Linux Audio

Check our new training course

Loading...
Note: File does not exist in v3.1.
   1// SPDX-License-Identifier: GPL-2.0-only
   2/*
   3 * Copyright (C) 2012 Avionic Design GmbH
   4 * Copyright (C) 2012 NVIDIA CORPORATION.  All rights reserved.
   5 */
   6
   7#include <linux/clk.h>
   8#include <linux/debugfs.h>
   9#include <linux/delay.h>
  10#include <linux/iommu.h>
  11#include <linux/module.h>
  12#include <linux/of_device.h>
  13#include <linux/pm_runtime.h>
  14#include <linux/reset.h>
  15
  16#include <soc/tegra/pmc.h>
  17
  18#include <drm/drm_atomic.h>
  19#include <drm/drm_atomic_helper.h>
  20#include <drm/drm_debugfs.h>
  21#include <drm/drm_fourcc.h>
  22#include <drm/drm_plane_helper.h>
  23#include <drm/drm_vblank.h>
  24
  25#include "dc.h"
  26#include "drm.h"
  27#include "gem.h"
  28#include "hub.h"
  29#include "plane.h"
  30
  31static void tegra_crtc_atomic_destroy_state(struct drm_crtc *crtc,
  32					    struct drm_crtc_state *state);
  33
  34static void tegra_dc_stats_reset(struct tegra_dc_stats *stats)
  35{
  36	stats->frames = 0;
  37	stats->vblank = 0;
  38	stats->underflow = 0;
  39	stats->overflow = 0;
  40}
  41
  42/* Reads the active copy of a register. */
  43static u32 tegra_dc_readl_active(struct tegra_dc *dc, unsigned long offset)
  44{
  45	u32 value;
  46
  47	tegra_dc_writel(dc, READ_MUX, DC_CMD_STATE_ACCESS);
  48	value = tegra_dc_readl(dc, offset);
  49	tegra_dc_writel(dc, 0, DC_CMD_STATE_ACCESS);
  50
  51	return value;
  52}
  53
  54static inline unsigned int tegra_plane_offset(struct tegra_plane *plane,
  55					      unsigned int offset)
  56{
  57	if (offset >= 0x500 && offset <= 0x638) {
  58		offset = 0x000 + (offset - 0x500);
  59		return plane->offset + offset;
  60	}
  61
  62	if (offset >= 0x700 && offset <= 0x719) {
  63		offset = 0x180 + (offset - 0x700);
  64		return plane->offset + offset;
  65	}
  66
  67	if (offset >= 0x800 && offset <= 0x839) {
  68		offset = 0x1c0 + (offset - 0x800);
  69		return plane->offset + offset;
  70	}
  71
  72	dev_WARN(plane->dc->dev, "invalid offset: %x\n", offset);
  73
  74	return plane->offset + offset;
  75}
  76
  77static inline u32 tegra_plane_readl(struct tegra_plane *plane,
  78				    unsigned int offset)
  79{
  80	return tegra_dc_readl(plane->dc, tegra_plane_offset(plane, offset));
  81}
  82
  83static inline void tegra_plane_writel(struct tegra_plane *plane, u32 value,
  84				      unsigned int offset)
  85{
  86	tegra_dc_writel(plane->dc, value, tegra_plane_offset(plane, offset));
  87}
  88
  89bool tegra_dc_has_output(struct tegra_dc *dc, struct device *dev)
  90{
  91	struct device_node *np = dc->dev->of_node;
  92	struct of_phandle_iterator it;
  93	int err;
  94
  95	of_for_each_phandle(&it, err, np, "nvidia,outputs", NULL, 0)
  96		if (it.node == dev->of_node)
  97			return true;
  98
  99	return false;
 100}
 101
 102/*
 103 * Double-buffered registers have two copies: ASSEMBLY and ACTIVE. When the
 104 * *_ACT_REQ bits are set the ASSEMBLY copy is latched into the ACTIVE copy.
 105 * Latching happens mmediately if the display controller is in STOP mode or
 106 * on the next frame boundary otherwise.
 107 *
 108 * Triple-buffered registers have three copies: ASSEMBLY, ARM and ACTIVE. The
 109 * ASSEMBLY copy is latched into the ARM copy immediately after *_UPDATE bits
 110 * are written. When the *_ACT_REQ bits are written, the ARM copy is latched
 111 * into the ACTIVE copy, either immediately if the display controller is in
 112 * STOP mode, or at the next frame boundary otherwise.
 113 */
 114void tegra_dc_commit(struct tegra_dc *dc)
 115{
 116	tegra_dc_writel(dc, GENERAL_ACT_REQ << 8, DC_CMD_STATE_CONTROL);
 117	tegra_dc_writel(dc, GENERAL_ACT_REQ, DC_CMD_STATE_CONTROL);
 118}
 119
 120static inline u32 compute_dda_inc(unsigned int in, unsigned int out, bool v,
 121				  unsigned int bpp)
 122{
 123	fixed20_12 outf = dfixed_init(out);
 124	fixed20_12 inf = dfixed_init(in);
 125	u32 dda_inc;
 126	int max;
 127
 128	if (v)
 129		max = 15;
 130	else {
 131		switch (bpp) {
 132		case 2:
 133			max = 8;
 134			break;
 135
 136		default:
 137			WARN_ON_ONCE(1);
 138			fallthrough;
 139		case 4:
 140			max = 4;
 141			break;
 142		}
 143	}
 144
 145	outf.full = max_t(u32, outf.full - dfixed_const(1), dfixed_const(1));
 146	inf.full -= dfixed_const(1);
 147
 148	dda_inc = dfixed_div(inf, outf);
 149	dda_inc = min_t(u32, dda_inc, dfixed_const(max));
 150
 151	return dda_inc;
 152}
 153
 154static inline u32 compute_initial_dda(unsigned int in)
 155{
 156	fixed20_12 inf = dfixed_init(in);
 157	return dfixed_frac(inf);
 158}
 159
 160static void tegra_plane_setup_blending_legacy(struct tegra_plane *plane)
 161{
 162	u32 background[3] = {
 163		BLEND_WEIGHT1(0) | BLEND_WEIGHT0(0) | BLEND_COLOR_KEY_NONE,
 164		BLEND_WEIGHT1(0) | BLEND_WEIGHT0(0) | BLEND_COLOR_KEY_NONE,
 165		BLEND_WEIGHT1(0) | BLEND_WEIGHT0(0) | BLEND_COLOR_KEY_NONE,
 166	};
 167	u32 foreground = BLEND_WEIGHT1(255) | BLEND_WEIGHT0(255) |
 168			 BLEND_COLOR_KEY_NONE;
 169	u32 blendnokey = BLEND_WEIGHT1(255) | BLEND_WEIGHT0(255);
 170	struct tegra_plane_state *state;
 171	u32 blending[2];
 172	unsigned int i;
 173
 174	/* disable blending for non-overlapping case */
 175	tegra_plane_writel(plane, blendnokey, DC_WIN_BLEND_NOKEY);
 176	tegra_plane_writel(plane, foreground, DC_WIN_BLEND_1WIN);
 177
 178	state = to_tegra_plane_state(plane->base.state);
 179
 180	if (state->opaque) {
 181		/*
 182		 * Since custom fix-weight blending isn't utilized and weight
 183		 * of top window is set to max, we can enforce dependent
 184		 * blending which in this case results in transparent bottom
 185		 * window if top window is opaque and if top window enables
 186		 * alpha blending, then bottom window is getting alpha value
 187		 * of 1 minus the sum of alpha components of the overlapping
 188		 * plane.
 189		 */
 190		background[0] |= BLEND_CONTROL_DEPENDENT;
 191		background[1] |= BLEND_CONTROL_DEPENDENT;
 192
 193		/*
 194		 * The region where three windows overlap is the intersection
 195		 * of the two regions where two windows overlap. It contributes
 196		 * to the area if all of the windows on top of it have an alpha
 197		 * component.
 198		 */
 199		switch (state->base.normalized_zpos) {
 200		case 0:
 201			if (state->blending[0].alpha &&
 202			    state->blending[1].alpha)
 203				background[2] |= BLEND_CONTROL_DEPENDENT;
 204			break;
 205
 206		case 1:
 207			background[2] |= BLEND_CONTROL_DEPENDENT;
 208			break;
 209		}
 210	} else {
 211		/*
 212		 * Enable alpha blending if pixel format has an alpha
 213		 * component.
 214		 */
 215		foreground |= BLEND_CONTROL_ALPHA;
 216
 217		/*
 218		 * If any of the windows on top of this window is opaque, it
 219		 * will completely conceal this window within that area. If
 220		 * top window has an alpha component, it is blended over the
 221		 * bottom window.
 222		 */
 223		for (i = 0; i < 2; i++) {
 224			if (state->blending[i].alpha &&
 225			    state->blending[i].top)
 226				background[i] |= BLEND_CONTROL_DEPENDENT;
 227		}
 228
 229		switch (state->base.normalized_zpos) {
 230		case 0:
 231			if (state->blending[0].alpha &&
 232			    state->blending[1].alpha)
 233				background[2] |= BLEND_CONTROL_DEPENDENT;
 234			break;
 235
 236		case 1:
 237			/*
 238			 * When both middle and topmost windows have an alpha,
 239			 * these windows a mixed together and then the result
 240			 * is blended over the bottom window.
 241			 */
 242			if (state->blending[0].alpha &&
 243			    state->blending[0].top)
 244				background[2] |= BLEND_CONTROL_ALPHA;
 245
 246			if (state->blending[1].alpha &&
 247			    state->blending[1].top)
 248				background[2] |= BLEND_CONTROL_ALPHA;
 249			break;
 250		}
 251	}
 252
 253	switch (state->base.normalized_zpos) {
 254	case 0:
 255		tegra_plane_writel(plane, background[0], DC_WIN_BLEND_2WIN_X);
 256		tegra_plane_writel(plane, background[1], DC_WIN_BLEND_2WIN_Y);
 257		tegra_plane_writel(plane, background[2], DC_WIN_BLEND_3WIN_XY);
 258		break;
 259
 260	case 1:
 261		/*
 262		 * If window B / C is topmost, then X / Y registers are
 263		 * matching the order of blending[...] state indices,
 264		 * otherwise a swap is required.
 265		 */
 266		if (!state->blending[0].top && state->blending[1].top) {
 267			blending[0] = foreground;
 268			blending[1] = background[1];
 269		} else {
 270			blending[0] = background[0];
 271			blending[1] = foreground;
 272		}
 273
 274		tegra_plane_writel(plane, blending[0], DC_WIN_BLEND_2WIN_X);
 275		tegra_plane_writel(plane, blending[1], DC_WIN_BLEND_2WIN_Y);
 276		tegra_plane_writel(plane, background[2], DC_WIN_BLEND_3WIN_XY);
 277		break;
 278
 279	case 2:
 280		tegra_plane_writel(plane, foreground, DC_WIN_BLEND_2WIN_X);
 281		tegra_plane_writel(plane, foreground, DC_WIN_BLEND_2WIN_Y);
 282		tegra_plane_writel(plane, foreground, DC_WIN_BLEND_3WIN_XY);
 283		break;
 284	}
 285}
 286
 287static void tegra_plane_setup_blending(struct tegra_plane *plane,
 288				       const struct tegra_dc_window *window)
 289{
 290	u32 value;
 291
 292	value = BLEND_FACTOR_DST_ALPHA_ZERO | BLEND_FACTOR_SRC_ALPHA_K2 |
 293		BLEND_FACTOR_DST_COLOR_NEG_K1_TIMES_SRC |
 294		BLEND_FACTOR_SRC_COLOR_K1_TIMES_SRC;
 295	tegra_plane_writel(plane, value, DC_WIN_BLEND_MATCH_SELECT);
 296
 297	value = BLEND_FACTOR_DST_ALPHA_ZERO | BLEND_FACTOR_SRC_ALPHA_K2 |
 298		BLEND_FACTOR_DST_COLOR_NEG_K1_TIMES_SRC |
 299		BLEND_FACTOR_SRC_COLOR_K1_TIMES_SRC;
 300	tegra_plane_writel(plane, value, DC_WIN_BLEND_NOMATCH_SELECT);
 301
 302	value = K2(255) | K1(255) | WINDOW_LAYER_DEPTH(255 - window->zpos);
 303	tegra_plane_writel(plane, value, DC_WIN_BLEND_LAYER_CONTROL);
 304}
 305
 306static bool
 307tegra_plane_use_horizontal_filtering(struct tegra_plane *plane,
 308				     const struct tegra_dc_window *window)
 309{
 310	struct tegra_dc *dc = plane->dc;
 311
 312	if (window->src.w == window->dst.w)
 313		return false;
 314
 315	if (plane->index == 0 && dc->soc->has_win_a_without_filters)
 316		return false;
 317
 318	return true;
 319}
 320
 321static bool
 322tegra_plane_use_vertical_filtering(struct tegra_plane *plane,
 323				   const struct tegra_dc_window *window)
 324{
 325	struct tegra_dc *dc = plane->dc;
 326
 327	if (window->src.h == window->dst.h)
 328		return false;
 329
 330	if (plane->index == 0 && dc->soc->has_win_a_without_filters)
 331		return false;
 332
 333	if (plane->index == 2 && dc->soc->has_win_c_without_vert_filter)
 334		return false;
 335
 336	return true;
 337}
 338
 339static void tegra_dc_setup_window(struct tegra_plane *plane,
 340				  const struct tegra_dc_window *window)
 341{
 342	unsigned h_offset, v_offset, h_size, v_size, h_dda, v_dda, bpp;
 343	struct tegra_dc *dc = plane->dc;
 344	bool yuv, planar;
 345	u32 value;
 346
 347	/*
 348	 * For YUV planar modes, the number of bytes per pixel takes into
 349	 * account only the luma component and therefore is 1.
 350	 */
 351	yuv = tegra_plane_format_is_yuv(window->format, &planar);
 352	if (!yuv)
 353		bpp = window->bits_per_pixel / 8;
 354	else
 355		bpp = planar ? 1 : 2;
 356
 357	tegra_plane_writel(plane, window->format, DC_WIN_COLOR_DEPTH);
 358	tegra_plane_writel(plane, window->swap, DC_WIN_BYTE_SWAP);
 359
 360	value = V_POSITION(window->dst.y) | H_POSITION(window->dst.x);
 361	tegra_plane_writel(plane, value, DC_WIN_POSITION);
 362
 363	value = V_SIZE(window->dst.h) | H_SIZE(window->dst.w);
 364	tegra_plane_writel(plane, value, DC_WIN_SIZE);
 365
 366	h_offset = window->src.x * bpp;
 367	v_offset = window->src.y;
 368	h_size = window->src.w * bpp;
 369	v_size = window->src.h;
 370
 371	if (window->reflect_x)
 372		h_offset += (window->src.w - 1) * bpp;
 373
 374	if (window->reflect_y)
 375		v_offset += window->src.h - 1;
 376
 377	value = V_PRESCALED_SIZE(v_size) | H_PRESCALED_SIZE(h_size);
 378	tegra_plane_writel(plane, value, DC_WIN_PRESCALED_SIZE);
 379
 380	/*
 381	 * For DDA computations the number of bytes per pixel for YUV planar
 382	 * modes needs to take into account all Y, U and V components.
 383	 */
 384	if (yuv && planar)
 385		bpp = 2;
 386
 387	h_dda = compute_dda_inc(window->src.w, window->dst.w, false, bpp);
 388	v_dda = compute_dda_inc(window->src.h, window->dst.h, true, bpp);
 389
 390	value = V_DDA_INC(v_dda) | H_DDA_INC(h_dda);
 391	tegra_plane_writel(plane, value, DC_WIN_DDA_INC);
 392
 393	h_dda = compute_initial_dda(window->src.x);
 394	v_dda = compute_initial_dda(window->src.y);
 395
 396	tegra_plane_writel(plane, h_dda, DC_WIN_H_INITIAL_DDA);
 397	tegra_plane_writel(plane, v_dda, DC_WIN_V_INITIAL_DDA);
 398
 399	tegra_plane_writel(plane, 0, DC_WIN_UV_BUF_STRIDE);
 400	tegra_plane_writel(plane, 0, DC_WIN_BUF_STRIDE);
 401
 402	tegra_plane_writel(plane, window->base[0], DC_WINBUF_START_ADDR);
 403
 404	if (yuv && planar) {
 405		tegra_plane_writel(plane, window->base[1], DC_WINBUF_START_ADDR_U);
 406		tegra_plane_writel(plane, window->base[2], DC_WINBUF_START_ADDR_V);
 407		value = window->stride[1] << 16 | window->stride[0];
 408		tegra_plane_writel(plane, value, DC_WIN_LINE_STRIDE);
 409	} else {
 410		tegra_plane_writel(plane, window->stride[0], DC_WIN_LINE_STRIDE);
 411	}
 412
 413	tegra_plane_writel(plane, h_offset, DC_WINBUF_ADDR_H_OFFSET);
 414	tegra_plane_writel(plane, v_offset, DC_WINBUF_ADDR_V_OFFSET);
 415
 416	if (dc->soc->supports_block_linear) {
 417		unsigned long height = window->tiling.value;
 418
 419		switch (window->tiling.mode) {
 420		case TEGRA_BO_TILING_MODE_PITCH:
 421			value = DC_WINBUF_SURFACE_KIND_PITCH;
 422			break;
 423
 424		case TEGRA_BO_TILING_MODE_TILED:
 425			value = DC_WINBUF_SURFACE_KIND_TILED;
 426			break;
 427
 428		case TEGRA_BO_TILING_MODE_BLOCK:
 429			value = DC_WINBUF_SURFACE_KIND_BLOCK_HEIGHT(height) |
 430				DC_WINBUF_SURFACE_KIND_BLOCK;
 431			break;
 432		}
 433
 434		tegra_plane_writel(plane, value, DC_WINBUF_SURFACE_KIND);
 435	} else {
 436		switch (window->tiling.mode) {
 437		case TEGRA_BO_TILING_MODE_PITCH:
 438			value = DC_WIN_BUFFER_ADDR_MODE_LINEAR_UV |
 439				DC_WIN_BUFFER_ADDR_MODE_LINEAR;
 440			break;
 441
 442		case TEGRA_BO_TILING_MODE_TILED:
 443			value = DC_WIN_BUFFER_ADDR_MODE_TILE_UV |
 444				DC_WIN_BUFFER_ADDR_MODE_TILE;
 445			break;
 446
 447		case TEGRA_BO_TILING_MODE_BLOCK:
 448			/*
 449			 * No need to handle this here because ->atomic_check
 450			 * will already have filtered it out.
 451			 */
 452			break;
 453		}
 454
 455		tegra_plane_writel(plane, value, DC_WIN_BUFFER_ADDR_MODE);
 456	}
 457
 458	value = WIN_ENABLE;
 459
 460	if (yuv) {
 461		/* setup default colorspace conversion coefficients */
 462		tegra_plane_writel(plane, 0x00f0, DC_WIN_CSC_YOF);
 463		tegra_plane_writel(plane, 0x012a, DC_WIN_CSC_KYRGB);
 464		tegra_plane_writel(plane, 0x0000, DC_WIN_CSC_KUR);
 465		tegra_plane_writel(plane, 0x0198, DC_WIN_CSC_KVR);
 466		tegra_plane_writel(plane, 0x039b, DC_WIN_CSC_KUG);
 467		tegra_plane_writel(plane, 0x032f, DC_WIN_CSC_KVG);
 468		tegra_plane_writel(plane, 0x0204, DC_WIN_CSC_KUB);
 469		tegra_plane_writel(plane, 0x0000, DC_WIN_CSC_KVB);
 470
 471		value |= CSC_ENABLE;
 472	} else if (window->bits_per_pixel < 24) {
 473		value |= COLOR_EXPAND;
 474	}
 475
 476	if (window->reflect_x)
 477		value |= H_DIRECTION;
 478
 479	if (window->reflect_y)
 480		value |= V_DIRECTION;
 481
 482	if (tegra_plane_use_horizontal_filtering(plane, window)) {
 483		/*
 484		 * Enable horizontal 6-tap filter and set filtering
 485		 * coefficients to the default values defined in TRM.
 486		 */
 487		tegra_plane_writel(plane, 0x00008000, DC_WIN_H_FILTER_P(0));
 488		tegra_plane_writel(plane, 0x3e087ce1, DC_WIN_H_FILTER_P(1));
 489		tegra_plane_writel(plane, 0x3b117ac1, DC_WIN_H_FILTER_P(2));
 490		tegra_plane_writel(plane, 0x591b73aa, DC_WIN_H_FILTER_P(3));
 491		tegra_plane_writel(plane, 0x57256d9a, DC_WIN_H_FILTER_P(4));
 492		tegra_plane_writel(plane, 0x552f668b, DC_WIN_H_FILTER_P(5));
 493		tegra_plane_writel(plane, 0x73385e8b, DC_WIN_H_FILTER_P(6));
 494		tegra_plane_writel(plane, 0x72435583, DC_WIN_H_FILTER_P(7));
 495		tegra_plane_writel(plane, 0x714c4c8b, DC_WIN_H_FILTER_P(8));
 496		tegra_plane_writel(plane, 0x70554393, DC_WIN_H_FILTER_P(9));
 497		tegra_plane_writel(plane, 0x715e389b, DC_WIN_H_FILTER_P(10));
 498		tegra_plane_writel(plane, 0x71662faa, DC_WIN_H_FILTER_P(11));
 499		tegra_plane_writel(plane, 0x536d25ba, DC_WIN_H_FILTER_P(12));
 500		tegra_plane_writel(plane, 0x55731bca, DC_WIN_H_FILTER_P(13));
 501		tegra_plane_writel(plane, 0x387a11d9, DC_WIN_H_FILTER_P(14));
 502		tegra_plane_writel(plane, 0x3c7c08f1, DC_WIN_H_FILTER_P(15));
 503
 504		value |= H_FILTER;
 505	}
 506
 507	if (tegra_plane_use_vertical_filtering(plane, window)) {
 508		unsigned int i, k;
 509
 510		/*
 511		 * Enable vertical 2-tap filter and set filtering
 512		 * coefficients to the default values defined in TRM.
 513		 */
 514		for (i = 0, k = 128; i < 16; i++, k -= 8)
 515			tegra_plane_writel(plane, k, DC_WIN_V_FILTER_P(i));
 516
 517		value |= V_FILTER;
 518	}
 519
 520	tegra_plane_writel(plane, value, DC_WIN_WIN_OPTIONS);
 521
 522	if (dc->soc->has_legacy_blending)
 523		tegra_plane_setup_blending_legacy(plane);
 524	else
 525		tegra_plane_setup_blending(plane, window);
 526}
 527
 528static const u32 tegra20_primary_formats[] = {
 529	DRM_FORMAT_ARGB4444,
 530	DRM_FORMAT_ARGB1555,
 531	DRM_FORMAT_RGB565,
 532	DRM_FORMAT_RGBA5551,
 533	DRM_FORMAT_ABGR8888,
 534	DRM_FORMAT_ARGB8888,
 535	/* non-native formats */
 536	DRM_FORMAT_XRGB1555,
 537	DRM_FORMAT_RGBX5551,
 538	DRM_FORMAT_XBGR8888,
 539	DRM_FORMAT_XRGB8888,
 540};
 541
 542static const u64 tegra20_modifiers[] = {
 543	DRM_FORMAT_MOD_LINEAR,
 544	DRM_FORMAT_MOD_NVIDIA_TEGRA_TILED,
 545	DRM_FORMAT_MOD_INVALID
 546};
 547
 548static const u32 tegra114_primary_formats[] = {
 549	DRM_FORMAT_ARGB4444,
 550	DRM_FORMAT_ARGB1555,
 551	DRM_FORMAT_RGB565,
 552	DRM_FORMAT_RGBA5551,
 553	DRM_FORMAT_ABGR8888,
 554	DRM_FORMAT_ARGB8888,
 555	/* new on Tegra114 */
 556	DRM_FORMAT_ABGR4444,
 557	DRM_FORMAT_ABGR1555,
 558	DRM_FORMAT_BGRA5551,
 559	DRM_FORMAT_XRGB1555,
 560	DRM_FORMAT_RGBX5551,
 561	DRM_FORMAT_XBGR1555,
 562	DRM_FORMAT_BGRX5551,
 563	DRM_FORMAT_BGR565,
 564	DRM_FORMAT_BGRA8888,
 565	DRM_FORMAT_RGBA8888,
 566	DRM_FORMAT_XRGB8888,
 567	DRM_FORMAT_XBGR8888,
 568};
 569
 570static const u32 tegra124_primary_formats[] = {
 571	DRM_FORMAT_ARGB4444,
 572	DRM_FORMAT_ARGB1555,
 573	DRM_FORMAT_RGB565,
 574	DRM_FORMAT_RGBA5551,
 575	DRM_FORMAT_ABGR8888,
 576	DRM_FORMAT_ARGB8888,
 577	/* new on Tegra114 */
 578	DRM_FORMAT_ABGR4444,
 579	DRM_FORMAT_ABGR1555,
 580	DRM_FORMAT_BGRA5551,
 581	DRM_FORMAT_XRGB1555,
 582	DRM_FORMAT_RGBX5551,
 583	DRM_FORMAT_XBGR1555,
 584	DRM_FORMAT_BGRX5551,
 585	DRM_FORMAT_BGR565,
 586	DRM_FORMAT_BGRA8888,
 587	DRM_FORMAT_RGBA8888,
 588	DRM_FORMAT_XRGB8888,
 589	DRM_FORMAT_XBGR8888,
 590	/* new on Tegra124 */
 591	DRM_FORMAT_RGBX8888,
 592	DRM_FORMAT_BGRX8888,
 593};
 594
 595static const u64 tegra124_modifiers[] = {
 596	DRM_FORMAT_MOD_LINEAR,
 597	DRM_FORMAT_MOD_NVIDIA_16BX2_BLOCK(0),
 598	DRM_FORMAT_MOD_NVIDIA_16BX2_BLOCK(1),
 599	DRM_FORMAT_MOD_NVIDIA_16BX2_BLOCK(2),
 600	DRM_FORMAT_MOD_NVIDIA_16BX2_BLOCK(3),
 601	DRM_FORMAT_MOD_NVIDIA_16BX2_BLOCK(4),
 602	DRM_FORMAT_MOD_NVIDIA_16BX2_BLOCK(5),
 603	DRM_FORMAT_MOD_INVALID
 604};
 605
 606static int tegra_plane_atomic_check(struct drm_plane *plane,
 607				    struct drm_plane_state *state)
 608{
 609	struct tegra_plane_state *plane_state = to_tegra_plane_state(state);
 610	unsigned int supported_rotation = DRM_MODE_ROTATE_0 |
 611					  DRM_MODE_REFLECT_X |
 612					  DRM_MODE_REFLECT_Y;
 613	unsigned int rotation = state->rotation;
 614	struct tegra_bo_tiling *tiling = &plane_state->tiling;
 615	struct tegra_plane *tegra = to_tegra_plane(plane);
 616	struct tegra_dc *dc = to_tegra_dc(state->crtc);
 617	int err;
 618
 619	/* no need for further checks if the plane is being disabled */
 620	if (!state->crtc)
 621		return 0;
 622
 623	err = tegra_plane_format(state->fb->format->format,
 624				 &plane_state->format,
 625				 &plane_state->swap);
 626	if (err < 0)
 627		return err;
 628
 629	/*
 630	 * Tegra20 and Tegra30 are special cases here because they support
 631	 * only variants of specific formats with an alpha component, but not
 632	 * the corresponding opaque formats. However, the opaque formats can
 633	 * be emulated by disabling alpha blending for the plane.
 634	 */
 635	if (dc->soc->has_legacy_blending) {
 636		err = tegra_plane_setup_legacy_state(tegra, plane_state);
 637		if (err < 0)
 638			return err;
 639	}
 640
 641	err = tegra_fb_get_tiling(state->fb, tiling);
 642	if (err < 0)
 643		return err;
 644
 645	if (tiling->mode == TEGRA_BO_TILING_MODE_BLOCK &&
 646	    !dc->soc->supports_block_linear) {
 647		DRM_ERROR("hardware doesn't support block linear mode\n");
 648		return -EINVAL;
 649	}
 650
 651	/*
 652	 * Older userspace used custom BO flag in order to specify the Y
 653	 * reflection, while modern userspace uses the generic DRM rotation
 654	 * property in order to achieve the same result.  The legacy BO flag
 655	 * duplicates the DRM rotation property when both are set.
 656	 */
 657	if (tegra_fb_is_bottom_up(state->fb))
 658		rotation |= DRM_MODE_REFLECT_Y;
 659
 660	rotation = drm_rotation_simplify(rotation, supported_rotation);
 661
 662	if (rotation & DRM_MODE_REFLECT_X)
 663		plane_state->reflect_x = true;
 664	else
 665		plane_state->reflect_x = false;
 666
 667	if (rotation & DRM_MODE_REFLECT_Y)
 668		plane_state->reflect_y = true;
 669	else
 670		plane_state->reflect_y = false;
 671
 672	/*
 673	 * Tegra doesn't support different strides for U and V planes so we
 674	 * error out if the user tries to display a framebuffer with such a
 675	 * configuration.
 676	 */
 677	if (state->fb->format->num_planes > 2) {
 678		if (state->fb->pitches[2] != state->fb->pitches[1]) {
 679			DRM_ERROR("unsupported UV-plane configuration\n");
 680			return -EINVAL;
 681		}
 682	}
 683
 684	err = tegra_plane_state_add(tegra, state);
 685	if (err < 0)
 686		return err;
 687
 688	return 0;
 689}
 690
 691static void tegra_plane_atomic_disable(struct drm_plane *plane,
 692				       struct drm_plane_state *old_state)
 693{
 694	struct tegra_plane *p = to_tegra_plane(plane);
 695	u32 value;
 696
 697	/* rien ne va plus */
 698	if (!old_state || !old_state->crtc)
 699		return;
 700
 701	value = tegra_plane_readl(p, DC_WIN_WIN_OPTIONS);
 702	value &= ~WIN_ENABLE;
 703	tegra_plane_writel(p, value, DC_WIN_WIN_OPTIONS);
 704}
 705
 706static void tegra_plane_atomic_update(struct drm_plane *plane,
 707				      struct drm_plane_state *old_state)
 708{
 709	struct tegra_plane_state *state = to_tegra_plane_state(plane->state);
 710	struct drm_framebuffer *fb = plane->state->fb;
 711	struct tegra_plane *p = to_tegra_plane(plane);
 712	struct tegra_dc_window window;
 713	unsigned int i;
 714
 715	/* rien ne va plus */
 716	if (!plane->state->crtc || !plane->state->fb)
 717		return;
 718
 719	if (!plane->state->visible)
 720		return tegra_plane_atomic_disable(plane, old_state);
 721
 722	memset(&window, 0, sizeof(window));
 723	window.src.x = plane->state->src.x1 >> 16;
 724	window.src.y = plane->state->src.y1 >> 16;
 725	window.src.w = drm_rect_width(&plane->state->src) >> 16;
 726	window.src.h = drm_rect_height(&plane->state->src) >> 16;
 727	window.dst.x = plane->state->dst.x1;
 728	window.dst.y = plane->state->dst.y1;
 729	window.dst.w = drm_rect_width(&plane->state->dst);
 730	window.dst.h = drm_rect_height(&plane->state->dst);
 731	window.bits_per_pixel = fb->format->cpp[0] * 8;
 732	window.reflect_x = state->reflect_x;
 733	window.reflect_y = state->reflect_y;
 734
 735	/* copy from state */
 736	window.zpos = plane->state->normalized_zpos;
 737	window.tiling = state->tiling;
 738	window.format = state->format;
 739	window.swap = state->swap;
 740
 741	for (i = 0; i < fb->format->num_planes; i++) {
 742		window.base[i] = state->iova[i] + fb->offsets[i];
 743
 744		/*
 745		 * Tegra uses a shared stride for UV planes. Framebuffers are
 746		 * already checked for this in the tegra_plane_atomic_check()
 747		 * function, so it's safe to ignore the V-plane pitch here.
 748		 */
 749		if (i < 2)
 750			window.stride[i] = fb->pitches[i];
 751	}
 752
 753	tegra_dc_setup_window(p, &window);
 754}
 755
 756static const struct drm_plane_helper_funcs tegra_plane_helper_funcs = {
 757	.prepare_fb = tegra_plane_prepare_fb,
 758	.cleanup_fb = tegra_plane_cleanup_fb,
 759	.atomic_check = tegra_plane_atomic_check,
 760	.atomic_disable = tegra_plane_atomic_disable,
 761	.atomic_update = tegra_plane_atomic_update,
 762};
 763
 764static unsigned long tegra_plane_get_possible_crtcs(struct drm_device *drm)
 765{
 766	/*
 767	 * Ideally this would use drm_crtc_mask(), but that would require the
 768	 * CRTC to already be in the mode_config's list of CRTCs. However, it
 769	 * will only be added to that list in the drm_crtc_init_with_planes()
 770	 * (in tegra_dc_init()), which in turn requires registration of these
 771	 * planes. So we have ourselves a nice little chicken and egg problem
 772	 * here.
 773	 *
 774	 * We work around this by manually creating the mask from the number
 775	 * of CRTCs that have been registered, and should therefore always be
 776	 * the same as drm_crtc_index() after registration.
 777	 */
 778	return 1 << drm->mode_config.num_crtc;
 779}
 780
 781static struct drm_plane *tegra_primary_plane_create(struct drm_device *drm,
 782						    struct tegra_dc *dc)
 783{
 784	unsigned long possible_crtcs = tegra_plane_get_possible_crtcs(drm);
 785	enum drm_plane_type type = DRM_PLANE_TYPE_PRIMARY;
 786	struct tegra_plane *plane;
 787	unsigned int num_formats;
 788	const u64 *modifiers;
 789	const u32 *formats;
 790	int err;
 791
 792	plane = kzalloc(sizeof(*plane), GFP_KERNEL);
 793	if (!plane)
 794		return ERR_PTR(-ENOMEM);
 795
 796	/* Always use window A as primary window */
 797	plane->offset = 0xa00;
 798	plane->index = 0;
 799	plane->dc = dc;
 800
 801	num_formats = dc->soc->num_primary_formats;
 802	formats = dc->soc->primary_formats;
 803	modifiers = dc->soc->modifiers;
 804
 805	err = drm_universal_plane_init(drm, &plane->base, possible_crtcs,
 806				       &tegra_plane_funcs, formats,
 807				       num_formats, modifiers, type, NULL);
 808	if (err < 0) {
 809		kfree(plane);
 810		return ERR_PTR(err);
 811	}
 812
 813	drm_plane_helper_add(&plane->base, &tegra_plane_helper_funcs);
 814	drm_plane_create_zpos_property(&plane->base, plane->index, 0, 255);
 815
 816	err = drm_plane_create_rotation_property(&plane->base,
 817						 DRM_MODE_ROTATE_0,
 818						 DRM_MODE_ROTATE_0 |
 819						 DRM_MODE_ROTATE_180 |
 820						 DRM_MODE_REFLECT_X |
 821						 DRM_MODE_REFLECT_Y);
 822	if (err < 0)
 823		dev_err(dc->dev, "failed to create rotation property: %d\n",
 824			err);
 825
 826	return &plane->base;
 827}
 828
 829static const u32 tegra_cursor_plane_formats[] = {
 830	DRM_FORMAT_RGBA8888,
 831};
 832
 833static int tegra_cursor_atomic_check(struct drm_plane *plane,
 834				     struct drm_plane_state *state)
 835{
 836	struct tegra_plane *tegra = to_tegra_plane(plane);
 837	int err;
 838
 839	/* no need for further checks if the plane is being disabled */
 840	if (!state->crtc)
 841		return 0;
 842
 843	/* scaling not supported for cursor */
 844	if ((state->src_w >> 16 != state->crtc_w) ||
 845	    (state->src_h >> 16 != state->crtc_h))
 846		return -EINVAL;
 847
 848	/* only square cursors supported */
 849	if (state->src_w != state->src_h)
 850		return -EINVAL;
 851
 852	if (state->crtc_w != 32 && state->crtc_w != 64 &&
 853	    state->crtc_w != 128 && state->crtc_w != 256)
 854		return -EINVAL;
 855
 856	err = tegra_plane_state_add(tegra, state);
 857	if (err < 0)
 858		return err;
 859
 860	return 0;
 861}
 862
 863static void tegra_cursor_atomic_update(struct drm_plane *plane,
 864				       struct drm_plane_state *old_state)
 865{
 866	struct tegra_plane_state *state = to_tegra_plane_state(plane->state);
 867	struct tegra_dc *dc = to_tegra_dc(plane->state->crtc);
 868	u32 value = CURSOR_CLIP_DISPLAY;
 869
 870	/* rien ne va plus */
 871	if (!plane->state->crtc || !plane->state->fb)
 872		return;
 873
 874	switch (plane->state->crtc_w) {
 875	case 32:
 876		value |= CURSOR_SIZE_32x32;
 877		break;
 878
 879	case 64:
 880		value |= CURSOR_SIZE_64x64;
 881		break;
 882
 883	case 128:
 884		value |= CURSOR_SIZE_128x128;
 885		break;
 886
 887	case 256:
 888		value |= CURSOR_SIZE_256x256;
 889		break;
 890
 891	default:
 892		WARN(1, "cursor size %ux%u not supported\n",
 893		     plane->state->crtc_w, plane->state->crtc_h);
 894		return;
 895	}
 896
 897	value |= (state->iova[0] >> 10) & 0x3fffff;
 898	tegra_dc_writel(dc, value, DC_DISP_CURSOR_START_ADDR);
 899
 900#ifdef CONFIG_ARCH_DMA_ADDR_T_64BIT
 901	value = (state->iova[0] >> 32) & 0x3;
 902	tegra_dc_writel(dc, value, DC_DISP_CURSOR_START_ADDR_HI);
 903#endif
 904
 905	/* enable cursor and set blend mode */
 906	value = tegra_dc_readl(dc, DC_DISP_DISP_WIN_OPTIONS);
 907	value |= CURSOR_ENABLE;
 908	tegra_dc_writel(dc, value, DC_DISP_DISP_WIN_OPTIONS);
 909
 910	value = tegra_dc_readl(dc, DC_DISP_BLEND_CURSOR_CONTROL);
 911	value &= ~CURSOR_DST_BLEND_MASK;
 912	value &= ~CURSOR_SRC_BLEND_MASK;
 913	value |= CURSOR_MODE_NORMAL;
 914	value |= CURSOR_DST_BLEND_NEG_K1_TIMES_SRC;
 915	value |= CURSOR_SRC_BLEND_K1_TIMES_SRC;
 916	value |= CURSOR_ALPHA;
 917	tegra_dc_writel(dc, value, DC_DISP_BLEND_CURSOR_CONTROL);
 918
 919	/* position the cursor */
 920	value = (plane->state->crtc_y & 0x3fff) << 16 |
 921		(plane->state->crtc_x & 0x3fff);
 922	tegra_dc_writel(dc, value, DC_DISP_CURSOR_POSITION);
 923}
 924
 925static void tegra_cursor_atomic_disable(struct drm_plane *plane,
 926					struct drm_plane_state *old_state)
 927{
 928	struct tegra_dc *dc;
 929	u32 value;
 930
 931	/* rien ne va plus */
 932	if (!old_state || !old_state->crtc)
 933		return;
 934
 935	dc = to_tegra_dc(old_state->crtc);
 936
 937	value = tegra_dc_readl(dc, DC_DISP_DISP_WIN_OPTIONS);
 938	value &= ~CURSOR_ENABLE;
 939	tegra_dc_writel(dc, value, DC_DISP_DISP_WIN_OPTIONS);
 940}
 941
 942static const struct drm_plane_helper_funcs tegra_cursor_plane_helper_funcs = {
 943	.prepare_fb = tegra_plane_prepare_fb,
 944	.cleanup_fb = tegra_plane_cleanup_fb,
 945	.atomic_check = tegra_cursor_atomic_check,
 946	.atomic_update = tegra_cursor_atomic_update,
 947	.atomic_disable = tegra_cursor_atomic_disable,
 948};
 949
 950static struct drm_plane *tegra_dc_cursor_plane_create(struct drm_device *drm,
 951						      struct tegra_dc *dc)
 952{
 953	unsigned long possible_crtcs = tegra_plane_get_possible_crtcs(drm);
 954	struct tegra_plane *plane;
 955	unsigned int num_formats;
 956	const u32 *formats;
 957	int err;
 958
 959	plane = kzalloc(sizeof(*plane), GFP_KERNEL);
 960	if (!plane)
 961		return ERR_PTR(-ENOMEM);
 962
 963	/*
 964	 * This index is kind of fake. The cursor isn't a regular plane, but
 965	 * its update and activation request bits in DC_CMD_STATE_CONTROL do
 966	 * use the same programming. Setting this fake index here allows the
 967	 * code in tegra_add_plane_state() to do the right thing without the
 968	 * need to special-casing the cursor plane.
 969	 */
 970	plane->index = 6;
 971	plane->dc = dc;
 972
 973	num_formats = ARRAY_SIZE(tegra_cursor_plane_formats);
 974	formats = tegra_cursor_plane_formats;
 975
 976	err = drm_universal_plane_init(drm, &plane->base, possible_crtcs,
 977				       &tegra_plane_funcs, formats,
 978				       num_formats, NULL,
 979				       DRM_PLANE_TYPE_CURSOR, NULL);
 980	if (err < 0) {
 981		kfree(plane);
 982		return ERR_PTR(err);
 983	}
 984
 985	drm_plane_helper_add(&plane->base, &tegra_cursor_plane_helper_funcs);
 986	drm_plane_create_zpos_immutable_property(&plane->base, 255);
 987
 988	return &plane->base;
 989}
 990
 991static const u32 tegra20_overlay_formats[] = {
 992	DRM_FORMAT_ARGB4444,
 993	DRM_FORMAT_ARGB1555,
 994	DRM_FORMAT_RGB565,
 995	DRM_FORMAT_RGBA5551,
 996	DRM_FORMAT_ABGR8888,
 997	DRM_FORMAT_ARGB8888,
 998	/* non-native formats */
 999	DRM_FORMAT_XRGB1555,
1000	DRM_FORMAT_RGBX5551,
1001	DRM_FORMAT_XBGR8888,
1002	DRM_FORMAT_XRGB8888,
1003	/* planar formats */
1004	DRM_FORMAT_UYVY,
1005	DRM_FORMAT_YUYV,
1006	DRM_FORMAT_YUV420,
1007	DRM_FORMAT_YUV422,
1008};
1009
1010static const u32 tegra114_overlay_formats[] = {
1011	DRM_FORMAT_ARGB4444,
1012	DRM_FORMAT_ARGB1555,
1013	DRM_FORMAT_RGB565,
1014	DRM_FORMAT_RGBA5551,
1015	DRM_FORMAT_ABGR8888,
1016	DRM_FORMAT_ARGB8888,
1017	/* new on Tegra114 */
1018	DRM_FORMAT_ABGR4444,
1019	DRM_FORMAT_ABGR1555,
1020	DRM_FORMAT_BGRA5551,
1021	DRM_FORMAT_XRGB1555,
1022	DRM_FORMAT_RGBX5551,
1023	DRM_FORMAT_XBGR1555,
1024	DRM_FORMAT_BGRX5551,
1025	DRM_FORMAT_BGR565,
1026	DRM_FORMAT_BGRA8888,
1027	DRM_FORMAT_RGBA8888,
1028	DRM_FORMAT_XRGB8888,
1029	DRM_FORMAT_XBGR8888,
1030	/* planar formats */
1031	DRM_FORMAT_UYVY,
1032	DRM_FORMAT_YUYV,
1033	DRM_FORMAT_YUV420,
1034	DRM_FORMAT_YUV422,
1035};
1036
1037static const u32 tegra124_overlay_formats[] = {
1038	DRM_FORMAT_ARGB4444,
1039	DRM_FORMAT_ARGB1555,
1040	DRM_FORMAT_RGB565,
1041	DRM_FORMAT_RGBA5551,
1042	DRM_FORMAT_ABGR8888,
1043	DRM_FORMAT_ARGB8888,
1044	/* new on Tegra114 */
1045	DRM_FORMAT_ABGR4444,
1046	DRM_FORMAT_ABGR1555,
1047	DRM_FORMAT_BGRA5551,
1048	DRM_FORMAT_XRGB1555,
1049	DRM_FORMAT_RGBX5551,
1050	DRM_FORMAT_XBGR1555,
1051	DRM_FORMAT_BGRX5551,
1052	DRM_FORMAT_BGR565,
1053	DRM_FORMAT_BGRA8888,
1054	DRM_FORMAT_RGBA8888,
1055	DRM_FORMAT_XRGB8888,
1056	DRM_FORMAT_XBGR8888,
1057	/* new on Tegra124 */
1058	DRM_FORMAT_RGBX8888,
1059	DRM_FORMAT_BGRX8888,
1060	/* planar formats */
1061	DRM_FORMAT_UYVY,
1062	DRM_FORMAT_YUYV,
1063	DRM_FORMAT_YUV420,
1064	DRM_FORMAT_YUV422,
1065};
1066
1067static struct drm_plane *tegra_dc_overlay_plane_create(struct drm_device *drm,
1068						       struct tegra_dc *dc,
1069						       unsigned int index,
1070						       bool cursor)
1071{
1072	unsigned long possible_crtcs = tegra_plane_get_possible_crtcs(drm);
1073	struct tegra_plane *plane;
1074	unsigned int num_formats;
1075	enum drm_plane_type type;
1076	const u32 *formats;
1077	int err;
1078
1079	plane = kzalloc(sizeof(*plane), GFP_KERNEL);
1080	if (!plane)
1081		return ERR_PTR(-ENOMEM);
1082
1083	plane->offset = 0xa00 + 0x200 * index;
1084	plane->index = index;
1085	plane->dc = dc;
1086
1087	num_formats = dc->soc->num_overlay_formats;
1088	formats = dc->soc->overlay_formats;
1089
1090	if (!cursor)
1091		type = DRM_PLANE_TYPE_OVERLAY;
1092	else
1093		type = DRM_PLANE_TYPE_CURSOR;
1094
1095	err = drm_universal_plane_init(drm, &plane->base, possible_crtcs,
1096				       &tegra_plane_funcs, formats,
1097				       num_formats, NULL, type, NULL);
1098	if (err < 0) {
1099		kfree(plane);
1100		return ERR_PTR(err);
1101	}
1102
1103	drm_plane_helper_add(&plane->base, &tegra_plane_helper_funcs);
1104	drm_plane_create_zpos_property(&plane->base, plane->index, 0, 255);
1105
1106	err = drm_plane_create_rotation_property(&plane->base,
1107						 DRM_MODE_ROTATE_0,
1108						 DRM_MODE_ROTATE_0 |
1109						 DRM_MODE_ROTATE_180 |
1110						 DRM_MODE_REFLECT_X |
1111						 DRM_MODE_REFLECT_Y);
1112	if (err < 0)
1113		dev_err(dc->dev, "failed to create rotation property: %d\n",
1114			err);
1115
1116	return &plane->base;
1117}
1118
1119static struct drm_plane *tegra_dc_add_shared_planes(struct drm_device *drm,
1120						    struct tegra_dc *dc)
1121{
1122	struct drm_plane *plane, *primary = NULL;
1123	unsigned int i, j;
1124
1125	for (i = 0; i < dc->soc->num_wgrps; i++) {
1126		const struct tegra_windowgroup_soc *wgrp = &dc->soc->wgrps[i];
1127
1128		if (wgrp->dc == dc->pipe) {
1129			for (j = 0; j < wgrp->num_windows; j++) {
1130				unsigned int index = wgrp->windows[j];
1131
1132				plane = tegra_shared_plane_create(drm, dc,
1133								  wgrp->index,
1134								  index);
1135				if (IS_ERR(plane))
1136					return plane;
1137
1138				/*
1139				 * Choose the first shared plane owned by this
1140				 * head as the primary plane.
1141				 */
1142				if (!primary) {
1143					plane->type = DRM_PLANE_TYPE_PRIMARY;
1144					primary = plane;
1145				}
1146			}
1147		}
1148	}
1149
1150	return primary;
1151}
1152
1153static struct drm_plane *tegra_dc_add_planes(struct drm_device *drm,
1154					     struct tegra_dc *dc)
1155{
1156	struct drm_plane *planes[2], *primary;
1157	unsigned int planes_num;
1158	unsigned int i;
1159	int err;
1160
1161	primary = tegra_primary_plane_create(drm, dc);
1162	if (IS_ERR(primary))
1163		return primary;
1164
1165	if (dc->soc->supports_cursor)
1166		planes_num = 2;
1167	else
1168		planes_num = 1;
1169
1170	for (i = 0; i < planes_num; i++) {
1171		planes[i] = tegra_dc_overlay_plane_create(drm, dc, 1 + i,
1172							  false);
1173		if (IS_ERR(planes[i])) {
1174			err = PTR_ERR(planes[i]);
1175
1176			while (i--)
1177				tegra_plane_funcs.destroy(planes[i]);
1178
1179			tegra_plane_funcs.destroy(primary);
1180			return ERR_PTR(err);
1181		}
1182	}
1183
1184	return primary;
1185}
1186
1187static void tegra_dc_destroy(struct drm_crtc *crtc)
1188{
1189	drm_crtc_cleanup(crtc);
1190}
1191
1192static void tegra_crtc_reset(struct drm_crtc *crtc)
1193{
1194	struct tegra_dc_state *state = kzalloc(sizeof(*state), GFP_KERNEL);
1195
1196	if (crtc->state)
1197		tegra_crtc_atomic_destroy_state(crtc, crtc->state);
1198
1199	__drm_atomic_helper_crtc_reset(crtc, &state->base);
1200}
1201
1202static struct drm_crtc_state *
1203tegra_crtc_atomic_duplicate_state(struct drm_crtc *crtc)
1204{
1205	struct tegra_dc_state *state = to_dc_state(crtc->state);
1206	struct tegra_dc_state *copy;
1207
1208	copy = kmalloc(sizeof(*copy), GFP_KERNEL);
1209	if (!copy)
1210		return NULL;
1211
1212	__drm_atomic_helper_crtc_duplicate_state(crtc, &copy->base);
1213	copy->clk = state->clk;
1214	copy->pclk = state->pclk;
1215	copy->div = state->div;
1216	copy->planes = state->planes;
1217
1218	return &copy->base;
1219}
1220
1221static void tegra_crtc_atomic_destroy_state(struct drm_crtc *crtc,
1222					    struct drm_crtc_state *state)
1223{
1224	__drm_atomic_helper_crtc_destroy_state(state);
1225	kfree(state);
1226}
1227
1228#define DEBUGFS_REG32(_name) { .name = #_name, .offset = _name }
1229
1230static const struct debugfs_reg32 tegra_dc_regs[] = {
1231	DEBUGFS_REG32(DC_CMD_GENERAL_INCR_SYNCPT),
1232	DEBUGFS_REG32(DC_CMD_GENERAL_INCR_SYNCPT_CNTRL),
1233	DEBUGFS_REG32(DC_CMD_GENERAL_INCR_SYNCPT_ERROR),
1234	DEBUGFS_REG32(DC_CMD_WIN_A_INCR_SYNCPT),
1235	DEBUGFS_REG32(DC_CMD_WIN_A_INCR_SYNCPT_CNTRL),
1236	DEBUGFS_REG32(DC_CMD_WIN_A_INCR_SYNCPT_ERROR),
1237	DEBUGFS_REG32(DC_CMD_WIN_B_INCR_SYNCPT),
1238	DEBUGFS_REG32(DC_CMD_WIN_B_INCR_SYNCPT_CNTRL),
1239	DEBUGFS_REG32(DC_CMD_WIN_B_INCR_SYNCPT_ERROR),
1240	DEBUGFS_REG32(DC_CMD_WIN_C_INCR_SYNCPT),
1241	DEBUGFS_REG32(DC_CMD_WIN_C_INCR_SYNCPT_CNTRL),
1242	DEBUGFS_REG32(DC_CMD_WIN_C_INCR_SYNCPT_ERROR),
1243	DEBUGFS_REG32(DC_CMD_CONT_SYNCPT_VSYNC),
1244	DEBUGFS_REG32(DC_CMD_DISPLAY_COMMAND_OPTION0),
1245	DEBUGFS_REG32(DC_CMD_DISPLAY_COMMAND),
1246	DEBUGFS_REG32(DC_CMD_SIGNAL_RAISE),
1247	DEBUGFS_REG32(DC_CMD_DISPLAY_POWER_CONTROL),
1248	DEBUGFS_REG32(DC_CMD_INT_STATUS),
1249	DEBUGFS_REG32(DC_CMD_INT_MASK),
1250	DEBUGFS_REG32(DC_CMD_INT_ENABLE),
1251	DEBUGFS_REG32(DC_CMD_INT_TYPE),
1252	DEBUGFS_REG32(DC_CMD_INT_POLARITY),
1253	DEBUGFS_REG32(DC_CMD_SIGNAL_RAISE1),
1254	DEBUGFS_REG32(DC_CMD_SIGNAL_RAISE2),
1255	DEBUGFS_REG32(DC_CMD_SIGNAL_RAISE3),
1256	DEBUGFS_REG32(DC_CMD_STATE_ACCESS),
1257	DEBUGFS_REG32(DC_CMD_STATE_CONTROL),
1258	DEBUGFS_REG32(DC_CMD_DISPLAY_WINDOW_HEADER),
1259	DEBUGFS_REG32(DC_CMD_REG_ACT_CONTROL),
1260	DEBUGFS_REG32(DC_COM_CRC_CONTROL),
1261	DEBUGFS_REG32(DC_COM_CRC_CHECKSUM),
1262	DEBUGFS_REG32(DC_COM_PIN_OUTPUT_ENABLE(0)),
1263	DEBUGFS_REG32(DC_COM_PIN_OUTPUT_ENABLE(1)),
1264	DEBUGFS_REG32(DC_COM_PIN_OUTPUT_ENABLE(2)),
1265	DEBUGFS_REG32(DC_COM_PIN_OUTPUT_ENABLE(3)),
1266	DEBUGFS_REG32(DC_COM_PIN_OUTPUT_POLARITY(0)),
1267	DEBUGFS_REG32(DC_COM_PIN_OUTPUT_POLARITY(1)),
1268	DEBUGFS_REG32(DC_COM_PIN_OUTPUT_POLARITY(2)),
1269	DEBUGFS_REG32(DC_COM_PIN_OUTPUT_POLARITY(3)),
1270	DEBUGFS_REG32(DC_COM_PIN_OUTPUT_DATA(0)),
1271	DEBUGFS_REG32(DC_COM_PIN_OUTPUT_DATA(1)),
1272	DEBUGFS_REG32(DC_COM_PIN_OUTPUT_DATA(2)),
1273	DEBUGFS_REG32(DC_COM_PIN_OUTPUT_DATA(3)),
1274	DEBUGFS_REG32(DC_COM_PIN_INPUT_ENABLE(0)),
1275	DEBUGFS_REG32(DC_COM_PIN_INPUT_ENABLE(1)),
1276	DEBUGFS_REG32(DC_COM_PIN_INPUT_ENABLE(2)),
1277	DEBUGFS_REG32(DC_COM_PIN_INPUT_ENABLE(3)),
1278	DEBUGFS_REG32(DC_COM_PIN_INPUT_DATA(0)),
1279	DEBUGFS_REG32(DC_COM_PIN_INPUT_DATA(1)),
1280	DEBUGFS_REG32(DC_COM_PIN_OUTPUT_SELECT(0)),
1281	DEBUGFS_REG32(DC_COM_PIN_OUTPUT_SELECT(1)),
1282	DEBUGFS_REG32(DC_COM_PIN_OUTPUT_SELECT(2)),
1283	DEBUGFS_REG32(DC_COM_PIN_OUTPUT_SELECT(3)),
1284	DEBUGFS_REG32(DC_COM_PIN_OUTPUT_SELECT(4)),
1285	DEBUGFS_REG32(DC_COM_PIN_OUTPUT_SELECT(5)),
1286	DEBUGFS_REG32(DC_COM_PIN_OUTPUT_SELECT(6)),
1287	DEBUGFS_REG32(DC_COM_PIN_MISC_CONTROL),
1288	DEBUGFS_REG32(DC_COM_PIN_PM0_CONTROL),
1289	DEBUGFS_REG32(DC_COM_PIN_PM0_DUTY_CYCLE),
1290	DEBUGFS_REG32(DC_COM_PIN_PM1_CONTROL),
1291	DEBUGFS_REG32(DC_COM_PIN_PM1_DUTY_CYCLE),
1292	DEBUGFS_REG32(DC_COM_SPI_CONTROL),
1293	DEBUGFS_REG32(DC_COM_SPI_START_BYTE),
1294	DEBUGFS_REG32(DC_COM_HSPI_WRITE_DATA_AB),
1295	DEBUGFS_REG32(DC_COM_HSPI_WRITE_DATA_CD),
1296	DEBUGFS_REG32(DC_COM_HSPI_CS_DC),
1297	DEBUGFS_REG32(DC_COM_SCRATCH_REGISTER_A),
1298	DEBUGFS_REG32(DC_COM_SCRATCH_REGISTER_B),
1299	DEBUGFS_REG32(DC_COM_GPIO_CTRL),
1300	DEBUGFS_REG32(DC_COM_GPIO_DEBOUNCE_COUNTER),
1301	DEBUGFS_REG32(DC_COM_CRC_CHECKSUM_LATCHED),
1302	DEBUGFS_REG32(DC_DISP_DISP_SIGNAL_OPTIONS0),
1303	DEBUGFS_REG32(DC_DISP_DISP_SIGNAL_OPTIONS1),
1304	DEBUGFS_REG32(DC_DISP_DISP_WIN_OPTIONS),
1305	DEBUGFS_REG32(DC_DISP_DISP_MEM_HIGH_PRIORITY),
1306	DEBUGFS_REG32(DC_DISP_DISP_MEM_HIGH_PRIORITY_TIMER),
1307	DEBUGFS_REG32(DC_DISP_DISP_TIMING_OPTIONS),
1308	DEBUGFS_REG32(DC_DISP_REF_TO_SYNC),
1309	DEBUGFS_REG32(DC_DISP_SYNC_WIDTH),
1310	DEBUGFS_REG32(DC_DISP_BACK_PORCH),
1311	DEBUGFS_REG32(DC_DISP_ACTIVE),
1312	DEBUGFS_REG32(DC_DISP_FRONT_PORCH),
1313	DEBUGFS_REG32(DC_DISP_H_PULSE0_CONTROL),
1314	DEBUGFS_REG32(DC_DISP_H_PULSE0_POSITION_A),
1315	DEBUGFS_REG32(DC_DISP_H_PULSE0_POSITION_B),
1316	DEBUGFS_REG32(DC_DISP_H_PULSE0_POSITION_C),
1317	DEBUGFS_REG32(DC_DISP_H_PULSE0_POSITION_D),
1318	DEBUGFS_REG32(DC_DISP_H_PULSE1_CONTROL),
1319	DEBUGFS_REG32(DC_DISP_H_PULSE1_POSITION_A),
1320	DEBUGFS_REG32(DC_DISP_H_PULSE1_POSITION_B),
1321	DEBUGFS_REG32(DC_DISP_H_PULSE1_POSITION_C),
1322	DEBUGFS_REG32(DC_DISP_H_PULSE1_POSITION_D),
1323	DEBUGFS_REG32(DC_DISP_H_PULSE2_CONTROL),
1324	DEBUGFS_REG32(DC_DISP_H_PULSE2_POSITION_A),
1325	DEBUGFS_REG32(DC_DISP_H_PULSE2_POSITION_B),
1326	DEBUGFS_REG32(DC_DISP_H_PULSE2_POSITION_C),
1327	DEBUGFS_REG32(DC_DISP_H_PULSE2_POSITION_D),
1328	DEBUGFS_REG32(DC_DISP_V_PULSE0_CONTROL),
1329	DEBUGFS_REG32(DC_DISP_V_PULSE0_POSITION_A),
1330	DEBUGFS_REG32(DC_DISP_V_PULSE0_POSITION_B),
1331	DEBUGFS_REG32(DC_DISP_V_PULSE0_POSITION_C),
1332	DEBUGFS_REG32(DC_DISP_V_PULSE1_CONTROL),
1333	DEBUGFS_REG32(DC_DISP_V_PULSE1_POSITION_A),
1334	DEBUGFS_REG32(DC_DISP_V_PULSE1_POSITION_B),
1335	DEBUGFS_REG32(DC_DISP_V_PULSE1_POSITION_C),
1336	DEBUGFS_REG32(DC_DISP_V_PULSE2_CONTROL),
1337	DEBUGFS_REG32(DC_DISP_V_PULSE2_POSITION_A),
1338	DEBUGFS_REG32(DC_DISP_V_PULSE3_CONTROL),
1339	DEBUGFS_REG32(DC_DISP_V_PULSE3_POSITION_A),
1340	DEBUGFS_REG32(DC_DISP_M0_CONTROL),
1341	DEBUGFS_REG32(DC_DISP_M1_CONTROL),
1342	DEBUGFS_REG32(DC_DISP_DI_CONTROL),
1343	DEBUGFS_REG32(DC_DISP_PP_CONTROL),
1344	DEBUGFS_REG32(DC_DISP_PP_SELECT_A),
1345	DEBUGFS_REG32(DC_DISP_PP_SELECT_B),
1346	DEBUGFS_REG32(DC_DISP_PP_SELECT_C),
1347	DEBUGFS_REG32(DC_DISP_PP_SELECT_D),
1348	DEBUGFS_REG32(DC_DISP_DISP_CLOCK_CONTROL),
1349	DEBUGFS_REG32(DC_DISP_DISP_INTERFACE_CONTROL),
1350	DEBUGFS_REG32(DC_DISP_DISP_COLOR_CONTROL),
1351	DEBUGFS_REG32(DC_DISP_SHIFT_CLOCK_OPTIONS),
1352	DEBUGFS_REG32(DC_DISP_DATA_ENABLE_OPTIONS),
1353	DEBUGFS_REG32(DC_DISP_SERIAL_INTERFACE_OPTIONS),
1354	DEBUGFS_REG32(DC_DISP_LCD_SPI_OPTIONS),
1355	DEBUGFS_REG32(DC_DISP_BORDER_COLOR),
1356	DEBUGFS_REG32(DC_DISP_COLOR_KEY0_LOWER),
1357	DEBUGFS_REG32(DC_DISP_COLOR_KEY0_UPPER),
1358	DEBUGFS_REG32(DC_DISP_COLOR_KEY1_LOWER),
1359	DEBUGFS_REG32(DC_DISP_COLOR_KEY1_UPPER),
1360	DEBUGFS_REG32(DC_DISP_CURSOR_FOREGROUND),
1361	DEBUGFS_REG32(DC_DISP_CURSOR_BACKGROUND),
1362	DEBUGFS_REG32(DC_DISP_CURSOR_START_ADDR),
1363	DEBUGFS_REG32(DC_DISP_CURSOR_START_ADDR_NS),
1364	DEBUGFS_REG32(DC_DISP_CURSOR_POSITION),
1365	DEBUGFS_REG32(DC_DISP_CURSOR_POSITION_NS),
1366	DEBUGFS_REG32(DC_DISP_INIT_SEQ_CONTROL),
1367	DEBUGFS_REG32(DC_DISP_SPI_INIT_SEQ_DATA_A),
1368	DEBUGFS_REG32(DC_DISP_SPI_INIT_SEQ_DATA_B),
1369	DEBUGFS_REG32(DC_DISP_SPI_INIT_SEQ_DATA_C),
1370	DEBUGFS_REG32(DC_DISP_SPI_INIT_SEQ_DATA_D),
1371	DEBUGFS_REG32(DC_DISP_DC_MCCIF_FIFOCTRL),
1372	DEBUGFS_REG32(DC_DISP_MCCIF_DISPLAY0A_HYST),
1373	DEBUGFS_REG32(DC_DISP_MCCIF_DISPLAY0B_HYST),
1374	DEBUGFS_REG32(DC_DISP_MCCIF_DISPLAY1A_HYST),
1375	DEBUGFS_REG32(DC_DISP_MCCIF_DISPLAY1B_HYST),
1376	DEBUGFS_REG32(DC_DISP_DAC_CRT_CTRL),
1377	DEBUGFS_REG32(DC_DISP_DISP_MISC_CONTROL),
1378	DEBUGFS_REG32(DC_DISP_SD_CONTROL),
1379	DEBUGFS_REG32(DC_DISP_SD_CSC_COEFF),
1380	DEBUGFS_REG32(DC_DISP_SD_LUT(0)),
1381	DEBUGFS_REG32(DC_DISP_SD_LUT(1)),
1382	DEBUGFS_REG32(DC_DISP_SD_LUT(2)),
1383	DEBUGFS_REG32(DC_DISP_SD_LUT(3)),
1384	DEBUGFS_REG32(DC_DISP_SD_LUT(4)),
1385	DEBUGFS_REG32(DC_DISP_SD_LUT(5)),
1386	DEBUGFS_REG32(DC_DISP_SD_LUT(6)),
1387	DEBUGFS_REG32(DC_DISP_SD_LUT(7)),
1388	DEBUGFS_REG32(DC_DISP_SD_LUT(8)),
1389	DEBUGFS_REG32(DC_DISP_SD_FLICKER_CONTROL),
1390	DEBUGFS_REG32(DC_DISP_DC_PIXEL_COUNT),
1391	DEBUGFS_REG32(DC_DISP_SD_HISTOGRAM(0)),
1392	DEBUGFS_REG32(DC_DISP_SD_HISTOGRAM(1)),
1393	DEBUGFS_REG32(DC_DISP_SD_HISTOGRAM(2)),
1394	DEBUGFS_REG32(DC_DISP_SD_HISTOGRAM(3)),
1395	DEBUGFS_REG32(DC_DISP_SD_HISTOGRAM(4)),
1396	DEBUGFS_REG32(DC_DISP_SD_HISTOGRAM(5)),
1397	DEBUGFS_REG32(DC_DISP_SD_HISTOGRAM(6)),
1398	DEBUGFS_REG32(DC_DISP_SD_HISTOGRAM(7)),
1399	DEBUGFS_REG32(DC_DISP_SD_BL_TF(0)),
1400	DEBUGFS_REG32(DC_DISP_SD_BL_TF(1)),
1401	DEBUGFS_REG32(DC_DISP_SD_BL_TF(2)),
1402	DEBUGFS_REG32(DC_DISP_SD_BL_TF(3)),
1403	DEBUGFS_REG32(DC_DISP_SD_BL_CONTROL),
1404	DEBUGFS_REG32(DC_DISP_SD_HW_K_VALUES),
1405	DEBUGFS_REG32(DC_DISP_SD_MAN_K_VALUES),
1406	DEBUGFS_REG32(DC_DISP_CURSOR_START_ADDR_HI),
1407	DEBUGFS_REG32(DC_DISP_BLEND_CURSOR_CONTROL),
1408	DEBUGFS_REG32(DC_WIN_WIN_OPTIONS),
1409	DEBUGFS_REG32(DC_WIN_BYTE_SWAP),
1410	DEBUGFS_REG32(DC_WIN_BUFFER_CONTROL),
1411	DEBUGFS_REG32(DC_WIN_COLOR_DEPTH),
1412	DEBUGFS_REG32(DC_WIN_POSITION),
1413	DEBUGFS_REG32(DC_WIN_SIZE),
1414	DEBUGFS_REG32(DC_WIN_PRESCALED_SIZE),
1415	DEBUGFS_REG32(DC_WIN_H_INITIAL_DDA),
1416	DEBUGFS_REG32(DC_WIN_V_INITIAL_DDA),
1417	DEBUGFS_REG32(DC_WIN_DDA_INC),
1418	DEBUGFS_REG32(DC_WIN_LINE_STRIDE),
1419	DEBUGFS_REG32(DC_WIN_BUF_STRIDE),
1420	DEBUGFS_REG32(DC_WIN_UV_BUF_STRIDE),
1421	DEBUGFS_REG32(DC_WIN_BUFFER_ADDR_MODE),
1422	DEBUGFS_REG32(DC_WIN_DV_CONTROL),
1423	DEBUGFS_REG32(DC_WIN_BLEND_NOKEY),
1424	DEBUGFS_REG32(DC_WIN_BLEND_1WIN),
1425	DEBUGFS_REG32(DC_WIN_BLEND_2WIN_X),
1426	DEBUGFS_REG32(DC_WIN_BLEND_2WIN_Y),
1427	DEBUGFS_REG32(DC_WIN_BLEND_3WIN_XY),
1428	DEBUGFS_REG32(DC_WIN_HP_FETCH_CONTROL),
1429	DEBUGFS_REG32(DC_WINBUF_START_ADDR),
1430	DEBUGFS_REG32(DC_WINBUF_START_ADDR_NS),
1431	DEBUGFS_REG32(DC_WINBUF_START_ADDR_U),
1432	DEBUGFS_REG32(DC_WINBUF_START_ADDR_U_NS),
1433	DEBUGFS_REG32(DC_WINBUF_START_ADDR_V),
1434	DEBUGFS_REG32(DC_WINBUF_START_ADDR_V_NS),
1435	DEBUGFS_REG32(DC_WINBUF_ADDR_H_OFFSET),
1436	DEBUGFS_REG32(DC_WINBUF_ADDR_H_OFFSET_NS),
1437	DEBUGFS_REG32(DC_WINBUF_ADDR_V_OFFSET),
1438	DEBUGFS_REG32(DC_WINBUF_ADDR_V_OFFSET_NS),
1439	DEBUGFS_REG32(DC_WINBUF_UFLOW_STATUS),
1440	DEBUGFS_REG32(DC_WINBUF_AD_UFLOW_STATUS),
1441	DEBUGFS_REG32(DC_WINBUF_BD_UFLOW_STATUS),
1442	DEBUGFS_REG32(DC_WINBUF_CD_UFLOW_STATUS),
1443};
1444
1445static int tegra_dc_show_regs(struct seq_file *s, void *data)
1446{
1447	struct drm_info_node *node = s->private;
1448	struct tegra_dc *dc = node->info_ent->data;
1449	unsigned int i;
1450	int err = 0;
1451
1452	drm_modeset_lock(&dc->base.mutex, NULL);
1453
1454	if (!dc->base.state->active) {
1455		err = -EBUSY;
1456		goto unlock;
1457	}
1458
1459	for (i = 0; i < ARRAY_SIZE(tegra_dc_regs); i++) {
1460		unsigned int offset = tegra_dc_regs[i].offset;
1461
1462		seq_printf(s, "%-40s %#05x %08x\n", tegra_dc_regs[i].name,
1463			   offset, tegra_dc_readl(dc, offset));
1464	}
1465
1466unlock:
1467	drm_modeset_unlock(&dc->base.mutex);
1468	return err;
1469}
1470
1471static int tegra_dc_show_crc(struct seq_file *s, void *data)
1472{
1473	struct drm_info_node *node = s->private;
1474	struct tegra_dc *dc = node->info_ent->data;
1475	int err = 0;
1476	u32 value;
1477
1478	drm_modeset_lock(&dc->base.mutex, NULL);
1479
1480	if (!dc->base.state->active) {
1481		err = -EBUSY;
1482		goto unlock;
1483	}
1484
1485	value = DC_COM_CRC_CONTROL_ACTIVE_DATA | DC_COM_CRC_CONTROL_ENABLE;
1486	tegra_dc_writel(dc, value, DC_COM_CRC_CONTROL);
1487	tegra_dc_commit(dc);
1488
1489	drm_crtc_wait_one_vblank(&dc->base);
1490	drm_crtc_wait_one_vblank(&dc->base);
1491
1492	value = tegra_dc_readl(dc, DC_COM_CRC_CHECKSUM);
1493	seq_printf(s, "%08x\n", value);
1494
1495	tegra_dc_writel(dc, 0, DC_COM_CRC_CONTROL);
1496
1497unlock:
1498	drm_modeset_unlock(&dc->base.mutex);
1499	return err;
1500}
1501
1502static int tegra_dc_show_stats(struct seq_file *s, void *data)
1503{
1504	struct drm_info_node *node = s->private;
1505	struct tegra_dc *dc = node->info_ent->data;
1506
1507	seq_printf(s, "frames: %lu\n", dc->stats.frames);
1508	seq_printf(s, "vblank: %lu\n", dc->stats.vblank);
1509	seq_printf(s, "underflow: %lu\n", dc->stats.underflow);
1510	seq_printf(s, "overflow: %lu\n", dc->stats.overflow);
1511
1512	return 0;
1513}
1514
1515static struct drm_info_list debugfs_files[] = {
1516	{ "regs", tegra_dc_show_regs, 0, NULL },
1517	{ "crc", tegra_dc_show_crc, 0, NULL },
1518	{ "stats", tegra_dc_show_stats, 0, NULL },
1519};
1520
1521static int tegra_dc_late_register(struct drm_crtc *crtc)
1522{
1523	unsigned int i, count = ARRAY_SIZE(debugfs_files);
1524	struct drm_minor *minor = crtc->dev->primary;
1525	struct dentry *root;
1526	struct tegra_dc *dc = to_tegra_dc(crtc);
1527
1528#ifdef CONFIG_DEBUG_FS
1529	root = crtc->debugfs_entry;
1530#else
1531	root = NULL;
1532#endif
1533
1534	dc->debugfs_files = kmemdup(debugfs_files, sizeof(debugfs_files),
1535				    GFP_KERNEL);
1536	if (!dc->debugfs_files)
1537		return -ENOMEM;
1538
1539	for (i = 0; i < count; i++)
1540		dc->debugfs_files[i].data = dc;
1541
1542	drm_debugfs_create_files(dc->debugfs_files, count, root, minor);
1543
1544	return 0;
1545}
1546
1547static void tegra_dc_early_unregister(struct drm_crtc *crtc)
1548{
1549	unsigned int count = ARRAY_SIZE(debugfs_files);
1550	struct drm_minor *minor = crtc->dev->primary;
1551	struct tegra_dc *dc = to_tegra_dc(crtc);
1552
1553	drm_debugfs_remove_files(dc->debugfs_files, count, minor);
1554	kfree(dc->debugfs_files);
1555	dc->debugfs_files = NULL;
1556}
1557
1558static u32 tegra_dc_get_vblank_counter(struct drm_crtc *crtc)
1559{
1560	struct tegra_dc *dc = to_tegra_dc(crtc);
1561
1562	/* XXX vblank syncpoints don't work with nvdisplay yet */
1563	if (dc->syncpt && !dc->soc->has_nvdisplay)
1564		return host1x_syncpt_read(dc->syncpt);
1565
1566	/* fallback to software emulated VBLANK counter */
1567	return (u32)drm_crtc_vblank_count(&dc->base);
1568}
1569
1570static int tegra_dc_enable_vblank(struct drm_crtc *crtc)
1571{
1572	struct tegra_dc *dc = to_tegra_dc(crtc);
1573	u32 value;
1574
1575	value = tegra_dc_readl(dc, DC_CMD_INT_MASK);
1576	value |= VBLANK_INT;
1577	tegra_dc_writel(dc, value, DC_CMD_INT_MASK);
1578
1579	return 0;
1580}
1581
1582static void tegra_dc_disable_vblank(struct drm_crtc *crtc)
1583{
1584	struct tegra_dc *dc = to_tegra_dc(crtc);
1585	u32 value;
1586
1587	value = tegra_dc_readl(dc, DC_CMD_INT_MASK);
1588	value &= ~VBLANK_INT;
1589	tegra_dc_writel(dc, value, DC_CMD_INT_MASK);
1590}
1591
1592static const struct drm_crtc_funcs tegra_crtc_funcs = {
1593	.page_flip = drm_atomic_helper_page_flip,
1594	.set_config = drm_atomic_helper_set_config,
1595	.destroy = tegra_dc_destroy,
1596	.reset = tegra_crtc_reset,
1597	.atomic_duplicate_state = tegra_crtc_atomic_duplicate_state,
1598	.atomic_destroy_state = tegra_crtc_atomic_destroy_state,
1599	.late_register = tegra_dc_late_register,
1600	.early_unregister = tegra_dc_early_unregister,
1601	.get_vblank_counter = tegra_dc_get_vblank_counter,
1602	.enable_vblank = tegra_dc_enable_vblank,
1603	.disable_vblank = tegra_dc_disable_vblank,
1604};
1605
1606static int tegra_dc_set_timings(struct tegra_dc *dc,
1607				struct drm_display_mode *mode)
1608{
1609	unsigned int h_ref_to_sync = 1;
1610	unsigned int v_ref_to_sync = 1;
1611	unsigned long value;
1612
1613	if (!dc->soc->has_nvdisplay) {
1614		tegra_dc_writel(dc, 0x0, DC_DISP_DISP_TIMING_OPTIONS);
1615
1616		value = (v_ref_to_sync << 16) | h_ref_to_sync;
1617		tegra_dc_writel(dc, value, DC_DISP_REF_TO_SYNC);
1618	}
1619
1620	value = ((mode->vsync_end - mode->vsync_start) << 16) |
1621		((mode->hsync_end - mode->hsync_start) <<  0);
1622	tegra_dc_writel(dc, value, DC_DISP_SYNC_WIDTH);
1623
1624	value = ((mode->vtotal - mode->vsync_end) << 16) |
1625		((mode->htotal - mode->hsync_end) <<  0);
1626	tegra_dc_writel(dc, value, DC_DISP_BACK_PORCH);
1627
1628	value = ((mode->vsync_start - mode->vdisplay) << 16) |
1629		((mode->hsync_start - mode->hdisplay) <<  0);
1630	tegra_dc_writel(dc, value, DC_DISP_FRONT_PORCH);
1631
1632	value = (mode->vdisplay << 16) | mode->hdisplay;
1633	tegra_dc_writel(dc, value, DC_DISP_ACTIVE);
1634
1635	return 0;
1636}
1637
1638/**
1639 * tegra_dc_state_setup_clock - check clock settings and store them in atomic
1640 *     state
1641 * @dc: display controller
1642 * @crtc_state: CRTC atomic state
1643 * @clk: parent clock for display controller
1644 * @pclk: pixel clock
1645 * @div: shift clock divider
1646 *
1647 * Returns:
1648 * 0 on success or a negative error-code on failure.
1649 */
1650int tegra_dc_state_setup_clock(struct tegra_dc *dc,
1651			       struct drm_crtc_state *crtc_state,
1652			       struct clk *clk, unsigned long pclk,
1653			       unsigned int div)
1654{
1655	struct tegra_dc_state *state = to_dc_state(crtc_state);
1656
1657	if (!clk_has_parent(dc->clk, clk))
1658		return -EINVAL;
1659
1660	state->clk = clk;
1661	state->pclk = pclk;
1662	state->div = div;
1663
1664	return 0;
1665}
1666
1667static void tegra_dc_commit_state(struct tegra_dc *dc,
1668				  struct tegra_dc_state *state)
1669{
1670	u32 value;
1671	int err;
1672
1673	err = clk_set_parent(dc->clk, state->clk);
1674	if (err < 0)
1675		dev_err(dc->dev, "failed to set parent clock: %d\n", err);
1676
1677	/*
1678	 * Outputs may not want to change the parent clock rate. This is only
1679	 * relevant to Tegra20 where only a single display PLL is available.
1680	 * Since that PLL would typically be used for HDMI, an internal LVDS
1681	 * panel would need to be driven by some other clock such as PLL_P
1682	 * which is shared with other peripherals. Changing the clock rate
1683	 * should therefore be avoided.
1684	 */
1685	if (state->pclk > 0) {
1686		err = clk_set_rate(state->clk, state->pclk);
1687		if (err < 0)
1688			dev_err(dc->dev,
1689				"failed to set clock rate to %lu Hz\n",
1690				state->pclk);
1691	}
1692
1693	DRM_DEBUG_KMS("rate: %lu, div: %u\n", clk_get_rate(dc->clk),
1694		      state->div);
1695	DRM_DEBUG_KMS("pclk: %lu\n", state->pclk);
1696
1697	if (!dc->soc->has_nvdisplay) {
1698		value = SHIFT_CLK_DIVIDER(state->div) | PIXEL_CLK_DIVIDER_PCD1;
1699		tegra_dc_writel(dc, value, DC_DISP_DISP_CLOCK_CONTROL);
1700	}
1701
1702	err = clk_set_rate(dc->clk, state->pclk);
1703	if (err < 0)
1704		dev_err(dc->dev, "failed to set clock %pC to %lu Hz: %d\n",
1705			dc->clk, state->pclk, err);
1706}
1707
1708static void tegra_dc_stop(struct tegra_dc *dc)
1709{
1710	u32 value;
1711
1712	/* stop the display controller */
1713	value = tegra_dc_readl(dc, DC_CMD_DISPLAY_COMMAND);
1714	value &= ~DISP_CTRL_MODE_MASK;
1715	tegra_dc_writel(dc, value, DC_CMD_DISPLAY_COMMAND);
1716
1717	tegra_dc_commit(dc);
1718}
1719
1720static bool tegra_dc_idle(struct tegra_dc *dc)
1721{
1722	u32 value;
1723
1724	value = tegra_dc_readl_active(dc, DC_CMD_DISPLAY_COMMAND);
1725
1726	return (value & DISP_CTRL_MODE_MASK) == 0;
1727}
1728
1729static int tegra_dc_wait_idle(struct tegra_dc *dc, unsigned long timeout)
1730{
1731	timeout = jiffies + msecs_to_jiffies(timeout);
1732
1733	while (time_before(jiffies, timeout)) {
1734		if (tegra_dc_idle(dc))
1735			return 0;
1736
1737		usleep_range(1000, 2000);
1738	}
1739
1740	dev_dbg(dc->dev, "timeout waiting for DC to become idle\n");
1741	return -ETIMEDOUT;
1742}
1743
1744static void tegra_crtc_atomic_disable(struct drm_crtc *crtc,
1745				      struct drm_crtc_state *old_state)
1746{
1747	struct tegra_dc *dc = to_tegra_dc(crtc);
1748	u32 value;
1749	int err;
1750
1751	if (!tegra_dc_idle(dc)) {
1752		tegra_dc_stop(dc);
1753
1754		/*
1755		 * Ignore the return value, there isn't anything useful to do
1756		 * in case this fails.
1757		 */
1758		tegra_dc_wait_idle(dc, 100);
1759	}
1760
1761	/*
1762	 * This should really be part of the RGB encoder driver, but clearing
1763	 * these bits has the side-effect of stopping the display controller.
1764	 * When that happens no VBLANK interrupts will be raised. At the same
1765	 * time the encoder is disabled before the display controller, so the
1766	 * above code is always going to timeout waiting for the controller
1767	 * to go idle.
1768	 *
1769	 * Given the close coupling between the RGB encoder and the display
1770	 * controller doing it here is still kind of okay. None of the other
1771	 * encoder drivers require these bits to be cleared.
1772	 *
1773	 * XXX: Perhaps given that the display controller is switched off at
1774	 * this point anyway maybe clearing these bits isn't even useful for
1775	 * the RGB encoder?
1776	 */
1777	if (dc->rgb) {
1778		value = tegra_dc_readl(dc, DC_CMD_DISPLAY_POWER_CONTROL);
1779		value &= ~(PW0_ENABLE | PW1_ENABLE | PW2_ENABLE | PW3_ENABLE |
1780			   PW4_ENABLE | PM0_ENABLE | PM1_ENABLE);
1781		tegra_dc_writel(dc, value, DC_CMD_DISPLAY_POWER_CONTROL);
1782	}
1783
1784	tegra_dc_stats_reset(&dc->stats);
1785	drm_crtc_vblank_off(crtc);
1786
1787	spin_lock_irq(&crtc->dev->event_lock);
1788
1789	if (crtc->state->event) {
1790		drm_crtc_send_vblank_event(crtc, crtc->state->event);
1791		crtc->state->event = NULL;
1792	}
1793
1794	spin_unlock_irq(&crtc->dev->event_lock);
1795
1796	err = host1x_client_suspend(&dc->client);
1797	if (err < 0)
1798		dev_err(dc->dev, "failed to suspend: %d\n", err);
1799}
1800
1801static void tegra_crtc_atomic_enable(struct drm_crtc *crtc,
1802				     struct drm_crtc_state *old_state)
1803{
1804	struct drm_display_mode *mode = &crtc->state->adjusted_mode;
1805	struct tegra_dc_state *state = to_dc_state(crtc->state);
1806	struct tegra_dc *dc = to_tegra_dc(crtc);
1807	u32 value;
1808	int err;
1809
1810	err = host1x_client_resume(&dc->client);
1811	if (err < 0) {
1812		dev_err(dc->dev, "failed to resume: %d\n", err);
1813		return;
1814	}
1815
1816	/* initialize display controller */
1817	if (dc->syncpt) {
1818		u32 syncpt = host1x_syncpt_id(dc->syncpt), enable;
1819
1820		if (dc->soc->has_nvdisplay)
1821			enable = 1 << 31;
1822		else
1823			enable = 1 << 8;
1824
1825		value = SYNCPT_CNTRL_NO_STALL;
1826		tegra_dc_writel(dc, value, DC_CMD_GENERAL_INCR_SYNCPT_CNTRL);
1827
1828		value = enable | syncpt;
1829		tegra_dc_writel(dc, value, DC_CMD_CONT_SYNCPT_VSYNC);
1830	}
1831
1832	if (dc->soc->has_nvdisplay) {
1833		value = DSC_TO_UF_INT | DSC_BBUF_UF_INT | DSC_RBUF_UF_INT |
1834			DSC_OBUF_UF_INT;
1835		tegra_dc_writel(dc, value, DC_CMD_INT_TYPE);
1836
1837		value = DSC_TO_UF_INT | DSC_BBUF_UF_INT | DSC_RBUF_UF_INT |
1838			DSC_OBUF_UF_INT | SD3_BUCKET_WALK_DONE_INT |
1839			HEAD_UF_INT | MSF_INT | REG_TMOUT_INT |
1840			REGION_CRC_INT | V_PULSE2_INT | V_PULSE3_INT |
1841			VBLANK_INT | FRAME_END_INT;
1842		tegra_dc_writel(dc, value, DC_CMD_INT_POLARITY);
1843
1844		value = SD3_BUCKET_WALK_DONE_INT | HEAD_UF_INT | VBLANK_INT |
1845			FRAME_END_INT;
1846		tegra_dc_writel(dc, value, DC_CMD_INT_ENABLE);
1847
1848		value = HEAD_UF_INT | REG_TMOUT_INT | FRAME_END_INT;
1849		tegra_dc_writel(dc, value, DC_CMD_INT_MASK);
1850
1851		tegra_dc_writel(dc, READ_MUX, DC_CMD_STATE_ACCESS);
1852	} else {
1853		value = WIN_A_UF_INT | WIN_B_UF_INT | WIN_C_UF_INT |
1854			WIN_A_OF_INT | WIN_B_OF_INT | WIN_C_OF_INT;
1855		tegra_dc_writel(dc, value, DC_CMD_INT_TYPE);
1856
1857		value = WIN_A_UF_INT | WIN_B_UF_INT | WIN_C_UF_INT |
1858			WIN_A_OF_INT | WIN_B_OF_INT | WIN_C_OF_INT;
1859		tegra_dc_writel(dc, value, DC_CMD_INT_POLARITY);
1860
1861		/* initialize timer */
1862		value = CURSOR_THRESHOLD(0) | WINDOW_A_THRESHOLD(0x20) |
1863			WINDOW_B_THRESHOLD(0x20) | WINDOW_C_THRESHOLD(0x20);
1864		tegra_dc_writel(dc, value, DC_DISP_DISP_MEM_HIGH_PRIORITY);
1865
1866		value = CURSOR_THRESHOLD(0) | WINDOW_A_THRESHOLD(1) |
1867			WINDOW_B_THRESHOLD(1) | WINDOW_C_THRESHOLD(1);
1868		tegra_dc_writel(dc, value, DC_DISP_DISP_MEM_HIGH_PRIORITY_TIMER);
1869
1870		value = VBLANK_INT | WIN_A_UF_INT | WIN_B_UF_INT | WIN_C_UF_INT |
1871			WIN_A_OF_INT | WIN_B_OF_INT | WIN_C_OF_INT;
1872		tegra_dc_writel(dc, value, DC_CMD_INT_ENABLE);
1873
1874		value = WIN_A_UF_INT | WIN_B_UF_INT | WIN_C_UF_INT |
1875			WIN_A_OF_INT | WIN_B_OF_INT | WIN_C_OF_INT;
1876		tegra_dc_writel(dc, value, DC_CMD_INT_MASK);
1877	}
1878
1879	if (dc->soc->supports_background_color)
1880		tegra_dc_writel(dc, 0, DC_DISP_BLEND_BACKGROUND_COLOR);
1881	else
1882		tegra_dc_writel(dc, 0, DC_DISP_BORDER_COLOR);
1883
1884	/* apply PLL and pixel clock changes */
1885	tegra_dc_commit_state(dc, state);
1886
1887	/* program display mode */
1888	tegra_dc_set_timings(dc, mode);
1889
1890	/* interlacing isn't supported yet, so disable it */
1891	if (dc->soc->supports_interlacing) {
1892		value = tegra_dc_readl(dc, DC_DISP_INTERLACE_CONTROL);
1893		value &= ~INTERLACE_ENABLE;
1894		tegra_dc_writel(dc, value, DC_DISP_INTERLACE_CONTROL);
1895	}
1896
1897	value = tegra_dc_readl(dc, DC_CMD_DISPLAY_COMMAND);
1898	value &= ~DISP_CTRL_MODE_MASK;
1899	value |= DISP_CTRL_MODE_C_DISPLAY;
1900	tegra_dc_writel(dc, value, DC_CMD_DISPLAY_COMMAND);
1901
1902	if (!dc->soc->has_nvdisplay) {
1903		value = tegra_dc_readl(dc, DC_CMD_DISPLAY_POWER_CONTROL);
1904		value |= PW0_ENABLE | PW1_ENABLE | PW2_ENABLE | PW3_ENABLE |
1905			 PW4_ENABLE | PM0_ENABLE | PM1_ENABLE;
1906		tegra_dc_writel(dc, value, DC_CMD_DISPLAY_POWER_CONTROL);
1907	}
1908
1909	/* enable underflow reporting and display red for missing pixels */
1910	if (dc->soc->has_nvdisplay) {
1911		value = UNDERFLOW_MODE_RED | UNDERFLOW_REPORT_ENABLE;
1912		tegra_dc_writel(dc, value, DC_COM_RG_UNDERFLOW);
1913	}
1914
1915	tegra_dc_commit(dc);
1916
1917	drm_crtc_vblank_on(crtc);
1918}
1919
1920static void tegra_crtc_atomic_begin(struct drm_crtc *crtc,
1921				    struct drm_crtc_state *old_crtc_state)
1922{
1923	unsigned long flags;
1924
1925	if (crtc->state->event) {
1926		spin_lock_irqsave(&crtc->dev->event_lock, flags);
1927
1928		if (drm_crtc_vblank_get(crtc) != 0)
1929			drm_crtc_send_vblank_event(crtc, crtc->state->event);
1930		else
1931			drm_crtc_arm_vblank_event(crtc, crtc->state->event);
1932
1933		spin_unlock_irqrestore(&crtc->dev->event_lock, flags);
1934
1935		crtc->state->event = NULL;
1936	}
1937}
1938
1939static void tegra_crtc_atomic_flush(struct drm_crtc *crtc,
1940				    struct drm_crtc_state *old_crtc_state)
1941{
1942	struct tegra_dc_state *state = to_dc_state(crtc->state);
1943	struct tegra_dc *dc = to_tegra_dc(crtc);
1944	u32 value;
1945
1946	value = state->planes << 8 | GENERAL_UPDATE;
1947	tegra_dc_writel(dc, value, DC_CMD_STATE_CONTROL);
1948	value = tegra_dc_readl(dc, DC_CMD_STATE_CONTROL);
1949
1950	value = state->planes | GENERAL_ACT_REQ;
1951	tegra_dc_writel(dc, value, DC_CMD_STATE_CONTROL);
1952	value = tegra_dc_readl(dc, DC_CMD_STATE_CONTROL);
1953}
1954
1955static const struct drm_crtc_helper_funcs tegra_crtc_helper_funcs = {
1956	.atomic_begin = tegra_crtc_atomic_begin,
1957	.atomic_flush = tegra_crtc_atomic_flush,
1958	.atomic_enable = tegra_crtc_atomic_enable,
1959	.atomic_disable = tegra_crtc_atomic_disable,
1960};
1961
1962static irqreturn_t tegra_dc_irq(int irq, void *data)
1963{
1964	struct tegra_dc *dc = data;
1965	unsigned long status;
1966
1967	status = tegra_dc_readl(dc, DC_CMD_INT_STATUS);
1968	tegra_dc_writel(dc, status, DC_CMD_INT_STATUS);
1969
1970	if (status & FRAME_END_INT) {
1971		/*
1972		dev_dbg(dc->dev, "%s(): frame end\n", __func__);
1973		*/
1974		dc->stats.frames++;
1975	}
1976
1977	if (status & VBLANK_INT) {
1978		/*
1979		dev_dbg(dc->dev, "%s(): vertical blank\n", __func__);
1980		*/
1981		drm_crtc_handle_vblank(&dc->base);
1982		dc->stats.vblank++;
1983	}
1984
1985	if (status & (WIN_A_UF_INT | WIN_B_UF_INT | WIN_C_UF_INT)) {
1986		/*
1987		dev_dbg(dc->dev, "%s(): underflow\n", __func__);
1988		*/
1989		dc->stats.underflow++;
1990	}
1991
1992	if (status & (WIN_A_OF_INT | WIN_B_OF_INT | WIN_C_OF_INT)) {
1993		/*
1994		dev_dbg(dc->dev, "%s(): overflow\n", __func__);
1995		*/
1996		dc->stats.overflow++;
1997	}
1998
1999	if (status & HEAD_UF_INT) {
2000		dev_dbg_ratelimited(dc->dev, "%s(): head underflow\n", __func__);
2001		dc->stats.underflow++;
2002	}
2003
2004	return IRQ_HANDLED;
2005}
2006
2007static bool tegra_dc_has_window_groups(struct tegra_dc *dc)
2008{
2009	unsigned int i;
2010
2011	if (!dc->soc->wgrps)
2012		return true;
2013
2014	for (i = 0; i < dc->soc->num_wgrps; i++) {
2015		const struct tegra_windowgroup_soc *wgrp = &dc->soc->wgrps[i];
2016
2017		if (wgrp->dc == dc->pipe && wgrp->num_windows > 0)
2018			return true;
2019	}
2020
2021	return false;
2022}
2023
2024static int tegra_dc_init(struct host1x_client *client)
2025{
2026	struct drm_device *drm = dev_get_drvdata(client->host);
2027	unsigned long flags = HOST1X_SYNCPT_CLIENT_MANAGED;
2028	struct tegra_dc *dc = host1x_client_to_dc(client);
2029	struct tegra_drm *tegra = drm->dev_private;
2030	struct drm_plane *primary = NULL;
2031	struct drm_plane *cursor = NULL;
2032	int err;
2033
2034	/*
2035	 * XXX do not register DCs with no window groups because we cannot
2036	 * assign a primary plane to them, which in turn will cause KMS to
2037	 * crash.
2038	 */
2039	if (!tegra_dc_has_window_groups(dc))
2040		return 0;
2041
2042	/*
2043	 * Set the display hub as the host1x client parent for the display
2044	 * controller. This is needed for the runtime reference counting that
2045	 * ensures the display hub is always powered when any of the display
2046	 * controllers are.
2047	 */
2048	if (dc->soc->has_nvdisplay)
2049		client->parent = &tegra->hub->client;
2050
2051	dc->syncpt = host1x_syncpt_request(client, flags);
2052	if (!dc->syncpt)
2053		dev_warn(dc->dev, "failed to allocate syncpoint\n");
2054
2055	err = host1x_client_iommu_attach(client);
2056	if (err < 0 && err != -ENODEV) {
2057		dev_err(client->dev, "failed to attach to domain: %d\n", err);
2058		return err;
2059	}
2060
2061	if (dc->soc->wgrps)
2062		primary = tegra_dc_add_shared_planes(drm, dc);
2063	else
2064		primary = tegra_dc_add_planes(drm, dc);
2065
2066	if (IS_ERR(primary)) {
2067		err = PTR_ERR(primary);
2068		goto cleanup;
2069	}
2070
2071	if (dc->soc->supports_cursor) {
2072		cursor = tegra_dc_cursor_plane_create(drm, dc);
2073		if (IS_ERR(cursor)) {
2074			err = PTR_ERR(cursor);
2075			goto cleanup;
2076		}
2077	} else {
2078		/* dedicate one overlay to mouse cursor */
2079		cursor = tegra_dc_overlay_plane_create(drm, dc, 2, true);
2080		if (IS_ERR(cursor)) {
2081			err = PTR_ERR(cursor);
2082			goto cleanup;
2083		}
2084	}
2085
2086	err = drm_crtc_init_with_planes(drm, &dc->base, primary, cursor,
2087					&tegra_crtc_funcs, NULL);
2088	if (err < 0)
2089		goto cleanup;
2090
2091	drm_crtc_helper_add(&dc->base, &tegra_crtc_helper_funcs);
2092
2093	/*
2094	 * Keep track of the minimum pitch alignment across all display
2095	 * controllers.
2096	 */
2097	if (dc->soc->pitch_align > tegra->pitch_align)
2098		tegra->pitch_align = dc->soc->pitch_align;
2099
2100	err = tegra_dc_rgb_init(drm, dc);
2101	if (err < 0 && err != -ENODEV) {
2102		dev_err(dc->dev, "failed to initialize RGB output: %d\n", err);
2103		goto cleanup;
2104	}
2105
2106	err = devm_request_irq(dc->dev, dc->irq, tegra_dc_irq, 0,
2107			       dev_name(dc->dev), dc);
2108	if (err < 0) {
2109		dev_err(dc->dev, "failed to request IRQ#%u: %d\n", dc->irq,
2110			err);
2111		goto cleanup;
2112	}
2113
2114	/*
2115	 * Inherit the DMA parameters (such as maximum segment size) from the
2116	 * parent host1x device.
2117	 */
2118	client->dev->dma_parms = client->host->dma_parms;
2119
2120	return 0;
2121
2122cleanup:
2123	if (!IS_ERR_OR_NULL(cursor))
2124		drm_plane_cleanup(cursor);
2125
2126	if (!IS_ERR(primary))
2127		drm_plane_cleanup(primary);
2128
2129	host1x_client_iommu_detach(client);
2130	host1x_syncpt_free(dc->syncpt);
2131
2132	return err;
2133}
2134
2135static int tegra_dc_exit(struct host1x_client *client)
2136{
2137	struct tegra_dc *dc = host1x_client_to_dc(client);
2138	int err;
2139
2140	if (!tegra_dc_has_window_groups(dc))
2141		return 0;
2142
2143	/* avoid a dangling pointer just in case this disappears */
2144	client->dev->dma_parms = NULL;
2145
2146	devm_free_irq(dc->dev, dc->irq, dc);
2147
2148	err = tegra_dc_rgb_exit(dc);
2149	if (err) {
2150		dev_err(dc->dev, "failed to shutdown RGB output: %d\n", err);
2151		return err;
2152	}
2153
2154	host1x_client_iommu_detach(client);
2155	host1x_syncpt_free(dc->syncpt);
2156
2157	return 0;
2158}
2159
2160static int tegra_dc_runtime_suspend(struct host1x_client *client)
2161{
2162	struct tegra_dc *dc = host1x_client_to_dc(client);
2163	struct device *dev = client->dev;
2164	int err;
2165
2166	err = reset_control_assert(dc->rst);
2167	if (err < 0) {
2168		dev_err(dev, "failed to assert reset: %d\n", err);
2169		return err;
2170	}
2171
2172	if (dc->soc->has_powergate)
2173		tegra_powergate_power_off(dc->powergate);
2174
2175	clk_disable_unprepare(dc->clk);
2176	pm_runtime_put_sync(dev);
2177
2178	return 0;
2179}
2180
2181static int tegra_dc_runtime_resume(struct host1x_client *client)
2182{
2183	struct tegra_dc *dc = host1x_client_to_dc(client);
2184	struct device *dev = client->dev;
2185	int err;
2186
2187	err = pm_runtime_get_sync(dev);
2188	if (err < 0) {
2189		dev_err(dev, "failed to get runtime PM: %d\n", err);
2190		return err;
2191	}
2192
2193	if (dc->soc->has_powergate) {
2194		err = tegra_powergate_sequence_power_up(dc->powergate, dc->clk,
2195							dc->rst);
2196		if (err < 0) {
2197			dev_err(dev, "failed to power partition: %d\n", err);
2198			goto put_rpm;
2199		}
2200	} else {
2201		err = clk_prepare_enable(dc->clk);
2202		if (err < 0) {
2203			dev_err(dev, "failed to enable clock: %d\n", err);
2204			goto put_rpm;
2205		}
2206
2207		err = reset_control_deassert(dc->rst);
2208		if (err < 0) {
2209			dev_err(dev, "failed to deassert reset: %d\n", err);
2210			goto disable_clk;
2211		}
2212	}
2213
2214	return 0;
2215
2216disable_clk:
2217	clk_disable_unprepare(dc->clk);
2218put_rpm:
2219	pm_runtime_put_sync(dev);
2220	return err;
2221}
2222
2223static const struct host1x_client_ops dc_client_ops = {
2224	.init = tegra_dc_init,
2225	.exit = tegra_dc_exit,
2226	.suspend = tegra_dc_runtime_suspend,
2227	.resume = tegra_dc_runtime_resume,
2228};
2229
2230static const struct tegra_dc_soc_info tegra20_dc_soc_info = {
2231	.supports_background_color = false,
2232	.supports_interlacing = false,
2233	.supports_cursor = false,
2234	.supports_block_linear = false,
2235	.has_legacy_blending = true,
2236	.pitch_align = 8,
2237	.has_powergate = false,
2238	.coupled_pm = true,
2239	.has_nvdisplay = false,
2240	.num_primary_formats = ARRAY_SIZE(tegra20_primary_formats),
2241	.primary_formats = tegra20_primary_formats,
2242	.num_overlay_formats = ARRAY_SIZE(tegra20_overlay_formats),
2243	.overlay_formats = tegra20_overlay_formats,
2244	.modifiers = tegra20_modifiers,
2245	.has_win_a_without_filters = true,
2246	.has_win_c_without_vert_filter = true,
2247};
2248
2249static const struct tegra_dc_soc_info tegra30_dc_soc_info = {
2250	.supports_background_color = false,
2251	.supports_interlacing = false,
2252	.supports_cursor = false,
2253	.supports_block_linear = false,
2254	.has_legacy_blending = true,
2255	.pitch_align = 8,
2256	.has_powergate = false,
2257	.coupled_pm = false,
2258	.has_nvdisplay = false,
2259	.num_primary_formats = ARRAY_SIZE(tegra20_primary_formats),
2260	.primary_formats = tegra20_primary_formats,
2261	.num_overlay_formats = ARRAY_SIZE(tegra20_overlay_formats),
2262	.overlay_formats = tegra20_overlay_formats,
2263	.modifiers = tegra20_modifiers,
2264	.has_win_a_without_filters = false,
2265	.has_win_c_without_vert_filter = false,
2266};
2267
2268static const struct tegra_dc_soc_info tegra114_dc_soc_info = {
2269	.supports_background_color = false,
2270	.supports_interlacing = false,
2271	.supports_cursor = false,
2272	.supports_block_linear = false,
2273	.has_legacy_blending = true,
2274	.pitch_align = 64,
2275	.has_powergate = true,
2276	.coupled_pm = false,
2277	.has_nvdisplay = false,
2278	.num_primary_formats = ARRAY_SIZE(tegra114_primary_formats),
2279	.primary_formats = tegra114_primary_formats,
2280	.num_overlay_formats = ARRAY_SIZE(tegra114_overlay_formats),
2281	.overlay_formats = tegra114_overlay_formats,
2282	.modifiers = tegra20_modifiers,
2283	.has_win_a_without_filters = false,
2284	.has_win_c_without_vert_filter = false,
2285};
2286
2287static const struct tegra_dc_soc_info tegra124_dc_soc_info = {
2288	.supports_background_color = true,
2289	.supports_interlacing = true,
2290	.supports_cursor = true,
2291	.supports_block_linear = true,
2292	.has_legacy_blending = false,
2293	.pitch_align = 64,
2294	.has_powergate = true,
2295	.coupled_pm = false,
2296	.has_nvdisplay = false,
2297	.num_primary_formats = ARRAY_SIZE(tegra124_primary_formats),
2298	.primary_formats = tegra124_primary_formats,
2299	.num_overlay_formats = ARRAY_SIZE(tegra124_overlay_formats),
2300	.overlay_formats = tegra124_overlay_formats,
2301	.modifiers = tegra124_modifiers,
2302	.has_win_a_without_filters = false,
2303	.has_win_c_without_vert_filter = false,
2304};
2305
2306static const struct tegra_dc_soc_info tegra210_dc_soc_info = {
2307	.supports_background_color = true,
2308	.supports_interlacing = true,
2309	.supports_cursor = true,
2310	.supports_block_linear = true,
2311	.has_legacy_blending = false,
2312	.pitch_align = 64,
2313	.has_powergate = true,
2314	.coupled_pm = false,
2315	.has_nvdisplay = false,
2316	.num_primary_formats = ARRAY_SIZE(tegra114_primary_formats),
2317	.primary_formats = tegra114_primary_formats,
2318	.num_overlay_formats = ARRAY_SIZE(tegra114_overlay_formats),
2319	.overlay_formats = tegra114_overlay_formats,
2320	.modifiers = tegra124_modifiers,
2321	.has_win_a_without_filters = false,
2322	.has_win_c_without_vert_filter = false,
2323};
2324
2325static const struct tegra_windowgroup_soc tegra186_dc_wgrps[] = {
2326	{
2327		.index = 0,
2328		.dc = 0,
2329		.windows = (const unsigned int[]) { 0 },
2330		.num_windows = 1,
2331	}, {
2332		.index = 1,
2333		.dc = 1,
2334		.windows = (const unsigned int[]) { 1 },
2335		.num_windows = 1,
2336	}, {
2337		.index = 2,
2338		.dc = 1,
2339		.windows = (const unsigned int[]) { 2 },
2340		.num_windows = 1,
2341	}, {
2342		.index = 3,
2343		.dc = 2,
2344		.windows = (const unsigned int[]) { 3 },
2345		.num_windows = 1,
2346	}, {
2347		.index = 4,
2348		.dc = 2,
2349		.windows = (const unsigned int[]) { 4 },
2350		.num_windows = 1,
2351	}, {
2352		.index = 5,
2353		.dc = 2,
2354		.windows = (const unsigned int[]) { 5 },
2355		.num_windows = 1,
2356	},
2357};
2358
2359static const struct tegra_dc_soc_info tegra186_dc_soc_info = {
2360	.supports_background_color = true,
2361	.supports_interlacing = true,
2362	.supports_cursor = true,
2363	.supports_block_linear = true,
2364	.has_legacy_blending = false,
2365	.pitch_align = 64,
2366	.has_powergate = false,
2367	.coupled_pm = false,
2368	.has_nvdisplay = true,
2369	.wgrps = tegra186_dc_wgrps,
2370	.num_wgrps = ARRAY_SIZE(tegra186_dc_wgrps),
2371};
2372
2373static const struct tegra_windowgroup_soc tegra194_dc_wgrps[] = {
2374	{
2375		.index = 0,
2376		.dc = 0,
2377		.windows = (const unsigned int[]) { 0 },
2378		.num_windows = 1,
2379	}, {
2380		.index = 1,
2381		.dc = 1,
2382		.windows = (const unsigned int[]) { 1 },
2383		.num_windows = 1,
2384	}, {
2385		.index = 2,
2386		.dc = 1,
2387		.windows = (const unsigned int[]) { 2 },
2388		.num_windows = 1,
2389	}, {
2390		.index = 3,
2391		.dc = 2,
2392		.windows = (const unsigned int[]) { 3 },
2393		.num_windows = 1,
2394	}, {
2395		.index = 4,
2396		.dc = 2,
2397		.windows = (const unsigned int[]) { 4 },
2398		.num_windows = 1,
2399	}, {
2400		.index = 5,
2401		.dc = 2,
2402		.windows = (const unsigned int[]) { 5 },
2403		.num_windows = 1,
2404	},
2405};
2406
2407static const struct tegra_dc_soc_info tegra194_dc_soc_info = {
2408	.supports_background_color = true,
2409	.supports_interlacing = true,
2410	.supports_cursor = true,
2411	.supports_block_linear = true,
2412	.has_legacy_blending = false,
2413	.pitch_align = 64,
2414	.has_powergate = false,
2415	.coupled_pm = false,
2416	.has_nvdisplay = true,
2417	.wgrps = tegra194_dc_wgrps,
2418	.num_wgrps = ARRAY_SIZE(tegra194_dc_wgrps),
2419};
2420
2421static const struct of_device_id tegra_dc_of_match[] = {
2422	{
2423		.compatible = "nvidia,tegra194-dc",
2424		.data = &tegra194_dc_soc_info,
2425	}, {
2426		.compatible = "nvidia,tegra186-dc",
2427		.data = &tegra186_dc_soc_info,
2428	}, {
2429		.compatible = "nvidia,tegra210-dc",
2430		.data = &tegra210_dc_soc_info,
2431	}, {
2432		.compatible = "nvidia,tegra124-dc",
2433		.data = &tegra124_dc_soc_info,
2434	}, {
2435		.compatible = "nvidia,tegra114-dc",
2436		.data = &tegra114_dc_soc_info,
2437	}, {
2438		.compatible = "nvidia,tegra30-dc",
2439		.data = &tegra30_dc_soc_info,
2440	}, {
2441		.compatible = "nvidia,tegra20-dc",
2442		.data = &tegra20_dc_soc_info,
2443	}, {
2444		/* sentinel */
2445	}
2446};
2447MODULE_DEVICE_TABLE(of, tegra_dc_of_match);
2448
2449static int tegra_dc_parse_dt(struct tegra_dc *dc)
2450{
2451	struct device_node *np;
2452	u32 value = 0;
2453	int err;
2454
2455	err = of_property_read_u32(dc->dev->of_node, "nvidia,head", &value);
2456	if (err < 0) {
2457		dev_err(dc->dev, "missing \"nvidia,head\" property\n");
2458
2459		/*
2460		 * If the nvidia,head property isn't present, try to find the
2461		 * correct head number by looking up the position of this
2462		 * display controller's node within the device tree. Assuming
2463		 * that the nodes are ordered properly in the DTS file and
2464		 * that the translation into a flattened device tree blob
2465		 * preserves that ordering this will actually yield the right
2466		 * head number.
2467		 *
2468		 * If those assumptions don't hold, this will still work for
2469		 * cases where only a single display controller is used.
2470		 */
2471		for_each_matching_node(np, tegra_dc_of_match) {
2472			if (np == dc->dev->of_node) {
2473				of_node_put(np);
2474				break;
2475			}
2476
2477			value++;
2478		}
2479	}
2480
2481	dc->pipe = value;
2482
2483	return 0;
2484}
2485
2486static int tegra_dc_match_by_pipe(struct device *dev, const void *data)
2487{
2488	struct tegra_dc *dc = dev_get_drvdata(dev);
2489	unsigned int pipe = (unsigned long)(void *)data;
2490
2491	return dc->pipe == pipe;
2492}
2493
2494static int tegra_dc_couple(struct tegra_dc *dc)
2495{
2496	/*
2497	 * On Tegra20, DC1 requires DC0 to be taken out of reset in order to
2498	 * be enabled, otherwise CPU hangs on writing to CMD_DISPLAY_COMMAND /
2499	 * POWER_CONTROL registers during CRTC enabling.
2500	 */
2501	if (dc->soc->coupled_pm && dc->pipe == 1) {
2502		u32 flags = DL_FLAG_PM_RUNTIME | DL_FLAG_AUTOREMOVE_CONSUMER;
2503		struct device_link *link;
2504		struct device *partner;
2505
2506		partner = driver_find_device(dc->dev->driver, NULL, NULL,
2507					     tegra_dc_match_by_pipe);
2508		if (!partner)
2509			return -EPROBE_DEFER;
2510
2511		link = device_link_add(dc->dev, partner, flags);
2512		if (!link) {
2513			dev_err(dc->dev, "failed to link controllers\n");
2514			return -EINVAL;
2515		}
2516
2517		dev_dbg(dc->dev, "coupled to %s\n", dev_name(partner));
2518	}
2519
2520	return 0;
2521}
2522
2523static int tegra_dc_probe(struct platform_device *pdev)
2524{
2525	struct tegra_dc *dc;
2526	int err;
2527
2528	dc = devm_kzalloc(&pdev->dev, sizeof(*dc), GFP_KERNEL);
2529	if (!dc)
2530		return -ENOMEM;
2531
2532	dc->soc = of_device_get_match_data(&pdev->dev);
2533
2534	INIT_LIST_HEAD(&dc->list);
2535	dc->dev = &pdev->dev;
2536
2537	err = tegra_dc_parse_dt(dc);
2538	if (err < 0)
2539		return err;
2540
2541	err = tegra_dc_couple(dc);
2542	if (err < 0)
2543		return err;
2544
2545	dc->clk = devm_clk_get(&pdev->dev, NULL);
2546	if (IS_ERR(dc->clk)) {
2547		dev_err(&pdev->dev, "failed to get clock\n");
2548		return PTR_ERR(dc->clk);
2549	}
2550
2551	dc->rst = devm_reset_control_get(&pdev->dev, "dc");
2552	if (IS_ERR(dc->rst)) {
2553		dev_err(&pdev->dev, "failed to get reset\n");
2554		return PTR_ERR(dc->rst);
2555	}
2556
2557	/* assert reset and disable clock */
2558	err = clk_prepare_enable(dc->clk);
2559	if (err < 0)
2560		return err;
2561
2562	usleep_range(2000, 4000);
2563
2564	err = reset_control_assert(dc->rst);
2565	if (err < 0)
2566		return err;
2567
2568	usleep_range(2000, 4000);
2569
2570	clk_disable_unprepare(dc->clk);
2571
2572	if (dc->soc->has_powergate) {
2573		if (dc->pipe == 0)
2574			dc->powergate = TEGRA_POWERGATE_DIS;
2575		else
2576			dc->powergate = TEGRA_POWERGATE_DISB;
2577
2578		tegra_powergate_power_off(dc->powergate);
2579	}
2580
2581	dc->regs = devm_platform_ioremap_resource(pdev, 0);
2582	if (IS_ERR(dc->regs))
2583		return PTR_ERR(dc->regs);
2584
2585	dc->irq = platform_get_irq(pdev, 0);
2586	if (dc->irq < 0)
2587		return -ENXIO;
2588
2589	err = tegra_dc_rgb_probe(dc);
2590	if (err < 0 && err != -ENODEV) {
2591		const char *level = KERN_ERR;
2592
2593		if (err == -EPROBE_DEFER)
2594			level = KERN_DEBUG;
2595
2596		dev_printk(level, dc->dev, "failed to probe RGB output: %d\n",
2597			   err);
2598		return err;
2599	}
2600
2601	platform_set_drvdata(pdev, dc);
2602	pm_runtime_enable(&pdev->dev);
2603
2604	INIT_LIST_HEAD(&dc->client.list);
2605	dc->client.ops = &dc_client_ops;
2606	dc->client.dev = &pdev->dev;
2607
2608	err = host1x_client_register(&dc->client);
2609	if (err < 0) {
2610		dev_err(&pdev->dev, "failed to register host1x client: %d\n",
2611			err);
2612		goto disable_pm;
2613	}
2614
2615	return 0;
2616
2617disable_pm:
2618	pm_runtime_disable(&pdev->dev);
2619	tegra_dc_rgb_remove(dc);
2620
2621	return err;
2622}
2623
2624static int tegra_dc_remove(struct platform_device *pdev)
2625{
2626	struct tegra_dc *dc = platform_get_drvdata(pdev);
2627	int err;
2628
2629	err = host1x_client_unregister(&dc->client);
2630	if (err < 0) {
2631		dev_err(&pdev->dev, "failed to unregister host1x client: %d\n",
2632			err);
2633		return err;
2634	}
2635
2636	err = tegra_dc_rgb_remove(dc);
2637	if (err < 0) {
2638		dev_err(&pdev->dev, "failed to remove RGB output: %d\n", err);
2639		return err;
2640	}
2641
2642	pm_runtime_disable(&pdev->dev);
2643
2644	return 0;
2645}
2646
2647struct platform_driver tegra_dc_driver = {
2648	.driver = {
2649		.name = "tegra-dc",
2650		.of_match_table = tegra_dc_of_match,
2651	},
2652	.probe = tegra_dc_probe,
2653	.remove = tegra_dc_remove,
2654};