Linux Audio

Check our new training course

Loading...
Note: File does not exist in v3.1.
   1/*
   2 * Copyright (C) 2012 Avionic Design GmbH
   3 * Copyright (C) 2012 NVIDIA CORPORATION.  All rights reserved.
   4 *
   5 * This program is free software; you can redistribute it and/or modify
   6 * it under the terms of the GNU General Public License version 2 as
   7 * published by the Free Software Foundation.
   8 */
   9
  10#include <linux/clk.h>
  11#include <linux/debugfs.h>
  12#include <linux/iommu.h>
  13#include <linux/reset.h>
  14
  15#include <soc/tegra/pmc.h>
  16
  17#include "dc.h"
  18#include "drm.h"
  19#include "gem.h"
  20
  21#include <drm/drm_atomic.h>
  22#include <drm/drm_atomic_helper.h>
  23#include <drm/drm_plane_helper.h>
  24
  25struct tegra_dc_soc_info {
  26	bool supports_border_color;
  27	bool supports_interlacing;
  28	bool supports_cursor;
  29	bool supports_block_linear;
  30	unsigned int pitch_align;
  31	bool has_powergate;
  32};
  33
  34struct tegra_plane {
  35	struct drm_plane base;
  36	unsigned int index;
  37};
  38
  39static inline struct tegra_plane *to_tegra_plane(struct drm_plane *plane)
  40{
  41	return container_of(plane, struct tegra_plane, base);
  42}
  43
  44struct tegra_dc_state {
  45	struct drm_crtc_state base;
  46
  47	struct clk *clk;
  48	unsigned long pclk;
  49	unsigned int div;
  50
  51	u32 planes;
  52};
  53
  54static inline struct tegra_dc_state *to_dc_state(struct drm_crtc_state *state)
  55{
  56	if (state)
  57		return container_of(state, struct tegra_dc_state, base);
  58
  59	return NULL;
  60}
  61
  62struct tegra_plane_state {
  63	struct drm_plane_state base;
  64
  65	struct tegra_bo_tiling tiling;
  66	u32 format;
  67	u32 swap;
  68};
  69
  70static inline struct tegra_plane_state *
  71to_tegra_plane_state(struct drm_plane_state *state)
  72{
  73	if (state)
  74		return container_of(state, struct tegra_plane_state, base);
  75
  76	return NULL;
  77}
  78
  79static void tegra_dc_stats_reset(struct tegra_dc_stats *stats)
  80{
  81	stats->frames = 0;
  82	stats->vblank = 0;
  83	stats->underflow = 0;
  84	stats->overflow = 0;
  85}
  86
  87/*
  88 * Reads the active copy of a register. This takes the dc->lock spinlock to
  89 * prevent races with the VBLANK processing which also needs access to the
  90 * active copy of some registers.
  91 */
  92static u32 tegra_dc_readl_active(struct tegra_dc *dc, unsigned long offset)
  93{
  94	unsigned long flags;
  95	u32 value;
  96
  97	spin_lock_irqsave(&dc->lock, flags);
  98
  99	tegra_dc_writel(dc, READ_MUX, DC_CMD_STATE_ACCESS);
 100	value = tegra_dc_readl(dc, offset);
 101	tegra_dc_writel(dc, 0, DC_CMD_STATE_ACCESS);
 102
 103	spin_unlock_irqrestore(&dc->lock, flags);
 104	return value;
 105}
 106
 107/*
 108 * Double-buffered registers have two copies: ASSEMBLY and ACTIVE. When the
 109 * *_ACT_REQ bits are set the ASSEMBLY copy is latched into the ACTIVE copy.
 110 * Latching happens mmediately if the display controller is in STOP mode or
 111 * on the next frame boundary otherwise.
 112 *
 113 * Triple-buffered registers have three copies: ASSEMBLY, ARM and ACTIVE. The
 114 * ASSEMBLY copy is latched into the ARM copy immediately after *_UPDATE bits
 115 * are written. When the *_ACT_REQ bits are written, the ARM copy is latched
 116 * into the ACTIVE copy, either immediately if the display controller is in
 117 * STOP mode, or at the next frame boundary otherwise.
 118 */
 119void tegra_dc_commit(struct tegra_dc *dc)
 120{
 121	tegra_dc_writel(dc, GENERAL_ACT_REQ << 8, DC_CMD_STATE_CONTROL);
 122	tegra_dc_writel(dc, GENERAL_ACT_REQ, DC_CMD_STATE_CONTROL);
 123}
 124
 125static int tegra_dc_format(u32 fourcc, u32 *format, u32 *swap)
 126{
 127	/* assume no swapping of fetched data */
 128	if (swap)
 129		*swap = BYTE_SWAP_NOSWAP;
 130
 131	switch (fourcc) {
 132	case DRM_FORMAT_XBGR8888:
 133		*format = WIN_COLOR_DEPTH_R8G8B8A8;
 134		break;
 135
 136	case DRM_FORMAT_XRGB8888:
 137		*format = WIN_COLOR_DEPTH_B8G8R8A8;
 138		break;
 139
 140	case DRM_FORMAT_RGB565:
 141		*format = WIN_COLOR_DEPTH_B5G6R5;
 142		break;
 143
 144	case DRM_FORMAT_UYVY:
 145		*format = WIN_COLOR_DEPTH_YCbCr422;
 146		break;
 147
 148	case DRM_FORMAT_YUYV:
 149		if (swap)
 150			*swap = BYTE_SWAP_SWAP2;
 151
 152		*format = WIN_COLOR_DEPTH_YCbCr422;
 153		break;
 154
 155	case DRM_FORMAT_YUV420:
 156		*format = WIN_COLOR_DEPTH_YCbCr420P;
 157		break;
 158
 159	case DRM_FORMAT_YUV422:
 160		*format = WIN_COLOR_DEPTH_YCbCr422P;
 161		break;
 162
 163	default:
 164		return -EINVAL;
 165	}
 166
 167	return 0;
 168}
 169
 170static bool tegra_dc_format_is_yuv(unsigned int format, bool *planar)
 171{
 172	switch (format) {
 173	case WIN_COLOR_DEPTH_YCbCr422:
 174	case WIN_COLOR_DEPTH_YUV422:
 175		if (planar)
 176			*planar = false;
 177
 178		return true;
 179
 180	case WIN_COLOR_DEPTH_YCbCr420P:
 181	case WIN_COLOR_DEPTH_YUV420P:
 182	case WIN_COLOR_DEPTH_YCbCr422P:
 183	case WIN_COLOR_DEPTH_YUV422P:
 184	case WIN_COLOR_DEPTH_YCbCr422R:
 185	case WIN_COLOR_DEPTH_YUV422R:
 186	case WIN_COLOR_DEPTH_YCbCr422RA:
 187	case WIN_COLOR_DEPTH_YUV422RA:
 188		if (planar)
 189			*planar = true;
 190
 191		return true;
 192	}
 193
 194	if (planar)
 195		*planar = false;
 196
 197	return false;
 198}
 199
 200static inline u32 compute_dda_inc(unsigned int in, unsigned int out, bool v,
 201				  unsigned int bpp)
 202{
 203	fixed20_12 outf = dfixed_init(out);
 204	fixed20_12 inf = dfixed_init(in);
 205	u32 dda_inc;
 206	int max;
 207
 208	if (v)
 209		max = 15;
 210	else {
 211		switch (bpp) {
 212		case 2:
 213			max = 8;
 214			break;
 215
 216		default:
 217			WARN_ON_ONCE(1);
 218			/* fallthrough */
 219		case 4:
 220			max = 4;
 221			break;
 222		}
 223	}
 224
 225	outf.full = max_t(u32, outf.full - dfixed_const(1), dfixed_const(1));
 226	inf.full -= dfixed_const(1);
 227
 228	dda_inc = dfixed_div(inf, outf);
 229	dda_inc = min_t(u32, dda_inc, dfixed_const(max));
 230
 231	return dda_inc;
 232}
 233
 234static inline u32 compute_initial_dda(unsigned int in)
 235{
 236	fixed20_12 inf = dfixed_init(in);
 237	return dfixed_frac(inf);
 238}
 239
 240static void tegra_dc_setup_window(struct tegra_dc *dc, unsigned int index,
 241				  const struct tegra_dc_window *window)
 242{
 243	unsigned h_offset, v_offset, h_size, v_size, h_dda, v_dda, bpp;
 244	unsigned long value, flags;
 245	bool yuv, planar;
 246
 247	/*
 248	 * For YUV planar modes, the number of bytes per pixel takes into
 249	 * account only the luma component and therefore is 1.
 250	 */
 251	yuv = tegra_dc_format_is_yuv(window->format, &planar);
 252	if (!yuv)
 253		bpp = window->bits_per_pixel / 8;
 254	else
 255		bpp = planar ? 1 : 2;
 256
 257	spin_lock_irqsave(&dc->lock, flags);
 258
 259	value = WINDOW_A_SELECT << index;
 260	tegra_dc_writel(dc, value, DC_CMD_DISPLAY_WINDOW_HEADER);
 261
 262	tegra_dc_writel(dc, window->format, DC_WIN_COLOR_DEPTH);
 263	tegra_dc_writel(dc, window->swap, DC_WIN_BYTE_SWAP);
 264
 265	value = V_POSITION(window->dst.y) | H_POSITION(window->dst.x);
 266	tegra_dc_writel(dc, value, DC_WIN_POSITION);
 267
 268	value = V_SIZE(window->dst.h) | H_SIZE(window->dst.w);
 269	tegra_dc_writel(dc, value, DC_WIN_SIZE);
 270
 271	h_offset = window->src.x * bpp;
 272	v_offset = window->src.y;
 273	h_size = window->src.w * bpp;
 274	v_size = window->src.h;
 275
 276	value = V_PRESCALED_SIZE(v_size) | H_PRESCALED_SIZE(h_size);
 277	tegra_dc_writel(dc, value, DC_WIN_PRESCALED_SIZE);
 278
 279	/*
 280	 * For DDA computations the number of bytes per pixel for YUV planar
 281	 * modes needs to take into account all Y, U and V components.
 282	 */
 283	if (yuv && planar)
 284		bpp = 2;
 285
 286	h_dda = compute_dda_inc(window->src.w, window->dst.w, false, bpp);
 287	v_dda = compute_dda_inc(window->src.h, window->dst.h, true, bpp);
 288
 289	value = V_DDA_INC(v_dda) | H_DDA_INC(h_dda);
 290	tegra_dc_writel(dc, value, DC_WIN_DDA_INC);
 291
 292	h_dda = compute_initial_dda(window->src.x);
 293	v_dda = compute_initial_dda(window->src.y);
 294
 295	tegra_dc_writel(dc, h_dda, DC_WIN_H_INITIAL_DDA);
 296	tegra_dc_writel(dc, v_dda, DC_WIN_V_INITIAL_DDA);
 297
 298	tegra_dc_writel(dc, 0, DC_WIN_UV_BUF_STRIDE);
 299	tegra_dc_writel(dc, 0, DC_WIN_BUF_STRIDE);
 300
 301	tegra_dc_writel(dc, window->base[0], DC_WINBUF_START_ADDR);
 302
 303	if (yuv && planar) {
 304		tegra_dc_writel(dc, window->base[1], DC_WINBUF_START_ADDR_U);
 305		tegra_dc_writel(dc, window->base[2], DC_WINBUF_START_ADDR_V);
 306		value = window->stride[1] << 16 | window->stride[0];
 307		tegra_dc_writel(dc, value, DC_WIN_LINE_STRIDE);
 308	} else {
 309		tegra_dc_writel(dc, window->stride[0], DC_WIN_LINE_STRIDE);
 310	}
 311
 312	if (window->bottom_up)
 313		v_offset += window->src.h - 1;
 314
 315	tegra_dc_writel(dc, h_offset, DC_WINBUF_ADDR_H_OFFSET);
 316	tegra_dc_writel(dc, v_offset, DC_WINBUF_ADDR_V_OFFSET);
 317
 318	if (dc->soc->supports_block_linear) {
 319		unsigned long height = window->tiling.value;
 320
 321		switch (window->tiling.mode) {
 322		case TEGRA_BO_TILING_MODE_PITCH:
 323			value = DC_WINBUF_SURFACE_KIND_PITCH;
 324			break;
 325
 326		case TEGRA_BO_TILING_MODE_TILED:
 327			value = DC_WINBUF_SURFACE_KIND_TILED;
 328			break;
 329
 330		case TEGRA_BO_TILING_MODE_BLOCK:
 331			value = DC_WINBUF_SURFACE_KIND_BLOCK_HEIGHT(height) |
 332				DC_WINBUF_SURFACE_KIND_BLOCK;
 333			break;
 334		}
 335
 336		tegra_dc_writel(dc, value, DC_WINBUF_SURFACE_KIND);
 337	} else {
 338		switch (window->tiling.mode) {
 339		case TEGRA_BO_TILING_MODE_PITCH:
 340			value = DC_WIN_BUFFER_ADDR_MODE_LINEAR_UV |
 341				DC_WIN_BUFFER_ADDR_MODE_LINEAR;
 342			break;
 343
 344		case TEGRA_BO_TILING_MODE_TILED:
 345			value = DC_WIN_BUFFER_ADDR_MODE_TILE_UV |
 346				DC_WIN_BUFFER_ADDR_MODE_TILE;
 347			break;
 348
 349		case TEGRA_BO_TILING_MODE_BLOCK:
 350			/*
 351			 * No need to handle this here because ->atomic_check
 352			 * will already have filtered it out.
 353			 */
 354			break;
 355		}
 356
 357		tegra_dc_writel(dc, value, DC_WIN_BUFFER_ADDR_MODE);
 358	}
 359
 360	value = WIN_ENABLE;
 361
 362	if (yuv) {
 363		/* setup default colorspace conversion coefficients */
 364		tegra_dc_writel(dc, 0x00f0, DC_WIN_CSC_YOF);
 365		tegra_dc_writel(dc, 0x012a, DC_WIN_CSC_KYRGB);
 366		tegra_dc_writel(dc, 0x0000, DC_WIN_CSC_KUR);
 367		tegra_dc_writel(dc, 0x0198, DC_WIN_CSC_KVR);
 368		tegra_dc_writel(dc, 0x039b, DC_WIN_CSC_KUG);
 369		tegra_dc_writel(dc, 0x032f, DC_WIN_CSC_KVG);
 370		tegra_dc_writel(dc, 0x0204, DC_WIN_CSC_KUB);
 371		tegra_dc_writel(dc, 0x0000, DC_WIN_CSC_KVB);
 372
 373		value |= CSC_ENABLE;
 374	} else if (window->bits_per_pixel < 24) {
 375		value |= COLOR_EXPAND;
 376	}
 377
 378	if (window->bottom_up)
 379		value |= V_DIRECTION;
 380
 381	tegra_dc_writel(dc, value, DC_WIN_WIN_OPTIONS);
 382
 383	/*
 384	 * Disable blending and assume Window A is the bottom-most window,
 385	 * Window C is the top-most window and Window B is in the middle.
 386	 */
 387	tegra_dc_writel(dc, 0xffff00, DC_WIN_BLEND_NOKEY);
 388	tegra_dc_writel(dc, 0xffff00, DC_WIN_BLEND_1WIN);
 389
 390	switch (index) {
 391	case 0:
 392		tegra_dc_writel(dc, 0x000000, DC_WIN_BLEND_2WIN_X);
 393		tegra_dc_writel(dc, 0x000000, DC_WIN_BLEND_2WIN_Y);
 394		tegra_dc_writel(dc, 0x000000, DC_WIN_BLEND_3WIN_XY);
 395		break;
 396
 397	case 1:
 398		tegra_dc_writel(dc, 0xffff00, DC_WIN_BLEND_2WIN_X);
 399		tegra_dc_writel(dc, 0x000000, DC_WIN_BLEND_2WIN_Y);
 400		tegra_dc_writel(dc, 0x000000, DC_WIN_BLEND_3WIN_XY);
 401		break;
 402
 403	case 2:
 404		tegra_dc_writel(dc, 0xffff00, DC_WIN_BLEND_2WIN_X);
 405		tegra_dc_writel(dc, 0xffff00, DC_WIN_BLEND_2WIN_Y);
 406		tegra_dc_writel(dc, 0xffff00, DC_WIN_BLEND_3WIN_XY);
 407		break;
 408	}
 409
 410	spin_unlock_irqrestore(&dc->lock, flags);
 411}
 412
 413static void tegra_plane_destroy(struct drm_plane *plane)
 414{
 415	struct tegra_plane *p = to_tegra_plane(plane);
 416
 417	drm_plane_cleanup(plane);
 418	kfree(p);
 419}
 420
 421static const u32 tegra_primary_plane_formats[] = {
 422	DRM_FORMAT_XBGR8888,
 423	DRM_FORMAT_XRGB8888,
 424	DRM_FORMAT_RGB565,
 425};
 426
 427static void tegra_primary_plane_destroy(struct drm_plane *plane)
 428{
 429	tegra_plane_destroy(plane);
 430}
 431
 432static void tegra_plane_reset(struct drm_plane *plane)
 433{
 434	struct tegra_plane_state *state;
 435
 436	if (plane->state)
 437		__drm_atomic_helper_plane_destroy_state(plane, plane->state);
 438
 439	kfree(plane->state);
 440	plane->state = NULL;
 441
 442	state = kzalloc(sizeof(*state), GFP_KERNEL);
 443	if (state) {
 444		plane->state = &state->base;
 445		plane->state->plane = plane;
 446	}
 447}
 448
 449static struct drm_plane_state *tegra_plane_atomic_duplicate_state(struct drm_plane *plane)
 450{
 451	struct tegra_plane_state *state = to_tegra_plane_state(plane->state);
 452	struct tegra_plane_state *copy;
 453
 454	copy = kmalloc(sizeof(*copy), GFP_KERNEL);
 455	if (!copy)
 456		return NULL;
 457
 458	__drm_atomic_helper_plane_duplicate_state(plane, &copy->base);
 459	copy->tiling = state->tiling;
 460	copy->format = state->format;
 461	copy->swap = state->swap;
 462
 463	return &copy->base;
 464}
 465
 466static void tegra_plane_atomic_destroy_state(struct drm_plane *plane,
 467					     struct drm_plane_state *state)
 468{
 469	__drm_atomic_helper_plane_destroy_state(plane, state);
 470	kfree(state);
 471}
 472
 473static const struct drm_plane_funcs tegra_primary_plane_funcs = {
 474	.update_plane = drm_atomic_helper_update_plane,
 475	.disable_plane = drm_atomic_helper_disable_plane,
 476	.destroy = tegra_primary_plane_destroy,
 477	.reset = tegra_plane_reset,
 478	.atomic_duplicate_state = tegra_plane_atomic_duplicate_state,
 479	.atomic_destroy_state = tegra_plane_atomic_destroy_state,
 480};
 481
 482static int tegra_plane_prepare_fb(struct drm_plane *plane,
 483				  const struct drm_plane_state *new_state)
 484{
 485	return 0;
 486}
 487
 488static void tegra_plane_cleanup_fb(struct drm_plane *plane,
 489				   const struct drm_plane_state *old_fb)
 490{
 491}
 492
 493static int tegra_plane_state_add(struct tegra_plane *plane,
 494				 struct drm_plane_state *state)
 495{
 496	struct drm_crtc_state *crtc_state;
 497	struct tegra_dc_state *tegra;
 498
 499	/* Propagate errors from allocation or locking failures. */
 500	crtc_state = drm_atomic_get_crtc_state(state->state, state->crtc);
 501	if (IS_ERR(crtc_state))
 502		return PTR_ERR(crtc_state);
 503
 504	tegra = to_dc_state(crtc_state);
 505
 506	tegra->planes |= WIN_A_ACT_REQ << plane->index;
 507
 508	return 0;
 509}
 510
 511static int tegra_plane_atomic_check(struct drm_plane *plane,
 512				    struct drm_plane_state *state)
 513{
 514	struct tegra_plane_state *plane_state = to_tegra_plane_state(state);
 515	struct tegra_bo_tiling *tiling = &plane_state->tiling;
 516	struct tegra_plane *tegra = to_tegra_plane(plane);
 517	struct tegra_dc *dc = to_tegra_dc(state->crtc);
 518	int err;
 519
 520	/* no need for further checks if the plane is being disabled */
 521	if (!state->crtc)
 522		return 0;
 523
 524	err = tegra_dc_format(state->fb->pixel_format, &plane_state->format,
 525			      &plane_state->swap);
 526	if (err < 0)
 527		return err;
 528
 529	err = tegra_fb_get_tiling(state->fb, tiling);
 530	if (err < 0)
 531		return err;
 532
 533	if (tiling->mode == TEGRA_BO_TILING_MODE_BLOCK &&
 534	    !dc->soc->supports_block_linear) {
 535		DRM_ERROR("hardware doesn't support block linear mode\n");
 536		return -EINVAL;
 537	}
 538
 539	/*
 540	 * Tegra doesn't support different strides for U and V planes so we
 541	 * error out if the user tries to display a framebuffer with such a
 542	 * configuration.
 543	 */
 544	if (drm_format_num_planes(state->fb->pixel_format) > 2) {
 545		if (state->fb->pitches[2] != state->fb->pitches[1]) {
 546			DRM_ERROR("unsupported UV-plane configuration\n");
 547			return -EINVAL;
 548		}
 549	}
 550
 551	err = tegra_plane_state_add(tegra, state);
 552	if (err < 0)
 553		return err;
 554
 555	return 0;
 556}
 557
 558static void tegra_plane_atomic_update(struct drm_plane *plane,
 559				      struct drm_plane_state *old_state)
 560{
 561	struct tegra_plane_state *state = to_tegra_plane_state(plane->state);
 562	struct tegra_dc *dc = to_tegra_dc(plane->state->crtc);
 563	struct drm_framebuffer *fb = plane->state->fb;
 564	struct tegra_plane *p = to_tegra_plane(plane);
 565	struct tegra_dc_window window;
 566	unsigned int i;
 567
 568	/* rien ne va plus */
 569	if (!plane->state->crtc || !plane->state->fb)
 570		return;
 571
 572	memset(&window, 0, sizeof(window));
 573	window.src.x = plane->state->src_x >> 16;
 574	window.src.y = plane->state->src_y >> 16;
 575	window.src.w = plane->state->src_w >> 16;
 576	window.src.h = plane->state->src_h >> 16;
 577	window.dst.x = plane->state->crtc_x;
 578	window.dst.y = plane->state->crtc_y;
 579	window.dst.w = plane->state->crtc_w;
 580	window.dst.h = plane->state->crtc_h;
 581	window.bits_per_pixel = fb->bits_per_pixel;
 582	window.bottom_up = tegra_fb_is_bottom_up(fb);
 583
 584	/* copy from state */
 585	window.tiling = state->tiling;
 586	window.format = state->format;
 587	window.swap = state->swap;
 588
 589	for (i = 0; i < drm_format_num_planes(fb->pixel_format); i++) {
 590		struct tegra_bo *bo = tegra_fb_get_plane(fb, i);
 591
 592		window.base[i] = bo->paddr + fb->offsets[i];
 593		window.stride[i] = fb->pitches[i];
 594	}
 595
 596	tegra_dc_setup_window(dc, p->index, &window);
 597}
 598
 599static void tegra_plane_atomic_disable(struct drm_plane *plane,
 600				       struct drm_plane_state *old_state)
 601{
 602	struct tegra_plane *p = to_tegra_plane(plane);
 603	struct tegra_dc *dc;
 604	unsigned long flags;
 605	u32 value;
 606
 607	/* rien ne va plus */
 608	if (!old_state || !old_state->crtc)
 609		return;
 610
 611	dc = to_tegra_dc(old_state->crtc);
 612
 613	spin_lock_irqsave(&dc->lock, flags);
 614
 615	value = WINDOW_A_SELECT << p->index;
 616	tegra_dc_writel(dc, value, DC_CMD_DISPLAY_WINDOW_HEADER);
 617
 618	value = tegra_dc_readl(dc, DC_WIN_WIN_OPTIONS);
 619	value &= ~WIN_ENABLE;
 620	tegra_dc_writel(dc, value, DC_WIN_WIN_OPTIONS);
 621
 622	spin_unlock_irqrestore(&dc->lock, flags);
 623}
 624
 625static const struct drm_plane_helper_funcs tegra_primary_plane_helper_funcs = {
 626	.prepare_fb = tegra_plane_prepare_fb,
 627	.cleanup_fb = tegra_plane_cleanup_fb,
 628	.atomic_check = tegra_plane_atomic_check,
 629	.atomic_update = tegra_plane_atomic_update,
 630	.atomic_disable = tegra_plane_atomic_disable,
 631};
 632
 633static struct drm_plane *tegra_dc_primary_plane_create(struct drm_device *drm,
 634						       struct tegra_dc *dc)
 635{
 636	/*
 637	 * Ideally this would use drm_crtc_mask(), but that would require the
 638	 * CRTC to already be in the mode_config's list of CRTCs. However, it
 639	 * will only be added to that list in the drm_crtc_init_with_planes()
 640	 * (in tegra_dc_init()), which in turn requires registration of these
 641	 * planes. So we have ourselves a nice little chicken and egg problem
 642	 * here.
 643	 *
 644	 * We work around this by manually creating the mask from the number
 645	 * of CRTCs that have been registered, and should therefore always be
 646	 * the same as drm_crtc_index() after registration.
 647	 */
 648	unsigned long possible_crtcs = 1 << drm->mode_config.num_crtc;
 649	struct tegra_plane *plane;
 650	unsigned int num_formats;
 651	const u32 *formats;
 652	int err;
 653
 654	plane = kzalloc(sizeof(*plane), GFP_KERNEL);
 655	if (!plane)
 656		return ERR_PTR(-ENOMEM);
 657
 658	num_formats = ARRAY_SIZE(tegra_primary_plane_formats);
 659	formats = tegra_primary_plane_formats;
 660
 661	err = drm_universal_plane_init(drm, &plane->base, possible_crtcs,
 662				       &tegra_primary_plane_funcs, formats,
 663				       num_formats, DRM_PLANE_TYPE_PRIMARY,
 664				       NULL);
 665	if (err < 0) {
 666		kfree(plane);
 667		return ERR_PTR(err);
 668	}
 669
 670	drm_plane_helper_add(&plane->base, &tegra_primary_plane_helper_funcs);
 671
 672	return &plane->base;
 673}
 674
 675static const u32 tegra_cursor_plane_formats[] = {
 676	DRM_FORMAT_RGBA8888,
 677};
 678
 679static int tegra_cursor_atomic_check(struct drm_plane *plane,
 680				     struct drm_plane_state *state)
 681{
 682	struct tegra_plane *tegra = to_tegra_plane(plane);
 683	int err;
 684
 685	/* no need for further checks if the plane is being disabled */
 686	if (!state->crtc)
 687		return 0;
 688
 689	/* scaling not supported for cursor */
 690	if ((state->src_w >> 16 != state->crtc_w) ||
 691	    (state->src_h >> 16 != state->crtc_h))
 692		return -EINVAL;
 693
 694	/* only square cursors supported */
 695	if (state->src_w != state->src_h)
 696		return -EINVAL;
 697
 698	if (state->crtc_w != 32 && state->crtc_w != 64 &&
 699	    state->crtc_w != 128 && state->crtc_w != 256)
 700		return -EINVAL;
 701
 702	err = tegra_plane_state_add(tegra, state);
 703	if (err < 0)
 704		return err;
 705
 706	return 0;
 707}
 708
 709static void tegra_cursor_atomic_update(struct drm_plane *plane,
 710				       struct drm_plane_state *old_state)
 711{
 712	struct tegra_bo *bo = tegra_fb_get_plane(plane->state->fb, 0);
 713	struct tegra_dc *dc = to_tegra_dc(plane->state->crtc);
 714	struct drm_plane_state *state = plane->state;
 715	u32 value = CURSOR_CLIP_DISPLAY;
 716
 717	/* rien ne va plus */
 718	if (!plane->state->crtc || !plane->state->fb)
 719		return;
 720
 721	switch (state->crtc_w) {
 722	case 32:
 723		value |= CURSOR_SIZE_32x32;
 724		break;
 725
 726	case 64:
 727		value |= CURSOR_SIZE_64x64;
 728		break;
 729
 730	case 128:
 731		value |= CURSOR_SIZE_128x128;
 732		break;
 733
 734	case 256:
 735		value |= CURSOR_SIZE_256x256;
 736		break;
 737
 738	default:
 739		WARN(1, "cursor size %ux%u not supported\n", state->crtc_w,
 740		     state->crtc_h);
 741		return;
 742	}
 743
 744	value |= (bo->paddr >> 10) & 0x3fffff;
 745	tegra_dc_writel(dc, value, DC_DISP_CURSOR_START_ADDR);
 746
 747#ifdef CONFIG_ARCH_DMA_ADDR_T_64BIT
 748	value = (bo->paddr >> 32) & 0x3;
 749	tegra_dc_writel(dc, value, DC_DISP_CURSOR_START_ADDR_HI);
 750#endif
 751
 752	/* enable cursor and set blend mode */
 753	value = tegra_dc_readl(dc, DC_DISP_DISP_WIN_OPTIONS);
 754	value |= CURSOR_ENABLE;
 755	tegra_dc_writel(dc, value, DC_DISP_DISP_WIN_OPTIONS);
 756
 757	value = tegra_dc_readl(dc, DC_DISP_BLEND_CURSOR_CONTROL);
 758	value &= ~CURSOR_DST_BLEND_MASK;
 759	value &= ~CURSOR_SRC_BLEND_MASK;
 760	value |= CURSOR_MODE_NORMAL;
 761	value |= CURSOR_DST_BLEND_NEG_K1_TIMES_SRC;
 762	value |= CURSOR_SRC_BLEND_K1_TIMES_SRC;
 763	value |= CURSOR_ALPHA;
 764	tegra_dc_writel(dc, value, DC_DISP_BLEND_CURSOR_CONTROL);
 765
 766	/* position the cursor */
 767	value = (state->crtc_y & 0x3fff) << 16 | (state->crtc_x & 0x3fff);
 768	tegra_dc_writel(dc, value, DC_DISP_CURSOR_POSITION);
 769}
 770
 771static void tegra_cursor_atomic_disable(struct drm_plane *plane,
 772					struct drm_plane_state *old_state)
 773{
 774	struct tegra_dc *dc;
 775	u32 value;
 776
 777	/* rien ne va plus */
 778	if (!old_state || !old_state->crtc)
 779		return;
 780
 781	dc = to_tegra_dc(old_state->crtc);
 782
 783	value = tegra_dc_readl(dc, DC_DISP_DISP_WIN_OPTIONS);
 784	value &= ~CURSOR_ENABLE;
 785	tegra_dc_writel(dc, value, DC_DISP_DISP_WIN_OPTIONS);
 786}
 787
 788static const struct drm_plane_funcs tegra_cursor_plane_funcs = {
 789	.update_plane = drm_atomic_helper_update_plane,
 790	.disable_plane = drm_atomic_helper_disable_plane,
 791	.destroy = tegra_plane_destroy,
 792	.reset = tegra_plane_reset,
 793	.atomic_duplicate_state = tegra_plane_atomic_duplicate_state,
 794	.atomic_destroy_state = tegra_plane_atomic_destroy_state,
 795};
 796
 797static const struct drm_plane_helper_funcs tegra_cursor_plane_helper_funcs = {
 798	.prepare_fb = tegra_plane_prepare_fb,
 799	.cleanup_fb = tegra_plane_cleanup_fb,
 800	.atomic_check = tegra_cursor_atomic_check,
 801	.atomic_update = tegra_cursor_atomic_update,
 802	.atomic_disable = tegra_cursor_atomic_disable,
 803};
 804
 805static struct drm_plane *tegra_dc_cursor_plane_create(struct drm_device *drm,
 806						      struct tegra_dc *dc)
 807{
 808	struct tegra_plane *plane;
 809	unsigned int num_formats;
 810	const u32 *formats;
 811	int err;
 812
 813	plane = kzalloc(sizeof(*plane), GFP_KERNEL);
 814	if (!plane)
 815		return ERR_PTR(-ENOMEM);
 816
 817	/*
 818	 * This index is kind of fake. The cursor isn't a regular plane, but
 819	 * its update and activation request bits in DC_CMD_STATE_CONTROL do
 820	 * use the same programming. Setting this fake index here allows the
 821	 * code in tegra_add_plane_state() to do the right thing without the
 822	 * need to special-casing the cursor plane.
 823	 */
 824	plane->index = 6;
 825
 826	num_formats = ARRAY_SIZE(tegra_cursor_plane_formats);
 827	formats = tegra_cursor_plane_formats;
 828
 829	err = drm_universal_plane_init(drm, &plane->base, 1 << dc->pipe,
 830				       &tegra_cursor_plane_funcs, formats,
 831				       num_formats, DRM_PLANE_TYPE_CURSOR,
 832				       NULL);
 833	if (err < 0) {
 834		kfree(plane);
 835		return ERR_PTR(err);
 836	}
 837
 838	drm_plane_helper_add(&plane->base, &tegra_cursor_plane_helper_funcs);
 839
 840	return &plane->base;
 841}
 842
 843static void tegra_overlay_plane_destroy(struct drm_plane *plane)
 844{
 845	tegra_plane_destroy(plane);
 846}
 847
 848static const struct drm_plane_funcs tegra_overlay_plane_funcs = {
 849	.update_plane = drm_atomic_helper_update_plane,
 850	.disable_plane = drm_atomic_helper_disable_plane,
 851	.destroy = tegra_overlay_plane_destroy,
 852	.reset = tegra_plane_reset,
 853	.atomic_duplicate_state = tegra_plane_atomic_duplicate_state,
 854	.atomic_destroy_state = tegra_plane_atomic_destroy_state,
 855};
 856
 857static const uint32_t tegra_overlay_plane_formats[] = {
 858	DRM_FORMAT_XBGR8888,
 859	DRM_FORMAT_XRGB8888,
 860	DRM_FORMAT_RGB565,
 861	DRM_FORMAT_UYVY,
 862	DRM_FORMAT_YUYV,
 863	DRM_FORMAT_YUV420,
 864	DRM_FORMAT_YUV422,
 865};
 866
 867static const struct drm_plane_helper_funcs tegra_overlay_plane_helper_funcs = {
 868	.prepare_fb = tegra_plane_prepare_fb,
 869	.cleanup_fb = tegra_plane_cleanup_fb,
 870	.atomic_check = tegra_plane_atomic_check,
 871	.atomic_update = tegra_plane_atomic_update,
 872	.atomic_disable = tegra_plane_atomic_disable,
 873};
 874
 875static struct drm_plane *tegra_dc_overlay_plane_create(struct drm_device *drm,
 876						       struct tegra_dc *dc,
 877						       unsigned int index)
 878{
 879	struct tegra_plane *plane;
 880	unsigned int num_formats;
 881	const u32 *formats;
 882	int err;
 883
 884	plane = kzalloc(sizeof(*plane), GFP_KERNEL);
 885	if (!plane)
 886		return ERR_PTR(-ENOMEM);
 887
 888	plane->index = index;
 889
 890	num_formats = ARRAY_SIZE(tegra_overlay_plane_formats);
 891	formats = tegra_overlay_plane_formats;
 892
 893	err = drm_universal_plane_init(drm, &plane->base, 1 << dc->pipe,
 894				       &tegra_overlay_plane_funcs, formats,
 895				       num_formats, DRM_PLANE_TYPE_OVERLAY,
 896				       NULL);
 897	if (err < 0) {
 898		kfree(plane);
 899		return ERR_PTR(err);
 900	}
 901
 902	drm_plane_helper_add(&plane->base, &tegra_overlay_plane_helper_funcs);
 903
 904	return &plane->base;
 905}
 906
 907static int tegra_dc_add_planes(struct drm_device *drm, struct tegra_dc *dc)
 908{
 909	struct drm_plane *plane;
 910	unsigned int i;
 911
 912	for (i = 0; i < 2; i++) {
 913		plane = tegra_dc_overlay_plane_create(drm, dc, 1 + i);
 914		if (IS_ERR(plane))
 915			return PTR_ERR(plane);
 916	}
 917
 918	return 0;
 919}
 920
 921u32 tegra_dc_get_vblank_counter(struct tegra_dc *dc)
 922{
 923	if (dc->syncpt)
 924		return host1x_syncpt_read(dc->syncpt);
 925
 926	/* fallback to software emulated VBLANK counter */
 927	return drm_crtc_vblank_count(&dc->base);
 928}
 929
 930void tegra_dc_enable_vblank(struct tegra_dc *dc)
 931{
 932	unsigned long value, flags;
 933
 934	spin_lock_irqsave(&dc->lock, flags);
 935
 936	value = tegra_dc_readl(dc, DC_CMD_INT_MASK);
 937	value |= VBLANK_INT;
 938	tegra_dc_writel(dc, value, DC_CMD_INT_MASK);
 939
 940	spin_unlock_irqrestore(&dc->lock, flags);
 941}
 942
 943void tegra_dc_disable_vblank(struct tegra_dc *dc)
 944{
 945	unsigned long value, flags;
 946
 947	spin_lock_irqsave(&dc->lock, flags);
 948
 949	value = tegra_dc_readl(dc, DC_CMD_INT_MASK);
 950	value &= ~VBLANK_INT;
 951	tegra_dc_writel(dc, value, DC_CMD_INT_MASK);
 952
 953	spin_unlock_irqrestore(&dc->lock, flags);
 954}
 955
 956static void tegra_dc_finish_page_flip(struct tegra_dc *dc)
 957{
 958	struct drm_device *drm = dc->base.dev;
 959	struct drm_crtc *crtc = &dc->base;
 960	unsigned long flags, base;
 961	struct tegra_bo *bo;
 962
 963	spin_lock_irqsave(&drm->event_lock, flags);
 964
 965	if (!dc->event) {
 966		spin_unlock_irqrestore(&drm->event_lock, flags);
 967		return;
 968	}
 969
 970	bo = tegra_fb_get_plane(crtc->primary->fb, 0);
 971
 972	spin_lock(&dc->lock);
 973
 974	/* check if new start address has been latched */
 975	tegra_dc_writel(dc, WINDOW_A_SELECT, DC_CMD_DISPLAY_WINDOW_HEADER);
 976	tegra_dc_writel(dc, READ_MUX, DC_CMD_STATE_ACCESS);
 977	base = tegra_dc_readl(dc, DC_WINBUF_START_ADDR);
 978	tegra_dc_writel(dc, 0, DC_CMD_STATE_ACCESS);
 979
 980	spin_unlock(&dc->lock);
 981
 982	if (base == bo->paddr + crtc->primary->fb->offsets[0]) {
 983		drm_crtc_send_vblank_event(crtc, dc->event);
 984		drm_crtc_vblank_put(crtc);
 985		dc->event = NULL;
 986	}
 987
 988	spin_unlock_irqrestore(&drm->event_lock, flags);
 989}
 990
 991static void tegra_dc_destroy(struct drm_crtc *crtc)
 992{
 993	drm_crtc_cleanup(crtc);
 994}
 995
 996static void tegra_crtc_reset(struct drm_crtc *crtc)
 997{
 998	struct tegra_dc_state *state;
 999
1000	if (crtc->state)
1001		__drm_atomic_helper_crtc_destroy_state(crtc, crtc->state);
1002
1003	kfree(crtc->state);
1004	crtc->state = NULL;
1005
1006	state = kzalloc(sizeof(*state), GFP_KERNEL);
1007	if (state) {
1008		crtc->state = &state->base;
1009		crtc->state->crtc = crtc;
1010	}
1011
1012	drm_crtc_vblank_reset(crtc);
1013}
1014
1015static struct drm_crtc_state *
1016tegra_crtc_atomic_duplicate_state(struct drm_crtc *crtc)
1017{
1018	struct tegra_dc_state *state = to_dc_state(crtc->state);
1019	struct tegra_dc_state *copy;
1020
1021	copy = kmalloc(sizeof(*copy), GFP_KERNEL);
1022	if (!copy)
1023		return NULL;
1024
1025	__drm_atomic_helper_crtc_duplicate_state(crtc, &copy->base);
1026	copy->clk = state->clk;
1027	copy->pclk = state->pclk;
1028	copy->div = state->div;
1029	copy->planes = state->planes;
1030
1031	return &copy->base;
1032}
1033
1034static void tegra_crtc_atomic_destroy_state(struct drm_crtc *crtc,
1035					    struct drm_crtc_state *state)
1036{
1037	__drm_atomic_helper_crtc_destroy_state(crtc, state);
1038	kfree(state);
1039}
1040
1041static const struct drm_crtc_funcs tegra_crtc_funcs = {
1042	.page_flip = drm_atomic_helper_page_flip,
1043	.set_config = drm_atomic_helper_set_config,
1044	.destroy = tegra_dc_destroy,
1045	.reset = tegra_crtc_reset,
1046	.atomic_duplicate_state = tegra_crtc_atomic_duplicate_state,
1047	.atomic_destroy_state = tegra_crtc_atomic_destroy_state,
1048};
1049
1050static int tegra_dc_set_timings(struct tegra_dc *dc,
1051				struct drm_display_mode *mode)
1052{
1053	unsigned int h_ref_to_sync = 1;
1054	unsigned int v_ref_to_sync = 1;
1055	unsigned long value;
1056
1057	tegra_dc_writel(dc, 0x0, DC_DISP_DISP_TIMING_OPTIONS);
1058
1059	value = (v_ref_to_sync << 16) | h_ref_to_sync;
1060	tegra_dc_writel(dc, value, DC_DISP_REF_TO_SYNC);
1061
1062	value = ((mode->vsync_end - mode->vsync_start) << 16) |
1063		((mode->hsync_end - mode->hsync_start) <<  0);
1064	tegra_dc_writel(dc, value, DC_DISP_SYNC_WIDTH);
1065
1066	value = ((mode->vtotal - mode->vsync_end) << 16) |
1067		((mode->htotal - mode->hsync_end) <<  0);
1068	tegra_dc_writel(dc, value, DC_DISP_BACK_PORCH);
1069
1070	value = ((mode->vsync_start - mode->vdisplay) << 16) |
1071		((mode->hsync_start - mode->hdisplay) <<  0);
1072	tegra_dc_writel(dc, value, DC_DISP_FRONT_PORCH);
1073
1074	value = (mode->vdisplay << 16) | mode->hdisplay;
1075	tegra_dc_writel(dc, value, DC_DISP_ACTIVE);
1076
1077	return 0;
1078}
1079
1080/**
1081 * tegra_dc_state_setup_clock - check clock settings and store them in atomic
1082 *     state
1083 * @dc: display controller
1084 * @crtc_state: CRTC atomic state
1085 * @clk: parent clock for display controller
1086 * @pclk: pixel clock
1087 * @div: shift clock divider
1088 *
1089 * Returns:
1090 * 0 on success or a negative error-code on failure.
1091 */
1092int tegra_dc_state_setup_clock(struct tegra_dc *dc,
1093			       struct drm_crtc_state *crtc_state,
1094			       struct clk *clk, unsigned long pclk,
1095			       unsigned int div)
1096{
1097	struct tegra_dc_state *state = to_dc_state(crtc_state);
1098
1099	if (!clk_has_parent(dc->clk, clk))
1100		return -EINVAL;
1101
1102	state->clk = clk;
1103	state->pclk = pclk;
1104	state->div = div;
1105
1106	return 0;
1107}
1108
1109static void tegra_dc_commit_state(struct tegra_dc *dc,
1110				  struct tegra_dc_state *state)
1111{
1112	u32 value;
1113	int err;
1114
1115	err = clk_set_parent(dc->clk, state->clk);
1116	if (err < 0)
1117		dev_err(dc->dev, "failed to set parent clock: %d\n", err);
1118
1119	/*
1120	 * Outputs may not want to change the parent clock rate. This is only
1121	 * relevant to Tegra20 where only a single display PLL is available.
1122	 * Since that PLL would typically be used for HDMI, an internal LVDS
1123	 * panel would need to be driven by some other clock such as PLL_P
1124	 * which is shared with other peripherals. Changing the clock rate
1125	 * should therefore be avoided.
1126	 */
1127	if (state->pclk > 0) {
1128		err = clk_set_rate(state->clk, state->pclk);
1129		if (err < 0)
1130			dev_err(dc->dev,
1131				"failed to set clock rate to %lu Hz\n",
1132				state->pclk);
1133	}
1134
1135	DRM_DEBUG_KMS("rate: %lu, div: %u\n", clk_get_rate(dc->clk),
1136		      state->div);
1137	DRM_DEBUG_KMS("pclk: %lu\n", state->pclk);
1138
1139	value = SHIFT_CLK_DIVIDER(state->div) | PIXEL_CLK_DIVIDER_PCD1;
1140	tegra_dc_writel(dc, value, DC_DISP_DISP_CLOCK_CONTROL);
1141}
1142
1143static void tegra_dc_stop(struct tegra_dc *dc)
1144{
1145	u32 value;
1146
1147	/* stop the display controller */
1148	value = tegra_dc_readl(dc, DC_CMD_DISPLAY_COMMAND);
1149	value &= ~DISP_CTRL_MODE_MASK;
1150	tegra_dc_writel(dc, value, DC_CMD_DISPLAY_COMMAND);
1151
1152	tegra_dc_commit(dc);
1153}
1154
1155static bool tegra_dc_idle(struct tegra_dc *dc)
1156{
1157	u32 value;
1158
1159	value = tegra_dc_readl_active(dc, DC_CMD_DISPLAY_COMMAND);
1160
1161	return (value & DISP_CTRL_MODE_MASK) == 0;
1162}
1163
1164static int tegra_dc_wait_idle(struct tegra_dc *dc, unsigned long timeout)
1165{
1166	timeout = jiffies + msecs_to_jiffies(timeout);
1167
1168	while (time_before(jiffies, timeout)) {
1169		if (tegra_dc_idle(dc))
1170			return 0;
1171
1172		usleep_range(1000, 2000);
1173	}
1174
1175	dev_dbg(dc->dev, "timeout waiting for DC to become idle\n");
1176	return -ETIMEDOUT;
1177}
1178
1179static void tegra_crtc_disable(struct drm_crtc *crtc)
1180{
1181	struct tegra_dc *dc = to_tegra_dc(crtc);
1182	u32 value;
1183
1184	if (!tegra_dc_idle(dc)) {
1185		tegra_dc_stop(dc);
1186
1187		/*
1188		 * Ignore the return value, there isn't anything useful to do
1189		 * in case this fails.
1190		 */
1191		tegra_dc_wait_idle(dc, 100);
1192	}
1193
1194	/*
1195	 * This should really be part of the RGB encoder driver, but clearing
1196	 * these bits has the side-effect of stopping the display controller.
1197	 * When that happens no VBLANK interrupts will be raised. At the same
1198	 * time the encoder is disabled before the display controller, so the
1199	 * above code is always going to timeout waiting for the controller
1200	 * to go idle.
1201	 *
1202	 * Given the close coupling between the RGB encoder and the display
1203	 * controller doing it here is still kind of okay. None of the other
1204	 * encoder drivers require these bits to be cleared.
1205	 *
1206	 * XXX: Perhaps given that the display controller is switched off at
1207	 * this point anyway maybe clearing these bits isn't even useful for
1208	 * the RGB encoder?
1209	 */
1210	if (dc->rgb) {
1211		value = tegra_dc_readl(dc, DC_CMD_DISPLAY_POWER_CONTROL);
1212		value &= ~(PW0_ENABLE | PW1_ENABLE | PW2_ENABLE | PW3_ENABLE |
1213			   PW4_ENABLE | PM0_ENABLE | PM1_ENABLE);
1214		tegra_dc_writel(dc, value, DC_CMD_DISPLAY_POWER_CONTROL);
1215	}
1216
1217	tegra_dc_stats_reset(&dc->stats);
1218	drm_crtc_vblank_off(crtc);
1219}
1220
1221static void tegra_crtc_enable(struct drm_crtc *crtc)
1222{
1223	struct drm_display_mode *mode = &crtc->state->adjusted_mode;
1224	struct tegra_dc_state *state = to_dc_state(crtc->state);
1225	struct tegra_dc *dc = to_tegra_dc(crtc);
1226	u32 value;
1227
1228	tegra_dc_commit_state(dc, state);
1229
1230	/* program display mode */
1231	tegra_dc_set_timings(dc, mode);
1232
1233	/* interlacing isn't supported yet, so disable it */
1234	if (dc->soc->supports_interlacing) {
1235		value = tegra_dc_readl(dc, DC_DISP_INTERLACE_CONTROL);
1236		value &= ~INTERLACE_ENABLE;
1237		tegra_dc_writel(dc, value, DC_DISP_INTERLACE_CONTROL);
1238	}
1239
1240	value = tegra_dc_readl(dc, DC_CMD_DISPLAY_COMMAND);
1241	value &= ~DISP_CTRL_MODE_MASK;
1242	value |= DISP_CTRL_MODE_C_DISPLAY;
1243	tegra_dc_writel(dc, value, DC_CMD_DISPLAY_COMMAND);
1244
1245	value = tegra_dc_readl(dc, DC_CMD_DISPLAY_POWER_CONTROL);
1246	value |= PW0_ENABLE | PW1_ENABLE | PW2_ENABLE | PW3_ENABLE |
1247		 PW4_ENABLE | PM0_ENABLE | PM1_ENABLE;
1248	tegra_dc_writel(dc, value, DC_CMD_DISPLAY_POWER_CONTROL);
1249
1250	tegra_dc_commit(dc);
1251
1252	drm_crtc_vblank_on(crtc);
1253}
1254
1255static int tegra_crtc_atomic_check(struct drm_crtc *crtc,
1256				   struct drm_crtc_state *state)
1257{
1258	return 0;
1259}
1260
1261static void tegra_crtc_atomic_begin(struct drm_crtc *crtc,
1262				    struct drm_crtc_state *old_crtc_state)
1263{
1264	struct tegra_dc *dc = to_tegra_dc(crtc);
1265
1266	if (crtc->state->event) {
1267		crtc->state->event->pipe = drm_crtc_index(crtc);
1268
1269		WARN_ON(drm_crtc_vblank_get(crtc) != 0);
1270
1271		dc->event = crtc->state->event;
1272		crtc->state->event = NULL;
1273	}
1274}
1275
1276static void tegra_crtc_atomic_flush(struct drm_crtc *crtc,
1277				    struct drm_crtc_state *old_crtc_state)
1278{
1279	struct tegra_dc_state *state = to_dc_state(crtc->state);
1280	struct tegra_dc *dc = to_tegra_dc(crtc);
1281
1282	tegra_dc_writel(dc, state->planes << 8, DC_CMD_STATE_CONTROL);
1283	tegra_dc_writel(dc, state->planes, DC_CMD_STATE_CONTROL);
1284}
1285
1286static const struct drm_crtc_helper_funcs tegra_crtc_helper_funcs = {
1287	.disable = tegra_crtc_disable,
1288	.enable = tegra_crtc_enable,
1289	.atomic_check = tegra_crtc_atomic_check,
1290	.atomic_begin = tegra_crtc_atomic_begin,
1291	.atomic_flush = tegra_crtc_atomic_flush,
1292};
1293
1294static irqreturn_t tegra_dc_irq(int irq, void *data)
1295{
1296	struct tegra_dc *dc = data;
1297	unsigned long status;
1298
1299	status = tegra_dc_readl(dc, DC_CMD_INT_STATUS);
1300	tegra_dc_writel(dc, status, DC_CMD_INT_STATUS);
1301
1302	if (status & FRAME_END_INT) {
1303		/*
1304		dev_dbg(dc->dev, "%s(): frame end\n", __func__);
1305		*/
1306		dc->stats.frames++;
1307	}
1308
1309	if (status & VBLANK_INT) {
1310		/*
1311		dev_dbg(dc->dev, "%s(): vertical blank\n", __func__);
1312		*/
1313		drm_crtc_handle_vblank(&dc->base);
1314		tegra_dc_finish_page_flip(dc);
1315		dc->stats.vblank++;
1316	}
1317
1318	if (status & (WIN_A_UF_INT | WIN_B_UF_INT | WIN_C_UF_INT)) {
1319		/*
1320		dev_dbg(dc->dev, "%s(): underflow\n", __func__);
1321		*/
1322		dc->stats.underflow++;
1323	}
1324
1325	if (status & (WIN_A_OF_INT | WIN_B_OF_INT | WIN_C_OF_INT)) {
1326		/*
1327		dev_dbg(dc->dev, "%s(): overflow\n", __func__);
1328		*/
1329		dc->stats.overflow++;
1330	}
1331
1332	return IRQ_HANDLED;
1333}
1334
1335static int tegra_dc_show_regs(struct seq_file *s, void *data)
1336{
1337	struct drm_info_node *node = s->private;
1338	struct tegra_dc *dc = node->info_ent->data;
1339	int err = 0;
1340
1341	drm_modeset_lock_crtc(&dc->base, NULL);
1342
1343	if (!dc->base.state->active) {
1344		err = -EBUSY;
1345		goto unlock;
1346	}
1347
1348#define DUMP_REG(name)						\
1349	seq_printf(s, "%-40s %#05x %08x\n", #name, name,	\
1350		   tegra_dc_readl(dc, name))
1351
1352	DUMP_REG(DC_CMD_GENERAL_INCR_SYNCPT);
1353	DUMP_REG(DC_CMD_GENERAL_INCR_SYNCPT_CNTRL);
1354	DUMP_REG(DC_CMD_GENERAL_INCR_SYNCPT_ERROR);
1355	DUMP_REG(DC_CMD_WIN_A_INCR_SYNCPT);
1356	DUMP_REG(DC_CMD_WIN_A_INCR_SYNCPT_CNTRL);
1357	DUMP_REG(DC_CMD_WIN_A_INCR_SYNCPT_ERROR);
1358	DUMP_REG(DC_CMD_WIN_B_INCR_SYNCPT);
1359	DUMP_REG(DC_CMD_WIN_B_INCR_SYNCPT_CNTRL);
1360	DUMP_REG(DC_CMD_WIN_B_INCR_SYNCPT_ERROR);
1361	DUMP_REG(DC_CMD_WIN_C_INCR_SYNCPT);
1362	DUMP_REG(DC_CMD_WIN_C_INCR_SYNCPT_CNTRL);
1363	DUMP_REG(DC_CMD_WIN_C_INCR_SYNCPT_ERROR);
1364	DUMP_REG(DC_CMD_CONT_SYNCPT_VSYNC);
1365	DUMP_REG(DC_CMD_DISPLAY_COMMAND_OPTION0);
1366	DUMP_REG(DC_CMD_DISPLAY_COMMAND);
1367	DUMP_REG(DC_CMD_SIGNAL_RAISE);
1368	DUMP_REG(DC_CMD_DISPLAY_POWER_CONTROL);
1369	DUMP_REG(DC_CMD_INT_STATUS);
1370	DUMP_REG(DC_CMD_INT_MASK);
1371	DUMP_REG(DC_CMD_INT_ENABLE);
1372	DUMP_REG(DC_CMD_INT_TYPE);
1373	DUMP_REG(DC_CMD_INT_POLARITY);
1374	DUMP_REG(DC_CMD_SIGNAL_RAISE1);
1375	DUMP_REG(DC_CMD_SIGNAL_RAISE2);
1376	DUMP_REG(DC_CMD_SIGNAL_RAISE3);
1377	DUMP_REG(DC_CMD_STATE_ACCESS);
1378	DUMP_REG(DC_CMD_STATE_CONTROL);
1379	DUMP_REG(DC_CMD_DISPLAY_WINDOW_HEADER);
1380	DUMP_REG(DC_CMD_REG_ACT_CONTROL);
1381	DUMP_REG(DC_COM_CRC_CONTROL);
1382	DUMP_REG(DC_COM_CRC_CHECKSUM);
1383	DUMP_REG(DC_COM_PIN_OUTPUT_ENABLE(0));
1384	DUMP_REG(DC_COM_PIN_OUTPUT_ENABLE(1));
1385	DUMP_REG(DC_COM_PIN_OUTPUT_ENABLE(2));
1386	DUMP_REG(DC_COM_PIN_OUTPUT_ENABLE(3));
1387	DUMP_REG(DC_COM_PIN_OUTPUT_POLARITY(0));
1388	DUMP_REG(DC_COM_PIN_OUTPUT_POLARITY(1));
1389	DUMP_REG(DC_COM_PIN_OUTPUT_POLARITY(2));
1390	DUMP_REG(DC_COM_PIN_OUTPUT_POLARITY(3));
1391	DUMP_REG(DC_COM_PIN_OUTPUT_DATA(0));
1392	DUMP_REG(DC_COM_PIN_OUTPUT_DATA(1));
1393	DUMP_REG(DC_COM_PIN_OUTPUT_DATA(2));
1394	DUMP_REG(DC_COM_PIN_OUTPUT_DATA(3));
1395	DUMP_REG(DC_COM_PIN_INPUT_ENABLE(0));
1396	DUMP_REG(DC_COM_PIN_INPUT_ENABLE(1));
1397	DUMP_REG(DC_COM_PIN_INPUT_ENABLE(2));
1398	DUMP_REG(DC_COM_PIN_INPUT_ENABLE(3));
1399	DUMP_REG(DC_COM_PIN_INPUT_DATA(0));
1400	DUMP_REG(DC_COM_PIN_INPUT_DATA(1));
1401	DUMP_REG(DC_COM_PIN_OUTPUT_SELECT(0));
1402	DUMP_REG(DC_COM_PIN_OUTPUT_SELECT(1));
1403	DUMP_REG(DC_COM_PIN_OUTPUT_SELECT(2));
1404	DUMP_REG(DC_COM_PIN_OUTPUT_SELECT(3));
1405	DUMP_REG(DC_COM_PIN_OUTPUT_SELECT(4));
1406	DUMP_REG(DC_COM_PIN_OUTPUT_SELECT(5));
1407	DUMP_REG(DC_COM_PIN_OUTPUT_SELECT(6));
1408	DUMP_REG(DC_COM_PIN_MISC_CONTROL);
1409	DUMP_REG(DC_COM_PIN_PM0_CONTROL);
1410	DUMP_REG(DC_COM_PIN_PM0_DUTY_CYCLE);
1411	DUMP_REG(DC_COM_PIN_PM1_CONTROL);
1412	DUMP_REG(DC_COM_PIN_PM1_DUTY_CYCLE);
1413	DUMP_REG(DC_COM_SPI_CONTROL);
1414	DUMP_REG(DC_COM_SPI_START_BYTE);
1415	DUMP_REG(DC_COM_HSPI_WRITE_DATA_AB);
1416	DUMP_REG(DC_COM_HSPI_WRITE_DATA_CD);
1417	DUMP_REG(DC_COM_HSPI_CS_DC);
1418	DUMP_REG(DC_COM_SCRATCH_REGISTER_A);
1419	DUMP_REG(DC_COM_SCRATCH_REGISTER_B);
1420	DUMP_REG(DC_COM_GPIO_CTRL);
1421	DUMP_REG(DC_COM_GPIO_DEBOUNCE_COUNTER);
1422	DUMP_REG(DC_COM_CRC_CHECKSUM_LATCHED);
1423	DUMP_REG(DC_DISP_DISP_SIGNAL_OPTIONS0);
1424	DUMP_REG(DC_DISP_DISP_SIGNAL_OPTIONS1);
1425	DUMP_REG(DC_DISP_DISP_WIN_OPTIONS);
1426	DUMP_REG(DC_DISP_DISP_MEM_HIGH_PRIORITY);
1427	DUMP_REG(DC_DISP_DISP_MEM_HIGH_PRIORITY_TIMER);
1428	DUMP_REG(DC_DISP_DISP_TIMING_OPTIONS);
1429	DUMP_REG(DC_DISP_REF_TO_SYNC);
1430	DUMP_REG(DC_DISP_SYNC_WIDTH);
1431	DUMP_REG(DC_DISP_BACK_PORCH);
1432	DUMP_REG(DC_DISP_ACTIVE);
1433	DUMP_REG(DC_DISP_FRONT_PORCH);
1434	DUMP_REG(DC_DISP_H_PULSE0_CONTROL);
1435	DUMP_REG(DC_DISP_H_PULSE0_POSITION_A);
1436	DUMP_REG(DC_DISP_H_PULSE0_POSITION_B);
1437	DUMP_REG(DC_DISP_H_PULSE0_POSITION_C);
1438	DUMP_REG(DC_DISP_H_PULSE0_POSITION_D);
1439	DUMP_REG(DC_DISP_H_PULSE1_CONTROL);
1440	DUMP_REG(DC_DISP_H_PULSE1_POSITION_A);
1441	DUMP_REG(DC_DISP_H_PULSE1_POSITION_B);
1442	DUMP_REG(DC_DISP_H_PULSE1_POSITION_C);
1443	DUMP_REG(DC_DISP_H_PULSE1_POSITION_D);
1444	DUMP_REG(DC_DISP_H_PULSE2_CONTROL);
1445	DUMP_REG(DC_DISP_H_PULSE2_POSITION_A);
1446	DUMP_REG(DC_DISP_H_PULSE2_POSITION_B);
1447	DUMP_REG(DC_DISP_H_PULSE2_POSITION_C);
1448	DUMP_REG(DC_DISP_H_PULSE2_POSITION_D);
1449	DUMP_REG(DC_DISP_V_PULSE0_CONTROL);
1450	DUMP_REG(DC_DISP_V_PULSE0_POSITION_A);
1451	DUMP_REG(DC_DISP_V_PULSE0_POSITION_B);
1452	DUMP_REG(DC_DISP_V_PULSE0_POSITION_C);
1453	DUMP_REG(DC_DISP_V_PULSE1_CONTROL);
1454	DUMP_REG(DC_DISP_V_PULSE1_POSITION_A);
1455	DUMP_REG(DC_DISP_V_PULSE1_POSITION_B);
1456	DUMP_REG(DC_DISP_V_PULSE1_POSITION_C);
1457	DUMP_REG(DC_DISP_V_PULSE2_CONTROL);
1458	DUMP_REG(DC_DISP_V_PULSE2_POSITION_A);
1459	DUMP_REG(DC_DISP_V_PULSE3_CONTROL);
1460	DUMP_REG(DC_DISP_V_PULSE3_POSITION_A);
1461	DUMP_REG(DC_DISP_M0_CONTROL);
1462	DUMP_REG(DC_DISP_M1_CONTROL);
1463	DUMP_REG(DC_DISP_DI_CONTROL);
1464	DUMP_REG(DC_DISP_PP_CONTROL);
1465	DUMP_REG(DC_DISP_PP_SELECT_A);
1466	DUMP_REG(DC_DISP_PP_SELECT_B);
1467	DUMP_REG(DC_DISP_PP_SELECT_C);
1468	DUMP_REG(DC_DISP_PP_SELECT_D);
1469	DUMP_REG(DC_DISP_DISP_CLOCK_CONTROL);
1470	DUMP_REG(DC_DISP_DISP_INTERFACE_CONTROL);
1471	DUMP_REG(DC_DISP_DISP_COLOR_CONTROL);
1472	DUMP_REG(DC_DISP_SHIFT_CLOCK_OPTIONS);
1473	DUMP_REG(DC_DISP_DATA_ENABLE_OPTIONS);
1474	DUMP_REG(DC_DISP_SERIAL_INTERFACE_OPTIONS);
1475	DUMP_REG(DC_DISP_LCD_SPI_OPTIONS);
1476	DUMP_REG(DC_DISP_BORDER_COLOR);
1477	DUMP_REG(DC_DISP_COLOR_KEY0_LOWER);
1478	DUMP_REG(DC_DISP_COLOR_KEY0_UPPER);
1479	DUMP_REG(DC_DISP_COLOR_KEY1_LOWER);
1480	DUMP_REG(DC_DISP_COLOR_KEY1_UPPER);
1481	DUMP_REG(DC_DISP_CURSOR_FOREGROUND);
1482	DUMP_REG(DC_DISP_CURSOR_BACKGROUND);
1483	DUMP_REG(DC_DISP_CURSOR_START_ADDR);
1484	DUMP_REG(DC_DISP_CURSOR_START_ADDR_NS);
1485	DUMP_REG(DC_DISP_CURSOR_POSITION);
1486	DUMP_REG(DC_DISP_CURSOR_POSITION_NS);
1487	DUMP_REG(DC_DISP_INIT_SEQ_CONTROL);
1488	DUMP_REG(DC_DISP_SPI_INIT_SEQ_DATA_A);
1489	DUMP_REG(DC_DISP_SPI_INIT_SEQ_DATA_B);
1490	DUMP_REG(DC_DISP_SPI_INIT_SEQ_DATA_C);
1491	DUMP_REG(DC_DISP_SPI_INIT_SEQ_DATA_D);
1492	DUMP_REG(DC_DISP_DC_MCCIF_FIFOCTRL);
1493	DUMP_REG(DC_DISP_MCCIF_DISPLAY0A_HYST);
1494	DUMP_REG(DC_DISP_MCCIF_DISPLAY0B_HYST);
1495	DUMP_REG(DC_DISP_MCCIF_DISPLAY1A_HYST);
1496	DUMP_REG(DC_DISP_MCCIF_DISPLAY1B_HYST);
1497	DUMP_REG(DC_DISP_DAC_CRT_CTRL);
1498	DUMP_REG(DC_DISP_DISP_MISC_CONTROL);
1499	DUMP_REG(DC_DISP_SD_CONTROL);
1500	DUMP_REG(DC_DISP_SD_CSC_COEFF);
1501	DUMP_REG(DC_DISP_SD_LUT(0));
1502	DUMP_REG(DC_DISP_SD_LUT(1));
1503	DUMP_REG(DC_DISP_SD_LUT(2));
1504	DUMP_REG(DC_DISP_SD_LUT(3));
1505	DUMP_REG(DC_DISP_SD_LUT(4));
1506	DUMP_REG(DC_DISP_SD_LUT(5));
1507	DUMP_REG(DC_DISP_SD_LUT(6));
1508	DUMP_REG(DC_DISP_SD_LUT(7));
1509	DUMP_REG(DC_DISP_SD_LUT(8));
1510	DUMP_REG(DC_DISP_SD_FLICKER_CONTROL);
1511	DUMP_REG(DC_DISP_DC_PIXEL_COUNT);
1512	DUMP_REG(DC_DISP_SD_HISTOGRAM(0));
1513	DUMP_REG(DC_DISP_SD_HISTOGRAM(1));
1514	DUMP_REG(DC_DISP_SD_HISTOGRAM(2));
1515	DUMP_REG(DC_DISP_SD_HISTOGRAM(3));
1516	DUMP_REG(DC_DISP_SD_HISTOGRAM(4));
1517	DUMP_REG(DC_DISP_SD_HISTOGRAM(5));
1518	DUMP_REG(DC_DISP_SD_HISTOGRAM(6));
1519	DUMP_REG(DC_DISP_SD_HISTOGRAM(7));
1520	DUMP_REG(DC_DISP_SD_BL_TF(0));
1521	DUMP_REG(DC_DISP_SD_BL_TF(1));
1522	DUMP_REG(DC_DISP_SD_BL_TF(2));
1523	DUMP_REG(DC_DISP_SD_BL_TF(3));
1524	DUMP_REG(DC_DISP_SD_BL_CONTROL);
1525	DUMP_REG(DC_DISP_SD_HW_K_VALUES);
1526	DUMP_REG(DC_DISP_SD_MAN_K_VALUES);
1527	DUMP_REG(DC_DISP_CURSOR_START_ADDR_HI);
1528	DUMP_REG(DC_DISP_BLEND_CURSOR_CONTROL);
1529	DUMP_REG(DC_WIN_WIN_OPTIONS);
1530	DUMP_REG(DC_WIN_BYTE_SWAP);
1531	DUMP_REG(DC_WIN_BUFFER_CONTROL);
1532	DUMP_REG(DC_WIN_COLOR_DEPTH);
1533	DUMP_REG(DC_WIN_POSITION);
1534	DUMP_REG(DC_WIN_SIZE);
1535	DUMP_REG(DC_WIN_PRESCALED_SIZE);
1536	DUMP_REG(DC_WIN_H_INITIAL_DDA);
1537	DUMP_REG(DC_WIN_V_INITIAL_DDA);
1538	DUMP_REG(DC_WIN_DDA_INC);
1539	DUMP_REG(DC_WIN_LINE_STRIDE);
1540	DUMP_REG(DC_WIN_BUF_STRIDE);
1541	DUMP_REG(DC_WIN_UV_BUF_STRIDE);
1542	DUMP_REG(DC_WIN_BUFFER_ADDR_MODE);
1543	DUMP_REG(DC_WIN_DV_CONTROL);
1544	DUMP_REG(DC_WIN_BLEND_NOKEY);
1545	DUMP_REG(DC_WIN_BLEND_1WIN);
1546	DUMP_REG(DC_WIN_BLEND_2WIN_X);
1547	DUMP_REG(DC_WIN_BLEND_2WIN_Y);
1548	DUMP_REG(DC_WIN_BLEND_3WIN_XY);
1549	DUMP_REG(DC_WIN_HP_FETCH_CONTROL);
1550	DUMP_REG(DC_WINBUF_START_ADDR);
1551	DUMP_REG(DC_WINBUF_START_ADDR_NS);
1552	DUMP_REG(DC_WINBUF_START_ADDR_U);
1553	DUMP_REG(DC_WINBUF_START_ADDR_U_NS);
1554	DUMP_REG(DC_WINBUF_START_ADDR_V);
1555	DUMP_REG(DC_WINBUF_START_ADDR_V_NS);
1556	DUMP_REG(DC_WINBUF_ADDR_H_OFFSET);
1557	DUMP_REG(DC_WINBUF_ADDR_H_OFFSET_NS);
1558	DUMP_REG(DC_WINBUF_ADDR_V_OFFSET);
1559	DUMP_REG(DC_WINBUF_ADDR_V_OFFSET_NS);
1560	DUMP_REG(DC_WINBUF_UFLOW_STATUS);
1561	DUMP_REG(DC_WINBUF_AD_UFLOW_STATUS);
1562	DUMP_REG(DC_WINBUF_BD_UFLOW_STATUS);
1563	DUMP_REG(DC_WINBUF_CD_UFLOW_STATUS);
1564
1565#undef DUMP_REG
1566
1567unlock:
1568	drm_modeset_unlock_crtc(&dc->base);
1569	return err;
1570}
1571
1572static int tegra_dc_show_crc(struct seq_file *s, void *data)
1573{
1574	struct drm_info_node *node = s->private;
1575	struct tegra_dc *dc = node->info_ent->data;
1576	int err = 0;
1577	u32 value;
1578
1579	drm_modeset_lock_crtc(&dc->base, NULL);
1580
1581	if (!dc->base.state->active) {
1582		err = -EBUSY;
1583		goto unlock;
1584	}
1585
1586	value = DC_COM_CRC_CONTROL_ACTIVE_DATA | DC_COM_CRC_CONTROL_ENABLE;
1587	tegra_dc_writel(dc, value, DC_COM_CRC_CONTROL);
1588	tegra_dc_commit(dc);
1589
1590	drm_crtc_wait_one_vblank(&dc->base);
1591	drm_crtc_wait_one_vblank(&dc->base);
1592
1593	value = tegra_dc_readl(dc, DC_COM_CRC_CHECKSUM);
1594	seq_printf(s, "%08x\n", value);
1595
1596	tegra_dc_writel(dc, 0, DC_COM_CRC_CONTROL);
1597
1598unlock:
1599	drm_modeset_unlock_crtc(&dc->base);
1600	return err;
1601}
1602
1603static int tegra_dc_show_stats(struct seq_file *s, void *data)
1604{
1605	struct drm_info_node *node = s->private;
1606	struct tegra_dc *dc = node->info_ent->data;
1607
1608	seq_printf(s, "frames: %lu\n", dc->stats.frames);
1609	seq_printf(s, "vblank: %lu\n", dc->stats.vblank);
1610	seq_printf(s, "underflow: %lu\n", dc->stats.underflow);
1611	seq_printf(s, "overflow: %lu\n", dc->stats.overflow);
1612
1613	return 0;
1614}
1615
1616static struct drm_info_list debugfs_files[] = {
1617	{ "regs", tegra_dc_show_regs, 0, NULL },
1618	{ "crc", tegra_dc_show_crc, 0, NULL },
1619	{ "stats", tegra_dc_show_stats, 0, NULL },
1620};
1621
1622static int tegra_dc_debugfs_init(struct tegra_dc *dc, struct drm_minor *minor)
1623{
1624	unsigned int i;
1625	char *name;
1626	int err;
1627
1628	name = kasprintf(GFP_KERNEL, "dc.%d", dc->pipe);
1629	dc->debugfs = debugfs_create_dir(name, minor->debugfs_root);
1630	kfree(name);
1631
1632	if (!dc->debugfs)
1633		return -ENOMEM;
1634
1635	dc->debugfs_files = kmemdup(debugfs_files, sizeof(debugfs_files),
1636				    GFP_KERNEL);
1637	if (!dc->debugfs_files) {
1638		err = -ENOMEM;
1639		goto remove;
1640	}
1641
1642	for (i = 0; i < ARRAY_SIZE(debugfs_files); i++)
1643		dc->debugfs_files[i].data = dc;
1644
1645	err = drm_debugfs_create_files(dc->debugfs_files,
1646				       ARRAY_SIZE(debugfs_files),
1647				       dc->debugfs, minor);
1648	if (err < 0)
1649		goto free;
1650
1651	dc->minor = minor;
1652
1653	return 0;
1654
1655free:
1656	kfree(dc->debugfs_files);
1657	dc->debugfs_files = NULL;
1658remove:
1659	debugfs_remove(dc->debugfs);
1660	dc->debugfs = NULL;
1661
1662	return err;
1663}
1664
1665static int tegra_dc_debugfs_exit(struct tegra_dc *dc)
1666{
1667	drm_debugfs_remove_files(dc->debugfs_files, ARRAY_SIZE(debugfs_files),
1668				 dc->minor);
1669	dc->minor = NULL;
1670
1671	kfree(dc->debugfs_files);
1672	dc->debugfs_files = NULL;
1673
1674	debugfs_remove(dc->debugfs);
1675	dc->debugfs = NULL;
1676
1677	return 0;
1678}
1679
1680static int tegra_dc_init(struct host1x_client *client)
1681{
1682	struct drm_device *drm = dev_get_drvdata(client->parent);
1683	unsigned long flags = HOST1X_SYNCPT_CLIENT_MANAGED;
1684	struct tegra_dc *dc = host1x_client_to_dc(client);
1685	struct tegra_drm *tegra = drm->dev_private;
1686	struct drm_plane *primary = NULL;
1687	struct drm_plane *cursor = NULL;
1688	u32 value;
1689	int err;
1690
1691	dc->syncpt = host1x_syncpt_request(dc->dev, flags);
1692	if (!dc->syncpt)
1693		dev_warn(dc->dev, "failed to allocate syncpoint\n");
1694
1695	if (tegra->domain) {
1696		err = iommu_attach_device(tegra->domain, dc->dev);
1697		if (err < 0) {
1698			dev_err(dc->dev, "failed to attach to domain: %d\n",
1699				err);
1700			return err;
1701		}
1702
1703		dc->domain = tegra->domain;
1704	}
1705
1706	primary = tegra_dc_primary_plane_create(drm, dc);
1707	if (IS_ERR(primary)) {
1708		err = PTR_ERR(primary);
1709		goto cleanup;
1710	}
1711
1712	if (dc->soc->supports_cursor) {
1713		cursor = tegra_dc_cursor_plane_create(drm, dc);
1714		if (IS_ERR(cursor)) {
1715			err = PTR_ERR(cursor);
1716			goto cleanup;
1717		}
1718	}
1719
1720	err = drm_crtc_init_with_planes(drm, &dc->base, primary, cursor,
1721					&tegra_crtc_funcs, NULL);
1722	if (err < 0)
1723		goto cleanup;
1724
1725	drm_mode_crtc_set_gamma_size(&dc->base, 256);
1726	drm_crtc_helper_add(&dc->base, &tegra_crtc_helper_funcs);
1727
1728	/*
1729	 * Keep track of the minimum pitch alignment across all display
1730	 * controllers.
1731	 */
1732	if (dc->soc->pitch_align > tegra->pitch_align)
1733		tegra->pitch_align = dc->soc->pitch_align;
1734
1735	err = tegra_dc_rgb_init(drm, dc);
1736	if (err < 0 && err != -ENODEV) {
1737		dev_err(dc->dev, "failed to initialize RGB output: %d\n", err);
1738		goto cleanup;
1739	}
1740
1741	err = tegra_dc_add_planes(drm, dc);
1742	if (err < 0)
1743		goto cleanup;
1744
1745	if (IS_ENABLED(CONFIG_DEBUG_FS)) {
1746		err = tegra_dc_debugfs_init(dc, drm->primary);
1747		if (err < 0)
1748			dev_err(dc->dev, "debugfs setup failed: %d\n", err);
1749	}
1750
1751	err = devm_request_irq(dc->dev, dc->irq, tegra_dc_irq, 0,
1752			       dev_name(dc->dev), dc);
1753	if (err < 0) {
1754		dev_err(dc->dev, "failed to request IRQ#%u: %d\n", dc->irq,
1755			err);
1756		goto cleanup;
1757	}
1758
1759	/* initialize display controller */
1760	if (dc->syncpt) {
1761		u32 syncpt = host1x_syncpt_id(dc->syncpt);
1762
1763		value = SYNCPT_CNTRL_NO_STALL;
1764		tegra_dc_writel(dc, value, DC_CMD_GENERAL_INCR_SYNCPT_CNTRL);
1765
1766		value = SYNCPT_VSYNC_ENABLE | syncpt;
1767		tegra_dc_writel(dc, value, DC_CMD_CONT_SYNCPT_VSYNC);
1768	}
1769
1770	value = WIN_A_UF_INT | WIN_B_UF_INT | WIN_C_UF_INT |
1771		WIN_A_OF_INT | WIN_B_OF_INT | WIN_C_OF_INT;
1772	tegra_dc_writel(dc, value, DC_CMD_INT_TYPE);
1773
1774	value = WIN_A_UF_INT | WIN_B_UF_INT | WIN_C_UF_INT |
1775		WIN_A_OF_INT | WIN_B_OF_INT | WIN_C_OF_INT;
1776	tegra_dc_writel(dc, value, DC_CMD_INT_POLARITY);
1777
1778	/* initialize timer */
1779	value = CURSOR_THRESHOLD(0) | WINDOW_A_THRESHOLD(0x20) |
1780		WINDOW_B_THRESHOLD(0x20) | WINDOW_C_THRESHOLD(0x20);
1781	tegra_dc_writel(dc, value, DC_DISP_DISP_MEM_HIGH_PRIORITY);
1782
1783	value = CURSOR_THRESHOLD(0) | WINDOW_A_THRESHOLD(1) |
1784		WINDOW_B_THRESHOLD(1) | WINDOW_C_THRESHOLD(1);
1785	tegra_dc_writel(dc, value, DC_DISP_DISP_MEM_HIGH_PRIORITY_TIMER);
1786
1787	value = VBLANK_INT | WIN_A_UF_INT | WIN_B_UF_INT | WIN_C_UF_INT |
1788		WIN_A_OF_INT | WIN_B_OF_INT | WIN_C_OF_INT;
1789	tegra_dc_writel(dc, value, DC_CMD_INT_ENABLE);
1790
1791	value = WIN_A_UF_INT | WIN_B_UF_INT | WIN_C_UF_INT |
1792		WIN_A_OF_INT | WIN_B_OF_INT | WIN_C_OF_INT;
1793	tegra_dc_writel(dc, value, DC_CMD_INT_MASK);
1794
1795	if (dc->soc->supports_border_color)
1796		tegra_dc_writel(dc, 0, DC_DISP_BORDER_COLOR);
1797
1798	tegra_dc_stats_reset(&dc->stats);
1799
1800	return 0;
1801
1802cleanup:
1803	if (cursor)
1804		drm_plane_cleanup(cursor);
1805
1806	if (primary)
1807		drm_plane_cleanup(primary);
1808
1809	if (tegra->domain) {
1810		iommu_detach_device(tegra->domain, dc->dev);
1811		dc->domain = NULL;
1812	}
1813
1814	return err;
1815}
1816
1817static int tegra_dc_exit(struct host1x_client *client)
1818{
1819	struct tegra_dc *dc = host1x_client_to_dc(client);
1820	int err;
1821
1822	devm_free_irq(dc->dev, dc->irq, dc);
1823
1824	if (IS_ENABLED(CONFIG_DEBUG_FS)) {
1825		err = tegra_dc_debugfs_exit(dc);
1826		if (err < 0)
1827			dev_err(dc->dev, "debugfs cleanup failed: %d\n", err);
1828	}
1829
1830	err = tegra_dc_rgb_exit(dc);
1831	if (err) {
1832		dev_err(dc->dev, "failed to shutdown RGB output: %d\n", err);
1833		return err;
1834	}
1835
1836	if (dc->domain) {
1837		iommu_detach_device(dc->domain, dc->dev);
1838		dc->domain = NULL;
1839	}
1840
1841	host1x_syncpt_free(dc->syncpt);
1842
1843	return 0;
1844}
1845
1846static const struct host1x_client_ops dc_client_ops = {
1847	.init = tegra_dc_init,
1848	.exit = tegra_dc_exit,
1849};
1850
1851static const struct tegra_dc_soc_info tegra20_dc_soc_info = {
1852	.supports_border_color = true,
1853	.supports_interlacing = false,
1854	.supports_cursor = false,
1855	.supports_block_linear = false,
1856	.pitch_align = 8,
1857	.has_powergate = false,
1858};
1859
1860static const struct tegra_dc_soc_info tegra30_dc_soc_info = {
1861	.supports_border_color = true,
1862	.supports_interlacing = false,
1863	.supports_cursor = false,
1864	.supports_block_linear = false,
1865	.pitch_align = 8,
1866	.has_powergate = false,
1867};
1868
1869static const struct tegra_dc_soc_info tegra114_dc_soc_info = {
1870	.supports_border_color = true,
1871	.supports_interlacing = false,
1872	.supports_cursor = false,
1873	.supports_block_linear = false,
1874	.pitch_align = 64,
1875	.has_powergate = true,
1876};
1877
1878static const struct tegra_dc_soc_info tegra124_dc_soc_info = {
1879	.supports_border_color = false,
1880	.supports_interlacing = true,
1881	.supports_cursor = true,
1882	.supports_block_linear = true,
1883	.pitch_align = 64,
1884	.has_powergate = true,
1885};
1886
1887static const struct tegra_dc_soc_info tegra210_dc_soc_info = {
1888	.supports_border_color = false,
1889	.supports_interlacing = true,
1890	.supports_cursor = true,
1891	.supports_block_linear = true,
1892	.pitch_align = 64,
1893	.has_powergate = true,
1894};
1895
1896static const struct of_device_id tegra_dc_of_match[] = {
1897	{
1898		.compatible = "nvidia,tegra210-dc",
1899		.data = &tegra210_dc_soc_info,
1900	}, {
1901		.compatible = "nvidia,tegra124-dc",
1902		.data = &tegra124_dc_soc_info,
1903	}, {
1904		.compatible = "nvidia,tegra114-dc",
1905		.data = &tegra114_dc_soc_info,
1906	}, {
1907		.compatible = "nvidia,tegra30-dc",
1908		.data = &tegra30_dc_soc_info,
1909	}, {
1910		.compatible = "nvidia,tegra20-dc",
1911		.data = &tegra20_dc_soc_info,
1912	}, {
1913		/* sentinel */
1914	}
1915};
1916MODULE_DEVICE_TABLE(of, tegra_dc_of_match);
1917
1918static int tegra_dc_parse_dt(struct tegra_dc *dc)
1919{
1920	struct device_node *np;
1921	u32 value = 0;
1922	int err;
1923
1924	err = of_property_read_u32(dc->dev->of_node, "nvidia,head", &value);
1925	if (err < 0) {
1926		dev_err(dc->dev, "missing \"nvidia,head\" property\n");
1927
1928		/*
1929		 * If the nvidia,head property isn't present, try to find the
1930		 * correct head number by looking up the position of this
1931		 * display controller's node within the device tree. Assuming
1932		 * that the nodes are ordered properly in the DTS file and
1933		 * that the translation into a flattened device tree blob
1934		 * preserves that ordering this will actually yield the right
1935		 * head number.
1936		 *
1937		 * If those assumptions don't hold, this will still work for
1938		 * cases where only a single display controller is used.
1939		 */
1940		for_each_matching_node(np, tegra_dc_of_match) {
1941			if (np == dc->dev->of_node) {
1942				of_node_put(np);
1943				break;
1944			}
1945
1946			value++;
1947		}
1948	}
1949
1950	dc->pipe = value;
1951
1952	return 0;
1953}
1954
1955static int tegra_dc_probe(struct platform_device *pdev)
1956{
1957	const struct of_device_id *id;
1958	struct resource *regs;
1959	struct tegra_dc *dc;
1960	int err;
1961
1962	dc = devm_kzalloc(&pdev->dev, sizeof(*dc), GFP_KERNEL);
1963	if (!dc)
1964		return -ENOMEM;
1965
1966	id = of_match_node(tegra_dc_of_match, pdev->dev.of_node);
1967	if (!id)
1968		return -ENODEV;
1969
1970	spin_lock_init(&dc->lock);
1971	INIT_LIST_HEAD(&dc->list);
1972	dc->dev = &pdev->dev;
1973	dc->soc = id->data;
1974
1975	err = tegra_dc_parse_dt(dc);
1976	if (err < 0)
1977		return err;
1978
1979	dc->clk = devm_clk_get(&pdev->dev, NULL);
1980	if (IS_ERR(dc->clk)) {
1981		dev_err(&pdev->dev, "failed to get clock\n");
1982		return PTR_ERR(dc->clk);
1983	}
1984
1985	dc->rst = devm_reset_control_get(&pdev->dev, "dc");
1986	if (IS_ERR(dc->rst)) {
1987		dev_err(&pdev->dev, "failed to get reset\n");
1988		return PTR_ERR(dc->rst);
1989	}
1990
1991	if (dc->soc->has_powergate) {
1992		if (dc->pipe == 0)
1993			dc->powergate = TEGRA_POWERGATE_DIS;
1994		else
1995			dc->powergate = TEGRA_POWERGATE_DISB;
1996
1997		err = tegra_powergate_sequence_power_up(dc->powergate, dc->clk,
1998							dc->rst);
1999		if (err < 0) {
2000			dev_err(&pdev->dev, "failed to power partition: %d\n",
2001				err);
2002			return err;
2003		}
2004	} else {
2005		err = clk_prepare_enable(dc->clk);
2006		if (err < 0) {
2007			dev_err(&pdev->dev, "failed to enable clock: %d\n",
2008				err);
2009			return err;
2010		}
2011
2012		err = reset_control_deassert(dc->rst);
2013		if (err < 0) {
2014			dev_err(&pdev->dev, "failed to deassert reset: %d\n",
2015				err);
2016			return err;
2017		}
2018	}
2019
2020	regs = platform_get_resource(pdev, IORESOURCE_MEM, 0);
2021	dc->regs = devm_ioremap_resource(&pdev->dev, regs);
2022	if (IS_ERR(dc->regs))
2023		return PTR_ERR(dc->regs);
2024
2025	dc->irq = platform_get_irq(pdev, 0);
2026	if (dc->irq < 0) {
2027		dev_err(&pdev->dev, "failed to get IRQ\n");
2028		return -ENXIO;
2029	}
2030
2031	INIT_LIST_HEAD(&dc->client.list);
2032	dc->client.ops = &dc_client_ops;
2033	dc->client.dev = &pdev->dev;
2034
2035	err = tegra_dc_rgb_probe(dc);
2036	if (err < 0 && err != -ENODEV) {
2037		dev_err(&pdev->dev, "failed to probe RGB output: %d\n", err);
2038		return err;
2039	}
2040
2041	err = host1x_client_register(&dc->client);
2042	if (err < 0) {
2043		dev_err(&pdev->dev, "failed to register host1x client: %d\n",
2044			err);
2045		return err;
2046	}
2047
2048	platform_set_drvdata(pdev, dc);
2049
2050	return 0;
2051}
2052
2053static int tegra_dc_remove(struct platform_device *pdev)
2054{
2055	struct tegra_dc *dc = platform_get_drvdata(pdev);
2056	int err;
2057
2058	err = host1x_client_unregister(&dc->client);
2059	if (err < 0) {
2060		dev_err(&pdev->dev, "failed to unregister host1x client: %d\n",
2061			err);
2062		return err;
2063	}
2064
2065	err = tegra_dc_rgb_remove(dc);
2066	if (err < 0) {
2067		dev_err(&pdev->dev, "failed to remove RGB output: %d\n", err);
2068		return err;
2069	}
2070
2071	reset_control_assert(dc->rst);
2072
2073	if (dc->soc->has_powergate)
2074		tegra_powergate_power_off(dc->powergate);
2075
2076	clk_disable_unprepare(dc->clk);
2077
2078	return 0;
2079}
2080
2081struct platform_driver tegra_dc_driver = {
2082	.driver = {
2083		.name = "tegra-dc",
2084		.of_match_table = tegra_dc_of_match,
2085	},
2086	.probe = tegra_dc_probe,
2087	.remove = tegra_dc_remove,
2088};