Linux Audio

Check our new training course

Loading...
v3.1
 
   1/*
   2 * Copyright (C) 2007 Oracle.  All rights reserved.
   3 *
   4 * This program is free software; you can redistribute it and/or
   5 * modify it under the terms of the GNU General Public
   6 * License v2 as published by the Free Software Foundation.
   7 *
   8 * This program is distributed in the hope that it will be useful,
   9 * but WITHOUT ANY WARRANTY; without even the implied warranty of
  10 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the GNU
  11 * General Public License for more details.
  12 *
  13 * You should have received a copy of the GNU General Public
  14 * License along with this program; if not, write to the
  15 * Free Software Foundation, Inc., 59 Temple Place - Suite 330,
  16 * Boston, MA 021110-1307, USA.
  17 */
  18
  19#include <linux/fs.h>
  20#include <linux/pagemap.h>
  21#include <linux/highmem.h>
  22#include <linux/time.h>
  23#include <linux/init.h>
  24#include <linux/string.h>
  25#include <linux/backing-dev.h>
  26#include <linux/mpage.h>
  27#include <linux/falloc.h>
  28#include <linux/swap.h>
  29#include <linux/writeback.h>
  30#include <linux/statfs.h>
  31#include <linux/compat.h>
  32#include <linux/slab.h>
 
 
 
  33#include "ctree.h"
  34#include "disk-io.h"
  35#include "transaction.h"
  36#include "btrfs_inode.h"
  37#include "ioctl.h"
  38#include "print-tree.h"
  39#include "tree-log.h"
  40#include "locking.h"
  41#include "compat.h"
 
 
 
 
  42
 
  43/*
  44 * when auto defrag is enabled we
  45 * queue up these defrag structs to remember which
  46 * inodes need defragging passes
  47 */
  48struct inode_defrag {
  49	struct rb_node rb_node;
  50	/* objectid */
  51	u64 ino;
  52	/*
  53	 * transid where the defrag was added, we search for
  54	 * extents newer than this
  55	 */
  56	u64 transid;
  57
  58	/* root objectid */
  59	u64 root;
  60
  61	/* last offset we were able to defrag */
  62	u64 last_offset;
  63
  64	/* if we've wrapped around back to zero once already */
  65	int cycled;
  66};
  67
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
  68/* pop a record for an inode into the defrag tree.  The lock
  69 * must be held already
  70 *
  71 * If you're inserting a record for an older transid than an
  72 * existing record, the transid already in the tree is lowered
  73 *
  74 * If an existing record is found the defrag item you
  75 * pass in is freed
  76 */
  77static void __btrfs_add_inode_defrag(struct inode *inode,
  78				    struct inode_defrag *defrag)
  79{
  80	struct btrfs_root *root = BTRFS_I(inode)->root;
  81	struct inode_defrag *entry;
  82	struct rb_node **p;
  83	struct rb_node *parent = NULL;
 
  84
  85	p = &root->fs_info->defrag_inodes.rb_node;
  86	while (*p) {
  87		parent = *p;
  88		entry = rb_entry(parent, struct inode_defrag, rb_node);
  89
  90		if (defrag->ino < entry->ino)
 
  91			p = &parent->rb_left;
  92		else if (defrag->ino > entry->ino)
  93			p = &parent->rb_right;
  94		else {
  95			/* if we're reinserting an entry for
  96			 * an old defrag run, make sure to
  97			 * lower the transid of our existing record
  98			 */
  99			if (defrag->transid < entry->transid)
 100				entry->transid = defrag->transid;
 101			if (defrag->last_offset > entry->last_offset)
 102				entry->last_offset = defrag->last_offset;
 103			goto exists;
 104		}
 105	}
 106	BTRFS_I(inode)->in_defrag = 1;
 107	rb_link_node(&defrag->rb_node, parent, p);
 108	rb_insert_color(&defrag->rb_node, &root->fs_info->defrag_inodes);
 109	return;
 
 110
 111exists:
 112	kfree(defrag);
 113	return;
 
 
 
 
 114
 
 115}
 116
 117/*
 118 * insert a defrag record for this inode if auto defrag is
 119 * enabled
 120 */
 121int btrfs_add_inode_defrag(struct btrfs_trans_handle *trans,
 122			   struct inode *inode)
 123{
 124	struct btrfs_root *root = BTRFS_I(inode)->root;
 
 125	struct inode_defrag *defrag;
 126	u64 transid;
 
 127
 128	if (!btrfs_test_opt(root, AUTO_DEFRAG))
 129		return 0;
 130
 131	if (btrfs_fs_closing(root->fs_info))
 132		return 0;
 133
 134	if (BTRFS_I(inode)->in_defrag)
 135		return 0;
 136
 137	if (trans)
 138		transid = trans->transid;
 139	else
 140		transid = BTRFS_I(inode)->root->last_trans;
 141
 142	defrag = kzalloc(sizeof(*defrag), GFP_NOFS);
 143	if (!defrag)
 144		return -ENOMEM;
 145
 146	defrag->ino = btrfs_ino(inode);
 147	defrag->transid = transid;
 148	defrag->root = root->root_key.objectid;
 149
 150	spin_lock(&root->fs_info->defrag_inodes_lock);
 151	if (!BTRFS_I(inode)->in_defrag)
 152		__btrfs_add_inode_defrag(inode, defrag);
 153	else
 154		kfree(defrag);
 155	spin_unlock(&root->fs_info->defrag_inodes_lock);
 
 
 
 
 
 
 
 
 156	return 0;
 157}
 158
 159/*
 160 * must be called with the defrag_inodes lock held
 
 
 161 */
 162struct inode_defrag *btrfs_find_defrag_inode(struct btrfs_fs_info *info, u64 ino,
 163					     struct rb_node **next)
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 164{
 165	struct inode_defrag *entry = NULL;
 
 166	struct rb_node *p;
 167	struct rb_node *parent = NULL;
 
 
 
 
 168
 169	p = info->defrag_inodes.rb_node;
 
 170	while (p) {
 171		parent = p;
 172		entry = rb_entry(parent, struct inode_defrag, rb_node);
 173
 174		if (ino < entry->ino)
 
 175			p = parent->rb_left;
 176		else if (ino > entry->ino)
 177			p = parent->rb_right;
 178		else
 179			return entry;
 180	}
 181
 182	if (next) {
 183		while (parent && ino > entry->ino) {
 184			parent = rb_next(parent);
 185			entry = rb_entry(parent, struct inode_defrag, rb_node);
 186		}
 187		*next = parent;
 188	}
 189	return NULL;
 
 
 
 
 190}
 191
 192/*
 193 * run through the list of inodes in the FS that need
 194 * defragging
 195 */
 196int btrfs_run_defrag_inodes(struct btrfs_fs_info *fs_info)
 197{
 198	struct inode_defrag *defrag;
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 199	struct btrfs_root *inode_root;
 200	struct inode *inode;
 201	struct rb_node *n;
 202	struct btrfs_key key;
 203	struct btrfs_ioctl_defrag_range_args range;
 204	u64 first_ino = 0;
 205	int num_defrag;
 206	int defrag_batch = 1024;
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 207
 
 
 208	memset(&range, 0, sizeof(range));
 209	range.len = (u64)-1;
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 210
 211	atomic_inc(&fs_info->defrag_running);
 212	spin_lock(&fs_info->defrag_inodes_lock);
 213	while(1) {
 214		n = NULL;
 
 
 
 
 
 215
 216		/* find an inode to defrag */
 217		defrag = btrfs_find_defrag_inode(fs_info, first_ino, &n);
 
 218		if (!defrag) {
 219			if (n)
 220				defrag = rb_entry(n, struct inode_defrag, rb_node);
 221			else if (first_ino) {
 222				first_ino = 0;
 223				continue;
 224			} else {
 225				break;
 226			}
 227		}
 228
 229		/* remove it from the rbtree */
 230		first_ino = defrag->ino + 1;
 231		rb_erase(&defrag->rb_node, &fs_info->defrag_inodes);
 232
 233		if (btrfs_fs_closing(fs_info))
 234			goto next_free;
 235
 236		spin_unlock(&fs_info->defrag_inodes_lock);
 237
 238		/* get the inode */
 239		key.objectid = defrag->root;
 240		btrfs_set_key_type(&key, BTRFS_ROOT_ITEM_KEY);
 241		key.offset = (u64)-1;
 242		inode_root = btrfs_read_fs_root_no_name(fs_info, &key);
 243		if (IS_ERR(inode_root))
 244			goto next;
 245
 246		key.objectid = defrag->ino;
 247		btrfs_set_key_type(&key, BTRFS_INODE_ITEM_KEY);
 248		key.offset = 0;
 249
 250		inode = btrfs_iget(fs_info->sb, &key, inode_root, NULL);
 251		if (IS_ERR(inode))
 252			goto next;
 253
 254		/* do a chunk of defrag */
 255		BTRFS_I(inode)->in_defrag = 0;
 256		range.start = defrag->last_offset;
 257		num_defrag = btrfs_defrag_file(inode, NULL, &range, defrag->transid,
 258					       defrag_batch);
 259		/*
 260		 * if we filled the whole defrag batch, there
 261		 * must be more work to do.  Queue this defrag
 262		 * again
 263		 */
 264		if (num_defrag == defrag_batch) {
 265			defrag->last_offset = range.start;
 266			__btrfs_add_inode_defrag(inode, defrag);
 267			/*
 268			 * we don't want to kfree defrag, we added it back to
 269			 * the rbtree
 270			 */
 271			defrag = NULL;
 272		} else if (defrag->last_offset && !defrag->cycled) {
 273			/*
 274			 * we didn't fill our defrag batch, but
 275			 * we didn't start at zero.  Make sure we loop
 276			 * around to the start of the file.
 277			 */
 278			defrag->last_offset = 0;
 279			defrag->cycled = 1;
 280			__btrfs_add_inode_defrag(inode, defrag);
 281			defrag = NULL;
 282		}
 283
 284		iput(inode);
 285next:
 286		spin_lock(&fs_info->defrag_inodes_lock);
 287next_free:
 288		kfree(defrag);
 289	}
 290	spin_unlock(&fs_info->defrag_inodes_lock);
 291
 292	atomic_dec(&fs_info->defrag_running);
 293
 294	/*
 295	 * during unmount, we use the transaction_wait queue to
 296	 * wait for the defragger to stop
 297	 */
 298	wake_up(&fs_info->transaction_wait);
 299	return 0;
 300}
 301
 302/* simple helper to fault in pages and copy.  This should go away
 303 * and be replaced with calls into generic code.
 304 */
 305static noinline int btrfs_copy_from_user(loff_t pos, int num_pages,
 306					 size_t write_bytes,
 307					 struct page **prepared_pages,
 308					 struct iov_iter *i)
 309{
 310	size_t copied = 0;
 311	size_t total_copied = 0;
 312	int pg = 0;
 313	int offset = pos & (PAGE_CACHE_SIZE - 1);
 314
 315	while (write_bytes > 0) {
 316		size_t count = min_t(size_t,
 317				     PAGE_CACHE_SIZE - offset, write_bytes);
 318		struct page *page = prepared_pages[pg];
 319		/*
 320		 * Copy data from userspace to the current page
 321		 *
 322		 * Disable pagefault to avoid recursive lock since
 323		 * the pages are already locked
 324		 */
 325		pagefault_disable();
 326		copied = iov_iter_copy_from_user_atomic(page, i, offset, count);
 327		pagefault_enable();
 328
 329		/* Flush processor's dcache for this page */
 330		flush_dcache_page(page);
 331
 332		/*
 333		 * if we get a partial write, we can end up with
 334		 * partially up to date pages.  These add
 335		 * a lot of complexity, so make sure they don't
 336		 * happen by forcing this copy to be retried.
 337		 *
 338		 * The rest of the btrfs_file_write code will fall
 339		 * back to page at a time copies after we return 0.
 340		 */
 341		if (!PageUptodate(page) && copied < count)
 342			copied = 0;
 343
 344		iov_iter_advance(i, copied);
 345		write_bytes -= copied;
 346		total_copied += copied;
 347
 348		/* Return to btrfs_file_aio_write to fault page */
 349		if (unlikely(copied == 0))
 350			break;
 351
 352		if (unlikely(copied < PAGE_CACHE_SIZE - offset)) {
 353			offset += copied;
 354		} else {
 355			pg++;
 356			offset = 0;
 357		}
 358	}
 359	return total_copied;
 360}
 361
 362/*
 363 * unlocks pages after btrfs_file_write is done with them
 364 */
 365void btrfs_drop_pages(struct page **pages, size_t num_pages)
 366{
 367	size_t i;
 368	for (i = 0; i < num_pages; i++) {
 369		/* page checked is some magic around finding pages that
 370		 * have been modified without going through btrfs_set_page_dirty
 371		 * clear it here
 
 
 372		 */
 373		ClearPageChecked(pages[i]);
 374		unlock_page(pages[i]);
 375		mark_page_accessed(pages[i]);
 376		page_cache_release(pages[i]);
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 377	}
 
 378}
 379
 380/*
 381 * after copy_from_user, pages need to be dirtied and we need to make
 382 * sure holes are created between the current EOF and the start of
 383 * any next extents (if required).
 384 *
 385 * this also makes the decision about creating an inline extent vs
 386 * doing real data extents, marking pages dirty and delalloc as required.
 387 */
 388int btrfs_dirty_pages(struct btrfs_root *root, struct inode *inode,
 389		      struct page **pages, size_t num_pages,
 390		      loff_t pos, size_t write_bytes,
 391		      struct extent_state **cached)
 392{
 
 393	int err = 0;
 394	int i;
 395	u64 num_bytes;
 396	u64 start_pos;
 397	u64 end_of_last_block;
 398	u64 end_pos = pos + write_bytes;
 399	loff_t isize = i_size_read(inode);
 
 400
 401	start_pos = pos & ~((u64)root->sectorsize - 1);
 402	num_bytes = (write_bytes + pos - start_pos +
 403		    root->sectorsize - 1) & ~((u64)root->sectorsize - 1);
 404
 405	end_of_last_block = start_pos + num_bytes - 1;
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 406	err = btrfs_set_extent_delalloc(inode, start_pos, end_of_last_block,
 407					cached);
 408	if (err)
 409		return err;
 410
 411	for (i = 0; i < num_pages; i++) {
 412		struct page *p = pages[i];
 413		SetPageUptodate(p);
 414		ClearPageChecked(p);
 415		set_page_dirty(p);
 416	}
 417
 418	/*
 419	 * we've only changed i_size in ram, and we haven't updated
 420	 * the disk i_size.  There is no need to log the inode
 421	 * at this time.
 422	 */
 423	if (end_pos > isize)
 424		i_size_write(inode, end_pos);
 425	return 0;
 426}
 427
 428/*
 429 * this drops all the extents in the cache that intersect the range
 430 * [start, end].  Existing extents are split as required.
 431 */
 432int btrfs_drop_extent_cache(struct inode *inode, u64 start, u64 end,
 433			    int skip_pinned)
 434{
 435	struct extent_map *em;
 436	struct extent_map *split = NULL;
 437	struct extent_map *split2 = NULL;
 438	struct extent_map_tree *em_tree = &BTRFS_I(inode)->extent_tree;
 439	u64 len = end - start + 1;
 
 440	int ret;
 441	int testend = 1;
 442	unsigned long flags;
 443	int compressed = 0;
 
 444
 445	WARN_ON(end < start);
 446	if (end == (u64)-1) {
 447		len = (u64)-1;
 448		testend = 0;
 449	}
 450	while (1) {
 
 
 
 451		if (!split)
 452			split = alloc_extent_map();
 453		if (!split2)
 454			split2 = alloc_extent_map();
 455		BUG_ON(!split || !split2);
 
 456
 457		write_lock(&em_tree->lock);
 458		em = lookup_extent_mapping(em_tree, start, len);
 459		if (!em) {
 460			write_unlock(&em_tree->lock);
 461			break;
 462		}
 463		flags = em->flags;
 
 464		if (skip_pinned && test_bit(EXTENT_FLAG_PINNED, &em->flags)) {
 465			if (testend && em->start + em->len >= start + len) {
 466				free_extent_map(em);
 467				write_unlock(&em_tree->lock);
 468				break;
 469			}
 470			start = em->start + em->len;
 471			if (testend)
 472				len = start + len - (em->start + em->len);
 473			free_extent_map(em);
 474			write_unlock(&em_tree->lock);
 475			continue;
 476		}
 477		compressed = test_bit(EXTENT_FLAG_COMPRESSED, &em->flags);
 478		clear_bit(EXTENT_FLAG_PINNED, &em->flags);
 479		remove_extent_mapping(em_tree, em);
 
 
 
 480
 481		if (em->block_start < EXTENT_MAP_LAST_BYTE &&
 482		    em->start < start) {
 483			split->start = em->start;
 484			split->len = start - em->start;
 485			split->orig_start = em->orig_start;
 486			split->block_start = em->block_start;
 487
 488			if (compressed)
 489				split->block_len = em->block_len;
 490			else
 491				split->block_len = split->len;
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 492
 493			split->bdev = em->bdev;
 494			split->flags = flags;
 495			split->compress_type = em->compress_type;
 496			ret = add_extent_mapping(em_tree, split);
 497			BUG_ON(ret);
 498			free_extent_map(split);
 499			split = split2;
 500			split2 = NULL;
 501		}
 502		if (em->block_start < EXTENT_MAP_LAST_BYTE &&
 503		    testend && em->start + em->len > start + len) {
 504			u64 diff = start + len - em->start;
 505
 506			split->start = start + len;
 507			split->len = em->start + em->len - (start + len);
 508			split->bdev = em->bdev;
 509			split->flags = flags;
 510			split->compress_type = em->compress_type;
 
 511
 512			if (compressed) {
 513				split->block_len = em->block_len;
 514				split->block_start = em->block_start;
 515				split->orig_start = em->orig_start;
 
 
 
 
 
 
 
 
 
 
 
 516			} else {
 517				split->block_len = split->len;
 518				split->block_start = em->block_start + diff;
 519				split->orig_start = split->start;
 
 
 
 520			}
 521
 522			ret = add_extent_mapping(em_tree, split);
 523			BUG_ON(ret);
 
 
 
 
 
 
 524			free_extent_map(split);
 525			split = NULL;
 526		}
 
 
 
 527		write_unlock(&em_tree->lock);
 528
 529		/* once for us */
 530		free_extent_map(em);
 531		/* once for the tree*/
 532		free_extent_map(em);
 533	}
 534	if (split)
 535		free_extent_map(split);
 536	if (split2)
 537		free_extent_map(split2);
 538	return 0;
 539}
 540
 541/*
 542 * this is very complex, but the basic idea is to drop all extents
 543 * in the range start - end.  hint_block is filled in with a block number
 544 * that would be a good hint to the block allocator for this file.
 545 *
 546 * If an extent intersects the range but is not entirely inside the range
 547 * it is either truncated or split.  Anything entirely inside the range
 548 * is deleted from the tree.
 549 */
 550int btrfs_drop_extents(struct btrfs_trans_handle *trans, struct inode *inode,
 551		       u64 start, u64 end, u64 *hint_byte, int drop_cache)
 
 
 
 
 
 552{
 553	struct btrfs_root *root = BTRFS_I(inode)->root;
 554	struct extent_buffer *leaf;
 555	struct btrfs_file_extent_item *fi;
 556	struct btrfs_path *path;
 557	struct btrfs_key key;
 558	struct btrfs_key new_key;
 
 559	u64 ino = btrfs_ino(inode);
 560	u64 search_start = start;
 561	u64 disk_bytenr = 0;
 562	u64 num_bytes = 0;
 563	u64 extent_offset = 0;
 564	u64 extent_end = 0;
 
 565	int del_nr = 0;
 566	int del_slot = 0;
 567	int extent_type;
 568	int recow;
 569	int ret;
 
 
 
 
 570
 571	if (drop_cache)
 572		btrfs_drop_extent_cache(inode, start, end - 1, 0);
 573
 574	path = btrfs_alloc_path();
 575	if (!path)
 576		return -ENOMEM;
 577
 
 
 578	while (1) {
 579		recow = 0;
 580		ret = btrfs_lookup_file_extent(trans, root, path, ino,
 581					       search_start, -1);
 582		if (ret < 0)
 583			break;
 584		if (ret > 0 && path->slots[0] > 0 && search_start == start) {
 585			leaf = path->nodes[0];
 586			btrfs_item_key_to_cpu(leaf, &key, path->slots[0] - 1);
 587			if (key.objectid == ino &&
 588			    key.type == BTRFS_EXTENT_DATA_KEY)
 589				path->slots[0]--;
 590		}
 591		ret = 0;
 
 592next_slot:
 593		leaf = path->nodes[0];
 594		if (path->slots[0] >= btrfs_header_nritems(leaf)) {
 595			BUG_ON(del_nr > 0);
 596			ret = btrfs_next_leaf(root, path);
 597			if (ret < 0)
 598				break;
 599			if (ret > 0) {
 600				ret = 0;
 601				break;
 602			}
 
 603			leaf = path->nodes[0];
 604			recow = 1;
 605		}
 606
 607		btrfs_item_key_to_cpu(leaf, &key, path->slots[0]);
 608		if (key.objectid > ino ||
 609		    key.type > BTRFS_EXTENT_DATA_KEY || key.offset >= end)
 
 
 
 
 
 
 
 
 610			break;
 611
 612		fi = btrfs_item_ptr(leaf, path->slots[0],
 613				    struct btrfs_file_extent_item);
 614		extent_type = btrfs_file_extent_type(leaf, fi);
 615
 616		if (extent_type == BTRFS_FILE_EXTENT_REG ||
 617		    extent_type == BTRFS_FILE_EXTENT_PREALLOC) {
 618			disk_bytenr = btrfs_file_extent_disk_bytenr(leaf, fi);
 619			num_bytes = btrfs_file_extent_disk_num_bytes(leaf, fi);
 620			extent_offset = btrfs_file_extent_offset(leaf, fi);
 621			extent_end = key.offset +
 622				btrfs_file_extent_num_bytes(leaf, fi);
 623		} else if (extent_type == BTRFS_FILE_EXTENT_INLINE) {
 624			extent_end = key.offset +
 625				btrfs_file_extent_inline_len(leaf, fi);
 626		} else {
 627			WARN_ON(1);
 628			extent_end = search_start;
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 629		}
 630
 631		if (extent_end <= search_start) {
 632			path->slots[0]++;
 633			goto next_slot;
 634		}
 635
 
 636		search_start = max(key.offset, start);
 637		if (recow) {
 
 638			btrfs_release_path(path);
 639			continue;
 640		}
 641
 642		/*
 643		 *     | - range to drop - |
 644		 *  | -------- extent -------- |
 645		 */
 646		if (start > key.offset && end < extent_end) {
 647			BUG_ON(del_nr > 0);
 648			BUG_ON(extent_type == BTRFS_FILE_EXTENT_INLINE);
 
 
 
 649
 650			memcpy(&new_key, &key, sizeof(new_key));
 651			new_key.offset = start;
 652			ret = btrfs_duplicate_item(trans, root, path,
 653						   &new_key);
 654			if (ret == -EAGAIN) {
 655				btrfs_release_path(path);
 656				continue;
 657			}
 658			if (ret < 0)
 659				break;
 660
 661			leaf = path->nodes[0];
 662			fi = btrfs_item_ptr(leaf, path->slots[0] - 1,
 663					    struct btrfs_file_extent_item);
 664			btrfs_set_file_extent_num_bytes(leaf, fi,
 665							start - key.offset);
 666
 667			fi = btrfs_item_ptr(leaf, path->slots[0],
 668					    struct btrfs_file_extent_item);
 669
 670			extent_offset += start - key.offset;
 671			btrfs_set_file_extent_offset(leaf, fi, extent_offset);
 672			btrfs_set_file_extent_num_bytes(leaf, fi,
 673							extent_end - start);
 674			btrfs_mark_buffer_dirty(leaf);
 675
 676			if (disk_bytenr > 0) {
 677				ret = btrfs_inc_extent_ref(trans, root,
 678						disk_bytenr, num_bytes, 0,
 
 
 679						root->root_key.objectid,
 680						new_key.objectid,
 681						start - extent_offset);
 682				BUG_ON(ret);
 683				*hint_byte = disk_bytenr;
 684			}
 685			key.offset = start;
 686		}
 687		/*
 
 
 
 
 
 
 688		 *  | ---- range to drop ----- |
 689		 *      | -------- extent -------- |
 690		 */
 691		if (start <= key.offset && end < extent_end) {
 692			BUG_ON(extent_type == BTRFS_FILE_EXTENT_INLINE);
 
 
 
 693
 694			memcpy(&new_key, &key, sizeof(new_key));
 695			new_key.offset = end;
 696			btrfs_set_item_key_safe(trans, root, path, &new_key);
 697
 698			extent_offset += end - key.offset;
 699			btrfs_set_file_extent_offset(leaf, fi, extent_offset);
 700			btrfs_set_file_extent_num_bytes(leaf, fi,
 701							extent_end - end);
 702			btrfs_mark_buffer_dirty(leaf);
 703			if (disk_bytenr > 0) {
 704				inode_sub_bytes(inode, end - key.offset);
 705				*hint_byte = disk_bytenr;
 706			}
 707			break;
 708		}
 709
 710		search_start = extent_end;
 711		/*
 712		 *       | ---- range to drop ----- |
 713		 *  | -------- extent -------- |
 714		 */
 715		if (start > key.offset && end >= extent_end) {
 716			BUG_ON(del_nr > 0);
 717			BUG_ON(extent_type == BTRFS_FILE_EXTENT_INLINE);
 
 
 
 718
 719			btrfs_set_file_extent_num_bytes(leaf, fi,
 720							start - key.offset);
 721			btrfs_mark_buffer_dirty(leaf);
 722			if (disk_bytenr > 0) {
 723				inode_sub_bytes(inode, extent_end - start);
 724				*hint_byte = disk_bytenr;
 725			}
 726			if (end == extent_end)
 727				break;
 728
 729			path->slots[0]++;
 730			goto next_slot;
 731		}
 732
 733		/*
 734		 *  | ---- range to drop ----- |
 735		 *    | ------ extent ------ |
 736		 */
 737		if (start <= key.offset && end >= extent_end) {
 
 738			if (del_nr == 0) {
 739				del_slot = path->slots[0];
 740				del_nr = 1;
 741			} else {
 742				BUG_ON(del_slot + del_nr != path->slots[0]);
 743				del_nr++;
 744			}
 745
 746			if (extent_type == BTRFS_FILE_EXTENT_INLINE) {
 747				inode_sub_bytes(inode,
 
 748						extent_end - key.offset);
 749				extent_end = ALIGN(extent_end,
 750						   root->sectorsize);
 751			} else if (disk_bytenr > 0) {
 752				ret = btrfs_free_extent(trans, root,
 753						disk_bytenr, num_bytes, 0,
 
 
 754						root->root_key.objectid,
 755						key.objectid, key.offset -
 756						extent_offset);
 757				BUG_ON(ret);
 758				inode_sub_bytes(inode,
 
 759						extent_end - key.offset);
 760				*hint_byte = disk_bytenr;
 761			}
 762
 763			if (end == extent_end)
 764				break;
 765
 766			if (path->slots[0] + 1 < btrfs_header_nritems(leaf)) {
 767				path->slots[0]++;
 768				goto next_slot;
 769			}
 770
 771			ret = btrfs_del_items(trans, root, path, del_slot,
 772					      del_nr);
 773			BUG_ON(ret);
 
 
 
 774
 775			del_nr = 0;
 776			del_slot = 0;
 777
 778			btrfs_release_path(path);
 779			continue;
 780		}
 781
 782		BUG_ON(1);
 783	}
 784
 785	if (del_nr > 0) {
 
 
 
 
 
 
 
 786		ret = btrfs_del_items(trans, root, path, del_slot, del_nr);
 787		BUG_ON(ret);
 
 788	}
 789
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 790	btrfs_free_path(path);
 791	return ret;
 792}
 793
 794static int extent_mergeable(struct extent_buffer *leaf, int slot,
 795			    u64 objectid, u64 bytenr, u64 orig_offset,
 796			    u64 *start, u64 *end)
 797{
 798	struct btrfs_file_extent_item *fi;
 799	struct btrfs_key key;
 800	u64 extent_end;
 801
 802	if (slot < 0 || slot >= btrfs_header_nritems(leaf))
 803		return 0;
 804
 805	btrfs_item_key_to_cpu(leaf, &key, slot);
 806	if (key.objectid != objectid || key.type != BTRFS_EXTENT_DATA_KEY)
 807		return 0;
 808
 809	fi = btrfs_item_ptr(leaf, slot, struct btrfs_file_extent_item);
 810	if (btrfs_file_extent_type(leaf, fi) != BTRFS_FILE_EXTENT_REG ||
 811	    btrfs_file_extent_disk_bytenr(leaf, fi) != bytenr ||
 812	    btrfs_file_extent_offset(leaf, fi) != key.offset - orig_offset ||
 813	    btrfs_file_extent_compression(leaf, fi) ||
 814	    btrfs_file_extent_encryption(leaf, fi) ||
 815	    btrfs_file_extent_other_encoding(leaf, fi))
 816		return 0;
 817
 818	extent_end = key.offset + btrfs_file_extent_num_bytes(leaf, fi);
 819	if ((*start && *start != key.offset) || (*end && *end != extent_end))
 820		return 0;
 821
 822	*start = key.offset;
 823	*end = extent_end;
 824	return 1;
 825}
 826
 827/*
 828 * Mark extent in the range start - end as written.
 829 *
 830 * This changes extent type from 'pre-allocated' to 'regular'. If only
 831 * part of extent is marked as written, the extent will be split into
 832 * two or three.
 833 */
 834int btrfs_mark_extent_written(struct btrfs_trans_handle *trans,
 835			      struct inode *inode, u64 start, u64 end)
 836{
 837	struct btrfs_root *root = BTRFS_I(inode)->root;
 
 838	struct extent_buffer *leaf;
 839	struct btrfs_path *path;
 840	struct btrfs_file_extent_item *fi;
 
 841	struct btrfs_key key;
 842	struct btrfs_key new_key;
 843	u64 bytenr;
 844	u64 num_bytes;
 845	u64 extent_end;
 846	u64 orig_offset;
 847	u64 other_start;
 848	u64 other_end;
 849	u64 split;
 850	int del_nr = 0;
 851	int del_slot = 0;
 852	int recow;
 853	int ret;
 854	u64 ino = btrfs_ino(inode);
 855
 856	btrfs_drop_extent_cache(inode, start, end - 1, 0);
 857
 858	path = btrfs_alloc_path();
 859	if (!path)
 860		return -ENOMEM;
 861again:
 862	recow = 0;
 863	split = start;
 864	key.objectid = ino;
 865	key.type = BTRFS_EXTENT_DATA_KEY;
 866	key.offset = split;
 867
 868	ret = btrfs_search_slot(trans, root, &key, path, -1, 1);
 869	if (ret < 0)
 870		goto out;
 871	if (ret > 0 && path->slots[0] > 0)
 872		path->slots[0]--;
 873
 874	leaf = path->nodes[0];
 875	btrfs_item_key_to_cpu(leaf, &key, path->slots[0]);
 876	BUG_ON(key.objectid != ino || key.type != BTRFS_EXTENT_DATA_KEY);
 
 
 
 
 
 877	fi = btrfs_item_ptr(leaf, path->slots[0],
 878			    struct btrfs_file_extent_item);
 879	BUG_ON(btrfs_file_extent_type(leaf, fi) !=
 880	       BTRFS_FILE_EXTENT_PREALLOC);
 
 
 
 881	extent_end = key.offset + btrfs_file_extent_num_bytes(leaf, fi);
 882	BUG_ON(key.offset > start || extent_end < end);
 
 
 
 
 883
 884	bytenr = btrfs_file_extent_disk_bytenr(leaf, fi);
 885	num_bytes = btrfs_file_extent_disk_num_bytes(leaf, fi);
 886	orig_offset = key.offset - btrfs_file_extent_offset(leaf, fi);
 887	memcpy(&new_key, &key, sizeof(new_key));
 888
 889	if (start == key.offset && end < extent_end) {
 890		other_start = 0;
 891		other_end = start;
 892		if (extent_mergeable(leaf, path->slots[0] - 1,
 893				     ino, bytenr, orig_offset,
 894				     &other_start, &other_end)) {
 895			new_key.offset = end;
 896			btrfs_set_item_key_safe(trans, root, path, &new_key);
 897			fi = btrfs_item_ptr(leaf, path->slots[0],
 898					    struct btrfs_file_extent_item);
 
 
 899			btrfs_set_file_extent_num_bytes(leaf, fi,
 900							extent_end - end);
 901			btrfs_set_file_extent_offset(leaf, fi,
 902						     end - orig_offset);
 903			fi = btrfs_item_ptr(leaf, path->slots[0] - 1,
 904					    struct btrfs_file_extent_item);
 
 
 905			btrfs_set_file_extent_num_bytes(leaf, fi,
 906							end - other_start);
 907			btrfs_mark_buffer_dirty(leaf);
 908			goto out;
 909		}
 910	}
 911
 912	if (start > key.offset && end == extent_end) {
 913		other_start = end;
 914		other_end = 0;
 915		if (extent_mergeable(leaf, path->slots[0] + 1,
 916				     ino, bytenr, orig_offset,
 917				     &other_start, &other_end)) {
 918			fi = btrfs_item_ptr(leaf, path->slots[0],
 919					    struct btrfs_file_extent_item);
 920			btrfs_set_file_extent_num_bytes(leaf, fi,
 921							start - key.offset);
 
 
 922			path->slots[0]++;
 923			new_key.offset = start;
 924			btrfs_set_item_key_safe(trans, root, path, &new_key);
 925
 926			fi = btrfs_item_ptr(leaf, path->slots[0],
 927					    struct btrfs_file_extent_item);
 
 
 928			btrfs_set_file_extent_num_bytes(leaf, fi,
 929							other_end - start);
 930			btrfs_set_file_extent_offset(leaf, fi,
 931						     start - orig_offset);
 932			btrfs_mark_buffer_dirty(leaf);
 933			goto out;
 934		}
 935	}
 936
 937	while (start > key.offset || end < extent_end) {
 938		if (key.offset == start)
 939			split = end;
 940
 941		new_key.offset = split;
 942		ret = btrfs_duplicate_item(trans, root, path, &new_key);
 943		if (ret == -EAGAIN) {
 944			btrfs_release_path(path);
 945			goto again;
 946		}
 947		BUG_ON(ret < 0);
 
 
 
 948
 949		leaf = path->nodes[0];
 950		fi = btrfs_item_ptr(leaf, path->slots[0] - 1,
 951				    struct btrfs_file_extent_item);
 
 952		btrfs_set_file_extent_num_bytes(leaf, fi,
 953						split - key.offset);
 954
 955		fi = btrfs_item_ptr(leaf, path->slots[0],
 956				    struct btrfs_file_extent_item);
 957
 
 958		btrfs_set_file_extent_offset(leaf, fi, split - orig_offset);
 959		btrfs_set_file_extent_num_bytes(leaf, fi,
 960						extent_end - split);
 961		btrfs_mark_buffer_dirty(leaf);
 962
 963		ret = btrfs_inc_extent_ref(trans, root, bytenr, num_bytes, 0,
 964					   root->root_key.objectid,
 965					   ino, orig_offset);
 966		BUG_ON(ret);
 
 
 
 
 
 967
 968		if (split == start) {
 969			key.offset = start;
 970		} else {
 971			BUG_ON(start != key.offset);
 
 
 
 
 972			path->slots[0]--;
 973			extent_end = end;
 974		}
 975		recow = 1;
 976	}
 977
 978	other_start = end;
 979	other_end = 0;
 
 
 
 980	if (extent_mergeable(leaf, path->slots[0] + 1,
 981			     ino, bytenr, orig_offset,
 982			     &other_start, &other_end)) {
 983		if (recow) {
 984			btrfs_release_path(path);
 985			goto again;
 986		}
 987		extent_end = other_end;
 988		del_slot = path->slots[0] + 1;
 989		del_nr++;
 990		ret = btrfs_free_extent(trans, root, bytenr, num_bytes,
 991					0, root->root_key.objectid,
 992					ino, orig_offset);
 993		BUG_ON(ret);
 
 994	}
 995	other_start = 0;
 996	other_end = start;
 997	if (extent_mergeable(leaf, path->slots[0] - 1,
 998			     ino, bytenr, orig_offset,
 999			     &other_start, &other_end)) {
1000		if (recow) {
1001			btrfs_release_path(path);
1002			goto again;
1003		}
1004		key.offset = other_start;
1005		del_slot = path->slots[0];
1006		del_nr++;
1007		ret = btrfs_free_extent(trans, root, bytenr, num_bytes,
1008					0, root->root_key.objectid,
1009					ino, orig_offset);
1010		BUG_ON(ret);
 
1011	}
1012	if (del_nr == 0) {
1013		fi = btrfs_item_ptr(leaf, path->slots[0],
1014			   struct btrfs_file_extent_item);
1015		btrfs_set_file_extent_type(leaf, fi,
1016					   BTRFS_FILE_EXTENT_REG);
 
1017		btrfs_mark_buffer_dirty(leaf);
1018	} else {
1019		fi = btrfs_item_ptr(leaf, del_slot - 1,
1020			   struct btrfs_file_extent_item);
1021		btrfs_set_file_extent_type(leaf, fi,
1022					   BTRFS_FILE_EXTENT_REG);
 
1023		btrfs_set_file_extent_num_bytes(leaf, fi,
1024						extent_end - key.offset);
1025		btrfs_mark_buffer_dirty(leaf);
1026
1027		ret = btrfs_del_items(trans, root, path, del_slot, del_nr);
1028		BUG_ON(ret);
 
 
 
1029	}
1030out:
1031	btrfs_free_path(path);
1032	return 0;
1033}
1034
1035/*
1036 * on error we return an unlocked page and the error value
1037 * on success we return a locked page and 0
1038 */
1039static int prepare_uptodate_page(struct page *page, u64 pos,
 
1040				 bool force_uptodate)
1041{
1042	int ret = 0;
1043
1044	if (((pos & (PAGE_CACHE_SIZE - 1)) || force_uptodate) &&
1045	    !PageUptodate(page)) {
1046		ret = btrfs_readpage(NULL, page);
1047		if (ret)
1048			return ret;
1049		lock_page(page);
1050		if (!PageUptodate(page)) {
1051			unlock_page(page);
1052			return -EIO;
1053		}
 
 
 
 
1054	}
1055	return 0;
1056}
1057
1058/*
1059 * this gets pages into the page cache and locks them down, it also properly
1060 * waits for data=ordered extents to finish before allowing the pages to be
1061 * modified.
1062 */
1063static noinline int prepare_pages(struct btrfs_root *root, struct file *file,
1064			 struct page **pages, size_t num_pages,
1065			 loff_t pos, unsigned long first_index,
1066			 size_t write_bytes, bool force_uptodate)
1067{
1068	struct extent_state *cached_state = NULL;
1069	int i;
1070	unsigned long index = pos >> PAGE_CACHE_SHIFT;
1071	struct inode *inode = fdentry(file)->d_inode;
1072	int err = 0;
1073	int faili = 0;
1074	u64 start_pos;
1075	u64 last_pos;
1076
1077	start_pos = pos & ~((u64)root->sectorsize - 1);
1078	last_pos = ((u64)index + num_pages) << PAGE_CACHE_SHIFT;
1079
1080again:
1081	for (i = 0; i < num_pages; i++) {
 
1082		pages[i] = find_or_create_page(inode->i_mapping, index + i,
1083					       GFP_NOFS);
1084		if (!pages[i]) {
1085			faili = i - 1;
1086			err = -ENOMEM;
1087			goto fail;
1088		}
1089
1090		if (i == 0)
1091			err = prepare_uptodate_page(pages[i], pos,
1092						    force_uptodate);
1093		if (i == num_pages - 1)
1094			err = prepare_uptodate_page(pages[i],
1095						    pos + write_bytes, false);
1096		if (err) {
1097			page_cache_release(pages[i]);
 
 
 
 
1098			faili = i - 1;
1099			goto fail;
1100		}
1101		wait_on_page_writeback(pages[i]);
1102	}
1103	err = 0;
1104	if (start_pos < inode->i_size) {
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1105		struct btrfs_ordered_extent *ordered;
1106		lock_extent_bits(&BTRFS_I(inode)->io_tree,
1107				 start_pos, last_pos - 1, 0, &cached_state,
1108				 GFP_NOFS);
1109		ordered = btrfs_lookup_first_ordered_extent(inode,
1110							    last_pos - 1);
1111		if (ordered &&
1112		    ordered->file_offset + ordered->len > start_pos &&
1113		    ordered->file_offset < last_pos) {
1114			btrfs_put_ordered_extent(ordered);
1115			unlock_extent_cached(&BTRFS_I(inode)->io_tree,
1116					     start_pos, last_pos - 1,
1117					     &cached_state, GFP_NOFS);
1118			for (i = 0; i < num_pages; i++) {
1119				unlock_page(pages[i]);
1120				page_cache_release(pages[i]);
1121			}
1122			btrfs_wait_ordered_range(inode, start_pos,
1123						 last_pos - start_pos);
1124			goto again;
 
1125		}
1126		if (ordered)
1127			btrfs_put_ordered_extent(ordered);
1128
1129		clear_extent_bit(&BTRFS_I(inode)->io_tree, start_pos,
1130				  last_pos - 1, EXTENT_DIRTY | EXTENT_DELALLOC |
1131				  EXTENT_DO_ACCOUNTING, 0, 0, &cached_state,
1132				  GFP_NOFS);
1133		unlock_extent_cached(&BTRFS_I(inode)->io_tree,
1134				     start_pos, last_pos - 1, &cached_state,
1135				     GFP_NOFS);
1136	}
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1137	for (i = 0; i < num_pages; i++) {
1138		clear_page_dirty_for_io(pages[i]);
1139		set_page_extent_mapped(pages[i]);
1140		WARN_ON(!PageLocked(pages[i]));
1141	}
1142	return 0;
1143fail:
1144	while (faili >= 0) {
1145		unlock_page(pages[faili]);
1146		page_cache_release(pages[faili]);
1147		faili--;
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1148	}
1149	return err;
1150
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1151}
1152
1153static noinline ssize_t __btrfs_buffered_write(struct file *file,
1154					       struct iov_iter *i,
1155					       loff_t pos)
1156{
1157	struct inode *inode = fdentry(file)->d_inode;
1158	struct btrfs_root *root = BTRFS_I(inode)->root;
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1159	struct page **pages = NULL;
1160	unsigned long first_index;
 
 
 
1161	size_t num_written = 0;
1162	int nrptrs;
1163	int ret = 0;
 
1164	bool force_page_uptodate = false;
1165
1166	nrptrs = min((iov_iter_count(i) + PAGE_CACHE_SIZE - 1) /
1167		     PAGE_CACHE_SIZE, PAGE_CACHE_SIZE /
1168		     (sizeof(struct page *)));
1169	pages = kmalloc(nrptrs * sizeof(struct page *), GFP_KERNEL);
 
1170	if (!pages)
1171		return -ENOMEM;
1172
1173	first_index = pos >> PAGE_CACHE_SHIFT;
1174
1175	while (iov_iter_count(i) > 0) {
1176		size_t offset = pos & (PAGE_CACHE_SIZE - 1);
 
 
1177		size_t write_bytes = min(iov_iter_count(i),
1178					 nrptrs * (size_t)PAGE_CACHE_SIZE -
1179					 offset);
1180		size_t num_pages = (write_bytes + offset +
1181				    PAGE_CACHE_SIZE - 1) >> PAGE_CACHE_SHIFT;
 
1182		size_t dirty_pages;
1183		size_t copied;
 
 
 
1184
1185		WARN_ON(num_pages > nrptrs);
1186
1187		/*
1188		 * Fault pages before locking them in prepare_pages
1189		 * to avoid recursive lock
1190		 */
1191		if (unlikely(iov_iter_fault_in_readable(i, write_bytes))) {
1192			ret = -EFAULT;
1193			break;
1194		}
1195
1196		ret = btrfs_delalloc_reserve_space(inode,
1197					num_pages << PAGE_CACHE_SHIFT);
1198		if (ret)
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1199			break;
 
1200
 
 
1201		/*
1202		 * This is going to setup the pages array with the number of
1203		 * pages we want, so we don't really need to worry about the
1204		 * contents of pages from loop to loop
1205		 */
1206		ret = prepare_pages(root, file, pages, num_pages,
1207				    pos, first_index, write_bytes,
1208				    force_page_uptodate);
1209		if (ret) {
1210			btrfs_delalloc_release_space(inode,
1211					num_pages << PAGE_CACHE_SHIFT);
1212			break;
1213		}
1214
1215		copied = btrfs_copy_from_user(pos, num_pages,
1216					   write_bytes, pages, i);
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1217
1218		/*
1219		 * if we have trouble faulting in the pages, fall
1220		 * back to one page at a time
1221		 */
1222		if (copied < write_bytes)
1223			nrptrs = 1;
1224
1225		if (copied == 0) {
1226			force_page_uptodate = true;
 
1227			dirty_pages = 0;
1228		} else {
1229			force_page_uptodate = false;
1230			dirty_pages = (copied + offset +
1231				       PAGE_CACHE_SIZE - 1) >>
1232				       PAGE_CACHE_SHIFT;
1233		}
1234
1235		/*
1236		 * If we had a short copy we need to release the excess delaloc
1237		 * bytes we reserved.  We need to increment outstanding_extents
1238		 * because btrfs_delalloc_release_space will decrement it, but
1239		 * we still have an outstanding extent for the chunk we actually
1240		 * managed to copy.
1241		 */
1242		if (num_pages > dirty_pages) {
1243			if (copied > 0) {
1244				spin_lock(&BTRFS_I(inode)->lock);
1245				BTRFS_I(inode)->outstanding_extents++;
1246				spin_unlock(&BTRFS_I(inode)->lock);
 
 
 
 
1247			}
1248			btrfs_delalloc_release_space(inode,
1249					(num_pages - dirty_pages) <<
1250					PAGE_CACHE_SHIFT);
1251		}
1252
1253		if (copied > 0) {
1254			ret = btrfs_dirty_pages(root, inode, pages,
 
 
 
1255						dirty_pages, pos, copied,
1256						NULL);
1257			if (ret) {
1258				btrfs_delalloc_release_space(inode,
1259					dirty_pages << PAGE_CACHE_SHIFT);
1260				btrfs_drop_pages(pages, num_pages);
1261				break;
1262			}
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1263		}
1264
1265		btrfs_drop_pages(pages, num_pages);
1266
1267		cond_resched();
1268
1269		balance_dirty_pages_ratelimited_nr(inode->i_mapping,
1270						   dirty_pages);
1271		if (dirty_pages < (root->leafsize >> PAGE_CACHE_SHIFT) + 1)
1272			btrfs_btree_balance_dirty(root, 1);
1273		btrfs_throttle(root);
1274
1275		pos += copied;
1276		num_written += copied;
1277	}
1278
1279	kfree(pages);
1280
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1281	return num_written ? num_written : ret;
1282}
1283
1284static ssize_t __btrfs_direct_write(struct kiocb *iocb,
1285				    const struct iovec *iov,
1286				    unsigned long nr_segs, loff_t pos,
1287				    loff_t *ppos, size_t count, size_t ocount)
1288{
1289	struct file *file = iocb->ki_filp;
1290	struct inode *inode = fdentry(file)->d_inode;
1291	struct iov_iter i;
1292	ssize_t written;
1293	ssize_t written_buffered;
1294	loff_t endbyte;
1295	int err;
1296
1297	written = generic_file_direct_write(iocb, iov, &nr_segs, pos, ppos,
1298					    count, ocount);
1299
1300	/*
1301	 * the generic O_DIRECT will update in-memory i_size after the
1302	 * DIOs are done.  But our endio handlers that update the on
1303	 * disk i_size never update past the in memory i_size.  So we
1304	 * need one more update here to catch any additions to the
1305	 * file
1306	 */
1307	if (inode->i_size != BTRFS_I(inode)->disk_i_size) {
1308		btrfs_ordered_update_i_size(inode, inode->i_size, NULL);
1309		mark_inode_dirty(inode);
1310	}
1311
1312	if (written < 0 || written == count)
1313		return written;
1314
1315	pos += written;
1316	count -= written;
1317	iov_iter_init(&i, iov, nr_segs, count, written);
1318	written_buffered = __btrfs_buffered_write(file, &i, pos);
1319	if (written_buffered < 0) {
1320		err = written_buffered;
1321		goto out;
1322	}
 
 
 
 
1323	endbyte = pos + written_buffered - 1;
1324	err = filemap_write_and_wait_range(file->f_mapping, pos, endbyte);
 
 
 
1325	if (err)
1326		goto out;
1327	written += written_buffered;
1328	*ppos = pos + written_buffered;
1329	invalidate_mapping_pages(file->f_mapping, pos >> PAGE_CACHE_SHIFT,
1330				 endbyte >> PAGE_CACHE_SHIFT);
1331out:
1332	return written ? written : err;
1333}
1334
1335static ssize_t btrfs_file_aio_write(struct kiocb *iocb,
1336				    const struct iovec *iov,
1337				    unsigned long nr_segs, loff_t pos)
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1338{
1339	struct file *file = iocb->ki_filp;
1340	struct inode *inode = fdentry(file)->d_inode;
 
1341	struct btrfs_root *root = BTRFS_I(inode)->root;
1342	loff_t *ppos = &iocb->ki_pos;
1343	u64 start_pos;
 
1344	ssize_t num_written = 0;
1345	ssize_t err = 0;
1346	size_t count, ocount;
 
 
 
 
1347
1348	vfs_check_frozen(inode->i_sb, SB_FREEZE_WRITE);
1349
1350	mutex_lock(&inode->i_mutex);
1351
1352	err = generic_segment_checks(iov, &nr_segs, &ocount, VERIFY_READ);
1353	if (err) {
1354		mutex_unlock(&inode->i_mutex);
1355		goto out;
 
1356	}
1357	count = ocount;
1358
1359	current->backing_dev_info = inode->i_mapping->backing_dev_info;
1360	err = generic_write_checks(file, &pos, &count, S_ISBLK(inode->i_mode));
1361	if (err) {
1362		mutex_unlock(&inode->i_mutex);
1363		goto out;
1364	}
1365
1366	if (count == 0) {
1367		mutex_unlock(&inode->i_mutex);
1368		goto out;
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1369	}
1370
1371	err = file_remove_suid(file);
 
1372	if (err) {
1373		mutex_unlock(&inode->i_mutex);
1374		goto out;
1375	}
1376
1377	/*
1378	 * If BTRFS flips readonly due to some impossible error
1379	 * (fs_info->fs_state now has BTRFS_SUPER_FLAG_ERROR),
1380	 * although we have opened a file as writable, we have
1381	 * to stop this write operation to ensure FS consistency.
1382	 */
1383	if (root->fs_info->fs_state & BTRFS_SUPER_FLAG_ERROR) {
1384		mutex_unlock(&inode->i_mutex);
1385		err = -EROFS;
1386		goto out;
1387	}
1388
1389	file_update_time(file);
1390	BTRFS_I(inode)->sequence++;
 
 
 
 
 
1391
1392	start_pos = round_down(pos, root->sectorsize);
1393	if (start_pos > i_size_read(inode)) {
1394		err = btrfs_cont_expand(inode, i_size_read(inode), start_pos);
 
 
 
 
1395		if (err) {
1396			mutex_unlock(&inode->i_mutex);
1397			goto out;
1398		}
 
 
1399	}
1400
1401	if (unlikely(file->f_flags & O_DIRECT)) {
1402		num_written = __btrfs_direct_write(iocb, iov, nr_segs,
1403						   pos, ppos, count, ocount);
1404	} else {
1405		struct iov_iter i;
1406
1407		iov_iter_init(&i, iov, nr_segs, count, num_written);
1408
1409		num_written = __btrfs_buffered_write(file, &i, pos);
 
1410		if (num_written > 0)
1411			*ppos = pos + num_written;
 
 
 
1412	}
1413
1414	mutex_unlock(&inode->i_mutex);
1415
1416	/*
1417	 * we want to make sure fsync finds this change
1418	 * but we haven't joined a transaction running right now.
1419	 *
1420	 * Later on, someone is sure to update the inode and get the
1421	 * real transid recorded.
1422	 *
1423	 * We set last_trans now to the fs_info generation + 1,
1424	 * this will either be one more than the running transaction
1425	 * or the generation used for the next transaction if there isn't
1426	 * one running right now.
1427	 */
1428	BTRFS_I(inode)->last_trans = root->fs_info->generation + 1;
1429	if (num_written > 0 || num_written == -EIOCBQUEUED) {
1430		err = generic_write_sync(file, pos, num_written);
1431		if (err < 0 && num_written > 0)
1432			num_written = err;
1433	}
1434out:
1435	current->backing_dev_info = NULL;
1436	return num_written ? num_written : err;
1437}
1438
1439int btrfs_release_file(struct inode *inode, struct file *filp)
1440{
 
 
 
 
 
 
 
1441	/*
1442	 * ordered_data_close is set by settattr when we are about to truncate
1443	 * a file from a non-zero size to a zero size.  This tries to
1444	 * flush down new bytes that may have been written if the
1445	 * application were using truncate to replace a file in place.
1446	 */
1447	if (BTRFS_I(inode)->ordered_data_close) {
1448		BTRFS_I(inode)->ordered_data_close = 0;
1449		btrfs_add_ordered_operation(NULL, BTRFS_I(inode)->root, inode);
1450		if (inode->i_size > BTRFS_ORDERED_OPERATIONS_FLUSH_LIMIT)
1451			filemap_flush(inode->i_mapping);
1452	}
1453	if (filp->private_data)
1454		btrfs_ioctl_trans_end(filp);
1455	return 0;
1456}
1457
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1458/*
1459 * fsync call for both files and directories.  This logs the inode into
1460 * the tree log instead of forcing full commits whenever possible.
1461 *
1462 * It needs to call filemap_fdatawait so that all ordered extent updates are
1463 * in the metadata btree are up to date for copying to the log.
1464 *
1465 * It drops the inode mutex before doing the tree log commit.  This is an
1466 * important optimization for directories because holding the mutex prevents
1467 * new operations on the dir while we write to disk.
1468 */
1469int btrfs_sync_file(struct file *file, loff_t start, loff_t end, int datasync)
1470{
1471	struct dentry *dentry = file->f_path.dentry;
1472	struct inode *inode = dentry->d_inode;
 
1473	struct btrfs_root *root = BTRFS_I(inode)->root;
1474	int ret = 0;
1475	struct btrfs_trans_handle *trans;
 
 
1476
1477	trace_btrfs_sync_file(file, datasync);
1478
1479	ret = filemap_write_and_wait_range(inode->i_mapping, start, end);
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1480	if (ret)
1481		return ret;
1482	mutex_lock(&inode->i_mutex);
1483
1484	/* we wait first, since the writeback may change the inode */
1485	root->log_batch++;
1486	btrfs_wait_ordered_range(inode, 0, (u64)-1);
1487	root->log_batch++;
1488
1489	/*
1490	 * check the transaction that last modified this inode
1491	 * and see if its already been committed
 
1492	 */
1493	if (!BTRFS_I(inode)->last_trans) {
1494		mutex_unlock(&inode->i_mutex);
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1495		goto out;
1496	}
1497
1498	/*
1499	 * if the last transaction that changed this file was before
1500	 * the current transaction, we can bail out now without any
1501	 * syncing
 
 
1502	 */
 
 
 
 
 
 
 
 
1503	smp_mb();
1504	if (BTRFS_I(inode)->last_trans <=
1505	    root->fs_info->last_trans_committed) {
1506		BTRFS_I(inode)->last_trans = 0;
1507		mutex_unlock(&inode->i_mutex);
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1508		goto out;
1509	}
1510
1511	/*
1512	 * ok we haven't committed the transaction yet, lets do a commit
 
 
 
 
 
 
 
 
1513	 */
1514	if (file->private_data)
1515		btrfs_ioctl_trans_end(file);
1516
1517	trans = btrfs_start_transaction(root, 0);
1518	if (IS_ERR(trans)) {
1519		ret = PTR_ERR(trans);
1520		mutex_unlock(&inode->i_mutex);
 
1521		goto out;
1522	}
1523
1524	ret = btrfs_log_dentry_safe(trans, root, dentry);
1525	if (ret < 0) {
1526		mutex_unlock(&inode->i_mutex);
1527		goto out;
1528	}
1529
1530	/* we've logged all the items and now have a consistent
1531	 * version of the file in the log.  It is possible that
1532	 * someone will come in and modify the file, but that's
1533	 * fine because the log is consistent on disk, and we
1534	 * have references to all of the file's extents
1535	 *
1536	 * It is possible that someone will come in and log the
1537	 * file again, but that will end up using the synchronization
1538	 * inside btrfs_sync_log to keep things safe.
1539	 */
1540	mutex_unlock(&inode->i_mutex);
 
1541
1542	if (ret != BTRFS_NO_LOG_SYNC) {
1543		if (ret > 0) {
1544			ret = btrfs_commit_transaction(trans, root);
1545		} else {
1546			ret = btrfs_sync_log(trans, root);
1547			if (ret == 0)
1548				ret = btrfs_end_transaction(trans, root);
1549			else
1550				ret = btrfs_commit_transaction(trans, root);
1551		}
 
1552	} else {
1553		ret = btrfs_end_transaction(trans, root);
1554	}
1555out:
 
 
 
 
1556	return ret > 0 ? -EIO : ret;
1557}
1558
1559static const struct vm_operations_struct btrfs_file_vm_ops = {
1560	.fault		= filemap_fault,
 
1561	.page_mkwrite	= btrfs_page_mkwrite,
1562};
1563
1564static int btrfs_file_mmap(struct file	*filp, struct vm_area_struct *vma)
1565{
1566	struct address_space *mapping = filp->f_mapping;
1567
1568	if (!mapping->a_ops->readpage)
1569		return -ENOEXEC;
1570
1571	file_accessed(filp);
1572	vma->vm_ops = &btrfs_file_vm_ops;
1573	vma->vm_flags |= VM_CAN_NONLINEAR;
1574
1575	return 0;
1576}
1577
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1578static long btrfs_fallocate(struct file *file, int mode,
1579			    loff_t offset, loff_t len)
1580{
1581	struct inode *inode = file->f_path.dentry->d_inode;
1582	struct extent_state *cached_state = NULL;
 
 
 
 
1583	u64 cur_offset;
1584	u64 last_byte;
1585	u64 alloc_start;
1586	u64 alloc_end;
1587	u64 alloc_hint = 0;
1588	u64 locked_end;
1589	u64 mask = BTRFS_I(inode)->root->sectorsize - 1;
1590	struct extent_map *em;
 
1591	int ret;
1592
1593	alloc_start = offset & ~mask;
1594	alloc_end =  (offset + len + mask) & ~mask;
 
1595
1596	/* We only support the FALLOC_FL_KEEP_SIZE mode */
1597	if (mode & ~FALLOC_FL_KEEP_SIZE)
 
1598		return -EOPNOTSUPP;
1599
 
 
 
1600	/*
1601	 * wait for ordered IO before we have any locks.  We'll loop again
1602	 * below with the locks held.
 
1603	 */
1604	btrfs_wait_ordered_range(inode, alloc_start, alloc_end - alloc_start);
 
 
 
 
 
1605
1606	mutex_lock(&inode->i_mutex);
1607	ret = inode_newsize_ok(inode, alloc_end);
1608	if (ret)
1609		goto out;
 
 
 
1610
 
 
 
 
 
 
 
1611	if (alloc_start > inode->i_size) {
1612		ret = btrfs_cont_expand(inode, i_size_read(inode),
1613					alloc_start);
1614		if (ret)
1615			goto out;
 
 
 
 
 
 
 
 
 
1616	}
1617
1618	ret = btrfs_check_data_free_space(inode, alloc_end - alloc_start);
 
 
 
 
 
1619	if (ret)
1620		goto out;
1621
 
 
 
 
 
 
1622	locked_end = alloc_end - 1;
1623	while (1) {
1624		struct btrfs_ordered_extent *ordered;
1625
1626		/* the extent lock is ordered inside the running
1627		 * transaction
1628		 */
1629		lock_extent_bits(&BTRFS_I(inode)->io_tree, alloc_start,
1630				 locked_end, 0, &cached_state, GFP_NOFS);
1631		ordered = btrfs_lookup_first_ordered_extent(inode,
1632							    alloc_end - 1);
1633		if (ordered &&
1634		    ordered->file_offset + ordered->len > alloc_start &&
1635		    ordered->file_offset < alloc_end) {
1636			btrfs_put_ordered_extent(ordered);
1637			unlock_extent_cached(&BTRFS_I(inode)->io_tree,
1638					     alloc_start, locked_end,
1639					     &cached_state, GFP_NOFS);
1640			/*
1641			 * we can't wait on the range with the transaction
1642			 * running or with the extent lock held
1643			 */
1644			btrfs_wait_ordered_range(inode, alloc_start,
1645						 alloc_end - alloc_start);
 
 
1646		} else {
1647			if (ordered)
1648				btrfs_put_ordered_extent(ordered);
1649			break;
1650		}
1651	}
1652
1653	cur_offset = alloc_start;
1654	while (1) {
1655		u64 actual_end;
1656
1657		em = btrfs_get_extent(inode, NULL, 0, cur_offset,
1658				      alloc_end - cur_offset, 0);
1659		BUG_ON(IS_ERR_OR_NULL(em));
 
 
1660		last_byte = min(extent_map_end(em), alloc_end);
1661		actual_end = min_t(u64, extent_map_end(em), offset + len);
1662		last_byte = (last_byte + mask) & ~mask;
1663
1664		if (em->block_start == EXTENT_MAP_HOLE ||
1665		    (cur_offset >= inode->i_size &&
1666		     !test_bit(EXTENT_FLAG_PREALLOC, &em->flags))) {
1667			ret = btrfs_prealloc_file_range(inode, mode, cur_offset,
1668							last_byte - cur_offset,
1669							1 << inode->i_blkbits,
1670							offset + len,
1671							&alloc_hint);
 
 
 
 
1672			if (ret < 0) {
 
1673				free_extent_map(em);
1674				break;
1675			}
1676		} else if (actual_end > inode->i_size &&
1677			   !(mode & FALLOC_FL_KEEP_SIZE)) {
1678			/*
1679			 * We didn't need to allocate any more space, but we
1680			 * still extended the size of the file so we need to
1681			 * update i_size.
1682			 */
1683			inode->i_ctime = CURRENT_TIME;
1684			i_size_write(inode, actual_end);
1685			btrfs_ordered_update_i_size(inode, actual_end, NULL);
1686		}
1687		free_extent_map(em);
1688
1689		cur_offset = last_byte;
1690		if (cur_offset >= alloc_end) {
1691			ret = 0;
1692			break;
1693		}
1694	}
1695	unlock_extent_cached(&BTRFS_I(inode)->io_tree, alloc_start, locked_end,
1696			     &cached_state, GFP_NOFS);
1697
1698	btrfs_free_reserved_data_space(inode, alloc_end - alloc_start);
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1699out:
1700	mutex_unlock(&inode->i_mutex);
 
 
 
 
 
1701	return ret;
1702}
1703
1704static int find_desired_extent(struct inode *inode, loff_t *offset, int origin)
 
1705{
1706	struct btrfs_root *root = BTRFS_I(inode)->root;
1707	struct extent_map *em;
1708	struct extent_state *cached_state = NULL;
1709	u64 lockstart = *offset;
1710	u64 lockend = i_size_read(inode);
1711	u64 start = *offset;
1712	u64 orig_start = *offset;
1713	u64 len = i_size_read(inode);
1714	u64 last_end = 0;
1715	int ret = 0;
1716
1717	lockend = max_t(u64, root->sectorsize, lockend);
1718	if (lockend <= lockstart)
1719		lockend = lockstart + root->sectorsize;
1720
1721	len = lockend - lockstart + 1;
1722
1723	len = max_t(u64, len, root->sectorsize);
1724	if (inode->i_size == 0)
1725		return -ENXIO;
1726
1727	lock_extent_bits(&BTRFS_I(inode)->io_tree, lockstart, lockend, 0,
1728			 &cached_state, GFP_NOFS);
1729
1730	/*
1731	 * Delalloc is such a pain.  If we have a hole and we have pending
1732	 * delalloc for a portion of the hole we will get back a hole that
1733	 * exists for the entire range since it hasn't been actually written
1734	 * yet.  So to take care of this case we need to look for an extent just
1735	 * before the position we want in case there is outstanding delalloc
1736	 * going on here.
1737	 */
1738	if (origin == SEEK_HOLE && start != 0) {
1739		if (start <= root->sectorsize)
1740			em = btrfs_get_extent_fiemap(inode, NULL, 0, 0,
1741						     root->sectorsize, 0);
1742		else
1743			em = btrfs_get_extent_fiemap(inode, NULL, 0,
1744						     start - root->sectorsize,
1745						     root->sectorsize, 0);
1746		if (IS_ERR(em)) {
1747			ret = -ENXIO;
1748			goto out;
1749		}
1750		last_end = em->start + em->len;
1751		if (em->block_start == EXTENT_MAP_DELALLOC)
1752			last_end = min_t(u64, last_end, inode->i_size);
1753		free_extent_map(em);
1754	}
1755
1756	while (1) {
1757		em = btrfs_get_extent_fiemap(inode, NULL, 0, start, len, 0);
 
 
 
 
 
 
 
 
 
 
1758		if (IS_ERR(em)) {
1759			ret = -ENXIO;
 
1760			break;
1761		}
1762
1763		if (em->block_start == EXTENT_MAP_HOLE) {
1764			if (test_bit(EXTENT_FLAG_VACANCY, &em->flags)) {
1765				if (last_end <= orig_start) {
1766					free_extent_map(em);
1767					ret = -ENXIO;
1768					break;
1769				}
1770			}
1771
1772			if (origin == SEEK_HOLE) {
1773				*offset = start;
1774				free_extent_map(em);
1775				break;
1776			}
1777		} else {
1778			if (origin == SEEK_DATA) {
1779				if (em->block_start == EXTENT_MAP_DELALLOC) {
1780					if (start >= inode->i_size) {
1781						free_extent_map(em);
1782						ret = -ENXIO;
1783						break;
1784					}
1785				}
1786
1787				*offset = start;
1788				free_extent_map(em);
1789				break;
1790			}
1791		}
1792
1793		start = em->start + em->len;
1794		last_end = em->start + em->len;
1795
1796		if (em->block_start == EXTENT_MAP_DELALLOC)
1797			last_end = min_t(u64, last_end, inode->i_size);
1798
1799		if (test_bit(EXTENT_FLAG_VACANCY, &em->flags)) {
1800			free_extent_map(em);
1801			ret = -ENXIO;
1802			break;
1803		}
1804		free_extent_map(em);
 
1805		cond_resched();
1806	}
1807	if (!ret)
1808		*offset = min(*offset, inode->i_size);
1809out:
1810	unlock_extent_cached(&BTRFS_I(inode)->io_tree, lockstart, lockend,
1811			     &cached_state, GFP_NOFS);
1812	return ret;
 
 
 
 
 
 
 
 
 
1813}
1814
1815static loff_t btrfs_file_llseek(struct file *file, loff_t offset, int origin)
1816{
1817	struct inode *inode = file->f_mapping->host;
1818	int ret;
1819
1820	mutex_lock(&inode->i_mutex);
1821	switch (origin) {
1822	case SEEK_END:
1823	case SEEK_CUR:
1824		offset = generic_file_llseek_unlocked(file, offset, origin);
1825		goto out;
1826	case SEEK_DATA:
1827	case SEEK_HOLE:
1828		if (offset >= i_size_read(inode)) {
1829			mutex_unlock(&inode->i_mutex);
1830			return -ENXIO;
1831		}
1832
1833		ret = find_desired_extent(inode, &offset, origin);
1834		if (ret) {
1835			mutex_unlock(&inode->i_mutex);
1836			return ret;
1837		}
1838	}
1839
1840	if (offset < 0 && !(file->f_mode & FMODE_UNSIGNED_OFFSET)) {
1841		offset = -EINVAL;
1842		goto out;
1843	}
1844	if (offset > inode->i_sb->s_maxbytes) {
1845		offset = -EINVAL;
1846		goto out;
1847	}
1848
1849	/* Special lock needed here? */
1850	if (offset != file->f_pos) {
1851		file->f_pos = offset;
1852		file->f_version = 0;
1853	}
1854out:
1855	mutex_unlock(&inode->i_mutex);
1856	return offset;
1857}
1858
1859const struct file_operations btrfs_file_operations = {
1860	.llseek		= btrfs_file_llseek,
1861	.read		= do_sync_read,
1862	.write		= do_sync_write,
1863	.aio_read       = generic_file_aio_read,
1864	.splice_read	= generic_file_splice_read,
1865	.aio_write	= btrfs_file_aio_write,
 
1866	.mmap		= btrfs_file_mmap,
1867	.open		= generic_file_open,
1868	.release	= btrfs_release_file,
1869	.fsync		= btrfs_sync_file,
1870	.fallocate	= btrfs_fallocate,
1871	.unlocked_ioctl	= btrfs_ioctl,
1872#ifdef CONFIG_COMPAT
1873	.compat_ioctl	= btrfs_ioctl,
1874#endif
 
1875};
v5.9
   1// SPDX-License-Identifier: GPL-2.0
   2/*
   3 * Copyright (C) 2007 Oracle.  All rights reserved.
 
 
 
 
 
 
 
 
 
 
 
 
 
 
   4 */
   5
   6#include <linux/fs.h>
   7#include <linux/pagemap.h>
 
   8#include <linux/time.h>
   9#include <linux/init.h>
  10#include <linux/string.h>
  11#include <linux/backing-dev.h>
 
  12#include <linux/falloc.h>
 
  13#include <linux/writeback.h>
 
  14#include <linux/compat.h>
  15#include <linux/slab.h>
  16#include <linux/btrfs.h>
  17#include <linux/uio.h>
  18#include <linux/iversion.h>
  19#include "ctree.h"
  20#include "disk-io.h"
  21#include "transaction.h"
  22#include "btrfs_inode.h"
 
  23#include "print-tree.h"
  24#include "tree-log.h"
  25#include "locking.h"
  26#include "volumes.h"
  27#include "qgroup.h"
  28#include "compression.h"
  29#include "delalloc-space.h"
  30#include "reflink.h"
  31
  32static struct kmem_cache *btrfs_inode_defrag_cachep;
  33/*
  34 * when auto defrag is enabled we
  35 * queue up these defrag structs to remember which
  36 * inodes need defragging passes
  37 */
  38struct inode_defrag {
  39	struct rb_node rb_node;
  40	/* objectid */
  41	u64 ino;
  42	/*
  43	 * transid where the defrag was added, we search for
  44	 * extents newer than this
  45	 */
  46	u64 transid;
  47
  48	/* root objectid */
  49	u64 root;
  50
  51	/* last offset we were able to defrag */
  52	u64 last_offset;
  53
  54	/* if we've wrapped around back to zero once already */
  55	int cycled;
  56};
  57
  58static int __compare_inode_defrag(struct inode_defrag *defrag1,
  59				  struct inode_defrag *defrag2)
  60{
  61	if (defrag1->root > defrag2->root)
  62		return 1;
  63	else if (defrag1->root < defrag2->root)
  64		return -1;
  65	else if (defrag1->ino > defrag2->ino)
  66		return 1;
  67	else if (defrag1->ino < defrag2->ino)
  68		return -1;
  69	else
  70		return 0;
  71}
  72
  73/* pop a record for an inode into the defrag tree.  The lock
  74 * must be held already
  75 *
  76 * If you're inserting a record for an older transid than an
  77 * existing record, the transid already in the tree is lowered
  78 *
  79 * If an existing record is found the defrag item you
  80 * pass in is freed
  81 */
  82static int __btrfs_add_inode_defrag(struct btrfs_inode *inode,
  83				    struct inode_defrag *defrag)
  84{
  85	struct btrfs_fs_info *fs_info = inode->root->fs_info;
  86	struct inode_defrag *entry;
  87	struct rb_node **p;
  88	struct rb_node *parent = NULL;
  89	int ret;
  90
  91	p = &fs_info->defrag_inodes.rb_node;
  92	while (*p) {
  93		parent = *p;
  94		entry = rb_entry(parent, struct inode_defrag, rb_node);
  95
  96		ret = __compare_inode_defrag(defrag, entry);
  97		if (ret < 0)
  98			p = &parent->rb_left;
  99		else if (ret > 0)
 100			p = &parent->rb_right;
 101		else {
 102			/* if we're reinserting an entry for
 103			 * an old defrag run, make sure to
 104			 * lower the transid of our existing record
 105			 */
 106			if (defrag->transid < entry->transid)
 107				entry->transid = defrag->transid;
 108			if (defrag->last_offset > entry->last_offset)
 109				entry->last_offset = defrag->last_offset;
 110			return -EEXIST;
 111		}
 112	}
 113	set_bit(BTRFS_INODE_IN_DEFRAG, &inode->runtime_flags);
 114	rb_link_node(&defrag->rb_node, parent, p);
 115	rb_insert_color(&defrag->rb_node, &fs_info->defrag_inodes);
 116	return 0;
 117}
 118
 119static inline int __need_auto_defrag(struct btrfs_fs_info *fs_info)
 120{
 121	if (!btrfs_test_opt(fs_info, AUTO_DEFRAG))
 122		return 0;
 123
 124	if (btrfs_fs_closing(fs_info))
 125		return 0;
 126
 127	return 1;
 128}
 129
 130/*
 131 * insert a defrag record for this inode if auto defrag is
 132 * enabled
 133 */
 134int btrfs_add_inode_defrag(struct btrfs_trans_handle *trans,
 135			   struct btrfs_inode *inode)
 136{
 137	struct btrfs_root *root = inode->root;
 138	struct btrfs_fs_info *fs_info = root->fs_info;
 139	struct inode_defrag *defrag;
 140	u64 transid;
 141	int ret;
 142
 143	if (!__need_auto_defrag(fs_info))
 
 
 
 144		return 0;
 145
 146	if (test_bit(BTRFS_INODE_IN_DEFRAG, &inode->runtime_flags))
 147		return 0;
 148
 149	if (trans)
 150		transid = trans->transid;
 151	else
 152		transid = inode->root->last_trans;
 153
 154	defrag = kmem_cache_zalloc(btrfs_inode_defrag_cachep, GFP_NOFS);
 155	if (!defrag)
 156		return -ENOMEM;
 157
 158	defrag->ino = btrfs_ino(inode);
 159	defrag->transid = transid;
 160	defrag->root = root->root_key.objectid;
 161
 162	spin_lock(&fs_info->defrag_inodes_lock);
 163	if (!test_bit(BTRFS_INODE_IN_DEFRAG, &inode->runtime_flags)) {
 164		/*
 165		 * If we set IN_DEFRAG flag and evict the inode from memory,
 166		 * and then re-read this inode, this new inode doesn't have
 167		 * IN_DEFRAG flag. At the case, we may find the existed defrag.
 168		 */
 169		ret = __btrfs_add_inode_defrag(inode, defrag);
 170		if (ret)
 171			kmem_cache_free(btrfs_inode_defrag_cachep, defrag);
 172	} else {
 173		kmem_cache_free(btrfs_inode_defrag_cachep, defrag);
 174	}
 175	spin_unlock(&fs_info->defrag_inodes_lock);
 176	return 0;
 177}
 178
 179/*
 180 * Requeue the defrag object. If there is a defrag object that points to
 181 * the same inode in the tree, we will merge them together (by
 182 * __btrfs_add_inode_defrag()) and free the one that we want to requeue.
 183 */
 184static void btrfs_requeue_inode_defrag(struct btrfs_inode *inode,
 185				       struct inode_defrag *defrag)
 186{
 187	struct btrfs_fs_info *fs_info = inode->root->fs_info;
 188	int ret;
 189
 190	if (!__need_auto_defrag(fs_info))
 191		goto out;
 192
 193	/*
 194	 * Here we don't check the IN_DEFRAG flag, because we need merge
 195	 * them together.
 196	 */
 197	spin_lock(&fs_info->defrag_inodes_lock);
 198	ret = __btrfs_add_inode_defrag(inode, defrag);
 199	spin_unlock(&fs_info->defrag_inodes_lock);
 200	if (ret)
 201		goto out;
 202	return;
 203out:
 204	kmem_cache_free(btrfs_inode_defrag_cachep, defrag);
 205}
 206
 207/*
 208 * pick the defragable inode that we want, if it doesn't exist, we will get
 209 * the next one.
 210 */
 211static struct inode_defrag *
 212btrfs_pick_defrag_inode(struct btrfs_fs_info *fs_info, u64 root, u64 ino)
 213{
 214	struct inode_defrag *entry = NULL;
 215	struct inode_defrag tmp;
 216	struct rb_node *p;
 217	struct rb_node *parent = NULL;
 218	int ret;
 219
 220	tmp.ino = ino;
 221	tmp.root = root;
 222
 223	spin_lock(&fs_info->defrag_inodes_lock);
 224	p = fs_info->defrag_inodes.rb_node;
 225	while (p) {
 226		parent = p;
 227		entry = rb_entry(parent, struct inode_defrag, rb_node);
 228
 229		ret = __compare_inode_defrag(&tmp, entry);
 230		if (ret < 0)
 231			p = parent->rb_left;
 232		else if (ret > 0)
 233			p = parent->rb_right;
 234		else
 235			goto out;
 236	}
 237
 238	if (parent && __compare_inode_defrag(&tmp, entry) > 0) {
 239		parent = rb_next(parent);
 240		if (parent)
 241			entry = rb_entry(parent, struct inode_defrag, rb_node);
 242		else
 243			entry = NULL;
 244	}
 245out:
 246	if (entry)
 247		rb_erase(parent, &fs_info->defrag_inodes);
 248	spin_unlock(&fs_info->defrag_inodes_lock);
 249	return entry;
 250}
 251
 252void btrfs_cleanup_defrag_inodes(struct btrfs_fs_info *fs_info)
 
 
 
 
 253{
 254	struct inode_defrag *defrag;
 255	struct rb_node *node;
 256
 257	spin_lock(&fs_info->defrag_inodes_lock);
 258	node = rb_first(&fs_info->defrag_inodes);
 259	while (node) {
 260		rb_erase(node, &fs_info->defrag_inodes);
 261		defrag = rb_entry(node, struct inode_defrag, rb_node);
 262		kmem_cache_free(btrfs_inode_defrag_cachep, defrag);
 263
 264		cond_resched_lock(&fs_info->defrag_inodes_lock);
 265
 266		node = rb_first(&fs_info->defrag_inodes);
 267	}
 268	spin_unlock(&fs_info->defrag_inodes_lock);
 269}
 270
 271#define BTRFS_DEFRAG_BATCH	1024
 272
 273static int __btrfs_run_defrag_inode(struct btrfs_fs_info *fs_info,
 274				    struct inode_defrag *defrag)
 275{
 276	struct btrfs_root *inode_root;
 277	struct inode *inode;
 
 
 278	struct btrfs_ioctl_defrag_range_args range;
 
 279	int num_defrag;
 280	int ret;
 281
 282	/* get the inode */
 283	inode_root = btrfs_get_fs_root(fs_info, defrag->root, true);
 284	if (IS_ERR(inode_root)) {
 285		ret = PTR_ERR(inode_root);
 286		goto cleanup;
 287	}
 288
 289	inode = btrfs_iget(fs_info->sb, defrag->ino, inode_root);
 290	btrfs_put_root(inode_root);
 291	if (IS_ERR(inode)) {
 292		ret = PTR_ERR(inode);
 293		goto cleanup;
 294	}
 295
 296	/* do a chunk of defrag */
 297	clear_bit(BTRFS_INODE_IN_DEFRAG, &BTRFS_I(inode)->runtime_flags);
 298	memset(&range, 0, sizeof(range));
 299	range.len = (u64)-1;
 300	range.start = defrag->last_offset;
 301
 302	sb_start_write(fs_info->sb);
 303	num_defrag = btrfs_defrag_file(inode, NULL, &range, defrag->transid,
 304				       BTRFS_DEFRAG_BATCH);
 305	sb_end_write(fs_info->sb);
 306	/*
 307	 * if we filled the whole defrag batch, there
 308	 * must be more work to do.  Queue this defrag
 309	 * again
 310	 */
 311	if (num_defrag == BTRFS_DEFRAG_BATCH) {
 312		defrag->last_offset = range.start;
 313		btrfs_requeue_inode_defrag(BTRFS_I(inode), defrag);
 314	} else if (defrag->last_offset && !defrag->cycled) {
 315		/*
 316		 * we didn't fill our defrag batch, but
 317		 * we didn't start at zero.  Make sure we loop
 318		 * around to the start of the file.
 319		 */
 320		defrag->last_offset = 0;
 321		defrag->cycled = 1;
 322		btrfs_requeue_inode_defrag(BTRFS_I(inode), defrag);
 323	} else {
 324		kmem_cache_free(btrfs_inode_defrag_cachep, defrag);
 325	}
 326
 327	iput(inode);
 328	return 0;
 329cleanup:
 330	kmem_cache_free(btrfs_inode_defrag_cachep, defrag);
 331	return ret;
 332}
 333
 334/*
 335 * run through the list of inodes in the FS that need
 336 * defragging
 337 */
 338int btrfs_run_defrag_inodes(struct btrfs_fs_info *fs_info)
 339{
 340	struct inode_defrag *defrag;
 341	u64 first_ino = 0;
 342	u64 root_objectid = 0;
 343
 344	atomic_inc(&fs_info->defrag_running);
 345	while (1) {
 346		/* Pause the auto defragger. */
 347		if (test_bit(BTRFS_FS_STATE_REMOUNTING,
 348			     &fs_info->fs_state))
 349			break;
 350
 351		if (!__need_auto_defrag(fs_info))
 352			break;
 353
 354		/* find an inode to defrag */
 355		defrag = btrfs_pick_defrag_inode(fs_info, root_objectid,
 356						 first_ino);
 357		if (!defrag) {
 358			if (root_objectid || first_ino) {
 359				root_objectid = 0;
 
 360				first_ino = 0;
 361				continue;
 362			} else {
 363				break;
 364			}
 365		}
 366
 
 367		first_ino = defrag->ino + 1;
 368		root_objectid = defrag->root;
 369
 370		__btrfs_run_defrag_inode(fs_info, defrag);
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 371	}
 
 
 372	atomic_dec(&fs_info->defrag_running);
 373
 374	/*
 375	 * during unmount, we use the transaction_wait queue to
 376	 * wait for the defragger to stop
 377	 */
 378	wake_up(&fs_info->transaction_wait);
 379	return 0;
 380}
 381
 382/* simple helper to fault in pages and copy.  This should go away
 383 * and be replaced with calls into generic code.
 384 */
 385static noinline int btrfs_copy_from_user(loff_t pos, size_t write_bytes,
 
 386					 struct page **prepared_pages,
 387					 struct iov_iter *i)
 388{
 389	size_t copied = 0;
 390	size_t total_copied = 0;
 391	int pg = 0;
 392	int offset = offset_in_page(pos);
 393
 394	while (write_bytes > 0) {
 395		size_t count = min_t(size_t,
 396				     PAGE_SIZE - offset, write_bytes);
 397		struct page *page = prepared_pages[pg];
 398		/*
 399		 * Copy data from userspace to the current page
 
 
 
 400		 */
 
 401		copied = iov_iter_copy_from_user_atomic(page, i, offset, count);
 
 402
 403		/* Flush processor's dcache for this page */
 404		flush_dcache_page(page);
 405
 406		/*
 407		 * if we get a partial write, we can end up with
 408		 * partially up to date pages.  These add
 409		 * a lot of complexity, so make sure they don't
 410		 * happen by forcing this copy to be retried.
 411		 *
 412		 * The rest of the btrfs_file_write code will fall
 413		 * back to page at a time copies after we return 0.
 414		 */
 415		if (!PageUptodate(page) && copied < count)
 416			copied = 0;
 417
 418		iov_iter_advance(i, copied);
 419		write_bytes -= copied;
 420		total_copied += copied;
 421
 422		/* Return to btrfs_file_write_iter to fault page */
 423		if (unlikely(copied == 0))
 424			break;
 425
 426		if (copied < PAGE_SIZE - offset) {
 427			offset += copied;
 428		} else {
 429			pg++;
 430			offset = 0;
 431		}
 432	}
 433	return total_copied;
 434}
 435
 436/*
 437 * unlocks pages after btrfs_file_write is done with them
 438 */
 439static void btrfs_drop_pages(struct page **pages, size_t num_pages)
 440{
 441	size_t i;
 442	for (i = 0; i < num_pages; i++) {
 443		/* page checked is some magic around finding pages that
 444		 * have been modified without going through btrfs_set_page_dirty
 445		 * clear it here. There should be no need to mark the pages
 446		 * accessed as prepare_pages should have marked them accessed
 447		 * in prepare_pages via find_or_create_page()
 448		 */
 449		ClearPageChecked(pages[i]);
 450		unlock_page(pages[i]);
 451		put_page(pages[i]);
 452	}
 453}
 454
 455static int btrfs_find_new_delalloc_bytes(struct btrfs_inode *inode,
 456					 const u64 start,
 457					 const u64 len,
 458					 struct extent_state **cached_state)
 459{
 460	u64 search_start = start;
 461	const u64 end = start + len - 1;
 462
 463	while (search_start < end) {
 464		const u64 search_len = end - search_start + 1;
 465		struct extent_map *em;
 466		u64 em_len;
 467		int ret = 0;
 468
 469		em = btrfs_get_extent(inode, NULL, 0, search_start, search_len);
 470		if (IS_ERR(em))
 471			return PTR_ERR(em);
 472
 473		if (em->block_start != EXTENT_MAP_HOLE)
 474			goto next;
 475
 476		em_len = em->len;
 477		if (em->start < search_start)
 478			em_len -= search_start - em->start;
 479		if (em_len > search_len)
 480			em_len = search_len;
 481
 482		ret = set_extent_bit(&inode->io_tree, search_start,
 483				     search_start + em_len - 1,
 484				     EXTENT_DELALLOC_NEW,
 485				     NULL, cached_state, GFP_NOFS);
 486next:
 487		search_start = extent_map_end(em);
 488		free_extent_map(em);
 489		if (ret)
 490			return ret;
 491	}
 492	return 0;
 493}
 494
 495/*
 496 * after copy_from_user, pages need to be dirtied and we need to make
 497 * sure holes are created between the current EOF and the start of
 498 * any next extents (if required).
 499 *
 500 * this also makes the decision about creating an inline extent vs
 501 * doing real data extents, marking pages dirty and delalloc as required.
 502 */
 503int btrfs_dirty_pages(struct btrfs_inode *inode, struct page **pages,
 504		      size_t num_pages, loff_t pos, size_t write_bytes,
 
 505		      struct extent_state **cached)
 506{
 507	struct btrfs_fs_info *fs_info = inode->root->fs_info;
 508	int err = 0;
 509	int i;
 510	u64 num_bytes;
 511	u64 start_pos;
 512	u64 end_of_last_block;
 513	u64 end_pos = pos + write_bytes;
 514	loff_t isize = i_size_read(&inode->vfs_inode);
 515	unsigned int extra_bits = 0;
 516
 517	start_pos = pos & ~((u64) fs_info->sectorsize - 1);
 518	num_bytes = round_up(write_bytes + pos - start_pos,
 519			     fs_info->sectorsize);
 520
 521	end_of_last_block = start_pos + num_bytes - 1;
 522
 523	/*
 524	 * The pages may have already been dirty, clear out old accounting so
 525	 * we can set things up properly
 526	 */
 527	clear_extent_bit(&inode->io_tree, start_pos, end_of_last_block,
 528			 EXTENT_DELALLOC | EXTENT_DO_ACCOUNTING | EXTENT_DEFRAG,
 529			 0, 0, cached);
 530
 531	if (!btrfs_is_free_space_inode(inode)) {
 532		if (start_pos >= isize &&
 533		    !(inode->flags & BTRFS_INODE_PREALLOC)) {
 534			/*
 535			 * There can't be any extents following eof in this case
 536			 * so just set the delalloc new bit for the range
 537			 * directly.
 538			 */
 539			extra_bits |= EXTENT_DELALLOC_NEW;
 540		} else {
 541			err = btrfs_find_new_delalloc_bytes(inode, start_pos,
 542							    num_bytes, cached);
 543			if (err)
 544				return err;
 545		}
 546	}
 547
 548	err = btrfs_set_extent_delalloc(inode, start_pos, end_of_last_block,
 549					extra_bits, cached);
 550	if (err)
 551		return err;
 552
 553	for (i = 0; i < num_pages; i++) {
 554		struct page *p = pages[i];
 555		SetPageUptodate(p);
 556		ClearPageChecked(p);
 557		set_page_dirty(p);
 558	}
 559
 560	/*
 561	 * we've only changed i_size in ram, and we haven't updated
 562	 * the disk i_size.  There is no need to log the inode
 563	 * at this time.
 564	 */
 565	if (end_pos > isize)
 566		i_size_write(&inode->vfs_inode, end_pos);
 567	return 0;
 568}
 569
 570/*
 571 * this drops all the extents in the cache that intersect the range
 572 * [start, end].  Existing extents are split as required.
 573 */
 574void btrfs_drop_extent_cache(struct btrfs_inode *inode, u64 start, u64 end,
 575			     int skip_pinned)
 576{
 577	struct extent_map *em;
 578	struct extent_map *split = NULL;
 579	struct extent_map *split2 = NULL;
 580	struct extent_map_tree *em_tree = &inode->extent_tree;
 581	u64 len = end - start + 1;
 582	u64 gen;
 583	int ret;
 584	int testend = 1;
 585	unsigned long flags;
 586	int compressed = 0;
 587	bool modified;
 588
 589	WARN_ON(end < start);
 590	if (end == (u64)-1) {
 591		len = (u64)-1;
 592		testend = 0;
 593	}
 594	while (1) {
 595		int no_splits = 0;
 596
 597		modified = false;
 598		if (!split)
 599			split = alloc_extent_map();
 600		if (!split2)
 601			split2 = alloc_extent_map();
 602		if (!split || !split2)
 603			no_splits = 1;
 604
 605		write_lock(&em_tree->lock);
 606		em = lookup_extent_mapping(em_tree, start, len);
 607		if (!em) {
 608			write_unlock(&em_tree->lock);
 609			break;
 610		}
 611		flags = em->flags;
 612		gen = em->generation;
 613		if (skip_pinned && test_bit(EXTENT_FLAG_PINNED, &em->flags)) {
 614			if (testend && em->start + em->len >= start + len) {
 615				free_extent_map(em);
 616				write_unlock(&em_tree->lock);
 617				break;
 618			}
 619			start = em->start + em->len;
 620			if (testend)
 621				len = start + len - (em->start + em->len);
 622			free_extent_map(em);
 623			write_unlock(&em_tree->lock);
 624			continue;
 625		}
 626		compressed = test_bit(EXTENT_FLAG_COMPRESSED, &em->flags);
 627		clear_bit(EXTENT_FLAG_PINNED, &em->flags);
 628		clear_bit(EXTENT_FLAG_LOGGING, &flags);
 629		modified = !list_empty(&em->list);
 630		if (no_splits)
 631			goto next;
 632
 633		if (em->start < start) {
 
 634			split->start = em->start;
 635			split->len = start - em->start;
 
 
 636
 637			if (em->block_start < EXTENT_MAP_LAST_BYTE) {
 638				split->orig_start = em->orig_start;
 639				split->block_start = em->block_start;
 640
 641				if (compressed)
 642					split->block_len = em->block_len;
 643				else
 644					split->block_len = split->len;
 645				split->orig_block_len = max(split->block_len,
 646						em->orig_block_len);
 647				split->ram_bytes = em->ram_bytes;
 648			} else {
 649				split->orig_start = split->start;
 650				split->block_len = 0;
 651				split->block_start = em->block_start;
 652				split->orig_block_len = 0;
 653				split->ram_bytes = split->len;
 654			}
 655
 656			split->generation = gen;
 657			split->flags = flags;
 658			split->compress_type = em->compress_type;
 659			replace_extent_mapping(em_tree, em, split, modified);
 
 660			free_extent_map(split);
 661			split = split2;
 662			split2 = NULL;
 663		}
 664		if (testend && em->start + em->len > start + len) {
 
 665			u64 diff = start + len - em->start;
 666
 667			split->start = start + len;
 668			split->len = em->start + em->len - (start + len);
 
 669			split->flags = flags;
 670			split->compress_type = em->compress_type;
 671			split->generation = gen;
 672
 673			if (em->block_start < EXTENT_MAP_LAST_BYTE) {
 674				split->orig_block_len = max(em->block_len,
 675						    em->orig_block_len);
 676
 677				split->ram_bytes = em->ram_bytes;
 678				if (compressed) {
 679					split->block_len = em->block_len;
 680					split->block_start = em->block_start;
 681					split->orig_start = em->orig_start;
 682				} else {
 683					split->block_len = split->len;
 684					split->block_start = em->block_start
 685						+ diff;
 686					split->orig_start = em->orig_start;
 687				}
 688			} else {
 689				split->ram_bytes = split->len;
 
 690				split->orig_start = split->start;
 691				split->block_len = 0;
 692				split->block_start = em->block_start;
 693				split->orig_block_len = 0;
 694			}
 695
 696			if (extent_map_in_tree(em)) {
 697				replace_extent_mapping(em_tree, em, split,
 698						       modified);
 699			} else {
 700				ret = add_extent_mapping(em_tree, split,
 701							 modified);
 702				ASSERT(ret == 0); /* Logic error */
 703			}
 704			free_extent_map(split);
 705			split = NULL;
 706		}
 707next:
 708		if (extent_map_in_tree(em))
 709			remove_extent_mapping(em_tree, em);
 710		write_unlock(&em_tree->lock);
 711
 712		/* once for us */
 713		free_extent_map(em);
 714		/* once for the tree*/
 715		free_extent_map(em);
 716	}
 717	if (split)
 718		free_extent_map(split);
 719	if (split2)
 720		free_extent_map(split2);
 
 721}
 722
 723/*
 724 * this is very complex, but the basic idea is to drop all extents
 725 * in the range start - end.  hint_block is filled in with a block number
 726 * that would be a good hint to the block allocator for this file.
 727 *
 728 * If an extent intersects the range but is not entirely inside the range
 729 * it is either truncated or split.  Anything entirely inside the range
 730 * is deleted from the tree.
 731 */
 732int __btrfs_drop_extents(struct btrfs_trans_handle *trans,
 733			 struct btrfs_root *root, struct btrfs_inode *inode,
 734			 struct btrfs_path *path, u64 start, u64 end,
 735			 u64 *drop_end, int drop_cache,
 736			 int replace_extent,
 737			 u32 extent_item_size,
 738			 int *key_inserted)
 739{
 740	struct btrfs_fs_info *fs_info = root->fs_info;
 741	struct extent_buffer *leaf;
 742	struct btrfs_file_extent_item *fi;
 743	struct btrfs_ref ref = { 0 };
 744	struct btrfs_key key;
 745	struct btrfs_key new_key;
 746	struct inode *vfs_inode = &inode->vfs_inode;
 747	u64 ino = btrfs_ino(inode);
 748	u64 search_start = start;
 749	u64 disk_bytenr = 0;
 750	u64 num_bytes = 0;
 751	u64 extent_offset = 0;
 752	u64 extent_end = 0;
 753	u64 last_end = start;
 754	int del_nr = 0;
 755	int del_slot = 0;
 756	int extent_type;
 757	int recow;
 758	int ret;
 759	int modify_tree = -1;
 760	int update_refs;
 761	int found = 0;
 762	int leafs_visited = 0;
 763
 764	if (drop_cache)
 765		btrfs_drop_extent_cache(inode, start, end - 1, 0);
 766
 767	if (start >= inode->disk_i_size && !replace_extent)
 768		modify_tree = 0;
 
 769
 770	update_refs = (test_bit(BTRFS_ROOT_SHAREABLE, &root->state) ||
 771		       root == fs_info->tree_root);
 772	while (1) {
 773		recow = 0;
 774		ret = btrfs_lookup_file_extent(trans, root, path, ino,
 775					       search_start, modify_tree);
 776		if (ret < 0)
 777			break;
 778		if (ret > 0 && path->slots[0] > 0 && search_start == start) {
 779			leaf = path->nodes[0];
 780			btrfs_item_key_to_cpu(leaf, &key, path->slots[0] - 1);
 781			if (key.objectid == ino &&
 782			    key.type == BTRFS_EXTENT_DATA_KEY)
 783				path->slots[0]--;
 784		}
 785		ret = 0;
 786		leafs_visited++;
 787next_slot:
 788		leaf = path->nodes[0];
 789		if (path->slots[0] >= btrfs_header_nritems(leaf)) {
 790			BUG_ON(del_nr > 0);
 791			ret = btrfs_next_leaf(root, path);
 792			if (ret < 0)
 793				break;
 794			if (ret > 0) {
 795				ret = 0;
 796				break;
 797			}
 798			leafs_visited++;
 799			leaf = path->nodes[0];
 800			recow = 1;
 801		}
 802
 803		btrfs_item_key_to_cpu(leaf, &key, path->slots[0]);
 804
 805		if (key.objectid > ino)
 806			break;
 807		if (WARN_ON_ONCE(key.objectid < ino) ||
 808		    key.type < BTRFS_EXTENT_DATA_KEY) {
 809			ASSERT(del_nr == 0);
 810			path->slots[0]++;
 811			goto next_slot;
 812		}
 813		if (key.type > BTRFS_EXTENT_DATA_KEY || key.offset >= end)
 814			break;
 815
 816		fi = btrfs_item_ptr(leaf, path->slots[0],
 817				    struct btrfs_file_extent_item);
 818		extent_type = btrfs_file_extent_type(leaf, fi);
 819
 820		if (extent_type == BTRFS_FILE_EXTENT_REG ||
 821		    extent_type == BTRFS_FILE_EXTENT_PREALLOC) {
 822			disk_bytenr = btrfs_file_extent_disk_bytenr(leaf, fi);
 823			num_bytes = btrfs_file_extent_disk_num_bytes(leaf, fi);
 824			extent_offset = btrfs_file_extent_offset(leaf, fi);
 825			extent_end = key.offset +
 826				btrfs_file_extent_num_bytes(leaf, fi);
 827		} else if (extent_type == BTRFS_FILE_EXTENT_INLINE) {
 828			extent_end = key.offset +
 829				btrfs_file_extent_ram_bytes(leaf, fi);
 830		} else {
 831			/* can't happen */
 832			BUG();
 833		}
 834
 835		/*
 836		 * Don't skip extent items representing 0 byte lengths. They
 837		 * used to be created (bug) if while punching holes we hit
 838		 * -ENOSPC condition. So if we find one here, just ensure we
 839		 * delete it, otherwise we would insert a new file extent item
 840		 * with the same key (offset) as that 0 bytes length file
 841		 * extent item in the call to setup_items_for_insert() later
 842		 * in this function.
 843		 */
 844		if (extent_end == key.offset && extent_end >= search_start) {
 845			last_end = extent_end;
 846			goto delete_extent_item;
 847		}
 848
 849		if (extent_end <= search_start) {
 850			path->slots[0]++;
 851			goto next_slot;
 852		}
 853
 854		found = 1;
 855		search_start = max(key.offset, start);
 856		if (recow || !modify_tree) {
 857			modify_tree = -1;
 858			btrfs_release_path(path);
 859			continue;
 860		}
 861
 862		/*
 863		 *     | - range to drop - |
 864		 *  | -------- extent -------- |
 865		 */
 866		if (start > key.offset && end < extent_end) {
 867			BUG_ON(del_nr > 0);
 868			if (extent_type == BTRFS_FILE_EXTENT_INLINE) {
 869				ret = -EOPNOTSUPP;
 870				break;
 871			}
 872
 873			memcpy(&new_key, &key, sizeof(new_key));
 874			new_key.offset = start;
 875			ret = btrfs_duplicate_item(trans, root, path,
 876						   &new_key);
 877			if (ret == -EAGAIN) {
 878				btrfs_release_path(path);
 879				continue;
 880			}
 881			if (ret < 0)
 882				break;
 883
 884			leaf = path->nodes[0];
 885			fi = btrfs_item_ptr(leaf, path->slots[0] - 1,
 886					    struct btrfs_file_extent_item);
 887			btrfs_set_file_extent_num_bytes(leaf, fi,
 888							start - key.offset);
 889
 890			fi = btrfs_item_ptr(leaf, path->slots[0],
 891					    struct btrfs_file_extent_item);
 892
 893			extent_offset += start - key.offset;
 894			btrfs_set_file_extent_offset(leaf, fi, extent_offset);
 895			btrfs_set_file_extent_num_bytes(leaf, fi,
 896							extent_end - start);
 897			btrfs_mark_buffer_dirty(leaf);
 898
 899			if (update_refs && disk_bytenr > 0) {
 900				btrfs_init_generic_ref(&ref,
 901						BTRFS_ADD_DELAYED_REF,
 902						disk_bytenr, num_bytes, 0);
 903				btrfs_init_data_ref(&ref,
 904						root->root_key.objectid,
 905						new_key.objectid,
 906						start - extent_offset);
 907				ret = btrfs_inc_extent_ref(trans, &ref);
 908				BUG_ON(ret); /* -ENOMEM */
 909			}
 910			key.offset = start;
 911		}
 912		/*
 913		 * From here on out we will have actually dropped something, so
 914		 * last_end can be updated.
 915		 */
 916		last_end = extent_end;
 917
 918		/*
 919		 *  | ---- range to drop ----- |
 920		 *      | -------- extent -------- |
 921		 */
 922		if (start <= key.offset && end < extent_end) {
 923			if (extent_type == BTRFS_FILE_EXTENT_INLINE) {
 924				ret = -EOPNOTSUPP;
 925				break;
 926			}
 927
 928			memcpy(&new_key, &key, sizeof(new_key));
 929			new_key.offset = end;
 930			btrfs_set_item_key_safe(fs_info, path, &new_key);
 931
 932			extent_offset += end - key.offset;
 933			btrfs_set_file_extent_offset(leaf, fi, extent_offset);
 934			btrfs_set_file_extent_num_bytes(leaf, fi,
 935							extent_end - end);
 936			btrfs_mark_buffer_dirty(leaf);
 937			if (update_refs && disk_bytenr > 0)
 938				inode_sub_bytes(vfs_inode, end - key.offset);
 
 
 939			break;
 940		}
 941
 942		search_start = extent_end;
 943		/*
 944		 *       | ---- range to drop ----- |
 945		 *  | -------- extent -------- |
 946		 */
 947		if (start > key.offset && end >= extent_end) {
 948			BUG_ON(del_nr > 0);
 949			if (extent_type == BTRFS_FILE_EXTENT_INLINE) {
 950				ret = -EOPNOTSUPP;
 951				break;
 952			}
 953
 954			btrfs_set_file_extent_num_bytes(leaf, fi,
 955							start - key.offset);
 956			btrfs_mark_buffer_dirty(leaf);
 957			if (update_refs && disk_bytenr > 0)
 958				inode_sub_bytes(vfs_inode, extent_end - start);
 
 
 959			if (end == extent_end)
 960				break;
 961
 962			path->slots[0]++;
 963			goto next_slot;
 964		}
 965
 966		/*
 967		 *  | ---- range to drop ----- |
 968		 *    | ------ extent ------ |
 969		 */
 970		if (start <= key.offset && end >= extent_end) {
 971delete_extent_item:
 972			if (del_nr == 0) {
 973				del_slot = path->slots[0];
 974				del_nr = 1;
 975			} else {
 976				BUG_ON(del_slot + del_nr != path->slots[0]);
 977				del_nr++;
 978			}
 979
 980			if (update_refs &&
 981			    extent_type == BTRFS_FILE_EXTENT_INLINE) {
 982				inode_sub_bytes(vfs_inode,
 983						extent_end - key.offset);
 984				extent_end = ALIGN(extent_end,
 985						   fs_info->sectorsize);
 986			} else if (update_refs && disk_bytenr > 0) {
 987				btrfs_init_generic_ref(&ref,
 988						BTRFS_DROP_DELAYED_REF,
 989						disk_bytenr, num_bytes, 0);
 990				btrfs_init_data_ref(&ref,
 991						root->root_key.objectid,
 992						key.objectid,
 993						key.offset - extent_offset);
 994				ret = btrfs_free_extent(trans, &ref);
 995				BUG_ON(ret); /* -ENOMEM */
 996				inode_sub_bytes(vfs_inode,
 997						extent_end - key.offset);
 
 998			}
 999
1000			if (end == extent_end)
1001				break;
1002
1003			if (path->slots[0] + 1 < btrfs_header_nritems(leaf)) {
1004				path->slots[0]++;
1005				goto next_slot;
1006			}
1007
1008			ret = btrfs_del_items(trans, root, path, del_slot,
1009					      del_nr);
1010			if (ret) {
1011				btrfs_abort_transaction(trans, ret);
1012				break;
1013			}
1014
1015			del_nr = 0;
1016			del_slot = 0;
1017
1018			btrfs_release_path(path);
1019			continue;
1020		}
1021
1022		BUG();
1023	}
1024
1025	if (!ret && del_nr > 0) {
1026		/*
1027		 * Set path->slots[0] to first slot, so that after the delete
1028		 * if items are move off from our leaf to its immediate left or
1029		 * right neighbor leafs, we end up with a correct and adjusted
1030		 * path->slots[0] for our insertion (if replace_extent != 0).
1031		 */
1032		path->slots[0] = del_slot;
1033		ret = btrfs_del_items(trans, root, path, del_slot, del_nr);
1034		if (ret)
1035			btrfs_abort_transaction(trans, ret);
1036	}
1037
1038	leaf = path->nodes[0];
1039	/*
1040	 * If btrfs_del_items() was called, it might have deleted a leaf, in
1041	 * which case it unlocked our path, so check path->locks[0] matches a
1042	 * write lock.
1043	 */
1044	if (!ret && replace_extent && leafs_visited == 1 &&
1045	    (path->locks[0] == BTRFS_WRITE_LOCK_BLOCKING ||
1046	     path->locks[0] == BTRFS_WRITE_LOCK) &&
1047	    btrfs_leaf_free_space(leaf) >=
1048	    sizeof(struct btrfs_item) + extent_item_size) {
1049
1050		key.objectid = ino;
1051		key.type = BTRFS_EXTENT_DATA_KEY;
1052		key.offset = start;
1053		if (!del_nr && path->slots[0] < btrfs_header_nritems(leaf)) {
1054			struct btrfs_key slot_key;
1055
1056			btrfs_item_key_to_cpu(leaf, &slot_key, path->slots[0]);
1057			if (btrfs_comp_cpu_keys(&key, &slot_key) > 0)
1058				path->slots[0]++;
1059		}
1060		setup_items_for_insert(root, path, &key,
1061				       &extent_item_size,
1062				       extent_item_size,
1063				       sizeof(struct btrfs_item) +
1064				       extent_item_size, 1);
1065		*key_inserted = 1;
1066	}
1067
1068	if (!replace_extent || !(*key_inserted))
1069		btrfs_release_path(path);
1070	if (drop_end)
1071		*drop_end = found ? min(end, last_end) : end;
1072	return ret;
1073}
1074
1075int btrfs_drop_extents(struct btrfs_trans_handle *trans,
1076		       struct btrfs_root *root, struct inode *inode, u64 start,
1077		       u64 end, int drop_cache)
1078{
1079	struct btrfs_path *path;
1080	int ret;
1081
1082	path = btrfs_alloc_path();
1083	if (!path)
1084		return -ENOMEM;
1085	ret = __btrfs_drop_extents(trans, root, BTRFS_I(inode), path, start,
1086				   end, NULL, drop_cache, 0, 0, NULL);
1087	btrfs_free_path(path);
1088	return ret;
1089}
1090
1091static int extent_mergeable(struct extent_buffer *leaf, int slot,
1092			    u64 objectid, u64 bytenr, u64 orig_offset,
1093			    u64 *start, u64 *end)
1094{
1095	struct btrfs_file_extent_item *fi;
1096	struct btrfs_key key;
1097	u64 extent_end;
1098
1099	if (slot < 0 || slot >= btrfs_header_nritems(leaf))
1100		return 0;
1101
1102	btrfs_item_key_to_cpu(leaf, &key, slot);
1103	if (key.objectid != objectid || key.type != BTRFS_EXTENT_DATA_KEY)
1104		return 0;
1105
1106	fi = btrfs_item_ptr(leaf, slot, struct btrfs_file_extent_item);
1107	if (btrfs_file_extent_type(leaf, fi) != BTRFS_FILE_EXTENT_REG ||
1108	    btrfs_file_extent_disk_bytenr(leaf, fi) != bytenr ||
1109	    btrfs_file_extent_offset(leaf, fi) != key.offset - orig_offset ||
1110	    btrfs_file_extent_compression(leaf, fi) ||
1111	    btrfs_file_extent_encryption(leaf, fi) ||
1112	    btrfs_file_extent_other_encoding(leaf, fi))
1113		return 0;
1114
1115	extent_end = key.offset + btrfs_file_extent_num_bytes(leaf, fi);
1116	if ((*start && *start != key.offset) || (*end && *end != extent_end))
1117		return 0;
1118
1119	*start = key.offset;
1120	*end = extent_end;
1121	return 1;
1122}
1123
1124/*
1125 * Mark extent in the range start - end as written.
1126 *
1127 * This changes extent type from 'pre-allocated' to 'regular'. If only
1128 * part of extent is marked as written, the extent will be split into
1129 * two or three.
1130 */
1131int btrfs_mark_extent_written(struct btrfs_trans_handle *trans,
1132			      struct btrfs_inode *inode, u64 start, u64 end)
1133{
1134	struct btrfs_fs_info *fs_info = trans->fs_info;
1135	struct btrfs_root *root = inode->root;
1136	struct extent_buffer *leaf;
1137	struct btrfs_path *path;
1138	struct btrfs_file_extent_item *fi;
1139	struct btrfs_ref ref = { 0 };
1140	struct btrfs_key key;
1141	struct btrfs_key new_key;
1142	u64 bytenr;
1143	u64 num_bytes;
1144	u64 extent_end;
1145	u64 orig_offset;
1146	u64 other_start;
1147	u64 other_end;
1148	u64 split;
1149	int del_nr = 0;
1150	int del_slot = 0;
1151	int recow;
1152	int ret;
1153	u64 ino = btrfs_ino(inode);
1154
 
 
1155	path = btrfs_alloc_path();
1156	if (!path)
1157		return -ENOMEM;
1158again:
1159	recow = 0;
1160	split = start;
1161	key.objectid = ino;
1162	key.type = BTRFS_EXTENT_DATA_KEY;
1163	key.offset = split;
1164
1165	ret = btrfs_search_slot(trans, root, &key, path, -1, 1);
1166	if (ret < 0)
1167		goto out;
1168	if (ret > 0 && path->slots[0] > 0)
1169		path->slots[0]--;
1170
1171	leaf = path->nodes[0];
1172	btrfs_item_key_to_cpu(leaf, &key, path->slots[0]);
1173	if (key.objectid != ino ||
1174	    key.type != BTRFS_EXTENT_DATA_KEY) {
1175		ret = -EINVAL;
1176		btrfs_abort_transaction(trans, ret);
1177		goto out;
1178	}
1179	fi = btrfs_item_ptr(leaf, path->slots[0],
1180			    struct btrfs_file_extent_item);
1181	if (btrfs_file_extent_type(leaf, fi) != BTRFS_FILE_EXTENT_PREALLOC) {
1182		ret = -EINVAL;
1183		btrfs_abort_transaction(trans, ret);
1184		goto out;
1185	}
1186	extent_end = key.offset + btrfs_file_extent_num_bytes(leaf, fi);
1187	if (key.offset > start || extent_end < end) {
1188		ret = -EINVAL;
1189		btrfs_abort_transaction(trans, ret);
1190		goto out;
1191	}
1192
1193	bytenr = btrfs_file_extent_disk_bytenr(leaf, fi);
1194	num_bytes = btrfs_file_extent_disk_num_bytes(leaf, fi);
1195	orig_offset = key.offset - btrfs_file_extent_offset(leaf, fi);
1196	memcpy(&new_key, &key, sizeof(new_key));
1197
1198	if (start == key.offset && end < extent_end) {
1199		other_start = 0;
1200		other_end = start;
1201		if (extent_mergeable(leaf, path->slots[0] - 1,
1202				     ino, bytenr, orig_offset,
1203				     &other_start, &other_end)) {
1204			new_key.offset = end;
1205			btrfs_set_item_key_safe(fs_info, path, &new_key);
1206			fi = btrfs_item_ptr(leaf, path->slots[0],
1207					    struct btrfs_file_extent_item);
1208			btrfs_set_file_extent_generation(leaf, fi,
1209							 trans->transid);
1210			btrfs_set_file_extent_num_bytes(leaf, fi,
1211							extent_end - end);
1212			btrfs_set_file_extent_offset(leaf, fi,
1213						     end - orig_offset);
1214			fi = btrfs_item_ptr(leaf, path->slots[0] - 1,
1215					    struct btrfs_file_extent_item);
1216			btrfs_set_file_extent_generation(leaf, fi,
1217							 trans->transid);
1218			btrfs_set_file_extent_num_bytes(leaf, fi,
1219							end - other_start);
1220			btrfs_mark_buffer_dirty(leaf);
1221			goto out;
1222		}
1223	}
1224
1225	if (start > key.offset && end == extent_end) {
1226		other_start = end;
1227		other_end = 0;
1228		if (extent_mergeable(leaf, path->slots[0] + 1,
1229				     ino, bytenr, orig_offset,
1230				     &other_start, &other_end)) {
1231			fi = btrfs_item_ptr(leaf, path->slots[0],
1232					    struct btrfs_file_extent_item);
1233			btrfs_set_file_extent_num_bytes(leaf, fi,
1234							start - key.offset);
1235			btrfs_set_file_extent_generation(leaf, fi,
1236							 trans->transid);
1237			path->slots[0]++;
1238			new_key.offset = start;
1239			btrfs_set_item_key_safe(fs_info, path, &new_key);
1240
1241			fi = btrfs_item_ptr(leaf, path->slots[0],
1242					    struct btrfs_file_extent_item);
1243			btrfs_set_file_extent_generation(leaf, fi,
1244							 trans->transid);
1245			btrfs_set_file_extent_num_bytes(leaf, fi,
1246							other_end - start);
1247			btrfs_set_file_extent_offset(leaf, fi,
1248						     start - orig_offset);
1249			btrfs_mark_buffer_dirty(leaf);
1250			goto out;
1251		}
1252	}
1253
1254	while (start > key.offset || end < extent_end) {
1255		if (key.offset == start)
1256			split = end;
1257
1258		new_key.offset = split;
1259		ret = btrfs_duplicate_item(trans, root, path, &new_key);
1260		if (ret == -EAGAIN) {
1261			btrfs_release_path(path);
1262			goto again;
1263		}
1264		if (ret < 0) {
1265			btrfs_abort_transaction(trans, ret);
1266			goto out;
1267		}
1268
1269		leaf = path->nodes[0];
1270		fi = btrfs_item_ptr(leaf, path->slots[0] - 1,
1271				    struct btrfs_file_extent_item);
1272		btrfs_set_file_extent_generation(leaf, fi, trans->transid);
1273		btrfs_set_file_extent_num_bytes(leaf, fi,
1274						split - key.offset);
1275
1276		fi = btrfs_item_ptr(leaf, path->slots[0],
1277				    struct btrfs_file_extent_item);
1278
1279		btrfs_set_file_extent_generation(leaf, fi, trans->transid);
1280		btrfs_set_file_extent_offset(leaf, fi, split - orig_offset);
1281		btrfs_set_file_extent_num_bytes(leaf, fi,
1282						extent_end - split);
1283		btrfs_mark_buffer_dirty(leaf);
1284
1285		btrfs_init_generic_ref(&ref, BTRFS_ADD_DELAYED_REF, bytenr,
1286				       num_bytes, 0);
1287		btrfs_init_data_ref(&ref, root->root_key.objectid, ino,
1288				    orig_offset);
1289		ret = btrfs_inc_extent_ref(trans, &ref);
1290		if (ret) {
1291			btrfs_abort_transaction(trans, ret);
1292			goto out;
1293		}
1294
1295		if (split == start) {
1296			key.offset = start;
1297		} else {
1298			if (start != key.offset) {
1299				ret = -EINVAL;
1300				btrfs_abort_transaction(trans, ret);
1301				goto out;
1302			}
1303			path->slots[0]--;
1304			extent_end = end;
1305		}
1306		recow = 1;
1307	}
1308
1309	other_start = end;
1310	other_end = 0;
1311	btrfs_init_generic_ref(&ref, BTRFS_DROP_DELAYED_REF, bytenr,
1312			       num_bytes, 0);
1313	btrfs_init_data_ref(&ref, root->root_key.objectid, ino, orig_offset);
1314	if (extent_mergeable(leaf, path->slots[0] + 1,
1315			     ino, bytenr, orig_offset,
1316			     &other_start, &other_end)) {
1317		if (recow) {
1318			btrfs_release_path(path);
1319			goto again;
1320		}
1321		extent_end = other_end;
1322		del_slot = path->slots[0] + 1;
1323		del_nr++;
1324		ret = btrfs_free_extent(trans, &ref);
1325		if (ret) {
1326			btrfs_abort_transaction(trans, ret);
1327			goto out;
1328		}
1329	}
1330	other_start = 0;
1331	other_end = start;
1332	if (extent_mergeable(leaf, path->slots[0] - 1,
1333			     ino, bytenr, orig_offset,
1334			     &other_start, &other_end)) {
1335		if (recow) {
1336			btrfs_release_path(path);
1337			goto again;
1338		}
1339		key.offset = other_start;
1340		del_slot = path->slots[0];
1341		del_nr++;
1342		ret = btrfs_free_extent(trans, &ref);
1343		if (ret) {
1344			btrfs_abort_transaction(trans, ret);
1345			goto out;
1346		}
1347	}
1348	if (del_nr == 0) {
1349		fi = btrfs_item_ptr(leaf, path->slots[0],
1350			   struct btrfs_file_extent_item);
1351		btrfs_set_file_extent_type(leaf, fi,
1352					   BTRFS_FILE_EXTENT_REG);
1353		btrfs_set_file_extent_generation(leaf, fi, trans->transid);
1354		btrfs_mark_buffer_dirty(leaf);
1355	} else {
1356		fi = btrfs_item_ptr(leaf, del_slot - 1,
1357			   struct btrfs_file_extent_item);
1358		btrfs_set_file_extent_type(leaf, fi,
1359					   BTRFS_FILE_EXTENT_REG);
1360		btrfs_set_file_extent_generation(leaf, fi, trans->transid);
1361		btrfs_set_file_extent_num_bytes(leaf, fi,
1362						extent_end - key.offset);
1363		btrfs_mark_buffer_dirty(leaf);
1364
1365		ret = btrfs_del_items(trans, root, path, del_slot, del_nr);
1366		if (ret < 0) {
1367			btrfs_abort_transaction(trans, ret);
1368			goto out;
1369		}
1370	}
1371out:
1372	btrfs_free_path(path);
1373	return 0;
1374}
1375
1376/*
1377 * on error we return an unlocked page and the error value
1378 * on success we return a locked page and 0
1379 */
1380static int prepare_uptodate_page(struct inode *inode,
1381				 struct page *page, u64 pos,
1382				 bool force_uptodate)
1383{
1384	int ret = 0;
1385
1386	if (((pos & (PAGE_SIZE - 1)) || force_uptodate) &&
1387	    !PageUptodate(page)) {
1388		ret = btrfs_readpage(NULL, page);
1389		if (ret)
1390			return ret;
1391		lock_page(page);
1392		if (!PageUptodate(page)) {
1393			unlock_page(page);
1394			return -EIO;
1395		}
1396		if (page->mapping != inode->i_mapping) {
1397			unlock_page(page);
1398			return -EAGAIN;
1399		}
1400	}
1401	return 0;
1402}
1403
1404/*
1405 * this just gets pages into the page cache and locks them down.
1406 */
1407static noinline int prepare_pages(struct inode *inode, struct page **pages,
1408				  size_t num_pages, loff_t pos,
1409				  size_t write_bytes, bool force_uptodate)
 
 
 
1410{
 
1411	int i;
1412	unsigned long index = pos >> PAGE_SHIFT;
1413	gfp_t mask = btrfs_alloc_write_mask(inode->i_mapping);
1414	int err = 0;
1415	int faili;
 
 
1416
 
 
 
 
1417	for (i = 0; i < num_pages; i++) {
1418again:
1419		pages[i] = find_or_create_page(inode->i_mapping, index + i,
1420					       mask | __GFP_WRITE);
1421		if (!pages[i]) {
1422			faili = i - 1;
1423			err = -ENOMEM;
1424			goto fail;
1425		}
1426
1427		if (i == 0)
1428			err = prepare_uptodate_page(inode, pages[i], pos,
1429						    force_uptodate);
1430		if (!err && i == num_pages - 1)
1431			err = prepare_uptodate_page(inode, pages[i],
1432						    pos + write_bytes, false);
1433		if (err) {
1434			put_page(pages[i]);
1435			if (err == -EAGAIN) {
1436				err = 0;
1437				goto again;
1438			}
1439			faili = i - 1;
1440			goto fail;
1441		}
1442		wait_on_page_writeback(pages[i]);
1443	}
1444
1445	return 0;
1446fail:
1447	while (faili >= 0) {
1448		unlock_page(pages[faili]);
1449		put_page(pages[faili]);
1450		faili--;
1451	}
1452	return err;
1453
1454}
1455
1456/*
1457 * This function locks the extent and properly waits for data=ordered extents
1458 * to finish before allowing the pages to be modified if need.
1459 *
1460 * The return value:
1461 * 1 - the extent is locked
1462 * 0 - the extent is not locked, and everything is OK
1463 * -EAGAIN - need re-prepare the pages
1464 * the other < 0 number - Something wrong happens
1465 */
1466static noinline int
1467lock_and_cleanup_extent_if_need(struct btrfs_inode *inode, struct page **pages,
1468				size_t num_pages, loff_t pos,
1469				size_t write_bytes,
1470				u64 *lockstart, u64 *lockend,
1471				struct extent_state **cached_state)
1472{
1473	struct btrfs_fs_info *fs_info = inode->root->fs_info;
1474	u64 start_pos;
1475	u64 last_pos;
1476	int i;
1477	int ret = 0;
1478
1479	start_pos = round_down(pos, fs_info->sectorsize);
1480	last_pos = start_pos
1481		+ round_up(pos + write_bytes - start_pos,
1482			   fs_info->sectorsize) - 1;
1483
1484	if (start_pos < inode->vfs_inode.i_size) {
1485		struct btrfs_ordered_extent *ordered;
1486
1487		lock_extent_bits(&inode->io_tree, start_pos, last_pos,
1488				cached_state);
1489		ordered = btrfs_lookup_ordered_range(inode, start_pos,
1490						     last_pos - start_pos + 1);
1491		if (ordered &&
1492		    ordered->file_offset + ordered->num_bytes > start_pos &&
1493		    ordered->file_offset <= last_pos) {
1494			unlock_extent_cached(&inode->io_tree, start_pos,
1495					last_pos, cached_state);
 
 
1496			for (i = 0; i < num_pages; i++) {
1497				unlock_page(pages[i]);
1498				put_page(pages[i]);
1499			}
1500			btrfs_start_ordered_extent(&inode->vfs_inode,
1501					ordered, 1);
1502			btrfs_put_ordered_extent(ordered);
1503			return -EAGAIN;
1504		}
1505		if (ordered)
1506			btrfs_put_ordered_extent(ordered);
1507
1508		*lockstart = start_pos;
1509		*lockend = last_pos;
1510		ret = 1;
 
 
 
 
1511	}
1512
1513	/*
1514	 * It's possible the pages are dirty right now, but we don't want
1515	 * to clean them yet because copy_from_user may catch a page fault
1516	 * and we might have to fall back to one page at a time.  If that
1517	 * happens, we'll unlock these pages and we'd have a window where
1518	 * reclaim could sneak in and drop the once-dirty page on the floor
1519	 * without writing it.
1520	 *
1521	 * We have the pages locked and the extent range locked, so there's
1522	 * no way someone can start IO on any dirty pages in this range.
1523	 *
1524	 * We'll call btrfs_dirty_pages() later on, and that will flip around
1525	 * delalloc bits and dirty the pages as required.
1526	 */
1527	for (i = 0; i < num_pages; i++) {
 
1528		set_page_extent_mapped(pages[i]);
1529		WARN_ON(!PageLocked(pages[i]));
1530	}
1531
1532	return ret;
1533}
1534
1535static int check_can_nocow(struct btrfs_inode *inode, loff_t pos,
1536			   size_t *write_bytes, bool nowait)
1537{
1538	struct btrfs_fs_info *fs_info = inode->root->fs_info;
1539	struct btrfs_root *root = inode->root;
1540	u64 lockstart, lockend;
1541	u64 num_bytes;
1542	int ret;
1543
1544	if (!(inode->flags & (BTRFS_INODE_NODATACOW | BTRFS_INODE_PREALLOC)))
1545		return 0;
1546
1547	if (!nowait && !btrfs_drew_try_write_lock(&root->snapshot_lock))
1548		return -EAGAIN;
1549
1550	lockstart = round_down(pos, fs_info->sectorsize);
1551	lockend = round_up(pos + *write_bytes,
1552			   fs_info->sectorsize) - 1;
1553	num_bytes = lockend - lockstart + 1;
1554
1555	if (nowait) {
1556		struct btrfs_ordered_extent *ordered;
1557
1558		if (!try_lock_extent(&inode->io_tree, lockstart, lockend))
1559			return -EAGAIN;
1560
1561		ordered = btrfs_lookup_ordered_range(inode, lockstart,
1562						     num_bytes);
1563		if (ordered) {
1564			btrfs_put_ordered_extent(ordered);
1565			ret = -EAGAIN;
1566			goto out_unlock;
1567		}
1568	} else {
1569		btrfs_lock_and_flush_ordered_range(inode, lockstart,
1570						   lockend, NULL);
1571	}
 
1572
1573	ret = can_nocow_extent(&inode->vfs_inode, lockstart, &num_bytes,
1574			NULL, NULL, NULL, false);
1575	if (ret <= 0) {
1576		ret = 0;
1577		if (!nowait)
1578			btrfs_drew_write_unlock(&root->snapshot_lock);
1579	} else {
1580		*write_bytes = min_t(size_t, *write_bytes ,
1581				     num_bytes - pos + lockstart);
1582	}
1583out_unlock:
1584	unlock_extent(&inode->io_tree, lockstart, lockend);
1585
1586	return ret;
1587}
1588
1589static int check_nocow_nolock(struct btrfs_inode *inode, loff_t pos,
1590			      size_t *write_bytes)
 
1591{
1592	return check_can_nocow(inode, pos, write_bytes, true);
1593}
1594
1595/*
1596 * Check if we can do nocow write into the range [@pos, @pos + @write_bytes)
1597 *
1598 * @pos:	 File offset
1599 * @write_bytes: The length to write, will be updated to the nocow writeable
1600 *		 range
1601 *
1602 * This function will flush ordered extents in the range to ensure proper
1603 * nocow checks.
1604 *
1605 * Return:
1606 * >0		and update @write_bytes if we can do nocow write
1607 *  0		if we can't do nocow write
1608 * -EAGAIN	if we can't get the needed lock or there are ordered extents
1609 * 		for * (nowait == true) case
1610 * <0		if other error happened
1611 *
1612 * NOTE: Callers need to release the lock by btrfs_check_nocow_unlock().
1613 */
1614int btrfs_check_nocow_lock(struct btrfs_inode *inode, loff_t pos,
1615			   size_t *write_bytes)
1616{
1617	return check_can_nocow(inode, pos, write_bytes, false);
1618}
1619
1620void btrfs_check_nocow_unlock(struct btrfs_inode *inode)
1621{
1622	btrfs_drew_write_unlock(&inode->root->snapshot_lock);
1623}
1624
1625static noinline ssize_t btrfs_buffered_write(struct kiocb *iocb,
1626					       struct iov_iter *i)
1627{
1628	struct file *file = iocb->ki_filp;
1629	loff_t pos = iocb->ki_pos;
1630	struct inode *inode = file_inode(file);
1631	struct btrfs_fs_info *fs_info = btrfs_sb(inode->i_sb);
1632	struct page **pages = NULL;
1633	struct extent_changeset *data_reserved = NULL;
1634	u64 release_bytes = 0;
1635	u64 lockstart;
1636	u64 lockend;
1637	size_t num_written = 0;
1638	int nrptrs;
1639	int ret = 0;
1640	bool only_release_metadata = false;
1641	bool force_page_uptodate = false;
1642
1643	nrptrs = min(DIV_ROUND_UP(iov_iter_count(i), PAGE_SIZE),
1644			PAGE_SIZE / (sizeof(struct page *)));
1645	nrptrs = min(nrptrs, current->nr_dirtied_pause - current->nr_dirtied);
1646	nrptrs = max(nrptrs, 8);
1647	pages = kmalloc_array(nrptrs, sizeof(struct page *), GFP_KERNEL);
1648	if (!pages)
1649		return -ENOMEM;
1650
 
 
1651	while (iov_iter_count(i) > 0) {
1652		struct extent_state *cached_state = NULL;
1653		size_t offset = offset_in_page(pos);
1654		size_t sector_offset;
1655		size_t write_bytes = min(iov_iter_count(i),
1656					 nrptrs * (size_t)PAGE_SIZE -
1657					 offset);
1658		size_t num_pages = DIV_ROUND_UP(write_bytes + offset,
1659						PAGE_SIZE);
1660		size_t reserve_bytes;
1661		size_t dirty_pages;
1662		size_t copied;
1663		size_t dirty_sectors;
1664		size_t num_sectors;
1665		int extents_locked;
1666
1667		WARN_ON(num_pages > nrptrs);
1668
1669		/*
1670		 * Fault pages before locking them in prepare_pages
1671		 * to avoid recursive lock
1672		 */
1673		if (unlikely(iov_iter_fault_in_readable(i, write_bytes))) {
1674			ret = -EFAULT;
1675			break;
1676		}
1677
1678		only_release_metadata = false;
1679		sector_offset = pos & (fs_info->sectorsize - 1);
1680		reserve_bytes = round_up(write_bytes + sector_offset,
1681				fs_info->sectorsize);
1682
1683		extent_changeset_release(data_reserved);
1684		ret = btrfs_check_data_free_space(BTRFS_I(inode),
1685						  &data_reserved, pos,
1686						  write_bytes);
1687		if (ret < 0) {
1688			if (btrfs_check_nocow_lock(BTRFS_I(inode), pos,
1689						   &write_bytes) > 0) {
1690				/*
1691				 * For nodata cow case, no need to reserve
1692				 * data space.
1693				 */
1694				only_release_metadata = true;
1695				/*
1696				 * our prealloc extent may be smaller than
1697				 * write_bytes, so scale down.
1698				 */
1699				num_pages = DIV_ROUND_UP(write_bytes + offset,
1700							 PAGE_SIZE);
1701				reserve_bytes = round_up(write_bytes +
1702							 sector_offset,
1703							 fs_info->sectorsize);
1704			} else {
1705				break;
1706			}
1707		}
1708
1709		WARN_ON(reserve_bytes == 0);
1710		ret = btrfs_delalloc_reserve_metadata(BTRFS_I(inode),
1711				reserve_bytes);
1712		if (ret) {
1713			if (!only_release_metadata)
1714				btrfs_free_reserved_data_space(BTRFS_I(inode),
1715						data_reserved, pos,
1716						write_bytes);
1717			else
1718				btrfs_check_nocow_unlock(BTRFS_I(inode));
1719			break;
1720		}
1721
1722		release_bytes = reserve_bytes;
1723again:
1724		/*
1725		 * This is going to setup the pages array with the number of
1726		 * pages we want, so we don't really need to worry about the
1727		 * contents of pages from loop to loop
1728		 */
1729		ret = prepare_pages(inode, pages, num_pages,
1730				    pos, write_bytes,
1731				    force_page_uptodate);
1732		if (ret) {
1733			btrfs_delalloc_release_extents(BTRFS_I(inode),
1734						       reserve_bytes);
1735			break;
1736		}
1737
1738		extents_locked = lock_and_cleanup_extent_if_need(
1739				BTRFS_I(inode), pages,
1740				num_pages, pos, write_bytes, &lockstart,
1741				&lockend, &cached_state);
1742		if (extents_locked < 0) {
1743			if (extents_locked == -EAGAIN)
1744				goto again;
1745			btrfs_delalloc_release_extents(BTRFS_I(inode),
1746						       reserve_bytes);
1747			ret = extents_locked;
1748			break;
1749		}
1750
1751		copied = btrfs_copy_from_user(pos, write_bytes, pages, i);
1752
1753		num_sectors = BTRFS_BYTES_TO_BLKS(fs_info, reserve_bytes);
1754		dirty_sectors = round_up(copied + sector_offset,
1755					fs_info->sectorsize);
1756		dirty_sectors = BTRFS_BYTES_TO_BLKS(fs_info, dirty_sectors);
1757
1758		/*
1759		 * if we have trouble faulting in the pages, fall
1760		 * back to one page at a time
1761		 */
1762		if (copied < write_bytes)
1763			nrptrs = 1;
1764
1765		if (copied == 0) {
1766			force_page_uptodate = true;
1767			dirty_sectors = 0;
1768			dirty_pages = 0;
1769		} else {
1770			force_page_uptodate = false;
1771			dirty_pages = DIV_ROUND_UP(copied + offset,
1772						   PAGE_SIZE);
 
1773		}
1774
1775		if (num_sectors > dirty_sectors) {
1776			/* release everything except the sectors we dirtied */
1777			release_bytes -= dirty_sectors <<
1778						fs_info->sb->s_blocksize_bits;
1779			if (only_release_metadata) {
1780				btrfs_delalloc_release_metadata(BTRFS_I(inode),
1781							release_bytes, true);
1782			} else {
1783				u64 __pos;
1784
1785				__pos = round_down(pos,
1786						   fs_info->sectorsize) +
1787					(dirty_pages << PAGE_SHIFT);
1788				btrfs_delalloc_release_space(BTRFS_I(inode),
1789						data_reserved, __pos,
1790						release_bytes, true);
1791			}
 
 
 
1792		}
1793
1794		release_bytes = round_up(copied + sector_offset,
1795					fs_info->sectorsize);
1796
1797		if (copied > 0)
1798			ret = btrfs_dirty_pages(BTRFS_I(inode), pages,
1799						dirty_pages, pos, copied,
1800						&cached_state);
1801
1802		/*
1803		 * If we have not locked the extent range, because the range's
1804		 * start offset is >= i_size, we might still have a non-NULL
1805		 * cached extent state, acquired while marking the extent range
1806		 * as delalloc through btrfs_dirty_pages(). Therefore free any
1807		 * possible cached extent state to avoid a memory leak.
1808		 */
1809		if (extents_locked)
1810			unlock_extent_cached(&BTRFS_I(inode)->io_tree,
1811					     lockstart, lockend, &cached_state);
1812		else
1813			free_extent_state(cached_state);
1814
1815		btrfs_delalloc_release_extents(BTRFS_I(inode), reserve_bytes);
1816		if (ret) {
1817			btrfs_drop_pages(pages, num_pages);
1818			break;
1819		}
1820
1821		release_bytes = 0;
1822		if (only_release_metadata)
1823			btrfs_check_nocow_unlock(BTRFS_I(inode));
1824
1825		if (only_release_metadata && copied > 0) {
1826			lockstart = round_down(pos,
1827					       fs_info->sectorsize);
1828			lockend = round_up(pos + copied,
1829					   fs_info->sectorsize) - 1;
1830
1831			set_extent_bit(&BTRFS_I(inode)->io_tree, lockstart,
1832				       lockend, EXTENT_NORESERVE, NULL,
1833				       NULL, GFP_NOFS);
1834		}
1835
1836		btrfs_drop_pages(pages, num_pages);
1837
1838		cond_resched();
1839
1840		balance_dirty_pages_ratelimited(inode->i_mapping);
 
 
 
 
1841
1842		pos += copied;
1843		num_written += copied;
1844	}
1845
1846	kfree(pages);
1847
1848	if (release_bytes) {
1849		if (only_release_metadata) {
1850			btrfs_check_nocow_unlock(BTRFS_I(inode));
1851			btrfs_delalloc_release_metadata(BTRFS_I(inode),
1852					release_bytes, true);
1853		} else {
1854			btrfs_delalloc_release_space(BTRFS_I(inode),
1855					data_reserved,
1856					round_down(pos, fs_info->sectorsize),
1857					release_bytes, true);
1858		}
1859	}
1860
1861	extent_changeset_free(data_reserved);
1862	return num_written ? num_written : ret;
1863}
1864
1865static ssize_t __btrfs_direct_write(struct kiocb *iocb, struct iov_iter *from)
 
 
 
1866{
1867	struct file *file = iocb->ki_filp;
1868	struct inode *inode = file_inode(file);
1869	loff_t pos;
1870	ssize_t written;
1871	ssize_t written_buffered;
1872	loff_t endbyte;
1873	int err;
1874
1875	written = generic_file_direct_write(iocb, from);
 
1876
1877	if (written < 0 || !iov_iter_count(from))
 
 
 
 
 
 
 
 
 
 
 
 
1878		return written;
1879
1880	pos = iocb->ki_pos;
1881	written_buffered = btrfs_buffered_write(iocb, from);
 
 
1882	if (written_buffered < 0) {
1883		err = written_buffered;
1884		goto out;
1885	}
1886	/*
1887	 * Ensure all data is persisted. We want the next direct IO read to be
1888	 * able to read what was just written.
1889	 */
1890	endbyte = pos + written_buffered - 1;
1891	err = btrfs_fdatawrite_range(inode, pos, endbyte);
1892	if (err)
1893		goto out;
1894	err = filemap_fdatawait_range(inode->i_mapping, pos, endbyte);
1895	if (err)
1896		goto out;
1897	written += written_buffered;
1898	iocb->ki_pos = pos + written_buffered;
1899	invalidate_mapping_pages(file->f_mapping, pos >> PAGE_SHIFT,
1900				 endbyte >> PAGE_SHIFT);
1901out:
1902	return written ? written : err;
1903}
1904
1905static void update_time_for_write(struct inode *inode)
1906{
1907	struct timespec64 now;
1908
1909	if (IS_NOCMTIME(inode))
1910		return;
1911
1912	now = current_time(inode);
1913	if (!timespec64_equal(&inode->i_mtime, &now))
1914		inode->i_mtime = now;
1915
1916	if (!timespec64_equal(&inode->i_ctime, &now))
1917		inode->i_ctime = now;
1918
1919	if (IS_I_VERSION(inode))
1920		inode_inc_iversion(inode);
1921}
1922
1923static ssize_t btrfs_file_write_iter(struct kiocb *iocb,
1924				    struct iov_iter *from)
1925{
1926	struct file *file = iocb->ki_filp;
1927	struct inode *inode = file_inode(file);
1928	struct btrfs_fs_info *fs_info = btrfs_sb(inode->i_sb);
1929	struct btrfs_root *root = BTRFS_I(inode)->root;
 
1930	u64 start_pos;
1931	u64 end_pos;
1932	ssize_t num_written = 0;
1933	const bool sync = iocb->ki_flags & IOCB_DSYNC;
1934	ssize_t err;
1935	loff_t pos;
1936	size_t count;
1937	loff_t oldsize;
1938	int clean_page = 0;
1939
1940	if (!(iocb->ki_flags & IOCB_DIRECT) &&
1941	    (iocb->ki_flags & IOCB_NOWAIT))
1942		return -EOPNOTSUPP;
1943
1944	if (iocb->ki_flags & IOCB_NOWAIT) {
1945		if (!inode_trylock(inode))
1946			return -EAGAIN;
1947	} else {
1948		inode_lock(inode);
1949	}
 
1950
1951	err = generic_write_checks(iocb, from);
1952	if (err <= 0) {
1953		inode_unlock(inode);
1954		return err;
 
1955	}
1956
1957	pos = iocb->ki_pos;
1958	count = iov_iter_count(from);
1959	if (iocb->ki_flags & IOCB_NOWAIT) {
1960		size_t nocow_bytes = count;
1961
1962		/*
1963		 * We will allocate space in case nodatacow is not set,
1964		 * so bail
1965		 */
1966		if (check_nocow_nolock(BTRFS_I(inode), pos, &nocow_bytes)
1967		    <= 0) {
1968			inode_unlock(inode);
1969			return -EAGAIN;
1970		}
1971		/*
1972		 * There are holes in the range or parts of the range that must
1973		 * be COWed (shared extents, RO block groups, etc), so just bail
1974		 * out.
1975		 */
1976		if (nocow_bytes < count) {
1977			inode_unlock(inode);
1978			return -EAGAIN;
1979		}
1980	}
1981
1982	current->backing_dev_info = inode_to_bdi(inode);
1983	err = file_remove_privs(file);
1984	if (err) {
1985		inode_unlock(inode);
1986		goto out;
1987	}
1988
1989	/*
1990	 * If BTRFS flips readonly due to some impossible error
1991	 * (fs_info->fs_state now has BTRFS_SUPER_FLAG_ERROR),
1992	 * although we have opened a file as writable, we have
1993	 * to stop this write operation to ensure FS consistency.
1994	 */
1995	if (test_bit(BTRFS_FS_STATE_ERROR, &fs_info->fs_state)) {
1996		inode_unlock(inode);
1997		err = -EROFS;
1998		goto out;
1999	}
2000
2001	/*
2002	 * We reserve space for updating the inode when we reserve space for the
2003	 * extent we are going to write, so we will enospc out there.  We don't
2004	 * need to start yet another transaction to update the inode as we will
2005	 * update the inode when we finish writing whatever data we write.
2006	 */
2007	update_time_for_write(inode);
2008
2009	start_pos = round_down(pos, fs_info->sectorsize);
2010	oldsize = i_size_read(inode);
2011	if (start_pos > oldsize) {
2012		/* Expand hole size to cover write data, preventing empty gap */
2013		end_pos = round_up(pos + count,
2014				   fs_info->sectorsize);
2015		err = btrfs_cont_expand(inode, oldsize, end_pos);
2016		if (err) {
2017			inode_unlock(inode);
2018			goto out;
2019		}
2020		if (start_pos > round_up(oldsize, fs_info->sectorsize))
2021			clean_page = 1;
2022	}
2023
2024	if (sync)
2025		atomic_inc(&BTRFS_I(inode)->sync_writers);
 
 
 
2026
2027	if (iocb->ki_flags & IOCB_DIRECT) {
2028		num_written = __btrfs_direct_write(iocb, from);
2029	} else {
2030		num_written = btrfs_buffered_write(iocb, from);
2031		if (num_written > 0)
2032			iocb->ki_pos = pos + num_written;
2033		if (clean_page)
2034			pagecache_isize_extended(inode, oldsize,
2035						i_size_read(inode));
2036	}
2037
2038	inode_unlock(inode);
2039
2040	/*
2041	 * We also have to set last_sub_trans to the current log transid,
2042	 * otherwise subsequent syncs to a file that's been synced in this
2043	 * transaction will appear to have already occurred.
2044	 */
2045	spin_lock(&BTRFS_I(inode)->lock);
2046	BTRFS_I(inode)->last_sub_trans = root->log_transid;
2047	spin_unlock(&BTRFS_I(inode)->lock);
2048	if (num_written > 0)
2049		num_written = generic_write_sync(iocb, num_written);
2050
2051	if (sync)
2052		atomic_dec(&BTRFS_I(inode)->sync_writers);
 
 
 
 
 
2053out:
2054	current->backing_dev_info = NULL;
2055	return num_written ? num_written : err;
2056}
2057
2058int btrfs_release_file(struct inode *inode, struct file *filp)
2059{
2060	struct btrfs_file_private *private = filp->private_data;
2061
2062	if (private && private->filldir_buf)
2063		kfree(private->filldir_buf);
2064	kfree(private);
2065	filp->private_data = NULL;
2066
2067	/*
2068	 * ordered_data_close is set by setattr when we are about to truncate
2069	 * a file from a non-zero size to a zero size.  This tries to
2070	 * flush down new bytes that may have been written if the
2071	 * application were using truncate to replace a file in place.
2072	 */
2073	if (test_and_clear_bit(BTRFS_INODE_ORDERED_DATA_CLOSE,
2074			       &BTRFS_I(inode)->runtime_flags))
 
 
2075			filemap_flush(inode->i_mapping);
 
 
 
2076	return 0;
2077}
2078
2079static int start_ordered_ops(struct inode *inode, loff_t start, loff_t end)
2080{
2081	int ret;
2082	struct blk_plug plug;
2083
2084	/*
2085	 * This is only called in fsync, which would do synchronous writes, so
2086	 * a plug can merge adjacent IOs as much as possible.  Esp. in case of
2087	 * multiple disks using raid profile, a large IO can be split to
2088	 * several segments of stripe length (currently 64K).
2089	 */
2090	blk_start_plug(&plug);
2091	atomic_inc(&BTRFS_I(inode)->sync_writers);
2092	ret = btrfs_fdatawrite_range(inode, start, end);
2093	atomic_dec(&BTRFS_I(inode)->sync_writers);
2094	blk_finish_plug(&plug);
2095
2096	return ret;
2097}
2098
2099/*
2100 * fsync call for both files and directories.  This logs the inode into
2101 * the tree log instead of forcing full commits whenever possible.
2102 *
2103 * It needs to call filemap_fdatawait so that all ordered extent updates are
2104 * in the metadata btree are up to date for copying to the log.
2105 *
2106 * It drops the inode mutex before doing the tree log commit.  This is an
2107 * important optimization for directories because holding the mutex prevents
2108 * new operations on the dir while we write to disk.
2109 */
2110int btrfs_sync_file(struct file *file, loff_t start, loff_t end, int datasync)
2111{
2112	struct dentry *dentry = file_dentry(file);
2113	struct inode *inode = d_inode(dentry);
2114	struct btrfs_fs_info *fs_info = btrfs_sb(inode->i_sb);
2115	struct btrfs_root *root = BTRFS_I(inode)->root;
 
2116	struct btrfs_trans_handle *trans;
2117	struct btrfs_log_ctx ctx;
2118	int ret = 0, err;
2119
2120	trace_btrfs_sync_file(file, datasync);
2121
2122	btrfs_init_log_ctx(&ctx, inode);
2123
2124	/*
2125	 * Set the range to full if the NO_HOLES feature is not enabled.
2126	 * This is to avoid missing file extent items representing holes after
2127	 * replaying the log.
2128	 */
2129	if (!btrfs_fs_incompat(fs_info, NO_HOLES)) {
2130		start = 0;
2131		end = LLONG_MAX;
2132	}
2133
2134	/*
2135	 * We write the dirty pages in the range and wait until they complete
2136	 * out of the ->i_mutex. If so, we can flush the dirty pages by
2137	 * multi-task, and make the performance up.  See
2138	 * btrfs_wait_ordered_range for an explanation of the ASYNC check.
2139	 */
2140	ret = start_ordered_ops(inode, start, end);
2141	if (ret)
2142		goto out;
 
2143
2144	inode_lock(inode);
 
 
 
2145
2146	/*
2147	 * We take the dio_sem here because the tree log stuff can race with
2148	 * lockless dio writes and get an extent map logged for an extent we
2149	 * never waited on.  We need it this high up for lockdep reasons.
2150	 */
2151	down_write(&BTRFS_I(inode)->dio_sem);
2152
2153	atomic_inc(&root->log_batch);
2154
2155	/*
2156	 * If the inode needs a full sync, make sure we use a full range to
2157	 * avoid log tree corruption, due to hole detection racing with ordered
2158	 * extent completion for adjacent ranges and races between logging and
2159	 * completion of ordered extents for adjancent ranges - both races
2160	 * could lead to file extent items in the log with overlapping ranges.
2161	 * Do this while holding the inode lock, to avoid races with other
2162	 * tasks.
2163	 */
2164	if (test_bit(BTRFS_INODE_NEEDS_FULL_SYNC,
2165		     &BTRFS_I(inode)->runtime_flags)) {
2166		start = 0;
2167		end = LLONG_MAX;
2168	}
2169
2170	/*
2171	 * Before we acquired the inode's lock, someone may have dirtied more
2172	 * pages in the target range. We need to make sure that writeback for
2173	 * any such pages does not start while we are logging the inode, because
2174	 * if it does, any of the following might happen when we are not doing a
2175	 * full inode sync:
2176	 *
2177	 * 1) We log an extent after its writeback finishes but before its
2178	 *    checksums are added to the csum tree, leading to -EIO errors
2179	 *    when attempting to read the extent after a log replay.
2180	 *
2181	 * 2) We can end up logging an extent before its writeback finishes.
2182	 *    Therefore after the log replay we will have a file extent item
2183	 *    pointing to an unwritten extent (and no data checksums as well).
2184	 *
2185	 * So trigger writeback for any eventual new dirty pages and then we
2186	 * wait for all ordered extents to complete below.
2187	 */
2188	ret = start_ordered_ops(inode, start, end);
2189	if (ret) {
2190		up_write(&BTRFS_I(inode)->dio_sem);
2191		inode_unlock(inode);
2192		goto out;
2193	}
2194
2195	/*
2196	 * We have to do this here to avoid the priority inversion of waiting on
2197	 * IO of a lower priority task while holding a transaction open.
2198	 *
2199	 * Also, the range length can be represented by u64, we have to do the
2200	 * typecasts to avoid signed overflow if it's [0, LLONG_MAX].
2201	 */
2202	ret = btrfs_wait_ordered_range(inode, start, (u64)end - (u64)start + 1);
2203	if (ret) {
2204		up_write(&BTRFS_I(inode)->dio_sem);
2205		inode_unlock(inode);
2206		goto out;
2207	}
2208	atomic_inc(&root->log_batch);
2209
2210	smp_mb();
2211	if (btrfs_inode_in_log(BTRFS_I(inode), fs_info->generation) ||
2212	    BTRFS_I(inode)->last_trans <= fs_info->last_trans_committed) {
2213		/*
2214		 * We've had everything committed since the last time we were
2215		 * modified so clear this flag in case it was set for whatever
2216		 * reason, it's no longer relevant.
2217		 */
2218		clear_bit(BTRFS_INODE_NEEDS_FULL_SYNC,
2219			  &BTRFS_I(inode)->runtime_flags);
2220		/*
2221		 * An ordered extent might have started before and completed
2222		 * already with io errors, in which case the inode was not
2223		 * updated and we end up here. So check the inode's mapping
2224		 * for any errors that might have happened since we last
2225		 * checked called fsync.
2226		 */
2227		ret = filemap_check_wb_err(inode->i_mapping, file->f_wb_err);
2228		up_write(&BTRFS_I(inode)->dio_sem);
2229		inode_unlock(inode);
2230		goto out;
2231	}
2232
2233	/*
2234	 * We use start here because we will need to wait on the IO to complete
2235	 * in btrfs_sync_log, which could require joining a transaction (for
2236	 * example checking cross references in the nocow path).  If we use join
2237	 * here we could get into a situation where we're waiting on IO to
2238	 * happen that is blocked on a transaction trying to commit.  With start
2239	 * we inc the extwriter counter, so we wait for all extwriters to exit
2240	 * before we start blocking joiners.  This comment is to keep somebody
2241	 * from thinking they are super smart and changing this to
2242	 * btrfs_join_transaction *cough*Josef*cough*.
2243	 */
 
 
 
2244	trans = btrfs_start_transaction(root, 0);
2245	if (IS_ERR(trans)) {
2246		ret = PTR_ERR(trans);
2247		up_write(&BTRFS_I(inode)->dio_sem);
2248		inode_unlock(inode);
2249		goto out;
2250	}
2251
2252	ret = btrfs_log_dentry_safe(trans, dentry, start, end, &ctx);
2253	if (ret < 0) {
2254		/* Fallthrough and commit/free transaction. */
2255		ret = 1;
2256	}
2257
2258	/* we've logged all the items and now have a consistent
2259	 * version of the file in the log.  It is possible that
2260	 * someone will come in and modify the file, but that's
2261	 * fine because the log is consistent on disk, and we
2262	 * have references to all of the file's extents
2263	 *
2264	 * It is possible that someone will come in and log the
2265	 * file again, but that will end up using the synchronization
2266	 * inside btrfs_sync_log to keep things safe.
2267	 */
2268	up_write(&BTRFS_I(inode)->dio_sem);
2269	inode_unlock(inode);
2270
2271	if (ret != BTRFS_NO_LOG_SYNC) {
2272		if (!ret) {
2273			ret = btrfs_sync_log(trans, root, &ctx);
2274			if (!ret) {
2275				ret = btrfs_end_transaction(trans);
2276				goto out;
2277			}
 
 
2278		}
2279		ret = btrfs_commit_transaction(trans);
2280	} else {
2281		ret = btrfs_end_transaction(trans);
2282	}
2283out:
2284	ASSERT(list_empty(&ctx.list));
2285	err = file_check_and_advance_wb_err(file);
2286	if (!ret)
2287		ret = err;
2288	return ret > 0 ? -EIO : ret;
2289}
2290
2291static const struct vm_operations_struct btrfs_file_vm_ops = {
2292	.fault		= filemap_fault,
2293	.map_pages	= filemap_map_pages,
2294	.page_mkwrite	= btrfs_page_mkwrite,
2295};
2296
2297static int btrfs_file_mmap(struct file	*filp, struct vm_area_struct *vma)
2298{
2299	struct address_space *mapping = filp->f_mapping;
2300
2301	if (!mapping->a_ops->readpage)
2302		return -ENOEXEC;
2303
2304	file_accessed(filp);
2305	vma->vm_ops = &btrfs_file_vm_ops;
 
2306
2307	return 0;
2308}
2309
2310static int hole_mergeable(struct btrfs_inode *inode, struct extent_buffer *leaf,
2311			  int slot, u64 start, u64 end)
2312{
2313	struct btrfs_file_extent_item *fi;
2314	struct btrfs_key key;
2315
2316	if (slot < 0 || slot >= btrfs_header_nritems(leaf))
2317		return 0;
2318
2319	btrfs_item_key_to_cpu(leaf, &key, slot);
2320	if (key.objectid != btrfs_ino(inode) ||
2321	    key.type != BTRFS_EXTENT_DATA_KEY)
2322		return 0;
2323
2324	fi = btrfs_item_ptr(leaf, slot, struct btrfs_file_extent_item);
2325
2326	if (btrfs_file_extent_type(leaf, fi) != BTRFS_FILE_EXTENT_REG)
2327		return 0;
2328
2329	if (btrfs_file_extent_disk_bytenr(leaf, fi))
2330		return 0;
2331
2332	if (key.offset == end)
2333		return 1;
2334	if (key.offset + btrfs_file_extent_num_bytes(leaf, fi) == start)
2335		return 1;
2336	return 0;
2337}
2338
2339static int fill_holes(struct btrfs_trans_handle *trans,
2340		struct btrfs_inode *inode,
2341		struct btrfs_path *path, u64 offset, u64 end)
2342{
2343	struct btrfs_fs_info *fs_info = trans->fs_info;
2344	struct btrfs_root *root = inode->root;
2345	struct extent_buffer *leaf;
2346	struct btrfs_file_extent_item *fi;
2347	struct extent_map *hole_em;
2348	struct extent_map_tree *em_tree = &inode->extent_tree;
2349	struct btrfs_key key;
2350	int ret;
2351
2352	if (btrfs_fs_incompat(fs_info, NO_HOLES))
2353		goto out;
2354
2355	key.objectid = btrfs_ino(inode);
2356	key.type = BTRFS_EXTENT_DATA_KEY;
2357	key.offset = offset;
2358
2359	ret = btrfs_search_slot(trans, root, &key, path, 0, 1);
2360	if (ret <= 0) {
2361		/*
2362		 * We should have dropped this offset, so if we find it then
2363		 * something has gone horribly wrong.
2364		 */
2365		if (ret == 0)
2366			ret = -EINVAL;
2367		return ret;
2368	}
2369
2370	leaf = path->nodes[0];
2371	if (hole_mergeable(inode, leaf, path->slots[0] - 1, offset, end)) {
2372		u64 num_bytes;
2373
2374		path->slots[0]--;
2375		fi = btrfs_item_ptr(leaf, path->slots[0],
2376				    struct btrfs_file_extent_item);
2377		num_bytes = btrfs_file_extent_num_bytes(leaf, fi) +
2378			end - offset;
2379		btrfs_set_file_extent_num_bytes(leaf, fi, num_bytes);
2380		btrfs_set_file_extent_ram_bytes(leaf, fi, num_bytes);
2381		btrfs_set_file_extent_offset(leaf, fi, 0);
2382		btrfs_mark_buffer_dirty(leaf);
2383		goto out;
2384	}
2385
2386	if (hole_mergeable(inode, leaf, path->slots[0], offset, end)) {
2387		u64 num_bytes;
2388
2389		key.offset = offset;
2390		btrfs_set_item_key_safe(fs_info, path, &key);
2391		fi = btrfs_item_ptr(leaf, path->slots[0],
2392				    struct btrfs_file_extent_item);
2393		num_bytes = btrfs_file_extent_num_bytes(leaf, fi) + end -
2394			offset;
2395		btrfs_set_file_extent_num_bytes(leaf, fi, num_bytes);
2396		btrfs_set_file_extent_ram_bytes(leaf, fi, num_bytes);
2397		btrfs_set_file_extent_offset(leaf, fi, 0);
2398		btrfs_mark_buffer_dirty(leaf);
2399		goto out;
2400	}
2401	btrfs_release_path(path);
2402
2403	ret = btrfs_insert_file_extent(trans, root, btrfs_ino(inode),
2404			offset, 0, 0, end - offset, 0, end - offset, 0, 0, 0);
2405	if (ret)
2406		return ret;
2407
2408out:
2409	btrfs_release_path(path);
2410
2411	hole_em = alloc_extent_map();
2412	if (!hole_em) {
2413		btrfs_drop_extent_cache(inode, offset, end - 1, 0);
2414		set_bit(BTRFS_INODE_NEEDS_FULL_SYNC, &inode->runtime_flags);
2415	} else {
2416		hole_em->start = offset;
2417		hole_em->len = end - offset;
2418		hole_em->ram_bytes = hole_em->len;
2419		hole_em->orig_start = offset;
2420
2421		hole_em->block_start = EXTENT_MAP_HOLE;
2422		hole_em->block_len = 0;
2423		hole_em->orig_block_len = 0;
2424		hole_em->compress_type = BTRFS_COMPRESS_NONE;
2425		hole_em->generation = trans->transid;
2426
2427		do {
2428			btrfs_drop_extent_cache(inode, offset, end - 1, 0);
2429			write_lock(&em_tree->lock);
2430			ret = add_extent_mapping(em_tree, hole_em, 1);
2431			write_unlock(&em_tree->lock);
2432		} while (ret == -EEXIST);
2433		free_extent_map(hole_em);
2434		if (ret)
2435			set_bit(BTRFS_INODE_NEEDS_FULL_SYNC,
2436					&inode->runtime_flags);
2437	}
2438
2439	return 0;
2440}
2441
2442/*
2443 * Find a hole extent on given inode and change start/len to the end of hole
2444 * extent.(hole/vacuum extent whose em->start <= start &&
2445 *	   em->start + em->len > start)
2446 * When a hole extent is found, return 1 and modify start/len.
2447 */
2448static int find_first_non_hole(struct inode *inode, u64 *start, u64 *len)
2449{
2450	struct btrfs_fs_info *fs_info = btrfs_sb(inode->i_sb);
2451	struct extent_map *em;
2452	int ret = 0;
2453
2454	em = btrfs_get_extent(BTRFS_I(inode), NULL, 0,
2455			      round_down(*start, fs_info->sectorsize),
2456			      round_up(*len, fs_info->sectorsize));
2457	if (IS_ERR(em))
2458		return PTR_ERR(em);
2459
2460	/* Hole or vacuum extent(only exists in no-hole mode) */
2461	if (em->block_start == EXTENT_MAP_HOLE) {
2462		ret = 1;
2463		*len = em->start + em->len > *start + *len ?
2464		       0 : *start + *len - em->start - em->len;
2465		*start = em->start + em->len;
2466	}
2467	free_extent_map(em);
2468	return ret;
2469}
2470
2471static int btrfs_punch_hole_lock_range(struct inode *inode,
2472				       const u64 lockstart,
2473				       const u64 lockend,
2474				       struct extent_state **cached_state)
2475{
2476	while (1) {
2477		struct btrfs_ordered_extent *ordered;
2478		int ret;
2479
2480		truncate_pagecache_range(inode, lockstart, lockend);
2481
2482		lock_extent_bits(&BTRFS_I(inode)->io_tree, lockstart, lockend,
2483				 cached_state);
2484		ordered = btrfs_lookup_first_ordered_extent(inode, lockend);
2485
2486		/*
2487		 * We need to make sure we have no ordered extents in this range
2488		 * and nobody raced in and read a page in this range, if we did
2489		 * we need to try again.
2490		 */
2491		if ((!ordered ||
2492		    (ordered->file_offset + ordered->num_bytes <= lockstart ||
2493		     ordered->file_offset > lockend)) &&
2494		     !filemap_range_has_page(inode->i_mapping,
2495					     lockstart, lockend)) {
2496			if (ordered)
2497				btrfs_put_ordered_extent(ordered);
2498			break;
2499		}
2500		if (ordered)
2501			btrfs_put_ordered_extent(ordered);
2502		unlock_extent_cached(&BTRFS_I(inode)->io_tree, lockstart,
2503				     lockend, cached_state);
2504		ret = btrfs_wait_ordered_range(inode, lockstart,
2505					       lockend - lockstart + 1);
2506		if (ret)
2507			return ret;
2508	}
2509	return 0;
2510}
2511
2512static int btrfs_insert_clone_extent(struct btrfs_trans_handle *trans,
2513				     struct inode *inode,
2514				     struct btrfs_path *path,
2515				     struct btrfs_clone_extent_info *clone_info,
2516				     const u64 clone_len)
2517{
2518	struct btrfs_fs_info *fs_info = btrfs_sb(inode->i_sb);
2519	struct btrfs_root *root = BTRFS_I(inode)->root;
2520	struct btrfs_file_extent_item *extent;
2521	struct extent_buffer *leaf;
2522	struct btrfs_key key;
2523	int slot;
2524	struct btrfs_ref ref = { 0 };
2525	u64 ref_offset;
2526	int ret;
2527
2528	if (clone_len == 0)
2529		return 0;
2530
2531	if (clone_info->disk_offset == 0 &&
2532	    btrfs_fs_incompat(fs_info, NO_HOLES))
2533		return 0;
2534
2535	key.objectid = btrfs_ino(BTRFS_I(inode));
2536	key.type = BTRFS_EXTENT_DATA_KEY;
2537	key.offset = clone_info->file_offset;
2538	ret = btrfs_insert_empty_item(trans, root, path, &key,
2539				      clone_info->item_size);
2540	if (ret)
2541		return ret;
2542	leaf = path->nodes[0];
2543	slot = path->slots[0];
2544	write_extent_buffer(leaf, clone_info->extent_buf,
2545			    btrfs_item_ptr_offset(leaf, slot),
2546			    clone_info->item_size);
2547	extent = btrfs_item_ptr(leaf, slot, struct btrfs_file_extent_item);
2548	btrfs_set_file_extent_offset(leaf, extent, clone_info->data_offset);
2549	btrfs_set_file_extent_num_bytes(leaf, extent, clone_len);
2550	btrfs_mark_buffer_dirty(leaf);
2551	btrfs_release_path(path);
2552
2553	ret = btrfs_inode_set_file_extent_range(BTRFS_I(inode),
2554			clone_info->file_offset, clone_len);
2555	if (ret)
2556		return ret;
2557
2558	/* If it's a hole, nothing more needs to be done. */
2559	if (clone_info->disk_offset == 0)
2560		return 0;
2561
2562	inode_add_bytes(inode, clone_len);
2563	btrfs_init_generic_ref(&ref, BTRFS_ADD_DELAYED_REF,
2564			       clone_info->disk_offset,
2565			       clone_info->disk_len, 0);
2566	ref_offset = clone_info->file_offset - clone_info->data_offset;
2567	btrfs_init_data_ref(&ref, root->root_key.objectid,
2568			    btrfs_ino(BTRFS_I(inode)), ref_offset);
2569	ret = btrfs_inc_extent_ref(trans, &ref);
2570
2571	return ret;
2572}
2573
2574/*
2575 * The respective range must have been previously locked, as well as the inode.
2576 * The end offset is inclusive (last byte of the range).
2577 * @clone_info is NULL for fallocate's hole punching and non-NULL for extent
2578 * cloning.
2579 * When cloning, we don't want to end up in a state where we dropped extents
2580 * without inserting a new one, so we must abort the transaction to avoid a
2581 * corruption.
2582 */
2583int btrfs_punch_hole_range(struct inode *inode, struct btrfs_path *path,
2584			   const u64 start, const u64 end,
2585			   struct btrfs_clone_extent_info *clone_info,
2586			   struct btrfs_trans_handle **trans_out)
2587{
2588	struct btrfs_fs_info *fs_info = btrfs_sb(inode->i_sb);
2589	u64 min_size = btrfs_calc_insert_metadata_size(fs_info, 1);
2590	u64 ino_size = round_up(inode->i_size, fs_info->sectorsize);
2591	struct btrfs_root *root = BTRFS_I(inode)->root;
2592	struct btrfs_trans_handle *trans = NULL;
2593	struct btrfs_block_rsv *rsv;
2594	unsigned int rsv_count;
2595	u64 cur_offset;
2596	u64 drop_end;
2597	u64 len = end - start;
2598	int ret = 0;
2599
2600	if (end <= start)
2601		return -EINVAL;
2602
2603	rsv = btrfs_alloc_block_rsv(fs_info, BTRFS_BLOCK_RSV_TEMP);
2604	if (!rsv) {
2605		ret = -ENOMEM;
2606		goto out;
2607	}
2608	rsv->size = btrfs_calc_insert_metadata_size(fs_info, 1);
2609	rsv->failfast = 1;
2610
2611	/*
2612	 * 1 - update the inode
2613	 * 1 - removing the extents in the range
2614	 * 1 - adding the hole extent if no_holes isn't set or if we are cloning
2615	 *     an extent
2616	 */
2617	if (!btrfs_fs_incompat(fs_info, NO_HOLES) || clone_info)
2618		rsv_count = 3;
2619	else
2620		rsv_count = 2;
2621
2622	trans = btrfs_start_transaction(root, rsv_count);
2623	if (IS_ERR(trans)) {
2624		ret = PTR_ERR(trans);
2625		trans = NULL;
2626		goto out_free;
2627	}
2628
2629	ret = btrfs_block_rsv_migrate(&fs_info->trans_block_rsv, rsv,
2630				      min_size, false);
2631	BUG_ON(ret);
2632	trans->block_rsv = rsv;
2633
2634	cur_offset = start;
2635	while (cur_offset < end) {
2636		ret = __btrfs_drop_extents(trans, root, BTRFS_I(inode), path,
2637					   cur_offset, end + 1, &drop_end,
2638					   1, 0, 0, NULL);
2639		if (ret != -ENOSPC) {
2640			/*
2641			 * When cloning we want to avoid transaction aborts when
2642			 * nothing was done and we are attempting to clone parts
2643			 * of inline extents, in such cases -EOPNOTSUPP is
2644			 * returned by __btrfs_drop_extents() without having
2645			 * changed anything in the file.
2646			 */
2647			if (clone_info && ret && ret != -EOPNOTSUPP)
2648				btrfs_abort_transaction(trans, ret);
2649			break;
2650		}
2651
2652		trans->block_rsv = &fs_info->trans_block_rsv;
2653
2654		if (!clone_info && cur_offset < drop_end &&
2655		    cur_offset < ino_size) {
2656			ret = fill_holes(trans, BTRFS_I(inode), path,
2657					cur_offset, drop_end);
2658			if (ret) {
2659				/*
2660				 * If we failed then we didn't insert our hole
2661				 * entries for the area we dropped, so now the
2662				 * fs is corrupted, so we must abort the
2663				 * transaction.
2664				 */
2665				btrfs_abort_transaction(trans, ret);
2666				break;
2667			}
2668		} else if (!clone_info && cur_offset < drop_end) {
2669			/*
2670			 * We are past the i_size here, but since we didn't
2671			 * insert holes we need to clear the mapped area so we
2672			 * know to not set disk_i_size in this area until a new
2673			 * file extent is inserted here.
2674			 */
2675			ret = btrfs_inode_clear_file_extent_range(BTRFS_I(inode),
2676					cur_offset, drop_end - cur_offset);
2677			if (ret) {
2678				/*
2679				 * We couldn't clear our area, so we could
2680				 * presumably adjust up and corrupt the fs, so
2681				 * we need to abort.
2682				 */
2683				btrfs_abort_transaction(trans, ret);
2684				break;
2685			}
2686		}
2687
2688		if (clone_info && drop_end > clone_info->file_offset) {
2689			u64 clone_len = drop_end - clone_info->file_offset;
2690
2691			ret = btrfs_insert_clone_extent(trans, inode, path,
2692							clone_info, clone_len);
2693			if (ret) {
2694				btrfs_abort_transaction(trans, ret);
2695				break;
2696			}
2697			clone_info->data_len -= clone_len;
2698			clone_info->data_offset += clone_len;
2699			clone_info->file_offset += clone_len;
2700		}
2701
2702		cur_offset = drop_end;
2703
2704		ret = btrfs_update_inode(trans, root, inode);
2705		if (ret)
2706			break;
2707
2708		btrfs_end_transaction(trans);
2709		btrfs_btree_balance_dirty(fs_info);
2710
2711		trans = btrfs_start_transaction(root, rsv_count);
2712		if (IS_ERR(trans)) {
2713			ret = PTR_ERR(trans);
2714			trans = NULL;
2715			break;
2716		}
2717
2718		ret = btrfs_block_rsv_migrate(&fs_info->trans_block_rsv,
2719					      rsv, min_size, false);
2720		BUG_ON(ret);	/* shouldn't happen */
2721		trans->block_rsv = rsv;
2722
2723		if (!clone_info) {
2724			ret = find_first_non_hole(inode, &cur_offset, &len);
2725			if (unlikely(ret < 0))
2726				break;
2727			if (ret && !len) {
2728				ret = 0;
2729				break;
2730			}
2731		}
2732	}
2733
2734	/*
2735	 * If we were cloning, force the next fsync to be a full one since we
2736	 * we replaced (or just dropped in the case of cloning holes when
2737	 * NO_HOLES is enabled) extents and extent maps.
2738	 * This is for the sake of simplicity, and cloning into files larger
2739	 * than 16Mb would force the full fsync any way (when
2740	 * try_release_extent_mapping() is invoked during page cache truncation.
2741	 */
2742	if (clone_info)
2743		set_bit(BTRFS_INODE_NEEDS_FULL_SYNC,
2744			&BTRFS_I(inode)->runtime_flags);
2745
2746	if (ret)
2747		goto out_trans;
2748
2749	trans->block_rsv = &fs_info->trans_block_rsv;
2750	/*
2751	 * If we are using the NO_HOLES feature we might have had already an
2752	 * hole that overlaps a part of the region [lockstart, lockend] and
2753	 * ends at (or beyond) lockend. Since we have no file extent items to
2754	 * represent holes, drop_end can be less than lockend and so we must
2755	 * make sure we have an extent map representing the existing hole (the
2756	 * call to __btrfs_drop_extents() might have dropped the existing extent
2757	 * map representing the existing hole), otherwise the fast fsync path
2758	 * will not record the existence of the hole region
2759	 * [existing_hole_start, lockend].
2760	 */
2761	if (drop_end <= end)
2762		drop_end = end + 1;
2763	/*
2764	 * Don't insert file hole extent item if it's for a range beyond eof
2765	 * (because it's useless) or if it represents a 0 bytes range (when
2766	 * cur_offset == drop_end).
2767	 */
2768	if (!clone_info && cur_offset < ino_size && cur_offset < drop_end) {
2769		ret = fill_holes(trans, BTRFS_I(inode), path,
2770				cur_offset, drop_end);
2771		if (ret) {
2772			/* Same comment as above. */
2773			btrfs_abort_transaction(trans, ret);
2774			goto out_trans;
2775		}
2776	} else if (!clone_info && cur_offset < drop_end) {
2777		/* See the comment in the loop above for the reasoning here. */
2778		ret = btrfs_inode_clear_file_extent_range(BTRFS_I(inode),
2779					cur_offset, drop_end - cur_offset);
2780		if (ret) {
2781			btrfs_abort_transaction(trans, ret);
2782			goto out_trans;
2783		}
2784
2785	}
2786	if (clone_info) {
2787		ret = btrfs_insert_clone_extent(trans, inode, path, clone_info,
2788						clone_info->data_len);
2789		if (ret) {
2790			btrfs_abort_transaction(trans, ret);
2791			goto out_trans;
2792		}
2793	}
2794
2795out_trans:
2796	if (!trans)
2797		goto out_free;
2798
2799	trans->block_rsv = &fs_info->trans_block_rsv;
2800	if (ret)
2801		btrfs_end_transaction(trans);
2802	else
2803		*trans_out = trans;
2804out_free:
2805	btrfs_free_block_rsv(fs_info, rsv);
2806out:
2807	return ret;
2808}
2809
2810static int btrfs_punch_hole(struct inode *inode, loff_t offset, loff_t len)
2811{
2812	struct btrfs_fs_info *fs_info = btrfs_sb(inode->i_sb);
2813	struct btrfs_root *root = BTRFS_I(inode)->root;
2814	struct extent_state *cached_state = NULL;
2815	struct btrfs_path *path;
2816	struct btrfs_trans_handle *trans = NULL;
2817	u64 lockstart;
2818	u64 lockend;
2819	u64 tail_start;
2820	u64 tail_len;
2821	u64 orig_start = offset;
2822	int ret = 0;
2823	bool same_block;
2824	u64 ino_size;
2825	bool truncated_block = false;
2826	bool updated_inode = false;
2827
2828	ret = btrfs_wait_ordered_range(inode, offset, len);
2829	if (ret)
2830		return ret;
2831
2832	inode_lock(inode);
2833	ino_size = round_up(inode->i_size, fs_info->sectorsize);
2834	ret = find_first_non_hole(inode, &offset, &len);
2835	if (ret < 0)
2836		goto out_only_mutex;
2837	if (ret && !len) {
2838		/* Already in a large hole */
2839		ret = 0;
2840		goto out_only_mutex;
2841	}
2842
2843	lockstart = round_up(offset, btrfs_inode_sectorsize(inode));
2844	lockend = round_down(offset + len,
2845			     btrfs_inode_sectorsize(inode)) - 1;
2846	same_block = (BTRFS_BYTES_TO_BLKS(fs_info, offset))
2847		== (BTRFS_BYTES_TO_BLKS(fs_info, offset + len - 1));
2848	/*
2849	 * We needn't truncate any block which is beyond the end of the file
2850	 * because we are sure there is no data there.
2851	 */
2852	/*
2853	 * Only do this if we are in the same block and we aren't doing the
2854	 * entire block.
2855	 */
2856	if (same_block && len < fs_info->sectorsize) {
2857		if (offset < ino_size) {
2858			truncated_block = true;
2859			ret = btrfs_truncate_block(inode, offset, len, 0);
2860		} else {
2861			ret = 0;
2862		}
2863		goto out_only_mutex;
2864	}
2865
2866	/* zero back part of the first block */
2867	if (offset < ino_size) {
2868		truncated_block = true;
2869		ret = btrfs_truncate_block(inode, offset, 0, 0);
2870		if (ret) {
2871			inode_unlock(inode);
2872			return ret;
2873		}
2874	}
2875
2876	/* Check the aligned pages after the first unaligned page,
2877	 * if offset != orig_start, which means the first unaligned page
2878	 * including several following pages are already in holes,
2879	 * the extra check can be skipped */
2880	if (offset == orig_start) {
2881		/* after truncate page, check hole again */
2882		len = offset + len - lockstart;
2883		offset = lockstart;
2884		ret = find_first_non_hole(inode, &offset, &len);
2885		if (ret < 0)
2886			goto out_only_mutex;
2887		if (ret && !len) {
2888			ret = 0;
2889			goto out_only_mutex;
2890		}
2891		lockstart = offset;
2892	}
2893
2894	/* Check the tail unaligned part is in a hole */
2895	tail_start = lockend + 1;
2896	tail_len = offset + len - tail_start;
2897	if (tail_len) {
2898		ret = find_first_non_hole(inode, &tail_start, &tail_len);
2899		if (unlikely(ret < 0))
2900			goto out_only_mutex;
2901		if (!ret) {
2902			/* zero the front end of the last page */
2903			if (tail_start + tail_len < ino_size) {
2904				truncated_block = true;
2905				ret = btrfs_truncate_block(inode,
2906							tail_start + tail_len,
2907							0, 1);
2908				if (ret)
2909					goto out_only_mutex;
2910			}
2911		}
2912	}
2913
2914	if (lockend < lockstart) {
2915		ret = 0;
2916		goto out_only_mutex;
2917	}
2918
2919	ret = btrfs_punch_hole_lock_range(inode, lockstart, lockend,
2920					  &cached_state);
2921	if (ret)
2922		goto out_only_mutex;
2923
2924	path = btrfs_alloc_path();
2925	if (!path) {
2926		ret = -ENOMEM;
2927		goto out;
2928	}
2929
2930	ret = btrfs_punch_hole_range(inode, path, lockstart, lockend, NULL,
2931				     &trans);
2932	btrfs_free_path(path);
2933	if (ret)
2934		goto out;
2935
2936	ASSERT(trans != NULL);
2937	inode_inc_iversion(inode);
2938	inode->i_mtime = inode->i_ctime = current_time(inode);
2939	ret = btrfs_update_inode(trans, root, inode);
2940	updated_inode = true;
2941	btrfs_end_transaction(trans);
2942	btrfs_btree_balance_dirty(fs_info);
2943out:
2944	unlock_extent_cached(&BTRFS_I(inode)->io_tree, lockstart, lockend,
2945			     &cached_state);
2946out_only_mutex:
2947	if (!updated_inode && truncated_block && !ret) {
2948		/*
2949		 * If we only end up zeroing part of a page, we still need to
2950		 * update the inode item, so that all the time fields are
2951		 * updated as well as the necessary btrfs inode in memory fields
2952		 * for detecting, at fsync time, if the inode isn't yet in the
2953		 * log tree or it's there but not up to date.
2954		 */
2955		struct timespec64 now = current_time(inode);
2956
2957		inode_inc_iversion(inode);
2958		inode->i_mtime = now;
2959		inode->i_ctime = now;
2960		trans = btrfs_start_transaction(root, 1);
2961		if (IS_ERR(trans)) {
2962			ret = PTR_ERR(trans);
2963		} else {
2964			int ret2;
2965
2966			ret = btrfs_update_inode(trans, root, inode);
2967			ret2 = btrfs_end_transaction(trans);
2968			if (!ret)
2969				ret = ret2;
2970		}
2971	}
2972	inode_unlock(inode);
2973	return ret;
2974}
2975
2976/* Helper structure to record which range is already reserved */
2977struct falloc_range {
2978	struct list_head list;
2979	u64 start;
2980	u64 len;
2981};
2982
2983/*
2984 * Helper function to add falloc range
2985 *
2986 * Caller should have locked the larger range of extent containing
2987 * [start, len)
2988 */
2989static int add_falloc_range(struct list_head *head, u64 start, u64 len)
2990{
2991	struct falloc_range *prev = NULL;
2992	struct falloc_range *range = NULL;
2993
2994	if (list_empty(head))
2995		goto insert;
2996
2997	/*
2998	 * As fallocate iterate by bytenr order, we only need to check
2999	 * the last range.
3000	 */
3001	prev = list_entry(head->prev, struct falloc_range, list);
3002	if (prev->start + prev->len == start) {
3003		prev->len += len;
3004		return 0;
3005	}
3006insert:
3007	range = kmalloc(sizeof(*range), GFP_KERNEL);
3008	if (!range)
3009		return -ENOMEM;
3010	range->start = start;
3011	range->len = len;
3012	list_add_tail(&range->list, head);
3013	return 0;
3014}
3015
3016static int btrfs_fallocate_update_isize(struct inode *inode,
3017					const u64 end,
3018					const int mode)
3019{
3020	struct btrfs_trans_handle *trans;
3021	struct btrfs_root *root = BTRFS_I(inode)->root;
3022	int ret;
3023	int ret2;
3024
3025	if (mode & FALLOC_FL_KEEP_SIZE || end <= i_size_read(inode))
3026		return 0;
3027
3028	trans = btrfs_start_transaction(root, 1);
3029	if (IS_ERR(trans))
3030		return PTR_ERR(trans);
3031
3032	inode->i_ctime = current_time(inode);
3033	i_size_write(inode, end);
3034	btrfs_inode_safe_disk_i_size_write(inode, 0);
3035	ret = btrfs_update_inode(trans, root, inode);
3036	ret2 = btrfs_end_transaction(trans);
3037
3038	return ret ? ret : ret2;
3039}
3040
3041enum {
3042	RANGE_BOUNDARY_WRITTEN_EXTENT,
3043	RANGE_BOUNDARY_PREALLOC_EXTENT,
3044	RANGE_BOUNDARY_HOLE,
3045};
3046
3047static int btrfs_zero_range_check_range_boundary(struct inode *inode,
3048						 u64 offset)
3049{
3050	const u64 sectorsize = btrfs_inode_sectorsize(inode);
3051	struct extent_map *em;
3052	int ret;
3053
3054	offset = round_down(offset, sectorsize);
3055	em = btrfs_get_extent(BTRFS_I(inode), NULL, 0, offset, sectorsize);
3056	if (IS_ERR(em))
3057		return PTR_ERR(em);
3058
3059	if (em->block_start == EXTENT_MAP_HOLE)
3060		ret = RANGE_BOUNDARY_HOLE;
3061	else if (test_bit(EXTENT_FLAG_PREALLOC, &em->flags))
3062		ret = RANGE_BOUNDARY_PREALLOC_EXTENT;
3063	else
3064		ret = RANGE_BOUNDARY_WRITTEN_EXTENT;
3065
3066	free_extent_map(em);
3067	return ret;
3068}
3069
3070static int btrfs_zero_range(struct inode *inode,
3071			    loff_t offset,
3072			    loff_t len,
3073			    const int mode)
3074{
3075	struct btrfs_fs_info *fs_info = BTRFS_I(inode)->root->fs_info;
3076	struct extent_map *em;
3077	struct extent_changeset *data_reserved = NULL;
3078	int ret;
3079	u64 alloc_hint = 0;
3080	const u64 sectorsize = btrfs_inode_sectorsize(inode);
3081	u64 alloc_start = round_down(offset, sectorsize);
3082	u64 alloc_end = round_up(offset + len, sectorsize);
3083	u64 bytes_to_reserve = 0;
3084	bool space_reserved = false;
3085
3086	inode_dio_wait(inode);
3087
3088	em = btrfs_get_extent(BTRFS_I(inode), NULL, 0, alloc_start,
3089			      alloc_end - alloc_start);
3090	if (IS_ERR(em)) {
3091		ret = PTR_ERR(em);
3092		goto out;
3093	}
3094
3095	/*
3096	 * Avoid hole punching and extent allocation for some cases. More cases
3097	 * could be considered, but these are unlikely common and we keep things
3098	 * as simple as possible for now. Also, intentionally, if the target
3099	 * range contains one or more prealloc extents together with regular
3100	 * extents and holes, we drop all the existing extents and allocate a
3101	 * new prealloc extent, so that we get a larger contiguous disk extent.
3102	 */
3103	if (em->start <= alloc_start &&
3104	    test_bit(EXTENT_FLAG_PREALLOC, &em->flags)) {
3105		const u64 em_end = em->start + em->len;
3106
3107		if (em_end >= offset + len) {
3108			/*
3109			 * The whole range is already a prealloc extent,
3110			 * do nothing except updating the inode's i_size if
3111			 * needed.
3112			 */
3113			free_extent_map(em);
3114			ret = btrfs_fallocate_update_isize(inode, offset + len,
3115							   mode);
3116			goto out;
3117		}
3118		/*
3119		 * Part of the range is already a prealloc extent, so operate
3120		 * only on the remaining part of the range.
3121		 */
3122		alloc_start = em_end;
3123		ASSERT(IS_ALIGNED(alloc_start, sectorsize));
3124		len = offset + len - alloc_start;
3125		offset = alloc_start;
3126		alloc_hint = em->block_start + em->len;
3127	}
3128	free_extent_map(em);
3129
3130	if (BTRFS_BYTES_TO_BLKS(fs_info, offset) ==
3131	    BTRFS_BYTES_TO_BLKS(fs_info, offset + len - 1)) {
3132		em = btrfs_get_extent(BTRFS_I(inode), NULL, 0, alloc_start,
3133				      sectorsize);
3134		if (IS_ERR(em)) {
3135			ret = PTR_ERR(em);
3136			goto out;
3137		}
3138
3139		if (test_bit(EXTENT_FLAG_PREALLOC, &em->flags)) {
3140			free_extent_map(em);
3141			ret = btrfs_fallocate_update_isize(inode, offset + len,
3142							   mode);
3143			goto out;
3144		}
3145		if (len < sectorsize && em->block_start != EXTENT_MAP_HOLE) {
3146			free_extent_map(em);
3147			ret = btrfs_truncate_block(inode, offset, len, 0);
3148			if (!ret)
3149				ret = btrfs_fallocate_update_isize(inode,
3150								   offset + len,
3151								   mode);
3152			return ret;
3153		}
3154		free_extent_map(em);
3155		alloc_start = round_down(offset, sectorsize);
3156		alloc_end = alloc_start + sectorsize;
3157		goto reserve_space;
3158	}
3159
3160	alloc_start = round_up(offset, sectorsize);
3161	alloc_end = round_down(offset + len, sectorsize);
3162
3163	/*
3164	 * For unaligned ranges, check the pages at the boundaries, they might
3165	 * map to an extent, in which case we need to partially zero them, or
3166	 * they might map to a hole, in which case we need our allocation range
3167	 * to cover them.
3168	 */
3169	if (!IS_ALIGNED(offset, sectorsize)) {
3170		ret = btrfs_zero_range_check_range_boundary(inode, offset);
3171		if (ret < 0)
3172			goto out;
3173		if (ret == RANGE_BOUNDARY_HOLE) {
3174			alloc_start = round_down(offset, sectorsize);
3175			ret = 0;
3176		} else if (ret == RANGE_BOUNDARY_WRITTEN_EXTENT) {
3177			ret = btrfs_truncate_block(inode, offset, 0, 0);
3178			if (ret)
3179				goto out;
3180		} else {
3181			ret = 0;
3182		}
3183	}
3184
3185	if (!IS_ALIGNED(offset + len, sectorsize)) {
3186		ret = btrfs_zero_range_check_range_boundary(inode,
3187							    offset + len);
3188		if (ret < 0)
3189			goto out;
3190		if (ret == RANGE_BOUNDARY_HOLE) {
3191			alloc_end = round_up(offset + len, sectorsize);
3192			ret = 0;
3193		} else if (ret == RANGE_BOUNDARY_WRITTEN_EXTENT) {
3194			ret = btrfs_truncate_block(inode, offset + len, 0, 1);
3195			if (ret)
3196				goto out;
3197		} else {
3198			ret = 0;
3199		}
3200	}
3201
3202reserve_space:
3203	if (alloc_start < alloc_end) {
3204		struct extent_state *cached_state = NULL;
3205		const u64 lockstart = alloc_start;
3206		const u64 lockend = alloc_end - 1;
3207
3208		bytes_to_reserve = alloc_end - alloc_start;
3209		ret = btrfs_alloc_data_chunk_ondemand(BTRFS_I(inode),
3210						      bytes_to_reserve);
3211		if (ret < 0)
3212			goto out;
3213		space_reserved = true;
3214		ret = btrfs_punch_hole_lock_range(inode, lockstart, lockend,
3215						  &cached_state);
3216		if (ret)
3217			goto out;
3218		ret = btrfs_qgroup_reserve_data(BTRFS_I(inode), &data_reserved,
3219						alloc_start, bytes_to_reserve);
3220		if (ret)
3221			goto out;
3222		ret = btrfs_prealloc_file_range(inode, mode, alloc_start,
3223						alloc_end - alloc_start,
3224						i_blocksize(inode),
3225						offset + len, &alloc_hint);
3226		unlock_extent_cached(&BTRFS_I(inode)->io_tree, lockstart,
3227				     lockend, &cached_state);
3228		/* btrfs_prealloc_file_range releases reserved space on error */
3229		if (ret) {
3230			space_reserved = false;
3231			goto out;
3232		}
3233	}
3234	ret = btrfs_fallocate_update_isize(inode, offset + len, mode);
3235 out:
3236	if (ret && space_reserved)
3237		btrfs_free_reserved_data_space(BTRFS_I(inode), data_reserved,
3238					       alloc_start, bytes_to_reserve);
3239	extent_changeset_free(data_reserved);
3240
3241	return ret;
3242}
3243
3244static long btrfs_fallocate(struct file *file, int mode,
3245			    loff_t offset, loff_t len)
3246{
3247	struct inode *inode = file_inode(file);
3248	struct extent_state *cached_state = NULL;
3249	struct extent_changeset *data_reserved = NULL;
3250	struct falloc_range *range;
3251	struct falloc_range *tmp;
3252	struct list_head reserve_list;
3253	u64 cur_offset;
3254	u64 last_byte;
3255	u64 alloc_start;
3256	u64 alloc_end;
3257	u64 alloc_hint = 0;
3258	u64 locked_end;
3259	u64 actual_end = 0;
3260	struct extent_map *em;
3261	int blocksize = btrfs_inode_sectorsize(inode);
3262	int ret;
3263
3264	alloc_start = round_down(offset, blocksize);
3265	alloc_end = round_up(offset + len, blocksize);
3266	cur_offset = alloc_start;
3267
3268	/* Make sure we aren't being give some crap mode */
3269	if (mode & ~(FALLOC_FL_KEEP_SIZE | FALLOC_FL_PUNCH_HOLE |
3270		     FALLOC_FL_ZERO_RANGE))
3271		return -EOPNOTSUPP;
3272
3273	if (mode & FALLOC_FL_PUNCH_HOLE)
3274		return btrfs_punch_hole(inode, offset, len);
3275
3276	/*
3277	 * Only trigger disk allocation, don't trigger qgroup reserve
3278	 *
3279	 * For qgroup space, it will be checked later.
3280	 */
3281	if (!(mode & FALLOC_FL_ZERO_RANGE)) {
3282		ret = btrfs_alloc_data_chunk_ondemand(BTRFS_I(inode),
3283						      alloc_end - alloc_start);
3284		if (ret < 0)
3285			return ret;
3286	}
3287
3288	inode_lock(inode);
3289
3290	if (!(mode & FALLOC_FL_KEEP_SIZE) && offset + len > inode->i_size) {
3291		ret = inode_newsize_ok(inode, offset + len);
3292		if (ret)
3293			goto out;
3294	}
3295
3296	/*
3297	 * TODO: Move these two operations after we have checked
3298	 * accurate reserved space, or fallocate can still fail but
3299	 * with page truncated or size expanded.
3300	 *
3301	 * But that's a minor problem and won't do much harm BTW.
3302	 */
3303	if (alloc_start > inode->i_size) {
3304		ret = btrfs_cont_expand(inode, i_size_read(inode),
3305					alloc_start);
3306		if (ret)
3307			goto out;
3308	} else if (offset + len > inode->i_size) {
3309		/*
3310		 * If we are fallocating from the end of the file onward we
3311		 * need to zero out the end of the block if i_size lands in the
3312		 * middle of a block.
3313		 */
3314		ret = btrfs_truncate_block(inode, inode->i_size, 0, 0);
3315		if (ret)
3316			goto out;
3317	}
3318
3319	/*
3320	 * wait for ordered IO before we have any locks.  We'll loop again
3321	 * below with the locks held.
3322	 */
3323	ret = btrfs_wait_ordered_range(inode, alloc_start,
3324				       alloc_end - alloc_start);
3325	if (ret)
3326		goto out;
3327
3328	if (mode & FALLOC_FL_ZERO_RANGE) {
3329		ret = btrfs_zero_range(inode, offset, len, mode);
3330		inode_unlock(inode);
3331		return ret;
3332	}
3333
3334	locked_end = alloc_end - 1;
3335	while (1) {
3336		struct btrfs_ordered_extent *ordered;
3337
3338		/* the extent lock is ordered inside the running
3339		 * transaction
3340		 */
3341		lock_extent_bits(&BTRFS_I(inode)->io_tree, alloc_start,
3342				 locked_end, &cached_state);
3343		ordered = btrfs_lookup_first_ordered_extent(inode, locked_end);
3344
3345		if (ordered &&
3346		    ordered->file_offset + ordered->num_bytes > alloc_start &&
3347		    ordered->file_offset < alloc_end) {
3348			btrfs_put_ordered_extent(ordered);
3349			unlock_extent_cached(&BTRFS_I(inode)->io_tree,
3350					     alloc_start, locked_end,
3351					     &cached_state);
3352			/*
3353			 * we can't wait on the range with the transaction
3354			 * running or with the extent lock held
3355			 */
3356			ret = btrfs_wait_ordered_range(inode, alloc_start,
3357						       alloc_end - alloc_start);
3358			if (ret)
3359				goto out;
3360		} else {
3361			if (ordered)
3362				btrfs_put_ordered_extent(ordered);
3363			break;
3364		}
3365	}
3366
3367	/* First, check if we exceed the qgroup limit */
3368	INIT_LIST_HEAD(&reserve_list);
3369	while (cur_offset < alloc_end) {
3370		em = btrfs_get_extent(BTRFS_I(inode), NULL, 0, cur_offset,
3371				      alloc_end - cur_offset);
3372		if (IS_ERR(em)) {
3373			ret = PTR_ERR(em);
3374			break;
3375		}
3376		last_byte = min(extent_map_end(em), alloc_end);
3377		actual_end = min_t(u64, extent_map_end(em), offset + len);
3378		last_byte = ALIGN(last_byte, blocksize);
 
3379		if (em->block_start == EXTENT_MAP_HOLE ||
3380		    (cur_offset >= inode->i_size &&
3381		     !test_bit(EXTENT_FLAG_PREALLOC, &em->flags))) {
3382			ret = add_falloc_range(&reserve_list, cur_offset,
3383					       last_byte - cur_offset);
3384			if (ret < 0) {
3385				free_extent_map(em);
3386				break;
3387			}
3388			ret = btrfs_qgroup_reserve_data(BTRFS_I(inode),
3389					&data_reserved, cur_offset,
3390					last_byte - cur_offset);
3391			if (ret < 0) {
3392				cur_offset = last_byte;
3393				free_extent_map(em);
3394				break;
3395			}
3396		} else {
 
3397			/*
3398			 * Do not need to reserve unwritten extent for this
3399			 * range, free reserved data space first, otherwise
3400			 * it'll result in false ENOSPC error.
3401			 */
3402			btrfs_free_reserved_data_space(BTRFS_I(inode),
3403				data_reserved, cur_offset,
3404				last_byte - cur_offset);
3405		}
3406		free_extent_map(em);
 
3407		cur_offset = last_byte;
 
 
 
 
3408	}
 
 
3409
3410	/*
3411	 * If ret is still 0, means we're OK to fallocate.
3412	 * Or just cleanup the list and exit.
3413	 */
3414	list_for_each_entry_safe(range, tmp, &reserve_list, list) {
3415		if (!ret)
3416			ret = btrfs_prealloc_file_range(inode, mode,
3417					range->start,
3418					range->len, i_blocksize(inode),
3419					offset + len, &alloc_hint);
3420		else
3421			btrfs_free_reserved_data_space(BTRFS_I(inode),
3422					data_reserved, range->start,
3423					range->len);
3424		list_del(&range->list);
3425		kfree(range);
3426	}
3427	if (ret < 0)
3428		goto out_unlock;
3429
3430	/*
3431	 * We didn't need to allocate any more space, but we still extended the
3432	 * size of the file so we need to update i_size and the inode item.
3433	 */
3434	ret = btrfs_fallocate_update_isize(inode, actual_end, mode);
3435out_unlock:
3436	unlock_extent_cached(&BTRFS_I(inode)->io_tree, alloc_start, locked_end,
3437			     &cached_state);
3438out:
3439	inode_unlock(inode);
3440	/* Let go of our reservation. */
3441	if (ret != 0 && !(mode & FALLOC_FL_ZERO_RANGE))
3442		btrfs_free_reserved_data_space(BTRFS_I(inode), data_reserved,
3443				cur_offset, alloc_end - cur_offset);
3444	extent_changeset_free(data_reserved);
3445	return ret;
3446}
3447
3448static loff_t find_desired_extent(struct inode *inode, loff_t offset,
3449				  int whence)
3450{
3451	struct btrfs_fs_info *fs_info = btrfs_sb(inode->i_sb);
3452	struct extent_map *em = NULL;
3453	struct extent_state *cached_state = NULL;
3454	loff_t i_size = inode->i_size;
3455	u64 lockstart;
3456	u64 lockend;
3457	u64 start;
3458	u64 len;
 
3459	int ret = 0;
3460
3461	if (i_size == 0 || offset >= i_size)
 
 
 
 
 
 
 
3462		return -ENXIO;
3463
 
 
 
3464	/*
3465	 * offset can be negative, in this case we start finding DATA/HOLE from
3466	 * the very start of the file.
3467	 */
3468	start = max_t(loff_t, 0, offset);
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
3469
3470	lockstart = round_down(start, fs_info->sectorsize);
3471	lockend = round_up(i_size, fs_info->sectorsize);
3472	if (lockend <= lockstart)
3473		lockend = lockstart + fs_info->sectorsize;
3474	lockend--;
3475	len = lockend - lockstart + 1;
3476
3477	lock_extent_bits(&BTRFS_I(inode)->io_tree, lockstart, lockend,
3478			 &cached_state);
3479
3480	while (start < i_size) {
3481		em = btrfs_get_extent_fiemap(BTRFS_I(inode), start, len);
3482		if (IS_ERR(em)) {
3483			ret = PTR_ERR(em);
3484			em = NULL;
3485			break;
3486		}
3487
3488		if (whence == SEEK_HOLE &&
3489		    (em->block_start == EXTENT_MAP_HOLE ||
3490		     test_bit(EXTENT_FLAG_PREALLOC, &em->flags)))
3491			break;
3492		else if (whence == SEEK_DATA &&
3493			   (em->block_start != EXTENT_MAP_HOLE &&
3494			    !test_bit(EXTENT_FLAG_PREALLOC, &em->flags)))
3495			break;
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
3496
3497		start = em->start + em->len;
 
 
 
 
 
 
 
 
 
 
3498		free_extent_map(em);
3499		em = NULL;
3500		cond_resched();
3501	}
3502	free_extent_map(em);
 
 
3503	unlock_extent_cached(&BTRFS_I(inode)->io_tree, lockstart, lockend,
3504			     &cached_state);
3505	if (ret) {
3506		offset = ret;
3507	} else {
3508		if (whence == SEEK_DATA && start >= i_size)
3509			offset = -ENXIO;
3510		else
3511			offset = min_t(loff_t, start, i_size);
3512	}
3513
3514	return offset;
3515}
3516
3517static loff_t btrfs_file_llseek(struct file *file, loff_t offset, int whence)
3518{
3519	struct inode *inode = file->f_mapping->host;
 
3520
3521	switch (whence) {
3522	default:
3523		return generic_file_llseek(file, offset, whence);
 
 
 
3524	case SEEK_DATA:
3525	case SEEK_HOLE:
3526		inode_lock_shared(inode);
3527		offset = find_desired_extent(inode, offset, whence);
3528		inode_unlock_shared(inode);
3529		break;
 
 
 
 
 
 
3530	}
3531
3532	if (offset < 0)
3533		return offset;
 
 
 
 
 
 
3534
3535	return vfs_setpos(file, offset, inode->i_sb->s_maxbytes);
3536}
3537
3538static int btrfs_file_open(struct inode *inode, struct file *filp)
3539{
3540	filp->f_mode |= FMODE_NOWAIT | FMODE_BUF_RASYNC;
3541	return generic_file_open(inode, filp);
 
3542}
3543
3544const struct file_operations btrfs_file_operations = {
3545	.llseek		= btrfs_file_llseek,
3546	.read_iter      = generic_file_read_iter,
 
 
3547	.splice_read	= generic_file_splice_read,
3548	.write_iter	= btrfs_file_write_iter,
3549	.splice_write	= iter_file_splice_write,
3550	.mmap		= btrfs_file_mmap,
3551	.open		= btrfs_file_open,
3552	.release	= btrfs_release_file,
3553	.fsync		= btrfs_sync_file,
3554	.fallocate	= btrfs_fallocate,
3555	.unlocked_ioctl	= btrfs_ioctl,
3556#ifdef CONFIG_COMPAT
3557	.compat_ioctl	= btrfs_compat_ioctl,
3558#endif
3559	.remap_file_range = btrfs_remap_file_range,
3560};
3561
3562void __cold btrfs_auto_defrag_exit(void)
3563{
3564	kmem_cache_destroy(btrfs_inode_defrag_cachep);
3565}
3566
3567int __init btrfs_auto_defrag_init(void)
3568{
3569	btrfs_inode_defrag_cachep = kmem_cache_create("btrfs_inode_defrag",
3570					sizeof(struct inode_defrag), 0,
3571					SLAB_MEM_SPREAD,
3572					NULL);
3573	if (!btrfs_inode_defrag_cachep)
3574		return -ENOMEM;
3575
3576	return 0;
3577}
3578
3579int btrfs_fdatawrite_range(struct inode *inode, loff_t start, loff_t end)
3580{
3581	int ret;
3582
3583	/*
3584	 * So with compression we will find and lock a dirty page and clear the
3585	 * first one as dirty, setup an async extent, and immediately return
3586	 * with the entire range locked but with nobody actually marked with
3587	 * writeback.  So we can't just filemap_write_and_wait_range() and
3588	 * expect it to work since it will just kick off a thread to do the
3589	 * actual work.  So we need to call filemap_fdatawrite_range _again_
3590	 * since it will wait on the page lock, which won't be unlocked until
3591	 * after the pages have been marked as writeback and so we're good to go
3592	 * from there.  We have to do this otherwise we'll miss the ordered
3593	 * extents and that results in badness.  Please Josef, do not think you
3594	 * know better and pull this out at some point in the future, it is
3595	 * right and you are wrong.
3596	 */
3597	ret = filemap_fdatawrite_range(inode->i_mapping, start, end);
3598	if (!ret && test_bit(BTRFS_INODE_HAS_ASYNC_EXTENT,
3599			     &BTRFS_I(inode)->runtime_flags))
3600		ret = filemap_fdatawrite_range(inode->i_mapping, start, end);
3601
3602	return ret;
3603}