Linux Audio

Check our new training course

Loading...
v3.1
 
   1/*
   2 * Copyright (C) 2011 Fujitsu.  All rights reserved.
   3 * Written by Miao Xie <miaox@cn.fujitsu.com>
   4 *
   5 * This program is free software; you can redistribute it and/or
   6 * modify it under the terms of the GNU General Public
   7 * License v2 as published by the Free Software Foundation.
   8 *
   9 * This program is distributed in the hope that it will be useful,
  10 * but WITHOUT ANY WARRANTY; without even the implied warranty of
  11 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the GNU
  12 * General Public License for more details.
  13 *
  14 * You should have received a copy of the GNU General Public
  15 * License along with this program; if not, write to the
  16 * Free Software Foundation, Inc., 59 Temple Place - Suite 330,
  17 * Boston, MA 021110-1307, USA.
  18 */
  19
  20#include <linux/slab.h>
 
 
 
  21#include "delayed-inode.h"
  22#include "disk-io.h"
  23#include "transaction.h"
  24
  25#define BTRFS_DELAYED_WRITEBACK		400
  26#define BTRFS_DELAYED_BACKGROUND	100
 
 
 
 
  27
  28static struct kmem_cache *delayed_node_cache;
  29
  30int __init btrfs_delayed_inode_init(void)
  31{
  32	delayed_node_cache = kmem_cache_create("delayed_node",
  33					sizeof(struct btrfs_delayed_node),
  34					0,
  35					SLAB_RECLAIM_ACCOUNT | SLAB_MEM_SPREAD,
  36					NULL);
  37	if (!delayed_node_cache)
  38		return -ENOMEM;
  39	return 0;
  40}
  41
  42void btrfs_delayed_inode_exit(void)
  43{
  44	if (delayed_node_cache)
  45		kmem_cache_destroy(delayed_node_cache);
  46}
  47
  48static inline void btrfs_init_delayed_node(
  49				struct btrfs_delayed_node *delayed_node,
  50				struct btrfs_root *root, u64 inode_id)
  51{
  52	delayed_node->root = root;
  53	delayed_node->inode_id = inode_id;
  54	atomic_set(&delayed_node->refs, 0);
  55	delayed_node->count = 0;
  56	delayed_node->in_list = 0;
  57	delayed_node->inode_dirty = 0;
  58	delayed_node->ins_root = RB_ROOT;
  59	delayed_node->del_root = RB_ROOT;
  60	mutex_init(&delayed_node->mutex);
  61	delayed_node->index_cnt = 0;
  62	INIT_LIST_HEAD(&delayed_node->n_list);
  63	INIT_LIST_HEAD(&delayed_node->p_list);
  64	delayed_node->bytes_reserved = 0;
  65}
  66
  67static inline int btrfs_is_continuous_delayed_item(
  68					struct btrfs_delayed_item *item1,
  69					struct btrfs_delayed_item *item2)
  70{
  71	if (item1->key.type == BTRFS_DIR_INDEX_KEY &&
  72	    item1->key.objectid == item2->key.objectid &&
  73	    item1->key.type == item2->key.type &&
  74	    item1->key.offset + 1 == item2->key.offset)
  75		return 1;
  76	return 0;
  77}
  78
  79static inline struct btrfs_delayed_root *btrfs_get_delayed_root(
  80							struct btrfs_root *root)
  81{
  82	return root->fs_info->delayed_root;
  83}
  84
  85static struct btrfs_delayed_node *btrfs_get_delayed_node(struct inode *inode)
  86{
  87	struct btrfs_inode *btrfs_inode = BTRFS_I(inode);
  88	struct btrfs_root *root = btrfs_inode->root;
  89	u64 ino = btrfs_ino(inode);
  90	struct btrfs_delayed_node *node;
  91
  92	node = ACCESS_ONCE(btrfs_inode->delayed_node);
  93	if (node) {
  94		atomic_inc(&node->refs);
  95		return node;
  96	}
  97
  98	spin_lock(&root->inode_lock);
  99	node = radix_tree_lookup(&root->delayed_nodes_tree, ino);
 
 100	if (node) {
 101		if (btrfs_inode->delayed_node) {
 102			atomic_inc(&node->refs);	/* can be accessed */
 103			BUG_ON(btrfs_inode->delayed_node != node);
 104			spin_unlock(&root->inode_lock);
 105			return node;
 106		}
 107		btrfs_inode->delayed_node = node;
 108		atomic_inc(&node->refs);	/* can be accessed */
 109		atomic_inc(&node->refs);	/* cached in the inode */
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 110		spin_unlock(&root->inode_lock);
 111		return node;
 112	}
 113	spin_unlock(&root->inode_lock);
 114
 115	return NULL;
 116}
 117
 
 118static struct btrfs_delayed_node *btrfs_get_or_create_delayed_node(
 119							struct inode *inode)
 120{
 121	struct btrfs_delayed_node *node;
 122	struct btrfs_inode *btrfs_inode = BTRFS_I(inode);
 123	struct btrfs_root *root = btrfs_inode->root;
 124	u64 ino = btrfs_ino(inode);
 125	int ret;
 126
 127again:
 128	node = btrfs_get_delayed_node(inode);
 129	if (node)
 130		return node;
 131
 132	node = kmem_cache_alloc(delayed_node_cache, GFP_NOFS);
 133	if (!node)
 134		return ERR_PTR(-ENOMEM);
 135	btrfs_init_delayed_node(node, root, ino);
 136
 137	atomic_inc(&node->refs);	/* cached in the btrfs inode */
 138	atomic_inc(&node->refs);	/* can be accessed */
 139
 140	ret = radix_tree_preload(GFP_NOFS & ~__GFP_HIGHMEM);
 141	if (ret) {
 142		kmem_cache_free(delayed_node_cache, node);
 143		return ERR_PTR(ret);
 144	}
 145
 146	spin_lock(&root->inode_lock);
 147	ret = radix_tree_insert(&root->delayed_nodes_tree, ino, node);
 148	if (ret == -EEXIST) {
 149		kmem_cache_free(delayed_node_cache, node);
 150		spin_unlock(&root->inode_lock);
 
 151		radix_tree_preload_end();
 152		goto again;
 153	}
 154	btrfs_inode->delayed_node = node;
 155	spin_unlock(&root->inode_lock);
 156	radix_tree_preload_end();
 157
 158	return node;
 159}
 160
 161/*
 162 * Call it when holding delayed_node->mutex
 163 *
 164 * If mod = 1, add this node into the prepared list.
 165 */
 166static void btrfs_queue_delayed_node(struct btrfs_delayed_root *root,
 167				     struct btrfs_delayed_node *node,
 168				     int mod)
 169{
 170	spin_lock(&root->lock);
 171	if (node->in_list) {
 172		if (!list_empty(&node->p_list))
 173			list_move_tail(&node->p_list, &root->prepare_list);
 174		else if (mod)
 175			list_add_tail(&node->p_list, &root->prepare_list);
 176	} else {
 177		list_add_tail(&node->n_list, &root->node_list);
 178		list_add_tail(&node->p_list, &root->prepare_list);
 179		atomic_inc(&node->refs);	/* inserted into list */
 180		root->nodes++;
 181		node->in_list = 1;
 182	}
 183	spin_unlock(&root->lock);
 184}
 185
 186/* Call it when holding delayed_node->mutex */
 187static void btrfs_dequeue_delayed_node(struct btrfs_delayed_root *root,
 188				       struct btrfs_delayed_node *node)
 189{
 190	spin_lock(&root->lock);
 191	if (node->in_list) {
 192		root->nodes--;
 193		atomic_dec(&node->refs);	/* not in the list */
 194		list_del_init(&node->n_list);
 195		if (!list_empty(&node->p_list))
 196			list_del_init(&node->p_list);
 197		node->in_list = 0;
 198	}
 199	spin_unlock(&root->lock);
 200}
 201
 202struct btrfs_delayed_node *btrfs_first_delayed_node(
 203			struct btrfs_delayed_root *delayed_root)
 204{
 205	struct list_head *p;
 206	struct btrfs_delayed_node *node = NULL;
 207
 208	spin_lock(&delayed_root->lock);
 209	if (list_empty(&delayed_root->node_list))
 210		goto out;
 211
 212	p = delayed_root->node_list.next;
 213	node = list_entry(p, struct btrfs_delayed_node, n_list);
 214	atomic_inc(&node->refs);
 215out:
 216	spin_unlock(&delayed_root->lock);
 217
 218	return node;
 219}
 220
 221struct btrfs_delayed_node *btrfs_next_delayed_node(
 222						struct btrfs_delayed_node *node)
 223{
 224	struct btrfs_delayed_root *delayed_root;
 225	struct list_head *p;
 226	struct btrfs_delayed_node *next = NULL;
 227
 228	delayed_root = node->root->fs_info->delayed_root;
 229	spin_lock(&delayed_root->lock);
 230	if (!node->in_list) {	/* not in the list */
 
 231		if (list_empty(&delayed_root->node_list))
 232			goto out;
 233		p = delayed_root->node_list.next;
 234	} else if (list_is_last(&node->n_list, &delayed_root->node_list))
 235		goto out;
 236	else
 237		p = node->n_list.next;
 238
 239	next = list_entry(p, struct btrfs_delayed_node, n_list);
 240	atomic_inc(&next->refs);
 241out:
 242	spin_unlock(&delayed_root->lock);
 243
 244	return next;
 245}
 246
 247static void __btrfs_release_delayed_node(
 248				struct btrfs_delayed_node *delayed_node,
 249				int mod)
 250{
 251	struct btrfs_delayed_root *delayed_root;
 252
 253	if (!delayed_node)
 254		return;
 255
 256	delayed_root = delayed_node->root->fs_info->delayed_root;
 257
 258	mutex_lock(&delayed_node->mutex);
 259	if (delayed_node->count)
 260		btrfs_queue_delayed_node(delayed_root, delayed_node, mod);
 261	else
 262		btrfs_dequeue_delayed_node(delayed_root, delayed_node);
 263	mutex_unlock(&delayed_node->mutex);
 264
 265	if (atomic_dec_and_test(&delayed_node->refs)) {
 266		struct btrfs_root *root = delayed_node->root;
 
 267		spin_lock(&root->inode_lock);
 268		if (atomic_read(&delayed_node->refs) == 0) {
 269			radix_tree_delete(&root->delayed_nodes_tree,
 270					  delayed_node->inode_id);
 271			kmem_cache_free(delayed_node_cache, delayed_node);
 272		}
 
 
 273		spin_unlock(&root->inode_lock);
 
 274	}
 275}
 276
 277static inline void btrfs_release_delayed_node(struct btrfs_delayed_node *node)
 278{
 279	__btrfs_release_delayed_node(node, 0);
 280}
 281
 282struct btrfs_delayed_node *btrfs_first_prepared_delayed_node(
 283					struct btrfs_delayed_root *delayed_root)
 284{
 285	struct list_head *p;
 286	struct btrfs_delayed_node *node = NULL;
 287
 288	spin_lock(&delayed_root->lock);
 289	if (list_empty(&delayed_root->prepare_list))
 290		goto out;
 291
 292	p = delayed_root->prepare_list.next;
 293	list_del_init(p);
 294	node = list_entry(p, struct btrfs_delayed_node, p_list);
 295	atomic_inc(&node->refs);
 296out:
 297	spin_unlock(&delayed_root->lock);
 298
 299	return node;
 300}
 301
 302static inline void btrfs_release_prepared_delayed_node(
 303					struct btrfs_delayed_node *node)
 304{
 305	__btrfs_release_delayed_node(node, 1);
 306}
 307
 308struct btrfs_delayed_item *btrfs_alloc_delayed_item(u32 data_len)
 309{
 310	struct btrfs_delayed_item *item;
 311	item = kmalloc(sizeof(*item) + data_len, GFP_NOFS);
 312	if (item) {
 313		item->data_len = data_len;
 314		item->ins_or_del = 0;
 315		item->bytes_reserved = 0;
 316		item->delayed_node = NULL;
 317		atomic_set(&item->refs, 1);
 318	}
 319	return item;
 320}
 321
 322/*
 323 * __btrfs_lookup_delayed_item - look up the delayed item by key
 324 * @delayed_node: pointer to the delayed node
 325 * @key:	  the key to look up
 326 * @prev:	  used to store the prev item if the right item isn't found
 327 * @next:	  used to store the next item if the right item isn't found
 328 *
 329 * Note: if we don't find the right item, we will return the prev item and
 330 * the next item.
 331 */
 332static struct btrfs_delayed_item *__btrfs_lookup_delayed_item(
 333				struct rb_root *root,
 334				struct btrfs_key *key,
 335				struct btrfs_delayed_item **prev,
 336				struct btrfs_delayed_item **next)
 337{
 338	struct rb_node *node, *prev_node = NULL;
 339	struct btrfs_delayed_item *delayed_item = NULL;
 340	int ret = 0;
 341
 342	node = root->rb_node;
 343
 344	while (node) {
 345		delayed_item = rb_entry(node, struct btrfs_delayed_item,
 346					rb_node);
 347		prev_node = node;
 348		ret = btrfs_comp_cpu_keys(&delayed_item->key, key);
 349		if (ret < 0)
 350			node = node->rb_right;
 351		else if (ret > 0)
 352			node = node->rb_left;
 353		else
 354			return delayed_item;
 355	}
 356
 357	if (prev) {
 358		if (!prev_node)
 359			*prev = NULL;
 360		else if (ret < 0)
 361			*prev = delayed_item;
 362		else if ((node = rb_prev(prev_node)) != NULL) {
 363			*prev = rb_entry(node, struct btrfs_delayed_item,
 364					 rb_node);
 365		} else
 366			*prev = NULL;
 367	}
 368
 369	if (next) {
 370		if (!prev_node)
 371			*next = NULL;
 372		else if (ret > 0)
 373			*next = delayed_item;
 374		else if ((node = rb_next(prev_node)) != NULL) {
 375			*next = rb_entry(node, struct btrfs_delayed_item,
 376					 rb_node);
 377		} else
 378			*next = NULL;
 379	}
 380	return NULL;
 381}
 382
 383struct btrfs_delayed_item *__btrfs_lookup_delayed_insertion_item(
 384					struct btrfs_delayed_node *delayed_node,
 385					struct btrfs_key *key)
 386{
 387	struct btrfs_delayed_item *item;
 388
 389	item = __btrfs_lookup_delayed_item(&delayed_node->ins_root, key,
 390					   NULL, NULL);
 391	return item;
 392}
 393
 394struct btrfs_delayed_item *__btrfs_lookup_delayed_deletion_item(
 395					struct btrfs_delayed_node *delayed_node,
 396					struct btrfs_key *key)
 397{
 398	struct btrfs_delayed_item *item;
 399
 400	item = __btrfs_lookup_delayed_item(&delayed_node->del_root, key,
 401					   NULL, NULL);
 402	return item;
 403}
 404
 405struct btrfs_delayed_item *__btrfs_search_delayed_insertion_item(
 406					struct btrfs_delayed_node *delayed_node,
 407					struct btrfs_key *key)
 408{
 409	struct btrfs_delayed_item *item, *next;
 410
 411	item = __btrfs_lookup_delayed_item(&delayed_node->ins_root, key,
 412					   NULL, &next);
 413	if (!item)
 414		item = next;
 415
 416	return item;
 417}
 418
 419struct btrfs_delayed_item *__btrfs_search_delayed_deletion_item(
 420					struct btrfs_delayed_node *delayed_node,
 421					struct btrfs_key *key)
 422{
 423	struct btrfs_delayed_item *item, *next;
 424
 425	item = __btrfs_lookup_delayed_item(&delayed_node->del_root, key,
 426					   NULL, &next);
 427	if (!item)
 428		item = next;
 429
 430	return item;
 431}
 432
 433static int __btrfs_add_delayed_item(struct btrfs_delayed_node *delayed_node,
 434				    struct btrfs_delayed_item *ins,
 435				    int action)
 436{
 437	struct rb_node **p, *node;
 438	struct rb_node *parent_node = NULL;
 439	struct rb_root *root;
 440	struct btrfs_delayed_item *item;
 441	int cmp;
 
 442
 443	if (action == BTRFS_DELAYED_INSERTION_ITEM)
 444		root = &delayed_node->ins_root;
 445	else if (action == BTRFS_DELAYED_DELETION_ITEM)
 446		root = &delayed_node->del_root;
 447	else
 448		BUG();
 449	p = &root->rb_node;
 450	node = &ins->rb_node;
 451
 452	while (*p) {
 453		parent_node = *p;
 454		item = rb_entry(parent_node, struct btrfs_delayed_item,
 455				 rb_node);
 456
 457		cmp = btrfs_comp_cpu_keys(&item->key, &ins->key);
 458		if (cmp < 0)
 459			p = &(*p)->rb_right;
 460		else if (cmp > 0)
 
 461			p = &(*p)->rb_left;
 462		else
 463			return -EEXIST;
 
 464	}
 465
 466	rb_link_node(node, parent_node, p);
 467	rb_insert_color(node, root);
 468	ins->delayed_node = delayed_node;
 469	ins->ins_or_del = action;
 470
 471	if (ins->key.type == BTRFS_DIR_INDEX_KEY &&
 472	    action == BTRFS_DELAYED_INSERTION_ITEM &&
 473	    ins->key.offset >= delayed_node->index_cnt)
 474			delayed_node->index_cnt = ins->key.offset + 1;
 475
 476	delayed_node->count++;
 477	atomic_inc(&delayed_node->root->fs_info->delayed_root->items);
 478	return 0;
 479}
 480
 481static int __btrfs_add_delayed_insertion_item(struct btrfs_delayed_node *node,
 482					      struct btrfs_delayed_item *item)
 483{
 484	return __btrfs_add_delayed_item(node, item,
 485					BTRFS_DELAYED_INSERTION_ITEM);
 486}
 487
 488static int __btrfs_add_delayed_deletion_item(struct btrfs_delayed_node *node,
 489					     struct btrfs_delayed_item *item)
 490{
 491	return __btrfs_add_delayed_item(node, item,
 492					BTRFS_DELAYED_DELETION_ITEM);
 493}
 494
 
 
 
 
 
 
 
 
 
 
 495static void __btrfs_remove_delayed_item(struct btrfs_delayed_item *delayed_item)
 496{
 497	struct rb_root *root;
 498	struct btrfs_delayed_root *delayed_root;
 499
 
 
 
 500	delayed_root = delayed_item->delayed_node->root->fs_info->delayed_root;
 501
 502	BUG_ON(!delayed_root);
 503	BUG_ON(delayed_item->ins_or_del != BTRFS_DELAYED_DELETION_ITEM &&
 504	       delayed_item->ins_or_del != BTRFS_DELAYED_INSERTION_ITEM);
 505
 506	if (delayed_item->ins_or_del == BTRFS_DELAYED_INSERTION_ITEM)
 507		root = &delayed_item->delayed_node->ins_root;
 508	else
 509		root = &delayed_item->delayed_node->del_root;
 510
 511	rb_erase(&delayed_item->rb_node, root);
 512	delayed_item->delayed_node->count--;
 513	atomic_dec(&delayed_root->items);
 514	if (atomic_read(&delayed_root->items) < BTRFS_DELAYED_BACKGROUND &&
 515	    waitqueue_active(&delayed_root->wait))
 516		wake_up(&delayed_root->wait);
 517}
 518
 519static void btrfs_release_delayed_item(struct btrfs_delayed_item *item)
 520{
 521	if (item) {
 522		__btrfs_remove_delayed_item(item);
 523		if (atomic_dec_and_test(&item->refs))
 524			kfree(item);
 525	}
 526}
 527
 528struct btrfs_delayed_item *__btrfs_first_delayed_insertion_item(
 529					struct btrfs_delayed_node *delayed_node)
 530{
 531	struct rb_node *p;
 532	struct btrfs_delayed_item *item = NULL;
 533
 534	p = rb_first(&delayed_node->ins_root);
 535	if (p)
 536		item = rb_entry(p, struct btrfs_delayed_item, rb_node);
 537
 538	return item;
 539}
 540
 541struct btrfs_delayed_item *__btrfs_first_delayed_deletion_item(
 542					struct btrfs_delayed_node *delayed_node)
 543{
 544	struct rb_node *p;
 545	struct btrfs_delayed_item *item = NULL;
 546
 547	p = rb_first(&delayed_node->del_root);
 548	if (p)
 549		item = rb_entry(p, struct btrfs_delayed_item, rb_node);
 550
 551	return item;
 552}
 553
 554struct btrfs_delayed_item *__btrfs_next_delayed_item(
 555						struct btrfs_delayed_item *item)
 556{
 557	struct rb_node *p;
 558	struct btrfs_delayed_item *next = NULL;
 559
 560	p = rb_next(&item->rb_node);
 561	if (p)
 562		next = rb_entry(p, struct btrfs_delayed_item, rb_node);
 563
 564	return next;
 565}
 566
 567static inline struct btrfs_root *btrfs_get_fs_root(struct btrfs_root *root,
 568						   u64 root_id)
 569{
 570	struct btrfs_key root_key;
 571
 572	if (root->objectid == root_id)
 573		return root;
 574
 575	root_key.objectid = root_id;
 576	root_key.type = BTRFS_ROOT_ITEM_KEY;
 577	root_key.offset = (u64)-1;
 578	return btrfs_read_fs_root_no_name(root->fs_info, &root_key);
 579}
 580
 581static int btrfs_delayed_item_reserve_metadata(struct btrfs_trans_handle *trans,
 582					       struct btrfs_root *root,
 583					       struct btrfs_delayed_item *item)
 584{
 585	struct btrfs_block_rsv *src_rsv;
 586	struct btrfs_block_rsv *dst_rsv;
 
 587	u64 num_bytes;
 588	int ret;
 589
 590	if (!trans->bytes_reserved)
 591		return 0;
 592
 593	src_rsv = trans->block_rsv;
 594	dst_rsv = &root->fs_info->global_block_rsv;
 595
 596	num_bytes = btrfs_calc_trans_metadata_size(root, 1);
 597	ret = btrfs_block_rsv_migrate(src_rsv, dst_rsv, num_bytes);
 598	if (!ret)
 
 
 
 
 
 
 
 
 
 599		item->bytes_reserved = num_bytes;
 
 600
 601	return ret;
 602}
 603
 604static void btrfs_delayed_item_release_metadata(struct btrfs_root *root,
 605						struct btrfs_delayed_item *item)
 606{
 607	struct btrfs_block_rsv *rsv;
 
 608
 609	if (!item->bytes_reserved)
 610		return;
 611
 612	rsv = &root->fs_info->global_block_rsv;
 613	btrfs_block_rsv_release(root, rsv,
 614				item->bytes_reserved);
 
 
 
 
 
 
 615}
 616
 617static int btrfs_delayed_inode_reserve_metadata(
 618					struct btrfs_trans_handle *trans,
 619					struct btrfs_root *root,
 
 620					struct btrfs_delayed_node *node)
 621{
 
 622	struct btrfs_block_rsv *src_rsv;
 623	struct btrfs_block_rsv *dst_rsv;
 624	u64 num_bytes;
 625	int ret;
 626
 627	if (!trans->bytes_reserved)
 628		return 0;
 629
 630	src_rsv = trans->block_rsv;
 631	dst_rsv = &root->fs_info->global_block_rsv;
 632
 633	num_bytes = btrfs_calc_trans_metadata_size(root, 1);
 634	ret = btrfs_block_rsv_migrate(src_rsv, dst_rsv, num_bytes);
 635	if (!ret)
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 636		node->bytes_reserved = num_bytes;
 
 637
 638	return ret;
 639}
 640
 641static void btrfs_delayed_inode_release_metadata(struct btrfs_root *root,
 642						struct btrfs_delayed_node *node)
 
 643{
 644	struct btrfs_block_rsv *rsv;
 645
 646	if (!node->bytes_reserved)
 647		return;
 648
 649	rsv = &root->fs_info->global_block_rsv;
 650	btrfs_block_rsv_release(root, rsv,
 
 
 
 
 
 
 
 651				node->bytes_reserved);
 652	node->bytes_reserved = 0;
 653}
 654
 655/*
 656 * This helper will insert some continuous items into the same leaf according
 657 * to the free space of the leaf.
 658 */
 659static int btrfs_batch_insert_items(struct btrfs_trans_handle *trans,
 660				struct btrfs_root *root,
 661				struct btrfs_path *path,
 662				struct btrfs_delayed_item *item)
 663{
 664	struct btrfs_delayed_item *curr, *next;
 665	int free_space;
 666	int total_data_size = 0, total_size = 0;
 667	struct extent_buffer *leaf;
 668	char *data_ptr;
 669	struct btrfs_key *keys;
 670	u32 *data_size;
 671	struct list_head head;
 672	int slot;
 673	int nitems;
 674	int i;
 675	int ret = 0;
 676
 677	BUG_ON(!path->nodes[0]);
 678
 679	leaf = path->nodes[0];
 680	free_space = btrfs_leaf_free_space(root, leaf);
 681	INIT_LIST_HEAD(&head);
 682
 683	next = item;
 684	nitems = 0;
 685
 686	/*
 687	 * count the number of the continuous items that we can insert in batch
 688	 */
 689	while (total_size + next->data_len + sizeof(struct btrfs_item) <=
 690	       free_space) {
 691		total_data_size += next->data_len;
 692		total_size += next->data_len + sizeof(struct btrfs_item);
 693		list_add_tail(&next->tree_list, &head);
 694		nitems++;
 695
 696		curr = next;
 697		next = __btrfs_next_delayed_item(curr);
 698		if (!next)
 699			break;
 700
 701		if (!btrfs_is_continuous_delayed_item(curr, next))
 702			break;
 703	}
 704
 705	if (!nitems) {
 706		ret = 0;
 707		goto out;
 708	}
 709
 710	/*
 711	 * we need allocate some memory space, but it might cause the task
 712	 * to sleep, so we set all locked nodes in the path to blocking locks
 713	 * first.
 714	 */
 715	btrfs_set_path_blocking(path);
 716
 717	keys = kmalloc(sizeof(struct btrfs_key) * nitems, GFP_NOFS);
 718	if (!keys) {
 719		ret = -ENOMEM;
 720		goto out;
 721	}
 722
 723	data_size = kmalloc(sizeof(u32) * nitems, GFP_NOFS);
 724	if (!data_size) {
 725		ret = -ENOMEM;
 726		goto error;
 727	}
 728
 729	/* get keys of all the delayed items */
 730	i = 0;
 731	list_for_each_entry(next, &head, tree_list) {
 732		keys[i] = next->key;
 733		data_size[i] = next->data_len;
 734		i++;
 735	}
 736
 737	/* reset all the locked nodes in the patch to spinning locks. */
 738	btrfs_clear_path_blocking(path, NULL, 0);
 739
 740	/* insert the keys of the items */
 741	ret = setup_items_for_insert(trans, root, path, keys, data_size,
 742				     total_data_size, total_size, nitems);
 743	if (ret)
 744		goto error;
 745
 746	/* insert the dir index items */
 747	slot = path->slots[0];
 748	list_for_each_entry_safe(curr, next, &head, tree_list) {
 749		data_ptr = btrfs_item_ptr(leaf, slot, char);
 750		write_extent_buffer(leaf, &curr->data,
 751				    (unsigned long)data_ptr,
 752				    curr->data_len);
 753		slot++;
 754
 755		btrfs_delayed_item_release_metadata(root, curr);
 756
 757		list_del(&curr->tree_list);
 758		btrfs_release_delayed_item(curr);
 759	}
 760
 761error:
 762	kfree(data_size);
 763	kfree(keys);
 764out:
 765	return ret;
 766}
 767
 768/*
 769 * This helper can just do simple insertion that needn't extend item for new
 770 * data, such as directory name index insertion, inode insertion.
 771 */
 772static int btrfs_insert_delayed_item(struct btrfs_trans_handle *trans,
 773				     struct btrfs_root *root,
 774				     struct btrfs_path *path,
 775				     struct btrfs_delayed_item *delayed_item)
 776{
 777	struct extent_buffer *leaf;
 778	struct btrfs_item *item;
 779	char *ptr;
 780	int ret;
 781
 
 782	ret = btrfs_insert_empty_item(trans, root, path, &delayed_item->key,
 783				      delayed_item->data_len);
 
 784	if (ret < 0 && ret != -EEXIST)
 785		return ret;
 786
 787	leaf = path->nodes[0];
 788
 789	item = btrfs_item_nr(leaf, path->slots[0]);
 790	ptr = btrfs_item_ptr(leaf, path->slots[0], char);
 791
 792	write_extent_buffer(leaf, delayed_item->data, (unsigned long)ptr,
 793			    delayed_item->data_len);
 794	btrfs_mark_buffer_dirty(leaf);
 795
 796	btrfs_delayed_item_release_metadata(root, delayed_item);
 797	return 0;
 798}
 799
 800/*
 801 * we insert an item first, then if there are some continuous items, we try
 802 * to insert those items into the same leaf.
 803 */
 804static int btrfs_insert_delayed_items(struct btrfs_trans_handle *trans,
 805				      struct btrfs_path *path,
 806				      struct btrfs_root *root,
 807				      struct btrfs_delayed_node *node)
 808{
 809	struct btrfs_delayed_item *curr, *prev;
 810	int ret = 0;
 811
 812do_again:
 813	mutex_lock(&node->mutex);
 814	curr = __btrfs_first_delayed_insertion_item(node);
 815	if (!curr)
 816		goto insert_end;
 817
 818	ret = btrfs_insert_delayed_item(trans, root, path, curr);
 819	if (ret < 0) {
 820		btrfs_release_path(path);
 821		goto insert_end;
 822	}
 823
 824	prev = curr;
 825	curr = __btrfs_next_delayed_item(prev);
 826	if (curr && btrfs_is_continuous_delayed_item(prev, curr)) {
 827		/* insert the continuous items into the same leaf */
 828		path->slots[0]++;
 829		btrfs_batch_insert_items(trans, root, path, curr);
 830	}
 831	btrfs_release_delayed_item(prev);
 832	btrfs_mark_buffer_dirty(path->nodes[0]);
 833
 834	btrfs_release_path(path);
 835	mutex_unlock(&node->mutex);
 836	goto do_again;
 837
 838insert_end:
 839	mutex_unlock(&node->mutex);
 840	return ret;
 841}
 842
 843static int btrfs_batch_delete_items(struct btrfs_trans_handle *trans,
 844				    struct btrfs_root *root,
 845				    struct btrfs_path *path,
 846				    struct btrfs_delayed_item *item)
 847{
 848	struct btrfs_delayed_item *curr, *next;
 849	struct extent_buffer *leaf;
 850	struct btrfs_key key;
 851	struct list_head head;
 852	int nitems, i, last_item;
 853	int ret = 0;
 854
 855	BUG_ON(!path->nodes[0]);
 856
 857	leaf = path->nodes[0];
 858
 859	i = path->slots[0];
 860	last_item = btrfs_header_nritems(leaf) - 1;
 861	if (i > last_item)
 862		return -ENOENT;	/* FIXME: Is errno suitable? */
 863
 864	next = item;
 865	INIT_LIST_HEAD(&head);
 866	btrfs_item_key_to_cpu(leaf, &key, i);
 867	nitems = 0;
 868	/*
 869	 * count the number of the dir index items that we can delete in batch
 870	 */
 871	while (btrfs_comp_cpu_keys(&next->key, &key) == 0) {
 872		list_add_tail(&next->tree_list, &head);
 873		nitems++;
 874
 875		curr = next;
 876		next = __btrfs_next_delayed_item(curr);
 877		if (!next)
 878			break;
 879
 880		if (!btrfs_is_continuous_delayed_item(curr, next))
 881			break;
 882
 883		i++;
 884		if (i > last_item)
 885			break;
 886		btrfs_item_key_to_cpu(leaf, &key, i);
 887	}
 888
 889	if (!nitems)
 890		return 0;
 891
 892	ret = btrfs_del_items(trans, root, path, path->slots[0], nitems);
 893	if (ret)
 894		goto out;
 895
 896	list_for_each_entry_safe(curr, next, &head, tree_list) {
 897		btrfs_delayed_item_release_metadata(root, curr);
 898		list_del(&curr->tree_list);
 899		btrfs_release_delayed_item(curr);
 900	}
 901
 902out:
 903	return ret;
 904}
 905
 906static int btrfs_delete_delayed_items(struct btrfs_trans_handle *trans,
 907				      struct btrfs_path *path,
 908				      struct btrfs_root *root,
 909				      struct btrfs_delayed_node *node)
 910{
 911	struct btrfs_delayed_item *curr, *prev;
 
 912	int ret = 0;
 913
 914do_again:
 915	mutex_lock(&node->mutex);
 916	curr = __btrfs_first_delayed_deletion_item(node);
 917	if (!curr)
 918		goto delete_fail;
 919
 
 920	ret = btrfs_search_slot(trans, root, &curr->key, path, -1, 1);
 
 921	if (ret < 0)
 922		goto delete_fail;
 923	else if (ret > 0) {
 924		/*
 925		 * can't find the item which the node points to, so this node
 926		 * is invalid, just drop it.
 927		 */
 928		prev = curr;
 929		curr = __btrfs_next_delayed_item(prev);
 930		btrfs_release_delayed_item(prev);
 931		ret = 0;
 932		btrfs_release_path(path);
 933		if (curr)
 
 934			goto do_again;
 935		else
 936			goto delete_fail;
 937	}
 938
 939	btrfs_batch_delete_items(trans, root, path, curr);
 940	btrfs_release_path(path);
 941	mutex_unlock(&node->mutex);
 942	goto do_again;
 943
 944delete_fail:
 945	btrfs_release_path(path);
 946	mutex_unlock(&node->mutex);
 947	return ret;
 948}
 949
 950static void btrfs_release_delayed_inode(struct btrfs_delayed_node *delayed_node)
 951{
 952	struct btrfs_delayed_root *delayed_root;
 953
 954	if (delayed_node && delayed_node->inode_dirty) {
 
 955		BUG_ON(!delayed_node->root);
 956		delayed_node->inode_dirty = 0;
 957		delayed_node->count--;
 958
 959		delayed_root = delayed_node->root->fs_info->delayed_root;
 960		atomic_dec(&delayed_root->items);
 961		if (atomic_read(&delayed_root->items) <
 962		    BTRFS_DELAYED_BACKGROUND &&
 963		    waitqueue_active(&delayed_root->wait))
 964			wake_up(&delayed_root->wait);
 965	}
 966}
 967
 968static int btrfs_update_delayed_inode(struct btrfs_trans_handle *trans,
 969				      struct btrfs_root *root,
 970				      struct btrfs_path *path,
 971				      struct btrfs_delayed_node *node)
 972{
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 973	struct btrfs_key key;
 974	struct btrfs_inode_item *inode_item;
 975	struct extent_buffer *leaf;
 
 
 976	int ret;
 977
 978	mutex_lock(&node->mutex);
 979	if (!node->inode_dirty) {
 980		mutex_unlock(&node->mutex);
 981		return 0;
 982	}
 983
 984	key.objectid = node->inode_id;
 985	btrfs_set_key_type(&key, BTRFS_INODE_ITEM_KEY);
 986	key.offset = 0;
 987	ret = btrfs_lookup_inode(trans, root, path, &key, 1);
 
 
 
 
 
 
 
 
 988	if (ret > 0) {
 989		btrfs_release_path(path);
 990		mutex_unlock(&node->mutex);
 991		return -ENOENT;
 992	} else if (ret < 0) {
 993		mutex_unlock(&node->mutex);
 994		return ret;
 995	}
 996
 997	btrfs_unlock_up_safe(path, 1);
 998	leaf = path->nodes[0];
 999	inode_item = btrfs_item_ptr(leaf, path->slots[0],
1000				    struct btrfs_inode_item);
1001	write_extent_buffer(leaf, &node->inode_item, (unsigned long)inode_item,
1002			    sizeof(struct btrfs_inode_item));
1003	btrfs_mark_buffer_dirty(leaf);
1004	btrfs_release_path(path);
1005
1006	btrfs_delayed_inode_release_metadata(root, node);
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1007	btrfs_release_delayed_inode(node);
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1008	mutex_unlock(&node->mutex);
 
 
1009
1010	return 0;
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1011}
1012
1013/* Called when committing the transaction. */
1014int btrfs_run_delayed_items(struct btrfs_trans_handle *trans,
1015			    struct btrfs_root *root)
 
 
 
 
1016{
 
1017	struct btrfs_delayed_root *delayed_root;
1018	struct btrfs_delayed_node *curr_node, *prev_node;
1019	struct btrfs_path *path;
1020	struct btrfs_block_rsv *block_rsv;
1021	int ret = 0;
 
 
 
 
1022
1023	path = btrfs_alloc_path();
1024	if (!path)
1025		return -ENOMEM;
1026	path->leave_spinning = 1;
1027
1028	block_rsv = trans->block_rsv;
1029	trans->block_rsv = &root->fs_info->global_block_rsv;
1030
1031	delayed_root = btrfs_get_delayed_root(root);
1032
1033	curr_node = btrfs_first_delayed_node(delayed_root);
1034	while (curr_node) {
1035		root = curr_node->root;
1036		ret = btrfs_insert_delayed_items(trans, path, root,
1037						 curr_node);
1038		if (!ret)
1039			ret = btrfs_delete_delayed_items(trans, path, root,
1040							 curr_node);
1041		if (!ret)
1042			ret = btrfs_update_delayed_inode(trans, root, path,
1043							 curr_node);
1044		if (ret) {
1045			btrfs_release_delayed_node(curr_node);
 
 
1046			break;
1047		}
1048
1049		prev_node = curr_node;
1050		curr_node = btrfs_next_delayed_node(curr_node);
1051		btrfs_release_delayed_node(prev_node);
1052	}
1053
 
 
1054	btrfs_free_path(path);
1055	trans->block_rsv = block_rsv;
 
1056	return ret;
1057}
1058
1059static int __btrfs_commit_inode_delayed_items(struct btrfs_trans_handle *trans,
1060					      struct btrfs_delayed_node *node)
1061{
 
 
 
 
 
 
 
 
 
 
 
 
1062	struct btrfs_path *path;
1063	struct btrfs_block_rsv *block_rsv;
1064	int ret;
1065
 
 
 
 
 
 
 
 
 
 
 
1066	path = btrfs_alloc_path();
1067	if (!path)
 
1068		return -ENOMEM;
 
1069	path->leave_spinning = 1;
1070
1071	block_rsv = trans->block_rsv;
1072	trans->block_rsv = &node->root->fs_info->global_block_rsv;
1073
1074	ret = btrfs_insert_delayed_items(trans, path, node->root, node);
1075	if (!ret)
1076		ret = btrfs_delete_delayed_items(trans, path, node->root, node);
1077	if (!ret)
1078		ret = btrfs_update_delayed_inode(trans, node->root, path, node);
1079	btrfs_free_path(path);
1080
 
 
1081	trans->block_rsv = block_rsv;
 
1082	return ret;
1083}
1084
1085int btrfs_commit_inode_delayed_items(struct btrfs_trans_handle *trans,
1086				     struct inode *inode)
1087{
 
 
1088	struct btrfs_delayed_node *delayed_node = btrfs_get_delayed_node(inode);
 
 
1089	int ret;
1090
1091	if (!delayed_node)
1092		return 0;
1093
1094	mutex_lock(&delayed_node->mutex);
1095	if (!delayed_node->count) {
1096		mutex_unlock(&delayed_node->mutex);
1097		btrfs_release_delayed_node(delayed_node);
1098		return 0;
1099	}
1100	mutex_unlock(&delayed_node->mutex);
1101
1102	ret = __btrfs_commit_inode_delayed_items(trans, delayed_node);
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1103	btrfs_release_delayed_node(delayed_node);
 
1104	return ret;
1105}
1106
1107void btrfs_remove_delayed_node(struct inode *inode)
1108{
1109	struct btrfs_delayed_node *delayed_node;
1110
1111	delayed_node = ACCESS_ONCE(BTRFS_I(inode)->delayed_node);
1112	if (!delayed_node)
1113		return;
1114
1115	BTRFS_I(inode)->delayed_node = NULL;
1116	btrfs_release_delayed_node(delayed_node);
1117}
1118
1119struct btrfs_async_delayed_node {
1120	struct btrfs_root *root;
1121	struct btrfs_delayed_node *delayed_node;
1122	struct btrfs_work work;
1123};
1124
1125static void btrfs_async_run_delayed_node_done(struct btrfs_work *work)
1126{
1127	struct btrfs_async_delayed_node *async_node;
 
1128	struct btrfs_trans_handle *trans;
1129	struct btrfs_path *path;
1130	struct btrfs_delayed_node *delayed_node = NULL;
1131	struct btrfs_root *root;
1132	struct btrfs_block_rsv *block_rsv;
1133	unsigned long nr = 0;
1134	int need_requeue = 0;
1135	int ret;
1136
1137	async_node = container_of(work, struct btrfs_async_delayed_node, work);
 
1138
1139	path = btrfs_alloc_path();
1140	if (!path)
1141		goto out;
1142	path->leave_spinning = 1;
1143
1144	delayed_node = async_node->delayed_node;
1145	root = delayed_node->root;
 
 
1146
1147	trans = btrfs_join_transaction(root);
1148	if (IS_ERR(trans))
1149		goto free_path;
1150
1151	block_rsv = trans->block_rsv;
1152	trans->block_rsv = &root->fs_info->global_block_rsv;
1153
1154	ret = btrfs_insert_delayed_items(trans, path, root, delayed_node);
1155	if (!ret)
1156		ret = btrfs_delete_delayed_items(trans, path, root,
1157						 delayed_node);
 
 
 
1158
1159	if (!ret)
1160		btrfs_update_delayed_inode(trans, root, path, delayed_node);
1161
1162	/*
1163	 * Maybe new delayed items have been inserted, so we need requeue
1164	 * the work. Besides that, we must dequeue the empty delayed nodes
1165	 * to avoid the race between delayed items balance and the worker.
1166	 * The race like this:
1167	 * 	Task1				Worker thread
1168	 * 					count == 0, needn't requeue
1169	 * 					  also needn't insert the
1170	 * 					  delayed node into prepare
1171	 * 					  list again.
1172	 * 	add lots of delayed items
1173	 * 	queue the delayed node
1174	 * 	  already in the list,
1175	 * 	  and not in the prepare
1176	 * 	  list, it means the delayed
1177	 * 	  node is being dealt with
1178	 * 	  by the worker.
1179	 * 	do delayed items balance
1180	 * 	  the delayed node is being
1181	 * 	  dealt with by the worker
1182	 * 	  now, just wait.
1183	 * 	  				the worker goto idle.
1184	 * Task1 will sleep until the transaction is commited.
1185	 */
1186	mutex_lock(&delayed_node->mutex);
1187	if (delayed_node->count)
1188		need_requeue = 1;
1189	else
1190		btrfs_dequeue_delayed_node(root->fs_info->delayed_root,
1191					   delayed_node);
1192	mutex_unlock(&delayed_node->mutex);
1193
1194	nr = trans->blocks_used;
 
 
 
 
 
 
 
 
 
1195
1196	trans->block_rsv = block_rsv;
1197	btrfs_end_transaction_dmeta(trans, root);
1198	__btrfs_btree_balance_dirty(root, nr);
1199free_path:
1200	btrfs_free_path(path);
1201out:
1202	if (need_requeue)
1203		btrfs_requeue_work(&async_node->work);
1204	else {
1205		btrfs_release_prepared_delayed_node(delayed_node);
1206		kfree(async_node);
1207	}
1208}
1209
 
1210static int btrfs_wq_run_delayed_node(struct btrfs_delayed_root *delayed_root,
1211				     struct btrfs_root *root, int all)
1212{
1213	struct btrfs_async_delayed_node *async_node;
1214	struct btrfs_delayed_node *curr;
1215	int count = 0;
1216
1217again:
1218	curr = btrfs_first_prepared_delayed_node(delayed_root);
1219	if (!curr)
1220		return 0;
1221
1222	async_node = kmalloc(sizeof(*async_node), GFP_NOFS);
1223	if (!async_node) {
1224		btrfs_release_prepared_delayed_node(curr);
1225		return -ENOMEM;
1226	}
1227
1228	async_node->root = root;
1229	async_node->delayed_node = curr;
1230
1231	async_node->work.func = btrfs_async_run_delayed_node_done;
1232	async_node->work.flags = 0;
1233
1234	btrfs_queue_worker(&root->fs_info->delayed_workers, &async_node->work);
1235	count++;
1236
1237	if (all || count < 4)
1238		goto again;
1239
 
1240	return 0;
1241}
1242
1243void btrfs_assert_delayed_root_empty(struct btrfs_root *root)
1244{
1245	struct btrfs_delayed_root *delayed_root;
1246	delayed_root = btrfs_get_delayed_root(root);
1247	WARN_ON(btrfs_first_delayed_node(delayed_root));
1248}
1249
1250void btrfs_balance_delayed_items(struct btrfs_root *root)
1251{
1252	struct btrfs_delayed_root *delayed_root;
1253
1254	delayed_root = btrfs_get_delayed_root(root);
 
1255
1256	if (atomic_read(&delayed_root->items) < BTRFS_DELAYED_BACKGROUND)
 
 
 
 
 
 
 
 
 
 
 
1257		return;
1258
1259	if (atomic_read(&delayed_root->items) >= BTRFS_DELAYED_WRITEBACK) {
 
1260		int ret;
1261		ret = btrfs_wq_run_delayed_node(delayed_root, root, 1);
 
 
 
1262		if (ret)
1263			return;
1264
1265		wait_event_interruptible_timeout(
1266				delayed_root->wait,
1267				(atomic_read(&delayed_root->items) <
1268				 BTRFS_DELAYED_BACKGROUND),
1269				HZ);
1270		return;
1271	}
1272
1273	btrfs_wq_run_delayed_node(delayed_root, root, 0);
1274}
1275
 
1276int btrfs_insert_delayed_dir_index(struct btrfs_trans_handle *trans,
1277				   struct btrfs_root *root, const char *name,
1278				   int name_len, struct inode *dir,
1279				   struct btrfs_disk_key *disk_key, u8 type,
1280				   u64 index)
1281{
1282	struct btrfs_delayed_node *delayed_node;
1283	struct btrfs_delayed_item *delayed_item;
1284	struct btrfs_dir_item *dir_item;
1285	int ret;
1286
1287	delayed_node = btrfs_get_or_create_delayed_node(dir);
1288	if (IS_ERR(delayed_node))
1289		return PTR_ERR(delayed_node);
1290
1291	delayed_item = btrfs_alloc_delayed_item(sizeof(*dir_item) + name_len);
1292	if (!delayed_item) {
1293		ret = -ENOMEM;
1294		goto release_node;
1295	}
1296
1297	ret = btrfs_delayed_item_reserve_metadata(trans, root, delayed_item);
1298	/*
1299	 * we have reserved enough space when we start a new transaction,
1300	 * so reserving metadata failure is impossible
1301	 */
1302	BUG_ON(ret);
1303
1304	delayed_item->key.objectid = btrfs_ino(dir);
1305	btrfs_set_key_type(&delayed_item->key, BTRFS_DIR_INDEX_KEY);
1306	delayed_item->key.offset = index;
1307
1308	dir_item = (struct btrfs_dir_item *)delayed_item->data;
1309	dir_item->location = *disk_key;
1310	dir_item->transid = cpu_to_le64(trans->transid);
1311	dir_item->data_len = 0;
1312	dir_item->name_len = cpu_to_le16(name_len);
1313	dir_item->type = type;
1314	memcpy((char *)(dir_item + 1), name, name_len);
1315
 
 
 
 
 
 
 
1316	mutex_lock(&delayed_node->mutex);
1317	ret = __btrfs_add_delayed_insertion_item(delayed_node, delayed_item);
1318	if (unlikely(ret)) {
1319		printk(KERN_ERR "err add delayed dir index item(name: %s) into "
1320				"the insertion tree of the delayed node"
1321				"(root id: %llu, inode id: %llu, errno: %d)\n",
1322				name,
1323				(unsigned long long)delayed_node->root->objectid,
1324				(unsigned long long)delayed_node->inode_id,
1325				ret);
1326		BUG();
1327	}
1328	mutex_unlock(&delayed_node->mutex);
1329
1330release_node:
1331	btrfs_release_delayed_node(delayed_node);
1332	return ret;
1333}
1334
1335static int btrfs_delete_delayed_insertion_item(struct btrfs_root *root,
1336					       struct btrfs_delayed_node *node,
1337					       struct btrfs_key *key)
1338{
1339	struct btrfs_delayed_item *item;
1340
1341	mutex_lock(&node->mutex);
1342	item = __btrfs_lookup_delayed_insertion_item(node, key);
1343	if (!item) {
1344		mutex_unlock(&node->mutex);
1345		return 1;
1346	}
1347
1348	btrfs_delayed_item_release_metadata(root, item);
1349	btrfs_release_delayed_item(item);
1350	mutex_unlock(&node->mutex);
1351	return 0;
1352}
1353
1354int btrfs_delete_delayed_dir_index(struct btrfs_trans_handle *trans,
1355				   struct btrfs_root *root, struct inode *dir,
1356				   u64 index)
1357{
1358	struct btrfs_delayed_node *node;
1359	struct btrfs_delayed_item *item;
1360	struct btrfs_key item_key;
1361	int ret;
1362
1363	node = btrfs_get_or_create_delayed_node(dir);
1364	if (IS_ERR(node))
1365		return PTR_ERR(node);
1366
1367	item_key.objectid = btrfs_ino(dir);
1368	btrfs_set_key_type(&item_key, BTRFS_DIR_INDEX_KEY);
1369	item_key.offset = index;
1370
1371	ret = btrfs_delete_delayed_insertion_item(root, node, &item_key);
 
1372	if (!ret)
1373		goto end;
1374
1375	item = btrfs_alloc_delayed_item(0);
1376	if (!item) {
1377		ret = -ENOMEM;
1378		goto end;
1379	}
1380
1381	item->key = item_key;
1382
1383	ret = btrfs_delayed_item_reserve_metadata(trans, root, item);
1384	/*
1385	 * we have reserved enough space when we start a new transaction,
1386	 * so reserving metadata failure is impossible.
1387	 */
1388	BUG_ON(ret);
 
 
 
 
 
1389
1390	mutex_lock(&node->mutex);
1391	ret = __btrfs_add_delayed_deletion_item(node, item);
1392	if (unlikely(ret)) {
1393		printk(KERN_ERR "err add delayed dir index item(index: %llu) "
1394				"into the deletion tree of the delayed node"
1395				"(root id: %llu, inode id: %llu, errno: %d)\n",
1396				(unsigned long long)index,
1397				(unsigned long long)node->root->objectid,
1398				(unsigned long long)node->inode_id,
1399				ret);
1400		BUG();
1401	}
1402	mutex_unlock(&node->mutex);
1403end:
1404	btrfs_release_delayed_node(node);
1405	return ret;
1406}
1407
1408int btrfs_inode_delayed_dir_index_count(struct inode *inode)
1409{
1410	struct btrfs_delayed_node *delayed_node = btrfs_get_delayed_node(inode);
1411
1412	if (!delayed_node)
1413		return -ENOENT;
1414
1415	/*
1416	 * Since we have held i_mutex of this directory, it is impossible that
1417	 * a new directory index is added into the delayed node and index_cnt
1418	 * is updated now. So we needn't lock the delayed node.
1419	 */
1420	if (!delayed_node->index_cnt) {
1421		btrfs_release_delayed_node(delayed_node);
1422		return -EINVAL;
1423	}
1424
1425	BTRFS_I(inode)->index_cnt = delayed_node->index_cnt;
1426	btrfs_release_delayed_node(delayed_node);
1427	return 0;
1428}
1429
1430void btrfs_get_delayed_items(struct inode *inode, struct list_head *ins_list,
1431			     struct list_head *del_list)
 
1432{
1433	struct btrfs_delayed_node *delayed_node;
1434	struct btrfs_delayed_item *item;
1435
1436	delayed_node = btrfs_get_delayed_node(inode);
1437	if (!delayed_node)
1438		return;
 
 
 
 
 
 
 
1439
1440	mutex_lock(&delayed_node->mutex);
1441	item = __btrfs_first_delayed_insertion_item(delayed_node);
1442	while (item) {
1443		atomic_inc(&item->refs);
1444		list_add_tail(&item->readdir_list, ins_list);
1445		item = __btrfs_next_delayed_item(item);
1446	}
1447
1448	item = __btrfs_first_delayed_deletion_item(delayed_node);
1449	while (item) {
1450		atomic_inc(&item->refs);
1451		list_add_tail(&item->readdir_list, del_list);
1452		item = __btrfs_next_delayed_item(item);
1453	}
1454	mutex_unlock(&delayed_node->mutex);
1455	/*
1456	 * This delayed node is still cached in the btrfs inode, so refs
1457	 * must be > 1 now, and we needn't check it is going to be freed
1458	 * or not.
1459	 *
1460	 * Besides that, this function is used to read dir, we do not
1461	 * insert/delete delayed items in this period. So we also needn't
1462	 * requeue or dequeue this delayed node.
1463	 */
1464	atomic_dec(&delayed_node->refs);
 
 
1465}
1466
1467void btrfs_put_delayed_items(struct list_head *ins_list,
1468			     struct list_head *del_list)
 
1469{
1470	struct btrfs_delayed_item *curr, *next;
1471
1472	list_for_each_entry_safe(curr, next, ins_list, readdir_list) {
1473		list_del(&curr->readdir_list);
1474		if (atomic_dec_and_test(&curr->refs))
1475			kfree(curr);
1476	}
1477
1478	list_for_each_entry_safe(curr, next, del_list, readdir_list) {
1479		list_del(&curr->readdir_list);
1480		if (atomic_dec_and_test(&curr->refs))
1481			kfree(curr);
1482	}
 
 
 
 
 
 
1483}
1484
1485int btrfs_should_delete_dir_index(struct list_head *del_list,
1486				  u64 index)
1487{
1488	struct btrfs_delayed_item *curr, *next;
1489	int ret;
1490
1491	if (list_empty(del_list))
1492		return 0;
1493
1494	list_for_each_entry_safe(curr, next, del_list, readdir_list) {
1495		if (curr->key.offset > index)
1496			break;
1497
1498		list_del(&curr->readdir_list);
1499		ret = (curr->key.offset == index);
1500
1501		if (atomic_dec_and_test(&curr->refs))
1502			kfree(curr);
1503
1504		if (ret)
1505			return 1;
1506		else
1507			continue;
1508	}
1509	return 0;
1510}
1511
1512/*
1513 * btrfs_readdir_delayed_dir_index - read dir info stored in the delayed tree
1514 *
1515 */
1516int btrfs_readdir_delayed_dir_index(struct file *filp, void *dirent,
1517				    filldir_t filldir,
1518				    struct list_head *ins_list)
1519{
1520	struct btrfs_dir_item *di;
1521	struct btrfs_delayed_item *curr, *next;
1522	struct btrfs_key location;
1523	char *name;
1524	int name_len;
1525	int over = 0;
1526	unsigned char d_type;
1527
1528	if (list_empty(ins_list))
1529		return 0;
1530
1531	/*
1532	 * Changing the data of the delayed item is impossible. So
1533	 * we needn't lock them. And we have held i_mutex of the
1534	 * directory, nobody can delete any directory indexes now.
1535	 */
1536	list_for_each_entry_safe(curr, next, ins_list, readdir_list) {
1537		list_del(&curr->readdir_list);
1538
1539		if (curr->key.offset < filp->f_pos) {
1540			if (atomic_dec_and_test(&curr->refs))
1541				kfree(curr);
1542			continue;
1543		}
1544
1545		filp->f_pos = curr->key.offset;
1546
1547		di = (struct btrfs_dir_item *)curr->data;
1548		name = (char *)(di + 1);
1549		name_len = le16_to_cpu(di->name_len);
1550
1551		d_type = btrfs_filetype_table[di->type];
1552		btrfs_disk_key_to_cpu(&location, &di->location);
1553
1554		over = filldir(dirent, name, name_len, curr->key.offset,
1555			       location.objectid, d_type);
1556
1557		if (atomic_dec_and_test(&curr->refs))
1558			kfree(curr);
1559
1560		if (over)
1561			return 1;
 
1562	}
1563	return 0;
1564}
1565
1566BTRFS_SETGET_STACK_FUNCS(stack_inode_generation, struct btrfs_inode_item,
1567			 generation, 64);
1568BTRFS_SETGET_STACK_FUNCS(stack_inode_sequence, struct btrfs_inode_item,
1569			 sequence, 64);
1570BTRFS_SETGET_STACK_FUNCS(stack_inode_transid, struct btrfs_inode_item,
1571			 transid, 64);
1572BTRFS_SETGET_STACK_FUNCS(stack_inode_size, struct btrfs_inode_item, size, 64);
1573BTRFS_SETGET_STACK_FUNCS(stack_inode_nbytes, struct btrfs_inode_item,
1574			 nbytes, 64);
1575BTRFS_SETGET_STACK_FUNCS(stack_inode_block_group, struct btrfs_inode_item,
1576			 block_group, 64);
1577BTRFS_SETGET_STACK_FUNCS(stack_inode_nlink, struct btrfs_inode_item, nlink, 32);
1578BTRFS_SETGET_STACK_FUNCS(stack_inode_uid, struct btrfs_inode_item, uid, 32);
1579BTRFS_SETGET_STACK_FUNCS(stack_inode_gid, struct btrfs_inode_item, gid, 32);
1580BTRFS_SETGET_STACK_FUNCS(stack_inode_mode, struct btrfs_inode_item, mode, 32);
1581BTRFS_SETGET_STACK_FUNCS(stack_inode_rdev, struct btrfs_inode_item, rdev, 64);
1582BTRFS_SETGET_STACK_FUNCS(stack_inode_flags, struct btrfs_inode_item, flags, 64);
1583
1584BTRFS_SETGET_STACK_FUNCS(stack_timespec_sec, struct btrfs_timespec, sec, 64);
1585BTRFS_SETGET_STACK_FUNCS(stack_timespec_nsec, struct btrfs_timespec, nsec, 32);
1586
1587static void fill_stack_inode_item(struct btrfs_trans_handle *trans,
1588				  struct btrfs_inode_item *inode_item,
1589				  struct inode *inode)
1590{
1591	btrfs_set_stack_inode_uid(inode_item, inode->i_uid);
1592	btrfs_set_stack_inode_gid(inode_item, inode->i_gid);
1593	btrfs_set_stack_inode_size(inode_item, BTRFS_I(inode)->disk_i_size);
1594	btrfs_set_stack_inode_mode(inode_item, inode->i_mode);
1595	btrfs_set_stack_inode_nlink(inode_item, inode->i_nlink);
1596	btrfs_set_stack_inode_nbytes(inode_item, inode_get_bytes(inode));
1597	btrfs_set_stack_inode_generation(inode_item,
1598					 BTRFS_I(inode)->generation);
1599	btrfs_set_stack_inode_sequence(inode_item, BTRFS_I(inode)->sequence);
 
1600	btrfs_set_stack_inode_transid(inode_item, trans->transid);
1601	btrfs_set_stack_inode_rdev(inode_item, inode->i_rdev);
1602	btrfs_set_stack_inode_flags(inode_item, BTRFS_I(inode)->flags);
1603	btrfs_set_stack_inode_block_group(inode_item, 0);
1604
1605	btrfs_set_stack_timespec_sec(btrfs_inode_atime(inode_item),
1606				     inode->i_atime.tv_sec);
1607	btrfs_set_stack_timespec_nsec(btrfs_inode_atime(inode_item),
1608				      inode->i_atime.tv_nsec);
1609
1610	btrfs_set_stack_timespec_sec(btrfs_inode_mtime(inode_item),
1611				     inode->i_mtime.tv_sec);
1612	btrfs_set_stack_timespec_nsec(btrfs_inode_mtime(inode_item),
1613				      inode->i_mtime.tv_nsec);
1614
1615	btrfs_set_stack_timespec_sec(btrfs_inode_ctime(inode_item),
1616				     inode->i_ctime.tv_sec);
1617	btrfs_set_stack_timespec_nsec(btrfs_inode_ctime(inode_item),
1618				      inode->i_ctime.tv_nsec);
 
 
 
 
 
1619}
1620
1621int btrfs_fill_inode(struct inode *inode, u32 *rdev)
1622{
 
1623	struct btrfs_delayed_node *delayed_node;
1624	struct btrfs_inode_item *inode_item;
1625	struct btrfs_timespec *tspec;
1626
1627	delayed_node = btrfs_get_delayed_node(inode);
1628	if (!delayed_node)
1629		return -ENOENT;
1630
1631	mutex_lock(&delayed_node->mutex);
1632	if (!delayed_node->inode_dirty) {
1633		mutex_unlock(&delayed_node->mutex);
1634		btrfs_release_delayed_node(delayed_node);
1635		return -ENOENT;
1636	}
1637
1638	inode_item = &delayed_node->inode_item;
1639
1640	inode->i_uid = btrfs_stack_inode_uid(inode_item);
1641	inode->i_gid = btrfs_stack_inode_gid(inode_item);
1642	btrfs_i_size_write(inode, btrfs_stack_inode_size(inode_item));
 
 
1643	inode->i_mode = btrfs_stack_inode_mode(inode_item);
1644	inode->i_nlink = btrfs_stack_inode_nlink(inode_item);
1645	inode_set_bytes(inode, btrfs_stack_inode_nbytes(inode_item));
1646	BTRFS_I(inode)->generation = btrfs_stack_inode_generation(inode_item);
1647	BTRFS_I(inode)->sequence = btrfs_stack_inode_sequence(inode_item);
 
 
 
1648	inode->i_rdev = 0;
1649	*rdev = btrfs_stack_inode_rdev(inode_item);
1650	BTRFS_I(inode)->flags = btrfs_stack_inode_flags(inode_item);
1651
1652	tspec = btrfs_inode_atime(inode_item);
1653	inode->i_atime.tv_sec = btrfs_stack_timespec_sec(tspec);
1654	inode->i_atime.tv_nsec = btrfs_stack_timespec_nsec(tspec);
1655
1656	tspec = btrfs_inode_mtime(inode_item);
1657	inode->i_mtime.tv_sec = btrfs_stack_timespec_sec(tspec);
1658	inode->i_mtime.tv_nsec = btrfs_stack_timespec_nsec(tspec);
1659
1660	tspec = btrfs_inode_ctime(inode_item);
1661	inode->i_ctime.tv_sec = btrfs_stack_timespec_sec(tspec);
1662	inode->i_ctime.tv_nsec = btrfs_stack_timespec_nsec(tspec);
 
 
1663
1664	inode->i_generation = BTRFS_I(inode)->generation;
1665	BTRFS_I(inode)->index_cnt = (u64)-1;
1666
1667	mutex_unlock(&delayed_node->mutex);
1668	btrfs_release_delayed_node(delayed_node);
1669	return 0;
1670}
1671
1672int btrfs_delayed_update_inode(struct btrfs_trans_handle *trans,
1673			       struct btrfs_root *root, struct inode *inode)
1674{
1675	struct btrfs_delayed_node *delayed_node;
1676	int ret = 0;
1677
1678	delayed_node = btrfs_get_or_create_delayed_node(inode);
1679	if (IS_ERR(delayed_node))
1680		return PTR_ERR(delayed_node);
1681
1682	mutex_lock(&delayed_node->mutex);
1683	if (delayed_node->inode_dirty) {
1684		fill_stack_inode_item(trans, &delayed_node->inode_item, inode);
1685		goto release_node;
1686	}
1687
1688	ret = btrfs_delayed_inode_reserve_metadata(trans, root, delayed_node);
1689	/*
1690	 * we must reserve enough space when we start a new transaction,
1691	 * so reserving metadata failure is impossible
1692	 */
1693	BUG_ON(ret);
1694
1695	fill_stack_inode_item(trans, &delayed_node->inode_item, inode);
1696	delayed_node->inode_dirty = 1;
1697	delayed_node->count++;
1698	atomic_inc(&root->fs_info->delayed_root->items);
1699release_node:
1700	mutex_unlock(&delayed_node->mutex);
1701	btrfs_release_delayed_node(delayed_node);
1702	return ret;
1703}
1704
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1705static void __btrfs_kill_delayed_node(struct btrfs_delayed_node *delayed_node)
1706{
1707	struct btrfs_root *root = delayed_node->root;
 
1708	struct btrfs_delayed_item *curr_item, *prev_item;
1709
1710	mutex_lock(&delayed_node->mutex);
1711	curr_item = __btrfs_first_delayed_insertion_item(delayed_node);
1712	while (curr_item) {
1713		btrfs_delayed_item_release_metadata(root, curr_item);
1714		prev_item = curr_item;
1715		curr_item = __btrfs_next_delayed_item(prev_item);
1716		btrfs_release_delayed_item(prev_item);
1717	}
1718
1719	curr_item = __btrfs_first_delayed_deletion_item(delayed_node);
1720	while (curr_item) {
1721		btrfs_delayed_item_release_metadata(root, curr_item);
1722		prev_item = curr_item;
1723		curr_item = __btrfs_next_delayed_item(prev_item);
1724		btrfs_release_delayed_item(prev_item);
1725	}
1726
1727	if (delayed_node->inode_dirty) {
1728		btrfs_delayed_inode_release_metadata(root, delayed_node);
 
 
 
1729		btrfs_release_delayed_inode(delayed_node);
1730	}
1731	mutex_unlock(&delayed_node->mutex);
1732}
1733
1734void btrfs_kill_delayed_inode_items(struct inode *inode)
1735{
1736	struct btrfs_delayed_node *delayed_node;
1737
1738	delayed_node = btrfs_get_delayed_node(inode);
1739	if (!delayed_node)
1740		return;
1741
1742	__btrfs_kill_delayed_node(delayed_node);
1743	btrfs_release_delayed_node(delayed_node);
1744}
1745
1746void btrfs_kill_all_delayed_nodes(struct btrfs_root *root)
1747{
1748	u64 inode_id = 0;
1749	struct btrfs_delayed_node *delayed_nodes[8];
1750	int i, n;
1751
1752	while (1) {
1753		spin_lock(&root->inode_lock);
1754		n = radix_tree_gang_lookup(&root->delayed_nodes_tree,
1755					   (void **)delayed_nodes, inode_id,
1756					   ARRAY_SIZE(delayed_nodes));
1757		if (!n) {
1758			spin_unlock(&root->inode_lock);
1759			break;
1760		}
1761
1762		inode_id = delayed_nodes[n - 1]->inode_id + 1;
1763
1764		for (i = 0; i < n; i++)
1765			atomic_inc(&delayed_nodes[i]->refs);
 
 
 
 
 
1766		spin_unlock(&root->inode_lock);
1767
1768		for (i = 0; i < n; i++) {
 
 
1769			__btrfs_kill_delayed_node(delayed_nodes[i]);
1770			btrfs_release_delayed_node(delayed_nodes[i]);
1771		}
1772	}
1773}
v5.9
   1// SPDX-License-Identifier: GPL-2.0
   2/*
   3 * Copyright (C) 2011 Fujitsu.  All rights reserved.
   4 * Written by Miao Xie <miaox@cn.fujitsu.com>
 
 
 
 
 
 
 
 
 
 
 
 
 
 
   5 */
   6
   7#include <linux/slab.h>
   8#include <linux/iversion.h>
   9#include <linux/sched/mm.h>
  10#include "misc.h"
  11#include "delayed-inode.h"
  12#include "disk-io.h"
  13#include "transaction.h"
  14#include "ctree.h"
  15#include "qgroup.h"
  16#include "locking.h"
  17
  18#define BTRFS_DELAYED_WRITEBACK		512
  19#define BTRFS_DELAYED_BACKGROUND	128
  20#define BTRFS_DELAYED_BATCH		16
  21
  22static struct kmem_cache *delayed_node_cache;
  23
  24int __init btrfs_delayed_inode_init(void)
  25{
  26	delayed_node_cache = kmem_cache_create("btrfs_delayed_node",
  27					sizeof(struct btrfs_delayed_node),
  28					0,
  29					SLAB_MEM_SPREAD,
  30					NULL);
  31	if (!delayed_node_cache)
  32		return -ENOMEM;
  33	return 0;
  34}
  35
  36void __cold btrfs_delayed_inode_exit(void)
  37{
  38	kmem_cache_destroy(delayed_node_cache);
 
  39}
  40
  41static inline void btrfs_init_delayed_node(
  42				struct btrfs_delayed_node *delayed_node,
  43				struct btrfs_root *root, u64 inode_id)
  44{
  45	delayed_node->root = root;
  46	delayed_node->inode_id = inode_id;
  47	refcount_set(&delayed_node->refs, 0);
  48	delayed_node->ins_root = RB_ROOT_CACHED;
  49	delayed_node->del_root = RB_ROOT_CACHED;
 
 
 
  50	mutex_init(&delayed_node->mutex);
 
  51	INIT_LIST_HEAD(&delayed_node->n_list);
  52	INIT_LIST_HEAD(&delayed_node->p_list);
 
  53}
  54
  55static inline int btrfs_is_continuous_delayed_item(
  56					struct btrfs_delayed_item *item1,
  57					struct btrfs_delayed_item *item2)
  58{
  59	if (item1->key.type == BTRFS_DIR_INDEX_KEY &&
  60	    item1->key.objectid == item2->key.objectid &&
  61	    item1->key.type == item2->key.type &&
  62	    item1->key.offset + 1 == item2->key.offset)
  63		return 1;
  64	return 0;
  65}
  66
  67static struct btrfs_delayed_node *btrfs_get_delayed_node(
  68		struct btrfs_inode *btrfs_inode)
 
 
 
 
 
  69{
 
  70	struct btrfs_root *root = btrfs_inode->root;
  71	u64 ino = btrfs_ino(btrfs_inode);
  72	struct btrfs_delayed_node *node;
  73
  74	node = READ_ONCE(btrfs_inode->delayed_node);
  75	if (node) {
  76		refcount_inc(&node->refs);
  77		return node;
  78	}
  79
  80	spin_lock(&root->inode_lock);
  81	node = radix_tree_lookup(&root->delayed_nodes_tree, ino);
  82
  83	if (node) {
  84		if (btrfs_inode->delayed_node) {
  85			refcount_inc(&node->refs);	/* can be accessed */
  86			BUG_ON(btrfs_inode->delayed_node != node);
  87			spin_unlock(&root->inode_lock);
  88			return node;
  89		}
  90
  91		/*
  92		 * It's possible that we're racing into the middle of removing
  93		 * this node from the radix tree.  In this case, the refcount
  94		 * was zero and it should never go back to one.  Just return
  95		 * NULL like it was never in the radix at all; our release
  96		 * function is in the process of removing it.
  97		 *
  98		 * Some implementations of refcount_inc refuse to bump the
  99		 * refcount once it has hit zero.  If we don't do this dance
 100		 * here, refcount_inc() may decide to just WARN_ONCE() instead
 101		 * of actually bumping the refcount.
 102		 *
 103		 * If this node is properly in the radix, we want to bump the
 104		 * refcount twice, once for the inode and once for this get
 105		 * operation.
 106		 */
 107		if (refcount_inc_not_zero(&node->refs)) {
 108			refcount_inc(&node->refs);
 109			btrfs_inode->delayed_node = node;
 110		} else {
 111			node = NULL;
 112		}
 113
 114		spin_unlock(&root->inode_lock);
 115		return node;
 116	}
 117	spin_unlock(&root->inode_lock);
 118
 119	return NULL;
 120}
 121
 122/* Will return either the node or PTR_ERR(-ENOMEM) */
 123static struct btrfs_delayed_node *btrfs_get_or_create_delayed_node(
 124		struct btrfs_inode *btrfs_inode)
 125{
 126	struct btrfs_delayed_node *node;
 
 127	struct btrfs_root *root = btrfs_inode->root;
 128	u64 ino = btrfs_ino(btrfs_inode);
 129	int ret;
 130
 131again:
 132	node = btrfs_get_delayed_node(btrfs_inode);
 133	if (node)
 134		return node;
 135
 136	node = kmem_cache_zalloc(delayed_node_cache, GFP_NOFS);
 137	if (!node)
 138		return ERR_PTR(-ENOMEM);
 139	btrfs_init_delayed_node(node, root, ino);
 140
 141	/* cached in the btrfs inode and can be accessed */
 142	refcount_set(&node->refs, 2);
 143
 144	ret = radix_tree_preload(GFP_NOFS);
 145	if (ret) {
 146		kmem_cache_free(delayed_node_cache, node);
 147		return ERR_PTR(ret);
 148	}
 149
 150	spin_lock(&root->inode_lock);
 151	ret = radix_tree_insert(&root->delayed_nodes_tree, ino, node);
 152	if (ret == -EEXIST) {
 
 153		spin_unlock(&root->inode_lock);
 154		kmem_cache_free(delayed_node_cache, node);
 155		radix_tree_preload_end();
 156		goto again;
 157	}
 158	btrfs_inode->delayed_node = node;
 159	spin_unlock(&root->inode_lock);
 160	radix_tree_preload_end();
 161
 162	return node;
 163}
 164
 165/*
 166 * Call it when holding delayed_node->mutex
 167 *
 168 * If mod = 1, add this node into the prepared list.
 169 */
 170static void btrfs_queue_delayed_node(struct btrfs_delayed_root *root,
 171				     struct btrfs_delayed_node *node,
 172				     int mod)
 173{
 174	spin_lock(&root->lock);
 175	if (test_bit(BTRFS_DELAYED_NODE_IN_LIST, &node->flags)) {
 176		if (!list_empty(&node->p_list))
 177			list_move_tail(&node->p_list, &root->prepare_list);
 178		else if (mod)
 179			list_add_tail(&node->p_list, &root->prepare_list);
 180	} else {
 181		list_add_tail(&node->n_list, &root->node_list);
 182		list_add_tail(&node->p_list, &root->prepare_list);
 183		refcount_inc(&node->refs);	/* inserted into list */
 184		root->nodes++;
 185		set_bit(BTRFS_DELAYED_NODE_IN_LIST, &node->flags);
 186	}
 187	spin_unlock(&root->lock);
 188}
 189
 190/* Call it when holding delayed_node->mutex */
 191static void btrfs_dequeue_delayed_node(struct btrfs_delayed_root *root,
 192				       struct btrfs_delayed_node *node)
 193{
 194	spin_lock(&root->lock);
 195	if (test_bit(BTRFS_DELAYED_NODE_IN_LIST, &node->flags)) {
 196		root->nodes--;
 197		refcount_dec(&node->refs);	/* not in the list */
 198		list_del_init(&node->n_list);
 199		if (!list_empty(&node->p_list))
 200			list_del_init(&node->p_list);
 201		clear_bit(BTRFS_DELAYED_NODE_IN_LIST, &node->flags);
 202	}
 203	spin_unlock(&root->lock);
 204}
 205
 206static struct btrfs_delayed_node *btrfs_first_delayed_node(
 207			struct btrfs_delayed_root *delayed_root)
 208{
 209	struct list_head *p;
 210	struct btrfs_delayed_node *node = NULL;
 211
 212	spin_lock(&delayed_root->lock);
 213	if (list_empty(&delayed_root->node_list))
 214		goto out;
 215
 216	p = delayed_root->node_list.next;
 217	node = list_entry(p, struct btrfs_delayed_node, n_list);
 218	refcount_inc(&node->refs);
 219out:
 220	spin_unlock(&delayed_root->lock);
 221
 222	return node;
 223}
 224
 225static struct btrfs_delayed_node *btrfs_next_delayed_node(
 226						struct btrfs_delayed_node *node)
 227{
 228	struct btrfs_delayed_root *delayed_root;
 229	struct list_head *p;
 230	struct btrfs_delayed_node *next = NULL;
 231
 232	delayed_root = node->root->fs_info->delayed_root;
 233	spin_lock(&delayed_root->lock);
 234	if (!test_bit(BTRFS_DELAYED_NODE_IN_LIST, &node->flags)) {
 235		/* not in the list */
 236		if (list_empty(&delayed_root->node_list))
 237			goto out;
 238		p = delayed_root->node_list.next;
 239	} else if (list_is_last(&node->n_list, &delayed_root->node_list))
 240		goto out;
 241	else
 242		p = node->n_list.next;
 243
 244	next = list_entry(p, struct btrfs_delayed_node, n_list);
 245	refcount_inc(&next->refs);
 246out:
 247	spin_unlock(&delayed_root->lock);
 248
 249	return next;
 250}
 251
 252static void __btrfs_release_delayed_node(
 253				struct btrfs_delayed_node *delayed_node,
 254				int mod)
 255{
 256	struct btrfs_delayed_root *delayed_root;
 257
 258	if (!delayed_node)
 259		return;
 260
 261	delayed_root = delayed_node->root->fs_info->delayed_root;
 262
 263	mutex_lock(&delayed_node->mutex);
 264	if (delayed_node->count)
 265		btrfs_queue_delayed_node(delayed_root, delayed_node, mod);
 266	else
 267		btrfs_dequeue_delayed_node(delayed_root, delayed_node);
 268	mutex_unlock(&delayed_node->mutex);
 269
 270	if (refcount_dec_and_test(&delayed_node->refs)) {
 271		struct btrfs_root *root = delayed_node->root;
 272
 273		spin_lock(&root->inode_lock);
 274		/*
 275		 * Once our refcount goes to zero, nobody is allowed to bump it
 276		 * back up.  We can delete it now.
 277		 */
 278		ASSERT(refcount_read(&delayed_node->refs) == 0);
 279		radix_tree_delete(&root->delayed_nodes_tree,
 280				  delayed_node->inode_id);
 281		spin_unlock(&root->inode_lock);
 282		kmem_cache_free(delayed_node_cache, delayed_node);
 283	}
 284}
 285
 286static inline void btrfs_release_delayed_node(struct btrfs_delayed_node *node)
 287{
 288	__btrfs_release_delayed_node(node, 0);
 289}
 290
 291static struct btrfs_delayed_node *btrfs_first_prepared_delayed_node(
 292					struct btrfs_delayed_root *delayed_root)
 293{
 294	struct list_head *p;
 295	struct btrfs_delayed_node *node = NULL;
 296
 297	spin_lock(&delayed_root->lock);
 298	if (list_empty(&delayed_root->prepare_list))
 299		goto out;
 300
 301	p = delayed_root->prepare_list.next;
 302	list_del_init(p);
 303	node = list_entry(p, struct btrfs_delayed_node, p_list);
 304	refcount_inc(&node->refs);
 305out:
 306	spin_unlock(&delayed_root->lock);
 307
 308	return node;
 309}
 310
 311static inline void btrfs_release_prepared_delayed_node(
 312					struct btrfs_delayed_node *node)
 313{
 314	__btrfs_release_delayed_node(node, 1);
 315}
 316
 317static struct btrfs_delayed_item *btrfs_alloc_delayed_item(u32 data_len)
 318{
 319	struct btrfs_delayed_item *item;
 320	item = kmalloc(sizeof(*item) + data_len, GFP_NOFS);
 321	if (item) {
 322		item->data_len = data_len;
 323		item->ins_or_del = 0;
 324		item->bytes_reserved = 0;
 325		item->delayed_node = NULL;
 326		refcount_set(&item->refs, 1);
 327	}
 328	return item;
 329}
 330
 331/*
 332 * __btrfs_lookup_delayed_item - look up the delayed item by key
 333 * @delayed_node: pointer to the delayed node
 334 * @key:	  the key to look up
 335 * @prev:	  used to store the prev item if the right item isn't found
 336 * @next:	  used to store the next item if the right item isn't found
 337 *
 338 * Note: if we don't find the right item, we will return the prev item and
 339 * the next item.
 340 */
 341static struct btrfs_delayed_item *__btrfs_lookup_delayed_item(
 342				struct rb_root *root,
 343				struct btrfs_key *key,
 344				struct btrfs_delayed_item **prev,
 345				struct btrfs_delayed_item **next)
 346{
 347	struct rb_node *node, *prev_node = NULL;
 348	struct btrfs_delayed_item *delayed_item = NULL;
 349	int ret = 0;
 350
 351	node = root->rb_node;
 352
 353	while (node) {
 354		delayed_item = rb_entry(node, struct btrfs_delayed_item,
 355					rb_node);
 356		prev_node = node;
 357		ret = btrfs_comp_cpu_keys(&delayed_item->key, key);
 358		if (ret < 0)
 359			node = node->rb_right;
 360		else if (ret > 0)
 361			node = node->rb_left;
 362		else
 363			return delayed_item;
 364	}
 365
 366	if (prev) {
 367		if (!prev_node)
 368			*prev = NULL;
 369		else if (ret < 0)
 370			*prev = delayed_item;
 371		else if ((node = rb_prev(prev_node)) != NULL) {
 372			*prev = rb_entry(node, struct btrfs_delayed_item,
 373					 rb_node);
 374		} else
 375			*prev = NULL;
 376	}
 377
 378	if (next) {
 379		if (!prev_node)
 380			*next = NULL;
 381		else if (ret > 0)
 382			*next = delayed_item;
 383		else if ((node = rb_next(prev_node)) != NULL) {
 384			*next = rb_entry(node, struct btrfs_delayed_item,
 385					 rb_node);
 386		} else
 387			*next = NULL;
 388	}
 389	return NULL;
 390}
 391
 392static struct btrfs_delayed_item *__btrfs_lookup_delayed_insertion_item(
 
 
 
 
 
 
 
 
 
 
 
 393					struct btrfs_delayed_node *delayed_node,
 394					struct btrfs_key *key)
 395{
 396	return __btrfs_lookup_delayed_item(&delayed_node->ins_root.rb_root, key,
 
 
 397					   NULL, NULL);
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 398}
 399
 400static int __btrfs_add_delayed_item(struct btrfs_delayed_node *delayed_node,
 401				    struct btrfs_delayed_item *ins,
 402				    int action)
 403{
 404	struct rb_node **p, *node;
 405	struct rb_node *parent_node = NULL;
 406	struct rb_root_cached *root;
 407	struct btrfs_delayed_item *item;
 408	int cmp;
 409	bool leftmost = true;
 410
 411	if (action == BTRFS_DELAYED_INSERTION_ITEM)
 412		root = &delayed_node->ins_root;
 413	else if (action == BTRFS_DELAYED_DELETION_ITEM)
 414		root = &delayed_node->del_root;
 415	else
 416		BUG();
 417	p = &root->rb_root.rb_node;
 418	node = &ins->rb_node;
 419
 420	while (*p) {
 421		parent_node = *p;
 422		item = rb_entry(parent_node, struct btrfs_delayed_item,
 423				 rb_node);
 424
 425		cmp = btrfs_comp_cpu_keys(&item->key, &ins->key);
 426		if (cmp < 0) {
 427			p = &(*p)->rb_right;
 428			leftmost = false;
 429		} else if (cmp > 0) {
 430			p = &(*p)->rb_left;
 431		} else {
 432			return -EEXIST;
 433		}
 434	}
 435
 436	rb_link_node(node, parent_node, p);
 437	rb_insert_color_cached(node, root, leftmost);
 438	ins->delayed_node = delayed_node;
 439	ins->ins_or_del = action;
 440
 441	if (ins->key.type == BTRFS_DIR_INDEX_KEY &&
 442	    action == BTRFS_DELAYED_INSERTION_ITEM &&
 443	    ins->key.offset >= delayed_node->index_cnt)
 444			delayed_node->index_cnt = ins->key.offset + 1;
 445
 446	delayed_node->count++;
 447	atomic_inc(&delayed_node->root->fs_info->delayed_root->items);
 448	return 0;
 449}
 450
 451static int __btrfs_add_delayed_insertion_item(struct btrfs_delayed_node *node,
 452					      struct btrfs_delayed_item *item)
 453{
 454	return __btrfs_add_delayed_item(node, item,
 455					BTRFS_DELAYED_INSERTION_ITEM);
 456}
 457
 458static int __btrfs_add_delayed_deletion_item(struct btrfs_delayed_node *node,
 459					     struct btrfs_delayed_item *item)
 460{
 461	return __btrfs_add_delayed_item(node, item,
 462					BTRFS_DELAYED_DELETION_ITEM);
 463}
 464
 465static void finish_one_item(struct btrfs_delayed_root *delayed_root)
 466{
 467	int seq = atomic_inc_return(&delayed_root->items_seq);
 468
 469	/* atomic_dec_return implies a barrier */
 470	if ((atomic_dec_return(&delayed_root->items) <
 471	    BTRFS_DELAYED_BACKGROUND || seq % BTRFS_DELAYED_BATCH == 0))
 472		cond_wake_up_nomb(&delayed_root->wait);
 473}
 474
 475static void __btrfs_remove_delayed_item(struct btrfs_delayed_item *delayed_item)
 476{
 477	struct rb_root_cached *root;
 478	struct btrfs_delayed_root *delayed_root;
 479
 480	/* Not associated with any delayed_node */
 481	if (!delayed_item->delayed_node)
 482		return;
 483	delayed_root = delayed_item->delayed_node->root->fs_info->delayed_root;
 484
 485	BUG_ON(!delayed_root);
 486	BUG_ON(delayed_item->ins_or_del != BTRFS_DELAYED_DELETION_ITEM &&
 487	       delayed_item->ins_or_del != BTRFS_DELAYED_INSERTION_ITEM);
 488
 489	if (delayed_item->ins_or_del == BTRFS_DELAYED_INSERTION_ITEM)
 490		root = &delayed_item->delayed_node->ins_root;
 491	else
 492		root = &delayed_item->delayed_node->del_root;
 493
 494	rb_erase_cached(&delayed_item->rb_node, root);
 495	delayed_item->delayed_node->count--;
 496
 497	finish_one_item(delayed_root);
 
 
 498}
 499
 500static void btrfs_release_delayed_item(struct btrfs_delayed_item *item)
 501{
 502	if (item) {
 503		__btrfs_remove_delayed_item(item);
 504		if (refcount_dec_and_test(&item->refs))
 505			kfree(item);
 506	}
 507}
 508
 509static struct btrfs_delayed_item *__btrfs_first_delayed_insertion_item(
 510					struct btrfs_delayed_node *delayed_node)
 511{
 512	struct rb_node *p;
 513	struct btrfs_delayed_item *item = NULL;
 514
 515	p = rb_first_cached(&delayed_node->ins_root);
 516	if (p)
 517		item = rb_entry(p, struct btrfs_delayed_item, rb_node);
 518
 519	return item;
 520}
 521
 522static struct btrfs_delayed_item *__btrfs_first_delayed_deletion_item(
 523					struct btrfs_delayed_node *delayed_node)
 524{
 525	struct rb_node *p;
 526	struct btrfs_delayed_item *item = NULL;
 527
 528	p = rb_first_cached(&delayed_node->del_root);
 529	if (p)
 530		item = rb_entry(p, struct btrfs_delayed_item, rb_node);
 531
 532	return item;
 533}
 534
 535static struct btrfs_delayed_item *__btrfs_next_delayed_item(
 536						struct btrfs_delayed_item *item)
 537{
 538	struct rb_node *p;
 539	struct btrfs_delayed_item *next = NULL;
 540
 541	p = rb_next(&item->rb_node);
 542	if (p)
 543		next = rb_entry(p, struct btrfs_delayed_item, rb_node);
 544
 545	return next;
 546}
 547
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 548static int btrfs_delayed_item_reserve_metadata(struct btrfs_trans_handle *trans,
 549					       struct btrfs_root *root,
 550					       struct btrfs_delayed_item *item)
 551{
 552	struct btrfs_block_rsv *src_rsv;
 553	struct btrfs_block_rsv *dst_rsv;
 554	struct btrfs_fs_info *fs_info = root->fs_info;
 555	u64 num_bytes;
 556	int ret;
 557
 558	if (!trans->bytes_reserved)
 559		return 0;
 560
 561	src_rsv = trans->block_rsv;
 562	dst_rsv = &fs_info->delayed_block_rsv;
 563
 564	num_bytes = btrfs_calc_insert_metadata_size(fs_info, 1);
 565
 566	/*
 567	 * Here we migrate space rsv from transaction rsv, since have already
 568	 * reserved space when starting a transaction.  So no need to reserve
 569	 * qgroup space here.
 570	 */
 571	ret = btrfs_block_rsv_migrate(src_rsv, dst_rsv, num_bytes, true);
 572	if (!ret) {
 573		trace_btrfs_space_reservation(fs_info, "delayed_item",
 574					      item->key.objectid,
 575					      num_bytes, 1);
 576		item->bytes_reserved = num_bytes;
 577	}
 578
 579	return ret;
 580}
 581
 582static void btrfs_delayed_item_release_metadata(struct btrfs_root *root,
 583						struct btrfs_delayed_item *item)
 584{
 585	struct btrfs_block_rsv *rsv;
 586	struct btrfs_fs_info *fs_info = root->fs_info;
 587
 588	if (!item->bytes_reserved)
 589		return;
 590
 591	rsv = &fs_info->delayed_block_rsv;
 592	/*
 593	 * Check btrfs_delayed_item_reserve_metadata() to see why we don't need
 594	 * to release/reserve qgroup space.
 595	 */
 596	trace_btrfs_space_reservation(fs_info, "delayed_item",
 597				      item->key.objectid, item->bytes_reserved,
 598				      0);
 599	btrfs_block_rsv_release(fs_info, rsv, item->bytes_reserved, NULL);
 600}
 601
 602static int btrfs_delayed_inode_reserve_metadata(
 603					struct btrfs_trans_handle *trans,
 604					struct btrfs_root *root,
 605					struct btrfs_inode *inode,
 606					struct btrfs_delayed_node *node)
 607{
 608	struct btrfs_fs_info *fs_info = root->fs_info;
 609	struct btrfs_block_rsv *src_rsv;
 610	struct btrfs_block_rsv *dst_rsv;
 611	u64 num_bytes;
 612	int ret;
 613
 
 
 
 614	src_rsv = trans->block_rsv;
 615	dst_rsv = &fs_info->delayed_block_rsv;
 616
 617	num_bytes = btrfs_calc_metadata_size(fs_info, 1);
 618
 619	/*
 620	 * btrfs_dirty_inode will update the inode under btrfs_join_transaction
 621	 * which doesn't reserve space for speed.  This is a problem since we
 622	 * still need to reserve space for this update, so try to reserve the
 623	 * space.
 624	 *
 625	 * Now if src_rsv == delalloc_block_rsv we'll let it just steal since
 626	 * we always reserve enough to update the inode item.
 627	 */
 628	if (!src_rsv || (!trans->bytes_reserved &&
 629			 src_rsv->type != BTRFS_BLOCK_RSV_DELALLOC)) {
 630		ret = btrfs_qgroup_reserve_meta_prealloc(root,
 631				fs_info->nodesize, true);
 632		if (ret < 0)
 633			return ret;
 634		ret = btrfs_block_rsv_add(root, dst_rsv, num_bytes,
 635					  BTRFS_RESERVE_NO_FLUSH);
 636		/*
 637		 * Since we're under a transaction reserve_metadata_bytes could
 638		 * try to commit the transaction which will make it return
 639		 * EAGAIN to make us stop the transaction we have, so return
 640		 * ENOSPC instead so that btrfs_dirty_inode knows what to do.
 641		 */
 642		if (ret == -EAGAIN) {
 643			ret = -ENOSPC;
 644			btrfs_qgroup_free_meta_prealloc(root, num_bytes);
 645		}
 646		if (!ret) {
 647			node->bytes_reserved = num_bytes;
 648			trace_btrfs_space_reservation(fs_info,
 649						      "delayed_inode",
 650						      btrfs_ino(inode),
 651						      num_bytes, 1);
 652		} else {
 653			btrfs_qgroup_free_meta_prealloc(root, fs_info->nodesize);
 654		}
 655		return ret;
 656	}
 657
 658	ret = btrfs_block_rsv_migrate(src_rsv, dst_rsv, num_bytes, true);
 659	if (!ret) {
 660		trace_btrfs_space_reservation(fs_info, "delayed_inode",
 661					      btrfs_ino(inode), num_bytes, 1);
 662		node->bytes_reserved = num_bytes;
 663	}
 664
 665	return ret;
 666}
 667
 668static void btrfs_delayed_inode_release_metadata(struct btrfs_fs_info *fs_info,
 669						struct btrfs_delayed_node *node,
 670						bool qgroup_free)
 671{
 672	struct btrfs_block_rsv *rsv;
 673
 674	if (!node->bytes_reserved)
 675		return;
 676
 677	rsv = &fs_info->delayed_block_rsv;
 678	trace_btrfs_space_reservation(fs_info, "delayed_inode",
 679				      node->inode_id, node->bytes_reserved, 0);
 680	btrfs_block_rsv_release(fs_info, rsv, node->bytes_reserved, NULL);
 681	if (qgroup_free)
 682		btrfs_qgroup_free_meta_prealloc(node->root,
 683				node->bytes_reserved);
 684	else
 685		btrfs_qgroup_convert_reserved_meta(node->root,
 686				node->bytes_reserved);
 687	node->bytes_reserved = 0;
 688}
 689
 690/*
 691 * This helper will insert some continuous items into the same leaf according
 692 * to the free space of the leaf.
 693 */
 694static int btrfs_batch_insert_items(struct btrfs_root *root,
 695				    struct btrfs_path *path,
 696				    struct btrfs_delayed_item *item)
 
 697{
 698	struct btrfs_delayed_item *curr, *next;
 699	int free_space;
 700	int total_data_size = 0, total_size = 0;
 701	struct extent_buffer *leaf;
 702	char *data_ptr;
 703	struct btrfs_key *keys;
 704	u32 *data_size;
 705	struct list_head head;
 706	int slot;
 707	int nitems;
 708	int i;
 709	int ret = 0;
 710
 711	BUG_ON(!path->nodes[0]);
 712
 713	leaf = path->nodes[0];
 714	free_space = btrfs_leaf_free_space(leaf);
 715	INIT_LIST_HEAD(&head);
 716
 717	next = item;
 718	nitems = 0;
 719
 720	/*
 721	 * count the number of the continuous items that we can insert in batch
 722	 */
 723	while (total_size + next->data_len + sizeof(struct btrfs_item) <=
 724	       free_space) {
 725		total_data_size += next->data_len;
 726		total_size += next->data_len + sizeof(struct btrfs_item);
 727		list_add_tail(&next->tree_list, &head);
 728		nitems++;
 729
 730		curr = next;
 731		next = __btrfs_next_delayed_item(curr);
 732		if (!next)
 733			break;
 734
 735		if (!btrfs_is_continuous_delayed_item(curr, next))
 736			break;
 737	}
 738
 739	if (!nitems) {
 740		ret = 0;
 741		goto out;
 742	}
 743
 744	/*
 745	 * we need allocate some memory space, but it might cause the task
 746	 * to sleep, so we set all locked nodes in the path to blocking locks
 747	 * first.
 748	 */
 749	btrfs_set_path_blocking(path);
 750
 751	keys = kmalloc_array(nitems, sizeof(struct btrfs_key), GFP_NOFS);
 752	if (!keys) {
 753		ret = -ENOMEM;
 754		goto out;
 755	}
 756
 757	data_size = kmalloc_array(nitems, sizeof(u32), GFP_NOFS);
 758	if (!data_size) {
 759		ret = -ENOMEM;
 760		goto error;
 761	}
 762
 763	/* get keys of all the delayed items */
 764	i = 0;
 765	list_for_each_entry(next, &head, tree_list) {
 766		keys[i] = next->key;
 767		data_size[i] = next->data_len;
 768		i++;
 769	}
 770
 
 
 
 771	/* insert the keys of the items */
 772	setup_items_for_insert(root, path, keys, data_size,
 773			       total_data_size, total_size, nitems);
 
 
 774
 775	/* insert the dir index items */
 776	slot = path->slots[0];
 777	list_for_each_entry_safe(curr, next, &head, tree_list) {
 778		data_ptr = btrfs_item_ptr(leaf, slot, char);
 779		write_extent_buffer(leaf, &curr->data,
 780				    (unsigned long)data_ptr,
 781				    curr->data_len);
 782		slot++;
 783
 784		btrfs_delayed_item_release_metadata(root, curr);
 785
 786		list_del(&curr->tree_list);
 787		btrfs_release_delayed_item(curr);
 788	}
 789
 790error:
 791	kfree(data_size);
 792	kfree(keys);
 793out:
 794	return ret;
 795}
 796
 797/*
 798 * This helper can just do simple insertion that needn't extend item for new
 799 * data, such as directory name index insertion, inode insertion.
 800 */
 801static int btrfs_insert_delayed_item(struct btrfs_trans_handle *trans,
 802				     struct btrfs_root *root,
 803				     struct btrfs_path *path,
 804				     struct btrfs_delayed_item *delayed_item)
 805{
 806	struct extent_buffer *leaf;
 807	unsigned int nofs_flag;
 808	char *ptr;
 809	int ret;
 810
 811	nofs_flag = memalloc_nofs_save();
 812	ret = btrfs_insert_empty_item(trans, root, path, &delayed_item->key,
 813				      delayed_item->data_len);
 814	memalloc_nofs_restore(nofs_flag);
 815	if (ret < 0 && ret != -EEXIST)
 816		return ret;
 817
 818	leaf = path->nodes[0];
 819
 
 820	ptr = btrfs_item_ptr(leaf, path->slots[0], char);
 821
 822	write_extent_buffer(leaf, delayed_item->data, (unsigned long)ptr,
 823			    delayed_item->data_len);
 824	btrfs_mark_buffer_dirty(leaf);
 825
 826	btrfs_delayed_item_release_metadata(root, delayed_item);
 827	return 0;
 828}
 829
 830/*
 831 * we insert an item first, then if there are some continuous items, we try
 832 * to insert those items into the same leaf.
 833 */
 834static int btrfs_insert_delayed_items(struct btrfs_trans_handle *trans,
 835				      struct btrfs_path *path,
 836				      struct btrfs_root *root,
 837				      struct btrfs_delayed_node *node)
 838{
 839	struct btrfs_delayed_item *curr, *prev;
 840	int ret = 0;
 841
 842do_again:
 843	mutex_lock(&node->mutex);
 844	curr = __btrfs_first_delayed_insertion_item(node);
 845	if (!curr)
 846		goto insert_end;
 847
 848	ret = btrfs_insert_delayed_item(trans, root, path, curr);
 849	if (ret < 0) {
 850		btrfs_release_path(path);
 851		goto insert_end;
 852	}
 853
 854	prev = curr;
 855	curr = __btrfs_next_delayed_item(prev);
 856	if (curr && btrfs_is_continuous_delayed_item(prev, curr)) {
 857		/* insert the continuous items into the same leaf */
 858		path->slots[0]++;
 859		btrfs_batch_insert_items(root, path, curr);
 860	}
 861	btrfs_release_delayed_item(prev);
 862	btrfs_mark_buffer_dirty(path->nodes[0]);
 863
 864	btrfs_release_path(path);
 865	mutex_unlock(&node->mutex);
 866	goto do_again;
 867
 868insert_end:
 869	mutex_unlock(&node->mutex);
 870	return ret;
 871}
 872
 873static int btrfs_batch_delete_items(struct btrfs_trans_handle *trans,
 874				    struct btrfs_root *root,
 875				    struct btrfs_path *path,
 876				    struct btrfs_delayed_item *item)
 877{
 878	struct btrfs_delayed_item *curr, *next;
 879	struct extent_buffer *leaf;
 880	struct btrfs_key key;
 881	struct list_head head;
 882	int nitems, i, last_item;
 883	int ret = 0;
 884
 885	BUG_ON(!path->nodes[0]);
 886
 887	leaf = path->nodes[0];
 888
 889	i = path->slots[0];
 890	last_item = btrfs_header_nritems(leaf) - 1;
 891	if (i > last_item)
 892		return -ENOENT;	/* FIXME: Is errno suitable? */
 893
 894	next = item;
 895	INIT_LIST_HEAD(&head);
 896	btrfs_item_key_to_cpu(leaf, &key, i);
 897	nitems = 0;
 898	/*
 899	 * count the number of the dir index items that we can delete in batch
 900	 */
 901	while (btrfs_comp_cpu_keys(&next->key, &key) == 0) {
 902		list_add_tail(&next->tree_list, &head);
 903		nitems++;
 904
 905		curr = next;
 906		next = __btrfs_next_delayed_item(curr);
 907		if (!next)
 908			break;
 909
 910		if (!btrfs_is_continuous_delayed_item(curr, next))
 911			break;
 912
 913		i++;
 914		if (i > last_item)
 915			break;
 916		btrfs_item_key_to_cpu(leaf, &key, i);
 917	}
 918
 919	if (!nitems)
 920		return 0;
 921
 922	ret = btrfs_del_items(trans, root, path, path->slots[0], nitems);
 923	if (ret)
 924		goto out;
 925
 926	list_for_each_entry_safe(curr, next, &head, tree_list) {
 927		btrfs_delayed_item_release_metadata(root, curr);
 928		list_del(&curr->tree_list);
 929		btrfs_release_delayed_item(curr);
 930	}
 931
 932out:
 933	return ret;
 934}
 935
 936static int btrfs_delete_delayed_items(struct btrfs_trans_handle *trans,
 937				      struct btrfs_path *path,
 938				      struct btrfs_root *root,
 939				      struct btrfs_delayed_node *node)
 940{
 941	struct btrfs_delayed_item *curr, *prev;
 942	unsigned int nofs_flag;
 943	int ret = 0;
 944
 945do_again:
 946	mutex_lock(&node->mutex);
 947	curr = __btrfs_first_delayed_deletion_item(node);
 948	if (!curr)
 949		goto delete_fail;
 950
 951	nofs_flag = memalloc_nofs_save();
 952	ret = btrfs_search_slot(trans, root, &curr->key, path, -1, 1);
 953	memalloc_nofs_restore(nofs_flag);
 954	if (ret < 0)
 955		goto delete_fail;
 956	else if (ret > 0) {
 957		/*
 958		 * can't find the item which the node points to, so this node
 959		 * is invalid, just drop it.
 960		 */
 961		prev = curr;
 962		curr = __btrfs_next_delayed_item(prev);
 963		btrfs_release_delayed_item(prev);
 964		ret = 0;
 965		btrfs_release_path(path);
 966		if (curr) {
 967			mutex_unlock(&node->mutex);
 968			goto do_again;
 969		} else
 970			goto delete_fail;
 971	}
 972
 973	btrfs_batch_delete_items(trans, root, path, curr);
 974	btrfs_release_path(path);
 975	mutex_unlock(&node->mutex);
 976	goto do_again;
 977
 978delete_fail:
 979	btrfs_release_path(path);
 980	mutex_unlock(&node->mutex);
 981	return ret;
 982}
 983
 984static void btrfs_release_delayed_inode(struct btrfs_delayed_node *delayed_node)
 985{
 986	struct btrfs_delayed_root *delayed_root;
 987
 988	if (delayed_node &&
 989	    test_bit(BTRFS_DELAYED_NODE_INODE_DIRTY, &delayed_node->flags)) {
 990		BUG_ON(!delayed_node->root);
 991		clear_bit(BTRFS_DELAYED_NODE_INODE_DIRTY, &delayed_node->flags);
 992		delayed_node->count--;
 993
 994		delayed_root = delayed_node->root->fs_info->delayed_root;
 995		finish_one_item(delayed_root);
 
 
 
 
 996	}
 997}
 998
 999static void btrfs_release_delayed_iref(struct btrfs_delayed_node *delayed_node)
 
 
 
1000{
1001	struct btrfs_delayed_root *delayed_root;
1002
1003	ASSERT(delayed_node->root);
1004	clear_bit(BTRFS_DELAYED_NODE_DEL_IREF, &delayed_node->flags);
1005	delayed_node->count--;
1006
1007	delayed_root = delayed_node->root->fs_info->delayed_root;
1008	finish_one_item(delayed_root);
1009}
1010
1011static int __btrfs_update_delayed_inode(struct btrfs_trans_handle *trans,
1012					struct btrfs_root *root,
1013					struct btrfs_path *path,
1014					struct btrfs_delayed_node *node)
1015{
1016	struct btrfs_fs_info *fs_info = root->fs_info;
1017	struct btrfs_key key;
1018	struct btrfs_inode_item *inode_item;
1019	struct extent_buffer *leaf;
1020	unsigned int nofs_flag;
1021	int mod;
1022	int ret;
1023
 
 
 
 
 
 
1024	key.objectid = node->inode_id;
1025	key.type = BTRFS_INODE_ITEM_KEY;
1026	key.offset = 0;
1027
1028	if (test_bit(BTRFS_DELAYED_NODE_DEL_IREF, &node->flags))
1029		mod = -1;
1030	else
1031		mod = 1;
1032
1033	nofs_flag = memalloc_nofs_save();
1034	ret = btrfs_lookup_inode(trans, root, path, &key, mod);
1035	memalloc_nofs_restore(nofs_flag);
1036	if (ret > 0) {
1037		btrfs_release_path(path);
 
1038		return -ENOENT;
1039	} else if (ret < 0) {
 
1040		return ret;
1041	}
1042
 
1043	leaf = path->nodes[0];
1044	inode_item = btrfs_item_ptr(leaf, path->slots[0],
1045				    struct btrfs_inode_item);
1046	write_extent_buffer(leaf, &node->inode_item, (unsigned long)inode_item,
1047			    sizeof(struct btrfs_inode_item));
1048	btrfs_mark_buffer_dirty(leaf);
 
1049
1050	if (!test_bit(BTRFS_DELAYED_NODE_DEL_IREF, &node->flags))
1051		goto no_iref;
1052
1053	path->slots[0]++;
1054	if (path->slots[0] >= btrfs_header_nritems(leaf))
1055		goto search;
1056again:
1057	btrfs_item_key_to_cpu(leaf, &key, path->slots[0]);
1058	if (key.objectid != node->inode_id)
1059		goto out;
1060
1061	if (key.type != BTRFS_INODE_REF_KEY &&
1062	    key.type != BTRFS_INODE_EXTREF_KEY)
1063		goto out;
1064
1065	/*
1066	 * Delayed iref deletion is for the inode who has only one link,
1067	 * so there is only one iref. The case that several irefs are
1068	 * in the same item doesn't exist.
1069	 */
1070	btrfs_del_item(trans, root, path);
1071out:
1072	btrfs_release_delayed_iref(node);
1073no_iref:
1074	btrfs_release_path(path);
1075err_out:
1076	btrfs_delayed_inode_release_metadata(fs_info, node, (ret < 0));
1077	btrfs_release_delayed_inode(node);
1078
1079	return ret;
1080
1081search:
1082	btrfs_release_path(path);
1083
1084	key.type = BTRFS_INODE_EXTREF_KEY;
1085	key.offset = -1;
1086
1087	nofs_flag = memalloc_nofs_save();
1088	ret = btrfs_search_slot(trans, root, &key, path, -1, 1);
1089	memalloc_nofs_restore(nofs_flag);
1090	if (ret < 0)
1091		goto err_out;
1092	ASSERT(ret);
1093
1094	ret = 0;
1095	leaf = path->nodes[0];
1096	path->slots[0]--;
1097	goto again;
1098}
1099
1100static inline int btrfs_update_delayed_inode(struct btrfs_trans_handle *trans,
1101					     struct btrfs_root *root,
1102					     struct btrfs_path *path,
1103					     struct btrfs_delayed_node *node)
1104{
1105	int ret;
1106
1107	mutex_lock(&node->mutex);
1108	if (!test_bit(BTRFS_DELAYED_NODE_INODE_DIRTY, &node->flags)) {
1109		mutex_unlock(&node->mutex);
1110		return 0;
1111	}
1112
1113	ret = __btrfs_update_delayed_inode(trans, root, path, node);
1114	mutex_unlock(&node->mutex);
1115	return ret;
1116}
1117
1118static inline int
1119__btrfs_commit_inode_delayed_items(struct btrfs_trans_handle *trans,
1120				   struct btrfs_path *path,
1121				   struct btrfs_delayed_node *node)
1122{
1123	int ret;
1124
1125	ret = btrfs_insert_delayed_items(trans, path, node->root, node);
1126	if (ret)
1127		return ret;
1128
1129	ret = btrfs_delete_delayed_items(trans, path, node->root, node);
1130	if (ret)
1131		return ret;
1132
1133	ret = btrfs_update_delayed_inode(trans, node->root, path, node);
1134	return ret;
1135}
1136
1137/*
1138 * Called when committing the transaction.
1139 * Returns 0 on success.
1140 * Returns < 0 on error and returns with an aborted transaction with any
1141 * outstanding delayed items cleaned up.
1142 */
1143static int __btrfs_run_delayed_items(struct btrfs_trans_handle *trans, int nr)
1144{
1145	struct btrfs_fs_info *fs_info = trans->fs_info;
1146	struct btrfs_delayed_root *delayed_root;
1147	struct btrfs_delayed_node *curr_node, *prev_node;
1148	struct btrfs_path *path;
1149	struct btrfs_block_rsv *block_rsv;
1150	int ret = 0;
1151	bool count = (nr > 0);
1152
1153	if (TRANS_ABORTED(trans))
1154		return -EIO;
1155
1156	path = btrfs_alloc_path();
1157	if (!path)
1158		return -ENOMEM;
1159	path->leave_spinning = 1;
1160
1161	block_rsv = trans->block_rsv;
1162	trans->block_rsv = &fs_info->delayed_block_rsv;
1163
1164	delayed_root = fs_info->delayed_root;
1165
1166	curr_node = btrfs_first_delayed_node(delayed_root);
1167	while (curr_node && (!count || (count && nr--))) {
1168		ret = __btrfs_commit_inode_delayed_items(trans, path,
 
 
 
 
 
 
 
1169							 curr_node);
1170		if (ret) {
1171			btrfs_release_delayed_node(curr_node);
1172			curr_node = NULL;
1173			btrfs_abort_transaction(trans, ret);
1174			break;
1175		}
1176
1177		prev_node = curr_node;
1178		curr_node = btrfs_next_delayed_node(curr_node);
1179		btrfs_release_delayed_node(prev_node);
1180	}
1181
1182	if (curr_node)
1183		btrfs_release_delayed_node(curr_node);
1184	btrfs_free_path(path);
1185	trans->block_rsv = block_rsv;
1186
1187	return ret;
1188}
1189
1190int btrfs_run_delayed_items(struct btrfs_trans_handle *trans)
 
1191{
1192	return __btrfs_run_delayed_items(trans, -1);
1193}
1194
1195int btrfs_run_delayed_items_nr(struct btrfs_trans_handle *trans, int nr)
1196{
1197	return __btrfs_run_delayed_items(trans, nr);
1198}
1199
1200int btrfs_commit_inode_delayed_items(struct btrfs_trans_handle *trans,
1201				     struct btrfs_inode *inode)
1202{
1203	struct btrfs_delayed_node *delayed_node = btrfs_get_delayed_node(inode);
1204	struct btrfs_path *path;
1205	struct btrfs_block_rsv *block_rsv;
1206	int ret;
1207
1208	if (!delayed_node)
1209		return 0;
1210
1211	mutex_lock(&delayed_node->mutex);
1212	if (!delayed_node->count) {
1213		mutex_unlock(&delayed_node->mutex);
1214		btrfs_release_delayed_node(delayed_node);
1215		return 0;
1216	}
1217	mutex_unlock(&delayed_node->mutex);
1218
1219	path = btrfs_alloc_path();
1220	if (!path) {
1221		btrfs_release_delayed_node(delayed_node);
1222		return -ENOMEM;
1223	}
1224	path->leave_spinning = 1;
1225
1226	block_rsv = trans->block_rsv;
1227	trans->block_rsv = &delayed_node->root->fs_info->delayed_block_rsv;
1228
1229	ret = __btrfs_commit_inode_delayed_items(trans, path, delayed_node);
 
 
 
 
 
1230
1231	btrfs_release_delayed_node(delayed_node);
1232	btrfs_free_path(path);
1233	trans->block_rsv = block_rsv;
1234
1235	return ret;
1236}
1237
1238int btrfs_commit_inode_delayed_inode(struct btrfs_inode *inode)
 
1239{
1240	struct btrfs_fs_info *fs_info = inode->root->fs_info;
1241	struct btrfs_trans_handle *trans;
1242	struct btrfs_delayed_node *delayed_node = btrfs_get_delayed_node(inode);
1243	struct btrfs_path *path;
1244	struct btrfs_block_rsv *block_rsv;
1245	int ret;
1246
1247	if (!delayed_node)
1248		return 0;
1249
1250	mutex_lock(&delayed_node->mutex);
1251	if (!test_bit(BTRFS_DELAYED_NODE_INODE_DIRTY, &delayed_node->flags)) {
1252		mutex_unlock(&delayed_node->mutex);
1253		btrfs_release_delayed_node(delayed_node);
1254		return 0;
1255	}
1256	mutex_unlock(&delayed_node->mutex);
1257
1258	trans = btrfs_join_transaction(delayed_node->root);
1259	if (IS_ERR(trans)) {
1260		ret = PTR_ERR(trans);
1261		goto out;
1262	}
1263
1264	path = btrfs_alloc_path();
1265	if (!path) {
1266		ret = -ENOMEM;
1267		goto trans_out;
1268	}
1269	path->leave_spinning = 1;
1270
1271	block_rsv = trans->block_rsv;
1272	trans->block_rsv = &fs_info->delayed_block_rsv;
1273
1274	mutex_lock(&delayed_node->mutex);
1275	if (test_bit(BTRFS_DELAYED_NODE_INODE_DIRTY, &delayed_node->flags))
1276		ret = __btrfs_update_delayed_inode(trans, delayed_node->root,
1277						   path, delayed_node);
1278	else
1279		ret = 0;
1280	mutex_unlock(&delayed_node->mutex);
1281
1282	btrfs_free_path(path);
1283	trans->block_rsv = block_rsv;
1284trans_out:
1285	btrfs_end_transaction(trans);
1286	btrfs_btree_balance_dirty(fs_info);
1287out:
1288	btrfs_release_delayed_node(delayed_node);
1289
1290	return ret;
1291}
1292
1293void btrfs_remove_delayed_node(struct btrfs_inode *inode)
1294{
1295	struct btrfs_delayed_node *delayed_node;
1296
1297	delayed_node = READ_ONCE(inode->delayed_node);
1298	if (!delayed_node)
1299		return;
1300
1301	inode->delayed_node = NULL;
1302	btrfs_release_delayed_node(delayed_node);
1303}
1304
1305struct btrfs_async_delayed_work {
1306	struct btrfs_delayed_root *delayed_root;
1307	int nr;
1308	struct btrfs_work work;
1309};
1310
1311static void btrfs_async_run_delayed_root(struct btrfs_work *work)
1312{
1313	struct btrfs_async_delayed_work *async_work;
1314	struct btrfs_delayed_root *delayed_root;
1315	struct btrfs_trans_handle *trans;
1316	struct btrfs_path *path;
1317	struct btrfs_delayed_node *delayed_node = NULL;
1318	struct btrfs_root *root;
1319	struct btrfs_block_rsv *block_rsv;
1320	int total_done = 0;
 
 
1321
1322	async_work = container_of(work, struct btrfs_async_delayed_work, work);
1323	delayed_root = async_work->delayed_root;
1324
1325	path = btrfs_alloc_path();
1326	if (!path)
1327		goto out;
 
1328
1329	do {
1330		if (atomic_read(&delayed_root->items) <
1331		    BTRFS_DELAYED_BACKGROUND / 2)
1332			break;
1333
1334		delayed_node = btrfs_first_prepared_delayed_node(delayed_root);
1335		if (!delayed_node)
1336			break;
1337
1338		path->leave_spinning = 1;
1339		root = delayed_node->root;
1340
1341		trans = btrfs_join_transaction(root);
1342		if (IS_ERR(trans)) {
1343			btrfs_release_path(path);
1344			btrfs_release_prepared_delayed_node(delayed_node);
1345			total_done++;
1346			continue;
1347		}
1348
1349		block_rsv = trans->block_rsv;
1350		trans->block_rsv = &root->fs_info->delayed_block_rsv;
1351
1352		__btrfs_commit_inode_delayed_items(trans, path, delayed_node);
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1353
1354		trans->block_rsv = block_rsv;
1355		btrfs_end_transaction(trans);
1356		btrfs_btree_balance_dirty_nodelay(root->fs_info);
1357
1358		btrfs_release_path(path);
1359		btrfs_release_prepared_delayed_node(delayed_node);
1360		total_done++;
1361
1362	} while ((async_work->nr == 0 && total_done < BTRFS_DELAYED_WRITEBACK)
1363		 || total_done < async_work->nr);
1364
 
 
 
 
1365	btrfs_free_path(path);
1366out:
1367	wake_up(&delayed_root->wait);
1368	kfree(async_work);
 
 
 
 
1369}
1370
1371
1372static int btrfs_wq_run_delayed_node(struct btrfs_delayed_root *delayed_root,
1373				     struct btrfs_fs_info *fs_info, int nr)
1374{
1375	struct btrfs_async_delayed_work *async_work;
 
 
1376
1377	async_work = kmalloc(sizeof(*async_work), GFP_NOFS);
1378	if (!async_work)
 
 
 
 
 
 
1379		return -ENOMEM;
 
1380
1381	async_work->delayed_root = delayed_root;
1382	btrfs_init_work(&async_work->work, btrfs_async_run_delayed_root, NULL,
1383			NULL);
1384	async_work->nr = nr;
 
 
 
 
 
 
 
1385
1386	btrfs_queue_work(fs_info->delayed_workers, &async_work->work);
1387	return 0;
1388}
1389
1390void btrfs_assert_delayed_root_empty(struct btrfs_fs_info *fs_info)
1391{
1392	WARN_ON(btrfs_first_delayed_node(fs_info->delayed_root));
 
 
1393}
1394
1395static int could_end_wait(struct btrfs_delayed_root *delayed_root, int seq)
1396{
1397	int val = atomic_read(&delayed_root->items_seq);
1398
1399	if (val < seq || val >= seq + BTRFS_DELAYED_BATCH)
1400		return 1;
1401
1402	if (atomic_read(&delayed_root->items) < BTRFS_DELAYED_BACKGROUND)
1403		return 1;
1404
1405	return 0;
1406}
1407
1408void btrfs_balance_delayed_items(struct btrfs_fs_info *fs_info)
1409{
1410	struct btrfs_delayed_root *delayed_root = fs_info->delayed_root;
1411
1412	if ((atomic_read(&delayed_root->items) < BTRFS_DELAYED_BACKGROUND) ||
1413		btrfs_workqueue_normal_congested(fs_info->delayed_workers))
1414		return;
1415
1416	if (atomic_read(&delayed_root->items) >= BTRFS_DELAYED_WRITEBACK) {
1417		int seq;
1418		int ret;
1419
1420		seq = atomic_read(&delayed_root->items_seq);
1421
1422		ret = btrfs_wq_run_delayed_node(delayed_root, fs_info, 0);
1423		if (ret)
1424			return;
1425
1426		wait_event_interruptible(delayed_root->wait,
1427					 could_end_wait(delayed_root, seq));
 
 
 
1428		return;
1429	}
1430
1431	btrfs_wq_run_delayed_node(delayed_root, fs_info, BTRFS_DELAYED_BATCH);
1432}
1433
1434/* Will return 0 or -ENOMEM */
1435int btrfs_insert_delayed_dir_index(struct btrfs_trans_handle *trans,
1436				   const char *name, int name_len,
1437				   struct btrfs_inode *dir,
1438				   struct btrfs_disk_key *disk_key, u8 type,
1439				   u64 index)
1440{
1441	struct btrfs_delayed_node *delayed_node;
1442	struct btrfs_delayed_item *delayed_item;
1443	struct btrfs_dir_item *dir_item;
1444	int ret;
1445
1446	delayed_node = btrfs_get_or_create_delayed_node(dir);
1447	if (IS_ERR(delayed_node))
1448		return PTR_ERR(delayed_node);
1449
1450	delayed_item = btrfs_alloc_delayed_item(sizeof(*dir_item) + name_len);
1451	if (!delayed_item) {
1452		ret = -ENOMEM;
1453		goto release_node;
1454	}
1455
 
 
 
 
 
 
 
1456	delayed_item->key.objectid = btrfs_ino(dir);
1457	delayed_item->key.type = BTRFS_DIR_INDEX_KEY;
1458	delayed_item->key.offset = index;
1459
1460	dir_item = (struct btrfs_dir_item *)delayed_item->data;
1461	dir_item->location = *disk_key;
1462	btrfs_set_stack_dir_transid(dir_item, trans->transid);
1463	btrfs_set_stack_dir_data_len(dir_item, 0);
1464	btrfs_set_stack_dir_name_len(dir_item, name_len);
1465	btrfs_set_stack_dir_type(dir_item, type);
1466	memcpy((char *)(dir_item + 1), name, name_len);
1467
1468	ret = btrfs_delayed_item_reserve_metadata(trans, dir->root, delayed_item);
1469	/*
1470	 * we have reserved enough space when we start a new transaction,
1471	 * so reserving metadata failure is impossible
1472	 */
1473	BUG_ON(ret);
1474
1475	mutex_lock(&delayed_node->mutex);
1476	ret = __btrfs_add_delayed_insertion_item(delayed_node, delayed_item);
1477	if (unlikely(ret)) {
1478		btrfs_err(trans->fs_info,
1479			  "err add delayed dir index item(name: %.*s) into the insertion tree of the delayed node(root id: %llu, inode id: %llu, errno: %d)",
1480			  name_len, name, delayed_node->root->root_key.objectid,
1481			  delayed_node->inode_id, ret);
 
 
 
1482		BUG();
1483	}
1484	mutex_unlock(&delayed_node->mutex);
1485
1486release_node:
1487	btrfs_release_delayed_node(delayed_node);
1488	return ret;
1489}
1490
1491static int btrfs_delete_delayed_insertion_item(struct btrfs_fs_info *fs_info,
1492					       struct btrfs_delayed_node *node,
1493					       struct btrfs_key *key)
1494{
1495	struct btrfs_delayed_item *item;
1496
1497	mutex_lock(&node->mutex);
1498	item = __btrfs_lookup_delayed_insertion_item(node, key);
1499	if (!item) {
1500		mutex_unlock(&node->mutex);
1501		return 1;
1502	}
1503
1504	btrfs_delayed_item_release_metadata(node->root, item);
1505	btrfs_release_delayed_item(item);
1506	mutex_unlock(&node->mutex);
1507	return 0;
1508}
1509
1510int btrfs_delete_delayed_dir_index(struct btrfs_trans_handle *trans,
1511				   struct btrfs_inode *dir, u64 index)
 
1512{
1513	struct btrfs_delayed_node *node;
1514	struct btrfs_delayed_item *item;
1515	struct btrfs_key item_key;
1516	int ret;
1517
1518	node = btrfs_get_or_create_delayed_node(dir);
1519	if (IS_ERR(node))
1520		return PTR_ERR(node);
1521
1522	item_key.objectid = btrfs_ino(dir);
1523	item_key.type = BTRFS_DIR_INDEX_KEY;
1524	item_key.offset = index;
1525
1526	ret = btrfs_delete_delayed_insertion_item(trans->fs_info, node,
1527						  &item_key);
1528	if (!ret)
1529		goto end;
1530
1531	item = btrfs_alloc_delayed_item(0);
1532	if (!item) {
1533		ret = -ENOMEM;
1534		goto end;
1535	}
1536
1537	item->key = item_key;
1538
1539	ret = btrfs_delayed_item_reserve_metadata(trans, dir->root, item);
1540	/*
1541	 * we have reserved enough space when we start a new transaction,
1542	 * so reserving metadata failure is impossible.
1543	 */
1544	if (ret < 0) {
1545		btrfs_err(trans->fs_info,
1546"metadata reservation failed for delayed dir item deltiona, should have been reserved");
1547		btrfs_release_delayed_item(item);
1548		goto end;
1549	}
1550
1551	mutex_lock(&node->mutex);
1552	ret = __btrfs_add_delayed_deletion_item(node, item);
1553	if (unlikely(ret)) {
1554		btrfs_err(trans->fs_info,
1555			  "err add delayed dir index item(index: %llu) into the deletion tree of the delayed node(root id: %llu, inode id: %llu, errno: %d)",
1556			  index, node->root->root_key.objectid,
1557			  node->inode_id, ret);
1558		btrfs_delayed_item_release_metadata(dir->root, item);
1559		btrfs_release_delayed_item(item);
 
 
1560	}
1561	mutex_unlock(&node->mutex);
1562end:
1563	btrfs_release_delayed_node(node);
1564	return ret;
1565}
1566
1567int btrfs_inode_delayed_dir_index_count(struct btrfs_inode *inode)
1568{
1569	struct btrfs_delayed_node *delayed_node = btrfs_get_delayed_node(inode);
1570
1571	if (!delayed_node)
1572		return -ENOENT;
1573
1574	/*
1575	 * Since we have held i_mutex of this directory, it is impossible that
1576	 * a new directory index is added into the delayed node and index_cnt
1577	 * is updated now. So we needn't lock the delayed node.
1578	 */
1579	if (!delayed_node->index_cnt) {
1580		btrfs_release_delayed_node(delayed_node);
1581		return -EINVAL;
1582	}
1583
1584	inode->index_cnt = delayed_node->index_cnt;
1585	btrfs_release_delayed_node(delayed_node);
1586	return 0;
1587}
1588
1589bool btrfs_readdir_get_delayed_items(struct inode *inode,
1590				     struct list_head *ins_list,
1591				     struct list_head *del_list)
1592{
1593	struct btrfs_delayed_node *delayed_node;
1594	struct btrfs_delayed_item *item;
1595
1596	delayed_node = btrfs_get_delayed_node(BTRFS_I(inode));
1597	if (!delayed_node)
1598		return false;
1599
1600	/*
1601	 * We can only do one readdir with delayed items at a time because of
1602	 * item->readdir_list.
1603	 */
1604	inode_unlock_shared(inode);
1605	inode_lock(inode);
1606
1607	mutex_lock(&delayed_node->mutex);
1608	item = __btrfs_first_delayed_insertion_item(delayed_node);
1609	while (item) {
1610		refcount_inc(&item->refs);
1611		list_add_tail(&item->readdir_list, ins_list);
1612		item = __btrfs_next_delayed_item(item);
1613	}
1614
1615	item = __btrfs_first_delayed_deletion_item(delayed_node);
1616	while (item) {
1617		refcount_inc(&item->refs);
1618		list_add_tail(&item->readdir_list, del_list);
1619		item = __btrfs_next_delayed_item(item);
1620	}
1621	mutex_unlock(&delayed_node->mutex);
1622	/*
1623	 * This delayed node is still cached in the btrfs inode, so refs
1624	 * must be > 1 now, and we needn't check it is going to be freed
1625	 * or not.
1626	 *
1627	 * Besides that, this function is used to read dir, we do not
1628	 * insert/delete delayed items in this period. So we also needn't
1629	 * requeue or dequeue this delayed node.
1630	 */
1631	refcount_dec(&delayed_node->refs);
1632
1633	return true;
1634}
1635
1636void btrfs_readdir_put_delayed_items(struct inode *inode,
1637				     struct list_head *ins_list,
1638				     struct list_head *del_list)
1639{
1640	struct btrfs_delayed_item *curr, *next;
1641
1642	list_for_each_entry_safe(curr, next, ins_list, readdir_list) {
1643		list_del(&curr->readdir_list);
1644		if (refcount_dec_and_test(&curr->refs))
1645			kfree(curr);
1646	}
1647
1648	list_for_each_entry_safe(curr, next, del_list, readdir_list) {
1649		list_del(&curr->readdir_list);
1650		if (refcount_dec_and_test(&curr->refs))
1651			kfree(curr);
1652	}
1653
1654	/*
1655	 * The VFS is going to do up_read(), so we need to downgrade back to a
1656	 * read lock.
1657	 */
1658	downgrade_write(&inode->i_rwsem);
1659}
1660
1661int btrfs_should_delete_dir_index(struct list_head *del_list,
1662				  u64 index)
1663{
1664	struct btrfs_delayed_item *curr;
1665	int ret = 0;
 
 
 
1666
1667	list_for_each_entry(curr, del_list, readdir_list) {
1668		if (curr->key.offset > index)
1669			break;
1670		if (curr->key.offset == index) {
1671			ret = 1;
1672			break;
1673		}
 
 
 
 
 
 
 
1674	}
1675	return ret;
1676}
1677
1678/*
1679 * btrfs_readdir_delayed_dir_index - read dir info stored in the delayed tree
1680 *
1681 */
1682int btrfs_readdir_delayed_dir_index(struct dir_context *ctx,
 
1683				    struct list_head *ins_list)
1684{
1685	struct btrfs_dir_item *di;
1686	struct btrfs_delayed_item *curr, *next;
1687	struct btrfs_key location;
1688	char *name;
1689	int name_len;
1690	int over = 0;
1691	unsigned char d_type;
1692
1693	if (list_empty(ins_list))
1694		return 0;
1695
1696	/*
1697	 * Changing the data of the delayed item is impossible. So
1698	 * we needn't lock them. And we have held i_mutex of the
1699	 * directory, nobody can delete any directory indexes now.
1700	 */
1701	list_for_each_entry_safe(curr, next, ins_list, readdir_list) {
1702		list_del(&curr->readdir_list);
1703
1704		if (curr->key.offset < ctx->pos) {
1705			if (refcount_dec_and_test(&curr->refs))
1706				kfree(curr);
1707			continue;
1708		}
1709
1710		ctx->pos = curr->key.offset;
1711
1712		di = (struct btrfs_dir_item *)curr->data;
1713		name = (char *)(di + 1);
1714		name_len = btrfs_stack_dir_name_len(di);
1715
1716		d_type = fs_ftype_to_dtype(di->type);
1717		btrfs_disk_key_to_cpu(&location, &di->location);
1718
1719		over = !dir_emit(ctx, name, name_len,
1720			       location.objectid, d_type);
1721
1722		if (refcount_dec_and_test(&curr->refs))
1723			kfree(curr);
1724
1725		if (over)
1726			return 1;
1727		ctx->pos++;
1728	}
1729	return 0;
1730}
1731
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1732static void fill_stack_inode_item(struct btrfs_trans_handle *trans,
1733				  struct btrfs_inode_item *inode_item,
1734				  struct inode *inode)
1735{
1736	btrfs_set_stack_inode_uid(inode_item, i_uid_read(inode));
1737	btrfs_set_stack_inode_gid(inode_item, i_gid_read(inode));
1738	btrfs_set_stack_inode_size(inode_item, BTRFS_I(inode)->disk_i_size);
1739	btrfs_set_stack_inode_mode(inode_item, inode->i_mode);
1740	btrfs_set_stack_inode_nlink(inode_item, inode->i_nlink);
1741	btrfs_set_stack_inode_nbytes(inode_item, inode_get_bytes(inode));
1742	btrfs_set_stack_inode_generation(inode_item,
1743					 BTRFS_I(inode)->generation);
1744	btrfs_set_stack_inode_sequence(inode_item,
1745				       inode_peek_iversion(inode));
1746	btrfs_set_stack_inode_transid(inode_item, trans->transid);
1747	btrfs_set_stack_inode_rdev(inode_item, inode->i_rdev);
1748	btrfs_set_stack_inode_flags(inode_item, BTRFS_I(inode)->flags);
1749	btrfs_set_stack_inode_block_group(inode_item, 0);
1750
1751	btrfs_set_stack_timespec_sec(&inode_item->atime,
1752				     inode->i_atime.tv_sec);
1753	btrfs_set_stack_timespec_nsec(&inode_item->atime,
1754				      inode->i_atime.tv_nsec);
1755
1756	btrfs_set_stack_timespec_sec(&inode_item->mtime,
1757				     inode->i_mtime.tv_sec);
1758	btrfs_set_stack_timespec_nsec(&inode_item->mtime,
1759				      inode->i_mtime.tv_nsec);
1760
1761	btrfs_set_stack_timespec_sec(&inode_item->ctime,
1762				     inode->i_ctime.tv_sec);
1763	btrfs_set_stack_timespec_nsec(&inode_item->ctime,
1764				      inode->i_ctime.tv_nsec);
1765
1766	btrfs_set_stack_timespec_sec(&inode_item->otime,
1767				     BTRFS_I(inode)->i_otime.tv_sec);
1768	btrfs_set_stack_timespec_nsec(&inode_item->otime,
1769				     BTRFS_I(inode)->i_otime.tv_nsec);
1770}
1771
1772int btrfs_fill_inode(struct inode *inode, u32 *rdev)
1773{
1774	struct btrfs_fs_info *fs_info = BTRFS_I(inode)->root->fs_info;
1775	struct btrfs_delayed_node *delayed_node;
1776	struct btrfs_inode_item *inode_item;
 
1777
1778	delayed_node = btrfs_get_delayed_node(BTRFS_I(inode));
1779	if (!delayed_node)
1780		return -ENOENT;
1781
1782	mutex_lock(&delayed_node->mutex);
1783	if (!test_bit(BTRFS_DELAYED_NODE_INODE_DIRTY, &delayed_node->flags)) {
1784		mutex_unlock(&delayed_node->mutex);
1785		btrfs_release_delayed_node(delayed_node);
1786		return -ENOENT;
1787	}
1788
1789	inode_item = &delayed_node->inode_item;
1790
1791	i_uid_write(inode, btrfs_stack_inode_uid(inode_item));
1792	i_gid_write(inode, btrfs_stack_inode_gid(inode_item));
1793	btrfs_i_size_write(BTRFS_I(inode), btrfs_stack_inode_size(inode_item));
1794	btrfs_inode_set_file_extent_range(BTRFS_I(inode), 0,
1795			round_up(i_size_read(inode), fs_info->sectorsize));
1796	inode->i_mode = btrfs_stack_inode_mode(inode_item);
1797	set_nlink(inode, btrfs_stack_inode_nlink(inode_item));
1798	inode_set_bytes(inode, btrfs_stack_inode_nbytes(inode_item));
1799	BTRFS_I(inode)->generation = btrfs_stack_inode_generation(inode_item);
1800        BTRFS_I(inode)->last_trans = btrfs_stack_inode_transid(inode_item);
1801
1802	inode_set_iversion_queried(inode,
1803				   btrfs_stack_inode_sequence(inode_item));
1804	inode->i_rdev = 0;
1805	*rdev = btrfs_stack_inode_rdev(inode_item);
1806	BTRFS_I(inode)->flags = btrfs_stack_inode_flags(inode_item);
1807
1808	inode->i_atime.tv_sec = btrfs_stack_timespec_sec(&inode_item->atime);
1809	inode->i_atime.tv_nsec = btrfs_stack_timespec_nsec(&inode_item->atime);
1810
1811	inode->i_mtime.tv_sec = btrfs_stack_timespec_sec(&inode_item->mtime);
1812	inode->i_mtime.tv_nsec = btrfs_stack_timespec_nsec(&inode_item->mtime);
1813
1814	inode->i_ctime.tv_sec = btrfs_stack_timespec_sec(&inode_item->ctime);
1815	inode->i_ctime.tv_nsec = btrfs_stack_timespec_nsec(&inode_item->ctime);
1816
1817	BTRFS_I(inode)->i_otime.tv_sec =
1818		btrfs_stack_timespec_sec(&inode_item->otime);
1819	BTRFS_I(inode)->i_otime.tv_nsec =
1820		btrfs_stack_timespec_nsec(&inode_item->otime);
1821
1822	inode->i_generation = BTRFS_I(inode)->generation;
1823	BTRFS_I(inode)->index_cnt = (u64)-1;
1824
1825	mutex_unlock(&delayed_node->mutex);
1826	btrfs_release_delayed_node(delayed_node);
1827	return 0;
1828}
1829
1830int btrfs_delayed_update_inode(struct btrfs_trans_handle *trans,
1831			       struct btrfs_root *root, struct inode *inode)
1832{
1833	struct btrfs_delayed_node *delayed_node;
1834	int ret = 0;
1835
1836	delayed_node = btrfs_get_or_create_delayed_node(BTRFS_I(inode));
1837	if (IS_ERR(delayed_node))
1838		return PTR_ERR(delayed_node);
1839
1840	mutex_lock(&delayed_node->mutex);
1841	if (test_bit(BTRFS_DELAYED_NODE_INODE_DIRTY, &delayed_node->flags)) {
1842		fill_stack_inode_item(trans, &delayed_node->inode_item, inode);
1843		goto release_node;
1844	}
1845
1846	ret = btrfs_delayed_inode_reserve_metadata(trans, root, BTRFS_I(inode),
1847						   delayed_node);
1848	if (ret)
1849		goto release_node;
 
 
1850
1851	fill_stack_inode_item(trans, &delayed_node->inode_item, inode);
1852	set_bit(BTRFS_DELAYED_NODE_INODE_DIRTY, &delayed_node->flags);
1853	delayed_node->count++;
1854	atomic_inc(&root->fs_info->delayed_root->items);
1855release_node:
1856	mutex_unlock(&delayed_node->mutex);
1857	btrfs_release_delayed_node(delayed_node);
1858	return ret;
1859}
1860
1861int btrfs_delayed_delete_inode_ref(struct btrfs_inode *inode)
1862{
1863	struct btrfs_fs_info *fs_info = inode->root->fs_info;
1864	struct btrfs_delayed_node *delayed_node;
1865
1866	/*
1867	 * we don't do delayed inode updates during log recovery because it
1868	 * leads to enospc problems.  This means we also can't do
1869	 * delayed inode refs
1870	 */
1871	if (test_bit(BTRFS_FS_LOG_RECOVERING, &fs_info->flags))
1872		return -EAGAIN;
1873
1874	delayed_node = btrfs_get_or_create_delayed_node(inode);
1875	if (IS_ERR(delayed_node))
1876		return PTR_ERR(delayed_node);
1877
1878	/*
1879	 * We don't reserve space for inode ref deletion is because:
1880	 * - We ONLY do async inode ref deletion for the inode who has only
1881	 *   one link(i_nlink == 1), it means there is only one inode ref.
1882	 *   And in most case, the inode ref and the inode item are in the
1883	 *   same leaf, and we will deal with them at the same time.
1884	 *   Since we are sure we will reserve the space for the inode item,
1885	 *   it is unnecessary to reserve space for inode ref deletion.
1886	 * - If the inode ref and the inode item are not in the same leaf,
1887	 *   We also needn't worry about enospc problem, because we reserve
1888	 *   much more space for the inode update than it needs.
1889	 * - At the worst, we can steal some space from the global reservation.
1890	 *   It is very rare.
1891	 */
1892	mutex_lock(&delayed_node->mutex);
1893	if (test_bit(BTRFS_DELAYED_NODE_DEL_IREF, &delayed_node->flags))
1894		goto release_node;
1895
1896	set_bit(BTRFS_DELAYED_NODE_DEL_IREF, &delayed_node->flags);
1897	delayed_node->count++;
1898	atomic_inc(&fs_info->delayed_root->items);
1899release_node:
1900	mutex_unlock(&delayed_node->mutex);
1901	btrfs_release_delayed_node(delayed_node);
1902	return 0;
1903}
1904
1905static void __btrfs_kill_delayed_node(struct btrfs_delayed_node *delayed_node)
1906{
1907	struct btrfs_root *root = delayed_node->root;
1908	struct btrfs_fs_info *fs_info = root->fs_info;
1909	struct btrfs_delayed_item *curr_item, *prev_item;
1910
1911	mutex_lock(&delayed_node->mutex);
1912	curr_item = __btrfs_first_delayed_insertion_item(delayed_node);
1913	while (curr_item) {
1914		btrfs_delayed_item_release_metadata(root, curr_item);
1915		prev_item = curr_item;
1916		curr_item = __btrfs_next_delayed_item(prev_item);
1917		btrfs_release_delayed_item(prev_item);
1918	}
1919
1920	curr_item = __btrfs_first_delayed_deletion_item(delayed_node);
1921	while (curr_item) {
1922		btrfs_delayed_item_release_metadata(root, curr_item);
1923		prev_item = curr_item;
1924		curr_item = __btrfs_next_delayed_item(prev_item);
1925		btrfs_release_delayed_item(prev_item);
1926	}
1927
1928	if (test_bit(BTRFS_DELAYED_NODE_DEL_IREF, &delayed_node->flags))
1929		btrfs_release_delayed_iref(delayed_node);
1930
1931	if (test_bit(BTRFS_DELAYED_NODE_INODE_DIRTY, &delayed_node->flags)) {
1932		btrfs_delayed_inode_release_metadata(fs_info, delayed_node, false);
1933		btrfs_release_delayed_inode(delayed_node);
1934	}
1935	mutex_unlock(&delayed_node->mutex);
1936}
1937
1938void btrfs_kill_delayed_inode_items(struct btrfs_inode *inode)
1939{
1940	struct btrfs_delayed_node *delayed_node;
1941
1942	delayed_node = btrfs_get_delayed_node(inode);
1943	if (!delayed_node)
1944		return;
1945
1946	__btrfs_kill_delayed_node(delayed_node);
1947	btrfs_release_delayed_node(delayed_node);
1948}
1949
1950void btrfs_kill_all_delayed_nodes(struct btrfs_root *root)
1951{
1952	u64 inode_id = 0;
1953	struct btrfs_delayed_node *delayed_nodes[8];
1954	int i, n;
1955
1956	while (1) {
1957		spin_lock(&root->inode_lock);
1958		n = radix_tree_gang_lookup(&root->delayed_nodes_tree,
1959					   (void **)delayed_nodes, inode_id,
1960					   ARRAY_SIZE(delayed_nodes));
1961		if (!n) {
1962			spin_unlock(&root->inode_lock);
1963			break;
1964		}
1965
1966		inode_id = delayed_nodes[n - 1]->inode_id + 1;
1967		for (i = 0; i < n; i++) {
1968			/*
1969			 * Don't increase refs in case the node is dead and
1970			 * about to be removed from the tree in the loop below
1971			 */
1972			if (!refcount_inc_not_zero(&delayed_nodes[i]->refs))
1973				delayed_nodes[i] = NULL;
1974		}
1975		spin_unlock(&root->inode_lock);
1976
1977		for (i = 0; i < n; i++) {
1978			if (!delayed_nodes[i])
1979				continue;
1980			__btrfs_kill_delayed_node(delayed_nodes[i]);
1981			btrfs_release_delayed_node(delayed_nodes[i]);
1982		}
1983	}
1984}
1985
1986void btrfs_destroy_delayed_inodes(struct btrfs_fs_info *fs_info)
1987{
1988	struct btrfs_delayed_node *curr_node, *prev_node;
1989
1990	curr_node = btrfs_first_delayed_node(fs_info->delayed_root);
1991	while (curr_node) {
1992		__btrfs_kill_delayed_node(curr_node);
1993
1994		prev_node = curr_node;
1995		curr_node = btrfs_next_delayed_node(curr_node);
1996		btrfs_release_delayed_node(prev_node);
1997	}
1998}
1999