Linux Audio

Check our new training course

Loading...
Note: File does not exist in v3.1.
   1/*
   2 * Copyright (C) 2012 Avionic Design GmbH
   3 * Copyright (C) 2012 NVIDIA CORPORATION.  All rights reserved.
   4 *
   5 * This program is free software; you can redistribute it and/or modify
   6 * it under the terms of the GNU General Public License version 2 as
   7 * published by the Free Software Foundation.
   8 */
   9
  10#include <linux/clk.h>
  11#include <linux/debugfs.h>
  12#include <linux/iommu.h>
  13#include <linux/of_device.h>
  14#include <linux/pm_runtime.h>
  15#include <linux/reset.h>
  16
  17#include <soc/tegra/pmc.h>
  18
  19#include "dc.h"
  20#include "drm.h"
  21#include "gem.h"
  22#include "hub.h"
  23#include "plane.h"
  24
  25#include <drm/drm_atomic.h>
  26#include <drm/drm_atomic_helper.h>
  27#include <drm/drm_plane_helper.h>
  28
  29static void tegra_dc_stats_reset(struct tegra_dc_stats *stats)
  30{
  31	stats->frames = 0;
  32	stats->vblank = 0;
  33	stats->underflow = 0;
  34	stats->overflow = 0;
  35}
  36
  37/* Reads the active copy of a register. */
  38static u32 tegra_dc_readl_active(struct tegra_dc *dc, unsigned long offset)
  39{
  40	u32 value;
  41
  42	tegra_dc_writel(dc, READ_MUX, DC_CMD_STATE_ACCESS);
  43	value = tegra_dc_readl(dc, offset);
  44	tegra_dc_writel(dc, 0, DC_CMD_STATE_ACCESS);
  45
  46	return value;
  47}
  48
  49static inline unsigned int tegra_plane_offset(struct tegra_plane *plane,
  50					      unsigned int offset)
  51{
  52	if (offset >= 0x500 && offset <= 0x638) {
  53		offset = 0x000 + (offset - 0x500);
  54		return plane->offset + offset;
  55	}
  56
  57	if (offset >= 0x700 && offset <= 0x719) {
  58		offset = 0x180 + (offset - 0x700);
  59		return plane->offset + offset;
  60	}
  61
  62	if (offset >= 0x800 && offset <= 0x839) {
  63		offset = 0x1c0 + (offset - 0x800);
  64		return plane->offset + offset;
  65	}
  66
  67	dev_WARN(plane->dc->dev, "invalid offset: %x\n", offset);
  68
  69	return plane->offset + offset;
  70}
  71
  72static inline u32 tegra_plane_readl(struct tegra_plane *plane,
  73				    unsigned int offset)
  74{
  75	return tegra_dc_readl(plane->dc, tegra_plane_offset(plane, offset));
  76}
  77
  78static inline void tegra_plane_writel(struct tegra_plane *plane, u32 value,
  79				      unsigned int offset)
  80{
  81	tegra_dc_writel(plane->dc, value, tegra_plane_offset(plane, offset));
  82}
  83
  84bool tegra_dc_has_output(struct tegra_dc *dc, struct device *dev)
  85{
  86	struct device_node *np = dc->dev->of_node;
  87	struct of_phandle_iterator it;
  88	int err;
  89
  90	of_for_each_phandle(&it, err, np, "nvidia,outputs", NULL, 0)
  91		if (it.node == dev->of_node)
  92			return true;
  93
  94	return false;
  95}
  96
  97/*
  98 * Double-buffered registers have two copies: ASSEMBLY and ACTIVE. When the
  99 * *_ACT_REQ bits are set the ASSEMBLY copy is latched into the ACTIVE copy.
 100 * Latching happens mmediately if the display controller is in STOP mode or
 101 * on the next frame boundary otherwise.
 102 *
 103 * Triple-buffered registers have three copies: ASSEMBLY, ARM and ACTIVE. The
 104 * ASSEMBLY copy is latched into the ARM copy immediately after *_UPDATE bits
 105 * are written. When the *_ACT_REQ bits are written, the ARM copy is latched
 106 * into the ACTIVE copy, either immediately if the display controller is in
 107 * STOP mode, or at the next frame boundary otherwise.
 108 */
 109void tegra_dc_commit(struct tegra_dc *dc)
 110{
 111	tegra_dc_writel(dc, GENERAL_ACT_REQ << 8, DC_CMD_STATE_CONTROL);
 112	tegra_dc_writel(dc, GENERAL_ACT_REQ, DC_CMD_STATE_CONTROL);
 113}
 114
 115static inline u32 compute_dda_inc(unsigned int in, unsigned int out, bool v,
 116				  unsigned int bpp)
 117{
 118	fixed20_12 outf = dfixed_init(out);
 119	fixed20_12 inf = dfixed_init(in);
 120	u32 dda_inc;
 121	int max;
 122
 123	if (v)
 124		max = 15;
 125	else {
 126		switch (bpp) {
 127		case 2:
 128			max = 8;
 129			break;
 130
 131		default:
 132			WARN_ON_ONCE(1);
 133			/* fallthrough */
 134		case 4:
 135			max = 4;
 136			break;
 137		}
 138	}
 139
 140	outf.full = max_t(u32, outf.full - dfixed_const(1), dfixed_const(1));
 141	inf.full -= dfixed_const(1);
 142
 143	dda_inc = dfixed_div(inf, outf);
 144	dda_inc = min_t(u32, dda_inc, dfixed_const(max));
 145
 146	return dda_inc;
 147}
 148
 149static inline u32 compute_initial_dda(unsigned int in)
 150{
 151	fixed20_12 inf = dfixed_init(in);
 152	return dfixed_frac(inf);
 153}
 154
 155static void tegra_plane_setup_blending_legacy(struct tegra_plane *plane)
 156{
 157	u32 background[3] = {
 158		BLEND_WEIGHT1(0) | BLEND_WEIGHT0(0) | BLEND_COLOR_KEY_NONE,
 159		BLEND_WEIGHT1(0) | BLEND_WEIGHT0(0) | BLEND_COLOR_KEY_NONE,
 160		BLEND_WEIGHT1(0) | BLEND_WEIGHT0(0) | BLEND_COLOR_KEY_NONE,
 161	};
 162	u32 foreground = BLEND_WEIGHT1(255) | BLEND_WEIGHT0(255) |
 163			 BLEND_COLOR_KEY_NONE;
 164	u32 blendnokey = BLEND_WEIGHT1(255) | BLEND_WEIGHT0(255);
 165	struct tegra_plane_state *state;
 166	unsigned int i;
 167
 168	state = to_tegra_plane_state(plane->base.state);
 169
 170	/* alpha contribution is 1 minus sum of overlapping windows */
 171	for (i = 0; i < 3; i++) {
 172		if (state->dependent[i])
 173			background[i] |= BLEND_CONTROL_DEPENDENT;
 174	}
 175
 176	/* enable alpha blending if pixel format has an alpha component */
 177	if (!state->opaque)
 178		foreground |= BLEND_CONTROL_ALPHA;
 179
 180	/*
 181	 * Disable blending and assume Window A is the bottom-most window,
 182	 * Window C is the top-most window and Window B is in the middle.
 183	 */
 184	tegra_plane_writel(plane, blendnokey, DC_WIN_BLEND_NOKEY);
 185	tegra_plane_writel(plane, foreground, DC_WIN_BLEND_1WIN);
 186
 187	switch (plane->index) {
 188	case 0:
 189		tegra_plane_writel(plane, background[0], DC_WIN_BLEND_2WIN_X);
 190		tegra_plane_writel(plane, background[1], DC_WIN_BLEND_2WIN_Y);
 191		tegra_plane_writel(plane, background[2], DC_WIN_BLEND_3WIN_XY);
 192		break;
 193
 194	case 1:
 195		tegra_plane_writel(plane, foreground, DC_WIN_BLEND_2WIN_X);
 196		tegra_plane_writel(plane, background[1], DC_WIN_BLEND_2WIN_Y);
 197		tegra_plane_writel(plane, background[2], DC_WIN_BLEND_3WIN_XY);
 198		break;
 199
 200	case 2:
 201		tegra_plane_writel(plane, foreground, DC_WIN_BLEND_2WIN_X);
 202		tegra_plane_writel(plane, foreground, DC_WIN_BLEND_2WIN_Y);
 203		tegra_plane_writel(plane, foreground, DC_WIN_BLEND_3WIN_XY);
 204		break;
 205	}
 206}
 207
 208static void tegra_plane_setup_blending(struct tegra_plane *plane,
 209				       const struct tegra_dc_window *window)
 210{
 211	u32 value;
 212
 213	value = BLEND_FACTOR_DST_ALPHA_ZERO | BLEND_FACTOR_SRC_ALPHA_K2 |
 214		BLEND_FACTOR_DST_COLOR_NEG_K1_TIMES_SRC |
 215		BLEND_FACTOR_SRC_COLOR_K1_TIMES_SRC;
 216	tegra_plane_writel(plane, value, DC_WIN_BLEND_MATCH_SELECT);
 217
 218	value = BLEND_FACTOR_DST_ALPHA_ZERO | BLEND_FACTOR_SRC_ALPHA_K2 |
 219		BLEND_FACTOR_DST_COLOR_NEG_K1_TIMES_SRC |
 220		BLEND_FACTOR_SRC_COLOR_K1_TIMES_SRC;
 221	tegra_plane_writel(plane, value, DC_WIN_BLEND_NOMATCH_SELECT);
 222
 223	value = K2(255) | K1(255) | WINDOW_LAYER_DEPTH(255 - window->zpos);
 224	tegra_plane_writel(plane, value, DC_WIN_BLEND_LAYER_CONTROL);
 225}
 226
 227static void tegra_dc_setup_window(struct tegra_plane *plane,
 228				  const struct tegra_dc_window *window)
 229{
 230	unsigned h_offset, v_offset, h_size, v_size, h_dda, v_dda, bpp;
 231	struct tegra_dc *dc = plane->dc;
 232	bool yuv, planar;
 233	u32 value;
 234
 235	/*
 236	 * For YUV planar modes, the number of bytes per pixel takes into
 237	 * account only the luma component and therefore is 1.
 238	 */
 239	yuv = tegra_plane_format_is_yuv(window->format, &planar);
 240	if (!yuv)
 241		bpp = window->bits_per_pixel / 8;
 242	else
 243		bpp = planar ? 1 : 2;
 244
 245	tegra_plane_writel(plane, window->format, DC_WIN_COLOR_DEPTH);
 246	tegra_plane_writel(plane, window->swap, DC_WIN_BYTE_SWAP);
 247
 248	value = V_POSITION(window->dst.y) | H_POSITION(window->dst.x);
 249	tegra_plane_writel(plane, value, DC_WIN_POSITION);
 250
 251	value = V_SIZE(window->dst.h) | H_SIZE(window->dst.w);
 252	tegra_plane_writel(plane, value, DC_WIN_SIZE);
 253
 254	h_offset = window->src.x * bpp;
 255	v_offset = window->src.y;
 256	h_size = window->src.w * bpp;
 257	v_size = window->src.h;
 258
 259	value = V_PRESCALED_SIZE(v_size) | H_PRESCALED_SIZE(h_size);
 260	tegra_plane_writel(plane, value, DC_WIN_PRESCALED_SIZE);
 261
 262	/*
 263	 * For DDA computations the number of bytes per pixel for YUV planar
 264	 * modes needs to take into account all Y, U and V components.
 265	 */
 266	if (yuv && planar)
 267		bpp = 2;
 268
 269	h_dda = compute_dda_inc(window->src.w, window->dst.w, false, bpp);
 270	v_dda = compute_dda_inc(window->src.h, window->dst.h, true, bpp);
 271
 272	value = V_DDA_INC(v_dda) | H_DDA_INC(h_dda);
 273	tegra_plane_writel(plane, value, DC_WIN_DDA_INC);
 274
 275	h_dda = compute_initial_dda(window->src.x);
 276	v_dda = compute_initial_dda(window->src.y);
 277
 278	tegra_plane_writel(plane, h_dda, DC_WIN_H_INITIAL_DDA);
 279	tegra_plane_writel(plane, v_dda, DC_WIN_V_INITIAL_DDA);
 280
 281	tegra_plane_writel(plane, 0, DC_WIN_UV_BUF_STRIDE);
 282	tegra_plane_writel(plane, 0, DC_WIN_BUF_STRIDE);
 283
 284	tegra_plane_writel(plane, window->base[0], DC_WINBUF_START_ADDR);
 285
 286	if (yuv && planar) {
 287		tegra_plane_writel(plane, window->base[1], DC_WINBUF_START_ADDR_U);
 288		tegra_plane_writel(plane, window->base[2], DC_WINBUF_START_ADDR_V);
 289		value = window->stride[1] << 16 | window->stride[0];
 290		tegra_plane_writel(plane, value, DC_WIN_LINE_STRIDE);
 291	} else {
 292		tegra_plane_writel(plane, window->stride[0], DC_WIN_LINE_STRIDE);
 293	}
 294
 295	if (window->bottom_up)
 296		v_offset += window->src.h - 1;
 297
 298	tegra_plane_writel(plane, h_offset, DC_WINBUF_ADDR_H_OFFSET);
 299	tegra_plane_writel(plane, v_offset, DC_WINBUF_ADDR_V_OFFSET);
 300
 301	if (dc->soc->supports_block_linear) {
 302		unsigned long height = window->tiling.value;
 303
 304		switch (window->tiling.mode) {
 305		case TEGRA_BO_TILING_MODE_PITCH:
 306			value = DC_WINBUF_SURFACE_KIND_PITCH;
 307			break;
 308
 309		case TEGRA_BO_TILING_MODE_TILED:
 310			value = DC_WINBUF_SURFACE_KIND_TILED;
 311			break;
 312
 313		case TEGRA_BO_TILING_MODE_BLOCK:
 314			value = DC_WINBUF_SURFACE_KIND_BLOCK_HEIGHT(height) |
 315				DC_WINBUF_SURFACE_KIND_BLOCK;
 316			break;
 317		}
 318
 319		tegra_plane_writel(plane, value, DC_WINBUF_SURFACE_KIND);
 320	} else {
 321		switch (window->tiling.mode) {
 322		case TEGRA_BO_TILING_MODE_PITCH:
 323			value = DC_WIN_BUFFER_ADDR_MODE_LINEAR_UV |
 324				DC_WIN_BUFFER_ADDR_MODE_LINEAR;
 325			break;
 326
 327		case TEGRA_BO_TILING_MODE_TILED:
 328			value = DC_WIN_BUFFER_ADDR_MODE_TILE_UV |
 329				DC_WIN_BUFFER_ADDR_MODE_TILE;
 330			break;
 331
 332		case TEGRA_BO_TILING_MODE_BLOCK:
 333			/*
 334			 * No need to handle this here because ->atomic_check
 335			 * will already have filtered it out.
 336			 */
 337			break;
 338		}
 339
 340		tegra_plane_writel(plane, value, DC_WIN_BUFFER_ADDR_MODE);
 341	}
 342
 343	value = WIN_ENABLE;
 344
 345	if (yuv) {
 346		/* setup default colorspace conversion coefficients */
 347		tegra_plane_writel(plane, 0x00f0, DC_WIN_CSC_YOF);
 348		tegra_plane_writel(plane, 0x012a, DC_WIN_CSC_KYRGB);
 349		tegra_plane_writel(plane, 0x0000, DC_WIN_CSC_KUR);
 350		tegra_plane_writel(plane, 0x0198, DC_WIN_CSC_KVR);
 351		tegra_plane_writel(plane, 0x039b, DC_WIN_CSC_KUG);
 352		tegra_plane_writel(plane, 0x032f, DC_WIN_CSC_KVG);
 353		tegra_plane_writel(plane, 0x0204, DC_WIN_CSC_KUB);
 354		tegra_plane_writel(plane, 0x0000, DC_WIN_CSC_KVB);
 355
 356		value |= CSC_ENABLE;
 357	} else if (window->bits_per_pixel < 24) {
 358		value |= COLOR_EXPAND;
 359	}
 360
 361	if (window->bottom_up)
 362		value |= V_DIRECTION;
 363
 364	tegra_plane_writel(plane, value, DC_WIN_WIN_OPTIONS);
 365
 366	if (dc->soc->supports_blending)
 367		tegra_plane_setup_blending(plane, window);
 368	else
 369		tegra_plane_setup_blending_legacy(plane);
 370}
 371
 372static const u32 tegra20_primary_formats[] = {
 373	DRM_FORMAT_ARGB4444,
 374	DRM_FORMAT_ARGB1555,
 375	DRM_FORMAT_RGB565,
 376	DRM_FORMAT_RGBA5551,
 377	DRM_FORMAT_ABGR8888,
 378	DRM_FORMAT_ARGB8888,
 379	/* non-native formats */
 380	DRM_FORMAT_XRGB1555,
 381	DRM_FORMAT_RGBX5551,
 382	DRM_FORMAT_XBGR8888,
 383	DRM_FORMAT_XRGB8888,
 384};
 385
 386static const u64 tegra20_modifiers[] = {
 387	DRM_FORMAT_MOD_LINEAR,
 388	DRM_FORMAT_MOD_NVIDIA_TEGRA_TILED,
 389	DRM_FORMAT_MOD_INVALID
 390};
 391
 392static const u32 tegra114_primary_formats[] = {
 393	DRM_FORMAT_ARGB4444,
 394	DRM_FORMAT_ARGB1555,
 395	DRM_FORMAT_RGB565,
 396	DRM_FORMAT_RGBA5551,
 397	DRM_FORMAT_ABGR8888,
 398	DRM_FORMAT_ARGB8888,
 399	/* new on Tegra114 */
 400	DRM_FORMAT_ABGR4444,
 401	DRM_FORMAT_ABGR1555,
 402	DRM_FORMAT_BGRA5551,
 403	DRM_FORMAT_XRGB1555,
 404	DRM_FORMAT_RGBX5551,
 405	DRM_FORMAT_XBGR1555,
 406	DRM_FORMAT_BGRX5551,
 407	DRM_FORMAT_BGR565,
 408	DRM_FORMAT_BGRA8888,
 409	DRM_FORMAT_RGBA8888,
 410	DRM_FORMAT_XRGB8888,
 411	DRM_FORMAT_XBGR8888,
 412};
 413
 414static const u32 tegra124_primary_formats[] = {
 415	DRM_FORMAT_ARGB4444,
 416	DRM_FORMAT_ARGB1555,
 417	DRM_FORMAT_RGB565,
 418	DRM_FORMAT_RGBA5551,
 419	DRM_FORMAT_ABGR8888,
 420	DRM_FORMAT_ARGB8888,
 421	/* new on Tegra114 */
 422	DRM_FORMAT_ABGR4444,
 423	DRM_FORMAT_ABGR1555,
 424	DRM_FORMAT_BGRA5551,
 425	DRM_FORMAT_XRGB1555,
 426	DRM_FORMAT_RGBX5551,
 427	DRM_FORMAT_XBGR1555,
 428	DRM_FORMAT_BGRX5551,
 429	DRM_FORMAT_BGR565,
 430	DRM_FORMAT_BGRA8888,
 431	DRM_FORMAT_RGBA8888,
 432	DRM_FORMAT_XRGB8888,
 433	DRM_FORMAT_XBGR8888,
 434	/* new on Tegra124 */
 435	DRM_FORMAT_RGBX8888,
 436	DRM_FORMAT_BGRX8888,
 437};
 438
 439static const u64 tegra124_modifiers[] = {
 440	DRM_FORMAT_MOD_LINEAR,
 441	DRM_FORMAT_MOD_NVIDIA_16BX2_BLOCK(0),
 442	DRM_FORMAT_MOD_NVIDIA_16BX2_BLOCK(1),
 443	DRM_FORMAT_MOD_NVIDIA_16BX2_BLOCK(2),
 444	DRM_FORMAT_MOD_NVIDIA_16BX2_BLOCK(3),
 445	DRM_FORMAT_MOD_NVIDIA_16BX2_BLOCK(4),
 446	DRM_FORMAT_MOD_NVIDIA_16BX2_BLOCK(5),
 447	DRM_FORMAT_MOD_INVALID
 448};
 449
 450static int tegra_plane_atomic_check(struct drm_plane *plane,
 451				    struct drm_plane_state *state)
 452{
 453	struct tegra_plane_state *plane_state = to_tegra_plane_state(state);
 454	struct tegra_bo_tiling *tiling = &plane_state->tiling;
 455	struct tegra_plane *tegra = to_tegra_plane(plane);
 456	struct tegra_dc *dc = to_tegra_dc(state->crtc);
 457	unsigned int format;
 458	int err;
 459
 460	/* no need for further checks if the plane is being disabled */
 461	if (!state->crtc)
 462		return 0;
 463
 464	err = tegra_plane_format(state->fb->format->format, &format,
 465				 &plane_state->swap);
 466	if (err < 0)
 467		return err;
 468
 469	/*
 470	 * Tegra20 and Tegra30 are special cases here because they support
 471	 * only variants of specific formats with an alpha component, but not
 472	 * the corresponding opaque formats. However, the opaque formats can
 473	 * be emulated by disabling alpha blending for the plane.
 474	 */
 475	if (!dc->soc->supports_blending) {
 476		if (!tegra_plane_format_has_alpha(format)) {
 477			err = tegra_plane_format_get_alpha(format, &format);
 478			if (err < 0)
 479				return err;
 480
 481			plane_state->opaque = true;
 482		} else {
 483			plane_state->opaque = false;
 484		}
 485
 486		tegra_plane_check_dependent(tegra, plane_state);
 487	}
 488
 489	plane_state->format = format;
 490
 491	err = tegra_fb_get_tiling(state->fb, tiling);
 492	if (err < 0)
 493		return err;
 494
 495	if (tiling->mode == TEGRA_BO_TILING_MODE_BLOCK &&
 496	    !dc->soc->supports_block_linear) {
 497		DRM_ERROR("hardware doesn't support block linear mode\n");
 498		return -EINVAL;
 499	}
 500
 501	/*
 502	 * Tegra doesn't support different strides for U and V planes so we
 503	 * error out if the user tries to display a framebuffer with such a
 504	 * configuration.
 505	 */
 506	if (state->fb->format->num_planes > 2) {
 507		if (state->fb->pitches[2] != state->fb->pitches[1]) {
 508			DRM_ERROR("unsupported UV-plane configuration\n");
 509			return -EINVAL;
 510		}
 511	}
 512
 513	err = tegra_plane_state_add(tegra, state);
 514	if (err < 0)
 515		return err;
 516
 517	return 0;
 518}
 519
 520static void tegra_plane_atomic_disable(struct drm_plane *plane,
 521				       struct drm_plane_state *old_state)
 522{
 523	struct tegra_plane *p = to_tegra_plane(plane);
 524	u32 value;
 525
 526	/* rien ne va plus */
 527	if (!old_state || !old_state->crtc)
 528		return;
 529
 530	value = tegra_plane_readl(p, DC_WIN_WIN_OPTIONS);
 531	value &= ~WIN_ENABLE;
 532	tegra_plane_writel(p, value, DC_WIN_WIN_OPTIONS);
 533}
 534
 535static void tegra_plane_atomic_update(struct drm_plane *plane,
 536				      struct drm_plane_state *old_state)
 537{
 538	struct tegra_plane_state *state = to_tegra_plane_state(plane->state);
 539	struct drm_framebuffer *fb = plane->state->fb;
 540	struct tegra_plane *p = to_tegra_plane(plane);
 541	struct tegra_dc_window window;
 542	unsigned int i;
 543
 544	/* rien ne va plus */
 545	if (!plane->state->crtc || !plane->state->fb)
 546		return;
 547
 548	if (!plane->state->visible)
 549		return tegra_plane_atomic_disable(plane, old_state);
 550
 551	memset(&window, 0, sizeof(window));
 552	window.src.x = plane->state->src.x1 >> 16;
 553	window.src.y = plane->state->src.y1 >> 16;
 554	window.src.w = drm_rect_width(&plane->state->src) >> 16;
 555	window.src.h = drm_rect_height(&plane->state->src) >> 16;
 556	window.dst.x = plane->state->dst.x1;
 557	window.dst.y = plane->state->dst.y1;
 558	window.dst.w = drm_rect_width(&plane->state->dst);
 559	window.dst.h = drm_rect_height(&plane->state->dst);
 560	window.bits_per_pixel = fb->format->cpp[0] * 8;
 561	window.bottom_up = tegra_fb_is_bottom_up(fb);
 562
 563	/* copy from state */
 564	window.zpos = plane->state->normalized_zpos;
 565	window.tiling = state->tiling;
 566	window.format = state->format;
 567	window.swap = state->swap;
 568
 569	for (i = 0; i < fb->format->num_planes; i++) {
 570		struct tegra_bo *bo = tegra_fb_get_plane(fb, i);
 571
 572		window.base[i] = bo->paddr + fb->offsets[i];
 573
 574		/*
 575		 * Tegra uses a shared stride for UV planes. Framebuffers are
 576		 * already checked for this in the tegra_plane_atomic_check()
 577		 * function, so it's safe to ignore the V-plane pitch here.
 578		 */
 579		if (i < 2)
 580			window.stride[i] = fb->pitches[i];
 581	}
 582
 583	tegra_dc_setup_window(p, &window);
 584}
 585
 586static const struct drm_plane_helper_funcs tegra_plane_helper_funcs = {
 587	.atomic_check = tegra_plane_atomic_check,
 588	.atomic_disable = tegra_plane_atomic_disable,
 589	.atomic_update = tegra_plane_atomic_update,
 590};
 591
 592static unsigned long tegra_plane_get_possible_crtcs(struct drm_device *drm)
 593{
 594	/*
 595	 * Ideally this would use drm_crtc_mask(), but that would require the
 596	 * CRTC to already be in the mode_config's list of CRTCs. However, it
 597	 * will only be added to that list in the drm_crtc_init_with_planes()
 598	 * (in tegra_dc_init()), which in turn requires registration of these
 599	 * planes. So we have ourselves a nice little chicken and egg problem
 600	 * here.
 601	 *
 602	 * We work around this by manually creating the mask from the number
 603	 * of CRTCs that have been registered, and should therefore always be
 604	 * the same as drm_crtc_index() after registration.
 605	 */
 606	return 1 << drm->mode_config.num_crtc;
 607}
 608
 609static struct drm_plane *tegra_primary_plane_create(struct drm_device *drm,
 610						    struct tegra_dc *dc)
 611{
 612	unsigned long possible_crtcs = tegra_plane_get_possible_crtcs(drm);
 613	enum drm_plane_type type = DRM_PLANE_TYPE_PRIMARY;
 614	struct tegra_plane *plane;
 615	unsigned int num_formats;
 616	const u64 *modifiers;
 617	const u32 *formats;
 618	int err;
 619
 620	plane = kzalloc(sizeof(*plane), GFP_KERNEL);
 621	if (!plane)
 622		return ERR_PTR(-ENOMEM);
 623
 624	/* Always use window A as primary window */
 625	plane->offset = 0xa00;
 626	plane->index = 0;
 627	plane->dc = dc;
 628
 629	num_formats = dc->soc->num_primary_formats;
 630	formats = dc->soc->primary_formats;
 631	modifiers = dc->soc->modifiers;
 632
 633	err = drm_universal_plane_init(drm, &plane->base, possible_crtcs,
 634				       &tegra_plane_funcs, formats,
 635				       num_formats, modifiers, type, NULL);
 636	if (err < 0) {
 637		kfree(plane);
 638		return ERR_PTR(err);
 639	}
 640
 641	drm_plane_helper_add(&plane->base, &tegra_plane_helper_funcs);
 642
 643	if (dc->soc->supports_blending)
 644		drm_plane_create_zpos_property(&plane->base, 0, 0, 255);
 645
 646	return &plane->base;
 647}
 648
 649static const u32 tegra_cursor_plane_formats[] = {
 650	DRM_FORMAT_RGBA8888,
 651};
 652
 653static int tegra_cursor_atomic_check(struct drm_plane *plane,
 654				     struct drm_plane_state *state)
 655{
 656	struct tegra_plane *tegra = to_tegra_plane(plane);
 657	int err;
 658
 659	/* no need for further checks if the plane is being disabled */
 660	if (!state->crtc)
 661		return 0;
 662
 663	/* scaling not supported for cursor */
 664	if ((state->src_w >> 16 != state->crtc_w) ||
 665	    (state->src_h >> 16 != state->crtc_h))
 666		return -EINVAL;
 667
 668	/* only square cursors supported */
 669	if (state->src_w != state->src_h)
 670		return -EINVAL;
 671
 672	if (state->crtc_w != 32 && state->crtc_w != 64 &&
 673	    state->crtc_w != 128 && state->crtc_w != 256)
 674		return -EINVAL;
 675
 676	err = tegra_plane_state_add(tegra, state);
 677	if (err < 0)
 678		return err;
 679
 680	return 0;
 681}
 682
 683static void tegra_cursor_atomic_update(struct drm_plane *plane,
 684				       struct drm_plane_state *old_state)
 685{
 686	struct tegra_bo *bo = tegra_fb_get_plane(plane->state->fb, 0);
 687	struct tegra_dc *dc = to_tegra_dc(plane->state->crtc);
 688	struct drm_plane_state *state = plane->state;
 689	u32 value = CURSOR_CLIP_DISPLAY;
 690
 691	/* rien ne va plus */
 692	if (!plane->state->crtc || !plane->state->fb)
 693		return;
 694
 695	switch (state->crtc_w) {
 696	case 32:
 697		value |= CURSOR_SIZE_32x32;
 698		break;
 699
 700	case 64:
 701		value |= CURSOR_SIZE_64x64;
 702		break;
 703
 704	case 128:
 705		value |= CURSOR_SIZE_128x128;
 706		break;
 707
 708	case 256:
 709		value |= CURSOR_SIZE_256x256;
 710		break;
 711
 712	default:
 713		WARN(1, "cursor size %ux%u not supported\n", state->crtc_w,
 714		     state->crtc_h);
 715		return;
 716	}
 717
 718	value |= (bo->paddr >> 10) & 0x3fffff;
 719	tegra_dc_writel(dc, value, DC_DISP_CURSOR_START_ADDR);
 720
 721#ifdef CONFIG_ARCH_DMA_ADDR_T_64BIT
 722	value = (bo->paddr >> 32) & 0x3;
 723	tegra_dc_writel(dc, value, DC_DISP_CURSOR_START_ADDR_HI);
 724#endif
 725
 726	/* enable cursor and set blend mode */
 727	value = tegra_dc_readl(dc, DC_DISP_DISP_WIN_OPTIONS);
 728	value |= CURSOR_ENABLE;
 729	tegra_dc_writel(dc, value, DC_DISP_DISP_WIN_OPTIONS);
 730
 731	value = tegra_dc_readl(dc, DC_DISP_BLEND_CURSOR_CONTROL);
 732	value &= ~CURSOR_DST_BLEND_MASK;
 733	value &= ~CURSOR_SRC_BLEND_MASK;
 734	value |= CURSOR_MODE_NORMAL;
 735	value |= CURSOR_DST_BLEND_NEG_K1_TIMES_SRC;
 736	value |= CURSOR_SRC_BLEND_K1_TIMES_SRC;
 737	value |= CURSOR_ALPHA;
 738	tegra_dc_writel(dc, value, DC_DISP_BLEND_CURSOR_CONTROL);
 739
 740	/* position the cursor */
 741	value = (state->crtc_y & 0x3fff) << 16 | (state->crtc_x & 0x3fff);
 742	tegra_dc_writel(dc, value, DC_DISP_CURSOR_POSITION);
 743}
 744
 745static void tegra_cursor_atomic_disable(struct drm_plane *plane,
 746					struct drm_plane_state *old_state)
 747{
 748	struct tegra_dc *dc;
 749	u32 value;
 750
 751	/* rien ne va plus */
 752	if (!old_state || !old_state->crtc)
 753		return;
 754
 755	dc = to_tegra_dc(old_state->crtc);
 756
 757	value = tegra_dc_readl(dc, DC_DISP_DISP_WIN_OPTIONS);
 758	value &= ~CURSOR_ENABLE;
 759	tegra_dc_writel(dc, value, DC_DISP_DISP_WIN_OPTIONS);
 760}
 761
 762static const struct drm_plane_helper_funcs tegra_cursor_plane_helper_funcs = {
 763	.atomic_check = tegra_cursor_atomic_check,
 764	.atomic_update = tegra_cursor_atomic_update,
 765	.atomic_disable = tegra_cursor_atomic_disable,
 766};
 767
 768static struct drm_plane *tegra_dc_cursor_plane_create(struct drm_device *drm,
 769						      struct tegra_dc *dc)
 770{
 771	unsigned long possible_crtcs = tegra_plane_get_possible_crtcs(drm);
 772	struct tegra_plane *plane;
 773	unsigned int num_formats;
 774	const u32 *formats;
 775	int err;
 776
 777	plane = kzalloc(sizeof(*plane), GFP_KERNEL);
 778	if (!plane)
 779		return ERR_PTR(-ENOMEM);
 780
 781	/*
 782	 * This index is kind of fake. The cursor isn't a regular plane, but
 783	 * its update and activation request bits in DC_CMD_STATE_CONTROL do
 784	 * use the same programming. Setting this fake index here allows the
 785	 * code in tegra_add_plane_state() to do the right thing without the
 786	 * need to special-casing the cursor plane.
 787	 */
 788	plane->index = 6;
 789	plane->dc = dc;
 790
 791	num_formats = ARRAY_SIZE(tegra_cursor_plane_formats);
 792	formats = tegra_cursor_plane_formats;
 793
 794	err = drm_universal_plane_init(drm, &plane->base, possible_crtcs,
 795				       &tegra_plane_funcs, formats,
 796				       num_formats, NULL,
 797				       DRM_PLANE_TYPE_CURSOR, NULL);
 798	if (err < 0) {
 799		kfree(plane);
 800		return ERR_PTR(err);
 801	}
 802
 803	drm_plane_helper_add(&plane->base, &tegra_cursor_plane_helper_funcs);
 804
 805	return &plane->base;
 806}
 807
 808static const u32 tegra20_overlay_formats[] = {
 809	DRM_FORMAT_ARGB4444,
 810	DRM_FORMAT_ARGB1555,
 811	DRM_FORMAT_RGB565,
 812	DRM_FORMAT_RGBA5551,
 813	DRM_FORMAT_ABGR8888,
 814	DRM_FORMAT_ARGB8888,
 815	/* non-native formats */
 816	DRM_FORMAT_XRGB1555,
 817	DRM_FORMAT_RGBX5551,
 818	DRM_FORMAT_XBGR8888,
 819	DRM_FORMAT_XRGB8888,
 820	/* planar formats */
 821	DRM_FORMAT_UYVY,
 822	DRM_FORMAT_YUYV,
 823	DRM_FORMAT_YUV420,
 824	DRM_FORMAT_YUV422,
 825};
 826
 827static const u32 tegra114_overlay_formats[] = {
 828	DRM_FORMAT_ARGB4444,
 829	DRM_FORMAT_ARGB1555,
 830	DRM_FORMAT_RGB565,
 831	DRM_FORMAT_RGBA5551,
 832	DRM_FORMAT_ABGR8888,
 833	DRM_FORMAT_ARGB8888,
 834	/* new on Tegra114 */
 835	DRM_FORMAT_ABGR4444,
 836	DRM_FORMAT_ABGR1555,
 837	DRM_FORMAT_BGRA5551,
 838	DRM_FORMAT_XRGB1555,
 839	DRM_FORMAT_RGBX5551,
 840	DRM_FORMAT_XBGR1555,
 841	DRM_FORMAT_BGRX5551,
 842	DRM_FORMAT_BGR565,
 843	DRM_FORMAT_BGRA8888,
 844	DRM_FORMAT_RGBA8888,
 845	DRM_FORMAT_XRGB8888,
 846	DRM_FORMAT_XBGR8888,
 847	/* planar formats */
 848	DRM_FORMAT_UYVY,
 849	DRM_FORMAT_YUYV,
 850	DRM_FORMAT_YUV420,
 851	DRM_FORMAT_YUV422,
 852};
 853
 854static const u32 tegra124_overlay_formats[] = {
 855	DRM_FORMAT_ARGB4444,
 856	DRM_FORMAT_ARGB1555,
 857	DRM_FORMAT_RGB565,
 858	DRM_FORMAT_RGBA5551,
 859	DRM_FORMAT_ABGR8888,
 860	DRM_FORMAT_ARGB8888,
 861	/* new on Tegra114 */
 862	DRM_FORMAT_ABGR4444,
 863	DRM_FORMAT_ABGR1555,
 864	DRM_FORMAT_BGRA5551,
 865	DRM_FORMAT_XRGB1555,
 866	DRM_FORMAT_RGBX5551,
 867	DRM_FORMAT_XBGR1555,
 868	DRM_FORMAT_BGRX5551,
 869	DRM_FORMAT_BGR565,
 870	DRM_FORMAT_BGRA8888,
 871	DRM_FORMAT_RGBA8888,
 872	DRM_FORMAT_XRGB8888,
 873	DRM_FORMAT_XBGR8888,
 874	/* new on Tegra124 */
 875	DRM_FORMAT_RGBX8888,
 876	DRM_FORMAT_BGRX8888,
 877	/* planar formats */
 878	DRM_FORMAT_UYVY,
 879	DRM_FORMAT_YUYV,
 880	DRM_FORMAT_YUV420,
 881	DRM_FORMAT_YUV422,
 882};
 883
 884static struct drm_plane *tegra_dc_overlay_plane_create(struct drm_device *drm,
 885						       struct tegra_dc *dc,
 886						       unsigned int index,
 887						       bool cursor)
 888{
 889	unsigned long possible_crtcs = tegra_plane_get_possible_crtcs(drm);
 890	struct tegra_plane *plane;
 891	unsigned int num_formats;
 892	enum drm_plane_type type;
 893	const u32 *formats;
 894	int err;
 895
 896	plane = kzalloc(sizeof(*plane), GFP_KERNEL);
 897	if (!plane)
 898		return ERR_PTR(-ENOMEM);
 899
 900	plane->offset = 0xa00 + 0x200 * index;
 901	plane->index = index;
 902	plane->dc = dc;
 903
 904	num_formats = dc->soc->num_overlay_formats;
 905	formats = dc->soc->overlay_formats;
 906
 907	if (!cursor)
 908		type = DRM_PLANE_TYPE_OVERLAY;
 909	else
 910		type = DRM_PLANE_TYPE_CURSOR;
 911
 912	err = drm_universal_plane_init(drm, &plane->base, possible_crtcs,
 913				       &tegra_plane_funcs, formats,
 914				       num_formats, NULL, type, NULL);
 915	if (err < 0) {
 916		kfree(plane);
 917		return ERR_PTR(err);
 918	}
 919
 920	drm_plane_helper_add(&plane->base, &tegra_plane_helper_funcs);
 921
 922	if (dc->soc->supports_blending)
 923		drm_plane_create_zpos_property(&plane->base, 0, 0, 255);
 924
 925	return &plane->base;
 926}
 927
 928static struct drm_plane *tegra_dc_add_shared_planes(struct drm_device *drm,
 929						    struct tegra_dc *dc)
 930{
 931	struct drm_plane *plane, *primary = NULL;
 932	unsigned int i, j;
 933
 934	for (i = 0; i < dc->soc->num_wgrps; i++) {
 935		const struct tegra_windowgroup_soc *wgrp = &dc->soc->wgrps[i];
 936
 937		if (wgrp->dc == dc->pipe) {
 938			for (j = 0; j < wgrp->num_windows; j++) {
 939				unsigned int index = wgrp->windows[j];
 940
 941				plane = tegra_shared_plane_create(drm, dc,
 942								  wgrp->index,
 943								  index);
 944				if (IS_ERR(plane))
 945					return plane;
 946
 947				/*
 948				 * Choose the first shared plane owned by this
 949				 * head as the primary plane.
 950				 */
 951				if (!primary) {
 952					plane->type = DRM_PLANE_TYPE_PRIMARY;
 953					primary = plane;
 954				}
 955			}
 956		}
 957	}
 958
 959	return primary;
 960}
 961
 962static struct drm_plane *tegra_dc_add_planes(struct drm_device *drm,
 963					     struct tegra_dc *dc)
 964{
 965	struct drm_plane *planes[2], *primary;
 966	unsigned int planes_num;
 967	unsigned int i;
 968	int err;
 969
 970	primary = tegra_primary_plane_create(drm, dc);
 971	if (IS_ERR(primary))
 972		return primary;
 973
 974	if (dc->soc->supports_cursor)
 975		planes_num = 2;
 976	else
 977		planes_num = 1;
 978
 979	for (i = 0; i < planes_num; i++) {
 980		planes[i] = tegra_dc_overlay_plane_create(drm, dc, 1 + i,
 981							  false);
 982		if (IS_ERR(planes[i])) {
 983			err = PTR_ERR(planes[i]);
 984
 985			while (i--)
 986				tegra_plane_funcs.destroy(planes[i]);
 987
 988			tegra_plane_funcs.destroy(primary);
 989			return ERR_PTR(err);
 990		}
 991	}
 992
 993	return primary;
 994}
 995
 996static void tegra_dc_destroy(struct drm_crtc *crtc)
 997{
 998	drm_crtc_cleanup(crtc);
 999}
1000
1001static void tegra_crtc_reset(struct drm_crtc *crtc)
1002{
1003	struct tegra_dc_state *state;
1004
1005	if (crtc->state)
1006		__drm_atomic_helper_crtc_destroy_state(crtc->state);
1007
1008	kfree(crtc->state);
1009	crtc->state = NULL;
1010
1011	state = kzalloc(sizeof(*state), GFP_KERNEL);
1012	if (state) {
1013		crtc->state = &state->base;
1014		crtc->state->crtc = crtc;
1015	}
1016
1017	drm_crtc_vblank_reset(crtc);
1018}
1019
1020static struct drm_crtc_state *
1021tegra_crtc_atomic_duplicate_state(struct drm_crtc *crtc)
1022{
1023	struct tegra_dc_state *state = to_dc_state(crtc->state);
1024	struct tegra_dc_state *copy;
1025
1026	copy = kmalloc(sizeof(*copy), GFP_KERNEL);
1027	if (!copy)
1028		return NULL;
1029
1030	__drm_atomic_helper_crtc_duplicate_state(crtc, &copy->base);
1031	copy->clk = state->clk;
1032	copy->pclk = state->pclk;
1033	copy->div = state->div;
1034	copy->planes = state->planes;
1035
1036	return &copy->base;
1037}
1038
1039static void tegra_crtc_atomic_destroy_state(struct drm_crtc *crtc,
1040					    struct drm_crtc_state *state)
1041{
1042	__drm_atomic_helper_crtc_destroy_state(state);
1043	kfree(state);
1044}
1045
1046#define DEBUGFS_REG32(_name) { .name = #_name, .offset = _name }
1047
1048static const struct debugfs_reg32 tegra_dc_regs[] = {
1049	DEBUGFS_REG32(DC_CMD_GENERAL_INCR_SYNCPT),
1050	DEBUGFS_REG32(DC_CMD_GENERAL_INCR_SYNCPT_CNTRL),
1051	DEBUGFS_REG32(DC_CMD_GENERAL_INCR_SYNCPT_ERROR),
1052	DEBUGFS_REG32(DC_CMD_WIN_A_INCR_SYNCPT),
1053	DEBUGFS_REG32(DC_CMD_WIN_A_INCR_SYNCPT_CNTRL),
1054	DEBUGFS_REG32(DC_CMD_WIN_A_INCR_SYNCPT_ERROR),
1055	DEBUGFS_REG32(DC_CMD_WIN_B_INCR_SYNCPT),
1056	DEBUGFS_REG32(DC_CMD_WIN_B_INCR_SYNCPT_CNTRL),
1057	DEBUGFS_REG32(DC_CMD_WIN_B_INCR_SYNCPT_ERROR),
1058	DEBUGFS_REG32(DC_CMD_WIN_C_INCR_SYNCPT),
1059	DEBUGFS_REG32(DC_CMD_WIN_C_INCR_SYNCPT_CNTRL),
1060	DEBUGFS_REG32(DC_CMD_WIN_C_INCR_SYNCPT_ERROR),
1061	DEBUGFS_REG32(DC_CMD_CONT_SYNCPT_VSYNC),
1062	DEBUGFS_REG32(DC_CMD_DISPLAY_COMMAND_OPTION0),
1063	DEBUGFS_REG32(DC_CMD_DISPLAY_COMMAND),
1064	DEBUGFS_REG32(DC_CMD_SIGNAL_RAISE),
1065	DEBUGFS_REG32(DC_CMD_DISPLAY_POWER_CONTROL),
1066	DEBUGFS_REG32(DC_CMD_INT_STATUS),
1067	DEBUGFS_REG32(DC_CMD_INT_MASK),
1068	DEBUGFS_REG32(DC_CMD_INT_ENABLE),
1069	DEBUGFS_REG32(DC_CMD_INT_TYPE),
1070	DEBUGFS_REG32(DC_CMD_INT_POLARITY),
1071	DEBUGFS_REG32(DC_CMD_SIGNAL_RAISE1),
1072	DEBUGFS_REG32(DC_CMD_SIGNAL_RAISE2),
1073	DEBUGFS_REG32(DC_CMD_SIGNAL_RAISE3),
1074	DEBUGFS_REG32(DC_CMD_STATE_ACCESS),
1075	DEBUGFS_REG32(DC_CMD_STATE_CONTROL),
1076	DEBUGFS_REG32(DC_CMD_DISPLAY_WINDOW_HEADER),
1077	DEBUGFS_REG32(DC_CMD_REG_ACT_CONTROL),
1078	DEBUGFS_REG32(DC_COM_CRC_CONTROL),
1079	DEBUGFS_REG32(DC_COM_CRC_CHECKSUM),
1080	DEBUGFS_REG32(DC_COM_PIN_OUTPUT_ENABLE(0)),
1081	DEBUGFS_REG32(DC_COM_PIN_OUTPUT_ENABLE(1)),
1082	DEBUGFS_REG32(DC_COM_PIN_OUTPUT_ENABLE(2)),
1083	DEBUGFS_REG32(DC_COM_PIN_OUTPUT_ENABLE(3)),
1084	DEBUGFS_REG32(DC_COM_PIN_OUTPUT_POLARITY(0)),
1085	DEBUGFS_REG32(DC_COM_PIN_OUTPUT_POLARITY(1)),
1086	DEBUGFS_REG32(DC_COM_PIN_OUTPUT_POLARITY(2)),
1087	DEBUGFS_REG32(DC_COM_PIN_OUTPUT_POLARITY(3)),
1088	DEBUGFS_REG32(DC_COM_PIN_OUTPUT_DATA(0)),
1089	DEBUGFS_REG32(DC_COM_PIN_OUTPUT_DATA(1)),
1090	DEBUGFS_REG32(DC_COM_PIN_OUTPUT_DATA(2)),
1091	DEBUGFS_REG32(DC_COM_PIN_OUTPUT_DATA(3)),
1092	DEBUGFS_REG32(DC_COM_PIN_INPUT_ENABLE(0)),
1093	DEBUGFS_REG32(DC_COM_PIN_INPUT_ENABLE(1)),
1094	DEBUGFS_REG32(DC_COM_PIN_INPUT_ENABLE(2)),
1095	DEBUGFS_REG32(DC_COM_PIN_INPUT_ENABLE(3)),
1096	DEBUGFS_REG32(DC_COM_PIN_INPUT_DATA(0)),
1097	DEBUGFS_REG32(DC_COM_PIN_INPUT_DATA(1)),
1098	DEBUGFS_REG32(DC_COM_PIN_OUTPUT_SELECT(0)),
1099	DEBUGFS_REG32(DC_COM_PIN_OUTPUT_SELECT(1)),
1100	DEBUGFS_REG32(DC_COM_PIN_OUTPUT_SELECT(2)),
1101	DEBUGFS_REG32(DC_COM_PIN_OUTPUT_SELECT(3)),
1102	DEBUGFS_REG32(DC_COM_PIN_OUTPUT_SELECT(4)),
1103	DEBUGFS_REG32(DC_COM_PIN_OUTPUT_SELECT(5)),
1104	DEBUGFS_REG32(DC_COM_PIN_OUTPUT_SELECT(6)),
1105	DEBUGFS_REG32(DC_COM_PIN_MISC_CONTROL),
1106	DEBUGFS_REG32(DC_COM_PIN_PM0_CONTROL),
1107	DEBUGFS_REG32(DC_COM_PIN_PM0_DUTY_CYCLE),
1108	DEBUGFS_REG32(DC_COM_PIN_PM1_CONTROL),
1109	DEBUGFS_REG32(DC_COM_PIN_PM1_DUTY_CYCLE),
1110	DEBUGFS_REG32(DC_COM_SPI_CONTROL),
1111	DEBUGFS_REG32(DC_COM_SPI_START_BYTE),
1112	DEBUGFS_REG32(DC_COM_HSPI_WRITE_DATA_AB),
1113	DEBUGFS_REG32(DC_COM_HSPI_WRITE_DATA_CD),
1114	DEBUGFS_REG32(DC_COM_HSPI_CS_DC),
1115	DEBUGFS_REG32(DC_COM_SCRATCH_REGISTER_A),
1116	DEBUGFS_REG32(DC_COM_SCRATCH_REGISTER_B),
1117	DEBUGFS_REG32(DC_COM_GPIO_CTRL),
1118	DEBUGFS_REG32(DC_COM_GPIO_DEBOUNCE_COUNTER),
1119	DEBUGFS_REG32(DC_COM_CRC_CHECKSUM_LATCHED),
1120	DEBUGFS_REG32(DC_DISP_DISP_SIGNAL_OPTIONS0),
1121	DEBUGFS_REG32(DC_DISP_DISP_SIGNAL_OPTIONS1),
1122	DEBUGFS_REG32(DC_DISP_DISP_WIN_OPTIONS),
1123	DEBUGFS_REG32(DC_DISP_DISP_MEM_HIGH_PRIORITY),
1124	DEBUGFS_REG32(DC_DISP_DISP_MEM_HIGH_PRIORITY_TIMER),
1125	DEBUGFS_REG32(DC_DISP_DISP_TIMING_OPTIONS),
1126	DEBUGFS_REG32(DC_DISP_REF_TO_SYNC),
1127	DEBUGFS_REG32(DC_DISP_SYNC_WIDTH),
1128	DEBUGFS_REG32(DC_DISP_BACK_PORCH),
1129	DEBUGFS_REG32(DC_DISP_ACTIVE),
1130	DEBUGFS_REG32(DC_DISP_FRONT_PORCH),
1131	DEBUGFS_REG32(DC_DISP_H_PULSE0_CONTROL),
1132	DEBUGFS_REG32(DC_DISP_H_PULSE0_POSITION_A),
1133	DEBUGFS_REG32(DC_DISP_H_PULSE0_POSITION_B),
1134	DEBUGFS_REG32(DC_DISP_H_PULSE0_POSITION_C),
1135	DEBUGFS_REG32(DC_DISP_H_PULSE0_POSITION_D),
1136	DEBUGFS_REG32(DC_DISP_H_PULSE1_CONTROL),
1137	DEBUGFS_REG32(DC_DISP_H_PULSE1_POSITION_A),
1138	DEBUGFS_REG32(DC_DISP_H_PULSE1_POSITION_B),
1139	DEBUGFS_REG32(DC_DISP_H_PULSE1_POSITION_C),
1140	DEBUGFS_REG32(DC_DISP_H_PULSE1_POSITION_D),
1141	DEBUGFS_REG32(DC_DISP_H_PULSE2_CONTROL),
1142	DEBUGFS_REG32(DC_DISP_H_PULSE2_POSITION_A),
1143	DEBUGFS_REG32(DC_DISP_H_PULSE2_POSITION_B),
1144	DEBUGFS_REG32(DC_DISP_H_PULSE2_POSITION_C),
1145	DEBUGFS_REG32(DC_DISP_H_PULSE2_POSITION_D),
1146	DEBUGFS_REG32(DC_DISP_V_PULSE0_CONTROL),
1147	DEBUGFS_REG32(DC_DISP_V_PULSE0_POSITION_A),
1148	DEBUGFS_REG32(DC_DISP_V_PULSE0_POSITION_B),
1149	DEBUGFS_REG32(DC_DISP_V_PULSE0_POSITION_C),
1150	DEBUGFS_REG32(DC_DISP_V_PULSE1_CONTROL),
1151	DEBUGFS_REG32(DC_DISP_V_PULSE1_POSITION_A),
1152	DEBUGFS_REG32(DC_DISP_V_PULSE1_POSITION_B),
1153	DEBUGFS_REG32(DC_DISP_V_PULSE1_POSITION_C),
1154	DEBUGFS_REG32(DC_DISP_V_PULSE2_CONTROL),
1155	DEBUGFS_REG32(DC_DISP_V_PULSE2_POSITION_A),
1156	DEBUGFS_REG32(DC_DISP_V_PULSE3_CONTROL),
1157	DEBUGFS_REG32(DC_DISP_V_PULSE3_POSITION_A),
1158	DEBUGFS_REG32(DC_DISP_M0_CONTROL),
1159	DEBUGFS_REG32(DC_DISP_M1_CONTROL),
1160	DEBUGFS_REG32(DC_DISP_DI_CONTROL),
1161	DEBUGFS_REG32(DC_DISP_PP_CONTROL),
1162	DEBUGFS_REG32(DC_DISP_PP_SELECT_A),
1163	DEBUGFS_REG32(DC_DISP_PP_SELECT_B),
1164	DEBUGFS_REG32(DC_DISP_PP_SELECT_C),
1165	DEBUGFS_REG32(DC_DISP_PP_SELECT_D),
1166	DEBUGFS_REG32(DC_DISP_DISP_CLOCK_CONTROL),
1167	DEBUGFS_REG32(DC_DISP_DISP_INTERFACE_CONTROL),
1168	DEBUGFS_REG32(DC_DISP_DISP_COLOR_CONTROL),
1169	DEBUGFS_REG32(DC_DISP_SHIFT_CLOCK_OPTIONS),
1170	DEBUGFS_REG32(DC_DISP_DATA_ENABLE_OPTIONS),
1171	DEBUGFS_REG32(DC_DISP_SERIAL_INTERFACE_OPTIONS),
1172	DEBUGFS_REG32(DC_DISP_LCD_SPI_OPTIONS),
1173	DEBUGFS_REG32(DC_DISP_BORDER_COLOR),
1174	DEBUGFS_REG32(DC_DISP_COLOR_KEY0_LOWER),
1175	DEBUGFS_REG32(DC_DISP_COLOR_KEY0_UPPER),
1176	DEBUGFS_REG32(DC_DISP_COLOR_KEY1_LOWER),
1177	DEBUGFS_REG32(DC_DISP_COLOR_KEY1_UPPER),
1178	DEBUGFS_REG32(DC_DISP_CURSOR_FOREGROUND),
1179	DEBUGFS_REG32(DC_DISP_CURSOR_BACKGROUND),
1180	DEBUGFS_REG32(DC_DISP_CURSOR_START_ADDR),
1181	DEBUGFS_REG32(DC_DISP_CURSOR_START_ADDR_NS),
1182	DEBUGFS_REG32(DC_DISP_CURSOR_POSITION),
1183	DEBUGFS_REG32(DC_DISP_CURSOR_POSITION_NS),
1184	DEBUGFS_REG32(DC_DISP_INIT_SEQ_CONTROL),
1185	DEBUGFS_REG32(DC_DISP_SPI_INIT_SEQ_DATA_A),
1186	DEBUGFS_REG32(DC_DISP_SPI_INIT_SEQ_DATA_B),
1187	DEBUGFS_REG32(DC_DISP_SPI_INIT_SEQ_DATA_C),
1188	DEBUGFS_REG32(DC_DISP_SPI_INIT_SEQ_DATA_D),
1189	DEBUGFS_REG32(DC_DISP_DC_MCCIF_FIFOCTRL),
1190	DEBUGFS_REG32(DC_DISP_MCCIF_DISPLAY0A_HYST),
1191	DEBUGFS_REG32(DC_DISP_MCCIF_DISPLAY0B_HYST),
1192	DEBUGFS_REG32(DC_DISP_MCCIF_DISPLAY1A_HYST),
1193	DEBUGFS_REG32(DC_DISP_MCCIF_DISPLAY1B_HYST),
1194	DEBUGFS_REG32(DC_DISP_DAC_CRT_CTRL),
1195	DEBUGFS_REG32(DC_DISP_DISP_MISC_CONTROL),
1196	DEBUGFS_REG32(DC_DISP_SD_CONTROL),
1197	DEBUGFS_REG32(DC_DISP_SD_CSC_COEFF),
1198	DEBUGFS_REG32(DC_DISP_SD_LUT(0)),
1199	DEBUGFS_REG32(DC_DISP_SD_LUT(1)),
1200	DEBUGFS_REG32(DC_DISP_SD_LUT(2)),
1201	DEBUGFS_REG32(DC_DISP_SD_LUT(3)),
1202	DEBUGFS_REG32(DC_DISP_SD_LUT(4)),
1203	DEBUGFS_REG32(DC_DISP_SD_LUT(5)),
1204	DEBUGFS_REG32(DC_DISP_SD_LUT(6)),
1205	DEBUGFS_REG32(DC_DISP_SD_LUT(7)),
1206	DEBUGFS_REG32(DC_DISP_SD_LUT(8)),
1207	DEBUGFS_REG32(DC_DISP_SD_FLICKER_CONTROL),
1208	DEBUGFS_REG32(DC_DISP_DC_PIXEL_COUNT),
1209	DEBUGFS_REG32(DC_DISP_SD_HISTOGRAM(0)),
1210	DEBUGFS_REG32(DC_DISP_SD_HISTOGRAM(1)),
1211	DEBUGFS_REG32(DC_DISP_SD_HISTOGRAM(2)),
1212	DEBUGFS_REG32(DC_DISP_SD_HISTOGRAM(3)),
1213	DEBUGFS_REG32(DC_DISP_SD_HISTOGRAM(4)),
1214	DEBUGFS_REG32(DC_DISP_SD_HISTOGRAM(5)),
1215	DEBUGFS_REG32(DC_DISP_SD_HISTOGRAM(6)),
1216	DEBUGFS_REG32(DC_DISP_SD_HISTOGRAM(7)),
1217	DEBUGFS_REG32(DC_DISP_SD_BL_TF(0)),
1218	DEBUGFS_REG32(DC_DISP_SD_BL_TF(1)),
1219	DEBUGFS_REG32(DC_DISP_SD_BL_TF(2)),
1220	DEBUGFS_REG32(DC_DISP_SD_BL_TF(3)),
1221	DEBUGFS_REG32(DC_DISP_SD_BL_CONTROL),
1222	DEBUGFS_REG32(DC_DISP_SD_HW_K_VALUES),
1223	DEBUGFS_REG32(DC_DISP_SD_MAN_K_VALUES),
1224	DEBUGFS_REG32(DC_DISP_CURSOR_START_ADDR_HI),
1225	DEBUGFS_REG32(DC_DISP_BLEND_CURSOR_CONTROL),
1226	DEBUGFS_REG32(DC_WIN_WIN_OPTIONS),
1227	DEBUGFS_REG32(DC_WIN_BYTE_SWAP),
1228	DEBUGFS_REG32(DC_WIN_BUFFER_CONTROL),
1229	DEBUGFS_REG32(DC_WIN_COLOR_DEPTH),
1230	DEBUGFS_REG32(DC_WIN_POSITION),
1231	DEBUGFS_REG32(DC_WIN_SIZE),
1232	DEBUGFS_REG32(DC_WIN_PRESCALED_SIZE),
1233	DEBUGFS_REG32(DC_WIN_H_INITIAL_DDA),
1234	DEBUGFS_REG32(DC_WIN_V_INITIAL_DDA),
1235	DEBUGFS_REG32(DC_WIN_DDA_INC),
1236	DEBUGFS_REG32(DC_WIN_LINE_STRIDE),
1237	DEBUGFS_REG32(DC_WIN_BUF_STRIDE),
1238	DEBUGFS_REG32(DC_WIN_UV_BUF_STRIDE),
1239	DEBUGFS_REG32(DC_WIN_BUFFER_ADDR_MODE),
1240	DEBUGFS_REG32(DC_WIN_DV_CONTROL),
1241	DEBUGFS_REG32(DC_WIN_BLEND_NOKEY),
1242	DEBUGFS_REG32(DC_WIN_BLEND_1WIN),
1243	DEBUGFS_REG32(DC_WIN_BLEND_2WIN_X),
1244	DEBUGFS_REG32(DC_WIN_BLEND_2WIN_Y),
1245	DEBUGFS_REG32(DC_WIN_BLEND_3WIN_XY),
1246	DEBUGFS_REG32(DC_WIN_HP_FETCH_CONTROL),
1247	DEBUGFS_REG32(DC_WINBUF_START_ADDR),
1248	DEBUGFS_REG32(DC_WINBUF_START_ADDR_NS),
1249	DEBUGFS_REG32(DC_WINBUF_START_ADDR_U),
1250	DEBUGFS_REG32(DC_WINBUF_START_ADDR_U_NS),
1251	DEBUGFS_REG32(DC_WINBUF_START_ADDR_V),
1252	DEBUGFS_REG32(DC_WINBUF_START_ADDR_V_NS),
1253	DEBUGFS_REG32(DC_WINBUF_ADDR_H_OFFSET),
1254	DEBUGFS_REG32(DC_WINBUF_ADDR_H_OFFSET_NS),
1255	DEBUGFS_REG32(DC_WINBUF_ADDR_V_OFFSET),
1256	DEBUGFS_REG32(DC_WINBUF_ADDR_V_OFFSET_NS),
1257	DEBUGFS_REG32(DC_WINBUF_UFLOW_STATUS),
1258	DEBUGFS_REG32(DC_WINBUF_AD_UFLOW_STATUS),
1259	DEBUGFS_REG32(DC_WINBUF_BD_UFLOW_STATUS),
1260	DEBUGFS_REG32(DC_WINBUF_CD_UFLOW_STATUS),
1261};
1262
1263static int tegra_dc_show_regs(struct seq_file *s, void *data)
1264{
1265	struct drm_info_node *node = s->private;
1266	struct tegra_dc *dc = node->info_ent->data;
1267	unsigned int i;
1268	int err = 0;
1269
1270	drm_modeset_lock(&dc->base.mutex, NULL);
1271
1272	if (!dc->base.state->active) {
1273		err = -EBUSY;
1274		goto unlock;
1275	}
1276
1277	for (i = 0; i < ARRAY_SIZE(tegra_dc_regs); i++) {
1278		unsigned int offset = tegra_dc_regs[i].offset;
1279
1280		seq_printf(s, "%-40s %#05x %08x\n", tegra_dc_regs[i].name,
1281			   offset, tegra_dc_readl(dc, offset));
1282	}
1283
1284unlock:
1285	drm_modeset_unlock(&dc->base.mutex);
1286	return err;
1287}
1288
1289static int tegra_dc_show_crc(struct seq_file *s, void *data)
1290{
1291	struct drm_info_node *node = s->private;
1292	struct tegra_dc *dc = node->info_ent->data;
1293	int err = 0;
1294	u32 value;
1295
1296	drm_modeset_lock(&dc->base.mutex, NULL);
1297
1298	if (!dc->base.state->active) {
1299		err = -EBUSY;
1300		goto unlock;
1301	}
1302
1303	value = DC_COM_CRC_CONTROL_ACTIVE_DATA | DC_COM_CRC_CONTROL_ENABLE;
1304	tegra_dc_writel(dc, value, DC_COM_CRC_CONTROL);
1305	tegra_dc_commit(dc);
1306
1307	drm_crtc_wait_one_vblank(&dc->base);
1308	drm_crtc_wait_one_vblank(&dc->base);
1309
1310	value = tegra_dc_readl(dc, DC_COM_CRC_CHECKSUM);
1311	seq_printf(s, "%08x\n", value);
1312
1313	tegra_dc_writel(dc, 0, DC_COM_CRC_CONTROL);
1314
1315unlock:
1316	drm_modeset_unlock(&dc->base.mutex);
1317	return err;
1318}
1319
1320static int tegra_dc_show_stats(struct seq_file *s, void *data)
1321{
1322	struct drm_info_node *node = s->private;
1323	struct tegra_dc *dc = node->info_ent->data;
1324
1325	seq_printf(s, "frames: %lu\n", dc->stats.frames);
1326	seq_printf(s, "vblank: %lu\n", dc->stats.vblank);
1327	seq_printf(s, "underflow: %lu\n", dc->stats.underflow);
1328	seq_printf(s, "overflow: %lu\n", dc->stats.overflow);
1329
1330	return 0;
1331}
1332
1333static struct drm_info_list debugfs_files[] = {
1334	{ "regs", tegra_dc_show_regs, 0, NULL },
1335	{ "crc", tegra_dc_show_crc, 0, NULL },
1336	{ "stats", tegra_dc_show_stats, 0, NULL },
1337};
1338
1339static int tegra_dc_late_register(struct drm_crtc *crtc)
1340{
1341	unsigned int i, count = ARRAY_SIZE(debugfs_files);
1342	struct drm_minor *minor = crtc->dev->primary;
1343	struct dentry *root;
1344	struct tegra_dc *dc = to_tegra_dc(crtc);
1345	int err;
1346
1347#ifdef CONFIG_DEBUG_FS
1348	root = crtc->debugfs_entry;
1349#else
1350	root = NULL;
1351#endif
1352
1353	dc->debugfs_files = kmemdup(debugfs_files, sizeof(debugfs_files),
1354				    GFP_KERNEL);
1355	if (!dc->debugfs_files)
1356		return -ENOMEM;
1357
1358	for (i = 0; i < count; i++)
1359		dc->debugfs_files[i].data = dc;
1360
1361	err = drm_debugfs_create_files(dc->debugfs_files, count, root, minor);
1362	if (err < 0)
1363		goto free;
1364
1365	return 0;
1366
1367free:
1368	kfree(dc->debugfs_files);
1369	dc->debugfs_files = NULL;
1370
1371	return err;
1372}
1373
1374static void tegra_dc_early_unregister(struct drm_crtc *crtc)
1375{
1376	unsigned int count = ARRAY_SIZE(debugfs_files);
1377	struct drm_minor *minor = crtc->dev->primary;
1378	struct tegra_dc *dc = to_tegra_dc(crtc);
1379
1380	drm_debugfs_remove_files(dc->debugfs_files, count, minor);
1381	kfree(dc->debugfs_files);
1382	dc->debugfs_files = NULL;
1383}
1384
1385static u32 tegra_dc_get_vblank_counter(struct drm_crtc *crtc)
1386{
1387	struct tegra_dc *dc = to_tegra_dc(crtc);
1388
1389	/* XXX vblank syncpoints don't work with nvdisplay yet */
1390	if (dc->syncpt && !dc->soc->has_nvdisplay)
1391		return host1x_syncpt_read(dc->syncpt);
1392
1393	/* fallback to software emulated VBLANK counter */
1394	return (u32)drm_crtc_vblank_count(&dc->base);
1395}
1396
1397static int tegra_dc_enable_vblank(struct drm_crtc *crtc)
1398{
1399	struct tegra_dc *dc = to_tegra_dc(crtc);
1400	u32 value;
1401
1402	value = tegra_dc_readl(dc, DC_CMD_INT_MASK);
1403	value |= VBLANK_INT;
1404	tegra_dc_writel(dc, value, DC_CMD_INT_MASK);
1405
1406	return 0;
1407}
1408
1409static void tegra_dc_disable_vblank(struct drm_crtc *crtc)
1410{
1411	struct tegra_dc *dc = to_tegra_dc(crtc);
1412	u32 value;
1413
1414	value = tegra_dc_readl(dc, DC_CMD_INT_MASK);
1415	value &= ~VBLANK_INT;
1416	tegra_dc_writel(dc, value, DC_CMD_INT_MASK);
1417}
1418
1419static const struct drm_crtc_funcs tegra_crtc_funcs = {
1420	.page_flip = drm_atomic_helper_page_flip,
1421	.set_config = drm_atomic_helper_set_config,
1422	.destroy = tegra_dc_destroy,
1423	.reset = tegra_crtc_reset,
1424	.atomic_duplicate_state = tegra_crtc_atomic_duplicate_state,
1425	.atomic_destroy_state = tegra_crtc_atomic_destroy_state,
1426	.late_register = tegra_dc_late_register,
1427	.early_unregister = tegra_dc_early_unregister,
1428	.get_vblank_counter = tegra_dc_get_vblank_counter,
1429	.enable_vblank = tegra_dc_enable_vblank,
1430	.disable_vblank = tegra_dc_disable_vblank,
1431};
1432
1433static int tegra_dc_set_timings(struct tegra_dc *dc,
1434				struct drm_display_mode *mode)
1435{
1436	unsigned int h_ref_to_sync = 1;
1437	unsigned int v_ref_to_sync = 1;
1438	unsigned long value;
1439
1440	if (!dc->soc->has_nvdisplay) {
1441		tegra_dc_writel(dc, 0x0, DC_DISP_DISP_TIMING_OPTIONS);
1442
1443		value = (v_ref_to_sync << 16) | h_ref_to_sync;
1444		tegra_dc_writel(dc, value, DC_DISP_REF_TO_SYNC);
1445	}
1446
1447	value = ((mode->vsync_end - mode->vsync_start) << 16) |
1448		((mode->hsync_end - mode->hsync_start) <<  0);
1449	tegra_dc_writel(dc, value, DC_DISP_SYNC_WIDTH);
1450
1451	value = ((mode->vtotal - mode->vsync_end) << 16) |
1452		((mode->htotal - mode->hsync_end) <<  0);
1453	tegra_dc_writel(dc, value, DC_DISP_BACK_PORCH);
1454
1455	value = ((mode->vsync_start - mode->vdisplay) << 16) |
1456		((mode->hsync_start - mode->hdisplay) <<  0);
1457	tegra_dc_writel(dc, value, DC_DISP_FRONT_PORCH);
1458
1459	value = (mode->vdisplay << 16) | mode->hdisplay;
1460	tegra_dc_writel(dc, value, DC_DISP_ACTIVE);
1461
1462	return 0;
1463}
1464
1465/**
1466 * tegra_dc_state_setup_clock - check clock settings and store them in atomic
1467 *     state
1468 * @dc: display controller
1469 * @crtc_state: CRTC atomic state
1470 * @clk: parent clock for display controller
1471 * @pclk: pixel clock
1472 * @div: shift clock divider
1473 *
1474 * Returns:
1475 * 0 on success or a negative error-code on failure.
1476 */
1477int tegra_dc_state_setup_clock(struct tegra_dc *dc,
1478			       struct drm_crtc_state *crtc_state,
1479			       struct clk *clk, unsigned long pclk,
1480			       unsigned int div)
1481{
1482	struct tegra_dc_state *state = to_dc_state(crtc_state);
1483
1484	if (!clk_has_parent(dc->clk, clk))
1485		return -EINVAL;
1486
1487	state->clk = clk;
1488	state->pclk = pclk;
1489	state->div = div;
1490
1491	return 0;
1492}
1493
1494static void tegra_dc_commit_state(struct tegra_dc *dc,
1495				  struct tegra_dc_state *state)
1496{
1497	u32 value;
1498	int err;
1499
1500	err = clk_set_parent(dc->clk, state->clk);
1501	if (err < 0)
1502		dev_err(dc->dev, "failed to set parent clock: %d\n", err);
1503
1504	/*
1505	 * Outputs may not want to change the parent clock rate. This is only
1506	 * relevant to Tegra20 where only a single display PLL is available.
1507	 * Since that PLL would typically be used for HDMI, an internal LVDS
1508	 * panel would need to be driven by some other clock such as PLL_P
1509	 * which is shared with other peripherals. Changing the clock rate
1510	 * should therefore be avoided.
1511	 */
1512	if (state->pclk > 0) {
1513		err = clk_set_rate(state->clk, state->pclk);
1514		if (err < 0)
1515			dev_err(dc->dev,
1516				"failed to set clock rate to %lu Hz\n",
1517				state->pclk);
1518	}
1519
1520	DRM_DEBUG_KMS("rate: %lu, div: %u\n", clk_get_rate(dc->clk),
1521		      state->div);
1522	DRM_DEBUG_KMS("pclk: %lu\n", state->pclk);
1523
1524	if (!dc->soc->has_nvdisplay) {
1525		value = SHIFT_CLK_DIVIDER(state->div) | PIXEL_CLK_DIVIDER_PCD1;
1526		tegra_dc_writel(dc, value, DC_DISP_DISP_CLOCK_CONTROL);
1527	}
1528
1529	err = clk_set_rate(dc->clk, state->pclk);
1530	if (err < 0)
1531		dev_err(dc->dev, "failed to set clock %pC to %lu Hz: %d\n",
1532			dc->clk, state->pclk, err);
1533}
1534
1535static void tegra_dc_stop(struct tegra_dc *dc)
1536{
1537	u32 value;
1538
1539	/* stop the display controller */
1540	value = tegra_dc_readl(dc, DC_CMD_DISPLAY_COMMAND);
1541	value &= ~DISP_CTRL_MODE_MASK;
1542	tegra_dc_writel(dc, value, DC_CMD_DISPLAY_COMMAND);
1543
1544	tegra_dc_commit(dc);
1545}
1546
1547static bool tegra_dc_idle(struct tegra_dc *dc)
1548{
1549	u32 value;
1550
1551	value = tegra_dc_readl_active(dc, DC_CMD_DISPLAY_COMMAND);
1552
1553	return (value & DISP_CTRL_MODE_MASK) == 0;
1554}
1555
1556static int tegra_dc_wait_idle(struct tegra_dc *dc, unsigned long timeout)
1557{
1558	timeout = jiffies + msecs_to_jiffies(timeout);
1559
1560	while (time_before(jiffies, timeout)) {
1561		if (tegra_dc_idle(dc))
1562			return 0;
1563
1564		usleep_range(1000, 2000);
1565	}
1566
1567	dev_dbg(dc->dev, "timeout waiting for DC to become idle\n");
1568	return -ETIMEDOUT;
1569}
1570
1571static void tegra_crtc_atomic_disable(struct drm_crtc *crtc,
1572				      struct drm_crtc_state *old_state)
1573{
1574	struct tegra_dc *dc = to_tegra_dc(crtc);
1575	u32 value;
1576
1577	if (!tegra_dc_idle(dc)) {
1578		tegra_dc_stop(dc);
1579
1580		/*
1581		 * Ignore the return value, there isn't anything useful to do
1582		 * in case this fails.
1583		 */
1584		tegra_dc_wait_idle(dc, 100);
1585	}
1586
1587	/*
1588	 * This should really be part of the RGB encoder driver, but clearing
1589	 * these bits has the side-effect of stopping the display controller.
1590	 * When that happens no VBLANK interrupts will be raised. At the same
1591	 * time the encoder is disabled before the display controller, so the
1592	 * above code is always going to timeout waiting for the controller
1593	 * to go idle.
1594	 *
1595	 * Given the close coupling between the RGB encoder and the display
1596	 * controller doing it here is still kind of okay. None of the other
1597	 * encoder drivers require these bits to be cleared.
1598	 *
1599	 * XXX: Perhaps given that the display controller is switched off at
1600	 * this point anyway maybe clearing these bits isn't even useful for
1601	 * the RGB encoder?
1602	 */
1603	if (dc->rgb) {
1604		value = tegra_dc_readl(dc, DC_CMD_DISPLAY_POWER_CONTROL);
1605		value &= ~(PW0_ENABLE | PW1_ENABLE | PW2_ENABLE | PW3_ENABLE |
1606			   PW4_ENABLE | PM0_ENABLE | PM1_ENABLE);
1607		tegra_dc_writel(dc, value, DC_CMD_DISPLAY_POWER_CONTROL);
1608	}
1609
1610	tegra_dc_stats_reset(&dc->stats);
1611	drm_crtc_vblank_off(crtc);
1612
1613	spin_lock_irq(&crtc->dev->event_lock);
1614
1615	if (crtc->state->event) {
1616		drm_crtc_send_vblank_event(crtc, crtc->state->event);
1617		crtc->state->event = NULL;
1618	}
1619
1620	spin_unlock_irq(&crtc->dev->event_lock);
1621
1622	pm_runtime_put_sync(dc->dev);
1623}
1624
1625static void tegra_crtc_atomic_enable(struct drm_crtc *crtc,
1626				     struct drm_crtc_state *old_state)
1627{
1628	struct drm_display_mode *mode = &crtc->state->adjusted_mode;
1629	struct tegra_dc_state *state = to_dc_state(crtc->state);
1630	struct tegra_dc *dc = to_tegra_dc(crtc);
1631	u32 value;
1632
1633	pm_runtime_get_sync(dc->dev);
1634
1635	/* initialize display controller */
1636	if (dc->syncpt) {
1637		u32 syncpt = host1x_syncpt_id(dc->syncpt), enable;
1638
1639		if (dc->soc->has_nvdisplay)
1640			enable = 1 << 31;
1641		else
1642			enable = 1 << 8;
1643
1644		value = SYNCPT_CNTRL_NO_STALL;
1645		tegra_dc_writel(dc, value, DC_CMD_GENERAL_INCR_SYNCPT_CNTRL);
1646
1647		value = enable | syncpt;
1648		tegra_dc_writel(dc, value, DC_CMD_CONT_SYNCPT_VSYNC);
1649	}
1650
1651	if (dc->soc->has_nvdisplay) {
1652		value = DSC_TO_UF_INT | DSC_BBUF_UF_INT | DSC_RBUF_UF_INT |
1653			DSC_OBUF_UF_INT;
1654		tegra_dc_writel(dc, value, DC_CMD_INT_TYPE);
1655
1656		value = DSC_TO_UF_INT | DSC_BBUF_UF_INT | DSC_RBUF_UF_INT |
1657			DSC_OBUF_UF_INT | SD3_BUCKET_WALK_DONE_INT |
1658			HEAD_UF_INT | MSF_INT | REG_TMOUT_INT |
1659			REGION_CRC_INT | V_PULSE2_INT | V_PULSE3_INT |
1660			VBLANK_INT | FRAME_END_INT;
1661		tegra_dc_writel(dc, value, DC_CMD_INT_POLARITY);
1662
1663		value = SD3_BUCKET_WALK_DONE_INT | HEAD_UF_INT | VBLANK_INT |
1664			FRAME_END_INT;
1665		tegra_dc_writel(dc, value, DC_CMD_INT_ENABLE);
1666
1667		value = HEAD_UF_INT | REG_TMOUT_INT | FRAME_END_INT;
1668		tegra_dc_writel(dc, value, DC_CMD_INT_MASK);
1669
1670		tegra_dc_writel(dc, READ_MUX, DC_CMD_STATE_ACCESS);
1671	} else {
1672		value = WIN_A_UF_INT | WIN_B_UF_INT | WIN_C_UF_INT |
1673			WIN_A_OF_INT | WIN_B_OF_INT | WIN_C_OF_INT;
1674		tegra_dc_writel(dc, value, DC_CMD_INT_TYPE);
1675
1676		value = WIN_A_UF_INT | WIN_B_UF_INT | WIN_C_UF_INT |
1677			WIN_A_OF_INT | WIN_B_OF_INT | WIN_C_OF_INT;
1678		tegra_dc_writel(dc, value, DC_CMD_INT_POLARITY);
1679
1680		/* initialize timer */
1681		value = CURSOR_THRESHOLD(0) | WINDOW_A_THRESHOLD(0x20) |
1682			WINDOW_B_THRESHOLD(0x20) | WINDOW_C_THRESHOLD(0x20);
1683		tegra_dc_writel(dc, value, DC_DISP_DISP_MEM_HIGH_PRIORITY);
1684
1685		value = CURSOR_THRESHOLD(0) | WINDOW_A_THRESHOLD(1) |
1686			WINDOW_B_THRESHOLD(1) | WINDOW_C_THRESHOLD(1);
1687		tegra_dc_writel(dc, value, DC_DISP_DISP_MEM_HIGH_PRIORITY_TIMER);
1688
1689		value = VBLANK_INT | WIN_A_UF_INT | WIN_B_UF_INT | WIN_C_UF_INT |
1690			WIN_A_OF_INT | WIN_B_OF_INT | WIN_C_OF_INT;
1691		tegra_dc_writel(dc, value, DC_CMD_INT_ENABLE);
1692
1693		value = WIN_A_UF_INT | WIN_B_UF_INT | WIN_C_UF_INT |
1694			WIN_A_OF_INT | WIN_B_OF_INT | WIN_C_OF_INT;
1695		tegra_dc_writel(dc, value, DC_CMD_INT_MASK);
1696	}
1697
1698	if (dc->soc->supports_background_color)
1699		tegra_dc_writel(dc, 0, DC_DISP_BLEND_BACKGROUND_COLOR);
1700	else
1701		tegra_dc_writel(dc, 0, DC_DISP_BORDER_COLOR);
1702
1703	/* apply PLL and pixel clock changes */
1704	tegra_dc_commit_state(dc, state);
1705
1706	/* program display mode */
1707	tegra_dc_set_timings(dc, mode);
1708
1709	/* interlacing isn't supported yet, so disable it */
1710	if (dc->soc->supports_interlacing) {
1711		value = tegra_dc_readl(dc, DC_DISP_INTERLACE_CONTROL);
1712		value &= ~INTERLACE_ENABLE;
1713		tegra_dc_writel(dc, value, DC_DISP_INTERLACE_CONTROL);
1714	}
1715
1716	value = tegra_dc_readl(dc, DC_CMD_DISPLAY_COMMAND);
1717	value &= ~DISP_CTRL_MODE_MASK;
1718	value |= DISP_CTRL_MODE_C_DISPLAY;
1719	tegra_dc_writel(dc, value, DC_CMD_DISPLAY_COMMAND);
1720
1721	if (!dc->soc->has_nvdisplay) {
1722		value = tegra_dc_readl(dc, DC_CMD_DISPLAY_POWER_CONTROL);
1723		value |= PW0_ENABLE | PW1_ENABLE | PW2_ENABLE | PW3_ENABLE |
1724			 PW4_ENABLE | PM0_ENABLE | PM1_ENABLE;
1725		tegra_dc_writel(dc, value, DC_CMD_DISPLAY_POWER_CONTROL);
1726	}
1727
1728	/* enable underflow reporting and display red for missing pixels */
1729	if (dc->soc->has_nvdisplay) {
1730		value = UNDERFLOW_MODE_RED | UNDERFLOW_REPORT_ENABLE;
1731		tegra_dc_writel(dc, value, DC_COM_RG_UNDERFLOW);
1732	}
1733
1734	tegra_dc_commit(dc);
1735
1736	drm_crtc_vblank_on(crtc);
1737}
1738
1739static void tegra_crtc_atomic_begin(struct drm_crtc *crtc,
1740				    struct drm_crtc_state *old_crtc_state)
1741{
1742	unsigned long flags;
1743
1744	if (crtc->state->event) {
1745		spin_lock_irqsave(&crtc->dev->event_lock, flags);
1746
1747		if (drm_crtc_vblank_get(crtc) != 0)
1748			drm_crtc_send_vblank_event(crtc, crtc->state->event);
1749		else
1750			drm_crtc_arm_vblank_event(crtc, crtc->state->event);
1751
1752		spin_unlock_irqrestore(&crtc->dev->event_lock, flags);
1753
1754		crtc->state->event = NULL;
1755	}
1756}
1757
1758static void tegra_crtc_atomic_flush(struct drm_crtc *crtc,
1759				    struct drm_crtc_state *old_crtc_state)
1760{
1761	struct tegra_dc_state *state = to_dc_state(crtc->state);
1762	struct tegra_dc *dc = to_tegra_dc(crtc);
1763	u32 value;
1764
1765	value = state->planes << 8 | GENERAL_UPDATE;
1766	tegra_dc_writel(dc, value, DC_CMD_STATE_CONTROL);
1767	value = tegra_dc_readl(dc, DC_CMD_STATE_CONTROL);
1768
1769	value = state->planes | GENERAL_ACT_REQ;
1770	tegra_dc_writel(dc, value, DC_CMD_STATE_CONTROL);
1771	value = tegra_dc_readl(dc, DC_CMD_STATE_CONTROL);
1772}
1773
1774static const struct drm_crtc_helper_funcs tegra_crtc_helper_funcs = {
1775	.atomic_begin = tegra_crtc_atomic_begin,
1776	.atomic_flush = tegra_crtc_atomic_flush,
1777	.atomic_enable = tegra_crtc_atomic_enable,
1778	.atomic_disable = tegra_crtc_atomic_disable,
1779};
1780
1781static irqreturn_t tegra_dc_irq(int irq, void *data)
1782{
1783	struct tegra_dc *dc = data;
1784	unsigned long status;
1785
1786	status = tegra_dc_readl(dc, DC_CMD_INT_STATUS);
1787	tegra_dc_writel(dc, status, DC_CMD_INT_STATUS);
1788
1789	if (status & FRAME_END_INT) {
1790		/*
1791		dev_dbg(dc->dev, "%s(): frame end\n", __func__);
1792		*/
1793		dc->stats.frames++;
1794	}
1795
1796	if (status & VBLANK_INT) {
1797		/*
1798		dev_dbg(dc->dev, "%s(): vertical blank\n", __func__);
1799		*/
1800		drm_crtc_handle_vblank(&dc->base);
1801		dc->stats.vblank++;
1802	}
1803
1804	if (status & (WIN_A_UF_INT | WIN_B_UF_INT | WIN_C_UF_INT)) {
1805		/*
1806		dev_dbg(dc->dev, "%s(): underflow\n", __func__);
1807		*/
1808		dc->stats.underflow++;
1809	}
1810
1811	if (status & (WIN_A_OF_INT | WIN_B_OF_INT | WIN_C_OF_INT)) {
1812		/*
1813		dev_dbg(dc->dev, "%s(): overflow\n", __func__);
1814		*/
1815		dc->stats.overflow++;
1816	}
1817
1818	if (status & HEAD_UF_INT) {
1819		dev_dbg_ratelimited(dc->dev, "%s(): head underflow\n", __func__);
1820		dc->stats.underflow++;
1821	}
1822
1823	return IRQ_HANDLED;
1824}
1825
1826static int tegra_dc_init(struct host1x_client *client)
1827{
1828	struct drm_device *drm = dev_get_drvdata(client->parent);
1829	struct iommu_group *group = iommu_group_get(client->dev);
1830	unsigned long flags = HOST1X_SYNCPT_CLIENT_MANAGED;
1831	struct tegra_dc *dc = host1x_client_to_dc(client);
1832	struct tegra_drm *tegra = drm->dev_private;
1833	struct drm_plane *primary = NULL;
1834	struct drm_plane *cursor = NULL;
1835	int err;
1836
1837	dc->syncpt = host1x_syncpt_request(client, flags);
1838	if (!dc->syncpt)
1839		dev_warn(dc->dev, "failed to allocate syncpoint\n");
1840
1841	if (group && tegra->domain) {
1842		if (group != tegra->group) {
1843			err = iommu_attach_group(tegra->domain, group);
1844			if (err < 0) {
1845				dev_err(dc->dev,
1846					"failed to attach to domain: %d\n",
1847					err);
1848				return err;
1849			}
1850
1851			tegra->group = group;
1852		}
1853
1854		dc->domain = tegra->domain;
1855	}
1856
1857	if (dc->soc->wgrps)
1858		primary = tegra_dc_add_shared_planes(drm, dc);
1859	else
1860		primary = tegra_dc_add_planes(drm, dc);
1861
1862	if (IS_ERR(primary)) {
1863		err = PTR_ERR(primary);
1864		goto cleanup;
1865	}
1866
1867	if (dc->soc->supports_cursor) {
1868		cursor = tegra_dc_cursor_plane_create(drm, dc);
1869		if (IS_ERR(cursor)) {
1870			err = PTR_ERR(cursor);
1871			goto cleanup;
1872		}
1873	} else {
1874		/* dedicate one overlay to mouse cursor */
1875		cursor = tegra_dc_overlay_plane_create(drm, dc, 2, true);
1876		if (IS_ERR(cursor)) {
1877			err = PTR_ERR(cursor);
1878			goto cleanup;
1879		}
1880	}
1881
1882	err = drm_crtc_init_with_planes(drm, &dc->base, primary, cursor,
1883					&tegra_crtc_funcs, NULL);
1884	if (err < 0)
1885		goto cleanup;
1886
1887	drm_crtc_helper_add(&dc->base, &tegra_crtc_helper_funcs);
1888
1889	/*
1890	 * Keep track of the minimum pitch alignment across all display
1891	 * controllers.
1892	 */
1893	if (dc->soc->pitch_align > tegra->pitch_align)
1894		tegra->pitch_align = dc->soc->pitch_align;
1895
1896	err = tegra_dc_rgb_init(drm, dc);
1897	if (err < 0 && err != -ENODEV) {
1898		dev_err(dc->dev, "failed to initialize RGB output: %d\n", err);
1899		goto cleanup;
1900	}
1901
1902	err = devm_request_irq(dc->dev, dc->irq, tegra_dc_irq, 0,
1903			       dev_name(dc->dev), dc);
1904	if (err < 0) {
1905		dev_err(dc->dev, "failed to request IRQ#%u: %d\n", dc->irq,
1906			err);
1907		goto cleanup;
1908	}
1909
1910	return 0;
1911
1912cleanup:
1913	if (!IS_ERR_OR_NULL(cursor))
1914		drm_plane_cleanup(cursor);
1915
1916	if (!IS_ERR(primary))
1917		drm_plane_cleanup(primary);
1918
1919	if (group && dc->domain) {
1920		if (group == tegra->group) {
1921			iommu_detach_group(dc->domain, group);
1922			tegra->group = NULL;
1923		}
1924
1925		dc->domain = NULL;
1926	}
1927
1928	return err;
1929}
1930
1931static int tegra_dc_exit(struct host1x_client *client)
1932{
1933	struct drm_device *drm = dev_get_drvdata(client->parent);
1934	struct iommu_group *group = iommu_group_get(client->dev);
1935	struct tegra_dc *dc = host1x_client_to_dc(client);
1936	struct tegra_drm *tegra = drm->dev_private;
1937	int err;
1938
1939	devm_free_irq(dc->dev, dc->irq, dc);
1940
1941	err = tegra_dc_rgb_exit(dc);
1942	if (err) {
1943		dev_err(dc->dev, "failed to shutdown RGB output: %d\n", err);
1944		return err;
1945	}
1946
1947	if (group && dc->domain) {
1948		if (group == tegra->group) {
1949			iommu_detach_group(dc->domain, group);
1950			tegra->group = NULL;
1951		}
1952
1953		dc->domain = NULL;
1954	}
1955
1956	host1x_syncpt_free(dc->syncpt);
1957
1958	return 0;
1959}
1960
1961static const struct host1x_client_ops dc_client_ops = {
1962	.init = tegra_dc_init,
1963	.exit = tegra_dc_exit,
1964};
1965
1966static const struct tegra_dc_soc_info tegra20_dc_soc_info = {
1967	.supports_background_color = false,
1968	.supports_interlacing = false,
1969	.supports_cursor = false,
1970	.supports_block_linear = false,
1971	.supports_blending = false,
1972	.pitch_align = 8,
1973	.has_powergate = false,
1974	.coupled_pm = true,
1975	.has_nvdisplay = false,
1976	.num_primary_formats = ARRAY_SIZE(tegra20_primary_formats),
1977	.primary_formats = tegra20_primary_formats,
1978	.num_overlay_formats = ARRAY_SIZE(tegra20_overlay_formats),
1979	.overlay_formats = tegra20_overlay_formats,
1980	.modifiers = tegra20_modifiers,
1981};
1982
1983static const struct tegra_dc_soc_info tegra30_dc_soc_info = {
1984	.supports_background_color = false,
1985	.supports_interlacing = false,
1986	.supports_cursor = false,
1987	.supports_block_linear = false,
1988	.supports_blending = false,
1989	.pitch_align = 8,
1990	.has_powergate = false,
1991	.coupled_pm = false,
1992	.has_nvdisplay = false,
1993	.num_primary_formats = ARRAY_SIZE(tegra20_primary_formats),
1994	.primary_formats = tegra20_primary_formats,
1995	.num_overlay_formats = ARRAY_SIZE(tegra20_overlay_formats),
1996	.overlay_formats = tegra20_overlay_formats,
1997	.modifiers = tegra20_modifiers,
1998};
1999
2000static const struct tegra_dc_soc_info tegra114_dc_soc_info = {
2001	.supports_background_color = false,
2002	.supports_interlacing = false,
2003	.supports_cursor = false,
2004	.supports_block_linear = false,
2005	.supports_blending = false,
2006	.pitch_align = 64,
2007	.has_powergate = true,
2008	.coupled_pm = false,
2009	.has_nvdisplay = false,
2010	.num_primary_formats = ARRAY_SIZE(tegra114_primary_formats),
2011	.primary_formats = tegra114_primary_formats,
2012	.num_overlay_formats = ARRAY_SIZE(tegra114_overlay_formats),
2013	.overlay_formats = tegra114_overlay_formats,
2014	.modifiers = tegra20_modifiers,
2015};
2016
2017static const struct tegra_dc_soc_info tegra124_dc_soc_info = {
2018	.supports_background_color = true,
2019	.supports_interlacing = true,
2020	.supports_cursor = true,
2021	.supports_block_linear = true,
2022	.supports_blending = true,
2023	.pitch_align = 64,
2024	.has_powergate = true,
2025	.coupled_pm = false,
2026	.has_nvdisplay = false,
2027	.num_primary_formats = ARRAY_SIZE(tegra124_primary_formats),
2028	.primary_formats = tegra124_primary_formats,
2029	.num_overlay_formats = ARRAY_SIZE(tegra124_overlay_formats),
2030	.overlay_formats = tegra124_overlay_formats,
2031	.modifiers = tegra124_modifiers,
2032};
2033
2034static const struct tegra_dc_soc_info tegra210_dc_soc_info = {
2035	.supports_background_color = true,
2036	.supports_interlacing = true,
2037	.supports_cursor = true,
2038	.supports_block_linear = true,
2039	.supports_blending = true,
2040	.pitch_align = 64,
2041	.has_powergate = true,
2042	.coupled_pm = false,
2043	.has_nvdisplay = false,
2044	.num_primary_formats = ARRAY_SIZE(tegra114_primary_formats),
2045	.primary_formats = tegra114_primary_formats,
2046	.num_overlay_formats = ARRAY_SIZE(tegra114_overlay_formats),
2047	.overlay_formats = tegra114_overlay_formats,
2048	.modifiers = tegra124_modifiers,
2049};
2050
2051static const struct tegra_windowgroup_soc tegra186_dc_wgrps[] = {
2052	{
2053		.index = 0,
2054		.dc = 0,
2055		.windows = (const unsigned int[]) { 0 },
2056		.num_windows = 1,
2057	}, {
2058		.index = 1,
2059		.dc = 1,
2060		.windows = (const unsigned int[]) { 1 },
2061		.num_windows = 1,
2062	}, {
2063		.index = 2,
2064		.dc = 1,
2065		.windows = (const unsigned int[]) { 2 },
2066		.num_windows = 1,
2067	}, {
2068		.index = 3,
2069		.dc = 2,
2070		.windows = (const unsigned int[]) { 3 },
2071		.num_windows = 1,
2072	}, {
2073		.index = 4,
2074		.dc = 2,
2075		.windows = (const unsigned int[]) { 4 },
2076		.num_windows = 1,
2077	}, {
2078		.index = 5,
2079		.dc = 2,
2080		.windows = (const unsigned int[]) { 5 },
2081		.num_windows = 1,
2082	},
2083};
2084
2085static const struct tegra_dc_soc_info tegra186_dc_soc_info = {
2086	.supports_background_color = true,
2087	.supports_interlacing = true,
2088	.supports_cursor = true,
2089	.supports_block_linear = true,
2090	.supports_blending = true,
2091	.pitch_align = 64,
2092	.has_powergate = false,
2093	.coupled_pm = false,
2094	.has_nvdisplay = true,
2095	.wgrps = tegra186_dc_wgrps,
2096	.num_wgrps = ARRAY_SIZE(tegra186_dc_wgrps),
2097};
2098
2099static const struct of_device_id tegra_dc_of_match[] = {
2100	{
2101		.compatible = "nvidia,tegra186-dc",
2102		.data = &tegra186_dc_soc_info,
2103	}, {
2104		.compatible = "nvidia,tegra210-dc",
2105		.data = &tegra210_dc_soc_info,
2106	}, {
2107		.compatible = "nvidia,tegra124-dc",
2108		.data = &tegra124_dc_soc_info,
2109	}, {
2110		.compatible = "nvidia,tegra114-dc",
2111		.data = &tegra114_dc_soc_info,
2112	}, {
2113		.compatible = "nvidia,tegra30-dc",
2114		.data = &tegra30_dc_soc_info,
2115	}, {
2116		.compatible = "nvidia,tegra20-dc",
2117		.data = &tegra20_dc_soc_info,
2118	}, {
2119		/* sentinel */
2120	}
2121};
2122MODULE_DEVICE_TABLE(of, tegra_dc_of_match);
2123
2124static int tegra_dc_parse_dt(struct tegra_dc *dc)
2125{
2126	struct device_node *np;
2127	u32 value = 0;
2128	int err;
2129
2130	err = of_property_read_u32(dc->dev->of_node, "nvidia,head", &value);
2131	if (err < 0) {
2132		dev_err(dc->dev, "missing \"nvidia,head\" property\n");
2133
2134		/*
2135		 * If the nvidia,head property isn't present, try to find the
2136		 * correct head number by looking up the position of this
2137		 * display controller's node within the device tree. Assuming
2138		 * that the nodes are ordered properly in the DTS file and
2139		 * that the translation into a flattened device tree blob
2140		 * preserves that ordering this will actually yield the right
2141		 * head number.
2142		 *
2143		 * If those assumptions don't hold, this will still work for
2144		 * cases where only a single display controller is used.
2145		 */
2146		for_each_matching_node(np, tegra_dc_of_match) {
2147			if (np == dc->dev->of_node) {
2148				of_node_put(np);
2149				break;
2150			}
2151
2152			value++;
2153		}
2154	}
2155
2156	dc->pipe = value;
2157
2158	return 0;
2159}
2160
2161static int tegra_dc_match_by_pipe(struct device *dev, void *data)
2162{
2163	struct tegra_dc *dc = dev_get_drvdata(dev);
2164	unsigned int pipe = (unsigned long)data;
2165
2166	return dc->pipe == pipe;
2167}
2168
2169static int tegra_dc_couple(struct tegra_dc *dc)
2170{
2171	/*
2172	 * On Tegra20, DC1 requires DC0 to be taken out of reset in order to
2173	 * be enabled, otherwise CPU hangs on writing to CMD_DISPLAY_COMMAND /
2174	 * POWER_CONTROL registers during CRTC enabling.
2175	 */
2176	if (dc->soc->coupled_pm && dc->pipe == 1) {
2177		u32 flags = DL_FLAG_PM_RUNTIME | DL_FLAG_AUTOREMOVE;
2178		struct device_link *link;
2179		struct device *partner;
2180
2181		partner = driver_find_device(dc->dev->driver, NULL, NULL,
2182					     tegra_dc_match_by_pipe);
2183		if (!partner)
2184			return -EPROBE_DEFER;
2185
2186		link = device_link_add(dc->dev, partner, flags);
2187		if (!link) {
2188			dev_err(dc->dev, "failed to link controllers\n");
2189			return -EINVAL;
2190		}
2191
2192		dev_dbg(dc->dev, "coupled to %s\n", dev_name(partner));
2193	}
2194
2195	return 0;
2196}
2197
2198static int tegra_dc_probe(struct platform_device *pdev)
2199{
2200	struct resource *regs;
2201	struct tegra_dc *dc;
2202	int err;
2203
2204	dc = devm_kzalloc(&pdev->dev, sizeof(*dc), GFP_KERNEL);
2205	if (!dc)
2206		return -ENOMEM;
2207
2208	dc->soc = of_device_get_match_data(&pdev->dev);
2209
2210	INIT_LIST_HEAD(&dc->list);
2211	dc->dev = &pdev->dev;
2212
2213	err = tegra_dc_parse_dt(dc);
2214	if (err < 0)
2215		return err;
2216
2217	err = tegra_dc_couple(dc);
2218	if (err < 0)
2219		return err;
2220
2221	dc->clk = devm_clk_get(&pdev->dev, NULL);
2222	if (IS_ERR(dc->clk)) {
2223		dev_err(&pdev->dev, "failed to get clock\n");
2224		return PTR_ERR(dc->clk);
2225	}
2226
2227	dc->rst = devm_reset_control_get(&pdev->dev, "dc");
2228	if (IS_ERR(dc->rst)) {
2229		dev_err(&pdev->dev, "failed to get reset\n");
2230		return PTR_ERR(dc->rst);
2231	}
2232
2233	/* assert reset and disable clock */
2234	err = clk_prepare_enable(dc->clk);
2235	if (err < 0)
2236		return err;
2237
2238	usleep_range(2000, 4000);
2239
2240	err = reset_control_assert(dc->rst);
2241	if (err < 0)
2242		return err;
2243
2244	usleep_range(2000, 4000);
2245
2246	clk_disable_unprepare(dc->clk);
2247
2248	if (dc->soc->has_powergate) {
2249		if (dc->pipe == 0)
2250			dc->powergate = TEGRA_POWERGATE_DIS;
2251		else
2252			dc->powergate = TEGRA_POWERGATE_DISB;
2253
2254		tegra_powergate_power_off(dc->powergate);
2255	}
2256
2257	regs = platform_get_resource(pdev, IORESOURCE_MEM, 0);
2258	dc->regs = devm_ioremap_resource(&pdev->dev, regs);
2259	if (IS_ERR(dc->regs))
2260		return PTR_ERR(dc->regs);
2261
2262	dc->irq = platform_get_irq(pdev, 0);
2263	if (dc->irq < 0) {
2264		dev_err(&pdev->dev, "failed to get IRQ\n");
2265		return -ENXIO;
2266	}
2267
2268	err = tegra_dc_rgb_probe(dc);
2269	if (err < 0 && err != -ENODEV) {
2270		dev_err(&pdev->dev, "failed to probe RGB output: %d\n", err);
2271		return err;
2272	}
2273
2274	platform_set_drvdata(pdev, dc);
2275	pm_runtime_enable(&pdev->dev);
2276
2277	INIT_LIST_HEAD(&dc->client.list);
2278	dc->client.ops = &dc_client_ops;
2279	dc->client.dev = &pdev->dev;
2280
2281	err = host1x_client_register(&dc->client);
2282	if (err < 0) {
2283		dev_err(&pdev->dev, "failed to register host1x client: %d\n",
2284			err);
2285		return err;
2286	}
2287
2288	return 0;
2289}
2290
2291static int tegra_dc_remove(struct platform_device *pdev)
2292{
2293	struct tegra_dc *dc = platform_get_drvdata(pdev);
2294	int err;
2295
2296	err = host1x_client_unregister(&dc->client);
2297	if (err < 0) {
2298		dev_err(&pdev->dev, "failed to unregister host1x client: %d\n",
2299			err);
2300		return err;
2301	}
2302
2303	err = tegra_dc_rgb_remove(dc);
2304	if (err < 0) {
2305		dev_err(&pdev->dev, "failed to remove RGB output: %d\n", err);
2306		return err;
2307	}
2308
2309	pm_runtime_disable(&pdev->dev);
2310
2311	return 0;
2312}
2313
2314#ifdef CONFIG_PM
2315static int tegra_dc_suspend(struct device *dev)
2316{
2317	struct tegra_dc *dc = dev_get_drvdata(dev);
2318	int err;
2319
2320	err = reset_control_assert(dc->rst);
2321	if (err < 0) {
2322		dev_err(dev, "failed to assert reset: %d\n", err);
2323		return err;
2324	}
2325
2326	if (dc->soc->has_powergate)
2327		tegra_powergate_power_off(dc->powergate);
2328
2329	clk_disable_unprepare(dc->clk);
2330
2331	return 0;
2332}
2333
2334static int tegra_dc_resume(struct device *dev)
2335{
2336	struct tegra_dc *dc = dev_get_drvdata(dev);
2337	int err;
2338
2339	if (dc->soc->has_powergate) {
2340		err = tegra_powergate_sequence_power_up(dc->powergate, dc->clk,
2341							dc->rst);
2342		if (err < 0) {
2343			dev_err(dev, "failed to power partition: %d\n", err);
2344			return err;
2345		}
2346	} else {
2347		err = clk_prepare_enable(dc->clk);
2348		if (err < 0) {
2349			dev_err(dev, "failed to enable clock: %d\n", err);
2350			return err;
2351		}
2352
2353		err = reset_control_deassert(dc->rst);
2354		if (err < 0) {
2355			dev_err(dev, "failed to deassert reset: %d\n", err);
2356			return err;
2357		}
2358	}
2359
2360	return 0;
2361}
2362#endif
2363
2364static const struct dev_pm_ops tegra_dc_pm_ops = {
2365	SET_RUNTIME_PM_OPS(tegra_dc_suspend, tegra_dc_resume, NULL)
2366};
2367
2368struct platform_driver tegra_dc_driver = {
2369	.driver = {
2370		.name = "tegra-dc",
2371		.of_match_table = tegra_dc_of_match,
2372		.pm = &tegra_dc_pm_ops,
2373	},
2374	.probe = tegra_dc_probe,
2375	.remove = tegra_dc_remove,
2376};