Loading...
1/*
2 * Copyright (C) 2007 Oracle. All rights reserved.
3 *
4 * This program is free software; you can redistribute it and/or
5 * modify it under the terms of the GNU General Public
6 * License v2 as published by the Free Software Foundation.
7 *
8 * This program is distributed in the hope that it will be useful,
9 * but WITHOUT ANY WARRANTY; without even the implied warranty of
10 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
11 * General Public License for more details.
12 *
13 * You should have received a copy of the GNU General Public
14 * License along with this program; if not, write to the
15 * Free Software Foundation, Inc., 59 Temple Place - Suite 330,
16 * Boston, MA 021110-1307, USA.
17 */
18
19#include <linux/fs.h>
20#include <linux/pagemap.h>
21#include <linux/highmem.h>
22#include <linux/time.h>
23#include <linux/init.h>
24#include <linux/string.h>
25#include <linux/backing-dev.h>
26#include <linux/mpage.h>
27#include <linux/falloc.h>
28#include <linux/swap.h>
29#include <linux/writeback.h>
30#include <linux/statfs.h>
31#include <linux/compat.h>
32#include <linux/slab.h>
33#include "ctree.h"
34#include "disk-io.h"
35#include "transaction.h"
36#include "btrfs_inode.h"
37#include "ioctl.h"
38#include "print-tree.h"
39#include "tree-log.h"
40#include "locking.h"
41#include "compat.h"
42
43/*
44 * when auto defrag is enabled we
45 * queue up these defrag structs to remember which
46 * inodes need defragging passes
47 */
48struct inode_defrag {
49 struct rb_node rb_node;
50 /* objectid */
51 u64 ino;
52 /*
53 * transid where the defrag was added, we search for
54 * extents newer than this
55 */
56 u64 transid;
57
58 /* root objectid */
59 u64 root;
60
61 /* last offset we were able to defrag */
62 u64 last_offset;
63
64 /* if we've wrapped around back to zero once already */
65 int cycled;
66};
67
68/* pop a record for an inode into the defrag tree. The lock
69 * must be held already
70 *
71 * If you're inserting a record for an older transid than an
72 * existing record, the transid already in the tree is lowered
73 *
74 * If an existing record is found the defrag item you
75 * pass in is freed
76 */
77static void __btrfs_add_inode_defrag(struct inode *inode,
78 struct inode_defrag *defrag)
79{
80 struct btrfs_root *root = BTRFS_I(inode)->root;
81 struct inode_defrag *entry;
82 struct rb_node **p;
83 struct rb_node *parent = NULL;
84
85 p = &root->fs_info->defrag_inodes.rb_node;
86 while (*p) {
87 parent = *p;
88 entry = rb_entry(parent, struct inode_defrag, rb_node);
89
90 if (defrag->ino < entry->ino)
91 p = &parent->rb_left;
92 else if (defrag->ino > entry->ino)
93 p = &parent->rb_right;
94 else {
95 /* if we're reinserting an entry for
96 * an old defrag run, make sure to
97 * lower the transid of our existing record
98 */
99 if (defrag->transid < entry->transid)
100 entry->transid = defrag->transid;
101 if (defrag->last_offset > entry->last_offset)
102 entry->last_offset = defrag->last_offset;
103 goto exists;
104 }
105 }
106 BTRFS_I(inode)->in_defrag = 1;
107 rb_link_node(&defrag->rb_node, parent, p);
108 rb_insert_color(&defrag->rb_node, &root->fs_info->defrag_inodes);
109 return;
110
111exists:
112 kfree(defrag);
113 return;
114
115}
116
117/*
118 * insert a defrag record for this inode if auto defrag is
119 * enabled
120 */
121int btrfs_add_inode_defrag(struct btrfs_trans_handle *trans,
122 struct inode *inode)
123{
124 struct btrfs_root *root = BTRFS_I(inode)->root;
125 struct inode_defrag *defrag;
126 u64 transid;
127
128 if (!btrfs_test_opt(root, AUTO_DEFRAG))
129 return 0;
130
131 if (btrfs_fs_closing(root->fs_info))
132 return 0;
133
134 if (BTRFS_I(inode)->in_defrag)
135 return 0;
136
137 if (trans)
138 transid = trans->transid;
139 else
140 transid = BTRFS_I(inode)->root->last_trans;
141
142 defrag = kzalloc(sizeof(*defrag), GFP_NOFS);
143 if (!defrag)
144 return -ENOMEM;
145
146 defrag->ino = btrfs_ino(inode);
147 defrag->transid = transid;
148 defrag->root = root->root_key.objectid;
149
150 spin_lock(&root->fs_info->defrag_inodes_lock);
151 if (!BTRFS_I(inode)->in_defrag)
152 __btrfs_add_inode_defrag(inode, defrag);
153 else
154 kfree(defrag);
155 spin_unlock(&root->fs_info->defrag_inodes_lock);
156 return 0;
157}
158
159/*
160 * must be called with the defrag_inodes lock held
161 */
162struct inode_defrag *btrfs_find_defrag_inode(struct btrfs_fs_info *info, u64 ino,
163 struct rb_node **next)
164{
165 struct inode_defrag *entry = NULL;
166 struct rb_node *p;
167 struct rb_node *parent = NULL;
168
169 p = info->defrag_inodes.rb_node;
170 while (p) {
171 parent = p;
172 entry = rb_entry(parent, struct inode_defrag, rb_node);
173
174 if (ino < entry->ino)
175 p = parent->rb_left;
176 else if (ino > entry->ino)
177 p = parent->rb_right;
178 else
179 return entry;
180 }
181
182 if (next) {
183 while (parent && ino > entry->ino) {
184 parent = rb_next(parent);
185 entry = rb_entry(parent, struct inode_defrag, rb_node);
186 }
187 *next = parent;
188 }
189 return NULL;
190}
191
192/*
193 * run through the list of inodes in the FS that need
194 * defragging
195 */
196int btrfs_run_defrag_inodes(struct btrfs_fs_info *fs_info)
197{
198 struct inode_defrag *defrag;
199 struct btrfs_root *inode_root;
200 struct inode *inode;
201 struct rb_node *n;
202 struct btrfs_key key;
203 struct btrfs_ioctl_defrag_range_args range;
204 u64 first_ino = 0;
205 int num_defrag;
206 int defrag_batch = 1024;
207
208 memset(&range, 0, sizeof(range));
209 range.len = (u64)-1;
210
211 atomic_inc(&fs_info->defrag_running);
212 spin_lock(&fs_info->defrag_inodes_lock);
213 while(1) {
214 n = NULL;
215
216 /* find an inode to defrag */
217 defrag = btrfs_find_defrag_inode(fs_info, first_ino, &n);
218 if (!defrag) {
219 if (n)
220 defrag = rb_entry(n, struct inode_defrag, rb_node);
221 else if (first_ino) {
222 first_ino = 0;
223 continue;
224 } else {
225 break;
226 }
227 }
228
229 /* remove it from the rbtree */
230 first_ino = defrag->ino + 1;
231 rb_erase(&defrag->rb_node, &fs_info->defrag_inodes);
232
233 if (btrfs_fs_closing(fs_info))
234 goto next_free;
235
236 spin_unlock(&fs_info->defrag_inodes_lock);
237
238 /* get the inode */
239 key.objectid = defrag->root;
240 btrfs_set_key_type(&key, BTRFS_ROOT_ITEM_KEY);
241 key.offset = (u64)-1;
242 inode_root = btrfs_read_fs_root_no_name(fs_info, &key);
243 if (IS_ERR(inode_root))
244 goto next;
245
246 key.objectid = defrag->ino;
247 btrfs_set_key_type(&key, BTRFS_INODE_ITEM_KEY);
248 key.offset = 0;
249
250 inode = btrfs_iget(fs_info->sb, &key, inode_root, NULL);
251 if (IS_ERR(inode))
252 goto next;
253
254 /* do a chunk of defrag */
255 BTRFS_I(inode)->in_defrag = 0;
256 range.start = defrag->last_offset;
257 num_defrag = btrfs_defrag_file(inode, NULL, &range, defrag->transid,
258 defrag_batch);
259 /*
260 * if we filled the whole defrag batch, there
261 * must be more work to do. Queue this defrag
262 * again
263 */
264 if (num_defrag == defrag_batch) {
265 defrag->last_offset = range.start;
266 __btrfs_add_inode_defrag(inode, defrag);
267 /*
268 * we don't want to kfree defrag, we added it back to
269 * the rbtree
270 */
271 defrag = NULL;
272 } else if (defrag->last_offset && !defrag->cycled) {
273 /*
274 * we didn't fill our defrag batch, but
275 * we didn't start at zero. Make sure we loop
276 * around to the start of the file.
277 */
278 defrag->last_offset = 0;
279 defrag->cycled = 1;
280 __btrfs_add_inode_defrag(inode, defrag);
281 defrag = NULL;
282 }
283
284 iput(inode);
285next:
286 spin_lock(&fs_info->defrag_inodes_lock);
287next_free:
288 kfree(defrag);
289 }
290 spin_unlock(&fs_info->defrag_inodes_lock);
291
292 atomic_dec(&fs_info->defrag_running);
293
294 /*
295 * during unmount, we use the transaction_wait queue to
296 * wait for the defragger to stop
297 */
298 wake_up(&fs_info->transaction_wait);
299 return 0;
300}
301
302/* simple helper to fault in pages and copy. This should go away
303 * and be replaced with calls into generic code.
304 */
305static noinline int btrfs_copy_from_user(loff_t pos, int num_pages,
306 size_t write_bytes,
307 struct page **prepared_pages,
308 struct iov_iter *i)
309{
310 size_t copied = 0;
311 size_t total_copied = 0;
312 int pg = 0;
313 int offset = pos & (PAGE_CACHE_SIZE - 1);
314
315 while (write_bytes > 0) {
316 size_t count = min_t(size_t,
317 PAGE_CACHE_SIZE - offset, write_bytes);
318 struct page *page = prepared_pages[pg];
319 /*
320 * Copy data from userspace to the current page
321 *
322 * Disable pagefault to avoid recursive lock since
323 * the pages are already locked
324 */
325 pagefault_disable();
326 copied = iov_iter_copy_from_user_atomic(page, i, offset, count);
327 pagefault_enable();
328
329 /* Flush processor's dcache for this page */
330 flush_dcache_page(page);
331
332 /*
333 * if we get a partial write, we can end up with
334 * partially up to date pages. These add
335 * a lot of complexity, so make sure they don't
336 * happen by forcing this copy to be retried.
337 *
338 * The rest of the btrfs_file_write code will fall
339 * back to page at a time copies after we return 0.
340 */
341 if (!PageUptodate(page) && copied < count)
342 copied = 0;
343
344 iov_iter_advance(i, copied);
345 write_bytes -= copied;
346 total_copied += copied;
347
348 /* Return to btrfs_file_aio_write to fault page */
349 if (unlikely(copied == 0))
350 break;
351
352 if (unlikely(copied < PAGE_CACHE_SIZE - offset)) {
353 offset += copied;
354 } else {
355 pg++;
356 offset = 0;
357 }
358 }
359 return total_copied;
360}
361
362/*
363 * unlocks pages after btrfs_file_write is done with them
364 */
365void btrfs_drop_pages(struct page **pages, size_t num_pages)
366{
367 size_t i;
368 for (i = 0; i < num_pages; i++) {
369 /* page checked is some magic around finding pages that
370 * have been modified without going through btrfs_set_page_dirty
371 * clear it here
372 */
373 ClearPageChecked(pages[i]);
374 unlock_page(pages[i]);
375 mark_page_accessed(pages[i]);
376 page_cache_release(pages[i]);
377 }
378}
379
380/*
381 * after copy_from_user, pages need to be dirtied and we need to make
382 * sure holes are created between the current EOF and the start of
383 * any next extents (if required).
384 *
385 * this also makes the decision about creating an inline extent vs
386 * doing real data extents, marking pages dirty and delalloc as required.
387 */
388int btrfs_dirty_pages(struct btrfs_root *root, struct inode *inode,
389 struct page **pages, size_t num_pages,
390 loff_t pos, size_t write_bytes,
391 struct extent_state **cached)
392{
393 int err = 0;
394 int i;
395 u64 num_bytes;
396 u64 start_pos;
397 u64 end_of_last_block;
398 u64 end_pos = pos + write_bytes;
399 loff_t isize = i_size_read(inode);
400
401 start_pos = pos & ~((u64)root->sectorsize - 1);
402 num_bytes = (write_bytes + pos - start_pos +
403 root->sectorsize - 1) & ~((u64)root->sectorsize - 1);
404
405 end_of_last_block = start_pos + num_bytes - 1;
406 err = btrfs_set_extent_delalloc(inode, start_pos, end_of_last_block,
407 cached);
408 if (err)
409 return err;
410
411 for (i = 0; i < num_pages; i++) {
412 struct page *p = pages[i];
413 SetPageUptodate(p);
414 ClearPageChecked(p);
415 set_page_dirty(p);
416 }
417
418 /*
419 * we've only changed i_size in ram, and we haven't updated
420 * the disk i_size. There is no need to log the inode
421 * at this time.
422 */
423 if (end_pos > isize)
424 i_size_write(inode, end_pos);
425 return 0;
426}
427
428/*
429 * this drops all the extents in the cache that intersect the range
430 * [start, end]. Existing extents are split as required.
431 */
432int btrfs_drop_extent_cache(struct inode *inode, u64 start, u64 end,
433 int skip_pinned)
434{
435 struct extent_map *em;
436 struct extent_map *split = NULL;
437 struct extent_map *split2 = NULL;
438 struct extent_map_tree *em_tree = &BTRFS_I(inode)->extent_tree;
439 u64 len = end - start + 1;
440 int ret;
441 int testend = 1;
442 unsigned long flags;
443 int compressed = 0;
444
445 WARN_ON(end < start);
446 if (end == (u64)-1) {
447 len = (u64)-1;
448 testend = 0;
449 }
450 while (1) {
451 if (!split)
452 split = alloc_extent_map();
453 if (!split2)
454 split2 = alloc_extent_map();
455 BUG_ON(!split || !split2);
456
457 write_lock(&em_tree->lock);
458 em = lookup_extent_mapping(em_tree, start, len);
459 if (!em) {
460 write_unlock(&em_tree->lock);
461 break;
462 }
463 flags = em->flags;
464 if (skip_pinned && test_bit(EXTENT_FLAG_PINNED, &em->flags)) {
465 if (testend && em->start + em->len >= start + len) {
466 free_extent_map(em);
467 write_unlock(&em_tree->lock);
468 break;
469 }
470 start = em->start + em->len;
471 if (testend)
472 len = start + len - (em->start + em->len);
473 free_extent_map(em);
474 write_unlock(&em_tree->lock);
475 continue;
476 }
477 compressed = test_bit(EXTENT_FLAG_COMPRESSED, &em->flags);
478 clear_bit(EXTENT_FLAG_PINNED, &em->flags);
479 remove_extent_mapping(em_tree, em);
480
481 if (em->block_start < EXTENT_MAP_LAST_BYTE &&
482 em->start < start) {
483 split->start = em->start;
484 split->len = start - em->start;
485 split->orig_start = em->orig_start;
486 split->block_start = em->block_start;
487
488 if (compressed)
489 split->block_len = em->block_len;
490 else
491 split->block_len = split->len;
492
493 split->bdev = em->bdev;
494 split->flags = flags;
495 split->compress_type = em->compress_type;
496 ret = add_extent_mapping(em_tree, split);
497 BUG_ON(ret);
498 free_extent_map(split);
499 split = split2;
500 split2 = NULL;
501 }
502 if (em->block_start < EXTENT_MAP_LAST_BYTE &&
503 testend && em->start + em->len > start + len) {
504 u64 diff = start + len - em->start;
505
506 split->start = start + len;
507 split->len = em->start + em->len - (start + len);
508 split->bdev = em->bdev;
509 split->flags = flags;
510 split->compress_type = em->compress_type;
511
512 if (compressed) {
513 split->block_len = em->block_len;
514 split->block_start = em->block_start;
515 split->orig_start = em->orig_start;
516 } else {
517 split->block_len = split->len;
518 split->block_start = em->block_start + diff;
519 split->orig_start = split->start;
520 }
521
522 ret = add_extent_mapping(em_tree, split);
523 BUG_ON(ret);
524 free_extent_map(split);
525 split = NULL;
526 }
527 write_unlock(&em_tree->lock);
528
529 /* once for us */
530 free_extent_map(em);
531 /* once for the tree*/
532 free_extent_map(em);
533 }
534 if (split)
535 free_extent_map(split);
536 if (split2)
537 free_extent_map(split2);
538 return 0;
539}
540
541/*
542 * this is very complex, but the basic idea is to drop all extents
543 * in the range start - end. hint_block is filled in with a block number
544 * that would be a good hint to the block allocator for this file.
545 *
546 * If an extent intersects the range but is not entirely inside the range
547 * it is either truncated or split. Anything entirely inside the range
548 * is deleted from the tree.
549 */
550int btrfs_drop_extents(struct btrfs_trans_handle *trans, struct inode *inode,
551 u64 start, u64 end, u64 *hint_byte, int drop_cache)
552{
553 struct btrfs_root *root = BTRFS_I(inode)->root;
554 struct extent_buffer *leaf;
555 struct btrfs_file_extent_item *fi;
556 struct btrfs_path *path;
557 struct btrfs_key key;
558 struct btrfs_key new_key;
559 u64 ino = btrfs_ino(inode);
560 u64 search_start = start;
561 u64 disk_bytenr = 0;
562 u64 num_bytes = 0;
563 u64 extent_offset = 0;
564 u64 extent_end = 0;
565 int del_nr = 0;
566 int del_slot = 0;
567 int extent_type;
568 int recow;
569 int ret;
570
571 if (drop_cache)
572 btrfs_drop_extent_cache(inode, start, end - 1, 0);
573
574 path = btrfs_alloc_path();
575 if (!path)
576 return -ENOMEM;
577
578 while (1) {
579 recow = 0;
580 ret = btrfs_lookup_file_extent(trans, root, path, ino,
581 search_start, -1);
582 if (ret < 0)
583 break;
584 if (ret > 0 && path->slots[0] > 0 && search_start == start) {
585 leaf = path->nodes[0];
586 btrfs_item_key_to_cpu(leaf, &key, path->slots[0] - 1);
587 if (key.objectid == ino &&
588 key.type == BTRFS_EXTENT_DATA_KEY)
589 path->slots[0]--;
590 }
591 ret = 0;
592next_slot:
593 leaf = path->nodes[0];
594 if (path->slots[0] >= btrfs_header_nritems(leaf)) {
595 BUG_ON(del_nr > 0);
596 ret = btrfs_next_leaf(root, path);
597 if (ret < 0)
598 break;
599 if (ret > 0) {
600 ret = 0;
601 break;
602 }
603 leaf = path->nodes[0];
604 recow = 1;
605 }
606
607 btrfs_item_key_to_cpu(leaf, &key, path->slots[0]);
608 if (key.objectid > ino ||
609 key.type > BTRFS_EXTENT_DATA_KEY || key.offset >= end)
610 break;
611
612 fi = btrfs_item_ptr(leaf, path->slots[0],
613 struct btrfs_file_extent_item);
614 extent_type = btrfs_file_extent_type(leaf, fi);
615
616 if (extent_type == BTRFS_FILE_EXTENT_REG ||
617 extent_type == BTRFS_FILE_EXTENT_PREALLOC) {
618 disk_bytenr = btrfs_file_extent_disk_bytenr(leaf, fi);
619 num_bytes = btrfs_file_extent_disk_num_bytes(leaf, fi);
620 extent_offset = btrfs_file_extent_offset(leaf, fi);
621 extent_end = key.offset +
622 btrfs_file_extent_num_bytes(leaf, fi);
623 } else if (extent_type == BTRFS_FILE_EXTENT_INLINE) {
624 extent_end = key.offset +
625 btrfs_file_extent_inline_len(leaf, fi);
626 } else {
627 WARN_ON(1);
628 extent_end = search_start;
629 }
630
631 if (extent_end <= search_start) {
632 path->slots[0]++;
633 goto next_slot;
634 }
635
636 search_start = max(key.offset, start);
637 if (recow) {
638 btrfs_release_path(path);
639 continue;
640 }
641
642 /*
643 * | - range to drop - |
644 * | -------- extent -------- |
645 */
646 if (start > key.offset && end < extent_end) {
647 BUG_ON(del_nr > 0);
648 BUG_ON(extent_type == BTRFS_FILE_EXTENT_INLINE);
649
650 memcpy(&new_key, &key, sizeof(new_key));
651 new_key.offset = start;
652 ret = btrfs_duplicate_item(trans, root, path,
653 &new_key);
654 if (ret == -EAGAIN) {
655 btrfs_release_path(path);
656 continue;
657 }
658 if (ret < 0)
659 break;
660
661 leaf = path->nodes[0];
662 fi = btrfs_item_ptr(leaf, path->slots[0] - 1,
663 struct btrfs_file_extent_item);
664 btrfs_set_file_extent_num_bytes(leaf, fi,
665 start - key.offset);
666
667 fi = btrfs_item_ptr(leaf, path->slots[0],
668 struct btrfs_file_extent_item);
669
670 extent_offset += start - key.offset;
671 btrfs_set_file_extent_offset(leaf, fi, extent_offset);
672 btrfs_set_file_extent_num_bytes(leaf, fi,
673 extent_end - start);
674 btrfs_mark_buffer_dirty(leaf);
675
676 if (disk_bytenr > 0) {
677 ret = btrfs_inc_extent_ref(trans, root,
678 disk_bytenr, num_bytes, 0,
679 root->root_key.objectid,
680 new_key.objectid,
681 start - extent_offset);
682 BUG_ON(ret);
683 *hint_byte = disk_bytenr;
684 }
685 key.offset = start;
686 }
687 /*
688 * | ---- range to drop ----- |
689 * | -------- extent -------- |
690 */
691 if (start <= key.offset && end < extent_end) {
692 BUG_ON(extent_type == BTRFS_FILE_EXTENT_INLINE);
693
694 memcpy(&new_key, &key, sizeof(new_key));
695 new_key.offset = end;
696 btrfs_set_item_key_safe(trans, root, path, &new_key);
697
698 extent_offset += end - key.offset;
699 btrfs_set_file_extent_offset(leaf, fi, extent_offset);
700 btrfs_set_file_extent_num_bytes(leaf, fi,
701 extent_end - end);
702 btrfs_mark_buffer_dirty(leaf);
703 if (disk_bytenr > 0) {
704 inode_sub_bytes(inode, end - key.offset);
705 *hint_byte = disk_bytenr;
706 }
707 break;
708 }
709
710 search_start = extent_end;
711 /*
712 * | ---- range to drop ----- |
713 * | -------- extent -------- |
714 */
715 if (start > key.offset && end >= extent_end) {
716 BUG_ON(del_nr > 0);
717 BUG_ON(extent_type == BTRFS_FILE_EXTENT_INLINE);
718
719 btrfs_set_file_extent_num_bytes(leaf, fi,
720 start - key.offset);
721 btrfs_mark_buffer_dirty(leaf);
722 if (disk_bytenr > 0) {
723 inode_sub_bytes(inode, extent_end - start);
724 *hint_byte = disk_bytenr;
725 }
726 if (end == extent_end)
727 break;
728
729 path->slots[0]++;
730 goto next_slot;
731 }
732
733 /*
734 * | ---- range to drop ----- |
735 * | ------ extent ------ |
736 */
737 if (start <= key.offset && end >= extent_end) {
738 if (del_nr == 0) {
739 del_slot = path->slots[0];
740 del_nr = 1;
741 } else {
742 BUG_ON(del_slot + del_nr != path->slots[0]);
743 del_nr++;
744 }
745
746 if (extent_type == BTRFS_FILE_EXTENT_INLINE) {
747 inode_sub_bytes(inode,
748 extent_end - key.offset);
749 extent_end = ALIGN(extent_end,
750 root->sectorsize);
751 } else if (disk_bytenr > 0) {
752 ret = btrfs_free_extent(trans, root,
753 disk_bytenr, num_bytes, 0,
754 root->root_key.objectid,
755 key.objectid, key.offset -
756 extent_offset);
757 BUG_ON(ret);
758 inode_sub_bytes(inode,
759 extent_end - key.offset);
760 *hint_byte = disk_bytenr;
761 }
762
763 if (end == extent_end)
764 break;
765
766 if (path->slots[0] + 1 < btrfs_header_nritems(leaf)) {
767 path->slots[0]++;
768 goto next_slot;
769 }
770
771 ret = btrfs_del_items(trans, root, path, del_slot,
772 del_nr);
773 BUG_ON(ret);
774
775 del_nr = 0;
776 del_slot = 0;
777
778 btrfs_release_path(path);
779 continue;
780 }
781
782 BUG_ON(1);
783 }
784
785 if (del_nr > 0) {
786 ret = btrfs_del_items(trans, root, path, del_slot, del_nr);
787 BUG_ON(ret);
788 }
789
790 btrfs_free_path(path);
791 return ret;
792}
793
794static int extent_mergeable(struct extent_buffer *leaf, int slot,
795 u64 objectid, u64 bytenr, u64 orig_offset,
796 u64 *start, u64 *end)
797{
798 struct btrfs_file_extent_item *fi;
799 struct btrfs_key key;
800 u64 extent_end;
801
802 if (slot < 0 || slot >= btrfs_header_nritems(leaf))
803 return 0;
804
805 btrfs_item_key_to_cpu(leaf, &key, slot);
806 if (key.objectid != objectid || key.type != BTRFS_EXTENT_DATA_KEY)
807 return 0;
808
809 fi = btrfs_item_ptr(leaf, slot, struct btrfs_file_extent_item);
810 if (btrfs_file_extent_type(leaf, fi) != BTRFS_FILE_EXTENT_REG ||
811 btrfs_file_extent_disk_bytenr(leaf, fi) != bytenr ||
812 btrfs_file_extent_offset(leaf, fi) != key.offset - orig_offset ||
813 btrfs_file_extent_compression(leaf, fi) ||
814 btrfs_file_extent_encryption(leaf, fi) ||
815 btrfs_file_extent_other_encoding(leaf, fi))
816 return 0;
817
818 extent_end = key.offset + btrfs_file_extent_num_bytes(leaf, fi);
819 if ((*start && *start != key.offset) || (*end && *end != extent_end))
820 return 0;
821
822 *start = key.offset;
823 *end = extent_end;
824 return 1;
825}
826
827/*
828 * Mark extent in the range start - end as written.
829 *
830 * This changes extent type from 'pre-allocated' to 'regular'. If only
831 * part of extent is marked as written, the extent will be split into
832 * two or three.
833 */
834int btrfs_mark_extent_written(struct btrfs_trans_handle *trans,
835 struct inode *inode, u64 start, u64 end)
836{
837 struct btrfs_root *root = BTRFS_I(inode)->root;
838 struct extent_buffer *leaf;
839 struct btrfs_path *path;
840 struct btrfs_file_extent_item *fi;
841 struct btrfs_key key;
842 struct btrfs_key new_key;
843 u64 bytenr;
844 u64 num_bytes;
845 u64 extent_end;
846 u64 orig_offset;
847 u64 other_start;
848 u64 other_end;
849 u64 split;
850 int del_nr = 0;
851 int del_slot = 0;
852 int recow;
853 int ret;
854 u64 ino = btrfs_ino(inode);
855
856 btrfs_drop_extent_cache(inode, start, end - 1, 0);
857
858 path = btrfs_alloc_path();
859 if (!path)
860 return -ENOMEM;
861again:
862 recow = 0;
863 split = start;
864 key.objectid = ino;
865 key.type = BTRFS_EXTENT_DATA_KEY;
866 key.offset = split;
867
868 ret = btrfs_search_slot(trans, root, &key, path, -1, 1);
869 if (ret < 0)
870 goto out;
871 if (ret > 0 && path->slots[0] > 0)
872 path->slots[0]--;
873
874 leaf = path->nodes[0];
875 btrfs_item_key_to_cpu(leaf, &key, path->slots[0]);
876 BUG_ON(key.objectid != ino || key.type != BTRFS_EXTENT_DATA_KEY);
877 fi = btrfs_item_ptr(leaf, path->slots[0],
878 struct btrfs_file_extent_item);
879 BUG_ON(btrfs_file_extent_type(leaf, fi) !=
880 BTRFS_FILE_EXTENT_PREALLOC);
881 extent_end = key.offset + btrfs_file_extent_num_bytes(leaf, fi);
882 BUG_ON(key.offset > start || extent_end < end);
883
884 bytenr = btrfs_file_extent_disk_bytenr(leaf, fi);
885 num_bytes = btrfs_file_extent_disk_num_bytes(leaf, fi);
886 orig_offset = key.offset - btrfs_file_extent_offset(leaf, fi);
887 memcpy(&new_key, &key, sizeof(new_key));
888
889 if (start == key.offset && end < extent_end) {
890 other_start = 0;
891 other_end = start;
892 if (extent_mergeable(leaf, path->slots[0] - 1,
893 ino, bytenr, orig_offset,
894 &other_start, &other_end)) {
895 new_key.offset = end;
896 btrfs_set_item_key_safe(trans, root, path, &new_key);
897 fi = btrfs_item_ptr(leaf, path->slots[0],
898 struct btrfs_file_extent_item);
899 btrfs_set_file_extent_num_bytes(leaf, fi,
900 extent_end - end);
901 btrfs_set_file_extent_offset(leaf, fi,
902 end - orig_offset);
903 fi = btrfs_item_ptr(leaf, path->slots[0] - 1,
904 struct btrfs_file_extent_item);
905 btrfs_set_file_extent_num_bytes(leaf, fi,
906 end - other_start);
907 btrfs_mark_buffer_dirty(leaf);
908 goto out;
909 }
910 }
911
912 if (start > key.offset && end == extent_end) {
913 other_start = end;
914 other_end = 0;
915 if (extent_mergeable(leaf, path->slots[0] + 1,
916 ino, bytenr, orig_offset,
917 &other_start, &other_end)) {
918 fi = btrfs_item_ptr(leaf, path->slots[0],
919 struct btrfs_file_extent_item);
920 btrfs_set_file_extent_num_bytes(leaf, fi,
921 start - key.offset);
922 path->slots[0]++;
923 new_key.offset = start;
924 btrfs_set_item_key_safe(trans, root, path, &new_key);
925
926 fi = btrfs_item_ptr(leaf, path->slots[0],
927 struct btrfs_file_extent_item);
928 btrfs_set_file_extent_num_bytes(leaf, fi,
929 other_end - start);
930 btrfs_set_file_extent_offset(leaf, fi,
931 start - orig_offset);
932 btrfs_mark_buffer_dirty(leaf);
933 goto out;
934 }
935 }
936
937 while (start > key.offset || end < extent_end) {
938 if (key.offset == start)
939 split = end;
940
941 new_key.offset = split;
942 ret = btrfs_duplicate_item(trans, root, path, &new_key);
943 if (ret == -EAGAIN) {
944 btrfs_release_path(path);
945 goto again;
946 }
947 BUG_ON(ret < 0);
948
949 leaf = path->nodes[0];
950 fi = btrfs_item_ptr(leaf, path->slots[0] - 1,
951 struct btrfs_file_extent_item);
952 btrfs_set_file_extent_num_bytes(leaf, fi,
953 split - key.offset);
954
955 fi = btrfs_item_ptr(leaf, path->slots[0],
956 struct btrfs_file_extent_item);
957
958 btrfs_set_file_extent_offset(leaf, fi, split - orig_offset);
959 btrfs_set_file_extent_num_bytes(leaf, fi,
960 extent_end - split);
961 btrfs_mark_buffer_dirty(leaf);
962
963 ret = btrfs_inc_extent_ref(trans, root, bytenr, num_bytes, 0,
964 root->root_key.objectid,
965 ino, orig_offset);
966 BUG_ON(ret);
967
968 if (split == start) {
969 key.offset = start;
970 } else {
971 BUG_ON(start != key.offset);
972 path->slots[0]--;
973 extent_end = end;
974 }
975 recow = 1;
976 }
977
978 other_start = end;
979 other_end = 0;
980 if (extent_mergeable(leaf, path->slots[0] + 1,
981 ino, bytenr, orig_offset,
982 &other_start, &other_end)) {
983 if (recow) {
984 btrfs_release_path(path);
985 goto again;
986 }
987 extent_end = other_end;
988 del_slot = path->slots[0] + 1;
989 del_nr++;
990 ret = btrfs_free_extent(trans, root, bytenr, num_bytes,
991 0, root->root_key.objectid,
992 ino, orig_offset);
993 BUG_ON(ret);
994 }
995 other_start = 0;
996 other_end = start;
997 if (extent_mergeable(leaf, path->slots[0] - 1,
998 ino, bytenr, orig_offset,
999 &other_start, &other_end)) {
1000 if (recow) {
1001 btrfs_release_path(path);
1002 goto again;
1003 }
1004 key.offset = other_start;
1005 del_slot = path->slots[0];
1006 del_nr++;
1007 ret = btrfs_free_extent(trans, root, bytenr, num_bytes,
1008 0, root->root_key.objectid,
1009 ino, orig_offset);
1010 BUG_ON(ret);
1011 }
1012 if (del_nr == 0) {
1013 fi = btrfs_item_ptr(leaf, path->slots[0],
1014 struct btrfs_file_extent_item);
1015 btrfs_set_file_extent_type(leaf, fi,
1016 BTRFS_FILE_EXTENT_REG);
1017 btrfs_mark_buffer_dirty(leaf);
1018 } else {
1019 fi = btrfs_item_ptr(leaf, del_slot - 1,
1020 struct btrfs_file_extent_item);
1021 btrfs_set_file_extent_type(leaf, fi,
1022 BTRFS_FILE_EXTENT_REG);
1023 btrfs_set_file_extent_num_bytes(leaf, fi,
1024 extent_end - key.offset);
1025 btrfs_mark_buffer_dirty(leaf);
1026
1027 ret = btrfs_del_items(trans, root, path, del_slot, del_nr);
1028 BUG_ON(ret);
1029 }
1030out:
1031 btrfs_free_path(path);
1032 return 0;
1033}
1034
1035/*
1036 * on error we return an unlocked page and the error value
1037 * on success we return a locked page and 0
1038 */
1039static int prepare_uptodate_page(struct page *page, u64 pos,
1040 bool force_uptodate)
1041{
1042 int ret = 0;
1043
1044 if (((pos & (PAGE_CACHE_SIZE - 1)) || force_uptodate) &&
1045 !PageUptodate(page)) {
1046 ret = btrfs_readpage(NULL, page);
1047 if (ret)
1048 return ret;
1049 lock_page(page);
1050 if (!PageUptodate(page)) {
1051 unlock_page(page);
1052 return -EIO;
1053 }
1054 }
1055 return 0;
1056}
1057
1058/*
1059 * this gets pages into the page cache and locks them down, it also properly
1060 * waits for data=ordered extents to finish before allowing the pages to be
1061 * modified.
1062 */
1063static noinline int prepare_pages(struct btrfs_root *root, struct file *file,
1064 struct page **pages, size_t num_pages,
1065 loff_t pos, unsigned long first_index,
1066 size_t write_bytes, bool force_uptodate)
1067{
1068 struct extent_state *cached_state = NULL;
1069 int i;
1070 unsigned long index = pos >> PAGE_CACHE_SHIFT;
1071 struct inode *inode = fdentry(file)->d_inode;
1072 int err = 0;
1073 int faili = 0;
1074 u64 start_pos;
1075 u64 last_pos;
1076
1077 start_pos = pos & ~((u64)root->sectorsize - 1);
1078 last_pos = ((u64)index + num_pages) << PAGE_CACHE_SHIFT;
1079
1080again:
1081 for (i = 0; i < num_pages; i++) {
1082 pages[i] = find_or_create_page(inode->i_mapping, index + i,
1083 GFP_NOFS);
1084 if (!pages[i]) {
1085 faili = i - 1;
1086 err = -ENOMEM;
1087 goto fail;
1088 }
1089
1090 if (i == 0)
1091 err = prepare_uptodate_page(pages[i], pos,
1092 force_uptodate);
1093 if (i == num_pages - 1)
1094 err = prepare_uptodate_page(pages[i],
1095 pos + write_bytes, false);
1096 if (err) {
1097 page_cache_release(pages[i]);
1098 faili = i - 1;
1099 goto fail;
1100 }
1101 wait_on_page_writeback(pages[i]);
1102 }
1103 err = 0;
1104 if (start_pos < inode->i_size) {
1105 struct btrfs_ordered_extent *ordered;
1106 lock_extent_bits(&BTRFS_I(inode)->io_tree,
1107 start_pos, last_pos - 1, 0, &cached_state,
1108 GFP_NOFS);
1109 ordered = btrfs_lookup_first_ordered_extent(inode,
1110 last_pos - 1);
1111 if (ordered &&
1112 ordered->file_offset + ordered->len > start_pos &&
1113 ordered->file_offset < last_pos) {
1114 btrfs_put_ordered_extent(ordered);
1115 unlock_extent_cached(&BTRFS_I(inode)->io_tree,
1116 start_pos, last_pos - 1,
1117 &cached_state, GFP_NOFS);
1118 for (i = 0; i < num_pages; i++) {
1119 unlock_page(pages[i]);
1120 page_cache_release(pages[i]);
1121 }
1122 btrfs_wait_ordered_range(inode, start_pos,
1123 last_pos - start_pos);
1124 goto again;
1125 }
1126 if (ordered)
1127 btrfs_put_ordered_extent(ordered);
1128
1129 clear_extent_bit(&BTRFS_I(inode)->io_tree, start_pos,
1130 last_pos - 1, EXTENT_DIRTY | EXTENT_DELALLOC |
1131 EXTENT_DO_ACCOUNTING, 0, 0, &cached_state,
1132 GFP_NOFS);
1133 unlock_extent_cached(&BTRFS_I(inode)->io_tree,
1134 start_pos, last_pos - 1, &cached_state,
1135 GFP_NOFS);
1136 }
1137 for (i = 0; i < num_pages; i++) {
1138 clear_page_dirty_for_io(pages[i]);
1139 set_page_extent_mapped(pages[i]);
1140 WARN_ON(!PageLocked(pages[i]));
1141 }
1142 return 0;
1143fail:
1144 while (faili >= 0) {
1145 unlock_page(pages[faili]);
1146 page_cache_release(pages[faili]);
1147 faili--;
1148 }
1149 return err;
1150
1151}
1152
1153static noinline ssize_t __btrfs_buffered_write(struct file *file,
1154 struct iov_iter *i,
1155 loff_t pos)
1156{
1157 struct inode *inode = fdentry(file)->d_inode;
1158 struct btrfs_root *root = BTRFS_I(inode)->root;
1159 struct page **pages = NULL;
1160 unsigned long first_index;
1161 size_t num_written = 0;
1162 int nrptrs;
1163 int ret = 0;
1164 bool force_page_uptodate = false;
1165
1166 nrptrs = min((iov_iter_count(i) + PAGE_CACHE_SIZE - 1) /
1167 PAGE_CACHE_SIZE, PAGE_CACHE_SIZE /
1168 (sizeof(struct page *)));
1169 pages = kmalloc(nrptrs * sizeof(struct page *), GFP_KERNEL);
1170 if (!pages)
1171 return -ENOMEM;
1172
1173 first_index = pos >> PAGE_CACHE_SHIFT;
1174
1175 while (iov_iter_count(i) > 0) {
1176 size_t offset = pos & (PAGE_CACHE_SIZE - 1);
1177 size_t write_bytes = min(iov_iter_count(i),
1178 nrptrs * (size_t)PAGE_CACHE_SIZE -
1179 offset);
1180 size_t num_pages = (write_bytes + offset +
1181 PAGE_CACHE_SIZE - 1) >> PAGE_CACHE_SHIFT;
1182 size_t dirty_pages;
1183 size_t copied;
1184
1185 WARN_ON(num_pages > nrptrs);
1186
1187 /*
1188 * Fault pages before locking them in prepare_pages
1189 * to avoid recursive lock
1190 */
1191 if (unlikely(iov_iter_fault_in_readable(i, write_bytes))) {
1192 ret = -EFAULT;
1193 break;
1194 }
1195
1196 ret = btrfs_delalloc_reserve_space(inode,
1197 num_pages << PAGE_CACHE_SHIFT);
1198 if (ret)
1199 break;
1200
1201 /*
1202 * This is going to setup the pages array with the number of
1203 * pages we want, so we don't really need to worry about the
1204 * contents of pages from loop to loop
1205 */
1206 ret = prepare_pages(root, file, pages, num_pages,
1207 pos, first_index, write_bytes,
1208 force_page_uptodate);
1209 if (ret) {
1210 btrfs_delalloc_release_space(inode,
1211 num_pages << PAGE_CACHE_SHIFT);
1212 break;
1213 }
1214
1215 copied = btrfs_copy_from_user(pos, num_pages,
1216 write_bytes, pages, i);
1217
1218 /*
1219 * if we have trouble faulting in the pages, fall
1220 * back to one page at a time
1221 */
1222 if (copied < write_bytes)
1223 nrptrs = 1;
1224
1225 if (copied == 0) {
1226 force_page_uptodate = true;
1227 dirty_pages = 0;
1228 } else {
1229 force_page_uptodate = false;
1230 dirty_pages = (copied + offset +
1231 PAGE_CACHE_SIZE - 1) >>
1232 PAGE_CACHE_SHIFT;
1233 }
1234
1235 /*
1236 * If we had a short copy we need to release the excess delaloc
1237 * bytes we reserved. We need to increment outstanding_extents
1238 * because btrfs_delalloc_release_space will decrement it, but
1239 * we still have an outstanding extent for the chunk we actually
1240 * managed to copy.
1241 */
1242 if (num_pages > dirty_pages) {
1243 if (copied > 0) {
1244 spin_lock(&BTRFS_I(inode)->lock);
1245 BTRFS_I(inode)->outstanding_extents++;
1246 spin_unlock(&BTRFS_I(inode)->lock);
1247 }
1248 btrfs_delalloc_release_space(inode,
1249 (num_pages - dirty_pages) <<
1250 PAGE_CACHE_SHIFT);
1251 }
1252
1253 if (copied > 0) {
1254 ret = btrfs_dirty_pages(root, inode, pages,
1255 dirty_pages, pos, copied,
1256 NULL);
1257 if (ret) {
1258 btrfs_delalloc_release_space(inode,
1259 dirty_pages << PAGE_CACHE_SHIFT);
1260 btrfs_drop_pages(pages, num_pages);
1261 break;
1262 }
1263 }
1264
1265 btrfs_drop_pages(pages, num_pages);
1266
1267 cond_resched();
1268
1269 balance_dirty_pages_ratelimited_nr(inode->i_mapping,
1270 dirty_pages);
1271 if (dirty_pages < (root->leafsize >> PAGE_CACHE_SHIFT) + 1)
1272 btrfs_btree_balance_dirty(root, 1);
1273 btrfs_throttle(root);
1274
1275 pos += copied;
1276 num_written += copied;
1277 }
1278
1279 kfree(pages);
1280
1281 return num_written ? num_written : ret;
1282}
1283
1284static ssize_t __btrfs_direct_write(struct kiocb *iocb,
1285 const struct iovec *iov,
1286 unsigned long nr_segs, loff_t pos,
1287 loff_t *ppos, size_t count, size_t ocount)
1288{
1289 struct file *file = iocb->ki_filp;
1290 struct inode *inode = fdentry(file)->d_inode;
1291 struct iov_iter i;
1292 ssize_t written;
1293 ssize_t written_buffered;
1294 loff_t endbyte;
1295 int err;
1296
1297 written = generic_file_direct_write(iocb, iov, &nr_segs, pos, ppos,
1298 count, ocount);
1299
1300 /*
1301 * the generic O_DIRECT will update in-memory i_size after the
1302 * DIOs are done. But our endio handlers that update the on
1303 * disk i_size never update past the in memory i_size. So we
1304 * need one more update here to catch any additions to the
1305 * file
1306 */
1307 if (inode->i_size != BTRFS_I(inode)->disk_i_size) {
1308 btrfs_ordered_update_i_size(inode, inode->i_size, NULL);
1309 mark_inode_dirty(inode);
1310 }
1311
1312 if (written < 0 || written == count)
1313 return written;
1314
1315 pos += written;
1316 count -= written;
1317 iov_iter_init(&i, iov, nr_segs, count, written);
1318 written_buffered = __btrfs_buffered_write(file, &i, pos);
1319 if (written_buffered < 0) {
1320 err = written_buffered;
1321 goto out;
1322 }
1323 endbyte = pos + written_buffered - 1;
1324 err = filemap_write_and_wait_range(file->f_mapping, pos, endbyte);
1325 if (err)
1326 goto out;
1327 written += written_buffered;
1328 *ppos = pos + written_buffered;
1329 invalidate_mapping_pages(file->f_mapping, pos >> PAGE_CACHE_SHIFT,
1330 endbyte >> PAGE_CACHE_SHIFT);
1331out:
1332 return written ? written : err;
1333}
1334
1335static ssize_t btrfs_file_aio_write(struct kiocb *iocb,
1336 const struct iovec *iov,
1337 unsigned long nr_segs, loff_t pos)
1338{
1339 struct file *file = iocb->ki_filp;
1340 struct inode *inode = fdentry(file)->d_inode;
1341 struct btrfs_root *root = BTRFS_I(inode)->root;
1342 loff_t *ppos = &iocb->ki_pos;
1343 u64 start_pos;
1344 ssize_t num_written = 0;
1345 ssize_t err = 0;
1346 size_t count, ocount;
1347
1348 vfs_check_frozen(inode->i_sb, SB_FREEZE_WRITE);
1349
1350 mutex_lock(&inode->i_mutex);
1351
1352 err = generic_segment_checks(iov, &nr_segs, &ocount, VERIFY_READ);
1353 if (err) {
1354 mutex_unlock(&inode->i_mutex);
1355 goto out;
1356 }
1357 count = ocount;
1358
1359 current->backing_dev_info = inode->i_mapping->backing_dev_info;
1360 err = generic_write_checks(file, &pos, &count, S_ISBLK(inode->i_mode));
1361 if (err) {
1362 mutex_unlock(&inode->i_mutex);
1363 goto out;
1364 }
1365
1366 if (count == 0) {
1367 mutex_unlock(&inode->i_mutex);
1368 goto out;
1369 }
1370
1371 err = file_remove_suid(file);
1372 if (err) {
1373 mutex_unlock(&inode->i_mutex);
1374 goto out;
1375 }
1376
1377 /*
1378 * If BTRFS flips readonly due to some impossible error
1379 * (fs_info->fs_state now has BTRFS_SUPER_FLAG_ERROR),
1380 * although we have opened a file as writable, we have
1381 * to stop this write operation to ensure FS consistency.
1382 */
1383 if (root->fs_info->fs_state & BTRFS_SUPER_FLAG_ERROR) {
1384 mutex_unlock(&inode->i_mutex);
1385 err = -EROFS;
1386 goto out;
1387 }
1388
1389 file_update_time(file);
1390 BTRFS_I(inode)->sequence++;
1391
1392 start_pos = round_down(pos, root->sectorsize);
1393 if (start_pos > i_size_read(inode)) {
1394 err = btrfs_cont_expand(inode, i_size_read(inode), start_pos);
1395 if (err) {
1396 mutex_unlock(&inode->i_mutex);
1397 goto out;
1398 }
1399 }
1400
1401 if (unlikely(file->f_flags & O_DIRECT)) {
1402 num_written = __btrfs_direct_write(iocb, iov, nr_segs,
1403 pos, ppos, count, ocount);
1404 } else {
1405 struct iov_iter i;
1406
1407 iov_iter_init(&i, iov, nr_segs, count, num_written);
1408
1409 num_written = __btrfs_buffered_write(file, &i, pos);
1410 if (num_written > 0)
1411 *ppos = pos + num_written;
1412 }
1413
1414 mutex_unlock(&inode->i_mutex);
1415
1416 /*
1417 * we want to make sure fsync finds this change
1418 * but we haven't joined a transaction running right now.
1419 *
1420 * Later on, someone is sure to update the inode and get the
1421 * real transid recorded.
1422 *
1423 * We set last_trans now to the fs_info generation + 1,
1424 * this will either be one more than the running transaction
1425 * or the generation used for the next transaction if there isn't
1426 * one running right now.
1427 */
1428 BTRFS_I(inode)->last_trans = root->fs_info->generation + 1;
1429 if (num_written > 0 || num_written == -EIOCBQUEUED) {
1430 err = generic_write_sync(file, pos, num_written);
1431 if (err < 0 && num_written > 0)
1432 num_written = err;
1433 }
1434out:
1435 current->backing_dev_info = NULL;
1436 return num_written ? num_written : err;
1437}
1438
1439int btrfs_release_file(struct inode *inode, struct file *filp)
1440{
1441 /*
1442 * ordered_data_close is set by settattr when we are about to truncate
1443 * a file from a non-zero size to a zero size. This tries to
1444 * flush down new bytes that may have been written if the
1445 * application were using truncate to replace a file in place.
1446 */
1447 if (BTRFS_I(inode)->ordered_data_close) {
1448 BTRFS_I(inode)->ordered_data_close = 0;
1449 btrfs_add_ordered_operation(NULL, BTRFS_I(inode)->root, inode);
1450 if (inode->i_size > BTRFS_ORDERED_OPERATIONS_FLUSH_LIMIT)
1451 filemap_flush(inode->i_mapping);
1452 }
1453 if (filp->private_data)
1454 btrfs_ioctl_trans_end(filp);
1455 return 0;
1456}
1457
1458/*
1459 * fsync call for both files and directories. This logs the inode into
1460 * the tree log instead of forcing full commits whenever possible.
1461 *
1462 * It needs to call filemap_fdatawait so that all ordered extent updates are
1463 * in the metadata btree are up to date for copying to the log.
1464 *
1465 * It drops the inode mutex before doing the tree log commit. This is an
1466 * important optimization for directories because holding the mutex prevents
1467 * new operations on the dir while we write to disk.
1468 */
1469int btrfs_sync_file(struct file *file, loff_t start, loff_t end, int datasync)
1470{
1471 struct dentry *dentry = file->f_path.dentry;
1472 struct inode *inode = dentry->d_inode;
1473 struct btrfs_root *root = BTRFS_I(inode)->root;
1474 int ret = 0;
1475 struct btrfs_trans_handle *trans;
1476
1477 trace_btrfs_sync_file(file, datasync);
1478
1479 ret = filemap_write_and_wait_range(inode->i_mapping, start, end);
1480 if (ret)
1481 return ret;
1482 mutex_lock(&inode->i_mutex);
1483
1484 /* we wait first, since the writeback may change the inode */
1485 root->log_batch++;
1486 btrfs_wait_ordered_range(inode, 0, (u64)-1);
1487 root->log_batch++;
1488
1489 /*
1490 * check the transaction that last modified this inode
1491 * and see if its already been committed
1492 */
1493 if (!BTRFS_I(inode)->last_trans) {
1494 mutex_unlock(&inode->i_mutex);
1495 goto out;
1496 }
1497
1498 /*
1499 * if the last transaction that changed this file was before
1500 * the current transaction, we can bail out now without any
1501 * syncing
1502 */
1503 smp_mb();
1504 if (BTRFS_I(inode)->last_trans <=
1505 root->fs_info->last_trans_committed) {
1506 BTRFS_I(inode)->last_trans = 0;
1507 mutex_unlock(&inode->i_mutex);
1508 goto out;
1509 }
1510
1511 /*
1512 * ok we haven't committed the transaction yet, lets do a commit
1513 */
1514 if (file->private_data)
1515 btrfs_ioctl_trans_end(file);
1516
1517 trans = btrfs_start_transaction(root, 0);
1518 if (IS_ERR(trans)) {
1519 ret = PTR_ERR(trans);
1520 mutex_unlock(&inode->i_mutex);
1521 goto out;
1522 }
1523
1524 ret = btrfs_log_dentry_safe(trans, root, dentry);
1525 if (ret < 0) {
1526 mutex_unlock(&inode->i_mutex);
1527 goto out;
1528 }
1529
1530 /* we've logged all the items and now have a consistent
1531 * version of the file in the log. It is possible that
1532 * someone will come in and modify the file, but that's
1533 * fine because the log is consistent on disk, and we
1534 * have references to all of the file's extents
1535 *
1536 * It is possible that someone will come in and log the
1537 * file again, but that will end up using the synchronization
1538 * inside btrfs_sync_log to keep things safe.
1539 */
1540 mutex_unlock(&inode->i_mutex);
1541
1542 if (ret != BTRFS_NO_LOG_SYNC) {
1543 if (ret > 0) {
1544 ret = btrfs_commit_transaction(trans, root);
1545 } else {
1546 ret = btrfs_sync_log(trans, root);
1547 if (ret == 0)
1548 ret = btrfs_end_transaction(trans, root);
1549 else
1550 ret = btrfs_commit_transaction(trans, root);
1551 }
1552 } else {
1553 ret = btrfs_end_transaction(trans, root);
1554 }
1555out:
1556 return ret > 0 ? -EIO : ret;
1557}
1558
1559static const struct vm_operations_struct btrfs_file_vm_ops = {
1560 .fault = filemap_fault,
1561 .page_mkwrite = btrfs_page_mkwrite,
1562};
1563
1564static int btrfs_file_mmap(struct file *filp, struct vm_area_struct *vma)
1565{
1566 struct address_space *mapping = filp->f_mapping;
1567
1568 if (!mapping->a_ops->readpage)
1569 return -ENOEXEC;
1570
1571 file_accessed(filp);
1572 vma->vm_ops = &btrfs_file_vm_ops;
1573 vma->vm_flags |= VM_CAN_NONLINEAR;
1574
1575 return 0;
1576}
1577
1578static long btrfs_fallocate(struct file *file, int mode,
1579 loff_t offset, loff_t len)
1580{
1581 struct inode *inode = file->f_path.dentry->d_inode;
1582 struct extent_state *cached_state = NULL;
1583 u64 cur_offset;
1584 u64 last_byte;
1585 u64 alloc_start;
1586 u64 alloc_end;
1587 u64 alloc_hint = 0;
1588 u64 locked_end;
1589 u64 mask = BTRFS_I(inode)->root->sectorsize - 1;
1590 struct extent_map *em;
1591 int ret;
1592
1593 alloc_start = offset & ~mask;
1594 alloc_end = (offset + len + mask) & ~mask;
1595
1596 /* We only support the FALLOC_FL_KEEP_SIZE mode */
1597 if (mode & ~FALLOC_FL_KEEP_SIZE)
1598 return -EOPNOTSUPP;
1599
1600 /*
1601 * wait for ordered IO before we have any locks. We'll loop again
1602 * below with the locks held.
1603 */
1604 btrfs_wait_ordered_range(inode, alloc_start, alloc_end - alloc_start);
1605
1606 mutex_lock(&inode->i_mutex);
1607 ret = inode_newsize_ok(inode, alloc_end);
1608 if (ret)
1609 goto out;
1610
1611 if (alloc_start > inode->i_size) {
1612 ret = btrfs_cont_expand(inode, i_size_read(inode),
1613 alloc_start);
1614 if (ret)
1615 goto out;
1616 }
1617
1618 ret = btrfs_check_data_free_space(inode, alloc_end - alloc_start);
1619 if (ret)
1620 goto out;
1621
1622 locked_end = alloc_end - 1;
1623 while (1) {
1624 struct btrfs_ordered_extent *ordered;
1625
1626 /* the extent lock is ordered inside the running
1627 * transaction
1628 */
1629 lock_extent_bits(&BTRFS_I(inode)->io_tree, alloc_start,
1630 locked_end, 0, &cached_state, GFP_NOFS);
1631 ordered = btrfs_lookup_first_ordered_extent(inode,
1632 alloc_end - 1);
1633 if (ordered &&
1634 ordered->file_offset + ordered->len > alloc_start &&
1635 ordered->file_offset < alloc_end) {
1636 btrfs_put_ordered_extent(ordered);
1637 unlock_extent_cached(&BTRFS_I(inode)->io_tree,
1638 alloc_start, locked_end,
1639 &cached_state, GFP_NOFS);
1640 /*
1641 * we can't wait on the range with the transaction
1642 * running or with the extent lock held
1643 */
1644 btrfs_wait_ordered_range(inode, alloc_start,
1645 alloc_end - alloc_start);
1646 } else {
1647 if (ordered)
1648 btrfs_put_ordered_extent(ordered);
1649 break;
1650 }
1651 }
1652
1653 cur_offset = alloc_start;
1654 while (1) {
1655 u64 actual_end;
1656
1657 em = btrfs_get_extent(inode, NULL, 0, cur_offset,
1658 alloc_end - cur_offset, 0);
1659 BUG_ON(IS_ERR_OR_NULL(em));
1660 last_byte = min(extent_map_end(em), alloc_end);
1661 actual_end = min_t(u64, extent_map_end(em), offset + len);
1662 last_byte = (last_byte + mask) & ~mask;
1663
1664 if (em->block_start == EXTENT_MAP_HOLE ||
1665 (cur_offset >= inode->i_size &&
1666 !test_bit(EXTENT_FLAG_PREALLOC, &em->flags))) {
1667 ret = btrfs_prealloc_file_range(inode, mode, cur_offset,
1668 last_byte - cur_offset,
1669 1 << inode->i_blkbits,
1670 offset + len,
1671 &alloc_hint);
1672 if (ret < 0) {
1673 free_extent_map(em);
1674 break;
1675 }
1676 } else if (actual_end > inode->i_size &&
1677 !(mode & FALLOC_FL_KEEP_SIZE)) {
1678 /*
1679 * We didn't need to allocate any more space, but we
1680 * still extended the size of the file so we need to
1681 * update i_size.
1682 */
1683 inode->i_ctime = CURRENT_TIME;
1684 i_size_write(inode, actual_end);
1685 btrfs_ordered_update_i_size(inode, actual_end, NULL);
1686 }
1687 free_extent_map(em);
1688
1689 cur_offset = last_byte;
1690 if (cur_offset >= alloc_end) {
1691 ret = 0;
1692 break;
1693 }
1694 }
1695 unlock_extent_cached(&BTRFS_I(inode)->io_tree, alloc_start, locked_end,
1696 &cached_state, GFP_NOFS);
1697
1698 btrfs_free_reserved_data_space(inode, alloc_end - alloc_start);
1699out:
1700 mutex_unlock(&inode->i_mutex);
1701 return ret;
1702}
1703
1704static int find_desired_extent(struct inode *inode, loff_t *offset, int origin)
1705{
1706 struct btrfs_root *root = BTRFS_I(inode)->root;
1707 struct extent_map *em;
1708 struct extent_state *cached_state = NULL;
1709 u64 lockstart = *offset;
1710 u64 lockend = i_size_read(inode);
1711 u64 start = *offset;
1712 u64 orig_start = *offset;
1713 u64 len = i_size_read(inode);
1714 u64 last_end = 0;
1715 int ret = 0;
1716
1717 lockend = max_t(u64, root->sectorsize, lockend);
1718 if (lockend <= lockstart)
1719 lockend = lockstart + root->sectorsize;
1720
1721 len = lockend - lockstart + 1;
1722
1723 len = max_t(u64, len, root->sectorsize);
1724 if (inode->i_size == 0)
1725 return -ENXIO;
1726
1727 lock_extent_bits(&BTRFS_I(inode)->io_tree, lockstart, lockend, 0,
1728 &cached_state, GFP_NOFS);
1729
1730 /*
1731 * Delalloc is such a pain. If we have a hole and we have pending
1732 * delalloc for a portion of the hole we will get back a hole that
1733 * exists for the entire range since it hasn't been actually written
1734 * yet. So to take care of this case we need to look for an extent just
1735 * before the position we want in case there is outstanding delalloc
1736 * going on here.
1737 */
1738 if (origin == SEEK_HOLE && start != 0) {
1739 if (start <= root->sectorsize)
1740 em = btrfs_get_extent_fiemap(inode, NULL, 0, 0,
1741 root->sectorsize, 0);
1742 else
1743 em = btrfs_get_extent_fiemap(inode, NULL, 0,
1744 start - root->sectorsize,
1745 root->sectorsize, 0);
1746 if (IS_ERR(em)) {
1747 ret = -ENXIO;
1748 goto out;
1749 }
1750 last_end = em->start + em->len;
1751 if (em->block_start == EXTENT_MAP_DELALLOC)
1752 last_end = min_t(u64, last_end, inode->i_size);
1753 free_extent_map(em);
1754 }
1755
1756 while (1) {
1757 em = btrfs_get_extent_fiemap(inode, NULL, 0, start, len, 0);
1758 if (IS_ERR(em)) {
1759 ret = -ENXIO;
1760 break;
1761 }
1762
1763 if (em->block_start == EXTENT_MAP_HOLE) {
1764 if (test_bit(EXTENT_FLAG_VACANCY, &em->flags)) {
1765 if (last_end <= orig_start) {
1766 free_extent_map(em);
1767 ret = -ENXIO;
1768 break;
1769 }
1770 }
1771
1772 if (origin == SEEK_HOLE) {
1773 *offset = start;
1774 free_extent_map(em);
1775 break;
1776 }
1777 } else {
1778 if (origin == SEEK_DATA) {
1779 if (em->block_start == EXTENT_MAP_DELALLOC) {
1780 if (start >= inode->i_size) {
1781 free_extent_map(em);
1782 ret = -ENXIO;
1783 break;
1784 }
1785 }
1786
1787 *offset = start;
1788 free_extent_map(em);
1789 break;
1790 }
1791 }
1792
1793 start = em->start + em->len;
1794 last_end = em->start + em->len;
1795
1796 if (em->block_start == EXTENT_MAP_DELALLOC)
1797 last_end = min_t(u64, last_end, inode->i_size);
1798
1799 if (test_bit(EXTENT_FLAG_VACANCY, &em->flags)) {
1800 free_extent_map(em);
1801 ret = -ENXIO;
1802 break;
1803 }
1804 free_extent_map(em);
1805 cond_resched();
1806 }
1807 if (!ret)
1808 *offset = min(*offset, inode->i_size);
1809out:
1810 unlock_extent_cached(&BTRFS_I(inode)->io_tree, lockstart, lockend,
1811 &cached_state, GFP_NOFS);
1812 return ret;
1813}
1814
1815static loff_t btrfs_file_llseek(struct file *file, loff_t offset, int origin)
1816{
1817 struct inode *inode = file->f_mapping->host;
1818 int ret;
1819
1820 mutex_lock(&inode->i_mutex);
1821 switch (origin) {
1822 case SEEK_END:
1823 case SEEK_CUR:
1824 offset = generic_file_llseek_unlocked(file, offset, origin);
1825 goto out;
1826 case SEEK_DATA:
1827 case SEEK_HOLE:
1828 if (offset >= i_size_read(inode)) {
1829 mutex_unlock(&inode->i_mutex);
1830 return -ENXIO;
1831 }
1832
1833 ret = find_desired_extent(inode, &offset, origin);
1834 if (ret) {
1835 mutex_unlock(&inode->i_mutex);
1836 return ret;
1837 }
1838 }
1839
1840 if (offset < 0 && !(file->f_mode & FMODE_UNSIGNED_OFFSET)) {
1841 offset = -EINVAL;
1842 goto out;
1843 }
1844 if (offset > inode->i_sb->s_maxbytes) {
1845 offset = -EINVAL;
1846 goto out;
1847 }
1848
1849 /* Special lock needed here? */
1850 if (offset != file->f_pos) {
1851 file->f_pos = offset;
1852 file->f_version = 0;
1853 }
1854out:
1855 mutex_unlock(&inode->i_mutex);
1856 return offset;
1857}
1858
1859const struct file_operations btrfs_file_operations = {
1860 .llseek = btrfs_file_llseek,
1861 .read = do_sync_read,
1862 .write = do_sync_write,
1863 .aio_read = generic_file_aio_read,
1864 .splice_read = generic_file_splice_read,
1865 .aio_write = btrfs_file_aio_write,
1866 .mmap = btrfs_file_mmap,
1867 .open = generic_file_open,
1868 .release = btrfs_release_file,
1869 .fsync = btrfs_sync_file,
1870 .fallocate = btrfs_fallocate,
1871 .unlocked_ioctl = btrfs_ioctl,
1872#ifdef CONFIG_COMPAT
1873 .compat_ioctl = btrfs_ioctl,
1874#endif
1875};
1/*
2 * Copyright (C) 2007 Oracle. All rights reserved.
3 *
4 * This program is free software; you can redistribute it and/or
5 * modify it under the terms of the GNU General Public
6 * License v2 as published by the Free Software Foundation.
7 *
8 * This program is distributed in the hope that it will be useful,
9 * but WITHOUT ANY WARRANTY; without even the implied warranty of
10 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
11 * General Public License for more details.
12 *
13 * You should have received a copy of the GNU General Public
14 * License along with this program; if not, write to the
15 * Free Software Foundation, Inc., 59 Temple Place - Suite 330,
16 * Boston, MA 021110-1307, USA.
17 */
18
19#include <linux/fs.h>
20#include <linux/pagemap.h>
21#include <linux/highmem.h>
22#include <linux/time.h>
23#include <linux/init.h>
24#include <linux/string.h>
25#include <linux/backing-dev.h>
26#include <linux/mpage.h>
27#include <linux/falloc.h>
28#include <linux/swap.h>
29#include <linux/writeback.h>
30#include <linux/statfs.h>
31#include <linux/compat.h>
32#include <linux/slab.h>
33#include <linux/btrfs.h>
34#include <linux/uio.h>
35#include "ctree.h"
36#include "disk-io.h"
37#include "transaction.h"
38#include "btrfs_inode.h"
39#include "print-tree.h"
40#include "tree-log.h"
41#include "locking.h"
42#include "volumes.h"
43#include "qgroup.h"
44#include "compression.h"
45
46static struct kmem_cache *btrfs_inode_defrag_cachep;
47/*
48 * when auto defrag is enabled we
49 * queue up these defrag structs to remember which
50 * inodes need defragging passes
51 */
52struct inode_defrag {
53 struct rb_node rb_node;
54 /* objectid */
55 u64 ino;
56 /*
57 * transid where the defrag was added, we search for
58 * extents newer than this
59 */
60 u64 transid;
61
62 /* root objectid */
63 u64 root;
64
65 /* last offset we were able to defrag */
66 u64 last_offset;
67
68 /* if we've wrapped around back to zero once already */
69 int cycled;
70};
71
72static int __compare_inode_defrag(struct inode_defrag *defrag1,
73 struct inode_defrag *defrag2)
74{
75 if (defrag1->root > defrag2->root)
76 return 1;
77 else if (defrag1->root < defrag2->root)
78 return -1;
79 else if (defrag1->ino > defrag2->ino)
80 return 1;
81 else if (defrag1->ino < defrag2->ino)
82 return -1;
83 else
84 return 0;
85}
86
87/* pop a record for an inode into the defrag tree. The lock
88 * must be held already
89 *
90 * If you're inserting a record for an older transid than an
91 * existing record, the transid already in the tree is lowered
92 *
93 * If an existing record is found the defrag item you
94 * pass in is freed
95 */
96static int __btrfs_add_inode_defrag(struct inode *inode,
97 struct inode_defrag *defrag)
98{
99 struct btrfs_root *root = BTRFS_I(inode)->root;
100 struct inode_defrag *entry;
101 struct rb_node **p;
102 struct rb_node *parent = NULL;
103 int ret;
104
105 p = &root->fs_info->defrag_inodes.rb_node;
106 while (*p) {
107 parent = *p;
108 entry = rb_entry(parent, struct inode_defrag, rb_node);
109
110 ret = __compare_inode_defrag(defrag, entry);
111 if (ret < 0)
112 p = &parent->rb_left;
113 else if (ret > 0)
114 p = &parent->rb_right;
115 else {
116 /* if we're reinserting an entry for
117 * an old defrag run, make sure to
118 * lower the transid of our existing record
119 */
120 if (defrag->transid < entry->transid)
121 entry->transid = defrag->transid;
122 if (defrag->last_offset > entry->last_offset)
123 entry->last_offset = defrag->last_offset;
124 return -EEXIST;
125 }
126 }
127 set_bit(BTRFS_INODE_IN_DEFRAG, &BTRFS_I(inode)->runtime_flags);
128 rb_link_node(&defrag->rb_node, parent, p);
129 rb_insert_color(&defrag->rb_node, &root->fs_info->defrag_inodes);
130 return 0;
131}
132
133static inline int __need_auto_defrag(struct btrfs_root *root)
134{
135 if (!btrfs_test_opt(root, AUTO_DEFRAG))
136 return 0;
137
138 if (btrfs_fs_closing(root->fs_info))
139 return 0;
140
141 return 1;
142}
143
144/*
145 * insert a defrag record for this inode if auto defrag is
146 * enabled
147 */
148int btrfs_add_inode_defrag(struct btrfs_trans_handle *trans,
149 struct inode *inode)
150{
151 struct btrfs_root *root = BTRFS_I(inode)->root;
152 struct inode_defrag *defrag;
153 u64 transid;
154 int ret;
155
156 if (!__need_auto_defrag(root))
157 return 0;
158
159 if (test_bit(BTRFS_INODE_IN_DEFRAG, &BTRFS_I(inode)->runtime_flags))
160 return 0;
161
162 if (trans)
163 transid = trans->transid;
164 else
165 transid = BTRFS_I(inode)->root->last_trans;
166
167 defrag = kmem_cache_zalloc(btrfs_inode_defrag_cachep, GFP_NOFS);
168 if (!defrag)
169 return -ENOMEM;
170
171 defrag->ino = btrfs_ino(inode);
172 defrag->transid = transid;
173 defrag->root = root->root_key.objectid;
174
175 spin_lock(&root->fs_info->defrag_inodes_lock);
176 if (!test_bit(BTRFS_INODE_IN_DEFRAG, &BTRFS_I(inode)->runtime_flags)) {
177 /*
178 * If we set IN_DEFRAG flag and evict the inode from memory,
179 * and then re-read this inode, this new inode doesn't have
180 * IN_DEFRAG flag. At the case, we may find the existed defrag.
181 */
182 ret = __btrfs_add_inode_defrag(inode, defrag);
183 if (ret)
184 kmem_cache_free(btrfs_inode_defrag_cachep, defrag);
185 } else {
186 kmem_cache_free(btrfs_inode_defrag_cachep, defrag);
187 }
188 spin_unlock(&root->fs_info->defrag_inodes_lock);
189 return 0;
190}
191
192/*
193 * Requeue the defrag object. If there is a defrag object that points to
194 * the same inode in the tree, we will merge them together (by
195 * __btrfs_add_inode_defrag()) and free the one that we want to requeue.
196 */
197static void btrfs_requeue_inode_defrag(struct inode *inode,
198 struct inode_defrag *defrag)
199{
200 struct btrfs_root *root = BTRFS_I(inode)->root;
201 int ret;
202
203 if (!__need_auto_defrag(root))
204 goto out;
205
206 /*
207 * Here we don't check the IN_DEFRAG flag, because we need merge
208 * them together.
209 */
210 spin_lock(&root->fs_info->defrag_inodes_lock);
211 ret = __btrfs_add_inode_defrag(inode, defrag);
212 spin_unlock(&root->fs_info->defrag_inodes_lock);
213 if (ret)
214 goto out;
215 return;
216out:
217 kmem_cache_free(btrfs_inode_defrag_cachep, defrag);
218}
219
220/*
221 * pick the defragable inode that we want, if it doesn't exist, we will get
222 * the next one.
223 */
224static struct inode_defrag *
225btrfs_pick_defrag_inode(struct btrfs_fs_info *fs_info, u64 root, u64 ino)
226{
227 struct inode_defrag *entry = NULL;
228 struct inode_defrag tmp;
229 struct rb_node *p;
230 struct rb_node *parent = NULL;
231 int ret;
232
233 tmp.ino = ino;
234 tmp.root = root;
235
236 spin_lock(&fs_info->defrag_inodes_lock);
237 p = fs_info->defrag_inodes.rb_node;
238 while (p) {
239 parent = p;
240 entry = rb_entry(parent, struct inode_defrag, rb_node);
241
242 ret = __compare_inode_defrag(&tmp, entry);
243 if (ret < 0)
244 p = parent->rb_left;
245 else if (ret > 0)
246 p = parent->rb_right;
247 else
248 goto out;
249 }
250
251 if (parent && __compare_inode_defrag(&tmp, entry) > 0) {
252 parent = rb_next(parent);
253 if (parent)
254 entry = rb_entry(parent, struct inode_defrag, rb_node);
255 else
256 entry = NULL;
257 }
258out:
259 if (entry)
260 rb_erase(parent, &fs_info->defrag_inodes);
261 spin_unlock(&fs_info->defrag_inodes_lock);
262 return entry;
263}
264
265void btrfs_cleanup_defrag_inodes(struct btrfs_fs_info *fs_info)
266{
267 struct inode_defrag *defrag;
268 struct rb_node *node;
269
270 spin_lock(&fs_info->defrag_inodes_lock);
271 node = rb_first(&fs_info->defrag_inodes);
272 while (node) {
273 rb_erase(node, &fs_info->defrag_inodes);
274 defrag = rb_entry(node, struct inode_defrag, rb_node);
275 kmem_cache_free(btrfs_inode_defrag_cachep, defrag);
276
277 cond_resched_lock(&fs_info->defrag_inodes_lock);
278
279 node = rb_first(&fs_info->defrag_inodes);
280 }
281 spin_unlock(&fs_info->defrag_inodes_lock);
282}
283
284#define BTRFS_DEFRAG_BATCH 1024
285
286static int __btrfs_run_defrag_inode(struct btrfs_fs_info *fs_info,
287 struct inode_defrag *defrag)
288{
289 struct btrfs_root *inode_root;
290 struct inode *inode;
291 struct btrfs_key key;
292 struct btrfs_ioctl_defrag_range_args range;
293 int num_defrag;
294 int index;
295 int ret;
296
297 /* get the inode */
298 key.objectid = defrag->root;
299 key.type = BTRFS_ROOT_ITEM_KEY;
300 key.offset = (u64)-1;
301
302 index = srcu_read_lock(&fs_info->subvol_srcu);
303
304 inode_root = btrfs_read_fs_root_no_name(fs_info, &key);
305 if (IS_ERR(inode_root)) {
306 ret = PTR_ERR(inode_root);
307 goto cleanup;
308 }
309
310 key.objectid = defrag->ino;
311 key.type = BTRFS_INODE_ITEM_KEY;
312 key.offset = 0;
313 inode = btrfs_iget(fs_info->sb, &key, inode_root, NULL);
314 if (IS_ERR(inode)) {
315 ret = PTR_ERR(inode);
316 goto cleanup;
317 }
318 srcu_read_unlock(&fs_info->subvol_srcu, index);
319
320 /* do a chunk of defrag */
321 clear_bit(BTRFS_INODE_IN_DEFRAG, &BTRFS_I(inode)->runtime_flags);
322 memset(&range, 0, sizeof(range));
323 range.len = (u64)-1;
324 range.start = defrag->last_offset;
325
326 sb_start_write(fs_info->sb);
327 num_defrag = btrfs_defrag_file(inode, NULL, &range, defrag->transid,
328 BTRFS_DEFRAG_BATCH);
329 sb_end_write(fs_info->sb);
330 /*
331 * if we filled the whole defrag batch, there
332 * must be more work to do. Queue this defrag
333 * again
334 */
335 if (num_defrag == BTRFS_DEFRAG_BATCH) {
336 defrag->last_offset = range.start;
337 btrfs_requeue_inode_defrag(inode, defrag);
338 } else if (defrag->last_offset && !defrag->cycled) {
339 /*
340 * we didn't fill our defrag batch, but
341 * we didn't start at zero. Make sure we loop
342 * around to the start of the file.
343 */
344 defrag->last_offset = 0;
345 defrag->cycled = 1;
346 btrfs_requeue_inode_defrag(inode, defrag);
347 } else {
348 kmem_cache_free(btrfs_inode_defrag_cachep, defrag);
349 }
350
351 iput(inode);
352 return 0;
353cleanup:
354 srcu_read_unlock(&fs_info->subvol_srcu, index);
355 kmem_cache_free(btrfs_inode_defrag_cachep, defrag);
356 return ret;
357}
358
359/*
360 * run through the list of inodes in the FS that need
361 * defragging
362 */
363int btrfs_run_defrag_inodes(struct btrfs_fs_info *fs_info)
364{
365 struct inode_defrag *defrag;
366 u64 first_ino = 0;
367 u64 root_objectid = 0;
368
369 atomic_inc(&fs_info->defrag_running);
370 while (1) {
371 /* Pause the auto defragger. */
372 if (test_bit(BTRFS_FS_STATE_REMOUNTING,
373 &fs_info->fs_state))
374 break;
375
376 if (!__need_auto_defrag(fs_info->tree_root))
377 break;
378
379 /* find an inode to defrag */
380 defrag = btrfs_pick_defrag_inode(fs_info, root_objectid,
381 first_ino);
382 if (!defrag) {
383 if (root_objectid || first_ino) {
384 root_objectid = 0;
385 first_ino = 0;
386 continue;
387 } else {
388 break;
389 }
390 }
391
392 first_ino = defrag->ino + 1;
393 root_objectid = defrag->root;
394
395 __btrfs_run_defrag_inode(fs_info, defrag);
396 }
397 atomic_dec(&fs_info->defrag_running);
398
399 /*
400 * during unmount, we use the transaction_wait queue to
401 * wait for the defragger to stop
402 */
403 wake_up(&fs_info->transaction_wait);
404 return 0;
405}
406
407/* simple helper to fault in pages and copy. This should go away
408 * and be replaced with calls into generic code.
409 */
410static noinline int btrfs_copy_from_user(loff_t pos, size_t write_bytes,
411 struct page **prepared_pages,
412 struct iov_iter *i)
413{
414 size_t copied = 0;
415 size_t total_copied = 0;
416 int pg = 0;
417 int offset = pos & (PAGE_SIZE - 1);
418
419 while (write_bytes > 0) {
420 size_t count = min_t(size_t,
421 PAGE_SIZE - offset, write_bytes);
422 struct page *page = prepared_pages[pg];
423 /*
424 * Copy data from userspace to the current page
425 */
426 copied = iov_iter_copy_from_user_atomic(page, i, offset, count);
427
428 /* Flush processor's dcache for this page */
429 flush_dcache_page(page);
430
431 /*
432 * if we get a partial write, we can end up with
433 * partially up to date pages. These add
434 * a lot of complexity, so make sure they don't
435 * happen by forcing this copy to be retried.
436 *
437 * The rest of the btrfs_file_write code will fall
438 * back to page at a time copies after we return 0.
439 */
440 if (!PageUptodate(page) && copied < count)
441 copied = 0;
442
443 iov_iter_advance(i, copied);
444 write_bytes -= copied;
445 total_copied += copied;
446
447 /* Return to btrfs_file_write_iter to fault page */
448 if (unlikely(copied == 0))
449 break;
450
451 if (copied < PAGE_SIZE - offset) {
452 offset += copied;
453 } else {
454 pg++;
455 offset = 0;
456 }
457 }
458 return total_copied;
459}
460
461/*
462 * unlocks pages after btrfs_file_write is done with them
463 */
464static void btrfs_drop_pages(struct page **pages, size_t num_pages)
465{
466 size_t i;
467 for (i = 0; i < num_pages; i++) {
468 /* page checked is some magic around finding pages that
469 * have been modified without going through btrfs_set_page_dirty
470 * clear it here. There should be no need to mark the pages
471 * accessed as prepare_pages should have marked them accessed
472 * in prepare_pages via find_or_create_page()
473 */
474 ClearPageChecked(pages[i]);
475 unlock_page(pages[i]);
476 put_page(pages[i]);
477 }
478}
479
480/*
481 * after copy_from_user, pages need to be dirtied and we need to make
482 * sure holes are created between the current EOF and the start of
483 * any next extents (if required).
484 *
485 * this also makes the decision about creating an inline extent vs
486 * doing real data extents, marking pages dirty and delalloc as required.
487 */
488int btrfs_dirty_pages(struct btrfs_root *root, struct inode *inode,
489 struct page **pages, size_t num_pages,
490 loff_t pos, size_t write_bytes,
491 struct extent_state **cached)
492{
493 int err = 0;
494 int i;
495 u64 num_bytes;
496 u64 start_pos;
497 u64 end_of_last_block;
498 u64 end_pos = pos + write_bytes;
499 loff_t isize = i_size_read(inode);
500
501 start_pos = pos & ~((u64)root->sectorsize - 1);
502 num_bytes = round_up(write_bytes + pos - start_pos, root->sectorsize);
503
504 end_of_last_block = start_pos + num_bytes - 1;
505 err = btrfs_set_extent_delalloc(inode, start_pos, end_of_last_block,
506 cached);
507 if (err)
508 return err;
509
510 for (i = 0; i < num_pages; i++) {
511 struct page *p = pages[i];
512 SetPageUptodate(p);
513 ClearPageChecked(p);
514 set_page_dirty(p);
515 }
516
517 /*
518 * we've only changed i_size in ram, and we haven't updated
519 * the disk i_size. There is no need to log the inode
520 * at this time.
521 */
522 if (end_pos > isize)
523 i_size_write(inode, end_pos);
524 return 0;
525}
526
527/*
528 * this drops all the extents in the cache that intersect the range
529 * [start, end]. Existing extents are split as required.
530 */
531void btrfs_drop_extent_cache(struct inode *inode, u64 start, u64 end,
532 int skip_pinned)
533{
534 struct extent_map *em;
535 struct extent_map *split = NULL;
536 struct extent_map *split2 = NULL;
537 struct extent_map_tree *em_tree = &BTRFS_I(inode)->extent_tree;
538 u64 len = end - start + 1;
539 u64 gen;
540 int ret;
541 int testend = 1;
542 unsigned long flags;
543 int compressed = 0;
544 bool modified;
545
546 WARN_ON(end < start);
547 if (end == (u64)-1) {
548 len = (u64)-1;
549 testend = 0;
550 }
551 while (1) {
552 int no_splits = 0;
553
554 modified = false;
555 if (!split)
556 split = alloc_extent_map();
557 if (!split2)
558 split2 = alloc_extent_map();
559 if (!split || !split2)
560 no_splits = 1;
561
562 write_lock(&em_tree->lock);
563 em = lookup_extent_mapping(em_tree, start, len);
564 if (!em) {
565 write_unlock(&em_tree->lock);
566 break;
567 }
568 flags = em->flags;
569 gen = em->generation;
570 if (skip_pinned && test_bit(EXTENT_FLAG_PINNED, &em->flags)) {
571 if (testend && em->start + em->len >= start + len) {
572 free_extent_map(em);
573 write_unlock(&em_tree->lock);
574 break;
575 }
576 start = em->start + em->len;
577 if (testend)
578 len = start + len - (em->start + em->len);
579 free_extent_map(em);
580 write_unlock(&em_tree->lock);
581 continue;
582 }
583 compressed = test_bit(EXTENT_FLAG_COMPRESSED, &em->flags);
584 clear_bit(EXTENT_FLAG_PINNED, &em->flags);
585 clear_bit(EXTENT_FLAG_LOGGING, &flags);
586 modified = !list_empty(&em->list);
587 if (no_splits)
588 goto next;
589
590 if (em->start < start) {
591 split->start = em->start;
592 split->len = start - em->start;
593
594 if (em->block_start < EXTENT_MAP_LAST_BYTE) {
595 split->orig_start = em->orig_start;
596 split->block_start = em->block_start;
597
598 if (compressed)
599 split->block_len = em->block_len;
600 else
601 split->block_len = split->len;
602 split->orig_block_len = max(split->block_len,
603 em->orig_block_len);
604 split->ram_bytes = em->ram_bytes;
605 } else {
606 split->orig_start = split->start;
607 split->block_len = 0;
608 split->block_start = em->block_start;
609 split->orig_block_len = 0;
610 split->ram_bytes = split->len;
611 }
612
613 split->generation = gen;
614 split->bdev = em->bdev;
615 split->flags = flags;
616 split->compress_type = em->compress_type;
617 replace_extent_mapping(em_tree, em, split, modified);
618 free_extent_map(split);
619 split = split2;
620 split2 = NULL;
621 }
622 if (testend && em->start + em->len > start + len) {
623 u64 diff = start + len - em->start;
624
625 split->start = start + len;
626 split->len = em->start + em->len - (start + len);
627 split->bdev = em->bdev;
628 split->flags = flags;
629 split->compress_type = em->compress_type;
630 split->generation = gen;
631
632 if (em->block_start < EXTENT_MAP_LAST_BYTE) {
633 split->orig_block_len = max(em->block_len,
634 em->orig_block_len);
635
636 split->ram_bytes = em->ram_bytes;
637 if (compressed) {
638 split->block_len = em->block_len;
639 split->block_start = em->block_start;
640 split->orig_start = em->orig_start;
641 } else {
642 split->block_len = split->len;
643 split->block_start = em->block_start
644 + diff;
645 split->orig_start = em->orig_start;
646 }
647 } else {
648 split->ram_bytes = split->len;
649 split->orig_start = split->start;
650 split->block_len = 0;
651 split->block_start = em->block_start;
652 split->orig_block_len = 0;
653 }
654
655 if (extent_map_in_tree(em)) {
656 replace_extent_mapping(em_tree, em, split,
657 modified);
658 } else {
659 ret = add_extent_mapping(em_tree, split,
660 modified);
661 ASSERT(ret == 0); /* Logic error */
662 }
663 free_extent_map(split);
664 split = NULL;
665 }
666next:
667 if (extent_map_in_tree(em))
668 remove_extent_mapping(em_tree, em);
669 write_unlock(&em_tree->lock);
670
671 /* once for us */
672 free_extent_map(em);
673 /* once for the tree*/
674 free_extent_map(em);
675 }
676 if (split)
677 free_extent_map(split);
678 if (split2)
679 free_extent_map(split2);
680}
681
682/*
683 * this is very complex, but the basic idea is to drop all extents
684 * in the range start - end. hint_block is filled in with a block number
685 * that would be a good hint to the block allocator for this file.
686 *
687 * If an extent intersects the range but is not entirely inside the range
688 * it is either truncated or split. Anything entirely inside the range
689 * is deleted from the tree.
690 */
691int __btrfs_drop_extents(struct btrfs_trans_handle *trans,
692 struct btrfs_root *root, struct inode *inode,
693 struct btrfs_path *path, u64 start, u64 end,
694 u64 *drop_end, int drop_cache,
695 int replace_extent,
696 u32 extent_item_size,
697 int *key_inserted)
698{
699 struct extent_buffer *leaf;
700 struct btrfs_file_extent_item *fi;
701 struct btrfs_key key;
702 struct btrfs_key new_key;
703 u64 ino = btrfs_ino(inode);
704 u64 search_start = start;
705 u64 disk_bytenr = 0;
706 u64 num_bytes = 0;
707 u64 extent_offset = 0;
708 u64 extent_end = 0;
709 int del_nr = 0;
710 int del_slot = 0;
711 int extent_type;
712 int recow;
713 int ret;
714 int modify_tree = -1;
715 int update_refs;
716 int found = 0;
717 int leafs_visited = 0;
718
719 if (drop_cache)
720 btrfs_drop_extent_cache(inode, start, end - 1, 0);
721
722 if (start >= BTRFS_I(inode)->disk_i_size && !replace_extent)
723 modify_tree = 0;
724
725 update_refs = (test_bit(BTRFS_ROOT_REF_COWS, &root->state) ||
726 root == root->fs_info->tree_root);
727 while (1) {
728 recow = 0;
729 ret = btrfs_lookup_file_extent(trans, root, path, ino,
730 search_start, modify_tree);
731 if (ret < 0)
732 break;
733 if (ret > 0 && path->slots[0] > 0 && search_start == start) {
734 leaf = path->nodes[0];
735 btrfs_item_key_to_cpu(leaf, &key, path->slots[0] - 1);
736 if (key.objectid == ino &&
737 key.type == BTRFS_EXTENT_DATA_KEY)
738 path->slots[0]--;
739 }
740 ret = 0;
741 leafs_visited++;
742next_slot:
743 leaf = path->nodes[0];
744 if (path->slots[0] >= btrfs_header_nritems(leaf)) {
745 BUG_ON(del_nr > 0);
746 ret = btrfs_next_leaf(root, path);
747 if (ret < 0)
748 break;
749 if (ret > 0) {
750 ret = 0;
751 break;
752 }
753 leafs_visited++;
754 leaf = path->nodes[0];
755 recow = 1;
756 }
757
758 btrfs_item_key_to_cpu(leaf, &key, path->slots[0]);
759
760 if (key.objectid > ino)
761 break;
762 if (WARN_ON_ONCE(key.objectid < ino) ||
763 key.type < BTRFS_EXTENT_DATA_KEY) {
764 ASSERT(del_nr == 0);
765 path->slots[0]++;
766 goto next_slot;
767 }
768 if (key.type > BTRFS_EXTENT_DATA_KEY || key.offset >= end)
769 break;
770
771 fi = btrfs_item_ptr(leaf, path->slots[0],
772 struct btrfs_file_extent_item);
773 extent_type = btrfs_file_extent_type(leaf, fi);
774
775 if (extent_type == BTRFS_FILE_EXTENT_REG ||
776 extent_type == BTRFS_FILE_EXTENT_PREALLOC) {
777 disk_bytenr = btrfs_file_extent_disk_bytenr(leaf, fi);
778 num_bytes = btrfs_file_extent_disk_num_bytes(leaf, fi);
779 extent_offset = btrfs_file_extent_offset(leaf, fi);
780 extent_end = key.offset +
781 btrfs_file_extent_num_bytes(leaf, fi);
782 } else if (extent_type == BTRFS_FILE_EXTENT_INLINE) {
783 extent_end = key.offset +
784 btrfs_file_extent_inline_len(leaf,
785 path->slots[0], fi);
786 } else {
787 /* can't happen */
788 BUG();
789 }
790
791 /*
792 * Don't skip extent items representing 0 byte lengths. They
793 * used to be created (bug) if while punching holes we hit
794 * -ENOSPC condition. So if we find one here, just ensure we
795 * delete it, otherwise we would insert a new file extent item
796 * with the same key (offset) as that 0 bytes length file
797 * extent item in the call to setup_items_for_insert() later
798 * in this function.
799 */
800 if (extent_end == key.offset && extent_end >= search_start)
801 goto delete_extent_item;
802
803 if (extent_end <= search_start) {
804 path->slots[0]++;
805 goto next_slot;
806 }
807
808 found = 1;
809 search_start = max(key.offset, start);
810 if (recow || !modify_tree) {
811 modify_tree = -1;
812 btrfs_release_path(path);
813 continue;
814 }
815
816 /*
817 * | - range to drop - |
818 * | -------- extent -------- |
819 */
820 if (start > key.offset && end < extent_end) {
821 BUG_ON(del_nr > 0);
822 if (extent_type == BTRFS_FILE_EXTENT_INLINE) {
823 ret = -EOPNOTSUPP;
824 break;
825 }
826
827 memcpy(&new_key, &key, sizeof(new_key));
828 new_key.offset = start;
829 ret = btrfs_duplicate_item(trans, root, path,
830 &new_key);
831 if (ret == -EAGAIN) {
832 btrfs_release_path(path);
833 continue;
834 }
835 if (ret < 0)
836 break;
837
838 leaf = path->nodes[0];
839 fi = btrfs_item_ptr(leaf, path->slots[0] - 1,
840 struct btrfs_file_extent_item);
841 btrfs_set_file_extent_num_bytes(leaf, fi,
842 start - key.offset);
843
844 fi = btrfs_item_ptr(leaf, path->slots[0],
845 struct btrfs_file_extent_item);
846
847 extent_offset += start - key.offset;
848 btrfs_set_file_extent_offset(leaf, fi, extent_offset);
849 btrfs_set_file_extent_num_bytes(leaf, fi,
850 extent_end - start);
851 btrfs_mark_buffer_dirty(leaf);
852
853 if (update_refs && disk_bytenr > 0) {
854 ret = btrfs_inc_extent_ref(trans, root,
855 disk_bytenr, num_bytes, 0,
856 root->root_key.objectid,
857 new_key.objectid,
858 start - extent_offset);
859 BUG_ON(ret); /* -ENOMEM */
860 }
861 key.offset = start;
862 }
863 /*
864 * | ---- range to drop ----- |
865 * | -------- extent -------- |
866 */
867 if (start <= key.offset && end < extent_end) {
868 if (extent_type == BTRFS_FILE_EXTENT_INLINE) {
869 ret = -EOPNOTSUPP;
870 break;
871 }
872
873 memcpy(&new_key, &key, sizeof(new_key));
874 new_key.offset = end;
875 btrfs_set_item_key_safe(root->fs_info, path, &new_key);
876
877 extent_offset += end - key.offset;
878 btrfs_set_file_extent_offset(leaf, fi, extent_offset);
879 btrfs_set_file_extent_num_bytes(leaf, fi,
880 extent_end - end);
881 btrfs_mark_buffer_dirty(leaf);
882 if (update_refs && disk_bytenr > 0)
883 inode_sub_bytes(inode, end - key.offset);
884 break;
885 }
886
887 search_start = extent_end;
888 /*
889 * | ---- range to drop ----- |
890 * | -------- extent -------- |
891 */
892 if (start > key.offset && end >= extent_end) {
893 BUG_ON(del_nr > 0);
894 if (extent_type == BTRFS_FILE_EXTENT_INLINE) {
895 ret = -EOPNOTSUPP;
896 break;
897 }
898
899 btrfs_set_file_extent_num_bytes(leaf, fi,
900 start - key.offset);
901 btrfs_mark_buffer_dirty(leaf);
902 if (update_refs && disk_bytenr > 0)
903 inode_sub_bytes(inode, extent_end - start);
904 if (end == extent_end)
905 break;
906
907 path->slots[0]++;
908 goto next_slot;
909 }
910
911 /*
912 * | ---- range to drop ----- |
913 * | ------ extent ------ |
914 */
915 if (start <= key.offset && end >= extent_end) {
916delete_extent_item:
917 if (del_nr == 0) {
918 del_slot = path->slots[0];
919 del_nr = 1;
920 } else {
921 BUG_ON(del_slot + del_nr != path->slots[0]);
922 del_nr++;
923 }
924
925 if (update_refs &&
926 extent_type == BTRFS_FILE_EXTENT_INLINE) {
927 inode_sub_bytes(inode,
928 extent_end - key.offset);
929 extent_end = ALIGN(extent_end,
930 root->sectorsize);
931 } else if (update_refs && disk_bytenr > 0) {
932 ret = btrfs_free_extent(trans, root,
933 disk_bytenr, num_bytes, 0,
934 root->root_key.objectid,
935 key.objectid, key.offset -
936 extent_offset);
937 BUG_ON(ret); /* -ENOMEM */
938 inode_sub_bytes(inode,
939 extent_end - key.offset);
940 }
941
942 if (end == extent_end)
943 break;
944
945 if (path->slots[0] + 1 < btrfs_header_nritems(leaf)) {
946 path->slots[0]++;
947 goto next_slot;
948 }
949
950 ret = btrfs_del_items(trans, root, path, del_slot,
951 del_nr);
952 if (ret) {
953 btrfs_abort_transaction(trans, root, ret);
954 break;
955 }
956
957 del_nr = 0;
958 del_slot = 0;
959
960 btrfs_release_path(path);
961 continue;
962 }
963
964 BUG_ON(1);
965 }
966
967 if (!ret && del_nr > 0) {
968 /*
969 * Set path->slots[0] to first slot, so that after the delete
970 * if items are move off from our leaf to its immediate left or
971 * right neighbor leafs, we end up with a correct and adjusted
972 * path->slots[0] for our insertion (if replace_extent != 0).
973 */
974 path->slots[0] = del_slot;
975 ret = btrfs_del_items(trans, root, path, del_slot, del_nr);
976 if (ret)
977 btrfs_abort_transaction(trans, root, ret);
978 }
979
980 leaf = path->nodes[0];
981 /*
982 * If btrfs_del_items() was called, it might have deleted a leaf, in
983 * which case it unlocked our path, so check path->locks[0] matches a
984 * write lock.
985 */
986 if (!ret && replace_extent && leafs_visited == 1 &&
987 (path->locks[0] == BTRFS_WRITE_LOCK_BLOCKING ||
988 path->locks[0] == BTRFS_WRITE_LOCK) &&
989 btrfs_leaf_free_space(root, leaf) >=
990 sizeof(struct btrfs_item) + extent_item_size) {
991
992 key.objectid = ino;
993 key.type = BTRFS_EXTENT_DATA_KEY;
994 key.offset = start;
995 if (!del_nr && path->slots[0] < btrfs_header_nritems(leaf)) {
996 struct btrfs_key slot_key;
997
998 btrfs_item_key_to_cpu(leaf, &slot_key, path->slots[0]);
999 if (btrfs_comp_cpu_keys(&key, &slot_key) > 0)
1000 path->slots[0]++;
1001 }
1002 setup_items_for_insert(root, path, &key,
1003 &extent_item_size,
1004 extent_item_size,
1005 sizeof(struct btrfs_item) +
1006 extent_item_size, 1);
1007 *key_inserted = 1;
1008 }
1009
1010 if (!replace_extent || !(*key_inserted))
1011 btrfs_release_path(path);
1012 if (drop_end)
1013 *drop_end = found ? min(end, extent_end) : end;
1014 return ret;
1015}
1016
1017int btrfs_drop_extents(struct btrfs_trans_handle *trans,
1018 struct btrfs_root *root, struct inode *inode, u64 start,
1019 u64 end, int drop_cache)
1020{
1021 struct btrfs_path *path;
1022 int ret;
1023
1024 path = btrfs_alloc_path();
1025 if (!path)
1026 return -ENOMEM;
1027 ret = __btrfs_drop_extents(trans, root, inode, path, start, end, NULL,
1028 drop_cache, 0, 0, NULL);
1029 btrfs_free_path(path);
1030 return ret;
1031}
1032
1033static int extent_mergeable(struct extent_buffer *leaf, int slot,
1034 u64 objectid, u64 bytenr, u64 orig_offset,
1035 u64 *start, u64 *end)
1036{
1037 struct btrfs_file_extent_item *fi;
1038 struct btrfs_key key;
1039 u64 extent_end;
1040
1041 if (slot < 0 || slot >= btrfs_header_nritems(leaf))
1042 return 0;
1043
1044 btrfs_item_key_to_cpu(leaf, &key, slot);
1045 if (key.objectid != objectid || key.type != BTRFS_EXTENT_DATA_KEY)
1046 return 0;
1047
1048 fi = btrfs_item_ptr(leaf, slot, struct btrfs_file_extent_item);
1049 if (btrfs_file_extent_type(leaf, fi) != BTRFS_FILE_EXTENT_REG ||
1050 btrfs_file_extent_disk_bytenr(leaf, fi) != bytenr ||
1051 btrfs_file_extent_offset(leaf, fi) != key.offset - orig_offset ||
1052 btrfs_file_extent_compression(leaf, fi) ||
1053 btrfs_file_extent_encryption(leaf, fi) ||
1054 btrfs_file_extent_other_encoding(leaf, fi))
1055 return 0;
1056
1057 extent_end = key.offset + btrfs_file_extent_num_bytes(leaf, fi);
1058 if ((*start && *start != key.offset) || (*end && *end != extent_end))
1059 return 0;
1060
1061 *start = key.offset;
1062 *end = extent_end;
1063 return 1;
1064}
1065
1066/*
1067 * Mark extent in the range start - end as written.
1068 *
1069 * This changes extent type from 'pre-allocated' to 'regular'. If only
1070 * part of extent is marked as written, the extent will be split into
1071 * two or three.
1072 */
1073int btrfs_mark_extent_written(struct btrfs_trans_handle *trans,
1074 struct inode *inode, u64 start, u64 end)
1075{
1076 struct btrfs_root *root = BTRFS_I(inode)->root;
1077 struct extent_buffer *leaf;
1078 struct btrfs_path *path;
1079 struct btrfs_file_extent_item *fi;
1080 struct btrfs_key key;
1081 struct btrfs_key new_key;
1082 u64 bytenr;
1083 u64 num_bytes;
1084 u64 extent_end;
1085 u64 orig_offset;
1086 u64 other_start;
1087 u64 other_end;
1088 u64 split;
1089 int del_nr = 0;
1090 int del_slot = 0;
1091 int recow;
1092 int ret;
1093 u64 ino = btrfs_ino(inode);
1094
1095 path = btrfs_alloc_path();
1096 if (!path)
1097 return -ENOMEM;
1098again:
1099 recow = 0;
1100 split = start;
1101 key.objectid = ino;
1102 key.type = BTRFS_EXTENT_DATA_KEY;
1103 key.offset = split;
1104
1105 ret = btrfs_search_slot(trans, root, &key, path, -1, 1);
1106 if (ret < 0)
1107 goto out;
1108 if (ret > 0 && path->slots[0] > 0)
1109 path->slots[0]--;
1110
1111 leaf = path->nodes[0];
1112 btrfs_item_key_to_cpu(leaf, &key, path->slots[0]);
1113 BUG_ON(key.objectid != ino || key.type != BTRFS_EXTENT_DATA_KEY);
1114 fi = btrfs_item_ptr(leaf, path->slots[0],
1115 struct btrfs_file_extent_item);
1116 BUG_ON(btrfs_file_extent_type(leaf, fi) !=
1117 BTRFS_FILE_EXTENT_PREALLOC);
1118 extent_end = key.offset + btrfs_file_extent_num_bytes(leaf, fi);
1119 BUG_ON(key.offset > start || extent_end < end);
1120
1121 bytenr = btrfs_file_extent_disk_bytenr(leaf, fi);
1122 num_bytes = btrfs_file_extent_disk_num_bytes(leaf, fi);
1123 orig_offset = key.offset - btrfs_file_extent_offset(leaf, fi);
1124 memcpy(&new_key, &key, sizeof(new_key));
1125
1126 if (start == key.offset && end < extent_end) {
1127 other_start = 0;
1128 other_end = start;
1129 if (extent_mergeable(leaf, path->slots[0] - 1,
1130 ino, bytenr, orig_offset,
1131 &other_start, &other_end)) {
1132 new_key.offset = end;
1133 btrfs_set_item_key_safe(root->fs_info, path, &new_key);
1134 fi = btrfs_item_ptr(leaf, path->slots[0],
1135 struct btrfs_file_extent_item);
1136 btrfs_set_file_extent_generation(leaf, fi,
1137 trans->transid);
1138 btrfs_set_file_extent_num_bytes(leaf, fi,
1139 extent_end - end);
1140 btrfs_set_file_extent_offset(leaf, fi,
1141 end - orig_offset);
1142 fi = btrfs_item_ptr(leaf, path->slots[0] - 1,
1143 struct btrfs_file_extent_item);
1144 btrfs_set_file_extent_generation(leaf, fi,
1145 trans->transid);
1146 btrfs_set_file_extent_num_bytes(leaf, fi,
1147 end - other_start);
1148 btrfs_mark_buffer_dirty(leaf);
1149 goto out;
1150 }
1151 }
1152
1153 if (start > key.offset && end == extent_end) {
1154 other_start = end;
1155 other_end = 0;
1156 if (extent_mergeable(leaf, path->slots[0] + 1,
1157 ino, bytenr, orig_offset,
1158 &other_start, &other_end)) {
1159 fi = btrfs_item_ptr(leaf, path->slots[0],
1160 struct btrfs_file_extent_item);
1161 btrfs_set_file_extent_num_bytes(leaf, fi,
1162 start - key.offset);
1163 btrfs_set_file_extent_generation(leaf, fi,
1164 trans->transid);
1165 path->slots[0]++;
1166 new_key.offset = start;
1167 btrfs_set_item_key_safe(root->fs_info, path, &new_key);
1168
1169 fi = btrfs_item_ptr(leaf, path->slots[0],
1170 struct btrfs_file_extent_item);
1171 btrfs_set_file_extent_generation(leaf, fi,
1172 trans->transid);
1173 btrfs_set_file_extent_num_bytes(leaf, fi,
1174 other_end - start);
1175 btrfs_set_file_extent_offset(leaf, fi,
1176 start - orig_offset);
1177 btrfs_mark_buffer_dirty(leaf);
1178 goto out;
1179 }
1180 }
1181
1182 while (start > key.offset || end < extent_end) {
1183 if (key.offset == start)
1184 split = end;
1185
1186 new_key.offset = split;
1187 ret = btrfs_duplicate_item(trans, root, path, &new_key);
1188 if (ret == -EAGAIN) {
1189 btrfs_release_path(path);
1190 goto again;
1191 }
1192 if (ret < 0) {
1193 btrfs_abort_transaction(trans, root, ret);
1194 goto out;
1195 }
1196
1197 leaf = path->nodes[0];
1198 fi = btrfs_item_ptr(leaf, path->slots[0] - 1,
1199 struct btrfs_file_extent_item);
1200 btrfs_set_file_extent_generation(leaf, fi, trans->transid);
1201 btrfs_set_file_extent_num_bytes(leaf, fi,
1202 split - key.offset);
1203
1204 fi = btrfs_item_ptr(leaf, path->slots[0],
1205 struct btrfs_file_extent_item);
1206
1207 btrfs_set_file_extent_generation(leaf, fi, trans->transid);
1208 btrfs_set_file_extent_offset(leaf, fi, split - orig_offset);
1209 btrfs_set_file_extent_num_bytes(leaf, fi,
1210 extent_end - split);
1211 btrfs_mark_buffer_dirty(leaf);
1212
1213 ret = btrfs_inc_extent_ref(trans, root, bytenr, num_bytes, 0,
1214 root->root_key.objectid,
1215 ino, orig_offset);
1216 BUG_ON(ret); /* -ENOMEM */
1217
1218 if (split == start) {
1219 key.offset = start;
1220 } else {
1221 BUG_ON(start != key.offset);
1222 path->slots[0]--;
1223 extent_end = end;
1224 }
1225 recow = 1;
1226 }
1227
1228 other_start = end;
1229 other_end = 0;
1230 if (extent_mergeable(leaf, path->slots[0] + 1,
1231 ino, bytenr, orig_offset,
1232 &other_start, &other_end)) {
1233 if (recow) {
1234 btrfs_release_path(path);
1235 goto again;
1236 }
1237 extent_end = other_end;
1238 del_slot = path->slots[0] + 1;
1239 del_nr++;
1240 ret = btrfs_free_extent(trans, root, bytenr, num_bytes,
1241 0, root->root_key.objectid,
1242 ino, orig_offset);
1243 BUG_ON(ret); /* -ENOMEM */
1244 }
1245 other_start = 0;
1246 other_end = start;
1247 if (extent_mergeable(leaf, path->slots[0] - 1,
1248 ino, bytenr, orig_offset,
1249 &other_start, &other_end)) {
1250 if (recow) {
1251 btrfs_release_path(path);
1252 goto again;
1253 }
1254 key.offset = other_start;
1255 del_slot = path->slots[0];
1256 del_nr++;
1257 ret = btrfs_free_extent(trans, root, bytenr, num_bytes,
1258 0, root->root_key.objectid,
1259 ino, orig_offset);
1260 BUG_ON(ret); /* -ENOMEM */
1261 }
1262 if (del_nr == 0) {
1263 fi = btrfs_item_ptr(leaf, path->slots[0],
1264 struct btrfs_file_extent_item);
1265 btrfs_set_file_extent_type(leaf, fi,
1266 BTRFS_FILE_EXTENT_REG);
1267 btrfs_set_file_extent_generation(leaf, fi, trans->transid);
1268 btrfs_mark_buffer_dirty(leaf);
1269 } else {
1270 fi = btrfs_item_ptr(leaf, del_slot - 1,
1271 struct btrfs_file_extent_item);
1272 btrfs_set_file_extent_type(leaf, fi,
1273 BTRFS_FILE_EXTENT_REG);
1274 btrfs_set_file_extent_generation(leaf, fi, trans->transid);
1275 btrfs_set_file_extent_num_bytes(leaf, fi,
1276 extent_end - key.offset);
1277 btrfs_mark_buffer_dirty(leaf);
1278
1279 ret = btrfs_del_items(trans, root, path, del_slot, del_nr);
1280 if (ret < 0) {
1281 btrfs_abort_transaction(trans, root, ret);
1282 goto out;
1283 }
1284 }
1285out:
1286 btrfs_free_path(path);
1287 return 0;
1288}
1289
1290/*
1291 * on error we return an unlocked page and the error value
1292 * on success we return a locked page and 0
1293 */
1294static int prepare_uptodate_page(struct inode *inode,
1295 struct page *page, u64 pos,
1296 bool force_uptodate)
1297{
1298 int ret = 0;
1299
1300 if (((pos & (PAGE_SIZE - 1)) || force_uptodate) &&
1301 !PageUptodate(page)) {
1302 ret = btrfs_readpage(NULL, page);
1303 if (ret)
1304 return ret;
1305 lock_page(page);
1306 if (!PageUptodate(page)) {
1307 unlock_page(page);
1308 return -EIO;
1309 }
1310 if (page->mapping != inode->i_mapping) {
1311 unlock_page(page);
1312 return -EAGAIN;
1313 }
1314 }
1315 return 0;
1316}
1317
1318/*
1319 * this just gets pages into the page cache and locks them down.
1320 */
1321static noinline int prepare_pages(struct inode *inode, struct page **pages,
1322 size_t num_pages, loff_t pos,
1323 size_t write_bytes, bool force_uptodate)
1324{
1325 int i;
1326 unsigned long index = pos >> PAGE_SHIFT;
1327 gfp_t mask = btrfs_alloc_write_mask(inode->i_mapping);
1328 int err = 0;
1329 int faili;
1330
1331 for (i = 0; i < num_pages; i++) {
1332again:
1333 pages[i] = find_or_create_page(inode->i_mapping, index + i,
1334 mask | __GFP_WRITE);
1335 if (!pages[i]) {
1336 faili = i - 1;
1337 err = -ENOMEM;
1338 goto fail;
1339 }
1340
1341 if (i == 0)
1342 err = prepare_uptodate_page(inode, pages[i], pos,
1343 force_uptodate);
1344 if (!err && i == num_pages - 1)
1345 err = prepare_uptodate_page(inode, pages[i],
1346 pos + write_bytes, false);
1347 if (err) {
1348 put_page(pages[i]);
1349 if (err == -EAGAIN) {
1350 err = 0;
1351 goto again;
1352 }
1353 faili = i - 1;
1354 goto fail;
1355 }
1356 wait_on_page_writeback(pages[i]);
1357 }
1358
1359 return 0;
1360fail:
1361 while (faili >= 0) {
1362 unlock_page(pages[faili]);
1363 put_page(pages[faili]);
1364 faili--;
1365 }
1366 return err;
1367
1368}
1369
1370/*
1371 * This function locks the extent and properly waits for data=ordered extents
1372 * to finish before allowing the pages to be modified if need.
1373 *
1374 * The return value:
1375 * 1 - the extent is locked
1376 * 0 - the extent is not locked, and everything is OK
1377 * -EAGAIN - need re-prepare the pages
1378 * the other < 0 number - Something wrong happens
1379 */
1380static noinline int
1381lock_and_cleanup_extent_if_need(struct inode *inode, struct page **pages,
1382 size_t num_pages, loff_t pos,
1383 size_t write_bytes,
1384 u64 *lockstart, u64 *lockend,
1385 struct extent_state **cached_state)
1386{
1387 struct btrfs_root *root = BTRFS_I(inode)->root;
1388 u64 start_pos;
1389 u64 last_pos;
1390 int i;
1391 int ret = 0;
1392
1393 start_pos = round_down(pos, root->sectorsize);
1394 last_pos = start_pos
1395 + round_up(pos + write_bytes - start_pos, root->sectorsize) - 1;
1396
1397 if (start_pos < inode->i_size) {
1398 struct btrfs_ordered_extent *ordered;
1399 lock_extent_bits(&BTRFS_I(inode)->io_tree,
1400 start_pos, last_pos, cached_state);
1401 ordered = btrfs_lookup_ordered_range(inode, start_pos,
1402 last_pos - start_pos + 1);
1403 if (ordered &&
1404 ordered->file_offset + ordered->len > start_pos &&
1405 ordered->file_offset <= last_pos) {
1406 unlock_extent_cached(&BTRFS_I(inode)->io_tree,
1407 start_pos, last_pos,
1408 cached_state, GFP_NOFS);
1409 for (i = 0; i < num_pages; i++) {
1410 unlock_page(pages[i]);
1411 put_page(pages[i]);
1412 }
1413 btrfs_start_ordered_extent(inode, ordered, 1);
1414 btrfs_put_ordered_extent(ordered);
1415 return -EAGAIN;
1416 }
1417 if (ordered)
1418 btrfs_put_ordered_extent(ordered);
1419
1420 clear_extent_bit(&BTRFS_I(inode)->io_tree, start_pos,
1421 last_pos, EXTENT_DIRTY | EXTENT_DELALLOC |
1422 EXTENT_DO_ACCOUNTING | EXTENT_DEFRAG,
1423 0, 0, cached_state, GFP_NOFS);
1424 *lockstart = start_pos;
1425 *lockend = last_pos;
1426 ret = 1;
1427 }
1428
1429 for (i = 0; i < num_pages; i++) {
1430 if (clear_page_dirty_for_io(pages[i]))
1431 account_page_redirty(pages[i]);
1432 set_page_extent_mapped(pages[i]);
1433 WARN_ON(!PageLocked(pages[i]));
1434 }
1435
1436 return ret;
1437}
1438
1439static noinline int check_can_nocow(struct inode *inode, loff_t pos,
1440 size_t *write_bytes)
1441{
1442 struct btrfs_root *root = BTRFS_I(inode)->root;
1443 struct btrfs_ordered_extent *ordered;
1444 u64 lockstart, lockend;
1445 u64 num_bytes;
1446 int ret;
1447
1448 ret = btrfs_start_write_no_snapshoting(root);
1449 if (!ret)
1450 return -ENOSPC;
1451
1452 lockstart = round_down(pos, root->sectorsize);
1453 lockend = round_up(pos + *write_bytes, root->sectorsize) - 1;
1454
1455 while (1) {
1456 lock_extent(&BTRFS_I(inode)->io_tree, lockstart, lockend);
1457 ordered = btrfs_lookup_ordered_range(inode, lockstart,
1458 lockend - lockstart + 1);
1459 if (!ordered) {
1460 break;
1461 }
1462 unlock_extent(&BTRFS_I(inode)->io_tree, lockstart, lockend);
1463 btrfs_start_ordered_extent(inode, ordered, 1);
1464 btrfs_put_ordered_extent(ordered);
1465 }
1466
1467 num_bytes = lockend - lockstart + 1;
1468 ret = can_nocow_extent(inode, lockstart, &num_bytes, NULL, NULL, NULL);
1469 if (ret <= 0) {
1470 ret = 0;
1471 btrfs_end_write_no_snapshoting(root);
1472 } else {
1473 *write_bytes = min_t(size_t, *write_bytes ,
1474 num_bytes - pos + lockstart);
1475 }
1476
1477 unlock_extent(&BTRFS_I(inode)->io_tree, lockstart, lockend);
1478
1479 return ret;
1480}
1481
1482static noinline ssize_t __btrfs_buffered_write(struct file *file,
1483 struct iov_iter *i,
1484 loff_t pos)
1485{
1486 struct inode *inode = file_inode(file);
1487 struct btrfs_root *root = BTRFS_I(inode)->root;
1488 struct page **pages = NULL;
1489 struct extent_state *cached_state = NULL;
1490 u64 release_bytes = 0;
1491 u64 lockstart;
1492 u64 lockend;
1493 size_t num_written = 0;
1494 int nrptrs;
1495 int ret = 0;
1496 bool only_release_metadata = false;
1497 bool force_page_uptodate = false;
1498 bool need_unlock;
1499
1500 nrptrs = min(DIV_ROUND_UP(iov_iter_count(i), PAGE_SIZE),
1501 PAGE_SIZE / (sizeof(struct page *)));
1502 nrptrs = min(nrptrs, current->nr_dirtied_pause - current->nr_dirtied);
1503 nrptrs = max(nrptrs, 8);
1504 pages = kmalloc_array(nrptrs, sizeof(struct page *), GFP_KERNEL);
1505 if (!pages)
1506 return -ENOMEM;
1507
1508 while (iov_iter_count(i) > 0) {
1509 size_t offset = pos & (PAGE_SIZE - 1);
1510 size_t sector_offset;
1511 size_t write_bytes = min(iov_iter_count(i),
1512 nrptrs * (size_t)PAGE_SIZE -
1513 offset);
1514 size_t num_pages = DIV_ROUND_UP(write_bytes + offset,
1515 PAGE_SIZE);
1516 size_t reserve_bytes;
1517 size_t dirty_pages;
1518 size_t copied;
1519 size_t dirty_sectors;
1520 size_t num_sectors;
1521
1522 WARN_ON(num_pages > nrptrs);
1523
1524 /*
1525 * Fault pages before locking them in prepare_pages
1526 * to avoid recursive lock
1527 */
1528 if (unlikely(iov_iter_fault_in_readable(i, write_bytes))) {
1529 ret = -EFAULT;
1530 break;
1531 }
1532
1533 sector_offset = pos & (root->sectorsize - 1);
1534 reserve_bytes = round_up(write_bytes + sector_offset,
1535 root->sectorsize);
1536
1537 if ((BTRFS_I(inode)->flags & (BTRFS_INODE_NODATACOW |
1538 BTRFS_INODE_PREALLOC)) &&
1539 check_can_nocow(inode, pos, &write_bytes) > 0) {
1540 /*
1541 * For nodata cow case, no need to reserve
1542 * data space.
1543 */
1544 only_release_metadata = true;
1545 /*
1546 * our prealloc extent may be smaller than
1547 * write_bytes, so scale down.
1548 */
1549 num_pages = DIV_ROUND_UP(write_bytes + offset,
1550 PAGE_SIZE);
1551 reserve_bytes = round_up(write_bytes + sector_offset,
1552 root->sectorsize);
1553 goto reserve_metadata;
1554 }
1555
1556 ret = btrfs_check_data_free_space(inode, pos, write_bytes);
1557 if (ret < 0)
1558 break;
1559
1560reserve_metadata:
1561 ret = btrfs_delalloc_reserve_metadata(inode, reserve_bytes);
1562 if (ret) {
1563 if (!only_release_metadata)
1564 btrfs_free_reserved_data_space(inode, pos,
1565 write_bytes);
1566 else
1567 btrfs_end_write_no_snapshoting(root);
1568 break;
1569 }
1570
1571 release_bytes = reserve_bytes;
1572 need_unlock = false;
1573again:
1574 /*
1575 * This is going to setup the pages array with the number of
1576 * pages we want, so we don't really need to worry about the
1577 * contents of pages from loop to loop
1578 */
1579 ret = prepare_pages(inode, pages, num_pages,
1580 pos, write_bytes,
1581 force_page_uptodate);
1582 if (ret)
1583 break;
1584
1585 ret = lock_and_cleanup_extent_if_need(inode, pages, num_pages,
1586 pos, write_bytes, &lockstart,
1587 &lockend, &cached_state);
1588 if (ret < 0) {
1589 if (ret == -EAGAIN)
1590 goto again;
1591 break;
1592 } else if (ret > 0) {
1593 need_unlock = true;
1594 ret = 0;
1595 }
1596
1597 copied = btrfs_copy_from_user(pos, write_bytes, pages, i);
1598
1599 /*
1600 * if we have trouble faulting in the pages, fall
1601 * back to one page at a time
1602 */
1603 if (copied < write_bytes)
1604 nrptrs = 1;
1605
1606 if (copied == 0) {
1607 force_page_uptodate = true;
1608 dirty_pages = 0;
1609 } else {
1610 force_page_uptodate = false;
1611 dirty_pages = DIV_ROUND_UP(copied + offset,
1612 PAGE_SIZE);
1613 }
1614
1615 /*
1616 * If we had a short copy we need to release the excess delaloc
1617 * bytes we reserved. We need to increment outstanding_extents
1618 * because btrfs_delalloc_release_space will decrement it, but
1619 * we still have an outstanding extent for the chunk we actually
1620 * managed to copy.
1621 */
1622 num_sectors = BTRFS_BYTES_TO_BLKS(root->fs_info,
1623 reserve_bytes);
1624 dirty_sectors = round_up(copied + sector_offset,
1625 root->sectorsize);
1626 dirty_sectors = BTRFS_BYTES_TO_BLKS(root->fs_info,
1627 dirty_sectors);
1628
1629 if (num_sectors > dirty_sectors) {
1630 release_bytes = (write_bytes - copied)
1631 & ~((u64)root->sectorsize - 1);
1632 if (copied > 0) {
1633 spin_lock(&BTRFS_I(inode)->lock);
1634 BTRFS_I(inode)->outstanding_extents++;
1635 spin_unlock(&BTRFS_I(inode)->lock);
1636 }
1637 if (only_release_metadata) {
1638 btrfs_delalloc_release_metadata(inode,
1639 release_bytes);
1640 } else {
1641 u64 __pos;
1642
1643 __pos = round_down(pos, root->sectorsize) +
1644 (dirty_pages << PAGE_SHIFT);
1645 btrfs_delalloc_release_space(inode, __pos,
1646 release_bytes);
1647 }
1648 }
1649
1650 release_bytes = round_up(copied + sector_offset,
1651 root->sectorsize);
1652
1653 if (copied > 0)
1654 ret = btrfs_dirty_pages(root, inode, pages,
1655 dirty_pages, pos, copied,
1656 NULL);
1657 if (need_unlock)
1658 unlock_extent_cached(&BTRFS_I(inode)->io_tree,
1659 lockstart, lockend, &cached_state,
1660 GFP_NOFS);
1661 if (ret) {
1662 btrfs_drop_pages(pages, num_pages);
1663 break;
1664 }
1665
1666 release_bytes = 0;
1667 if (only_release_metadata)
1668 btrfs_end_write_no_snapshoting(root);
1669
1670 if (only_release_metadata && copied > 0) {
1671 lockstart = round_down(pos, root->sectorsize);
1672 lockend = round_up(pos + copied, root->sectorsize) - 1;
1673
1674 set_extent_bit(&BTRFS_I(inode)->io_tree, lockstart,
1675 lockend, EXTENT_NORESERVE, NULL,
1676 NULL, GFP_NOFS);
1677 only_release_metadata = false;
1678 }
1679
1680 btrfs_drop_pages(pages, num_pages);
1681
1682 cond_resched();
1683
1684 balance_dirty_pages_ratelimited(inode->i_mapping);
1685 if (dirty_pages < (root->nodesize >> PAGE_SHIFT) + 1)
1686 btrfs_btree_balance_dirty(root);
1687
1688 pos += copied;
1689 num_written += copied;
1690 }
1691
1692 kfree(pages);
1693
1694 if (release_bytes) {
1695 if (only_release_metadata) {
1696 btrfs_end_write_no_snapshoting(root);
1697 btrfs_delalloc_release_metadata(inode, release_bytes);
1698 } else {
1699 btrfs_delalloc_release_space(inode, pos, release_bytes);
1700 }
1701 }
1702
1703 return num_written ? num_written : ret;
1704}
1705
1706static ssize_t __btrfs_direct_write(struct kiocb *iocb,
1707 struct iov_iter *from,
1708 loff_t pos)
1709{
1710 struct file *file = iocb->ki_filp;
1711 struct inode *inode = file_inode(file);
1712 ssize_t written;
1713 ssize_t written_buffered;
1714 loff_t endbyte;
1715 int err;
1716
1717 written = generic_file_direct_write(iocb, from, pos);
1718
1719 if (written < 0 || !iov_iter_count(from))
1720 return written;
1721
1722 pos += written;
1723 written_buffered = __btrfs_buffered_write(file, from, pos);
1724 if (written_buffered < 0) {
1725 err = written_buffered;
1726 goto out;
1727 }
1728 /*
1729 * Ensure all data is persisted. We want the next direct IO read to be
1730 * able to read what was just written.
1731 */
1732 endbyte = pos + written_buffered - 1;
1733 err = btrfs_fdatawrite_range(inode, pos, endbyte);
1734 if (err)
1735 goto out;
1736 err = filemap_fdatawait_range(inode->i_mapping, pos, endbyte);
1737 if (err)
1738 goto out;
1739 written += written_buffered;
1740 iocb->ki_pos = pos + written_buffered;
1741 invalidate_mapping_pages(file->f_mapping, pos >> PAGE_SHIFT,
1742 endbyte >> PAGE_SHIFT);
1743out:
1744 return written ? written : err;
1745}
1746
1747static void update_time_for_write(struct inode *inode)
1748{
1749 struct timespec now;
1750
1751 if (IS_NOCMTIME(inode))
1752 return;
1753
1754 now = current_fs_time(inode->i_sb);
1755 if (!timespec_equal(&inode->i_mtime, &now))
1756 inode->i_mtime = now;
1757
1758 if (!timespec_equal(&inode->i_ctime, &now))
1759 inode->i_ctime = now;
1760
1761 if (IS_I_VERSION(inode))
1762 inode_inc_iversion(inode);
1763}
1764
1765static ssize_t btrfs_file_write_iter(struct kiocb *iocb,
1766 struct iov_iter *from)
1767{
1768 struct file *file = iocb->ki_filp;
1769 struct inode *inode = file_inode(file);
1770 struct btrfs_root *root = BTRFS_I(inode)->root;
1771 u64 start_pos;
1772 u64 end_pos;
1773 ssize_t num_written = 0;
1774 bool sync = (file->f_flags & O_DSYNC) || IS_SYNC(file->f_mapping->host);
1775 ssize_t err;
1776 loff_t pos;
1777 size_t count;
1778 loff_t oldsize;
1779 int clean_page = 0;
1780
1781 inode_lock(inode);
1782 err = generic_write_checks(iocb, from);
1783 if (err <= 0) {
1784 inode_unlock(inode);
1785 return err;
1786 }
1787
1788 current->backing_dev_info = inode_to_bdi(inode);
1789 err = file_remove_privs(file);
1790 if (err) {
1791 inode_unlock(inode);
1792 goto out;
1793 }
1794
1795 /*
1796 * If BTRFS flips readonly due to some impossible error
1797 * (fs_info->fs_state now has BTRFS_SUPER_FLAG_ERROR),
1798 * although we have opened a file as writable, we have
1799 * to stop this write operation to ensure FS consistency.
1800 */
1801 if (test_bit(BTRFS_FS_STATE_ERROR, &root->fs_info->fs_state)) {
1802 inode_unlock(inode);
1803 err = -EROFS;
1804 goto out;
1805 }
1806
1807 /*
1808 * We reserve space for updating the inode when we reserve space for the
1809 * extent we are going to write, so we will enospc out there. We don't
1810 * need to start yet another transaction to update the inode as we will
1811 * update the inode when we finish writing whatever data we write.
1812 */
1813 update_time_for_write(inode);
1814
1815 pos = iocb->ki_pos;
1816 count = iov_iter_count(from);
1817 start_pos = round_down(pos, root->sectorsize);
1818 oldsize = i_size_read(inode);
1819 if (start_pos > oldsize) {
1820 /* Expand hole size to cover write data, preventing empty gap */
1821 end_pos = round_up(pos + count, root->sectorsize);
1822 err = btrfs_cont_expand(inode, oldsize, end_pos);
1823 if (err) {
1824 inode_unlock(inode);
1825 goto out;
1826 }
1827 if (start_pos > round_up(oldsize, root->sectorsize))
1828 clean_page = 1;
1829 }
1830
1831 if (sync)
1832 atomic_inc(&BTRFS_I(inode)->sync_writers);
1833
1834 if (iocb->ki_flags & IOCB_DIRECT) {
1835 num_written = __btrfs_direct_write(iocb, from, pos);
1836 } else {
1837 num_written = __btrfs_buffered_write(file, from, pos);
1838 if (num_written > 0)
1839 iocb->ki_pos = pos + num_written;
1840 if (clean_page)
1841 pagecache_isize_extended(inode, oldsize,
1842 i_size_read(inode));
1843 }
1844
1845 inode_unlock(inode);
1846
1847 /*
1848 * We also have to set last_sub_trans to the current log transid,
1849 * otherwise subsequent syncs to a file that's been synced in this
1850 * transaction will appear to have already occurred.
1851 */
1852 spin_lock(&BTRFS_I(inode)->lock);
1853 BTRFS_I(inode)->last_sub_trans = root->log_transid;
1854 spin_unlock(&BTRFS_I(inode)->lock);
1855 if (num_written > 0) {
1856 err = generic_write_sync(file, pos, num_written);
1857 if (err < 0)
1858 num_written = err;
1859 }
1860
1861 if (sync)
1862 atomic_dec(&BTRFS_I(inode)->sync_writers);
1863out:
1864 current->backing_dev_info = NULL;
1865 return num_written ? num_written : err;
1866}
1867
1868int btrfs_release_file(struct inode *inode, struct file *filp)
1869{
1870 if (filp->private_data)
1871 btrfs_ioctl_trans_end(filp);
1872 /*
1873 * ordered_data_close is set by settattr when we are about to truncate
1874 * a file from a non-zero size to a zero size. This tries to
1875 * flush down new bytes that may have been written if the
1876 * application were using truncate to replace a file in place.
1877 */
1878 if (test_and_clear_bit(BTRFS_INODE_ORDERED_DATA_CLOSE,
1879 &BTRFS_I(inode)->runtime_flags))
1880 filemap_flush(inode->i_mapping);
1881 return 0;
1882}
1883
1884static int start_ordered_ops(struct inode *inode, loff_t start, loff_t end)
1885{
1886 int ret;
1887
1888 atomic_inc(&BTRFS_I(inode)->sync_writers);
1889 ret = btrfs_fdatawrite_range(inode, start, end);
1890 atomic_dec(&BTRFS_I(inode)->sync_writers);
1891
1892 return ret;
1893}
1894
1895/*
1896 * fsync call for both files and directories. This logs the inode into
1897 * the tree log instead of forcing full commits whenever possible.
1898 *
1899 * It needs to call filemap_fdatawait so that all ordered extent updates are
1900 * in the metadata btree are up to date for copying to the log.
1901 *
1902 * It drops the inode mutex before doing the tree log commit. This is an
1903 * important optimization for directories because holding the mutex prevents
1904 * new operations on the dir while we write to disk.
1905 */
1906int btrfs_sync_file(struct file *file, loff_t start, loff_t end, int datasync)
1907{
1908 struct dentry *dentry = file_dentry(file);
1909 struct inode *inode = d_inode(dentry);
1910 struct btrfs_root *root = BTRFS_I(inode)->root;
1911 struct btrfs_trans_handle *trans;
1912 struct btrfs_log_ctx ctx;
1913 int ret = 0;
1914 bool full_sync = 0;
1915 u64 len;
1916
1917 /*
1918 * The range length can be represented by u64, we have to do the typecasts
1919 * to avoid signed overflow if it's [0, LLONG_MAX] eg. from fsync()
1920 */
1921 len = (u64)end - (u64)start + 1;
1922 trace_btrfs_sync_file(file, datasync);
1923
1924 /*
1925 * We write the dirty pages in the range and wait until they complete
1926 * out of the ->i_mutex. If so, we can flush the dirty pages by
1927 * multi-task, and make the performance up. See
1928 * btrfs_wait_ordered_range for an explanation of the ASYNC check.
1929 */
1930 ret = start_ordered_ops(inode, start, end);
1931 if (ret)
1932 return ret;
1933
1934 inode_lock(inode);
1935 atomic_inc(&root->log_batch);
1936 full_sync = test_bit(BTRFS_INODE_NEEDS_FULL_SYNC,
1937 &BTRFS_I(inode)->runtime_flags);
1938 /*
1939 * We might have have had more pages made dirty after calling
1940 * start_ordered_ops and before acquiring the inode's i_mutex.
1941 */
1942 if (full_sync) {
1943 /*
1944 * For a full sync, we need to make sure any ordered operations
1945 * start and finish before we start logging the inode, so that
1946 * all extents are persisted and the respective file extent
1947 * items are in the fs/subvol btree.
1948 */
1949 ret = btrfs_wait_ordered_range(inode, start, len);
1950 } else {
1951 /*
1952 * Start any new ordered operations before starting to log the
1953 * inode. We will wait for them to finish in btrfs_sync_log().
1954 *
1955 * Right before acquiring the inode's mutex, we might have new
1956 * writes dirtying pages, which won't immediately start the
1957 * respective ordered operations - that is done through the
1958 * fill_delalloc callbacks invoked from the writepage and
1959 * writepages address space operations. So make sure we start
1960 * all ordered operations before starting to log our inode. Not
1961 * doing this means that while logging the inode, writeback
1962 * could start and invoke writepage/writepages, which would call
1963 * the fill_delalloc callbacks (cow_file_range,
1964 * submit_compressed_extents). These callbacks add first an
1965 * extent map to the modified list of extents and then create
1966 * the respective ordered operation, which means in
1967 * tree-log.c:btrfs_log_inode() we might capture all existing
1968 * ordered operations (with btrfs_get_logged_extents()) before
1969 * the fill_delalloc callback adds its ordered operation, and by
1970 * the time we visit the modified list of extent maps (with
1971 * btrfs_log_changed_extents()), we see and process the extent
1972 * map they created. We then use the extent map to construct a
1973 * file extent item for logging without waiting for the
1974 * respective ordered operation to finish - this file extent
1975 * item points to a disk location that might not have yet been
1976 * written to, containing random data - so after a crash a log
1977 * replay will make our inode have file extent items that point
1978 * to disk locations containing invalid data, as we returned
1979 * success to userspace without waiting for the respective
1980 * ordered operation to finish, because it wasn't captured by
1981 * btrfs_get_logged_extents().
1982 */
1983 ret = start_ordered_ops(inode, start, end);
1984 }
1985 if (ret) {
1986 inode_unlock(inode);
1987 goto out;
1988 }
1989 atomic_inc(&root->log_batch);
1990
1991 /*
1992 * If the last transaction that changed this file was before the current
1993 * transaction and we have the full sync flag set in our inode, we can
1994 * bail out now without any syncing.
1995 *
1996 * Note that we can't bail out if the full sync flag isn't set. This is
1997 * because when the full sync flag is set we start all ordered extents
1998 * and wait for them to fully complete - when they complete they update
1999 * the inode's last_trans field through:
2000 *
2001 * btrfs_finish_ordered_io() ->
2002 * btrfs_update_inode_fallback() ->
2003 * btrfs_update_inode() ->
2004 * btrfs_set_inode_last_trans()
2005 *
2006 * So we are sure that last_trans is up to date and can do this check to
2007 * bail out safely. For the fast path, when the full sync flag is not
2008 * set in our inode, we can not do it because we start only our ordered
2009 * extents and don't wait for them to complete (that is when
2010 * btrfs_finish_ordered_io runs), so here at this point their last_trans
2011 * value might be less than or equals to fs_info->last_trans_committed,
2012 * and setting a speculative last_trans for an inode when a buffered
2013 * write is made (such as fs_info->generation + 1 for example) would not
2014 * be reliable since after setting the value and before fsync is called
2015 * any number of transactions can start and commit (transaction kthread
2016 * commits the current transaction periodically), and a transaction
2017 * commit does not start nor waits for ordered extents to complete.
2018 */
2019 smp_mb();
2020 if (btrfs_inode_in_log(inode, root->fs_info->generation) ||
2021 (full_sync && BTRFS_I(inode)->last_trans <=
2022 root->fs_info->last_trans_committed) ||
2023 (!btrfs_have_ordered_extents_in_range(inode, start, len) &&
2024 BTRFS_I(inode)->last_trans
2025 <= root->fs_info->last_trans_committed)) {
2026 /*
2027 * We'v had everything committed since the last time we were
2028 * modified so clear this flag in case it was set for whatever
2029 * reason, it's no longer relevant.
2030 */
2031 clear_bit(BTRFS_INODE_NEEDS_FULL_SYNC,
2032 &BTRFS_I(inode)->runtime_flags);
2033 inode_unlock(inode);
2034 goto out;
2035 }
2036
2037 /*
2038 * ok we haven't committed the transaction yet, lets do a commit
2039 */
2040 if (file->private_data)
2041 btrfs_ioctl_trans_end(file);
2042
2043 /*
2044 * We use start here because we will need to wait on the IO to complete
2045 * in btrfs_sync_log, which could require joining a transaction (for
2046 * example checking cross references in the nocow path). If we use join
2047 * here we could get into a situation where we're waiting on IO to
2048 * happen that is blocked on a transaction trying to commit. With start
2049 * we inc the extwriter counter, so we wait for all extwriters to exit
2050 * before we start blocking join'ers. This comment is to keep somebody
2051 * from thinking they are super smart and changing this to
2052 * btrfs_join_transaction *cough*Josef*cough*.
2053 */
2054 trans = btrfs_start_transaction(root, 0);
2055 if (IS_ERR(trans)) {
2056 ret = PTR_ERR(trans);
2057 inode_unlock(inode);
2058 goto out;
2059 }
2060 trans->sync = true;
2061
2062 btrfs_init_log_ctx(&ctx);
2063
2064 ret = btrfs_log_dentry_safe(trans, root, dentry, start, end, &ctx);
2065 if (ret < 0) {
2066 /* Fallthrough and commit/free transaction. */
2067 ret = 1;
2068 }
2069
2070 /* we've logged all the items and now have a consistent
2071 * version of the file in the log. It is possible that
2072 * someone will come in and modify the file, but that's
2073 * fine because the log is consistent on disk, and we
2074 * have references to all of the file's extents
2075 *
2076 * It is possible that someone will come in and log the
2077 * file again, but that will end up using the synchronization
2078 * inside btrfs_sync_log to keep things safe.
2079 */
2080 inode_unlock(inode);
2081
2082 /*
2083 * If any of the ordered extents had an error, just return it to user
2084 * space, so that the application knows some writes didn't succeed and
2085 * can take proper action (retry for e.g.). Blindly committing the
2086 * transaction in this case, would fool userspace that everything was
2087 * successful. And we also want to make sure our log doesn't contain
2088 * file extent items pointing to extents that weren't fully written to -
2089 * just like in the non fast fsync path, where we check for the ordered
2090 * operation's error flag before writing to the log tree and return -EIO
2091 * if any of them had this flag set (btrfs_wait_ordered_range) -
2092 * therefore we need to check for errors in the ordered operations,
2093 * which are indicated by ctx.io_err.
2094 */
2095 if (ctx.io_err) {
2096 btrfs_end_transaction(trans, root);
2097 ret = ctx.io_err;
2098 goto out;
2099 }
2100
2101 if (ret != BTRFS_NO_LOG_SYNC) {
2102 if (!ret) {
2103 ret = btrfs_sync_log(trans, root, &ctx);
2104 if (!ret) {
2105 ret = btrfs_end_transaction(trans, root);
2106 goto out;
2107 }
2108 }
2109 if (!full_sync) {
2110 ret = btrfs_wait_ordered_range(inode, start, len);
2111 if (ret) {
2112 btrfs_end_transaction(trans, root);
2113 goto out;
2114 }
2115 }
2116 ret = btrfs_commit_transaction(trans, root);
2117 } else {
2118 ret = btrfs_end_transaction(trans, root);
2119 }
2120out:
2121 return ret > 0 ? -EIO : ret;
2122}
2123
2124static const struct vm_operations_struct btrfs_file_vm_ops = {
2125 .fault = filemap_fault,
2126 .map_pages = filemap_map_pages,
2127 .page_mkwrite = btrfs_page_mkwrite,
2128};
2129
2130static int btrfs_file_mmap(struct file *filp, struct vm_area_struct *vma)
2131{
2132 struct address_space *mapping = filp->f_mapping;
2133
2134 if (!mapping->a_ops->readpage)
2135 return -ENOEXEC;
2136
2137 file_accessed(filp);
2138 vma->vm_ops = &btrfs_file_vm_ops;
2139
2140 return 0;
2141}
2142
2143static int hole_mergeable(struct inode *inode, struct extent_buffer *leaf,
2144 int slot, u64 start, u64 end)
2145{
2146 struct btrfs_file_extent_item *fi;
2147 struct btrfs_key key;
2148
2149 if (slot < 0 || slot >= btrfs_header_nritems(leaf))
2150 return 0;
2151
2152 btrfs_item_key_to_cpu(leaf, &key, slot);
2153 if (key.objectid != btrfs_ino(inode) ||
2154 key.type != BTRFS_EXTENT_DATA_KEY)
2155 return 0;
2156
2157 fi = btrfs_item_ptr(leaf, slot, struct btrfs_file_extent_item);
2158
2159 if (btrfs_file_extent_type(leaf, fi) != BTRFS_FILE_EXTENT_REG)
2160 return 0;
2161
2162 if (btrfs_file_extent_disk_bytenr(leaf, fi))
2163 return 0;
2164
2165 if (key.offset == end)
2166 return 1;
2167 if (key.offset + btrfs_file_extent_num_bytes(leaf, fi) == start)
2168 return 1;
2169 return 0;
2170}
2171
2172static int fill_holes(struct btrfs_trans_handle *trans, struct inode *inode,
2173 struct btrfs_path *path, u64 offset, u64 end)
2174{
2175 struct btrfs_root *root = BTRFS_I(inode)->root;
2176 struct extent_buffer *leaf;
2177 struct btrfs_file_extent_item *fi;
2178 struct extent_map *hole_em;
2179 struct extent_map_tree *em_tree = &BTRFS_I(inode)->extent_tree;
2180 struct btrfs_key key;
2181 int ret;
2182
2183 if (btrfs_fs_incompat(root->fs_info, NO_HOLES))
2184 goto out;
2185
2186 key.objectid = btrfs_ino(inode);
2187 key.type = BTRFS_EXTENT_DATA_KEY;
2188 key.offset = offset;
2189
2190 ret = btrfs_search_slot(trans, root, &key, path, 0, 1);
2191 if (ret < 0)
2192 return ret;
2193 BUG_ON(!ret);
2194
2195 leaf = path->nodes[0];
2196 if (hole_mergeable(inode, leaf, path->slots[0]-1, offset, end)) {
2197 u64 num_bytes;
2198
2199 path->slots[0]--;
2200 fi = btrfs_item_ptr(leaf, path->slots[0],
2201 struct btrfs_file_extent_item);
2202 num_bytes = btrfs_file_extent_num_bytes(leaf, fi) +
2203 end - offset;
2204 btrfs_set_file_extent_num_bytes(leaf, fi, num_bytes);
2205 btrfs_set_file_extent_ram_bytes(leaf, fi, num_bytes);
2206 btrfs_set_file_extent_offset(leaf, fi, 0);
2207 btrfs_mark_buffer_dirty(leaf);
2208 goto out;
2209 }
2210
2211 if (hole_mergeable(inode, leaf, path->slots[0], offset, end)) {
2212 u64 num_bytes;
2213
2214 key.offset = offset;
2215 btrfs_set_item_key_safe(root->fs_info, path, &key);
2216 fi = btrfs_item_ptr(leaf, path->slots[0],
2217 struct btrfs_file_extent_item);
2218 num_bytes = btrfs_file_extent_num_bytes(leaf, fi) + end -
2219 offset;
2220 btrfs_set_file_extent_num_bytes(leaf, fi, num_bytes);
2221 btrfs_set_file_extent_ram_bytes(leaf, fi, num_bytes);
2222 btrfs_set_file_extent_offset(leaf, fi, 0);
2223 btrfs_mark_buffer_dirty(leaf);
2224 goto out;
2225 }
2226 btrfs_release_path(path);
2227
2228 ret = btrfs_insert_file_extent(trans, root, btrfs_ino(inode), offset,
2229 0, 0, end - offset, 0, end - offset,
2230 0, 0, 0);
2231 if (ret)
2232 return ret;
2233
2234out:
2235 btrfs_release_path(path);
2236
2237 hole_em = alloc_extent_map();
2238 if (!hole_em) {
2239 btrfs_drop_extent_cache(inode, offset, end - 1, 0);
2240 set_bit(BTRFS_INODE_NEEDS_FULL_SYNC,
2241 &BTRFS_I(inode)->runtime_flags);
2242 } else {
2243 hole_em->start = offset;
2244 hole_em->len = end - offset;
2245 hole_em->ram_bytes = hole_em->len;
2246 hole_em->orig_start = offset;
2247
2248 hole_em->block_start = EXTENT_MAP_HOLE;
2249 hole_em->block_len = 0;
2250 hole_em->orig_block_len = 0;
2251 hole_em->bdev = root->fs_info->fs_devices->latest_bdev;
2252 hole_em->compress_type = BTRFS_COMPRESS_NONE;
2253 hole_em->generation = trans->transid;
2254
2255 do {
2256 btrfs_drop_extent_cache(inode, offset, end - 1, 0);
2257 write_lock(&em_tree->lock);
2258 ret = add_extent_mapping(em_tree, hole_em, 1);
2259 write_unlock(&em_tree->lock);
2260 } while (ret == -EEXIST);
2261 free_extent_map(hole_em);
2262 if (ret)
2263 set_bit(BTRFS_INODE_NEEDS_FULL_SYNC,
2264 &BTRFS_I(inode)->runtime_flags);
2265 }
2266
2267 return 0;
2268}
2269
2270/*
2271 * Find a hole extent on given inode and change start/len to the end of hole
2272 * extent.(hole/vacuum extent whose em->start <= start &&
2273 * em->start + em->len > start)
2274 * When a hole extent is found, return 1 and modify start/len.
2275 */
2276static int find_first_non_hole(struct inode *inode, u64 *start, u64 *len)
2277{
2278 struct extent_map *em;
2279 int ret = 0;
2280
2281 em = btrfs_get_extent(inode, NULL, 0, *start, *len, 0);
2282 if (IS_ERR_OR_NULL(em)) {
2283 if (!em)
2284 ret = -ENOMEM;
2285 else
2286 ret = PTR_ERR(em);
2287 return ret;
2288 }
2289
2290 /* Hole or vacuum extent(only exists in no-hole mode) */
2291 if (em->block_start == EXTENT_MAP_HOLE) {
2292 ret = 1;
2293 *len = em->start + em->len > *start + *len ?
2294 0 : *start + *len - em->start - em->len;
2295 *start = em->start + em->len;
2296 }
2297 free_extent_map(em);
2298 return ret;
2299}
2300
2301static int btrfs_punch_hole(struct inode *inode, loff_t offset, loff_t len)
2302{
2303 struct btrfs_root *root = BTRFS_I(inode)->root;
2304 struct extent_state *cached_state = NULL;
2305 struct btrfs_path *path;
2306 struct btrfs_block_rsv *rsv;
2307 struct btrfs_trans_handle *trans;
2308 u64 lockstart;
2309 u64 lockend;
2310 u64 tail_start;
2311 u64 tail_len;
2312 u64 orig_start = offset;
2313 u64 cur_offset;
2314 u64 min_size = btrfs_calc_trunc_metadata_size(root, 1);
2315 u64 drop_end;
2316 int ret = 0;
2317 int err = 0;
2318 unsigned int rsv_count;
2319 bool same_block;
2320 bool no_holes = btrfs_fs_incompat(root->fs_info, NO_HOLES);
2321 u64 ino_size;
2322 bool truncated_block = false;
2323 bool updated_inode = false;
2324
2325 ret = btrfs_wait_ordered_range(inode, offset, len);
2326 if (ret)
2327 return ret;
2328
2329 inode_lock(inode);
2330 ino_size = round_up(inode->i_size, root->sectorsize);
2331 ret = find_first_non_hole(inode, &offset, &len);
2332 if (ret < 0)
2333 goto out_only_mutex;
2334 if (ret && !len) {
2335 /* Already in a large hole */
2336 ret = 0;
2337 goto out_only_mutex;
2338 }
2339
2340 lockstart = round_up(offset, BTRFS_I(inode)->root->sectorsize);
2341 lockend = round_down(offset + len,
2342 BTRFS_I(inode)->root->sectorsize) - 1;
2343 same_block = (BTRFS_BYTES_TO_BLKS(root->fs_info, offset))
2344 == (BTRFS_BYTES_TO_BLKS(root->fs_info, offset + len - 1));
2345 /*
2346 * We needn't truncate any block which is beyond the end of the file
2347 * because we are sure there is no data there.
2348 */
2349 /*
2350 * Only do this if we are in the same block and we aren't doing the
2351 * entire block.
2352 */
2353 if (same_block && len < root->sectorsize) {
2354 if (offset < ino_size) {
2355 truncated_block = true;
2356 ret = btrfs_truncate_block(inode, offset, len, 0);
2357 } else {
2358 ret = 0;
2359 }
2360 goto out_only_mutex;
2361 }
2362
2363 /* zero back part of the first block */
2364 if (offset < ino_size) {
2365 truncated_block = true;
2366 ret = btrfs_truncate_block(inode, offset, 0, 0);
2367 if (ret) {
2368 inode_unlock(inode);
2369 return ret;
2370 }
2371 }
2372
2373 /* Check the aligned pages after the first unaligned page,
2374 * if offset != orig_start, which means the first unaligned page
2375 * including serveral following pages are already in holes,
2376 * the extra check can be skipped */
2377 if (offset == orig_start) {
2378 /* after truncate page, check hole again */
2379 len = offset + len - lockstart;
2380 offset = lockstart;
2381 ret = find_first_non_hole(inode, &offset, &len);
2382 if (ret < 0)
2383 goto out_only_mutex;
2384 if (ret && !len) {
2385 ret = 0;
2386 goto out_only_mutex;
2387 }
2388 lockstart = offset;
2389 }
2390
2391 /* Check the tail unaligned part is in a hole */
2392 tail_start = lockend + 1;
2393 tail_len = offset + len - tail_start;
2394 if (tail_len) {
2395 ret = find_first_non_hole(inode, &tail_start, &tail_len);
2396 if (unlikely(ret < 0))
2397 goto out_only_mutex;
2398 if (!ret) {
2399 /* zero the front end of the last page */
2400 if (tail_start + tail_len < ino_size) {
2401 truncated_block = true;
2402 ret = btrfs_truncate_block(inode,
2403 tail_start + tail_len,
2404 0, 1);
2405 if (ret)
2406 goto out_only_mutex;
2407 }
2408 }
2409 }
2410
2411 if (lockend < lockstart) {
2412 ret = 0;
2413 goto out_only_mutex;
2414 }
2415
2416 while (1) {
2417 struct btrfs_ordered_extent *ordered;
2418
2419 truncate_pagecache_range(inode, lockstart, lockend);
2420
2421 lock_extent_bits(&BTRFS_I(inode)->io_tree, lockstart, lockend,
2422 &cached_state);
2423 ordered = btrfs_lookup_first_ordered_extent(inode, lockend);
2424
2425 /*
2426 * We need to make sure we have no ordered extents in this range
2427 * and nobody raced in and read a page in this range, if we did
2428 * we need to try again.
2429 */
2430 if ((!ordered ||
2431 (ordered->file_offset + ordered->len <= lockstart ||
2432 ordered->file_offset > lockend)) &&
2433 !btrfs_page_exists_in_range(inode, lockstart, lockend)) {
2434 if (ordered)
2435 btrfs_put_ordered_extent(ordered);
2436 break;
2437 }
2438 if (ordered)
2439 btrfs_put_ordered_extent(ordered);
2440 unlock_extent_cached(&BTRFS_I(inode)->io_tree, lockstart,
2441 lockend, &cached_state, GFP_NOFS);
2442 ret = btrfs_wait_ordered_range(inode, lockstart,
2443 lockend - lockstart + 1);
2444 if (ret) {
2445 inode_unlock(inode);
2446 return ret;
2447 }
2448 }
2449
2450 path = btrfs_alloc_path();
2451 if (!path) {
2452 ret = -ENOMEM;
2453 goto out;
2454 }
2455
2456 rsv = btrfs_alloc_block_rsv(root, BTRFS_BLOCK_RSV_TEMP);
2457 if (!rsv) {
2458 ret = -ENOMEM;
2459 goto out_free;
2460 }
2461 rsv->size = btrfs_calc_trunc_metadata_size(root, 1);
2462 rsv->failfast = 1;
2463
2464 /*
2465 * 1 - update the inode
2466 * 1 - removing the extents in the range
2467 * 1 - adding the hole extent if no_holes isn't set
2468 */
2469 rsv_count = no_holes ? 2 : 3;
2470 trans = btrfs_start_transaction(root, rsv_count);
2471 if (IS_ERR(trans)) {
2472 err = PTR_ERR(trans);
2473 goto out_free;
2474 }
2475
2476 ret = btrfs_block_rsv_migrate(&root->fs_info->trans_block_rsv, rsv,
2477 min_size);
2478 BUG_ON(ret);
2479 trans->block_rsv = rsv;
2480
2481 cur_offset = lockstart;
2482 len = lockend - cur_offset;
2483 while (cur_offset < lockend) {
2484 ret = __btrfs_drop_extents(trans, root, inode, path,
2485 cur_offset, lockend + 1,
2486 &drop_end, 1, 0, 0, NULL);
2487 if (ret != -ENOSPC)
2488 break;
2489
2490 trans->block_rsv = &root->fs_info->trans_block_rsv;
2491
2492 if (cur_offset < ino_size) {
2493 ret = fill_holes(trans, inode, path, cur_offset,
2494 drop_end);
2495 if (ret) {
2496 err = ret;
2497 break;
2498 }
2499 }
2500
2501 cur_offset = drop_end;
2502
2503 ret = btrfs_update_inode(trans, root, inode);
2504 if (ret) {
2505 err = ret;
2506 break;
2507 }
2508
2509 btrfs_end_transaction(trans, root);
2510 btrfs_btree_balance_dirty(root);
2511
2512 trans = btrfs_start_transaction(root, rsv_count);
2513 if (IS_ERR(trans)) {
2514 ret = PTR_ERR(trans);
2515 trans = NULL;
2516 break;
2517 }
2518
2519 ret = btrfs_block_rsv_migrate(&root->fs_info->trans_block_rsv,
2520 rsv, min_size);
2521 BUG_ON(ret); /* shouldn't happen */
2522 trans->block_rsv = rsv;
2523
2524 ret = find_first_non_hole(inode, &cur_offset, &len);
2525 if (unlikely(ret < 0))
2526 break;
2527 if (ret && !len) {
2528 ret = 0;
2529 break;
2530 }
2531 }
2532
2533 if (ret) {
2534 err = ret;
2535 goto out_trans;
2536 }
2537
2538 trans->block_rsv = &root->fs_info->trans_block_rsv;
2539 /*
2540 * If we are using the NO_HOLES feature we might have had already an
2541 * hole that overlaps a part of the region [lockstart, lockend] and
2542 * ends at (or beyond) lockend. Since we have no file extent items to
2543 * represent holes, drop_end can be less than lockend and so we must
2544 * make sure we have an extent map representing the existing hole (the
2545 * call to __btrfs_drop_extents() might have dropped the existing extent
2546 * map representing the existing hole), otherwise the fast fsync path
2547 * will not record the existence of the hole region
2548 * [existing_hole_start, lockend].
2549 */
2550 if (drop_end <= lockend)
2551 drop_end = lockend + 1;
2552 /*
2553 * Don't insert file hole extent item if it's for a range beyond eof
2554 * (because it's useless) or if it represents a 0 bytes range (when
2555 * cur_offset == drop_end).
2556 */
2557 if (cur_offset < ino_size && cur_offset < drop_end) {
2558 ret = fill_holes(trans, inode, path, cur_offset, drop_end);
2559 if (ret) {
2560 err = ret;
2561 goto out_trans;
2562 }
2563 }
2564
2565out_trans:
2566 if (!trans)
2567 goto out_free;
2568
2569 inode_inc_iversion(inode);
2570 inode->i_mtime = inode->i_ctime = current_fs_time(inode->i_sb);
2571
2572 trans->block_rsv = &root->fs_info->trans_block_rsv;
2573 ret = btrfs_update_inode(trans, root, inode);
2574 updated_inode = true;
2575 btrfs_end_transaction(trans, root);
2576 btrfs_btree_balance_dirty(root);
2577out_free:
2578 btrfs_free_path(path);
2579 btrfs_free_block_rsv(root, rsv);
2580out:
2581 unlock_extent_cached(&BTRFS_I(inode)->io_tree, lockstart, lockend,
2582 &cached_state, GFP_NOFS);
2583out_only_mutex:
2584 if (!updated_inode && truncated_block && !ret && !err) {
2585 /*
2586 * If we only end up zeroing part of a page, we still need to
2587 * update the inode item, so that all the time fields are
2588 * updated as well as the necessary btrfs inode in memory fields
2589 * for detecting, at fsync time, if the inode isn't yet in the
2590 * log tree or it's there but not up to date.
2591 */
2592 trans = btrfs_start_transaction(root, 1);
2593 if (IS_ERR(trans)) {
2594 err = PTR_ERR(trans);
2595 } else {
2596 err = btrfs_update_inode(trans, root, inode);
2597 ret = btrfs_end_transaction(trans, root);
2598 }
2599 }
2600 inode_unlock(inode);
2601 if (ret && !err)
2602 err = ret;
2603 return err;
2604}
2605
2606/* Helper structure to record which range is already reserved */
2607struct falloc_range {
2608 struct list_head list;
2609 u64 start;
2610 u64 len;
2611};
2612
2613/*
2614 * Helper function to add falloc range
2615 *
2616 * Caller should have locked the larger range of extent containing
2617 * [start, len)
2618 */
2619static int add_falloc_range(struct list_head *head, u64 start, u64 len)
2620{
2621 struct falloc_range *prev = NULL;
2622 struct falloc_range *range = NULL;
2623
2624 if (list_empty(head))
2625 goto insert;
2626
2627 /*
2628 * As fallocate iterate by bytenr order, we only need to check
2629 * the last range.
2630 */
2631 prev = list_entry(head->prev, struct falloc_range, list);
2632 if (prev->start + prev->len == start) {
2633 prev->len += len;
2634 return 0;
2635 }
2636insert:
2637 range = kmalloc(sizeof(*range), GFP_KERNEL);
2638 if (!range)
2639 return -ENOMEM;
2640 range->start = start;
2641 range->len = len;
2642 list_add_tail(&range->list, head);
2643 return 0;
2644}
2645
2646static long btrfs_fallocate(struct file *file, int mode,
2647 loff_t offset, loff_t len)
2648{
2649 struct inode *inode = file_inode(file);
2650 struct extent_state *cached_state = NULL;
2651 struct falloc_range *range;
2652 struct falloc_range *tmp;
2653 struct list_head reserve_list;
2654 u64 cur_offset;
2655 u64 last_byte;
2656 u64 alloc_start;
2657 u64 alloc_end;
2658 u64 alloc_hint = 0;
2659 u64 locked_end;
2660 u64 actual_end = 0;
2661 struct extent_map *em;
2662 int blocksize = BTRFS_I(inode)->root->sectorsize;
2663 int ret;
2664
2665 alloc_start = round_down(offset, blocksize);
2666 alloc_end = round_up(offset + len, blocksize);
2667
2668 /* Make sure we aren't being give some crap mode */
2669 if (mode & ~(FALLOC_FL_KEEP_SIZE | FALLOC_FL_PUNCH_HOLE))
2670 return -EOPNOTSUPP;
2671
2672 if (mode & FALLOC_FL_PUNCH_HOLE)
2673 return btrfs_punch_hole(inode, offset, len);
2674
2675 /*
2676 * Only trigger disk allocation, don't trigger qgroup reserve
2677 *
2678 * For qgroup space, it will be checked later.
2679 */
2680 ret = btrfs_alloc_data_chunk_ondemand(inode, alloc_end - alloc_start);
2681 if (ret < 0)
2682 return ret;
2683
2684 inode_lock(inode);
2685
2686 if (!(mode & FALLOC_FL_KEEP_SIZE) && offset + len > inode->i_size) {
2687 ret = inode_newsize_ok(inode, offset + len);
2688 if (ret)
2689 goto out;
2690 }
2691
2692 /*
2693 * TODO: Move these two operations after we have checked
2694 * accurate reserved space, or fallocate can still fail but
2695 * with page truncated or size expanded.
2696 *
2697 * But that's a minor problem and won't do much harm BTW.
2698 */
2699 if (alloc_start > inode->i_size) {
2700 ret = btrfs_cont_expand(inode, i_size_read(inode),
2701 alloc_start);
2702 if (ret)
2703 goto out;
2704 } else if (offset + len > inode->i_size) {
2705 /*
2706 * If we are fallocating from the end of the file onward we
2707 * need to zero out the end of the block if i_size lands in the
2708 * middle of a block.
2709 */
2710 ret = btrfs_truncate_block(inode, inode->i_size, 0, 0);
2711 if (ret)
2712 goto out;
2713 }
2714
2715 /*
2716 * wait for ordered IO before we have any locks. We'll loop again
2717 * below with the locks held.
2718 */
2719 ret = btrfs_wait_ordered_range(inode, alloc_start,
2720 alloc_end - alloc_start);
2721 if (ret)
2722 goto out;
2723
2724 locked_end = alloc_end - 1;
2725 while (1) {
2726 struct btrfs_ordered_extent *ordered;
2727
2728 /* the extent lock is ordered inside the running
2729 * transaction
2730 */
2731 lock_extent_bits(&BTRFS_I(inode)->io_tree, alloc_start,
2732 locked_end, &cached_state);
2733 ordered = btrfs_lookup_first_ordered_extent(inode,
2734 alloc_end - 1);
2735 if (ordered &&
2736 ordered->file_offset + ordered->len > alloc_start &&
2737 ordered->file_offset < alloc_end) {
2738 btrfs_put_ordered_extent(ordered);
2739 unlock_extent_cached(&BTRFS_I(inode)->io_tree,
2740 alloc_start, locked_end,
2741 &cached_state, GFP_KERNEL);
2742 /*
2743 * we can't wait on the range with the transaction
2744 * running or with the extent lock held
2745 */
2746 ret = btrfs_wait_ordered_range(inode, alloc_start,
2747 alloc_end - alloc_start);
2748 if (ret)
2749 goto out;
2750 } else {
2751 if (ordered)
2752 btrfs_put_ordered_extent(ordered);
2753 break;
2754 }
2755 }
2756
2757 /* First, check if we exceed the qgroup limit */
2758 INIT_LIST_HEAD(&reserve_list);
2759 cur_offset = alloc_start;
2760 while (1) {
2761 em = btrfs_get_extent(inode, NULL, 0, cur_offset,
2762 alloc_end - cur_offset, 0);
2763 if (IS_ERR_OR_NULL(em)) {
2764 if (!em)
2765 ret = -ENOMEM;
2766 else
2767 ret = PTR_ERR(em);
2768 break;
2769 }
2770 last_byte = min(extent_map_end(em), alloc_end);
2771 actual_end = min_t(u64, extent_map_end(em), offset + len);
2772 last_byte = ALIGN(last_byte, blocksize);
2773 if (em->block_start == EXTENT_MAP_HOLE ||
2774 (cur_offset >= inode->i_size &&
2775 !test_bit(EXTENT_FLAG_PREALLOC, &em->flags))) {
2776 ret = add_falloc_range(&reserve_list, cur_offset,
2777 last_byte - cur_offset);
2778 if (ret < 0) {
2779 free_extent_map(em);
2780 break;
2781 }
2782 ret = btrfs_qgroup_reserve_data(inode, cur_offset,
2783 last_byte - cur_offset);
2784 if (ret < 0)
2785 break;
2786 }
2787 free_extent_map(em);
2788 cur_offset = last_byte;
2789 if (cur_offset >= alloc_end)
2790 break;
2791 }
2792
2793 /*
2794 * If ret is still 0, means we're OK to fallocate.
2795 * Or just cleanup the list and exit.
2796 */
2797 list_for_each_entry_safe(range, tmp, &reserve_list, list) {
2798 if (!ret)
2799 ret = btrfs_prealloc_file_range(inode, mode,
2800 range->start,
2801 range->len, 1 << inode->i_blkbits,
2802 offset + len, &alloc_hint);
2803 list_del(&range->list);
2804 kfree(range);
2805 }
2806 if (ret < 0)
2807 goto out_unlock;
2808
2809 if (actual_end > inode->i_size &&
2810 !(mode & FALLOC_FL_KEEP_SIZE)) {
2811 struct btrfs_trans_handle *trans;
2812 struct btrfs_root *root = BTRFS_I(inode)->root;
2813
2814 /*
2815 * We didn't need to allocate any more space, but we
2816 * still extended the size of the file so we need to
2817 * update i_size and the inode item.
2818 */
2819 trans = btrfs_start_transaction(root, 1);
2820 if (IS_ERR(trans)) {
2821 ret = PTR_ERR(trans);
2822 } else {
2823 inode->i_ctime = current_fs_time(inode->i_sb);
2824 i_size_write(inode, actual_end);
2825 btrfs_ordered_update_i_size(inode, actual_end, NULL);
2826 ret = btrfs_update_inode(trans, root, inode);
2827 if (ret)
2828 btrfs_end_transaction(trans, root);
2829 else
2830 ret = btrfs_end_transaction(trans, root);
2831 }
2832 }
2833out_unlock:
2834 unlock_extent_cached(&BTRFS_I(inode)->io_tree, alloc_start, locked_end,
2835 &cached_state, GFP_KERNEL);
2836out:
2837 /*
2838 * As we waited the extent range, the data_rsv_map must be empty
2839 * in the range, as written data range will be released from it.
2840 * And for prealloacted extent, it will also be released when
2841 * its metadata is written.
2842 * So this is completely used as cleanup.
2843 */
2844 btrfs_qgroup_free_data(inode, alloc_start, alloc_end - alloc_start);
2845 inode_unlock(inode);
2846 /* Let go of our reservation. */
2847 btrfs_free_reserved_data_space(inode, alloc_start,
2848 alloc_end - alloc_start);
2849 return ret;
2850}
2851
2852static int find_desired_extent(struct inode *inode, loff_t *offset, int whence)
2853{
2854 struct btrfs_root *root = BTRFS_I(inode)->root;
2855 struct extent_map *em = NULL;
2856 struct extent_state *cached_state = NULL;
2857 u64 lockstart;
2858 u64 lockend;
2859 u64 start;
2860 u64 len;
2861 int ret = 0;
2862
2863 if (inode->i_size == 0)
2864 return -ENXIO;
2865
2866 /*
2867 * *offset can be negative, in this case we start finding DATA/HOLE from
2868 * the very start of the file.
2869 */
2870 start = max_t(loff_t, 0, *offset);
2871
2872 lockstart = round_down(start, root->sectorsize);
2873 lockend = round_up(i_size_read(inode), root->sectorsize);
2874 if (lockend <= lockstart)
2875 lockend = lockstart + root->sectorsize;
2876 lockend--;
2877 len = lockend - lockstart + 1;
2878
2879 lock_extent_bits(&BTRFS_I(inode)->io_tree, lockstart, lockend,
2880 &cached_state);
2881
2882 while (start < inode->i_size) {
2883 em = btrfs_get_extent_fiemap(inode, NULL, 0, start, len, 0);
2884 if (IS_ERR(em)) {
2885 ret = PTR_ERR(em);
2886 em = NULL;
2887 break;
2888 }
2889
2890 if (whence == SEEK_HOLE &&
2891 (em->block_start == EXTENT_MAP_HOLE ||
2892 test_bit(EXTENT_FLAG_PREALLOC, &em->flags)))
2893 break;
2894 else if (whence == SEEK_DATA &&
2895 (em->block_start != EXTENT_MAP_HOLE &&
2896 !test_bit(EXTENT_FLAG_PREALLOC, &em->flags)))
2897 break;
2898
2899 start = em->start + em->len;
2900 free_extent_map(em);
2901 em = NULL;
2902 cond_resched();
2903 }
2904 free_extent_map(em);
2905 if (!ret) {
2906 if (whence == SEEK_DATA && start >= inode->i_size)
2907 ret = -ENXIO;
2908 else
2909 *offset = min_t(loff_t, start, inode->i_size);
2910 }
2911 unlock_extent_cached(&BTRFS_I(inode)->io_tree, lockstart, lockend,
2912 &cached_state, GFP_NOFS);
2913 return ret;
2914}
2915
2916static loff_t btrfs_file_llseek(struct file *file, loff_t offset, int whence)
2917{
2918 struct inode *inode = file->f_mapping->host;
2919 int ret;
2920
2921 inode_lock(inode);
2922 switch (whence) {
2923 case SEEK_END:
2924 case SEEK_CUR:
2925 offset = generic_file_llseek(file, offset, whence);
2926 goto out;
2927 case SEEK_DATA:
2928 case SEEK_HOLE:
2929 if (offset >= i_size_read(inode)) {
2930 inode_unlock(inode);
2931 return -ENXIO;
2932 }
2933
2934 ret = find_desired_extent(inode, &offset, whence);
2935 if (ret) {
2936 inode_unlock(inode);
2937 return ret;
2938 }
2939 }
2940
2941 offset = vfs_setpos(file, offset, inode->i_sb->s_maxbytes);
2942out:
2943 inode_unlock(inode);
2944 return offset;
2945}
2946
2947const struct file_operations btrfs_file_operations = {
2948 .llseek = btrfs_file_llseek,
2949 .read_iter = generic_file_read_iter,
2950 .splice_read = generic_file_splice_read,
2951 .write_iter = btrfs_file_write_iter,
2952 .mmap = btrfs_file_mmap,
2953 .open = generic_file_open,
2954 .release = btrfs_release_file,
2955 .fsync = btrfs_sync_file,
2956 .fallocate = btrfs_fallocate,
2957 .unlocked_ioctl = btrfs_ioctl,
2958#ifdef CONFIG_COMPAT
2959 .compat_ioctl = btrfs_ioctl,
2960#endif
2961 .copy_file_range = btrfs_copy_file_range,
2962 .clone_file_range = btrfs_clone_file_range,
2963 .dedupe_file_range = btrfs_dedupe_file_range,
2964};
2965
2966void btrfs_auto_defrag_exit(void)
2967{
2968 kmem_cache_destroy(btrfs_inode_defrag_cachep);
2969}
2970
2971int btrfs_auto_defrag_init(void)
2972{
2973 btrfs_inode_defrag_cachep = kmem_cache_create("btrfs_inode_defrag",
2974 sizeof(struct inode_defrag), 0,
2975 SLAB_RECLAIM_ACCOUNT | SLAB_MEM_SPREAD,
2976 NULL);
2977 if (!btrfs_inode_defrag_cachep)
2978 return -ENOMEM;
2979
2980 return 0;
2981}
2982
2983int btrfs_fdatawrite_range(struct inode *inode, loff_t start, loff_t end)
2984{
2985 int ret;
2986
2987 /*
2988 * So with compression we will find and lock a dirty page and clear the
2989 * first one as dirty, setup an async extent, and immediately return
2990 * with the entire range locked but with nobody actually marked with
2991 * writeback. So we can't just filemap_write_and_wait_range() and
2992 * expect it to work since it will just kick off a thread to do the
2993 * actual work. So we need to call filemap_fdatawrite_range _again_
2994 * since it will wait on the page lock, which won't be unlocked until
2995 * after the pages have been marked as writeback and so we're good to go
2996 * from there. We have to do this otherwise we'll miss the ordered
2997 * extents and that results in badness. Please Josef, do not think you
2998 * know better and pull this out at some point in the future, it is
2999 * right and you are wrong.
3000 */
3001 ret = filemap_fdatawrite_range(inode->i_mapping, start, end);
3002 if (!ret && test_bit(BTRFS_INODE_HAS_ASYNC_EXTENT,
3003 &BTRFS_I(inode)->runtime_flags))
3004 ret = filemap_fdatawrite_range(inode->i_mapping, start, end);
3005
3006 return ret;
3007}