Linux Audio

Check our new training course

Loading...
v3.1
 
   1/*
   2 * Copyright (C) 2007 Oracle.  All rights reserved.
   3 *
   4 * This program is free software; you can redistribute it and/or
   5 * modify it under the terms of the GNU General Public
   6 * License v2 as published by the Free Software Foundation.
   7 *
   8 * This program is distributed in the hope that it will be useful,
   9 * but WITHOUT ANY WARRANTY; without even the implied warranty of
  10 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the GNU
  11 * General Public License for more details.
  12 *
  13 * You should have received a copy of the GNU General Public
  14 * License along with this program; if not, write to the
  15 * Free Software Foundation, Inc., 59 Temple Place - Suite 330,
  16 * Boston, MA 021110-1307, USA.
  17 */
  18
  19#include <linux/fs.h>
  20#include <linux/pagemap.h>
  21#include <linux/highmem.h>
  22#include <linux/time.h>
  23#include <linux/init.h>
  24#include <linux/string.h>
  25#include <linux/backing-dev.h>
  26#include <linux/mpage.h>
  27#include <linux/falloc.h>
  28#include <linux/swap.h>
  29#include <linux/writeback.h>
  30#include <linux/statfs.h>
  31#include <linux/compat.h>
  32#include <linux/slab.h>
 
 
 
  33#include "ctree.h"
  34#include "disk-io.h"
  35#include "transaction.h"
  36#include "btrfs_inode.h"
  37#include "ioctl.h"
  38#include "print-tree.h"
  39#include "tree-log.h"
  40#include "locking.h"
  41#include "compat.h"
 
 
 
 
 
  42
 
  43/*
  44 * when auto defrag is enabled we
  45 * queue up these defrag structs to remember which
  46 * inodes need defragging passes
  47 */
  48struct inode_defrag {
  49	struct rb_node rb_node;
  50	/* objectid */
  51	u64 ino;
  52	/*
  53	 * transid where the defrag was added, we search for
  54	 * extents newer than this
  55	 */
  56	u64 transid;
  57
  58	/* root objectid */
  59	u64 root;
  60
  61	/* last offset we were able to defrag */
  62	u64 last_offset;
  63
  64	/* if we've wrapped around back to zero once already */
  65	int cycled;
  66};
  67
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
  68/* pop a record for an inode into the defrag tree.  The lock
  69 * must be held already
  70 *
  71 * If you're inserting a record for an older transid than an
  72 * existing record, the transid already in the tree is lowered
  73 *
  74 * If an existing record is found the defrag item you
  75 * pass in is freed
  76 */
  77static void __btrfs_add_inode_defrag(struct inode *inode,
  78				    struct inode_defrag *defrag)
  79{
  80	struct btrfs_root *root = BTRFS_I(inode)->root;
  81	struct inode_defrag *entry;
  82	struct rb_node **p;
  83	struct rb_node *parent = NULL;
 
  84
  85	p = &root->fs_info->defrag_inodes.rb_node;
  86	while (*p) {
  87		parent = *p;
  88		entry = rb_entry(parent, struct inode_defrag, rb_node);
  89
  90		if (defrag->ino < entry->ino)
 
  91			p = &parent->rb_left;
  92		else if (defrag->ino > entry->ino)
  93			p = &parent->rb_right;
  94		else {
  95			/* if we're reinserting an entry for
  96			 * an old defrag run, make sure to
  97			 * lower the transid of our existing record
  98			 */
  99			if (defrag->transid < entry->transid)
 100				entry->transid = defrag->transid;
 101			if (defrag->last_offset > entry->last_offset)
 102				entry->last_offset = defrag->last_offset;
 103			goto exists;
 104		}
 105	}
 106	BTRFS_I(inode)->in_defrag = 1;
 107	rb_link_node(&defrag->rb_node, parent, p);
 108	rb_insert_color(&defrag->rb_node, &root->fs_info->defrag_inodes);
 109	return;
 
 110
 111exists:
 112	kfree(defrag);
 113	return;
 
 114
 
 
 
 
 115}
 116
 117/*
 118 * insert a defrag record for this inode if auto defrag is
 119 * enabled
 120 */
 121int btrfs_add_inode_defrag(struct btrfs_trans_handle *trans,
 122			   struct inode *inode)
 123{
 124	struct btrfs_root *root = BTRFS_I(inode)->root;
 
 125	struct inode_defrag *defrag;
 126	u64 transid;
 
 127
 128	if (!btrfs_test_opt(root, AUTO_DEFRAG))
 129		return 0;
 130
 131	if (btrfs_fs_closing(root->fs_info))
 132		return 0;
 133
 134	if (BTRFS_I(inode)->in_defrag)
 135		return 0;
 136
 137	if (trans)
 138		transid = trans->transid;
 139	else
 140		transid = BTRFS_I(inode)->root->last_trans;
 141
 142	defrag = kzalloc(sizeof(*defrag), GFP_NOFS);
 143	if (!defrag)
 144		return -ENOMEM;
 145
 146	defrag->ino = btrfs_ino(inode);
 147	defrag->transid = transid;
 148	defrag->root = root->root_key.objectid;
 149
 150	spin_lock(&root->fs_info->defrag_inodes_lock);
 151	if (!BTRFS_I(inode)->in_defrag)
 152		__btrfs_add_inode_defrag(inode, defrag);
 153	else
 154		kfree(defrag);
 155	spin_unlock(&root->fs_info->defrag_inodes_lock);
 
 
 
 
 
 
 
 
 156	return 0;
 157}
 158
 159/*
 160 * must be called with the defrag_inodes lock held
 
 
 161 */
 162struct inode_defrag *btrfs_find_defrag_inode(struct btrfs_fs_info *info, u64 ino,
 163					     struct rb_node **next)
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 164{
 165	struct inode_defrag *entry = NULL;
 
 166	struct rb_node *p;
 167	struct rb_node *parent = NULL;
 
 
 
 
 168
 169	p = info->defrag_inodes.rb_node;
 
 170	while (p) {
 171		parent = p;
 172		entry = rb_entry(parent, struct inode_defrag, rb_node);
 173
 174		if (ino < entry->ino)
 
 175			p = parent->rb_left;
 176		else if (ino > entry->ino)
 177			p = parent->rb_right;
 178		else
 179			return entry;
 180	}
 181
 182	if (next) {
 183		while (parent && ino > entry->ino) {
 184			parent = rb_next(parent);
 185			entry = rb_entry(parent, struct inode_defrag, rb_node);
 186		}
 187		*next = parent;
 188	}
 189	return NULL;
 
 
 
 
 190}
 191
 192/*
 193 * run through the list of inodes in the FS that need
 194 * defragging
 195 */
 196int btrfs_run_defrag_inodes(struct btrfs_fs_info *fs_info)
 197{
 198	struct inode_defrag *defrag;
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 199	struct btrfs_root *inode_root;
 200	struct inode *inode;
 201	struct rb_node *n;
 202	struct btrfs_key key;
 203	struct btrfs_ioctl_defrag_range_args range;
 204	u64 first_ino = 0;
 205	int num_defrag;
 206	int defrag_batch = 1024;
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 207
 
 
 208	memset(&range, 0, sizeof(range));
 209	range.len = (u64)-1;
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 210
 211	atomic_inc(&fs_info->defrag_running);
 212	spin_lock(&fs_info->defrag_inodes_lock);
 213	while(1) {
 214		n = NULL;
 
 
 
 
 
 215
 216		/* find an inode to defrag */
 217		defrag = btrfs_find_defrag_inode(fs_info, first_ino, &n);
 
 218		if (!defrag) {
 219			if (n)
 220				defrag = rb_entry(n, struct inode_defrag, rb_node);
 221			else if (first_ino) {
 222				first_ino = 0;
 223				continue;
 224			} else {
 225				break;
 226			}
 227		}
 228
 229		/* remove it from the rbtree */
 230		first_ino = defrag->ino + 1;
 231		rb_erase(&defrag->rb_node, &fs_info->defrag_inodes);
 232
 233		if (btrfs_fs_closing(fs_info))
 234			goto next_free;
 235
 236		spin_unlock(&fs_info->defrag_inodes_lock);
 237
 238		/* get the inode */
 239		key.objectid = defrag->root;
 240		btrfs_set_key_type(&key, BTRFS_ROOT_ITEM_KEY);
 241		key.offset = (u64)-1;
 242		inode_root = btrfs_read_fs_root_no_name(fs_info, &key);
 243		if (IS_ERR(inode_root))
 244			goto next;
 245
 246		key.objectid = defrag->ino;
 247		btrfs_set_key_type(&key, BTRFS_INODE_ITEM_KEY);
 248		key.offset = 0;
 249
 250		inode = btrfs_iget(fs_info->sb, &key, inode_root, NULL);
 251		if (IS_ERR(inode))
 252			goto next;
 253
 254		/* do a chunk of defrag */
 255		BTRFS_I(inode)->in_defrag = 0;
 256		range.start = defrag->last_offset;
 257		num_defrag = btrfs_defrag_file(inode, NULL, &range, defrag->transid,
 258					       defrag_batch);
 259		/*
 260		 * if we filled the whole defrag batch, there
 261		 * must be more work to do.  Queue this defrag
 262		 * again
 263		 */
 264		if (num_defrag == defrag_batch) {
 265			defrag->last_offset = range.start;
 266			__btrfs_add_inode_defrag(inode, defrag);
 267			/*
 268			 * we don't want to kfree defrag, we added it back to
 269			 * the rbtree
 270			 */
 271			defrag = NULL;
 272		} else if (defrag->last_offset && !defrag->cycled) {
 273			/*
 274			 * we didn't fill our defrag batch, but
 275			 * we didn't start at zero.  Make sure we loop
 276			 * around to the start of the file.
 277			 */
 278			defrag->last_offset = 0;
 279			defrag->cycled = 1;
 280			__btrfs_add_inode_defrag(inode, defrag);
 281			defrag = NULL;
 282		}
 283
 284		iput(inode);
 285next:
 286		spin_lock(&fs_info->defrag_inodes_lock);
 287next_free:
 288		kfree(defrag);
 289	}
 290	spin_unlock(&fs_info->defrag_inodes_lock);
 291
 292	atomic_dec(&fs_info->defrag_running);
 293
 294	/*
 295	 * during unmount, we use the transaction_wait queue to
 296	 * wait for the defragger to stop
 297	 */
 298	wake_up(&fs_info->transaction_wait);
 299	return 0;
 300}
 301
 302/* simple helper to fault in pages and copy.  This should go away
 303 * and be replaced with calls into generic code.
 304 */
 305static noinline int btrfs_copy_from_user(loff_t pos, int num_pages,
 306					 size_t write_bytes,
 307					 struct page **prepared_pages,
 308					 struct iov_iter *i)
 309{
 310	size_t copied = 0;
 311	size_t total_copied = 0;
 312	int pg = 0;
 313	int offset = pos & (PAGE_CACHE_SIZE - 1);
 314
 315	while (write_bytes > 0) {
 316		size_t count = min_t(size_t,
 317				     PAGE_CACHE_SIZE - offset, write_bytes);
 318		struct page *page = prepared_pages[pg];
 319		/*
 320		 * Copy data from userspace to the current page
 321		 *
 322		 * Disable pagefault to avoid recursive lock since
 323		 * the pages are already locked
 324		 */
 325		pagefault_disable();
 326		copied = iov_iter_copy_from_user_atomic(page, i, offset, count);
 327		pagefault_enable();
 328
 329		/* Flush processor's dcache for this page */
 330		flush_dcache_page(page);
 331
 332		/*
 333		 * if we get a partial write, we can end up with
 334		 * partially up to date pages.  These add
 335		 * a lot of complexity, so make sure they don't
 336		 * happen by forcing this copy to be retried.
 337		 *
 338		 * The rest of the btrfs_file_write code will fall
 339		 * back to page at a time copies after we return 0.
 340		 */
 341		if (!PageUptodate(page) && copied < count)
 342			copied = 0;
 
 
 
 
 
 
 343
 344		iov_iter_advance(i, copied);
 345		write_bytes -= copied;
 346		total_copied += copied;
 347
 348		/* Return to btrfs_file_aio_write to fault page */
 349		if (unlikely(copied == 0))
 350			break;
 351
 352		if (unlikely(copied < PAGE_CACHE_SIZE - offset)) {
 353			offset += copied;
 354		} else {
 355			pg++;
 356			offset = 0;
 357		}
 358	}
 359	return total_copied;
 360}
 361
 362/*
 363 * unlocks pages after btrfs_file_write is done with them
 364 */
 365void btrfs_drop_pages(struct page **pages, size_t num_pages)
 366{
 367	size_t i;
 368	for (i = 0; i < num_pages; i++) {
 369		/* page checked is some magic around finding pages that
 370		 * have been modified without going through btrfs_set_page_dirty
 371		 * clear it here
 
 
 372		 */
 373		ClearPageChecked(pages[i]);
 374		unlock_page(pages[i]);
 375		mark_page_accessed(pages[i]);
 376		page_cache_release(pages[i]);
 377	}
 378}
 379
 380/*
 381 * after copy_from_user, pages need to be dirtied and we need to make
 382 * sure holes are created between the current EOF and the start of
 383 * any next extents (if required).
 384 *
 385 * this also makes the decision about creating an inline extent vs
 386 * doing real data extents, marking pages dirty and delalloc as required.
 387 */
 388int btrfs_dirty_pages(struct btrfs_root *root, struct inode *inode,
 389		      struct page **pages, size_t num_pages,
 390		      loff_t pos, size_t write_bytes,
 391		      struct extent_state **cached)
 392{
 
 393	int err = 0;
 394	int i;
 395	u64 num_bytes;
 396	u64 start_pos;
 397	u64 end_of_last_block;
 398	u64 end_pos = pos + write_bytes;
 399	loff_t isize = i_size_read(inode);
 
 400
 401	start_pos = pos & ~((u64)root->sectorsize - 1);
 402	num_bytes = (write_bytes + pos - start_pos +
 403		    root->sectorsize - 1) & ~((u64)root->sectorsize - 1);
 
 
 
 
 
 
 
 404
 405	end_of_last_block = start_pos + num_bytes - 1;
 
 
 
 
 
 
 
 
 
 406	err = btrfs_set_extent_delalloc(inode, start_pos, end_of_last_block,
 407					cached);
 408	if (err)
 409		return err;
 410
 411	for (i = 0; i < num_pages; i++) {
 412		struct page *p = pages[i];
 413		SetPageUptodate(p);
 
 414		ClearPageChecked(p);
 415		set_page_dirty(p);
 416	}
 417
 418	/*
 419	 * we've only changed i_size in ram, and we haven't updated
 420	 * the disk i_size.  There is no need to log the inode
 421	 * at this time.
 422	 */
 423	if (end_pos > isize)
 424		i_size_write(inode, end_pos);
 425	return 0;
 426}
 427
 428/*
 429 * this drops all the extents in the cache that intersect the range
 430 * [start, end].  Existing extents are split as required.
 431 */
 432int btrfs_drop_extent_cache(struct inode *inode, u64 start, u64 end,
 433			    int skip_pinned)
 434{
 435	struct extent_map *em;
 436	struct extent_map *split = NULL;
 437	struct extent_map *split2 = NULL;
 438	struct extent_map_tree *em_tree = &BTRFS_I(inode)->extent_tree;
 439	u64 len = end - start + 1;
 
 440	int ret;
 441	int testend = 1;
 442	unsigned long flags;
 443	int compressed = 0;
 
 444
 445	WARN_ON(end < start);
 446	if (end == (u64)-1) {
 447		len = (u64)-1;
 448		testend = 0;
 449	}
 450	while (1) {
 
 
 
 451		if (!split)
 452			split = alloc_extent_map();
 453		if (!split2)
 454			split2 = alloc_extent_map();
 455		BUG_ON(!split || !split2);
 
 456
 457		write_lock(&em_tree->lock);
 458		em = lookup_extent_mapping(em_tree, start, len);
 459		if (!em) {
 460			write_unlock(&em_tree->lock);
 461			break;
 462		}
 463		flags = em->flags;
 
 464		if (skip_pinned && test_bit(EXTENT_FLAG_PINNED, &em->flags)) {
 465			if (testend && em->start + em->len >= start + len) {
 466				free_extent_map(em);
 467				write_unlock(&em_tree->lock);
 468				break;
 469			}
 470			start = em->start + em->len;
 471			if (testend)
 472				len = start + len - (em->start + em->len);
 473			free_extent_map(em);
 474			write_unlock(&em_tree->lock);
 475			continue;
 476		}
 477		compressed = test_bit(EXTENT_FLAG_COMPRESSED, &em->flags);
 478		clear_bit(EXTENT_FLAG_PINNED, &em->flags);
 479		remove_extent_mapping(em_tree, em);
 
 
 
 480
 481		if (em->block_start < EXTENT_MAP_LAST_BYTE &&
 482		    em->start < start) {
 483			split->start = em->start;
 484			split->len = start - em->start;
 485			split->orig_start = em->orig_start;
 486			split->block_start = em->block_start;
 487
 488			if (compressed)
 489				split->block_len = em->block_len;
 490			else
 491				split->block_len = split->len;
 492
 493			split->bdev = em->bdev;
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 494			split->flags = flags;
 495			split->compress_type = em->compress_type;
 496			ret = add_extent_mapping(em_tree, split);
 497			BUG_ON(ret);
 498			free_extent_map(split);
 499			split = split2;
 500			split2 = NULL;
 501		}
 502		if (em->block_start < EXTENT_MAP_LAST_BYTE &&
 503		    testend && em->start + em->len > start + len) {
 504			u64 diff = start + len - em->start;
 505
 506			split->start = start + len;
 507			split->len = em->start + em->len - (start + len);
 508			split->bdev = em->bdev;
 509			split->flags = flags;
 510			split->compress_type = em->compress_type;
 
 511
 512			if (compressed) {
 513				split->block_len = em->block_len;
 514				split->block_start = em->block_start;
 515				split->orig_start = em->orig_start;
 
 
 
 
 
 
 
 
 
 
 
 516			} else {
 517				split->block_len = split->len;
 518				split->block_start = em->block_start + diff;
 519				split->orig_start = split->start;
 
 
 
 520			}
 521
 522			ret = add_extent_mapping(em_tree, split);
 523			BUG_ON(ret);
 
 
 
 
 
 
 524			free_extent_map(split);
 525			split = NULL;
 526		}
 
 
 
 527		write_unlock(&em_tree->lock);
 528
 529		/* once for us */
 530		free_extent_map(em);
 531		/* once for the tree*/
 532		free_extent_map(em);
 533	}
 534	if (split)
 535		free_extent_map(split);
 536	if (split2)
 537		free_extent_map(split2);
 538	return 0;
 539}
 540
 541/*
 542 * this is very complex, but the basic idea is to drop all extents
 543 * in the range start - end.  hint_block is filled in with a block number
 544 * that would be a good hint to the block allocator for this file.
 545 *
 546 * If an extent intersects the range but is not entirely inside the range
 547 * it is either truncated or split.  Anything entirely inside the range
 548 * is deleted from the tree.
 
 
 
 
 
 
 549 */
 550int btrfs_drop_extents(struct btrfs_trans_handle *trans, struct inode *inode,
 551		       u64 start, u64 end, u64 *hint_byte, int drop_cache)
 
 552{
 553	struct btrfs_root *root = BTRFS_I(inode)->root;
 554	struct extent_buffer *leaf;
 555	struct btrfs_file_extent_item *fi;
 556	struct btrfs_path *path;
 557	struct btrfs_key key;
 558	struct btrfs_key new_key;
 559	u64 ino = btrfs_ino(inode);
 560	u64 search_start = start;
 561	u64 disk_bytenr = 0;
 562	u64 num_bytes = 0;
 563	u64 extent_offset = 0;
 564	u64 extent_end = 0;
 
 565	int del_nr = 0;
 566	int del_slot = 0;
 567	int extent_type;
 568	int recow;
 569	int ret;
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 570
 571	if (drop_cache)
 572		btrfs_drop_extent_cache(inode, start, end - 1, 0);
 573
 574	path = btrfs_alloc_path();
 575	if (!path)
 576		return -ENOMEM;
 577
 
 578	while (1) {
 579		recow = 0;
 580		ret = btrfs_lookup_file_extent(trans, root, path, ino,
 581					       search_start, -1);
 582		if (ret < 0)
 583			break;
 584		if (ret > 0 && path->slots[0] > 0 && search_start == start) {
 585			leaf = path->nodes[0];
 586			btrfs_item_key_to_cpu(leaf, &key, path->slots[0] - 1);
 587			if (key.objectid == ino &&
 588			    key.type == BTRFS_EXTENT_DATA_KEY)
 589				path->slots[0]--;
 590		}
 591		ret = 0;
 
 592next_slot:
 593		leaf = path->nodes[0];
 594		if (path->slots[0] >= btrfs_header_nritems(leaf)) {
 595			BUG_ON(del_nr > 0);
 596			ret = btrfs_next_leaf(root, path);
 597			if (ret < 0)
 598				break;
 599			if (ret > 0) {
 600				ret = 0;
 601				break;
 602			}
 
 603			leaf = path->nodes[0];
 604			recow = 1;
 605		}
 606
 607		btrfs_item_key_to_cpu(leaf, &key, path->slots[0]);
 608		if (key.objectid > ino ||
 609		    key.type > BTRFS_EXTENT_DATA_KEY || key.offset >= end)
 
 
 
 
 
 
 
 
 610			break;
 611
 612		fi = btrfs_item_ptr(leaf, path->slots[0],
 613				    struct btrfs_file_extent_item);
 614		extent_type = btrfs_file_extent_type(leaf, fi);
 615
 616		if (extent_type == BTRFS_FILE_EXTENT_REG ||
 617		    extent_type == BTRFS_FILE_EXTENT_PREALLOC) {
 618			disk_bytenr = btrfs_file_extent_disk_bytenr(leaf, fi);
 619			num_bytes = btrfs_file_extent_disk_num_bytes(leaf, fi);
 620			extent_offset = btrfs_file_extent_offset(leaf, fi);
 621			extent_end = key.offset +
 622				btrfs_file_extent_num_bytes(leaf, fi);
 623		} else if (extent_type == BTRFS_FILE_EXTENT_INLINE) {
 624			extent_end = key.offset +
 625				btrfs_file_extent_inline_len(leaf, fi);
 626		} else {
 627			WARN_ON(1);
 628			extent_end = search_start;
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 629		}
 630
 631		if (extent_end <= search_start) {
 632			path->slots[0]++;
 633			goto next_slot;
 634		}
 635
 636		search_start = max(key.offset, start);
 637		if (recow) {
 
 
 638			btrfs_release_path(path);
 639			continue;
 640		}
 641
 642		/*
 643		 *     | - range to drop - |
 644		 *  | -------- extent -------- |
 645		 */
 646		if (start > key.offset && end < extent_end) {
 647			BUG_ON(del_nr > 0);
 648			BUG_ON(extent_type == BTRFS_FILE_EXTENT_INLINE);
 
 
 
 649
 650			memcpy(&new_key, &key, sizeof(new_key));
 651			new_key.offset = start;
 652			ret = btrfs_duplicate_item(trans, root, path,
 653						   &new_key);
 654			if (ret == -EAGAIN) {
 655				btrfs_release_path(path);
 656				continue;
 657			}
 658			if (ret < 0)
 659				break;
 660
 661			leaf = path->nodes[0];
 662			fi = btrfs_item_ptr(leaf, path->slots[0] - 1,
 663					    struct btrfs_file_extent_item);
 664			btrfs_set_file_extent_num_bytes(leaf, fi,
 665							start - key.offset);
 666
 667			fi = btrfs_item_ptr(leaf, path->slots[0],
 668					    struct btrfs_file_extent_item);
 669
 670			extent_offset += start - key.offset;
 671			btrfs_set_file_extent_offset(leaf, fi, extent_offset);
 672			btrfs_set_file_extent_num_bytes(leaf, fi,
 673							extent_end - start);
 674			btrfs_mark_buffer_dirty(leaf);
 675
 676			if (disk_bytenr > 0) {
 677				ret = btrfs_inc_extent_ref(trans, root,
 678						disk_bytenr, num_bytes, 0,
 
 
 679						root->root_key.objectid,
 680						new_key.objectid,
 681						start - extent_offset);
 682				BUG_ON(ret);
 683				*hint_byte = disk_bytenr;
 684			}
 685			key.offset = start;
 686		}
 687		/*
 
 
 
 
 
 
 688		 *  | ---- range to drop ----- |
 689		 *      | -------- extent -------- |
 690		 */
 691		if (start <= key.offset && end < extent_end) {
 692			BUG_ON(extent_type == BTRFS_FILE_EXTENT_INLINE);
 
 
 
 693
 694			memcpy(&new_key, &key, sizeof(new_key));
 695			new_key.offset = end;
 696			btrfs_set_item_key_safe(trans, root, path, &new_key);
 697
 698			extent_offset += end - key.offset;
 699			btrfs_set_file_extent_offset(leaf, fi, extent_offset);
 700			btrfs_set_file_extent_num_bytes(leaf, fi,
 701							extent_end - end);
 702			btrfs_mark_buffer_dirty(leaf);
 703			if (disk_bytenr > 0) {
 704				inode_sub_bytes(inode, end - key.offset);
 705				*hint_byte = disk_bytenr;
 706			}
 707			break;
 708		}
 709
 710		search_start = extent_end;
 711		/*
 712		 *       | ---- range to drop ----- |
 713		 *  | -------- extent -------- |
 714		 */
 715		if (start > key.offset && end >= extent_end) {
 716			BUG_ON(del_nr > 0);
 717			BUG_ON(extent_type == BTRFS_FILE_EXTENT_INLINE);
 
 
 
 718
 719			btrfs_set_file_extent_num_bytes(leaf, fi,
 720							start - key.offset);
 721			btrfs_mark_buffer_dirty(leaf);
 722			if (disk_bytenr > 0) {
 723				inode_sub_bytes(inode, extent_end - start);
 724				*hint_byte = disk_bytenr;
 725			}
 726			if (end == extent_end)
 727				break;
 728
 729			path->slots[0]++;
 730			goto next_slot;
 731		}
 732
 733		/*
 734		 *  | ---- range to drop ----- |
 735		 *    | ------ extent ------ |
 736		 */
 737		if (start <= key.offset && end >= extent_end) {
 
 738			if (del_nr == 0) {
 739				del_slot = path->slots[0];
 740				del_nr = 1;
 741			} else {
 742				BUG_ON(del_slot + del_nr != path->slots[0]);
 743				del_nr++;
 744			}
 745
 746			if (extent_type == BTRFS_FILE_EXTENT_INLINE) {
 747				inode_sub_bytes(inode,
 748						extent_end - key.offset);
 749				extent_end = ALIGN(extent_end,
 750						   root->sectorsize);
 751			} else if (disk_bytenr > 0) {
 752				ret = btrfs_free_extent(trans, root,
 753						disk_bytenr, num_bytes, 0,
 
 
 754						root->root_key.objectid,
 755						key.objectid, key.offset -
 756						extent_offset);
 757				BUG_ON(ret);
 758				inode_sub_bytes(inode,
 759						extent_end - key.offset);
 760				*hint_byte = disk_bytenr;
 761			}
 762
 763			if (end == extent_end)
 764				break;
 765
 766			if (path->slots[0] + 1 < btrfs_header_nritems(leaf)) {
 767				path->slots[0]++;
 768				goto next_slot;
 769			}
 770
 771			ret = btrfs_del_items(trans, root, path, del_slot,
 772					      del_nr);
 773			BUG_ON(ret);
 
 
 
 774
 775			del_nr = 0;
 776			del_slot = 0;
 777
 778			btrfs_release_path(path);
 779			continue;
 780		}
 781
 782		BUG_ON(1);
 783	}
 784
 785	if (del_nr > 0) {
 
 
 
 
 
 
 
 786		ret = btrfs_del_items(trans, root, path, del_slot, del_nr);
 787		BUG_ON(ret);
 
 788	}
 789
 790	btrfs_free_path(path);
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 791	return ret;
 792}
 793
 794static int extent_mergeable(struct extent_buffer *leaf, int slot,
 795			    u64 objectid, u64 bytenr, u64 orig_offset,
 796			    u64 *start, u64 *end)
 797{
 798	struct btrfs_file_extent_item *fi;
 799	struct btrfs_key key;
 800	u64 extent_end;
 801
 802	if (slot < 0 || slot >= btrfs_header_nritems(leaf))
 803		return 0;
 804
 805	btrfs_item_key_to_cpu(leaf, &key, slot);
 806	if (key.objectid != objectid || key.type != BTRFS_EXTENT_DATA_KEY)
 807		return 0;
 808
 809	fi = btrfs_item_ptr(leaf, slot, struct btrfs_file_extent_item);
 810	if (btrfs_file_extent_type(leaf, fi) != BTRFS_FILE_EXTENT_REG ||
 811	    btrfs_file_extent_disk_bytenr(leaf, fi) != bytenr ||
 812	    btrfs_file_extent_offset(leaf, fi) != key.offset - orig_offset ||
 813	    btrfs_file_extent_compression(leaf, fi) ||
 814	    btrfs_file_extent_encryption(leaf, fi) ||
 815	    btrfs_file_extent_other_encoding(leaf, fi))
 816		return 0;
 817
 818	extent_end = key.offset + btrfs_file_extent_num_bytes(leaf, fi);
 819	if ((*start && *start != key.offset) || (*end && *end != extent_end))
 820		return 0;
 821
 822	*start = key.offset;
 823	*end = extent_end;
 824	return 1;
 825}
 826
 827/*
 828 * Mark extent in the range start - end as written.
 829 *
 830 * This changes extent type from 'pre-allocated' to 'regular'. If only
 831 * part of extent is marked as written, the extent will be split into
 832 * two or three.
 833 */
 834int btrfs_mark_extent_written(struct btrfs_trans_handle *trans,
 835			      struct inode *inode, u64 start, u64 end)
 836{
 837	struct btrfs_root *root = BTRFS_I(inode)->root;
 
 838	struct extent_buffer *leaf;
 839	struct btrfs_path *path;
 840	struct btrfs_file_extent_item *fi;
 
 841	struct btrfs_key key;
 842	struct btrfs_key new_key;
 843	u64 bytenr;
 844	u64 num_bytes;
 845	u64 extent_end;
 846	u64 orig_offset;
 847	u64 other_start;
 848	u64 other_end;
 849	u64 split;
 850	int del_nr = 0;
 851	int del_slot = 0;
 852	int recow;
 853	int ret;
 854	u64 ino = btrfs_ino(inode);
 855
 856	btrfs_drop_extent_cache(inode, start, end - 1, 0);
 857
 858	path = btrfs_alloc_path();
 859	if (!path)
 860		return -ENOMEM;
 861again:
 862	recow = 0;
 863	split = start;
 864	key.objectid = ino;
 865	key.type = BTRFS_EXTENT_DATA_KEY;
 866	key.offset = split;
 867
 868	ret = btrfs_search_slot(trans, root, &key, path, -1, 1);
 869	if (ret < 0)
 870		goto out;
 871	if (ret > 0 && path->slots[0] > 0)
 872		path->slots[0]--;
 873
 874	leaf = path->nodes[0];
 875	btrfs_item_key_to_cpu(leaf, &key, path->slots[0]);
 876	BUG_ON(key.objectid != ino || key.type != BTRFS_EXTENT_DATA_KEY);
 
 
 
 
 
 877	fi = btrfs_item_ptr(leaf, path->slots[0],
 878			    struct btrfs_file_extent_item);
 879	BUG_ON(btrfs_file_extent_type(leaf, fi) !=
 880	       BTRFS_FILE_EXTENT_PREALLOC);
 
 
 
 881	extent_end = key.offset + btrfs_file_extent_num_bytes(leaf, fi);
 882	BUG_ON(key.offset > start || extent_end < end);
 
 
 
 
 883
 884	bytenr = btrfs_file_extent_disk_bytenr(leaf, fi);
 885	num_bytes = btrfs_file_extent_disk_num_bytes(leaf, fi);
 886	orig_offset = key.offset - btrfs_file_extent_offset(leaf, fi);
 887	memcpy(&new_key, &key, sizeof(new_key));
 888
 889	if (start == key.offset && end < extent_end) {
 890		other_start = 0;
 891		other_end = start;
 892		if (extent_mergeable(leaf, path->slots[0] - 1,
 893				     ino, bytenr, orig_offset,
 894				     &other_start, &other_end)) {
 895			new_key.offset = end;
 896			btrfs_set_item_key_safe(trans, root, path, &new_key);
 897			fi = btrfs_item_ptr(leaf, path->slots[0],
 898					    struct btrfs_file_extent_item);
 
 
 899			btrfs_set_file_extent_num_bytes(leaf, fi,
 900							extent_end - end);
 901			btrfs_set_file_extent_offset(leaf, fi,
 902						     end - orig_offset);
 903			fi = btrfs_item_ptr(leaf, path->slots[0] - 1,
 904					    struct btrfs_file_extent_item);
 
 
 905			btrfs_set_file_extent_num_bytes(leaf, fi,
 906							end - other_start);
 907			btrfs_mark_buffer_dirty(leaf);
 908			goto out;
 909		}
 910	}
 911
 912	if (start > key.offset && end == extent_end) {
 913		other_start = end;
 914		other_end = 0;
 915		if (extent_mergeable(leaf, path->slots[0] + 1,
 916				     ino, bytenr, orig_offset,
 917				     &other_start, &other_end)) {
 918			fi = btrfs_item_ptr(leaf, path->slots[0],
 919					    struct btrfs_file_extent_item);
 920			btrfs_set_file_extent_num_bytes(leaf, fi,
 921							start - key.offset);
 
 
 922			path->slots[0]++;
 923			new_key.offset = start;
 924			btrfs_set_item_key_safe(trans, root, path, &new_key);
 925
 926			fi = btrfs_item_ptr(leaf, path->slots[0],
 927					    struct btrfs_file_extent_item);
 
 
 928			btrfs_set_file_extent_num_bytes(leaf, fi,
 929							other_end - start);
 930			btrfs_set_file_extent_offset(leaf, fi,
 931						     start - orig_offset);
 932			btrfs_mark_buffer_dirty(leaf);
 933			goto out;
 934		}
 935	}
 936
 937	while (start > key.offset || end < extent_end) {
 938		if (key.offset == start)
 939			split = end;
 940
 941		new_key.offset = split;
 942		ret = btrfs_duplicate_item(trans, root, path, &new_key);
 943		if (ret == -EAGAIN) {
 944			btrfs_release_path(path);
 945			goto again;
 946		}
 947		BUG_ON(ret < 0);
 
 
 
 948
 949		leaf = path->nodes[0];
 950		fi = btrfs_item_ptr(leaf, path->slots[0] - 1,
 951				    struct btrfs_file_extent_item);
 
 952		btrfs_set_file_extent_num_bytes(leaf, fi,
 953						split - key.offset);
 954
 955		fi = btrfs_item_ptr(leaf, path->slots[0],
 956				    struct btrfs_file_extent_item);
 957
 
 958		btrfs_set_file_extent_offset(leaf, fi, split - orig_offset);
 959		btrfs_set_file_extent_num_bytes(leaf, fi,
 960						extent_end - split);
 961		btrfs_mark_buffer_dirty(leaf);
 962
 963		ret = btrfs_inc_extent_ref(trans, root, bytenr, num_bytes, 0,
 964					   root->root_key.objectid,
 965					   ino, orig_offset);
 966		BUG_ON(ret);
 
 
 
 
 
 967
 968		if (split == start) {
 969			key.offset = start;
 970		} else {
 971			BUG_ON(start != key.offset);
 
 
 
 
 972			path->slots[0]--;
 973			extent_end = end;
 974		}
 975		recow = 1;
 976	}
 977
 978	other_start = end;
 979	other_end = 0;
 
 
 
 980	if (extent_mergeable(leaf, path->slots[0] + 1,
 981			     ino, bytenr, orig_offset,
 982			     &other_start, &other_end)) {
 983		if (recow) {
 984			btrfs_release_path(path);
 985			goto again;
 986		}
 987		extent_end = other_end;
 988		del_slot = path->slots[0] + 1;
 989		del_nr++;
 990		ret = btrfs_free_extent(trans, root, bytenr, num_bytes,
 991					0, root->root_key.objectid,
 992					ino, orig_offset);
 993		BUG_ON(ret);
 
 994	}
 995	other_start = 0;
 996	other_end = start;
 997	if (extent_mergeable(leaf, path->slots[0] - 1,
 998			     ino, bytenr, orig_offset,
 999			     &other_start, &other_end)) {
1000		if (recow) {
1001			btrfs_release_path(path);
1002			goto again;
1003		}
1004		key.offset = other_start;
1005		del_slot = path->slots[0];
1006		del_nr++;
1007		ret = btrfs_free_extent(trans, root, bytenr, num_bytes,
1008					0, root->root_key.objectid,
1009					ino, orig_offset);
1010		BUG_ON(ret);
 
1011	}
1012	if (del_nr == 0) {
1013		fi = btrfs_item_ptr(leaf, path->slots[0],
1014			   struct btrfs_file_extent_item);
1015		btrfs_set_file_extent_type(leaf, fi,
1016					   BTRFS_FILE_EXTENT_REG);
 
1017		btrfs_mark_buffer_dirty(leaf);
1018	} else {
1019		fi = btrfs_item_ptr(leaf, del_slot - 1,
1020			   struct btrfs_file_extent_item);
1021		btrfs_set_file_extent_type(leaf, fi,
1022					   BTRFS_FILE_EXTENT_REG);
 
1023		btrfs_set_file_extent_num_bytes(leaf, fi,
1024						extent_end - key.offset);
1025		btrfs_mark_buffer_dirty(leaf);
1026
1027		ret = btrfs_del_items(trans, root, path, del_slot, del_nr);
1028		BUG_ON(ret);
 
 
 
1029	}
1030out:
1031	btrfs_free_path(path);
1032	return 0;
1033}
1034
1035/*
1036 * on error we return an unlocked page and the error value
1037 * on success we return a locked page and 0
1038 */
1039static int prepare_uptodate_page(struct page *page, u64 pos,
 
1040				 bool force_uptodate)
1041{
1042	int ret = 0;
1043
1044	if (((pos & (PAGE_CACHE_SIZE - 1)) || force_uptodate) &&
1045	    !PageUptodate(page)) {
1046		ret = btrfs_readpage(NULL, page);
1047		if (ret)
1048			return ret;
1049		lock_page(page);
1050		if (!PageUptodate(page)) {
1051			unlock_page(page);
1052			return -EIO;
1053		}
 
 
 
 
1054	}
1055	return 0;
1056}
1057
1058/*
1059 * this gets pages into the page cache and locks them down, it also properly
1060 * waits for data=ordered extents to finish before allowing the pages to be
1061 * modified.
1062 */
1063static noinline int prepare_pages(struct btrfs_root *root, struct file *file,
1064			 struct page **pages, size_t num_pages,
1065			 loff_t pos, unsigned long first_index,
1066			 size_t write_bytes, bool force_uptodate)
1067{
1068	struct extent_state *cached_state = NULL;
1069	int i;
1070	unsigned long index = pos >> PAGE_CACHE_SHIFT;
1071	struct inode *inode = fdentry(file)->d_inode;
1072	int err = 0;
1073	int faili = 0;
1074	u64 start_pos;
1075	u64 last_pos;
1076
1077	start_pos = pos & ~((u64)root->sectorsize - 1);
1078	last_pos = ((u64)index + num_pages) << PAGE_CACHE_SHIFT;
1079
1080again:
1081	for (i = 0; i < num_pages; i++) {
 
1082		pages[i] = find_or_create_page(inode->i_mapping, index + i,
1083					       GFP_NOFS);
1084		if (!pages[i]) {
1085			faili = i - 1;
1086			err = -ENOMEM;
1087			goto fail;
1088		}
1089
 
 
 
 
 
 
1090		if (i == 0)
1091			err = prepare_uptodate_page(pages[i], pos,
1092						    force_uptodate);
1093		if (i == num_pages - 1)
1094			err = prepare_uptodate_page(pages[i],
1095						    pos + write_bytes, false);
1096		if (err) {
1097			page_cache_release(pages[i]);
 
 
 
 
1098			faili = i - 1;
1099			goto fail;
1100		}
1101		wait_on_page_writeback(pages[i]);
1102	}
1103	err = 0;
1104	if (start_pos < inode->i_size) {
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1105		struct btrfs_ordered_extent *ordered;
1106		lock_extent_bits(&BTRFS_I(inode)->io_tree,
1107				 start_pos, last_pos - 1, 0, &cached_state,
1108				 GFP_NOFS);
1109		ordered = btrfs_lookup_first_ordered_extent(inode,
1110							    last_pos - 1);
1111		if (ordered &&
1112		    ordered->file_offset + ordered->len > start_pos &&
1113		    ordered->file_offset < last_pos) {
1114			btrfs_put_ordered_extent(ordered);
1115			unlock_extent_cached(&BTRFS_I(inode)->io_tree,
1116					     start_pos, last_pos - 1,
1117					     &cached_state, GFP_NOFS);
1118			for (i = 0; i < num_pages; i++) {
1119				unlock_page(pages[i]);
1120				page_cache_release(pages[i]);
1121			}
1122			btrfs_wait_ordered_range(inode, start_pos,
1123						 last_pos - start_pos);
1124			goto again;
1125		}
1126		if (ordered)
1127			btrfs_put_ordered_extent(ordered);
1128
1129		clear_extent_bit(&BTRFS_I(inode)->io_tree, start_pos,
1130				  last_pos - 1, EXTENT_DIRTY | EXTENT_DELALLOC |
1131				  EXTENT_DO_ACCOUNTING, 0, 0, &cached_state,
1132				  GFP_NOFS);
1133		unlock_extent_cached(&BTRFS_I(inode)->io_tree,
1134				     start_pos, last_pos - 1, &cached_state,
1135				     GFP_NOFS);
1136	}
1137	for (i = 0; i < num_pages; i++) {
1138		clear_page_dirty_for_io(pages[i]);
1139		set_page_extent_mapped(pages[i]);
 
 
 
1140		WARN_ON(!PageLocked(pages[i]));
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1141	}
1142	return 0;
1143fail:
1144	while (faili >= 0) {
1145		unlock_page(pages[faili]);
1146		page_cache_release(pages[faili]);
1147		faili--;
 
 
 
 
1148	}
1149	return err;
 
1150
 
1151}
1152
1153static noinline ssize_t __btrfs_buffered_write(struct file *file,
1154					       struct iov_iter *i,
1155					       loff_t pos)
1156{
1157	struct inode *inode = fdentry(file)->d_inode;
1158	struct btrfs_root *root = BTRFS_I(inode)->root;
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1159	struct page **pages = NULL;
1160	unsigned long first_index;
 
 
 
1161	size_t num_written = 0;
1162	int nrptrs;
1163	int ret = 0;
 
1164	bool force_page_uptodate = false;
 
 
1165
1166	nrptrs = min((iov_iter_count(i) + PAGE_CACHE_SIZE - 1) /
1167		     PAGE_CACHE_SIZE, PAGE_CACHE_SIZE /
1168		     (sizeof(struct page *)));
1169	pages = kmalloc(nrptrs * sizeof(struct page *), GFP_KERNEL);
1170	if (!pages)
1171		return -ENOMEM;
1172
1173	first_index = pos >> PAGE_CACHE_SHIFT;
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1174
1175	while (iov_iter_count(i) > 0) {
1176		size_t offset = pos & (PAGE_CACHE_SIZE - 1);
 
 
1177		size_t write_bytes = min(iov_iter_count(i),
1178					 nrptrs * (size_t)PAGE_CACHE_SIZE -
1179					 offset);
1180		size_t num_pages = (write_bytes + offset +
1181				    PAGE_CACHE_SIZE - 1) >> PAGE_CACHE_SHIFT;
1182		size_t dirty_pages;
1183		size_t copied;
1184
1185		WARN_ON(num_pages > nrptrs);
 
1186
1187		/*
1188		 * Fault pages before locking them in prepare_pages
1189		 * to avoid recursive lock
1190		 */
1191		if (unlikely(iov_iter_fault_in_readable(i, write_bytes))) {
1192			ret = -EFAULT;
1193			break;
1194		}
1195
1196		ret = btrfs_delalloc_reserve_space(inode,
1197					num_pages << PAGE_CACHE_SHIFT);
1198		if (ret)
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1199			break;
 
1200
 
 
1201		/*
1202		 * This is going to setup the pages array with the number of
1203		 * pages we want, so we don't really need to worry about the
1204		 * contents of pages from loop to loop
1205		 */
1206		ret = prepare_pages(root, file, pages, num_pages,
1207				    pos, first_index, write_bytes,
1208				    force_page_uptodate);
1209		if (ret) {
1210			btrfs_delalloc_release_space(inode,
1211					num_pages << PAGE_CACHE_SHIFT);
 
 
 
 
 
 
 
 
 
 
 
 
 
1212			break;
1213		}
1214
1215		copied = btrfs_copy_from_user(pos, num_pages,
1216					   write_bytes, pages, i);
 
 
 
 
1217
1218		/*
1219		 * if we have trouble faulting in the pages, fall
1220		 * back to one page at a time
1221		 */
1222		if (copied < write_bytes)
1223			nrptrs = 1;
1224
1225		if (copied == 0) {
1226			force_page_uptodate = true;
 
1227			dirty_pages = 0;
1228		} else {
1229			force_page_uptodate = false;
1230			dirty_pages = (copied + offset +
1231				       PAGE_CACHE_SIZE - 1) >>
1232				       PAGE_CACHE_SHIFT;
1233		}
1234
1235		/*
1236		 * If we had a short copy we need to release the excess delaloc
1237		 * bytes we reserved.  We need to increment outstanding_extents
1238		 * because btrfs_delalloc_release_space will decrement it, but
1239		 * we still have an outstanding extent for the chunk we actually
1240		 * managed to copy.
1241		 */
1242		if (num_pages > dirty_pages) {
1243			if (copied > 0) {
1244				spin_lock(&BTRFS_I(inode)->lock);
1245				BTRFS_I(inode)->outstanding_extents++;
1246				spin_unlock(&BTRFS_I(inode)->lock);
 
 
 
1247			}
1248			btrfs_delalloc_release_space(inode,
1249					(num_pages - dirty_pages) <<
1250					PAGE_CACHE_SHIFT);
1251		}
1252
1253		if (copied > 0) {
1254			ret = btrfs_dirty_pages(root, inode, pages,
1255						dirty_pages, pos, copied,
1256						NULL);
1257			if (ret) {
1258				btrfs_delalloc_release_space(inode,
1259					dirty_pages << PAGE_CACHE_SHIFT);
1260				btrfs_drop_pages(pages, num_pages);
1261				break;
1262			}
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1263		}
1264
 
 
 
 
1265		btrfs_drop_pages(pages, num_pages);
1266
1267		cond_resched();
1268
1269		balance_dirty_pages_ratelimited_nr(inode->i_mapping,
1270						   dirty_pages);
1271		if (dirty_pages < (root->leafsize >> PAGE_CACHE_SHIFT) + 1)
1272			btrfs_btree_balance_dirty(root, 1);
1273		btrfs_throttle(root);
1274
1275		pos += copied;
1276		num_written += copied;
1277	}
1278
1279	kfree(pages);
1280
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1281	return num_written ? num_written : ret;
1282}
1283
1284static ssize_t __btrfs_direct_write(struct kiocb *iocb,
1285				    const struct iovec *iov,
1286				    unsigned long nr_segs, loff_t pos,
1287				    loff_t *ppos, size_t count, size_t ocount)
 
 
 
 
 
 
 
 
 
 
 
1288{
1289	struct file *file = iocb->ki_filp;
1290	struct inode *inode = fdentry(file)->d_inode;
1291	struct iov_iter i;
1292	ssize_t written;
 
1293	ssize_t written_buffered;
1294	loff_t endbyte;
1295	int err;
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1296
1297	written = generic_file_direct_write(iocb, iov, &nr_segs, pos, ppos,
1298					    count, ocount);
 
 
 
1299
 
1300	/*
1301	 * the generic O_DIRECT will update in-memory i_size after the
1302	 * DIOs are done.  But our endio handlers that update the on
1303	 * disk i_size never update past the in memory i_size.  So we
1304	 * need one more update here to catch any additions to the
1305	 * file
1306	 */
1307	if (inode->i_size != BTRFS_I(inode)->disk_i_size) {
1308		btrfs_ordered_update_i_size(inode, inode->i_size, NULL);
1309		mark_inode_dirty(inode);
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1310	}
1311
1312	if (written < 0 || written == count)
1313		return written;
 
 
1314
1315	pos += written;
1316	count -= written;
1317	iov_iter_init(&i, iov, nr_segs, count, written);
1318	written_buffered = __btrfs_buffered_write(file, &i, pos);
1319	if (written_buffered < 0) {
1320		err = written_buffered;
1321		goto out;
1322	}
 
 
 
 
1323	endbyte = pos + written_buffered - 1;
1324	err = filemap_write_and_wait_range(file->f_mapping, pos, endbyte);
 
 
 
1325	if (err)
1326		goto out;
1327	written += written_buffered;
1328	*ppos = pos + written_buffered;
1329	invalidate_mapping_pages(file->f_mapping, pos >> PAGE_CACHE_SHIFT,
1330				 endbyte >> PAGE_CACHE_SHIFT);
1331out:
1332	return written ? written : err;
1333}
1334
1335static ssize_t btrfs_file_aio_write(struct kiocb *iocb,
1336				    const struct iovec *iov,
1337				    unsigned long nr_segs, loff_t pos)
1338{
1339	struct file *file = iocb->ki_filp;
1340	struct inode *inode = fdentry(file)->d_inode;
1341	struct btrfs_root *root = BTRFS_I(inode)->root;
1342	loff_t *ppos = &iocb->ki_pos;
1343	u64 start_pos;
1344	ssize_t num_written = 0;
1345	ssize_t err = 0;
1346	size_t count, ocount;
1347
1348	vfs_check_frozen(inode->i_sb, SB_FREEZE_WRITE);
1349
1350	mutex_lock(&inode->i_mutex);
1351
1352	err = generic_segment_checks(iov, &nr_segs, &ocount, VERIFY_READ);
1353	if (err) {
1354		mutex_unlock(&inode->i_mutex);
1355		goto out;
1356	}
1357	count = ocount;
1358
1359	current->backing_dev_info = inode->i_mapping->backing_dev_info;
1360	err = generic_write_checks(file, &pos, &count, S_ISBLK(inode->i_mode));
1361	if (err) {
1362		mutex_unlock(&inode->i_mutex);
1363		goto out;
1364	}
1365
1366	if (count == 0) {
1367		mutex_unlock(&inode->i_mutex);
1368		goto out;
1369	}
1370
1371	err = file_remove_suid(file);
1372	if (err) {
1373		mutex_unlock(&inode->i_mutex);
1374		goto out;
1375	}
1376
1377	/*
1378	 * If BTRFS flips readonly due to some impossible error
1379	 * (fs_info->fs_state now has BTRFS_SUPER_FLAG_ERROR),
1380	 * although we have opened a file as writable, we have
1381	 * to stop this write operation to ensure FS consistency.
1382	 */
1383	if (root->fs_info->fs_state & BTRFS_SUPER_FLAG_ERROR) {
1384		mutex_unlock(&inode->i_mutex);
1385		err = -EROFS;
1386		goto out;
1387	}
1388
1389	file_update_time(file);
1390	BTRFS_I(inode)->sequence++;
 
1391
1392	start_pos = round_down(pos, root->sectorsize);
1393	if (start_pos > i_size_read(inode)) {
1394		err = btrfs_cont_expand(inode, i_size_read(inode), start_pos);
1395		if (err) {
1396			mutex_unlock(&inode->i_mutex);
1397			goto out;
1398		}
1399	}
1400
1401	if (unlikely(file->f_flags & O_DIRECT)) {
1402		num_written = __btrfs_direct_write(iocb, iov, nr_segs,
1403						   pos, ppos, count, ocount);
1404	} else {
1405		struct iov_iter i;
1406
1407		iov_iter_init(&i, iov, nr_segs, count, num_written);
1408
1409		num_written = __btrfs_buffered_write(file, &i, pos);
1410		if (num_written > 0)
1411			*ppos = pos + num_written;
1412	}
1413
1414	mutex_unlock(&inode->i_mutex);
 
1415
1416	/*
1417	 * we want to make sure fsync finds this change
1418	 * but we haven't joined a transaction running right now.
1419	 *
1420	 * Later on, someone is sure to update the inode and get the
1421	 * real transid recorded.
1422	 *
1423	 * We set last_trans now to the fs_info generation + 1,
1424	 * this will either be one more than the running transaction
1425	 * or the generation used for the next transaction if there isn't
1426	 * one running right now.
1427	 */
1428	BTRFS_I(inode)->last_trans = root->fs_info->generation + 1;
1429	if (num_written > 0 || num_written == -EIOCBQUEUED) {
1430		err = generic_write_sync(file, pos, num_written);
1431		if (err < 0 && num_written > 0)
1432			num_written = err;
1433	}
1434out:
1435	current->backing_dev_info = NULL;
1436	return num_written ? num_written : err;
1437}
1438
1439int btrfs_release_file(struct inode *inode, struct file *filp)
1440{
 
 
 
 
 
 
 
1441	/*
1442	 * ordered_data_close is set by settattr when we are about to truncate
1443	 * a file from a non-zero size to a zero size.  This tries to
1444	 * flush down new bytes that may have been written if the
1445	 * application were using truncate to replace a file in place.
1446	 */
1447	if (BTRFS_I(inode)->ordered_data_close) {
1448		BTRFS_I(inode)->ordered_data_close = 0;
1449		btrfs_add_ordered_operation(NULL, BTRFS_I(inode)->root, inode);
1450		if (inode->i_size > BTRFS_ORDERED_OPERATIONS_FLUSH_LIMIT)
1451			filemap_flush(inode->i_mapping);
1452	}
1453	if (filp->private_data)
1454		btrfs_ioctl_trans_end(filp);
1455	return 0;
1456}
1457
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1458/*
1459 * fsync call for both files and directories.  This logs the inode into
1460 * the tree log instead of forcing full commits whenever possible.
1461 *
1462 * It needs to call filemap_fdatawait so that all ordered extent updates are
1463 * in the metadata btree are up to date for copying to the log.
1464 *
1465 * It drops the inode mutex before doing the tree log commit.  This is an
1466 * important optimization for directories because holding the mutex prevents
1467 * new operations on the dir while we write to disk.
1468 */
1469int btrfs_sync_file(struct file *file, loff_t start, loff_t end, int datasync)
1470{
1471	struct dentry *dentry = file->f_path.dentry;
1472	struct inode *inode = dentry->d_inode;
 
1473	struct btrfs_root *root = BTRFS_I(inode)->root;
1474	int ret = 0;
1475	struct btrfs_trans_handle *trans;
 
 
 
 
1476
1477	trace_btrfs_sync_file(file, datasync);
1478
1479	ret = filemap_write_and_wait_range(inode->i_mapping, start, end);
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1480	if (ret)
1481		return ret;
1482	mutex_lock(&inode->i_mutex);
1483
1484	/* we wait first, since the writeback may change the inode */
1485	root->log_batch++;
1486	btrfs_wait_ordered_range(inode, 0, (u64)-1);
1487	root->log_batch++;
1488
1489	/*
1490	 * check the transaction that last modified this inode
1491	 * and see if its already been committed
 
1492	 */
1493	if (!BTRFS_I(inode)->last_trans) {
1494		mutex_unlock(&inode->i_mutex);
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1495		goto out;
1496	}
1497
1498	/*
1499	 * if the last transaction that changed this file was before
1500	 * the current transaction, we can bail out now without any
1501	 * syncing
 
 
 
 
 
 
 
 
 
 
1502	 */
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1503	smp_mb();
1504	if (BTRFS_I(inode)->last_trans <=
1505	    root->fs_info->last_trans_committed) {
1506		BTRFS_I(inode)->last_trans = 0;
1507		mutex_unlock(&inode->i_mutex);
1508		goto out;
 
 
 
 
 
 
 
 
 
 
 
 
1509	}
1510
1511	/*
1512	 * ok we haven't committed the transaction yet, lets do a commit
 
 
 
 
 
 
 
 
1513	 */
1514	if (file->private_data)
1515		btrfs_ioctl_trans_end(file);
1516
1517	trans = btrfs_start_transaction(root, 0);
1518	if (IS_ERR(trans)) {
1519		ret = PTR_ERR(trans);
1520		mutex_unlock(&inode->i_mutex);
1521		goto out;
1522	}
 
1523
1524	ret = btrfs_log_dentry_safe(trans, root, dentry);
 
1525	if (ret < 0) {
1526		mutex_unlock(&inode->i_mutex);
1527		goto out;
1528	}
1529
1530	/* we've logged all the items and now have a consistent
1531	 * version of the file in the log.  It is possible that
1532	 * someone will come in and modify the file, but that's
1533	 * fine because the log is consistent on disk, and we
1534	 * have references to all of the file's extents
1535	 *
1536	 * It is possible that someone will come in and log the
1537	 * file again, but that will end up using the synchronization
1538	 * inside btrfs_sync_log to keep things safe.
1539	 */
1540	mutex_unlock(&inode->i_mutex);
1541
1542	if (ret != BTRFS_NO_LOG_SYNC) {
1543		if (ret > 0) {
1544			ret = btrfs_commit_transaction(trans, root);
1545		} else {
1546			ret = btrfs_sync_log(trans, root);
1547			if (ret == 0)
1548				ret = btrfs_end_transaction(trans, root);
1549			else
1550				ret = btrfs_commit_transaction(trans, root);
1551		}
 
 
 
 
 
 
 
 
1552	} else {
1553		ret = btrfs_end_transaction(trans, root);
1554	}
1555out:
 
 
 
 
1556	return ret > 0 ? -EIO : ret;
 
 
 
 
 
1557}
1558
1559static const struct vm_operations_struct btrfs_file_vm_ops = {
1560	.fault		= filemap_fault,
 
1561	.page_mkwrite	= btrfs_page_mkwrite,
1562};
1563
1564static int btrfs_file_mmap(struct file	*filp, struct vm_area_struct *vma)
1565{
1566	struct address_space *mapping = filp->f_mapping;
1567
1568	if (!mapping->a_ops->readpage)
1569		return -ENOEXEC;
1570
1571	file_accessed(filp);
1572	vma->vm_ops = &btrfs_file_vm_ops;
1573	vma->vm_flags |= VM_CAN_NONLINEAR;
1574
1575	return 0;
1576}
1577
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1578static long btrfs_fallocate(struct file *file, int mode,
1579			    loff_t offset, loff_t len)
1580{
1581	struct inode *inode = file->f_path.dentry->d_inode;
1582	struct extent_state *cached_state = NULL;
 
 
 
 
1583	u64 cur_offset;
1584	u64 last_byte;
1585	u64 alloc_start;
1586	u64 alloc_end;
1587	u64 alloc_hint = 0;
1588	u64 locked_end;
1589	u64 mask = BTRFS_I(inode)->root->sectorsize - 1;
1590	struct extent_map *em;
 
1591	int ret;
1592
1593	alloc_start = offset & ~mask;
1594	alloc_end =  (offset + len + mask) & ~mask;
 
 
 
 
 
1595
1596	/* We only support the FALLOC_FL_KEEP_SIZE mode */
1597	if (mode & ~FALLOC_FL_KEEP_SIZE)
 
1598		return -EOPNOTSUPP;
1599
 
 
 
1600	/*
1601	 * wait for ordered IO before we have any locks.  We'll loop again
1602	 * below with the locks held.
 
1603	 */
1604	btrfs_wait_ordered_range(inode, alloc_start, alloc_end - alloc_start);
 
 
 
 
 
1605
1606	mutex_lock(&inode->i_mutex);
1607	ret = inode_newsize_ok(inode, alloc_end);
1608	if (ret)
1609		goto out;
1610
 
 
 
 
 
 
 
 
 
 
 
 
 
1611	if (alloc_start > inode->i_size) {
1612		ret = btrfs_cont_expand(inode, i_size_read(inode),
1613					alloc_start);
1614		if (ret)
1615			goto out;
 
 
 
 
 
 
 
 
 
1616	}
1617
1618	ret = btrfs_check_data_free_space(inode, alloc_end - alloc_start);
 
 
 
 
 
1619	if (ret)
1620		goto out;
1621
 
 
 
 
 
 
1622	locked_end = alloc_end - 1;
1623	while (1) {
1624		struct btrfs_ordered_extent *ordered;
1625
1626		/* the extent lock is ordered inside the running
1627		 * transaction
1628		 */
1629		lock_extent_bits(&BTRFS_I(inode)->io_tree, alloc_start,
1630				 locked_end, 0, &cached_state, GFP_NOFS);
1631		ordered = btrfs_lookup_first_ordered_extent(inode,
1632							    alloc_end - 1);
 
1633		if (ordered &&
1634		    ordered->file_offset + ordered->len > alloc_start &&
1635		    ordered->file_offset < alloc_end) {
1636			btrfs_put_ordered_extent(ordered);
1637			unlock_extent_cached(&BTRFS_I(inode)->io_tree,
1638					     alloc_start, locked_end,
1639					     &cached_state, GFP_NOFS);
1640			/*
1641			 * we can't wait on the range with the transaction
1642			 * running or with the extent lock held
1643			 */
1644			btrfs_wait_ordered_range(inode, alloc_start,
1645						 alloc_end - alloc_start);
 
 
1646		} else {
1647			if (ordered)
1648				btrfs_put_ordered_extent(ordered);
1649			break;
1650		}
1651	}
1652
1653	cur_offset = alloc_start;
1654	while (1) {
1655		u64 actual_end;
1656
1657		em = btrfs_get_extent(inode, NULL, 0, cur_offset,
1658				      alloc_end - cur_offset, 0);
1659		BUG_ON(IS_ERR_OR_NULL(em));
 
 
1660		last_byte = min(extent_map_end(em), alloc_end);
1661		actual_end = min_t(u64, extent_map_end(em), offset + len);
1662		last_byte = (last_byte + mask) & ~mask;
1663
1664		if (em->block_start == EXTENT_MAP_HOLE ||
1665		    (cur_offset >= inode->i_size &&
1666		     !test_bit(EXTENT_FLAG_PREALLOC, &em->flags))) {
1667			ret = btrfs_prealloc_file_range(inode, mode, cur_offset,
1668							last_byte - cur_offset,
1669							1 << inode->i_blkbits,
1670							offset + len,
1671							&alloc_hint);
1672			if (ret < 0) {
1673				free_extent_map(em);
1674				break;
1675			}
1676		} else if (actual_end > inode->i_size &&
1677			   !(mode & FALLOC_FL_KEEP_SIZE)) {
 
 
 
 
 
 
 
1678			/*
1679			 * We didn't need to allocate any more space, but we
1680			 * still extended the size of the file so we need to
1681			 * update i_size.
1682			 */
1683			inode->i_ctime = CURRENT_TIME;
1684			i_size_write(inode, actual_end);
1685			btrfs_ordered_update_i_size(inode, actual_end, NULL);
1686		}
1687		free_extent_map(em);
1688
1689		cur_offset = last_byte;
1690		if (cur_offset >= alloc_end) {
1691			ret = 0;
1692			break;
1693		}
1694	}
1695	unlock_extent_cached(&BTRFS_I(inode)->io_tree, alloc_start, locked_end,
1696			     &cached_state, GFP_NOFS);
1697
1698	btrfs_free_reserved_data_space(inode, alloc_end - alloc_start);
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1699out:
1700	mutex_unlock(&inode->i_mutex);
 
 
 
 
 
1701	return ret;
1702}
1703
1704static int find_desired_extent(struct inode *inode, loff_t *offset, int origin)
 
1705{
1706	struct btrfs_root *root = BTRFS_I(inode)->root;
1707	struct extent_map *em;
1708	struct extent_state *cached_state = NULL;
1709	u64 lockstart = *offset;
1710	u64 lockend = i_size_read(inode);
1711	u64 start = *offset;
1712	u64 orig_start = *offset;
1713	u64 len = i_size_read(inode);
1714	u64 last_end = 0;
1715	int ret = 0;
1716
1717	lockend = max_t(u64, root->sectorsize, lockend);
1718	if (lockend <= lockstart)
1719		lockend = lockstart + root->sectorsize;
1720
1721	len = lockend - lockstart + 1;
1722
1723	len = max_t(u64, len, root->sectorsize);
1724	if (inode->i_size == 0)
1725		return -ENXIO;
1726
1727	lock_extent_bits(&BTRFS_I(inode)->io_tree, lockstart, lockend, 0,
1728			 &cached_state, GFP_NOFS);
1729
1730	/*
1731	 * Delalloc is such a pain.  If we have a hole and we have pending
1732	 * delalloc for a portion of the hole we will get back a hole that
1733	 * exists for the entire range since it hasn't been actually written
1734	 * yet.  So to take care of this case we need to look for an extent just
1735	 * before the position we want in case there is outstanding delalloc
1736	 * going on here.
1737	 */
1738	if (origin == SEEK_HOLE && start != 0) {
1739		if (start <= root->sectorsize)
1740			em = btrfs_get_extent_fiemap(inode, NULL, 0, 0,
1741						     root->sectorsize, 0);
1742		else
1743			em = btrfs_get_extent_fiemap(inode, NULL, 0,
1744						     start - root->sectorsize,
1745						     root->sectorsize, 0);
1746		if (IS_ERR(em)) {
1747			ret = -ENXIO;
1748			goto out;
1749		}
1750		last_end = em->start + em->len;
1751		if (em->block_start == EXTENT_MAP_DELALLOC)
1752			last_end = min_t(u64, last_end, inode->i_size);
1753		free_extent_map(em);
1754	}
1755
1756	while (1) {
1757		em = btrfs_get_extent_fiemap(inode, NULL, 0, start, len, 0);
 
 
 
 
 
 
 
 
 
1758		if (IS_ERR(em)) {
1759			ret = -ENXIO;
 
1760			break;
1761		}
1762
1763		if (em->block_start == EXTENT_MAP_HOLE) {
1764			if (test_bit(EXTENT_FLAG_VACANCY, &em->flags)) {
1765				if (last_end <= orig_start) {
1766					free_extent_map(em);
1767					ret = -ENXIO;
1768					break;
1769				}
1770			}
1771
1772			if (origin == SEEK_HOLE) {
1773				*offset = start;
1774				free_extent_map(em);
1775				break;
1776			}
1777		} else {
1778			if (origin == SEEK_DATA) {
1779				if (em->block_start == EXTENT_MAP_DELALLOC) {
1780					if (start >= inode->i_size) {
1781						free_extent_map(em);
1782						ret = -ENXIO;
1783						break;
1784					}
1785				}
1786
1787				*offset = start;
1788				free_extent_map(em);
1789				break;
1790			}
1791		}
1792
1793		start = em->start + em->len;
1794		last_end = em->start + em->len;
1795
1796		if (em->block_start == EXTENT_MAP_DELALLOC)
1797			last_end = min_t(u64, last_end, inode->i_size);
1798
1799		if (test_bit(EXTENT_FLAG_VACANCY, &em->flags)) {
1800			free_extent_map(em);
1801			ret = -ENXIO;
1802			break;
1803		}
1804		free_extent_map(em);
 
1805		cond_resched();
1806	}
1807	if (!ret)
1808		*offset = min(*offset, inode->i_size);
1809out:
1810	unlock_extent_cached(&BTRFS_I(inode)->io_tree, lockstart, lockend,
1811			     &cached_state, GFP_NOFS);
1812	return ret;
 
 
 
 
 
 
 
1813}
1814
1815static loff_t btrfs_file_llseek(struct file *file, loff_t offset, int origin)
1816{
1817	struct inode *inode = file->f_mapping->host;
1818	int ret;
1819
1820	mutex_lock(&inode->i_mutex);
1821	switch (origin) {
1822	case SEEK_END:
1823	case SEEK_CUR:
1824		offset = generic_file_llseek_unlocked(file, offset, origin);
1825		goto out;
1826	case SEEK_DATA:
1827	case SEEK_HOLE:
1828		if (offset >= i_size_read(inode)) {
1829			mutex_unlock(&inode->i_mutex);
1830			return -ENXIO;
1831		}
1832
1833		ret = find_desired_extent(inode, &offset, origin);
1834		if (ret) {
1835			mutex_unlock(&inode->i_mutex);
1836			return ret;
1837		}
1838	}
1839
1840	if (offset < 0 && !(file->f_mode & FMODE_UNSIGNED_OFFSET)) {
1841		offset = -EINVAL;
1842		goto out;
1843	}
1844	if (offset > inode->i_sb->s_maxbytes) {
1845		offset = -EINVAL;
1846		goto out;
1847	}
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1848
1849	/* Special lock needed here? */
1850	if (offset != file->f_pos) {
1851		file->f_pos = offset;
1852		file->f_version = 0;
 
 
 
 
 
1853	}
1854out:
1855	mutex_unlock(&inode->i_mutex);
1856	return offset;
1857}
1858
1859const struct file_operations btrfs_file_operations = {
1860	.llseek		= btrfs_file_llseek,
1861	.read		= do_sync_read,
1862	.write		= do_sync_write,
1863	.aio_read       = generic_file_aio_read,
1864	.splice_read	= generic_file_splice_read,
1865	.aio_write	= btrfs_file_aio_write,
 
1866	.mmap		= btrfs_file_mmap,
1867	.open		= generic_file_open,
1868	.release	= btrfs_release_file,
1869	.fsync		= btrfs_sync_file,
1870	.fallocate	= btrfs_fallocate,
1871	.unlocked_ioctl	= btrfs_ioctl,
1872#ifdef CONFIG_COMPAT
1873	.compat_ioctl	= btrfs_ioctl,
1874#endif
 
1875};
v5.14.15
   1// SPDX-License-Identifier: GPL-2.0
   2/*
   3 * Copyright (C) 2007 Oracle.  All rights reserved.
 
 
 
 
 
 
 
 
 
 
 
 
 
 
   4 */
   5
   6#include <linux/fs.h>
   7#include <linux/pagemap.h>
 
   8#include <linux/time.h>
   9#include <linux/init.h>
  10#include <linux/string.h>
  11#include <linux/backing-dev.h>
 
  12#include <linux/falloc.h>
 
  13#include <linux/writeback.h>
 
  14#include <linux/compat.h>
  15#include <linux/slab.h>
  16#include <linux/btrfs.h>
  17#include <linux/uio.h>
  18#include <linux/iversion.h>
  19#include "ctree.h"
  20#include "disk-io.h"
  21#include "transaction.h"
  22#include "btrfs_inode.h"
 
  23#include "print-tree.h"
  24#include "tree-log.h"
  25#include "locking.h"
  26#include "volumes.h"
  27#include "qgroup.h"
  28#include "compression.h"
  29#include "delalloc-space.h"
  30#include "reflink.h"
  31#include "subpage.h"
  32
  33static struct kmem_cache *btrfs_inode_defrag_cachep;
  34/*
  35 * when auto defrag is enabled we
  36 * queue up these defrag structs to remember which
  37 * inodes need defragging passes
  38 */
  39struct inode_defrag {
  40	struct rb_node rb_node;
  41	/* objectid */
  42	u64 ino;
  43	/*
  44	 * transid where the defrag was added, we search for
  45	 * extents newer than this
  46	 */
  47	u64 transid;
  48
  49	/* root objectid */
  50	u64 root;
  51
  52	/* last offset we were able to defrag */
  53	u64 last_offset;
  54
  55	/* if we've wrapped around back to zero once already */
  56	int cycled;
  57};
  58
  59static int __compare_inode_defrag(struct inode_defrag *defrag1,
  60				  struct inode_defrag *defrag2)
  61{
  62	if (defrag1->root > defrag2->root)
  63		return 1;
  64	else if (defrag1->root < defrag2->root)
  65		return -1;
  66	else if (defrag1->ino > defrag2->ino)
  67		return 1;
  68	else if (defrag1->ino < defrag2->ino)
  69		return -1;
  70	else
  71		return 0;
  72}
  73
  74/* pop a record for an inode into the defrag tree.  The lock
  75 * must be held already
  76 *
  77 * If you're inserting a record for an older transid than an
  78 * existing record, the transid already in the tree is lowered
  79 *
  80 * If an existing record is found the defrag item you
  81 * pass in is freed
  82 */
  83static int __btrfs_add_inode_defrag(struct btrfs_inode *inode,
  84				    struct inode_defrag *defrag)
  85{
  86	struct btrfs_fs_info *fs_info = inode->root->fs_info;
  87	struct inode_defrag *entry;
  88	struct rb_node **p;
  89	struct rb_node *parent = NULL;
  90	int ret;
  91
  92	p = &fs_info->defrag_inodes.rb_node;
  93	while (*p) {
  94		parent = *p;
  95		entry = rb_entry(parent, struct inode_defrag, rb_node);
  96
  97		ret = __compare_inode_defrag(defrag, entry);
  98		if (ret < 0)
  99			p = &parent->rb_left;
 100		else if (ret > 0)
 101			p = &parent->rb_right;
 102		else {
 103			/* if we're reinserting an entry for
 104			 * an old defrag run, make sure to
 105			 * lower the transid of our existing record
 106			 */
 107			if (defrag->transid < entry->transid)
 108				entry->transid = defrag->transid;
 109			if (defrag->last_offset > entry->last_offset)
 110				entry->last_offset = defrag->last_offset;
 111			return -EEXIST;
 112		}
 113	}
 114	set_bit(BTRFS_INODE_IN_DEFRAG, &inode->runtime_flags);
 115	rb_link_node(&defrag->rb_node, parent, p);
 116	rb_insert_color(&defrag->rb_node, &fs_info->defrag_inodes);
 117	return 0;
 118}
 119
 120static inline int __need_auto_defrag(struct btrfs_fs_info *fs_info)
 121{
 122	if (!btrfs_test_opt(fs_info, AUTO_DEFRAG))
 123		return 0;
 124
 125	if (btrfs_fs_closing(fs_info))
 126		return 0;
 127
 128	return 1;
 129}
 130
 131/*
 132 * insert a defrag record for this inode if auto defrag is
 133 * enabled
 134 */
 135int btrfs_add_inode_defrag(struct btrfs_trans_handle *trans,
 136			   struct btrfs_inode *inode)
 137{
 138	struct btrfs_root *root = inode->root;
 139	struct btrfs_fs_info *fs_info = root->fs_info;
 140	struct inode_defrag *defrag;
 141	u64 transid;
 142	int ret;
 143
 144	if (!__need_auto_defrag(fs_info))
 
 
 
 145		return 0;
 146
 147	if (test_bit(BTRFS_INODE_IN_DEFRAG, &inode->runtime_flags))
 148		return 0;
 149
 150	if (trans)
 151		transid = trans->transid;
 152	else
 153		transid = inode->root->last_trans;
 154
 155	defrag = kmem_cache_zalloc(btrfs_inode_defrag_cachep, GFP_NOFS);
 156	if (!defrag)
 157		return -ENOMEM;
 158
 159	defrag->ino = btrfs_ino(inode);
 160	defrag->transid = transid;
 161	defrag->root = root->root_key.objectid;
 162
 163	spin_lock(&fs_info->defrag_inodes_lock);
 164	if (!test_bit(BTRFS_INODE_IN_DEFRAG, &inode->runtime_flags)) {
 165		/*
 166		 * If we set IN_DEFRAG flag and evict the inode from memory,
 167		 * and then re-read this inode, this new inode doesn't have
 168		 * IN_DEFRAG flag. At the case, we may find the existed defrag.
 169		 */
 170		ret = __btrfs_add_inode_defrag(inode, defrag);
 171		if (ret)
 172			kmem_cache_free(btrfs_inode_defrag_cachep, defrag);
 173	} else {
 174		kmem_cache_free(btrfs_inode_defrag_cachep, defrag);
 175	}
 176	spin_unlock(&fs_info->defrag_inodes_lock);
 177	return 0;
 178}
 179
 180/*
 181 * Requeue the defrag object. If there is a defrag object that points to
 182 * the same inode in the tree, we will merge them together (by
 183 * __btrfs_add_inode_defrag()) and free the one that we want to requeue.
 184 */
 185static void btrfs_requeue_inode_defrag(struct btrfs_inode *inode,
 186				       struct inode_defrag *defrag)
 187{
 188	struct btrfs_fs_info *fs_info = inode->root->fs_info;
 189	int ret;
 190
 191	if (!__need_auto_defrag(fs_info))
 192		goto out;
 193
 194	/*
 195	 * Here we don't check the IN_DEFRAG flag, because we need merge
 196	 * them together.
 197	 */
 198	spin_lock(&fs_info->defrag_inodes_lock);
 199	ret = __btrfs_add_inode_defrag(inode, defrag);
 200	spin_unlock(&fs_info->defrag_inodes_lock);
 201	if (ret)
 202		goto out;
 203	return;
 204out:
 205	kmem_cache_free(btrfs_inode_defrag_cachep, defrag);
 206}
 207
 208/*
 209 * pick the defragable inode that we want, if it doesn't exist, we will get
 210 * the next one.
 211 */
 212static struct inode_defrag *
 213btrfs_pick_defrag_inode(struct btrfs_fs_info *fs_info, u64 root, u64 ino)
 214{
 215	struct inode_defrag *entry = NULL;
 216	struct inode_defrag tmp;
 217	struct rb_node *p;
 218	struct rb_node *parent = NULL;
 219	int ret;
 220
 221	tmp.ino = ino;
 222	tmp.root = root;
 223
 224	spin_lock(&fs_info->defrag_inodes_lock);
 225	p = fs_info->defrag_inodes.rb_node;
 226	while (p) {
 227		parent = p;
 228		entry = rb_entry(parent, struct inode_defrag, rb_node);
 229
 230		ret = __compare_inode_defrag(&tmp, entry);
 231		if (ret < 0)
 232			p = parent->rb_left;
 233		else if (ret > 0)
 234			p = parent->rb_right;
 235		else
 236			goto out;
 237	}
 238
 239	if (parent && __compare_inode_defrag(&tmp, entry) > 0) {
 240		parent = rb_next(parent);
 241		if (parent)
 242			entry = rb_entry(parent, struct inode_defrag, rb_node);
 243		else
 244			entry = NULL;
 245	}
 246out:
 247	if (entry)
 248		rb_erase(parent, &fs_info->defrag_inodes);
 249	spin_unlock(&fs_info->defrag_inodes_lock);
 250	return entry;
 251}
 252
 253void btrfs_cleanup_defrag_inodes(struct btrfs_fs_info *fs_info)
 
 
 
 
 254{
 255	struct inode_defrag *defrag;
 256	struct rb_node *node;
 257
 258	spin_lock(&fs_info->defrag_inodes_lock);
 259	node = rb_first(&fs_info->defrag_inodes);
 260	while (node) {
 261		rb_erase(node, &fs_info->defrag_inodes);
 262		defrag = rb_entry(node, struct inode_defrag, rb_node);
 263		kmem_cache_free(btrfs_inode_defrag_cachep, defrag);
 264
 265		cond_resched_lock(&fs_info->defrag_inodes_lock);
 266
 267		node = rb_first(&fs_info->defrag_inodes);
 268	}
 269	spin_unlock(&fs_info->defrag_inodes_lock);
 270}
 271
 272#define BTRFS_DEFRAG_BATCH	1024
 273
 274static int __btrfs_run_defrag_inode(struct btrfs_fs_info *fs_info,
 275				    struct inode_defrag *defrag)
 276{
 277	struct btrfs_root *inode_root;
 278	struct inode *inode;
 
 
 279	struct btrfs_ioctl_defrag_range_args range;
 
 280	int num_defrag;
 281	int ret;
 282
 283	/* get the inode */
 284	inode_root = btrfs_get_fs_root(fs_info, defrag->root, true);
 285	if (IS_ERR(inode_root)) {
 286		ret = PTR_ERR(inode_root);
 287		goto cleanup;
 288	}
 289
 290	inode = btrfs_iget(fs_info->sb, defrag->ino, inode_root);
 291	btrfs_put_root(inode_root);
 292	if (IS_ERR(inode)) {
 293		ret = PTR_ERR(inode);
 294		goto cleanup;
 295	}
 296
 297	/* do a chunk of defrag */
 298	clear_bit(BTRFS_INODE_IN_DEFRAG, &BTRFS_I(inode)->runtime_flags);
 299	memset(&range, 0, sizeof(range));
 300	range.len = (u64)-1;
 301	range.start = defrag->last_offset;
 302
 303	sb_start_write(fs_info->sb);
 304	num_defrag = btrfs_defrag_file(inode, NULL, &range, defrag->transid,
 305				       BTRFS_DEFRAG_BATCH);
 306	sb_end_write(fs_info->sb);
 307	/*
 308	 * if we filled the whole defrag batch, there
 309	 * must be more work to do.  Queue this defrag
 310	 * again
 311	 */
 312	if (num_defrag == BTRFS_DEFRAG_BATCH) {
 313		defrag->last_offset = range.start;
 314		btrfs_requeue_inode_defrag(BTRFS_I(inode), defrag);
 315	} else if (defrag->last_offset && !defrag->cycled) {
 316		/*
 317		 * we didn't fill our defrag batch, but
 318		 * we didn't start at zero.  Make sure we loop
 319		 * around to the start of the file.
 320		 */
 321		defrag->last_offset = 0;
 322		defrag->cycled = 1;
 323		btrfs_requeue_inode_defrag(BTRFS_I(inode), defrag);
 324	} else {
 325		kmem_cache_free(btrfs_inode_defrag_cachep, defrag);
 326	}
 327
 328	iput(inode);
 329	return 0;
 330cleanup:
 331	kmem_cache_free(btrfs_inode_defrag_cachep, defrag);
 332	return ret;
 333}
 334
 335/*
 336 * run through the list of inodes in the FS that need
 337 * defragging
 338 */
 339int btrfs_run_defrag_inodes(struct btrfs_fs_info *fs_info)
 340{
 341	struct inode_defrag *defrag;
 342	u64 first_ino = 0;
 343	u64 root_objectid = 0;
 344
 345	atomic_inc(&fs_info->defrag_running);
 346	while (1) {
 347		/* Pause the auto defragger. */
 348		if (test_bit(BTRFS_FS_STATE_REMOUNTING,
 349			     &fs_info->fs_state))
 350			break;
 351
 352		if (!__need_auto_defrag(fs_info))
 353			break;
 354
 355		/* find an inode to defrag */
 356		defrag = btrfs_pick_defrag_inode(fs_info, root_objectid,
 357						 first_ino);
 358		if (!defrag) {
 359			if (root_objectid || first_ino) {
 360				root_objectid = 0;
 
 361				first_ino = 0;
 362				continue;
 363			} else {
 364				break;
 365			}
 366		}
 367
 
 368		first_ino = defrag->ino + 1;
 369		root_objectid = defrag->root;
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 370
 371		__btrfs_run_defrag_inode(fs_info, defrag);
 
 
 
 
 372	}
 
 
 373	atomic_dec(&fs_info->defrag_running);
 374
 375	/*
 376	 * during unmount, we use the transaction_wait queue to
 377	 * wait for the defragger to stop
 378	 */
 379	wake_up(&fs_info->transaction_wait);
 380	return 0;
 381}
 382
 383/* simple helper to fault in pages and copy.  This should go away
 384 * and be replaced with calls into generic code.
 385 */
 386static noinline int btrfs_copy_from_user(loff_t pos, size_t write_bytes,
 
 387					 struct page **prepared_pages,
 388					 struct iov_iter *i)
 389{
 390	size_t copied = 0;
 391	size_t total_copied = 0;
 392	int pg = 0;
 393	int offset = offset_in_page(pos);
 394
 395	while (write_bytes > 0) {
 396		size_t count = min_t(size_t,
 397				     PAGE_SIZE - offset, write_bytes);
 398		struct page *page = prepared_pages[pg];
 399		/*
 400		 * Copy data from userspace to the current page
 
 
 
 401		 */
 402		copied = copy_page_from_iter_atomic(page, offset, count, i);
 
 
 403
 404		/* Flush processor's dcache for this page */
 405		flush_dcache_page(page);
 406
 407		/*
 408		 * if we get a partial write, we can end up with
 409		 * partially up to date pages.  These add
 410		 * a lot of complexity, so make sure they don't
 411		 * happen by forcing this copy to be retried.
 412		 *
 413		 * The rest of the btrfs_file_write code will fall
 414		 * back to page at a time copies after we return 0.
 415		 */
 416		if (unlikely(copied < count)) {
 417			if (!PageUptodate(page)) {
 418				iov_iter_revert(i, copied);
 419				copied = 0;
 420			}
 421			if (!copied)
 422				break;
 423		}
 424
 
 425		write_bytes -= copied;
 426		total_copied += copied;
 427		offset += copied;
 428		if (offset == PAGE_SIZE) {
 
 
 
 
 
 
 429			pg++;
 430			offset = 0;
 431		}
 432	}
 433	return total_copied;
 434}
 435
 436/*
 437 * unlocks pages after btrfs_file_write is done with them
 438 */
 439static void btrfs_drop_pages(struct page **pages, size_t num_pages)
 440{
 441	size_t i;
 442	for (i = 0; i < num_pages; i++) {
 443		/* page checked is some magic around finding pages that
 444		 * have been modified without going through btrfs_set_page_dirty
 445		 * clear it here. There should be no need to mark the pages
 446		 * accessed as prepare_pages should have marked them accessed
 447		 * in prepare_pages via find_or_create_page()
 448		 */
 449		ClearPageChecked(pages[i]);
 450		unlock_page(pages[i]);
 451		put_page(pages[i]);
 
 452	}
 453}
 454
 455/*
 456 * After btrfs_copy_from_user(), update the following things for delalloc:
 457 * - Mark newly dirtied pages as DELALLOC in the io tree.
 458 *   Used to advise which range is to be written back.
 459 * - Mark modified pages as Uptodate/Dirty and not needing COW fixup
 460 * - Update inode size for past EOF write
 
 461 */
 462int btrfs_dirty_pages(struct btrfs_inode *inode, struct page **pages,
 463		      size_t num_pages, loff_t pos, size_t write_bytes,
 464		      struct extent_state **cached, bool noreserve)
 
 465{
 466	struct btrfs_fs_info *fs_info = inode->root->fs_info;
 467	int err = 0;
 468	int i;
 469	u64 num_bytes;
 470	u64 start_pos;
 471	u64 end_of_last_block;
 472	u64 end_pos = pos + write_bytes;
 473	loff_t isize = i_size_read(&inode->vfs_inode);
 474	unsigned int extra_bits = 0;
 475
 476	if (write_bytes == 0)
 477		return 0;
 478
 479	if (noreserve)
 480		extra_bits |= EXTENT_NORESERVE;
 481
 482	start_pos = round_down(pos, fs_info->sectorsize);
 483	num_bytes = round_up(write_bytes + pos - start_pos,
 484			     fs_info->sectorsize);
 485	ASSERT(num_bytes <= U32_MAX);
 486
 487	end_of_last_block = start_pos + num_bytes - 1;
 488
 489	/*
 490	 * The pages may have already been dirty, clear out old accounting so
 491	 * we can set things up properly
 492	 */
 493	clear_extent_bit(&inode->io_tree, start_pos, end_of_last_block,
 494			 EXTENT_DELALLOC | EXTENT_DO_ACCOUNTING | EXTENT_DEFRAG,
 495			 0, 0, cached);
 496
 497	err = btrfs_set_extent_delalloc(inode, start_pos, end_of_last_block,
 498					extra_bits, cached);
 499	if (err)
 500		return err;
 501
 502	for (i = 0; i < num_pages; i++) {
 503		struct page *p = pages[i];
 504
 505		btrfs_page_clamp_set_uptodate(fs_info, p, start_pos, num_bytes);
 506		ClearPageChecked(p);
 507		btrfs_page_clamp_set_dirty(fs_info, p, start_pos, num_bytes);
 508	}
 509
 510	/*
 511	 * we've only changed i_size in ram, and we haven't updated
 512	 * the disk i_size.  There is no need to log the inode
 513	 * at this time.
 514	 */
 515	if (end_pos > isize)
 516		i_size_write(&inode->vfs_inode, end_pos);
 517	return 0;
 518}
 519
 520/*
 521 * this drops all the extents in the cache that intersect the range
 522 * [start, end].  Existing extents are split as required.
 523 */
 524void btrfs_drop_extent_cache(struct btrfs_inode *inode, u64 start, u64 end,
 525			     int skip_pinned)
 526{
 527	struct extent_map *em;
 528	struct extent_map *split = NULL;
 529	struct extent_map *split2 = NULL;
 530	struct extent_map_tree *em_tree = &inode->extent_tree;
 531	u64 len = end - start + 1;
 532	u64 gen;
 533	int ret;
 534	int testend = 1;
 535	unsigned long flags;
 536	int compressed = 0;
 537	bool modified;
 538
 539	WARN_ON(end < start);
 540	if (end == (u64)-1) {
 541		len = (u64)-1;
 542		testend = 0;
 543	}
 544	while (1) {
 545		int no_splits = 0;
 546
 547		modified = false;
 548		if (!split)
 549			split = alloc_extent_map();
 550		if (!split2)
 551			split2 = alloc_extent_map();
 552		if (!split || !split2)
 553			no_splits = 1;
 554
 555		write_lock(&em_tree->lock);
 556		em = lookup_extent_mapping(em_tree, start, len);
 557		if (!em) {
 558			write_unlock(&em_tree->lock);
 559			break;
 560		}
 561		flags = em->flags;
 562		gen = em->generation;
 563		if (skip_pinned && test_bit(EXTENT_FLAG_PINNED, &em->flags)) {
 564			if (testend && em->start + em->len >= start + len) {
 565				free_extent_map(em);
 566				write_unlock(&em_tree->lock);
 567				break;
 568			}
 569			start = em->start + em->len;
 570			if (testend)
 571				len = start + len - (em->start + em->len);
 572			free_extent_map(em);
 573			write_unlock(&em_tree->lock);
 574			continue;
 575		}
 576		compressed = test_bit(EXTENT_FLAG_COMPRESSED, &em->flags);
 577		clear_bit(EXTENT_FLAG_PINNED, &em->flags);
 578		clear_bit(EXTENT_FLAG_LOGGING, &flags);
 579		modified = !list_empty(&em->list);
 580		if (no_splits)
 581			goto next;
 582
 583		if (em->start < start) {
 
 584			split->start = em->start;
 585			split->len = start - em->start;
 
 
 586
 587			if (em->block_start < EXTENT_MAP_LAST_BYTE) {
 588				split->orig_start = em->orig_start;
 589				split->block_start = em->block_start;
 
 590
 591				if (compressed)
 592					split->block_len = em->block_len;
 593				else
 594					split->block_len = split->len;
 595				split->orig_block_len = max(split->block_len,
 596						em->orig_block_len);
 597				split->ram_bytes = em->ram_bytes;
 598			} else {
 599				split->orig_start = split->start;
 600				split->block_len = 0;
 601				split->block_start = em->block_start;
 602				split->orig_block_len = 0;
 603				split->ram_bytes = split->len;
 604			}
 605
 606			split->generation = gen;
 607			split->flags = flags;
 608			split->compress_type = em->compress_type;
 609			replace_extent_mapping(em_tree, em, split, modified);
 
 610			free_extent_map(split);
 611			split = split2;
 612			split2 = NULL;
 613		}
 614		if (testend && em->start + em->len > start + len) {
 
 615			u64 diff = start + len - em->start;
 616
 617			split->start = start + len;
 618			split->len = em->start + em->len - (start + len);
 
 619			split->flags = flags;
 620			split->compress_type = em->compress_type;
 621			split->generation = gen;
 622
 623			if (em->block_start < EXTENT_MAP_LAST_BYTE) {
 624				split->orig_block_len = max(em->block_len,
 625						    em->orig_block_len);
 626
 627				split->ram_bytes = em->ram_bytes;
 628				if (compressed) {
 629					split->block_len = em->block_len;
 630					split->block_start = em->block_start;
 631					split->orig_start = em->orig_start;
 632				} else {
 633					split->block_len = split->len;
 634					split->block_start = em->block_start
 635						+ diff;
 636					split->orig_start = em->orig_start;
 637				}
 638			} else {
 639				split->ram_bytes = split->len;
 
 640				split->orig_start = split->start;
 641				split->block_len = 0;
 642				split->block_start = em->block_start;
 643				split->orig_block_len = 0;
 644			}
 645
 646			if (extent_map_in_tree(em)) {
 647				replace_extent_mapping(em_tree, em, split,
 648						       modified);
 649			} else {
 650				ret = add_extent_mapping(em_tree, split,
 651							 modified);
 652				ASSERT(ret == 0); /* Logic error */
 653			}
 654			free_extent_map(split);
 655			split = NULL;
 656		}
 657next:
 658		if (extent_map_in_tree(em))
 659			remove_extent_mapping(em_tree, em);
 660		write_unlock(&em_tree->lock);
 661
 662		/* once for us */
 663		free_extent_map(em);
 664		/* once for the tree*/
 665		free_extent_map(em);
 666	}
 667	if (split)
 668		free_extent_map(split);
 669	if (split2)
 670		free_extent_map(split2);
 
 671}
 672
 673/*
 674 * this is very complex, but the basic idea is to drop all extents
 675 * in the range start - end.  hint_block is filled in with a block number
 676 * that would be a good hint to the block allocator for this file.
 677 *
 678 * If an extent intersects the range but is not entirely inside the range
 679 * it is either truncated or split.  Anything entirely inside the range
 680 * is deleted from the tree.
 681 *
 682 * Note: the VFS' inode number of bytes is not updated, it's up to the caller
 683 * to deal with that. We set the field 'bytes_found' of the arguments structure
 684 * with the number of allocated bytes found in the target range, so that the
 685 * caller can update the inode's number of bytes in an atomic way when
 686 * replacing extents in a range to avoid races with stat(2).
 687 */
 688int btrfs_drop_extents(struct btrfs_trans_handle *trans,
 689		       struct btrfs_root *root, struct btrfs_inode *inode,
 690		       struct btrfs_drop_extents_args *args)
 691{
 692	struct btrfs_fs_info *fs_info = root->fs_info;
 693	struct extent_buffer *leaf;
 694	struct btrfs_file_extent_item *fi;
 695	struct btrfs_ref ref = { 0 };
 696	struct btrfs_key key;
 697	struct btrfs_key new_key;
 698	u64 ino = btrfs_ino(inode);
 699	u64 search_start = args->start;
 700	u64 disk_bytenr = 0;
 701	u64 num_bytes = 0;
 702	u64 extent_offset = 0;
 703	u64 extent_end = 0;
 704	u64 last_end = args->start;
 705	int del_nr = 0;
 706	int del_slot = 0;
 707	int extent_type;
 708	int recow;
 709	int ret;
 710	int modify_tree = -1;
 711	int update_refs;
 712	int found = 0;
 713	int leafs_visited = 0;
 714	struct btrfs_path *path = args->path;
 715
 716	args->bytes_found = 0;
 717	args->extent_inserted = false;
 718
 719	/* Must always have a path if ->replace_extent is true */
 720	ASSERT(!(args->replace_extent && !args->path));
 721
 722	if (!path) {
 723		path = btrfs_alloc_path();
 724		if (!path) {
 725			ret = -ENOMEM;
 726			goto out;
 727		}
 728	}
 729
 730	if (args->drop_cache)
 731		btrfs_drop_extent_cache(inode, args->start, args->end - 1, 0);
 732
 733	if (args->start >= inode->disk_i_size && !args->replace_extent)
 734		modify_tree = 0;
 
 735
 736	update_refs = (root->root_key.objectid != BTRFS_TREE_LOG_OBJECTID);
 737	while (1) {
 738		recow = 0;
 739		ret = btrfs_lookup_file_extent(trans, root, path, ino,
 740					       search_start, modify_tree);
 741		if (ret < 0)
 742			break;
 743		if (ret > 0 && path->slots[0] > 0 && search_start == args->start) {
 744			leaf = path->nodes[0];
 745			btrfs_item_key_to_cpu(leaf, &key, path->slots[0] - 1);
 746			if (key.objectid == ino &&
 747			    key.type == BTRFS_EXTENT_DATA_KEY)
 748				path->slots[0]--;
 749		}
 750		ret = 0;
 751		leafs_visited++;
 752next_slot:
 753		leaf = path->nodes[0];
 754		if (path->slots[0] >= btrfs_header_nritems(leaf)) {
 755			BUG_ON(del_nr > 0);
 756			ret = btrfs_next_leaf(root, path);
 757			if (ret < 0)
 758				break;
 759			if (ret > 0) {
 760				ret = 0;
 761				break;
 762			}
 763			leafs_visited++;
 764			leaf = path->nodes[0];
 765			recow = 1;
 766		}
 767
 768		btrfs_item_key_to_cpu(leaf, &key, path->slots[0]);
 769
 770		if (key.objectid > ino)
 771			break;
 772		if (WARN_ON_ONCE(key.objectid < ino) ||
 773		    key.type < BTRFS_EXTENT_DATA_KEY) {
 774			ASSERT(del_nr == 0);
 775			path->slots[0]++;
 776			goto next_slot;
 777		}
 778		if (key.type > BTRFS_EXTENT_DATA_KEY || key.offset >= args->end)
 779			break;
 780
 781		fi = btrfs_item_ptr(leaf, path->slots[0],
 782				    struct btrfs_file_extent_item);
 783		extent_type = btrfs_file_extent_type(leaf, fi);
 784
 785		if (extent_type == BTRFS_FILE_EXTENT_REG ||
 786		    extent_type == BTRFS_FILE_EXTENT_PREALLOC) {
 787			disk_bytenr = btrfs_file_extent_disk_bytenr(leaf, fi);
 788			num_bytes = btrfs_file_extent_disk_num_bytes(leaf, fi);
 789			extent_offset = btrfs_file_extent_offset(leaf, fi);
 790			extent_end = key.offset +
 791				btrfs_file_extent_num_bytes(leaf, fi);
 792		} else if (extent_type == BTRFS_FILE_EXTENT_INLINE) {
 793			extent_end = key.offset +
 794				btrfs_file_extent_ram_bytes(leaf, fi);
 795		} else {
 796			/* can't happen */
 797			BUG();
 798		}
 799
 800		/*
 801		 * Don't skip extent items representing 0 byte lengths. They
 802		 * used to be created (bug) if while punching holes we hit
 803		 * -ENOSPC condition. So if we find one here, just ensure we
 804		 * delete it, otherwise we would insert a new file extent item
 805		 * with the same key (offset) as that 0 bytes length file
 806		 * extent item in the call to setup_items_for_insert() later
 807		 * in this function.
 808		 */
 809		if (extent_end == key.offset && extent_end >= search_start) {
 810			last_end = extent_end;
 811			goto delete_extent_item;
 812		}
 813
 814		if (extent_end <= search_start) {
 815			path->slots[0]++;
 816			goto next_slot;
 817		}
 818
 819		found = 1;
 820		search_start = max(key.offset, args->start);
 821		if (recow || !modify_tree) {
 822			modify_tree = -1;
 823			btrfs_release_path(path);
 824			continue;
 825		}
 826
 827		/*
 828		 *     | - range to drop - |
 829		 *  | -------- extent -------- |
 830		 */
 831		if (args->start > key.offset && args->end < extent_end) {
 832			BUG_ON(del_nr > 0);
 833			if (extent_type == BTRFS_FILE_EXTENT_INLINE) {
 834				ret = -EOPNOTSUPP;
 835				break;
 836			}
 837
 838			memcpy(&new_key, &key, sizeof(new_key));
 839			new_key.offset = args->start;
 840			ret = btrfs_duplicate_item(trans, root, path,
 841						   &new_key);
 842			if (ret == -EAGAIN) {
 843				btrfs_release_path(path);
 844				continue;
 845			}
 846			if (ret < 0)
 847				break;
 848
 849			leaf = path->nodes[0];
 850			fi = btrfs_item_ptr(leaf, path->slots[0] - 1,
 851					    struct btrfs_file_extent_item);
 852			btrfs_set_file_extent_num_bytes(leaf, fi,
 853							args->start - key.offset);
 854
 855			fi = btrfs_item_ptr(leaf, path->slots[0],
 856					    struct btrfs_file_extent_item);
 857
 858			extent_offset += args->start - key.offset;
 859			btrfs_set_file_extent_offset(leaf, fi, extent_offset);
 860			btrfs_set_file_extent_num_bytes(leaf, fi,
 861							extent_end - args->start);
 862			btrfs_mark_buffer_dirty(leaf);
 863
 864			if (update_refs && disk_bytenr > 0) {
 865				btrfs_init_generic_ref(&ref,
 866						BTRFS_ADD_DELAYED_REF,
 867						disk_bytenr, num_bytes, 0);
 868				btrfs_init_data_ref(&ref,
 869						root->root_key.objectid,
 870						new_key.objectid,
 871						args->start - extent_offset);
 872				ret = btrfs_inc_extent_ref(trans, &ref);
 873				BUG_ON(ret); /* -ENOMEM */
 874			}
 875			key.offset = args->start;
 876		}
 877		/*
 878		 * From here on out we will have actually dropped something, so
 879		 * last_end can be updated.
 880		 */
 881		last_end = extent_end;
 882
 883		/*
 884		 *  | ---- range to drop ----- |
 885		 *      | -------- extent -------- |
 886		 */
 887		if (args->start <= key.offset && args->end < extent_end) {
 888			if (extent_type == BTRFS_FILE_EXTENT_INLINE) {
 889				ret = -EOPNOTSUPP;
 890				break;
 891			}
 892
 893			memcpy(&new_key, &key, sizeof(new_key));
 894			new_key.offset = args->end;
 895			btrfs_set_item_key_safe(fs_info, path, &new_key);
 896
 897			extent_offset += args->end - key.offset;
 898			btrfs_set_file_extent_offset(leaf, fi, extent_offset);
 899			btrfs_set_file_extent_num_bytes(leaf, fi,
 900							extent_end - args->end);
 901			btrfs_mark_buffer_dirty(leaf);
 902			if (update_refs && disk_bytenr > 0)
 903				args->bytes_found += args->end - key.offset;
 
 
 904			break;
 905		}
 906
 907		search_start = extent_end;
 908		/*
 909		 *       | ---- range to drop ----- |
 910		 *  | -------- extent -------- |
 911		 */
 912		if (args->start > key.offset && args->end >= extent_end) {
 913			BUG_ON(del_nr > 0);
 914			if (extent_type == BTRFS_FILE_EXTENT_INLINE) {
 915				ret = -EOPNOTSUPP;
 916				break;
 917			}
 918
 919			btrfs_set_file_extent_num_bytes(leaf, fi,
 920							args->start - key.offset);
 921			btrfs_mark_buffer_dirty(leaf);
 922			if (update_refs && disk_bytenr > 0)
 923				args->bytes_found += extent_end - args->start;
 924			if (args->end == extent_end)
 
 
 925				break;
 926
 927			path->slots[0]++;
 928			goto next_slot;
 929		}
 930
 931		/*
 932		 *  | ---- range to drop ----- |
 933		 *    | ------ extent ------ |
 934		 */
 935		if (args->start <= key.offset && args->end >= extent_end) {
 936delete_extent_item:
 937			if (del_nr == 0) {
 938				del_slot = path->slots[0];
 939				del_nr = 1;
 940			} else {
 941				BUG_ON(del_slot + del_nr != path->slots[0]);
 942				del_nr++;
 943			}
 944
 945			if (update_refs &&
 946			    extent_type == BTRFS_FILE_EXTENT_INLINE) {
 947				args->bytes_found += extent_end - key.offset;
 948				extent_end = ALIGN(extent_end,
 949						   fs_info->sectorsize);
 950			} else if (update_refs && disk_bytenr > 0) {
 951				btrfs_init_generic_ref(&ref,
 952						BTRFS_DROP_DELAYED_REF,
 953						disk_bytenr, num_bytes, 0);
 954				btrfs_init_data_ref(&ref,
 955						root->root_key.objectid,
 956						key.objectid,
 957						key.offset - extent_offset);
 958				ret = btrfs_free_extent(trans, &ref);
 959				BUG_ON(ret); /* -ENOMEM */
 960				args->bytes_found += extent_end - key.offset;
 
 961			}
 962
 963			if (args->end == extent_end)
 964				break;
 965
 966			if (path->slots[0] + 1 < btrfs_header_nritems(leaf)) {
 967				path->slots[0]++;
 968				goto next_slot;
 969			}
 970
 971			ret = btrfs_del_items(trans, root, path, del_slot,
 972					      del_nr);
 973			if (ret) {
 974				btrfs_abort_transaction(trans, ret);
 975				break;
 976			}
 977
 978			del_nr = 0;
 979			del_slot = 0;
 980
 981			btrfs_release_path(path);
 982			continue;
 983		}
 984
 985		BUG();
 986	}
 987
 988	if (!ret && del_nr > 0) {
 989		/*
 990		 * Set path->slots[0] to first slot, so that after the delete
 991		 * if items are move off from our leaf to its immediate left or
 992		 * right neighbor leafs, we end up with a correct and adjusted
 993		 * path->slots[0] for our insertion (if args->replace_extent).
 994		 */
 995		path->slots[0] = del_slot;
 996		ret = btrfs_del_items(trans, root, path, del_slot, del_nr);
 997		if (ret)
 998			btrfs_abort_transaction(trans, ret);
 999	}
1000
1001	leaf = path->nodes[0];
1002	/*
1003	 * If btrfs_del_items() was called, it might have deleted a leaf, in
1004	 * which case it unlocked our path, so check path->locks[0] matches a
1005	 * write lock.
1006	 */
1007	if (!ret && args->replace_extent && leafs_visited == 1 &&
1008	    path->locks[0] == BTRFS_WRITE_LOCK &&
1009	    btrfs_leaf_free_space(leaf) >=
1010	    sizeof(struct btrfs_item) + args->extent_item_size) {
1011
1012		key.objectid = ino;
1013		key.type = BTRFS_EXTENT_DATA_KEY;
1014		key.offset = args->start;
1015		if (!del_nr && path->slots[0] < btrfs_header_nritems(leaf)) {
1016			struct btrfs_key slot_key;
1017
1018			btrfs_item_key_to_cpu(leaf, &slot_key, path->slots[0]);
1019			if (btrfs_comp_cpu_keys(&key, &slot_key) > 0)
1020				path->slots[0]++;
1021		}
1022		setup_items_for_insert(root, path, &key,
1023				       &args->extent_item_size, 1);
1024		args->extent_inserted = true;
1025	}
1026
1027	if (!args->path)
1028		btrfs_free_path(path);
1029	else if (!args->extent_inserted)
1030		btrfs_release_path(path);
1031out:
1032	args->drop_end = found ? min(args->end, last_end) : args->end;
1033
1034	return ret;
1035}
1036
1037static int extent_mergeable(struct extent_buffer *leaf, int slot,
1038			    u64 objectid, u64 bytenr, u64 orig_offset,
1039			    u64 *start, u64 *end)
1040{
1041	struct btrfs_file_extent_item *fi;
1042	struct btrfs_key key;
1043	u64 extent_end;
1044
1045	if (slot < 0 || slot >= btrfs_header_nritems(leaf))
1046		return 0;
1047
1048	btrfs_item_key_to_cpu(leaf, &key, slot);
1049	if (key.objectid != objectid || key.type != BTRFS_EXTENT_DATA_KEY)
1050		return 0;
1051
1052	fi = btrfs_item_ptr(leaf, slot, struct btrfs_file_extent_item);
1053	if (btrfs_file_extent_type(leaf, fi) != BTRFS_FILE_EXTENT_REG ||
1054	    btrfs_file_extent_disk_bytenr(leaf, fi) != bytenr ||
1055	    btrfs_file_extent_offset(leaf, fi) != key.offset - orig_offset ||
1056	    btrfs_file_extent_compression(leaf, fi) ||
1057	    btrfs_file_extent_encryption(leaf, fi) ||
1058	    btrfs_file_extent_other_encoding(leaf, fi))
1059		return 0;
1060
1061	extent_end = key.offset + btrfs_file_extent_num_bytes(leaf, fi);
1062	if ((*start && *start != key.offset) || (*end && *end != extent_end))
1063		return 0;
1064
1065	*start = key.offset;
1066	*end = extent_end;
1067	return 1;
1068}
1069
1070/*
1071 * Mark extent in the range start - end as written.
1072 *
1073 * This changes extent type from 'pre-allocated' to 'regular'. If only
1074 * part of extent is marked as written, the extent will be split into
1075 * two or three.
1076 */
1077int btrfs_mark_extent_written(struct btrfs_trans_handle *trans,
1078			      struct btrfs_inode *inode, u64 start, u64 end)
1079{
1080	struct btrfs_fs_info *fs_info = trans->fs_info;
1081	struct btrfs_root *root = inode->root;
1082	struct extent_buffer *leaf;
1083	struct btrfs_path *path;
1084	struct btrfs_file_extent_item *fi;
1085	struct btrfs_ref ref = { 0 };
1086	struct btrfs_key key;
1087	struct btrfs_key new_key;
1088	u64 bytenr;
1089	u64 num_bytes;
1090	u64 extent_end;
1091	u64 orig_offset;
1092	u64 other_start;
1093	u64 other_end;
1094	u64 split;
1095	int del_nr = 0;
1096	int del_slot = 0;
1097	int recow;
1098	int ret = 0;
1099	u64 ino = btrfs_ino(inode);
1100
 
 
1101	path = btrfs_alloc_path();
1102	if (!path)
1103		return -ENOMEM;
1104again:
1105	recow = 0;
1106	split = start;
1107	key.objectid = ino;
1108	key.type = BTRFS_EXTENT_DATA_KEY;
1109	key.offset = split;
1110
1111	ret = btrfs_search_slot(trans, root, &key, path, -1, 1);
1112	if (ret < 0)
1113		goto out;
1114	if (ret > 0 && path->slots[0] > 0)
1115		path->slots[0]--;
1116
1117	leaf = path->nodes[0];
1118	btrfs_item_key_to_cpu(leaf, &key, path->slots[0]);
1119	if (key.objectid != ino ||
1120	    key.type != BTRFS_EXTENT_DATA_KEY) {
1121		ret = -EINVAL;
1122		btrfs_abort_transaction(trans, ret);
1123		goto out;
1124	}
1125	fi = btrfs_item_ptr(leaf, path->slots[0],
1126			    struct btrfs_file_extent_item);
1127	if (btrfs_file_extent_type(leaf, fi) != BTRFS_FILE_EXTENT_PREALLOC) {
1128		ret = -EINVAL;
1129		btrfs_abort_transaction(trans, ret);
1130		goto out;
1131	}
1132	extent_end = key.offset + btrfs_file_extent_num_bytes(leaf, fi);
1133	if (key.offset > start || extent_end < end) {
1134		ret = -EINVAL;
1135		btrfs_abort_transaction(trans, ret);
1136		goto out;
1137	}
1138
1139	bytenr = btrfs_file_extent_disk_bytenr(leaf, fi);
1140	num_bytes = btrfs_file_extent_disk_num_bytes(leaf, fi);
1141	orig_offset = key.offset - btrfs_file_extent_offset(leaf, fi);
1142	memcpy(&new_key, &key, sizeof(new_key));
1143
1144	if (start == key.offset && end < extent_end) {
1145		other_start = 0;
1146		other_end = start;
1147		if (extent_mergeable(leaf, path->slots[0] - 1,
1148				     ino, bytenr, orig_offset,
1149				     &other_start, &other_end)) {
1150			new_key.offset = end;
1151			btrfs_set_item_key_safe(fs_info, path, &new_key);
1152			fi = btrfs_item_ptr(leaf, path->slots[0],
1153					    struct btrfs_file_extent_item);
1154			btrfs_set_file_extent_generation(leaf, fi,
1155							 trans->transid);
1156			btrfs_set_file_extent_num_bytes(leaf, fi,
1157							extent_end - end);
1158			btrfs_set_file_extent_offset(leaf, fi,
1159						     end - orig_offset);
1160			fi = btrfs_item_ptr(leaf, path->slots[0] - 1,
1161					    struct btrfs_file_extent_item);
1162			btrfs_set_file_extent_generation(leaf, fi,
1163							 trans->transid);
1164			btrfs_set_file_extent_num_bytes(leaf, fi,
1165							end - other_start);
1166			btrfs_mark_buffer_dirty(leaf);
1167			goto out;
1168		}
1169	}
1170
1171	if (start > key.offset && end == extent_end) {
1172		other_start = end;
1173		other_end = 0;
1174		if (extent_mergeable(leaf, path->slots[0] + 1,
1175				     ino, bytenr, orig_offset,
1176				     &other_start, &other_end)) {
1177			fi = btrfs_item_ptr(leaf, path->slots[0],
1178					    struct btrfs_file_extent_item);
1179			btrfs_set_file_extent_num_bytes(leaf, fi,
1180							start - key.offset);
1181			btrfs_set_file_extent_generation(leaf, fi,
1182							 trans->transid);
1183			path->slots[0]++;
1184			new_key.offset = start;
1185			btrfs_set_item_key_safe(fs_info, path, &new_key);
1186
1187			fi = btrfs_item_ptr(leaf, path->slots[0],
1188					    struct btrfs_file_extent_item);
1189			btrfs_set_file_extent_generation(leaf, fi,
1190							 trans->transid);
1191			btrfs_set_file_extent_num_bytes(leaf, fi,
1192							other_end - start);
1193			btrfs_set_file_extent_offset(leaf, fi,
1194						     start - orig_offset);
1195			btrfs_mark_buffer_dirty(leaf);
1196			goto out;
1197		}
1198	}
1199
1200	while (start > key.offset || end < extent_end) {
1201		if (key.offset == start)
1202			split = end;
1203
1204		new_key.offset = split;
1205		ret = btrfs_duplicate_item(trans, root, path, &new_key);
1206		if (ret == -EAGAIN) {
1207			btrfs_release_path(path);
1208			goto again;
1209		}
1210		if (ret < 0) {
1211			btrfs_abort_transaction(trans, ret);
1212			goto out;
1213		}
1214
1215		leaf = path->nodes[0];
1216		fi = btrfs_item_ptr(leaf, path->slots[0] - 1,
1217				    struct btrfs_file_extent_item);
1218		btrfs_set_file_extent_generation(leaf, fi, trans->transid);
1219		btrfs_set_file_extent_num_bytes(leaf, fi,
1220						split - key.offset);
1221
1222		fi = btrfs_item_ptr(leaf, path->slots[0],
1223				    struct btrfs_file_extent_item);
1224
1225		btrfs_set_file_extent_generation(leaf, fi, trans->transid);
1226		btrfs_set_file_extent_offset(leaf, fi, split - orig_offset);
1227		btrfs_set_file_extent_num_bytes(leaf, fi,
1228						extent_end - split);
1229		btrfs_mark_buffer_dirty(leaf);
1230
1231		btrfs_init_generic_ref(&ref, BTRFS_ADD_DELAYED_REF, bytenr,
1232				       num_bytes, 0);
1233		btrfs_init_data_ref(&ref, root->root_key.objectid, ino,
1234				    orig_offset);
1235		ret = btrfs_inc_extent_ref(trans, &ref);
1236		if (ret) {
1237			btrfs_abort_transaction(trans, ret);
1238			goto out;
1239		}
1240
1241		if (split == start) {
1242			key.offset = start;
1243		} else {
1244			if (start != key.offset) {
1245				ret = -EINVAL;
1246				btrfs_abort_transaction(trans, ret);
1247				goto out;
1248			}
1249			path->slots[0]--;
1250			extent_end = end;
1251		}
1252		recow = 1;
1253	}
1254
1255	other_start = end;
1256	other_end = 0;
1257	btrfs_init_generic_ref(&ref, BTRFS_DROP_DELAYED_REF, bytenr,
1258			       num_bytes, 0);
1259	btrfs_init_data_ref(&ref, root->root_key.objectid, ino, orig_offset);
1260	if (extent_mergeable(leaf, path->slots[0] + 1,
1261			     ino, bytenr, orig_offset,
1262			     &other_start, &other_end)) {
1263		if (recow) {
1264			btrfs_release_path(path);
1265			goto again;
1266		}
1267		extent_end = other_end;
1268		del_slot = path->slots[0] + 1;
1269		del_nr++;
1270		ret = btrfs_free_extent(trans, &ref);
1271		if (ret) {
1272			btrfs_abort_transaction(trans, ret);
1273			goto out;
1274		}
1275	}
1276	other_start = 0;
1277	other_end = start;
1278	if (extent_mergeable(leaf, path->slots[0] - 1,
1279			     ino, bytenr, orig_offset,
1280			     &other_start, &other_end)) {
1281		if (recow) {
1282			btrfs_release_path(path);
1283			goto again;
1284		}
1285		key.offset = other_start;
1286		del_slot = path->slots[0];
1287		del_nr++;
1288		ret = btrfs_free_extent(trans, &ref);
1289		if (ret) {
1290			btrfs_abort_transaction(trans, ret);
1291			goto out;
1292		}
1293	}
1294	if (del_nr == 0) {
1295		fi = btrfs_item_ptr(leaf, path->slots[0],
1296			   struct btrfs_file_extent_item);
1297		btrfs_set_file_extent_type(leaf, fi,
1298					   BTRFS_FILE_EXTENT_REG);
1299		btrfs_set_file_extent_generation(leaf, fi, trans->transid);
1300		btrfs_mark_buffer_dirty(leaf);
1301	} else {
1302		fi = btrfs_item_ptr(leaf, del_slot - 1,
1303			   struct btrfs_file_extent_item);
1304		btrfs_set_file_extent_type(leaf, fi,
1305					   BTRFS_FILE_EXTENT_REG);
1306		btrfs_set_file_extent_generation(leaf, fi, trans->transid);
1307		btrfs_set_file_extent_num_bytes(leaf, fi,
1308						extent_end - key.offset);
1309		btrfs_mark_buffer_dirty(leaf);
1310
1311		ret = btrfs_del_items(trans, root, path, del_slot, del_nr);
1312		if (ret < 0) {
1313			btrfs_abort_transaction(trans, ret);
1314			goto out;
1315		}
1316	}
1317out:
1318	btrfs_free_path(path);
1319	return ret;
1320}
1321
1322/*
1323 * on error we return an unlocked page and the error value
1324 * on success we return a locked page and 0
1325 */
1326static int prepare_uptodate_page(struct inode *inode,
1327				 struct page *page, u64 pos,
1328				 bool force_uptodate)
1329{
1330	int ret = 0;
1331
1332	if (((pos & (PAGE_SIZE - 1)) || force_uptodate) &&
1333	    !PageUptodate(page)) {
1334		ret = btrfs_readpage(NULL, page);
1335		if (ret)
1336			return ret;
1337		lock_page(page);
1338		if (!PageUptodate(page)) {
1339			unlock_page(page);
1340			return -EIO;
1341		}
1342		if (page->mapping != inode->i_mapping) {
1343			unlock_page(page);
1344			return -EAGAIN;
1345		}
1346	}
1347	return 0;
1348}
1349
1350/*
1351 * this just gets pages into the page cache and locks them down.
1352 */
1353static noinline int prepare_pages(struct inode *inode, struct page **pages,
1354				  size_t num_pages, loff_t pos,
1355				  size_t write_bytes, bool force_uptodate)
 
 
 
1356{
 
1357	int i;
1358	unsigned long index = pos >> PAGE_SHIFT;
1359	gfp_t mask = btrfs_alloc_write_mask(inode->i_mapping);
1360	int err = 0;
1361	int faili;
 
 
 
 
 
1362
 
1363	for (i = 0; i < num_pages; i++) {
1364again:
1365		pages[i] = find_or_create_page(inode->i_mapping, index + i,
1366					       mask | __GFP_WRITE);
1367		if (!pages[i]) {
1368			faili = i - 1;
1369			err = -ENOMEM;
1370			goto fail;
1371		}
1372
1373		err = set_page_extent_mapped(pages[i]);
1374		if (err < 0) {
1375			faili = i;
1376			goto fail;
1377		}
1378
1379		if (i == 0)
1380			err = prepare_uptodate_page(inode, pages[i], pos,
1381						    force_uptodate);
1382		if (!err && i == num_pages - 1)
1383			err = prepare_uptodate_page(inode, pages[i],
1384						    pos + write_bytes, false);
1385		if (err) {
1386			put_page(pages[i]);
1387			if (err == -EAGAIN) {
1388				err = 0;
1389				goto again;
1390			}
1391			faili = i - 1;
1392			goto fail;
1393		}
1394		wait_on_page_writeback(pages[i]);
1395	}
1396
1397	return 0;
1398fail:
1399	while (faili >= 0) {
1400		unlock_page(pages[faili]);
1401		put_page(pages[faili]);
1402		faili--;
1403	}
1404	return err;
1405
1406}
1407
1408/*
1409 * This function locks the extent and properly waits for data=ordered extents
1410 * to finish before allowing the pages to be modified if need.
1411 *
1412 * The return value:
1413 * 1 - the extent is locked
1414 * 0 - the extent is not locked, and everything is OK
1415 * -EAGAIN - need re-prepare the pages
1416 * the other < 0 number - Something wrong happens
1417 */
1418static noinline int
1419lock_and_cleanup_extent_if_need(struct btrfs_inode *inode, struct page **pages,
1420				size_t num_pages, loff_t pos,
1421				size_t write_bytes,
1422				u64 *lockstart, u64 *lockend,
1423				struct extent_state **cached_state)
1424{
1425	struct btrfs_fs_info *fs_info = inode->root->fs_info;
1426	u64 start_pos;
1427	u64 last_pos;
1428	int i;
1429	int ret = 0;
1430
1431	start_pos = round_down(pos, fs_info->sectorsize);
1432	last_pos = round_up(pos + write_bytes, fs_info->sectorsize) - 1;
1433
1434	if (start_pos < inode->vfs_inode.i_size) {
1435		struct btrfs_ordered_extent *ordered;
1436
1437		lock_extent_bits(&inode->io_tree, start_pos, last_pos,
1438				cached_state);
1439		ordered = btrfs_lookup_ordered_range(inode, start_pos,
1440						     last_pos - start_pos + 1);
1441		if (ordered &&
1442		    ordered->file_offset + ordered->num_bytes > start_pos &&
1443		    ordered->file_offset <= last_pos) {
1444			unlock_extent_cached(&inode->io_tree, start_pos,
1445					last_pos, cached_state);
 
 
1446			for (i = 0; i < num_pages; i++) {
1447				unlock_page(pages[i]);
1448				put_page(pages[i]);
1449			}
1450			btrfs_start_ordered_extent(ordered, 1);
1451			btrfs_put_ordered_extent(ordered);
1452			return -EAGAIN;
1453		}
1454		if (ordered)
1455			btrfs_put_ordered_extent(ordered);
1456
1457		*lockstart = start_pos;
1458		*lockend = last_pos;
1459		ret = 1;
 
 
 
 
1460	}
1461
1462	/*
1463	 * We should be called after prepare_pages() which should have locked
1464	 * all pages in the range.
1465	 */
1466	for (i = 0; i < num_pages; i++)
1467		WARN_ON(!PageLocked(pages[i]));
1468
1469	return ret;
1470}
1471
1472static int check_can_nocow(struct btrfs_inode *inode, loff_t pos,
1473			   size_t *write_bytes, bool nowait)
1474{
1475	struct btrfs_fs_info *fs_info = inode->root->fs_info;
1476	struct btrfs_root *root = inode->root;
1477	u64 lockstart, lockend;
1478	u64 num_bytes;
1479	int ret;
1480
1481	if (!(inode->flags & (BTRFS_INODE_NODATACOW | BTRFS_INODE_PREALLOC)))
1482		return 0;
1483
1484	if (!nowait && !btrfs_drew_try_write_lock(&root->snapshot_lock))
1485		return -EAGAIN;
1486
1487	lockstart = round_down(pos, fs_info->sectorsize);
1488	lockend = round_up(pos + *write_bytes,
1489			   fs_info->sectorsize) - 1;
1490	num_bytes = lockend - lockstart + 1;
1491
1492	if (nowait) {
1493		struct btrfs_ordered_extent *ordered;
1494
1495		if (!try_lock_extent(&inode->io_tree, lockstart, lockend))
1496			return -EAGAIN;
1497
1498		ordered = btrfs_lookup_ordered_range(inode, lockstart,
1499						     num_bytes);
1500		if (ordered) {
1501			btrfs_put_ordered_extent(ordered);
1502			ret = -EAGAIN;
1503			goto out_unlock;
1504		}
1505	} else {
1506		btrfs_lock_and_flush_ordered_range(inode, lockstart,
1507						   lockend, NULL);
1508	}
1509
1510	ret = can_nocow_extent(&inode->vfs_inode, lockstart, &num_bytes,
1511			NULL, NULL, NULL, false);
1512	if (ret <= 0) {
1513		ret = 0;
1514		if (!nowait)
1515			btrfs_drew_write_unlock(&root->snapshot_lock);
1516	} else {
1517		*write_bytes = min_t(size_t, *write_bytes ,
1518				     num_bytes - pos + lockstart);
1519	}
1520out_unlock:
1521	unlock_extent(&inode->io_tree, lockstart, lockend);
1522
1523	return ret;
1524}
1525
1526static int check_nocow_nolock(struct btrfs_inode *inode, loff_t pos,
1527			      size_t *write_bytes)
 
1528{
1529	return check_can_nocow(inode, pos, write_bytes, true);
1530}
1531
1532/*
1533 * Check if we can do nocow write into the range [@pos, @pos + @write_bytes)
1534 *
1535 * @pos:	 File offset
1536 * @write_bytes: The length to write, will be updated to the nocow writeable
1537 *		 range
1538 *
1539 * This function will flush ordered extents in the range to ensure proper
1540 * nocow checks.
1541 *
1542 * Return:
1543 * >0		and update @write_bytes if we can do nocow write
1544 *  0		if we can't do nocow write
1545 * -EAGAIN	if we can't get the needed lock or there are ordered extents
1546 * 		for * (nowait == true) case
1547 * <0		if other error happened
1548 *
1549 * NOTE: Callers need to release the lock by btrfs_check_nocow_unlock().
1550 */
1551int btrfs_check_nocow_lock(struct btrfs_inode *inode, loff_t pos,
1552			   size_t *write_bytes)
1553{
1554	return check_can_nocow(inode, pos, write_bytes, false);
1555}
1556
1557void btrfs_check_nocow_unlock(struct btrfs_inode *inode)
1558{
1559	btrfs_drew_write_unlock(&inode->root->snapshot_lock);
1560}
1561
1562static void update_time_for_write(struct inode *inode)
1563{
1564	struct timespec64 now;
1565
1566	if (IS_NOCMTIME(inode))
1567		return;
1568
1569	now = current_time(inode);
1570	if (!timespec64_equal(&inode->i_mtime, &now))
1571		inode->i_mtime = now;
1572
1573	if (!timespec64_equal(&inode->i_ctime, &now))
1574		inode->i_ctime = now;
1575
1576	if (IS_I_VERSION(inode))
1577		inode_inc_iversion(inode);
1578}
1579
1580static int btrfs_write_check(struct kiocb *iocb, struct iov_iter *from,
1581			     size_t count)
1582{
1583	struct file *file = iocb->ki_filp;
1584	struct inode *inode = file_inode(file);
1585	struct btrfs_fs_info *fs_info = btrfs_sb(inode->i_sb);
1586	loff_t pos = iocb->ki_pos;
1587	int ret;
1588	loff_t oldsize;
1589	loff_t start_pos;
1590
1591	if (iocb->ki_flags & IOCB_NOWAIT) {
1592		size_t nocow_bytes = count;
1593
1594		/* We will allocate space in case nodatacow is not set, so bail */
1595		if (check_nocow_nolock(BTRFS_I(inode), pos, &nocow_bytes) <= 0)
1596			return -EAGAIN;
1597		/*
1598		 * There are holes in the range or parts of the range that must
1599		 * be COWed (shared extents, RO block groups, etc), so just bail
1600		 * out.
1601		 */
1602		if (nocow_bytes < count)
1603			return -EAGAIN;
1604	}
1605
1606	current->backing_dev_info = inode_to_bdi(inode);
1607	ret = file_remove_privs(file);
1608	if (ret)
1609		return ret;
1610
1611	/*
1612	 * We reserve space for updating the inode when we reserve space for the
1613	 * extent we are going to write, so we will enospc out there.  We don't
1614	 * need to start yet another transaction to update the inode as we will
1615	 * update the inode when we finish writing whatever data we write.
1616	 */
1617	update_time_for_write(inode);
1618
1619	start_pos = round_down(pos, fs_info->sectorsize);
1620	oldsize = i_size_read(inode);
1621	if (start_pos > oldsize) {
1622		/* Expand hole size to cover write data, preventing empty gap */
1623		loff_t end_pos = round_up(pos + count, fs_info->sectorsize);
1624
1625		ret = btrfs_cont_expand(BTRFS_I(inode), oldsize, end_pos);
1626		if (ret) {
1627			current->backing_dev_info = NULL;
1628			return ret;
1629		}
1630	}
1631
1632	return 0;
1633}
1634
1635static noinline ssize_t btrfs_buffered_write(struct kiocb *iocb,
1636					       struct iov_iter *i)
1637{
1638	struct file *file = iocb->ki_filp;
1639	loff_t pos;
1640	struct inode *inode = file_inode(file);
1641	struct btrfs_fs_info *fs_info = btrfs_sb(inode->i_sb);
1642	struct page **pages = NULL;
1643	struct extent_changeset *data_reserved = NULL;
1644	u64 release_bytes = 0;
1645	u64 lockstart;
1646	u64 lockend;
1647	size_t num_written = 0;
1648	int nrptrs;
1649	ssize_t ret;
1650	bool only_release_metadata = false;
1651	bool force_page_uptodate = false;
1652	loff_t old_isize = i_size_read(inode);
1653	unsigned int ilock_flags = 0;
1654
1655	if (iocb->ki_flags & IOCB_NOWAIT)
1656		ilock_flags |= BTRFS_ILOCK_TRY;
1657
1658	ret = btrfs_inode_lock(inode, ilock_flags);
1659	if (ret < 0)
1660		return ret;
1661
1662	ret = generic_write_checks(iocb, i);
1663	if (ret <= 0)
1664		goto out;
1665
1666	ret = btrfs_write_check(iocb, i, ret);
1667	if (ret < 0)
1668		goto out;
1669
1670	pos = iocb->ki_pos;
1671	nrptrs = min(DIV_ROUND_UP(iov_iter_count(i), PAGE_SIZE),
1672			PAGE_SIZE / (sizeof(struct page *)));
1673	nrptrs = min(nrptrs, current->nr_dirtied_pause - current->nr_dirtied);
1674	nrptrs = max(nrptrs, 8);
1675	pages = kmalloc_array(nrptrs, sizeof(struct page *), GFP_KERNEL);
1676	if (!pages) {
1677		ret = -ENOMEM;
1678		goto out;
1679	}
1680
1681	while (iov_iter_count(i) > 0) {
1682		struct extent_state *cached_state = NULL;
1683		size_t offset = offset_in_page(pos);
1684		size_t sector_offset;
1685		size_t write_bytes = min(iov_iter_count(i),
1686					 nrptrs * (size_t)PAGE_SIZE -
1687					 offset);
1688		size_t num_pages;
1689		size_t reserve_bytes;
1690		size_t dirty_pages;
1691		size_t copied;
1692		size_t dirty_sectors;
1693		size_t num_sectors;
1694		int extents_locked;
1695
1696		/*
1697		 * Fault pages before locking them in prepare_pages
1698		 * to avoid recursive lock
1699		 */
1700		if (unlikely(iov_iter_fault_in_readable(i, write_bytes))) {
1701			ret = -EFAULT;
1702			break;
1703		}
1704
1705		only_release_metadata = false;
1706		sector_offset = pos & (fs_info->sectorsize - 1);
1707
1708		extent_changeset_release(data_reserved);
1709		ret = btrfs_check_data_free_space(BTRFS_I(inode),
1710						  &data_reserved, pos,
1711						  write_bytes);
1712		if (ret < 0) {
1713			/*
1714			 * If we don't have to COW at the offset, reserve
1715			 * metadata only. write_bytes may get smaller than
1716			 * requested here.
1717			 */
1718			if (btrfs_check_nocow_lock(BTRFS_I(inode), pos,
1719						   &write_bytes) > 0)
1720				only_release_metadata = true;
1721			else
1722				break;
1723		}
1724
1725		num_pages = DIV_ROUND_UP(write_bytes + offset, PAGE_SIZE);
1726		WARN_ON(num_pages > nrptrs);
1727		reserve_bytes = round_up(write_bytes + sector_offset,
1728					 fs_info->sectorsize);
1729		WARN_ON(reserve_bytes == 0);
1730		ret = btrfs_delalloc_reserve_metadata(BTRFS_I(inode),
1731				reserve_bytes);
1732		if (ret) {
1733			if (!only_release_metadata)
1734				btrfs_free_reserved_data_space(BTRFS_I(inode),
1735						data_reserved, pos,
1736						write_bytes);
1737			else
1738				btrfs_check_nocow_unlock(BTRFS_I(inode));
1739			break;
1740		}
1741
1742		release_bytes = reserve_bytes;
1743again:
1744		/*
1745		 * This is going to setup the pages array with the number of
1746		 * pages we want, so we don't really need to worry about the
1747		 * contents of pages from loop to loop
1748		 */
1749		ret = prepare_pages(inode, pages, num_pages,
1750				    pos, write_bytes,
1751				    force_page_uptodate);
1752		if (ret) {
1753			btrfs_delalloc_release_extents(BTRFS_I(inode),
1754						       reserve_bytes);
1755			break;
1756		}
1757
1758		extents_locked = lock_and_cleanup_extent_if_need(
1759				BTRFS_I(inode), pages,
1760				num_pages, pos, write_bytes, &lockstart,
1761				&lockend, &cached_state);
1762		if (extents_locked < 0) {
1763			if (extents_locked == -EAGAIN)
1764				goto again;
1765			btrfs_delalloc_release_extents(BTRFS_I(inode),
1766						       reserve_bytes);
1767			ret = extents_locked;
1768			break;
1769		}
1770
1771		copied = btrfs_copy_from_user(pos, write_bytes, pages, i);
1772
1773		num_sectors = BTRFS_BYTES_TO_BLKS(fs_info, reserve_bytes);
1774		dirty_sectors = round_up(copied + sector_offset,
1775					fs_info->sectorsize);
1776		dirty_sectors = BTRFS_BYTES_TO_BLKS(fs_info, dirty_sectors);
1777
1778		/*
1779		 * if we have trouble faulting in the pages, fall
1780		 * back to one page at a time
1781		 */
1782		if (copied < write_bytes)
1783			nrptrs = 1;
1784
1785		if (copied == 0) {
1786			force_page_uptodate = true;
1787			dirty_sectors = 0;
1788			dirty_pages = 0;
1789		} else {
1790			force_page_uptodate = false;
1791			dirty_pages = DIV_ROUND_UP(copied + offset,
1792						   PAGE_SIZE);
 
1793		}
1794
1795		if (num_sectors > dirty_sectors) {
1796			/* release everything except the sectors we dirtied */
1797			release_bytes -= dirty_sectors << fs_info->sectorsize_bits;
1798			if (only_release_metadata) {
1799				btrfs_delalloc_release_metadata(BTRFS_I(inode),
1800							release_bytes, true);
1801			} else {
1802				u64 __pos;
1803
1804				__pos = round_down(pos,
1805						   fs_info->sectorsize) +
1806					(dirty_pages << PAGE_SHIFT);
1807				btrfs_delalloc_release_space(BTRFS_I(inode),
1808						data_reserved, __pos,
1809						release_bytes, true);
1810			}
 
 
 
1811		}
1812
1813		release_bytes = round_up(copied + sector_offset,
1814					fs_info->sectorsize);
1815
1816		ret = btrfs_dirty_pages(BTRFS_I(inode), pages,
1817					dirty_pages, pos, copied,
1818					&cached_state, only_release_metadata);
1819
1820		/*
1821		 * If we have not locked the extent range, because the range's
1822		 * start offset is >= i_size, we might still have a non-NULL
1823		 * cached extent state, acquired while marking the extent range
1824		 * as delalloc through btrfs_dirty_pages(). Therefore free any
1825		 * possible cached extent state to avoid a memory leak.
1826		 */
1827		if (extents_locked)
1828			unlock_extent_cached(&BTRFS_I(inode)->io_tree,
1829					     lockstart, lockend, &cached_state);
1830		else
1831			free_extent_state(cached_state);
1832
1833		btrfs_delalloc_release_extents(BTRFS_I(inode), reserve_bytes);
1834		if (ret) {
1835			btrfs_drop_pages(pages, num_pages);
1836			break;
1837		}
1838
1839		release_bytes = 0;
1840		if (only_release_metadata)
1841			btrfs_check_nocow_unlock(BTRFS_I(inode));
1842
1843		btrfs_drop_pages(pages, num_pages);
1844
1845		cond_resched();
1846
1847		balance_dirty_pages_ratelimited(inode->i_mapping);
 
 
 
 
1848
1849		pos += copied;
1850		num_written += copied;
1851	}
1852
1853	kfree(pages);
1854
1855	if (release_bytes) {
1856		if (only_release_metadata) {
1857			btrfs_check_nocow_unlock(BTRFS_I(inode));
1858			btrfs_delalloc_release_metadata(BTRFS_I(inode),
1859					release_bytes, true);
1860		} else {
1861			btrfs_delalloc_release_space(BTRFS_I(inode),
1862					data_reserved,
1863					round_down(pos, fs_info->sectorsize),
1864					release_bytes, true);
1865		}
1866	}
1867
1868	extent_changeset_free(data_reserved);
1869	if (num_written > 0) {
1870		pagecache_isize_extended(inode, old_isize, iocb->ki_pos);
1871		iocb->ki_pos += num_written;
1872	}
1873out:
1874	btrfs_inode_unlock(inode, ilock_flags);
1875	return num_written ? num_written : ret;
1876}
1877
1878static ssize_t check_direct_IO(struct btrfs_fs_info *fs_info,
1879			       const struct iov_iter *iter, loff_t offset)
1880{
1881	const u32 blocksize_mask = fs_info->sectorsize - 1;
1882
1883	if (offset & blocksize_mask)
1884		return -EINVAL;
1885
1886	if (iov_iter_alignment(iter) & blocksize_mask)
1887		return -EINVAL;
1888
1889	return 0;
1890}
1891
1892static ssize_t btrfs_direct_write(struct kiocb *iocb, struct iov_iter *from)
1893{
1894	struct file *file = iocb->ki_filp;
1895	struct inode *inode = file_inode(file);
1896	struct btrfs_fs_info *fs_info = btrfs_sb(inode->i_sb);
1897	loff_t pos;
1898	ssize_t written = 0;
1899	ssize_t written_buffered;
1900	loff_t endbyte;
1901	ssize_t err;
1902	unsigned int ilock_flags = 0;
1903	struct iomap_dio *dio = NULL;
1904
1905	if (iocb->ki_flags & IOCB_NOWAIT)
1906		ilock_flags |= BTRFS_ILOCK_TRY;
1907
1908	/* If the write DIO is within EOF, use a shared lock */
1909	if (iocb->ki_pos + iov_iter_count(from) <= i_size_read(inode))
1910		ilock_flags |= BTRFS_ILOCK_SHARED;
1911
1912relock:
1913	err = btrfs_inode_lock(inode, ilock_flags);
1914	if (err < 0)
1915		return err;
1916
1917	err = generic_write_checks(iocb, from);
1918	if (err <= 0) {
1919		btrfs_inode_unlock(inode, ilock_flags);
1920		return err;
1921	}
1922
1923	err = btrfs_write_check(iocb, from, err);
1924	if (err < 0) {
1925		btrfs_inode_unlock(inode, ilock_flags);
1926		goto out;
1927	}
1928
1929	pos = iocb->ki_pos;
1930	/*
1931	 * Re-check since file size may have changed just before taking the
1932	 * lock or pos may have changed because of O_APPEND in generic_write_check()
 
 
 
1933	 */
1934	if ((ilock_flags & BTRFS_ILOCK_SHARED) &&
1935	    pos + iov_iter_count(from) > i_size_read(inode)) {
1936		btrfs_inode_unlock(inode, ilock_flags);
1937		ilock_flags &= ~BTRFS_ILOCK_SHARED;
1938		goto relock;
1939	}
1940
1941	if (check_direct_IO(fs_info, from, pos)) {
1942		btrfs_inode_unlock(inode, ilock_flags);
1943		goto buffered;
1944	}
1945
1946	dio = __iomap_dio_rw(iocb, from, &btrfs_dio_iomap_ops, &btrfs_dio_ops,
1947			     0);
1948
1949	btrfs_inode_unlock(inode, ilock_flags);
1950
1951	if (IS_ERR_OR_NULL(dio)) {
1952		err = PTR_ERR_OR_ZERO(dio);
1953		if (err < 0 && err != -ENOTBLK)
1954			goto out;
1955	} else {
1956		written = iomap_dio_complete(dio);
1957	}
1958
1959	if (written < 0 || !iov_iter_count(from)) {
1960		err = written;
1961		goto out;
1962	}
1963
1964buffered:
1965	pos = iocb->ki_pos;
1966	written_buffered = btrfs_buffered_write(iocb, from);
 
1967	if (written_buffered < 0) {
1968		err = written_buffered;
1969		goto out;
1970	}
1971	/*
1972	 * Ensure all data is persisted. We want the next direct IO read to be
1973	 * able to read what was just written.
1974	 */
1975	endbyte = pos + written_buffered - 1;
1976	err = btrfs_fdatawrite_range(inode, pos, endbyte);
1977	if (err)
1978		goto out;
1979	err = filemap_fdatawait_range(inode->i_mapping, pos, endbyte);
1980	if (err)
1981		goto out;
1982	written += written_buffered;
1983	iocb->ki_pos = pos + written_buffered;
1984	invalidate_mapping_pages(file->f_mapping, pos >> PAGE_SHIFT,
1985				 endbyte >> PAGE_SHIFT);
1986out:
1987	return written ? written : err;
1988}
1989
1990static ssize_t btrfs_file_write_iter(struct kiocb *iocb,
1991				    struct iov_iter *from)
 
1992{
1993	struct file *file = iocb->ki_filp;
1994	struct btrfs_inode *inode = BTRFS_I(file_inode(file));
 
 
 
1995	ssize_t num_written = 0;
1996	const bool sync = iocb->ki_flags & IOCB_DSYNC;
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1997
1998	/*
1999	 * If the fs flips readonly due to some impossible error, although we
2000	 * have opened a file as writable, we have to stop this write operation
2001	 * to ensure consistency.
 
2002	 */
2003	if (test_bit(BTRFS_FS_STATE_ERROR, &inode->root->fs_info->fs_state))
2004		return -EROFS;
 
 
 
2005
2006	if (!(iocb->ki_flags & IOCB_DIRECT) &&
2007	    (iocb->ki_flags & IOCB_NOWAIT))
2008		return -EOPNOTSUPP;
2009
2010	if (sync)
2011		atomic_inc(&inode->sync_writers);
 
 
 
 
 
 
2012
2013	if (iocb->ki_flags & IOCB_DIRECT)
2014		num_written = btrfs_direct_write(iocb, from);
2015	else
2016		num_written = btrfs_buffered_write(iocb, from);
 
2017
2018	btrfs_set_inode_last_sub_trans(inode);
2019
2020	if (num_written > 0)
2021		num_written = generic_write_sync(iocb, num_written);
 
 
2022
2023	if (sync)
2024		atomic_dec(&inode->sync_writers);
2025
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
2026	current->backing_dev_info = NULL;
2027	return num_written;
2028}
2029
2030int btrfs_release_file(struct inode *inode, struct file *filp)
2031{
2032	struct btrfs_file_private *private = filp->private_data;
2033
2034	if (private && private->filldir_buf)
2035		kfree(private->filldir_buf);
2036	kfree(private);
2037	filp->private_data = NULL;
2038
2039	/*
2040	 * Set by setattr when we are about to truncate a file from a non-zero
2041	 * size to a zero size.  This tries to flush down new bytes that may
2042	 * have been written if the application were using truncate to replace
2043	 * a file in place.
2044	 */
2045	if (test_and_clear_bit(BTRFS_INODE_FLUSH_ON_CLOSE,
2046			       &BTRFS_I(inode)->runtime_flags))
 
 
2047			filemap_flush(inode->i_mapping);
 
 
 
2048	return 0;
2049}
2050
2051static int start_ordered_ops(struct inode *inode, loff_t start, loff_t end)
2052{
2053	int ret;
2054	struct blk_plug plug;
2055
2056	/*
2057	 * This is only called in fsync, which would do synchronous writes, so
2058	 * a plug can merge adjacent IOs as much as possible.  Esp. in case of
2059	 * multiple disks using raid profile, a large IO can be split to
2060	 * several segments of stripe length (currently 64K).
2061	 */
2062	blk_start_plug(&plug);
2063	atomic_inc(&BTRFS_I(inode)->sync_writers);
2064	ret = btrfs_fdatawrite_range(inode, start, end);
2065	atomic_dec(&BTRFS_I(inode)->sync_writers);
2066	blk_finish_plug(&plug);
2067
2068	return ret;
2069}
2070
2071static inline bool skip_inode_logging(const struct btrfs_log_ctx *ctx)
2072{
2073	struct btrfs_inode *inode = BTRFS_I(ctx->inode);
2074	struct btrfs_fs_info *fs_info = inode->root->fs_info;
2075
2076	if (btrfs_inode_in_log(inode, fs_info->generation) &&
2077	    list_empty(&ctx->ordered_extents))
2078		return true;
2079
2080	/*
2081	 * If we are doing a fast fsync we can not bail out if the inode's
2082	 * last_trans is <= then the last committed transaction, because we only
2083	 * update the last_trans of the inode during ordered extent completion,
2084	 * and for a fast fsync we don't wait for that, we only wait for the
2085	 * writeback to complete.
2086	 */
2087	if (inode->last_trans <= fs_info->last_trans_committed &&
2088	    (test_bit(BTRFS_INODE_NEEDS_FULL_SYNC, &inode->runtime_flags) ||
2089	     list_empty(&ctx->ordered_extents)))
2090		return true;
2091
2092	return false;
2093}
2094
2095/*
2096 * fsync call for both files and directories.  This logs the inode into
2097 * the tree log instead of forcing full commits whenever possible.
2098 *
2099 * It needs to call filemap_fdatawait so that all ordered extent updates are
2100 * in the metadata btree are up to date for copying to the log.
2101 *
2102 * It drops the inode mutex before doing the tree log commit.  This is an
2103 * important optimization for directories because holding the mutex prevents
2104 * new operations on the dir while we write to disk.
2105 */
2106int btrfs_sync_file(struct file *file, loff_t start, loff_t end, int datasync)
2107{
2108	struct dentry *dentry = file_dentry(file);
2109	struct inode *inode = d_inode(dentry);
2110	struct btrfs_fs_info *fs_info = btrfs_sb(inode->i_sb);
2111	struct btrfs_root *root = BTRFS_I(inode)->root;
 
2112	struct btrfs_trans_handle *trans;
2113	struct btrfs_log_ctx ctx;
2114	int ret = 0, err;
2115	u64 len;
2116	bool full_sync;
2117
2118	trace_btrfs_sync_file(file, datasync);
2119
2120	btrfs_init_log_ctx(&ctx, inode);
2121
2122	/*
2123	 * Always set the range to a full range, otherwise we can get into
2124	 * several problems, from missing file extent items to represent holes
2125	 * when not using the NO_HOLES feature, to log tree corruption due to
2126	 * races between hole detection during logging and completion of ordered
2127	 * extents outside the range, to missing checksums due to ordered extents
2128	 * for which we flushed only a subset of their pages.
2129	 */
2130	start = 0;
2131	end = LLONG_MAX;
2132	len = (u64)LLONG_MAX + 1;
2133
2134	/*
2135	 * We write the dirty pages in the range and wait until they complete
2136	 * out of the ->i_mutex. If so, we can flush the dirty pages by
2137	 * multi-task, and make the performance up.  See
2138	 * btrfs_wait_ordered_range for an explanation of the ASYNC check.
2139	 */
2140	ret = start_ordered_ops(inode, start, end);
2141	if (ret)
2142		goto out;
 
2143
2144	btrfs_inode_lock(inode, BTRFS_ILOCK_MMAP);
2145
2146	atomic_inc(&root->log_batch);
 
2147
2148	/*
2149	 * Always check for the full sync flag while holding the inode's lock,
2150	 * to avoid races with other tasks. The flag must be either set all the
2151	 * time during logging or always off all the time while logging.
2152	 */
2153	full_sync = test_bit(BTRFS_INODE_NEEDS_FULL_SYNC,
2154			     &BTRFS_I(inode)->runtime_flags);
2155
2156	/*
2157	 * Before we acquired the inode's lock and the mmap lock, someone may
2158	 * have dirtied more pages in the target range. We need to make sure
2159	 * that writeback for any such pages does not start while we are logging
2160	 * the inode, because if it does, any of the following might happen when
2161	 * we are not doing a full inode sync:
2162	 *
2163	 * 1) We log an extent after its writeback finishes but before its
2164	 *    checksums are added to the csum tree, leading to -EIO errors
2165	 *    when attempting to read the extent after a log replay.
2166	 *
2167	 * 2) We can end up logging an extent before its writeback finishes.
2168	 *    Therefore after the log replay we will have a file extent item
2169	 *    pointing to an unwritten extent (and no data checksums as well).
2170	 *
2171	 * So trigger writeback for any eventual new dirty pages and then we
2172	 * wait for all ordered extents to complete below.
2173	 */
2174	ret = start_ordered_ops(inode, start, end);
2175	if (ret) {
2176		btrfs_inode_unlock(inode, BTRFS_ILOCK_MMAP);
2177		goto out;
2178	}
2179
2180	/*
2181	 * We have to do this here to avoid the priority inversion of waiting on
2182	 * IO of a lower priority task while holding a transaction open.
2183	 *
2184	 * For a full fsync we wait for the ordered extents to complete while
2185	 * for a fast fsync we wait just for writeback to complete, and then
2186	 * attach the ordered extents to the transaction so that a transaction
2187	 * commit waits for their completion, to avoid data loss if we fsync,
2188	 * the current transaction commits before the ordered extents complete
2189	 * and a power failure happens right after that.
2190	 *
2191	 * For zoned filesystem, if a write IO uses a ZONE_APPEND command, the
2192	 * logical address recorded in the ordered extent may change. We need
2193	 * to wait for the IO to stabilize the logical address.
2194	 */
2195	if (full_sync || btrfs_is_zoned(fs_info)) {
2196		ret = btrfs_wait_ordered_range(inode, start, len);
2197	} else {
2198		/*
2199		 * Get our ordered extents as soon as possible to avoid doing
2200		 * checksum lookups in the csum tree, and use instead the
2201		 * checksums attached to the ordered extents.
2202		 */
2203		btrfs_get_ordered_extents_for_logging(BTRFS_I(inode),
2204						      &ctx.ordered_extents);
2205		ret = filemap_fdatawait_range(inode->i_mapping, start, end);
2206	}
2207
2208	if (ret)
2209		goto out_release_extents;
2210
2211	atomic_inc(&root->log_batch);
2212
2213	smp_mb();
2214	if (skip_inode_logging(&ctx)) {
2215		/*
2216		 * We've had everything committed since the last time we were
2217		 * modified so clear this flag in case it was set for whatever
2218		 * reason, it's no longer relevant.
2219		 */
2220		clear_bit(BTRFS_INODE_NEEDS_FULL_SYNC,
2221			  &BTRFS_I(inode)->runtime_flags);
2222		/*
2223		 * An ordered extent might have started before and completed
2224		 * already with io errors, in which case the inode was not
2225		 * updated and we end up here. So check the inode's mapping
2226		 * for any errors that might have happened since we last
2227		 * checked called fsync.
2228		 */
2229		ret = filemap_check_wb_err(inode->i_mapping, file->f_wb_err);
2230		goto out_release_extents;
2231	}
2232
2233	/*
2234	 * We use start here because we will need to wait on the IO to complete
2235	 * in btrfs_sync_log, which could require joining a transaction (for
2236	 * example checking cross references in the nocow path).  If we use join
2237	 * here we could get into a situation where we're waiting on IO to
2238	 * happen that is blocked on a transaction trying to commit.  With start
2239	 * we inc the extwriter counter, so we wait for all extwriters to exit
2240	 * before we start blocking joiners.  This comment is to keep somebody
2241	 * from thinking they are super smart and changing this to
2242	 * btrfs_join_transaction *cough*Josef*cough*.
2243	 */
 
 
 
2244	trans = btrfs_start_transaction(root, 0);
2245	if (IS_ERR(trans)) {
2246		ret = PTR_ERR(trans);
2247		goto out_release_extents;
 
2248	}
2249	trans->in_fsync = true;
2250
2251	ret = btrfs_log_dentry_safe(trans, dentry, &ctx);
2252	btrfs_release_log_ctx_extents(&ctx);
2253	if (ret < 0) {
2254		/* Fallthrough and commit/free transaction. */
2255		ret = 1;
2256	}
2257
2258	/* we've logged all the items and now have a consistent
2259	 * version of the file in the log.  It is possible that
2260	 * someone will come in and modify the file, but that's
2261	 * fine because the log is consistent on disk, and we
2262	 * have references to all of the file's extents
2263	 *
2264	 * It is possible that someone will come in and log the
2265	 * file again, but that will end up using the synchronization
2266	 * inside btrfs_sync_log to keep things safe.
2267	 */
2268	btrfs_inode_unlock(inode, BTRFS_ILOCK_MMAP);
2269
2270	if (ret != BTRFS_NO_LOG_SYNC) {
2271		if (!ret) {
2272			ret = btrfs_sync_log(trans, root, &ctx);
2273			if (!ret) {
2274				ret = btrfs_end_transaction(trans);
2275				goto out;
2276			}
 
 
2277		}
2278		if (!full_sync) {
2279			ret = btrfs_wait_ordered_range(inode, start, len);
2280			if (ret) {
2281				btrfs_end_transaction(trans);
2282				goto out;
2283			}
2284		}
2285		ret = btrfs_commit_transaction(trans);
2286	} else {
2287		ret = btrfs_end_transaction(trans);
2288	}
2289out:
2290	ASSERT(list_empty(&ctx.list));
2291	err = file_check_and_advance_wb_err(file);
2292	if (!ret)
2293		ret = err;
2294	return ret > 0 ? -EIO : ret;
2295
2296out_release_extents:
2297	btrfs_release_log_ctx_extents(&ctx);
2298	btrfs_inode_unlock(inode, BTRFS_ILOCK_MMAP);
2299	goto out;
2300}
2301
2302static const struct vm_operations_struct btrfs_file_vm_ops = {
2303	.fault		= filemap_fault,
2304	.map_pages	= filemap_map_pages,
2305	.page_mkwrite	= btrfs_page_mkwrite,
2306};
2307
2308static int btrfs_file_mmap(struct file	*filp, struct vm_area_struct *vma)
2309{
2310	struct address_space *mapping = filp->f_mapping;
2311
2312	if (!mapping->a_ops->readpage)
2313		return -ENOEXEC;
2314
2315	file_accessed(filp);
2316	vma->vm_ops = &btrfs_file_vm_ops;
 
2317
2318	return 0;
2319}
2320
2321static int hole_mergeable(struct btrfs_inode *inode, struct extent_buffer *leaf,
2322			  int slot, u64 start, u64 end)
2323{
2324	struct btrfs_file_extent_item *fi;
2325	struct btrfs_key key;
2326
2327	if (slot < 0 || slot >= btrfs_header_nritems(leaf))
2328		return 0;
2329
2330	btrfs_item_key_to_cpu(leaf, &key, slot);
2331	if (key.objectid != btrfs_ino(inode) ||
2332	    key.type != BTRFS_EXTENT_DATA_KEY)
2333		return 0;
2334
2335	fi = btrfs_item_ptr(leaf, slot, struct btrfs_file_extent_item);
2336
2337	if (btrfs_file_extent_type(leaf, fi) != BTRFS_FILE_EXTENT_REG)
2338		return 0;
2339
2340	if (btrfs_file_extent_disk_bytenr(leaf, fi))
2341		return 0;
2342
2343	if (key.offset == end)
2344		return 1;
2345	if (key.offset + btrfs_file_extent_num_bytes(leaf, fi) == start)
2346		return 1;
2347	return 0;
2348}
2349
2350static int fill_holes(struct btrfs_trans_handle *trans,
2351		struct btrfs_inode *inode,
2352		struct btrfs_path *path, u64 offset, u64 end)
2353{
2354	struct btrfs_fs_info *fs_info = trans->fs_info;
2355	struct btrfs_root *root = inode->root;
2356	struct extent_buffer *leaf;
2357	struct btrfs_file_extent_item *fi;
2358	struct extent_map *hole_em;
2359	struct extent_map_tree *em_tree = &inode->extent_tree;
2360	struct btrfs_key key;
2361	int ret;
2362
2363	if (btrfs_fs_incompat(fs_info, NO_HOLES))
2364		goto out;
2365
2366	key.objectid = btrfs_ino(inode);
2367	key.type = BTRFS_EXTENT_DATA_KEY;
2368	key.offset = offset;
2369
2370	ret = btrfs_search_slot(trans, root, &key, path, 0, 1);
2371	if (ret <= 0) {
2372		/*
2373		 * We should have dropped this offset, so if we find it then
2374		 * something has gone horribly wrong.
2375		 */
2376		if (ret == 0)
2377			ret = -EINVAL;
2378		return ret;
2379	}
2380
2381	leaf = path->nodes[0];
2382	if (hole_mergeable(inode, leaf, path->slots[0] - 1, offset, end)) {
2383		u64 num_bytes;
2384
2385		path->slots[0]--;
2386		fi = btrfs_item_ptr(leaf, path->slots[0],
2387				    struct btrfs_file_extent_item);
2388		num_bytes = btrfs_file_extent_num_bytes(leaf, fi) +
2389			end - offset;
2390		btrfs_set_file_extent_num_bytes(leaf, fi, num_bytes);
2391		btrfs_set_file_extent_ram_bytes(leaf, fi, num_bytes);
2392		btrfs_set_file_extent_offset(leaf, fi, 0);
2393		btrfs_mark_buffer_dirty(leaf);
2394		goto out;
2395	}
2396
2397	if (hole_mergeable(inode, leaf, path->slots[0], offset, end)) {
2398		u64 num_bytes;
2399
2400		key.offset = offset;
2401		btrfs_set_item_key_safe(fs_info, path, &key);
2402		fi = btrfs_item_ptr(leaf, path->slots[0],
2403				    struct btrfs_file_extent_item);
2404		num_bytes = btrfs_file_extent_num_bytes(leaf, fi) + end -
2405			offset;
2406		btrfs_set_file_extent_num_bytes(leaf, fi, num_bytes);
2407		btrfs_set_file_extent_ram_bytes(leaf, fi, num_bytes);
2408		btrfs_set_file_extent_offset(leaf, fi, 0);
2409		btrfs_mark_buffer_dirty(leaf);
2410		goto out;
2411	}
2412	btrfs_release_path(path);
2413
2414	ret = btrfs_insert_file_extent(trans, root, btrfs_ino(inode),
2415			offset, 0, 0, end - offset, 0, end - offset, 0, 0, 0);
2416	if (ret)
2417		return ret;
2418
2419out:
2420	btrfs_release_path(path);
2421
2422	hole_em = alloc_extent_map();
2423	if (!hole_em) {
2424		btrfs_drop_extent_cache(inode, offset, end - 1, 0);
2425		set_bit(BTRFS_INODE_NEEDS_FULL_SYNC, &inode->runtime_flags);
2426	} else {
2427		hole_em->start = offset;
2428		hole_em->len = end - offset;
2429		hole_em->ram_bytes = hole_em->len;
2430		hole_em->orig_start = offset;
2431
2432		hole_em->block_start = EXTENT_MAP_HOLE;
2433		hole_em->block_len = 0;
2434		hole_em->orig_block_len = 0;
2435		hole_em->compress_type = BTRFS_COMPRESS_NONE;
2436		hole_em->generation = trans->transid;
2437
2438		do {
2439			btrfs_drop_extent_cache(inode, offset, end - 1, 0);
2440			write_lock(&em_tree->lock);
2441			ret = add_extent_mapping(em_tree, hole_em, 1);
2442			write_unlock(&em_tree->lock);
2443		} while (ret == -EEXIST);
2444		free_extent_map(hole_em);
2445		if (ret)
2446			set_bit(BTRFS_INODE_NEEDS_FULL_SYNC,
2447					&inode->runtime_flags);
2448	}
2449
2450	return 0;
2451}
2452
2453/*
2454 * Find a hole extent on given inode and change start/len to the end of hole
2455 * extent.(hole/vacuum extent whose em->start <= start &&
2456 *	   em->start + em->len > start)
2457 * When a hole extent is found, return 1 and modify start/len.
2458 */
2459static int find_first_non_hole(struct btrfs_inode *inode, u64 *start, u64 *len)
2460{
2461	struct btrfs_fs_info *fs_info = inode->root->fs_info;
2462	struct extent_map *em;
2463	int ret = 0;
2464
2465	em = btrfs_get_extent(inode, NULL, 0,
2466			      round_down(*start, fs_info->sectorsize),
2467			      round_up(*len, fs_info->sectorsize));
2468	if (IS_ERR(em))
2469		return PTR_ERR(em);
2470
2471	/* Hole or vacuum extent(only exists in no-hole mode) */
2472	if (em->block_start == EXTENT_MAP_HOLE) {
2473		ret = 1;
2474		*len = em->start + em->len > *start + *len ?
2475		       0 : *start + *len - em->start - em->len;
2476		*start = em->start + em->len;
2477	}
2478	free_extent_map(em);
2479	return ret;
2480}
2481
2482static int btrfs_punch_hole_lock_range(struct inode *inode,
2483				       const u64 lockstart,
2484				       const u64 lockend,
2485				       struct extent_state **cached_state)
2486{
2487	/*
2488	 * For subpage case, if the range is not at page boundary, we could
2489	 * have pages at the leading/tailing part of the range.
2490	 * This could lead to dead loop since filemap_range_has_page()
2491	 * will always return true.
2492	 * So here we need to do extra page alignment for
2493	 * filemap_range_has_page().
2494	 */
2495	const u64 page_lockstart = round_up(lockstart, PAGE_SIZE);
2496	const u64 page_lockend = round_down(lockend + 1, PAGE_SIZE) - 1;
2497
2498	while (1) {
2499		struct btrfs_ordered_extent *ordered;
2500		int ret;
2501
2502		truncate_pagecache_range(inode, lockstart, lockend);
2503
2504		lock_extent_bits(&BTRFS_I(inode)->io_tree, lockstart, lockend,
2505				 cached_state);
2506		ordered = btrfs_lookup_first_ordered_extent(BTRFS_I(inode),
2507							    lockend);
2508
2509		/*
2510		 * We need to make sure we have no ordered extents in this range
2511		 * and nobody raced in and read a page in this range, if we did
2512		 * we need to try again.
2513		 */
2514		if ((!ordered ||
2515		    (ordered->file_offset + ordered->num_bytes <= lockstart ||
2516		     ordered->file_offset > lockend)) &&
2517		     !filemap_range_has_page(inode->i_mapping,
2518					     page_lockstart, page_lockend)) {
2519			if (ordered)
2520				btrfs_put_ordered_extent(ordered);
2521			break;
2522		}
2523		if (ordered)
2524			btrfs_put_ordered_extent(ordered);
2525		unlock_extent_cached(&BTRFS_I(inode)->io_tree, lockstart,
2526				     lockend, cached_state);
2527		ret = btrfs_wait_ordered_range(inode, lockstart,
2528					       lockend - lockstart + 1);
2529		if (ret)
2530			return ret;
2531	}
2532	return 0;
2533}
2534
2535static int btrfs_insert_replace_extent(struct btrfs_trans_handle *trans,
2536				     struct btrfs_inode *inode,
2537				     struct btrfs_path *path,
2538				     struct btrfs_replace_extent_info *extent_info,
2539				     const u64 replace_len,
2540				     const u64 bytes_to_drop)
2541{
2542	struct btrfs_fs_info *fs_info = trans->fs_info;
2543	struct btrfs_root *root = inode->root;
2544	struct btrfs_file_extent_item *extent;
2545	struct extent_buffer *leaf;
2546	struct btrfs_key key;
2547	int slot;
2548	struct btrfs_ref ref = { 0 };
2549	int ret;
2550
2551	if (replace_len == 0)
2552		return 0;
2553
2554	if (extent_info->disk_offset == 0 &&
2555	    btrfs_fs_incompat(fs_info, NO_HOLES)) {
2556		btrfs_update_inode_bytes(inode, 0, bytes_to_drop);
2557		return 0;
2558	}
2559
2560	key.objectid = btrfs_ino(inode);
2561	key.type = BTRFS_EXTENT_DATA_KEY;
2562	key.offset = extent_info->file_offset;
2563	ret = btrfs_insert_empty_item(trans, root, path, &key,
2564				      sizeof(struct btrfs_file_extent_item));
2565	if (ret)
2566		return ret;
2567	leaf = path->nodes[0];
2568	slot = path->slots[0];
2569	write_extent_buffer(leaf, extent_info->extent_buf,
2570			    btrfs_item_ptr_offset(leaf, slot),
2571			    sizeof(struct btrfs_file_extent_item));
2572	extent = btrfs_item_ptr(leaf, slot, struct btrfs_file_extent_item);
2573	ASSERT(btrfs_file_extent_type(leaf, extent) != BTRFS_FILE_EXTENT_INLINE);
2574	btrfs_set_file_extent_offset(leaf, extent, extent_info->data_offset);
2575	btrfs_set_file_extent_num_bytes(leaf, extent, replace_len);
2576	if (extent_info->is_new_extent)
2577		btrfs_set_file_extent_generation(leaf, extent, trans->transid);
2578	btrfs_mark_buffer_dirty(leaf);
2579	btrfs_release_path(path);
2580
2581	ret = btrfs_inode_set_file_extent_range(inode, extent_info->file_offset,
2582						replace_len);
2583	if (ret)
2584		return ret;
2585
2586	/* If it's a hole, nothing more needs to be done. */
2587	if (extent_info->disk_offset == 0) {
2588		btrfs_update_inode_bytes(inode, 0, bytes_to_drop);
2589		return 0;
2590	}
2591
2592	btrfs_update_inode_bytes(inode, replace_len, bytes_to_drop);
2593
2594	if (extent_info->is_new_extent && extent_info->insertions == 0) {
2595		key.objectid = extent_info->disk_offset;
2596		key.type = BTRFS_EXTENT_ITEM_KEY;
2597		key.offset = extent_info->disk_len;
2598		ret = btrfs_alloc_reserved_file_extent(trans, root,
2599						       btrfs_ino(inode),
2600						       extent_info->file_offset,
2601						       extent_info->qgroup_reserved,
2602						       &key);
2603	} else {
2604		u64 ref_offset;
2605
2606		btrfs_init_generic_ref(&ref, BTRFS_ADD_DELAYED_REF,
2607				       extent_info->disk_offset,
2608				       extent_info->disk_len, 0);
2609		ref_offset = extent_info->file_offset - extent_info->data_offset;
2610		btrfs_init_data_ref(&ref, root->root_key.objectid,
2611				    btrfs_ino(inode), ref_offset);
2612		ret = btrfs_inc_extent_ref(trans, &ref);
2613	}
2614
2615	extent_info->insertions++;
2616
2617	return ret;
2618}
2619
2620/*
2621 * The respective range must have been previously locked, as well as the inode.
2622 * The end offset is inclusive (last byte of the range).
2623 * @extent_info is NULL for fallocate's hole punching and non-NULL when replacing
2624 * the file range with an extent.
2625 * When not punching a hole, we don't want to end up in a state where we dropped
2626 * extents without inserting a new one, so we must abort the transaction to avoid
2627 * a corruption.
2628 */
2629int btrfs_replace_file_extents(struct btrfs_inode *inode,
2630			       struct btrfs_path *path, const u64 start,
2631			       const u64 end,
2632			       struct btrfs_replace_extent_info *extent_info,
2633			       struct btrfs_trans_handle **trans_out)
2634{
2635	struct btrfs_drop_extents_args drop_args = { 0 };
2636	struct btrfs_root *root = inode->root;
2637	struct btrfs_fs_info *fs_info = root->fs_info;
2638	u64 min_size = btrfs_calc_insert_metadata_size(fs_info, 1);
2639	u64 ino_size = round_up(inode->vfs_inode.i_size, fs_info->sectorsize);
2640	struct btrfs_trans_handle *trans = NULL;
2641	struct btrfs_block_rsv *rsv;
2642	unsigned int rsv_count;
2643	u64 cur_offset;
2644	u64 len = end - start;
2645	int ret = 0;
2646
2647	if (end <= start)
2648		return -EINVAL;
2649
2650	rsv = btrfs_alloc_block_rsv(fs_info, BTRFS_BLOCK_RSV_TEMP);
2651	if (!rsv) {
2652		ret = -ENOMEM;
2653		goto out;
2654	}
2655	rsv->size = btrfs_calc_insert_metadata_size(fs_info, 1);
2656	rsv->failfast = 1;
2657
2658	/*
2659	 * 1 - update the inode
2660	 * 1 - removing the extents in the range
2661	 * 1 - adding the hole extent if no_holes isn't set or if we are
2662	 *     replacing the range with a new extent
2663	 */
2664	if (!btrfs_fs_incompat(fs_info, NO_HOLES) || extent_info)
2665		rsv_count = 3;
2666	else
2667		rsv_count = 2;
2668
2669	trans = btrfs_start_transaction(root, rsv_count);
2670	if (IS_ERR(trans)) {
2671		ret = PTR_ERR(trans);
2672		trans = NULL;
2673		goto out_free;
2674	}
2675
2676	ret = btrfs_block_rsv_migrate(&fs_info->trans_block_rsv, rsv,
2677				      min_size, false);
2678	BUG_ON(ret);
2679	trans->block_rsv = rsv;
2680
2681	cur_offset = start;
2682	drop_args.path = path;
2683	drop_args.end = end + 1;
2684	drop_args.drop_cache = true;
2685	while (cur_offset < end) {
2686		drop_args.start = cur_offset;
2687		ret = btrfs_drop_extents(trans, root, inode, &drop_args);
2688		/* If we are punching a hole decrement the inode's byte count */
2689		if (!extent_info)
2690			btrfs_update_inode_bytes(inode, 0,
2691						 drop_args.bytes_found);
2692		if (ret != -ENOSPC) {
2693			/*
2694			 * The only time we don't want to abort is if we are
2695			 * attempting to clone a partial inline extent, in which
2696			 * case we'll get EOPNOTSUPP.  However if we aren't
2697			 * clone we need to abort no matter what, because if we
2698			 * got EOPNOTSUPP via prealloc then we messed up and
2699			 * need to abort.
2700			 */
2701			if (ret &&
2702			    (ret != -EOPNOTSUPP ||
2703			     (extent_info && extent_info->is_new_extent)))
2704				btrfs_abort_transaction(trans, ret);
2705			break;
2706		}
2707
2708		trans->block_rsv = &fs_info->trans_block_rsv;
2709
2710		if (!extent_info && cur_offset < drop_args.drop_end &&
2711		    cur_offset < ino_size) {
2712			ret = fill_holes(trans, inode, path, cur_offset,
2713					 drop_args.drop_end);
2714			if (ret) {
2715				/*
2716				 * If we failed then we didn't insert our hole
2717				 * entries for the area we dropped, so now the
2718				 * fs is corrupted, so we must abort the
2719				 * transaction.
2720				 */
2721				btrfs_abort_transaction(trans, ret);
2722				break;
2723			}
2724		} else if (!extent_info && cur_offset < drop_args.drop_end) {
2725			/*
2726			 * We are past the i_size here, but since we didn't
2727			 * insert holes we need to clear the mapped area so we
2728			 * know to not set disk_i_size in this area until a new
2729			 * file extent is inserted here.
2730			 */
2731			ret = btrfs_inode_clear_file_extent_range(inode,
2732					cur_offset,
2733					drop_args.drop_end - cur_offset);
2734			if (ret) {
2735				/*
2736				 * We couldn't clear our area, so we could
2737				 * presumably adjust up and corrupt the fs, so
2738				 * we need to abort.
2739				 */
2740				btrfs_abort_transaction(trans, ret);
2741				break;
2742			}
2743		}
2744
2745		if (extent_info &&
2746		    drop_args.drop_end > extent_info->file_offset) {
2747			u64 replace_len = drop_args.drop_end -
2748					  extent_info->file_offset;
2749
2750			ret = btrfs_insert_replace_extent(trans, inode,	path,
2751					extent_info, replace_len,
2752					drop_args.bytes_found);
2753			if (ret) {
2754				btrfs_abort_transaction(trans, ret);
2755				break;
2756			}
2757			extent_info->data_len -= replace_len;
2758			extent_info->data_offset += replace_len;
2759			extent_info->file_offset += replace_len;
2760		}
2761
2762		ret = btrfs_update_inode(trans, root, inode);
2763		if (ret)
2764			break;
2765
2766		btrfs_end_transaction(trans);
2767		btrfs_btree_balance_dirty(fs_info);
2768
2769		trans = btrfs_start_transaction(root, rsv_count);
2770		if (IS_ERR(trans)) {
2771			ret = PTR_ERR(trans);
2772			trans = NULL;
2773			break;
2774		}
2775
2776		ret = btrfs_block_rsv_migrate(&fs_info->trans_block_rsv,
2777					      rsv, min_size, false);
2778		BUG_ON(ret);	/* shouldn't happen */
2779		trans->block_rsv = rsv;
2780
2781		cur_offset = drop_args.drop_end;
2782		len = end - cur_offset;
2783		if (!extent_info && len) {
2784			ret = find_first_non_hole(inode, &cur_offset, &len);
2785			if (unlikely(ret < 0))
2786				break;
2787			if (ret && !len) {
2788				ret = 0;
2789				break;
2790			}
2791		}
2792	}
2793
2794	/*
2795	 * If we were cloning, force the next fsync to be a full one since we
2796	 * we replaced (or just dropped in the case of cloning holes when
2797	 * NO_HOLES is enabled) file extent items and did not setup new extent
2798	 * maps for the replacement extents (or holes).
2799	 */
2800	if (extent_info && !extent_info->is_new_extent)
2801		set_bit(BTRFS_INODE_NEEDS_FULL_SYNC, &inode->runtime_flags);
2802
2803	if (ret)
2804		goto out_trans;
2805
2806	trans->block_rsv = &fs_info->trans_block_rsv;
2807	/*
2808	 * If we are using the NO_HOLES feature we might have had already an
2809	 * hole that overlaps a part of the region [lockstart, lockend] and
2810	 * ends at (or beyond) lockend. Since we have no file extent items to
2811	 * represent holes, drop_end can be less than lockend and so we must
2812	 * make sure we have an extent map representing the existing hole (the
2813	 * call to __btrfs_drop_extents() might have dropped the existing extent
2814	 * map representing the existing hole), otherwise the fast fsync path
2815	 * will not record the existence of the hole region
2816	 * [existing_hole_start, lockend].
2817	 */
2818	if (drop_args.drop_end <= end)
2819		drop_args.drop_end = end + 1;
2820	/*
2821	 * Don't insert file hole extent item if it's for a range beyond eof
2822	 * (because it's useless) or if it represents a 0 bytes range (when
2823	 * cur_offset == drop_end).
2824	 */
2825	if (!extent_info && cur_offset < ino_size &&
2826	    cur_offset < drop_args.drop_end) {
2827		ret = fill_holes(trans, inode, path, cur_offset,
2828				 drop_args.drop_end);
2829		if (ret) {
2830			/* Same comment as above. */
2831			btrfs_abort_transaction(trans, ret);
2832			goto out_trans;
2833		}
2834	} else if (!extent_info && cur_offset < drop_args.drop_end) {
2835		/* See the comment in the loop above for the reasoning here. */
2836		ret = btrfs_inode_clear_file_extent_range(inode, cur_offset,
2837					drop_args.drop_end - cur_offset);
2838		if (ret) {
2839			btrfs_abort_transaction(trans, ret);
2840			goto out_trans;
2841		}
2842
2843	}
2844	if (extent_info) {
2845		ret = btrfs_insert_replace_extent(trans, inode, path,
2846				extent_info, extent_info->data_len,
2847				drop_args.bytes_found);
2848		if (ret) {
2849			btrfs_abort_transaction(trans, ret);
2850			goto out_trans;
2851		}
2852	}
2853
2854out_trans:
2855	if (!trans)
2856		goto out_free;
2857
2858	trans->block_rsv = &fs_info->trans_block_rsv;
2859	if (ret)
2860		btrfs_end_transaction(trans);
2861	else
2862		*trans_out = trans;
2863out_free:
2864	btrfs_free_block_rsv(fs_info, rsv);
2865out:
2866	return ret;
2867}
2868
2869static int btrfs_punch_hole(struct inode *inode, loff_t offset, loff_t len)
2870{
2871	struct btrfs_fs_info *fs_info = btrfs_sb(inode->i_sb);
2872	struct btrfs_root *root = BTRFS_I(inode)->root;
2873	struct extent_state *cached_state = NULL;
2874	struct btrfs_path *path;
2875	struct btrfs_trans_handle *trans = NULL;
2876	u64 lockstart;
2877	u64 lockend;
2878	u64 tail_start;
2879	u64 tail_len;
2880	u64 orig_start = offset;
2881	int ret = 0;
2882	bool same_block;
2883	u64 ino_size;
2884	bool truncated_block = false;
2885	bool updated_inode = false;
2886
2887	ret = btrfs_wait_ordered_range(inode, offset, len);
2888	if (ret)
2889		return ret;
2890
2891	btrfs_inode_lock(inode, BTRFS_ILOCK_MMAP);
2892	ino_size = round_up(inode->i_size, fs_info->sectorsize);
2893	ret = find_first_non_hole(BTRFS_I(inode), &offset, &len);
2894	if (ret < 0)
2895		goto out_only_mutex;
2896	if (ret && !len) {
2897		/* Already in a large hole */
2898		ret = 0;
2899		goto out_only_mutex;
2900	}
2901
2902	lockstart = round_up(offset, btrfs_inode_sectorsize(BTRFS_I(inode)));
2903	lockend = round_down(offset + len,
2904			     btrfs_inode_sectorsize(BTRFS_I(inode))) - 1;
2905	same_block = (BTRFS_BYTES_TO_BLKS(fs_info, offset))
2906		== (BTRFS_BYTES_TO_BLKS(fs_info, offset + len - 1));
2907	/*
2908	 * We needn't truncate any block which is beyond the end of the file
2909	 * because we are sure there is no data there.
2910	 */
2911	/*
2912	 * Only do this if we are in the same block and we aren't doing the
2913	 * entire block.
2914	 */
2915	if (same_block && len < fs_info->sectorsize) {
2916		if (offset < ino_size) {
2917			truncated_block = true;
2918			ret = btrfs_truncate_block(BTRFS_I(inode), offset, len,
2919						   0);
2920		} else {
2921			ret = 0;
2922		}
2923		goto out_only_mutex;
2924	}
2925
2926	/* zero back part of the first block */
2927	if (offset < ino_size) {
2928		truncated_block = true;
2929		ret = btrfs_truncate_block(BTRFS_I(inode), offset, 0, 0);
2930		if (ret) {
2931			btrfs_inode_unlock(inode, BTRFS_ILOCK_MMAP);
2932			return ret;
2933		}
2934	}
2935
2936	/* Check the aligned pages after the first unaligned page,
2937	 * if offset != orig_start, which means the first unaligned page
2938	 * including several following pages are already in holes,
2939	 * the extra check can be skipped */
2940	if (offset == orig_start) {
2941		/* after truncate page, check hole again */
2942		len = offset + len - lockstart;
2943		offset = lockstart;
2944		ret = find_first_non_hole(BTRFS_I(inode), &offset, &len);
2945		if (ret < 0)
2946			goto out_only_mutex;
2947		if (ret && !len) {
2948			ret = 0;
2949			goto out_only_mutex;
2950		}
2951		lockstart = offset;
2952	}
2953
2954	/* Check the tail unaligned part is in a hole */
2955	tail_start = lockend + 1;
2956	tail_len = offset + len - tail_start;
2957	if (tail_len) {
2958		ret = find_first_non_hole(BTRFS_I(inode), &tail_start, &tail_len);
2959		if (unlikely(ret < 0))
2960			goto out_only_mutex;
2961		if (!ret) {
2962			/* zero the front end of the last page */
2963			if (tail_start + tail_len < ino_size) {
2964				truncated_block = true;
2965				ret = btrfs_truncate_block(BTRFS_I(inode),
2966							tail_start + tail_len,
2967							0, 1);
2968				if (ret)
2969					goto out_only_mutex;
2970			}
2971		}
2972	}
2973
2974	if (lockend < lockstart) {
2975		ret = 0;
2976		goto out_only_mutex;
2977	}
2978
2979	ret = btrfs_punch_hole_lock_range(inode, lockstart, lockend,
2980					  &cached_state);
2981	if (ret)
2982		goto out_only_mutex;
2983
2984	path = btrfs_alloc_path();
2985	if (!path) {
2986		ret = -ENOMEM;
2987		goto out;
2988	}
2989
2990	ret = btrfs_replace_file_extents(BTRFS_I(inode), path, lockstart,
2991					 lockend, NULL, &trans);
2992	btrfs_free_path(path);
2993	if (ret)
2994		goto out;
2995
2996	ASSERT(trans != NULL);
2997	inode_inc_iversion(inode);
2998	inode->i_mtime = inode->i_ctime = current_time(inode);
2999	ret = btrfs_update_inode(trans, root, BTRFS_I(inode));
3000	updated_inode = true;
3001	btrfs_end_transaction(trans);
3002	btrfs_btree_balance_dirty(fs_info);
3003out:
3004	unlock_extent_cached(&BTRFS_I(inode)->io_tree, lockstart, lockend,
3005			     &cached_state);
3006out_only_mutex:
3007	if (!updated_inode && truncated_block && !ret) {
3008		/*
3009		 * If we only end up zeroing part of a page, we still need to
3010		 * update the inode item, so that all the time fields are
3011		 * updated as well as the necessary btrfs inode in memory fields
3012		 * for detecting, at fsync time, if the inode isn't yet in the
3013		 * log tree or it's there but not up to date.
3014		 */
3015		struct timespec64 now = current_time(inode);
3016
3017		inode_inc_iversion(inode);
3018		inode->i_mtime = now;
3019		inode->i_ctime = now;
3020		trans = btrfs_start_transaction(root, 1);
3021		if (IS_ERR(trans)) {
3022			ret = PTR_ERR(trans);
3023		} else {
3024			int ret2;
3025
3026			ret = btrfs_update_inode(trans, root, BTRFS_I(inode));
3027			ret2 = btrfs_end_transaction(trans);
3028			if (!ret)
3029				ret = ret2;
3030		}
3031	}
3032	btrfs_inode_unlock(inode, BTRFS_ILOCK_MMAP);
3033	return ret;
3034}
3035
3036/* Helper structure to record which range is already reserved */
3037struct falloc_range {
3038	struct list_head list;
3039	u64 start;
3040	u64 len;
3041};
3042
3043/*
3044 * Helper function to add falloc range
3045 *
3046 * Caller should have locked the larger range of extent containing
3047 * [start, len)
3048 */
3049static int add_falloc_range(struct list_head *head, u64 start, u64 len)
3050{
3051	struct falloc_range *range = NULL;
3052
3053	if (!list_empty(head)) {
3054		/*
3055		 * As fallocate iterates by bytenr order, we only need to check
3056		 * the last range.
3057		 */
3058		range = list_last_entry(head, struct falloc_range, list);
3059		if (range->start + range->len == start) {
3060			range->len += len;
3061			return 0;
3062		}
3063	}
3064
3065	range = kmalloc(sizeof(*range), GFP_KERNEL);
3066	if (!range)
3067		return -ENOMEM;
3068	range->start = start;
3069	range->len = len;
3070	list_add_tail(&range->list, head);
3071	return 0;
3072}
3073
3074static int btrfs_fallocate_update_isize(struct inode *inode,
3075					const u64 end,
3076					const int mode)
3077{
3078	struct btrfs_trans_handle *trans;
3079	struct btrfs_root *root = BTRFS_I(inode)->root;
3080	int ret;
3081	int ret2;
3082
3083	if (mode & FALLOC_FL_KEEP_SIZE || end <= i_size_read(inode))
3084		return 0;
3085
3086	trans = btrfs_start_transaction(root, 1);
3087	if (IS_ERR(trans))
3088		return PTR_ERR(trans);
3089
3090	inode->i_ctime = current_time(inode);
3091	i_size_write(inode, end);
3092	btrfs_inode_safe_disk_i_size_write(BTRFS_I(inode), 0);
3093	ret = btrfs_update_inode(trans, root, BTRFS_I(inode));
3094	ret2 = btrfs_end_transaction(trans);
3095
3096	return ret ? ret : ret2;
3097}
3098
3099enum {
3100	RANGE_BOUNDARY_WRITTEN_EXTENT,
3101	RANGE_BOUNDARY_PREALLOC_EXTENT,
3102	RANGE_BOUNDARY_HOLE,
3103};
3104
3105static int btrfs_zero_range_check_range_boundary(struct btrfs_inode *inode,
3106						 u64 offset)
3107{
3108	const u64 sectorsize = btrfs_inode_sectorsize(inode);
3109	struct extent_map *em;
3110	int ret;
3111
3112	offset = round_down(offset, sectorsize);
3113	em = btrfs_get_extent(inode, NULL, 0, offset, sectorsize);
3114	if (IS_ERR(em))
3115		return PTR_ERR(em);
3116
3117	if (em->block_start == EXTENT_MAP_HOLE)
3118		ret = RANGE_BOUNDARY_HOLE;
3119	else if (test_bit(EXTENT_FLAG_PREALLOC, &em->flags))
3120		ret = RANGE_BOUNDARY_PREALLOC_EXTENT;
3121	else
3122		ret = RANGE_BOUNDARY_WRITTEN_EXTENT;
3123
3124	free_extent_map(em);
3125	return ret;
3126}
3127
3128static int btrfs_zero_range(struct inode *inode,
3129			    loff_t offset,
3130			    loff_t len,
3131			    const int mode)
3132{
3133	struct btrfs_fs_info *fs_info = BTRFS_I(inode)->root->fs_info;
3134	struct extent_map *em;
3135	struct extent_changeset *data_reserved = NULL;
3136	int ret;
3137	u64 alloc_hint = 0;
3138	const u64 sectorsize = btrfs_inode_sectorsize(BTRFS_I(inode));
3139	u64 alloc_start = round_down(offset, sectorsize);
3140	u64 alloc_end = round_up(offset + len, sectorsize);
3141	u64 bytes_to_reserve = 0;
3142	bool space_reserved = false;
3143
3144	inode_dio_wait(inode);
3145
3146	em = btrfs_get_extent(BTRFS_I(inode), NULL, 0, alloc_start,
3147			      alloc_end - alloc_start);
3148	if (IS_ERR(em)) {
3149		ret = PTR_ERR(em);
3150		goto out;
3151	}
3152
3153	/*
3154	 * Avoid hole punching and extent allocation for some cases. More cases
3155	 * could be considered, but these are unlikely common and we keep things
3156	 * as simple as possible for now. Also, intentionally, if the target
3157	 * range contains one or more prealloc extents together with regular
3158	 * extents and holes, we drop all the existing extents and allocate a
3159	 * new prealloc extent, so that we get a larger contiguous disk extent.
3160	 */
3161	if (em->start <= alloc_start &&
3162	    test_bit(EXTENT_FLAG_PREALLOC, &em->flags)) {
3163		const u64 em_end = em->start + em->len;
3164
3165		if (em_end >= offset + len) {
3166			/*
3167			 * The whole range is already a prealloc extent,
3168			 * do nothing except updating the inode's i_size if
3169			 * needed.
3170			 */
3171			free_extent_map(em);
3172			ret = btrfs_fallocate_update_isize(inode, offset + len,
3173							   mode);
3174			goto out;
3175		}
3176		/*
3177		 * Part of the range is already a prealloc extent, so operate
3178		 * only on the remaining part of the range.
3179		 */
3180		alloc_start = em_end;
3181		ASSERT(IS_ALIGNED(alloc_start, sectorsize));
3182		len = offset + len - alloc_start;
3183		offset = alloc_start;
3184		alloc_hint = em->block_start + em->len;
3185	}
3186	free_extent_map(em);
3187
3188	if (BTRFS_BYTES_TO_BLKS(fs_info, offset) ==
3189	    BTRFS_BYTES_TO_BLKS(fs_info, offset + len - 1)) {
3190		em = btrfs_get_extent(BTRFS_I(inode), NULL, 0, alloc_start,
3191				      sectorsize);
3192		if (IS_ERR(em)) {
3193			ret = PTR_ERR(em);
3194			goto out;
3195		}
3196
3197		if (test_bit(EXTENT_FLAG_PREALLOC, &em->flags)) {
3198			free_extent_map(em);
3199			ret = btrfs_fallocate_update_isize(inode, offset + len,
3200							   mode);
3201			goto out;
3202		}
3203		if (len < sectorsize && em->block_start != EXTENT_MAP_HOLE) {
3204			free_extent_map(em);
3205			ret = btrfs_truncate_block(BTRFS_I(inode), offset, len,
3206						   0);
3207			if (!ret)
3208				ret = btrfs_fallocate_update_isize(inode,
3209								   offset + len,
3210								   mode);
3211			return ret;
3212		}
3213		free_extent_map(em);
3214		alloc_start = round_down(offset, sectorsize);
3215		alloc_end = alloc_start + sectorsize;
3216		goto reserve_space;
3217	}
3218
3219	alloc_start = round_up(offset, sectorsize);
3220	alloc_end = round_down(offset + len, sectorsize);
3221
3222	/*
3223	 * For unaligned ranges, check the pages at the boundaries, they might
3224	 * map to an extent, in which case we need to partially zero them, or
3225	 * they might map to a hole, in which case we need our allocation range
3226	 * to cover them.
3227	 */
3228	if (!IS_ALIGNED(offset, sectorsize)) {
3229		ret = btrfs_zero_range_check_range_boundary(BTRFS_I(inode),
3230							    offset);
3231		if (ret < 0)
3232			goto out;
3233		if (ret == RANGE_BOUNDARY_HOLE) {
3234			alloc_start = round_down(offset, sectorsize);
3235			ret = 0;
3236		} else if (ret == RANGE_BOUNDARY_WRITTEN_EXTENT) {
3237			ret = btrfs_truncate_block(BTRFS_I(inode), offset, 0, 0);
3238			if (ret)
3239				goto out;
3240		} else {
3241			ret = 0;
3242		}
3243	}
3244
3245	if (!IS_ALIGNED(offset + len, sectorsize)) {
3246		ret = btrfs_zero_range_check_range_boundary(BTRFS_I(inode),
3247							    offset + len);
3248		if (ret < 0)
3249			goto out;
3250		if (ret == RANGE_BOUNDARY_HOLE) {
3251			alloc_end = round_up(offset + len, sectorsize);
3252			ret = 0;
3253		} else if (ret == RANGE_BOUNDARY_WRITTEN_EXTENT) {
3254			ret = btrfs_truncate_block(BTRFS_I(inode), offset + len,
3255						   0, 1);
3256			if (ret)
3257				goto out;
3258		} else {
3259			ret = 0;
3260		}
3261	}
3262
3263reserve_space:
3264	if (alloc_start < alloc_end) {
3265		struct extent_state *cached_state = NULL;
3266		const u64 lockstart = alloc_start;
3267		const u64 lockend = alloc_end - 1;
3268
3269		bytes_to_reserve = alloc_end - alloc_start;
3270		ret = btrfs_alloc_data_chunk_ondemand(BTRFS_I(inode),
3271						      bytes_to_reserve);
3272		if (ret < 0)
3273			goto out;
3274		space_reserved = true;
3275		ret = btrfs_punch_hole_lock_range(inode, lockstart, lockend,
3276						  &cached_state);
3277		if (ret)
3278			goto out;
3279		ret = btrfs_qgroup_reserve_data(BTRFS_I(inode), &data_reserved,
3280						alloc_start, bytes_to_reserve);
3281		if (ret) {
3282			unlock_extent_cached(&BTRFS_I(inode)->io_tree, lockstart,
3283					     lockend, &cached_state);
3284			goto out;
3285		}
3286		ret = btrfs_prealloc_file_range(inode, mode, alloc_start,
3287						alloc_end - alloc_start,
3288						i_blocksize(inode),
3289						offset + len, &alloc_hint);
3290		unlock_extent_cached(&BTRFS_I(inode)->io_tree, lockstart,
3291				     lockend, &cached_state);
3292		/* btrfs_prealloc_file_range releases reserved space on error */
3293		if (ret) {
3294			space_reserved = false;
3295			goto out;
3296		}
3297	}
3298	ret = btrfs_fallocate_update_isize(inode, offset + len, mode);
3299 out:
3300	if (ret && space_reserved)
3301		btrfs_free_reserved_data_space(BTRFS_I(inode), data_reserved,
3302					       alloc_start, bytes_to_reserve);
3303	extent_changeset_free(data_reserved);
3304
3305	return ret;
3306}
3307
3308static long btrfs_fallocate(struct file *file, int mode,
3309			    loff_t offset, loff_t len)
3310{
3311	struct inode *inode = file_inode(file);
3312	struct extent_state *cached_state = NULL;
3313	struct extent_changeset *data_reserved = NULL;
3314	struct falloc_range *range;
3315	struct falloc_range *tmp;
3316	struct list_head reserve_list;
3317	u64 cur_offset;
3318	u64 last_byte;
3319	u64 alloc_start;
3320	u64 alloc_end;
3321	u64 alloc_hint = 0;
3322	u64 locked_end;
3323	u64 actual_end = 0;
3324	struct extent_map *em;
3325	int blocksize = btrfs_inode_sectorsize(BTRFS_I(inode));
3326	int ret;
3327
3328	/* Do not allow fallocate in ZONED mode */
3329	if (btrfs_is_zoned(btrfs_sb(inode->i_sb)))
3330		return -EOPNOTSUPP;
3331
3332	alloc_start = round_down(offset, blocksize);
3333	alloc_end = round_up(offset + len, blocksize);
3334	cur_offset = alloc_start;
3335
3336	/* Make sure we aren't being give some crap mode */
3337	if (mode & ~(FALLOC_FL_KEEP_SIZE | FALLOC_FL_PUNCH_HOLE |
3338		     FALLOC_FL_ZERO_RANGE))
3339		return -EOPNOTSUPP;
3340
3341	if (mode & FALLOC_FL_PUNCH_HOLE)
3342		return btrfs_punch_hole(inode, offset, len);
3343
3344	/*
3345	 * Only trigger disk allocation, don't trigger qgroup reserve
3346	 *
3347	 * For qgroup space, it will be checked later.
3348	 */
3349	if (!(mode & FALLOC_FL_ZERO_RANGE)) {
3350		ret = btrfs_alloc_data_chunk_ondemand(BTRFS_I(inode),
3351						      alloc_end - alloc_start);
3352		if (ret < 0)
3353			return ret;
3354	}
3355
3356	btrfs_inode_lock(inode, BTRFS_ILOCK_MMAP);
 
 
 
3357
3358	if (!(mode & FALLOC_FL_KEEP_SIZE) && offset + len > inode->i_size) {
3359		ret = inode_newsize_ok(inode, offset + len);
3360		if (ret)
3361			goto out;
3362	}
3363
3364	/*
3365	 * TODO: Move these two operations after we have checked
3366	 * accurate reserved space, or fallocate can still fail but
3367	 * with page truncated or size expanded.
3368	 *
3369	 * But that's a minor problem and won't do much harm BTW.
3370	 */
3371	if (alloc_start > inode->i_size) {
3372		ret = btrfs_cont_expand(BTRFS_I(inode), i_size_read(inode),
3373					alloc_start);
3374		if (ret)
3375			goto out;
3376	} else if (offset + len > inode->i_size) {
3377		/*
3378		 * If we are fallocating from the end of the file onward we
3379		 * need to zero out the end of the block if i_size lands in the
3380		 * middle of a block.
3381		 */
3382		ret = btrfs_truncate_block(BTRFS_I(inode), inode->i_size, 0, 0);
3383		if (ret)
3384			goto out;
3385	}
3386
3387	/*
3388	 * wait for ordered IO before we have any locks.  We'll loop again
3389	 * below with the locks held.
3390	 */
3391	ret = btrfs_wait_ordered_range(inode, alloc_start,
3392				       alloc_end - alloc_start);
3393	if (ret)
3394		goto out;
3395
3396	if (mode & FALLOC_FL_ZERO_RANGE) {
3397		ret = btrfs_zero_range(inode, offset, len, mode);
3398		btrfs_inode_unlock(inode, BTRFS_ILOCK_MMAP);
3399		return ret;
3400	}
3401
3402	locked_end = alloc_end - 1;
3403	while (1) {
3404		struct btrfs_ordered_extent *ordered;
3405
3406		/* the extent lock is ordered inside the running
3407		 * transaction
3408		 */
3409		lock_extent_bits(&BTRFS_I(inode)->io_tree, alloc_start,
3410				 locked_end, &cached_state);
3411		ordered = btrfs_lookup_first_ordered_extent(BTRFS_I(inode),
3412							    locked_end);
3413
3414		if (ordered &&
3415		    ordered->file_offset + ordered->num_bytes > alloc_start &&
3416		    ordered->file_offset < alloc_end) {
3417			btrfs_put_ordered_extent(ordered);
3418			unlock_extent_cached(&BTRFS_I(inode)->io_tree,
3419					     alloc_start, locked_end,
3420					     &cached_state);
3421			/*
3422			 * we can't wait on the range with the transaction
3423			 * running or with the extent lock held
3424			 */
3425			ret = btrfs_wait_ordered_range(inode, alloc_start,
3426						       alloc_end - alloc_start);
3427			if (ret)
3428				goto out;
3429		} else {
3430			if (ordered)
3431				btrfs_put_ordered_extent(ordered);
3432			break;
3433		}
3434	}
3435
3436	/* First, check if we exceed the qgroup limit */
3437	INIT_LIST_HEAD(&reserve_list);
3438	while (cur_offset < alloc_end) {
3439		em = btrfs_get_extent(BTRFS_I(inode), NULL, 0, cur_offset,
3440				      alloc_end - cur_offset);
3441		if (IS_ERR(em)) {
3442			ret = PTR_ERR(em);
3443			break;
3444		}
3445		last_byte = min(extent_map_end(em), alloc_end);
3446		actual_end = min_t(u64, extent_map_end(em), offset + len);
3447		last_byte = ALIGN(last_byte, blocksize);
 
3448		if (em->block_start == EXTENT_MAP_HOLE ||
3449		    (cur_offset >= inode->i_size &&
3450		     !test_bit(EXTENT_FLAG_PREALLOC, &em->flags))) {
3451			ret = add_falloc_range(&reserve_list, cur_offset,
3452					       last_byte - cur_offset);
 
 
 
3453			if (ret < 0) {
3454				free_extent_map(em);
3455				break;
3456			}
3457			ret = btrfs_qgroup_reserve_data(BTRFS_I(inode),
3458					&data_reserved, cur_offset,
3459					last_byte - cur_offset);
3460			if (ret < 0) {
3461				cur_offset = last_byte;
3462				free_extent_map(em);
3463				break;
3464			}
3465		} else {
3466			/*
3467			 * Do not need to reserve unwritten extent for this
3468			 * range, free reserved data space first, otherwise
3469			 * it'll result in false ENOSPC error.
3470			 */
3471			btrfs_free_reserved_data_space(BTRFS_I(inode),
3472				data_reserved, cur_offset,
3473				last_byte - cur_offset);
3474		}
3475		free_extent_map(em);
 
3476		cur_offset = last_byte;
 
 
 
 
3477	}
 
 
3478
3479	/*
3480	 * If ret is still 0, means we're OK to fallocate.
3481	 * Or just cleanup the list and exit.
3482	 */
3483	list_for_each_entry_safe(range, tmp, &reserve_list, list) {
3484		if (!ret)
3485			ret = btrfs_prealloc_file_range(inode, mode,
3486					range->start,
3487					range->len, i_blocksize(inode),
3488					offset + len, &alloc_hint);
3489		else
3490			btrfs_free_reserved_data_space(BTRFS_I(inode),
3491					data_reserved, range->start,
3492					range->len);
3493		list_del(&range->list);
3494		kfree(range);
3495	}
3496	if (ret < 0)
3497		goto out_unlock;
3498
3499	/*
3500	 * We didn't need to allocate any more space, but we still extended the
3501	 * size of the file so we need to update i_size and the inode item.
3502	 */
3503	ret = btrfs_fallocate_update_isize(inode, actual_end, mode);
3504out_unlock:
3505	unlock_extent_cached(&BTRFS_I(inode)->io_tree, alloc_start, locked_end,
3506			     &cached_state);
3507out:
3508	btrfs_inode_unlock(inode, BTRFS_ILOCK_MMAP);
3509	/* Let go of our reservation. */
3510	if (ret != 0 && !(mode & FALLOC_FL_ZERO_RANGE))
3511		btrfs_free_reserved_data_space(BTRFS_I(inode), data_reserved,
3512				cur_offset, alloc_end - cur_offset);
3513	extent_changeset_free(data_reserved);
3514	return ret;
3515}
3516
3517static loff_t find_desired_extent(struct btrfs_inode *inode, loff_t offset,
3518				  int whence)
3519{
3520	struct btrfs_fs_info *fs_info = inode->root->fs_info;
3521	struct extent_map *em = NULL;
3522	struct extent_state *cached_state = NULL;
3523	loff_t i_size = inode->vfs_inode.i_size;
3524	u64 lockstart;
3525	u64 lockend;
3526	u64 start;
3527	u64 len;
 
3528	int ret = 0;
3529
3530	if (i_size == 0 || offset >= i_size)
 
 
 
 
 
 
 
3531		return -ENXIO;
3532
 
 
 
3533	/*
3534	 * offset can be negative, in this case we start finding DATA/HOLE from
3535	 * the very start of the file.
3536	 */
3537	start = max_t(loff_t, 0, offset);
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
3538
3539	lockstart = round_down(start, fs_info->sectorsize);
3540	lockend = round_up(i_size, fs_info->sectorsize);
3541	if (lockend <= lockstart)
3542		lockend = lockstart + fs_info->sectorsize;
3543	lockend--;
3544	len = lockend - lockstart + 1;
3545
3546	lock_extent_bits(&inode->io_tree, lockstart, lockend, &cached_state);
3547
3548	while (start < i_size) {
3549		em = btrfs_get_extent_fiemap(inode, start, len);
3550		if (IS_ERR(em)) {
3551			ret = PTR_ERR(em);
3552			em = NULL;
3553			break;
3554		}
3555
3556		if (whence == SEEK_HOLE &&
3557		    (em->block_start == EXTENT_MAP_HOLE ||
3558		     test_bit(EXTENT_FLAG_PREALLOC, &em->flags)))
3559			break;
3560		else if (whence == SEEK_DATA &&
3561			   (em->block_start != EXTENT_MAP_HOLE &&
3562			    !test_bit(EXTENT_FLAG_PREALLOC, &em->flags)))
3563			break;
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
3564
3565		start = em->start + em->len;
 
 
 
 
 
 
 
 
 
 
3566		free_extent_map(em);
3567		em = NULL;
3568		cond_resched();
3569	}
3570	free_extent_map(em);
3571	unlock_extent_cached(&inode->io_tree, lockstart, lockend,
3572			     &cached_state);
3573	if (ret) {
3574		offset = ret;
3575	} else {
3576		if (whence == SEEK_DATA && start >= i_size)
3577			offset = -ENXIO;
3578		else
3579			offset = min_t(loff_t, start, i_size);
3580	}
3581
3582	return offset;
3583}
3584
3585static loff_t btrfs_file_llseek(struct file *file, loff_t offset, int whence)
3586{
3587	struct inode *inode = file->f_mapping->host;
 
3588
3589	switch (whence) {
3590	default:
3591		return generic_file_llseek(file, offset, whence);
 
 
 
3592	case SEEK_DATA:
3593	case SEEK_HOLE:
3594		btrfs_inode_lock(inode, BTRFS_ILOCK_SHARED);
3595		offset = find_desired_extent(BTRFS_I(inode), offset, whence);
3596		btrfs_inode_unlock(inode, BTRFS_ILOCK_SHARED);
3597		break;
 
 
 
 
 
 
3598	}
3599
3600	if (offset < 0)
3601		return offset;
3602
3603	return vfs_setpos(file, offset, inode->i_sb->s_maxbytes);
3604}
3605
3606static int btrfs_file_open(struct inode *inode, struct file *filp)
3607{
3608	filp->f_mode |= FMODE_NOWAIT | FMODE_BUF_RASYNC;
3609	return generic_file_open(inode, filp);
3610}
3611
3612static int check_direct_read(struct btrfs_fs_info *fs_info,
3613			     const struct iov_iter *iter, loff_t offset)
3614{
3615	int ret;
3616	int i, seg;
3617
3618	ret = check_direct_IO(fs_info, iter, offset);
3619	if (ret < 0)
3620		return ret;
3621
3622	if (!iter_is_iovec(iter))
3623		return 0;
3624
3625	for (seg = 0; seg < iter->nr_segs; seg++)
3626		for (i = seg + 1; i < iter->nr_segs; i++)
3627			if (iter->iov[seg].iov_base == iter->iov[i].iov_base)
3628				return -EINVAL;
3629	return 0;
3630}
3631
3632static ssize_t btrfs_direct_read(struct kiocb *iocb, struct iov_iter *to)
3633{
3634	struct inode *inode = file_inode(iocb->ki_filp);
3635	ssize_t ret;
3636
3637	if (check_direct_read(btrfs_sb(inode->i_sb), to, iocb->ki_pos))
3638		return 0;
3639
3640	btrfs_inode_lock(inode, BTRFS_ILOCK_SHARED);
3641	ret = iomap_dio_rw(iocb, to, &btrfs_dio_iomap_ops, &btrfs_dio_ops, 0);
3642	btrfs_inode_unlock(inode, BTRFS_ILOCK_SHARED);
3643	return ret;
3644}
3645
3646static ssize_t btrfs_file_read_iter(struct kiocb *iocb, struct iov_iter *to)
3647{
3648	ssize_t ret = 0;
3649
3650	if (iocb->ki_flags & IOCB_DIRECT) {
3651		ret = btrfs_direct_read(iocb, to);
3652		if (ret < 0 || !iov_iter_count(to) ||
3653		    iocb->ki_pos >= i_size_read(file_inode(iocb->ki_filp)))
3654			return ret;
3655	}
3656
3657	return filemap_read(iocb, to, ret);
 
3658}
3659
3660const struct file_operations btrfs_file_operations = {
3661	.llseek		= btrfs_file_llseek,
3662	.read_iter      = btrfs_file_read_iter,
 
 
3663	.splice_read	= generic_file_splice_read,
3664	.write_iter	= btrfs_file_write_iter,
3665	.splice_write	= iter_file_splice_write,
3666	.mmap		= btrfs_file_mmap,
3667	.open		= btrfs_file_open,
3668	.release	= btrfs_release_file,
3669	.fsync		= btrfs_sync_file,
3670	.fallocate	= btrfs_fallocate,
3671	.unlocked_ioctl	= btrfs_ioctl,
3672#ifdef CONFIG_COMPAT
3673	.compat_ioctl	= btrfs_compat_ioctl,
3674#endif
3675	.remap_file_range = btrfs_remap_file_range,
3676};
3677
3678void __cold btrfs_auto_defrag_exit(void)
3679{
3680	kmem_cache_destroy(btrfs_inode_defrag_cachep);
3681}
3682
3683int __init btrfs_auto_defrag_init(void)
3684{
3685	btrfs_inode_defrag_cachep = kmem_cache_create("btrfs_inode_defrag",
3686					sizeof(struct inode_defrag), 0,
3687					SLAB_MEM_SPREAD,
3688					NULL);
3689	if (!btrfs_inode_defrag_cachep)
3690		return -ENOMEM;
3691
3692	return 0;
3693}
3694
3695int btrfs_fdatawrite_range(struct inode *inode, loff_t start, loff_t end)
3696{
3697	int ret;
3698
3699	/*
3700	 * So with compression we will find and lock a dirty page and clear the
3701	 * first one as dirty, setup an async extent, and immediately return
3702	 * with the entire range locked but with nobody actually marked with
3703	 * writeback.  So we can't just filemap_write_and_wait_range() and
3704	 * expect it to work since it will just kick off a thread to do the
3705	 * actual work.  So we need to call filemap_fdatawrite_range _again_
3706	 * since it will wait on the page lock, which won't be unlocked until
3707	 * after the pages have been marked as writeback and so we're good to go
3708	 * from there.  We have to do this otherwise we'll miss the ordered
3709	 * extents and that results in badness.  Please Josef, do not think you
3710	 * know better and pull this out at some point in the future, it is
3711	 * right and you are wrong.
3712	 */
3713	ret = filemap_fdatawrite_range(inode->i_mapping, start, end);
3714	if (!ret && test_bit(BTRFS_INODE_HAS_ASYNC_EXTENT,
3715			     &BTRFS_I(inode)->runtime_flags))
3716		ret = filemap_fdatawrite_range(inode->i_mapping, start, end);
3717
3718	return ret;
3719}