR_LRU_LISTS];
 131	unsigned long		count[NR_LRU_LISTS];
 132
 133	struct zone_reclaim_stat reclaim_stat;
 134	struct rb_node		tree_node;	/* RB tree node */
 135	unsigned long long	usage_in_excess;/* Set to the value by which */
 136						/* the soft limit is exceeded*/
 137	bool			on_tree;
 138	struct mem_cgroup	*mem;		/* Back pointer, we cannot */
 139						/* use container_of	   */
 140};
 141/* Macro for accessing counter */
 142#define MEM_CGROUP_ZSTAT(mz, idx)	((mz)->count[(idx)])
 143
 144struct mem_cgroup_per_node {
 145	struct mem_cgroup_per_zone zoneinfo[MAX_NR_ZONES];
 146};
 147
 148struct mem_cgroup_lru_info {
 149	struct mem_cgroup_per_node *nodeinfo[MAX_NUMNODES];
 150};
 151
 152/*
 153 * Cgroups above their limits are maintained in a RB-Tree, independent of
 154 * their hierarchy representation
 155 */
 156
 157struct mem_cgroup_tree_per_zone {
 158	struct rb_root rb_root;
 
 159	spinlock_t lock;
 160};
 161
 162struct mem_cgroup_tree_per_node {
 163	struct mem_cgroup_tree_per_zone rb_tree_per_zone[MAX_NR_ZONES];
 164};
 165
 166struct mem_cgroup_tree {
 167	struct mem_cgroup_tree_per_node *rb_tree_per_node[MAX_NUMNODES];
 168};
 169
 170static struct mem_cgroup_tree soft_limit_tree __read_mostly;
 171
 172struct mem_cgroup_threshold {
 173	struct eventfd_ctx *eventfd;
 174	u64 threshold;
 175};
 176
 177/* For threshold */
 178struct mem_cgroup_threshold_ary {
 179	/* An array index points to threshold just below usage. */
 180	int current_threshold;
 181	/* Size of entries[] */
 182	unsigned int size;
 183	/* Array of thresholds */
 184	struct mem_cgroup_threshold entries[0];
 185};
 186
 187struct mem_cgroup_thresholds {
 188	/* Primary thresholds array */
 189	struct mem_cgroup_threshold_ary *primary;
 190	/*
 191	 * Spare threshold array.
 192	 * This is needed to make mem_cgroup_unregister_event() "never fail".
 193	 * It must be able to store at least primary->size - 1 entries.
 194	 */
 195	struct mem_cgroup_threshold_ary *spare;
 196};
 197
 198/* for OOM */
 199struct mem_cgroup_eventfd_list {
 200	struct list_head list;
 201	struct eventfd_ctx *eventfd;
 202};
 203
 204static void mem_cgroup_threshold(struct mem_cgroup *mem);
 205static void mem_cgroup_oom_notify(struct mem_cgroup *mem);
 206
 207/*
 208 * The memory controller data structure. The memory controller controls both
 209 * page cache and RSS per cgroup. We would eventually like to provide
 210 * statistics based on the statistics developed by Rik Van Riel for clock-pro,
 211 * to help the administrator determine what knobs to tune.
 212 *
 213 * TODO: Add a water mark for the memory controller. Reclaim will begin when
 214 * we hit the water mark. May be even add a low water mark, such that
 215 * no reclaim occurs from a cgroup at it's low water mark, this is
 216 * a feature that will be implemented much later in the future.
 217 */
 218struct mem_cgroup {
 219	struct cgroup_subsys_state css;
 220	/*
 221	 * the counter to account for memory usage
 222	 */
 223	struct res_counter res;
 224	/*
 225	 * the counter to account for mem+swap usage.
 226	 */
 227	struct res_counter memsw;
 228	/*
 229	 * Per cgroup active and inactive list, similar to the
 230	 * per zone LRU lists.
 231	 */
 232	struct mem_cgroup_lru_info info;
 233	/*
 234	 * While reclaiming in a hierarchy, we cache the last child we
 235	 * reclaimed from.
 236	 */
 237	int last_scanned_child;
 238	int last_scanned_node;
 239#if MAX_NUMNODES > 1
 240	nodemask_t	scan_nodes;
 241	atomic_t	numainfo_events;
 242	atomic_t	numainfo_updating;
 243#endif
 244	/*
 245	 * Should the accounting and control be hierarchical, per subtree?
 246	 */
 247	bool use_hierarchy;
 248
 249	bool		oom_lock;
 250	atomic_t	under_oom;
 251
 252	atomic_t	refcnt;
 253
 254	int	swappiness;
 255	/* OOM-Killer disable */
 256	int		oom_kill_disable;
 257
 258	/* set when res.limit == memsw.limit */
 259	bool		memsw_is_minimum;
 260
 261	/* protect arrays of thresholds */
 262	struct mutex thresholds_lock;
 263
 264	/* thresholds for memory usage. RCU-protected */
 265	struct mem_cgroup_thresholds thresholds;
 266
 267	/* thresholds for mem+swap usage. RCU-protected */
 268	struct mem_cgroup_thresholds memsw_thresholds;
 269
 270	/* For oom notifier event fd */
 271	struct list_head oom_notify;
 272
 273	/*
 274	 * Should we move charges of a task when a task is moved into this
 275	 * mem_cgroup ? And what type of charges should we move ?
 276	 */
 277	unsigned long 	move_charge_at_immigrate;
 278	/*
 279	 * percpu counter.
 280	 */
 281	struct mem_cgroup_stat_cpu *stat;
 282	/*
 283	 * used when a cpu is offlined or other synchronizations
 284	 * See mem_cgroup_read_stat().
 285	 */
 286	struct mem_cgroup_stat_cpu nocpu_base;
 287	spinlock_t pcp_counter_lock;
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 288};
 289
 
 
 
 290/* Stuffs for move charges at task migration. */
 291/*
 292 * Types of charges to be moved. "move_charge_at_immitgrate" is treated as a
 293 * left-shifted bitmap of these types.
 294 */
 295enum move_type {
 296	MOVE_CHARGE_TYPE_ANON,	/* private anonymous page and swap of it */
 297	MOVE_CHARGE_TYPE_FILE,	/* file page(including tmpfs) and swap of it */
 298	NR_MOVE_TYPE,
 299};
 300
 301/* "mc" and its members are protected by cgroup_mutex */
 302static struct move_charge_struct {
 303	spinlock_t	  lock; /* for from, to */
 
 304	struct mem_cgroup *from;
 305	struct mem_cgroup *to;
 
 306	unsigned long precharge;
 307	unsigned long moved_charge;
 308	unsigned long moved_swap;
 309	struct task_struct *moving_task;	/* a task moving charges */
 310	wait_queue_head_t waitq;		/* a waitq for other context */
 311} mc = {
 312	.lock = __SPIN_LOCK_UNLOCKED(mc.lock),
 313	.waitq = __WAIT_QUEUE_HEAD_INITIALIZER(mc.waitq),
 314};
 315
 316static bool move_anon(void)
 317{
 318	return test_bit(MOVE_CHARGE_TYPE_ANON,
 319					&mc.to->move_charge_at_immigrate);
 320}
 321
 322static bool move_file(void)
 323{
 324	return test_bit(MOVE_CHARGE_TYPE_FILE,
 325					&mc.to->move_charge_at_immigrate);
 326}
 327
 328/*
 329 * Maximum loops in mem_cgroup_hierarchical_reclaim(), used for soft
 330 * limit reclaim to prevent infinite loops, if they ever occur.
 331 */
 332#define	MEM_CGROUP_MAX_RECLAIM_LOOPS		(100)
 333#define	MEM_CGROUP_MAX_SOFT_LIMIT_RECLAIM_LOOPS	(2)
 334
 335enum charge_type {
 336	MEM_CGROUP_CHARGE_TYPE_CACHE = 0,
 337	MEM_CGROUP_CHARGE_TYPE_MAPPED,
 338	MEM_CGROUP_CHARGE_TYPE_SHMEM,	/* used by page migration of shmem */
 339	MEM_CGROUP_CHARGE_TYPE_FORCE,	/* used by force_empty */
 340	MEM_CGROUP_CHARGE_TYPE_SWAPOUT,	/* for accounting swapcache */
 341	MEM_CGROUP_CHARGE_TYPE_DROP,	/* a page was unused swap cache */
 342	NR_CHARGE_TYPE,
 343};
 344
 345/* for encoding cft->private value on file */
 346#define _MEM			(0)
 347#define _MEMSWAP		(1)
 348#define _OOM_TYPE		(2)
 349#define MEMFILE_PRIVATE(x, val)	(((x) << 16) | (val))
 350#define MEMFILE_TYPE(val)	(((val) >> 16) & 0xffff)
 
 
 
 
 
 351#define MEMFILE_ATTR(val)	((val) & 0xffff)
 352/* Used for OOM nofiier */
 353#define OOM_CONTROL		(0)
 354
 355/*
 356 * Reclaim flags for mem_cgroup_hierarchical_reclaim
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 357 */
 358#define MEM_CGROUP_RECLAIM_NOSWAP_BIT	0x0
 359#define MEM_CGROUP_RECLAIM_NOSWAP	(1 << MEM_CGROUP_RECLAIM_NOSWAP_BIT)
 360#define MEM_CGROUP_RECLAIM_SHRINK_BIT	0x1
 361#define MEM_CGROUP_RECLAIM_SHRINK	(1 << MEM_CGROUP_RECLAIM_SHRINK_BIT)
 362#define MEM_CGROUP_RECLAIM_SOFT_BIT	0x2
 363#define MEM_CGROUP_RECLAIM_SOFT		(1 << MEM_CGROUP_RECLAIM_SOFT_BIT)
 364
 365static void mem_cgroup_get(struct mem_cgroup *mem);
 366static void mem_cgroup_put(struct mem_cgroup *mem);
 367static struct mem_cgroup *parent_mem_cgroup(struct mem_cgroup *mem);
 368static void drain_all_stock_async(struct mem_cgroup *mem);
 369
 370static struct mem_cgroup_per_zone *
 371mem_cgroup_zoneinfo(struct mem_cgroup *mem, int nid, int zid)
 372{
 373	return &mem->info.nodeinfo[nid]->zoneinfo[zid];
 374}
 375
 376struct cgroup_subsys_state *mem_cgroup_css(struct mem_cgroup *mem)
 
 377{
 378	return &mem->css;
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 379}
 380
 381static struct mem_cgroup_per_zone *
 382page_cgroup_zoneinfo(struct mem_cgroup *mem, struct page *page)
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 383{
 384	int nid = page_to_nid(page);
 385	int zid = page_zonenum(page);
 386
 387	return mem_cgroup_zoneinfo(mem, nid, zid);
 388}
 389
 390static struct mem_cgroup_tree_per_zone *
 391soft_limit_tree_node_zone(int nid, int zid)
 392{
 393	return &soft_limit_tree.rb_tree_per_node[nid]->rb_tree_per_zone[zid];
 394}
 395
 396static struct mem_cgroup_tree_per_zone *
 397soft_limit_tree_from_page(struct page *page)
 398{
 399	int nid = page_to_nid(page);
 400	int zid = page_zonenum(page);
 401
 402	return &soft_limit_tree.rb_tree_per_node[nid]->rb_tree_per_zone[zid];
 403}
 404
 405static void
 406__mem_cgroup_insert_exceeded(struct mem_cgroup *mem,
 407				struct mem_cgroup_per_zone *mz,
 408				struct mem_cgroup_tree_per_zone *mctz,
 409				unsigned long long new_usage_in_excess)
 410{
 411	struct rb_node **p = &mctz->rb_root.rb_node;
 412	struct rb_node *parent = NULL;
 413	struct mem_cgroup_per_zone *mz_node;
 
 414
 415	if (mz->on_tree)
 416		return;
 417
 418	mz->usage_in_excess = new_usage_in_excess;
 419	if (!mz->usage_in_excess)
 420		return;
 421	while (*p) {
 422		parent = *p;
 423		mz_node = rb_entry(parent, struct mem_cgroup_per_zone,
 424					tree_node);
 425		if (mz->usage_in_excess < mz_node->usage_in_excess)
 426			p = &(*p)->rb_left;
 
 
 
 427		/*
 428		 * We can't avoid mem cgroups that are over their soft
 429		 * limit by the same amount
 430		 */
 431		else if (mz->usage_in_excess >= mz_node->usage_in_excess)
 432			p = &(*p)->rb_right;
 433	}
 
 
 
 
 434	rb_link_node(&mz->tree_node, parent, p);
 435	rb_insert_color(&mz->tree_node, &mctz->rb_root);
 436	mz->on_tree = true;
 437}
 438
 439static void
 440__mem_cgroup_remove_exceeded(struct mem_cgroup *mem,
 441				struct mem_cgroup_per_zone *mz,
 442				struct mem_cgroup_tree_per_zone *mctz)
 443{
 444	if (!mz->on_tree)
 445		return;
 
 
 
 
 446	rb_erase(&mz->tree_node, &mctz->rb_root);
 447	mz->on_tree = false;
 448}
 449
 450static void
 451mem_cgroup_remove_exceeded(struct mem_cgroup *mem,
 452				struct mem_cgroup_per_zone *mz,
 453				struct mem_cgroup_tree_per_zone *mctz)
 454{
 455	spin_lock(&mctz->lock);
 456	__mem_cgroup_remove_exceeded(mem, mz, mctz);
 457	spin_unlock(&mctz->lock);
 
 
 458}
 459
 
 
 
 
 
 
 
 
 
 
 
 460
 461static void mem_cgroup_update_tree(struct mem_cgroup *mem, struct page *page)
 462{
 463	unsigned long long excess;
 464	struct mem_cgroup_per_zone *mz;
 465	struct mem_cgroup_tree_per_zone *mctz;
 466	int nid = page_to_nid(page);
 467	int zid = page_zonenum(page);
 468	mctz = soft_limit_tree_from_page(page);
 469
 
 
 
 470	/*
 471	 * Necessary to update all ancestors when hierarchy is used.
 472	 * because their event counter is not touched.
 473	 */
 474	for (; mem; mem = parent_mem_cgroup(mem)) {
 475		mz = mem_cgroup_zoneinfo(mem, nid, zid);
 476		excess = res_counter_soft_limit_excess(&mem->res);
 477		/*
 478		 * We have to update the tree if mz is on RB-tree or
 479		 * mem is over its softlimit.
 480		 */
 481		if (excess || mz->on_tree) {
 482			spin_lock(&mctz->lock);
 
 
 483			/* if on-tree, remove it */
 484			if (mz->on_tree)
 485				__mem_cgroup_remove_exceeded(mem, mz, mctz);
 486			/*
 487			 * Insert again. mz->usage_in_excess will be updated.
 488			 * If excess is 0, no tree ops.
 489			 */
 490			__mem_cgroup_insert_exceeded(mem, mz, mctz, excess);
 491			spin_unlock(&mctz->lock);
 492		}
 493	}
 494}
 495
 496static void mem_cgroup_remove_from_trees(struct mem_cgroup *mem)
 497{
 498	int node, zone;
 499	struct mem_cgroup_per_zone *mz;
 500	struct mem_cgroup_tree_per_zone *mctz;
 501
 502	for_each_node_state(node, N_POSSIBLE) {
 503		for (zone = 0; zone < MAX_NR_ZONES; zone++) {
 504			mz = mem_cgroup_zoneinfo(mem, node, zone);
 505			mctz = soft_limit_tree_node_zone(node, zone);
 506			mem_cgroup_remove_exceeded(mem, mz, mctz);
 507		}
 508	}
 509}
 510
 511static struct mem_cgroup_per_zone *
 512__mem_cgroup_largest_soft_limit_node(struct mem_cgroup_tree_per_zone *mctz)
 513{
 514	struct rb_node *rightmost = NULL;
 515	struct mem_cgroup_per_zone *mz;
 516
 517retry:
 518	mz = NULL;
 519	rightmost = rb_last(&mctz->rb_root);
 520	if (!rightmost)
 521		goto done;		/* Nothing to reclaim from */
 522
 523	mz = rb_entry(rightmost, struct mem_cgroup_per_zone, tree_node);
 
 524	/*
 525	 * Remove the node now but someone else can add it back,
 526	 * we will to add it back at the end of reclaim to its correct
 527	 * position in the tree.
 528	 */
 529	__mem_cgroup_remove_exceeded(mz->mem, mz, mctz);
 530	if (!res_counter_soft_limit_excess(&mz->mem->res) ||
 531		!css_tryget(&mz->mem->css))
 532		goto retry;
 533done:
 534	return mz;
 535}
 536
 537static struct mem_cgroup_per_zone *
 538mem_cgroup_largest_soft_limit_node(struct mem_cgroup_tree_per_zone *mctz)
 539{
 540	struct mem_cgroup_per_zone *mz;
 541
 542	spin_lock(&mctz->lock);
 543	mz = __mem_cgroup_largest_soft_limit_node(mctz);
 544	spin_unlock(&mctz->lock);
 545	return mz;
 546}
 547
 548/*
 549 * Implementation Note: reading percpu statistics for memcg.
 550 *
 551 * Both of vmstat[] and percpu_counter has threshold and do periodic
 552 * synchronization to implement "quick" read. There are trade-off between
 553 * reading cost and precision of value. Then, we may have a chance to implement
 554 * a periodic synchronizion of counter in memcg's counter.
 555 *
 556 * But this _read() function is used for user interface now. The user accounts
 557 * memory usage by memory cgroup and he _always_ requires exact value because
 558 * he accounts memory. Even if we provide quick-and-fuzzy read, we always
 559 * have to visit all online cpus and make sum. So, for now, unnecessary
 560 * synchronization is not implemented. (just implemented for cpu hotplug)
 561 *
 562 * If there are kernel internal actions which can make use of some not-exact
 563 * value, and reading all cpu value can be performance bottleneck in some
 564 * common workload, threashold and synchonization as vmstat[] should be
 565 * implemented.
 566 */
 567static long mem_cgroup_read_stat(struct mem_cgroup *mem,
 568				 enum mem_cgroup_stat_index idx)
 569{
 570	long val = 0;
 571	int cpu;
 572
 573	get_online_cpus();
 574	for_each_online_cpu(cpu)
 575		val += per_cpu(mem->stat->count[idx], cpu);
 576#ifdef CONFIG_HOTPLUG_CPU
 577	spin_lock(&mem->pcp_counter_lock);
 578	val += mem->nocpu_base.count[idx];
 579	spin_unlock(&mem->pcp_counter_lock);
 580#endif
 581	put_online_cpus();
 582	return val;
 583}
 584
 585static void mem_cgroup_swap_statistics(struct mem_cgroup *mem,
 586					 bool charge)
 587{
 588	int val = (charge) ? 1 : -1;
 589	this_cpu_add(mem->stat->count[MEM_CGROUP_STAT_SWAPOUT], val);
 
 
 
 
 
 
 
 
 
 
 
 
 590}
 591
 592void mem_cgroup_pgfault(struct mem_cgroup *mem, int val)
 
 593{
 594	this_cpu_add(mem->stat->events[MEM_CGROUP_EVENTS_PGFAULT], val);
 
 
 
 
 
 595}
 596
 597void mem_cgroup_pgmajfault(struct mem_cgroup *mem, int val)
 
 598{
 599	this_cpu_add(mem->stat->events[MEM_CGROUP_EVENTS_PGMAJFAULT], val);
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 600}
 601
 602static unsigned long mem_cgroup_read_events(struct mem_cgroup *mem,
 603					    enum mem_cgroup_events_index idx)
 
 
 
 
 
 
 
 
 
 
 604{
 605	unsigned long val = 0;
 606	int cpu;
 607
 608	for_each_online_cpu(cpu)
 609		val += per_cpu(mem->stat->events[idx], cpu);
 610#ifdef CONFIG_HOTPLUG_CPU
 611	spin_lock(&mem->pcp_counter_lock);
 612	val += mem->nocpu_base.events[idx];
 613	spin_unlock(&mem->pcp_counter_lock);
 614#endif
 615	return val;
 616}
 617
 618static void mem_cgroup_charge_statistics(struct mem_cgroup *mem,
 619					 bool file, int nr_pages)
 620{
 621	preempt_disable();
 
 
 622
 623	if (file)
 624		__this_cpu_add(mem->stat->count[MEM_CGROUP_STAT_CACHE], nr_pages);
 625	else
 626		__this_cpu_add(mem->stat->count[MEM_CGROUP_STAT_RSS], nr_pages);
 627
 628	/* pagein of a big page is an event. So, ignore page size */
 629	if (nr_pages > 0)
 630		__this_cpu_inc(mem->stat->events[MEM_CGROUP_EVENTS_PGPGIN]);
 631	else {
 632		__this_cpu_inc(mem->stat->events[MEM_CGROUP_EVENTS_PGPGOUT]);
 633		nr_pages = -nr_pages; /* for event */
 634	}
 
 
 635
 636	__this_cpu_add(mem->stat->events[MEM_CGROUP_EVENTS_COUNT], nr_pages);
 
 
 637
 638	preempt_enable();
 
 
 
 
 639}
 640
 641unsigned long
 642mem_cgroup_zone_nr_lru_pages(struct mem_cgroup *mem, int nid, int zid,
 643			unsigned int lru_mask)
 
 
 
 
 
 644{
 645	struct mem_cgroup_per_zone *mz;
 646	enum lru_list l;
 647	unsigned long ret = 0;
 648
 649	mz = mem_cgroup_zoneinfo(mem, nid, zid);
 
 
 
 
 
 650
 651	for_each_lru(l) {
 652		if (BIT(l) & lru_mask)
 653			ret += MEM_CGROUP_ZSTAT(mz, l);
 
 
 
 
 
 654	}
 655	return ret;
 656}
 657
 658static unsigned long
 659mem_cgroup_node_nr_lru_pages(struct mem_cgroup *mem,
 660			int nid, unsigned int lru_mask)
 661{
 662	u64 total = 0;
 663	int zid;
 664
 665	for (zid = 0; zid < MAX_NR_ZONES; zid++)
 666		total += mem_cgroup_zone_nr_lru_pages(mem, nid, zid, lru_mask);
 667
 668	return total;
 669}
 670
 671static unsigned long mem_cgroup_nr_lru_pages(struct mem_cgroup *mem,
 672			unsigned int lru_mask)
 673{
 674	int nid;
 675	u64 total = 0;
 676
 677	for_each_node_state(nid, N_HIGH_MEMORY)
 678		total += mem_cgroup_node_nr_lru_pages(mem, nid, lru_mask);
 679	return total;
 680}
 681
 682static bool __memcg_event_check(struct mem_cgroup *mem, int target)
 
 
 683{
 684	unsigned long val, next;
 
 
 
 
 
 
 685
 686	val = this_cpu_read(mem->stat->events[MEM_CGROUP_EVENTS_COUNT]);
 687	next = this_cpu_read(mem->stat->targets[target]);
 688	/* from time_after() in jiffies.h */
 689	return ((long)next - (long)val < 0);
 690}
 691
 692static void __mem_cgroup_target_update(struct mem_cgroup *mem, int target)
 
 693{
 694	unsigned long val, next;
 695
 696	val = this_cpu_read(mem->stat->events[MEM_CGROUP_EVENTS_COUNT]);
 697
 698	switch (target) {
 699	case MEM_CGROUP_TARGET_THRESH:
 700		next = val + THRESHOLDS_EVENTS_TARGET;
 701		break;
 702	case MEM_CGROUP_TARGET_SOFTLIMIT:
 703		next = val + SOFTLIMIT_EVENTS_TARGET;
 704		break;
 705	case MEM_CGROUP_TARGET_NUMAINFO:
 706		next = val + NUMAINFO_EVENTS_TARGET;
 707		break;
 708	default:
 709		return;
 
 
 710	}
 711
 712	this_cpu_write(mem->stat->targets[target], next);
 713}
 714
 715/*
 716 * Check events in order.
 717 *
 718 */
 719static void memcg_check_events(struct mem_cgroup *mem, struct page *page)
 720{
 721	/* threshold event is triggered in finer grain than soft limit */
 722	if (unlikely(__memcg_event_check(mem, MEM_CGROUP_TARGET_THRESH))) {
 723		mem_cgroup_threshold(mem);
 724		__mem_cgroup_target_update(mem, MEM_CGROUP_TARGET_THRESH);
 725		if (unlikely(__memcg_event_check(mem,
 726			     MEM_CGROUP_TARGET_SOFTLIMIT))) {
 727			mem_cgroup_update_tree(mem, page);
 728			__mem_cgroup_target_update(mem,
 729						   MEM_CGROUP_TARGET_SOFTLIMIT);
 730		}
 731#if MAX_NUMNODES > 1
 732		if (unlikely(__memcg_event_check(mem,
 733			MEM_CGROUP_TARGET_NUMAINFO))) {
 734			atomic_inc(&mem->numainfo_events);
 735			__mem_cgroup_target_update(mem,
 736				MEM_CGROUP_TARGET_NUMAINFO);
 737		}
 738#endif
 739	}
 740}
 741
 742static struct mem_cgroup *mem_cgroup_from_cont(struct cgroup *cont)
 743{
 744	return container_of(cgroup_subsys_state(cont,
 745				mem_cgroup_subsys_id), struct mem_cgroup,
 746				css);
 747}
 748
 749struct mem_cgroup *mem_cgroup_from_task(struct task_struct *p)
 750{
 751	/*
 752	 * mm_update_next_owner() may clear mm->owner to NULL
 753	 * if it races with swapoff, page migration, etc.
 754	 * So this can be called with p == NULL.
 755	 */
 756	if (unlikely(!p))
 757		return NULL;
 758
 759	return container_of(task_subsys_state(p, mem_cgroup_subsys_id),
 760				struct mem_cgroup, css);
 761}
 
 762
 763struct mem_cgroup *try_get_mem_cgroup_from_mm(struct mm_struct *mm)
 
 
 
 
 
 
 
 
 764{
 765	struct mem_cgroup *mem = NULL;
 766
 767	if (!mm)
 768		return NULL;
 769	/*
 770	 * Because we have no locks, mm->owner's may be being moved to other
 771	 * cgroup. We use css_tryget() here even if this looks
 772	 * pessimistic (rather than adding locks here).
 773	 */
 774	rcu_read_lock();
 775	do {
 776		mem = mem_cgroup_from_task(rcu_dereference(mm->owner));
 777		if (unlikely(!mem))
 778			break;
 779	} while (!css_tryget(&mem->css));
 
 
 
 
 
 
 
 
 
 780	rcu_read_unlock();
 781	return mem;
 782}
 
 783
 784/* The caller has to guarantee "mem" exists before calling this */
 785static struct mem_cgroup *mem_cgroup_start_loop(struct mem_cgroup *mem)
 
 
 
 
 
 
 786{
 787	struct cgroup_subsys_state *css;
 788	int found;
 789
 790	if (!mem) /* ROOT cgroup has the smallest ID */
 791		return root_mem_cgroup; /*css_put/get against root is ignored*/
 792	if (!mem->use_hierarchy) {
 793		if (css_tryget(&mem->css))
 794			return mem;
 795		return NULL;
 796	}
 797	rcu_read_lock();
 798	/*
 799	 * searching a memory cgroup which has the smallest ID under given
 800	 * ROOT cgroup. (ID >= 1)
 801	 */
 802	css = css_get_next(&mem_cgroup_subsys, 1, &mem->css, &found);
 803	if (css && css_tryget(css))
 804		mem = container_of(css, struct mem_cgroup, css);
 805	else
 806		mem = NULL;
 807	rcu_read_unlock();
 808	return mem;
 809}
 
 810
 811static struct mem_cgroup *mem_cgroup_get_next(struct mem_cgroup *iter,
 812					struct mem_cgroup *root,
 813					bool cond)
 
 814{
 815	int nextid = css_id(&iter->css) + 1;
 816	int found;
 817	int hierarchy_used;
 818	struct cgroup_subsys_state *css;
 819
 820	hierarchy_used = iter->use_hierarchy;
 
 
 
 
 
 
 
 
 
 
 821
 822	css_put(&iter->css);
 823	/* If no ROOT, walk all, ignore hierarchy */
 824	if (!cond || (root && !hierarchy_used))
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 825		return NULL;
 826
 827	if (!root)
 828		root = root_mem_cgroup;
 829
 830	do {
 831		iter = NULL;
 832		rcu_read_lock();
 833
 834		css = css_get_next(&mem_cgroup_subsys, nextid,
 835				&root->css, &found);
 836		if (css && css_tryget(css))
 837			iter = container_of(css, struct mem_cgroup, css);
 838		rcu_read_unlock();
 839		/* If css is NULL, no more cgroups will be found */
 840		nextid = found + 1;
 841	} while (css && !iter);
 842
 843	return iter;
 844}
 845/*
 846 * for_eacn_mem_cgroup_tree() for visiting all cgroup under tree. Please
 847 * be careful that "break" loop is not allowed. We have reference count.
 848 * Instead of that modify "cond" to be false and "continue" to exit the loop.
 849 */
 850#define for_each_mem_cgroup_tree_cond(iter, root, cond)	\
 851	for (iter = mem_cgroup_start_loop(root);\
 852	     iter != NULL;\
 853	     iter = mem_cgroup_get_next(iter, root, cond))
 854
 855#define for_each_mem_cgroup_tree(iter, root) \
 856	for_each_mem_cgroup_tree_cond(iter, root, true)
 857
 858#define for_each_mem_cgroup_all(iter) \
 859	for_each_mem_cgroup_tree_cond(iter, NULL, true)
 860
 
 
 861
 862static inline bool mem_cgroup_is_root(struct mem_cgroup *mem)
 863{
 864	return (mem == root_mem_cgroup);
 865}
 
 
 
 
 
 
 
 
 
 
 
 866
 867void mem_cgroup_count_vm_event(struct mm_struct *mm, enum vm_event_item idx)
 868{
 869	struct mem_cgroup *mem;
 870
 871	if (!mm)
 872		return;
 
 
 
 
 
 
 
 
 
 
 
 873
 874	rcu_read_lock();
 875	mem = mem_cgroup_from_task(rcu_dereference(mm->owner));
 876	if (unlikely(!mem))
 877		goto out;
 
 
 878
 879	switch (idx) {
 880	case PGMAJFAULT:
 881		mem_cgroup_pgmajfault(mem, 1);
 882		break;
 883	case PGFAULT:
 884		mem_cgroup_pgfault(mem, 1);
 885		break;
 886	default:
 887		BUG();
 888	}
 889out:
 890	rcu_read_unlock();
 891}
 892EXPORT_SYMBOL(mem_cgroup_count_vm_event);
 893
 894/*
 895 * Following LRU functions are allowed to be used without PCG_LOCK.
 896 * Operations are called by routine of global LRU independently from memcg.
 897 * What we have to take care of here is validness of pc->mem_cgroup.
 898 *
 899 * Changes to pc->mem_cgroup happens when
 900 * 1. charge
 901 * 2. moving account
 902 * In typical case, "charge" is done before add-to-lru. Exception is SwapCache.
 903 * It is added to LRU before charge.
 904 * If PCG_USED bit is not set, page_cgroup is not added to this private LRU.
 905 * When moving account, the page is not on LRU. It's isolated.
 906 */
 907
 908void mem_cgroup_del_lru_list(struct page *page, enum lru_list lru)
 909{
 910	struct page_cgroup *pc;
 911	struct mem_cgroup_per_zone *mz;
 912
 913	if (mem_cgroup_disabled())
 914		return;
 915	pc = lookup_page_cgroup(page);
 916	/* can happen while we handle swapcache. */
 917	if (!TestClearPageCgroupAcctLRU(pc))
 918		return;
 919	VM_BUG_ON(!pc->mem_cgroup);
 920	/*
 921	 * We don't check PCG_USED bit. It's cleared when the "page" is finally
 922	 * removed from global LRU.
 923	 */
 924	mz = page_cgroup_zoneinfo(pc->mem_cgroup, page);
 925	/* huge page split is done under lru_lock. so, we have no races. */
 926	MEM_CGROUP_ZSTAT(mz, lru) -= 1 << compound_order(page);
 927	if (mem_cgroup_is_root(pc->mem_cgroup))
 928		return;
 929	VM_BUG_ON(list_empty(&pc->lru));
 930	list_del_init(&pc->lru);
 931}
 932
 933void mem_cgroup_del_lru(struct page *page)
 934{
 935	mem_cgroup_del_lru_list(page, page_lru(page));
 936}
 937
 938/*
 939 * Writeback is about to end against a page which has been marked for immediate
 940 * reclaim.  If it still appears to be reclaimable, move it to the tail of the
 941 * inactive list.
 942 */
 943void mem_cgroup_rotate_reclaimable_page(struct page *page)
 944{
 945	struct mem_cgroup_per_zone *mz;
 946	struct page_cgroup *pc;
 947	enum lru_list lru = page_lru(page);
 948
 949	if (mem_cgroup_disabled())
 950		return;
 
 
 
 951
 952	pc = lookup_page_cgroup(page);
 953	/* unused or root page is not rotated. */
 954	if (!PageCgroupUsed(pc))
 955		return;
 956	/* Ensure pc->mem_cgroup is visible after reading PCG_USED. */
 957	smp_rmb();
 958	if (mem_cgroup_is_root(pc->mem_cgroup))
 959		return;
 960	mz = page_cgroup_zoneinfo(pc->mem_cgroup, page);
 961	list_move_tail(&pc->lru, &mz->lists[lru]);
 962}
 963
 964void mem_cgroup_rotate_lru_list(struct page *page, enum lru_list lru)
 
 
 
 
 
 
 965{
 966	struct mem_cgroup_per_zone *mz;
 967	struct page_cgroup *pc;
 968
 969	if (mem_cgroup_disabled())
 970		return;
 971
 972	pc = lookup_page_cgroup(page);
 973	/* unused or root page is not rotated. */
 974	if (!PageCgroupUsed(pc))
 975		return;
 976	/* Ensure pc->mem_cgroup is visible after reading PCG_USED. */
 977	smp_rmb();
 978	if (mem_cgroup_is_root(pc->mem_cgroup))
 979		return;
 980	mz = page_cgroup_zoneinfo(pc->mem_cgroup, page);
 981	list_move(&pc->lru, &mz->lists[lru]);
 982}
 983
 984void mem_cgroup_add_lru_list(struct page *page, enum lru_list lru)
 
 985{
 986	struct page_cgroup *pc;
 987	struct mem_cgroup_per_zone *mz;
 
 988
 989	if (mem_cgroup_disabled())
 990		return;
 991	pc = lookup_page_cgroup(page);
 992	VM_BUG_ON(PageCgroupAcctLRU(pc));
 993	if (!PageCgroupUsed(pc))
 994		return;
 995	/* Ensure pc->mem_cgroup is visible after reading PCG_USED. */
 996	smp_rmb();
 997	mz = page_cgroup_zoneinfo(pc->mem_cgroup, page);
 998	/* huge page split is done under lru_lock. so, we have no races. */
 999	MEM_CGROUP_ZSTAT(mz, lru) += 1 << compound_order(page);
1000	SetPageCgroupAcctLRU(pc);
1001	if (mem_cgroup_is_root(pc->mem_cgroup))
1002		return;
1003	list_add(&pc->lru, &mz->lists[lru]);
1004}
1005
1006/*
1007 * At handling SwapCache and other FUSE stuff, pc->mem_cgroup may be changed
1008 * while it's linked to lru because the page may be reused after it's fully
1009 * uncharged. To handle that, unlink page_cgroup from LRU when charge it again.
1010 * It's done under lock_page and expected that zone->lru_lock isnever held.
1011 */
1012static void mem_cgroup_lru_del_before_commit(struct page *page)
1013{
1014	unsigned long flags;
1015	struct zone *zone = page_zone(page);
1016	struct page_cgroup *pc = lookup_page_cgroup(page);
1017
1018	/*
1019	 * Doing this check without taking ->lru_lock seems wrong but this
1020	 * is safe. Because if page_cgroup's USED bit is unset, the page
1021	 * will not be added to any memcg's LRU. If page_cgroup's USED bit is
1022	 * set, the commit after this will fail, anyway.
1023	 * This all charge/uncharge is done under some mutual execustion.
1024	 * So, we don't need to taking care of changes in USED bit.
1025	 */
1026	if (likely(!PageLRU(page)))
1027		return;
1028
1029	spin_lock_irqsave(&zone->lru_lock, flags);
1030	/*
1031	 * Forget old LRU when this page_cgroup is *not* used. This Used bit
1032	 * is guarded by lock_page() because the page is SwapCache.
1033	 */
1034	if (!PageCgroupUsed(pc))
1035		mem_cgroup_del_lru_list(page, page_lru(page));
1036	spin_unlock_irqrestore(&zone->lru_lock, flags);
 
 
1037}
1038
1039static void mem_cgroup_lru_add_after_commit(struct page *page)
1040{
1041	unsigned long flags;
1042	struct zone *zone = page_zone(page);
1043	struct page_cgroup *pc = lookup_page_cgroup(page);
1044
1045	/* taking care of that the page is added to LRU while we commit it */
1046	if (likely(!PageLRU(page)))
1047		return;
1048	spin_lock_irqsave(&zone->lru_lock, flags);
1049	/* link when the page is linked to LRU but page_cgroup isn't */
1050	if (PageLRU(page) && !PageCgroupAcctLRU(pc))
1051		mem_cgroup_add_lru_list(page, page_lru(page));
1052	spin_unlock_irqrestore(&zone->lru_lock, flags);
1053}
1054
1055
1056void mem_cgroup_move_lists(struct page *page,
1057			   enum lru_list from, enum lru_list to)
1058{
1059	if (mem_cgroup_disabled())
1060		return;
1061	mem_cgroup_del_lru_list(page, from);
1062	mem_cgroup_add_lru_list(page, to);
1063}
1064
1065/*
1066 * Checks whether given mem is same or in the root_mem's
1067 * hierarchy subtree
1068 */
1069static bool mem_cgroup_same_or_subtree(const struct mem_cgroup *root_mem,
1070		struct mem_cgroup *mem)
1071{
1072	if (root_mem != mem) {
1073		return (root_mem->use_hierarchy &&
1074			css_is_ancestor(&mem->css, &root_mem->css));
1075	}
1076
1077	return true;
1078}
1079
1080int task_in_mem_cgroup(struct task_struct *task, const struct mem_cgroup *mem)
1081{
1082	int ret;
1083	struct mem_cgroup *curr = NULL;
1084	struct task_struct *p;
1085
1086	p = find_lock_task_mm(task);
1087	if (!p)
1088		return 0;
1089	curr = try_get_mem_cgroup_from_mm(p->mm);
1090	task_unlock(p);
1091	if (!curr)
1092		return 0;
1093	/*
1094	 * We should check use_hierarchy of "mem" not "curr". Because checking
1095	 * use_hierarchy of "curr" here make this function true if hierarchy is
1096	 * enabled in "curr" and "curr" is a child of "mem" in *cgroup*
1097	 * hierarchy(even if use_hierarchy is disabled in "mem").
1098	 */
1099	ret = mem_cgroup_same_or_subtree(mem, curr);
1100	css_put(&curr->css);
1101	return ret;
1102}
1103
1104static int calc_inactive_ratio(struct mem_cgroup *memcg, unsigned long *present_pages)
 
 
 
 
 
 
 
 
1105{
1106	unsigned long active;
1107	unsigned long inactive;
1108	unsigned long gb;
1109	unsigned long inactive_ratio;
1110
1111	inactive = mem_cgroup_nr_lru_pages(memcg, BIT(LRU_INACTIVE_ANON));
1112	active = mem_cgroup_nr_lru_pages(memcg, BIT(LRU_ACTIVE_ANON));
1113
1114	gb = (inactive + active) >> (30 - PAGE_SHIFT);
1115	if (gb)
1116		inactive_ratio = int_sqrt(10 * gb);
1117	else
1118		inactive_ratio = 1;
1119
1120	if (present_pages) {
1121		present_pages[0] = inactive;
1122		present_pages[1] = active;
1123	}
1124
1125	return inactive_ratio;
1126}
1127
1128int mem_cgroup_inactive_anon_is_low(struct mem_cgroup *memcg)
1129{
1130	unsigned long active;
1131	unsigned long inactive;
1132	unsigned long present_pages[2];
1133	unsigned long inactive_ratio;
1134
1135	inactive_ratio = calc_inactive_ratio(memcg, present_pages);
1136
1137	inactive = present_pages[0];
1138	active = present_pages[1];
1139
1140	if (inactive * inactive_ratio < active)
1141		return 1;
1142
1143	return 0;
1144}
1145
1146int mem_cgroup_inactive_file_is_low(struct mem_cgroup *memcg)
1147{
1148	unsigned long active;
1149	unsigned long inactive;
1150
1151	inactive = mem_cgroup_nr_lru_pages(memcg, BIT(LRU_INACTIVE_FILE));
1152	active = mem_cgroup_nr_lru_pages(memcg, BIT(LRU_ACTIVE_FILE));
1153
1154	return (active > inactive);
1155}
1156
1157struct zone_reclaim_stat *mem_cgroup_get_reclaim_stat(struct mem_cgroup *memcg,
1158						      struct zone *zone)
1159{
1160	int nid = zone_to_nid(zone);
1161	int zid = zone_idx(zone);
1162	struct mem_cgroup_per_zone *mz = mem_cgroup_zoneinfo(memcg, nid, zid);
1163
1164	return &mz->reclaim_stat;
 
 
 
 
 
 
 
 
 
 
1165}
1166
1167struct zone_reclaim_stat *
1168mem_cgroup_get_reclaim_stat_from_page(struct page *page)
1169{
1170	struct page_cgroup *pc;
1171	struct mem_cgroup_per_zone *mz;
 
 
 
 
 
 
 
 
 
 
 
 
1172
1173	if (mem_cgroup_disabled())
1174		return NULL;
1175
1176	pc = lookup_page_cgroup(page);
1177	if (!PageCgroupUsed(pc))
1178		return NULL;
1179	/* Ensure pc->mem_cgroup is visible after reading PCG_USED. */
1180	smp_rmb();
1181	mz = page_cgroup_zoneinfo(pc->mem_cgroup, page);
1182	return &mz->reclaim_stat;
1183}
1184
1185unsigned long mem_cgroup_isolate_pages(unsigned long nr_to_scan,
1186					struct list_head *dst,
1187					unsigned long *scanned, int order,
1188					int mode, struct zone *z,
1189					struct mem_cgroup *mem_cont,
1190					int active, int file)
1191{
1192	unsigned long nr_taken = 0;
1193	struct page *page;
1194	unsigned long scan;
1195	LIST_HEAD(pc_list);
1196	struct list_head *src;
1197	struct page_cgroup *pc, *tmp;
1198	int nid = zone_to_nid(z);
1199	int zid = zone_idx(z);
1200	struct mem_cgroup_per_zone *mz;
1201	int lru = LRU_FILE * file + active;
1202	int ret;
1203
1204	BUG_ON(!mem_cont);
1205	mz = mem_cgroup_zoneinfo(mem_cont, nid, zid);
1206	src = &mz->lists[lru];
1207
1208	scan = 0;
1209	list_for_each_entry_safe_reverse(pc, tmp, src, lru) {
1210		if (scan >= nr_to_scan)
1211			break;
1212
1213		if (unlikely(!PageCgroupUsed(pc)))
1214			continue;
1215
1216		page = lookup_cgroup_page(pc);
 
1217
1218		if (unlikely(!PageLRU(page)))
1219			continue;
1220
1221		scan++;
1222		ret = __isolate_lru_page(page, mode, file);
1223		switch (ret) {
1224		case 0:
1225			list_move(&page->lru, dst);
1226			mem_cgroup_del_lru(page);
1227			nr_taken += hpage_nr_pages(page);
1228			break;
1229		case -EBUSY:
1230			/* we don't affect global LRU but rotate in our LRU */
1231			mem_cgroup_rotate_lru_list(page, page_lru(page));
1232			break;
1233		default:
1234			break;
1235		}
1236	}
1237
1238	*scanned = scan;
1239
1240	trace_mm_vmscan_memcg_isolate(0, nr_to_scan, scan, nr_taken,
1241				      0, 0, 0, mode);
1242
1243	return nr_taken;
1244}
1245
1246#define mem_cgroup_from_res_counter(counter, member)	\
1247	container_of(counter, struct mem_cgroup, member)
1248
1249/**
1250 * mem_cgroup_margin - calculate chargeable space of a memory cgroup
1251 * @mem: the memory cgroup
1252 *
1253 * Returns the maximum amount of memory @mem can be charged with, in
1254 * pages.
1255 */
1256static unsigned long mem_cgroup_margin(struct mem_cgroup *mem)
1257{
1258	unsigned long long margin;
1259
1260	margin = res_counter_margin(&mem->res);
1261	if (do_swap_account)
1262		margin = min(margin, res_counter_margin(&mem->memsw));
1263	return margin >> PAGE_SHIFT;
1264}
1265
1266int mem_cgroup_swappiness(struct mem_cgroup *memcg)
1267{
1268	struct cgroup *cgrp = memcg->css.cgroup;
1269
1270	/* root ? */
1271	if (cgrp->parent == NULL)
1272		return vm_swappiness;
1273
1274	return memcg->swappiness;
1275}
1276
1277static void mem_cgroup_start_move(struct mem_cgroup *mem)
1278{
1279	int cpu;
1280
1281	get_online_cpus();
1282	spin_lock(&mem->pcp_counter_lock);
1283	for_each_online_cpu(cpu)
1284		per_cpu(mem->stat->count[MEM_CGROUP_ON_MOVE], cpu) += 1;
1285	mem->nocpu_base.count[MEM_CGROUP_ON_MOVE] += 1;
1286	spin_unlock(&mem->pcp_counter_lock);
1287	put_online_cpus();
 
 
 
 
 
 
 
 
1288
1289	synchronize_rcu();
1290}
1291
1292static void mem_cgroup_end_move(struct mem_cgroup *mem)
1293{
1294	int cpu;
1295
1296	if (!mem)
1297		return;
1298	get_online_cpus();
1299	spin_lock(&mem->pcp_counter_lock);
1300	for_each_online_cpu(cpu)
1301		per_cpu(mem->stat->count[MEM_CGROUP_ON_MOVE], cpu) -= 1;
1302	mem->nocpu_base.count[MEM_CGROUP_ON_MOVE] -= 1;
1303	spin_unlock(&mem->pcp_counter_lock);
1304	put_online_cpus();
1305}
1306/*
1307 * 2 routines for checking "mem" is under move_account() or not.
1308 *
1309 * mem_cgroup_stealed() - checking a cgroup is mc.from or not. This is used
1310 *			  for avoiding race in accounting. If true,
1311 *			  pc->mem_cgroup may be overwritten.
1312 *
1313 * mem_cgroup_under_move() - checking a cgroup is mc.from or mc.to or
1314 *			  under hierarchy of moving cgroups. This is for
1315 *			  waiting at hith-memory prressure caused by "move".
1316 */
1317
1318static bool mem_cgroup_stealed(struct mem_cgroup *mem)
1319{
1320	VM_BUG_ON(!rcu_read_lock_held());
1321	return this_cpu_read(mem->stat->count[MEM_CGROUP_ON_MOVE]) > 0;
1322}
1323
1324static bool mem_cgroup_under_move(struct mem_cgroup *mem)
1325{
1326	struct mem_cgroup *from;
1327	struct mem_cgroup *to;
1328	bool ret = false;
1329	/*
1330	 * Unlike task_move routines, we access mc.to, mc.from not under
1331	 * mutual exclusion by cgroup_mutex. Here, we take spinlock instead.
1332	 */
1333	spin_lock(&mc.lock);
1334	from = mc.from;
1335	to = mc.to;
1336	if (!from)
1337		goto unlock;
1338
1339	ret = mem_cgroup_same_or_subtree(mem, from)
1340		|| mem_cgroup_same_or_subtree(mem, to);
1341unlock:
1342	spin_unlock(&mc.lock);
1343	return ret;
1344}
1345
1346static bool mem_cgroup_wait_acct_move(struct mem_cgroup *mem)
1347{
1348	if (mc.moving_task && current != mc.moving_task) {
1349		if (mem_cgroup_under_move(mem)) {
1350			DEFINE_WAIT(wait);
1351			prepare_to_wait(&mc.waitq, &wait, TASK_INTERRUPTIBLE);
1352			/* moving charge context might have finished. */
1353			if (mc.moving_task)
1354				schedule();
1355			finish_wait(&mc.waitq, &wait);
1356			return true;
1357		}
1358	}
1359	return false;
1360}
1361
1362/**
1363 * mem_cgroup_print_oom_info: Called from OOM with tasklist_lock held in read mode.
1364 * @memcg: The memory cgroup that went over limit
1365 * @p: Task that is going to be killed
1366 *
1367 * NOTE: @memcg and @p's mem_cgroup can be different when hierarchy is
1368 * enabled
1369 */
1370void mem_cgroup_print_oom_info(struct mem_cgroup *memcg, struct task_struct *p)
1371{
1372	struct cgroup *task_cgrp;
1373	struct cgroup *mem_cgrp;
1374	/*
1375	 * Need a buffer in BSS, can't rely on allocations. The code relies
1376	 * on the assumption that OOM is serialized for memory controller.
1377	 * If this assumption is broken, revisit this code.
1378	 */
1379	static char memcg_name[PATH_MAX];
1380	int ret;
1381
1382	if (!memcg || !p)
1383		return;
1384
1385
1386	rcu_read_lock();
1387
1388	mem_cgrp = memcg->css.cgroup;
1389	task_cgrp = task_cgroup(p, mem_cgroup_subsys_id);
1390
1391	ret = cgroup_path(task_cgrp, memcg_name, PATH_MAX);
1392	if (ret < 0) {
1393		/*
1394		 * Unfortunately, we are unable to convert to a useful name
1395		 * But we'll still print out the usage information
1396		 */
1397		rcu_read_unlock();
1398		goto done;
1399	}
1400	rcu_read_unlock();
1401
1402	printk(KERN_INFO "Task in %s killed", memcg_name);
1403
1404	rcu_read_lock();
1405	ret = cgroup_path(mem_cgrp, memcg_name, PATH_MAX);
1406	if (ret < 0) {
1407		rcu_read_unlock();
1408		goto done;
1409	}
1410	rcu_read_unlock();
1411
1412	/*
1413	 * Continues from above, so we don't need an KERN_ level
 
 
 
 
 
 
 
1414	 */
1415	printk(KERN_CONT " as a result of limit of %s\n", memcg_name);
1416done:
1417
1418	printk(KERN_INFO "memory: usage %llukB, limit %llukB, failcnt %llu\n",
1419		res_counter_read_u64(&memcg->res, RES_USAGE) >> 10,
1420		res_counter_read_u64(&memcg->res, RES_LIMIT) >> 10,
1421		res_counter_read_u64(&memcg->res, RES_FAILCNT));
1422	printk(KERN_INFO "memory+swap: usage %llukB, limit %llukB, "
1423		"failcnt %llu\n",
1424		res_counter_read_u64(&memcg->memsw, RES_USAGE) >> 10,
1425		res_counter_read_u64(&memcg->memsw, RES_LIMIT) >> 10,
1426		res_counter_read_u64(&memcg->memsw, RES_FAILCNT));
1427}
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1428
1429/*
1430 * This function returns the number of memcg under hierarchy tree. Returns
1431 * 1(self count) if no children.
1432 */
1433static int mem_cgroup_count_children(struct mem_cgroup *mem)
1434{
1435	int num = 0;
1436	struct mem_cgroup *iter;
1437
1438	for_each_mem_cgroup_tree(iter, mem)
1439		num++;
1440	return num;
1441}
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1442
1443/*
1444 * Return the memory (and swap, if configured) limit for a memcg.
1445 */
1446u64 mem_cgroup_get_limit(struct mem_cgroup *memcg)
1447{
1448	u64 limit;
1449	u64 memsw;
1450
1451	limit = res_counter_read_u64(&memcg->res, RES_LIMIT);
1452	limit += total_swap_pages << PAGE_SHIFT;
1453
1454	memsw = res_counter_read_u64(&memcg->memsw, RES_LIMIT);
1455	/*
1456	 * If memsw is finite and limits the amount of swap space available
1457	 * to this memcg, return that limit.
1458	 */
1459	return min(limit, memsw);
1460}
1461
1462/*
1463 * Visit the first child (need not be the first child as per the ordering
1464 * of the cgroup list, since we track last_scanned_child) of @mem and use
1465 * that to reclaim free pages from.
 
 
 
 
 
1466 */
1467static struct mem_cgroup *
1468mem_cgroup_select_victim(struct mem_cgroup *root_mem)
1469{
1470	struct mem_cgroup *ret = NULL;
1471	struct cgroup_subsys_state *css;
1472	int nextid, found;
1473
1474	if (!root_mem->use_hierarchy) {
1475		css_get(&root_mem->css);
1476		ret = root_mem;
1477	}
1478
1479	while (!ret) {
1480		rcu_read_lock();
1481		nextid = root_mem->last_scanned_child + 1;
1482		css = css_get_next(&mem_cgroup_subsys, nextid, &root_mem->css,
1483				   &found);
1484		if (css && css_tryget(css))
1485			ret = container_of(css, struct mem_cgroup, css);
1486
1487		rcu_read_unlock();
1488		/* Updates scanning parameter */
1489		if (!css) {
1490			/* this means start scan from ID:1 */
1491			root_mem->last_scanned_child = 0;
1492		} else
1493			root_mem->last_scanned_child = found;
 
1494	}
1495
1496	return ret;
1497}
1498
1499/**
1500 * test_mem_cgroup_node_reclaimable
1501 * @mem: the target memcg
1502 * @nid: the node ID to be checked.
1503 * @noswap : specify true here if the user wants flle only information.
1504 *
1505 * This function returns whether the specified memcg contains any
1506 * reclaimable pages on a node. Returns true if there are any reclaimable
1507 * pages in the node.
1508 */
1509static bool test_mem_cgroup_node_reclaimable(struct mem_cgroup *mem,
1510		int nid, bool noswap)
1511{
1512	if (mem_cgroup_node_nr_lru_pages(mem, nid, LRU_ALL_FILE))
1513		return true;
1514	if (noswap || !total_swap_pages)
1515		return false;
1516	if (mem_cgroup_node_nr_lru_pages(mem, nid, LRU_ALL_ANON))
1517		return true;
1518	return false;
1519
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1520}
1521#if MAX_NUMNODES > 1
1522
1523/*
1524 * Always updating the nodemask is not very good - even if we have an empty
1525 * list or the wrong list here, we can start from some node and traverse all
1526 * nodes based on the zonelist. So update the list loosely once per 10 secs.
1527 *
1528 */
1529static void mem_cgroup_may_update_nodemask(struct mem_cgroup *mem)
1530{
1531	int nid;
1532	/*
1533	 * numainfo_events > 0 means there was at least NUMAINFO_EVENTS_TARGET
1534	 * pagein/pageout changes since the last update.
1535	 */
1536	if (!atomic_read(&mem->numainfo_events))
1537		return;
1538	if (atomic_inc_return(&mem->numainfo_updating) > 1)
1539		return;
1540
1541	/* make a nodemask where this memcg uses memory from */
1542	mem->scan_nodes = node_states[N_HIGH_MEMORY];
1543
1544	for_each_node_mask(nid, node_states[N_HIGH_MEMORY]) {
 
 
 
1545
1546		if (!test_mem_cgroup_node_reclaimable(mem, nid, false))
1547			node_clear(nid, mem->scan_nodes);
 
 
1548	}
1549
1550	atomic_set(&mem->numainfo_events, 0);
1551	atomic_set(&mem->numainfo_updating, 0);
1552}
1553
1554/*
1555 * Selecting a node where we start reclaim from. Because what we need is just
1556 * reducing usage counter, start from anywhere is O,K. Considering
1557 * memory reclaim from current node, there are pros. and cons.
1558 *
1559 * Freeing memory from current node means freeing memory from a node which
1560 * we'll use or we've used. So, it may make LRU bad. And if several threads
1561 * hit limits, it will see a contention on a node. But freeing from remote
1562 * node means more costs for memory reclaim because of memory latency.
1563 *
1564 * Now, we use round-robin. Better algorithm is welcomed.
1565 */
1566int mem_cgroup_select_victim_node(struct mem_cgroup *mem)
1567{
1568	int node;
1569
1570	mem_cgroup_may_update_nodemask(mem);
1571	node = mem->last_scanned_node;
1572
1573	node = next_node(node, mem->scan_nodes);
1574	if (node == MAX_NUMNODES)
1575		node = first_node(mem->scan_nodes);
1576	/*
1577	 * We call this when we hit limit, not when pages are added to LRU.
1578	 * No LRU may hold pages because all pages are UNEVICTABLE or
1579	 * memcg is too small and all pages are not on LRU. In that case,
1580	 * we use curret node.
1581	 */
1582	if (unlikely(node == MAX_NUMNODES))
1583		node = numa_node_id();
1584
1585	mem->last_scanned_node = node;
1586	return node;
1587}
1588
1589/*
1590 * Check all nodes whether it contains reclaimable pages or not.
1591 * For quick scan, we make use of scan_nodes. This will allow us to skip
1592 * unused nodes. But scan_nodes is lazily updated and may not cotain
1593 * enough new information. We need to do double check.
1594 */
1595bool mem_cgroup_reclaimable(struct mem_cgroup *mem, bool noswap)
1596{
1597	int nid;
 
 
 
 
 
 
 
1598
1599	/*
1600	 * quick check...making use of scan_node.
1601	 * We can skip unused nodes.
1602	 */
1603	if (!nodes_empty(mem->scan_nodes)) {
1604		for (nid = first_node(mem->scan_nodes);
1605		     nid < MAX_NUMNODES;
1606		     nid = next_node(nid, mem->scan_nodes)) {
1607
1608			if (test_mem_cgroup_node_reclaimable(mem, nid, noswap))
1609				return true;
1610		}
1611	}
1612	/*
1613	 * Check rest of nodes.
 
1614	 */
1615	for_each_node_state(nid, N_HIGH_MEMORY) {
1616		if (node_isset(nid, mem->scan_nodes))
1617			continue;
1618		if (test_mem_cgroup_node_reclaimable(mem, nid, noswap))
1619			return true;
1620	}
1621	return false;
1622}
1623
1624#else
1625int mem_cgroup_select_victim_node(struct mem_cgroup *mem)
1626{
1627	return 0;
1628}
1629
1630bool mem_cgroup_reclaimable(struct mem_cgroup *mem, bool noswap)
1631{
1632	return test_mem_cgroup_node_reclaimable(mem, 0, noswap);
1633}
1634#endif
1635
1636/*
1637 * Scan the hierarchy if needed to reclaim memory. We remember the last child
1638 * we reclaimed from, so that we don't end up penalizing one child extensively
1639 * based on its position in the children list.
1640 *
1641 * root_mem is the original ancestor that we've been reclaim from.
1642 *
1643 * We give up and return to the caller when we visit root_mem twice.
1644 * (other groups can be removed while we're walking....)
1645 *
1646 * If shrink==true, for avoiding to free too much, this returns immedieately.
1647 */
1648static int mem_cgroup_hierarchical_reclaim(struct mem_cgroup *root_mem,
1649						struct zone *zone,
1650						gfp_t gfp_mask,
1651						unsigned long reclaim_options,
1652						unsigned long *total_scanned)
1653{
1654	struct mem_cgroup *victim;
1655	int ret, total = 0;
1656	int loop = 0;
1657	bool noswap = reclaim_options & MEM_CGROUP_RECLAIM_NOSWAP;
1658	bool shrink = reclaim_options & MEM_CGROUP_RECLAIM_SHRINK;
1659	bool check_soft = reclaim_options & MEM_CGROUP_RECLAIM_SOFT;
1660	unsigned long excess;
1661	unsigned long nr_scanned;
 
 
 
1662
1663	excess = res_counter_soft_limit_excess(&root_mem->res) >> PAGE_SHIFT;
1664
1665	/* If memsw_is_minimum==1, swap-out is of-no-use. */
1666	if (!check_soft && !shrink && root_mem->memsw_is_minimum)
1667		noswap = true;
1668
1669	while (1) {
1670		victim = mem_cgroup_select_victim(root_mem);
1671		if (victim == root_mem) {
1672			loop++;
1673			/*
1674			 * We are not draining per cpu cached charges during
1675			 * soft limit reclaim  because global reclaim doesn't
1676			 * care about charges. It tries to free some memory and
1677			 * charges will not give any.
1678			 */
1679			if (!check_soft && loop >= 1)
1680				drain_all_stock_async(root_mem);
1681			if (loop >= 2) {
1682				/*
1683				 * If we have not been able to reclaim
1684				 * anything, it might because there are
1685				 * no reclaimable pages under this hierarchy
1686				 */
1687				if (!check_soft || !total) {
1688					css_put(&victim->css);
1689					break;
1690				}
1691				/*
1692				 * We want to do more targeted reclaim.
1693				 * excess >> 2 is not to excessive so as to
1694				 * reclaim too much, nor too less that we keep
1695				 * coming back to reclaim from this cgroup
1696				 */
1697				if (total >= (excess >> 2) ||
1698					(loop > MEM_CGROUP_MAX_RECLAIM_LOOPS)) {
1699					css_put(&victim->css);
1700					break;
1701				}
1702			}
1703		}
1704		if (!mem_cgroup_reclaimable(victim, noswap)) {
1705			/* this cgroup's local usage == 0 */
1706			css_put(&victim->css);
1707			continue;
1708		}
1709		/* we use swappiness of local cgroup */
1710		if (check_soft) {
1711			ret = mem_cgroup_shrink_node_zone(victim, gfp_mask,
1712				noswap, zone, &nr_scanned);
1713			*total_scanned += nr_scanned;
1714		} else
1715			ret = try_to_free_mem_cgroup_pages(victim, gfp_mask,
1716						noswap);
1717		css_put(&victim->css);
1718		/*
1719		 * At shrinking usage, we can't check we should stop here or
1720		 * reclaim more. It's depends on callers. last_scanned_child
1721		 * will work enough for keeping fairness under tree.
1722		 */
1723		if (shrink)
1724			return ret;
1725		total += ret;
1726		if (check_soft) {
1727			if (!res_counter_soft_limit_excess(&root_mem->res))
1728				return total;
1729		} else if (mem_cgroup_margin(root_mem))
1730			return total;
1731	}
 
1732	return total;
1733}
1734
 
 
 
 
 
 
 
 
1735/*
1736 * Check OOM-Killer is already running under our hierarchy.
1737 * If someone is running, return false.
1738 * Has to be called with memcg_oom_lock
1739 */
1740static bool mem_cgroup_oom_lock(struct mem_cgroup *mem)
1741{
1742	struct mem_cgroup *iter, *failed = NULL;
1743	bool cond = true;
1744
1745	for_each_mem_cgroup_tree_cond(iter, mem, cond) {
 
 
1746		if (iter->oom_lock) {
1747			/*
1748			 * this subtree of our hierarchy is already locked
1749			 * so we cannot give a lock.
1750			 */
1751			failed = iter;
1752			cond = false;
 
1753		} else
1754			iter->oom_lock = true;
1755	}
1756
1757	if (!failed)
1758		return true;
1759
1760	/*
1761	 * OK, we failed to lock the whole subtree so we have to clean up
1762	 * what we set up to the failing subtree
1763	 */
1764	cond = true;
1765	for_each_mem_cgroup_tree_cond(iter, mem, cond) {
1766		if (iter == failed) {
1767			cond = false;
1768			continue;
1769		}
1770		iter->oom_lock = false;
1771	}
1772	return false;
 
 
 
1773}
1774
1775/*
1776 * Has to be called with memcg_oom_lock
1777 */
1778static int mem_cgroup_oom_unlock(struct mem_cgroup *mem)
1779{
1780	struct mem_cgroup *iter;
1781
1782	for_each_mem_cgroup_tree(iter, mem)
 
 
1783		iter->oom_lock = false;
1784	return 0;
1785}
1786
1787static void mem_cgroup_mark_under_oom(struct mem_cgroup *mem)
1788{
1789	struct mem_cgroup *iter;
1790
1791	for_each_mem_cgroup_tree(iter, mem)
1792		atomic_inc(&iter->under_oom);
 
 
1793}
1794
1795static void mem_cgroup_unmark_under_oom(struct mem_cgroup *mem)
1796{
1797	struct mem_cgroup *iter;
1798
1799	/*
1800	 * When a new child is created while the hierarchy is under oom,
1801	 * mem_cgroup_oom_lock() may not be called. We have to use
1802	 * atomic_add_unless() here.
1803	 */
1804	for_each_mem_cgroup_tree(iter, mem)
1805		atomic_add_unless(&iter->under_oom, -1, 0);
 
 
 
1806}
1807
1808static DEFINE_SPINLOCK(memcg_oom_lock);
1809static DECLARE_WAIT_QUEUE_HEAD(memcg_oom_waitq);
1810
1811struct oom_wait_info {
1812	struct mem_cgroup *mem;
1813	wait_queue_t	wait;
1814};
1815
1816static int memcg_oom_wake_function(wait_queue_t *wait,
1817	unsigned mode, int sync, void *arg)
1818{
1819	struct mem_cgroup *wake_mem = (struct mem_cgroup *)arg,
1820			  *oom_wait_mem;
1821	struct oom_wait_info *oom_wait_info;
1822
1823	oom_wait_info = container_of(wait, struct oom_wait_info, wait);
1824	oom_wait_mem = oom_wait_info->mem;
1825
1826	/*
1827	 * Both of oom_wait_info->mem and wake_mem are stable under us.
1828	 * Then we can use css_is_ancestor without taking care of RCU.
1829	 */
1830	if (!mem_cgroup_same_or_subtree(oom_wait_mem, wake_mem)
1831			&& !mem_cgroup_same_or_subtree(wake_mem, oom_wait_mem))
1832		return 0;
1833	return autoremove_wake_function(wait, mode, sync, arg);
1834}
1835
1836static void memcg_wakeup_oom(struct mem_cgroup *mem)
1837{
1838	/* for filtering, pass "mem" as argument. */
1839	__wake_up(&memcg_oom_waitq, TASK_NORMAL, 0, mem);
 
 
 
 
 
 
 
 
1840}
1841
1842static void memcg_oom_recover(struct mem_cgroup *mem)
 
 
 
 
 
 
 
1843{
1844	if (mem && atomic_read(&mem->under_oom))
1845		memcg_wakeup_oom(mem);
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1846}
1847
1848/*
1849 * try to call OOM killer. returns false if we should exit memory-reclaim loop.
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1850 */
1851bool mem_cgroup_handle_oom(struct mem_cgroup *mem, gfp_t mask)
1852{
 
1853	struct oom_wait_info owait;
1854	bool locked, need_to_kill;
 
 
 
 
 
 
 
1855
1856	owait.mem = mem;
1857	owait.wait.flags = 0;
1858	owait.wait.func = memcg_oom_wake_function;
1859	owait.wait.private = current;
1860	INIT_LIST_HEAD(&owait.wait.task_list);
1861	need_to_kill = true;
1862	mem_cgroup_mark_under_oom(mem);
1863
1864	/* At first, try to OOM lock hierarchy under mem.*/
1865	spin_lock(&memcg_oom_lock);
1866	locked = mem_cgroup_oom_lock(mem);
1867	/*
1868	 * Even if signal_pending(), we can't quit charge() loop without
1869	 * accounting. So, UNINTERRUPTIBLE is appropriate. But SIGKILL
1870	 * under OOM is always welcomed, use TASK_KILLABLE here.
1871	 */
1872	prepare_to_wait(&memcg_oom_waitq, &owait.wait, TASK_KILLABLE);
1873	if (!locked || mem->oom_kill_disable)
1874		need_to_kill = false;
 
 
1875	if (locked)
1876		mem_cgroup_oom_notify(mem);
1877	spin_unlock(&memcg_oom_lock);
1878
1879	if (need_to_kill) {
 
1880		finish_wait(&memcg_oom_waitq, &owait.wait);
1881		mem_cgroup_out_of_memory(mem, mask);
 
1882	} else {
1883		schedule();
 
1884		finish_wait(&memcg_oom_waitq, &owait.wait);
1885	}
1886	spin_lock(&memcg_oom_lock);
1887	if (locked)
1888		mem_cgroup_oom_unlock(mem);
1889	memcg_wakeup_oom(mem);
1890	spin_unlock(&memcg_oom_lock);
1891
1892	mem_cgroup_unmark_under_oom(mem);
1893
1894	if (test_thread_flag(TIF_MEMDIE) || fatal_signal_pending(current))
1895		return false;
1896	/* Give chance to dying process */
1897	schedule_timeout(1);
 
 
 
 
 
 
 
 
1898	return true;
1899}
1900
1901/*
1902 * Currently used to update mapped file statistics, but the routine can be
1903 * generalized to update other statistics as well.
1904 *
1905 * Notes: Race condition
1906 *
1907 * We usually use page_cgroup_lock() for accessing page_cgroup member but
1908 * it tends to be costly. But considering some conditions, we doesn't need
1909 * to do so _always_.
1910 *
1911 * Considering "charge", lock_page_cgroup() is not required because all
1912 * file-stat operations happen after a page is attached to radix-tree. There
1913 * are no race with "charge".
1914 *
1915 * Considering "uncharge", we know that memcg doesn't clear pc->mem_cgroup
1916 * at "uncharge" intentionally. So, we always see valid pc->mem_cgroup even
1917 * if there are race with "uncharge". Statistics itself is properly handled
1918 * by flags.
1919 *
1920 * Considering "move", this is an only case we see a race. To make the race
1921 * small, we check MEM_CGROUP_ON_MOVE percpu value and detect there are
1922 * possibility of race condition. If there is, we take a lock.
1923 */
1924
1925void mem_cgroup_update_page_stat(struct page *page,
1926				 enum mem_cgroup_page_stat_item idx, int val)
1927{
1928	struct mem_cgroup *mem;
1929	struct page_cgroup *pc = lookup_page_cgroup(page);
1930	bool need_unlock = false;
1931	unsigned long uninitialized_var(flags);
1932
1933	if (unlikely(!pc))
1934		return;
 
 
 
1935
1936	rcu_read_lock();
1937	mem = pc->mem_cgroup;
1938	if (unlikely(!mem || !PageCgroupUsed(pc)))
 
1939		goto out;
1940	/* pc->mem_cgroup is unstable ? */
1941	if (unlikely(mem_cgroup_stealed(mem)) || PageTransHuge(page)) {
1942		/* take a lock against to access pc->mem_cgroup */
1943		move_lock_page_cgroup(pc, &flags);
1944		need_unlock = true;
1945		mem = pc->mem_cgroup;
1946		if (!mem || !PageCgroupUsed(pc))
1947			goto out;
 
 
 
 
 
 
 
 
 
 
 
 
1948	}
1949
1950	switch (idx) {
1951	case MEMCG_NR_FILE_MAPPED:
1952		if (val > 0)
1953			SetPageCgroupFileMapped(pc);
1954		else if (!page_mapped(page))
1955			ClearPageCgroupFileMapped(pc);
1956		idx = MEM_CGROUP_STAT_FILE_MAPPED;
1957		break;
1958	default:
1959		BUG();
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1960	}
1961
1962	this_cpu_add(mem->stat->count[idx], val);
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1963
1964out:
1965	if (unlikely(need_unlock))
1966		move_unlock_page_cgroup(pc, &flags);
1967	rcu_read_unlock();
1968	return;
1969}
1970EXPORT_SYMBOL(mem_cgroup_update_page_stat);
1971
1972/*
1973 * size of first charge trial. "32" comes from vmscan.c's magic value.
1974 * TODO: maybe necessary to use big numbers in big irons.
1975 */
1976#define CHARGE_BATCH	32U
 
 
 
 
 
 
 
1977struct memcg_stock_pcp {
1978	struct mem_cgroup *cached; /* this never be root cgroup */
1979	unsigned int nr_pages;
 
 
 
 
 
 
1980	struct work_struct work;
1981	unsigned long flags;
1982#define FLUSHING_CACHED_CHARGE	(0)
1983};
1984static DEFINE_PER_CPU(struct memcg_stock_pcp, memcg_stock);
1985static DEFINE_MUTEX(percpu_charge_mutex);
1986
1987/*
1988 * Try to consume stocked charge on this cpu. If success, one page is consumed
1989 * from local stock and true is returned. If the stock is 0 or charges from a
1990 * cgroup which is not current target, returns false. This stock will be
1991 * refilled.
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1992 */
1993static bool consume_stock(struct mem_cgroup *mem)
1994{
1995	struct memcg_stock_pcp *stock;
1996	bool ret = true;
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1997
1998	stock = &get_cpu_var(memcg_stock);
1999	if (mem == stock->cached && stock->nr_pages)
2000		stock->nr_pages--;
2001	else /* need to call res_counter_charge */
2002		ret = false;
2003	put_cpu_var(memcg_stock);
2004	return ret;
2005}
2006
2007/*
2008 * Returns stocks cached in percpu to res_counter and reset cached information.
2009 */
2010static void drain_stock(struct memcg_stock_pcp *stock)
2011{
2012	struct mem_cgroup *old = stock->cached;
2013
2014	if (stock->nr_pages) {
2015		unsigned long bytes = stock->nr_pages * PAGE_SIZE;
2016
2017		res_counter_uncharge(&old->res, bytes);
2018		if (do_swap_account)
2019			res_counter_uncharge(&old->memsw, bytes);
 
2020		stock->nr_pages = 0;
2021	}
 
 
2022	stock->cached = NULL;
2023}
2024
2025/*
2026 * This must be called under preempt disabled or must be called by
2027 * a thread which is pinned to local cpu.
2028 */
2029static void drain_local_stock(struct work_struct *dummy)
2030{
2031	struct memcg_stock_pcp *stock = &__get_cpu_var(memcg_stock);
 
 
 
 
 
 
 
 
 
 
2032	drain_stock(stock);
2033	clear_bit(FLUSHING_CACHED_CHARGE, &stock->flags);
 
 
2034}
2035
2036/*
2037 * Cache charges(val) which is from res_counter, to local per_cpu area.
2038 * This will be consumed by consume_stock() function, later.
2039 */
2040static void refill_stock(struct mem_cgroup *mem, unsigned int nr_pages)
2041{
2042	struct memcg_stock_pcp *stock = &get_cpu_var(memcg_stock);
 
 
 
2043
2044	if (stock->cached != mem) { /* reset if necessary */
 
2045		drain_stock(stock);
2046		stock->cached = mem;
 
2047	}
2048	stock->nr_pages += nr_pages;
2049	put_cpu_var(memcg_stock);
 
 
 
 
2050}
2051
2052/*
2053 * Drains all per-CPU charge caches for given root_mem resp. subtree
2054 * of the hierarchy under it. sync flag says whether we should block
2055 * until the work is done.
2056 */
2057static void drain_all_stock(struct mem_cgroup *root_mem, bool sync)
2058{
2059	int cpu, curcpu;
2060
2061	/* Notify other cpus that system-wide "drain" is running */
2062	get_online_cpus();
 
 
 
 
 
 
 
2063	curcpu = get_cpu();
2064	for_each_online_cpu(cpu) {
2065		struct memcg_stock_pcp *stock = &per_cpu(memcg_stock, cpu);
2066		struct mem_cgroup *mem;
 
2067
2068		mem = stock->cached;
2069		if (!mem || !stock->nr_pages)
2070			continue;
2071		if (!mem_cgroup_same_or_subtree(root_mem, mem))
2072			continue;
2073		if (!test_and_set_bit(FLUSHING_CACHED_CHARGE, &stock->flags)) {
 
 
 
 
 
2074			if (cpu == curcpu)
2075				drain_local_stock(&stock->work);
2076			else
2077				schedule_work_on(cpu, &stock->work);
2078		}
2079	}
2080	put_cpu();
 
 
2081
2082	if (!sync)
2083		goto out;
 
 
2084
2085	for_each_online_cpu(cpu) {
2086		struct memcg_stock_pcp *stock = &per_cpu(memcg_stock, cpu);
2087		if (test_bit(FLUSHING_CACHED_CHARGE, &stock->flags))
2088			flush_work(&stock->work);
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
2089	}
2090out:
2091 	put_online_cpus();
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
2092}
2093
2094/*
2095 * Tries to drain stocked charges in other cpus. This function is asynchronous
2096 * and just put a work per cpu for draining localy on each cpu. Caller can
2097 * expects some charges will be back to res_counter later but cannot wait for
2098 * it.
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
2099 */
2100static void drain_all_stock_async(struct mem_cgroup *root_mem)
 
 
 
2101{
 
 
 
 
 
2102	/*
2103	 * If someone calls draining, avoid adding more kworker runs.
 
2104	 */
2105	if (!mutex_trylock(&percpu_charge_mutex))
2106		return;
2107	drain_all_stock(root_mem, false);
2108	mutex_unlock(&percpu_charge_mutex);
 
2109}
2110
2111/* This is a synchronous drain interface. */
2112static void drain_all_stock_sync(struct mem_cgroup *root_mem)
2113{
2114	/* called when force_empty is called */
2115	mutex_lock(&percpu_charge_mutex);
2116	drain_all_stock(root_mem, true);
2117	mutex_unlock(&percpu_charge_mutex);
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
2118}
2119
2120/*
2121 * This function drains percpu counter value from DEAD cpu and
2122 * move it to local cpu. Note that this function can be preempted.
2123 */
2124static void mem_cgroup_drain_pcp_counter(struct mem_cgroup *mem, int cpu)
 
 
2125{
2126	int i;
2127
2128	spin_lock(&mem->pcp_counter_lock);
2129	for (i = 0; i < MEM_CGROUP_STAT_DATA; i++) {
2130		long x = per_cpu(mem->stat->count[i], cpu);
2131
2132		per_cpu(mem->stat->count[i], cpu) = 0;
2133		mem->nocpu_base.count[i] += x;
2134	}
2135	for (i = 0; i < MEM_CGROUP_EVENTS_NSTATS; i++) {
2136		unsigned long x = per_cpu(mem->stat->events[i], cpu);
 
 
 
 
 
 
2137
2138		per_cpu(mem->stat->events[i], cpu) = 0;
2139		mem->nocpu_base.events[i] += x;
2140	}
2141	/* need to clear ON_MOVE value, works as a kind of lock. */
2142	per_cpu(mem->stat->count[MEM_CGROUP_ON_MOVE], cpu) = 0;
2143	spin_unlock(&mem->pcp_counter_lock);
 
 
 
2144}
2145
2146static void synchronize_mem_cgroup_on_move(struct mem_cgroup *mem, int cpu)
 
 
 
 
2147{
2148	int idx = MEM_CGROUP_ON_MOVE;
 
 
 
 
 
 
2149
2150	spin_lock(&mem->pcp_counter_lock);
2151	per_cpu(mem->stat->count[idx], cpu) = mem->nocpu_base.count[idx];
2152	spin_unlock(&mem->pcp_counter_lock);
2153}
2154
2155static int __cpuinit memcg_cpu_hotplug_callback(struct notifier_block *nb,
2156					unsigned long action,
2157					void *hcpu)
2158{
2159	int cpu = (unsigned long)hcpu;
2160	struct memcg_stock_pcp *stock;
2161	struct mem_cgroup *iter;
2162
2163	if ((action == CPU_ONLINE)) {
2164		for_each_mem_cgroup_all(iter)
2165			synchronize_mem_cgroup_on_move(iter, cpu);
2166		return NOTIFY_OK;
2167	}
 
 
 
 
 
 
 
 
2168
2169	if ((action != CPU_DEAD) || action != CPU_DEAD_FROZEN)
2170		return NOTIFY_OK;
 
 
 
 
2171
2172	for_each_mem_cgroup_all(iter)
2173		mem_cgroup_drain_pcp_counter(iter, cpu);
2174
2175	stock = &per_cpu(memcg_stock, cpu);
2176	drain_stock(stock);
2177	return NOTIFY_OK;
2178}
 
 
2179
 
 
 
 
 
 
 
 
2180
2181/* See __mem_cgroup_try_charge() for details */
2182enum {
2183	CHARGE_OK,		/* success */
2184	CHARGE_RETRY,		/* need to retry but retry is not bad */
2185	CHARGE_NOMEM,		/* we can't do more. return -ENOMEM */
2186	CHARGE_WOULDBLOCK,	/* GFP_WAIT wasn't set and no enough res. */
2187	CHARGE_OOM_DIE,		/* the current is killed because of OOM */
2188};
 
2189
2190static int mem_cgroup_do_charge(struct mem_cgroup *mem, gfp_t gfp_mask,
2191				unsigned int nr_pages, bool oom_check)
 
 
 
 
 
 
 
 
 
 
 
 
 
2192{
2193	unsigned long csize = nr_pages * PAGE_SIZE;
 
2194	struct mem_cgroup *mem_over_limit;
2195	struct res_counter *fail_res;
2196	unsigned long flags = 0;
2197	int ret;
 
 
 
2198
2199	ret = res_counter_charge(&mem->res, csize, &fail_res);
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
2200
2201	if (likely(!ret)) {
2202		if (!do_swap_account)
2203			return CHARGE_OK;
2204		ret = res_counter_charge(&mem->memsw, csize, &fail_res);
2205		if (likely(!ret))
2206			return CHARGE_OK;
2207
2208		res_counter_uncharge(&mem->res, csize);
2209		mem_over_limit = mem_cgroup_from_res_counter(fail_res, memsw);
2210		flags |= MEM_CGROUP_RECLAIM_NOSWAP;
2211	} else
2212		mem_over_limit = mem_cgroup_from_res_counter(fail_res, res);
2213	/*
2214	 * nr_pages can be either a huge page (HPAGE_PMD_NR), a batch
2215	 * of regular pages (CHARGE_BATCH), or a single regular page (1).
2216	 *
2217	 * Never reclaim on behalf of optional batching, retry with a
2218	 * single page instead.
2219	 */
2220	if (nr_pages == CHARGE_BATCH)
2221		return CHARGE_RETRY;
2222
2223	if (!(gfp_mask & __GFP_WAIT))
2224		return CHARGE_WOULDBLOCK;
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
2225
2226	ret = mem_cgroup_hierarchical_reclaim(mem_over_limit, NULL,
2227					      gfp_mask, flags, NULL);
2228	if (mem_cgroup_margin(mem_over_limit) >= nr_pages)
2229		return CHARGE_RETRY;
 
 
 
 
 
 
 
 
 
2230	/*
2231	 * Even though the limit is exceeded at this point, reclaim
2232	 * may have been able to free some pages.  Retry the charge
2233	 * before killing the task.
2234	 *
2235	 * Only for regular pages, though: huge pages are rather
2236	 * unlikely to succeed so close to the limit, and we fall back
2237	 * to regular pages anyway in case of failure.
2238	 */
2239	if (nr_pages == 1 && ret)
2240		return CHARGE_RETRY;
2241
2242	/*
2243	 * At task move, charge accounts can be doubly counted. So, it's
2244	 * better to wait until the end of task_move if something is going on.
2245	 */
2246	if (mem_cgroup_wait_acct_move(mem_over_limit))
2247		return CHARGE_RETRY;
2248
2249	/* If we don't need to call oom-killer at el, return immediately */
2250	if (!oom_check)
2251		return CHARGE_NOMEM;
2252	/* check OOM */
2253	if (!mem_cgroup_handle_oom(mem_over_limit, gfp_mask))
2254		return CHARGE_OOM_DIE;
2255
2256	return CHARGE_RETRY;
2257}
2258
2259/*
2260 * Unlike exported interface, "oom" parameter is added. if oom==true,
2261 * oom-killer can be invoked.
2262 */
2263static int __mem_cgroup_try_charge(struct mm_struct *mm,
2264				   gfp_t gfp_mask,
2265				   unsigned int nr_pages,
2266				   struct mem_cgroup **memcg,
2267				   bool oom)
2268{
2269	unsigned int batch = max(CHARGE_BATCH, nr_pages);
2270	int nr_oom_retries = MEM_CGROUP_RECLAIM_RETRIES;
2271	struct mem_cgroup *mem = NULL;
2272	int ret;
2273
2274	/*
2275	 * Unlike gloval-vm's OOM-kill, we're not in memory shortage
2276	 * in system level. So, allow to go ahead dying process in addition to
2277	 * MEMDIE process.
2278	 */
2279	if (unlikely(test_thread_flag(TIF_MEMDIE)
2280		     || fatal_signal_pending(current)))
2281		goto bypass;
2282
2283	/*
2284	 * We always charge the cgroup the mm_struct belongs to.
2285	 * The mm_struct's mem_cgroup changes on task migration if the
2286	 * thread group leader migrates. It's possible that mm is not
2287	 * set, if so charge the init_mm (happens for pagecache usage).
2288	 */
2289	if (!*memcg && !mm)
2290		goto bypass;
2291again:
2292	if (*memcg) { /* css should be a valid one */
2293		mem = *memcg;
2294		VM_BUG_ON(css_is_removed(&mem->css));
2295		if (mem_cgroup_is_root(mem))
2296			goto done;
2297		if (nr_pages == 1 && consume_stock(mem))
2298			goto done;
2299		css_get(&mem->css);
2300	} else {
2301		struct task_struct *p;
2302
2303		rcu_read_lock();
2304		p = rcu_dereference(mm->owner);
2305		/*
2306		 * Because we don't have task_lock(), "p" can exit.
2307		 * In that case, "mem" can point to root or p can be NULL with
2308		 * race with swapoff. Then, we have small risk of mis-accouning.
2309		 * But such kind of mis-account by race always happens because
2310		 * we don't have cgroup_mutex(). It's overkill and we allo that
2311		 * small race, here.
2312		 * (*) swapoff at el will charge against mm-struct not against
2313		 * task-struct. So, mm->owner can be NULL.
2314		 */
2315		mem = mem_cgroup_from_task(p);
2316		if (!mem || mem_cgroup_is_root(mem)) {
2317			rcu_read_unlock();
2318			goto done;
2319		}
2320		if (nr_pages == 1 && consume_stock(mem)) {
2321			/*
2322			 * It seems dagerous to access memcg without css_get().
2323			 * But considering how consume_stok works, it's not
2324			 * necessary. If consume_stock success, some charges
2325			 * from this memcg are cached on this cpu. So, we
2326			 * don't need to call css_get()/css_tryget() before
2327			 * calling consume_stock().
2328			 */
2329			rcu_read_unlock();
2330			goto done;
2331		}
2332		/* after here, we may be blocked. we need to get refcnt */
2333		if (!css_tryget(&mem->css)) {
2334			rcu_read_unlock();
2335			goto again;
2336		}
2337		rcu_read_unlock();
2338	}
 
 
 
 
 
 
 
 
 
 
 
 
2339
2340	do {
2341		bool oom_check;
2342
2343		/* If killed, bypass charge */
2344		if (fatal_signal_pending(current)) {
2345			css_put(&mem->css);
2346			goto bypass;
2347		}
2348
2349		oom_check = false;
2350		if (oom && !nr_oom_retries) {
2351			oom_check = true;
2352			nr_oom_retries = MEM_CGROUP_RECLAIM_RETRIES;
2353		}
 
 
 
 
 
 
2354
2355		ret = mem_cgroup_do_charge(mem, gfp_mask, batch, oom_check);
2356		switch (ret) {
2357		case CHARGE_OK:
2358			break;
2359		case CHARGE_RETRY: /* not in OOM situation but retry */
2360			batch = nr_pages;
2361			css_put(&mem->css);
2362			mem = NULL;
2363			goto again;
2364		case CHARGE_WOULDBLOCK: /* !__GFP_WAIT */
2365			css_put(&mem->css);
2366			goto nomem;
2367		case CHARGE_NOMEM: /* OOM routine works */
2368			if (!oom) {
2369				css_put(&mem->css);
2370				goto nomem;
2371			}
2372			/* If oom, we never return -ENOMEM */
2373			nr_oom_retries--;
 
 
 
 
 
 
 
 
 
 
 
 
 
2374			break;
2375		case CHARGE_OOM_DIE: /* Killed by OOM Killer */
2376			css_put(&mem->css);
2377			goto bypass;
2378		}
2379	} while (ret != CHARGE_OK);
2380
2381	if (batch > nr_pages)
2382		refill_stock(mem, batch - nr_pages);
2383	css_put(&mem->css);
2384done:
2385	*memcg = mem;
2386	return 0;
2387nomem:
2388	*memcg = NULL;
2389	return -ENOMEM;
2390bypass:
2391	*memcg = NULL;
2392	return 0;
2393}
2394
2395/*
2396 * Somemtimes we have to undo a charge we got by try_charge().
2397 * This function is for that and do uncharge, put css's refcnt.
2398 * gotten by try_charge().
2399 */
2400static void __mem_cgroup_cancel_charge(struct mem_cgroup *mem,
2401				       unsigned int nr_pages)
2402{
2403	if (!mem_cgroup_is_root(mem)) {
2404		unsigned long bytes = nr_pages * PAGE_SIZE;
2405
2406		res_counter_uncharge(&mem->res, bytes);
2407		if (do_swap_account)
2408			res_counter_uncharge(&mem->memsw, bytes);
2409	}
2410}
2411
2412/*
2413 * A helper function to get mem_cgroup from ID. must be called under
2414 * rcu_read_lock(). The caller must check css_is_removed() or some if
2415 * it's concern. (dropping refcnt from swap can be called against removed
2416 * memcg.)
2417 */
2418static struct mem_cgroup *mem_cgroup_lookup(unsigned short id)
2419{
2420	struct cgroup_subsys_state *css;
 
2421
2422	/* ID 0 is unused ID */
2423	if (!id)
2424		return NULL;
2425	css = css_lookup(&mem_cgroup_subsys, id);
2426	if (!css)
2427		return NULL;
2428	return container_of(css, struct mem_cgroup, css);
2429}
 
2430
2431struct mem_cgroup *try_get_mem_cgroup_from_page(struct page *page)
2432{
2433	struct mem_cgroup *mem = NULL;
2434	struct page_cgroup *pc;
2435	unsigned short id;
2436	swp_entry_t ent;
2437
2438	VM_BUG_ON(!PageLocked(page));
2439
2440	pc = lookup_page_cgroup(page);
2441	lock_page_cgroup(pc);
2442	if (PageCgroupUsed(pc)) {
2443		mem = pc->mem_cgroup;
2444		if (mem && !css_tryget(&mem->css))
2445			mem = NULL;
2446	} else if (PageSwapCache(page)) {
2447		ent.val = page_private(page);
2448		id = lookup_swap_cgroup(ent);
2449		rcu_read_lock();
2450		mem = mem_cgroup_lookup(id);
2451		if (mem && !css_tryget(&mem->css))
2452			mem = NULL;
2453		rcu_read_unlock();
2454	}
2455	unlock_page_cgroup(pc);
2456	return mem;
2457}
2458
2459static void __mem_cgroup_commit_charge(struct mem_cgroup *mem,
2460				       struct page *page,
2461				       unsigned int nr_pages,
2462				       struct page_cgroup *pc,
2463				       enum charge_type ctype)
2464{
2465	lock_page_cgroup(pc);
2466	if (unlikely(PageCgroupUsed(pc))) {
2467		unlock_page_cgroup(pc);
2468		__mem_cgroup_cancel_charge(mem, nr_pages);
2469		return;
2470	}
2471	/*
2472	 * we don't need page_cgroup_lock about tail pages, becase they are not
2473	 * accessed by any other context at this point.
2474	 */
2475	pc->mem_cgroup = mem;
2476	/*
2477	 * We access a page_cgroup asynchronously without lock_page_cgroup().
2478	 * Especially when a page_cgroup is taken from a page, pc->mem_cgroup
2479	 * is accessed after testing USED bit. To make pc->mem_cgroup visible
2480	 * before USED bit, we need memory barrier here.
2481	 * See mem_cgroup_add_lru_list(), etc.
2482 	 */
2483	smp_wmb();
2484	switch (ctype) {
2485	case MEM_CGROUP_CHARGE_TYPE_CACHE:
2486	case MEM_CGROUP_CHARGE_TYPE_SHMEM:
2487		SetPageCgroupCache(pc);
2488		SetPageCgroupUsed(pc);
2489		break;
2490	case MEM_CGROUP_CHARGE_TYPE_MAPPED:
2491		ClearPageCgroupCache(pc);
2492		SetPageCgroupUsed(pc);
2493		break;
2494	default:
2495		break;
2496	}
2497
2498	mem_cgroup_charge_statistics(mem, PageCgroupCache(pc), nr_pages);
2499	unlock_page_cgroup(pc);
2500	/*
2501	 * "charge_statistics" updated event counter. Then, check it.
2502	 * Insert ancestor (and ancestor's ancestors), to softlimit RB-tree.
2503	 * if they exceeds softlimit.
 
 
 
2504	 */
2505	memcg_check_events(mem, page);
2506}
2507
2508#ifdef CONFIG_TRANSPARENT_HUGEPAGE
2509
2510#define PCGF_NOCOPY_AT_SPLIT ((1 << PCG_LOCK) | (1 << PCG_MOVE_LOCK) |\
2511			(1 << PCG_ACCT_LRU) | (1 << PCG_MIGRATION))
2512/*
2513 * Because tail pages are not marked as "used", set it. We're under
2514 * zone->lru_lock, 'splitting on pmd' and compund_lock.
2515 */
2516void mem_cgroup_split_huge_fixup(struct page *head, struct page *tail)
2517{
2518	struct page_cgroup *head_pc = lookup_page_cgroup(head);
2519	struct page_cgroup *tail_pc = lookup_page_cgroup(tail);
2520	unsigned long flags;
2521
2522	if (mem_cgroup_disabled())
2523		return;
2524	/*
2525	 * We have no races with charge/uncharge but will have races with
2526	 * page state accounting.
2527	 */
2528	move_lock_page_cgroup(head_pc, &flags);
2529
2530	tail_pc->mem_cgroup = head_pc->mem_cgroup;
2531	smp_wmb(); /* see __commit_charge() */
2532	if (PageCgroupAcctLRU(head_pc)) {
2533		enum lru_list lru;
2534		struct mem_cgroup_per_zone *mz;
2535
2536		/*
2537		 * LRU flags cannot be copied because we need to add tail
2538		 *.page to LRU by generic call and our hook will be called.
2539		 * We hold lru_lock, then, reduce counter directly.
2540		 */
2541		lru = page_lru(head);
2542		mz = page_cgroup_zoneinfo(head_pc->mem_cgroup, head);
2543		MEM_CGROUP_ZSTAT(mz, lru) -= 1;
2544	}
2545	tail_pc->flags = head_pc->flags & ~PCGF_NOCOPY_AT_SPLIT;
2546	move_unlock_page_cgroup(head_pc, &flags);
2547}
2548#endif
2549
2550/**
2551 * mem_cgroup_move_account - move account of the page
2552 * @page: the page
2553 * @nr_pages: number of regular pages (>1 for huge pages)
2554 * @pc:	page_cgroup of the page.
2555 * @from: mem_cgroup which the page is moved from.
2556 * @to:	mem_cgroup which the page is moved to. @from != @to.
2557 * @uncharge: whether we should call uncharge and css_put against @from.
2558 *
2559 * The caller must confirm following.
2560 * - page is not on LRU (isolate_page() is useful.)
2561 * - compound_lock is held when nr_pages > 1
2562 *
2563 * This function doesn't do "charge" nor css_get to new cgroup. It should be
2564 * done by a caller(__mem_cgroup_try_charge would be useful). If @uncharge is
2565 * true, this function does "uncharge" from old cgroup, but it doesn't if
2566 * @uncharge is false, so a caller should do "uncharge".
2567 */
2568static int mem_cgroup_move_account(struct page *page,
2569				   unsigned int nr_pages,
2570				   struct page_cgroup *pc,
2571				   struct mem_cgroup *from,
2572				   struct mem_cgroup *to,
2573				   bool uncharge)
2574{
2575	unsigned long flags;
2576	int ret;
 
 
 
 
2577
2578	VM_BUG_ON(from == to);
2579	VM_BUG_ON(PageLRU(page));
2580	/*
2581	 * The page is isolated from LRU. So, collapse function
2582	 * will not handle this page. But page splitting can happen.
2583	 * Do this check under compound_page_lock(). The caller should
2584	 * hold it.
2585	 */
2586	ret = -EBUSY;
2587	if (nr_pages > 1 && !PageTransHuge(page))
2588		goto out;
2589
2590	lock_page_cgroup(pc);
 
 
 
2591
2592	ret = -EINVAL;
2593	if (!PageCgroupUsed(pc) || pc->mem_cgroup != from)
2594		goto unlock;
2595
2596	move_lock_page_cgroup(pc, &flags);
2597
2598	if (PageCgroupFileMapped(pc)) {
2599		/* Update mapped_file data for mem_cgroup */
2600		preempt_disable();
2601		__this_cpu_dec(from->stat->count[MEM_CGROUP_STAT_FILE_MAPPED]);
2602		__this_cpu_inc(to->stat->count[MEM_CGROUP_STAT_FILE_MAPPED]);
2603		preempt_enable();
2604	}
2605	mem_cgroup_charge_statistics(from, PageCgroupCache(pc), -nr_pages);
2606	if (uncharge)
2607		/* This is not "cancel", but cancel_charge does all we need. */
2608		__mem_cgroup_cancel_charge(from, nr_pages);
2609
2610	/* caller should have done css_get */
2611	pc->mem_cgroup = to;
2612	mem_cgroup_charge_statistics(to, PageCgroupCache(pc), nr_pages);
2613	/*
2614	 * We charges against "to" which may not have any tasks. Then, "to"
2615	 * can be under rmdir(). But in current implementation, caller of
2616	 * this function is just force_empty() and move charge, so it's
2617	 * guaranteed that "to" is never removed. So, we don't check rmdir
2618	 * status here.
2619	 */
2620	move_unlock_page_cgroup(pc, &flags);
2621	ret = 0;
2622unlock:
2623	unlock_page_cgroup(pc);
2624	/*
2625	 * check events
2626	 */
2627	memcg_check_events(to, page);
2628	memcg_check_events(from, page);
2629out:
2630	return ret;
2631}
2632
2633/*
2634 * move charges to its parent.
2635 */
2636
2637static int mem_cgroup_move_parent(struct page *page,
2638				  struct page_cgroup *pc,
2639				  struct mem_cgroup *child,
2640				  gfp_t gfp_mask)
2641{
2642	struct cgroup *cg = child->css.cgroup;
2643	struct cgroup *pcg = cg->parent;
2644	struct mem_cgroup *parent;
2645	unsigned int nr_pages;
2646	unsigned long uninitialized_var(flags);
2647	int ret;
2648
2649	/* Is ROOT ? */
2650	if (!pcg)
2651		return -EINVAL;
2652
2653	ret = -EBUSY;
2654	if (!get_page_unless_zero(page))
2655		goto out;
2656	if (isolate_lru_page(page))
2657		goto put;
2658
2659	nr_pages = hpage_nr_pages(page);
 
 
 
 
 
2660
2661	parent = mem_cgroup_from_cont(pcg);
2662	ret = __mem_cgroup_try_charge(NULL, gfp_mask, nr_pages, &parent, false);
2663	if (ret || !parent)
2664		goto put_back;
2665
2666	if (nr_pages > 1)
2667		flags = compound_lock_irqsave(page);
 
 
2668
2669	ret = mem_cgroup_move_account(page, nr_pages, pc, child, parent, true);
2670	if (ret)
2671		__mem_cgroup_cancel_charge(parent, nr_pages);
 
2672
2673	if (nr_pages > 1)
2674		compound_unlock_irqrestore(page, flags);
2675put_back:
2676	putback_lru_page(page);
2677put:
2678	put_page(page);
2679out:
2680	return ret;
2681}
2682
2683/*
2684 * Charge the memory controller for page usage.
2685 * Return
2686 * 0 if the charge was successful
2687 * < 0 if the cgroup is over its limit
2688 */
2689static int mem_cgroup_charge_common(struct page *page, struct mm_struct *mm,
2690				gfp_t gfp_mask, enum charge_type ctype)
2691{
2692	struct mem_cgroup *mem = NULL;
2693	unsigned int nr_pages = 1;
2694	struct page_cgroup *pc;
2695	bool oom = true;
2696	int ret;
2697
2698	if (PageTransHuge(page)) {
2699		nr_pages <<= compound_order(page);
2700		VM_BUG_ON(!PageTransHuge(page));
2701		/*
2702		 * Never OOM-kill a process for a huge page.  The
2703		 * fault handler will fall back to regular pages.
2704		 */
2705		oom = false;
2706	}
2707
2708	pc = lookup_page_cgroup(page);
2709	BUG_ON(!pc); /* XXX: remove this and move pc lookup into commit */
 
 
 
2710
2711	ret = __mem_cgroup_try_charge(mm, gfp_mask, nr_pages, &mem, oom);
2712	if (ret || !mem)
2713		return ret;
2714
2715	__mem_cgroup_commit_charge(mem, page, nr_pages, pc, ctype);
2716	return 0;
2717}
2718
2719int mem_cgroup_newpage_charge(struct page *page,
2720			      struct mm_struct *mm, gfp_t gfp_mask)
2721{
2722	if (mem_cgroup_disabled())
2723		return 0;
2724	/*
2725	 * If already mapped, we don't have to account.
2726	 * If page cache, page->mapping has address_space.
2727	 * But page->mapping may have out-of-use anon_vma pointer,
2728	 * detecit it by PageAnon() check. newly-mapped-anon's page->mapping
2729	 * is NULL.
2730  	 */
2731	if (page_mapped(page) || (page->mapping && !PageAnon(page)))
2732		return 0;
2733	if (unlikely(!mm))
2734		mm = &init_mm;
2735	return mem_cgroup_charge_common(page, mm, gfp_mask,
2736				MEM_CGROUP_CHARGE_TYPE_MAPPED);
2737}
2738
2739static void
2740__mem_cgroup_commit_charge_swapin(struct page *page, struct mem_cgroup *ptr,
2741					enum charge_type ctype);
2742
2743static void
2744__mem_cgroup_commit_charge_lrucare(struct page *page, struct mem_cgroup *mem,
2745					enum charge_type ctype)
2746{
2747	struct page_cgroup *pc = lookup_page_cgroup(page);
2748	/*
2749	 * In some case, SwapCache, FUSE(splice_buf->radixtree), the page
2750	 * is already on LRU. It means the page may on some other page_cgroup's
2751	 * LRU. Take care of it.
2752	 */
2753	mem_cgroup_lru_del_before_commit(page);
2754	__mem_cgroup_commit_charge(mem, page, 1, pc, ctype);
2755	mem_cgroup_lru_add_after_commit(page);
2756	return;
2757}
2758
2759int mem_cgroup_cache_charge(struct page *page, struct mm_struct *mm,
2760				gfp_t gfp_mask)
 
 
 
 
 
 
 
 
2761{
2762	struct mem_cgroup *mem = NULL;
2763	int ret;
2764
2765	if (mem_cgroup_disabled())
2766		return 0;
2767	if (PageCompound(page))
2768		return 0;
2769
2770	if (unlikely(!mm))
2771		mm = &init_mm;
2772
2773	if (page_is_file_cache(page)) {
2774		ret = __mem_cgroup_try_charge(mm, gfp_mask, 1, &mem, true);
2775		if (ret || !mem)
2776			return ret;
2777
2778		/*
2779		 * FUSE reuses pages without going through the final
2780		 * put that would remove them from the LRU list, make
2781		 * sure that they get relinked properly.
2782		 */
2783		__mem_cgroup_commit_charge_lrucare(page, mem,
2784					MEM_CGROUP_CHARGE_TYPE_CACHE);
2785		return ret;
 
 
 
2786	}
2787	/* shmem */
2788	if (PageSwapCache(page)) {
2789		ret = mem_cgroup_try_charge_swapin(mm, page, gfp_mask, &mem);
2790		if (!ret)
2791			__mem_cgroup_commit_charge_swapin(page, mem,
2792					MEM_CGROUP_CHARGE_TYPE_SHMEM);
2793	} else
2794		ret = mem_cgroup_charge_common(page, mm, gfp_mask,
2795					MEM_CGROUP_CHARGE_TYPE_SHMEM);
2796
2797	return ret;
2798}
2799
2800/*
2801 * While swap-in, try_charge -> commit or cancel, the page is locked.
2802 * And when try_charge() successfully returns, one refcnt to memcg without
2803 * struct page_cgroup is acquired. This refcnt will be consumed by
2804 * "commit()" or removed by "cancel()"
2805 */
2806int mem_cgroup_try_charge_swapin(struct mm_struct *mm,
2807				 struct page *page,
2808				 gfp_t mask, struct mem_cgroup **ptr)
2809{
2810	struct mem_cgroup *mem;
2811	int ret;
2812
2813	*ptr = NULL;
2814
2815	if (mem_cgroup_disabled())
2816		return 0;
2817
2818	if (!do_swap_account)
2819		goto charge_cur_mm;
2820	/*
2821	 * A racing thread's fault, or swapoff, may have already updated
2822	 * the pte, and even removed page from swap cache: in those cases
2823	 * do_swap_page()'s pte_same() test will fail; but there's also a
2824	 * KSM case which does need to charge the page.
2825	 */
2826	if (!PageSwapCache(page))
2827		goto charge_cur_mm;
2828	mem = try_get_mem_cgroup_from_page(page);
2829	if (!mem)
2830		goto charge_cur_mm;
2831	*ptr = mem;
2832	ret = __mem_cgroup_try_charge(NULL, mask, 1, ptr, true);
2833	css_put(&mem->css);
2834	return ret;
2835charge_cur_mm:
2836	if (unlikely(!mm))
2837		mm = &init_mm;
2838	return __mem_cgroup_try_charge(mm, mask, 1, ptr, true);
2839}
2840
2841static void
2842__mem_cgroup_commit_charge_swapin(struct page *page, struct mem_cgroup *ptr,
2843					enum charge_type ctype)
 
 
 
 
 
 
2844{
2845	if (mem_cgroup_disabled())
2846		return;
2847	if (!ptr)
2848		return;
2849	cgroup_exclude_rmdir(&ptr->css);
2850
2851	__mem_cgroup_commit_charge_lrucare(page, ptr, ctype);
2852	/*
2853	 * Now swap is on-memory. This means this page may be
2854	 * counted both as mem and swap....double count.
2855	 * Fix it by uncharging from memsw. Basically, this SwapCache is stable
2856	 * under lock_page(). But in do_swap_page()::memory.c, reuse_swap_page()
2857	 * may call delete_from_swap_cache() before reach here.
2858	 */
2859	if (do_swap_account && PageSwapCache(page)) {
2860		swp_entry_t ent = {.val = page_private(page)};
2861		unsigned short id;
2862		struct mem_cgroup *memcg;
2863
2864		id = swap_cgroup_record(ent, 0);
2865		rcu_read_lock();
2866		memcg = mem_cgroup_lookup(id);
2867		if (memcg) {
2868			/*
2869			 * This recorded memcg can be obsolete one. So, avoid
2870			 * calling css_tryget
2871			 */
2872			if (!mem_cgroup_is_root(memcg))
2873				res_counter_uncharge(&memcg->memsw, PAGE_SIZE);
2874			mem_cgroup_swap_statistics(memcg, false);
2875			mem_cgroup_put(memcg);
2876		}
2877		rcu_read_unlock();
2878	}
2879	/*
2880	 * At swapin, we may charge account against cgroup which has no tasks.
2881	 * So, rmdir()->pre_destroy() can be called while we do this charge.
2882	 * In that case, we need to call pre_destroy() again. check it here.
2883	 */
2884	cgroup_release_and_wakeup_rmdir(&ptr->css);
2885}
2886
2887void mem_cgroup_commit_charge_swapin(struct page *page, struct mem_cgroup *ptr)
 
 
 
 
 
2888{
2889	__mem_cgroup_commit_charge_swapin(page, ptr,
2890					MEM_CGROUP_CHARGE_TYPE_MAPPED);
2891}
2892
2893void mem_cgroup_cancel_charge_swapin(struct mem_cgroup *mem)
2894{
2895	if (mem_cgroup_disabled())
2896		return;
2897	if (!mem)
2898		return;
2899	__mem_cgroup_cancel_charge(mem, 1);
2900}
2901
2902static void mem_cgroup_do_uncharge(struct mem_cgroup *mem,
2903				   unsigned int nr_pages,
2904				   const enum charge_type ctype)
2905{
2906	struct memcg_batch_info *batch = NULL;
2907	bool uncharge_memsw = true;
2908
2909	/* If swapout, usage of swap doesn't decrease */
2910	if (!do_swap_account || ctype == MEM_CGROUP_CHARGE_TYPE_SWAPOUT)
2911		uncharge_memsw = false;
2912
2913	batch = &current->memcg_batch;
2914	/*
2915	 * In usual, we do css_get() when we remember memcg pointer.
2916	 * But in this case, we keep res->usage until end of a series of
2917	 * uncharges. Then, it's ok to ignore memcg's refcnt.
2918	 */
2919	if (!batch->memcg)
2920		batch->memcg = mem;
2921	/*
2922	 * do_batch > 0 when unmapping pages or inode invalidate/truncate.
2923	 * In those cases, all pages freed continuously can be expected to be in
2924	 * the same cgroup and we have chance to coalesce uncharges.
2925	 * But we do uncharge one by one if this is killed by OOM(TIF_MEMDIE)
2926	 * because we want to do uncharge as soon as possible.
2927	 */
2928
2929	if (!batch->do_batch || test_thread_flag(TIF_MEMDIE))
2930		goto direct_uncharge;
 
 
2931
2932	if (nr_pages > 1)
2933		goto direct_uncharge;
2934
2935	/*
2936	 * In typical case, batch->memcg == mem. This means we can
2937	 * merge a series of uncharges to an uncharge of res_counter.
2938	 * If not, we uncharge res_counter ony by one.
2939	 */
2940	if (batch->memcg != mem)
2941		goto direct_uncharge;
2942	/* remember freed charge and uncharge it later */
2943	batch->nr_pages++;
2944	if (uncharge_memsw)
2945		batch->memsw_nr_pages++;
2946	return;
2947direct_uncharge:
2948	res_counter_uncharge(&mem->res, nr_pages * PAGE_SIZE);
2949	if (uncharge_memsw)
2950		res_counter_uncharge(&mem->memsw, nr_pages * PAGE_SIZE);
2951	if (unlikely(batch->memcg != mem))
2952		memcg_oom_recover(mem);
2953	return;
2954}
2955
2956/*
2957 * uncharge if !page_mapped(page)
2958 */
2959static struct mem_cgroup *
2960__mem_cgroup_uncharge_common(struct page *page, enum charge_type ctype)
2961{
2962	struct mem_cgroup *mem = NULL;
2963	unsigned int nr_pages = 1;
2964	struct page_cgroup *pc;
2965
2966	if (mem_cgroup_disabled())
2967		return NULL;
2968
2969	if (PageSwapCache(page))
2970		return NULL;
2971
2972	if (PageTransHuge(page)) {
2973		nr_pages <<= compound_order(page);
2974		VM_BUG_ON(!PageTransHuge(page));
 
2975	}
2976	/*
2977	 * Check if our page_cgroup is valid
2978	 */
2979	pc = lookup_page_cgroup(page);
2980	if (unlikely(!pc || !PageCgroupUsed(pc)))
2981		return NULL;
2982
2983	lock_page_cgroup(pc);
2984
2985	mem = pc->mem_cgroup;
 
2986
2987	if (!PageCgroupUsed(pc))
2988		goto unlock_out;
 
2989
2990	switch (ctype) {
2991	case MEM_CGROUP_CHARGE_TYPE_MAPPED:
2992	case MEM_CGROUP_CHARGE_TYPE_DROP:
2993		/* See mem_cgroup_prepare_migration() */
2994		if (page_mapped(page) || PageCgroupMigration(pc))
2995			goto unlock_out;
2996		break;
2997	case MEM_CGROUP_CHARGE_TYPE_SWAPOUT:
2998		if (!PageAnon(page)) {	/* Shared memory */
2999			if (page->mapping && !page_is_file_cache(page))
3000				goto unlock_out;
3001		} else if (page_mapped(page)) /* Anon */
3002				goto unlock_out;
3003		break;
3004	default:
3005		break;
3006	}
3007
3008	mem_cgroup_charge_statistics(mem, PageCgroupCache(pc), -nr_pages);
 
 
3009
3010	ClearPageCgroupUsed(pc);
3011	/*
3012	 * pc->mem_cgroup is not cleared here. It will be accessed when it's
3013	 * freed from LRU. This is safe because uncharged page is expected not
3014	 * to be reused (freed soon). Exception is SwapCache, it's handled by
3015	 * special functions.
3016	 */
3017
3018	unlock_page_cgroup(pc);
3019	/*
3020	 * even after unlock, we have mem->res.usage here and this memcg
3021	 * will never be freed.
3022	 */
3023	memcg_check_events(mem, page);
3024	if (do_swap_account && ctype == MEM_CGROUP_CHARGE_TYPE_SWAPOUT) {
3025		mem_cgroup_swap_statistics(mem, true);
3026		mem_cgroup_get(mem);
 
 
 
3027	}
3028	if (!mem_cgroup_is_root(mem))
3029		mem_cgroup_do_uncharge(mem, nr_pages, ctype);
3030
3031	return mem;
3032
3033unlock_out:
3034	unlock_page_cgroup(pc);
3035	return NULL;
3036}
3037
3038void mem_cgroup_uncharge_page(struct page *page)
 
3039{
3040	/* early check. */
3041	if (page_mapped(page))
3042		return;
3043	if (page->mapping && !PageAnon(page))
3044		return;
3045	__mem_cgroup_uncharge_common(page, MEM_CGROUP_CHARGE_TYPE_MAPPED);
 
 
 
3046}
3047
3048void mem_cgroup_uncharge_cache_page(struct page *page)
3049{
3050	VM_BUG_ON(page_mapped(page));
3051	VM_BUG_ON(page->mapping);
3052	__mem_cgroup_uncharge_common(page, MEM_CGROUP_CHARGE_TYPE_CACHE);
3053}
3054
3055/*
3056 * Batch_start/batch_end is called in unmap_page_range/invlidate/trucate.
3057 * In that cases, pages are freed continuously and we can expect pages
3058 * are in the same memcg. All these calls itself limits the number of
3059 * pages freed at once, then uncharge_start/end() is called properly.
3060 * This may be called prural(2) times in a context,
3061 */
3062
3063void mem_cgroup_uncharge_start(void)
3064{
3065	current->memcg_batch.do_batch++;
3066	/* We can do nest. */
3067	if (current->memcg_batch.do_batch == 1) {
3068		current->memcg_batch.memcg = NULL;
3069		current->memcg_batch.nr_pages = 0;
3070		current->memcg_batch.memsw_nr_pages = 0;
3071	}
 
 
 
 
 
 
3072}
3073
3074void mem_cgroup_uncharge_end(void)
3075{
3076	struct memcg_batch_info *batch = &current->memcg_batch;
3077
3078	if (!batch->do_batch)
3079		return;
3080
3081	batch->do_batch--;
3082	if (batch->do_batch) /* If stacked, do nothing. */
3083		return;
3084
3085	if (!batch->memcg)
3086		return;
3087	/*
3088	 * This "batch->memcg" is valid without any css_get/put etc...
3089	 * bacause we hide charges behind us.
 
 
 
 
 
 
3090	 */
3091	if (batch->nr_pages)
3092		res_counter_uncharge(&batch->memcg->res,
3093				     batch->nr_pages * PAGE_SIZE);
3094	if (batch->memsw_nr_pages)
3095		res_counter_uncharge(&batch->memcg->memsw,
3096				     batch->memsw_nr_pages * PAGE_SIZE);
3097	memcg_oom_recover(batch->memcg);
3098	/* forget this pointer (for sanity check) */
3099	batch->memcg = NULL;
3100}
3101
3102#ifdef CONFIG_SWAP
3103/*
3104 * called after __delete_from_swap_cache() and drop "page" account.
3105 * memcg information is recorded to swap_cgroup of "ent"
3106 */
3107void
3108mem_cgroup_uncharge_swapcache(struct page *page, swp_entry_t ent, bool swapout)
3109{
3110	struct mem_cgroup *memcg;
3111	int ctype = MEM_CGROUP_CHARGE_TYPE_SWAPOUT;
3112
3113	if (!swapout) /* this was a swap cache but the swap is unused ! */
3114		ctype = MEM_CGROUP_CHARGE_TYPE_DROP;
3115
3116	memcg = __mem_cgroup_uncharge_common(page, ctype);
 
 
3117
3118	/*
3119	 * record memcg information,  if swapout && memcg != NULL,
3120	 * mem_cgroup_get() was called in uncharge().
3121	 */
3122	if (do_swap_account && swapout && memcg)
3123		swap_cgroup_record(ent, css_id(&memcg->css));
3124}
3125#endif
3126
3127#ifdef CONFIG_CGROUP_MEM_RES_CTLR_SWAP
 
 
 
 
 
 
 
 
3128/*
3129 * called from swap_entry_free(). remove record in swap_cgroup and
3130 * uncharge "memsw" account.
3131 */
3132void mem_cgroup_uncharge_swap(swp_entry_t ent)
3133{
3134	struct mem_cgroup *memcg;
3135	unsigned short id;
3136
3137	if (!do_swap_account)
3138		return;
3139
3140	id = swap_cgroup_record(ent, 0);
3141	rcu_read_lock();
3142	memcg = mem_cgroup_lookup(id);
3143	if (memcg) {
3144		/*
3145		 * We uncharge this because swap is freed.
3146		 * This memcg can be obsolete one. We avoid calling css_tryget
3147		 */
3148		if (!mem_cgroup_is_root(memcg))
3149			res_counter_uncharge(&memcg->memsw, PAGE_SIZE);
3150		mem_cgroup_swap_statistics(memcg, false);
3151		mem_cgroup_put(memcg);
3152	}
3153	rcu_read_unlock();
3154}
 
3155
 
3156/**
3157 * mem_cgroup_move_swap_account - move swap charge and swap_cgroup's record.
3158 * @entry: swap entry to be moved
3159 * @from:  mem_cgroup which the entry is moved from
3160 * @to:  mem_cgroup which the entry is moved to
3161 * @need_fixup: whether we should fixup res_counters and refcounts.
3162 *
3163 * It succeeds only when the swap_cgroup's record for this entry is the same
3164 * as the mem_cgroup's id of @from.
3165 *
3166 * Returns 0 on success, -EINVAL on failure.
3167 *
3168 * The caller must have charged to @to, IOW, called res_counter_charge() about
3169 * both res and memsw, and called css_get().
3170 */
3171static int mem_cgroup_move_swap_account(swp_entry_t entry,
3172		struct mem_cgroup *from, struct mem_cgroup *to, bool need_fixup)
3173{
3174	unsigned short old_id, new_id;
3175
3176	old_id = css_id(&from->css);
3177	new_id = css_id(&to->css);
3178
3179	if (swap_cgroup_cmpxchg(entry, old_id, new_id) == old_id) {
3180		mem_cgroup_swap_statistics(from, false);
3181		mem_cgroup_swap_statistics(to, true);
3182		/*
3183		 * This function is only called from task migration context now.
3184		 * It postpones res_counter and refcount handling till the end
3185		 * of task migration(mem_cgroup_clear_mc()) for performance
3186		 * improvement. But we cannot postpone mem_cgroup_get(to)
3187		 * because if the process that has been moved to @to does
3188		 * swap-in, the refcount of @to might be decreased to 0.
3189		 */
3190		mem_cgroup_get(to);
3191		if (need_fixup) {
3192			if (!mem_cgroup_is_root(from))
3193				res_counter_uncharge(&from->memsw, PAGE_SIZE);
3194			mem_cgroup_put(from);
3195			/*
3196			 * we charged both to->res and to->memsw, so we should
3197			 * uncharge to->res.
3198			 */
3199			if (!mem_cgroup_is_root(to))
3200				res_counter_uncharge(&to->res, PAGE_SIZE);
3201		}
3202		return 0;
3203	}
3204	return -EINVAL;
3205}
3206#else
3207static inline int mem_cgroup_move_swap_account(swp_entry_t entry,
3208		struct mem_cgroup *from, struct mem_cgroup *to, bool need_fixup)
3209{
3210	return -EINVAL;
3211}
3212#endif
3213
3214/*
3215 * Before starting migration, account PAGE_SIZE to mem_cgroup that the old
3216 * page belongs to.
3217 */
3218int mem_cgroup_prepare_migration(struct page *page,
3219	struct page *newpage, struct mem_cgroup **ptr, gfp_t gfp_mask)
3220{
3221	struct mem_cgroup *mem = NULL;
3222	struct page_cgroup *pc;
3223	enum charge_type ctype;
3224	int ret = 0;
3225
3226	*ptr = NULL;
3227
3228	VM_BUG_ON(PageTransHuge(page));
3229	if (mem_cgroup_disabled())
3230		return 0;
3231
3232	pc = lookup_page_cgroup(page);
3233	lock_page_cgroup(pc);
3234	if (PageCgroupUsed(pc)) {
3235		mem = pc->mem_cgroup;
3236		css_get(&mem->css);
3237		/*
3238		 * At migrating an anonymous page, its mapcount goes down
3239		 * to 0 and uncharge() will be called. But, even if it's fully
3240		 * unmapped, migration may fail and this page has to be
3241		 * charged again. We set MIGRATION flag here and delay uncharge
3242		 * until end_migration() is called
3243		 *
3244		 * Corner Case Thinking
3245		 * A)
3246		 * When the old page was mapped as Anon and it's unmap-and-freed
3247		 * while migration was ongoing.
3248		 * If unmap finds the old page, uncharge() of it will be delayed
3249		 * until end_migration(). If unmap finds a new page, it's
3250		 * uncharged when it make mapcount to be 1->0. If unmap code
3251		 * finds swap_migration_entry, the new page will not be mapped
3252		 * and end_migration() will find it(mapcount==0).
3253		 *
3254		 * B)
3255		 * When the old page was mapped but migraion fails, the kernel
3256		 * remaps it. A charge for it is kept by MIGRATION flag even
3257		 * if mapcount goes down to 0. We can do remap successfully
3258		 * without charging it again.
3259		 *
3260		 * C)
3261		 * The "old" page is under lock_page() until the end of
3262		 * migration, so, the old page itself will not be swapped-out.
3263		 * If the new page is swapped out before end_migraton, our
3264		 * hook to usual swap-out path will catch the event.
3265		 */
3266		if (PageAnon(page))
3267			SetPageCgroupMigration(pc);
3268	}
3269	unlock_page_cgroup(pc);
3270	/*
3271	 * If the page is not charged at this point,
3272	 * we return here.
3273	 */
3274	if (!mem)
3275		return 0;
3276
3277	*ptr = mem;
3278	ret = __mem_cgroup_try_charge(NULL, gfp_mask, 1, ptr, false);
3279	css_put(&mem->css);/* drop extra refcnt */
3280	if (ret || *ptr == NULL) {
3281		if (PageAnon(page)) {
3282			lock_page_cgroup(pc);
3283			ClearPageCgroupMigration(pc);
3284			unlock_page_cgroup(pc);
3285			/*
3286			 * The old page may be fully unmapped while we kept it.
3287			 */
3288			mem_cgroup_uncharge_page(page);
3289		}
3290		return -ENOMEM;
3291	}
3292	/*
3293	 * We charge new page before it's used/mapped. So, even if unlock_page()
3294	 * is called before end_migration, we can catch all events on this new
3295	 * page. In the case new page is migrated but not remapped, new page's
3296	 * mapcount will be finally 0 and we call uncharge in end_migration().
3297	 */
3298	pc = lookup_page_cgroup(newpage);
3299	if (PageAnon(page))
3300		ctype = MEM_CGROUP_CHARGE_TYPE_MAPPED;
3301	else if (page_is_file_cache(page))
3302		ctype = MEM_CGROUP_CHARGE_TYPE_CACHE;
3303	else
3304		ctype = MEM_CGROUP_CHARGE_TYPE_SHMEM;
3305	__mem_cgroup_commit_charge(mem, page, 1, pc, ctype);
3306	return ret;
3307}
3308
3309/* remove redundant charge if migration failed*/
3310void mem_cgroup_end_migration(struct mem_cgroup *mem,
3311	struct page *oldpage, struct page *newpage, bool migration_ok)
3312{
3313	struct page *used, *unused;
3314	struct page_cgroup *pc;
3315
3316	if (!mem)
3317		return;
3318	/* blocks rmdir() */
3319	cgroup_exclude_rmdir(&mem->css);
3320	if (!migration_ok) {
3321		used = oldpage;
3322		unused = newpage;
3323	} else {
3324		used = newpage;
3325		unused = oldpage;
3326	}
3327	/*
3328	 * We disallowed uncharge of pages under migration because mapcount
3329	 * of the page goes down to zero, temporarly.
3330	 * Clear the flag and check the page should be charged.
3331	 */
3332	pc = lookup_page_cgroup(oldpage);
3333	lock_page_cgroup(pc);
3334	ClearPageCgroupMigration(pc);
3335	unlock_page_cgroup(pc);
3336
3337	__mem_cgroup_uncharge_common(unused, MEM_CGROUP_CHARGE_TYPE_FORCE);
3338
3339	/*
3340	 * If a page is a file cache, radix-tree replacement is very atomic
3341	 * and we can skip this check. When it was an Anon page, its mapcount
3342	 * goes down to 0. But because we added MIGRATION flage, it's not
3343	 * uncharged yet. There are several case but page->mapcount check
3344	 * and USED bit check in mem_cgroup_uncharge_page() will do enough
3345	 * check. (see prepare_charge() also)
3346	 */
3347	if (PageAnon(used))
3348		mem_cgroup_uncharge_page(used);
3349	/*
3350	 * At migration, we may charge account against cgroup which has no
3351	 * tasks.
3352	 * So, rmdir()->pre_destroy() can be called while we do this charge.
3353	 * In that case, we need to call pre_destroy() again. check it here.
3354	 */
3355	cgroup_release_and_wakeup_rmdir(&mem->css);
3356}
3357
3358#ifdef CONFIG_DEBUG_VM
3359static struct page_cgroup *lookup_page_cgroup_used(struct page *page)
3360{
3361	struct page_cgroup *pc;
3362
3363	pc = lookup_page_cgroup(page);
3364	if (likely(pc) && PageCgroupUsed(pc))
3365		return pc;
3366	return NULL;
3367}
3368
3369bool mem_cgroup_bad_page_check(struct page *page)
3370{
3371	if (mem_cgroup_disabled())
3372		return false;
3373
3374	return lookup_page_cgroup_used(page) != NULL;
3375}
3376
3377void mem_cgroup_print_bad_page(struct page *page)
3378{
3379	struct page_cgroup *pc;
3380
3381	pc = lookup_page_cgroup_used(page);
3382	if (pc) {
3383		int ret = -1;
3384		char *path;
3385
3386		printk(KERN_ALERT "pc:%p pc->flags:%lx pc->mem_cgroup:%p",
3387		       pc, pc->flags, pc->mem_cgroup);
3388
3389		path = kmalloc(PATH_MAX, GFP_KERNEL);
3390		if (path) {
3391			rcu_read_lock();
3392			ret = cgroup_path(pc->mem_cgroup->css.cgroup,
3393							path, PATH_MAX);
3394			rcu_read_unlock();
3395		}
3396
3397		printk(KERN_CONT "(%s)\n",
3398				(ret < 0) ? "cannot get the path" : path);
3399		kfree(path);
3400	}
3401}
3402#endif
3403
3404static DEFINE_MUTEX(set_limit_mutex);
3405
3406static int mem_cgroup_resize_limit(struct mem_cgroup *memcg,
3407				unsigned long long val)
3408{
3409	int retry_count;
3410	u64 memswlimit, memlimit;
3411	int ret = 0;
3412	int children = mem_cgroup_count_children(memcg);
3413	u64 curusage, oldusage;
3414	int enlarge;
3415
3416	/*
3417	 * For keeping hierarchical_reclaim simple, how long we should retry
3418	 * is depends on callers. We set our retry-count to be function
3419	 * of # of children which we should visit in this loop.
3420	 */
3421	retry_count = MEM_CGROUP_RECLAIM_RETRIES * children;
3422
3423	oldusage = res_counter_read_u64(&memcg->res, RES_USAGE);
3424
3425	enlarge = 0;
3426	while (retry_count) {
3427		if (signal_pending(current)) {
3428			ret = -EINTR;
3429			break;
3430		}
 
 
3431		/*
3432		 * Rather than hide all in some function, I do this in
3433		 * open coded manner. You see what this really does.
3434		 * We have to guarantee mem->res.limit < mem->memsw.limit.
3435		 */
3436		mutex_lock(&set_limit_mutex);
3437		memswlimit = res_counter_read_u64(&memcg->memsw, RES_LIMIT);
3438		if (memswlimit < val) {
 
3439			ret = -EINVAL;
3440			mutex_unlock(&set_limit_mutex);
3441			break;
3442		}
3443
3444		memlimit = res_counter_read_u64(&memcg->res, RES_LIMIT);
3445		if (memlimit < val)
3446			enlarge = 1;
3447
3448		ret = res_counter_set_limit(&memcg->res, val);
3449		if (!ret) {
3450			if (memswlimit == val)
3451				memcg->memsw_is_minimum = true;
3452			else
3453				memcg->memsw_is_minimum = false;
3454		}
3455		mutex_unlock(&set_limit_mutex);
3456
3457		if (!ret)
3458			break;
3459
3460		mem_cgroup_hierarchical_reclaim(memcg, NULL, GFP_KERNEL,
3461						MEM_CGROUP_RECLAIM_SHRINK,
3462						NULL);
3463		curusage = res_counter_read_u64(&memcg->res, RES_USAGE);
3464		/* Usage is reduced ? */
3465  		if (curusage >= oldusage)
3466			retry_count--;
3467		else
3468			oldusage = curusage;
3469	}
3470	if (!ret && enlarge)
3471		memcg_oom_recover(memcg);
3472
3473	return ret;
3474}
3475
3476static int mem_cgroup_resize_memsw_limit(struct mem_cgroup *memcg,
3477					unsigned long long val)
3478{
3479	int retry_count;
3480	u64 memlimit, memswlimit, oldusage, curusage;
3481	int children = mem_cgroup_count_children(memcg);
3482	int ret = -EBUSY;
3483	int enlarge = 0;
3484
3485	/* see mem_cgroup_resize_res_limit */
3486 	retry_count = children * MEM_CGROUP_RECLAIM_RETRIES;
3487	oldusage = res_counter_read_u64(&memcg->memsw, RES_USAGE);
3488	while (retry_count) {
3489		if (signal_pending(current)) {
3490			ret = -EINTR;
3491			break;
3492		}
3493		/*
3494		 * Rather than hide all in some function, I do this in
3495		 * open coded manner. You see what this really does.
3496		 * We have to guarantee mem->res.limit < mem->memsw.limit.
3497		 */
3498		mutex_lock(&set_limit_mutex);
3499		memlimit = res_counter_read_u64(&memcg->res, RES_LIMIT);
3500		if (memlimit > val) {
3501			ret = -EINVAL;
3502			mutex_unlock(&set_limit_mutex);
3503			break;
3504		}
3505		memswlimit = res_counter_read_u64(&memcg->memsw, RES_LIMIT);
3506		if (memswlimit < val)
3507			enlarge = 1;
3508		ret = res_counter_set_limit(&memcg->memsw, val);
3509		if (!ret) {
3510			if (memlimit == val)
3511				memcg->memsw_is_minimum = true;
3512			else
3513				memcg->memsw_is_minimum = false;
3514		}
3515		mutex_unlock(&set_limit_mutex);
3516
3517		if (!ret)
 
 
3518			break;
 
 
3519
3520		mem_cgroup_hierarchical_reclaim(memcg, NULL, GFP_KERNEL,
3521						MEM_CGROUP_RECLAIM_NOSWAP |
3522						MEM_CGROUP_RECLAIM_SHRINK,
3523						NULL);
3524		curusage = res_counter_read_u64(&memcg->memsw, RES_USAGE);
3525		/* Usage is reduced ? */
3526		if (curusage >= oldusage)
3527			retry_count--;
3528		else
3529			oldusage = curusage;
3530	}
3531	if (!ret && enlarge)
3532		memcg_oom_recover(memcg);
 
3533	return ret;
3534}
3535
3536unsigned long mem_cgroup_soft_limit_reclaim(struct zone *zone, int order,
3537					    gfp_t gfp_mask,
3538					    unsigned long *total_scanned)
3539{
3540	unsigned long nr_reclaimed = 0;
3541	struct mem_cgroup_per_zone *mz, *next_mz = NULL;
3542	unsigned long reclaimed;
3543	int loop = 0;
3544	struct mem_cgroup_tree_per_zone *mctz;
3545	unsigned long long excess;
3546	unsigned long nr_scanned;
3547
3548	if (order > 0)
3549		return 0;
3550
3551	mctz = soft_limit_tree_node_zone(zone_to_nid(zone), zone_idx(zone));
 
 
 
 
 
 
 
 
 
3552	/*
3553	 * This loop can run a while, specially if mem_cgroup's continuously
3554	 * keep exceeding their soft limit and putting the system under
3555	 * pressure
3556	 */
3557	do {
3558		if (next_mz)
3559			mz = next_mz;
3560		else
3561			mz = mem_cgroup_largest_soft_limit_node(mctz);
3562		if (!mz)
3563			break;
3564
3565		nr_scanned = 0;
3566		reclaimed = mem_cgroup_hierarchical_reclaim(mz->mem, zone,
3567						gfp_mask,
3568						MEM_CGROUP_RECLAIM_SOFT,
3569						&nr_scanned);
3570		nr_reclaimed += reclaimed;
3571		*total_scanned += nr_scanned;
3572		spin_lock(&mctz->lock);
 
3573
3574		/*
3575		 * If we failed to reclaim anything from this memory cgroup
3576		 * it is time to move on to the next cgroup
3577		 */
3578		next_mz = NULL;
3579		if (!reclaimed) {
3580			do {
3581				/*
3582				 * Loop until we find yet another one.
3583				 *
3584				 * By the time we get the soft_limit lock
3585				 * again, someone might have aded the
3586				 * group back on the RB tree. Iterate to
3587				 * make sure we get a different mem.
3588				 * mem_cgroup_largest_soft_limit_node returns
3589				 * NULL if no other cgroup is present on
3590				 * the tree
3591				 */
3592				next_mz =
3593				__mem_cgroup_largest_soft_limit_node(mctz);
3594				if (next_mz == mz)
3595					css_put(&next_mz->mem->css);
3596				else /* next_mz == NULL or other memcg */
3597					break;
3598			} while (1);
3599		}
3600		__mem_cgroup_remove_exceeded(mz->mem, mz, mctz);
3601		excess = res_counter_soft_limit_excess(&mz->mem->res);
3602		/*
3603		 * One school of thought says that we should not add
3604		 * back the node to the tree if reclaim returns 0.
3605		 * But our reclaim could return 0, simply because due
3606		 * to priority we are exposing a smaller subset of
3607		 * memory to reclaim from. Consider this as a longer
3608		 * term TODO.
3609		 */
3610		/* If excess == 0, no tree ops */
3611		__mem_cgroup_insert_exceeded(mz->mem, mz, mctz, excess);
3612		spin_unlock(&mctz->lock);
3613		css_put(&mz->mem->css);
3614		loop++;
3615		/*
3616		 * Could not reclaim anything and there are no more
3617		 * mem cgroups to try or we seem to be looping without
3618		 * reclaiming anything.
3619		 */
3620		if (!nr_reclaimed &&
3621			(next_mz == NULL ||
3622			loop > MEM_CGROUP_MAX_SOFT_LIMIT_RECLAIM_LOOPS))
3623			break;
3624	} while (!nr_reclaimed);
3625	if (next_mz)
3626		css_put(&next_mz->mem->css);
3627	return nr_reclaimed;
3628}
3629
3630/*
3631 * This routine traverse page_cgroup in given list and drop them all.
3632 * *And* this routine doesn't reclaim page itself, just removes page_cgroup.
 
 
3633 */
3634static int mem_cgroup_force_empty_list(struct mem_cgroup *mem,
3635				int node, int zid, enum lru_list lru)
3636{
3637	struct zone *zone;
3638	struct mem_cgroup_per_zone *mz;
3639	struct page_cgroup *pc, *busy;
3640	unsigned long flags, loop;
3641	struct list_head *list;
3642	int ret = 0;
3643
3644	zone = &NODE_DATA(node)->node_zones[zid];
3645	mz = mem_cgroup_zoneinfo(mem, node, zid);
3646	list = &mz->lists[lru];
3647
3648	loop = MEM_CGROUP_ZSTAT(mz, lru);
3649	/* give some margin against EBUSY etc...*/
3650	loop += 256;
3651	busy = NULL;
3652	while (loop--) {
3653		struct page *page;
3654
3655		ret = 0;
3656		spin_lock_irqsave(&zone->lru_lock, flags);
3657		if (list_empty(list)) {
3658			spin_unlock_irqrestore(&zone->lru_lock, flags);
3659			break;
3660		}
3661		pc = list_entry(list->prev, struct page_cgroup, lru);
3662		if (busy == pc) {
3663			list_move(&pc->lru, list);
3664			busy = NULL;
3665			spin_unlock_irqrestore(&zone->lru_lock, flags);
3666			continue;
3667		}
3668		spin_unlock_irqrestore(&zone->lru_lock, flags);
3669
3670		page = lookup_cgroup_page(pc);
3671
3672		ret = mem_cgroup_move_parent(page, pc, mem, GFP_KERNEL);
3673		if (ret == -ENOMEM)
3674			break;
3675
3676		if (ret == -EBUSY || ret == -EINVAL) {
3677			/* found lock contention or "pc" is obsolete. */
3678			busy = pc;
3679			cond_resched();
3680		} else
3681			busy = NULL;
3682	}
3683
3684	if (!ret && !list_empty(list))
3685		return -EBUSY;
3686	return ret;
3687}
3688
3689/*
3690 * make mem_cgroup's charge to be 0 if there is no task.
3691 * This enables deleting this mem_cgroup.
 
3692 */
3693static int mem_cgroup_force_empty(struct mem_cgroup *mem, bool free_all)
3694{
3695	int ret;
3696	int node, zid, shrink;
3697	int nr_retries = MEM_CGROUP_RECLAIM_RETRIES;
3698	struct cgroup *cgrp = mem->css.cgroup;
3699
3700	css_get(&mem->css);
3701
3702	shrink = 0;
3703	/* should free all ? */
3704	if (free_all)
3705		goto try_to_free;
3706move_account:
3707	do {
3708		ret = -EBUSY;
3709		if (cgroup_task_count(cgrp) || !list_empty(&cgrp->children))
3710			goto out;
3711		ret = -EINTR;
3712		if (signal_pending(current))
3713			goto out;
3714		/* This is for making all *used* pages to be on LRU. */
3715		lru_add_drain_all();
3716		drain_all_stock_sync(mem);
3717		ret = 0;
3718		mem_cgroup_start_move(mem);
3719		for_each_node_state(node, N_HIGH_MEMORY) {
3720			for (zid = 0; !ret && zid < MAX_NR_ZONES; zid++) {
3721				enum lru_list l;
3722				for_each_lru(l) {
3723					ret = mem_cgroup_force_empty_list(mem,
3724							node, zid, l);
3725					if (ret)
3726						break;
3727				}
3728			}
3729			if (ret)
3730				break;
3731		}
3732		mem_cgroup_end_move(mem);
3733		memcg_oom_recover(mem);
3734		/* it seems parent cgroup doesn't have enough mem */
3735		if (ret == -ENOMEM)
3736			goto try_to_free;
3737		cond_resched();
3738	/* "ret" should also be checked to ensure all lists are empty. */
3739	} while (mem->res.usage > 0 || ret);
3740out:
3741	css_put(&mem->css);
3742	return ret;
3743
3744try_to_free:
3745	/* returns EBUSY if there is a task or if we come here twice. */
3746	if (cgroup_task_count(cgrp) || !list_empty(&cgrp->children) || shrink) {
3747		ret = -EBUSY;
3748		goto out;
3749	}
3750	/* we call try-to-free pages for make this cgroup empty */
3751	lru_add_drain_all();
 
 
 
3752	/* try to free all pages in this cgroup */
3753	shrink = 1;
3754	while (nr_retries && mem->res.usage > 0) {
3755		int progress;
3756
3757		if (signal_pending(current)) {
3758			ret = -EINTR;
3759			goto out;
3760		}
3761		progress = try_to_free_mem_cgroup_pages(mem, GFP_KERNEL,
3762						false);
3763		if (!progress) {
3764			nr_retries--;
3765			/* maybe some writeback is necessary */
3766			congestion_wait(BLK_RW_ASYNC, HZ/10);
3767		}
3768
3769	}
3770	lru_add_drain();
3771	/* try move_account...there may be some *locked* pages. */
3772	goto move_account;
3773}
3774
3775int mem_cgroup_force_empty_write(struct cgroup *cont, unsigned int event)
 
 
3776{
3777	return mem_cgroup_force_empty(mem_cgroup_from_cont(cont), true);
3778}
3779
 
 
 
 
3780
3781static u64 mem_cgroup_hierarchy_read(struct cgroup *cont, struct cftype *cft)
 
3782{
3783	return mem_cgroup_from_cont(cont)->use_hierarchy;
3784}
3785
3786static int mem_cgroup_hierarchy_write(struct cgroup *cont, struct cftype *cft,
3787					u64 val)
3788{
3789	int retval = 0;
3790	struct mem_cgroup *mem = mem_cgroup_from_cont(cont);
3791	struct cgroup *parent = cont->parent;
3792	struct mem_cgroup *parent_mem = NULL;
3793
3794	if (parent)
3795		parent_mem = mem_cgroup_from_cont(parent);
3796
3797	cgroup_lock();
3798	/*
3799	 * If parent's use_hierarchy is set, we can't make any modifications
3800	 * in the child subtrees. If it is unset, then the change can
3801	 * occur, provided the current cgroup has no children.
3802	 *
3803	 * For the root cgroup, parent_mem is NULL, we allow value to be
3804	 * set if there are no children.
3805	 */
3806	if ((!parent_mem || !parent_mem->use_hierarchy) &&
3807				(val == 1 || val == 0)) {
3808		if (list_empty(&cont->children))
3809			mem->use_hierarchy = val;
3810		else
3811			retval = -EBUSY;
3812	} else
3813		retval = -EINVAL;
3814	cgroup_unlock();
3815
3816	return retval;
3817}
3818
 
 
 
3819
3820static unsigned long mem_cgroup_recursive_stat(struct mem_cgroup *mem,
3821					       enum mem_cgroup_stat_index idx)
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
3822{
3823	struct mem_cgroup *iter;
3824	long val = 0;
3825
3826	/* Per-cpu values can be negative, use a signed accumulator */
3827	for_each_mem_cgroup_tree(iter, mem)
3828		val += mem_cgroup_read_stat(iter, idx);
 
 
 
 
 
 
 
 
 
 
 
 
 
3829
3830	if (val < 0) /* race ? */
3831		val = 0;
3832	return val;
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
3833}
3834
3835static inline u64 mem_cgroup_usage(struct mem_cgroup *mem, bool swap)
3836{
3837	u64 val;
 
 
3838
3839	if (!mem_cgroup_is_root(mem)) {
3840		if (!swap)
3841			return res_counter_read_u64(&mem->res, RES_USAGE);
3842		else
3843			return res_counter_read_u64(&mem->memsw, RES_USAGE);
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
3844	}
 
 
 
 
 
 
 
3845
3846	val = mem_cgroup_recursive_stat(mem, MEM_CGROUP_STAT_CACHE);
3847	val += mem_cgroup_recursive_stat(mem, MEM_CGROUP_STAT_RSS);
3848
3849	if (swap)
3850		val += mem_cgroup_recursive_stat(mem, MEM_CGROUP_STAT_SWAPOUT);
 
 
3851
3852	return val << PAGE_SHIFT;
 
 
3853}
3854
3855static u64 mem_cgroup_read(struct cgroup *cont, struct cftype *cft)
 
3856{
3857	struct mem_cgroup *mem = mem_cgroup_from_cont(cont);
3858	u64 val;
3859	int type, name;
3860
3861	type = MEMFILE_TYPE(cft->private);
3862	name = MEMFILE_ATTR(cft->private);
3863	switch (type) {
3864	case _MEM:
3865		if (name == RES_USAGE)
3866			val = mem_cgroup_usage(mem, false);
3867		else
3868			val = res_counter_read_u64(&mem->res, name);
3869		break;
3870	case _MEMSWAP:
3871		if (name == RES_USAGE)
3872			val = mem_cgroup_usage(mem, true);
3873		else
3874			val = res_counter_read_u64(&mem->memsw, name);
3875		break;
3876	default:
3877		BUG();
3878		break;
3879	}
3880	return val;
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
3881}
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
3882/*
3883 * The user of this function is...
3884 * RES_LIMIT.
3885 */
3886static int mem_cgroup_write(struct cgroup *cont, struct cftype *cft,
3887			    const char *buffer)
3888{
3889	struct mem_cgroup *memcg = mem_cgroup_from_cont(cont);
3890	int type, name;
3891	unsigned long long val;
3892	int ret;
3893
3894	type = MEMFILE_TYPE(cft->private);
3895	name = MEMFILE_ATTR(cft->private);
3896	switch (name) {
 
 
 
3897	case RES_LIMIT:
3898		if (mem_cgroup_is_root(memcg)) { /* Can't set limit on root */
3899			ret = -EINVAL;
3900			break;
3901		}
3902		/* This function does all necessary parse...reuse it */
3903		ret = res_counter_memparse_write_strategy(buffer, &val);
3904		if (ret)
3905			break;
3906		if (type == _MEM)
3907			ret = mem_cgroup_resize_limit(memcg, val);
3908		else
3909			ret = mem_cgroup_resize_memsw_limit(memcg, val);
3910		break;
3911	case RES_SOFT_LIMIT:
3912		ret = res_counter_memparse_write_strategy(buffer, &val);
3913		if (ret)
3914			break;
3915		/*
3916		 * For memsw, soft limits are hard to implement in terms
3917		 * of semantics, for now, we support soft limits for
3918		 * control without swap
3919		 */
3920		if (type == _MEM)
3921			ret = res_counter_set_soft_limit(&memcg->res, val);
3922		else
3923			ret = -EINVAL;
 
3924		break;
3925	default:
3926		ret = -EINVAL; /* should be BUG() ? */
 
3927		break;
3928	}
3929	return ret;
3930}
3931
3932static void memcg_get_hierarchical_limit(struct mem_cgroup *memcg,
3933		unsigned long long *mem_limit, unsigned long long *memsw_limit)
3934{
3935	struct cgroup *cgroup;
3936	unsigned long long min_limit, min_memsw_limit, tmp;
3937
3938	min_limit = res_counter_read_u64(&memcg->res, RES_LIMIT);
3939	min_memsw_limit = res_counter_read_u64(&memcg->memsw, RES_LIMIT);
3940	cgroup = memcg->css.cgroup;
3941	if (!memcg->use_hierarchy)
3942		goto out;
3943
3944	while (cgroup->parent) {
3945		cgroup = cgroup->parent;
3946		memcg = mem_cgroup_from_cont(cgroup);
3947		if (!memcg->use_hierarchy)
3948			break;
3949		tmp = res_counter_read_u64(&memcg->res, RES_LIMIT);
3950		min_limit = min(min_limit, tmp);
3951		tmp = res_counter_read_u64(&memcg->memsw, RES_LIMIT);
3952		min_memsw_limit = min(min_memsw_limit, tmp);
 
 
 
 
 
 
3953	}
3954out:
3955	*mem_limit = min_limit;
3956	*memsw_limit = min_memsw_limit;
3957	return;
3958}
3959
3960static int mem_cgroup_reset(struct cgroup *cont, unsigned int event)
3961{
3962	struct mem_cgroup *mem;
3963	int type, name;
3964
3965	mem = mem_cgroup_from_cont(cont);
3966	type = MEMFILE_TYPE(event);
3967	name = MEMFILE_ATTR(event);
3968	switch (name) {
3969	case RES_MAX_USAGE:
3970		if (type == _MEM)
3971			res_counter_reset_max(&mem->res);
3972		else
3973			res_counter_reset_max(&mem->memsw);
3974		break;
3975	case RES_FAILCNT:
3976		if (type == _MEM)
3977			res_counter_reset_failcnt(&mem->res);
3978		else
3979			res_counter_reset_failcnt(&mem->memsw);
3980		break;
 
 
3981	}
3982
3983	return 0;
3984}
3985
3986static u64 mem_cgroup_move_charge_read(struct cgroup *cgrp,
3987					struct cftype *cft)
3988{
3989	return mem_cgroup_from_cont(cgrp)->move_charge_at_immigrate;
3990}
3991
3992#ifdef CONFIG_MMU
3993static int mem_cgroup_move_charge_write(struct cgroup *cgrp,
3994					struct cftype *cft, u64 val)
3995{
3996	struct mem_cgroup *mem = mem_cgroup_from_cont(cgrp);
3997
3998	if (val >= (1 << NR_MOVE_TYPE))
3999		return -EINVAL;
4000	/*
4001	 * We check this value several times in both in can_attach() and
4002	 * attach(), so we need cgroup lock to prevent this value from being
4003	 * inconsistent.
4004	 */
4005	cgroup_lock();
4006	mem->move_charge_at_immigrate = val;
4007	cgroup_unlock();
4008
 
 
 
 
 
 
 
4009	return 0;
4010}
4011#else
4012static int mem_cgroup_move_charge_write(struct cgroup *cgrp,
4013					struct cftype *cft, u64 val)
4014{
4015	return -ENOSYS;
4016}
4017#endif
4018
 
4019
4020/* For read statistics */
4021enum {
4022	MCS_CACHE,
4023	MCS_RSS,
4024	MCS_FILE_MAPPED,
4025	MCS_PGPGIN,
4026	MCS_PGPGOUT,
4027	MCS_SWAP,
4028	MCS_PGFAULT,
4029	MCS_PGMAJFAULT,
4030	MCS_INACTIVE_ANON,
4031	MCS_ACTIVE_ANON,
4032	MCS_INACTIVE_FILE,
4033	MCS_ACTIVE_FILE,
4034	MCS_UNEVICTABLE,
4035	NR_MCS_STAT,
4036};
4037
4038struct mcs_total_stat {
4039	s64 stat[NR_MCS_STAT];
4040};
4041
4042struct {
4043	char *local_name;
4044	char *total_name;
4045} memcg_stat_strings[NR_MCS_STAT] = {
4046	{"cache", "total_cache"},
4047	{"rss", "total_rss"},
4048	{"mapped_file", "total_mapped_file"},
4049	{"pgpgin", "total_pgpgin"},
4050	{"pgpgout", "total_pgpgout"},
4051	{"swap", "total_swap"},
4052	{"pgfault", "total_pgfault"},
4053	{"pgmajfault", "total_pgmajfault"},
4054	{"inactive_anon", "total_inactive_anon"},
4055	{"active_anon", "total_active_anon"},
4056	{"inactive_file", "total_inactive_file"},
4057	{"active_file", "total_active_file"},
4058	{"unevictable", "total_unevictable"}
4059};
4060
4061
4062static void
4063mem_cgroup_get_local_stat(struct mem_cgroup *mem, struct mcs_total_stat *s)
4064{
4065	s64 val;
 
 
 
 
4066
4067	/* per cpu stat */
4068	val = mem_cgroup_read_stat(mem, MEM_CGROUP_STAT_CACHE);
4069	s->stat[MCS_CACHE] += val * PAGE_SIZE;
4070	val = mem_cgroup_read_stat(mem, MEM_CGROUP_STAT_RSS);
4071	s->stat[MCS_RSS] += val * PAGE_SIZE;
4072	val = mem_cgroup_read_stat(mem, MEM_CGROUP_STAT_FILE_MAPPED);
4073	s->stat[MCS_FILE_MAPPED] += val * PAGE_SIZE;
4074	val = mem_cgroup_read_events(mem, MEM_CGROUP_EVENTS_PGPGIN);
4075	s->stat[MCS_PGPGIN] += val;
4076	val = mem_cgroup_read_events(mem, MEM_CGROUP_EVENTS_PGPGOUT);
4077	s->stat[MCS_PGPGOUT] += val;
4078	if (do_swap_account) {
4079		val = mem_cgroup_read_stat(mem, MEM_CGROUP_STAT_SWAPOUT);
4080		s->stat[MCS_SWAP] += val * PAGE_SIZE;
4081	}
4082	val = mem_cgroup_read_events(mem, MEM_CGROUP_EVENTS_PGFAULT);
4083	s->stat[MCS_PGFAULT] += val;
4084	val = mem_cgroup_read_events(mem, MEM_CGROUP_EVENTS_PGMAJFAULT);
4085	s->stat[MCS_PGMAJFAULT] += val;
4086
4087	/* per zone stat */
4088	val = mem_cgroup_nr_lru_pages(mem, BIT(LRU_INACTIVE_ANON));
4089	s->stat[MCS_INACTIVE_ANON] += val * PAGE_SIZE;
4090	val = mem_cgroup_nr_lru_pages(mem, BIT(LRU_ACTIVE_ANON));
4091	s->stat[MCS_ACTIVE_ANON] += val * PAGE_SIZE;
4092	val = mem_cgroup_nr_lru_pages(mem, BIT(LRU_INACTIVE_FILE));
4093	s->stat[MCS_INACTIVE_FILE] += val * PAGE_SIZE;
4094	val = mem_cgroup_nr_lru_pages(mem, BIT(LRU_ACTIVE_FILE));
4095	s->stat[MCS_ACTIVE_FILE] += val * PAGE_SIZE;
4096	val = mem_cgroup_nr_lru_pages(mem, BIT(LRU_UNEVICTABLE));
4097	s->stat[MCS_UNEVICTABLE] += val * PAGE_SIZE;
4098}
4099
4100static void
4101mem_cgroup_get_total_stat(struct mem_cgroup *mem, struct mcs_total_stat *s)
 
4102{
4103	struct mem_cgroup *iter;
 
4104
4105	for_each_mem_cgroup_tree(iter, mem)
4106		mem_cgroup_get_local_stat(iter, s);
 
 
 
 
 
 
 
4107}
4108
4109#ifdef CONFIG_NUMA
4110static int mem_control_numa_stat_show(struct seq_file *m, void *arg)
4111{
 
 
 
 
 
 
 
 
 
 
 
 
4112	int nid;
4113	unsigned long total_nr, file_nr, anon_nr, unevictable_nr;
4114	unsigned long node_nr;
4115	struct cgroup *cont = m->private;
4116	struct mem_cgroup *mem_cont = mem_cgroup_from_cont(cont);
4117
4118	total_nr = mem_cgroup_nr_lru_pages(mem_cont, LRU_ALL);
4119	seq_printf(m, "total=%lu", total_nr);
4120	for_each_node_state(nid, N_HIGH_MEMORY) {
4121		node_nr = mem_cgroup_node_nr_lru_pages(mem_cont, nid, LRU_ALL);
4122		seq_printf(m, " N%d=%lu", nid, node_nr);
4123	}
4124	seq_putc(m, '\n');
4125
4126	file_nr = mem_cgroup_nr_lru_pages(mem_cont, LRU_ALL_FILE);
4127	seq_printf(m, "file=%lu", file_nr);
4128	for_each_node_state(nid, N_HIGH_MEMORY) {
4129		node_nr = mem_cgroup_node_nr_lru_pages(mem_cont, nid,
4130				LRU_ALL_FILE);
4131		seq_printf(m, " N%d=%lu", nid, node_nr);
4132	}
4133	seq_putc(m, '\n');
4134
4135	anon_nr = mem_cgroup_nr_lru_pages(mem_cont, LRU_ALL_ANON);
4136	seq_printf(m, "anon=%lu", anon_nr);
4137	for_each_node_state(nid, N_HIGH_MEMORY) {
4138		node_nr = mem_cgroup_node_nr_lru_pages(mem_cont, nid,
4139				LRU_ALL_ANON);
4140		seq_printf(m, " N%d=%lu", nid, node_nr);
4141	}
4142	seq_putc(m, '\n');
4143
4144	unevictable_nr = mem_cgroup_nr_lru_pages(mem_cont, BIT(LRU_UNEVICTABLE));
4145	seq_printf(m, "unevictable=%lu", unevictable_nr);
4146	for_each_node_state(nid, N_HIGH_MEMORY) {
4147		node_nr = mem_cgroup_node_nr_lru_pages(mem_cont, nid,
4148				BIT(LRU_UNEVICTABLE));
4149		seq_printf(m, " N%d=%lu", nid, node_nr);
4150	}
4151	seq_putc(m, '\n');
4152	return 0;
4153}
4154#endif /* CONFIG_NUMA */
4155
4156static int mem_control_stat_show(struct cgroup *cont, struct cftype *cft,
4157				 struct cgroup_map_cb *cb)
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
4158{
4159	struct mem_cgroup *mem_cont = mem_cgroup_from_cont(cont);
4160	struct mcs_total_stat mystat;
4161	int i;
 
4162
4163	memset(&mystat, 0, sizeof(mystat));
4164	mem_cgroup_get_local_stat(mem_cont, &mystat);
4165
 
 
4166
4167	for (i = 0; i < NR_MCS_STAT; i++) {
4168		if (i == MCS_SWAP && !do_swap_account)
4169			continue;
4170		cb->fill(cb, memcg_stat_strings[i].local_name, mystat.stat[i]);
 
 
 
 
 
4171	}
4172
 
 
 
 
 
 
 
 
 
4173	/* Hierarchical information */
4174	{
4175		unsigned long long limit, memsw_limit;
4176		memcg_get_hierarchical_limit(mem_cont, &limit, &memsw_limit);
4177		cb->fill(cb, "hierarchical_memory_limit", limit);
4178		if (do_swap_account)
4179			cb->fill(cb, "hierarchical_memsw_limit", memsw_limit);
4180	}
 
 
 
4181
4182	memset(&mystat, 0, sizeof(mystat));
4183	mem_cgroup_get_total_stat(mem_cont, &mystat);
4184	for (i = 0; i < NR_MCS_STAT; i++) {
4185		if (i == MCS_SWAP && !do_swap_account)
4186			continue;
4187		cb->fill(cb, memcg_stat_strings[i].total_name, mystat.stat[i]);
 
 
4188	}
4189
4190#ifdef CONFIG_DEBUG_VM
4191	cb->fill(cb, "inactive_ratio", calc_inactive_ratio(mem_cont, NULL));
 
 
 
 
 
 
 
4192
 
4193	{
4194		int nid, zid;
4195		struct mem_cgroup_per_zone *mz;
4196		unsigned long recent_rotated[2] = {0, 0};
4197		unsigned long recent_scanned[2] = {0, 0};
4198
4199		for_each_online_node(nid)
4200			for (zid = 0; zid < MAX_NR_ZONES; zid++) {
4201				mz = mem_cgroup_zoneinfo(mem_cont, nid, zid);
4202
4203				recent_rotated[0] +=
4204					mz->reclaim_stat.recent_rotated[0];
4205				recent_rotated[1] +=
4206					mz->reclaim_stat.recent_rotated[1];
4207				recent_scanned[0] +=
4208					mz->reclaim_stat.recent_scanned[0];
4209				recent_scanned[1] +=
4210					mz->reclaim_stat.recent_scanned[1];
4211			}
4212		cb->fill(cb, "recent_rotated_anon", recent_rotated[0]);
4213		cb->fill(cb, "recent_rotated_file", recent_rotated[1]);
4214		cb->fill(cb, "recent_scanned_anon", recent_scanned[0]);
4215		cb->fill(cb, "recent_scanned_file", recent_scanned[1]);
4216	}
4217#endif
4218
4219	return 0;
4220}
4221
4222static u64 mem_cgroup_swappiness_read(struct cgroup *cgrp, struct cftype *cft)
 
4223{
4224	struct mem_cgroup *memcg = mem_cgroup_from_cont(cgrp);
4225
4226	return mem_cgroup_swappiness(memcg);
4227}
4228
4229static int mem_cgroup_swappiness_write(struct cgroup *cgrp, struct cftype *cft,
4230				       u64 val)
4231{
4232	struct mem_cgroup *memcg = mem_cgroup_from_cont(cgrp);
4233	struct mem_cgroup *parent;
4234
4235	if (val > 100)
4236		return -EINVAL;
4237
4238	if (cgrp->parent == NULL)
4239		return -EINVAL;
4240
4241	parent = mem_cgroup_from_cont(cgrp->parent);
4242
4243	cgroup_lock();
4244
4245	/* If under hierarchy, only empty-root can set this value */
4246	if ((parent->use_hierarchy) ||
4247	    (memcg->use_hierarchy && !list_empty(&cgrp->children))) {
4248		cgroup_unlock();
4249		return -EINVAL;
4250	}
4251
4252	memcg->swappiness = val;
4253
4254	cgroup_unlock();
4255
4256	return 0;
4257}
4258
4259static void __mem_cgroup_threshold(struct mem_cgroup *memcg, bool swap)
4260{
4261	struct mem_cgroup_threshold_ary *t;
4262	u64 usage;
4263	int i;
4264
4265	rcu_read_lock();
4266	if (!swap)
4267		t = rcu_dereference(memcg->thresholds.primary);
4268	else
4269		t = rcu_dereference(memcg->memsw_thresholds.primary);
4270
4271	if (!t)
4272		goto unlock;
4273
4274	usage = mem_cgroup_usage(memcg, swap);
4275
4276	/*
4277	 * current_threshold points to threshold just below usage.
4278	 * If it's not true, a threshold was crossed after last
4279	 * call of __mem_cgroup_threshold().
4280	 */
4281	i = t->current_threshold;
4282
4283	/*
4284	 * Iterate backward over array of thresholds starting from
4285	 * current_threshold and check if a threshold is crossed.
4286	 * If none of thresholds below usage is crossed, we read
4287	 * only one element of the array here.
4288	 */
4289	for (; i >= 0 && unlikely(t->entries[i].threshold > usage); i--)
4290		eventfd_signal(t->entries[i].eventfd, 1);
4291
4292	/* i = current_threshold + 1 */
4293	i++;
4294
4295	/*
4296	 * Iterate forward over array of thresholds starting from
4297	 * current_threshold+1 and check if a threshold is crossed.
4298	 * If none of thresholds above usage is crossed, we read
4299	 * only one element of the array here.
4300	 */
4301	for (; i < t->size && unlikely(t->entries[i].threshold <= usage); i++)
4302		eventfd_signal(t->entries[i].eventfd, 1);
4303
4304	/* Update current_threshold */
4305	t->current_threshold = i - 1;
4306unlock:
4307	rcu_read_unlock();
4308}
4309
4310static void mem_cgroup_threshold(struct mem_cgroup *memcg)
4311{
4312	while (memcg) {
4313		__mem_cgroup_threshold(memcg, false);
4314		if (do_swap_account)
4315			__mem_cgroup_threshold(memcg, true);
4316
4317		memcg = parent_mem_cgroup(memcg);
4318	}
4319}
4320
4321static int compare_thresholds(const void *a, const void *b)
4322{
4323	const struct mem_cgroup_threshold *_a = a;
4324	const struct mem_cgroup_threshold *_b = b;
4325
4326	return _a->threshold - _b->threshold;
 
 
 
 
 
 
4327}
4328
4329static int mem_cgroup_oom_notify_cb(struct mem_cgroup *mem)
4330{
4331	struct mem_cgroup_eventfd_list *ev;
4332
4333	list_for_each_entry(ev, &mem->oom_notify, list)
 
 
4334		eventfd_signal(ev->eventfd, 1);
 
 
4335	return 0;
4336}
4337
4338static void mem_cgroup_oom_notify(struct mem_cgroup *mem)
4339{
4340	struct mem_cgroup *iter;
4341
4342	for_each_mem_cgroup_tree(iter, mem)
4343		mem_cgroup_oom_notify_cb(iter);
4344}
4345
4346static int mem_cgroup_usage_register_event(struct cgroup *cgrp,
4347	struct cftype *cft, struct eventfd_ctx *eventfd, const char *args)
4348{
4349	struct mem_cgroup *memcg = mem_cgroup_from_cont(cgrp);
4350	struct mem_cgroup_thresholds *thresholds;
4351	struct mem_cgroup_threshold_ary *new;
4352	int type = MEMFILE_TYPE(cft->private);
4353	u64 threshold, usage;
4354	int i, size, ret;
4355
4356	ret = res_counter_memparse_write_strategy(args, &threshold);
4357	if (ret)
4358		return ret;
4359
4360	mutex_lock(&memcg->thresholds_lock);
4361
4362	if (type == _MEM)
4363		thresholds = &memcg->thresholds;
4364	else if (type == _MEMSWAP)
 
4365		thresholds = &memcg->memsw_thresholds;
4366	else
 
4367		BUG();
4368
4369	usage = mem_cgroup_usage(memcg, type == _MEMSWAP);
4370
4371	/* Check if a threshold crossed before adding a new one */
4372	if (thresholds->primary)
4373		__mem_cgroup_threshold(memcg, type == _MEMSWAP);
4374
4375	size = thresholds->primary ? thresholds->primary->size + 1 : 1;
4376
4377	/* Allocate memory for new array of thresholds */
4378	new = kmalloc(sizeof(*new) + size * sizeof(struct mem_cgroup_threshold),
4379			GFP_KERNEL);
4380	if (!new) {
4381		ret = -ENOMEM;
4382		goto unlock;
4383	}
4384	new->size = size;
4385
4386	/* Copy thresholds (if any) to new array */
4387	if (thresholds->primary) {
4388		memcpy(new->entries, thresholds->primary->entries, (size - 1) *
4389				sizeof(struct mem_cgroup_threshold));
4390	}
4391
4392	/* Add new threshold */
4393	new->entries[size - 1].eventfd = eventfd;
4394	new->entries[size - 1].threshold = threshold;
4395
4396	/* Sort thresholds. Registering of new threshold isn't time-critical */
4397	sort(new->entries, size, sizeof(struct mem_cgroup_threshold),
4398			compare_thresholds, NULL);
4399
4400	/* Find current threshold */
4401	new->current_threshold = -1;
4402	for (i = 0; i < size; i++) {
4403		if (new->entries[i].threshold < usage) {
4404			/*
4405			 * new->current_threshold will not be used until
4406			 * rcu_assign_pointer(), so it's safe to increment
4407			 * it here.
4408			 */
4409			++new->current_threshold;
4410		}
 
4411	}
4412
4413	/* Free old spare buffer and save old primary buffer as spare */
4414	kfree(thresholds->spare);
4415	thresholds->spare = thresholds->primary;
4416
4417	rcu_assign_pointer(thresholds->primary, new);
4418
4419	/* To be sure that nobody uses thresholds */
4420	synchronize_rcu();
4421
4422unlock:
4423	mutex_unlock(&memcg->thresholds_lock);
4424
4425	return ret;
4426}
4427
4428static void mem_cgroup_usage_unregister_event(struct cgroup *cgrp,
4429	struct cftype *cft, struct eventfd_ctx *eventfd)
 
 
 
 
 
 
 
 
 
 
 
 
4430{
4431	struct mem_cgroup *memcg = mem_cgroup_from_cont(cgrp);
4432	struct mem_cgroup_thresholds *thresholds;
4433	struct mem_cgroup_threshold_ary *new;
4434	int type = MEMFILE_TYPE(cft->private);
4435	u64 usage;
4436	int i, j, size;
4437
4438	mutex_lock(&memcg->thresholds_lock);
4439	if (type == _MEM)
 
4440		thresholds = &memcg->thresholds;
4441	else if (type == _MEMSWAP)
 
4442		thresholds = &memcg->memsw_thresholds;
4443	else
 
4444		BUG();
4445
4446	/*
4447	 * Something went wrong if we trying to unregister a threshold
4448	 * if we don't have thresholds
4449	 */
4450	BUG_ON(!thresholds);
4451
4452	usage = mem_cgroup_usage(memcg, type == _MEMSWAP);
4453
4454	/* Check if a threshold crossed before removing */
4455	__mem_cgroup_threshold(memcg, type == _MEMSWAP);
4456
4457	/* Calculate new number of threshold */
4458	size = 0;
4459	for (i = 0; i < thresholds->primary->size; i++) {
4460		if (thresholds->primary->entries[i].eventfd != eventfd)
4461			size++;
 
 
4462	}
4463
4464	new = thresholds->spare;
4465
 
 
 
 
4466	/* Set thresholds array to NULL if we don't have thresholds */
4467	if (!size) {
4468		kfree(new);
4469		new = NULL;
4470		goto swap_buffers;
4471	}
4472
4473	new->size = size;
4474
4475	/* Copy thresholds and find current threshold */
4476	new->current_threshold = -1;
4477	for (i = 0, j = 0; i < thresholds->primary->size; i++) {
4478		if (thresholds->primary->entries[i].eventfd == eventfd)
4479			continue;
4480
4481		new->entries[j] = thresholds->primary->entries[i];
4482		if (new->entries[j].threshold < usage) {
4483			/*
4484			 * new->current_threshold will not be used
4485			 * until rcu_assign_pointer(), so it's safe to increment
4486			 * it here.
4487			 */
4488			++new->current_threshold;
4489		}
4490		j++;
4491	}
4492
4493swap_buffers:
4494	/* Swap primary and spare array */
4495	thresholds->spare = thresholds->primary;
 
4496	rcu_assign_pointer(thresholds->primary, new);
4497
4498	/* To be sure that nobody uses thresholds */
4499	synchronize_rcu();
4500
 
 
 
 
 
 
4501	mutex_unlock(&memcg->thresholds_lock);
4502}
4503
4504static int mem_cgroup_oom_register_event(struct cgroup *cgrp,
4505	struct cftype *cft, struct eventfd_ctx *eventfd, const char *args)
 
 
 
 
 
 
 
 
 
 
 
 
4506{
4507	struct mem_cgroup *memcg = mem_cgroup_from_cont(cgrp);
4508	struct mem_cgroup_eventfd_list *event;
4509	int type = MEMFILE_TYPE(cft->private);
4510
4511	BUG_ON(type != _OOM_TYPE);
4512	event = kmalloc(sizeof(*event),	GFP_KERNEL);
4513	if (!event)
4514		return -ENOMEM;
4515
4516	spin_lock(&memcg_oom_lock);
4517
4518	event->eventfd = eventfd;
4519	list_add(&event->list, &memcg->oom_notify);
4520
4521	/* already in OOM ? */
4522	if (atomic_read(&memcg->under_oom))
4523		eventfd_signal(eventfd, 1);
4524	spin_unlock(&memcg_oom_lock);
4525
4526	return 0;
4527}
4528
4529static void mem_cgroup_oom_unregister_event(struct cgroup *cgrp,
4530	struct cftype *cft, struct eventfd_ctx *eventfd)
4531{
4532	struct mem_cgroup *mem = mem_cgroup_from_cont(cgrp);
4533	struct mem_cgroup_eventfd_list *ev, *tmp;
4534	int type = MEMFILE_TYPE(cft->private);
4535
4536	BUG_ON(type != _OOM_TYPE);
4537
4538	spin_lock(&memcg_oom_lock);
4539
4540	list_for_each_entry_safe(ev, tmp, &mem->oom_notify, list) {
4541		if (ev->eventfd == eventfd) {
4542			list_del(&ev->list);
4543			kfree(ev);
4544		}
4545	}
4546
4547	spin_unlock(&memcg_oom_lock);
4548}
4549
4550static int mem_cgroup_oom_control_read(struct cgroup *cgrp,
4551	struct cftype *cft,  struct cgroup_map_cb *cb)
4552{
4553	struct mem_cgroup *mem = mem_cgroup_from_cont(cgrp);
4554
4555	cb->fill(cb, "oom_kill_disable", mem->oom_kill_disable);
4556
4557	if (atomic_read(&mem->under_oom))
4558		cb->fill(cb, "under_oom", 1);
4559	else
4560		cb->fill(cb, "under_oom", 0);
4561	return 0;
4562}
4563
4564static int mem_cgroup_oom_control_write(struct cgroup *cgrp,
4565	struct cftype *cft, u64 val)
4566{
4567	struct mem_cgroup *mem = mem_cgroup_from_cont(cgrp);
4568	struct mem_cgroup *parent;
4569
4570	/* cannot set to root cgroup and only 0 and 1 are allowed */
4571	if (!cgrp->parent || !((val == 0) || (val == 1)))
4572		return -EINVAL;
4573
4574	parent = mem_cgroup_from_cont(cgrp->parent);
 
 
4575
4576	cgroup_lock();
4577	/* oom-kill-disable is a flag for subhierarchy. */
4578	if ((parent->use_hierarchy) ||
4579	    (mem->use_hierarchy && !list_empty(&cgrp->children))) {
4580		cgroup_unlock();
4581		return -EINVAL;
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
4582	}
4583	mem->oom_kill_disable = val;
4584	if (!val)
4585		memcg_oom_recover(mem);
4586	cgroup_unlock();
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
4587	return 0;
4588}
4589
4590#ifdef CONFIG_NUMA
4591static const struct file_operations mem_control_numa_stat_file_operations = {
4592	.read = seq_read,
4593	.llseek = seq_lseek,
4594	.release = single_release,
4595};
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
4596
4597static int mem_control_numa_stat_open(struct inode *unused, struct file *file)
 
 
 
 
 
4598{
4599	struct cgroup *cont = file->f_dentry->d_parent->d_fsdata;
 
 
 
 
 
 
4600
4601	file->f_op = &mem_control_numa_stat_file_operations;
4602	return single_open(file, mem_control_numa_stat_show, cont);
 
 
 
 
4603}
4604#endif /* CONFIG_NUMA */
4605
4606static struct cftype mem_cgroup_files[] = {
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
4607	{
4608		.name = "usage_in_bytes",
4609		.private = MEMFILE_PRIVATE(_MEM, RES_USAGE),
4610		.read_u64 = mem_cgroup_read,
4611		.register_event = mem_cgroup_usage_register_event,
4612		.unregister_event = mem_cgroup_usage_unregister_event,
4613	},
4614	{
4615		.name = "max_usage_in_bytes",
4616		.private = MEMFILE_PRIVATE(_MEM, RES_MAX_USAGE),
4617		.trigger = mem_cgroup_reset,
4618		.read_u64 = mem_cgroup_read,
4619	},
4620	{
4621		.name = "limit_in_bytes",
4622		.private = MEMFILE_PRIVATE(_MEM, RES_LIMIT),
4623		.write_string = mem_cgroup_write,
4624		.read_u64 = mem_cgroup_read,
4625	},
4626	{
4627		.name = "soft_limit_in_bytes",
4628		.private = MEMFILE_PRIVATE(_MEM, RES_SOFT_LIMIT),
4629		.write_string = mem_cgroup_write,
4630		.read_u64 = mem_cgroup_read,
4631	},
4632	{
4633		.name = "failcnt",
4634		.private = MEMFILE_PRIVATE(_MEM, RES_FAILCNT),
4635		.trigger = mem_cgroup_reset,
4636		.read_u64 = mem_cgroup_read,
4637	},
4638	{
4639		.name = "stat",
4640		.read_map = mem_control_stat_show,
4641	},
4642	{
4643		.name = "force_empty",
4644		.trigger = mem_cgroup_force_empty_write,
4645	},
4646	{
4647		.name = "use_hierarchy",
4648		.write_u64 = mem_cgroup_hierarchy_write,
4649		.read_u64 = mem_cgroup_hierarchy_read,
4650	},
4651	{
 
 
 
 
 
4652		.name = "swappiness",
4653		.read_u64 = mem_cgroup_swappiness_read,
4654		.write_u64 = mem_cgroup_swappiness_write,
4655	},
4656	{
4657		.name = "move_charge_at_immigrate",
4658		.read_u64 = mem_cgroup_move_charge_read,
4659		.write_u64 = mem_cgroup_move_charge_write,
4660	},
4661	{
4662		.name = "oom_control",
4663		.read_map = mem_cgroup_oom_control_read,
4664		.write_u64 = mem_cgroup_oom_control_write,
4665		.register_event = mem_cgroup_oom_register_event,
4666		.unregister_event = mem_cgroup_oom_unregister_event,
4667		.private = MEMFILE_PRIVATE(_OOM_TYPE, OOM_CONTROL),
4668	},
 
 
 
4669#ifdef CONFIG_NUMA
4670	{
4671		.name = "numa_stat",
4672		.open = mem_control_numa_stat_open,
4673		.mode = S_IRUGO,
4674	},
4675#endif
4676};
4677
4678#ifdef CONFIG_CGROUP_MEM_RES_CTLR_SWAP
4679static struct cftype memsw_cgroup_files[] = {
4680	{
4681		.name = "memsw.usage_in_bytes",
4682		.private = MEMFILE_PRIVATE(_MEMSWAP, RES_USAGE),
4683		.read_u64 = mem_cgroup_read,
4684		.register_event = mem_cgroup_usage_register_event,
4685		.unregister_event = mem_cgroup_usage_unregister_event,
4686	},
4687	{
4688		.name = "memsw.max_usage_in_bytes",
4689		.private = MEMFILE_PRIVATE(_MEMSWAP, RES_MAX_USAGE),
4690		.trigger = mem_cgroup_reset,
4691		.read_u64 = mem_cgroup_read,
4692	},
4693	{
4694		.name = "memsw.limit_in_bytes",
4695		.private = MEMFILE_PRIVATE(_MEMSWAP, RES_LIMIT),
4696		.write_string = mem_cgroup_write,
4697		.read_u64 = mem_cgroup_read,
4698	},
4699	{
4700		.name = "memsw.failcnt",
4701		.private = MEMFILE_PRIVATE(_MEMSWAP, RES_FAILCNT),
4702		.trigger = mem_cgroup_reset,
4703		.read_u64 = mem_cgroup_read,
 
 
 
 
 
 
 
 
 
 
 
 
 
4704	},
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
4705};
4706
4707static int register_memsw_files(struct cgroup *cont, struct cgroup_subsys *ss)
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
4708{
4709	if (!do_swap_account)
4710		return 0;
4711	return cgroup_add_files(cont, ss, memsw_cgroup_files,
4712				ARRAY_SIZE(memsw_cgroup_files));
4713};
4714#else
4715static int register_memsw_files(struct cgroup *cont, struct cgroup_subsys *ss)
 
4716{
4717	return 0;
4718}
4719#endif
4720
4721static int alloc_mem_cgroup_per_zone_info(struct mem_cgroup *mem, int node)
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
4722{
4723	struct mem_cgroup_per_node *pn;
4724	struct mem_cgroup_per_zone *mz;
4725	enum lru_list l;
4726	int zone, tmp = node;
4727	/*
4728	 * This routine is called against possible nodes.
4729	 * But it's BUG to call kmalloc() against offline node.
4730	 *
4731	 * TODO: this routine can waste much memory for nodes which will
4732	 *       never be onlined. It's better to use memory hotplug callback
4733	 *       function.
4734	 */
4735	if (!node_state(node, N_NORMAL_MEMORY))
4736		tmp = -1;
4737	pn = kzalloc_node(sizeof(*pn), GFP_KERNEL, tmp);
4738	if (!pn)
4739		return 1;
4740
4741	mem->info.nodeinfo[node] = pn;
4742	for (zone = 0; zone < MAX_NR_ZONES; zone++) {
4743		mz = &pn->zoneinfo[zone];
4744		for_each_lru(l)
4745			INIT_LIST_HEAD(&mz->lists[l]);
4746		mz->usage_in_excess = 0;
4747		mz->on_tree = false;
4748		mz->mem = mem;
 
 
 
 
 
4749	}
 
 
 
 
 
 
 
4750	return 0;
4751}
4752
4753static void free_mem_cgroup_per_zone_info(struct mem_cgroup *mem, int node)
4754{
4755	kfree(mem->info.nodeinfo[node]);
4756}
4757
4758static struct mem_cgroup *mem_cgroup_alloc(void)
4759{
4760	struct mem_cgroup *mem;
4761	int size = sizeof(struct mem_cgroup);
4762
4763	/* Can be very big if MAX_NUMNODES is very big */
4764	if (size < PAGE_SIZE)
4765		mem = kzalloc(size, GFP_KERNEL);
4766	else
4767		mem = vzalloc(size);
4768
4769	if (!mem)
4770		return NULL;
 
4771
4772	mem->stat = alloc_percpu(struct mem_cgroup_stat_cpu);
4773	if (!mem->stat)
4774		goto out_free;
4775	spin_lock_init(&mem->pcp_counter_lock);
4776	return mem;
4777
4778out_free:
4779	if (size < PAGE_SIZE)
4780		kfree(mem);
4781	else
4782		vfree(mem);
4783	return NULL;
4784}
4785
4786/*
4787 * At destroying mem_cgroup, references from swap_cgroup can remain.
4788 * (scanning all at force_empty is too costly...)
4789 *
4790 * Instead of clearing all references at force_empty, we remember
4791 * the number of reference from swap_cgroup and free mem_cgroup when
4792 * it goes down to 0.
4793 *
4794 * Removal of cgroup itself succeeds regardless of refs from swap.
4795 */
 
4796
4797static void __mem_cgroup_free(struct mem_cgroup *mem)
4798{
 
 
4799	int node;
 
 
4800
4801	mem_cgroup_remove_from_trees(mem);
4802	free_css_id(&mem_cgroup_subsys, &mem->css);
4803
4804	for_each_node_state(node, N_POSSIBLE)
4805		free_mem_cgroup_per_zone_info(mem, node);
 
4806
4807	free_percpu(mem->stat);
4808	if (sizeof(struct mem_cgroup) < PAGE_SIZE)
4809		kfree(mem);
4810	else
4811		vfree(mem);
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
4812}
4813
4814static void mem_cgroup_get(struct mem_cgroup *mem)
 
4815{
4816	atomic_inc(&mem->refcnt);
4817}
 
4818
4819static void __mem_cgroup_put(struct mem_cgroup *mem, int count)
4820{
4821	if (atomic_sub_and_test(count, &mem->refcnt)) {
4822		struct mem_cgroup *parent = parent_mem_cgroup(mem);
4823		__mem_cgroup_free(mem);
4824		if (parent)
4825			mem_cgroup_put(parent);
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
4826	}
4827}
4828
4829static void mem_cgroup_put(struct mem_cgroup *mem)
4830{
4831	__mem_cgroup_put(mem, 1);
4832}
 
4833
4834/*
4835 * Returns the parent mem_cgroup in memcgroup hierarchy with hierarchy enabled.
4836 */
4837static struct mem_cgroup *parent_mem_cgroup(struct mem_cgroup *mem)
4838{
4839	if (!mem->res.parent)
4840		return NULL;
4841	return mem_cgroup_from_res_counter(mem->res.parent, res);
4842}
4843
4844#ifdef CONFIG_CGROUP_MEM_RES_CTLR_SWAP
4845static void __init enable_swap_cgroup(void)
4846{
4847	if (!mem_cgroup_disabled() && really_do_swap_account)
4848		do_swap_account = 1;
4849}
4850#else
4851static void __init enable_swap_cgroup(void)
4852{
4853}
4854#endif
4855
4856static int mem_cgroup_soft_limit_tree_init(void)
4857{
4858	struct mem_cgroup_tree_per_node *rtpn;
4859	struct mem_cgroup_tree_per_zone *rtpz;
4860	int tmp, node, zone;
4861
4862	for_each_node_state(node, N_POSSIBLE) {
4863		tmp = node;
4864		if (!node_state(node, N_NORMAL_MEMORY))
4865			tmp = -1;
4866		rtpn = kzalloc_node(sizeof(*rtpn), GFP_KERNEL, tmp);
4867		if (!rtpn)
4868			return 1;
4869
4870		soft_limit_tree.rb_tree_per_node[node] = rtpn;
4871
4872		for (zone = 0; zone < MAX_NR_ZONES; zone++) {
4873			rtpz = &rtpn->rb_tree_per_zone[zone];
4874			rtpz->rb_root = RB_ROOT;
4875			spin_lock_init(&rtpz->lock);
4876		}
 
 
 
4877	}
 
 
 
 
4878	return 0;
4879}
4880
4881static struct cgroup_subsys_state * __ref
4882mem_cgroup_create(struct cgroup_subsys *ss, struct cgroup *cont)
4883{
4884	struct mem_cgroup *mem, *parent;
4885	long error = -ENOMEM;
4886	int node;
4887
4888	mem = mem_cgroup_alloc();
4889	if (!mem)
4890		return ERR_PTR(error);
4891
4892	for_each_node_state(node, N_POSSIBLE)
4893		if (alloc_mem_cgroup_per_zone_info(mem, node))
4894			goto free_out;
4895
4896	/* root ? */
4897	if (cont->parent == NULL) {
4898		int cpu;
4899		enable_swap_cgroup();
4900		parent = NULL;
4901		root_mem_cgroup = mem;
4902		if (mem_cgroup_soft_limit_tree_init())
4903			goto free_out;
4904		for_each_possible_cpu(cpu) {
4905			struct memcg_stock_pcp *stock =
4906						&per_cpu(memcg_stock, cpu);
4907			INIT_WORK(&stock->work, drain_local_stock);
4908		}
4909		hotcpu_notifier(memcg_cpu_hotplug_callback, 0);
4910	} else {
4911		parent = mem_cgroup_from_cont(cont->parent);
4912		mem->use_hierarchy = parent->use_hierarchy;
4913		mem->oom_kill_disable = parent->oom_kill_disable;
4914	}
 
4915
4916	if (parent && parent->use_hierarchy) {
4917		res_counter_init(&mem->res, &parent->res);
4918		res_counter_init(&mem->memsw, &parent->memsw);
4919		/*
4920		 * We increment refcnt of the parent to ensure that we can
4921		 * safely access it on res_counter_charge/uncharge.
4922		 * This refcnt will be decremented when freeing this
4923		 * mem_cgroup(see mem_cgroup_put).
4924		 */
4925		mem_cgroup_get(parent);
4926	} else {
4927		res_counter_init(&mem->res, NULL);
4928		res_counter_init(&mem->memsw, NULL);
4929	}
4930	mem->last_scanned_child = 0;
4931	mem->last_scanned_node = MAX_NUMNODES;
4932	INIT_LIST_HEAD(&mem->oom_notify);
4933
4934	if (parent)
4935		mem->swappiness = mem_cgroup_swappiness(parent);
4936	atomic_set(&mem->refcnt, 1);
4937	mem->move_charge_at_immigrate = 0;
4938	mutex_init(&mem->thresholds_lock);
4939	return &mem->css;
4940free_out:
4941	__mem_cgroup_free(mem);
4942	root_mem_cgroup = NULL;
4943	return ERR_PTR(error);
4944}
4945
4946static int mem_cgroup_pre_destroy(struct cgroup_subsys *ss,
4947					struct cgroup *cont)
4948{
4949	struct mem_cgroup *mem = mem_cgroup_from_cont(cont);
4950
4951	return mem_cgroup_force_empty(mem, false);
4952}
4953
4954static void mem_cgroup_destroy(struct cgroup_subsys *ss,
4955				struct cgroup *cont)
4956{
4957	struct mem_cgroup *mem = mem_cgroup_from_cont(cont);
 
4958
4959	mem_cgroup_put(mem);
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
4960}
4961
4962static int mem_cgroup_populate(struct cgroup_subsys *ss,
4963				struct cgroup *cont)
 
 
 
 
 
 
 
 
 
 
 
 
4964{
4965	int ret;
4966
4967	ret = cgroup_add_files(cont, ss, mem_cgroup_files,
4968				ARRAY_SIZE(mem_cgroup_files));
4969
4970	if (!ret)
4971		ret = register_memsw_files(cont, ss);
4972	return ret;
 
 
 
 
 
 
 
 
4973}
4974
4975#ifdef CONFIG_MMU
4976/* Handlers for move charge at task migration. */
4977#define PRECHARGE_COUNT_AT_ONCE	256
4978static int mem_cgroup_do_precharge(unsigned long count)
4979{
4980	int ret = 0;
4981	int batch_count = PRECHARGE_COUNT_AT_ONCE;
4982	struct mem_cgroup *mem = mc.to;
4983
4984	if (mem_cgroup_is_root(mem)) {
 
 
4985		mc.precharge += count;
4986		/* we don't need css_get for root */
4987		return ret;
4988	}
4989	/* try to charge at once */
4990	if (count > 1) {
4991		struct res_counter *dummy;
4992		/*
4993		 * "mem" cannot be under rmdir() because we've already checked
4994		 * by cgroup_lock_live_cgroup() that it is not removed and we
4995		 * are still under the same cgroup_mutex. So we can postpone
4996		 * css_get().
4997		 */
4998		if (res_counter_charge(&mem->res, PAGE_SIZE * count, &dummy))
4999			goto one_by_one;
5000		if (do_swap_account && res_counter_charge(&mem->memsw,
5001						PAGE_SIZE * count, &dummy)) {
5002			res_counter_uncharge(&mem->res, PAGE_SIZE * count);
5003			goto one_by_one;
5004		}
5005		mc.precharge += count;
5006		return ret;
5007	}
5008one_by_one:
5009	/* fall back to one by one charge */
5010	while (count--) {
5011		if (signal_pending(current)) {
5012			ret = -EINTR;
5013			break;
5014		}
5015		if (!batch_count--) {
5016			batch_count = PRECHARGE_COUNT_AT_ONCE;
5017			cond_resched();
5018		}
5019		ret = __mem_cgroup_try_charge(NULL, GFP_KERNEL, 1, &mem, false);
5020		if (ret || !mem)
5021			/* mem_cgroup_clear_mc() will do uncharge later */
5022			return -ENOMEM;
5023		mc.precharge++;
 
5024	}
5025	return ret;
5026}
5027
5028/**
5029 * is_target_pte_for_mc - check a pte whether it is valid for move charge
5030 * @vma: the vma the pte to be checked belongs
5031 * @addr: the address corresponding to the pte to be checked
5032 * @ptent: the pte to be checked
5033 * @target: the pointer the target page or swap ent will be stored(can be NULL)
5034 *
5035 * Returns
5036 *   0(MC_TARGET_NONE): if the pte is not a target for move charge.
5037 *   1(MC_TARGET_PAGE): if the page corresponding to this pte is a target for
5038 *     move charge. if @target is not NULL, the page is stored in target->page
5039 *     with extra refcnt got(Callers should handle it).
5040 *   2(MC_TARGET_SWAP): if the swap entry corresponding to this pte is a
5041 *     target for charge migration. if @target is not NULL, the entry is stored
5042 *     in target->ent.
5043 *
5044 * Called with pte lock held.
5045 */
5046union mc_target {
5047	struct page	*page;
5048	swp_entry_t	ent;
5049};
5050
5051enum mc_target_type {
5052	MC_TARGET_NONE,	/* not used */
5053	MC_TARGET_PAGE,
5054	MC_TARGET_SWAP,
 
5055};
5056
5057static struct page *mc_handle_present_pte(struct vm_area_struct *vma,
5058						unsigned long addr, pte_t ptent)
5059{
5060	struct page *page = vm_normal_page(vma, addr, ptent);
5061
5062	if (!page || !page_mapped(page))
5063		return NULL;
5064	if (PageAnon(page)) {
5065		/* we don't move shared anon */
5066		if (!move_anon() || page_mapcount(page) > 2)
5067			return NULL;
5068	} else if (!move_file())
5069		/* we ignore mapcount for file pages */
5070		return NULL;
 
5071	if (!get_page_unless_zero(page))
5072		return NULL;
5073
5074	return page;
5075}
5076
 
5077static struct page *mc_handle_swap_pte(struct vm_area_struct *vma,
5078			unsigned long addr, pte_t ptent, swp_entry_t *entry)
5079{
5080	int usage_count;
5081	struct page *page = NULL;
5082	swp_entry_t ent = pte_to_swp_entry(ptent);
5083
5084	if (!move_anon() || non_swap_entry(ent))
5085		return NULL;
5086	usage_count = mem_cgroup_count_swap_user(ent, &page);
5087	if (usage_count > 1) { /* we don't move shared anon */
5088		if (page)
5089			put_page(page);
5090		return NULL;
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
5091	}
5092	if (do_swap_account)
5093		entry->val = ent.val;
 
 
 
 
 
5094
5095	return page;
5096}
 
 
 
 
 
 
 
5097
5098static struct page *mc_handle_file_pte(struct vm_area_struct *vma,
5099			unsigned long addr, pte_t ptent, swp_entry_t *entry)
5100{
5101	struct page *page = NULL;
5102	struct inode *inode;
5103	struct address_space *mapping;
5104	pgoff_t pgoff;
5105
5106	if (!vma->vm_file) /* anonymous vma */
5107		return NULL;
5108	if (!move_file())
5109		return NULL;
5110
5111	inode = vma->vm_file->f_path.dentry->d_inode;
5112	mapping = vma->vm_file->f_mapping;
5113	if (pte_none(ptent))
5114		pgoff = linear_page_index(vma, addr);
5115	else /* pte_file(ptent) is true */
5116		pgoff = pte_to_pgoff(ptent);
5117
5118	/* page is moved even if it's not RSS of this task(page-faulted). */
5119	page = find_get_page(mapping, pgoff);
5120
5121#ifdef CONFIG_SWAP
5122	/* shmem/tmpfs may report page out on swap: account for that too. */
5123	if (radix_tree_exceptional_entry(page)) {
5124		swp_entry_t swap = radix_to_swp_entry(page);
5125		if (do_swap_account)
5126			*entry = swap;
5127		page = find_get_page(&swapper_space, swap.val);
5128	}
 
 
 
 
 
 
5129#endif
5130	return page;
5131}
5132
5133static int is_target_pte_for_mc(struct vm_area_struct *vma,
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
5134		unsigned long addr, pte_t ptent, union mc_target *target)
5135{
5136	struct page *page = NULL;
5137	struct page_cgroup *pc;
5138	int ret = 0;
5139	swp_entry_t ent = { .val = 0 };
5140
5141	if (pte_present(ptent))
5142		page = mc_handle_present_pte(vma, addr, ptent);
5143	else if (is_swap_pte(ptent))
5144		page = mc_handle_swap_pte(vma, addr, ptent, &ent);
5145	else if (pte_none(ptent) || pte_file(ptent))
5146		page = mc_handle_file_pte(vma, addr, ptent, &ent);
5147
5148	if (!page && !ent.val)
5149		return 0;
5150	if (page) {
5151		pc = lookup_page_cgroup(page);
5152		/*
5153		 * Do only loose check w/o page_cgroup lock.
5154		 * mem_cgroup_move_account() checks the pc is valid or not under
5155		 * the lock.
5156		 */
5157		if (PageCgroupUsed(pc) && pc->mem_cgroup == mc.from) {
5158			ret = MC_TARGET_PAGE;
 
 
5159			if (target)
5160				target->page = page;
5161		}
5162		if (!ret || !target)
5163			put_page(page);
5164	}
5165	/* There is a swap entry and a page doesn't exist or isn't charged */
5166	if (ent.val && !ret &&
5167			css_id(&mc.from->css) == lookup_swap_cgroup(ent)) {
 
 
 
5168		ret = MC_TARGET_SWAP;
5169		if (target)
5170			target->ent = ent;
5171	}
5172	return ret;
5173}
5174
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
5175static int mem_cgroup_count_precharge_pte_range(pmd_t *pmd,
5176					unsigned long addr, unsigned long end,
5177					struct mm_walk *walk)
5178{
5179	struct vm_area_struct *vma = walk->private;
5180	pte_t *pte;
5181	spinlock_t *ptl;
5182
5183	split_huge_page_pmd(walk->mm, pmd);
 
 
 
 
 
 
 
 
 
 
 
5184
 
 
5185	pte = pte_offset_map_lock(vma->vm_mm, pmd, addr, &ptl);
5186	for (; addr != end; pte++, addr += PAGE_SIZE)
5187		if (is_target_pte_for_mc(vma, addr, *pte, NULL))
5188			mc.precharge++;	/* increment precharge temporarily */
5189	pte_unmap_unlock(pte - 1, ptl);
5190	cond_resched();
5191
5192	return 0;
5193}
5194
 
 
 
 
5195static unsigned long mem_cgroup_count_precharge(struct mm_struct *mm)
5196{
5197	unsigned long precharge;
5198	struct vm_area_struct *vma;
5199
5200	down_read(&mm->mmap_sem);
5201	for (vma = mm->mmap; vma; vma = vma->vm_next) {
5202		struct mm_walk mem_cgroup_count_precharge_walk = {
5203			.pmd_entry = mem_cgroup_count_precharge_pte_range,
5204			.mm = mm,
5205			.private = vma,
5206		};
5207		if (is_vm_hugetlb_page(vma))
5208			continue;
5209		walk_page_range(vma->vm_start, vma->vm_end,
5210					&mem_cgroup_count_precharge_walk);
5211	}
5212	up_read(&mm->mmap_sem);
5213
5214	precharge = mc.precharge;
5215	mc.precharge = 0;
5216
5217	return precharge;
5218}
5219
5220static int mem_cgroup_precharge_mc(struct mm_struct *mm)
5221{
5222	unsigned long precharge = mem_cgroup_count_precharge(mm);
5223
5224	VM_BUG_ON(mc.moving_task);
5225	mc.moving_task = current;
5226	return mem_cgroup_do_precharge(precharge);
5227}
5228
5229/* cancels all extra charges on mc.from and mc.to, and wakes up all waiters. */
5230static void __mem_cgroup_clear_mc(void)
5231{
5232	struct mem_cgroup *from = mc.from;
5233	struct mem_cgroup *to = mc.to;
5234
5235	/* we must uncharge all the leftover precharges from mc.to */
5236	if (mc.precharge) {
5237		__mem_cgroup_cancel_charge(mc.to, mc.precharge);
5238		mc.precharge = 0;
5239	}
5240	/*
5241	 * we didn't uncharge from mc.from at mem_cgroup_move_account(), so
5242	 * we must uncharge here.
5243	 */
5244	if (mc.moved_charge) {
5245		__mem_cgroup_cancel_charge(mc.from, mc.moved_charge);
5246		mc.moved_charge = 0;
5247	}
5248	/* we must fixup refcnts and charges */
5249	if (mc.moved_swap) {
5250		/* uncharge swap account from the old cgroup */
5251		if (!mem_cgroup_is_root(mc.from))
5252			res_counter_uncharge(&mc.from->memsw,
5253						PAGE_SIZE * mc.moved_swap);
5254		__mem_cgroup_put(mc.from, mc.moved_swap);
 
 
 
 
 
 
 
5255
5256		if (!mem_cgroup_is_root(mc.to)) {
5257			/*
5258			 * we charged both to->res and to->memsw, so we should
5259			 * uncharge to->res.
5260			 */
5261			res_counter_uncharge(&mc.to->res,
5262						PAGE_SIZE * mc.moved_swap);
5263		}
5264		/* we've already done mem_cgroup_get(mc.to) */
5265		mc.moved_swap = 0;
5266	}
5267	memcg_oom_recover(from);
5268	memcg_oom_recover(to);
5269	wake_up_all(&mc.waitq);
5270}
5271
5272static void mem_cgroup_clear_mc(void)
5273{
5274	struct mem_cgroup *from = mc.from;
5275
5276	/*
5277	 * we must clear moving_task before waking up waiters at the end of
5278	 * task migration.
5279	 */
5280	mc.moving_task = NULL;
5281	__mem_cgroup_clear_mc();
5282	spin_lock(&mc.lock);
5283	mc.from = NULL;
5284	mc.to = NULL;
 
5285	spin_unlock(&mc.lock);
5286	mem_cgroup_end_move(from);
 
5287}
5288
5289static int mem_cgroup_can_attach(struct cgroup_subsys *ss,
5290				struct cgroup *cgroup,
5291				struct task_struct *p)
5292{
 
 
 
 
 
 
5293	int ret = 0;
5294	struct mem_cgroup *mem = mem_cgroup_from_cont(cgroup);
5295
5296	if (mem->move_charge_at_immigrate) {
5297		struct mm_struct *mm;
5298		struct mem_cgroup *from = mem_cgroup_from_task(p);
5299
5300		VM_BUG_ON(from == mem);
 
 
 
 
 
 
 
 
 
 
 
 
 
5301
5302		mm = get_task_mm(p);
5303		if (!mm)
5304			return 0;
5305		/* We move charges only when we move a owner of the mm */
5306		if (mm->owner == p) {
5307			VM_BUG_ON(mc.from);
5308			VM_BUG_ON(mc.to);
5309			VM_BUG_ON(mc.precharge);
5310			VM_BUG_ON(mc.moved_charge);
5311			VM_BUG_ON(mc.moved_swap);
5312			mem_cgroup_start_move(from);
5313			spin_lock(&mc.lock);
5314			mc.from = from;
5315			mc.to = mem;
5316			spin_unlock(&mc.lock);
5317			/* We set mc.moving_task later */
5318
5319			ret = mem_cgroup_precharge_mc(mm);
5320			if (ret)
5321				mem_cgroup_clear_mc();
5322		}
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
5323		mmput(mm);
5324	}
5325	return ret;
5326}
5327
5328static void mem_cgroup_cancel_attach(struct cgroup_subsys *ss,
5329				struct cgroup *cgroup,
5330				struct task_struct *p)
5331{
5332	mem_cgroup_clear_mc();
 
5333}
5334
5335static int mem_cgroup_move_charge_pte_range(pmd_t *pmd,
5336				unsigned long addr, unsigned long end,
5337				struct mm_walk *walk)
5338{
5339	int ret = 0;
5340	struct vm_area_struct *vma = walk->private;
5341	pte_t *pte;
5342	spinlock_t *ptl;
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
5343
5344	split_huge_page_pmd(walk->mm, pmd);
 
5345retry:
5346	pte = pte_offset_map_lock(vma->vm_mm, pmd, addr, &ptl);
5347	for (; addr != end; addr += PAGE_SIZE) {
5348		pte_t ptent = *(pte++);
5349		union mc_target target;
5350		int type;
5351		struct page *page;
5352		struct page_cgroup *pc;
5353		swp_entry_t ent;
5354
5355		if (!mc.precharge)
5356			break;
5357
5358		type = is_target_pte_for_mc(vma, addr, ptent, &target);
5359		switch (type) {
 
 
5360		case MC_TARGET_PAGE:
5361			page = target.page;
5362			if (isolate_lru_page(page))
 
 
 
 
 
 
 
 
5363				goto put;
5364			pc = lookup_page_cgroup(page);
5365			if (!mem_cgroup_move_account(page, 1, pc,
5366						     mc.from, mc.to, false)) {
5367				mc.precharge--;
5368				/* we uncharge from mc.from later. */
5369				mc.moved_charge++;
5370			}
5371			putback_lru_page(page);
5372put:			/* is_target_pte_for_mc() gets the page */
 
5373			put_page(page);
5374			break;
5375		case MC_TARGET_SWAP:
5376			ent = target.ent;
5377			if (!mem_cgroup_move_swap_account(ent,
5378						mc.from, mc.to, false)) {
5379				mc.precharge--;
5380				/* we fixup refcnts and charges later. */
 
5381				mc.moved_swap++;
5382			}
5383			break;
5384		default:
5385			break;
5386		}
5387	}
5388	pte_unmap_unlock(pte - 1, ptl);
5389	cond_resched();
5390
5391	if (addr != end) {
5392		/*
5393		 * We have consumed all precharges we got in can_attach().
5394		 * We try charge one by one, but don't do any additional
5395		 * charges to mc.to if we have failed in charge once in attach()
5396		 * phase.
5397		 */
5398		ret = mem_cgroup_do_precharge(1);
5399		if (!ret)
5400			goto retry;
5401	}
5402
5403	return ret;
5404}
5405
5406static void mem_cgroup_move_charge(struct mm_struct *mm)
5407{
5408	struct vm_area_struct *vma;
5409
 
 
5410	lru_add_drain_all();
 
 
 
 
 
 
 
5411retry:
5412	if (unlikely(!down_read_trylock(&mm->mmap_sem))) {
5413		/*
5414		 * Someone who are holding the mmap_sem might be waiting in
5415		 * waitq. So we cancel all extra charges, wake up all waiters,
5416		 * and retry. Because we cancel precharges, we might not be able
5417		 * to move enough charges, but moving charge is a best-effort
5418		 * feature anyway, so it wouldn't be a big problem.
5419		 */
5420		__mem_cgroup_clear_mc();
5421		cond_resched();
5422		goto retry;
5423	}
5424	for (vma = mm->mmap; vma; vma = vma->vm_next) {
5425		int ret;
5426		struct mm_walk mem_cgroup_move_charge_walk = {
5427			.pmd_entry = mem_cgroup_move_charge_pte_range,
5428			.mm = mm,
5429			.private = vma,
5430		};
5431		if (is_vm_hugetlb_page(vma))
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
5432			continue;
5433		ret = walk_page_range(vma->vm_start, vma->vm_end,
5434						&mem_cgroup_move_charge_walk);
5435		if (ret)
5436			/*
5437			 * means we have consumed all precharges and failed in
5438			 * doing additional charge. Just abandon here.
5439			 */
5440			break;
5441	}
5442	up_read(&mm->mmap_sem);
 
 
 
 
 
5443}
5444
5445static void mem_cgroup_move_task(struct cgroup_subsys *ss,
5446				struct cgroup *cont,
5447				struct cgroup *old_cont,
5448				struct task_struct *p)
5449{
5450	struct mm_struct *mm = get_task_mm(p);
 
 
5451
5452	if (mm) {
5453		if (mc.to)
5454			mem_cgroup_move_charge(mm);
5455		put_swap_token(mm);
5456		mmput(mm);
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
5457	}
5458	if (mc.to)
5459		mem_cgroup_clear_mc();
 
5460}
5461#else	/* !CONFIG_MMU */
5462static int mem_cgroup_can_attach(struct cgroup_subsys *ss,
5463				struct cgroup *cgroup,
5464				struct task_struct *p)
 
 
 
 
 
 
 
 
5465{
 
 
 
5466	return 0;
5467}
5468static void mem_cgroup_cancel_attach(struct cgroup_subsys *ss,
5469				struct cgroup *cgroup,
5470				struct task_struct *p)
5471{
 
 
 
 
5472}
5473static void mem_cgroup_move_task(struct cgroup_subsys *ss,
5474				struct cgroup *cont,
5475				struct cgroup *old_cont,
5476				struct task_struct *p)
5477{
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
5478}
5479#endif
5480
5481struct cgroup_subsys mem_cgroup_subsys = {
5482	.name = "memory",
5483	.subsys_id = mem_cgroup_subsys_id,
5484	.create = mem_cgroup_create,
5485	.pre_destroy = mem_cgroup_pre_destroy,
5486	.destroy = mem_cgroup_destroy,
5487	.populate = mem_cgroup_populate,
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
5488	.can_attach = mem_cgroup_can_attach,
5489	.cancel_attach = mem_cgroup_cancel_attach,
5490	.attach = mem_cgroup_move_task,
 
 
 
5491	.early_init = 0,
5492	.use_id = 1,
5493};
5494
5495#ifdef CONFIG_CGROUP_MEM_RES_CTLR_SWAP
5496static int __init enable_swap_account(char *s)
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
5497{
5498	/* consider enabled if no parameter or 1 is given */
5499	if (!strcmp(s, "1"))
5500		really_do_swap_account = 1;
5501	else if (!strcmp(s, "0"))
5502		really_do_swap_account = 0;
5503	return 1;
5504}
5505__setup("swapaccount=", enable_swap_account);
5506
5507#endif
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
v5.9
   1// SPDX-License-Identifier: GPL-2.0-or-later
   2/* memcontrol.c - Memory Controller
   3 *
   4 * Copyright IBM Corporation, 2007
   5 * Author Balbir Singh <balbir@linux.vnet.ibm.com>
   6 *
   7 * Copyright 2007 OpenVZ SWsoft Inc
   8 * Author: Pavel Emelianov <xemul@openvz.org>
   9 *
  10 * Memory thresholds
  11 * Copyright (C) 2009 Nokia Corporation
  12 * Author: Kirill A. Shutemov
  13 *
  14 * Kernel Memory Controller
  15 * Copyright (C) 2012 Parallels Inc. and Google Inc.
  16 * Authors: Glauber Costa and Suleiman Souhlal
  17 *
  18 * Native page reclaim
  19 * Charge lifetime sanitation
  20 * Lockless page tracking & accounting
  21 * Unified hierarchy configuration model
  22 * Copyright (C) 2015 Red Hat, Inc., Johannes Weiner
  23 */
  24
  25#include <linux/page_counter.h>
  26#include <linux/memcontrol.h>
  27#include <linux/cgroup.h>
  28#include <linux/pagewalk.h>
  29#include <linux/sched/mm.h>
  30#include <linux/shmem_fs.h>
  31#include <linux/hugetlb.h>
  32#include <linux/pagemap.h>
  33#include <linux/vm_event_item.h>
  34#include <linux/smp.h>
  35#include <linux/page-flags.h>
  36#include <linux/backing-dev.h>
  37#include <linux/bit_spinlock.h>
  38#include <linux/rcupdate.h>
  39#include <linux/limits.h>
  40#include <linux/export.h>
  41#include <linux/mutex.h>
  42#include <linux/rbtree.h>
  43#include <linux/slab.h>
  44#include <linux/swap.h>
  45#include <linux/swapops.h>
  46#include <linux/spinlock.h>
  47#include <linux/eventfd.h>
  48#include <linux/poll.h>
  49#include <linux/sort.h>
  50#include <linux/fs.h>
  51#include <linux/seq_file.h>
  52#include <linux/vmpressure.h>
  53#include <linux/mm_inline.h>
  54#include <linux/swap_cgroup.h>
  55#include <linux/cpu.h>
  56#include <linux/oom.h>
  57#include <linux/lockdep.h>
  58#include <linux/file.h>
  59#include <linux/tracehook.h>
  60#include <linux/psi.h>
  61#include <linux/seq_buf.h>
  62#include "internal.h"
  63#include <net/sock.h>
  64#include <net/ip.h>
  65#include "slab.h"
  66
  67#include <linux/uaccess.h>
  68
  69#include <trace/events/vmscan.h>
  70
  71struct cgroup_subsys memory_cgrp_subsys __read_mostly;
  72EXPORT_SYMBOL(memory_cgrp_subsys);
  73
  74struct mem_cgroup *root_mem_cgroup __read_mostly;
  75
  76/* Socket memory accounting disabled? */
  77static bool cgroup_memory_nosocket;
  78
  79/* Kernel memory accounting disabled? */
  80static bool cgroup_memory_nokmem;
 
 
 
 
 
  81
  82/* Whether the swap controller is active */
  83#ifdef CONFIG_MEMCG_SWAP
  84bool cgroup_memory_noswap __read_mostly;
  85#else
  86#define cgroup_memory_noswap		1
  87#endif
  88
  89#ifdef CONFIG_CGROUP_WRITEBACK
  90static DECLARE_WAIT_QUEUE_HEAD(memcg_cgwb_frn_waitq);
  91#endif
  92
  93/* Whether legacy memory+swap accounting is active */
  94static bool do_memsw_account(void)
  95{
  96	return !cgroup_subsys_on_dfl(memory_cgrp_subsys) && !cgroup_memory_noswap;
  97}
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
  98
  99#define THRESHOLDS_EVENTS_TARGET 128
 100#define SOFTLIMIT_EVENTS_TARGET 1024
 
 101
 102/*
 103 * Cgroups above their limits are maintained in a RB-Tree, independent of
 104 * their hierarchy representation
 105 */
 106
 107struct mem_cgroup_tree_per_node {
 108	struct rb_root rb_root;
 109	struct rb_node *rb_rightmost;
 110	spinlock_t lock;
 111};
 112
 
 
 
 
 113struct mem_cgroup_tree {
 114	struct mem_cgroup_tree_per_node *rb_tree_per_node[MAX_NUMNODES];
 115};
 116
 117static struct mem_cgroup_tree soft_limit_tree __read_mostly;
 118
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 119/* for OOM */
 120struct mem_cgroup_eventfd_list {
 121	struct list_head list;
 122	struct eventfd_ctx *eventfd;
 123};
 124
 
 
 
 125/*
 126 * cgroup_event represents events which userspace want to receive.
 
 
 
 
 
 
 
 
 127 */
 128struct mem_cgroup_event {
 
 
 
 
 
 129	/*
 130	 * memcg which the event belongs to.
 131	 */
 132	struct mem_cgroup *memcg;
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 133	/*
 134	 * eventfd to signal userspace about the event.
 
 135	 */
 136	struct eventfd_ctx *eventfd;
 137	/*
 138	 * Each of these stored in a list by the cgroup.
 139	 */
 140	struct list_head list;
 141	/*
 142	 * register_event() callback will be used to add new userspace
 143	 * waiter for changes related to this event.  Use eventfd_signal()
 144	 * on eventfd to send notification to userspace.
 145	 */
 146	int (*register_event)(struct mem_cgroup *memcg,
 147			      struct eventfd_ctx *eventfd, const char *args);
 148	/*
 149	 * unregister_event() callback will be called when userspace closes
 150	 * the eventfd or on cgroup removing.  This callback must be set,
 151	 * if you want provide notification functionality.
 152	 */
 153	void (*unregister_event)(struct mem_cgroup *memcg,
 154				 struct eventfd_ctx *eventfd);
 155	/*
 156	 * All fields below needed to unregister event when
 157	 * userspace closes eventfd.
 158	 */
 159	poll_table pt;
 160	wait_queue_head_t *wqh;
 161	wait_queue_entry_t wait;
 162	struct work_struct remove;
 163};
 164
 165static void mem_cgroup_threshold(struct mem_cgroup *memcg);
 166static void mem_cgroup_oom_notify(struct mem_cgroup *memcg);
 167
 168/* Stuffs for move charges at task migration. */
 169/*
 170 * Types of charges to be moved.
 
 171 */
 172#define MOVE_ANON	0x1U
 173#define MOVE_FILE	0x2U
 174#define MOVE_MASK	(MOVE_ANON | MOVE_FILE)
 
 
 175
 176/* "mc" and its members are protected by cgroup_mutex */
 177static struct move_charge_struct {
 178	spinlock_t	  lock; /* for from, to */
 179	struct mm_struct  *mm;
 180	struct mem_cgroup *from;
 181	struct mem_cgroup *to;
 182	unsigned long flags;
 183	unsigned long precharge;
 184	unsigned long moved_charge;
 185	unsigned long moved_swap;
 186	struct task_struct *moving_task;	/* a task moving charges */
 187	wait_queue_head_t waitq;		/* a waitq for other context */
 188} mc = {
 189	.lock = __SPIN_LOCK_UNLOCKED(mc.lock),
 190	.waitq = __WAIT_QUEUE_HEAD_INITIALIZER(mc.waitq),
 191};
 192
 
 
 
 
 
 
 
 
 
 
 
 
 193/*
 194 * Maximum loops in mem_cgroup_hierarchical_reclaim(), used for soft
 195 * limit reclaim to prevent infinite loops, if they ever occur.
 196 */
 197#define	MEM_CGROUP_MAX_RECLAIM_LOOPS		100
 198#define	MEM_CGROUP_MAX_SOFT_LIMIT_RECLAIM_LOOPS	2
 199
 200enum charge_type {
 201	MEM_CGROUP_CHARGE_TYPE_CACHE = 0,
 202	MEM_CGROUP_CHARGE_TYPE_ANON,
 
 
 203	MEM_CGROUP_CHARGE_TYPE_SWAPOUT,	/* for accounting swapcache */
 204	MEM_CGROUP_CHARGE_TYPE_DROP,	/* a page was unused swap cache */
 205	NR_CHARGE_TYPE,
 206};
 207
 208/* for encoding cft->private value on file */
 209enum res_type {
 210	_MEM,
 211	_MEMSWAP,
 212	_OOM_TYPE,
 213	_KMEM,
 214	_TCP,
 215};
 216
 217#define MEMFILE_PRIVATE(x, val)	((x) << 16 | (val))
 218#define MEMFILE_TYPE(val)	((val) >> 16 & 0xffff)
 219#define MEMFILE_ATTR(val)	((val) & 0xffff)
 220/* Used for OOM nofiier */
 221#define OOM_CONTROL		(0)
 222
 223/*
 224 * Iteration constructs for visiting all cgroups (under a tree).  If
 225 * loops are exited prematurely (break), mem_cgroup_iter_break() must
 226 * be used for reference counting.
 227 */
 228#define for_each_mem_cgroup_tree(iter, root)		\
 229	for (iter = mem_cgroup_iter(root, NULL, NULL);	\
 230	     iter != NULL;				\
 231	     iter = mem_cgroup_iter(root, iter, NULL))
 232
 233#define for_each_mem_cgroup(iter)			\
 234	for (iter = mem_cgroup_iter(NULL, NULL, NULL);	\
 235	     iter != NULL;				\
 236	     iter = mem_cgroup_iter(NULL, iter, NULL))
 237
 238static inline bool should_force_charge(void)
 239{
 240	return tsk_is_oom_victim(current) || fatal_signal_pending(current) ||
 241		(current->flags & PF_EXITING);
 242}
 243
 244/* Some nice accessors for the vmpressure. */
 245struct vmpressure *memcg_to_vmpressure(struct mem_cgroup *memcg)
 246{
 247	if (!memcg)
 248		memcg = root_mem_cgroup;
 249	return &memcg->vmpressure;
 250}
 251
 252struct cgroup_subsys_state *vmpressure_to_css(struct vmpressure *vmpr)
 253{
 254	return &container_of(vmpr, struct mem_cgroup, vmpressure)->css;
 255}
 256
 257#ifdef CONFIG_MEMCG_KMEM
 258extern spinlock_t css_set_lock;
 259
 260static void obj_cgroup_release(struct percpu_ref *ref)
 261{
 262	struct obj_cgroup *objcg = container_of(ref, struct obj_cgroup, refcnt);
 263	struct mem_cgroup *memcg;
 264	unsigned int nr_bytes;
 265	unsigned int nr_pages;
 266	unsigned long flags;
 267
 268	/*
 269	 * At this point all allocated objects are freed, and
 270	 * objcg->nr_charged_bytes can't have an arbitrary byte value.
 271	 * However, it can be PAGE_SIZE or (x * PAGE_SIZE).
 272	 *
 273	 * The following sequence can lead to it:
 274	 * 1) CPU0: objcg == stock->cached_objcg
 275	 * 2) CPU1: we do a small allocation (e.g. 92 bytes),
 276	 *          PAGE_SIZE bytes are charged
 277	 * 3) CPU1: a process from another memcg is allocating something,
 278	 *          the stock if flushed,
 279	 *          objcg->nr_charged_bytes = PAGE_SIZE - 92
 280	 * 5) CPU0: we do release this object,
 281	 *          92 bytes are added to stock->nr_bytes
 282	 * 6) CPU0: stock is flushed,
 283	 *          92 bytes are added to objcg->nr_charged_bytes
 284	 *
 285	 * In the result, nr_charged_bytes == PAGE_SIZE.
 286	 * This page will be uncharged in obj_cgroup_release().
 287	 */
 288	nr_bytes = atomic_read(&objcg->nr_charged_bytes);
 289	WARN_ON_ONCE(nr_bytes & (PAGE_SIZE - 1));
 290	nr_pages = nr_bytes >> PAGE_SHIFT;
 291
 292	spin_lock_irqsave(&css_set_lock, flags);
 293	memcg = obj_cgroup_memcg(objcg);
 294	if (nr_pages)
 295		__memcg_kmem_uncharge(memcg, nr_pages);
 296	list_del(&objcg->list);
 297	mem_cgroup_put(memcg);
 298	spin_unlock_irqrestore(&css_set_lock, flags);
 299
 300	percpu_ref_exit(ref);
 301	kfree_rcu(objcg, rcu);
 302}
 303
 304static struct obj_cgroup *obj_cgroup_alloc(void)
 305{
 306	struct obj_cgroup *objcg;
 307	int ret;
 308
 309	objcg = kzalloc(sizeof(struct obj_cgroup), GFP_KERNEL);
 310	if (!objcg)
 311		return NULL;
 312
 313	ret = percpu_ref_init(&objcg->refcnt, obj_cgroup_release, 0,
 314			      GFP_KERNEL);
 315	if (ret) {
 316		kfree(objcg);
 317		return NULL;
 318	}
 319	INIT_LIST_HEAD(&objcg->list);
 320	return objcg;
 321}
 322
 323static void memcg_reparent_objcgs(struct mem_cgroup *memcg,
 324				  struct mem_cgroup *parent)
 325{
 326	struct obj_cgroup *objcg, *iter;
 327
 328	objcg = rcu_replace_pointer(memcg->objcg, NULL, true);
 329
 330	spin_lock_irq(&css_set_lock);
 331
 332	/* Move active objcg to the parent's list */
 333	xchg(&objcg->memcg, parent);
 334	css_get(&parent->css);
 335	list_add(&objcg->list, &parent->objcg_list);
 336
 337	/* Move already reparented objcgs to the parent's list */
 338	list_for_each_entry(iter, &memcg->objcg_list, list) {
 339		css_get(&parent->css);
 340		xchg(&iter->memcg, parent);
 341		css_put(&memcg->css);
 342	}
 343	list_splice(&memcg->objcg_list, &parent->objcg_list);
 344
 345	spin_unlock_irq(&css_set_lock);
 346
 347	percpu_ref_kill(&objcg->refcnt);
 348}
 349
 350/*
 351 * This will be used as a shrinker list's index.
 352 * The main reason for not using cgroup id for this:
 353 *  this works better in sparse environments, where we have a lot of memcgs,
 354 *  but only a few kmem-limited. Or also, if we have, for instance, 200
 355 *  memcgs, and none but the 200th is kmem-limited, we'd have to have a
 356 *  200 entry array for that.
 357 *
 358 * The current size of the caches array is stored in memcg_nr_cache_ids. It
 359 * will double each time we have to increase it.
 360 */
 361static DEFINE_IDA(memcg_cache_ida);
 362int memcg_nr_cache_ids;
 363
 364/* Protects memcg_nr_cache_ids */
 365static DECLARE_RWSEM(memcg_cache_ids_sem);
 366
 367void memcg_get_cache_ids(void)
 368{
 369	down_read(&memcg_cache_ids_sem);
 370}
 371
 372void memcg_put_cache_ids(void)
 373{
 374	up_read(&memcg_cache_ids_sem);
 375}
 376
 377/*
 378 * MIN_SIZE is different than 1, because we would like to avoid going through
 379 * the alloc/free process all the time. In a small machine, 4 kmem-limited
 380 * cgroups is a reasonable guess. In the future, it could be a parameter or
 381 * tunable, but that is strictly not necessary.
 382 *
 383 * MAX_SIZE should be as large as the number of cgrp_ids. Ideally, we could get
 384 * this constant directly from cgroup, but it is understandable that this is
 385 * better kept as an internal representation in cgroup.c. In any case, the
 386 * cgrp_id space is not getting any smaller, and we don't have to necessarily
 387 * increase ours as well if it increases.
 388 */
 389#define MEMCG_CACHES_MIN_SIZE 4
 390#define MEMCG_CACHES_MAX_SIZE MEM_CGROUP_ID_MAX
 391
 392/*
 393 * A lot of the calls to the cache allocation functions are expected to be
 394 * inlined by the compiler. Since the calls to memcg_slab_pre_alloc_hook() are
 395 * conditional to this static branch, we'll have to allow modules that does
 396 * kmem_cache_alloc and the such to see this symbol as well
 397 */
 398DEFINE_STATIC_KEY_FALSE(memcg_kmem_enabled_key);
 399EXPORT_SYMBOL(memcg_kmem_enabled_key);
 400#endif
 
 
 
 401
 402static int memcg_shrinker_map_size;
 403static DEFINE_MUTEX(memcg_shrinker_map_mutex);
 
 
 404
 405static void memcg_free_shrinker_map_rcu(struct rcu_head *head)
 
 406{
 407	kvfree(container_of(head, struct memcg_shrinker_map, rcu));
 408}
 409
 410static int memcg_expand_one_shrinker_map(struct mem_cgroup *memcg,
 411					 int size, int old_size)
 412{
 413	struct memcg_shrinker_map *new, *old;
 414	int nid;
 415
 416	lockdep_assert_held(&memcg_shrinker_map_mutex);
 417
 418	for_each_node(nid) {
 419		old = rcu_dereference_protected(
 420			mem_cgroup_nodeinfo(memcg, nid)->shrinker_map, true);
 421		/* Not yet online memcg */
 422		if (!old)
 423			return 0;
 424
 425		new = kvmalloc_node(sizeof(*new) + size, GFP_KERNEL, nid);
 426		if (!new)
 427			return -ENOMEM;
 428
 429		/* Set all old bits, clear all new bits */
 430		memset(new->map, (int)0xff, old_size);
 431		memset((void *)new->map + old_size, 0, size - old_size);
 432
 433		rcu_assign_pointer(memcg->nodeinfo[nid]->shrinker_map, new);
 434		call_rcu(&old->rcu, memcg_free_shrinker_map_rcu);
 435	}
 436
 437	return 0;
 438}
 439
 440static void memcg_free_shrinker_maps(struct mem_cgroup *memcg)
 441{
 442	struct mem_cgroup_per_node *pn;
 443	struct memcg_shrinker_map *map;
 444	int nid;
 445
 446	if (mem_cgroup_is_root(memcg))
 447		return;
 448
 449	for_each_node(nid) {
 450		pn = mem_cgroup_nodeinfo(memcg, nid);
 451		map = rcu_dereference_protected(pn->shrinker_map, true);
 452		if (map)
 453			kvfree(map);
 454		rcu_assign_pointer(pn->shrinker_map, NULL);
 455	}
 456}
 457
 458static int memcg_alloc_shrinker_maps(struct mem_cgroup *memcg)
 459{
 460	struct memcg_shrinker_map *map;
 461	int nid, size, ret = 0;
 462
 463	if (mem_cgroup_is_root(memcg))
 464		return 0;
 465
 466	mutex_lock(&memcg_shrinker_map_mutex);
 467	size = memcg_shrinker_map_size;
 468	for_each_node(nid) {
 469		map = kvzalloc_node(sizeof(*map) + size, GFP_KERNEL, nid);
 470		if (!map) {
 471			memcg_free_shrinker_maps(memcg);
 472			ret = -ENOMEM;
 473			break;
 474		}
 475		rcu_assign_pointer(memcg->nodeinfo[nid]->shrinker_map, map);
 476	}
 477	mutex_unlock(&memcg_shrinker_map_mutex);
 478
 479	return ret;
 480}
 481
 482int memcg_expand_shrinker_maps(int new_id)
 483{
 484	int size, old_size, ret = 0;
 485	struct mem_cgroup *memcg;
 486
 487	size = DIV_ROUND_UP(new_id + 1, BITS_PER_LONG) * sizeof(unsigned long);
 488	old_size = memcg_shrinker_map_size;
 489	if (size <= old_size)
 490		return 0;
 491
 492	mutex_lock(&memcg_shrinker_map_mutex);
 493	if (!root_mem_cgroup)
 494		goto unlock;
 495
 496	for_each_mem_cgroup(memcg) {
 497		if (mem_cgroup_is_root(memcg))
 498			continue;
 499		ret = memcg_expand_one_shrinker_map(memcg, size, old_size);
 500		if (ret) {
 501			mem_cgroup_iter_break(NULL, memcg);
 502			goto unlock;
 503		}
 504	}
 505unlock:
 506	if (!ret)
 507		memcg_shrinker_map_size = size;
 508	mutex_unlock(&memcg_shrinker_map_mutex);
 509	return ret;
 510}
 511
 512void memcg_set_shrinker_bit(struct mem_cgroup *memcg, int nid, int shrinker_id)
 513{
 514	if (shrinker_id >= 0 && memcg && !mem_cgroup_is_root(memcg)) {
 515		struct memcg_shrinker_map *map;
 516
 517		rcu_read_lock();
 518		map = rcu_dereference(memcg->nodeinfo[nid]->shrinker_map);
 519		/* Pairs with smp mb in shrink_slab() */
 520		smp_mb__before_atomic();
 521		set_bit(shrinker_id, map->map);
 522		rcu_read_unlock();
 523	}
 524}
 525
 526/**
 527 * mem_cgroup_css_from_page - css of the memcg associated with a page
 528 * @page: page of interest
 529 *
 530 * If memcg is bound to the default hierarchy, css of the memcg associated
 531 * with @page is returned.  The returned css remains associated with @page
 532 * until it is released.
 533 *
 534 * If memcg is bound to a traditional hierarchy, the css of root_mem_cgroup
 535 * is returned.
 536 */
 537struct cgroup_subsys_state *mem_cgroup_css_from_page(struct page *page)
 538{
 539	struct mem_cgroup *memcg;
 540
 541	memcg = page->mem_cgroup;
 542
 543	if (!memcg || !cgroup_subsys_on_dfl(memory_cgrp_subsys))
 544		memcg = root_mem_cgroup;
 545
 546	return &memcg->css;
 547}
 548
 549/**
 550 * page_cgroup_ino - return inode number of the memcg a page is charged to
 551 * @page: the page
 552 *
 553 * Look up the closest online ancestor of the memory cgroup @page is charged to
 554 * and return its inode number or 0 if @page is not charged to any cgroup. It
 555 * is safe to call this function without holding a reference to @page.
 556 *
 557 * Note, this function is inherently racy, because there is nothing to prevent
 558 * the cgroup inode from getting torn down and potentially reallocated a moment
 559 * after page_cgroup_ino() returns, so it only should be used by callers that
 560 * do not care (such as procfs interfaces).
 561 */
 562ino_t page_cgroup_ino(struct page *page)
 563{
 564	struct mem_cgroup *memcg;
 565	unsigned long ino = 0;
 566
 567	rcu_read_lock();
 568	memcg = page->mem_cgroup;
 569
 570	/*
 571	 * The lowest bit set means that memcg isn't a valid
 572	 * memcg pointer, but a obj_cgroups pointer.
 573	 * In this case the page is shared and doesn't belong
 574	 * to any specific memory cgroup.
 575	 */
 576	if ((unsigned long) memcg & 0x1UL)
 577		memcg = NULL;
 578
 579	while (memcg && !(memcg->css.flags & CSS_ONLINE))
 580		memcg = parent_mem_cgroup(memcg);
 581	if (memcg)
 582		ino = cgroup_ino(memcg->css.cgroup);
 583	rcu_read_unlock();
 584	return ino;
 585}
 586
 587static struct mem_cgroup_per_node *
 588mem_cgroup_page_nodeinfo(struct mem_cgroup *memcg, struct page *page)
 589{
 590	int nid = page_to_nid(page);
 
 591
 592	return memcg->nodeinfo[nid];
 593}
 594
 595static struct mem_cgroup_tree_per_node *
 596soft_limit_tree_node(int nid)
 597{
 598	return soft_limit_tree.rb_tree_per_node[nid];
 599}
 600
 601static struct mem_cgroup_tree_per_node *
 602soft_limit_tree_from_page(struct page *page)
 603{
 604	int nid = page_to_nid(page);
 
 605
 606	return soft_limit_tree.rb_tree_per_node[nid];
 607}
 608
 609static void __mem_cgroup_insert_exceeded(struct mem_cgroup_per_node *mz,
 610					 struct mem_cgroup_tree_per_node *mctz,
 611					 unsigned long new_usage_in_excess)
 
 
 612{
 613	struct rb_node **p = &mctz->rb_root.rb_node;
 614	struct rb_node *parent = NULL;
 615	struct mem_cgroup_per_node *mz_node;
 616	bool rightmost = true;
 617
 618	if (mz->on_tree)
 619		return;
 620
 621	mz->usage_in_excess = new_usage_in_excess;
 622	if (!mz->usage_in_excess)
 623		return;
 624	while (*p) {
 625		parent = *p;
 626		mz_node = rb_entry(parent, struct mem_cgroup_per_node,
 627					tree_node);
 628		if (mz->usage_in_excess < mz_node->usage_in_excess) {
 629			p = &(*p)->rb_left;
 630			rightmost = false;
 631		}
 632
 633		/*
 634		 * We can't avoid mem cgroups that are over their soft
 635		 * limit by the same amount
 636		 */
 637		else if (mz->usage_in_excess >= mz_node->usage_in_excess)
 638			p = &(*p)->rb_right;
 639	}
 640
 641	if (rightmost)
 642		mctz->rb_rightmost = &mz->tree_node;
 643
 644	rb_link_node(&mz->tree_node, parent, p);
 645	rb_insert_color(&mz->tree_node, &mctz->rb_root);
 646	mz->on_tree = true;
 647}
 648
 649static void __mem_cgroup_remove_exceeded(struct mem_cgroup_per_node *mz,
 650					 struct mem_cgroup_tree_per_node *mctz)
 
 
 651{
 652	if (!mz->on_tree)
 653		return;
 654
 655	if (&mz->tree_node == mctz->rb_rightmost)
 656		mctz->rb_rightmost = rb_prev(&mz->tree_node);
 657
 658	rb_erase(&mz->tree_node, &mctz->rb_root);
 659	mz->on_tree = false;
 660}
 661
 662static void mem_cgroup_remove_exceeded(struct mem_cgroup_per_node *mz,
 663				       struct mem_cgroup_tree_per_node *mctz)
 
 
 664{
 665	unsigned long flags;
 666
 667	spin_lock_irqsave(&mctz->lock, flags);
 668	__mem_cgroup_remove_exceeded(mz, mctz);
 669	spin_unlock_irqrestore(&mctz->lock, flags);
 670}
 671
 672static unsigned long soft_limit_excess(struct mem_cgroup *memcg)
 673{
 674	unsigned long nr_pages = page_counter_read(&memcg->memory);
 675	unsigned long soft_limit = READ_ONCE(memcg->soft_limit);
 676	unsigned long excess = 0;
 677
 678	if (nr_pages > soft_limit)
 679		excess = nr_pages - soft_limit;
 680
 681	return excess;
 682}
 683
 684static void mem_cgroup_update_tree(struct mem_cgroup *memcg, struct page *page)
 685{
 686	unsigned long excess;
 687	struct mem_cgroup_per_node *mz;
 688	struct mem_cgroup_tree_per_node *mctz;
 
 
 
 689
 690	mctz = soft_limit_tree_from_page(page);
 691	if (!mctz)
 692		return;
 693	/*
 694	 * Necessary to update all ancestors when hierarchy is used.
 695	 * because their event counter is not touched.
 696	 */
 697	for (; memcg; memcg = parent_mem_cgroup(memcg)) {
 698		mz = mem_cgroup_page_nodeinfo(memcg, page);
 699		excess = soft_limit_excess(memcg);
 700		/*
 701		 * We have to update the tree if mz is on RB-tree or
 702		 * mem is over its softlimit.
 703		 */
 704		if (excess || mz->on_tree) {
 705			unsigned long flags;
 706
 707			spin_lock_irqsave(&mctz->lock, flags);
 708			/* if on-tree, remove it */
 709			if (mz->on_tree)
 710				__mem_cgroup_remove_exceeded(mz, mctz);
 711			/*
 712			 * Insert again. mz->usage_in_excess will be updated.
 713			 * If excess is 0, no tree ops.
 714			 */
 715			__mem_cgroup_insert_exceeded(mz, mctz, excess);
 716			spin_unlock_irqrestore(&mctz->lock, flags);
 717		}
 718	}
 719}
 720
 721static void mem_cgroup_remove_from_trees(struct mem_cgroup *memcg)
 722{
 723	struct mem_cgroup_tree_per_node *mctz;
 724	struct mem_cgroup_per_node *mz;
 725	int nid;
 726
 727	for_each_node(nid) {
 728		mz = mem_cgroup_nodeinfo(memcg, nid);
 729		mctz = soft_limit_tree_node(nid);
 730		if (mctz)
 731			mem_cgroup_remove_exceeded(mz, mctz);
 
 732	}
 733}
 734
 735static struct mem_cgroup_per_node *
 736__mem_cgroup_largest_soft_limit_node(struct mem_cgroup_tree_per_node *mctz)
 737{
 738	struct mem_cgroup_per_node *mz;
 
 739
 740retry:
 741	mz = NULL;
 742	if (!mctz->rb_rightmost)
 
 743		goto done;		/* Nothing to reclaim from */
 744
 745	mz = rb_entry(mctz->rb_rightmost,
 746		      struct mem_cgroup_per_node, tree_node);
 747	/*
 748	 * Remove the node now but someone else can add it back,
 749	 * we will to add it back at the end of reclaim to its correct
 750	 * position in the tree.
 751	 */
 752	__mem_cgroup_remove_exceeded(mz, mctz);
 753	if (!soft_limit_excess(mz->memcg) ||
 754	    !css_tryget(&mz->memcg->css))
 755		goto retry;
 756done:
 757	return mz;
 758}
 759
 760static struct mem_cgroup_per_node *
 761mem_cgroup_largest_soft_limit_node(struct mem_cgroup_tree_per_node *mctz)
 762{
 763	struct mem_cgroup_per_node *mz;
 764
 765	spin_lock_irq(&mctz->lock);
 766	mz = __mem_cgroup_largest_soft_limit_node(mctz);
 767	spin_unlock_irq(&mctz->lock);
 768	return mz;
 769}
 770
 771/**
 772 * __mod_memcg_state - update cgroup memory statistics
 773 * @memcg: the memory cgroup
 774 * @idx: the stat item - can be enum memcg_stat_item or enum node_stat_item
 775 * @val: delta to add to the counter, can be negative
 
 
 
 
 
 
 
 
 
 
 
 
 
 776 */
 777void __mod_memcg_state(struct mem_cgroup *memcg, int idx, int val)
 
 778{
 779	long x, threshold = MEMCG_CHARGE_BATCH;
 
 780
 781	if (mem_cgroup_disabled())
 782		return;
 
 
 
 
 
 
 
 
 
 783
 784	if (memcg_stat_item_in_bytes(idx))
 785		threshold <<= PAGE_SHIFT;
 786
 787	x = val + __this_cpu_read(memcg->vmstats_percpu->stat[idx]);
 788	if (unlikely(abs(x) > threshold)) {
 789		struct mem_cgroup *mi;
 790
 791		/*
 792		 * Batch local counters to keep them in sync with
 793		 * the hierarchical ones.
 794		 */
 795		__this_cpu_add(memcg->vmstats_local->stat[idx], x);
 796		for (mi = memcg; mi; mi = parent_mem_cgroup(mi))
 797			atomic_long_add(x, &mi->vmstats[idx]);
 798		x = 0;
 799	}
 800	__this_cpu_write(memcg->vmstats_percpu->stat[idx], x);
 801}
 802
 803static struct mem_cgroup_per_node *
 804parent_nodeinfo(struct mem_cgroup_per_node *pn, int nid)
 805{
 806	struct mem_cgroup *parent;
 807
 808	parent = parent_mem_cgroup(pn->memcg);
 809	if (!parent)
 810		return NULL;
 811	return mem_cgroup_nodeinfo(parent, nid);
 812}
 813
 814void __mod_memcg_lruvec_state(struct lruvec *lruvec, enum node_stat_item idx,
 815			      int val)
 816{
 817	struct mem_cgroup_per_node *pn;
 818	struct mem_cgroup *memcg;
 819	long x, threshold = MEMCG_CHARGE_BATCH;
 820
 821	pn = container_of(lruvec, struct mem_cgroup_per_node, lruvec);
 822	memcg = pn->memcg;
 823
 824	/* Update memcg */
 825	__mod_memcg_state(memcg, idx, val);
 826
 827	/* Update lruvec */
 828	__this_cpu_add(pn->lruvec_stat_local->count[idx], val);
 829
 830	if (vmstat_item_in_bytes(idx))
 831		threshold <<= PAGE_SHIFT;
 832
 833	x = val + __this_cpu_read(pn->lruvec_stat_cpu->count[idx]);
 834	if (unlikely(abs(x) > threshold)) {
 835		pg_data_t *pgdat = lruvec_pgdat(lruvec);
 836		struct mem_cgroup_per_node *pi;
 837
 838		for (pi = pn; pi; pi = parent_nodeinfo(pi, pgdat->node_id))
 839			atomic_long_add(x, &pi->lruvec_stat[idx]);
 840		x = 0;
 841	}
 842	__this_cpu_write(pn->lruvec_stat_cpu->count[idx], x);
 843}
 844
 845/**
 846 * __mod_lruvec_state - update lruvec memory statistics
 847 * @lruvec: the lruvec
 848 * @idx: the stat item
 849 * @val: delta to add to the counter, can be negative
 850 *
 851 * The lruvec is the intersection of the NUMA node and a cgroup. This
 852 * function updates the all three counters that are affected by a
 853 * change of state at this level: per-node, per-cgroup, per-lruvec.
 854 */
 855void __mod_lruvec_state(struct lruvec *lruvec, enum node_stat_item idx,
 856			int val)
 857{
 858	/* Update node */
 859	__mod_node_page_state(lruvec_pgdat(lruvec), idx, val);
 860
 861	/* Update memcg and lruvec */
 862	if (!mem_cgroup_disabled())
 863		__mod_memcg_lruvec_state(lruvec, idx, val);
 
 
 
 
 
 864}
 865
 866void __mod_lruvec_slab_state(void *p, enum node_stat_item idx, int val)
 
 867{
 868	pg_data_t *pgdat = page_pgdat(virt_to_page(p));
 869	struct mem_cgroup *memcg;
 870	struct lruvec *lruvec;
 871
 872	rcu_read_lock();
 873	memcg = mem_cgroup_from_obj(p);
 
 
 874
 875	/* Untracked pages have no memcg, no lruvec. Update only the node */
 876	if (!memcg || memcg == root_mem_cgroup) {
 877		__mod_node_page_state(pgdat, idx, val);
 878	} else {
 879		lruvec = mem_cgroup_lruvec(memcg, pgdat);
 880		__mod_lruvec_state(lruvec, idx, val);
 881	}
 882	rcu_read_unlock();
 883}
 884
 885void mod_memcg_obj_state(void *p, int idx, int val)
 886{
 887	struct mem_cgroup *memcg;
 888
 889	rcu_read_lock();
 890	memcg = mem_cgroup_from_obj(p);
 891	if (memcg)
 892		mod_memcg_state(memcg, idx, val);
 893	rcu_read_unlock();
 894}
 895
 896/**
 897 * __count_memcg_events - account VM events in a cgroup
 898 * @memcg: the memory cgroup
 899 * @idx: the event item
 900 * @count: the number of events that occured
 901 */
 902void __count_memcg_events(struct mem_cgroup *memcg, enum vm_event_item idx,
 903			  unsigned long count)
 904{
 905	unsigned long x;
 
 
 906
 907	if (mem_cgroup_disabled())
 908		return;
 909
 910	x = count + __this_cpu_read(memcg->vmstats_percpu->events[idx]);
 911	if (unlikely(x > MEMCG_CHARGE_BATCH)) {
 912		struct mem_cgroup *mi;
 913
 914		/*
 915		 * Batch local counters to keep them in sync with
 916		 * the hierarchical ones.
 917		 */
 918		__this_cpu_add(memcg->vmstats_local->events[idx], x);
 919		for (mi = memcg; mi; mi = parent_mem_cgroup(mi))
 920			atomic_long_add(x, &mi->vmevents[idx]);
 921		x = 0;
 922	}
 923	__this_cpu_write(memcg->vmstats_percpu->events[idx], x);
 924}
 925
 926static unsigned long memcg_events(struct mem_cgroup *memcg, int event)
 
 
 927{
 928	return atomic_long_read(&memcg->vmevents[event]);
 
 
 
 
 
 
 929}
 930
 931static unsigned long memcg_events_local(struct mem_cgroup *memcg, int event)
 
 932{
 933	long x = 0;
 934	int cpu;
 935
 936	for_each_possible_cpu(cpu)
 937		x += per_cpu(memcg->vmstats_local->events[event], cpu);
 938	return x;
 939}
 940
 941static void mem_cgroup_charge_statistics(struct mem_cgroup *memcg,
 942					 struct page *page,
 943					 int nr_pages)
 944{
 945	/* pagein of a big page is an event. So, ignore page size */
 946	if (nr_pages > 0)
 947		__count_memcg_events(memcg, PGPGIN, 1);
 948	else {
 949		__count_memcg_events(memcg, PGPGOUT, 1);
 950		nr_pages = -nr_pages; /* for event */
 951	}
 952
 953	__this_cpu_add(memcg->vmstats_percpu->nr_page_events, nr_pages);
 
 
 
 954}
 955
 956static bool mem_cgroup_event_ratelimit(struct mem_cgroup *memcg,
 957				       enum mem_cgroup_events_target target)
 958{
 959	unsigned long val, next;
 960
 961	val = __this_cpu_read(memcg->vmstats_percpu->nr_page_events);
 962	next = __this_cpu_read(memcg->vmstats_percpu->targets[target]);
 963	/* from time_after() in jiffies.h */
 964	if ((long)(next - val) < 0) {
 965		switch (target) {
 966		case MEM_CGROUP_TARGET_THRESH:
 967			next = val + THRESHOLDS_EVENTS_TARGET;
 968			break;
 969		case MEM_CGROUP_TARGET_SOFTLIMIT:
 970			next = val + SOFTLIMIT_EVENTS_TARGET;
 971			break;
 972		default:
 973			break;
 974		}
 975		__this_cpu_write(memcg->vmstats_percpu->targets[target], next);
 976		return true;
 977	}
 978	return false;
 
 979}
 980
 981/*
 982 * Check events in order.
 983 *
 984 */
 985static void memcg_check_events(struct mem_cgroup *memcg, struct page *page)
 986{
 987	/* threshold event is triggered in finer grain than soft limit */
 988	if (unlikely(mem_cgroup_event_ratelimit(memcg,
 989						MEM_CGROUP_TARGET_THRESH))) {
 990		bool do_softlimit;
 991
 992		do_softlimit = mem_cgroup_event_ratelimit(memcg,
 993						MEM_CGROUP_TARGET_SOFTLIMIT);
 994		mem_cgroup_threshold(memcg);
 995		if (unlikely(do_softlimit))
 996			mem_cgroup_update_tree(memcg, page);
 
 
 
 
 
 
 
 
 997	}
 998}
 999
 
 
 
 
 
 
 
1000struct mem_cgroup *mem_cgroup_from_task(struct task_struct *p)
1001{
1002	/*
1003	 * mm_update_next_owner() may clear mm->owner to NULL
1004	 * if it races with swapoff, page migration, etc.
1005	 * So this can be called with p == NULL.
1006	 */
1007	if (unlikely(!p))
1008		return NULL;
1009
1010	return mem_cgroup_from_css(task_css(p, memory_cgrp_id));
 
1011}
1012EXPORT_SYMBOL(mem_cgroup_from_task);
1013
1014/**
1015 * get_mem_cgroup_from_mm: Obtain a reference on given mm_struct's memcg.
1016 * @mm: mm from which memcg should be extracted. It can be NULL.
1017 *
1018 * Obtain a reference on mm->memcg and returns it if successful. Otherwise
1019 * root_mem_cgroup is returned. However if mem_cgroup is disabled, NULL is
1020 * returned.
1021 */
1022struct mem_cgroup *get_mem_cgroup_from_mm(struct mm_struct *mm)
1023{
1024	struct mem_cgroup *memcg;
1025
1026	if (mem_cgroup_disabled())
1027		return NULL;
1028
 
 
 
 
1029	rcu_read_lock();
1030	do {
1031		/*
1032		 * Page cache insertions can happen withou an
1033		 * actual mm context, e.g. during disk probing
1034		 * on boot, loopback IO, acct() writes etc.
1035		 */
1036		if (unlikely(!mm))
1037			memcg = root_mem_cgroup;
1038		else {
1039			memcg = mem_cgroup_from_task(rcu_dereference(mm->owner));
1040			if (unlikely(!memcg))
1041				memcg = root_mem_cgroup;
1042		}
1043	} while (!css_tryget(&memcg->css));
1044	rcu_read_unlock();
1045	return memcg;
1046}
1047EXPORT_SYMBOL(get_mem_cgroup_from_mm);
1048
1049/**
1050 * get_mem_cgroup_from_page: Obtain a reference on given page's memcg.
1051 * @page: page from which memcg should be extracted.
1052 *
1053 * Obtain a reference on page->memcg and returns it if successful. Otherwise
1054 * root_mem_cgroup is returned.
1055 */
1056struct mem_cgroup *get_mem_cgroup_from_page(struct page *page)
1057{
1058	struct mem_cgroup *memcg = page->mem_cgroup;
 
1059
1060	if (mem_cgroup_disabled())
 
 
 
 
1061		return NULL;
1062
1063	rcu_read_lock();
1064	/* Page should not get uncharged and freed memcg under us. */
1065	if (!memcg || WARN_ON_ONCE(!css_tryget(&memcg->css)))
1066		memcg = root_mem_cgroup;
 
 
 
 
 
 
1067	rcu_read_unlock();
1068	return memcg;
1069}
1070EXPORT_SYMBOL(get_mem_cgroup_from_page);
1071
1072/**
1073 * If current->active_memcg is non-NULL, do not fallback to current->mm->memcg.
1074 */
1075static __always_inline struct mem_cgroup *get_mem_cgroup_from_current(void)
1076{
1077	if (unlikely(current->active_memcg)) {
1078		struct mem_cgroup *memcg;
 
 
1079
1080		rcu_read_lock();
1081		/* current->active_memcg must hold a ref. */
1082		if (WARN_ON_ONCE(!css_tryget(&current->active_memcg->css)))
1083			memcg = root_mem_cgroup;
1084		else
1085			memcg = current->active_memcg;
1086		rcu_read_unlock();
1087		return memcg;
1088	}
1089	return get_mem_cgroup_from_mm(current->mm);
1090}
1091
1092/**
1093 * mem_cgroup_iter - iterate over memory cgroup hierarchy
1094 * @root: hierarchy root
1095 * @prev: previously returned memcg, NULL on first invocation
1096 * @reclaim: cookie for shared reclaim walks, NULL for full walks
1097 *
1098 * Returns references to children of the hierarchy below @root, or
1099 * @root itself, or %NULL after a full round-trip.
1100 *
1101 * Caller must pass the return value in @prev on subsequent
1102 * invocations for reference counting, or use mem_cgroup_iter_break()
1103 * to cancel a hierarchy walk before the round-trip is complete.
1104 *
1105 * Reclaimers can specify a node and a priority level in @reclaim to
1106 * divide up the memcgs in the hierarchy among all concurrent
1107 * reclaimers operating on the same node and priority.
1108 */
1109struct mem_cgroup *mem_cgroup_iter(struct mem_cgroup *root,
1110				   struct mem_cgroup *prev,
1111				   struct mem_cgroup_reclaim_cookie *reclaim)
1112{
1113	struct mem_cgroup_reclaim_iter *iter;
1114	struct cgroup_subsys_state *css = NULL;
1115	struct mem_cgroup *memcg = NULL;
1116	struct mem_cgroup *pos = NULL;
1117
1118	if (mem_cgroup_disabled())
1119		return NULL;
1120
1121	if (!root)
1122		root = root_mem_cgroup;
1123
1124	if (prev && !reclaim)
1125		pos = prev;
 
1126
1127	if (!root->use_hierarchy && root != root_mem_cgroup) {
1128		if (prev)
1129			goto out;
1130		return root;
1131	}
 
 
 
1132
1133	rcu_read_lock();
 
 
 
 
 
 
 
 
 
 
1134
1135	if (reclaim) {
1136		struct mem_cgroup_per_node *mz;
1137
1138		mz = mem_cgroup_nodeinfo(root, reclaim->pgdat->node_id);
1139		iter = &mz->iter;
1140
1141		if (prev && reclaim->generation != iter->generation)
1142			goto out_unlock;
1143
1144		while (1) {
1145			pos = READ_ONCE(iter->position);
1146			if (!pos || css_tryget(&pos->css))
1147				break;
1148			/*
1149			 * css reference reached zero, so iter->position will
1150			 * be cleared by ->css_released. However, we should not
1151			 * rely on this happening soon, because ->css_released
1152			 * is called from a work queue, and by busy-waiting we
1153			 * might block it. So we clear iter->position right
1154			 * away.
1155			 */
1156			(void)cmpxchg(&iter->position, pos, NULL);
1157		}
1158	}
1159
1160	if (pos)
1161		css = &pos->css;
 
1162
1163	for (;;) {
1164		css = css_next_descendant_pre(css, &root->css);
1165		if (!css) {
1166			/*
1167			 * Reclaimers share the hierarchy walk, and a
1168			 * new one might jump in right at the end of
1169			 * the hierarchy - make sure they see at least
1170			 * one group and restart from the beginning.
1171			 */
1172			if (!prev)
1173				continue;
1174			break;
1175		}
1176
1177		/*
1178		 * Verify the css and acquire a reference.  The root
1179		 * is provided by the caller, so we know it's alive
1180		 * and kicking, and don't take an extra reference.
1181		 */
1182		memcg = mem_cgroup_from_css(css);
1183
1184		if (css == &root->css)
1185			break;
 
 
 
 
 
 
 
 
 
 
 
 
1186
1187		if (css_tryget(css))
1188			break;
 
 
 
 
 
 
 
 
 
 
 
1189
1190		memcg = NULL;
1191	}
 
 
1192
1193	if (reclaim) {
1194		/*
1195		 * The position could have already been updated by a competing
1196		 * thread, so check that the value hasn't changed since we read
1197		 * it to avoid reclaiming from the same cgroup twice.
1198		 */
1199		(void)cmpxchg(&iter->position, pos, memcg);
 
 
 
 
 
 
 
 
 
 
 
 
1200
1201		if (pos)
1202			css_put(&pos->css);
 
 
1203
1204		if (!memcg)
1205			iter->generation++;
1206		else if (!prev)
1207			reclaim->generation = iter->generation;
1208	}
 
 
 
 
 
1209
1210out_unlock:
1211	rcu_read_unlock();
1212out:
1213	if (prev && prev != root)
1214		css_put(&prev->css);
1215
1216	return memcg;
 
 
 
 
 
 
 
 
 
1217}
1218
1219/**
1220 * mem_cgroup_iter_break - abort a hierarchy walk prematurely
1221 * @root: hierarchy root
1222 * @prev: last visited hierarchy member as returned by mem_cgroup_iter()
1223 */
1224void mem_cgroup_iter_break(struct mem_cgroup *root,
1225			   struct mem_cgroup *prev)
1226{
1227	if (!root)
1228		root = root_mem_cgroup;
1229	if (prev && prev != root)
1230		css_put(&prev->css);
 
 
 
 
 
 
 
 
 
 
 
 
1231}
1232
1233static void __invalidate_reclaim_iterators(struct mem_cgroup *from,
1234					struct mem_cgroup *dead_memcg)
1235{
1236	struct mem_cgroup_reclaim_iter *iter;
1237	struct mem_cgroup_per_node *mz;
1238	int nid;
1239
1240	for_each_node(nid) {
1241		mz = mem_cgroup_nodeinfo(from, nid);
1242		iter = &mz->iter;
1243		cmpxchg(&iter->position, dead_memcg, NULL);
1244	}
 
 
 
 
 
 
 
 
 
 
1245}
1246
1247static void invalidate_reclaim_iterators(struct mem_cgroup *dead_memcg)
 
 
 
 
 
 
1248{
1249	struct mem_cgroup *memcg = dead_memcg;
1250	struct mem_cgroup *last;
 
1251
1252	do {
1253		__invalidate_reclaim_iterators(memcg, dead_memcg);
1254		last = memcg;
1255	} while ((memcg = parent_mem_cgroup(memcg)));
 
 
 
 
 
 
1256
 
1257	/*
1258	 * When cgruop1 non-hierarchy mode is used,
1259	 * parent_mem_cgroup() does not walk all the way up to the
1260	 * cgroup root (root_mem_cgroup). So we have to handle
1261	 * dead_memcg from cgroup root separately.
1262	 */
1263	if (last != root_mem_cgroup)
1264		__invalidate_reclaim_iterators(root_mem_cgroup,
1265						dead_memcg);
1266}
1267
1268/**
1269 * mem_cgroup_scan_tasks - iterate over tasks of a memory cgroup hierarchy
1270 * @memcg: hierarchy root
1271 * @fn: function to call for each task
1272 * @arg: argument passed to @fn
1273 *
1274 * This function iterates over tasks attached to @memcg or to any of its
1275 * descendants and calls @fn for each task. If @fn returns a non-zero
1276 * value, the function breaks the iteration loop and returns the value.
1277 * Otherwise, it will iterate over all tasks and return 0.
1278 *
1279 * This function must not be called for the root memory cgroup.
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1280 */
1281int mem_cgroup_scan_tasks(struct mem_cgroup *memcg,
1282			  int (*fn)(struct task_struct *, void *), void *arg)
1283{
1284	struct mem_cgroup *iter;
1285	int ret = 0;
 
 
1286
1287	BUG_ON(memcg == root_mem_cgroup);
 
1288
1289	for_each_mem_cgroup_tree(iter, memcg) {
1290		struct css_task_iter it;
1291		struct task_struct *task;
1292
1293		css_task_iter_start(&iter->css, CSS_TASK_ITER_PROCS, &it);
1294		while (!ret && (task = css_task_iter_next(&it)))
1295			ret = fn(task, arg);
1296		css_task_iter_end(&it);
1297		if (ret) {
1298			mem_cgroup_iter_break(memcg, iter);
1299			break;
1300		}
1301	}
 
 
 
 
 
 
 
 
1302	return ret;
1303}
1304
1305/**
1306 * mem_cgroup_page_lruvec - return lruvec for isolating/putting an LRU page
1307 * @page: the page
1308 * @pgdat: pgdat of the page
1309 *
1310 * This function relies on page->mem_cgroup being stable - see the
1311 * access rules in commit_charge().
1312 */
1313struct lruvec *mem_cgroup_page_lruvec(struct page *page, struct pglist_data *pgdat)
1314{
1315	struct mem_cgroup_per_node *mz;
1316	struct mem_cgroup *memcg;
1317	struct lruvec *lruvec;
 
 
 
 
 
 
 
 
 
 
1318
1319	if (mem_cgroup_disabled()) {
1320		lruvec = &pgdat->__lruvec;
1321		goto out;
1322	}
1323
1324	memcg = page->mem_cgroup;
1325	/*
1326	 * Swapcache readahead pages are added to the LRU - and
1327	 * possibly migrated - before they are charged.
1328	 */
1329	if (!memcg)
1330		memcg = root_mem_cgroup;
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1331
1332	mz = mem_cgroup_page_nodeinfo(memcg, page);
1333	lruvec = &mz->lruvec;
1334out:
1335	/*
1336	 * Since a node can be onlined after the mem_cgroup was created,
1337	 * we have to be prepared to initialize lruvec->zone here;
1338	 * and if offlined then reonlined, we need to reinitialize it.
1339	 */
1340	if (unlikely(lruvec->pgdat != pgdat))
1341		lruvec->pgdat = pgdat;
1342	return lruvec;
1343}
1344
1345/**
1346 * mem_cgroup_update_lru_size - account for adding or removing an lru page
1347 * @lruvec: mem_cgroup per zone lru vector
1348 * @lru: index of lru list the page is sitting on
1349 * @zid: zone id of the accounted pages
1350 * @nr_pages: positive when adding or negative when removing
1351 *
1352 * This function must be called under lru_lock, just before a page is added
1353 * to or just after a page is removed from an lru list (that ordering being
1354 * so as to allow it to check that lru_size 0 is consistent with list_empty).
1355 */
1356void mem_cgroup_update_lru_size(struct lruvec *lruvec, enum lru_list lru,
1357				int zid, int nr_pages)
1358{
1359	struct mem_cgroup_per_node *mz;
1360	unsigned long *lru_size;
1361	long size;
1362
1363	if (mem_cgroup_disabled())
1364		return;
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1365
1366	mz = container_of(lruvec, struct mem_cgroup_per_node, lruvec);
1367	lru_size = &mz->lru_zone_size[zid][lru];
1368
1369	if (nr_pages < 0)
1370		*lru_size += nr_pages;
1371
1372	size = *lru_size;
1373	if (WARN_ONCE(size < 0,
1374		"%s(%p, %d, %d): lru_size %ld\n",
1375		__func__, lruvec, lru, nr_pages, size)) {
1376		VM_BUG_ON(1);
1377		*lru_size = 0;
 
 
 
 
 
 
 
 
 
 
 
 
1378	}
1379
1380	if (nr_pages > 0)
1381		*lru_size += nr_pages;
 
 
 
 
1382}
1383
 
 
 
1384/**
1385 * mem_cgroup_margin - calculate chargeable space of a memory cgroup
1386 * @memcg: the memory cgroup
1387 *
1388 * Returns the maximum amount of memory @mem can be charged with, in
1389 * pages.
1390 */
1391static unsigned long mem_cgroup_margin(struct mem_cgroup *memcg)
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1392{
1393	unsigned long margin = 0;
1394	unsigned long count;
1395	unsigned long limit;
1396
1397	count = page_counter_read(&memcg->memory);
1398	limit = READ_ONCE(memcg->memory.max);
1399	if (count < limit)
1400		margin = limit - count;
1401
1402	if (do_memsw_account()) {
1403		count = page_counter_read(&memcg->memsw);
1404		limit = READ_ONCE(memcg->memsw.max);
1405		if (count < limit)
1406			margin = min(margin, limit - count);
1407		else
1408			margin = 0;
1409	}
1410
1411	return margin;
1412}
1413
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1414/*
1415 * A routine for checking "mem" is under move_account() or not.
1416 *
1417 * Checking a cgroup is mc.from or mc.to or under hierarchy of
1418 * moving cgroups. This is for waiting at high-memory pressure
1419 * caused by "move".
 
 
 
 
1420 */
1421static bool mem_cgroup_under_move(struct mem_cgroup *memcg)
 
 
 
 
 
 
 
1422{
1423	struct mem_cgroup *from;
1424	struct mem_cgroup *to;
1425	bool ret = false;
1426	/*
1427	 * Unlike task_move routines, we access mc.to, mc.from not under
1428	 * mutual exclusion by cgroup_mutex. Here, we take spinlock instead.
1429	 */
1430	spin_lock(&mc.lock);
1431	from = mc.from;
1432	to = mc.to;
1433	if (!from)
1434		goto unlock;
1435
1436	ret = mem_cgroup_is_descendant(from, memcg) ||
1437		mem_cgroup_is_descendant(to, memcg);
1438unlock:
1439	spin_unlock(&mc.lock);
1440	return ret;
1441}
1442
1443static bool mem_cgroup_wait_acct_move(struct mem_cgroup *memcg)
1444{
1445	if (mc.moving_task && current != mc.moving_task) {
1446		if (mem_cgroup_under_move(memcg)) {
1447			DEFINE_WAIT(wait);
1448			prepare_to_wait(&mc.waitq, &wait, TASK_INTERRUPTIBLE);
1449			/* moving charge context might have finished. */
1450			if (mc.moving_task)
1451				schedule();
1452			finish_wait(&mc.waitq, &wait);
1453			return true;
1454		}
1455	}
1456	return false;
1457}
1458
1459static char *memory_stat_format(struct mem_cgroup *memcg)
 
 
 
 
 
 
 
 
1460{
1461	struct seq_buf s;
1462	int i;
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1463
1464	seq_buf_init(&s, kmalloc(PAGE_SIZE, GFP_KERNEL), PAGE_SIZE);
1465	if (!s.buffer)
1466		return NULL;
 
 
 
 
1467
1468	/*
1469	 * Provide statistics on the state of the memory subsystem as
1470	 * well as cumulative event counters that show past behavior.
1471	 *
1472	 * This list is ordered following a combination of these gradients:
1473	 * 1) generic big picture -> specifics and details
1474	 * 2) reflecting userspace activity -> reflecting kernel heuristics
1475	 *
1476	 * Current memory state:
1477	 */
 
 
1478
1479	seq_buf_printf(&s, "anon %llu\n",
1480		       (u64)memcg_page_state(memcg, NR_ANON_MAPPED) *
1481		       PAGE_SIZE);
1482	seq_buf_printf(&s, "file %llu\n",
1483		       (u64)memcg_page_state(memcg, NR_FILE_PAGES) *
1484		       PAGE_SIZE);
1485	seq_buf_printf(&s, "kernel_stack %llu\n",
1486		       (u64)memcg_page_state(memcg, NR_KERNEL_STACK_KB) *
1487		       1024);
1488	seq_buf_printf(&s, "slab %llu\n",
1489		       (u64)(memcg_page_state(memcg, NR_SLAB_RECLAIMABLE_B) +
1490			     memcg_page_state(memcg, NR_SLAB_UNRECLAIMABLE_B)));
1491	seq_buf_printf(&s, "percpu %llu\n",
1492		       (u64)memcg_page_state(memcg, MEMCG_PERCPU_B));
1493	seq_buf_printf(&s, "sock %llu\n",
1494		       (u64)memcg_page_state(memcg, MEMCG_SOCK) *
1495		       PAGE_SIZE);
1496
1497	seq_buf_printf(&s, "shmem %llu\n",
1498		       (u64)memcg_page_state(memcg, NR_SHMEM) *
1499		       PAGE_SIZE);
1500	seq_buf_printf(&s, "file_mapped %llu\n",
1501		       (u64)memcg_page_state(memcg, NR_FILE_MAPPED) *
1502		       PAGE_SIZE);
1503	seq_buf_printf(&s, "file_dirty %llu\n",
1504		       (u64)memcg_page_state(memcg, NR_FILE_DIRTY) *
1505		       PAGE_SIZE);
1506	seq_buf_printf(&s, "file_writeback %llu\n",
1507		       (u64)memcg_page_state(memcg, NR_WRITEBACK) *
1508		       PAGE_SIZE);
1509
1510#ifdef CONFIG_TRANSPARENT_HUGEPAGE
1511	seq_buf_printf(&s, "anon_thp %llu\n",
1512		       (u64)memcg_page_state(memcg, NR_ANON_THPS) *
1513		       HPAGE_PMD_SIZE);
1514#endif
 
 
 
1515
1516	for (i = 0; i < NR_LRU_LISTS; i++)
1517		seq_buf_printf(&s, "%s %llu\n", lru_list_name(i),
1518			       (u64)memcg_page_state(memcg, NR_LRU_BASE + i) *
1519			       PAGE_SIZE);
1520
1521	seq_buf_printf(&s, "slab_reclaimable %llu\n",
1522		       (u64)memcg_page_state(memcg, NR_SLAB_RECLAIMABLE_B));
1523	seq_buf_printf(&s, "slab_unreclaimable %llu\n",
1524		       (u64)memcg_page_state(memcg, NR_SLAB_UNRECLAIMABLE_B));
1525
1526	/* Accumulated memory events */
1527
1528	seq_buf_printf(&s, "%s %lu\n", vm_event_name(PGFAULT),
1529		       memcg_events(memcg, PGFAULT));
1530	seq_buf_printf(&s, "%s %lu\n", vm_event_name(PGMAJFAULT),
1531		       memcg_events(memcg, PGMAJFAULT));
1532
1533	seq_buf_printf(&s, "workingset_refault_anon %lu\n",
1534		       memcg_page_state(memcg, WORKINGSET_REFAULT_ANON));
1535	seq_buf_printf(&s, "workingset_refault_file %lu\n",
1536		       memcg_page_state(memcg, WORKINGSET_REFAULT_FILE));
1537	seq_buf_printf(&s, "workingset_activate_anon %lu\n",
1538		       memcg_page_state(memcg, WORKINGSET_ACTIVATE_ANON));
1539	seq_buf_printf(&s, "workingset_activate_file %lu\n",
1540		       memcg_page_state(memcg, WORKINGSET_ACTIVATE_FILE));
1541	seq_buf_printf(&s, "workingset_restore_anon %lu\n",
1542		       memcg_page_state(memcg, WORKINGSET_RESTORE_ANON));
1543	seq_buf_printf(&s, "workingset_restore_file %lu\n",
1544		       memcg_page_state(memcg, WORKINGSET_RESTORE_FILE));
1545	seq_buf_printf(&s, "workingset_nodereclaim %lu\n",
1546		       memcg_page_state(memcg, WORKINGSET_NODERECLAIM));
1547
1548	seq_buf_printf(&s, "%s %lu\n",  vm_event_name(PGREFILL),
1549		       memcg_events(memcg, PGREFILL));
1550	seq_buf_printf(&s, "pgscan %lu\n",
1551		       memcg_events(memcg, PGSCAN_KSWAPD) +
1552		       memcg_events(memcg, PGSCAN_DIRECT));
1553	seq_buf_printf(&s, "pgsteal %lu\n",
1554		       memcg_events(memcg, PGSTEAL_KSWAPD) +
1555		       memcg_events(memcg, PGSTEAL_DIRECT));
1556	seq_buf_printf(&s, "%s %lu\n", vm_event_name(PGACTIVATE),
1557		       memcg_events(memcg, PGACTIVATE));
1558	seq_buf_printf(&s, "%s %lu\n", vm_event_name(PGDEACTIVATE),
1559		       memcg_events(memcg, PGDEACTIVATE));
1560	seq_buf_printf(&s, "%s %lu\n", vm_event_name(PGLAZYFREE),
1561		       memcg_events(memcg, PGLAZYFREE));
1562	seq_buf_printf(&s, "%s %lu\n", vm_event_name(PGLAZYFREED),
1563		       memcg_events(memcg, PGLAZYFREED));
1564
1565#ifdef CONFIG_TRANSPARENT_HUGEPAGE
1566	seq_buf_printf(&s, "%s %lu\n", vm_event_name(THP_FAULT_ALLOC),
1567		       memcg_events(memcg, THP_FAULT_ALLOC));
1568	seq_buf_printf(&s, "%s %lu\n", vm_event_name(THP_COLLAPSE_ALLOC),
1569		       memcg_events(memcg, THP_COLLAPSE_ALLOC));
1570#endif /* CONFIG_TRANSPARENT_HUGEPAGE */
 
1571
1572	/* The above should easily fit into one page */
1573	WARN_ON_ONCE(seq_buf_has_overflowed(&s));
1574
1575	return s.buffer;
 
 
 
 
 
1576}
1577
1578#define K(x) ((x) << (PAGE_SHIFT-10))
1579/**
1580 * mem_cgroup_print_oom_context: Print OOM information relevant to
1581 * memory controller.
1582 * @memcg: The memory cgroup that went over limit
1583 * @p: Task that is going to be killed
1584 *
1585 * NOTE: @memcg and @p's mem_cgroup can be different when hierarchy is
1586 * enabled
1587 */
1588void mem_cgroup_print_oom_context(struct mem_cgroup *memcg, struct task_struct *p)
 
1589{
1590	rcu_read_lock();
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1591
1592	if (memcg) {
1593		pr_cont(",oom_memcg=");
1594		pr_cont_cgroup_path(memcg->css.cgroup);
1595	} else
1596		pr_cont(",global_oom");
1597	if (p) {
1598		pr_cont(",task_memcg=");
1599		pr_cont_cgroup_path(task_cgroup(p, memory_cgrp_id));
1600	}
1601	rcu_read_unlock();
 
1602}
1603
1604/**
1605 * mem_cgroup_print_oom_meminfo: Print OOM memory information relevant to
1606 * memory controller.
1607 * @memcg: The memory cgroup that went over limit
 
 
 
 
 
1608 */
1609void mem_cgroup_print_oom_meminfo(struct mem_cgroup *memcg)
 
1610{
1611	char *buf;
 
 
 
 
 
 
1612
1613	pr_info("memory: usage %llukB, limit %llukB, failcnt %lu\n",
1614		K((u64)page_counter_read(&memcg->memory)),
1615		K((u64)READ_ONCE(memcg->memory.max)), memcg->memory.failcnt);
1616	if (cgroup_subsys_on_dfl(memory_cgrp_subsys))
1617		pr_info("swap: usage %llukB, limit %llukB, failcnt %lu\n",
1618			K((u64)page_counter_read(&memcg->swap)),
1619			K((u64)READ_ONCE(memcg->swap.max)), memcg->swap.failcnt);
1620	else {
1621		pr_info("memory+swap: usage %llukB, limit %llukB, failcnt %lu\n",
1622			K((u64)page_counter_read(&memcg->memsw)),
1623			K((u64)memcg->memsw.max), memcg->memsw.failcnt);
1624		pr_info("kmem: usage %llukB, limit %llukB, failcnt %lu\n",
1625			K((u64)page_counter_read(&memcg->kmem)),
1626			K((u64)memcg->kmem.max), memcg->kmem.failcnt);
1627	}
1628
1629	pr_info("Memory cgroup stats for ");
1630	pr_cont_cgroup_path(memcg->css.cgroup);
1631	pr_cont(":");
1632	buf = memory_stat_format(memcg);
1633	if (!buf)
1634		return;
1635	pr_info("%s", buf);
1636	kfree(buf);
1637}
 
1638
1639/*
1640 * Return the memory (and swap, if configured) limit for a memcg.
 
 
 
1641 */
1642unsigned long mem_cgroup_get_max(struct mem_cgroup *memcg)
1643{
1644	unsigned long max;
 
 
 
 
 
 
 
 
 
 
 
1645
1646	max = READ_ONCE(memcg->memory.max);
1647	if (mem_cgroup_swappiness(memcg)) {
1648		unsigned long memsw_max;
1649		unsigned long swap_max;
1650
1651		memsw_max = memcg->memsw.max;
1652		swap_max = READ_ONCE(memcg->swap.max);
1653		swap_max = min(swap_max, (unsigned long)total_swap_pages);
1654		max = min(max + swap_max, memsw_max);
1655	}
1656	return max;
 
 
1657}
1658
1659unsigned long mem_cgroup_size(struct mem_cgroup *memcg)
 
 
 
 
 
 
 
 
 
 
 
 
1660{
1661	return page_counter_read(&memcg->memory);
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1662}
1663
1664static bool mem_cgroup_out_of_memory(struct mem_cgroup *memcg, gfp_t gfp_mask,
1665				     int order)
 
 
 
 
 
1666{
1667	struct oom_control oc = {
1668		.zonelist = NULL,
1669		.nodemask = NULL,
1670		.memcg = memcg,
1671		.gfp_mask = gfp_mask,
1672		.order = order,
1673	};
1674	bool ret = true;
1675
1676	if (mutex_lock_killable(&oom_lock))
1677		return true;
1678
1679	if (mem_cgroup_margin(memcg) >= (1 << order))
1680		goto unlock;
 
 
 
1681
 
 
 
 
1682	/*
1683	 * A few threads which were not waiting at mutex_lock_killable() can
1684	 * fail to bail out. Therefore, check again after holding oom_lock.
1685	 */
1686	ret = should_force_charge() || out_of_memory(&oc);
 
 
 
 
 
 
 
1687
1688unlock:
1689	mutex_unlock(&oom_lock);
1690	return ret;
 
1691}
1692
1693static int mem_cgroup_soft_reclaim(struct mem_cgroup *root_memcg,
1694				   pg_data_t *pgdat,
1695				   gfp_t gfp_mask,
1696				   unsigned long *total_scanned)
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1697{
1698	struct mem_cgroup *victim = NULL;
1699	int total = 0;
1700	int loop = 0;
 
 
 
1701	unsigned long excess;
1702	unsigned long nr_scanned;
1703	struct mem_cgroup_reclaim_cookie reclaim = {
1704		.pgdat = pgdat,
1705	};
1706
1707	excess = soft_limit_excess(root_memcg);
 
 
 
 
1708
1709	while (1) {
1710		victim = mem_cgroup_iter(root_memcg, victim, &reclaim);
1711		if (!victim) {
1712			loop++;
 
 
 
 
 
 
 
 
1713			if (loop >= 2) {
1714				/*
1715				 * If we have not been able to reclaim
1716				 * anything, it might because there are
1717				 * no reclaimable pages under this hierarchy
1718				 */
1719				if (!total)
 
1720					break;
 
1721				/*
1722				 * We want to do more targeted reclaim.
1723				 * excess >> 2 is not to excessive so as to
1724				 * reclaim too much, nor too less that we keep
1725				 * coming back to reclaim from this cgroup
1726				 */
1727				if (total >= (excess >> 2) ||
1728					(loop > MEM_CGROUP_MAX_RECLAIM_LOOPS))
 
1729					break;
 
1730			}
 
 
 
 
1731			continue;
1732		}
1733		total += mem_cgroup_shrink_node(victim, gfp_mask, false,
1734					pgdat, &nr_scanned);
1735		*total_scanned += nr_scanned;
1736		if (!soft_limit_excess(root_memcg))
1737			break;
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1738	}
1739	mem_cgroup_iter_break(root_memcg, victim);
1740	return total;
1741}
1742
1743#ifdef CONFIG_LOCKDEP
1744static struct lockdep_map memcg_oom_lock_dep_map = {
1745	.name = "memcg_oom_lock",
1746};
1747#endif
1748
1749static DEFINE_SPINLOCK(memcg_oom_lock);
1750
1751/*
1752 * Check OOM-Killer is already running under our hierarchy.
1753 * If someone is running, return false.
 
1754 */
1755static bool mem_cgroup_oom_trylock(struct mem_cgroup *memcg)
1756{
1757	struct mem_cgroup *iter, *failed = NULL;
 
1758
1759	spin_lock(&memcg_oom_lock);
1760
1761	for_each_mem_cgroup_tree(iter, memcg) {
1762		if (iter->oom_lock) {
1763			/*
1764			 * this subtree of our hierarchy is already locked
1765			 * so we cannot give a lock.
1766			 */
1767			failed = iter;
1768			mem_cgroup_iter_break(memcg, iter);
1769			break;
1770		} else
1771			iter->oom_lock = true;
1772	}
1773
1774	if (failed) {
1775		/*
1776		 * OK, we failed to lock the whole subtree so we have
1777		 * to clean up what we set up to the failing subtree
1778		 */
1779		for_each_mem_cgroup_tree(iter, memcg) {
1780			if (iter == failed) {
1781				mem_cgroup_iter_break(memcg, iter);
1782				break;
1783			}
1784			iter->oom_lock = false;
 
1785		}
1786	} else
1787		mutex_acquire(&memcg_oom_lock_dep_map, 0, 1, _RET_IP_);
1788
1789	spin_unlock(&memcg_oom_lock);
1790
1791	return !failed;
1792}
1793
1794static void mem_cgroup_oom_unlock(struct mem_cgroup *memcg)
 
 
 
1795{
1796	struct mem_cgroup *iter;
1797
1798	spin_lock(&memcg_oom_lock);
1799	mutex_release(&memcg_oom_lock_dep_map, _RET_IP_);
1800	for_each_mem_cgroup_tree(iter, memcg)
1801		iter->oom_lock = false;
1802	spin_unlock(&memcg_oom_lock);
1803}
1804
1805static void mem_cgroup_mark_under_oom(struct mem_cgroup *memcg)
1806{
1807	struct mem_cgroup *iter;
1808
1809	spin_lock(&memcg_oom_lock);
1810	for_each_mem_cgroup_tree(iter, memcg)
1811		iter->under_oom++;
1812	spin_unlock(&memcg_oom_lock);
1813}
1814
1815static void mem_cgroup_unmark_under_oom(struct mem_cgroup *memcg)
1816{
1817	struct mem_cgroup *iter;
1818
1819	/*
1820	 * When a new child is created while the hierarchy is under oom,
1821	 * mem_cgroup_oom_lock() may not be called. Watch for underflow.
 
1822	 */
1823	spin_lock(&memcg_oom_lock);
1824	for_each_mem_cgroup_tree(iter, memcg)
1825		if (iter->under_oom > 0)
1826			iter->under_oom--;
1827	spin_unlock(&memcg_oom_lock);
1828}
1829
 
1830static DECLARE_WAIT_QUEUE_HEAD(memcg_oom_waitq);
1831
1832struct oom_wait_info {
1833	struct mem_cgroup *memcg;
1834	wait_queue_entry_t	wait;
1835};
1836
1837static int memcg_oom_wake_function(wait_queue_entry_t *wait,
1838	unsigned mode, int sync, void *arg)
1839{
1840	struct mem_cgroup *wake_memcg = (struct mem_cgroup *)arg;
1841	struct mem_cgroup *oom_wait_memcg;
1842	struct oom_wait_info *oom_wait_info;
1843
1844	oom_wait_info = container_of(wait, struct oom_wait_info, wait);
1845	oom_wait_memcg = oom_wait_info->memcg;
1846
1847	if (!mem_cgroup_is_descendant(wake_memcg, oom_wait_memcg) &&
1848	    !mem_cgroup_is_descendant(oom_wait_memcg, wake_memcg))
 
 
 
 
1849		return 0;
1850	return autoremove_wake_function(wait, mode, sync, arg);
1851}
1852
1853static void memcg_oom_recover(struct mem_cgroup *memcg)
1854{
1855	/*
1856	 * For the following lockless ->under_oom test, the only required
1857	 * guarantee is that it must see the state asserted by an OOM when
1858	 * this function is called as a result of userland actions
1859	 * triggered by the notification of the OOM.  This is trivially
1860	 * achieved by invoking mem_cgroup_mark_under_oom() before
1861	 * triggering notification.
1862	 */
1863	if (memcg && memcg->under_oom)
1864		__wake_up(&memcg_oom_waitq, TASK_NORMAL, 0, memcg);
1865}
1866
1867enum oom_status {
1868	OOM_SUCCESS,
1869	OOM_FAILED,
1870	OOM_ASYNC,
1871	OOM_SKIPPED
1872};
1873
1874static enum oom_status mem_cgroup_oom(struct mem_cgroup *memcg, gfp_t mask, int order)
1875{
1876	enum oom_status ret;
1877	bool locked;
1878
1879	if (order > PAGE_ALLOC_COSTLY_ORDER)
1880		return OOM_SKIPPED;
1881
1882	memcg_memory_event(memcg, MEMCG_OOM);
1883
1884	/*
1885	 * We are in the middle of the charge context here, so we
1886	 * don't want to block when potentially sitting on a callstack
1887	 * that holds all kinds of filesystem and mm locks.
1888	 *
1889	 * cgroup1 allows disabling the OOM killer and waiting for outside
1890	 * handling until the charge can succeed; remember the context and put
1891	 * the task to sleep at the end of the page fault when all locks are
1892	 * released.
1893	 *
1894	 * On the other hand, in-kernel OOM killer allows for an async victim
1895	 * memory reclaim (oom_reaper) and that means that we are not solely
1896	 * relying on the oom victim to make a forward progress and we can
1897	 * invoke the oom killer here.
1898	 *
1899	 * Please note that mem_cgroup_out_of_memory might fail to find a
1900	 * victim and then we have to bail out from the charge path.
1901	 */
1902	if (memcg->oom_kill_disable) {
1903		if (!current->in_user_fault)
1904			return OOM_SKIPPED;
1905		css_get(&memcg->css);
1906		current->memcg_in_oom = memcg;
1907		current->memcg_oom_gfp_mask = mask;
1908		current->memcg_oom_order = order;
1909
1910		return OOM_ASYNC;
1911	}
1912
1913	mem_cgroup_mark_under_oom(memcg);
1914
1915	locked = mem_cgroup_oom_trylock(memcg);
1916
1917	if (locked)
1918		mem_cgroup_oom_notify(memcg);
1919
1920	mem_cgroup_unmark_under_oom(memcg);
1921	if (mem_cgroup_out_of_memory(memcg, mask, order))
1922		ret = OOM_SUCCESS;
1923	else
1924		ret = OOM_FAILED;
1925
1926	if (locked)
1927		mem_cgroup_oom_unlock(memcg);
1928
1929	return ret;
1930}
1931
1932/**
1933 * mem_cgroup_oom_synchronize - complete memcg OOM handling
1934 * @handle: actually kill/wait or just clean up the OOM state
1935 *
1936 * This has to be called at the end of a page fault if the memcg OOM
1937 * handler was enabled.
1938 *
1939 * Memcg supports userspace OOM handling where failed allocations must
1940 * sleep on a waitqueue until the userspace task resolves the
1941 * situation.  Sleeping directly in the charge context with all kinds
1942 * of locks held is not a good idea, instead we remember an OOM state
1943 * in the task and mem_cgroup_oom_synchronize() has to be called at
1944 * the end of the page fault to complete the OOM handling.
1945 *
1946 * Returns %true if an ongoing memcg OOM situation was detected and
1947 * completed, %false otherwise.
1948 */
1949bool mem_cgroup_oom_synchronize(bool handle)
1950{
1951	struct mem_cgroup *memcg = current->memcg_in_oom;
1952	struct oom_wait_info owait;
1953	bool locked;
1954
1955	/* OOM is global, do not handle */
1956	if (!memcg)
1957		return false;
1958
1959	if (!handle)
1960		goto cleanup;
1961
1962	owait.memcg = memcg;
1963	owait.wait.flags = 0;
1964	owait.wait.func = memcg_oom_wake_function;
1965	owait.wait.private = current;
1966	INIT_LIST_HEAD(&owait.wait.entry);
 
 
1967
 
 
 
 
 
 
 
 
1968	prepare_to_wait(&memcg_oom_waitq, &owait.wait, TASK_KILLABLE);
1969	mem_cgroup_mark_under_oom(memcg);
1970
1971	locked = mem_cgroup_oom_trylock(memcg);
1972
1973	if (locked)
1974		mem_cgroup_oom_notify(memcg);
 
1975
1976	if (locked && !memcg->oom_kill_disable) {
1977		mem_cgroup_unmark_under_oom(memcg);
1978		finish_wait(&memcg_oom_waitq, &owait.wait);
1979		mem_cgroup_out_of_memory(memcg, current->memcg_oom_gfp_mask,
1980					 current->memcg_oom_order);
1981	} else {
1982		schedule();
1983		mem_cgroup_unmark_under_oom(memcg);
1984		finish_wait(&memcg_oom_waitq, &owait.wait);
1985	}
 
 
 
 
 
 
 
1986
1987	if (locked) {
1988		mem_cgroup_oom_unlock(memcg);
1989		/*
1990		 * There is no guarantee that an OOM-lock contender
1991		 * sees the wakeups triggered by the OOM kill
1992		 * uncharges.  Wake any sleepers explicitely.
1993		 */
1994		memcg_oom_recover(memcg);
1995	}
1996cleanup:
1997	current->memcg_in_oom = NULL;
1998	css_put(&memcg->css);
1999	return true;
2000}
2001
2002/**
2003 * mem_cgroup_get_oom_group - get a memory cgroup to clean up after OOM
2004 * @victim: task to be killed by the OOM killer
2005 * @oom_domain: memcg in case of memcg OOM, NULL in case of system-wide OOM
 
 
 
 
 
 
 
 
 
2006 *
2007 * Returns a pointer to a memory cgroup, which has to be cleaned up
2008 * by killing all belonging OOM-killable tasks.
 
 
2009 *
2010 * Caller has to call mem_cgroup_put() on the returned non-NULL memcg.
 
 
2011 */
2012struct mem_cgroup *mem_cgroup_get_oom_group(struct task_struct *victim,
2013					    struct mem_cgroup *oom_domain)
 
2014{
2015	struct mem_cgroup *oom_group = NULL;
2016	struct mem_cgroup *memcg;
 
 
2017
2018	if (!cgroup_subsys_on_dfl(memory_cgrp_subsys))
2019		return NULL;
2020
2021	if (!oom_domain)
2022		oom_domain = root_mem_cgroup;
2023
2024	rcu_read_lock();
2025
2026	memcg = mem_cgroup_from_task(victim);
2027	if (memcg == root_mem_cgroup)
2028		goto out;
2029
2030	/*
2031	 * If the victim task has been asynchronously moved to a different
2032	 * memory cgroup, we might end up killing tasks outside oom_domain.
2033	 * In this case it's better to ignore memory.group.oom.
2034	 */
2035	if (unlikely(!mem_cgroup_is_descendant(memcg, oom_domain)))
2036		goto out;
2037
2038	/*
2039	 * Traverse the memory cgroup hierarchy from the victim task's
2040	 * cgroup up to the OOMing cgroup (or root) to find the
2041	 * highest-level memory cgroup with oom.group set.
2042	 */
2043	for (; memcg; memcg = parent_mem_cgroup(memcg)) {
2044		if (memcg->oom_group)
2045			oom_group = memcg;
2046
2047		if (memcg == oom_domain)
2048			break;
2049	}
2050
2051	if (oom_group)
2052		css_get(&oom_group->css);
2053out:
2054	rcu_read_unlock();
2055
2056	return oom_group;
2057}
2058
2059void mem_cgroup_print_oom_group(struct mem_cgroup *memcg)
2060{
2061	pr_info("Tasks in ");
2062	pr_cont_cgroup_path(memcg->css.cgroup);
2063	pr_cont(" are going to be killed due to memory.oom.group set\n");
2064}
2065
2066/**
2067 * lock_page_memcg - lock a page->mem_cgroup binding
2068 * @page: the page
2069 *
2070 * This function protects unlocked LRU pages from being moved to
2071 * another cgroup.
2072 *
2073 * It ensures lifetime of the returned memcg. Caller is responsible
2074 * for the lifetime of the page; __unlock_page_memcg() is available
2075 * when @page might get freed inside the locked section.
2076 */
2077struct mem_cgroup *lock_page_memcg(struct page *page)
2078{
2079	struct page *head = compound_head(page); /* rmap on tail pages */
2080	struct mem_cgroup *memcg;
2081	unsigned long flags;
2082
2083	/*
2084	 * The RCU lock is held throughout the transaction.  The fast
2085	 * path can get away without acquiring the memcg->move_lock
2086	 * because page moving starts with an RCU grace period.
2087	 *
2088	 * The RCU lock also protects the memcg from being freed when
2089	 * the page state that is going to change is the only thing
2090	 * preventing the page itself from being freed. E.g. writeback
2091	 * doesn't hold a page reference and relies on PG_writeback to
2092	 * keep off truncation, migration and so forth.
2093         */
2094	rcu_read_lock();
2095
2096	if (mem_cgroup_disabled())
2097		return NULL;
2098again:
2099	memcg = head->mem_cgroup;
2100	if (unlikely(!memcg))
2101		return NULL;
2102
2103	if (atomic_read(&memcg->moving_account) <= 0)
2104		return memcg;
2105
2106	spin_lock_irqsave(&memcg->move_lock, flags);
2107	if (memcg != head->mem_cgroup) {
2108		spin_unlock_irqrestore(&memcg->move_lock, flags);
2109		goto again;
2110	}
2111
2112	/*
2113	 * When charge migration first begins, we can have locked and
2114	 * unlocked page stat updates happening concurrently.  Track
2115	 * the task who has the lock for unlock_page_memcg().
2116	 */
2117	memcg->move_lock_task = current;
2118	memcg->move_lock_flags = flags;
2119
2120	return memcg;
2121}
2122EXPORT_SYMBOL(lock_page_memcg);
2123
2124/**
2125 * __unlock_page_memcg - unlock and unpin a memcg
2126 * @memcg: the memcg
2127 *
2128 * Unlock and unpin a memcg returned by lock_page_memcg().
2129 */
2130void __unlock_page_memcg(struct mem_cgroup *memcg)
2131{
2132	if (memcg && memcg->move_lock_task == current) {
2133		unsigned long flags = memcg->move_lock_flags;
2134
2135		memcg->move_lock_task = NULL;
2136		memcg->move_lock_flags = 0;
2137
2138		spin_unlock_irqrestore(&memcg->move_lock, flags);
2139	}
2140
 
 
 
2141	rcu_read_unlock();
 
2142}
 
2143
2144/**
2145 * unlock_page_memcg - unlock a page->mem_cgroup binding
2146 * @page: the page
2147 */
2148void unlock_page_memcg(struct page *page)
2149{
2150	struct page *head = compound_head(page);
2151
2152	__unlock_page_memcg(head->mem_cgroup);
2153}
2154EXPORT_SYMBOL(unlock_page_memcg);
2155
2156struct memcg_stock_pcp {
2157	struct mem_cgroup *cached; /* this never be root cgroup */
2158	unsigned int nr_pages;
2159
2160#ifdef CONFIG_MEMCG_KMEM
2161	struct obj_cgroup *cached_objcg;
2162	unsigned int nr_bytes;
2163#endif
2164
2165	struct work_struct work;
2166	unsigned long flags;
2167#define FLUSHING_CACHED_CHARGE	0
2168};
2169static DEFINE_PER_CPU(struct memcg_stock_pcp, memcg_stock);
2170static DEFINE_MUTEX(percpu_charge_mutex);
2171
2172#ifdef CONFIG_MEMCG_KMEM
2173static void drain_obj_stock(struct memcg_stock_pcp *stock);
2174static bool obj_stock_flush_required(struct memcg_stock_pcp *stock,
2175				     struct mem_cgroup *root_memcg);
2176
2177#else
2178static inline void drain_obj_stock(struct memcg_stock_pcp *stock)
2179{
2180}
2181static bool obj_stock_flush_required(struct memcg_stock_pcp *stock,
2182				     struct mem_cgroup *root_memcg)
2183{
2184	return false;
2185}
2186#endif
2187
2188/**
2189 * consume_stock: Try to consume stocked charge on this cpu.
2190 * @memcg: memcg to consume from.
2191 * @nr_pages: how many pages to charge.
2192 *
2193 * The charges will only happen if @memcg matches the current cpu's memcg
2194 * stock, and at least @nr_pages are available in that stock.  Failure to
2195 * service an allocation will refill the stock.
2196 *
2197 * returns true if successful, false otherwise.
2198 */
2199static bool consume_stock(struct mem_cgroup *memcg, unsigned int nr_pages)
2200{
2201	struct memcg_stock_pcp *stock;
2202	unsigned long flags;
2203	bool ret = false;
2204
2205	if (nr_pages > MEMCG_CHARGE_BATCH)
2206		return ret;
2207
2208	local_irq_save(flags);
2209
2210	stock = this_cpu_ptr(&memcg_stock);
2211	if (memcg == stock->cached && stock->nr_pages >= nr_pages) {
2212		stock->nr_pages -= nr_pages;
2213		ret = true;
2214	}
2215
2216	local_irq_restore(flags);
2217
 
 
 
 
 
 
2218	return ret;
2219}
2220
2221/*
2222 * Returns stocks cached in percpu and reset cached information.
2223 */
2224static void drain_stock(struct memcg_stock_pcp *stock)
2225{
2226	struct mem_cgroup *old = stock->cached;
2227
2228	if (!old)
2229		return;
2230
2231	if (stock->nr_pages) {
2232		page_counter_uncharge(&old->memory, stock->nr_pages);
2233		if (do_memsw_account())
2234			page_counter_uncharge(&old->memsw, stock->nr_pages);
2235		stock->nr_pages = 0;
2236	}
2237
2238	css_put(&old->css);
2239	stock->cached = NULL;
2240}
2241
 
 
 
 
2242static void drain_local_stock(struct work_struct *dummy)
2243{
2244	struct memcg_stock_pcp *stock;
2245	unsigned long flags;
2246
2247	/*
2248	 * The only protection from memory hotplug vs. drain_stock races is
2249	 * that we always operate on local CPU stock here with IRQ disabled
2250	 */
2251	local_irq_save(flags);
2252
2253	stock = this_cpu_ptr(&memcg_stock);
2254	drain_obj_stock(stock);
2255	drain_stock(stock);
2256	clear_bit(FLUSHING_CACHED_CHARGE, &stock->flags);
2257
2258	local_irq_restore(flags);
2259}
2260
2261/*
2262 * Cache charges(val) to local per_cpu area.
2263 * This will be consumed by consume_stock() function, later.
2264 */
2265static void refill_stock(struct mem_cgroup *memcg, unsigned int nr_pages)
2266{
2267	struct memcg_stock_pcp *stock;
2268	unsigned long flags;
2269
2270	local_irq_save(flags);
2271
2272	stock = this_cpu_ptr(&memcg_stock);
2273	if (stock->cached != memcg) { /* reset if necessary */
2274		drain_stock(stock);
2275		css_get(&memcg->css);
2276		stock->cached = memcg;
2277	}
2278	stock->nr_pages += nr_pages;
2279
2280	if (stock->nr_pages > MEMCG_CHARGE_BATCH)
2281		drain_stock(stock);
2282
2283	local_irq_restore(flags);
2284}
2285
2286/*
2287 * Drains all per-CPU charge caches for given root_memcg resp. subtree
2288 * of the hierarchy under it.
 
2289 */
2290static void drain_all_stock(struct mem_cgroup *root_memcg)
2291{
2292	int cpu, curcpu;
2293
2294	/* If someone's already draining, avoid adding running more workers. */
2295	if (!mutex_trylock(&percpu_charge_mutex))
2296		return;
2297	/*
2298	 * Notify other cpus that system-wide "drain" is running
2299	 * We do not care about races with the cpu hotplug because cpu down
2300	 * as well as workers from this path always operate on the local
2301	 * per-cpu data. CPU up doesn't touch memcg_stock at all.
2302	 */
2303	curcpu = get_cpu();
2304	for_each_online_cpu(cpu) {
2305		struct memcg_stock_pcp *stock = &per_cpu(memcg_stock, cpu);
2306		struct mem_cgroup *memcg;
2307		bool flush = false;
2308
2309		rcu_read_lock();
2310		memcg = stock->cached;
2311		if (memcg && stock->nr_pages &&
2312		    mem_cgroup_is_descendant(memcg, root_memcg))
2313			flush = true;
2314		if (obj_stock_flush_required(stock, root_memcg))
2315			flush = true;
2316		rcu_read_unlock();
2317
2318		if (flush &&
2319		    !test_and_set_bit(FLUSHING_CACHED_CHARGE, &stock->flags)) {
2320			if (cpu == curcpu)
2321				drain_local_stock(&stock->work);
2322			else
2323				schedule_work_on(cpu, &stock->work);
2324		}
2325	}
2326	put_cpu();
2327	mutex_unlock(&percpu_charge_mutex);
2328}
2329
2330static int memcg_hotplug_cpu_dead(unsigned int cpu)
2331{
2332	struct memcg_stock_pcp *stock;
2333	struct mem_cgroup *memcg, *mi;
2334
2335	stock = &per_cpu(memcg_stock, cpu);
2336	drain_stock(stock);
2337
2338	for_each_mem_cgroup(memcg) {
2339		int i;
2340
2341		for (i = 0; i < MEMCG_NR_STAT; i++) {
2342			int nid;
2343			long x;
2344
2345			x = this_cpu_xchg(memcg->vmstats_percpu->stat[i], 0);
2346			if (x)
2347				for (mi = memcg; mi; mi = parent_mem_cgroup(mi))
2348					atomic_long_add(x, &memcg->vmstats[i]);
2349
2350			if (i >= NR_VM_NODE_STAT_ITEMS)
2351				continue;
2352
2353			for_each_node(nid) {
2354				struct mem_cgroup_per_node *pn;
2355
2356				pn = mem_cgroup_nodeinfo(memcg, nid);
2357				x = this_cpu_xchg(pn->lruvec_stat_cpu->count[i], 0);
2358				if (x)
2359					do {
2360						atomic_long_add(x, &pn->lruvec_stat[i]);
2361					} while ((pn = parent_nodeinfo(pn, nid)));
2362			}
2363		}
2364
2365		for (i = 0; i < NR_VM_EVENT_ITEMS; i++) {
2366			long x;
2367
2368			x = this_cpu_xchg(memcg->vmstats_percpu->events[i], 0);
2369			if (x)
2370				for (mi = memcg; mi; mi = parent_mem_cgroup(mi))
2371					atomic_long_add(x, &memcg->vmevents[i]);
2372		}
2373	}
2374
2375	return 0;
2376}
2377
2378static unsigned long reclaim_high(struct mem_cgroup *memcg,
2379				  unsigned int nr_pages,
2380				  gfp_t gfp_mask)
2381{
2382	unsigned long nr_reclaimed = 0;
2383
2384	do {
2385		unsigned long pflags;
2386
2387		if (page_counter_read(&memcg->memory) <=
2388		    READ_ONCE(memcg->memory.high))
2389			continue;
2390
2391		memcg_memory_event(memcg, MEMCG_HIGH);
2392
2393		psi_memstall_enter(&pflags);
2394		nr_reclaimed += try_to_free_mem_cgroup_pages(memcg, nr_pages,
2395							     gfp_mask, true);
2396		psi_memstall_leave(&pflags);
2397	} while ((memcg = parent_mem_cgroup(memcg)) &&
2398		 !mem_cgroup_is_root(memcg));
2399
2400	return nr_reclaimed;
2401}
2402
2403static void high_work_func(struct work_struct *work)
2404{
2405	struct mem_cgroup *memcg;
2406
2407	memcg = container_of(work, struct mem_cgroup, high_work);
2408	reclaim_high(memcg, MEMCG_CHARGE_BATCH, GFP_KERNEL);
2409}
2410
2411/*
2412 * Clamp the maximum sleep time per allocation batch to 2 seconds. This is
2413 * enough to still cause a significant slowdown in most cases, while still
2414 * allowing diagnostics and tracing to proceed without becoming stuck.
2415 */
2416#define MEMCG_MAX_HIGH_DELAY_JIFFIES (2UL*HZ)
2417
2418/*
2419 * When calculating the delay, we use these either side of the exponentiation to
2420 * maintain precision and scale to a reasonable number of jiffies (see the table
2421 * below.
2422 *
2423 * - MEMCG_DELAY_PRECISION_SHIFT: Extra precision bits while translating the
2424 *   overage ratio to a delay.
2425 * - MEMCG_DELAY_SCALING_SHIFT: The number of bits to scale down the
2426 *   proposed penalty in order to reduce to a reasonable number of jiffies, and
2427 *   to produce a reasonable delay curve.
2428 *
2429 * MEMCG_DELAY_SCALING_SHIFT just happens to be a number that produces a
2430 * reasonable delay curve compared to precision-adjusted overage, not
2431 * penalising heavily at first, but still making sure that growth beyond the
2432 * limit penalises misbehaviour cgroups by slowing them down exponentially. For
2433 * example, with a high of 100 megabytes:
2434 *
2435 *  +-------+------------------------+
2436 *  | usage | time to allocate in ms |
2437 *  +-------+------------------------+
2438 *  | 100M  |                      0 |
2439 *  | 101M  |                      6 |
2440 *  | 102M  |                     25 |
2441 *  | 103M  |                     57 |
2442 *  | 104M  |                    102 |
2443 *  | 105M  |                    159 |
2444 *  | 106M  |                    230 |
2445 *  | 107M  |                    313 |
2446 *  | 108M  |                    409 |
2447 *  | 109M  |                    518 |
2448 *  | 110M  |                    639 |
2449 *  | 111M  |                    774 |
2450 *  | 112M  |                    921 |
2451 *  | 113M  |                   1081 |
2452 *  | 114M  |                   1254 |
2453 *  | 115M  |                   1439 |
2454 *  | 116M  |                   1638 |
2455 *  | 117M  |                   1849 |
2456 *  | 118M  |                   2000 |
2457 *  | 119M  |                   2000 |
2458 *  | 120M  |                   2000 |
2459 *  +-------+------------------------+
2460 */
2461 #define MEMCG_DELAY_PRECISION_SHIFT 20
2462 #define MEMCG_DELAY_SCALING_SHIFT 14
2463
2464static u64 calculate_overage(unsigned long usage, unsigned long high)
2465{
2466	u64 overage;
2467
2468	if (usage <= high)
2469		return 0;
2470
2471	/*
2472	 * Prevent division by 0 in overage calculation by acting as if
2473	 * it was a threshold of 1 page
2474	 */
2475	high = max(high, 1UL);
2476
2477	overage = usage - high;
2478	overage <<= MEMCG_DELAY_PRECISION_SHIFT;
2479	return div64_u64(overage, high);
2480}
2481
2482static u64 mem_find_max_overage(struct mem_cgroup *memcg)
 
2483{
2484	u64 overage, max_overage = 0;
2485
2486	do {
2487		overage = calculate_overage(page_counter_read(&memcg->memory),
2488					    READ_ONCE(memcg->memory.high));
2489		max_overage = max(overage, max_overage);
2490	} while ((memcg = parent_mem_cgroup(memcg)) &&
2491		 !mem_cgroup_is_root(memcg));
2492
2493	return max_overage;
2494}
2495
2496static u64 swap_find_max_overage(struct mem_cgroup *memcg)
2497{
2498	u64 overage, max_overage = 0;
2499
2500	do {
2501		overage = calculate_overage(page_counter_read(&memcg->swap),
2502					    READ_ONCE(memcg->swap.high));
2503		if (overage)
2504			memcg_memory_event(memcg, MEMCG_SWAP_HIGH);
2505		max_overage = max(overage, max_overage);
2506	} while ((memcg = parent_mem_cgroup(memcg)) &&
2507		 !mem_cgroup_is_root(memcg));
2508
2509	return max_overage;
2510}
2511
2512/*
2513 * Get the number of jiffies that we should penalise a mischievous cgroup which
2514 * is exceeding its memory.high by checking both it and its ancestors.
2515 */
2516static unsigned long calculate_high_delay(struct mem_cgroup *memcg,
2517					  unsigned int nr_pages,
2518					  u64 max_overage)
2519{
2520	unsigned long penalty_jiffies;
2521
2522	if (!max_overage)
2523		return 0;
 
2524
2525	/*
2526	 * We use overage compared to memory.high to calculate the number of
2527	 * jiffies to sleep (penalty_jiffies). Ideally this value should be
2528	 * fairly lenient on small overages, and increasingly harsh when the
2529	 * memcg in question makes it clear that it has no intention of stopping
2530	 * its crazy behaviour, so we exponentially increase the delay based on
2531	 * overage amount.
2532	 */
2533	penalty_jiffies = max_overage * max_overage * HZ;
2534	penalty_jiffies >>= MEMCG_DELAY_PRECISION_SHIFT;
2535	penalty_jiffies >>= MEMCG_DELAY_SCALING_SHIFT;
2536
2537	/*
2538	 * Factor in the task's own contribution to the overage, such that four
2539	 * N-sized allocations are throttled approximately the same as one
2540	 * 4N-sized allocation.
2541	 *
2542	 * MEMCG_CHARGE_BATCH pages is nominal, so work out how much smaller or
2543	 * larger the current charge patch is than that.
2544	 */
2545	return penalty_jiffies * nr_pages / MEMCG_CHARGE_BATCH;
2546}
2547
2548/*
2549 * Scheduled by try_charge() to be executed from the userland return path
2550 * and reclaims memory over the high limit.
2551 */
2552void mem_cgroup_handle_over_high(void)
2553{
2554	unsigned long penalty_jiffies;
2555	unsigned long pflags;
2556	unsigned long nr_reclaimed;
2557	unsigned int nr_pages = current->memcg_nr_pages_over_high;
2558	int nr_retries = MAX_RECLAIM_RETRIES;
2559	struct mem_cgroup *memcg;
2560	bool in_retry = false;
2561
2562	if (likely(!nr_pages))
2563		return;
 
 
2564
2565	memcg = get_mem_cgroup_from_mm(current->mm);
2566	current->memcg_nr_pages_over_high = 0;
 
 
 
 
 
2567
2568retry_reclaim:
2569	/*
2570	 * The allocating task should reclaim at least the batch size, but for
2571	 * subsequent retries we only want to do what's necessary to prevent oom
2572	 * or breaching resource isolation.
2573	 *
2574	 * This is distinct from memory.max or page allocator behaviour because
2575	 * memory.high is currently batched, whereas memory.max and the page
2576	 * allocator run every time an allocation is made.
2577	 */
2578	nr_reclaimed = reclaim_high(memcg,
2579				    in_retry ? SWAP_CLUSTER_MAX : nr_pages,
2580				    GFP_KERNEL);
2581
2582	/*
2583	 * memory.high is breached and reclaim is unable to keep up. Throttle
2584	 * allocators proactively to slow down excessive growth.
2585	 */
2586	penalty_jiffies = calculate_high_delay(memcg, nr_pages,
2587					       mem_find_max_overage(memcg));
2588
2589	penalty_jiffies += calculate_high_delay(memcg, nr_pages,
2590						swap_find_max_overage(memcg));
2591
2592	/*
2593	 * Clamp the max delay per usermode return so as to still keep the
2594	 * application moving forwards and also permit diagnostics, albeit
2595	 * extremely slowly.
2596	 */
2597	penalty_jiffies = min(penalty_jiffies, MEMCG_MAX_HIGH_DELAY_JIFFIES);
2598
2599	/*
2600	 * Don't sleep if the amount of jiffies this memcg owes us is so low
2601	 * that it's not even worth doing, in an attempt to be nice to those who
2602	 * go only a small amount over their memory.high value and maybe haven't
2603	 * been aggressively reclaimed enough yet.
2604	 */
2605	if (penalty_jiffies <= HZ / 100)
2606		goto out;
2607
2608	/*
2609	 * If reclaim is making forward progress but we're still over
2610	 * memory.high, we want to encourage that rather than doing allocator
2611	 * throttling.
2612	 */
2613	if (nr_reclaimed || nr_retries--) {
2614		in_retry = true;
2615		goto retry_reclaim;
2616	}
2617
2618	/*
2619	 * If we exit early, we're guaranteed to die (since
2620	 * schedule_timeout_killable sets TASK_KILLABLE). This means we don't
2621	 * need to account for any ill-begotten jiffies to pay them off later.
2622	 */
2623	psi_memstall_enter(&pflags);
2624	schedule_timeout_killable(penalty_jiffies);
2625	psi_memstall_leave(&pflags);
2626
2627out:
2628	css_put(&memcg->css);
2629}
2630
2631static int try_charge(struct mem_cgroup *memcg, gfp_t gfp_mask,
2632		      unsigned int nr_pages)
2633{
2634	unsigned int batch = max(MEMCG_CHARGE_BATCH, nr_pages);
2635	int nr_retries = MAX_RECLAIM_RETRIES;
2636	struct mem_cgroup *mem_over_limit;
2637	struct page_counter *counter;
2638	enum oom_status oom_status;
2639	unsigned long nr_reclaimed;
2640	bool may_swap = true;
2641	bool drained = false;
2642	unsigned long pflags;
2643
2644	if (mem_cgroup_is_root(memcg))
2645		return 0;
2646retry:
2647	if (consume_stock(memcg, nr_pages))
2648		return 0;
2649
2650	if (!do_memsw_account() ||
2651	    page_counter_try_charge(&memcg->memsw, batch, &counter)) {
2652		if (page_counter_try_charge(&memcg->memory, batch, &counter))
2653			goto done_restock;
2654		if (do_memsw_account())
2655			page_counter_uncharge(&memcg->memsw, batch);
2656		mem_over_limit = mem_cgroup_from_counter(counter, memory);
2657	} else {
2658		mem_over_limit = mem_cgroup_from_counter(counter, memsw);
2659		may_swap = false;
2660	}
2661
2662	if (batch > nr_pages) {
2663		batch = nr_pages;
2664		goto retry;
2665	}
2666
 
 
 
 
 
 
 
 
 
 
 
 
2667	/*
2668	 * Memcg doesn't have a dedicated reserve for atomic
2669	 * allocations. But like the global atomic pool, we need to
2670	 * put the burden of reclaim on regular allocation requests
2671	 * and let these go through as privileged allocations.
 
2672	 */
2673	if (gfp_mask & __GFP_ATOMIC)
2674		goto force;
2675
2676	/*
2677	 * Unlike in global OOM situations, memcg is not in a physical
2678	 * memory shortage.  Allow dying and OOM-killed tasks to
2679	 * bypass the last charges so that they can exit quickly and
2680	 * free their memory.
2681	 */
2682	if (unlikely(should_force_charge()))
2683		goto force;
2684
2685	/*
2686	 * Prevent unbounded recursion when reclaim operations need to
2687	 * allocate memory. This might exceed the limits temporarily,
2688	 * but we prefer facilitating memory reclaim and getting back
2689	 * under the limit over triggering OOM kills in these cases.
2690	 */
2691	if (unlikely(current->flags & PF_MEMALLOC))
2692		goto force;
2693
2694	if (unlikely(task_in_memcg_oom(current)))
2695		goto nomem;
2696
2697	if (!gfpflags_allow_blocking(gfp_mask))
2698		goto nomem;
2699
2700	memcg_memory_event(mem_over_limit, MEMCG_MAX);
2701
2702	psi_memstall_enter(&pflags);
2703	nr_reclaimed = try_to_free_mem_cgroup_pages(mem_over_limit, nr_pages,
2704						    gfp_mask, may_swap);
2705	psi_memstall_leave(&pflags);
2706
 
 
2707	if (mem_cgroup_margin(mem_over_limit) >= nr_pages)
2708		goto retry;
2709
2710	if (!drained) {
2711		drain_all_stock(mem_over_limit);
2712		drained = true;
2713		goto retry;
2714	}
2715
2716	if (gfp_mask & __GFP_NORETRY)
2717		goto nomem;
2718	/*
2719	 * Even though the limit is exceeded at this point, reclaim
2720	 * may have been able to free some pages.  Retry the charge
2721	 * before killing the task.
2722	 *
2723	 * Only for regular pages, though: huge pages are rather
2724	 * unlikely to succeed so close to the limit, and we fall back
2725	 * to regular pages anyway in case of failure.
2726	 */
2727	if (nr_reclaimed && nr_pages <= (1 << PAGE_ALLOC_COSTLY_ORDER))
2728		goto retry;
 
2729	/*
2730	 * At task move, charge accounts can be doubly counted. So, it's
2731	 * better to wait until the end of task_move if something is going on.
2732	 */
2733	if (mem_cgroup_wait_acct_move(mem_over_limit))
2734		goto retry;
2735
2736	if (nr_retries--)
2737		goto retry;
 
 
 
 
2738
2739	if (gfp_mask & __GFP_RETRY_MAYFAIL)
2740		goto nomem;
2741
2742	if (gfp_mask & __GFP_NOFAIL)
2743		goto force;
2744
2745	if (fatal_signal_pending(current))
2746		goto force;
 
 
 
 
 
 
 
 
 
2747
2748	/*
2749	 * keep retrying as long as the memcg oom killer is able to make
2750	 * a forward progress or bypass the charge if the oom killer
2751	 * couldn't make any progress.
 
 
 
 
 
 
 
 
 
 
2752	 */
2753	oom_status = mem_cgroup_oom(mem_over_limit, gfp_mask,
2754		       get_order(nr_pages * PAGE_SIZE));
2755	switch (oom_status) {
2756	case OOM_SUCCESS:
2757		nr_retries = MAX_RECLAIM_RETRIES;
2758		goto retry;
2759	case OOM_FAILED:
2760		goto force;
2761	default:
2762		goto nomem;
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
2763	}
2764nomem:
2765	if (!(gfp_mask & __GFP_NOFAIL))
2766		return -ENOMEM;
2767force:
2768	/*
2769	 * The allocation either can't fail or will lead to more memory
2770	 * being freed very soon.  Allow memory usage go over the limit
2771	 * temporarily by force charging it.
2772	 */
2773	page_counter_charge(&memcg->memory, nr_pages);
2774	if (do_memsw_account())
2775		page_counter_charge(&memcg->memsw, nr_pages);
2776
2777	return 0;
 
2778
2779done_restock:
2780	if (batch > nr_pages)
2781		refill_stock(memcg, batch - nr_pages);
 
 
2782
2783	/*
2784	 * If the hierarchy is above the normal consumption range, schedule
2785	 * reclaim on returning to userland.  We can perform reclaim here
2786	 * if __GFP_RECLAIM but let's always punt for simplicity and so that
2787	 * GFP_KERNEL can consistently be used during reclaim.  @memcg is
2788	 * not recorded as it most likely matches current's and won't
2789	 * change in the meantime.  As high limit is checked again before
2790	 * reclaim, the cost of mismatch is negligible.
2791	 */
2792	do {
2793		bool mem_high, swap_high;
2794
2795		mem_high = page_counter_read(&memcg->memory) >
2796			READ_ONCE(memcg->memory.high);
2797		swap_high = page_counter_read(&memcg->swap) >
2798			READ_ONCE(memcg->swap.high);
2799
2800		/* Don't bother a random interrupted task */
2801		if (in_interrupt()) {
2802			if (mem_high) {
2803				schedule_work(&memcg->high_work);
2804				break;
 
 
 
 
 
 
2805			}
2806			continue;
2807		}
2808
2809		if (mem_high || swap_high) {
2810			/*
2811			 * The allocating tasks in this cgroup will need to do
2812			 * reclaim or be throttled to prevent further growth
2813			 * of the memory or swap footprints.
2814			 *
2815			 * Target some best-effort fairness between the tasks,
2816			 * and distribute reclaim work and delay penalties
2817			 * based on how much each task is actually allocating.
2818			 */
2819			current->memcg_nr_pages_over_high += batch;
2820			set_notify_resume(current);
2821			break;
 
 
 
2822		}
2823	} while ((memcg = parent_mem_cgroup(memcg)));
2824
 
 
 
 
 
2825	return 0;
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
2826}
2827
2828#if defined(CONFIG_MEMCG_KMEM) || defined(CONFIG_MMU)
2829static void cancel_charge(struct mem_cgroup *memcg, unsigned int nr_pages)
 
 
 
 
 
2830{
2831	if (mem_cgroup_is_root(memcg))
2832		return;
2833
2834	page_counter_uncharge(&memcg->memory, nr_pages);
2835	if (do_memsw_account())
2836		page_counter_uncharge(&memcg->memsw, nr_pages);
 
 
 
 
2837}
2838#endif
2839
2840static void commit_charge(struct page *page, struct mem_cgroup *memcg)
2841{
2842	VM_BUG_ON_PAGE(page->mem_cgroup, page);
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
2843	/*
2844	 * Any of the following ensures page->mem_cgroup stability:
2845	 *
2846	 * - the page lock
2847	 * - LRU isolation
2848	 * - lock_page_memcg()
2849	 * - exclusive reference
2850	 */
2851	page->mem_cgroup = memcg;
2852}
2853
2854#ifdef CONFIG_MEMCG_KMEM
2855int memcg_alloc_page_obj_cgroups(struct page *page, struct kmem_cache *s,
2856				 gfp_t gfp)
 
 
 
 
 
 
2857{
2858	unsigned int objects = objs_per_slab_page(s, page);
2859	void *vec;
 
2860
2861	vec = kcalloc_node(objects, sizeof(struct obj_cgroup *), gfp,
2862			   page_to_nid(page));
2863	if (!vec)
2864		return -ENOMEM;
 
 
 
2865
2866	if (cmpxchg(&page->obj_cgroups, NULL,
2867		    (struct obj_cgroup **) ((unsigned long)vec | 0x1UL)))
2868		kfree(vec);
2869	else
2870		kmemleak_not_leak(vec);
2871
2872	return 0;
 
 
 
 
 
 
 
 
 
 
2873}
 
2874
2875/*
2876 * Returns a pointer to the memory cgroup to which the kernel object is charged.
 
 
 
 
 
 
2877 *
2878 * The caller must ensure the memcg lifetime, e.g. by taking rcu_read_lock(),
2879 * cgroup_mutex, etc.
 
 
 
 
 
 
2880 */
2881struct mem_cgroup *mem_cgroup_from_obj(void *p)
 
 
 
 
 
2882{
2883	struct page *page;
2884
2885	if (mem_cgroup_disabled())
2886		return NULL;
2887
2888	page = virt_to_head_page(p);
2889
 
 
2890	/*
2891	 * Slab objects are accounted individually, not per-page.
2892	 * Memcg membership data for each individual object is saved in
2893	 * the page->obj_cgroups.
 
2894	 */
2895	if (page_has_obj_cgroups(page)) {
2896		struct obj_cgroup *objcg;
2897		unsigned int off;
2898
2899		off = obj_to_index(page->slab_cache, page, p);
2900		objcg = page_obj_cgroups(page)[off];
2901		if (objcg)
2902			return obj_cgroup_memcg(objcg);
2903
2904		return NULL;
2905	}
 
 
 
2906
2907	/* All other pages use page->mem_cgroup */
2908	return page->mem_cgroup;
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
2909}
2910
2911__always_inline struct obj_cgroup *get_obj_cgroup_from_current(void)
 
 
 
 
 
 
 
2912{
2913	struct obj_cgroup *objcg = NULL;
2914	struct mem_cgroup *memcg;
 
 
 
 
2915
2916	if (unlikely(!current->mm && !current->active_memcg))
2917		return NULL;
 
2918
2919	rcu_read_lock();
2920	if (unlikely(current->active_memcg))
2921		memcg = rcu_dereference(current->active_memcg);
2922	else
2923		memcg = mem_cgroup_from_task(current);
2924
2925	for (; memcg != root_mem_cgroup; memcg = parent_mem_cgroup(memcg)) {
2926		objcg = rcu_dereference(memcg->objcg);
2927		if (objcg && obj_cgroup_tryget(objcg))
2928			break;
2929	}
2930	rcu_read_unlock();
2931
2932	return objcg;
2933}
 
 
2934
2935static int memcg_alloc_cache_id(void)
2936{
2937	int id, size;
2938	int err;
2939
2940	id = ida_simple_get(&memcg_cache_ida,
2941			    0, MEMCG_CACHES_MAX_SIZE, GFP_KERNEL);
2942	if (id < 0)
2943		return id;
2944
2945	if (id < memcg_nr_cache_ids)
2946		return id;
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
2947
2948	/*
2949	 * There's no space for the new id in memcg_caches arrays,
2950	 * so we have to grow them.
2951	 */
2952	down_write(&memcg_cache_ids_sem);
 
 
 
 
2953
2954	size = 2 * (id + 1);
2955	if (size < MEMCG_CACHES_MIN_SIZE)
2956		size = MEMCG_CACHES_MIN_SIZE;
2957	else if (size > MEMCG_CACHES_MAX_SIZE)
2958		size = MEMCG_CACHES_MAX_SIZE;
2959
2960	err = memcg_update_all_list_lrus(size);
2961	if (!err)
2962		memcg_nr_cache_ids = size;
2963
2964	up_write(&memcg_cache_ids_sem);
 
 
2965
2966	if (err) {
2967		ida_simple_remove(&memcg_cache_ida, id);
2968		return err;
2969	}
2970	return id;
 
 
 
 
 
 
 
 
 
 
 
 
 
2971}
2972
2973static void memcg_free_cache_id(int id)
 
 
 
 
 
 
2974{
2975	ida_simple_remove(&memcg_cache_ida, id);
 
 
 
 
 
 
 
 
 
2976}
2977
2978/**
2979 * __memcg_kmem_charge: charge a number of kernel pages to a memcg
2980 * @memcg: memory cgroup to charge
2981 * @gfp: reclaim mode
2982 * @nr_pages: number of pages to charge
2983 *
2984 * Returns 0 on success, an error code on failure.
2985 */
2986int __memcg_kmem_charge(struct mem_cgroup *memcg, gfp_t gfp,
2987			unsigned int nr_pages)
2988{
2989	struct page_counter *counter;
2990	int ret;
2991
2992	ret = try_charge(memcg, gfp, nr_pages);
2993	if (ret)
2994		return ret;
 
 
 
 
2995
2996	if (!cgroup_subsys_on_dfl(memory_cgrp_subsys) &&
2997	    !page_counter_try_charge(&memcg->kmem, nr_pages, &counter)) {
 
 
2998
2999		/*
3000		 * Enforce __GFP_NOFAIL allocation because callers are not
3001		 * prepared to see failures and likely do not have any failure
3002		 * handling code.
3003		 */
3004		if (gfp & __GFP_NOFAIL) {
3005			page_counter_charge(&memcg->kmem, nr_pages);
3006			return 0;
3007		}
3008		cancel_charge(memcg, nr_pages);
3009		return -ENOMEM;
3010	}
3011	return 0;
 
 
 
 
 
 
 
 
 
 
3012}
3013
3014/**
3015 * __memcg_kmem_uncharge: uncharge a number of kernel pages from a memcg
3016 * @memcg: memcg to uncharge
3017 * @nr_pages: number of pages to uncharge
3018 */
3019void __memcg_kmem_uncharge(struct mem_cgroup *memcg, unsigned int nr_pages)
3020{
3021	if (!cgroup_subsys_on_dfl(memory_cgrp_subsys))
3022		page_counter_uncharge(&memcg->kmem, nr_pages);
3023
3024	page_counter_uncharge(&memcg->memory, nr_pages);
3025	if (do_memsw_account())
3026		page_counter_uncharge(&memcg->memsw, nr_pages);
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
3027}
3028
3029/**
3030 * __memcg_kmem_charge_page: charge a kmem page to the current memory cgroup
3031 * @page: page to charge
3032 * @gfp: reclaim mode
3033 * @order: allocation order
3034 *
3035 * Returns 0 on success, an error code on failure.
3036 */
3037int __memcg_kmem_charge_page(struct page *page, gfp_t gfp, int order)
3038{
3039	struct mem_cgroup *memcg;
3040	int ret = 0;
 
 
 
3041
3042	if (memcg_kmem_bypass())
3043		return 0;
 
 
 
 
 
 
 
 
 
 
3044
3045	memcg = get_mem_cgroup_from_current();
3046	if (!mem_cgroup_is_root(memcg)) {
3047		ret = __memcg_kmem_charge(memcg, gfp, 1 << order);
3048		if (!ret) {
3049			page->mem_cgroup = memcg;
3050			__SetPageKmemcg(page);
3051			return 0;
 
 
 
 
 
3052		}
 
3053	}
3054	css_put(&memcg->css);
3055	return ret;
 
 
 
 
3056}
3057
3058/**
3059 * __memcg_kmem_uncharge_page: uncharge a kmem page
3060 * @page: page to uncharge
3061 * @order: allocation order
3062 */
3063void __memcg_kmem_uncharge_page(struct page *page, int order)
3064{
3065	struct mem_cgroup *memcg = page->mem_cgroup;
3066	unsigned int nr_pages = 1 << order;
 
3067
3068	if (!memcg)
 
 
 
 
3069		return;
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
3070
3071	VM_BUG_ON_PAGE(mem_cgroup_is_root(memcg), page);
3072	__memcg_kmem_uncharge(memcg, nr_pages);
3073	page->mem_cgroup = NULL;
3074	css_put(&memcg->css);
3075
3076	/* slab pages do not have PageKmemcg flag set */
3077	if (PageKmemcg(page))
3078		__ClearPageKmemcg(page);
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
3079}
3080
3081static bool consume_obj_stock(struct obj_cgroup *objcg, unsigned int nr_bytes)
 
 
 
 
3082{
3083	struct memcg_stock_pcp *stock;
3084	unsigned long flags;
3085	bool ret = false;
 
 
 
3086
3087	local_irq_save(flags);
 
3088
3089	stock = this_cpu_ptr(&memcg_stock);
3090	if (objcg == stock->cached_objcg && stock->nr_bytes >= nr_bytes) {
3091		stock->nr_bytes -= nr_bytes;
3092		ret = true;
3093	}
 
 
 
 
 
 
3094
3095	local_irq_restore(flags);
3096
3097	return ret;
3098}
3099
3100static void drain_obj_stock(struct memcg_stock_pcp *stock)
3101{
3102	struct obj_cgroup *old = stock->cached_objcg;
3103
3104	if (!old)
3105		return;
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
3106
3107	if (stock->nr_bytes) {
3108		unsigned int nr_pages = stock->nr_bytes >> PAGE_SHIFT;
3109		unsigned int nr_bytes = stock->nr_bytes & (PAGE_SIZE - 1);
3110
3111		if (nr_pages) {
3112			rcu_read_lock();
3113			__memcg_kmem_uncharge(obj_cgroup_memcg(old), nr_pages);
3114			rcu_read_unlock();
3115		}
 
 
3116
3117		/*
3118		 * The leftover is flushed to the centralized per-memcg value.
3119		 * On the next attempt to refill obj stock it will be moved
3120		 * to a per-cpu stock (probably, on an other CPU), see
3121		 * refill_obj_stock().
3122		 *
3123		 * How often it's flushed is a trade-off between the memory
3124		 * limit enforcement accuracy and potential CPU contention,
3125		 * so it might be changed in the future.
3126		 */
3127		atomic_add(nr_bytes, &old->nr_charged_bytes);
3128		stock->nr_bytes = 0;
3129	}
 
 
3130
3131	obj_cgroup_put(old);
3132	stock->cached_objcg = NULL;
 
 
 
3133}
3134
3135static bool obj_stock_flush_required(struct memcg_stock_pcp *stock,
3136				     struct mem_cgroup *root_memcg)
3137{
3138	struct mem_cgroup *memcg;
3139
3140	if (stock->cached_objcg) {
3141		memcg = obj_cgroup_memcg(stock->cached_objcg);
3142		if (memcg && mem_cgroup_is_descendant(memcg, root_memcg))
3143			return true;
3144	}
3145
3146	return false;
3147}
3148
3149static void refill_obj_stock(struct obj_cgroup *objcg, unsigned int nr_bytes)
3150{
3151	struct memcg_stock_pcp *stock;
3152	unsigned long flags;
 
 
3153
3154	local_irq_save(flags);
 
 
 
 
 
 
3155
3156	stock = this_cpu_ptr(&memcg_stock);
3157	if (stock->cached_objcg != objcg) { /* reset if necessary */
3158		drain_obj_stock(stock);
3159		obj_cgroup_get(objcg);
3160		stock->cached_objcg = objcg;
3161		stock->nr_bytes = atomic_xchg(&objcg->nr_charged_bytes, 0);
 
 
3162	}
3163	stock->nr_bytes += nr_bytes;
3164
3165	if (stock->nr_bytes > PAGE_SIZE)
3166		drain_obj_stock(stock);
3167
3168	local_irq_restore(flags);
3169}
3170
3171int obj_cgroup_charge(struct obj_cgroup *objcg, gfp_t gfp, size_t size)
3172{
3173	struct mem_cgroup *memcg;
3174	unsigned int nr_pages, nr_bytes;
3175	int ret;
 
3176
3177	if (consume_obj_stock(objcg, size))
3178		return 0;
 
3179
 
 
3180	/*
3181	 * In theory, memcg->nr_charged_bytes can have enough
3182	 * pre-charged bytes to satisfy the allocation. However,
3183	 * flushing memcg->nr_charged_bytes requires two atomic
3184	 * operations, and memcg->nr_charged_bytes can't be big,
3185	 * so it's better to ignore it and try grab some new pages.
3186	 * memcg->nr_charged_bytes will be flushed in
3187	 * refill_obj_stock(), called from this function or
3188	 * independently later.
3189	 */
3190	rcu_read_lock();
3191	memcg = obj_cgroup_memcg(objcg);
3192	css_get(&memcg->css);
3193	rcu_read_unlock();
 
 
 
 
 
 
3194
3195	nr_pages = size >> PAGE_SHIFT;
3196	nr_bytes = size & (PAGE_SIZE - 1);
 
 
 
 
 
 
 
 
3197
3198	if (nr_bytes)
3199		nr_pages += 1;
3200
3201	ret = __memcg_kmem_charge(memcg, gfp, nr_pages);
3202	if (!ret && nr_bytes)
3203		refill_obj_stock(objcg, PAGE_SIZE - nr_bytes);
3204
3205	css_put(&memcg->css);
3206	return ret;
 
 
 
 
3207}
 
3208
3209void obj_cgroup_uncharge(struct obj_cgroup *objcg, size_t size)
3210{
3211	refill_obj_stock(objcg, size);
3212}
3213
3214#endif /* CONFIG_MEMCG_KMEM */
3215
3216#ifdef CONFIG_TRANSPARENT_HUGEPAGE
3217
3218/*
3219 * Because tail pages are not marked as "used", set it. We're under
3220 * pgdat->lru_lock and migration entries setup in all page mappings.
3221 */
3222void mem_cgroup_split_huge_fixup(struct page *head)
3223{
3224	struct mem_cgroup *memcg = head->mem_cgroup;
3225	int i;
3226
3227	if (mem_cgroup_disabled())
3228		return;
3229
3230	for (i = 1; i < HPAGE_PMD_NR; i++) {
3231		css_get(&memcg->css);
3232		head[i].mem_cgroup = memcg;
 
 
 
 
 
 
 
 
 
3233	}
 
3234}
3235#endif /* CONFIG_TRANSPARENT_HUGEPAGE */
3236
3237#ifdef CONFIG_MEMCG_SWAP
3238/**
3239 * mem_cgroup_move_swap_account - move swap charge and swap_cgroup's record.
3240 * @entry: swap entry to be moved
3241 * @from:  mem_cgroup which the entry is moved from
3242 * @to:  mem_cgroup which the entry is moved to
 
3243 *
3244 * It succeeds only when the swap_cgroup's record for this entry is the same
3245 * as the mem_cgroup's id of @from.
3246 *
3247 * Returns 0 on success, -EINVAL on failure.
3248 *
3249 * The caller must have charged to @to, IOW, called page_counter_charge() about
3250 * both res and memsw, and called css_get().
3251 */
3252static int mem_cgroup_move_swap_account(swp_entry_t entry,
3253				struct mem_cgroup *from, struct mem_cgroup *to)
3254{
3255	unsigned short old_id, new_id;
3256
3257	old_id = mem_cgroup_id(from);
3258	new_id = mem_cgroup_id(to);
3259
3260	if (swap_cgroup_cmpxchg(entry, old_id, new_id) == old_id) {
3261		mod_memcg_state(from, MEMCG_SWAP, -1);
3262		mod_memcg_state(to, MEMCG_SWAP, 1);
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
3263		return 0;
3264	}
3265	return -EINVAL;
3266}
3267#else
3268static inline int mem_cgroup_move_swap_account(swp_entry_t entry,
3269				struct mem_cgroup *from, struct mem_cgroup *to)
3270{
3271	return -EINVAL;
3272}
3273#endif
3274
3275static DEFINE_MUTEX(memcg_max_mutex);
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
3276
3277static int mem_cgroup_resize_max(struct mem_cgroup *memcg,
3278				 unsigned long max, bool memsw)
3279{
3280	bool enlarge = false;
3281	bool drained = false;
3282	int ret;
3283	bool limits_invariant;
3284	struct page_counter *counter = memsw ? &memcg->memsw : &memcg->memory;
 
 
 
 
 
 
 
 
 
 
3285
3286	do {
 
3287		if (signal_pending(current)) {
3288			ret = -EINTR;
3289			break;
3290		}
3291
3292		mutex_lock(&memcg_max_mutex);
3293		/*
3294		 * Make sure that the new limit (memsw or memory limit) doesn't
3295		 * break our basic invariant rule memory.max <= memsw.max.
 
3296		 */
3297		limits_invariant = memsw ? max >= READ_ONCE(memcg->memory.max) :
3298					   max <= memcg->memsw.max;
3299		if (!limits_invariant) {
3300			mutex_unlock(&memcg_max_mutex);
3301			ret = -EINVAL;
 
3302			break;
3303		}
3304		if (max > counter->max)
3305			enlarge = true;
3306		ret = page_counter_set_max(counter, max);
3307		mutex_unlock(&memcg_max_mutex);
 
 
 
 
 
 
 
 
 
3308
3309		if (!ret)
3310			break;
3311
3312		if (!drained) {
3313			drain_all_stock(memcg);
3314			drained = true;
3315			continue;
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
3316		}
 
3317
3318		if (!try_to_free_mem_cgroup_pages(memcg, 1,
3319					GFP_KERNEL, !memsw)) {
3320			ret = -EBUSY;
3321			break;
3322		}
3323	} while (true);
3324
 
 
 
 
 
 
 
 
 
 
 
3325	if (!ret && enlarge)
3326		memcg_oom_recover(memcg);
3327
3328	return ret;
3329}
3330
3331unsigned long mem_cgroup_soft_limit_reclaim(pg_data_t *pgdat, int order,
3332					    gfp_t gfp_mask,
3333					    unsigned long *total_scanned)
3334{
3335	unsigned long nr_reclaimed = 0;
3336	struct mem_cgroup_per_node *mz, *next_mz = NULL;
3337	unsigned long reclaimed;
3338	int loop = 0;
3339	struct mem_cgroup_tree_per_node *mctz;
3340	unsigned long excess;
3341	unsigned long nr_scanned;
3342
3343	if (order > 0)
3344		return 0;
3345
3346	mctz = soft_limit_tree_node(pgdat->node_id);
3347
3348	/*
3349	 * Do not even bother to check the largest node if the root
3350	 * is empty. Do it lockless to prevent lock bouncing. Races
3351	 * are acceptable as soft limit is best effort anyway.
3352	 */
3353	if (!mctz || RB_EMPTY_ROOT(&mctz->rb_root))
3354		return 0;
3355
3356	/*
3357	 * This loop can run a while, specially if mem_cgroup's continuously
3358	 * keep exceeding their soft limit and putting the system under
3359	 * pressure
3360	 */
3361	do {
3362		if (next_mz)
3363			mz = next_mz;
3364		else
3365			mz = mem_cgroup_largest_soft_limit_node(mctz);
3366		if (!mz)
3367			break;
3368
3369		nr_scanned = 0;
3370		reclaimed = mem_cgroup_soft_reclaim(mz->memcg, pgdat,
3371						    gfp_mask, &nr_scanned);
 
 
3372		nr_reclaimed += reclaimed;
3373		*total_scanned += nr_scanned;
3374		spin_lock_irq(&mctz->lock);
3375		__mem_cgroup_remove_exceeded(mz, mctz);
3376
3377		/*
3378		 * If we failed to reclaim anything from this memory cgroup
3379		 * it is time to move on to the next cgroup
3380		 */
3381		next_mz = NULL;
3382		if (!reclaimed)
3383			next_mz = __mem_cgroup_largest_soft_limit_node(mctz);
3384
3385		excess = soft_limit_excess(mz->memcg);
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
3386		/*
3387		 * One school of thought says that we should not add
3388		 * back the node to the tree if reclaim returns 0.
3389		 * But our reclaim could return 0, simply because due
3390		 * to priority we are exposing a smaller subset of
3391		 * memory to reclaim from. Consider this as a longer
3392		 * term TODO.
3393		 */
3394		/* If excess == 0, no tree ops */
3395		__mem_cgroup_insert_exceeded(mz, mctz, excess);
3396		spin_unlock_irq(&mctz->lock);
3397		css_put(&mz->memcg->css);
3398		loop++;
3399		/*
3400		 * Could not reclaim anything and there are no more
3401		 * mem cgroups to try or we seem to be looping without
3402		 * reclaiming anything.
3403		 */
3404		if (!nr_reclaimed &&
3405			(next_mz == NULL ||
3406			loop > MEM_CGROUP_MAX_SOFT_LIMIT_RECLAIM_LOOPS))
3407			break;
3408	} while (!nr_reclaimed);
3409	if (next_mz)
3410		css_put(&next_mz->memcg->css);
3411	return nr_reclaimed;
3412}
3413
3414/*
3415 * Test whether @memcg has children, dead or alive.  Note that this
3416 * function doesn't care whether @memcg has use_hierarchy enabled and
3417 * returns %true if there are child csses according to the cgroup
3418 * hierarchy.  Testing use_hierarchy is the caller's responsibility.
3419 */
3420static inline bool memcg_has_children(struct mem_cgroup *memcg)
 
3421{
3422	bool ret;
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
3423
3424	rcu_read_lock();
3425	ret = css_next_child(NULL, &memcg->css);
3426	rcu_read_unlock();
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
3427	return ret;
3428}
3429
3430/*
3431 * Reclaims as many pages from the given memcg as possible.
3432 *
3433 * Caller is responsible for holding css reference for memcg.
3434 */
3435static int mem_cgroup_force_empty(struct mem_cgroup *memcg)
3436{
3437	int nr_retries = MAX_RECLAIM_RETRIES;
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
3438
 
 
 
 
 
 
3439	/* we call try-to-free pages for make this cgroup empty */
3440	lru_add_drain_all();
3441
3442	drain_all_stock(memcg);
3443
3444	/* try to free all pages in this cgroup */
3445	while (nr_retries && page_counter_read(&memcg->memory)) {
 
3446		int progress;
3447
3448		if (signal_pending(current))
3449			return -EINTR;
3450
3451		progress = try_to_free_mem_cgroup_pages(memcg, 1,
3452							GFP_KERNEL, true);
 
3453		if (!progress) {
3454			nr_retries--;
3455			/* maybe some writeback is necessary */
3456			congestion_wait(BLK_RW_ASYNC, HZ/10);
3457		}
3458
3459	}
3460
3461	return 0;
 
3462}
3463
3464static ssize_t mem_cgroup_force_empty_write(struct kernfs_open_file *of,
3465					    char *buf, size_t nbytes,
3466					    loff_t off)
3467{
3468	struct mem_cgroup *memcg = mem_cgroup_from_css(of_css(of));
 
3469
3470	if (mem_cgroup_is_root(memcg))
3471		return -EINVAL;
3472	return mem_cgroup_force_empty(memcg) ?: nbytes;
3473}
3474
3475static u64 mem_cgroup_hierarchy_read(struct cgroup_subsys_state *css,
3476				     struct cftype *cft)
3477{
3478	return mem_cgroup_from_css(css)->use_hierarchy;
3479}
3480
3481static int mem_cgroup_hierarchy_write(struct cgroup_subsys_state *css,
3482				      struct cftype *cft, u64 val)
3483{
3484	int retval = 0;
3485	struct mem_cgroup *memcg = mem_cgroup_from_css(css);
3486	struct mem_cgroup *parent_memcg = mem_cgroup_from_css(memcg->css.parent);
 
3487
3488	if (memcg->use_hierarchy == val)
3489		return 0;
3490
 
3491	/*
3492	 * If parent's use_hierarchy is set, we can't make any modifications
3493	 * in the child subtrees. If it is unset, then the change can
3494	 * occur, provided the current cgroup has no children.
3495	 *
3496	 * For the root cgroup, parent_mem is NULL, we allow value to be
3497	 * set if there are no children.
3498	 */
3499	if ((!parent_memcg || !parent_memcg->use_hierarchy) &&
3500				(val == 1 || val == 0)) {
3501		if (!memcg_has_children(memcg))
3502			memcg->use_hierarchy = val;
3503		else
3504			retval = -EBUSY;
3505	} else
3506		retval = -EINVAL;
 
3507
3508	return retval;
3509}
3510
3511static unsigned long mem_cgroup_usage(struct mem_cgroup *memcg, bool swap)
3512{
3513	unsigned long val;
3514
3515	if (mem_cgroup_is_root(memcg)) {
3516		val = memcg_page_state(memcg, NR_FILE_PAGES) +
3517			memcg_page_state(memcg, NR_ANON_MAPPED);
3518		if (swap)
3519			val += memcg_page_state(memcg, MEMCG_SWAP);
3520	} else {
3521		if (!swap)
3522			val = page_counter_read(&memcg->memory);
3523		else
3524			val = page_counter_read(&memcg->memsw);
3525	}
3526	return val;
3527}
3528
3529enum {
3530	RES_USAGE,
3531	RES_LIMIT,
3532	RES_MAX_USAGE,
3533	RES_FAILCNT,
3534	RES_SOFT_LIMIT,
3535};
3536
3537static u64 mem_cgroup_read_u64(struct cgroup_subsys_state *css,
3538			       struct cftype *cft)
3539{
3540	struct mem_cgroup *memcg = mem_cgroup_from_css(css);
3541	struct page_counter *counter;
3542
3543	switch (MEMFILE_TYPE(cft->private)) {
3544	case _MEM:
3545		counter = &memcg->memory;
3546		break;
3547	case _MEMSWAP:
3548		counter = &memcg->memsw;
3549		break;
3550	case _KMEM:
3551		counter = &memcg->kmem;
3552		break;
3553	case _TCP:
3554		counter = &memcg->tcpmem;
3555		break;
3556	default:
3557		BUG();
3558	}
3559
3560	switch (MEMFILE_ATTR(cft->private)) {
3561	case RES_USAGE:
3562		if (counter == &memcg->memory)
3563			return (u64)mem_cgroup_usage(memcg, false) * PAGE_SIZE;
3564		if (counter == &memcg->memsw)
3565			return (u64)mem_cgroup_usage(memcg, true) * PAGE_SIZE;
3566		return (u64)page_counter_read(counter) * PAGE_SIZE;
3567	case RES_LIMIT:
3568		return (u64)counter->max * PAGE_SIZE;
3569	case RES_MAX_USAGE:
3570		return (u64)counter->watermark * PAGE_SIZE;
3571	case RES_FAILCNT:
3572		return counter->failcnt;
3573	case RES_SOFT_LIMIT:
3574		return (u64)memcg->soft_limit * PAGE_SIZE;
3575	default:
3576		BUG();
3577	}
3578}
3579
3580static void memcg_flush_percpu_vmstats(struct mem_cgroup *memcg)
3581{
3582	unsigned long stat[MEMCG_NR_STAT] = {0};
3583	struct mem_cgroup *mi;
3584	int node, cpu, i;
3585
3586	for_each_online_cpu(cpu)
3587		for (i = 0; i < MEMCG_NR_STAT; i++)
3588			stat[i] += per_cpu(memcg->vmstats_percpu->stat[i], cpu);
3589
3590	for (mi = memcg; mi; mi = parent_mem_cgroup(mi))
3591		for (i = 0; i < MEMCG_NR_STAT; i++)
3592			atomic_long_add(stat[i], &mi->vmstats[i]);
3593
3594	for_each_node(node) {
3595		struct mem_cgroup_per_node *pn = memcg->nodeinfo[node];
3596		struct mem_cgroup_per_node *pi;
3597
3598		for (i = 0; i < NR_VM_NODE_STAT_ITEMS; i++)
3599			stat[i] = 0;
3600
3601		for_each_online_cpu(cpu)
3602			for (i = 0; i < NR_VM_NODE_STAT_ITEMS; i++)
3603				stat[i] += per_cpu(
3604					pn->lruvec_stat_cpu->count[i], cpu);
3605
3606		for (pi = pn; pi; pi = parent_nodeinfo(pi, node))
3607			for (i = 0; i < NR_VM_NODE_STAT_ITEMS; i++)
3608				atomic_long_add(stat[i], &pi->lruvec_stat[i]);
3609	}
3610}
3611
3612static void memcg_flush_percpu_vmevents(struct mem_cgroup *memcg)
3613{
3614	unsigned long events[NR_VM_EVENT_ITEMS];
3615	struct mem_cgroup *mi;
3616	int cpu, i;
3617
3618	for (i = 0; i < NR_VM_EVENT_ITEMS; i++)
3619		events[i] = 0;
3620
3621	for_each_online_cpu(cpu)
3622		for (i = 0; i < NR_VM_EVENT_ITEMS; i++)
3623			events[i] += per_cpu(memcg->vmstats_percpu->events[i],
3624					     cpu);
3625
3626	for (mi = memcg; mi; mi = parent_mem_cgroup(mi))
3627		for (i = 0; i < NR_VM_EVENT_ITEMS; i++)
3628			atomic_long_add(events[i], &mi->vmevents[i]);
3629}
3630
3631#ifdef CONFIG_MEMCG_KMEM
3632static int memcg_online_kmem(struct mem_cgroup *memcg)
3633{
3634	struct obj_cgroup *objcg;
3635	int memcg_id;
 
3636
3637	if (cgroup_memory_nokmem)
3638		return 0;
3639
3640	BUG_ON(memcg->kmemcg_id >= 0);
3641	BUG_ON(memcg->kmem_state);
3642
3643	memcg_id = memcg_alloc_cache_id();
3644	if (memcg_id < 0)
3645		return memcg_id;
3646
3647	objcg = obj_cgroup_alloc();
3648	if (!objcg) {
3649		memcg_free_cache_id(memcg_id);
3650		return -ENOMEM;
 
 
 
 
3651	}
3652	objcg->memcg = memcg;
3653	rcu_assign_pointer(memcg->objcg, objcg);
3654
3655	static_branch_enable(&memcg_kmem_enabled_key);
3656
3657	/*
3658	 * A memory cgroup is considered kmem-online as soon as it gets
3659	 * kmemcg_id. Setting the id after enabling static branching will
3660	 * guarantee no one starts accounting before all call sites are
3661	 * patched.
3662	 */
3663	memcg->kmemcg_id = memcg_id;
3664	memcg->kmem_state = KMEM_ONLINE;
3665
3666	return 0;
3667}
3668
3669static void memcg_offline_kmem(struct mem_cgroup *memcg)
3670{
3671	struct cgroup_subsys_state *css;
3672	struct mem_cgroup *parent, *child;
3673	int kmemcg_id;
3674
3675	if (memcg->kmem_state != KMEM_ONLINE)
3676		return;
3677
3678	memcg->kmem_state = KMEM_ALLOCATED;
3679
3680	parent = parent_mem_cgroup(memcg);
3681	if (!parent)
3682		parent = root_mem_cgroup;
3683
3684	memcg_reparent_objcgs(memcg, parent);
3685
3686	kmemcg_id = memcg->kmemcg_id;
3687	BUG_ON(kmemcg_id < 0);
3688
3689	/*
3690	 * Change kmemcg_id of this cgroup and all its descendants to the
3691	 * parent's id, and then move all entries from this cgroup's list_lrus
3692	 * to ones of the parent. After we have finished, all list_lrus
3693	 * corresponding to this cgroup are guaranteed to remain empty. The
3694	 * ordering is imposed by list_lru_node->lock taken by
3695	 * memcg_drain_all_list_lrus().
3696	 */
3697	rcu_read_lock(); /* can be called from css_free w/o cgroup_mutex */
3698	css_for_each_descendant_pre(css, &memcg->css) {
3699		child = mem_cgroup_from_css(css);
3700		BUG_ON(child->kmemcg_id != kmemcg_id);
3701		child->kmemcg_id = parent->kmemcg_id;
3702		if (!memcg->use_hierarchy)
3703			break;
3704	}
3705	rcu_read_unlock();
3706
3707	memcg_drain_all_list_lrus(kmemcg_id, parent);
3708
3709	memcg_free_cache_id(kmemcg_id);
3710}
3711
3712static void memcg_free_kmem(struct mem_cgroup *memcg)
3713{
3714	/* css_alloc() failed, offlining didn't happen */
3715	if (unlikely(memcg->kmem_state == KMEM_ONLINE))
3716		memcg_offline_kmem(memcg);
3717}
3718#else
3719static int memcg_online_kmem(struct mem_cgroup *memcg)
3720{
3721	return 0;
3722}
3723static void memcg_offline_kmem(struct mem_cgroup *memcg)
3724{
3725}
3726static void memcg_free_kmem(struct mem_cgroup *memcg)
3727{
3728}
3729#endif /* CONFIG_MEMCG_KMEM */
3730
3731static int memcg_update_kmem_max(struct mem_cgroup *memcg,
3732				 unsigned long max)
3733{
3734	int ret;
3735
3736	mutex_lock(&memcg_max_mutex);
3737	ret = page_counter_set_max(&memcg->kmem, max);
3738	mutex_unlock(&memcg_max_mutex);
3739	return ret;
3740}
3741
3742static int memcg_update_tcp_max(struct mem_cgroup *memcg, unsigned long max)
3743{
3744	int ret;
3745
3746	mutex_lock(&memcg_max_mutex);
3747
3748	ret = page_counter_set_max(&memcg->tcpmem, max);
3749	if (ret)
3750		goto out;
3751
3752	if (!memcg->tcpmem_active) {
3753		/*
3754		 * The active flag needs to be written after the static_key
3755		 * update. This is what guarantees that the socket activation
3756		 * function is the last one to run. See mem_cgroup_sk_alloc()
3757		 * for details, and note that we don't mark any socket as
3758		 * belonging to this memcg until that flag is up.
3759		 *
3760		 * We need to do this, because static_keys will span multiple
3761		 * sites, but we can't control their order. If we mark a socket
3762		 * as accounted, but the accounting functions are not patched in
3763		 * yet, we'll lose accounting.
3764		 *
3765		 * We never race with the readers in mem_cgroup_sk_alloc(),
3766		 * because when this value change, the code to process it is not
3767		 * patched in yet.
3768		 */
3769		static_branch_inc(&memcg_sockets_enabled_key);
3770		memcg->tcpmem_active = true;
3771	}
3772out:
3773	mutex_unlock(&memcg_max_mutex);
3774	return ret;
3775}
3776
3777/*
3778 * The user of this function is...
3779 * RES_LIMIT.
3780 */
3781static ssize_t mem_cgroup_write(struct kernfs_open_file *of,
3782				char *buf, size_t nbytes, loff_t off)
3783{
3784	struct mem_cgroup *memcg = mem_cgroup_from_css(of_css(of));
3785	unsigned long nr_pages;
 
3786	int ret;
3787
3788	buf = strstrip(buf);
3789	ret = page_counter_memparse(buf, "-1", &nr_pages);
3790	if (ret)
3791		return ret;
3792
3793	switch (MEMFILE_ATTR(of_cft(of)->private)) {
3794	case RES_LIMIT:
3795		if (mem_cgroup_is_root(memcg)) { /* Can't set limit on root */
3796			ret = -EINVAL;
3797			break;
3798		}
3799		switch (MEMFILE_TYPE(of_cft(of)->private)) {
3800		case _MEM:
3801			ret = mem_cgroup_resize_max(memcg, nr_pages, false);
3802			break;
3803		case _MEMSWAP:
3804			ret = mem_cgroup_resize_max(memcg, nr_pages, true);
 
 
 
 
 
 
3805			break;
3806		case _KMEM:
3807			pr_warn_once("kmem.limit_in_bytes is deprecated and will be removed. "
3808				     "Please report your usecase to linux-mm@kvack.org if you "
3809				     "depend on this functionality.\n");
3810			ret = memcg_update_kmem_max(memcg, nr_pages);
3811			break;
3812		case _TCP:
3813			ret = memcg_update_tcp_max(memcg, nr_pages);
3814			break;
3815		}
3816		break;
3817	case RES_SOFT_LIMIT:
3818		memcg->soft_limit = nr_pages;
3819		ret = 0;
3820		break;
3821	}
3822	return ret ?: nbytes;
3823}
3824
3825static ssize_t mem_cgroup_reset(struct kernfs_open_file *of, char *buf,
3826				size_t nbytes, loff_t off)
3827{
3828	struct mem_cgroup *memcg = mem_cgroup_from_css(of_css(of));
3829	struct page_counter *counter;
 
 
 
 
 
 
3830
3831	switch (MEMFILE_TYPE(of_cft(of)->private)) {
3832	case _MEM:
3833		counter = &memcg->memory;
3834		break;
3835	case _MEMSWAP:
3836		counter = &memcg->memsw;
3837		break;
3838	case _KMEM:
3839		counter = &memcg->kmem;
3840		break;
3841	case _TCP:
3842		counter = &memcg->tcpmem;
3843		break;
3844	default:
3845		BUG();
3846	}
 
 
 
 
 
3847
3848	switch (MEMFILE_ATTR(of_cft(of)->private)) {
 
 
 
 
 
 
 
 
3849	case RES_MAX_USAGE:
3850		page_counter_reset_watermark(counter);
 
 
 
3851		break;
3852	case RES_FAILCNT:
3853		counter->failcnt = 0;
 
 
 
3854		break;
3855	default:
3856		BUG();
3857	}
3858
3859	return nbytes;
3860}
3861
3862static u64 mem_cgroup_move_charge_read(struct cgroup_subsys_state *css,
3863					struct cftype *cft)
3864{
3865	return mem_cgroup_from_css(css)->move_charge_at_immigrate;
3866}
3867
3868#ifdef CONFIG_MMU
3869static int mem_cgroup_move_charge_write(struct cgroup_subsys_state *css,
3870					struct cftype *cft, u64 val)
3871{
3872	struct mem_cgroup *memcg = mem_cgroup_from_css(css);
3873
3874	if (val & ~MOVE_MASK)
3875		return -EINVAL;
 
 
 
 
 
 
 
 
3876
3877	/*
3878	 * No kind of locking is needed in here, because ->can_attach() will
3879	 * check this value once in the beginning of the process, and then carry
3880	 * on with stale data. This means that changes to this value will only
3881	 * affect task migrations starting after the change.
3882	 */
3883	memcg->move_charge_at_immigrate = val;
3884	return 0;
3885}
3886#else
3887static int mem_cgroup_move_charge_write(struct cgroup_subsys_state *css,
3888					struct cftype *cft, u64 val)
3889{
3890	return -ENOSYS;
3891}
3892#endif
3893
3894#ifdef CONFIG_NUMA
3895
3896#define LRU_ALL_FILE (BIT(LRU_INACTIVE_FILE) | BIT(LRU_ACTIVE_FILE))
3897#define LRU_ALL_ANON (BIT(LRU_INACTIVE_ANON) | BIT(LRU_ACTIVE_ANON))
3898#define LRU_ALL	     ((1 << NR_LRU_LISTS) - 1)
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
3899
3900static unsigned long mem_cgroup_node_nr_lru_pages(struct mem_cgroup *memcg,
3901				int nid, unsigned int lru_mask, bool tree)
3902{
3903	struct lruvec *lruvec = mem_cgroup_lruvec(memcg, NODE_DATA(nid));
3904	unsigned long nr = 0;
3905	enum lru_list lru;
3906
3907	VM_BUG_ON((unsigned)nid >= nr_node_ids);
3908
3909	for_each_lru(lru) {
3910		if (!(BIT(lru) & lru_mask))
3911			continue;
3912		if (tree)
3913			nr += lruvec_page_state(lruvec, NR_LRU_BASE + lru);
3914		else
3915			nr += lruvec_page_state_local(lruvec, NR_LRU_BASE + lru);
3916	}
3917	return nr;
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
3918}
3919
3920static unsigned long mem_cgroup_nr_lru_pages(struct mem_cgroup *memcg,
3921					     unsigned int lru_mask,
3922					     bool tree)
3923{
3924	unsigned long nr = 0;
3925	enum lru_list lru;
3926
3927	for_each_lru(lru) {
3928		if (!(BIT(lru) & lru_mask))
3929			continue;
3930		if (tree)
3931			nr += memcg_page_state(memcg, NR_LRU_BASE + lru);
3932		else
3933			nr += memcg_page_state_local(memcg, NR_LRU_BASE + lru);
3934	}
3935	return nr;
3936}
3937
3938static int memcg_numa_stat_show(struct seq_file *m, void *v)
 
3939{
3940	struct numa_stat {
3941		const char *name;
3942		unsigned int lru_mask;
3943	};
3944
3945	static const struct numa_stat stats[] = {
3946		{ "total", LRU_ALL },
3947		{ "file", LRU_ALL_FILE },
3948		{ "anon", LRU_ALL_ANON },
3949		{ "unevictable", BIT(LRU_UNEVICTABLE) },
3950	};
3951	const struct numa_stat *stat;
3952	int nid;
3953	struct mem_cgroup *memcg = mem_cgroup_from_seq(m);
3954
3955	for (stat = stats; stat < stats + ARRAY_SIZE(stats); stat++) {
3956		seq_printf(m, "%s=%lu", stat->name,
3957			   mem_cgroup_nr_lru_pages(memcg, stat->lru_mask,
3958						   false));
3959		for_each_node_state(nid, N_MEMORY)
3960			seq_printf(m, " N%d=%lu", nid,
3961				   mem_cgroup_node_nr_lru_pages(memcg, nid,
3962							stat->lru_mask, false));
3963		seq_putc(m, '\n');
3964	}
3965
3966	for (stat = stats; stat < stats + ARRAY_SIZE(stats); stat++) {
3967
3968		seq_printf(m, "hierarchical_%s=%lu", stat->name,
3969			   mem_cgroup_nr_lru_pages(memcg, stat->lru_mask,
3970						   true));
3971		for_each_node_state(nid, N_MEMORY)
3972			seq_printf(m, " N%d=%lu", nid,
3973				   mem_cgroup_node_nr_lru_pages(memcg, nid,
3974							stat->lru_mask, true));
3975		seq_putc(m, '\n');
 
 
 
 
 
 
 
 
 
 
 
 
 
 
3976	}
3977
3978	return 0;
3979}
3980#endif /* CONFIG_NUMA */
3981
3982static const unsigned int memcg1_stats[] = {
3983	NR_FILE_PAGES,
3984	NR_ANON_MAPPED,
3985#ifdef CONFIG_TRANSPARENT_HUGEPAGE
3986	NR_ANON_THPS,
3987#endif
3988	NR_SHMEM,
3989	NR_FILE_MAPPED,
3990	NR_FILE_DIRTY,
3991	NR_WRITEBACK,
3992	MEMCG_SWAP,
3993};
3994
3995static const char *const memcg1_stat_names[] = {
3996	"cache",
3997	"rss",
3998#ifdef CONFIG_TRANSPARENT_HUGEPAGE
3999	"rss_huge",
4000#endif
4001	"shmem",
4002	"mapped_file",
4003	"dirty",
4004	"writeback",
4005	"swap",
4006};
4007
4008/* Universal VM events cgroup1 shows, original sort order */
4009static const unsigned int memcg1_events[] = {
4010	PGPGIN,
4011	PGPGOUT,
4012	PGFAULT,
4013	PGMAJFAULT,
4014};
4015
4016static int memcg_stat_show(struct seq_file *m, void *v)
4017{
4018	struct mem_cgroup *memcg = mem_cgroup_from_seq(m);
4019	unsigned long memory, memsw;
4020	struct mem_cgroup *mi;
4021	unsigned int i;
4022
4023	BUILD_BUG_ON(ARRAY_SIZE(memcg1_stat_names) != ARRAY_SIZE(memcg1_stats));
 
4024
4025	for (i = 0; i < ARRAY_SIZE(memcg1_stats); i++) {
4026		unsigned long nr;
4027
4028		if (memcg1_stats[i] == MEMCG_SWAP && !do_memsw_account())
 
4029			continue;
4030		nr = memcg_page_state_local(memcg, memcg1_stats[i]);
4031#ifdef CONFIG_TRANSPARENT_HUGEPAGE
4032		if (memcg1_stats[i] == NR_ANON_THPS)
4033			nr *= HPAGE_PMD_NR;
4034#endif
4035		seq_printf(m, "%s %lu\n", memcg1_stat_names[i], nr * PAGE_SIZE);
4036	}
4037
4038	for (i = 0; i < ARRAY_SIZE(memcg1_events); i++)
4039		seq_printf(m, "%s %lu\n", vm_event_name(memcg1_events[i]),
4040			   memcg_events_local(memcg, memcg1_events[i]));
4041
4042	for (i = 0; i < NR_LRU_LISTS; i++)
4043		seq_printf(m, "%s %lu\n", lru_list_name(i),
4044			   memcg_page_state_local(memcg, NR_LRU_BASE + i) *
4045			   PAGE_SIZE);
4046
4047	/* Hierarchical information */
4048	memory = memsw = PAGE_COUNTER_MAX;
4049	for (mi = memcg; mi; mi = parent_mem_cgroup(mi)) {
4050		memory = min(memory, READ_ONCE(mi->memory.max));
4051		memsw = min(memsw, READ_ONCE(mi->memsw.max));
4052	}
4053	seq_printf(m, "hierarchical_memory_limit %llu\n",
4054		   (u64)memory * PAGE_SIZE);
4055	if (do_memsw_account())
4056		seq_printf(m, "hierarchical_memsw_limit %llu\n",
4057			   (u64)memsw * PAGE_SIZE);
4058
4059	for (i = 0; i < ARRAY_SIZE(memcg1_stats); i++) {
4060		if (memcg1_stats[i] == MEMCG_SWAP && !do_memsw_account())
 
 
4061			continue;
4062		seq_printf(m, "total_%s %llu\n", memcg1_stat_names[i],
4063			   (u64)memcg_page_state(memcg, memcg1_stats[i]) *
4064			   PAGE_SIZE);
4065	}
4066
4067	for (i = 0; i < ARRAY_SIZE(memcg1_events); i++)
4068		seq_printf(m, "total_%s %llu\n",
4069			   vm_event_name(memcg1_events[i]),
4070			   (u64)memcg_events(memcg, memcg1_events[i]));
4071
4072	for (i = 0; i < NR_LRU_LISTS; i++)
4073		seq_printf(m, "total_%s %llu\n", lru_list_name(i),
4074			   (u64)memcg_page_state(memcg, NR_LRU_BASE + i) *
4075			   PAGE_SIZE);
4076
4077#ifdef CONFIG_DEBUG_VM
4078	{
4079		pg_data_t *pgdat;
4080		struct mem_cgroup_per_node *mz;
4081		unsigned long anon_cost = 0;
4082		unsigned long file_cost = 0;
4083
4084		for_each_online_pgdat(pgdat) {
4085			mz = mem_cgroup_nodeinfo(memcg, pgdat->node_id);
4086
4087			anon_cost += mz->lruvec.anon_cost;
4088			file_cost += mz->lruvec.file_cost;
4089		}
4090		seq_printf(m, "anon_cost %lu\n", anon_cost);
4091		seq_printf(m, "file_cost %lu\n", file_cost);
 
 
 
 
 
 
 
 
 
4092	}
4093#endif
4094
4095	return 0;
4096}
4097
4098static u64 mem_cgroup_swappiness_read(struct cgroup_subsys_state *css,
4099				      struct cftype *cft)
4100{
4101	struct mem_cgroup *memcg = mem_cgroup_from_css(css);
4102
4103	return mem_cgroup_swappiness(memcg);
4104}
4105
4106static int mem_cgroup_swappiness_write(struct cgroup_subsys_state *css,
4107				       struct cftype *cft, u64 val)
4108{
4109	struct mem_cgroup *memcg = mem_cgroup_from_css(css);
 
4110
4111	if (val > 100)
4112		return -EINVAL;
4113
4114	if (css->parent)
4115		memcg->swappiness = val;
4116	else
4117		vm_swappiness = val;
 
 
 
 
 
 
 
 
 
 
 
 
 
4118
4119	return 0;
4120}
4121
4122static void __mem_cgroup_threshold(struct mem_cgroup *memcg, bool swap)
4123{
4124	struct mem_cgroup_threshold_ary *t;
4125	unsigned long usage;
4126	int i;
4127
4128	rcu_read_lock();
4129	if (!swap)
4130		t = rcu_dereference(memcg->thresholds.primary);
4131	else
4132		t = rcu_dereference(memcg->memsw_thresholds.primary);
4133
4134	if (!t)
4135		goto unlock;
4136
4137	usage = mem_cgroup_usage(memcg, swap);
4138
4139	/*
4140	 * current_threshold points to threshold just below or equal to usage.
4141	 * If it's not true, a threshold was crossed after last
4142	 * call of __mem_cgroup_threshold().
4143	 */
4144	i = t->current_threshold;
4145
4146	/*
4147	 * Iterate backward over array of thresholds starting from
4148	 * current_threshold and check if a threshold is crossed.
4149	 * If none of thresholds below usage is crossed, we read
4150	 * only one element of the array here.
4151	 */
4152	for (; i >= 0 && unlikely(t->entries[i].threshold > usage); i--)
4153		eventfd_signal(t->entries[i].eventfd, 1);
4154
4155	/* i = current_threshold + 1 */
4156	i++;
4157
4158	/*
4159	 * Iterate forward over array of thresholds starting from
4160	 * current_threshold+1 and check if a threshold is crossed.
4161	 * If none of thresholds above usage is crossed, we read
4162	 * only one element of the array here.
4163	 */
4164	for (; i < t->size && unlikely(t->entries[i].threshold <= usage); i++)
4165		eventfd_signal(t->entries[i].eventfd, 1);
4166
4167	/* Update current_threshold */
4168	t->current_threshold = i - 1;
4169unlock:
4170	rcu_read_unlock();
4171}
4172
4173static void mem_cgroup_threshold(struct mem_cgroup *memcg)
4174{
4175	while (memcg) {
4176		__mem_cgroup_threshold(memcg, false);
4177		if (do_memsw_account())
4178			__mem_cgroup_threshold(memcg, true);
4179
4180		memcg = parent_mem_cgroup(memcg);
4181	}
4182}
4183
4184static int compare_thresholds(const void *a, const void *b)
4185{
4186	const struct mem_cgroup_threshold *_a = a;
4187	const struct mem_cgroup_threshold *_b = b;
4188
4189	if (_a->threshold > _b->threshold)
4190		return 1;
4191
4192	if (_a->threshold < _b->threshold)
4193		return -1;
4194
4195	return 0;
4196}
4197
4198static int mem_cgroup_oom_notify_cb(struct mem_cgroup *memcg)
4199{
4200	struct mem_cgroup_eventfd_list *ev;
4201
4202	spin_lock(&memcg_oom_lock);
4203
4204	list_for_each_entry(ev, &memcg->oom_notify, list)
4205		eventfd_signal(ev->eventfd, 1);
4206
4207	spin_unlock(&memcg_oom_lock);
4208	return 0;
4209}
4210
4211static void mem_cgroup_oom_notify(struct mem_cgroup *memcg)
4212{
4213	struct mem_cgroup *iter;
4214
4215	for_each_mem_cgroup_tree(iter, memcg)
4216		mem_cgroup_oom_notify_cb(iter);
4217}
4218
4219static int __mem_cgroup_usage_register_event(struct mem_cgroup *memcg,
4220	struct eventfd_ctx *eventfd, const char *args, enum res_type type)
4221{
 
4222	struct mem_cgroup_thresholds *thresholds;
4223	struct mem_cgroup_threshold_ary *new;
4224	unsigned long threshold;
4225	unsigned long usage;
4226	int i, size, ret;
4227
4228	ret = page_counter_memparse(args, "-1", &threshold);
4229	if (ret)
4230		return ret;
4231
4232	mutex_lock(&memcg->thresholds_lock);
4233
4234	if (type == _MEM) {
4235		thresholds = &memcg->thresholds;
4236		usage = mem_cgroup_usage(memcg, false);
4237	} else if (type == _MEMSWAP) {
4238		thresholds = &memcg->memsw_thresholds;
4239		usage = mem_cgroup_usage(memcg, true);
4240	} else
4241		BUG();
4242
 
 
4243	/* Check if a threshold crossed before adding a new one */
4244	if (thresholds->primary)
4245		__mem_cgroup_threshold(memcg, type == _MEMSWAP);
4246
4247	size = thresholds->primary ? thresholds->primary->size + 1 : 1;
4248
4249	/* Allocate memory for new array of thresholds */
4250	new = kmalloc(struct_size(new, entries, size), GFP_KERNEL);
 
4251	if (!new) {
4252		ret = -ENOMEM;
4253		goto unlock;
4254	}
4255	new->size = size;
4256
4257	/* Copy thresholds (if any) to new array */
4258	if (thresholds->primary) {
4259		memcpy(new->entries, thresholds->primary->entries, (size - 1) *
4260				sizeof(struct mem_cgroup_threshold));
4261	}
4262
4263	/* Add new threshold */
4264	new->entries[size - 1].eventfd = eventfd;
4265	new->entries[size - 1].threshold = threshold;
4266
4267	/* Sort thresholds. Registering of new threshold isn't time-critical */
4268	sort(new->entries, size, sizeof(struct mem_cgroup_threshold),
4269			compare_thresholds, NULL);
4270
4271	/* Find current threshold */
4272	new->current_threshold = -1;
4273	for (i = 0; i < size; i++) {
4274		if (new->entries[i].threshold <= usage) {
4275			/*
4276			 * new->current_threshold will not be used until
4277			 * rcu_assign_pointer(), so it's safe to increment
4278			 * it here.
4279			 */
4280			++new->current_threshold;
4281		} else
4282			break;
4283	}
4284
4285	/* Free old spare buffer and save old primary buffer as spare */
4286	kfree(thresholds->spare);
4287	thresholds->spare = thresholds->primary;
4288
4289	rcu_assign_pointer(thresholds->primary, new);
4290
4291	/* To be sure that nobody uses thresholds */
4292	synchronize_rcu();
4293
4294unlock:
4295	mutex_unlock(&memcg->thresholds_lock);
4296
4297	return ret;
4298}
4299
4300static int mem_cgroup_usage_register_event(struct mem_cgroup *memcg,
4301	struct eventfd_ctx *eventfd, const char *args)
4302{
4303	return __mem_cgroup_usage_register_event(memcg, eventfd, args, _MEM);
4304}
4305
4306static int memsw_cgroup_usage_register_event(struct mem_cgroup *memcg,
4307	struct eventfd_ctx *eventfd, const char *args)
4308{
4309	return __mem_cgroup_usage_register_event(memcg, eventfd, args, _MEMSWAP);
4310}
4311
4312static void __mem_cgroup_usage_unregister_event(struct mem_cgroup *memcg,
4313	struct eventfd_ctx *eventfd, enum res_type type)
4314{
 
4315	struct mem_cgroup_thresholds *thresholds;
4316	struct mem_cgroup_threshold_ary *new;
4317	unsigned long usage;
4318	int i, j, size, entries;
 
4319
4320	mutex_lock(&memcg->thresholds_lock);
4321
4322	if (type == _MEM) {
4323		thresholds = &memcg->thresholds;
4324		usage = mem_cgroup_usage(memcg, false);
4325	} else if (type == _MEMSWAP) {
4326		thresholds = &memcg->memsw_thresholds;
4327		usage = mem_cgroup_usage(memcg, true);
4328	} else
4329		BUG();
4330
4331	if (!thresholds->primary)
4332		goto unlock;
 
 
 
 
 
4333
4334	/* Check if a threshold crossed before removing */
4335	__mem_cgroup_threshold(memcg, type == _MEMSWAP);
4336
4337	/* Calculate new number of threshold */
4338	size = entries = 0;
4339	for (i = 0; i < thresholds->primary->size; i++) {
4340		if (thresholds->primary->entries[i].eventfd != eventfd)
4341			size++;
4342		else
4343			entries++;
4344	}
4345
4346	new = thresholds->spare;
4347
4348	/* If no items related to eventfd have been cleared, nothing to do */
4349	if (!entries)
4350		goto unlock;
4351
4352	/* Set thresholds array to NULL if we don't have thresholds */
4353	if (!size) {
4354		kfree(new);
4355		new = NULL;
4356		goto swap_buffers;
4357	}
4358
4359	new->size = size;
4360
4361	/* Copy thresholds and find current threshold */
4362	new->current_threshold = -1;
4363	for (i = 0, j = 0; i < thresholds->primary->size; i++) {
4364		if (thresholds->primary->entries[i].eventfd == eventfd)
4365			continue;
4366
4367		new->entries[j] = thresholds->primary->entries[i];
4368		if (new->entries[j].threshold <= usage) {
4369			/*
4370			 * new->current_threshold will not be used
4371			 * until rcu_assign_pointer(), so it's safe to increment
4372			 * it here.
4373			 */
4374			++new->current_threshold;
4375		}
4376		j++;
4377	}
4378
4379swap_buffers:
4380	/* Swap primary and spare array */
4381	thresholds->spare = thresholds->primary;
4382
4383	rcu_assign_pointer(thresholds->primary, new);
4384
4385	/* To be sure that nobody uses thresholds */
4386	synchronize_rcu();
4387
4388	/* If all events are unregistered, free the spare array */
4389	if (!new) {
4390		kfree(thresholds->spare);
4391		thresholds->spare = NULL;
4392	}
4393unlock:
4394	mutex_unlock(&memcg->thresholds_lock);
4395}
4396
4397static void mem_cgroup_usage_unregister_event(struct mem_cgroup *memcg,
4398	struct eventfd_ctx *eventfd)
4399{
4400	return __mem_cgroup_usage_unregister_event(memcg, eventfd, _MEM);
4401}
4402
4403static void memsw_cgroup_usage_unregister_event(struct mem_cgroup *memcg,
4404	struct eventfd_ctx *eventfd)
4405{
4406	return __mem_cgroup_usage_unregister_event(memcg, eventfd, _MEMSWAP);
4407}
4408
4409static int mem_cgroup_oom_register_event(struct mem_cgroup *memcg,
4410	struct eventfd_ctx *eventfd, const char *args)
4411{
 
4412	struct mem_cgroup_eventfd_list *event;
 
4413
 
4414	event = kmalloc(sizeof(*event),	GFP_KERNEL);
4415	if (!event)
4416		return -ENOMEM;
4417
4418	spin_lock(&memcg_oom_lock);
4419
4420	event->eventfd = eventfd;
4421	list_add(&event->list, &memcg->oom_notify);
4422
4423	/* already in OOM ? */
4424	if (memcg->under_oom)
4425		eventfd_signal(eventfd, 1);
4426	spin_unlock(&memcg_oom_lock);
4427
4428	return 0;
4429}
4430
4431static void mem_cgroup_oom_unregister_event(struct mem_cgroup *memcg,
4432	struct eventfd_ctx *eventfd)
4433{
 
4434	struct mem_cgroup_eventfd_list *ev, *tmp;
 
 
 
4435
4436	spin_lock(&memcg_oom_lock);
4437
4438	list_for_each_entry_safe(ev, tmp, &memcg->oom_notify, list) {
4439		if (ev->eventfd == eventfd) {
4440			list_del(&ev->list);
4441			kfree(ev);
4442		}
4443	}
4444
4445	spin_unlock(&memcg_oom_lock);
4446}
4447
4448static int mem_cgroup_oom_control_read(struct seq_file *sf, void *v)
 
4449{
4450	struct mem_cgroup *memcg = mem_cgroup_from_seq(sf);
 
 
4451
4452	seq_printf(sf, "oom_kill_disable %d\n", memcg->oom_kill_disable);
4453	seq_printf(sf, "under_oom %d\n", (bool)memcg->under_oom);
4454	seq_printf(sf, "oom_kill %lu\n",
4455		   atomic_long_read(&memcg->memory_events[MEMCG_OOM_KILL]));
4456	return 0;
4457}
4458
4459static int mem_cgroup_oom_control_write(struct cgroup_subsys_state *css,
4460	struct cftype *cft, u64 val)
4461{
4462	struct mem_cgroup *memcg = mem_cgroup_from_css(css);
 
4463
4464	/* cannot set to root cgroup and only 0 and 1 are allowed */
4465	if (!css->parent || !((val == 0) || (val == 1)))
4466		return -EINVAL;
4467
4468	memcg->oom_kill_disable = val;
4469	if (!val)
4470		memcg_oom_recover(memcg);
4471
4472	return 0;
4473}
4474
4475#ifdef CONFIG_CGROUP_WRITEBACK
4476
4477#include <trace/events/writeback.h>
4478
4479static int memcg_wb_domain_init(struct mem_cgroup *memcg, gfp_t gfp)
4480{
4481	return wb_domain_init(&memcg->cgwb_domain, gfp);
4482}
4483
4484static void memcg_wb_domain_exit(struct mem_cgroup *memcg)
4485{
4486	wb_domain_exit(&memcg->cgwb_domain);
4487}
4488
4489static void memcg_wb_domain_size_changed(struct mem_cgroup *memcg)
4490{
4491	wb_domain_size_changed(&memcg->cgwb_domain);
4492}
4493
4494struct wb_domain *mem_cgroup_wb_domain(struct bdi_writeback *wb)
4495{
4496	struct mem_cgroup *memcg = mem_cgroup_from_css(wb->memcg_css);
4497
4498	if (!memcg->css.parent)
4499		return NULL;
4500
4501	return &memcg->cgwb_domain;
4502}
4503
4504/*
4505 * idx can be of type enum memcg_stat_item or node_stat_item.
4506 * Keep in sync with memcg_exact_page().
4507 */
4508static unsigned long memcg_exact_page_state(struct mem_cgroup *memcg, int idx)
4509{
4510	long x = atomic_long_read(&memcg->vmstats[idx]);
4511	int cpu;
4512
4513	for_each_online_cpu(cpu)
4514		x += per_cpu_ptr(memcg->vmstats_percpu, cpu)->stat[idx];
4515	if (x < 0)
4516		x = 0;
4517	return x;
4518}
4519
4520/**
4521 * mem_cgroup_wb_stats - retrieve writeback related stats from its memcg
4522 * @wb: bdi_writeback in question
4523 * @pfilepages: out parameter for number of file pages
4524 * @pheadroom: out parameter for number of allocatable pages according to memcg
4525 * @pdirty: out parameter for number of dirty pages
4526 * @pwriteback: out parameter for number of pages under writeback
4527 *
4528 * Determine the numbers of file, headroom, dirty, and writeback pages in
4529 * @wb's memcg.  File, dirty and writeback are self-explanatory.  Headroom
4530 * is a bit more involved.
4531 *
4532 * A memcg's headroom is "min(max, high) - used".  In the hierarchy, the
4533 * headroom is calculated as the lowest headroom of itself and the
4534 * ancestors.  Note that this doesn't consider the actual amount of
4535 * available memory in the system.  The caller should further cap
4536 * *@pheadroom accordingly.
4537 */
4538void mem_cgroup_wb_stats(struct bdi_writeback *wb, unsigned long *pfilepages,
4539			 unsigned long *pheadroom, unsigned long *pdirty,
4540			 unsigned long *pwriteback)
4541{
4542	struct mem_cgroup *memcg = mem_cgroup_from_css(wb->memcg_css);
4543	struct mem_cgroup *parent;
4544
4545	*pdirty = memcg_exact_page_state(memcg, NR_FILE_DIRTY);
4546
4547	*pwriteback = memcg_exact_page_state(memcg, NR_WRITEBACK);
4548	*pfilepages = memcg_exact_page_state(memcg, NR_INACTIVE_FILE) +
4549			memcg_exact_page_state(memcg, NR_ACTIVE_FILE);
4550	*pheadroom = PAGE_COUNTER_MAX;
4551
4552	while ((parent = parent_mem_cgroup(memcg))) {
4553		unsigned long ceiling = min(READ_ONCE(memcg->memory.max),
4554					    READ_ONCE(memcg->memory.high));
4555		unsigned long used = page_counter_read(&memcg->memory);
4556
4557		*pheadroom = min(*pheadroom, ceiling - min(ceiling, used));
4558		memcg = parent;
4559	}
4560}
4561
4562/*
4563 * Foreign dirty flushing
4564 *
4565 * There's an inherent mismatch between memcg and writeback.  The former
4566 * trackes ownership per-page while the latter per-inode.  This was a
4567 * deliberate design decision because honoring per-page ownership in the
4568 * writeback path is complicated, may lead to higher CPU and IO overheads
4569 * and deemed unnecessary given that write-sharing an inode across
4570 * different cgroups isn't a common use-case.
4571 *
4572 * Combined with inode majority-writer ownership switching, this works well
4573 * enough in most cases but there are some pathological cases.  For
4574 * example, let's say there are two cgroups A and B which keep writing to
4575 * different but confined parts of the same inode.  B owns the inode and
4576 * A's memory is limited far below B's.  A's dirty ratio can rise enough to
4577 * trigger balance_dirty_pages() sleeps but B's can be low enough to avoid
4578 * triggering background writeback.  A will be slowed down without a way to
4579 * make writeback of the dirty pages happen.
4580 *
4581 * Conditions like the above can lead to a cgroup getting repatedly and
4582 * severely throttled after making some progress after each
4583 * dirty_expire_interval while the underyling IO device is almost
4584 * completely idle.
4585 *
4586 * Solving this problem completely requires matching the ownership tracking
4587 * granularities between memcg and writeback in either direction.  However,
4588 * the more egregious behaviors can be avoided by simply remembering the
4589 * most recent foreign dirtying events and initiating remote flushes on
4590 * them when local writeback isn't enough to keep the memory clean enough.
4591 *
4592 * The following two functions implement such mechanism.  When a foreign
4593 * page - a page whose memcg and writeback ownerships don't match - is
4594 * dirtied, mem_cgroup_track_foreign_dirty() records the inode owning
4595 * bdi_writeback on the page owning memcg.  When balance_dirty_pages()
4596 * decides that the memcg needs to sleep due to high dirty ratio, it calls
4597 * mem_cgroup_flush_foreign() which queues writeback on the recorded
4598 * foreign bdi_writebacks which haven't expired.  Both the numbers of
4599 * recorded bdi_writebacks and concurrent in-flight foreign writebacks are
4600 * limited to MEMCG_CGWB_FRN_CNT.
4601 *
4602 * The mechanism only remembers IDs and doesn't hold any object references.
4603 * As being wrong occasionally doesn't matter, updates and accesses to the
4604 * records are lockless and racy.
4605 */
4606void mem_cgroup_track_foreign_dirty_slowpath(struct page *page,
4607					     struct bdi_writeback *wb)
4608{
4609	struct mem_cgroup *memcg = page->mem_cgroup;
4610	struct memcg_cgwb_frn *frn;
4611	u64 now = get_jiffies_64();
4612	u64 oldest_at = now;
4613	int oldest = -1;
4614	int i;
4615
4616	trace_track_foreign_dirty(page, wb);
4617
4618	/*
4619	 * Pick the slot to use.  If there is already a slot for @wb, keep
4620	 * using it.  If not replace the oldest one which isn't being
4621	 * written out.
4622	 */
4623	for (i = 0; i < MEMCG_CGWB_FRN_CNT; i++) {
4624		frn = &memcg->cgwb_frn[i];
4625		if (frn->bdi_id == wb->bdi->id &&
4626		    frn->memcg_id == wb->memcg_css->id)
4627			break;
4628		if (time_before64(frn->at, oldest_at) &&
4629		    atomic_read(&frn->done.cnt) == 1) {
4630			oldest = i;
4631			oldest_at = frn->at;
4632		}
4633	}
4634
4635	if (i < MEMCG_CGWB_FRN_CNT) {
4636		/*
4637		 * Re-using an existing one.  Update timestamp lazily to
4638		 * avoid making the cacheline hot.  We want them to be
4639		 * reasonably up-to-date and significantly shorter than
4640		 * dirty_expire_interval as that's what expires the record.
4641		 * Use the shorter of 1s and dirty_expire_interval / 8.
4642		 */
4643		unsigned long update_intv =
4644			min_t(unsigned long, HZ,
4645			      msecs_to_jiffies(dirty_expire_interval * 10) / 8);
4646
4647		if (time_before64(frn->at, now - update_intv))
4648			frn->at = now;
4649	} else if (oldest >= 0) {
4650		/* replace the oldest free one */
4651		frn = &memcg->cgwb_frn[oldest];
4652		frn->bdi_id = wb->bdi->id;
4653		frn->memcg_id = wb->memcg_css->id;
4654		frn->at = now;
4655	}
4656}
4657
4658/* issue foreign writeback flushes for recorded foreign dirtying events */
4659void mem_cgroup_flush_foreign(struct bdi_writeback *wb)
4660{
4661	struct mem_cgroup *memcg = mem_cgroup_from_css(wb->memcg_css);
4662	unsigned long intv = msecs_to_jiffies(dirty_expire_interval * 10);
4663	u64 now = jiffies_64;
4664	int i;
4665
4666	for (i = 0; i < MEMCG_CGWB_FRN_CNT; i++) {
4667		struct memcg_cgwb_frn *frn = &memcg->cgwb_frn[i];
4668
4669		/*
4670		 * If the record is older than dirty_expire_interval,
4671		 * writeback on it has already started.  No need to kick it
4672		 * off again.  Also, don't start a new one if there's
4673		 * already one in flight.
4674		 */
4675		if (time_after64(frn->at, now - intv) &&
4676		    atomic_read(&frn->done.cnt) == 1) {
4677			frn->at = 0;
4678			trace_flush_foreign(wb, frn->bdi_id, frn->memcg_id);
4679			cgroup_writeback_by_id(frn->bdi_id, frn->memcg_id, 0,
4680					       WB_REASON_FOREIGN_FLUSH,
4681					       &frn->done);
4682		}
4683	}
4684}
4685
4686#else	/* CONFIG_CGROUP_WRITEBACK */
4687
4688static int memcg_wb_domain_init(struct mem_cgroup *memcg, gfp_t gfp)
4689{
4690	return 0;
4691}
4692
4693static void memcg_wb_domain_exit(struct mem_cgroup *memcg)
4694{
4695}
4696
4697static void memcg_wb_domain_size_changed(struct mem_cgroup *memcg)
4698{
4699}
4700
4701#endif	/* CONFIG_CGROUP_WRITEBACK */
4702
4703/*
4704 * DO NOT USE IN NEW FILES.
4705 *
4706 * "cgroup.event_control" implementation.
4707 *
4708 * This is way over-engineered.  It tries to support fully configurable
4709 * events for each user.  Such level of flexibility is completely
4710 * unnecessary especially in the light of the planned unified hierarchy.
4711 *
4712 * Please deprecate this and replace with something simpler if at all
4713 * possible.
4714 */
4715
4716/*
4717 * Unregister event and free resources.
4718 *
4719 * Gets called from workqueue.
4720 */
4721static void memcg_event_remove(struct work_struct *work)
4722{
4723	struct mem_cgroup_event *event =
4724		container_of(work, struct mem_cgroup_event, remove);
4725	struct mem_cgroup *memcg = event->memcg;
4726
4727	remove_wait_queue(event->wqh, &event->wait);
4728
4729	event->unregister_event(memcg, event->eventfd);
4730
4731	/* Notify userspace the event is going away. */
4732	eventfd_signal(event->eventfd, 1);
4733
4734	eventfd_ctx_put(event->eventfd);
4735	kfree(event);
4736	css_put(&memcg->css);
4737}
 
4738
4739/*
4740 * Gets called on EPOLLHUP on eventfd when user closes it.
4741 *
4742 * Called with wqh->lock held and interrupts disabled.
4743 */
4744static int memcg_event_wake(wait_queue_entry_t *wait, unsigned mode,
4745			    int sync, void *key)
4746{
4747	struct mem_cgroup_event *event =
4748		container_of(wait, struct mem_cgroup_event, wait);
4749	struct mem_cgroup *memcg = event->memcg;
4750	__poll_t flags = key_to_poll(key);
4751
4752	if (flags & EPOLLHUP) {
4753		/*
4754		 * If the event has been detached at cgroup removal, we
4755		 * can simply return knowing the other side will cleanup
4756		 * for us.
4757		 *
4758		 * We can't race against event freeing since the other
4759		 * side will require wqh->lock via remove_wait_queue(),
4760		 * which we hold.
4761		 */
4762		spin_lock(&memcg->event_list_lock);
4763		if (!list_empty(&event->list)) {
4764			list_del_init(&event->list);
4765			/*
4766			 * We are in atomic context, but cgroup_event_remove()
4767			 * may sleep, so we have to call it in workqueue.
4768			 */
4769			schedule_work(&event->remove);
4770		}
4771		spin_unlock(&memcg->event_list_lock);
4772	}
4773
4774	return 0;
4775}
4776
4777static void memcg_event_ptable_queue_proc(struct file *file,
4778		wait_queue_head_t *wqh, poll_table *pt)
4779{
4780	struct mem_cgroup_event *event =
4781		container_of(pt, struct mem_cgroup_event, pt);
4782
4783	event->wqh = wqh;
4784	add_wait_queue(wqh, &event->wait);
4785}
4786
4787/*
4788 * DO NOT USE IN NEW FILES.
4789 *
4790 * Parse input and register new cgroup event handler.
4791 *
4792 * Input must be in format '<event_fd> <control_fd> <args>'.
4793 * Interpretation of args is defined by control file implementation.
4794 */
4795static ssize_t memcg_write_event_control(struct kernfs_open_file *of,
4796					 char *buf, size_t nbytes, loff_t off)
4797{
4798	struct cgroup_subsys_state *css = of_css(of);
4799	struct mem_cgroup *memcg = mem_cgroup_from_css(css);
4800	struct mem_cgroup_event *event;
4801	struct cgroup_subsys_state *cfile_css;
4802	unsigned int efd, cfd;
4803	struct fd efile;
4804	struct fd cfile;
4805	const char *name;
4806	char *endp;
4807	int ret;
4808
4809	buf = strstrip(buf);
4810
4811	efd = simple_strtoul(buf, &endp, 10);
4812	if (*endp != ' ')
4813		return -EINVAL;
4814	buf = endp + 1;
4815
4816	cfd = simple_strtoul(buf, &endp, 10);
4817	if ((*endp != ' ') && (*endp != '\0'))
4818		return -EINVAL;
4819	buf = endp + 1;
4820
4821	event = kzalloc(sizeof(*event), GFP_KERNEL);
4822	if (!event)
4823		return -ENOMEM;
4824
4825	event->memcg = memcg;
4826	INIT_LIST_HEAD(&event->list);
4827	init_poll_funcptr(&event->pt, memcg_event_ptable_queue_proc);
4828	init_waitqueue_func_entry(&event->wait, memcg_event_wake);
4829	INIT_WORK(&event->remove, memcg_event_remove);
4830
4831	efile = fdget(efd);
4832	if (!efile.file) {
4833		ret = -EBADF;
4834		goto out_kfree;
4835	}
4836
4837	event->eventfd = eventfd_ctx_fileget(efile.file);
4838	if (IS_ERR(event->eventfd)) {
4839		ret = PTR_ERR(event->eventfd);
4840		goto out_put_efile;
4841	}
4842
4843	cfile = fdget(cfd);
4844	if (!cfile.file) {
4845		ret = -EBADF;
4846		goto out_put_eventfd;
4847	}
4848
4849	/* the process need read permission on control file */
4850	/* AV: shouldn't we check that it's been opened for read instead? */
4851	ret = inode_permission(file_inode(cfile.file), MAY_READ);
4852	if (ret < 0)
4853		goto out_put_cfile;
4854
4855	/*
4856	 * Determine the event callbacks and set them in @event.  This used
4857	 * to be done via struct cftype but cgroup core no longer knows
4858	 * about these events.  The following is crude but the whole thing
4859	 * is for compatibility anyway.
4860	 *
4861	 * DO NOT ADD NEW FILES.
4862	 */
4863	name = cfile.file->f_path.dentry->d_name.name;
4864
4865	if (!strcmp(name, "memory.usage_in_bytes")) {
4866		event->register_event = mem_cgroup_usage_register_event;
4867		event->unregister_event = mem_cgroup_usage_unregister_event;
4868	} else if (!strcmp(name, "memory.oom_control")) {
4869		event->register_event = mem_cgroup_oom_register_event;
4870		event->unregister_event = mem_cgroup_oom_unregister_event;
4871	} else if (!strcmp(name, "memory.pressure_level")) {
4872		event->register_event = vmpressure_register_event;
4873		event->unregister_event = vmpressure_unregister_event;
4874	} else if (!strcmp(name, "memory.memsw.usage_in_bytes")) {
4875		event->register_event = memsw_cgroup_usage_register_event;
4876		event->unregister_event = memsw_cgroup_usage_unregister_event;
4877	} else {
4878		ret = -EINVAL;
4879		goto out_put_cfile;
4880	}
4881
4882	/*
4883	 * Verify @cfile should belong to @css.  Also, remaining events are
4884	 * automatically removed on cgroup destruction but the removal is
4885	 * asynchronous, so take an extra ref on @css.
4886	 */
4887	cfile_css = css_tryget_online_from_dir(cfile.file->f_path.dentry->d_parent,
4888					       &memory_cgrp_subsys);
4889	ret = -EINVAL;
4890	if (IS_ERR(cfile_css))
4891		goto out_put_cfile;
4892	if (cfile_css != css) {
4893		css_put(cfile_css);
4894		goto out_put_cfile;
4895	}
4896
4897	ret = event->register_event(memcg, event->eventfd, buf);
4898	if (ret)
4899		goto out_put_css;
4900
4901	vfs_poll(efile.file, &event->pt);
4902
4903	spin_lock(&memcg->event_list_lock);
4904	list_add(&event->list, &memcg->event_list);
4905	spin_unlock(&memcg->event_list_lock);
4906
4907	fdput(cfile);
4908	fdput(efile);
4909
4910	return nbytes;
4911
4912out_put_css:
4913	css_put(css);
4914out_put_cfile:
4915	fdput(cfile);
4916out_put_eventfd:
4917	eventfd_ctx_put(event->eventfd);
4918out_put_efile:
4919	fdput(efile);
4920out_kfree:
4921	kfree(event);
4922
4923	return ret;
4924}
4925
4926static struct cftype mem_cgroup_legacy_files[] = {
4927	{
4928		.name = "usage_in_bytes",
4929		.private = MEMFILE_PRIVATE(_MEM, RES_USAGE),
4930		.read_u64 = mem_cgroup_read_u64,
 
 
4931	},
4932	{
4933		.name = "max_usage_in_bytes",
4934		.private = MEMFILE_PRIVATE(_MEM, RES_MAX_USAGE),
4935		.write = mem_cgroup_reset,
4936		.read_u64 = mem_cgroup_read_u64,
4937	},
4938	{
4939		.name = "limit_in_bytes",
4940		.private = MEMFILE_PRIVATE(_MEM, RES_LIMIT),
4941		.write = mem_cgroup_write,
4942		.read_u64 = mem_cgroup_read_u64,
4943	},
4944	{
4945		.name = "soft_limit_in_bytes",
4946		.private = MEMFILE_PRIVATE(_MEM, RES_SOFT_LIMIT),
4947		.write = mem_cgroup_write,
4948		.read_u64 = mem_cgroup_read_u64,
4949	},
4950	{
4951		.name = "failcnt",
4952		.private = MEMFILE_PRIVATE(_MEM, RES_FAILCNT),
4953		.write = mem_cgroup_reset,
4954		.read_u64 = mem_cgroup_read_u64,
4955	},
4956	{
4957		.name = "stat",
4958		.seq_show = memcg_stat_show,
4959	},
4960	{
4961		.name = "force_empty",
4962		.write = mem_cgroup_force_empty_write,
4963	},
4964	{
4965		.name = "use_hierarchy",
4966		.write_u64 = mem_cgroup_hierarchy_write,
4967		.read_u64 = mem_cgroup_hierarchy_read,
4968	},
4969	{
4970		.name = "cgroup.event_control",		/* XXX: for compat */
4971		.write = memcg_write_event_control,
4972		.flags = CFTYPE_NO_PREFIX | CFTYPE_WORLD_WRITABLE,
4973	},
4974	{
4975		.name = "swappiness",
4976		.read_u64 = mem_cgroup_swappiness_read,
4977		.write_u64 = mem_cgroup_swappiness_write,
4978	},
4979	{
4980		.name = "move_charge_at_immigrate",
4981		.read_u64 = mem_cgroup_move_charge_read,
4982		.write_u64 = mem_cgroup_move_charge_write,
4983	},
4984	{
4985		.name = "oom_control",
4986		.seq_show = mem_cgroup_oom_control_read,
4987		.write_u64 = mem_cgroup_oom_control_write,
 
 
4988		.private = MEMFILE_PRIVATE(_OOM_TYPE, OOM_CONTROL),
4989	},
4990	{
4991		.name = "pressure_level",
4992	},
4993#ifdef CONFIG_NUMA
4994	{
4995		.name = "numa_stat",
4996		.seq_show = memcg_numa_stat_show,
 
4997	},
4998#endif
 
 
 
 
4999	{
5000		.name = "kmem.limit_in_bytes",
5001		.private = MEMFILE_PRIVATE(_KMEM, RES_LIMIT),
5002		.write = mem_cgroup_write,
5003		.read_u64 = mem_cgroup_read_u64,
 
5004	},
5005	{
5006		.name = "kmem.usage_in_bytes",
5007		.private = MEMFILE_PRIVATE(_KMEM, RES_USAGE),
5008		.read_u64 = mem_cgroup_read_u64,
 
5009	},
5010	{
5011		.name = "kmem.failcnt",
5012		.private = MEMFILE_PRIVATE(_KMEM, RES_FAILCNT),
5013		.write = mem_cgroup_reset,
5014		.read_u64 = mem_cgroup_read_u64,
5015	},
5016	{
5017		.name = "kmem.max_usage_in_bytes",
5018		.private = MEMFILE_PRIVATE(_KMEM, RES_MAX_USAGE),
5019		.write = mem_cgroup_reset,
5020		.read_u64 = mem_cgroup_read_u64,
5021	},
5022#if defined(CONFIG_MEMCG_KMEM) && \
5023	(defined(CONFIG_SLAB) || defined(CONFIG_SLUB_DEBUG))
5024	{
5025		.name = "kmem.slabinfo",
5026		.seq_show = memcg_slab_show,
5027	},
5028#endif
5029	{
5030		.name = "kmem.tcp.limit_in_bytes",
5031		.private = MEMFILE_PRIVATE(_TCP, RES_LIMIT),
5032		.write = mem_cgroup_write,
5033		.read_u64 = mem_cgroup_read_u64,
5034	},
5035	{
5036		.name = "kmem.tcp.usage_in_bytes",
5037		.private = MEMFILE_PRIVATE(_TCP, RES_USAGE),
5038		.read_u64 = mem_cgroup_read_u64,
5039	},
5040	{
5041		.name = "kmem.tcp.failcnt",
5042		.private = MEMFILE_PRIVATE(_TCP, RES_FAILCNT),
5043		.write = mem_cgroup_reset,
5044		.read_u64 = mem_cgroup_read_u64,
5045	},
5046	{
5047		.name = "kmem.tcp.max_usage_in_bytes",
5048		.private = MEMFILE_PRIVATE(_TCP, RES_MAX_USAGE),
5049		.write = mem_cgroup_reset,
5050		.read_u64 = mem_cgroup_read_u64,
5051	},
5052	{ },	/* terminate */
5053};
5054
5055/*
5056 * Private memory cgroup IDR
5057 *
5058 * Swap-out records and page cache shadow entries need to store memcg
5059 * references in constrained space, so we maintain an ID space that is
5060 * limited to 16 bit (MEM_CGROUP_ID_MAX), limiting the total number of
5061 * memory-controlled cgroups to 64k.
5062 *
5063 * However, there usually are many references to the offline CSS after
5064 * the cgroup has been destroyed, such as page cache or reclaimable
5065 * slab objects, that don't need to hang on to the ID. We want to keep
5066 * those dead CSS from occupying IDs, or we might quickly exhaust the
5067 * relatively small ID space and prevent the creation of new cgroups
5068 * even when there are much fewer than 64k cgroups - possibly none.
5069 *
5070 * Maintain a private 16-bit ID space for memcg, and allow the ID to
5071 * be freed and recycled when it's no longer needed, which is usually
5072 * when the CSS is offlined.
5073 *
5074 * The only exception to that are records of swapped out tmpfs/shmem
5075 * pages that need to be attributed to live ancestors on swapin. But
5076 * those references are manageable from userspace.
5077 */
5078
5079static DEFINE_IDR(mem_cgroup_idr);
5080
5081static void mem_cgroup_id_remove(struct mem_cgroup *memcg)
5082{
5083	if (memcg->id.id > 0) {
5084		idr_remove(&mem_cgroup_idr, memcg->id.id);
5085		memcg->id.id = 0;
5086	}
5087}
5088
5089static void __maybe_unused mem_cgroup_id_get_many(struct mem_cgroup *memcg,
5090						  unsigned int n)
5091{
5092	refcount_add(n, &memcg->id.ref);
5093}
 
5094
5095static void mem_cgroup_id_put_many(struct mem_cgroup *memcg, unsigned int n)
5096{
5097	if (refcount_sub_and_test(n, &memcg->id.ref)) {
5098		mem_cgroup_id_remove(memcg);
5099
5100		/* Memcg ID pins CSS */
5101		css_put(&memcg->css);
5102	}
5103}
5104
5105static inline void mem_cgroup_id_put(struct mem_cgroup *memcg)
5106{
5107	mem_cgroup_id_put_many(memcg, 1);
5108}
5109
5110/**
5111 * mem_cgroup_from_id - look up a memcg from a memcg id
5112 * @id: the memcg id to look up
5113 *
5114 * Caller must hold rcu_read_lock().
5115 */
5116struct mem_cgroup *mem_cgroup_from_id(unsigned short id)
5117{
5118	WARN_ON_ONCE(!rcu_read_lock_held());
5119	return idr_find(&mem_cgroup_idr, id);
5120}
5121
5122static int alloc_mem_cgroup_per_node_info(struct mem_cgroup *memcg, int node)
5123{
5124	struct mem_cgroup_per_node *pn;
5125	int tmp = node;
 
 
5126	/*
5127	 * This routine is called against possible nodes.
5128	 * But it's BUG to call kmalloc() against offline node.
5129	 *
5130	 * TODO: this routine can waste much memory for nodes which will
5131	 *       never be onlined. It's better to use memory hotplug callback
5132	 *       function.
5133	 */
5134	if (!node_state(node, N_NORMAL_MEMORY))
5135		tmp = -1;
5136	pn = kzalloc_node(sizeof(*pn), GFP_KERNEL, tmp);
5137	if (!pn)
5138		return 1;
5139
5140	pn->lruvec_stat_local = alloc_percpu_gfp(struct lruvec_stat,
5141						 GFP_KERNEL_ACCOUNT);
5142	if (!pn->lruvec_stat_local) {
5143		kfree(pn);
5144		return 1;
5145	}
5146
5147	pn->lruvec_stat_cpu = alloc_percpu_gfp(struct lruvec_stat,
5148					       GFP_KERNEL_ACCOUNT);
5149	if (!pn->lruvec_stat_cpu) {
5150		free_percpu(pn->lruvec_stat_local);
5151		kfree(pn);
5152		return 1;
5153	}
5154
5155	lruvec_init(&pn->lruvec);
5156	pn->usage_in_excess = 0;
5157	pn->on_tree = false;
5158	pn->memcg = memcg;
5159
5160	memcg->nodeinfo[node] = pn;
5161	return 0;
5162}
5163
5164static void free_mem_cgroup_per_node_info(struct mem_cgroup *memcg, int node)
5165{
5166	struct mem_cgroup_per_node *pn = memcg->nodeinfo[node];
 
5167
5168	if (!pn)
5169		return;
 
 
5170
5171	free_percpu(pn->lruvec_stat_cpu);
5172	free_percpu(pn->lruvec_stat_local);
5173	kfree(pn);
5174}
 
5175
5176static void __mem_cgroup_free(struct mem_cgroup *memcg)
5177{
5178	int node;
5179
5180	for_each_node(node)
5181		free_mem_cgroup_per_node_info(memcg, node);
5182	free_percpu(memcg->vmstats_percpu);
5183	free_percpu(memcg->vmstats_local);
5184	kfree(memcg);
 
 
 
 
 
 
 
5185}
5186
5187static void mem_cgroup_free(struct mem_cgroup *memcg)
5188{
5189	memcg_wb_domain_exit(memcg);
5190	/*
5191	 * Flush percpu vmstats and vmevents to guarantee the value correctness
5192	 * on parent's and all ancestor levels.
5193	 */
5194	memcg_flush_percpu_vmstats(memcg);
5195	memcg_flush_percpu_vmevents(memcg);
5196	__mem_cgroup_free(memcg);
5197}
5198
5199static struct mem_cgroup *mem_cgroup_alloc(void)
5200{
5201	struct mem_cgroup *memcg;
5202	unsigned int size;
5203	int node;
5204	int __maybe_unused i;
5205	long error = -ENOMEM;
5206
5207	size = sizeof(struct mem_cgroup);
5208	size += nr_node_ids * sizeof(struct mem_cgroup_per_node *);
5209
5210	memcg = kzalloc(size, GFP_KERNEL);
5211	if (!memcg)
5212		return ERR_PTR(error);
5213
5214	memcg->id.id = idr_alloc(&mem_cgroup_idr, NULL,
5215				 1, MEM_CGROUP_ID_MAX,
5216				 GFP_KERNEL);
5217	if (memcg->id.id < 0) {
5218		error = memcg->id.id;
5219		goto fail;
5220	}
5221
5222	memcg->vmstats_local = alloc_percpu_gfp(struct memcg_vmstats_percpu,
5223						GFP_KERNEL_ACCOUNT);
5224	if (!memcg->vmstats_local)
5225		goto fail;
5226
5227	memcg->vmstats_percpu = alloc_percpu_gfp(struct memcg_vmstats_percpu,
5228						 GFP_KERNEL_ACCOUNT);
5229	if (!memcg->vmstats_percpu)
5230		goto fail;
5231
5232	for_each_node(node)
5233		if (alloc_mem_cgroup_per_node_info(memcg, node))
5234			goto fail;
5235
5236	if (memcg_wb_domain_init(memcg, GFP_KERNEL))
5237		goto fail;
5238
5239	INIT_WORK(&memcg->high_work, high_work_func);
5240	INIT_LIST_HEAD(&memcg->oom_notify);
5241	mutex_init(&memcg->thresholds_lock);
5242	spin_lock_init(&memcg->move_lock);
5243	vmpressure_init(&memcg->vmpressure);
5244	INIT_LIST_HEAD(&memcg->event_list);
5245	spin_lock_init(&memcg->event_list_lock);
5246	memcg->socket_pressure = jiffies;
5247#ifdef CONFIG_MEMCG_KMEM
5248	memcg->kmemcg_id = -1;
5249	INIT_LIST_HEAD(&memcg->objcg_list);
5250#endif
5251#ifdef CONFIG_CGROUP_WRITEBACK
5252	INIT_LIST_HEAD(&memcg->cgwb_list);
5253	for (i = 0; i < MEMCG_CGWB_FRN_CNT; i++)
5254		memcg->cgwb_frn[i].done =
5255			__WB_COMPLETION_INIT(&memcg_cgwb_frn_waitq);
5256#endif
5257#ifdef CONFIG_TRANSPARENT_HUGEPAGE
5258	spin_lock_init(&memcg->deferred_split_queue.split_queue_lock);
5259	INIT_LIST_HEAD(&memcg->deferred_split_queue.split_queue);
5260	memcg->deferred_split_queue.split_queue_len = 0;
5261#endif
5262	idr_replace(&mem_cgroup_idr, memcg, memcg->id.id);
5263	return memcg;
5264fail:
5265	mem_cgroup_id_remove(memcg);
5266	__mem_cgroup_free(memcg);
5267	return ERR_PTR(error);
5268}
5269
5270static struct cgroup_subsys_state * __ref
5271mem_cgroup_css_alloc(struct cgroup_subsys_state *parent_css)
5272{
5273	struct mem_cgroup *parent = mem_cgroup_from_css(parent_css);
5274	struct mem_cgroup *memcg;
5275	long error = -ENOMEM;
5276
5277	memalloc_use_memcg(parent);
5278	memcg = mem_cgroup_alloc();
5279	memalloc_unuse_memcg();
5280	if (IS_ERR(memcg))
5281		return ERR_CAST(memcg);
5282
5283	page_counter_set_high(&memcg->memory, PAGE_COUNTER_MAX);
5284	memcg->soft_limit = PAGE_COUNTER_MAX;
5285	page_counter_set_high(&memcg->swap, PAGE_COUNTER_MAX);
5286	if (parent) {
5287		memcg->swappiness = mem_cgroup_swappiness(parent);
5288		memcg->oom_kill_disable = parent->oom_kill_disable;
5289	}
5290	if (parent && parent->use_hierarchy) {
5291		memcg->use_hierarchy = true;
5292		page_counter_init(&memcg->memory, &parent->memory);
5293		page_counter_init(&memcg->swap, &parent->swap);
5294		page_counter_init(&memcg->memsw, &parent->memsw);
5295		page_counter_init(&memcg->kmem, &parent->kmem);
5296		page_counter_init(&memcg->tcpmem, &parent->tcpmem);
5297	} else {
5298		page_counter_init(&memcg->memory, NULL);
5299		page_counter_init(&memcg->swap, NULL);
5300		page_counter_init(&memcg->memsw, NULL);
5301		page_counter_init(&memcg->kmem, NULL);
5302		page_counter_init(&memcg->tcpmem, NULL);
5303		/*
5304		 * Deeper hierachy with use_hierarchy == false doesn't make
5305		 * much sense so let cgroup subsystem know about this
5306		 * unfortunate state in our controller.
5307		 */
5308		if (parent != root_mem_cgroup)
5309			memory_cgrp_subsys.broken_hierarchy = true;
5310	}
 
5311
5312	/* The following stuff does not apply to the root */
5313	if (!parent) {
5314		root_mem_cgroup = memcg;
5315		return &memcg->css;
5316	}
5317
5318	error = memcg_online_kmem(memcg);
5319	if (error)
5320		goto fail;
 
 
 
 
 
 
5321
5322	if (cgroup_subsys_on_dfl(memory_cgrp_subsys) && !cgroup_memory_nosocket)
5323		static_branch_inc(&memcg_sockets_enabled_key);
5324
5325	return &memcg->css;
5326fail:
5327	mem_cgroup_id_remove(memcg);
5328	mem_cgroup_free(memcg);
5329	return ERR_PTR(error);
 
5330}
 
5331
5332static int mem_cgroup_css_online(struct cgroup_subsys_state *css)
5333{
5334	struct mem_cgroup *memcg = mem_cgroup_from_css(css);
 
 
 
 
 
 
 
 
 
 
 
 
5335
5336	/*
5337	 * A memcg must be visible for memcg_expand_shrinker_maps()
5338	 * by the time the maps are allocated. So, we allocate maps
5339	 * here, when for_each_mem_cgroup() can't skip it.
5340	 */
5341	if (memcg_alloc_shrinker_maps(memcg)) {
5342		mem_cgroup_id_remove(memcg);
5343		return -ENOMEM;
5344	}
5345
5346	/* Online state pins memcg ID, memcg ID pins CSS */
5347	refcount_set(&memcg->id.ref, 1);
5348	css_get(css);
5349	return 0;
5350}
5351
5352static void mem_cgroup_css_offline(struct cgroup_subsys_state *css)
 
5353{
5354	struct mem_cgroup *memcg = mem_cgroup_from_css(css);
5355	struct mem_cgroup_event *event, *tmp;
 
 
 
 
 
5356
5357	/*
5358	 * Unregister events and notify userspace.
5359	 * Notify userspace about cgroup removing only after rmdir of cgroup
5360	 * directory to avoid race between userspace and kernelspace.
5361	 */
5362	spin_lock(&memcg->event_list_lock);
5363	list_for_each_entry_safe(event, tmp, &memcg->event_list, list) {
5364		list_del_init(&event->list);
5365		schedule_work(&event->remove);
 
 
 
 
 
 
 
 
 
 
 
 
 
5366	}
5367	spin_unlock(&memcg->event_list_lock);
5368
5369	page_counter_set_min(&memcg->memory, 0);
5370	page_counter_set_low(&memcg->memory, 0);
5371
5372	memcg_offline_kmem(memcg);
5373	wb_memcg_offline(memcg);
5374
5375	drain_all_stock(memcg);
5376
5377	mem_cgroup_id_put(memcg);
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
5378}
5379
5380static void mem_cgroup_css_released(struct cgroup_subsys_state *css)
 
5381{
5382	struct mem_cgroup *memcg = mem_cgroup_from_css(css);
5383
5384	invalidate_reclaim_iterators(memcg);
5385}
5386
5387static void mem_cgroup_css_free(struct cgroup_subsys_state *css)
 
5388{
5389	struct mem_cgroup *memcg = mem_cgroup_from_css(css);
5390	int __maybe_unused i;
5391
5392#ifdef CONFIG_CGROUP_WRITEBACK
5393	for (i = 0; i < MEMCG_CGWB_FRN_CNT; i++)
5394		wb_wait_for_completion(&memcg->cgwb_frn[i].done);
5395#endif
5396	if (cgroup_subsys_on_dfl(memory_cgrp_subsys) && !cgroup_memory_nosocket)
5397		static_branch_dec(&memcg_sockets_enabled_key);
5398
5399	if (!cgroup_subsys_on_dfl(memory_cgrp_subsys) && memcg->tcpmem_active)
5400		static_branch_dec(&memcg_sockets_enabled_key);
5401
5402	vmpressure_cleanup(&memcg->vmpressure);
5403	cancel_work_sync(&memcg->high_work);
5404	mem_cgroup_remove_from_trees(memcg);
5405	memcg_free_shrinker_maps(memcg);
5406	memcg_free_kmem(memcg);
5407	mem_cgroup_free(memcg);
5408}
5409
5410/**
5411 * mem_cgroup_css_reset - reset the states of a mem_cgroup
5412 * @css: the target css
5413 *
5414 * Reset the states of the mem_cgroup associated with @css.  This is
5415 * invoked when the userland requests disabling on the default hierarchy
5416 * but the memcg is pinned through dependency.  The memcg should stop
5417 * applying policies and should revert to the vanilla state as it may be
5418 * made visible again.
5419 *
5420 * The current implementation only resets the essential configurations.
5421 * This needs to be expanded to cover all the visible parts.
5422 */
5423static void mem_cgroup_css_reset(struct cgroup_subsys_state *css)
5424{
5425	struct mem_cgroup *memcg = mem_cgroup_from_css(css);
 
 
 
5426
5427	page_counter_set_max(&memcg->memory, PAGE_COUNTER_MAX);
5428	page_counter_set_max(&memcg->swap, PAGE_COUNTER_MAX);
5429	page_counter_set_max(&memcg->memsw, PAGE_COUNTER_MAX);
5430	page_counter_set_max(&memcg->kmem, PAGE_COUNTER_MAX);
5431	page_counter_set_max(&memcg->tcpmem, PAGE_COUNTER_MAX);
5432	page_counter_set_min(&memcg->memory, 0);
5433	page_counter_set_low(&memcg->memory, 0);
5434	page_counter_set_high(&memcg->memory, PAGE_COUNTER_MAX);
5435	memcg->soft_limit = PAGE_COUNTER_MAX;
5436	page_counter_set_high(&memcg->swap, PAGE_COUNTER_MAX);
5437	memcg_wb_domain_size_changed(memcg);
5438}
5439
5440#ifdef CONFIG_MMU
5441/* Handlers for move charge at task migration. */
 
5442static int mem_cgroup_do_precharge(unsigned long count)
5443{
5444	int ret;
 
 
5445
5446	/* Try a single bulk charge without reclaim first, kswapd may wake */
5447	ret = try_charge(mc.to, GFP_KERNEL & ~__GFP_DIRECT_RECLAIM, count);
5448	if (!ret) {
5449		mc.precharge += count;
 
5450		return ret;
5451	}
5452
5453	/* Try charges one by one with reclaim, but do not retry */
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
5454	while (count--) {
5455		ret = try_charge(mc.to, GFP_KERNEL | __GFP_NORETRY, 1);
5456		if (ret)
5457			return ret;
 
 
 
 
 
 
 
 
 
5458		mc.precharge++;
5459		cond_resched();
5460	}
5461	return 0;
5462}
5463
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
5464union mc_target {
5465	struct page	*page;
5466	swp_entry_t	ent;
5467};
5468
5469enum mc_target_type {
5470	MC_TARGET_NONE = 0,
5471	MC_TARGET_PAGE,
5472	MC_TARGET_SWAP,
5473	MC_TARGET_DEVICE,
5474};
5475
5476static struct page *mc_handle_present_pte(struct vm_area_struct *vma,
5477						unsigned long addr, pte_t ptent)
5478{
5479	struct page *page = vm_normal_page(vma, addr, ptent);
5480
5481	if (!page || !page_mapped(page))
5482		return NULL;
5483	if (PageAnon(page)) {
5484		if (!(mc.flags & MOVE_ANON))
 
5485			return NULL;
5486	} else {
5487		if (!(mc.flags & MOVE_FILE))
5488			return NULL;
5489	}
5490	if (!get_page_unless_zero(page))
5491		return NULL;
5492
5493	return page;
5494}
5495
5496#if defined(CONFIG_SWAP) || defined(CONFIG_DEVICE_PRIVATE)
5497static struct page *mc_handle_swap_pte(struct vm_area_struct *vma,
5498			pte_t ptent, swp_entry_t *entry)
5499{
 
5500	struct page *page = NULL;
5501	swp_entry_t ent = pte_to_swp_entry(ptent);
5502
5503	if (!(mc.flags & MOVE_ANON) || non_swap_entry(ent))
 
 
 
 
 
5504		return NULL;
5505
5506	/*
5507	 * Handle MEMORY_DEVICE_PRIVATE which are ZONE_DEVICE page belonging to
5508	 * a device and because they are not accessible by CPU they are store
5509	 * as special swap entry in the CPU page table.
5510	 */
5511	if (is_device_private_entry(ent)) {
5512		page = device_private_entry_to_page(ent);
5513		/*
5514		 * MEMORY_DEVICE_PRIVATE means ZONE_DEVICE page and which have
5515		 * a refcount of 1 when free (unlike normal page)
5516		 */
5517		if (!page_ref_add_unless(page, 1, 1))
5518			return NULL;
5519		return page;
5520	}
5521
5522	/*
5523	 * Because lookup_swap_cache() updates some statistics counter,
5524	 * we call find_get_page() with swapper_space directly.
5525	 */
5526	page = find_get_page(swap_address_space(ent), swp_offset(ent));
5527	entry->val = ent.val;
5528
5529	return page;
5530}
5531#else
5532static struct page *mc_handle_swap_pte(struct vm_area_struct *vma,
5533			pte_t ptent, swp_entry_t *entry)
5534{
5535	return NULL;
5536}
5537#endif
5538
5539static struct page *mc_handle_file_pte(struct vm_area_struct *vma,
5540			unsigned long addr, pte_t ptent, swp_entry_t *entry)
5541{
5542	struct page *page = NULL;
 
5543	struct address_space *mapping;
5544	pgoff_t pgoff;
5545
5546	if (!vma->vm_file) /* anonymous vma */
5547		return NULL;
5548	if (!(mc.flags & MOVE_FILE))
5549		return NULL;
5550
 
5551	mapping = vma->vm_file->f_mapping;
5552	pgoff = linear_page_index(vma, addr);
 
 
 
5553
5554	/* page is moved even if it's not RSS of this task(page-faulted). */
 
 
5555#ifdef CONFIG_SWAP
5556	/* shmem/tmpfs may report page out on swap: account for that too. */
5557	if (shmem_mapping(mapping)) {
5558		page = find_get_entry(mapping, pgoff);
5559		if (xa_is_value(page)) {
5560			swp_entry_t swp = radix_to_swp_entry(page);
5561			*entry = swp;
5562			page = find_get_page(swap_address_space(swp),
5563					     swp_offset(swp));
5564		}
5565	} else
5566		page = find_get_page(mapping, pgoff);
5567#else
5568	page = find_get_page(mapping, pgoff);
5569#endif
5570	return page;
5571}
5572
5573/**
5574 * mem_cgroup_move_account - move account of the page
5575 * @page: the page
5576 * @compound: charge the page as compound or small page
5577 * @from: mem_cgroup which the page is moved from.
5578 * @to:	mem_cgroup which the page is moved to. @from != @to.
5579 *
5580 * The caller must make sure the page is not on LRU (isolate_page() is useful.)
5581 *
5582 * This function doesn't do "charge" to new cgroup and doesn't do "uncharge"
5583 * from old cgroup.
5584 */
5585static int mem_cgroup_move_account(struct page *page,
5586				   bool compound,
5587				   struct mem_cgroup *from,
5588				   struct mem_cgroup *to)
5589{
5590	struct lruvec *from_vec, *to_vec;
5591	struct pglist_data *pgdat;
5592	unsigned int nr_pages = compound ? thp_nr_pages(page) : 1;
5593	int ret;
5594
5595	VM_BUG_ON(from == to);
5596	VM_BUG_ON_PAGE(PageLRU(page), page);
5597	VM_BUG_ON(compound && !PageTransHuge(page));
5598
5599	/*
5600	 * Prevent mem_cgroup_migrate() from looking at
5601	 * page->mem_cgroup of its source page while we change it.
5602	 */
5603	ret = -EBUSY;
5604	if (!trylock_page(page))
5605		goto out;
5606
5607	ret = -EINVAL;
5608	if (page->mem_cgroup != from)
5609		goto out_unlock;
5610
5611	pgdat = page_pgdat(page);
5612	from_vec = mem_cgroup_lruvec(from, pgdat);
5613	to_vec = mem_cgroup_lruvec(to, pgdat);
5614
5615	lock_page_memcg(page);
5616
5617	if (PageAnon(page)) {
5618		if (page_mapped(page)) {
5619			__mod_lruvec_state(from_vec, NR_ANON_MAPPED, -nr_pages);
5620			__mod_lruvec_state(to_vec, NR_ANON_MAPPED, nr_pages);
5621			if (PageTransHuge(page)) {
5622				__mod_lruvec_state(from_vec, NR_ANON_THPS,
5623						   -nr_pages);
5624				__mod_lruvec_state(to_vec, NR_ANON_THPS,
5625						   nr_pages);
5626			}
5627
5628		}
5629	} else {
5630		__mod_lruvec_state(from_vec, NR_FILE_PAGES, -nr_pages);
5631		__mod_lruvec_state(to_vec, NR_FILE_PAGES, nr_pages);
5632
5633		if (PageSwapBacked(page)) {
5634			__mod_lruvec_state(from_vec, NR_SHMEM, -nr_pages);
5635			__mod_lruvec_state(to_vec, NR_SHMEM, nr_pages);
5636		}
5637
5638		if (page_mapped(page)) {
5639			__mod_lruvec_state(from_vec, NR_FILE_MAPPED, -nr_pages);
5640			__mod_lruvec_state(to_vec, NR_FILE_MAPPED, nr_pages);
5641		}
5642
5643		if (PageDirty(page)) {
5644			struct address_space *mapping = page_mapping(page);
5645
5646			if (mapping_cap_account_dirty(mapping)) {
5647				__mod_lruvec_state(from_vec, NR_FILE_DIRTY,
5648						   -nr_pages);
5649				__mod_lruvec_state(to_vec, NR_FILE_DIRTY,
5650						   nr_pages);
5651			}
5652		}
5653	}
5654
5655	if (PageWriteback(page)) {
5656		__mod_lruvec_state(from_vec, NR_WRITEBACK, -nr_pages);
5657		__mod_lruvec_state(to_vec, NR_WRITEBACK, nr_pages);
5658	}
5659
5660	/*
5661	 * All state has been migrated, let's switch to the new memcg.
5662	 *
5663	 * It is safe to change page->mem_cgroup here because the page
5664	 * is referenced, charged, isolated, and locked: we can't race
5665	 * with (un)charging, migration, LRU putback, or anything else
5666	 * that would rely on a stable page->mem_cgroup.
5667	 *
5668	 * Note that lock_page_memcg is a memcg lock, not a page lock,
5669	 * to save space. As soon as we switch page->mem_cgroup to a
5670	 * new memcg that isn't locked, the above state can change
5671	 * concurrently again. Make sure we're truly done with it.
5672	 */
5673	smp_mb();
5674
5675	css_get(&to->css);
5676	css_put(&from->css);
5677
5678	page->mem_cgroup = to;
5679
5680	__unlock_page_memcg(from);
5681
5682	ret = 0;
5683
5684	local_irq_disable();
5685	mem_cgroup_charge_statistics(to, page, nr_pages);
5686	memcg_check_events(to, page);
5687	mem_cgroup_charge_statistics(from, page, -nr_pages);
5688	memcg_check_events(from, page);
5689	local_irq_enable();
5690out_unlock:
5691	unlock_page(page);
5692out:
5693	return ret;
5694}
5695
5696/**
5697 * get_mctgt_type - get target type of moving charge
5698 * @vma: the vma the pte to be checked belongs
5699 * @addr: the address corresponding to the pte to be checked
5700 * @ptent: the pte to be checked
5701 * @target: the pointer the target page or swap ent will be stored(can be NULL)
5702 *
5703 * Returns
5704 *   0(MC_TARGET_NONE): if the pte is not a target for move charge.
5705 *   1(MC_TARGET_PAGE): if the page corresponding to this pte is a target for
5706 *     move charge. if @target is not NULL, the page is stored in target->page
5707 *     with extra refcnt got(Callers should handle it).
5708 *   2(MC_TARGET_SWAP): if the swap entry corresponding to this pte is a
5709 *     target for charge migration. if @target is not NULL, the entry is stored
5710 *     in target->ent.
5711 *   3(MC_TARGET_DEVICE): like MC_TARGET_PAGE  but page is MEMORY_DEVICE_PRIVATE
5712 *     (so ZONE_DEVICE page and thus not on the lru).
5713 *     For now we such page is charge like a regular page would be as for all
5714 *     intent and purposes it is just special memory taking the place of a
5715 *     regular page.
5716 *
5717 *     See Documentations/vm/hmm.txt and include/linux/hmm.h
5718 *
5719 * Called with pte lock held.
5720 */
5721
5722static enum mc_target_type get_mctgt_type(struct vm_area_struct *vma,
5723		unsigned long addr, pte_t ptent, union mc_target *target)
5724{
5725	struct page *page = NULL;
5726	enum mc_target_type ret = MC_TARGET_NONE;
 
5727	swp_entry_t ent = { .val = 0 };
5728
5729	if (pte_present(ptent))
5730		page = mc_handle_present_pte(vma, addr, ptent);
5731	else if (is_swap_pte(ptent))
5732		page = mc_handle_swap_pte(vma, ptent, &ent);
5733	else if (pte_none(ptent))
5734		page = mc_handle_file_pte(vma, addr, ptent, &ent);
5735
5736	if (!page && !ent.val)
5737		return ret;
5738	if (page) {
 
5739		/*
5740		 * Do only loose check w/o serialization.
5741		 * mem_cgroup_move_account() checks the page is valid or
5742		 * not under LRU exclusion.
5743		 */
5744		if (page->mem_cgroup == mc.from) {
5745			ret = MC_TARGET_PAGE;
5746			if (is_device_private_page(page))
5747				ret = MC_TARGET_DEVICE;
5748			if (target)
5749				target->page = page;
5750		}
5751		if (!ret || !target)
5752			put_page(page);
5753	}
5754	/*
5755	 * There is a swap entry and a page doesn't exist or isn't charged.
5756	 * But we cannot move a tail-page in a THP.
5757	 */
5758	if (ent.val && !ret && (!page || !PageTransCompound(page)) &&
5759	    mem_cgroup_id(mc.from) == lookup_swap_cgroup_id(ent)) {
5760		ret = MC_TARGET_SWAP;
5761		if (target)
5762			target->ent = ent;
5763	}
5764	return ret;
5765}
5766
5767#ifdef CONFIG_TRANSPARENT_HUGEPAGE
5768/*
5769 * We don't consider PMD mapped swapping or file mapped pages because THP does
5770 * not support them for now.
5771 * Caller should make sure that pmd_trans_huge(pmd) is true.
5772 */
5773static enum mc_target_type get_mctgt_type_thp(struct vm_area_struct *vma,
5774		unsigned long addr, pmd_t pmd, union mc_target *target)
5775{
5776	struct page *page = NULL;
5777	enum mc_target_type ret = MC_TARGET_NONE;
5778
5779	if (unlikely(is_swap_pmd(pmd))) {
5780		VM_BUG_ON(thp_migration_supported() &&
5781				  !is_pmd_migration_entry(pmd));
5782		return ret;
5783	}
5784	page = pmd_page(pmd);
5785	VM_BUG_ON_PAGE(!page || !PageHead(page), page);
5786	if (!(mc.flags & MOVE_ANON))
5787		return ret;
5788	if (page->mem_cgroup == mc.from) {
5789		ret = MC_TARGET_PAGE;
5790		if (target) {
5791			get_page(page);
5792			target->page = page;
5793		}
5794	}
5795	return ret;
5796}
5797#else
5798static inline enum mc_target_type get_mctgt_type_thp(struct vm_area_struct *vma,
5799		unsigned long addr, pmd_t pmd, union mc_target *target)
5800{
5801	return MC_TARGET_NONE;
5802}
5803#endif
5804
5805static int mem_cgroup_count_precharge_pte_range(pmd_t *pmd,
5806					unsigned long addr, unsigned long end,
5807					struct mm_walk *walk)
5808{
5809	struct vm_area_struct *vma = walk->vma;
5810	pte_t *pte;
5811	spinlock_t *ptl;
5812
5813	ptl = pmd_trans_huge_lock(pmd, vma);
5814	if (ptl) {
5815		/*
5816		 * Note their can not be MC_TARGET_DEVICE for now as we do not
5817		 * support transparent huge page with MEMORY_DEVICE_PRIVATE but
5818		 * this might change.
5819		 */
5820		if (get_mctgt_type_thp(vma, addr, *pmd, NULL) == MC_TARGET_PAGE)
5821			mc.precharge += HPAGE_PMD_NR;
5822		spin_unlock(ptl);
5823		return 0;
5824	}
5825
5826	if (pmd_trans_unstable(pmd))
5827		return 0;
5828	pte = pte_offset_map_lock(vma->vm_mm, pmd, addr, &ptl);
5829	for (; addr != end; pte++, addr += PAGE_SIZE)
5830		if (get_mctgt_type(vma, addr, *pte, NULL))
5831			mc.precharge++;	/* increment precharge temporarily */
5832	pte_unmap_unlock(pte - 1, ptl);
5833	cond_resched();
5834
5835	return 0;
5836}
5837
5838static const struct mm_walk_ops precharge_walk_ops = {
5839	.pmd_entry	= mem_cgroup_count_precharge_pte_range,
5840};
5841
5842static unsigned long mem_cgroup_count_precharge(struct mm_struct *mm)
5843{
5844	unsigned long precharge;
 
5845
5846	mmap_read_lock(mm);
5847	walk_page_range(mm, 0, mm->highest_vm_end, &precharge_walk_ops, NULL);
5848	mmap_read_unlock(mm);
 
 
 
 
 
 
 
 
 
 
5849
5850	precharge = mc.precharge;
5851	mc.precharge = 0;
5852
5853	return precharge;
5854}
5855
5856static int mem_cgroup_precharge_mc(struct mm_struct *mm)
5857{
5858	unsigned long precharge = mem_cgroup_count_precharge(mm);
5859
5860	VM_BUG_ON(mc.moving_task);
5861	mc.moving_task = current;
5862	return mem_cgroup_do_precharge(precharge);
5863}
5864
5865/* cancels all extra charges on mc.from and mc.to, and wakes up all waiters. */
5866static void __mem_cgroup_clear_mc(void)
5867{
5868	struct mem_cgroup *from = mc.from;
5869	struct mem_cgroup *to = mc.to;
5870
5871	/* we must uncharge all the leftover precharges from mc.to */
5872	if (mc.precharge) {
5873		cancel_charge(mc.to, mc.precharge);
5874		mc.precharge = 0;
5875	}
5876	/*
5877	 * we didn't uncharge from mc.from at mem_cgroup_move_account(), so
5878	 * we must uncharge here.
5879	 */
5880	if (mc.moved_charge) {
5881		cancel_charge(mc.from, mc.moved_charge);
5882		mc.moved_charge = 0;
5883	}
5884	/* we must fixup refcnts and charges */
5885	if (mc.moved_swap) {
5886		/* uncharge swap account from the old cgroup */
5887		if (!mem_cgroup_is_root(mc.from))
5888			page_counter_uncharge(&mc.from->memsw, mc.moved_swap);
5889
5890		mem_cgroup_id_put_many(mc.from, mc.moved_swap);
5891
5892		/*
5893		 * we charged both to->memory and to->memsw, so we
5894		 * should uncharge to->memory.
5895		 */
5896		if (!mem_cgroup_is_root(mc.to))
5897			page_counter_uncharge(&mc.to->memory, mc.moved_swap);
5898
 
 
 
 
 
 
 
 
 
5899		mc.moved_swap = 0;
5900	}
5901	memcg_oom_recover(from);
5902	memcg_oom_recover(to);
5903	wake_up_all(&mc.waitq);
5904}
5905
5906static void mem_cgroup_clear_mc(void)
5907{
5908	struct mm_struct *mm = mc.mm;
5909
5910	/*
5911	 * we must clear moving_task before waking up waiters at the end of
5912	 * task migration.
5913	 */
5914	mc.moving_task = NULL;
5915	__mem_cgroup_clear_mc();
5916	spin_lock(&mc.lock);
5917	mc.from = NULL;
5918	mc.to = NULL;
5919	mc.mm = NULL;
5920	spin_unlock(&mc.lock);
5921
5922	mmput(mm);
5923}
5924
5925static int mem_cgroup_can_attach(struct cgroup_taskset *tset)
 
 
5926{
5927	struct cgroup_subsys_state *css;
5928	struct mem_cgroup *memcg = NULL; /* unneeded init to make gcc happy */
5929	struct mem_cgroup *from;
5930	struct task_struct *leader, *p;
5931	struct mm_struct *mm;
5932	unsigned long move_flags;
5933	int ret = 0;
 
5934
5935	/* charge immigration isn't supported on the default hierarchy */
5936	if (cgroup_subsys_on_dfl(memory_cgrp_subsys))
5937		return 0;
5938
5939	/*
5940	 * Multi-process migrations only happen on the default hierarchy
5941	 * where charge immigration is not used.  Perform charge
5942	 * immigration if @tset contains a leader and whine if there are
5943	 * multiple.
5944	 */
5945	p = NULL;
5946	cgroup_taskset_for_each_leader(leader, css, tset) {
5947		WARN_ON_ONCE(p);
5948		p = leader;
5949		memcg = mem_cgroup_from_css(css);
5950	}
5951	if (!p)
5952		return 0;
5953
5954	/*
5955	 * We are now commited to this value whatever it is. Changes in this
5956	 * tunable will only affect upcoming migrations, not the current one.
5957	 * So we need to save it, and keep it going.
5958	 */
5959	move_flags = READ_ONCE(memcg->move_charge_at_immigrate);
5960	if (!move_flags)
5961		return 0;
5962
5963	from = mem_cgroup_from_task(p);
5964
5965	VM_BUG_ON(from == memcg);
5966
5967	mm = get_task_mm(p);
5968	if (!mm)
5969		return 0;
5970	/* We move charges only when we move a owner of the mm */
5971	if (mm->owner == p) {
5972		VM_BUG_ON(mc.from);
5973		VM_BUG_ON(mc.to);
5974		VM_BUG_ON(mc.precharge);
5975		VM_BUG_ON(mc.moved_charge);
5976		VM_BUG_ON(mc.moved_swap);
5977
5978		spin_lock(&mc.lock);
5979		mc.mm = mm;
5980		mc.from = from;
5981		mc.to = memcg;
5982		mc.flags = move_flags;
5983		spin_unlock(&mc.lock);
5984		/* We set mc.moving_task later */
5985
5986		ret = mem_cgroup_precharge_mc(mm);
5987		if (ret)
5988			mem_cgroup_clear_mc();
5989	} else {
5990		mmput(mm);
5991	}
5992	return ret;
5993}
5994
5995static void mem_cgroup_cancel_attach(struct cgroup_taskset *tset)
 
 
5996{
5997	if (mc.to)
5998		mem_cgroup_clear_mc();
5999}
6000
6001static int mem_cgroup_move_charge_pte_range(pmd_t *pmd,
6002				unsigned long addr, unsigned long end,
6003				struct mm_walk *walk)
6004{
6005	int ret = 0;
6006	struct vm_area_struct *vma = walk->vma;
6007	pte_t *pte;
6008	spinlock_t *ptl;
6009	enum mc_target_type target_type;
6010	union mc_target target;
6011	struct page *page;
6012
6013	ptl = pmd_trans_huge_lock(pmd, vma);
6014	if (ptl) {
6015		if (mc.precharge < HPAGE_PMD_NR) {
6016			spin_unlock(ptl);
6017			return 0;
6018		}
6019		target_type = get_mctgt_type_thp(vma, addr, *pmd, &target);
6020		if (target_type == MC_TARGET_PAGE) {
6021			page = target.page;
6022			if (!isolate_lru_page(page)) {
6023				if (!mem_cgroup_move_account(page, true,
6024							     mc.from, mc.to)) {
6025					mc.precharge -= HPAGE_PMD_NR;
6026					mc.moved_charge += HPAGE_PMD_NR;
6027				}
6028				putback_lru_page(page);
6029			}
6030			put_page(page);
6031		} else if (target_type == MC_TARGET_DEVICE) {
6032			page = target.page;
6033			if (!mem_cgroup_move_account(page, true,
6034						     mc.from, mc.to)) {
6035				mc.precharge -= HPAGE_PMD_NR;
6036				mc.moved_charge += HPAGE_PMD_NR;
6037			}
6038			put_page(page);
6039		}
6040		spin_unlock(ptl);
6041		return 0;
6042	}
6043
6044	if (pmd_trans_unstable(pmd))
6045		return 0;
6046retry:
6047	pte = pte_offset_map_lock(vma->vm_mm, pmd, addr, &ptl);
6048	for (; addr != end; addr += PAGE_SIZE) {
6049		pte_t ptent = *(pte++);
6050		bool device = false;
 
 
 
6051		swp_entry_t ent;
6052
6053		if (!mc.precharge)
6054			break;
6055
6056		switch (get_mctgt_type(vma, addr, ptent, &target)) {
6057		case MC_TARGET_DEVICE:
6058			device = true;
6059			fallthrough;
6060		case MC_TARGET_PAGE:
6061			page = target.page;
6062			/*
6063			 * We can have a part of the split pmd here. Moving it
6064			 * can be done but it would be too convoluted so simply
6065			 * ignore such a partial THP and keep it in original
6066			 * memcg. There should be somebody mapping the head.
6067			 */
6068			if (PageTransCompound(page))
6069				goto put;
6070			if (!device && isolate_lru_page(page))
6071				goto put;
6072			if (!mem_cgroup_move_account(page, false,
6073						mc.from, mc.to)) {
 
6074				mc.precharge--;
6075				/* we uncharge from mc.from later. */
6076				mc.moved_charge++;
6077			}
6078			if (!device)
6079				putback_lru_page(page);
6080put:			/* get_mctgt_type() gets the page */
6081			put_page(page);
6082			break;
6083		case MC_TARGET_SWAP:
6084			ent = target.ent;
6085			if (!mem_cgroup_move_swap_account(ent, mc.from, mc.to)) {
 
6086				mc.precharge--;
6087				mem_cgroup_id_get_many(mc.to, 1);
6088				/* we fixup other refcnts and charges later. */
6089				mc.moved_swap++;
6090			}
6091			break;
6092		default:
6093			break;
6094		}
6095	}
6096	pte_unmap_unlock(pte - 1, ptl);
6097	cond_resched();
6098
6099	if (addr != end) {
6100		/*
6101		 * We have consumed all precharges we got in can_attach().
6102		 * We try charge one by one, but don't do any additional
6103		 * charges to mc.to if we have failed in charge once in attach()
6104		 * phase.
6105		 */
6106		ret = mem_cgroup_do_precharge(1);
6107		if (!ret)
6108			goto retry;
6109	}
6110
6111	return ret;
6112}
6113
6114static const struct mm_walk_ops charge_walk_ops = {
6115	.pmd_entry	= mem_cgroup_move_charge_pte_range,
6116};
6117
6118static void mem_cgroup_move_charge(void)
6119{
6120	lru_add_drain_all();
6121	/*
6122	 * Signal lock_page_memcg() to take the memcg's move_lock
6123	 * while we're moving its pages to another memcg. Then wait
6124	 * for already started RCU-only updates to finish.
6125	 */
6126	atomic_inc(&mc.from->moving_account);
6127	synchronize_rcu();
6128retry:
6129	if (unlikely(!mmap_read_trylock(mc.mm))) {
6130		/*
6131		 * Someone who are holding the mmap_lock might be waiting in
6132		 * waitq. So we cancel all extra charges, wake up all waiters,
6133		 * and retry. Because we cancel precharges, we might not be able
6134		 * to move enough charges, but moving charge is a best-effort
6135		 * feature anyway, so it wouldn't be a big problem.
6136		 */
6137		__mem_cgroup_clear_mc();
6138		cond_resched();
6139		goto retry;
6140	}
6141	/*
6142	 * When we have consumed all precharges and failed in doing
6143	 * additional charge, the page walk just aborts.
6144	 */
6145	walk_page_range(mc.mm, 0, mc.mm->highest_vm_end, &charge_walk_ops,
6146			NULL);
6147
6148	mmap_read_unlock(mc.mm);
6149	atomic_dec(&mc.from->moving_account);
6150}
6151
6152static void mem_cgroup_move_task(void)
6153{
6154	if (mc.to) {
6155		mem_cgroup_move_charge();
6156		mem_cgroup_clear_mc();
6157	}
6158}
6159#else	/* !CONFIG_MMU */
6160static int mem_cgroup_can_attach(struct cgroup_taskset *tset)
6161{
6162	return 0;
6163}
6164static void mem_cgroup_cancel_attach(struct cgroup_taskset *tset)
6165{
6166}
6167static void mem_cgroup_move_task(void)
6168{
6169}
6170#endif
6171
6172/*
6173 * Cgroup retains root cgroups across [un]mount cycles making it necessary
6174 * to verify whether we're attached to the default hierarchy on each mount
6175 * attempt.
6176 */
6177static void mem_cgroup_bind(struct cgroup_subsys_state *root_css)
6178{
6179	/*
6180	 * use_hierarchy is forced on the default hierarchy.  cgroup core
6181	 * guarantees that @root doesn't have any children, so turning it
6182	 * on for the root memcg is enough.
6183	 */
6184	if (cgroup_subsys_on_dfl(memory_cgrp_subsys))
6185		root_mem_cgroup->use_hierarchy = true;
6186	else
6187		root_mem_cgroup->use_hierarchy = false;
6188}
6189
6190static int seq_puts_memcg_tunable(struct seq_file *m, unsigned long value)
6191{
6192	if (value == PAGE_COUNTER_MAX)
6193		seq_puts(m, "max\n");
6194	else
6195		seq_printf(m, "%llu\n", (u64)value * PAGE_SIZE);
6196
6197	return 0;
6198}
6199
6200static u64 memory_current_read(struct cgroup_subsys_state *css,
6201			       struct cftype *cft)
6202{
6203	struct mem_cgroup *memcg = mem_cgroup_from_css(css);
6204
6205	return (u64)page_counter_read(&memcg->memory) * PAGE_SIZE;
6206}
6207
6208static int memory_min_show(struct seq_file *m, void *v)
6209{
6210	return seq_puts_memcg_tunable(m,
6211		READ_ONCE(mem_cgroup_from_seq(m)->memory.min));
6212}
6213
6214static ssize_t memory_min_write(struct kernfs_open_file *of,
6215				char *buf, size_t nbytes, loff_t off)
6216{
6217	struct mem_cgroup *memcg = mem_cgroup_from_css(of_css(of));
6218	unsigned long min;
6219	int err;
6220
6221	buf = strstrip(buf);
6222	err = page_counter_memparse(buf, "max", &min);
6223	if (err)
6224		return err;
6225
6226	page_counter_set_min(&memcg->memory, min);
6227
6228	return nbytes;
6229}
6230
6231static int memory_low_show(struct seq_file *m, void *v)
6232{
6233	return seq_puts_memcg_tunable(m,
6234		READ_ONCE(mem_cgroup_from_seq(m)->memory.low));
6235}
6236
6237static ssize_t memory_low_write(struct kernfs_open_file *of,
6238				char *buf, size_t nbytes, loff_t off)
6239{
6240	struct mem_cgroup *memcg = mem_cgroup_from_css(of_css(of));
6241	unsigned long low;
6242	int err;
6243
6244	buf = strstrip(buf);
6245	err = page_counter_memparse(buf, "max", &low);
6246	if (err)
6247		return err;
6248
6249	page_counter_set_low(&memcg->memory, low);
6250
6251	return nbytes;
6252}
6253
6254static int memory_high_show(struct seq_file *m, void *v)
6255{
6256	return seq_puts_memcg_tunable(m,
6257		READ_ONCE(mem_cgroup_from_seq(m)->memory.high));
6258}
6259
6260static ssize_t memory_high_write(struct kernfs_open_file *of,
6261				 char *buf, size_t nbytes, loff_t off)
6262{
6263	struct mem_cgroup *memcg = mem_cgroup_from_css(of_css(of));
6264	unsigned int nr_retries = MAX_RECLAIM_RETRIES;
6265	bool drained = false;
6266	unsigned long high;
6267	int err;
6268
6269	buf = strstrip(buf);
6270	err = page_counter_memparse(buf, "max", &high);
6271	if (err)
6272		return err;
6273
6274	for (;;) {
6275		unsigned long nr_pages = page_counter_read(&memcg->memory);
6276		unsigned long reclaimed;
6277
6278		if (nr_pages <= high)
6279			break;
6280
6281		if (signal_pending(current))
6282			break;
6283
6284		if (!drained) {
6285			drain_all_stock(memcg);
6286			drained = true;
6287			continue;
6288		}
6289
6290		reclaimed = try_to_free_mem_cgroup_pages(memcg, nr_pages - high,
6291							 GFP_KERNEL, true);
6292
6293		if (!reclaimed && !nr_retries--)
 
6294			break;
6295	}
6296
6297	page_counter_set_high(&memcg->memory, high);
6298
6299	memcg_wb_domain_size_changed(memcg);
6300
6301	return nbytes;
6302}
6303
6304static int memory_max_show(struct seq_file *m, void *v)
 
 
 
6305{
6306	return seq_puts_memcg_tunable(m,
6307		READ_ONCE(mem_cgroup_from_seq(m)->memory.max));
6308}
6309
6310static ssize_t memory_max_write(struct kernfs_open_file *of,
6311				char *buf, size_t nbytes, loff_t off)
6312{
6313	struct mem_cgroup *memcg = mem_cgroup_from_css(of_css(of));
6314	unsigned int nr_reclaims = MAX_RECLAIM_RETRIES;
6315	bool drained = false;
6316	unsigned long max;
6317	int err;
6318
6319	buf = strstrip(buf);
6320	err = page_counter_memparse(buf, "max", &max);
6321	if (err)
6322		return err;
6323
6324	xchg(&memcg->memory.max, max);
6325
6326	for (;;) {
6327		unsigned long nr_pages = page_counter_read(&memcg->memory);
6328
6329		if (nr_pages <= max)
6330			break;
6331
6332		if (signal_pending(current))
6333			break;
6334
6335		if (!drained) {
6336			drain_all_stock(memcg);
6337			drained = true;
6338			continue;
6339		}
6340
6341		if (nr_reclaims) {
6342			if (!try_to_free_mem_cgroup_pages(memcg, nr_pages - max,
6343							  GFP_KERNEL, true))
6344				nr_reclaims--;
6345			continue;
6346		}
6347
6348		memcg_memory_event(memcg, MEMCG_OOM);
6349		if (!mem_cgroup_out_of_memory(memcg, GFP_KERNEL, 0))
6350			break;
6351	}
6352
6353	memcg_wb_domain_size_changed(memcg);
6354	return nbytes;
6355}
6356
6357static void __memory_events_show(struct seq_file *m, atomic_long_t *events)
6358{
6359	seq_printf(m, "low %lu\n", atomic_long_read(&events[MEMCG_LOW]));
6360	seq_printf(m, "high %lu\n", atomic_long_read(&events[MEMCG_HIGH]));
6361	seq_printf(m, "max %lu\n", atomic_long_read(&events[MEMCG_MAX]));
6362	seq_printf(m, "oom %lu\n", atomic_long_read(&events[MEMCG_OOM]));
6363	seq_printf(m, "oom_kill %lu\n",
6364		   atomic_long_read(&events[MEMCG_OOM_KILL]));
6365}
6366
6367static int memory_events_show(struct seq_file *m, void *v)
6368{
6369	struct mem_cgroup *memcg = mem_cgroup_from_seq(m);
6370
6371	__memory_events_show(m, memcg->memory_events);
6372	return 0;
6373}
6374
6375static int memory_events_local_show(struct seq_file *m, void *v)
 
6376{
6377	struct mem_cgroup *memcg = mem_cgroup_from_seq(m);
6378
6379	__memory_events_show(m, memcg->memory_events_local);
6380	return 0;
6381}
6382
6383static int memory_stat_show(struct seq_file *m, void *v)
 
 
6384{
6385	struct mem_cgroup *memcg = mem_cgroup_from_seq(m);
6386	char *buf;
6387
6388	buf = memory_stat_format(memcg);
6389	if (!buf)
6390		return -ENOMEM;
6391	seq_puts(m, buf);
6392	kfree(buf);
6393	return 0;
6394}
6395
6396static int memory_oom_group_show(struct seq_file *m, void *v)
6397{
6398	struct mem_cgroup *memcg = mem_cgroup_from_seq(m);
6399
6400	seq_printf(m, "%d\n", memcg->oom_group);
6401
6402	return 0;
6403}
 
6404
6405static ssize_t memory_oom_group_write(struct kernfs_open_file *of,
6406				      char *buf, size_t nbytes, loff_t off)
6407{
6408	struct mem_cgroup *memcg = mem_cgroup_from_css(of_css(of));
6409	int ret, oom_group;
6410
6411	buf = strstrip(buf);
6412	if (!buf)
6413		return -EINVAL;
6414
6415	ret = kstrtoint(buf, 0, &oom_group);
6416	if (ret)
6417		return ret;
6418
6419	if (oom_group != 0 && oom_group != 1)
6420		return -EINVAL;
6421
6422	memcg->oom_group = oom_group;
6423
6424	return nbytes;
6425}
6426
6427static struct cftype memory_files[] = {
6428	{
6429		.name = "current",
6430		.flags = CFTYPE_NOT_ON_ROOT,
6431		.read_u64 = memory_current_read,
6432	},
6433	{
6434		.name = "min",
6435		.flags = CFTYPE_NOT_ON_ROOT,
6436		.seq_show = memory_min_show,
6437		.write = memory_min_write,
6438	},
6439	{
6440		.name = "low",
6441		.flags = CFTYPE_NOT_ON_ROOT,
6442		.seq_show = memory_low_show,
6443		.write = memory_low_write,
6444	},
6445	{
6446		.name = "high",
6447		.flags = CFTYPE_NOT_ON_ROOT,
6448		.seq_show = memory_high_show,
6449		.write = memory_high_write,
6450	},
6451	{
6452		.name = "max",
6453		.flags = CFTYPE_NOT_ON_ROOT,
6454		.seq_show = memory_max_show,
6455		.write = memory_max_write,
6456	},
6457	{
6458		.name = "events",
6459		.flags = CFTYPE_NOT_ON_ROOT,
6460		.file_offset = offsetof(struct mem_cgroup, events_file),
6461		.seq_show = memory_events_show,
6462	},
6463	{
6464		.name = "events.local",
6465		.flags = CFTYPE_NOT_ON_ROOT,
6466		.file_offset = offsetof(struct mem_cgroup, events_local_file),
6467		.seq_show = memory_events_local_show,
6468	},
6469	{
6470		.name = "stat",
6471		.seq_show = memory_stat_show,
6472	},
6473	{
6474		.name = "oom.group",
6475		.flags = CFTYPE_NOT_ON_ROOT | CFTYPE_NS_DELEGATABLE,
6476		.seq_show = memory_oom_group_show,
6477		.write = memory_oom_group_write,
6478	},
6479	{ }	/* terminate */
6480};
6481
6482struct cgroup_subsys memory_cgrp_subsys = {
6483	.css_alloc = mem_cgroup_css_alloc,
6484	.css_online = mem_cgroup_css_online,
6485	.css_offline = mem_cgroup_css_offline,
6486	.css_released = mem_cgroup_css_released,
6487	.css_free = mem_cgroup_css_free,
6488	.css_reset = mem_cgroup_css_reset,
6489	.can_attach = mem_cgroup_can_attach,
6490	.cancel_attach = mem_cgroup_cancel_attach,
6491	.post_attach = mem_cgroup_move_task,
6492	.bind = mem_cgroup_bind,
6493	.dfl_cftypes = memory_files,
6494	.legacy_cftypes = mem_cgroup_legacy_files,
6495	.early_init = 0,
 
6496};
6497
6498/*
6499 * This function calculates an individual cgroup's effective
6500 * protection which is derived from its own memory.min/low, its
6501 * parent's and siblings' settings, as well as the actual memory
6502 * distribution in the tree.
6503 *
6504 * The following rules apply to the effective protection values:
6505 *
6506 * 1. At the first level of reclaim, effective protection is equal to
6507 *    the declared protection in memory.min and memory.low.
6508 *
6509 * 2. To enable safe delegation of the protection configuration, at
6510 *    subsequent levels the effective protection is capped to the
6511 *    parent's effective protection.
6512 *
6513 * 3. To make complex and dynamic subtrees easier to configure, the
6514 *    user is allowed to overcommit the declared protection at a given
6515 *    level. If that is the case, the parent's effective protection is
6516 *    distributed to the children in proportion to how much protection
6517 *    they have declared and how much of it they are utilizing.
6518 *
6519 *    This makes distribution proportional, but also work-conserving:
6520 *    if one cgroup claims much more protection than it uses memory,
6521 *    the unused remainder is available to its siblings.
6522 *
6523 * 4. Conversely, when the declared protection is undercommitted at a
6524 *    given level, the distribution of the larger parental protection
6525 *    budget is NOT proportional. A cgroup's protection from a sibling
6526 *    is capped to its own memory.min/low setting.
6527 *
6528 * 5. However, to allow protecting recursive subtrees from each other
6529 *    without having to declare each individual cgroup's fixed share
6530 *    of the ancestor's claim to protection, any unutilized -
6531 *    "floating" - protection from up the tree is distributed in
6532 *    proportion to each cgroup's *usage*. This makes the protection
6533 *    neutral wrt sibling cgroups and lets them compete freely over
6534 *    the shared parental protection budget, but it protects the
6535 *    subtree as a whole from neighboring subtrees.
6536 *
6537 * Note that 4. and 5. are not in conflict: 4. is about protecting
6538 * against immediate siblings whereas 5. is about protecting against
6539 * neighboring subtrees.
6540 */
6541static unsigned long effective_protection(unsigned long usage,
6542					  unsigned long parent_usage,
6543					  unsigned long setting,
6544					  unsigned long parent_effective,
6545					  unsigned long siblings_protected)
6546{
6547	unsigned long protected;
6548	unsigned long ep;
6549
6550	protected = min(usage, setting);
6551	/*
6552	 * If all cgroups at this level combined claim and use more
6553	 * protection then what the parent affords them, distribute
6554	 * shares in proportion to utilization.
6555	 *
6556	 * We are using actual utilization rather than the statically
6557	 * claimed protection in order to be work-conserving: claimed
6558	 * but unused protection is available to siblings that would
6559	 * otherwise get a smaller chunk than what they claimed.
6560	 */
6561	if (siblings_protected > parent_effective)
6562		return protected * parent_effective / siblings_protected;
6563
6564	/*
6565	 * Ok, utilized protection of all children is within what the
6566	 * parent affords them, so we know whatever this child claims
6567	 * and utilizes is effectively protected.
6568	 *
6569	 * If there is unprotected usage beyond this value, reclaim
6570	 * will apply pressure in proportion to that amount.
6571	 *
6572	 * If there is unutilized protection, the cgroup will be fully
6573	 * shielded from reclaim, but we do return a smaller value for
6574	 * protection than what the group could enjoy in theory. This
6575	 * is okay. With the overcommit distribution above, effective
6576	 * protection is always dependent on how memory is actually
6577	 * consumed among the siblings anyway.
6578	 */
6579	ep = protected;
6580
6581	/*
6582	 * If the children aren't claiming (all of) the protection
6583	 * afforded to them by the parent, distribute the remainder in
6584	 * proportion to the (unprotected) memory of each cgroup. That
6585	 * way, cgroups that aren't explicitly prioritized wrt each
6586	 * other compete freely over the allowance, but they are
6587	 * collectively protected from neighboring trees.
6588	 *
6589	 * We're using unprotected memory for the weight so that if
6590	 * some cgroups DO claim explicit protection, we don't protect
6591	 * the same bytes twice.
6592	 *
6593	 * Check both usage and parent_usage against the respective
6594	 * protected values. One should imply the other, but they
6595	 * aren't read atomically - make sure the division is sane.
6596	 */
6597	if (!(cgrp_dfl_root.flags & CGRP_ROOT_MEMORY_RECURSIVE_PROT))
6598		return ep;
6599	if (parent_effective > siblings_protected &&
6600	    parent_usage > siblings_protected &&
6601	    usage > protected) {
6602		unsigned long unclaimed;
6603
6604		unclaimed = parent_effective - siblings_protected;
6605		unclaimed *= usage - protected;
6606		unclaimed /= parent_usage - siblings_protected;
6607
6608		ep += unclaimed;
6609	}
6610
6611	return ep;
6612}
6613
6614/**
6615 * mem_cgroup_protected - check if memory consumption is in the normal range
6616 * @root: the top ancestor of the sub-tree being checked
6617 * @memcg: the memory cgroup to check
6618 *
6619 * WARNING: This function is not stateless! It can only be used as part
6620 *          of a top-down tree iteration, not for isolated queries.
6621 */
6622void mem_cgroup_calculate_protection(struct mem_cgroup *root,
6623				     struct mem_cgroup *memcg)
6624{
6625	unsigned long usage, parent_usage;
6626	struct mem_cgroup *parent;
6627
6628	if (mem_cgroup_disabled())
6629		return;
6630
6631	if (!root)
6632		root = root_mem_cgroup;
6633
6634	/*
6635	 * Effective values of the reclaim targets are ignored so they
6636	 * can be stale. Have a look at mem_cgroup_protection for more
6637	 * details.
6638	 * TODO: calculation should be more robust so that we do not need
6639	 * that special casing.
6640	 */
6641	if (memcg == root)
6642		return;
6643
6644	usage = page_counter_read(&memcg->memory);
6645	if (!usage)
6646		return;
6647
6648	parent = parent_mem_cgroup(memcg);
6649	/* No parent means a non-hierarchical mode on v1 memcg */
6650	if (!parent)
6651		return;
6652
6653	if (parent == root) {
6654		memcg->memory.emin = READ_ONCE(memcg->memory.min);
6655		memcg->memory.elow = READ_ONCE(memcg->memory.low);
6656		return;
6657	}
6658
6659	parent_usage = page_counter_read(&parent->memory);
6660
6661	WRITE_ONCE(memcg->memory.emin, effective_protection(usage, parent_usage,
6662			READ_ONCE(memcg->memory.min),
6663			READ_ONCE(parent->memory.emin),
6664			atomic_long_read(&parent->memory.children_min_usage)));
6665
6666	WRITE_ONCE(memcg->memory.elow, effective_protection(usage, parent_usage,
6667			READ_ONCE(memcg->memory.low),
6668			READ_ONCE(parent->memory.elow),
6669			atomic_long_read(&parent->memory.children_low_usage)));
6670}
6671
6672/**
6673 * mem_cgroup_charge - charge a newly allocated page to a cgroup
6674 * @page: page to charge
6675 * @mm: mm context of the victim
6676 * @gfp_mask: reclaim mode
6677 *
6678 * Try to charge @page to the memcg that @mm belongs to, reclaiming
6679 * pages according to @gfp_mask if necessary.
6680 *
6681 * Returns 0 on success. Otherwise, an error code is returned.
6682 */
6683int mem_cgroup_charge(struct page *page, struct mm_struct *mm, gfp_t gfp_mask)
6684{
6685	unsigned int nr_pages = thp_nr_pages(page);
6686	struct mem_cgroup *memcg = NULL;
6687	int ret = 0;
6688
6689	if (mem_cgroup_disabled())
6690		goto out;
6691
6692	if (PageSwapCache(page)) {
6693		swp_entry_t ent = { .val = page_private(page), };
6694		unsigned short id;
6695
6696		/*
6697		 * Every swap fault against a single page tries to charge the
6698		 * page, bail as early as possible.  shmem_unuse() encounters
6699		 * already charged pages, too.  page->mem_cgroup is protected
6700		 * by the page lock, which serializes swap cache removal, which
6701		 * in turn serializes uncharging.
6702		 */
6703		VM_BUG_ON_PAGE(!PageLocked(page), page);
6704		if (compound_head(page)->mem_cgroup)
6705			goto out;
6706
6707		id = lookup_swap_cgroup_id(ent);
6708		rcu_read_lock();
6709		memcg = mem_cgroup_from_id(id);
6710		if (memcg && !css_tryget_online(&memcg->css))
6711			memcg = NULL;
6712		rcu_read_unlock();
6713	}
6714
6715	if (!memcg)
6716		memcg = get_mem_cgroup_from_mm(mm);
6717
6718	ret = try_charge(memcg, gfp_mask, nr_pages);
6719	if (ret)
6720		goto out_put;
6721
6722	css_get(&memcg->css);
6723	commit_charge(page, memcg);
6724
6725	local_irq_disable();
6726	mem_cgroup_charge_statistics(memcg, page, nr_pages);
6727	memcg_check_events(memcg, page);
6728	local_irq_enable();
6729
6730	if (PageSwapCache(page)) {
6731		swp_entry_t entry = { .val = page_private(page) };
6732		/*
6733		 * The swap entry might not get freed for a long time,
6734		 * let's not wait for it.  The page already received a
6735		 * memory+swap charge, drop the swap entry duplicate.
6736		 */
6737		mem_cgroup_uncharge_swap(entry, nr_pages);
6738	}
6739
6740out_put:
6741	css_put(&memcg->css);
6742out:
6743	return ret;
6744}
6745
6746struct uncharge_gather {
6747	struct mem_cgroup *memcg;
6748	unsigned long nr_pages;
6749	unsigned long pgpgout;
6750	unsigned long nr_kmem;
6751	struct page *dummy_page;
6752};
6753
6754static inline void uncharge_gather_clear(struct uncharge_gather *ug)
6755{
6756	memset(ug, 0, sizeof(*ug));
6757}
6758
6759static void uncharge_batch(const struct uncharge_gather *ug)
6760{
6761	unsigned long flags;
6762
6763	if (!mem_cgroup_is_root(ug->memcg)) {
6764		page_counter_uncharge(&ug->memcg->memory, ug->nr_pages);
6765		if (do_memsw_account())
6766			page_counter_uncharge(&ug->memcg->memsw, ug->nr_pages);
6767		if (!cgroup_subsys_on_dfl(memory_cgrp_subsys) && ug->nr_kmem)
6768			page_counter_uncharge(&ug->memcg->kmem, ug->nr_kmem);
6769		memcg_oom_recover(ug->memcg);
6770	}
6771
6772	local_irq_save(flags);
6773	__count_memcg_events(ug->memcg, PGPGOUT, ug->pgpgout);
6774	__this_cpu_add(ug->memcg->vmstats_percpu->nr_page_events, ug->nr_pages);
6775	memcg_check_events(ug->memcg, ug->dummy_page);
6776	local_irq_restore(flags);
6777
6778	/* drop reference from uncharge_page */
6779	css_put(&ug->memcg->css);
6780}
6781
6782static void uncharge_page(struct page *page, struct uncharge_gather *ug)
6783{
6784	unsigned long nr_pages;
6785
6786	VM_BUG_ON_PAGE(PageLRU(page), page);
6787
6788	if (!page->mem_cgroup)
6789		return;
6790
6791	/*
6792	 * Nobody should be changing or seriously looking at
6793	 * page->mem_cgroup at this point, we have fully
6794	 * exclusive access to the page.
6795	 */
6796
6797	if (ug->memcg != page->mem_cgroup) {
6798		if (ug->memcg) {
6799			uncharge_batch(ug);
6800			uncharge_gather_clear(ug);
6801		}
6802		ug->memcg = page->mem_cgroup;
6803
6804		/* pairs with css_put in uncharge_batch */
6805		css_get(&ug->memcg->css);
6806	}
6807
6808	nr_pages = compound_nr(page);
6809	ug->nr_pages += nr_pages;
6810
6811	if (!PageKmemcg(page)) {
6812		ug->pgpgout++;
6813	} else {
6814		ug->nr_kmem += nr_pages;
6815		__ClearPageKmemcg(page);
6816	}
6817
6818	ug->dummy_page = page;
6819	page->mem_cgroup = NULL;
6820	css_put(&ug->memcg->css);
6821}
6822
6823static void uncharge_list(struct list_head *page_list)
6824{
6825	struct uncharge_gather ug;
6826	struct list_head *next;
6827
6828	uncharge_gather_clear(&ug);
6829
6830	/*
6831	 * Note that the list can be a single page->lru; hence the
6832	 * do-while loop instead of a simple list_for_each_entry().
6833	 */
6834	next = page_list->next;
6835	do {
6836		struct page *page;
6837
6838		page = list_entry(next, struct page, lru);
6839		next = page->lru.next;
6840
6841		uncharge_page(page, &ug);
6842	} while (next != page_list);
6843
6844	if (ug.memcg)
6845		uncharge_batch(&ug);
6846}
6847
6848/**
6849 * mem_cgroup_uncharge - uncharge a page
6850 * @page: page to uncharge
6851 *
6852 * Uncharge a page previously charged with mem_cgroup_charge().
6853 */
6854void mem_cgroup_uncharge(struct page *page)
6855{
6856	struct uncharge_gather ug;
6857
6858	if (mem_cgroup_disabled())
6859		return;
6860
6861	/* Don't touch page->lru of any random page, pre-check: */
6862	if (!page->mem_cgroup)
6863		return;
6864
6865	uncharge_gather_clear(&ug);
6866	uncharge_page(page, &ug);
6867	uncharge_batch(&ug);
6868}
6869
6870/**
6871 * mem_cgroup_uncharge_list - uncharge a list of page
6872 * @page_list: list of pages to uncharge
6873 *
6874 * Uncharge a list of pages previously charged with
6875 * mem_cgroup_charge().
6876 */
6877void mem_cgroup_uncharge_list(struct list_head *page_list)
6878{
6879	if (mem_cgroup_disabled())
6880		return;
6881
6882	if (!list_empty(page_list))
6883		uncharge_list(page_list);
6884}
6885
6886/**
6887 * mem_cgroup_migrate - charge a page's replacement
6888 * @oldpage: currently circulating page
6889 * @newpage: replacement page
6890 *
6891 * Charge @newpage as a replacement page for @oldpage. @oldpage will
6892 * be uncharged upon free.
6893 *
6894 * Both pages must be locked, @newpage->mapping must be set up.
6895 */
6896void mem_cgroup_migrate(struct page *oldpage, struct page *newpage)
6897{
6898	struct mem_cgroup *memcg;
6899	unsigned int nr_pages;
6900	unsigned long flags;
6901
6902	VM_BUG_ON_PAGE(!PageLocked(oldpage), oldpage);
6903	VM_BUG_ON_PAGE(!PageLocked(newpage), newpage);
6904	VM_BUG_ON_PAGE(PageAnon(oldpage) != PageAnon(newpage), newpage);
6905	VM_BUG_ON_PAGE(PageTransHuge(oldpage) != PageTransHuge(newpage),
6906		       newpage);
6907
6908	if (mem_cgroup_disabled())
6909		return;
6910
6911	/* Page cache replacement: new page already charged? */
6912	if (newpage->mem_cgroup)
6913		return;
6914
6915	/* Swapcache readahead pages can get replaced before being charged */
6916	memcg = oldpage->mem_cgroup;
6917	if (!memcg)
6918		return;
6919
6920	/* Force-charge the new page. The old one will be freed soon */
6921	nr_pages = thp_nr_pages(newpage);
6922
6923	page_counter_charge(&memcg->memory, nr_pages);
6924	if (do_memsw_account())
6925		page_counter_charge(&memcg->memsw, nr_pages);
6926
6927	css_get(&memcg->css);
6928	commit_charge(newpage, memcg);
6929
6930	local_irq_save(flags);
6931	mem_cgroup_charge_statistics(memcg, newpage, nr_pages);
6932	memcg_check_events(memcg, newpage);
6933	local_irq_restore(flags);
6934}
6935
6936DEFINE_STATIC_KEY_FALSE(memcg_sockets_enabled_key);
6937EXPORT_SYMBOL(memcg_sockets_enabled_key);
6938
6939void mem_cgroup_sk_alloc(struct sock *sk)
6940{
6941	struct mem_cgroup *memcg;
6942
6943	if (!mem_cgroup_sockets_enabled)
6944		return;
6945
6946	/* Do not associate the sock with unrelated interrupted task's memcg. */
6947	if (in_interrupt())
6948		return;
6949
6950	rcu_read_lock();
6951	memcg = mem_cgroup_from_task(current);
6952	if (memcg == root_mem_cgroup)
6953		goto out;
6954	if (!cgroup_subsys_on_dfl(memory_cgrp_subsys) && !memcg->tcpmem_active)
6955		goto out;
6956	if (css_tryget(&memcg->css))
6957		sk->sk_memcg = memcg;
6958out:
6959	rcu_read_unlock();
6960}
6961
6962void mem_cgroup_sk_free(struct sock *sk)
6963{
6964	if (sk->sk_memcg)
6965		css_put(&sk->sk_memcg->css);
6966}
6967
6968/**
6969 * mem_cgroup_charge_skmem - charge socket memory
6970 * @memcg: memcg to charge
6971 * @nr_pages: number of pages to charge
6972 *
6973 * Charges @nr_pages to @memcg. Returns %true if the charge fit within
6974 * @memcg's configured limit, %false if the charge had to be forced.
6975 */
6976bool mem_cgroup_charge_skmem(struct mem_cgroup *memcg, unsigned int nr_pages)
6977{
6978	gfp_t gfp_mask = GFP_KERNEL;
6979
6980	if (!cgroup_subsys_on_dfl(memory_cgrp_subsys)) {
6981		struct page_counter *fail;
6982
6983		if (page_counter_try_charge(&memcg->tcpmem, nr_pages, &fail)) {
6984			memcg->tcpmem_pressure = 0;
6985			return true;
6986		}
6987		page_counter_charge(&memcg->tcpmem, nr_pages);
6988		memcg->tcpmem_pressure = 1;
6989		return false;
6990	}
6991
6992	/* Don't block in the packet receive path */
6993	if (in_softirq())
6994		gfp_mask = GFP_NOWAIT;
6995
6996	mod_memcg_state(memcg, MEMCG_SOCK, nr_pages);
6997
6998	if (try_charge(memcg, gfp_mask, nr_pages) == 0)
6999		return true;
7000
7001	try_charge(memcg, gfp_mask|__GFP_NOFAIL, nr_pages);
7002	return false;
7003}
7004
7005/**
7006 * mem_cgroup_uncharge_skmem - uncharge socket memory
7007 * @memcg: memcg to uncharge
7008 * @nr_pages: number of pages to uncharge
7009 */
7010void mem_cgroup_uncharge_skmem(struct mem_cgroup *memcg, unsigned int nr_pages)
7011{
7012	if (!cgroup_subsys_on_dfl(memory_cgrp_subsys)) {
7013		page_counter_uncharge(&memcg->tcpmem, nr_pages);
7014		return;
7015	}
7016
7017	mod_memcg_state(memcg, MEMCG_SOCK, -nr_pages);
7018
7019	refill_stock(memcg, nr_pages);
7020}
7021
7022static int __init cgroup_memory(char *s)
7023{
7024	char *token;
7025
7026	while ((token = strsep(&s, ",")) != NULL) {
7027		if (!*token)
7028			continue;
7029		if (!strcmp(token, "nosocket"))
7030			cgroup_memory_nosocket = true;
7031		if (!strcmp(token, "nokmem"))
7032			cgroup_memory_nokmem = true;
7033	}
7034	return 0;
7035}
7036__setup("cgroup.memory=", cgroup_memory);
7037
7038/*
7039 * subsys_initcall() for memory controller.
7040 *
7041 * Some parts like memcg_hotplug_cpu_dead() have to be initialized from this
7042 * context because of lock dependencies (cgroup_lock -> cpu hotplug) but
7043 * basically everything that doesn't depend on a specific mem_cgroup structure
7044 * should be initialized from here.
7045 */
7046static int __init mem_cgroup_init(void)
7047{
7048	int cpu, node;
7049
7050	cpuhp_setup_state_nocalls(CPUHP_MM_MEMCQ_DEAD, "mm/memctrl:dead", NULL,
7051				  memcg_hotplug_cpu_dead);
7052
7053	for_each_possible_cpu(cpu)
7054		INIT_WORK(&per_cpu_ptr(&memcg_stock, cpu)->work,
7055			  drain_local_stock);
7056
7057	for_each_node(node) {
7058		struct mem_cgroup_tree_per_node *rtpn;
7059
7060		rtpn = kzalloc_node(sizeof(*rtpn), GFP_KERNEL,
7061				    node_online(node) ? node : NUMA_NO_NODE);
7062
7063		rtpn->rb_root = RB_ROOT;
7064		rtpn->rb_rightmost = NULL;
7065		spin_lock_init(&rtpn->lock);
7066		soft_limit_tree.rb_tree_per_node[node] = rtpn;
7067	}
7068
7069	return 0;
7070}
7071subsys_initcall(mem_cgroup_init);
7072
7073#ifdef CONFIG_MEMCG_SWAP
7074static struct mem_cgroup *mem_cgroup_id_get_online(struct mem_cgroup *memcg)
7075{
7076	while (!refcount_inc_not_zero(&memcg->id.ref)) {
7077		/*
7078		 * The root cgroup cannot be destroyed, so it's refcount must
7079		 * always be >= 1.
7080		 */
7081		if (WARN_ON_ONCE(memcg == root_mem_cgroup)) {
7082			VM_BUG_ON(1);
7083			break;
7084		}
7085		memcg = parent_mem_cgroup(memcg);
7086		if (!memcg)
7087			memcg = root_mem_cgroup;
7088	}
7089	return memcg;
7090}
7091
7092/**
7093 * mem_cgroup_swapout - transfer a memsw charge to swap
7094 * @page: page whose memsw charge to transfer
7095 * @entry: swap entry to move the charge to
7096 *
7097 * Transfer the memsw charge of @page to @entry.
7098 */
7099void mem_cgroup_swapout(struct page *page, swp_entry_t entry)
7100{
7101	struct mem_cgroup *memcg, *swap_memcg;
7102	unsigned int nr_entries;
7103	unsigned short oldid;
7104
7105	VM_BUG_ON_PAGE(PageLRU(page), page);
7106	VM_BUG_ON_PAGE(page_count(page), page);
7107
7108	if (cgroup_subsys_on_dfl(memory_cgrp_subsys))
7109		return;
7110
7111	memcg = page->mem_cgroup;
7112
7113	/* Readahead page, never charged */
7114	if (!memcg)
7115		return;
7116
7117	/*
7118	 * In case the memcg owning these pages has been offlined and doesn't
7119	 * have an ID allocated to it anymore, charge the closest online
7120	 * ancestor for the swap instead and transfer the memory+swap charge.
7121	 */
7122	swap_memcg = mem_cgroup_id_get_online(memcg);
7123	nr_entries = thp_nr_pages(page);
7124	/* Get references for the tail pages, too */
7125	if (nr_entries > 1)
7126		mem_cgroup_id_get_many(swap_memcg, nr_entries - 1);
7127	oldid = swap_cgroup_record(entry, mem_cgroup_id(swap_memcg),
7128				   nr_entries);
7129	VM_BUG_ON_PAGE(oldid, page);
7130	mod_memcg_state(swap_memcg, MEMCG_SWAP, nr_entries);
7131
7132	page->mem_cgroup = NULL;
7133
7134	if (!mem_cgroup_is_root(memcg))
7135		page_counter_uncharge(&memcg->memory, nr_entries);
7136
7137	if (!cgroup_memory_noswap && memcg != swap_memcg) {
7138		if (!mem_cgroup_is_root(swap_memcg))
7139			page_counter_charge(&swap_memcg->memsw, nr_entries);
7140		page_counter_uncharge(&memcg->memsw, nr_entries);
7141	}
7142
7143	/*
7144	 * Interrupts should be disabled here because the caller holds the
7145	 * i_pages lock which is taken with interrupts-off. It is
7146	 * important here to have the interrupts disabled because it is the
7147	 * only synchronisation we have for updating the per-CPU variables.
7148	 */
7149	VM_BUG_ON(!irqs_disabled());
7150	mem_cgroup_charge_statistics(memcg, page, -nr_entries);
7151	memcg_check_events(memcg, page);
7152
7153	css_put(&memcg->css);
7154}
7155
7156/**
7157 * mem_cgroup_try_charge_swap - try charging swap space for a page
7158 * @page: page being added to swap
7159 * @entry: swap entry to charge
7160 *
7161 * Try to charge @page's memcg for the swap space at @entry.
7162 *
7163 * Returns 0 on success, -ENOMEM on failure.
7164 */
7165int mem_cgroup_try_charge_swap(struct page *page, swp_entry_t entry)
7166{
7167	unsigned int nr_pages = thp_nr_pages(page);
7168	struct page_counter *counter;
7169	struct mem_cgroup *memcg;
7170	unsigned short oldid;
7171
7172	if (!cgroup_subsys_on_dfl(memory_cgrp_subsys))
7173		return 0;
7174
7175	memcg = page->mem_cgroup;
7176
7177	/* Readahead page, never charged */
7178	if (!memcg)
7179		return 0;
7180
7181	if (!entry.val) {
7182		memcg_memory_event(memcg, MEMCG_SWAP_FAIL);
7183		return 0;
7184	}
7185
7186	memcg = mem_cgroup_id_get_online(memcg);
7187
7188	if (!cgroup_memory_noswap && !mem_cgroup_is_root(memcg) &&
7189	    !page_counter_try_charge(&memcg->swap, nr_pages, &counter)) {
7190		memcg_memory_event(memcg, MEMCG_SWAP_MAX);
7191		memcg_memory_event(memcg, MEMCG_SWAP_FAIL);
7192		mem_cgroup_id_put(memcg);
7193		return -ENOMEM;
7194	}
7195
7196	/* Get references for the tail pages, too */
7197	if (nr_pages > 1)
7198		mem_cgroup_id_get_many(memcg, nr_pages - 1);
7199	oldid = swap_cgroup_record(entry, mem_cgroup_id(memcg), nr_pages);
7200	VM_BUG_ON_PAGE(oldid, page);
7201	mod_memcg_state(memcg, MEMCG_SWAP, nr_pages);
7202
7203	return 0;
7204}
7205
7206/**
7207 * mem_cgroup_uncharge_swap - uncharge swap space
7208 * @entry: swap entry to uncharge
7209 * @nr_pages: the amount of swap space to uncharge
7210 */
7211void mem_cgroup_uncharge_swap(swp_entry_t entry, unsigned int nr_pages)
7212{
7213	struct mem_cgroup *memcg;
7214	unsigned short id;
7215
7216	id = swap_cgroup_record(entry, 0, nr_pages);
7217	rcu_read_lock();
7218	memcg = mem_cgroup_from_id(id);
7219	if (memcg) {
7220		if (!cgroup_memory_noswap && !mem_cgroup_is_root(memcg)) {
7221			if (cgroup_subsys_on_dfl(memory_cgrp_subsys))
7222				page_counter_uncharge(&memcg->swap, nr_pages);
7223			else
7224				page_counter_uncharge(&memcg->memsw, nr_pages);
7225		}
7226		mod_memcg_state(memcg, MEMCG_SWAP, -nr_pages);
7227		mem_cgroup_id_put_many(memcg, nr_pages);
7228	}
7229	rcu_read_unlock();
7230}
7231
7232long mem_cgroup_get_nr_swap_pages(struct mem_cgroup *memcg)
7233{
7234	long nr_swap_pages = get_nr_swap_pages();
7235
7236	if (cgroup_memory_noswap || !cgroup_subsys_on_dfl(memory_cgrp_subsys))
7237		return nr_swap_pages;
7238	for (; memcg != root_mem_cgroup; memcg = parent_mem_cgroup(memcg))
7239		nr_swap_pages = min_t(long, nr_swap_pages,
7240				      READ_ONCE(memcg->swap.max) -
7241				      page_counter_read(&memcg->swap));
7242	return nr_swap_pages;
7243}
7244
7245bool mem_cgroup_swap_full(struct page *page)
7246{
7247	struct mem_cgroup *memcg;
7248
7249	VM_BUG_ON_PAGE(!PageLocked(page), page);
7250
7251	if (vm_swap_full())
7252		return true;
7253	if (cgroup_memory_noswap || !cgroup_subsys_on_dfl(memory_cgrp_subsys))
7254		return false;
7255
7256	memcg = page->mem_cgroup;
7257	if (!memcg)
7258		return false;
7259
7260	for (; memcg != root_mem_cgroup; memcg = parent_mem_cgroup(memcg)) {
7261		unsigned long usage = page_counter_read(&memcg->swap);
7262
7263		if (usage * 2 >= READ_ONCE(memcg->swap.high) ||
7264		    usage * 2 >= READ_ONCE(memcg->swap.max))
7265			return true;
7266	}
7267
7268	return false;
7269}
7270
7271static int __init setup_swap_account(char *s)
7272{
 
7273	if (!strcmp(s, "1"))
7274		cgroup_memory_noswap = 0;
7275	else if (!strcmp(s, "0"))
7276		cgroup_memory_noswap = 1;
7277	return 1;
7278}
7279__setup("swapaccount=", setup_swap_account);
7280
7281static u64 swap_current_read(struct cgroup_subsys_state *css,
7282			     struct cftype *cft)
7283{
7284	struct mem_cgroup *memcg = mem_cgroup_from_css(css);
7285
7286	return (u64)page_counter_read(&memcg->swap) * PAGE_SIZE;
7287}
7288
7289static int swap_high_show(struct seq_file *m, void *v)
7290{
7291	return seq_puts_memcg_tunable(m,
7292		READ_ONCE(mem_cgroup_from_seq(m)->swap.high));
7293}
7294
7295static ssize_t swap_high_write(struct kernfs_open_file *of,
7296			       char *buf, size_t nbytes, loff_t off)
7297{
7298	struct mem_cgroup *memcg = mem_cgroup_from_css(of_css(of));
7299	unsigned long high;
7300	int err;
7301
7302	buf = strstrip(buf);
7303	err = page_counter_memparse(buf, "max", &high);
7304	if (err)
7305		return err;
7306
7307	page_counter_set_high(&memcg->swap, high);
7308
7309	return nbytes;
7310}
7311
7312static int swap_max_show(struct seq_file *m, void *v)
7313{
7314	return seq_puts_memcg_tunable(m,
7315		READ_ONCE(mem_cgroup_from_seq(m)->swap.max));
7316}
7317
7318static ssize_t swap_max_write(struct kernfs_open_file *of,
7319			      char *buf, size_t nbytes, loff_t off)
7320{
7321	struct mem_cgroup *memcg = mem_cgroup_from_css(of_css(of));
7322	unsigned long max;
7323	int err;
7324
7325	buf = strstrip(buf);
7326	err = page_counter_memparse(buf, "max", &max);
7327	if (err)
7328		return err;
7329
7330	xchg(&memcg->swap.max, max);
7331
7332	return nbytes;
7333}
7334
7335static int swap_events_show(struct seq_file *m, void *v)
7336{
7337	struct mem_cgroup *memcg = mem_cgroup_from_seq(m);
7338
7339	seq_printf(m, "high %lu\n",
7340		   atomic_long_read(&memcg->memory_events[MEMCG_SWAP_HIGH]));
7341	seq_printf(m, "max %lu\n",
7342		   atomic_long_read(&memcg->memory_events[MEMCG_SWAP_MAX]));
7343	seq_printf(m, "fail %lu\n",
7344		   atomic_long_read(&memcg->memory_events[MEMCG_SWAP_FAIL]));
7345
7346	return 0;
7347}
7348
7349static struct cftype swap_files[] = {
7350	{
7351		.name = "swap.current",
7352		.flags = CFTYPE_NOT_ON_ROOT,
7353		.read_u64 = swap_current_read,
7354	},
7355	{
7356		.name = "swap.high",
7357		.flags = CFTYPE_NOT_ON_ROOT,
7358		.seq_show = swap_high_show,
7359		.write = swap_high_write,
7360	},
7361	{
7362		.name = "swap.max",
7363		.flags = CFTYPE_NOT_ON_ROOT,
7364		.seq_show = swap_max_show,
7365		.write = swap_max_write,
7366	},
7367	{
7368		.name = "swap.events",
7369		.flags = CFTYPE_NOT_ON_ROOT,
7370		.file_offset = offsetof(struct mem_cgroup, swap_events_file),
7371		.seq_show = swap_events_show,
7372	},
7373	{ }	/* terminate */
7374};
7375
7376static struct cftype memsw_files[] = {
7377	{
7378		.name = "memsw.usage_in_bytes",
7379		.private = MEMFILE_PRIVATE(_MEMSWAP, RES_USAGE),
7380		.read_u64 = mem_cgroup_read_u64,
7381	},
7382	{
7383		.name = "memsw.max_usage_in_bytes",
7384		.private = MEMFILE_PRIVATE(_MEMSWAP, RES_MAX_USAGE),
7385		.write = mem_cgroup_reset,
7386		.read_u64 = mem_cgroup_read_u64,
7387	},
7388	{
7389		.name = "memsw.limit_in_bytes",
7390		.private = MEMFILE_PRIVATE(_MEMSWAP, RES_LIMIT),
7391		.write = mem_cgroup_write,
7392		.read_u64 = mem_cgroup_read_u64,
7393	},
7394	{
7395		.name = "memsw.failcnt",
7396		.private = MEMFILE_PRIVATE(_MEMSWAP, RES_FAILCNT),
7397		.write = mem_cgroup_reset,
7398		.read_u64 = mem_cgroup_read_u64,
7399	},
7400	{ },	/* terminate */
7401};
7402
7403/*
7404 * If mem_cgroup_swap_init() is implemented as a subsys_initcall()
7405 * instead of a core_initcall(), this could mean cgroup_memory_noswap still
7406 * remains set to false even when memcg is disabled via "cgroup_disable=memory"
7407 * boot parameter. This may result in premature OOPS inside
7408 * mem_cgroup_get_nr_swap_pages() function in corner cases.
7409 */
7410static int __init mem_cgroup_swap_init(void)
7411{
7412	/* No memory control -> no swap control */
7413	if (mem_cgroup_disabled())
7414		cgroup_memory_noswap = true;
7415
7416	if (cgroup_memory_noswap)
7417		return 0;
7418
7419	WARN_ON(cgroup_add_dfl_cftypes(&memory_cgrp_subsys, swap_files));
7420	WARN_ON(cgroup_add_legacy_cftypes(&memory_cgrp_subsys, memsw_files));
7421
7422	return 0;
7423}
7424core_initcall(mem_cgroup_swap_init);
7425
7426#endif /* CONFIG_MEMCG_SWAP */