Linux Audio

Check our new training course

Loading...
Note: File does not exist in v3.1.
   1// SPDX-License-Identifier: GPL-2.0-only
   2/*
   3 * Copyright (C) 2012 Avionic Design GmbH
   4 * Copyright (C) 2012 NVIDIA CORPORATION.  All rights reserved.
   5 */
   6
   7#include <linux/clk.h>
   8#include <linux/debugfs.h>
   9#include <linux/delay.h>
  10#include <linux/iommu.h>
  11#include <linux/module.h>
  12#include <linux/of_device.h>
  13#include <linux/pm_runtime.h>
  14#include <linux/reset.h>
  15
  16#include <soc/tegra/pmc.h>
  17
  18#include <drm/drm_atomic.h>
  19#include <drm/drm_atomic_helper.h>
  20#include <drm/drm_debugfs.h>
  21#include <drm/drm_fourcc.h>
  22#include <drm/drm_plane_helper.h>
  23#include <drm/drm_vblank.h>
  24
  25#include "dc.h"
  26#include "drm.h"
  27#include "gem.h"
  28#include "hub.h"
  29#include "plane.h"
  30
  31static void tegra_crtc_atomic_destroy_state(struct drm_crtc *crtc,
  32					    struct drm_crtc_state *state);
  33
  34static void tegra_dc_stats_reset(struct tegra_dc_stats *stats)
  35{
  36	stats->frames = 0;
  37	stats->vblank = 0;
  38	stats->underflow = 0;
  39	stats->overflow = 0;
  40}
  41
  42/* Reads the active copy of a register. */
  43static u32 tegra_dc_readl_active(struct tegra_dc *dc, unsigned long offset)
  44{
  45	u32 value;
  46
  47	tegra_dc_writel(dc, READ_MUX, DC_CMD_STATE_ACCESS);
  48	value = tegra_dc_readl(dc, offset);
  49	tegra_dc_writel(dc, 0, DC_CMD_STATE_ACCESS);
  50
  51	return value;
  52}
  53
  54static inline unsigned int tegra_plane_offset(struct tegra_plane *plane,
  55					      unsigned int offset)
  56{
  57	if (offset >= 0x500 && offset <= 0x638) {
  58		offset = 0x000 + (offset - 0x500);
  59		return plane->offset + offset;
  60	}
  61
  62	if (offset >= 0x700 && offset <= 0x719) {
  63		offset = 0x180 + (offset - 0x700);
  64		return plane->offset + offset;
  65	}
  66
  67	if (offset >= 0x800 && offset <= 0x839) {
  68		offset = 0x1c0 + (offset - 0x800);
  69		return plane->offset + offset;
  70	}
  71
  72	dev_WARN(plane->dc->dev, "invalid offset: %x\n", offset);
  73
  74	return plane->offset + offset;
  75}
  76
  77static inline u32 tegra_plane_readl(struct tegra_plane *plane,
  78				    unsigned int offset)
  79{
  80	return tegra_dc_readl(plane->dc, tegra_plane_offset(plane, offset));
  81}
  82
  83static inline void tegra_plane_writel(struct tegra_plane *plane, u32 value,
  84				      unsigned int offset)
  85{
  86	tegra_dc_writel(plane->dc, value, tegra_plane_offset(plane, offset));
  87}
  88
  89bool tegra_dc_has_output(struct tegra_dc *dc, struct device *dev)
  90{
  91	struct device_node *np = dc->dev->of_node;
  92	struct of_phandle_iterator it;
  93	int err;
  94
  95	of_for_each_phandle(&it, err, np, "nvidia,outputs", NULL, 0)
  96		if (it.node == dev->of_node)
  97			return true;
  98
  99	return false;
 100}
 101
 102/*
 103 * Double-buffered registers have two copies: ASSEMBLY and ACTIVE. When the
 104 * *_ACT_REQ bits are set the ASSEMBLY copy is latched into the ACTIVE copy.
 105 * Latching happens mmediately if the display controller is in STOP mode or
 106 * on the next frame boundary otherwise.
 107 *
 108 * Triple-buffered registers have three copies: ASSEMBLY, ARM and ACTIVE. The
 109 * ASSEMBLY copy is latched into the ARM copy immediately after *_UPDATE bits
 110 * are written. When the *_ACT_REQ bits are written, the ARM copy is latched
 111 * into the ACTIVE copy, either immediately if the display controller is in
 112 * STOP mode, or at the next frame boundary otherwise.
 113 */
 114void tegra_dc_commit(struct tegra_dc *dc)
 115{
 116	tegra_dc_writel(dc, GENERAL_ACT_REQ << 8, DC_CMD_STATE_CONTROL);
 117	tegra_dc_writel(dc, GENERAL_ACT_REQ, DC_CMD_STATE_CONTROL);
 118}
 119
 120static inline u32 compute_dda_inc(unsigned int in, unsigned int out, bool v,
 121				  unsigned int bpp)
 122{
 123	fixed20_12 outf = dfixed_init(out);
 124	fixed20_12 inf = dfixed_init(in);
 125	u32 dda_inc;
 126	int max;
 127
 128	if (v)
 129		max = 15;
 130	else {
 131		switch (bpp) {
 132		case 2:
 133			max = 8;
 134			break;
 135
 136		default:
 137			WARN_ON_ONCE(1);
 138			fallthrough;
 139		case 4:
 140			max = 4;
 141			break;
 142		}
 143	}
 144
 145	outf.full = max_t(u32, outf.full - dfixed_const(1), dfixed_const(1));
 146	inf.full -= dfixed_const(1);
 147
 148	dda_inc = dfixed_div(inf, outf);
 149	dda_inc = min_t(u32, dda_inc, dfixed_const(max));
 150
 151	return dda_inc;
 152}
 153
 154static inline u32 compute_initial_dda(unsigned int in)
 155{
 156	fixed20_12 inf = dfixed_init(in);
 157	return dfixed_frac(inf);
 158}
 159
 160static void tegra_plane_setup_blending_legacy(struct tegra_plane *plane)
 161{
 162	u32 background[3] = {
 163		BLEND_WEIGHT1(0) | BLEND_WEIGHT0(0) | BLEND_COLOR_KEY_NONE,
 164		BLEND_WEIGHT1(0) | BLEND_WEIGHT0(0) | BLEND_COLOR_KEY_NONE,
 165		BLEND_WEIGHT1(0) | BLEND_WEIGHT0(0) | BLEND_COLOR_KEY_NONE,
 166	};
 167	u32 foreground = BLEND_WEIGHT1(255) | BLEND_WEIGHT0(255) |
 168			 BLEND_COLOR_KEY_NONE;
 169	u32 blendnokey = BLEND_WEIGHT1(255) | BLEND_WEIGHT0(255);
 170	struct tegra_plane_state *state;
 171	u32 blending[2];
 172	unsigned int i;
 173
 174	/* disable blending for non-overlapping case */
 175	tegra_plane_writel(plane, blendnokey, DC_WIN_BLEND_NOKEY);
 176	tegra_plane_writel(plane, foreground, DC_WIN_BLEND_1WIN);
 177
 178	state = to_tegra_plane_state(plane->base.state);
 179
 180	if (state->opaque) {
 181		/*
 182		 * Since custom fix-weight blending isn't utilized and weight
 183		 * of top window is set to max, we can enforce dependent
 184		 * blending which in this case results in transparent bottom
 185		 * window if top window is opaque and if top window enables
 186		 * alpha blending, then bottom window is getting alpha value
 187		 * of 1 minus the sum of alpha components of the overlapping
 188		 * plane.
 189		 */
 190		background[0] |= BLEND_CONTROL_DEPENDENT;
 191		background[1] |= BLEND_CONTROL_DEPENDENT;
 192
 193		/*
 194		 * The region where three windows overlap is the intersection
 195		 * of the two regions where two windows overlap. It contributes
 196		 * to the area if all of the windows on top of it have an alpha
 197		 * component.
 198		 */
 199		switch (state->base.normalized_zpos) {
 200		case 0:
 201			if (state->blending[0].alpha &&
 202			    state->blending[1].alpha)
 203				background[2] |= BLEND_CONTROL_DEPENDENT;
 204			break;
 205
 206		case 1:
 207			background[2] |= BLEND_CONTROL_DEPENDENT;
 208			break;
 209		}
 210	} else {
 211		/*
 212		 * Enable alpha blending if pixel format has an alpha
 213		 * component.
 214		 */
 215		foreground |= BLEND_CONTROL_ALPHA;
 216
 217		/*
 218		 * If any of the windows on top of this window is opaque, it
 219		 * will completely conceal this window within that area. If
 220		 * top window has an alpha component, it is blended over the
 221		 * bottom window.
 222		 */
 223		for (i = 0; i < 2; i++) {
 224			if (state->blending[i].alpha &&
 225			    state->blending[i].top)
 226				background[i] |= BLEND_CONTROL_DEPENDENT;
 227		}
 228
 229		switch (state->base.normalized_zpos) {
 230		case 0:
 231			if (state->blending[0].alpha &&
 232			    state->blending[1].alpha)
 233				background[2] |= BLEND_CONTROL_DEPENDENT;
 234			break;
 235
 236		case 1:
 237			/*
 238			 * When both middle and topmost windows have an alpha,
 239			 * these windows a mixed together and then the result
 240			 * is blended over the bottom window.
 241			 */
 242			if (state->blending[0].alpha &&
 243			    state->blending[0].top)
 244				background[2] |= BLEND_CONTROL_ALPHA;
 245
 246			if (state->blending[1].alpha &&
 247			    state->blending[1].top)
 248				background[2] |= BLEND_CONTROL_ALPHA;
 249			break;
 250		}
 251	}
 252
 253	switch (state->base.normalized_zpos) {
 254	case 0:
 255		tegra_plane_writel(plane, background[0], DC_WIN_BLEND_2WIN_X);
 256		tegra_plane_writel(plane, background[1], DC_WIN_BLEND_2WIN_Y);
 257		tegra_plane_writel(plane, background[2], DC_WIN_BLEND_3WIN_XY);
 258		break;
 259
 260	case 1:
 261		/*
 262		 * If window B / C is topmost, then X / Y registers are
 263		 * matching the order of blending[...] state indices,
 264		 * otherwise a swap is required.
 265		 */
 266		if (!state->blending[0].top && state->blending[1].top) {
 267			blending[0] = foreground;
 268			blending[1] = background[1];
 269		} else {
 270			blending[0] = background[0];
 271			blending[1] = foreground;
 272		}
 273
 274		tegra_plane_writel(plane, blending[0], DC_WIN_BLEND_2WIN_X);
 275		tegra_plane_writel(plane, blending[1], DC_WIN_BLEND_2WIN_Y);
 276		tegra_plane_writel(plane, background[2], DC_WIN_BLEND_3WIN_XY);
 277		break;
 278
 279	case 2:
 280		tegra_plane_writel(plane, foreground, DC_WIN_BLEND_2WIN_X);
 281		tegra_plane_writel(plane, foreground, DC_WIN_BLEND_2WIN_Y);
 282		tegra_plane_writel(plane, foreground, DC_WIN_BLEND_3WIN_XY);
 283		break;
 284	}
 285}
 286
 287static void tegra_plane_setup_blending(struct tegra_plane *plane,
 288				       const struct tegra_dc_window *window)
 289{
 290	u32 value;
 291
 292	value = BLEND_FACTOR_DST_ALPHA_ZERO | BLEND_FACTOR_SRC_ALPHA_K2 |
 293		BLEND_FACTOR_DST_COLOR_NEG_K1_TIMES_SRC |
 294		BLEND_FACTOR_SRC_COLOR_K1_TIMES_SRC;
 295	tegra_plane_writel(plane, value, DC_WIN_BLEND_MATCH_SELECT);
 296
 297	value = BLEND_FACTOR_DST_ALPHA_ZERO | BLEND_FACTOR_SRC_ALPHA_K2 |
 298		BLEND_FACTOR_DST_COLOR_NEG_K1_TIMES_SRC |
 299		BLEND_FACTOR_SRC_COLOR_K1_TIMES_SRC;
 300	tegra_plane_writel(plane, value, DC_WIN_BLEND_NOMATCH_SELECT);
 301
 302	value = K2(255) | K1(255) | WINDOW_LAYER_DEPTH(255 - window->zpos);
 303	tegra_plane_writel(plane, value, DC_WIN_BLEND_LAYER_CONTROL);
 304}
 305
 306static bool
 307tegra_plane_use_horizontal_filtering(struct tegra_plane *plane,
 308				     const struct tegra_dc_window *window)
 309{
 310	struct tegra_dc *dc = plane->dc;
 311
 312	if (window->src.w == window->dst.w)
 313		return false;
 314
 315	if (plane->index == 0 && dc->soc->has_win_a_without_filters)
 316		return false;
 317
 318	return true;
 319}
 320
 321static bool
 322tegra_plane_use_vertical_filtering(struct tegra_plane *plane,
 323				   const struct tegra_dc_window *window)
 324{
 325	struct tegra_dc *dc = plane->dc;
 326
 327	if (window->src.h == window->dst.h)
 328		return false;
 329
 330	if (plane->index == 0 && dc->soc->has_win_a_without_filters)
 331		return false;
 332
 333	if (plane->index == 2 && dc->soc->has_win_c_without_vert_filter)
 334		return false;
 335
 336	return true;
 337}
 338
 339static void tegra_dc_setup_window(struct tegra_plane *plane,
 340				  const struct tegra_dc_window *window)
 341{
 342	unsigned h_offset, v_offset, h_size, v_size, h_dda, v_dda, bpp;
 343	struct tegra_dc *dc = plane->dc;
 344	bool yuv, planar;
 345	u32 value;
 346
 347	/*
 348	 * For YUV planar modes, the number of bytes per pixel takes into
 349	 * account only the luma component and therefore is 1.
 350	 */
 351	yuv = tegra_plane_format_is_yuv(window->format, &planar, NULL);
 352	if (!yuv)
 353		bpp = window->bits_per_pixel / 8;
 354	else
 355		bpp = planar ? 1 : 2;
 356
 357	tegra_plane_writel(plane, window->format, DC_WIN_COLOR_DEPTH);
 358	tegra_plane_writel(plane, window->swap, DC_WIN_BYTE_SWAP);
 359
 360	value = V_POSITION(window->dst.y) | H_POSITION(window->dst.x);
 361	tegra_plane_writel(plane, value, DC_WIN_POSITION);
 362
 363	value = V_SIZE(window->dst.h) | H_SIZE(window->dst.w);
 364	tegra_plane_writel(plane, value, DC_WIN_SIZE);
 365
 366	h_offset = window->src.x * bpp;
 367	v_offset = window->src.y;
 368	h_size = window->src.w * bpp;
 369	v_size = window->src.h;
 370
 371	if (window->reflect_x)
 372		h_offset += (window->src.w - 1) * bpp;
 373
 374	if (window->reflect_y)
 375		v_offset += window->src.h - 1;
 376
 377	value = V_PRESCALED_SIZE(v_size) | H_PRESCALED_SIZE(h_size);
 378	tegra_plane_writel(plane, value, DC_WIN_PRESCALED_SIZE);
 379
 380	/*
 381	 * For DDA computations the number of bytes per pixel for YUV planar
 382	 * modes needs to take into account all Y, U and V components.
 383	 */
 384	if (yuv && planar)
 385		bpp = 2;
 386
 387	h_dda = compute_dda_inc(window->src.w, window->dst.w, false, bpp);
 388	v_dda = compute_dda_inc(window->src.h, window->dst.h, true, bpp);
 389
 390	value = V_DDA_INC(v_dda) | H_DDA_INC(h_dda);
 391	tegra_plane_writel(plane, value, DC_WIN_DDA_INC);
 392
 393	h_dda = compute_initial_dda(window->src.x);
 394	v_dda = compute_initial_dda(window->src.y);
 395
 396	tegra_plane_writel(plane, h_dda, DC_WIN_H_INITIAL_DDA);
 397	tegra_plane_writel(plane, v_dda, DC_WIN_V_INITIAL_DDA);
 398
 399	tegra_plane_writel(plane, 0, DC_WIN_UV_BUF_STRIDE);
 400	tegra_plane_writel(plane, 0, DC_WIN_BUF_STRIDE);
 401
 402	tegra_plane_writel(plane, window->base[0], DC_WINBUF_START_ADDR);
 403
 404	if (yuv && planar) {
 405		tegra_plane_writel(plane, window->base[1], DC_WINBUF_START_ADDR_U);
 406		tegra_plane_writel(plane, window->base[2], DC_WINBUF_START_ADDR_V);
 407		value = window->stride[1] << 16 | window->stride[0];
 408		tegra_plane_writel(plane, value, DC_WIN_LINE_STRIDE);
 409	} else {
 410		tegra_plane_writel(plane, window->stride[0], DC_WIN_LINE_STRIDE);
 411	}
 412
 413	tegra_plane_writel(plane, h_offset, DC_WINBUF_ADDR_H_OFFSET);
 414	tegra_plane_writel(plane, v_offset, DC_WINBUF_ADDR_V_OFFSET);
 415
 416	if (dc->soc->supports_block_linear) {
 417		unsigned long height = window->tiling.value;
 418
 419		switch (window->tiling.mode) {
 420		case TEGRA_BO_TILING_MODE_PITCH:
 421			value = DC_WINBUF_SURFACE_KIND_PITCH;
 422			break;
 423
 424		case TEGRA_BO_TILING_MODE_TILED:
 425			value = DC_WINBUF_SURFACE_KIND_TILED;
 426			break;
 427
 428		case TEGRA_BO_TILING_MODE_BLOCK:
 429			value = DC_WINBUF_SURFACE_KIND_BLOCK_HEIGHT(height) |
 430				DC_WINBUF_SURFACE_KIND_BLOCK;
 431			break;
 432		}
 433
 434		tegra_plane_writel(plane, value, DC_WINBUF_SURFACE_KIND);
 435	} else {
 436		switch (window->tiling.mode) {
 437		case TEGRA_BO_TILING_MODE_PITCH:
 438			value = DC_WIN_BUFFER_ADDR_MODE_LINEAR_UV |
 439				DC_WIN_BUFFER_ADDR_MODE_LINEAR;
 440			break;
 441
 442		case TEGRA_BO_TILING_MODE_TILED:
 443			value = DC_WIN_BUFFER_ADDR_MODE_TILE_UV |
 444				DC_WIN_BUFFER_ADDR_MODE_TILE;
 445			break;
 446
 447		case TEGRA_BO_TILING_MODE_BLOCK:
 448			/*
 449			 * No need to handle this here because ->atomic_check
 450			 * will already have filtered it out.
 451			 */
 452			break;
 453		}
 454
 455		tegra_plane_writel(plane, value, DC_WIN_BUFFER_ADDR_MODE);
 456	}
 457
 458	value = WIN_ENABLE;
 459
 460	if (yuv) {
 461		/* setup default colorspace conversion coefficients */
 462		tegra_plane_writel(plane, 0x00f0, DC_WIN_CSC_YOF);
 463		tegra_plane_writel(plane, 0x012a, DC_WIN_CSC_KYRGB);
 464		tegra_plane_writel(plane, 0x0000, DC_WIN_CSC_KUR);
 465		tegra_plane_writel(plane, 0x0198, DC_WIN_CSC_KVR);
 466		tegra_plane_writel(plane, 0x039b, DC_WIN_CSC_KUG);
 467		tegra_plane_writel(plane, 0x032f, DC_WIN_CSC_KVG);
 468		tegra_plane_writel(plane, 0x0204, DC_WIN_CSC_KUB);
 469		tegra_plane_writel(plane, 0x0000, DC_WIN_CSC_KVB);
 470
 471		value |= CSC_ENABLE;
 472	} else if (window->bits_per_pixel < 24) {
 473		value |= COLOR_EXPAND;
 474	}
 475
 476	if (window->reflect_x)
 477		value |= H_DIRECTION;
 478
 479	if (window->reflect_y)
 480		value |= V_DIRECTION;
 481
 482	if (tegra_plane_use_horizontal_filtering(plane, window)) {
 483		/*
 484		 * Enable horizontal 6-tap filter and set filtering
 485		 * coefficients to the default values defined in TRM.
 486		 */
 487		tegra_plane_writel(plane, 0x00008000, DC_WIN_H_FILTER_P(0));
 488		tegra_plane_writel(plane, 0x3e087ce1, DC_WIN_H_FILTER_P(1));
 489		tegra_plane_writel(plane, 0x3b117ac1, DC_WIN_H_FILTER_P(2));
 490		tegra_plane_writel(plane, 0x591b73aa, DC_WIN_H_FILTER_P(3));
 491		tegra_plane_writel(plane, 0x57256d9a, DC_WIN_H_FILTER_P(4));
 492		tegra_plane_writel(plane, 0x552f668b, DC_WIN_H_FILTER_P(5));
 493		tegra_plane_writel(plane, 0x73385e8b, DC_WIN_H_FILTER_P(6));
 494		tegra_plane_writel(plane, 0x72435583, DC_WIN_H_FILTER_P(7));
 495		tegra_plane_writel(plane, 0x714c4c8b, DC_WIN_H_FILTER_P(8));
 496		tegra_plane_writel(plane, 0x70554393, DC_WIN_H_FILTER_P(9));
 497		tegra_plane_writel(plane, 0x715e389b, DC_WIN_H_FILTER_P(10));
 498		tegra_plane_writel(plane, 0x71662faa, DC_WIN_H_FILTER_P(11));
 499		tegra_plane_writel(plane, 0x536d25ba, DC_WIN_H_FILTER_P(12));
 500		tegra_plane_writel(plane, 0x55731bca, DC_WIN_H_FILTER_P(13));
 501		tegra_plane_writel(plane, 0x387a11d9, DC_WIN_H_FILTER_P(14));
 502		tegra_plane_writel(plane, 0x3c7c08f1, DC_WIN_H_FILTER_P(15));
 503
 504		value |= H_FILTER;
 505	}
 506
 507	if (tegra_plane_use_vertical_filtering(plane, window)) {
 508		unsigned int i, k;
 509
 510		/*
 511		 * Enable vertical 2-tap filter and set filtering
 512		 * coefficients to the default values defined in TRM.
 513		 */
 514		for (i = 0, k = 128; i < 16; i++, k -= 8)
 515			tegra_plane_writel(plane, k, DC_WIN_V_FILTER_P(i));
 516
 517		value |= V_FILTER;
 518	}
 519
 520	tegra_plane_writel(plane, value, DC_WIN_WIN_OPTIONS);
 521
 522	if (dc->soc->has_legacy_blending)
 523		tegra_plane_setup_blending_legacy(plane);
 524	else
 525		tegra_plane_setup_blending(plane, window);
 526}
 527
 528static const u32 tegra20_primary_formats[] = {
 529	DRM_FORMAT_ARGB4444,
 530	DRM_FORMAT_ARGB1555,
 531	DRM_FORMAT_RGB565,
 532	DRM_FORMAT_RGBA5551,
 533	DRM_FORMAT_ABGR8888,
 534	DRM_FORMAT_ARGB8888,
 535	/* non-native formats */
 536	DRM_FORMAT_XRGB1555,
 537	DRM_FORMAT_RGBX5551,
 538	DRM_FORMAT_XBGR8888,
 539	DRM_FORMAT_XRGB8888,
 540};
 541
 542static const u64 tegra20_modifiers[] = {
 543	DRM_FORMAT_MOD_LINEAR,
 544	DRM_FORMAT_MOD_NVIDIA_TEGRA_TILED,
 545	DRM_FORMAT_MOD_INVALID
 546};
 547
 548static const u32 tegra114_primary_formats[] = {
 549	DRM_FORMAT_ARGB4444,
 550	DRM_FORMAT_ARGB1555,
 551	DRM_FORMAT_RGB565,
 552	DRM_FORMAT_RGBA5551,
 553	DRM_FORMAT_ABGR8888,
 554	DRM_FORMAT_ARGB8888,
 555	/* new on Tegra114 */
 556	DRM_FORMAT_ABGR4444,
 557	DRM_FORMAT_ABGR1555,
 558	DRM_FORMAT_BGRA5551,
 559	DRM_FORMAT_XRGB1555,
 560	DRM_FORMAT_RGBX5551,
 561	DRM_FORMAT_XBGR1555,
 562	DRM_FORMAT_BGRX5551,
 563	DRM_FORMAT_BGR565,
 564	DRM_FORMAT_BGRA8888,
 565	DRM_FORMAT_RGBA8888,
 566	DRM_FORMAT_XRGB8888,
 567	DRM_FORMAT_XBGR8888,
 568};
 569
 570static const u32 tegra124_primary_formats[] = {
 571	DRM_FORMAT_ARGB4444,
 572	DRM_FORMAT_ARGB1555,
 573	DRM_FORMAT_RGB565,
 574	DRM_FORMAT_RGBA5551,
 575	DRM_FORMAT_ABGR8888,
 576	DRM_FORMAT_ARGB8888,
 577	/* new on Tegra114 */
 578	DRM_FORMAT_ABGR4444,
 579	DRM_FORMAT_ABGR1555,
 580	DRM_FORMAT_BGRA5551,
 581	DRM_FORMAT_XRGB1555,
 582	DRM_FORMAT_RGBX5551,
 583	DRM_FORMAT_XBGR1555,
 584	DRM_FORMAT_BGRX5551,
 585	DRM_FORMAT_BGR565,
 586	DRM_FORMAT_BGRA8888,
 587	DRM_FORMAT_RGBA8888,
 588	DRM_FORMAT_XRGB8888,
 589	DRM_FORMAT_XBGR8888,
 590	/* new on Tegra124 */
 591	DRM_FORMAT_RGBX8888,
 592	DRM_FORMAT_BGRX8888,
 593};
 594
 595static const u64 tegra124_modifiers[] = {
 596	DRM_FORMAT_MOD_LINEAR,
 597	DRM_FORMAT_MOD_NVIDIA_16BX2_BLOCK(0),
 598	DRM_FORMAT_MOD_NVIDIA_16BX2_BLOCK(1),
 599	DRM_FORMAT_MOD_NVIDIA_16BX2_BLOCK(2),
 600	DRM_FORMAT_MOD_NVIDIA_16BX2_BLOCK(3),
 601	DRM_FORMAT_MOD_NVIDIA_16BX2_BLOCK(4),
 602	DRM_FORMAT_MOD_NVIDIA_16BX2_BLOCK(5),
 603	DRM_FORMAT_MOD_INVALID
 604};
 605
 606static int tegra_plane_atomic_check(struct drm_plane *plane,
 607				    struct drm_atomic_state *state)
 608{
 609	struct drm_plane_state *new_plane_state = drm_atomic_get_new_plane_state(state,
 610										 plane);
 611	struct tegra_plane_state *plane_state = to_tegra_plane_state(new_plane_state);
 612	unsigned int supported_rotation = DRM_MODE_ROTATE_0 |
 613					  DRM_MODE_REFLECT_X |
 614					  DRM_MODE_REFLECT_Y;
 615	unsigned int rotation = new_plane_state->rotation;
 616	struct tegra_bo_tiling *tiling = &plane_state->tiling;
 617	struct tegra_plane *tegra = to_tegra_plane(plane);
 618	struct tegra_dc *dc = to_tegra_dc(new_plane_state->crtc);
 619	int err;
 620
 621	/* no need for further checks if the plane is being disabled */
 622	if (!new_plane_state->crtc)
 623		return 0;
 624
 625	err = tegra_plane_format(new_plane_state->fb->format->format,
 626				 &plane_state->format,
 627				 &plane_state->swap);
 628	if (err < 0)
 629		return err;
 630
 631	/*
 632	 * Tegra20 and Tegra30 are special cases here because they support
 633	 * only variants of specific formats with an alpha component, but not
 634	 * the corresponding opaque formats. However, the opaque formats can
 635	 * be emulated by disabling alpha blending for the plane.
 636	 */
 637	if (dc->soc->has_legacy_blending) {
 638		err = tegra_plane_setup_legacy_state(tegra, plane_state);
 639		if (err < 0)
 640			return err;
 641	}
 642
 643	err = tegra_fb_get_tiling(new_plane_state->fb, tiling);
 644	if (err < 0)
 645		return err;
 646
 647	if (tiling->mode == TEGRA_BO_TILING_MODE_BLOCK &&
 648	    !dc->soc->supports_block_linear) {
 649		DRM_ERROR("hardware doesn't support block linear mode\n");
 650		return -EINVAL;
 651	}
 652
 653	/*
 654	 * Older userspace used custom BO flag in order to specify the Y
 655	 * reflection, while modern userspace uses the generic DRM rotation
 656	 * property in order to achieve the same result.  The legacy BO flag
 657	 * duplicates the DRM rotation property when both are set.
 658	 */
 659	if (tegra_fb_is_bottom_up(new_plane_state->fb))
 660		rotation |= DRM_MODE_REFLECT_Y;
 661
 662	rotation = drm_rotation_simplify(rotation, supported_rotation);
 663
 664	if (rotation & DRM_MODE_REFLECT_X)
 665		plane_state->reflect_x = true;
 666	else
 667		plane_state->reflect_x = false;
 668
 669	if (rotation & DRM_MODE_REFLECT_Y)
 670		plane_state->reflect_y = true;
 671	else
 672		plane_state->reflect_y = false;
 673
 674	/*
 675	 * Tegra doesn't support different strides for U and V planes so we
 676	 * error out if the user tries to display a framebuffer with such a
 677	 * configuration.
 678	 */
 679	if (new_plane_state->fb->format->num_planes > 2) {
 680		if (new_plane_state->fb->pitches[2] != new_plane_state->fb->pitches[1]) {
 681			DRM_ERROR("unsupported UV-plane configuration\n");
 682			return -EINVAL;
 683		}
 684	}
 685
 686	err = tegra_plane_state_add(tegra, new_plane_state);
 687	if (err < 0)
 688		return err;
 689
 690	return 0;
 691}
 692
 693static void tegra_plane_atomic_disable(struct drm_plane *plane,
 694				       struct drm_atomic_state *state)
 695{
 696	struct drm_plane_state *old_state = drm_atomic_get_old_plane_state(state,
 697									   plane);
 698	struct tegra_plane *p = to_tegra_plane(plane);
 699	u32 value;
 700
 701	/* rien ne va plus */
 702	if (!old_state || !old_state->crtc)
 703		return;
 704
 705	value = tegra_plane_readl(p, DC_WIN_WIN_OPTIONS);
 706	value &= ~WIN_ENABLE;
 707	tegra_plane_writel(p, value, DC_WIN_WIN_OPTIONS);
 708}
 709
 710static void tegra_plane_atomic_update(struct drm_plane *plane,
 711				      struct drm_atomic_state *state)
 712{
 713	struct drm_plane_state *new_state = drm_atomic_get_new_plane_state(state,
 714									   plane);
 715	struct tegra_plane_state *tegra_plane_state = to_tegra_plane_state(new_state);
 716	struct drm_framebuffer *fb = new_state->fb;
 717	struct tegra_plane *p = to_tegra_plane(plane);
 718	struct tegra_dc_window window;
 719	unsigned int i;
 720
 721	/* rien ne va plus */
 722	if (!new_state->crtc || !new_state->fb)
 723		return;
 724
 725	if (!new_state->visible)
 726		return tegra_plane_atomic_disable(plane, state);
 727
 728	memset(&window, 0, sizeof(window));
 729	window.src.x = new_state->src.x1 >> 16;
 730	window.src.y = new_state->src.y1 >> 16;
 731	window.src.w = drm_rect_width(&new_state->src) >> 16;
 732	window.src.h = drm_rect_height(&new_state->src) >> 16;
 733	window.dst.x = new_state->dst.x1;
 734	window.dst.y = new_state->dst.y1;
 735	window.dst.w = drm_rect_width(&new_state->dst);
 736	window.dst.h = drm_rect_height(&new_state->dst);
 737	window.bits_per_pixel = fb->format->cpp[0] * 8;
 738	window.reflect_x = tegra_plane_state->reflect_x;
 739	window.reflect_y = tegra_plane_state->reflect_y;
 740
 741	/* copy from state */
 742	window.zpos = new_state->normalized_zpos;
 743	window.tiling = tegra_plane_state->tiling;
 744	window.format = tegra_plane_state->format;
 745	window.swap = tegra_plane_state->swap;
 746
 747	for (i = 0; i < fb->format->num_planes; i++) {
 748		window.base[i] = tegra_plane_state->iova[i] + fb->offsets[i];
 749
 750		/*
 751		 * Tegra uses a shared stride for UV planes. Framebuffers are
 752		 * already checked for this in the tegra_plane_atomic_check()
 753		 * function, so it's safe to ignore the V-plane pitch here.
 754		 */
 755		if (i < 2)
 756			window.stride[i] = fb->pitches[i];
 757	}
 758
 759	tegra_dc_setup_window(p, &window);
 760}
 761
 762static const struct drm_plane_helper_funcs tegra_plane_helper_funcs = {
 763	.prepare_fb = tegra_plane_prepare_fb,
 764	.cleanup_fb = tegra_plane_cleanup_fb,
 765	.atomic_check = tegra_plane_atomic_check,
 766	.atomic_disable = tegra_plane_atomic_disable,
 767	.atomic_update = tegra_plane_atomic_update,
 768};
 769
 770static unsigned long tegra_plane_get_possible_crtcs(struct drm_device *drm)
 771{
 772	/*
 773	 * Ideally this would use drm_crtc_mask(), but that would require the
 774	 * CRTC to already be in the mode_config's list of CRTCs. However, it
 775	 * will only be added to that list in the drm_crtc_init_with_planes()
 776	 * (in tegra_dc_init()), which in turn requires registration of these
 777	 * planes. So we have ourselves a nice little chicken and egg problem
 778	 * here.
 779	 *
 780	 * We work around this by manually creating the mask from the number
 781	 * of CRTCs that have been registered, and should therefore always be
 782	 * the same as drm_crtc_index() after registration.
 783	 */
 784	return 1 << drm->mode_config.num_crtc;
 785}
 786
 787static struct drm_plane *tegra_primary_plane_create(struct drm_device *drm,
 788						    struct tegra_dc *dc)
 789{
 790	unsigned long possible_crtcs = tegra_plane_get_possible_crtcs(drm);
 791	enum drm_plane_type type = DRM_PLANE_TYPE_PRIMARY;
 792	struct tegra_plane *plane;
 793	unsigned int num_formats;
 794	const u64 *modifiers;
 795	const u32 *formats;
 796	int err;
 797
 798	plane = kzalloc(sizeof(*plane), GFP_KERNEL);
 799	if (!plane)
 800		return ERR_PTR(-ENOMEM);
 801
 802	/* Always use window A as primary window */
 803	plane->offset = 0xa00;
 804	plane->index = 0;
 805	plane->dc = dc;
 806
 807	num_formats = dc->soc->num_primary_formats;
 808	formats = dc->soc->primary_formats;
 809	modifiers = dc->soc->modifiers;
 810
 811	err = drm_universal_plane_init(drm, &plane->base, possible_crtcs,
 812				       &tegra_plane_funcs, formats,
 813				       num_formats, modifiers, type, NULL);
 814	if (err < 0) {
 815		kfree(plane);
 816		return ERR_PTR(err);
 817	}
 818
 819	drm_plane_helper_add(&plane->base, &tegra_plane_helper_funcs);
 820	drm_plane_create_zpos_property(&plane->base, plane->index, 0, 255);
 821
 822	err = drm_plane_create_rotation_property(&plane->base,
 823						 DRM_MODE_ROTATE_0,
 824						 DRM_MODE_ROTATE_0 |
 825						 DRM_MODE_ROTATE_180 |
 826						 DRM_MODE_REFLECT_X |
 827						 DRM_MODE_REFLECT_Y);
 828	if (err < 0)
 829		dev_err(dc->dev, "failed to create rotation property: %d\n",
 830			err);
 831
 832	return &plane->base;
 833}
 834
 835static const u32 tegra_legacy_cursor_plane_formats[] = {
 836	DRM_FORMAT_RGBA8888,
 837};
 838
 839static const u32 tegra_cursor_plane_formats[] = {
 840	DRM_FORMAT_ARGB8888,
 841};
 842
 843static int tegra_cursor_atomic_check(struct drm_plane *plane,
 844				     struct drm_atomic_state *state)
 845{
 846	struct drm_plane_state *new_plane_state = drm_atomic_get_new_plane_state(state,
 847										 plane);
 848	struct tegra_plane *tegra = to_tegra_plane(plane);
 849	int err;
 850
 851	/* no need for further checks if the plane is being disabled */
 852	if (!new_plane_state->crtc)
 853		return 0;
 854
 855	/* scaling not supported for cursor */
 856	if ((new_plane_state->src_w >> 16 != new_plane_state->crtc_w) ||
 857	    (new_plane_state->src_h >> 16 != new_plane_state->crtc_h))
 858		return -EINVAL;
 859
 860	/* only square cursors supported */
 861	if (new_plane_state->src_w != new_plane_state->src_h)
 862		return -EINVAL;
 863
 864	if (new_plane_state->crtc_w != 32 && new_plane_state->crtc_w != 64 &&
 865	    new_plane_state->crtc_w != 128 && new_plane_state->crtc_w != 256)
 866		return -EINVAL;
 867
 868	err = tegra_plane_state_add(tegra, new_plane_state);
 869	if (err < 0)
 870		return err;
 871
 872	return 0;
 873}
 874
 875static void tegra_cursor_atomic_update(struct drm_plane *plane,
 876				       struct drm_atomic_state *state)
 877{
 878	struct drm_plane_state *new_state = drm_atomic_get_new_plane_state(state,
 879									   plane);
 880	struct tegra_plane_state *tegra_plane_state = to_tegra_plane_state(new_state);
 881	struct tegra_dc *dc = to_tegra_dc(new_state->crtc);
 882	struct tegra_drm *tegra = plane->dev->dev_private;
 883#ifdef CONFIG_ARCH_DMA_ADDR_T_64BIT
 884	u64 dma_mask = *dc->dev->dma_mask;
 885#endif
 886	unsigned int x, y;
 887	u32 value = 0;
 888
 889	/* rien ne va plus */
 890	if (!new_state->crtc || !new_state->fb)
 891		return;
 892
 893	/*
 894	 * Legacy display supports hardware clipping of the cursor, but
 895	 * nvdisplay relies on software to clip the cursor to the screen.
 896	 */
 897	if (!dc->soc->has_nvdisplay)
 898		value |= CURSOR_CLIP_DISPLAY;
 899
 900	switch (new_state->crtc_w) {
 901	case 32:
 902		value |= CURSOR_SIZE_32x32;
 903		break;
 904
 905	case 64:
 906		value |= CURSOR_SIZE_64x64;
 907		break;
 908
 909	case 128:
 910		value |= CURSOR_SIZE_128x128;
 911		break;
 912
 913	case 256:
 914		value |= CURSOR_SIZE_256x256;
 915		break;
 916
 917	default:
 918		WARN(1, "cursor size %ux%u not supported\n",
 919		     new_state->crtc_w, new_state->crtc_h);
 920		return;
 921	}
 922
 923	value |= (tegra_plane_state->iova[0] >> 10) & 0x3fffff;
 924	tegra_dc_writel(dc, value, DC_DISP_CURSOR_START_ADDR);
 925
 926#ifdef CONFIG_ARCH_DMA_ADDR_T_64BIT
 927	value = (tegra_plane_state->iova[0] >> 32) & (dma_mask >> 32);
 928	tegra_dc_writel(dc, value, DC_DISP_CURSOR_START_ADDR_HI);
 929#endif
 930
 931	/* enable cursor and set blend mode */
 932	value = tegra_dc_readl(dc, DC_DISP_DISP_WIN_OPTIONS);
 933	value |= CURSOR_ENABLE;
 934	tegra_dc_writel(dc, value, DC_DISP_DISP_WIN_OPTIONS);
 935
 936	value = tegra_dc_readl(dc, DC_DISP_BLEND_CURSOR_CONTROL);
 937	value &= ~CURSOR_DST_BLEND_MASK;
 938	value &= ~CURSOR_SRC_BLEND_MASK;
 939
 940	if (dc->soc->has_nvdisplay)
 941		value &= ~CURSOR_COMPOSITION_MODE_XOR;
 942	else
 943		value |= CURSOR_MODE_NORMAL;
 944
 945	value |= CURSOR_DST_BLEND_NEG_K1_TIMES_SRC;
 946	value |= CURSOR_SRC_BLEND_K1_TIMES_SRC;
 947	value |= CURSOR_ALPHA;
 948	tegra_dc_writel(dc, value, DC_DISP_BLEND_CURSOR_CONTROL);
 949
 950	/* nvdisplay relies on software for clipping */
 951	if (dc->soc->has_nvdisplay) {
 952		struct drm_rect src;
 953
 954		x = new_state->dst.x1;
 955		y = new_state->dst.y1;
 956
 957		drm_rect_fp_to_int(&src, &new_state->src);
 958
 959		value = (src.y1 & tegra->vmask) << 16 | (src.x1 & tegra->hmask);
 960		tegra_dc_writel(dc, value, DC_DISP_PCALC_HEAD_SET_CROPPED_POINT_IN_CURSOR);
 961
 962		value = (drm_rect_height(&src) & tegra->vmask) << 16 |
 963			(drm_rect_width(&src) & tegra->hmask);
 964		tegra_dc_writel(dc, value, DC_DISP_PCALC_HEAD_SET_CROPPED_SIZE_IN_CURSOR);
 965	} else {
 966		x = new_state->crtc_x;
 967		y = new_state->crtc_y;
 968	}
 969
 970	/* position the cursor */
 971	value = ((y & tegra->vmask) << 16) | (x & tegra->hmask);
 972	tegra_dc_writel(dc, value, DC_DISP_CURSOR_POSITION);
 973}
 974
 975static void tegra_cursor_atomic_disable(struct drm_plane *plane,
 976					struct drm_atomic_state *state)
 977{
 978	struct drm_plane_state *old_state = drm_atomic_get_old_plane_state(state,
 979									   plane);
 980	struct tegra_dc *dc;
 981	u32 value;
 982
 983	/* rien ne va plus */
 984	if (!old_state || !old_state->crtc)
 985		return;
 986
 987	dc = to_tegra_dc(old_state->crtc);
 988
 989	value = tegra_dc_readl(dc, DC_DISP_DISP_WIN_OPTIONS);
 990	value &= ~CURSOR_ENABLE;
 991	tegra_dc_writel(dc, value, DC_DISP_DISP_WIN_OPTIONS);
 992}
 993
 994static const struct drm_plane_helper_funcs tegra_cursor_plane_helper_funcs = {
 995	.prepare_fb = tegra_plane_prepare_fb,
 996	.cleanup_fb = tegra_plane_cleanup_fb,
 997	.atomic_check = tegra_cursor_atomic_check,
 998	.atomic_update = tegra_cursor_atomic_update,
 999	.atomic_disable = tegra_cursor_atomic_disable,
1000};
1001
1002static const uint64_t linear_modifiers[] = {
1003	DRM_FORMAT_MOD_LINEAR,
1004	DRM_FORMAT_MOD_INVALID
1005};
1006
1007static struct drm_plane *tegra_dc_cursor_plane_create(struct drm_device *drm,
1008						      struct tegra_dc *dc)
1009{
1010	unsigned long possible_crtcs = tegra_plane_get_possible_crtcs(drm);
1011	struct tegra_plane *plane;
1012	unsigned int num_formats;
1013	const u32 *formats;
1014	int err;
1015
1016	plane = kzalloc(sizeof(*plane), GFP_KERNEL);
1017	if (!plane)
1018		return ERR_PTR(-ENOMEM);
1019
1020	/*
1021	 * This index is kind of fake. The cursor isn't a regular plane, but
1022	 * its update and activation request bits in DC_CMD_STATE_CONTROL do
1023	 * use the same programming. Setting this fake index here allows the
1024	 * code in tegra_add_plane_state() to do the right thing without the
1025	 * need to special-casing the cursor plane.
1026	 */
1027	plane->index = 6;
1028	plane->dc = dc;
1029
1030	if (!dc->soc->has_nvdisplay) {
1031		num_formats = ARRAY_SIZE(tegra_legacy_cursor_plane_formats);
1032		formats = tegra_legacy_cursor_plane_formats;
1033	} else {
1034		num_formats = ARRAY_SIZE(tegra_cursor_plane_formats);
1035		formats = tegra_cursor_plane_formats;
1036	}
1037
1038	err = drm_universal_plane_init(drm, &plane->base, possible_crtcs,
1039				       &tegra_plane_funcs, formats,
1040				       num_formats, linear_modifiers,
1041				       DRM_PLANE_TYPE_CURSOR, NULL);
1042	if (err < 0) {
1043		kfree(plane);
1044		return ERR_PTR(err);
1045	}
1046
1047	drm_plane_helper_add(&plane->base, &tegra_cursor_plane_helper_funcs);
1048	drm_plane_create_zpos_immutable_property(&plane->base, 255);
1049
1050	return &plane->base;
1051}
1052
1053static const u32 tegra20_overlay_formats[] = {
1054	DRM_FORMAT_ARGB4444,
1055	DRM_FORMAT_ARGB1555,
1056	DRM_FORMAT_RGB565,
1057	DRM_FORMAT_RGBA5551,
1058	DRM_FORMAT_ABGR8888,
1059	DRM_FORMAT_ARGB8888,
1060	/* non-native formats */
1061	DRM_FORMAT_XRGB1555,
1062	DRM_FORMAT_RGBX5551,
1063	DRM_FORMAT_XBGR8888,
1064	DRM_FORMAT_XRGB8888,
1065	/* planar formats */
1066	DRM_FORMAT_UYVY,
1067	DRM_FORMAT_YUYV,
1068	DRM_FORMAT_YUV420,
1069	DRM_FORMAT_YUV422,
1070};
1071
1072static const u32 tegra114_overlay_formats[] = {
1073	DRM_FORMAT_ARGB4444,
1074	DRM_FORMAT_ARGB1555,
1075	DRM_FORMAT_RGB565,
1076	DRM_FORMAT_RGBA5551,
1077	DRM_FORMAT_ABGR8888,
1078	DRM_FORMAT_ARGB8888,
1079	/* new on Tegra114 */
1080	DRM_FORMAT_ABGR4444,
1081	DRM_FORMAT_ABGR1555,
1082	DRM_FORMAT_BGRA5551,
1083	DRM_FORMAT_XRGB1555,
1084	DRM_FORMAT_RGBX5551,
1085	DRM_FORMAT_XBGR1555,
1086	DRM_FORMAT_BGRX5551,
1087	DRM_FORMAT_BGR565,
1088	DRM_FORMAT_BGRA8888,
1089	DRM_FORMAT_RGBA8888,
1090	DRM_FORMAT_XRGB8888,
1091	DRM_FORMAT_XBGR8888,
1092	/* planar formats */
1093	DRM_FORMAT_UYVY,
1094	DRM_FORMAT_YUYV,
1095	DRM_FORMAT_YUV420,
1096	DRM_FORMAT_YUV422,
1097};
1098
1099static const u32 tegra124_overlay_formats[] = {
1100	DRM_FORMAT_ARGB4444,
1101	DRM_FORMAT_ARGB1555,
1102	DRM_FORMAT_RGB565,
1103	DRM_FORMAT_RGBA5551,
1104	DRM_FORMAT_ABGR8888,
1105	DRM_FORMAT_ARGB8888,
1106	/* new on Tegra114 */
1107	DRM_FORMAT_ABGR4444,
1108	DRM_FORMAT_ABGR1555,
1109	DRM_FORMAT_BGRA5551,
1110	DRM_FORMAT_XRGB1555,
1111	DRM_FORMAT_RGBX5551,
1112	DRM_FORMAT_XBGR1555,
1113	DRM_FORMAT_BGRX5551,
1114	DRM_FORMAT_BGR565,
1115	DRM_FORMAT_BGRA8888,
1116	DRM_FORMAT_RGBA8888,
1117	DRM_FORMAT_XRGB8888,
1118	DRM_FORMAT_XBGR8888,
1119	/* new on Tegra124 */
1120	DRM_FORMAT_RGBX8888,
1121	DRM_FORMAT_BGRX8888,
1122	/* planar formats */
1123	DRM_FORMAT_UYVY,
1124	DRM_FORMAT_YUYV,
1125	DRM_FORMAT_YUV420,
1126	DRM_FORMAT_YUV422,
1127};
1128
1129static struct drm_plane *tegra_dc_overlay_plane_create(struct drm_device *drm,
1130						       struct tegra_dc *dc,
1131						       unsigned int index,
1132						       bool cursor)
1133{
1134	unsigned long possible_crtcs = tegra_plane_get_possible_crtcs(drm);
1135	struct tegra_plane *plane;
1136	unsigned int num_formats;
1137	enum drm_plane_type type;
1138	const u32 *formats;
1139	int err;
1140
1141	plane = kzalloc(sizeof(*plane), GFP_KERNEL);
1142	if (!plane)
1143		return ERR_PTR(-ENOMEM);
1144
1145	plane->offset = 0xa00 + 0x200 * index;
1146	plane->index = index;
1147	plane->dc = dc;
1148
1149	num_formats = dc->soc->num_overlay_formats;
1150	formats = dc->soc->overlay_formats;
1151
1152	if (!cursor)
1153		type = DRM_PLANE_TYPE_OVERLAY;
1154	else
1155		type = DRM_PLANE_TYPE_CURSOR;
1156
1157	err = drm_universal_plane_init(drm, &plane->base, possible_crtcs,
1158				       &tegra_plane_funcs, formats,
1159				       num_formats, linear_modifiers,
1160				       type, NULL);
1161	if (err < 0) {
1162		kfree(plane);
1163		return ERR_PTR(err);
1164	}
1165
1166	drm_plane_helper_add(&plane->base, &tegra_plane_helper_funcs);
1167	drm_plane_create_zpos_property(&plane->base, plane->index, 0, 255);
1168
1169	err = drm_plane_create_rotation_property(&plane->base,
1170						 DRM_MODE_ROTATE_0,
1171						 DRM_MODE_ROTATE_0 |
1172						 DRM_MODE_ROTATE_180 |
1173						 DRM_MODE_REFLECT_X |
1174						 DRM_MODE_REFLECT_Y);
1175	if (err < 0)
1176		dev_err(dc->dev, "failed to create rotation property: %d\n",
1177			err);
1178
1179	return &plane->base;
1180}
1181
1182static struct drm_plane *tegra_dc_add_shared_planes(struct drm_device *drm,
1183						    struct tegra_dc *dc)
1184{
1185	struct drm_plane *plane, *primary = NULL;
1186	unsigned int i, j;
1187
1188	for (i = 0; i < dc->soc->num_wgrps; i++) {
1189		const struct tegra_windowgroup_soc *wgrp = &dc->soc->wgrps[i];
1190
1191		if (wgrp->dc == dc->pipe) {
1192			for (j = 0; j < wgrp->num_windows; j++) {
1193				unsigned int index = wgrp->windows[j];
1194
1195				plane = tegra_shared_plane_create(drm, dc,
1196								  wgrp->index,
1197								  index);
1198				if (IS_ERR(plane))
1199					return plane;
1200
1201				/*
1202				 * Choose the first shared plane owned by this
1203				 * head as the primary plane.
1204				 */
1205				if (!primary) {
1206					plane->type = DRM_PLANE_TYPE_PRIMARY;
1207					primary = plane;
1208				}
1209			}
1210		}
1211	}
1212
1213	return primary;
1214}
1215
1216static struct drm_plane *tegra_dc_add_planes(struct drm_device *drm,
1217					     struct tegra_dc *dc)
1218{
1219	struct drm_plane *planes[2], *primary;
1220	unsigned int planes_num;
1221	unsigned int i;
1222	int err;
1223
1224	primary = tegra_primary_plane_create(drm, dc);
1225	if (IS_ERR(primary))
1226		return primary;
1227
1228	if (dc->soc->supports_cursor)
1229		planes_num = 2;
1230	else
1231		planes_num = 1;
1232
1233	for (i = 0; i < planes_num; i++) {
1234		planes[i] = tegra_dc_overlay_plane_create(drm, dc, 1 + i,
1235							  false);
1236		if (IS_ERR(planes[i])) {
1237			err = PTR_ERR(planes[i]);
1238
1239			while (i--)
1240				tegra_plane_funcs.destroy(planes[i]);
1241
1242			tegra_plane_funcs.destroy(primary);
1243			return ERR_PTR(err);
1244		}
1245	}
1246
1247	return primary;
1248}
1249
1250static void tegra_dc_destroy(struct drm_crtc *crtc)
1251{
1252	drm_crtc_cleanup(crtc);
1253}
1254
1255static void tegra_crtc_reset(struct drm_crtc *crtc)
1256{
1257	struct tegra_dc_state *state = kzalloc(sizeof(*state), GFP_KERNEL);
1258
1259	if (crtc->state)
1260		tegra_crtc_atomic_destroy_state(crtc, crtc->state);
1261
1262	__drm_atomic_helper_crtc_reset(crtc, &state->base);
1263}
1264
1265static struct drm_crtc_state *
1266tegra_crtc_atomic_duplicate_state(struct drm_crtc *crtc)
1267{
1268	struct tegra_dc_state *state = to_dc_state(crtc->state);
1269	struct tegra_dc_state *copy;
1270
1271	copy = kmalloc(sizeof(*copy), GFP_KERNEL);
1272	if (!copy)
1273		return NULL;
1274
1275	__drm_atomic_helper_crtc_duplicate_state(crtc, &copy->base);
1276	copy->clk = state->clk;
1277	copy->pclk = state->pclk;
1278	copy->div = state->div;
1279	copy->planes = state->planes;
1280
1281	return &copy->base;
1282}
1283
1284static void tegra_crtc_atomic_destroy_state(struct drm_crtc *crtc,
1285					    struct drm_crtc_state *state)
1286{
1287	__drm_atomic_helper_crtc_destroy_state(state);
1288	kfree(state);
1289}
1290
1291#define DEBUGFS_REG32(_name) { .name = #_name, .offset = _name }
1292
1293static const struct debugfs_reg32 tegra_dc_regs[] = {
1294	DEBUGFS_REG32(DC_CMD_GENERAL_INCR_SYNCPT),
1295	DEBUGFS_REG32(DC_CMD_GENERAL_INCR_SYNCPT_CNTRL),
1296	DEBUGFS_REG32(DC_CMD_GENERAL_INCR_SYNCPT_ERROR),
1297	DEBUGFS_REG32(DC_CMD_WIN_A_INCR_SYNCPT),
1298	DEBUGFS_REG32(DC_CMD_WIN_A_INCR_SYNCPT_CNTRL),
1299	DEBUGFS_REG32(DC_CMD_WIN_A_INCR_SYNCPT_ERROR),
1300	DEBUGFS_REG32(DC_CMD_WIN_B_INCR_SYNCPT),
1301	DEBUGFS_REG32(DC_CMD_WIN_B_INCR_SYNCPT_CNTRL),
1302	DEBUGFS_REG32(DC_CMD_WIN_B_INCR_SYNCPT_ERROR),
1303	DEBUGFS_REG32(DC_CMD_WIN_C_INCR_SYNCPT),
1304	DEBUGFS_REG32(DC_CMD_WIN_C_INCR_SYNCPT_CNTRL),
1305	DEBUGFS_REG32(DC_CMD_WIN_C_INCR_SYNCPT_ERROR),
1306	DEBUGFS_REG32(DC_CMD_CONT_SYNCPT_VSYNC),
1307	DEBUGFS_REG32(DC_CMD_DISPLAY_COMMAND_OPTION0),
1308	DEBUGFS_REG32(DC_CMD_DISPLAY_COMMAND),
1309	DEBUGFS_REG32(DC_CMD_SIGNAL_RAISE),
1310	DEBUGFS_REG32(DC_CMD_DISPLAY_POWER_CONTROL),
1311	DEBUGFS_REG32(DC_CMD_INT_STATUS),
1312	DEBUGFS_REG32(DC_CMD_INT_MASK),
1313	DEBUGFS_REG32(DC_CMD_INT_ENABLE),
1314	DEBUGFS_REG32(DC_CMD_INT_TYPE),
1315	DEBUGFS_REG32(DC_CMD_INT_POLARITY),
1316	DEBUGFS_REG32(DC_CMD_SIGNAL_RAISE1),
1317	DEBUGFS_REG32(DC_CMD_SIGNAL_RAISE2),
1318	DEBUGFS_REG32(DC_CMD_SIGNAL_RAISE3),
1319	DEBUGFS_REG32(DC_CMD_STATE_ACCESS),
1320	DEBUGFS_REG32(DC_CMD_STATE_CONTROL),
1321	DEBUGFS_REG32(DC_CMD_DISPLAY_WINDOW_HEADER),
1322	DEBUGFS_REG32(DC_CMD_REG_ACT_CONTROL),
1323	DEBUGFS_REG32(DC_COM_CRC_CONTROL),
1324	DEBUGFS_REG32(DC_COM_CRC_CHECKSUM),
1325	DEBUGFS_REG32(DC_COM_PIN_OUTPUT_ENABLE(0)),
1326	DEBUGFS_REG32(DC_COM_PIN_OUTPUT_ENABLE(1)),
1327	DEBUGFS_REG32(DC_COM_PIN_OUTPUT_ENABLE(2)),
1328	DEBUGFS_REG32(DC_COM_PIN_OUTPUT_ENABLE(3)),
1329	DEBUGFS_REG32(DC_COM_PIN_OUTPUT_POLARITY(0)),
1330	DEBUGFS_REG32(DC_COM_PIN_OUTPUT_POLARITY(1)),
1331	DEBUGFS_REG32(DC_COM_PIN_OUTPUT_POLARITY(2)),
1332	DEBUGFS_REG32(DC_COM_PIN_OUTPUT_POLARITY(3)),
1333	DEBUGFS_REG32(DC_COM_PIN_OUTPUT_DATA(0)),
1334	DEBUGFS_REG32(DC_COM_PIN_OUTPUT_DATA(1)),
1335	DEBUGFS_REG32(DC_COM_PIN_OUTPUT_DATA(2)),
1336	DEBUGFS_REG32(DC_COM_PIN_OUTPUT_DATA(3)),
1337	DEBUGFS_REG32(DC_COM_PIN_INPUT_ENABLE(0)),
1338	DEBUGFS_REG32(DC_COM_PIN_INPUT_ENABLE(1)),
1339	DEBUGFS_REG32(DC_COM_PIN_INPUT_ENABLE(2)),
1340	DEBUGFS_REG32(DC_COM_PIN_INPUT_ENABLE(3)),
1341	DEBUGFS_REG32(DC_COM_PIN_INPUT_DATA(0)),
1342	DEBUGFS_REG32(DC_COM_PIN_INPUT_DATA(1)),
1343	DEBUGFS_REG32(DC_COM_PIN_OUTPUT_SELECT(0)),
1344	DEBUGFS_REG32(DC_COM_PIN_OUTPUT_SELECT(1)),
1345	DEBUGFS_REG32(DC_COM_PIN_OUTPUT_SELECT(2)),
1346	DEBUGFS_REG32(DC_COM_PIN_OUTPUT_SELECT(3)),
1347	DEBUGFS_REG32(DC_COM_PIN_OUTPUT_SELECT(4)),
1348	DEBUGFS_REG32(DC_COM_PIN_OUTPUT_SELECT(5)),
1349	DEBUGFS_REG32(DC_COM_PIN_OUTPUT_SELECT(6)),
1350	DEBUGFS_REG32(DC_COM_PIN_MISC_CONTROL),
1351	DEBUGFS_REG32(DC_COM_PIN_PM0_CONTROL),
1352	DEBUGFS_REG32(DC_COM_PIN_PM0_DUTY_CYCLE),
1353	DEBUGFS_REG32(DC_COM_PIN_PM1_CONTROL),
1354	DEBUGFS_REG32(DC_COM_PIN_PM1_DUTY_CYCLE),
1355	DEBUGFS_REG32(DC_COM_SPI_CONTROL),
1356	DEBUGFS_REG32(DC_COM_SPI_START_BYTE),
1357	DEBUGFS_REG32(DC_COM_HSPI_WRITE_DATA_AB),
1358	DEBUGFS_REG32(DC_COM_HSPI_WRITE_DATA_CD),
1359	DEBUGFS_REG32(DC_COM_HSPI_CS_DC),
1360	DEBUGFS_REG32(DC_COM_SCRATCH_REGISTER_A),
1361	DEBUGFS_REG32(DC_COM_SCRATCH_REGISTER_B),
1362	DEBUGFS_REG32(DC_COM_GPIO_CTRL),
1363	DEBUGFS_REG32(DC_COM_GPIO_DEBOUNCE_COUNTER),
1364	DEBUGFS_REG32(DC_COM_CRC_CHECKSUM_LATCHED),
1365	DEBUGFS_REG32(DC_DISP_DISP_SIGNAL_OPTIONS0),
1366	DEBUGFS_REG32(DC_DISP_DISP_SIGNAL_OPTIONS1),
1367	DEBUGFS_REG32(DC_DISP_DISP_WIN_OPTIONS),
1368	DEBUGFS_REG32(DC_DISP_DISP_MEM_HIGH_PRIORITY),
1369	DEBUGFS_REG32(DC_DISP_DISP_MEM_HIGH_PRIORITY_TIMER),
1370	DEBUGFS_REG32(DC_DISP_DISP_TIMING_OPTIONS),
1371	DEBUGFS_REG32(DC_DISP_REF_TO_SYNC),
1372	DEBUGFS_REG32(DC_DISP_SYNC_WIDTH),
1373	DEBUGFS_REG32(DC_DISP_BACK_PORCH),
1374	DEBUGFS_REG32(DC_DISP_ACTIVE),
1375	DEBUGFS_REG32(DC_DISP_FRONT_PORCH),
1376	DEBUGFS_REG32(DC_DISP_H_PULSE0_CONTROL),
1377	DEBUGFS_REG32(DC_DISP_H_PULSE0_POSITION_A),
1378	DEBUGFS_REG32(DC_DISP_H_PULSE0_POSITION_B),
1379	DEBUGFS_REG32(DC_DISP_H_PULSE0_POSITION_C),
1380	DEBUGFS_REG32(DC_DISP_H_PULSE0_POSITION_D),
1381	DEBUGFS_REG32(DC_DISP_H_PULSE1_CONTROL),
1382	DEBUGFS_REG32(DC_DISP_H_PULSE1_POSITION_A),
1383	DEBUGFS_REG32(DC_DISP_H_PULSE1_POSITION_B),
1384	DEBUGFS_REG32(DC_DISP_H_PULSE1_POSITION_C),
1385	DEBUGFS_REG32(DC_DISP_H_PULSE1_POSITION_D),
1386	DEBUGFS_REG32(DC_DISP_H_PULSE2_CONTROL),
1387	DEBUGFS_REG32(DC_DISP_H_PULSE2_POSITION_A),
1388	DEBUGFS_REG32(DC_DISP_H_PULSE2_POSITION_B),
1389	DEBUGFS_REG32(DC_DISP_H_PULSE2_POSITION_C),
1390	DEBUGFS_REG32(DC_DISP_H_PULSE2_POSITION_D),
1391	DEBUGFS_REG32(DC_DISP_V_PULSE0_CONTROL),
1392	DEBUGFS_REG32(DC_DISP_V_PULSE0_POSITION_A),
1393	DEBUGFS_REG32(DC_DISP_V_PULSE0_POSITION_B),
1394	DEBUGFS_REG32(DC_DISP_V_PULSE0_POSITION_C),
1395	DEBUGFS_REG32(DC_DISP_V_PULSE1_CONTROL),
1396	DEBUGFS_REG32(DC_DISP_V_PULSE1_POSITION_A),
1397	DEBUGFS_REG32(DC_DISP_V_PULSE1_POSITION_B),
1398	DEBUGFS_REG32(DC_DISP_V_PULSE1_POSITION_C),
1399	DEBUGFS_REG32(DC_DISP_V_PULSE2_CONTROL),
1400	DEBUGFS_REG32(DC_DISP_V_PULSE2_POSITION_A),
1401	DEBUGFS_REG32(DC_DISP_V_PULSE3_CONTROL),
1402	DEBUGFS_REG32(DC_DISP_V_PULSE3_POSITION_A),
1403	DEBUGFS_REG32(DC_DISP_M0_CONTROL),
1404	DEBUGFS_REG32(DC_DISP_M1_CONTROL),
1405	DEBUGFS_REG32(DC_DISP_DI_CONTROL),
1406	DEBUGFS_REG32(DC_DISP_PP_CONTROL),
1407	DEBUGFS_REG32(DC_DISP_PP_SELECT_A),
1408	DEBUGFS_REG32(DC_DISP_PP_SELECT_B),
1409	DEBUGFS_REG32(DC_DISP_PP_SELECT_C),
1410	DEBUGFS_REG32(DC_DISP_PP_SELECT_D),
1411	DEBUGFS_REG32(DC_DISP_DISP_CLOCK_CONTROL),
1412	DEBUGFS_REG32(DC_DISP_DISP_INTERFACE_CONTROL),
1413	DEBUGFS_REG32(DC_DISP_DISP_COLOR_CONTROL),
1414	DEBUGFS_REG32(DC_DISP_SHIFT_CLOCK_OPTIONS),
1415	DEBUGFS_REG32(DC_DISP_DATA_ENABLE_OPTIONS),
1416	DEBUGFS_REG32(DC_DISP_SERIAL_INTERFACE_OPTIONS),
1417	DEBUGFS_REG32(DC_DISP_LCD_SPI_OPTIONS),
1418	DEBUGFS_REG32(DC_DISP_BORDER_COLOR),
1419	DEBUGFS_REG32(DC_DISP_COLOR_KEY0_LOWER),
1420	DEBUGFS_REG32(DC_DISP_COLOR_KEY0_UPPER),
1421	DEBUGFS_REG32(DC_DISP_COLOR_KEY1_LOWER),
1422	DEBUGFS_REG32(DC_DISP_COLOR_KEY1_UPPER),
1423	DEBUGFS_REG32(DC_DISP_CURSOR_FOREGROUND),
1424	DEBUGFS_REG32(DC_DISP_CURSOR_BACKGROUND),
1425	DEBUGFS_REG32(DC_DISP_CURSOR_START_ADDR),
1426	DEBUGFS_REG32(DC_DISP_CURSOR_START_ADDR_NS),
1427	DEBUGFS_REG32(DC_DISP_CURSOR_POSITION),
1428	DEBUGFS_REG32(DC_DISP_CURSOR_POSITION_NS),
1429	DEBUGFS_REG32(DC_DISP_INIT_SEQ_CONTROL),
1430	DEBUGFS_REG32(DC_DISP_SPI_INIT_SEQ_DATA_A),
1431	DEBUGFS_REG32(DC_DISP_SPI_INIT_SEQ_DATA_B),
1432	DEBUGFS_REG32(DC_DISP_SPI_INIT_SEQ_DATA_C),
1433	DEBUGFS_REG32(DC_DISP_SPI_INIT_SEQ_DATA_D),
1434	DEBUGFS_REG32(DC_DISP_DC_MCCIF_FIFOCTRL),
1435	DEBUGFS_REG32(DC_DISP_MCCIF_DISPLAY0A_HYST),
1436	DEBUGFS_REG32(DC_DISP_MCCIF_DISPLAY0B_HYST),
1437	DEBUGFS_REG32(DC_DISP_MCCIF_DISPLAY1A_HYST),
1438	DEBUGFS_REG32(DC_DISP_MCCIF_DISPLAY1B_HYST),
1439	DEBUGFS_REG32(DC_DISP_DAC_CRT_CTRL),
1440	DEBUGFS_REG32(DC_DISP_DISP_MISC_CONTROL),
1441	DEBUGFS_REG32(DC_DISP_SD_CONTROL),
1442	DEBUGFS_REG32(DC_DISP_SD_CSC_COEFF),
1443	DEBUGFS_REG32(DC_DISP_SD_LUT(0)),
1444	DEBUGFS_REG32(DC_DISP_SD_LUT(1)),
1445	DEBUGFS_REG32(DC_DISP_SD_LUT(2)),
1446	DEBUGFS_REG32(DC_DISP_SD_LUT(3)),
1447	DEBUGFS_REG32(DC_DISP_SD_LUT(4)),
1448	DEBUGFS_REG32(DC_DISP_SD_LUT(5)),
1449	DEBUGFS_REG32(DC_DISP_SD_LUT(6)),
1450	DEBUGFS_REG32(DC_DISP_SD_LUT(7)),
1451	DEBUGFS_REG32(DC_DISP_SD_LUT(8)),
1452	DEBUGFS_REG32(DC_DISP_SD_FLICKER_CONTROL),
1453	DEBUGFS_REG32(DC_DISP_DC_PIXEL_COUNT),
1454	DEBUGFS_REG32(DC_DISP_SD_HISTOGRAM(0)),
1455	DEBUGFS_REG32(DC_DISP_SD_HISTOGRAM(1)),
1456	DEBUGFS_REG32(DC_DISP_SD_HISTOGRAM(2)),
1457	DEBUGFS_REG32(DC_DISP_SD_HISTOGRAM(3)),
1458	DEBUGFS_REG32(DC_DISP_SD_HISTOGRAM(4)),
1459	DEBUGFS_REG32(DC_DISP_SD_HISTOGRAM(5)),
1460	DEBUGFS_REG32(DC_DISP_SD_HISTOGRAM(6)),
1461	DEBUGFS_REG32(DC_DISP_SD_HISTOGRAM(7)),
1462	DEBUGFS_REG32(DC_DISP_SD_BL_TF(0)),
1463	DEBUGFS_REG32(DC_DISP_SD_BL_TF(1)),
1464	DEBUGFS_REG32(DC_DISP_SD_BL_TF(2)),
1465	DEBUGFS_REG32(DC_DISP_SD_BL_TF(3)),
1466	DEBUGFS_REG32(DC_DISP_SD_BL_CONTROL),
1467	DEBUGFS_REG32(DC_DISP_SD_HW_K_VALUES),
1468	DEBUGFS_REG32(DC_DISP_SD_MAN_K_VALUES),
1469	DEBUGFS_REG32(DC_DISP_CURSOR_START_ADDR_HI),
1470	DEBUGFS_REG32(DC_DISP_BLEND_CURSOR_CONTROL),
1471	DEBUGFS_REG32(DC_WIN_WIN_OPTIONS),
1472	DEBUGFS_REG32(DC_WIN_BYTE_SWAP),
1473	DEBUGFS_REG32(DC_WIN_BUFFER_CONTROL),
1474	DEBUGFS_REG32(DC_WIN_COLOR_DEPTH),
1475	DEBUGFS_REG32(DC_WIN_POSITION),
1476	DEBUGFS_REG32(DC_WIN_SIZE),
1477	DEBUGFS_REG32(DC_WIN_PRESCALED_SIZE),
1478	DEBUGFS_REG32(DC_WIN_H_INITIAL_DDA),
1479	DEBUGFS_REG32(DC_WIN_V_INITIAL_DDA),
1480	DEBUGFS_REG32(DC_WIN_DDA_INC),
1481	DEBUGFS_REG32(DC_WIN_LINE_STRIDE),
1482	DEBUGFS_REG32(DC_WIN_BUF_STRIDE),
1483	DEBUGFS_REG32(DC_WIN_UV_BUF_STRIDE),
1484	DEBUGFS_REG32(DC_WIN_BUFFER_ADDR_MODE),
1485	DEBUGFS_REG32(DC_WIN_DV_CONTROL),
1486	DEBUGFS_REG32(DC_WIN_BLEND_NOKEY),
1487	DEBUGFS_REG32(DC_WIN_BLEND_1WIN),
1488	DEBUGFS_REG32(DC_WIN_BLEND_2WIN_X),
1489	DEBUGFS_REG32(DC_WIN_BLEND_2WIN_Y),
1490	DEBUGFS_REG32(DC_WIN_BLEND_3WIN_XY),
1491	DEBUGFS_REG32(DC_WIN_HP_FETCH_CONTROL),
1492	DEBUGFS_REG32(DC_WINBUF_START_ADDR),
1493	DEBUGFS_REG32(DC_WINBUF_START_ADDR_NS),
1494	DEBUGFS_REG32(DC_WINBUF_START_ADDR_U),
1495	DEBUGFS_REG32(DC_WINBUF_START_ADDR_U_NS),
1496	DEBUGFS_REG32(DC_WINBUF_START_ADDR_V),
1497	DEBUGFS_REG32(DC_WINBUF_START_ADDR_V_NS),
1498	DEBUGFS_REG32(DC_WINBUF_ADDR_H_OFFSET),
1499	DEBUGFS_REG32(DC_WINBUF_ADDR_H_OFFSET_NS),
1500	DEBUGFS_REG32(DC_WINBUF_ADDR_V_OFFSET),
1501	DEBUGFS_REG32(DC_WINBUF_ADDR_V_OFFSET_NS),
1502	DEBUGFS_REG32(DC_WINBUF_UFLOW_STATUS),
1503	DEBUGFS_REG32(DC_WINBUF_AD_UFLOW_STATUS),
1504	DEBUGFS_REG32(DC_WINBUF_BD_UFLOW_STATUS),
1505	DEBUGFS_REG32(DC_WINBUF_CD_UFLOW_STATUS),
1506};
1507
1508static int tegra_dc_show_regs(struct seq_file *s, void *data)
1509{
1510	struct drm_info_node *node = s->private;
1511	struct tegra_dc *dc = node->info_ent->data;
1512	unsigned int i;
1513	int err = 0;
1514
1515	drm_modeset_lock(&dc->base.mutex, NULL);
1516
1517	if (!dc->base.state->active) {
1518		err = -EBUSY;
1519		goto unlock;
1520	}
1521
1522	for (i = 0; i < ARRAY_SIZE(tegra_dc_regs); i++) {
1523		unsigned int offset = tegra_dc_regs[i].offset;
1524
1525		seq_printf(s, "%-40s %#05x %08x\n", tegra_dc_regs[i].name,
1526			   offset, tegra_dc_readl(dc, offset));
1527	}
1528
1529unlock:
1530	drm_modeset_unlock(&dc->base.mutex);
1531	return err;
1532}
1533
1534static int tegra_dc_show_crc(struct seq_file *s, void *data)
1535{
1536	struct drm_info_node *node = s->private;
1537	struct tegra_dc *dc = node->info_ent->data;
1538	int err = 0;
1539	u32 value;
1540
1541	drm_modeset_lock(&dc->base.mutex, NULL);
1542
1543	if (!dc->base.state->active) {
1544		err = -EBUSY;
1545		goto unlock;
1546	}
1547
1548	value = DC_COM_CRC_CONTROL_ACTIVE_DATA | DC_COM_CRC_CONTROL_ENABLE;
1549	tegra_dc_writel(dc, value, DC_COM_CRC_CONTROL);
1550	tegra_dc_commit(dc);
1551
1552	drm_crtc_wait_one_vblank(&dc->base);
1553	drm_crtc_wait_one_vblank(&dc->base);
1554
1555	value = tegra_dc_readl(dc, DC_COM_CRC_CHECKSUM);
1556	seq_printf(s, "%08x\n", value);
1557
1558	tegra_dc_writel(dc, 0, DC_COM_CRC_CONTROL);
1559
1560unlock:
1561	drm_modeset_unlock(&dc->base.mutex);
1562	return err;
1563}
1564
1565static int tegra_dc_show_stats(struct seq_file *s, void *data)
1566{
1567	struct drm_info_node *node = s->private;
1568	struct tegra_dc *dc = node->info_ent->data;
1569
1570	seq_printf(s, "frames: %lu\n", dc->stats.frames);
1571	seq_printf(s, "vblank: %lu\n", dc->stats.vblank);
1572	seq_printf(s, "underflow: %lu\n", dc->stats.underflow);
1573	seq_printf(s, "overflow: %lu\n", dc->stats.overflow);
1574
1575	return 0;
1576}
1577
1578static struct drm_info_list debugfs_files[] = {
1579	{ "regs", tegra_dc_show_regs, 0, NULL },
1580	{ "crc", tegra_dc_show_crc, 0, NULL },
1581	{ "stats", tegra_dc_show_stats, 0, NULL },
1582};
1583
1584static int tegra_dc_late_register(struct drm_crtc *crtc)
1585{
1586	unsigned int i, count = ARRAY_SIZE(debugfs_files);
1587	struct drm_minor *minor = crtc->dev->primary;
1588	struct dentry *root;
1589	struct tegra_dc *dc = to_tegra_dc(crtc);
1590
1591#ifdef CONFIG_DEBUG_FS
1592	root = crtc->debugfs_entry;
1593#else
1594	root = NULL;
1595#endif
1596
1597	dc->debugfs_files = kmemdup(debugfs_files, sizeof(debugfs_files),
1598				    GFP_KERNEL);
1599	if (!dc->debugfs_files)
1600		return -ENOMEM;
1601
1602	for (i = 0; i < count; i++)
1603		dc->debugfs_files[i].data = dc;
1604
1605	drm_debugfs_create_files(dc->debugfs_files, count, root, minor);
1606
1607	return 0;
1608}
1609
1610static void tegra_dc_early_unregister(struct drm_crtc *crtc)
1611{
1612	unsigned int count = ARRAY_SIZE(debugfs_files);
1613	struct drm_minor *minor = crtc->dev->primary;
1614	struct tegra_dc *dc = to_tegra_dc(crtc);
1615
1616	drm_debugfs_remove_files(dc->debugfs_files, count, minor);
1617	kfree(dc->debugfs_files);
1618	dc->debugfs_files = NULL;
1619}
1620
1621static u32 tegra_dc_get_vblank_counter(struct drm_crtc *crtc)
1622{
1623	struct tegra_dc *dc = to_tegra_dc(crtc);
1624
1625	/* XXX vblank syncpoints don't work with nvdisplay yet */
1626	if (dc->syncpt && !dc->soc->has_nvdisplay)
1627		return host1x_syncpt_read(dc->syncpt);
1628
1629	/* fallback to software emulated VBLANK counter */
1630	return (u32)drm_crtc_vblank_count(&dc->base);
1631}
1632
1633static int tegra_dc_enable_vblank(struct drm_crtc *crtc)
1634{
1635	struct tegra_dc *dc = to_tegra_dc(crtc);
1636	u32 value;
1637
1638	value = tegra_dc_readl(dc, DC_CMD_INT_MASK);
1639	value |= VBLANK_INT;
1640	tegra_dc_writel(dc, value, DC_CMD_INT_MASK);
1641
1642	return 0;
1643}
1644
1645static void tegra_dc_disable_vblank(struct drm_crtc *crtc)
1646{
1647	struct tegra_dc *dc = to_tegra_dc(crtc);
1648	u32 value;
1649
1650	value = tegra_dc_readl(dc, DC_CMD_INT_MASK);
1651	value &= ~VBLANK_INT;
1652	tegra_dc_writel(dc, value, DC_CMD_INT_MASK);
1653}
1654
1655static const struct drm_crtc_funcs tegra_crtc_funcs = {
1656	.page_flip = drm_atomic_helper_page_flip,
1657	.set_config = drm_atomic_helper_set_config,
1658	.destroy = tegra_dc_destroy,
1659	.reset = tegra_crtc_reset,
1660	.atomic_duplicate_state = tegra_crtc_atomic_duplicate_state,
1661	.atomic_destroy_state = tegra_crtc_atomic_destroy_state,
1662	.late_register = tegra_dc_late_register,
1663	.early_unregister = tegra_dc_early_unregister,
1664	.get_vblank_counter = tegra_dc_get_vblank_counter,
1665	.enable_vblank = tegra_dc_enable_vblank,
1666	.disable_vblank = tegra_dc_disable_vblank,
1667};
1668
1669static int tegra_dc_set_timings(struct tegra_dc *dc,
1670				struct drm_display_mode *mode)
1671{
1672	unsigned int h_ref_to_sync = 1;
1673	unsigned int v_ref_to_sync = 1;
1674	unsigned long value;
1675
1676	if (!dc->soc->has_nvdisplay) {
1677		tegra_dc_writel(dc, 0x0, DC_DISP_DISP_TIMING_OPTIONS);
1678
1679		value = (v_ref_to_sync << 16) | h_ref_to_sync;
1680		tegra_dc_writel(dc, value, DC_DISP_REF_TO_SYNC);
1681	}
1682
1683	value = ((mode->vsync_end - mode->vsync_start) << 16) |
1684		((mode->hsync_end - mode->hsync_start) <<  0);
1685	tegra_dc_writel(dc, value, DC_DISP_SYNC_WIDTH);
1686
1687	value = ((mode->vtotal - mode->vsync_end) << 16) |
1688		((mode->htotal - mode->hsync_end) <<  0);
1689	tegra_dc_writel(dc, value, DC_DISP_BACK_PORCH);
1690
1691	value = ((mode->vsync_start - mode->vdisplay) << 16) |
1692		((mode->hsync_start - mode->hdisplay) <<  0);
1693	tegra_dc_writel(dc, value, DC_DISP_FRONT_PORCH);
1694
1695	value = (mode->vdisplay << 16) | mode->hdisplay;
1696	tegra_dc_writel(dc, value, DC_DISP_ACTIVE);
1697
1698	return 0;
1699}
1700
1701/**
1702 * tegra_dc_state_setup_clock - check clock settings and store them in atomic
1703 *     state
1704 * @dc: display controller
1705 * @crtc_state: CRTC atomic state
1706 * @clk: parent clock for display controller
1707 * @pclk: pixel clock
1708 * @div: shift clock divider
1709 *
1710 * Returns:
1711 * 0 on success or a negative error-code on failure.
1712 */
1713int tegra_dc_state_setup_clock(struct tegra_dc *dc,
1714			       struct drm_crtc_state *crtc_state,
1715			       struct clk *clk, unsigned long pclk,
1716			       unsigned int div)
1717{
1718	struct tegra_dc_state *state = to_dc_state(crtc_state);
1719
1720	if (!clk_has_parent(dc->clk, clk))
1721		return -EINVAL;
1722
1723	state->clk = clk;
1724	state->pclk = pclk;
1725	state->div = div;
1726
1727	return 0;
1728}
1729
1730static void tegra_dc_commit_state(struct tegra_dc *dc,
1731				  struct tegra_dc_state *state)
1732{
1733	u32 value;
1734	int err;
1735
1736	err = clk_set_parent(dc->clk, state->clk);
1737	if (err < 0)
1738		dev_err(dc->dev, "failed to set parent clock: %d\n", err);
1739
1740	/*
1741	 * Outputs may not want to change the parent clock rate. This is only
1742	 * relevant to Tegra20 where only a single display PLL is available.
1743	 * Since that PLL would typically be used for HDMI, an internal LVDS
1744	 * panel would need to be driven by some other clock such as PLL_P
1745	 * which is shared with other peripherals. Changing the clock rate
1746	 * should therefore be avoided.
1747	 */
1748	if (state->pclk > 0) {
1749		err = clk_set_rate(state->clk, state->pclk);
1750		if (err < 0)
1751			dev_err(dc->dev,
1752				"failed to set clock rate to %lu Hz\n",
1753				state->pclk);
1754
1755		err = clk_set_rate(dc->clk, state->pclk);
1756		if (err < 0)
1757			dev_err(dc->dev, "failed to set clock %pC to %lu Hz: %d\n",
1758				dc->clk, state->pclk, err);
1759	}
1760
1761	DRM_DEBUG_KMS("rate: %lu, div: %u\n", clk_get_rate(dc->clk),
1762		      state->div);
1763	DRM_DEBUG_KMS("pclk: %lu\n", state->pclk);
1764
1765	if (!dc->soc->has_nvdisplay) {
1766		value = SHIFT_CLK_DIVIDER(state->div) | PIXEL_CLK_DIVIDER_PCD1;
1767		tegra_dc_writel(dc, value, DC_DISP_DISP_CLOCK_CONTROL);
1768	}
1769}
1770
1771static void tegra_dc_stop(struct tegra_dc *dc)
1772{
1773	u32 value;
1774
1775	/* stop the display controller */
1776	value = tegra_dc_readl(dc, DC_CMD_DISPLAY_COMMAND);
1777	value &= ~DISP_CTRL_MODE_MASK;
1778	tegra_dc_writel(dc, value, DC_CMD_DISPLAY_COMMAND);
1779
1780	tegra_dc_commit(dc);
1781}
1782
1783static bool tegra_dc_idle(struct tegra_dc *dc)
1784{
1785	u32 value;
1786
1787	value = tegra_dc_readl_active(dc, DC_CMD_DISPLAY_COMMAND);
1788
1789	return (value & DISP_CTRL_MODE_MASK) == 0;
1790}
1791
1792static int tegra_dc_wait_idle(struct tegra_dc *dc, unsigned long timeout)
1793{
1794	timeout = jiffies + msecs_to_jiffies(timeout);
1795
1796	while (time_before(jiffies, timeout)) {
1797		if (tegra_dc_idle(dc))
1798			return 0;
1799
1800		usleep_range(1000, 2000);
1801	}
1802
1803	dev_dbg(dc->dev, "timeout waiting for DC to become idle\n");
1804	return -ETIMEDOUT;
1805}
1806
1807static void tegra_crtc_atomic_disable(struct drm_crtc *crtc,
1808				      struct drm_atomic_state *state)
1809{
1810	struct tegra_dc *dc = to_tegra_dc(crtc);
1811	u32 value;
1812	int err;
1813
1814	if (!tegra_dc_idle(dc)) {
1815		tegra_dc_stop(dc);
1816
1817		/*
1818		 * Ignore the return value, there isn't anything useful to do
1819		 * in case this fails.
1820		 */
1821		tegra_dc_wait_idle(dc, 100);
1822	}
1823
1824	/*
1825	 * This should really be part of the RGB encoder driver, but clearing
1826	 * these bits has the side-effect of stopping the display controller.
1827	 * When that happens no VBLANK interrupts will be raised. At the same
1828	 * time the encoder is disabled before the display controller, so the
1829	 * above code is always going to timeout waiting for the controller
1830	 * to go idle.
1831	 *
1832	 * Given the close coupling between the RGB encoder and the display
1833	 * controller doing it here is still kind of okay. None of the other
1834	 * encoder drivers require these bits to be cleared.
1835	 *
1836	 * XXX: Perhaps given that the display controller is switched off at
1837	 * this point anyway maybe clearing these bits isn't even useful for
1838	 * the RGB encoder?
1839	 */
1840	if (dc->rgb) {
1841		value = tegra_dc_readl(dc, DC_CMD_DISPLAY_POWER_CONTROL);
1842		value &= ~(PW0_ENABLE | PW1_ENABLE | PW2_ENABLE | PW3_ENABLE |
1843			   PW4_ENABLE | PM0_ENABLE | PM1_ENABLE);
1844		tegra_dc_writel(dc, value, DC_CMD_DISPLAY_POWER_CONTROL);
1845	}
1846
1847	tegra_dc_stats_reset(&dc->stats);
1848	drm_crtc_vblank_off(crtc);
1849
1850	spin_lock_irq(&crtc->dev->event_lock);
1851
1852	if (crtc->state->event) {
1853		drm_crtc_send_vblank_event(crtc, crtc->state->event);
1854		crtc->state->event = NULL;
1855	}
1856
1857	spin_unlock_irq(&crtc->dev->event_lock);
1858
1859	err = host1x_client_suspend(&dc->client);
1860	if (err < 0)
1861		dev_err(dc->dev, "failed to suspend: %d\n", err);
1862}
1863
1864static void tegra_crtc_atomic_enable(struct drm_crtc *crtc,
1865				     struct drm_atomic_state *state)
1866{
1867	struct drm_display_mode *mode = &crtc->state->adjusted_mode;
1868	struct tegra_dc_state *crtc_state = to_dc_state(crtc->state);
1869	struct tegra_dc *dc = to_tegra_dc(crtc);
1870	u32 value;
1871	int err;
1872
1873	err = host1x_client_resume(&dc->client);
1874	if (err < 0) {
1875		dev_err(dc->dev, "failed to resume: %d\n", err);
1876		return;
1877	}
1878
1879	/* initialize display controller */
1880	if (dc->syncpt) {
1881		u32 syncpt = host1x_syncpt_id(dc->syncpt), enable;
1882
1883		if (dc->soc->has_nvdisplay)
1884			enable = 1 << 31;
1885		else
1886			enable = 1 << 8;
1887
1888		value = SYNCPT_CNTRL_NO_STALL;
1889		tegra_dc_writel(dc, value, DC_CMD_GENERAL_INCR_SYNCPT_CNTRL);
1890
1891		value = enable | syncpt;
1892		tegra_dc_writel(dc, value, DC_CMD_CONT_SYNCPT_VSYNC);
1893	}
1894
1895	if (dc->soc->has_nvdisplay) {
1896		value = DSC_TO_UF_INT | DSC_BBUF_UF_INT | DSC_RBUF_UF_INT |
1897			DSC_OBUF_UF_INT;
1898		tegra_dc_writel(dc, value, DC_CMD_INT_TYPE);
1899
1900		value = DSC_TO_UF_INT | DSC_BBUF_UF_INT | DSC_RBUF_UF_INT |
1901			DSC_OBUF_UF_INT | SD3_BUCKET_WALK_DONE_INT |
1902			HEAD_UF_INT | MSF_INT | REG_TMOUT_INT |
1903			REGION_CRC_INT | V_PULSE2_INT | V_PULSE3_INT |
1904			VBLANK_INT | FRAME_END_INT;
1905		tegra_dc_writel(dc, value, DC_CMD_INT_POLARITY);
1906
1907		value = SD3_BUCKET_WALK_DONE_INT | HEAD_UF_INT | VBLANK_INT |
1908			FRAME_END_INT;
1909		tegra_dc_writel(dc, value, DC_CMD_INT_ENABLE);
1910
1911		value = HEAD_UF_INT | REG_TMOUT_INT | FRAME_END_INT;
1912		tegra_dc_writel(dc, value, DC_CMD_INT_MASK);
1913
1914		tegra_dc_writel(dc, READ_MUX, DC_CMD_STATE_ACCESS);
1915	} else {
1916		value = WIN_A_UF_INT | WIN_B_UF_INT | WIN_C_UF_INT |
1917			WIN_A_OF_INT | WIN_B_OF_INT | WIN_C_OF_INT;
1918		tegra_dc_writel(dc, value, DC_CMD_INT_TYPE);
1919
1920		value = WIN_A_UF_INT | WIN_B_UF_INT | WIN_C_UF_INT |
1921			WIN_A_OF_INT | WIN_B_OF_INT | WIN_C_OF_INT;
1922		tegra_dc_writel(dc, value, DC_CMD_INT_POLARITY);
1923
1924		/* initialize timer */
1925		value = CURSOR_THRESHOLD(0) | WINDOW_A_THRESHOLD(0x20) |
1926			WINDOW_B_THRESHOLD(0x20) | WINDOW_C_THRESHOLD(0x20);
1927		tegra_dc_writel(dc, value, DC_DISP_DISP_MEM_HIGH_PRIORITY);
1928
1929		value = CURSOR_THRESHOLD(0) | WINDOW_A_THRESHOLD(1) |
1930			WINDOW_B_THRESHOLD(1) | WINDOW_C_THRESHOLD(1);
1931		tegra_dc_writel(dc, value, DC_DISP_DISP_MEM_HIGH_PRIORITY_TIMER);
1932
1933		value = VBLANK_INT | WIN_A_UF_INT | WIN_B_UF_INT | WIN_C_UF_INT |
1934			WIN_A_OF_INT | WIN_B_OF_INT | WIN_C_OF_INT;
1935		tegra_dc_writel(dc, value, DC_CMD_INT_ENABLE);
1936
1937		value = WIN_A_UF_INT | WIN_B_UF_INT | WIN_C_UF_INT |
1938			WIN_A_OF_INT | WIN_B_OF_INT | WIN_C_OF_INT;
1939		tegra_dc_writel(dc, value, DC_CMD_INT_MASK);
1940	}
1941
1942	if (dc->soc->supports_background_color)
1943		tegra_dc_writel(dc, 0, DC_DISP_BLEND_BACKGROUND_COLOR);
1944	else
1945		tegra_dc_writel(dc, 0, DC_DISP_BORDER_COLOR);
1946
1947	/* apply PLL and pixel clock changes */
1948	tegra_dc_commit_state(dc, crtc_state);
1949
1950	/* program display mode */
1951	tegra_dc_set_timings(dc, mode);
1952
1953	/* interlacing isn't supported yet, so disable it */
1954	if (dc->soc->supports_interlacing) {
1955		value = tegra_dc_readl(dc, DC_DISP_INTERLACE_CONTROL);
1956		value &= ~INTERLACE_ENABLE;
1957		tegra_dc_writel(dc, value, DC_DISP_INTERLACE_CONTROL);
1958	}
1959
1960	value = tegra_dc_readl(dc, DC_CMD_DISPLAY_COMMAND);
1961	value &= ~DISP_CTRL_MODE_MASK;
1962	value |= DISP_CTRL_MODE_C_DISPLAY;
1963	tegra_dc_writel(dc, value, DC_CMD_DISPLAY_COMMAND);
1964
1965	if (!dc->soc->has_nvdisplay) {
1966		value = tegra_dc_readl(dc, DC_CMD_DISPLAY_POWER_CONTROL);
1967		value |= PW0_ENABLE | PW1_ENABLE | PW2_ENABLE | PW3_ENABLE |
1968			 PW4_ENABLE | PM0_ENABLE | PM1_ENABLE;
1969		tegra_dc_writel(dc, value, DC_CMD_DISPLAY_POWER_CONTROL);
1970	}
1971
1972	/* enable underflow reporting and display red for missing pixels */
1973	if (dc->soc->has_nvdisplay) {
1974		value = UNDERFLOW_MODE_RED | UNDERFLOW_REPORT_ENABLE;
1975		tegra_dc_writel(dc, value, DC_COM_RG_UNDERFLOW);
1976	}
1977
1978	tegra_dc_commit(dc);
1979
1980	drm_crtc_vblank_on(crtc);
1981}
1982
1983static void tegra_crtc_atomic_begin(struct drm_crtc *crtc,
1984				    struct drm_atomic_state *state)
1985{
1986	unsigned long flags;
1987
1988	if (crtc->state->event) {
1989		spin_lock_irqsave(&crtc->dev->event_lock, flags);
1990
1991		if (drm_crtc_vblank_get(crtc) != 0)
1992			drm_crtc_send_vblank_event(crtc, crtc->state->event);
1993		else
1994			drm_crtc_arm_vblank_event(crtc, crtc->state->event);
1995
1996		spin_unlock_irqrestore(&crtc->dev->event_lock, flags);
1997
1998		crtc->state->event = NULL;
1999	}
2000}
2001
2002static void tegra_crtc_atomic_flush(struct drm_crtc *crtc,
2003				    struct drm_atomic_state *state)
2004{
2005	struct drm_crtc_state *crtc_state = drm_atomic_get_new_crtc_state(state,
2006									  crtc);
2007	struct tegra_dc_state *dc_state = to_dc_state(crtc_state);
2008	struct tegra_dc *dc = to_tegra_dc(crtc);
2009	u32 value;
2010
2011	value = dc_state->planes << 8 | GENERAL_UPDATE;
2012	tegra_dc_writel(dc, value, DC_CMD_STATE_CONTROL);
2013	value = tegra_dc_readl(dc, DC_CMD_STATE_CONTROL);
2014
2015	value = dc_state->planes | GENERAL_ACT_REQ;
2016	tegra_dc_writel(dc, value, DC_CMD_STATE_CONTROL);
2017	value = tegra_dc_readl(dc, DC_CMD_STATE_CONTROL);
2018}
2019
2020static const struct drm_crtc_helper_funcs tegra_crtc_helper_funcs = {
2021	.atomic_begin = tegra_crtc_atomic_begin,
2022	.atomic_flush = tegra_crtc_atomic_flush,
2023	.atomic_enable = tegra_crtc_atomic_enable,
2024	.atomic_disable = tegra_crtc_atomic_disable,
2025};
2026
2027static irqreturn_t tegra_dc_irq(int irq, void *data)
2028{
2029	struct tegra_dc *dc = data;
2030	unsigned long status;
2031
2032	status = tegra_dc_readl(dc, DC_CMD_INT_STATUS);
2033	tegra_dc_writel(dc, status, DC_CMD_INT_STATUS);
2034
2035	if (status & FRAME_END_INT) {
2036		/*
2037		dev_dbg(dc->dev, "%s(): frame end\n", __func__);
2038		*/
2039		dc->stats.frames++;
2040	}
2041
2042	if (status & VBLANK_INT) {
2043		/*
2044		dev_dbg(dc->dev, "%s(): vertical blank\n", __func__);
2045		*/
2046		drm_crtc_handle_vblank(&dc->base);
2047		dc->stats.vblank++;
2048	}
2049
2050	if (status & (WIN_A_UF_INT | WIN_B_UF_INT | WIN_C_UF_INT)) {
2051		/*
2052		dev_dbg(dc->dev, "%s(): underflow\n", __func__);
2053		*/
2054		dc->stats.underflow++;
2055	}
2056
2057	if (status & (WIN_A_OF_INT | WIN_B_OF_INT | WIN_C_OF_INT)) {
2058		/*
2059		dev_dbg(dc->dev, "%s(): overflow\n", __func__);
2060		*/
2061		dc->stats.overflow++;
2062	}
2063
2064	if (status & HEAD_UF_INT) {
2065		dev_dbg_ratelimited(dc->dev, "%s(): head underflow\n", __func__);
2066		dc->stats.underflow++;
2067	}
2068
2069	return IRQ_HANDLED;
2070}
2071
2072static bool tegra_dc_has_window_groups(struct tegra_dc *dc)
2073{
2074	unsigned int i;
2075
2076	if (!dc->soc->wgrps)
2077		return true;
2078
2079	for (i = 0; i < dc->soc->num_wgrps; i++) {
2080		const struct tegra_windowgroup_soc *wgrp = &dc->soc->wgrps[i];
2081
2082		if (wgrp->dc == dc->pipe && wgrp->num_windows > 0)
2083			return true;
2084	}
2085
2086	return false;
2087}
2088
2089static int tegra_dc_early_init(struct host1x_client *client)
2090{
2091	struct drm_device *drm = dev_get_drvdata(client->host);
2092	struct tegra_drm *tegra = drm->dev_private;
2093
2094	tegra->num_crtcs++;
2095
2096	return 0;
2097}
2098
2099static int tegra_dc_init(struct host1x_client *client)
2100{
2101	struct drm_device *drm = dev_get_drvdata(client->host);
2102	unsigned long flags = HOST1X_SYNCPT_CLIENT_MANAGED;
2103	struct tegra_dc *dc = host1x_client_to_dc(client);
2104	struct tegra_drm *tegra = drm->dev_private;
2105	struct drm_plane *primary = NULL;
2106	struct drm_plane *cursor = NULL;
2107	int err;
2108
2109	/*
2110	 * DC has been reset by now, so VBLANK syncpoint can be released
2111	 * for general use.
2112	 */
2113	host1x_syncpt_release_vblank_reservation(client, 26 + dc->pipe);
2114
2115	/*
2116	 * XXX do not register DCs with no window groups because we cannot
2117	 * assign a primary plane to them, which in turn will cause KMS to
2118	 * crash.
2119	 */
2120	if (!tegra_dc_has_window_groups(dc))
2121		return 0;
2122
2123	/*
2124	 * Set the display hub as the host1x client parent for the display
2125	 * controller. This is needed for the runtime reference counting that
2126	 * ensures the display hub is always powered when any of the display
2127	 * controllers are.
2128	 */
2129	if (dc->soc->has_nvdisplay)
2130		client->parent = &tegra->hub->client;
2131
2132	dc->syncpt = host1x_syncpt_request(client, flags);
2133	if (!dc->syncpt)
2134		dev_warn(dc->dev, "failed to allocate syncpoint\n");
2135
2136	err = host1x_client_iommu_attach(client);
2137	if (err < 0 && err != -ENODEV) {
2138		dev_err(client->dev, "failed to attach to domain: %d\n", err);
2139		return err;
2140	}
2141
2142	if (dc->soc->wgrps)
2143		primary = tegra_dc_add_shared_planes(drm, dc);
2144	else
2145		primary = tegra_dc_add_planes(drm, dc);
2146
2147	if (IS_ERR(primary)) {
2148		err = PTR_ERR(primary);
2149		goto cleanup;
2150	}
2151
2152	if (dc->soc->supports_cursor) {
2153		cursor = tegra_dc_cursor_plane_create(drm, dc);
2154		if (IS_ERR(cursor)) {
2155			err = PTR_ERR(cursor);
2156			goto cleanup;
2157		}
2158	} else {
2159		/* dedicate one overlay to mouse cursor */
2160		cursor = tegra_dc_overlay_plane_create(drm, dc, 2, true);
2161		if (IS_ERR(cursor)) {
2162			err = PTR_ERR(cursor);
2163			goto cleanup;
2164		}
2165	}
2166
2167	err = drm_crtc_init_with_planes(drm, &dc->base, primary, cursor,
2168					&tegra_crtc_funcs, NULL);
2169	if (err < 0)
2170		goto cleanup;
2171
2172	drm_crtc_helper_add(&dc->base, &tegra_crtc_helper_funcs);
2173
2174	/*
2175	 * Keep track of the minimum pitch alignment across all display
2176	 * controllers.
2177	 */
2178	if (dc->soc->pitch_align > tegra->pitch_align)
2179		tegra->pitch_align = dc->soc->pitch_align;
2180
2181	/* track maximum resolution */
2182	if (dc->soc->has_nvdisplay)
2183		drm->mode_config.max_width = drm->mode_config.max_height = 16384;
2184	else
2185		drm->mode_config.max_width = drm->mode_config.max_height = 4096;
2186
2187	err = tegra_dc_rgb_init(drm, dc);
2188	if (err < 0 && err != -ENODEV) {
2189		dev_err(dc->dev, "failed to initialize RGB output: %d\n", err);
2190		goto cleanup;
2191	}
2192
2193	err = devm_request_irq(dc->dev, dc->irq, tegra_dc_irq, 0,
2194			       dev_name(dc->dev), dc);
2195	if (err < 0) {
2196		dev_err(dc->dev, "failed to request IRQ#%u: %d\n", dc->irq,
2197			err);
2198		goto cleanup;
2199	}
2200
2201	/*
2202	 * Inherit the DMA parameters (such as maximum segment size) from the
2203	 * parent host1x device.
2204	 */
2205	client->dev->dma_parms = client->host->dma_parms;
2206
2207	return 0;
2208
2209cleanup:
2210	if (!IS_ERR_OR_NULL(cursor))
2211		drm_plane_cleanup(cursor);
2212
2213	if (!IS_ERR(primary))
2214		drm_plane_cleanup(primary);
2215
2216	host1x_client_iommu_detach(client);
2217	host1x_syncpt_put(dc->syncpt);
2218
2219	return err;
2220}
2221
2222static int tegra_dc_exit(struct host1x_client *client)
2223{
2224	struct tegra_dc *dc = host1x_client_to_dc(client);
2225	int err;
2226
2227	if (!tegra_dc_has_window_groups(dc))
2228		return 0;
2229
2230	/* avoid a dangling pointer just in case this disappears */
2231	client->dev->dma_parms = NULL;
2232
2233	devm_free_irq(dc->dev, dc->irq, dc);
2234
2235	err = tegra_dc_rgb_exit(dc);
2236	if (err) {
2237		dev_err(dc->dev, "failed to shutdown RGB output: %d\n", err);
2238		return err;
2239	}
2240
2241	host1x_client_iommu_detach(client);
2242	host1x_syncpt_put(dc->syncpt);
2243
2244	return 0;
2245}
2246
2247static int tegra_dc_late_exit(struct host1x_client *client)
2248{
2249	struct drm_device *drm = dev_get_drvdata(client->host);
2250	struct tegra_drm *tegra = drm->dev_private;
2251
2252	tegra->num_crtcs--;
2253
2254	return 0;
2255}
2256
2257static int tegra_dc_runtime_suspend(struct host1x_client *client)
2258{
2259	struct tegra_dc *dc = host1x_client_to_dc(client);
2260	struct device *dev = client->dev;
2261	int err;
2262
2263	err = reset_control_assert(dc->rst);
2264	if (err < 0) {
2265		dev_err(dev, "failed to assert reset: %d\n", err);
2266		return err;
2267	}
2268
2269	if (dc->soc->has_powergate)
2270		tegra_powergate_power_off(dc->powergate);
2271
2272	clk_disable_unprepare(dc->clk);
2273	pm_runtime_put_sync(dev);
2274
2275	return 0;
2276}
2277
2278static int tegra_dc_runtime_resume(struct host1x_client *client)
2279{
2280	struct tegra_dc *dc = host1x_client_to_dc(client);
2281	struct device *dev = client->dev;
2282	int err;
2283
2284	err = pm_runtime_resume_and_get(dev);
2285	if (err < 0) {
2286		dev_err(dev, "failed to get runtime PM: %d\n", err);
2287		return err;
2288	}
2289
2290	if (dc->soc->has_powergate) {
2291		err = tegra_powergate_sequence_power_up(dc->powergate, dc->clk,
2292							dc->rst);
2293		if (err < 0) {
2294			dev_err(dev, "failed to power partition: %d\n", err);
2295			goto put_rpm;
2296		}
2297	} else {
2298		err = clk_prepare_enable(dc->clk);
2299		if (err < 0) {
2300			dev_err(dev, "failed to enable clock: %d\n", err);
2301			goto put_rpm;
2302		}
2303
2304		err = reset_control_deassert(dc->rst);
2305		if (err < 0) {
2306			dev_err(dev, "failed to deassert reset: %d\n", err);
2307			goto disable_clk;
2308		}
2309	}
2310
2311	return 0;
2312
2313disable_clk:
2314	clk_disable_unprepare(dc->clk);
2315put_rpm:
2316	pm_runtime_put_sync(dev);
2317	return err;
2318}
2319
2320static const struct host1x_client_ops dc_client_ops = {
2321	.early_init = tegra_dc_early_init,
2322	.init = tegra_dc_init,
2323	.exit = tegra_dc_exit,
2324	.late_exit = tegra_dc_late_exit,
2325	.suspend = tegra_dc_runtime_suspend,
2326	.resume = tegra_dc_runtime_resume,
2327};
2328
2329static const struct tegra_dc_soc_info tegra20_dc_soc_info = {
2330	.supports_background_color = false,
2331	.supports_interlacing = false,
2332	.supports_cursor = false,
2333	.supports_block_linear = false,
2334	.supports_sector_layout = false,
2335	.has_legacy_blending = true,
2336	.pitch_align = 8,
2337	.has_powergate = false,
2338	.coupled_pm = true,
2339	.has_nvdisplay = false,
2340	.num_primary_formats = ARRAY_SIZE(tegra20_primary_formats),
2341	.primary_formats = tegra20_primary_formats,
2342	.num_overlay_formats = ARRAY_SIZE(tegra20_overlay_formats),
2343	.overlay_formats = tegra20_overlay_formats,
2344	.modifiers = tegra20_modifiers,
2345	.has_win_a_without_filters = true,
2346	.has_win_c_without_vert_filter = true,
2347};
2348
2349static const struct tegra_dc_soc_info tegra30_dc_soc_info = {
2350	.supports_background_color = false,
2351	.supports_interlacing = false,
2352	.supports_cursor = false,
2353	.supports_block_linear = false,
2354	.supports_sector_layout = false,
2355	.has_legacy_blending = true,
2356	.pitch_align = 8,
2357	.has_powergate = false,
2358	.coupled_pm = false,
2359	.has_nvdisplay = false,
2360	.num_primary_formats = ARRAY_SIZE(tegra20_primary_formats),
2361	.primary_formats = tegra20_primary_formats,
2362	.num_overlay_formats = ARRAY_SIZE(tegra20_overlay_formats),
2363	.overlay_formats = tegra20_overlay_formats,
2364	.modifiers = tegra20_modifiers,
2365	.has_win_a_without_filters = false,
2366	.has_win_c_without_vert_filter = false,
2367};
2368
2369static const struct tegra_dc_soc_info tegra114_dc_soc_info = {
2370	.supports_background_color = false,
2371	.supports_interlacing = false,
2372	.supports_cursor = false,
2373	.supports_block_linear = false,
2374	.supports_sector_layout = false,
2375	.has_legacy_blending = true,
2376	.pitch_align = 64,
2377	.has_powergate = true,
2378	.coupled_pm = false,
2379	.has_nvdisplay = false,
2380	.num_primary_formats = ARRAY_SIZE(tegra114_primary_formats),
2381	.primary_formats = tegra114_primary_formats,
2382	.num_overlay_formats = ARRAY_SIZE(tegra114_overlay_formats),
2383	.overlay_formats = tegra114_overlay_formats,
2384	.modifiers = tegra20_modifiers,
2385	.has_win_a_without_filters = false,
2386	.has_win_c_without_vert_filter = false,
2387};
2388
2389static const struct tegra_dc_soc_info tegra124_dc_soc_info = {
2390	.supports_background_color = true,
2391	.supports_interlacing = true,
2392	.supports_cursor = true,
2393	.supports_block_linear = true,
2394	.supports_sector_layout = false,
2395	.has_legacy_blending = false,
2396	.pitch_align = 64,
2397	.has_powergate = true,
2398	.coupled_pm = false,
2399	.has_nvdisplay = false,
2400	.num_primary_formats = ARRAY_SIZE(tegra124_primary_formats),
2401	.primary_formats = tegra124_primary_formats,
2402	.num_overlay_formats = ARRAY_SIZE(tegra124_overlay_formats),
2403	.overlay_formats = tegra124_overlay_formats,
2404	.modifiers = tegra124_modifiers,
2405	.has_win_a_without_filters = false,
2406	.has_win_c_without_vert_filter = false,
2407};
2408
2409static const struct tegra_dc_soc_info tegra210_dc_soc_info = {
2410	.supports_background_color = true,
2411	.supports_interlacing = true,
2412	.supports_cursor = true,
2413	.supports_block_linear = true,
2414	.supports_sector_layout = false,
2415	.has_legacy_blending = false,
2416	.pitch_align = 64,
2417	.has_powergate = true,
2418	.coupled_pm = false,
2419	.has_nvdisplay = false,
2420	.num_primary_formats = ARRAY_SIZE(tegra114_primary_formats),
2421	.primary_formats = tegra114_primary_formats,
2422	.num_overlay_formats = ARRAY_SIZE(tegra114_overlay_formats),
2423	.overlay_formats = tegra114_overlay_formats,
2424	.modifiers = tegra124_modifiers,
2425	.has_win_a_without_filters = false,
2426	.has_win_c_without_vert_filter = false,
2427};
2428
2429static const struct tegra_windowgroup_soc tegra186_dc_wgrps[] = {
2430	{
2431		.index = 0,
2432		.dc = 0,
2433		.windows = (const unsigned int[]) { 0 },
2434		.num_windows = 1,
2435	}, {
2436		.index = 1,
2437		.dc = 1,
2438		.windows = (const unsigned int[]) { 1 },
2439		.num_windows = 1,
2440	}, {
2441		.index = 2,
2442		.dc = 1,
2443		.windows = (const unsigned int[]) { 2 },
2444		.num_windows = 1,
2445	}, {
2446		.index = 3,
2447		.dc = 2,
2448		.windows = (const unsigned int[]) { 3 },
2449		.num_windows = 1,
2450	}, {
2451		.index = 4,
2452		.dc = 2,
2453		.windows = (const unsigned int[]) { 4 },
2454		.num_windows = 1,
2455	}, {
2456		.index = 5,
2457		.dc = 2,
2458		.windows = (const unsigned int[]) { 5 },
2459		.num_windows = 1,
2460	},
2461};
2462
2463static const struct tegra_dc_soc_info tegra186_dc_soc_info = {
2464	.supports_background_color = true,
2465	.supports_interlacing = true,
2466	.supports_cursor = true,
2467	.supports_block_linear = true,
2468	.supports_sector_layout = false,
2469	.has_legacy_blending = false,
2470	.pitch_align = 64,
2471	.has_powergate = false,
2472	.coupled_pm = false,
2473	.has_nvdisplay = true,
2474	.wgrps = tegra186_dc_wgrps,
2475	.num_wgrps = ARRAY_SIZE(tegra186_dc_wgrps),
2476};
2477
2478static const struct tegra_windowgroup_soc tegra194_dc_wgrps[] = {
2479	{
2480		.index = 0,
2481		.dc = 0,
2482		.windows = (const unsigned int[]) { 0 },
2483		.num_windows = 1,
2484	}, {
2485		.index = 1,
2486		.dc = 1,
2487		.windows = (const unsigned int[]) { 1 },
2488		.num_windows = 1,
2489	}, {
2490		.index = 2,
2491		.dc = 1,
2492		.windows = (const unsigned int[]) { 2 },
2493		.num_windows = 1,
2494	}, {
2495		.index = 3,
2496		.dc = 2,
2497		.windows = (const unsigned int[]) { 3 },
2498		.num_windows = 1,
2499	}, {
2500		.index = 4,
2501		.dc = 2,
2502		.windows = (const unsigned int[]) { 4 },
2503		.num_windows = 1,
2504	}, {
2505		.index = 5,
2506		.dc = 2,
2507		.windows = (const unsigned int[]) { 5 },
2508		.num_windows = 1,
2509	},
2510};
2511
2512static const struct tegra_dc_soc_info tegra194_dc_soc_info = {
2513	.supports_background_color = true,
2514	.supports_interlacing = true,
2515	.supports_cursor = true,
2516	.supports_block_linear = true,
2517	.supports_sector_layout = true,
2518	.has_legacy_blending = false,
2519	.pitch_align = 64,
2520	.has_powergate = false,
2521	.coupled_pm = false,
2522	.has_nvdisplay = true,
2523	.wgrps = tegra194_dc_wgrps,
2524	.num_wgrps = ARRAY_SIZE(tegra194_dc_wgrps),
2525};
2526
2527static const struct of_device_id tegra_dc_of_match[] = {
2528	{
2529		.compatible = "nvidia,tegra194-dc",
2530		.data = &tegra194_dc_soc_info,
2531	}, {
2532		.compatible = "nvidia,tegra186-dc",
2533		.data = &tegra186_dc_soc_info,
2534	}, {
2535		.compatible = "nvidia,tegra210-dc",
2536		.data = &tegra210_dc_soc_info,
2537	}, {
2538		.compatible = "nvidia,tegra124-dc",
2539		.data = &tegra124_dc_soc_info,
2540	}, {
2541		.compatible = "nvidia,tegra114-dc",
2542		.data = &tegra114_dc_soc_info,
2543	}, {
2544		.compatible = "nvidia,tegra30-dc",
2545		.data = &tegra30_dc_soc_info,
2546	}, {
2547		.compatible = "nvidia,tegra20-dc",
2548		.data = &tegra20_dc_soc_info,
2549	}, {
2550		/* sentinel */
2551	}
2552};
2553MODULE_DEVICE_TABLE(of, tegra_dc_of_match);
2554
2555static int tegra_dc_parse_dt(struct tegra_dc *dc)
2556{
2557	struct device_node *np;
2558	u32 value = 0;
2559	int err;
2560
2561	err = of_property_read_u32(dc->dev->of_node, "nvidia,head", &value);
2562	if (err < 0) {
2563		dev_err(dc->dev, "missing \"nvidia,head\" property\n");
2564
2565		/*
2566		 * If the nvidia,head property isn't present, try to find the
2567		 * correct head number by looking up the position of this
2568		 * display controller's node within the device tree. Assuming
2569		 * that the nodes are ordered properly in the DTS file and
2570		 * that the translation into a flattened device tree blob
2571		 * preserves that ordering this will actually yield the right
2572		 * head number.
2573		 *
2574		 * If those assumptions don't hold, this will still work for
2575		 * cases where only a single display controller is used.
2576		 */
2577		for_each_matching_node(np, tegra_dc_of_match) {
2578			if (np == dc->dev->of_node) {
2579				of_node_put(np);
2580				break;
2581			}
2582
2583			value++;
2584		}
2585	}
2586
2587	dc->pipe = value;
2588
2589	return 0;
2590}
2591
2592static int tegra_dc_match_by_pipe(struct device *dev, const void *data)
2593{
2594	struct tegra_dc *dc = dev_get_drvdata(dev);
2595	unsigned int pipe = (unsigned long)(void *)data;
2596
2597	return dc->pipe == pipe;
2598}
2599
2600static int tegra_dc_couple(struct tegra_dc *dc)
2601{
2602	/*
2603	 * On Tegra20, DC1 requires DC0 to be taken out of reset in order to
2604	 * be enabled, otherwise CPU hangs on writing to CMD_DISPLAY_COMMAND /
2605	 * POWER_CONTROL registers during CRTC enabling.
2606	 */
2607	if (dc->soc->coupled_pm && dc->pipe == 1) {
2608		struct device *companion;
2609		struct tegra_dc *parent;
2610
2611		companion = driver_find_device(dc->dev->driver, NULL, (const void *)0,
2612					       tegra_dc_match_by_pipe);
2613		if (!companion)
2614			return -EPROBE_DEFER;
2615
2616		parent = dev_get_drvdata(companion);
2617		dc->client.parent = &parent->client;
2618
2619		dev_dbg(dc->dev, "coupled to %s\n", dev_name(companion));
2620	}
2621
2622	return 0;
2623}
2624
2625static int tegra_dc_probe(struct platform_device *pdev)
2626{
2627	u64 dma_mask = dma_get_mask(pdev->dev.parent);
2628	struct tegra_dc *dc;
2629	int err;
2630
2631	err = dma_coerce_mask_and_coherent(&pdev->dev, dma_mask);
2632	if (err < 0) {
2633		dev_err(&pdev->dev, "failed to set DMA mask: %d\n", err);
2634		return err;
2635	}
2636
2637	dc = devm_kzalloc(&pdev->dev, sizeof(*dc), GFP_KERNEL);
2638	if (!dc)
2639		return -ENOMEM;
2640
2641	dc->soc = of_device_get_match_data(&pdev->dev);
2642
2643	INIT_LIST_HEAD(&dc->list);
2644	dc->dev = &pdev->dev;
2645
2646	err = tegra_dc_parse_dt(dc);
2647	if (err < 0)
2648		return err;
2649
2650	err = tegra_dc_couple(dc);
2651	if (err < 0)
2652		return err;
2653
2654	dc->clk = devm_clk_get(&pdev->dev, NULL);
2655	if (IS_ERR(dc->clk)) {
2656		dev_err(&pdev->dev, "failed to get clock\n");
2657		return PTR_ERR(dc->clk);
2658	}
2659
2660	dc->rst = devm_reset_control_get(&pdev->dev, "dc");
2661	if (IS_ERR(dc->rst)) {
2662		dev_err(&pdev->dev, "failed to get reset\n");
2663		return PTR_ERR(dc->rst);
2664	}
2665
2666	/* assert reset and disable clock */
2667	err = clk_prepare_enable(dc->clk);
2668	if (err < 0)
2669		return err;
2670
2671	usleep_range(2000, 4000);
2672
2673	err = reset_control_assert(dc->rst);
2674	if (err < 0)
2675		return err;
2676
2677	usleep_range(2000, 4000);
2678
2679	clk_disable_unprepare(dc->clk);
2680
2681	if (dc->soc->has_powergate) {
2682		if (dc->pipe == 0)
2683			dc->powergate = TEGRA_POWERGATE_DIS;
2684		else
2685			dc->powergate = TEGRA_POWERGATE_DISB;
2686
2687		tegra_powergate_power_off(dc->powergate);
2688	}
2689
2690	dc->regs = devm_platform_ioremap_resource(pdev, 0);
2691	if (IS_ERR(dc->regs))
2692		return PTR_ERR(dc->regs);
2693
2694	dc->irq = platform_get_irq(pdev, 0);
2695	if (dc->irq < 0)
2696		return -ENXIO;
2697
2698	err = tegra_dc_rgb_probe(dc);
2699	if (err < 0 && err != -ENODEV) {
2700		const char *level = KERN_ERR;
2701
2702		if (err == -EPROBE_DEFER)
2703			level = KERN_DEBUG;
2704
2705		dev_printk(level, dc->dev, "failed to probe RGB output: %d\n",
2706			   err);
2707		return err;
2708	}
2709
2710	platform_set_drvdata(pdev, dc);
2711	pm_runtime_enable(&pdev->dev);
2712
2713	INIT_LIST_HEAD(&dc->client.list);
2714	dc->client.ops = &dc_client_ops;
2715	dc->client.dev = &pdev->dev;
2716
2717	err = host1x_client_register(&dc->client);
2718	if (err < 0) {
2719		dev_err(&pdev->dev, "failed to register host1x client: %d\n",
2720			err);
2721		goto disable_pm;
2722	}
2723
2724	return 0;
2725
2726disable_pm:
2727	pm_runtime_disable(&pdev->dev);
2728	tegra_dc_rgb_remove(dc);
2729
2730	return err;
2731}
2732
2733static int tegra_dc_remove(struct platform_device *pdev)
2734{
2735	struct tegra_dc *dc = platform_get_drvdata(pdev);
2736	int err;
2737
2738	err = host1x_client_unregister(&dc->client);
2739	if (err < 0) {
2740		dev_err(&pdev->dev, "failed to unregister host1x client: %d\n",
2741			err);
2742		return err;
2743	}
2744
2745	err = tegra_dc_rgb_remove(dc);
2746	if (err < 0) {
2747		dev_err(&pdev->dev, "failed to remove RGB output: %d\n", err);
2748		return err;
2749	}
2750
2751	pm_runtime_disable(&pdev->dev);
2752
2753	return 0;
2754}
2755
2756struct platform_driver tegra_dc_driver = {
2757	.driver = {
2758		.name = "tegra-dc",
2759		.of_match_table = tegra_dc_of_match,
2760	},
2761	.probe = tegra_dc_probe,
2762	.remove = tegra_dc_remove,
2763};