Linux Audio

Check our new training course

Open-source upstreaming

Need help get the support for your hardware in upstream Linux?
Loading...
v3.1
 
   1/*
   2 * Copyright (C) 2011 Fujitsu.  All rights reserved.
   3 * Written by Miao Xie <miaox@cn.fujitsu.com>
   4 *
   5 * This program is free software; you can redistribute it and/or
   6 * modify it under the terms of the GNU General Public
   7 * License v2 as published by the Free Software Foundation.
   8 *
   9 * This program is distributed in the hope that it will be useful,
  10 * but WITHOUT ANY WARRANTY; without even the implied warranty of
  11 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the GNU
  12 * General Public License for more details.
  13 *
  14 * You should have received a copy of the GNU General Public
  15 * License along with this program; if not, write to the
  16 * Free Software Foundation, Inc., 59 Temple Place - Suite 330,
  17 * Boston, MA 021110-1307, USA.
  18 */
  19
  20#include <linux/slab.h>
 
 
 
  21#include "delayed-inode.h"
  22#include "disk-io.h"
  23#include "transaction.h"
  24
  25#define BTRFS_DELAYED_WRITEBACK		400
  26#define BTRFS_DELAYED_BACKGROUND	100
 
 
 
 
  27
  28static struct kmem_cache *delayed_node_cache;
  29
  30int __init btrfs_delayed_inode_init(void)
  31{
  32	delayed_node_cache = kmem_cache_create("delayed_node",
  33					sizeof(struct btrfs_delayed_node),
  34					0,
  35					SLAB_RECLAIM_ACCOUNT | SLAB_MEM_SPREAD,
  36					NULL);
  37	if (!delayed_node_cache)
  38		return -ENOMEM;
  39	return 0;
  40}
  41
  42void btrfs_delayed_inode_exit(void)
  43{
  44	if (delayed_node_cache)
  45		kmem_cache_destroy(delayed_node_cache);
  46}
  47
  48static inline void btrfs_init_delayed_node(
  49				struct btrfs_delayed_node *delayed_node,
  50				struct btrfs_root *root, u64 inode_id)
  51{
  52	delayed_node->root = root;
  53	delayed_node->inode_id = inode_id;
  54	atomic_set(&delayed_node->refs, 0);
  55	delayed_node->count = 0;
  56	delayed_node->in_list = 0;
  57	delayed_node->inode_dirty = 0;
  58	delayed_node->ins_root = RB_ROOT;
  59	delayed_node->del_root = RB_ROOT;
  60	mutex_init(&delayed_node->mutex);
  61	delayed_node->index_cnt = 0;
  62	INIT_LIST_HEAD(&delayed_node->n_list);
  63	INIT_LIST_HEAD(&delayed_node->p_list);
  64	delayed_node->bytes_reserved = 0;
  65}
  66
  67static inline int btrfs_is_continuous_delayed_item(
  68					struct btrfs_delayed_item *item1,
  69					struct btrfs_delayed_item *item2)
  70{
  71	if (item1->key.type == BTRFS_DIR_INDEX_KEY &&
  72	    item1->key.objectid == item2->key.objectid &&
  73	    item1->key.type == item2->key.type &&
  74	    item1->key.offset + 1 == item2->key.offset)
  75		return 1;
  76	return 0;
  77}
  78
  79static inline struct btrfs_delayed_root *btrfs_get_delayed_root(
  80							struct btrfs_root *root)
  81{
  82	return root->fs_info->delayed_root;
  83}
  84
  85static struct btrfs_delayed_node *btrfs_get_delayed_node(struct inode *inode)
  86{
  87	struct btrfs_inode *btrfs_inode = BTRFS_I(inode);
  88	struct btrfs_root *root = btrfs_inode->root;
  89	u64 ino = btrfs_ino(inode);
  90	struct btrfs_delayed_node *node;
  91
  92	node = ACCESS_ONCE(btrfs_inode->delayed_node);
  93	if (node) {
  94		atomic_inc(&node->refs);
  95		return node;
  96	}
  97
  98	spin_lock(&root->inode_lock);
  99	node = radix_tree_lookup(&root->delayed_nodes_tree, ino);
 
 100	if (node) {
 101		if (btrfs_inode->delayed_node) {
 102			atomic_inc(&node->refs);	/* can be accessed */
 103			BUG_ON(btrfs_inode->delayed_node != node);
 104			spin_unlock(&root->inode_lock);
 105			return node;
 106		}
 107		btrfs_inode->delayed_node = node;
 108		atomic_inc(&node->refs);	/* can be accessed */
 109		atomic_inc(&node->refs);	/* cached in the inode */
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 110		spin_unlock(&root->inode_lock);
 111		return node;
 112	}
 113	spin_unlock(&root->inode_lock);
 114
 115	return NULL;
 116}
 117
 
 118static struct btrfs_delayed_node *btrfs_get_or_create_delayed_node(
 119							struct inode *inode)
 120{
 121	struct btrfs_delayed_node *node;
 122	struct btrfs_inode *btrfs_inode = BTRFS_I(inode);
 123	struct btrfs_root *root = btrfs_inode->root;
 124	u64 ino = btrfs_ino(inode);
 125	int ret;
 126
 127again:
 128	node = btrfs_get_delayed_node(inode);
 129	if (node)
 130		return node;
 131
 132	node = kmem_cache_alloc(delayed_node_cache, GFP_NOFS);
 133	if (!node)
 134		return ERR_PTR(-ENOMEM);
 135	btrfs_init_delayed_node(node, root, ino);
 136
 137	atomic_inc(&node->refs);	/* cached in the btrfs inode */
 138	atomic_inc(&node->refs);	/* can be accessed */
 139
 140	ret = radix_tree_preload(GFP_NOFS & ~__GFP_HIGHMEM);
 141	if (ret) {
 142		kmem_cache_free(delayed_node_cache, node);
 143		return ERR_PTR(ret);
 144	}
 145
 146	spin_lock(&root->inode_lock);
 147	ret = radix_tree_insert(&root->delayed_nodes_tree, ino, node);
 148	if (ret == -EEXIST) {
 149		kmem_cache_free(delayed_node_cache, node);
 150		spin_unlock(&root->inode_lock);
 
 151		radix_tree_preload_end();
 152		goto again;
 153	}
 154	btrfs_inode->delayed_node = node;
 155	spin_unlock(&root->inode_lock);
 156	radix_tree_preload_end();
 157
 158	return node;
 159}
 160
 161/*
 162 * Call it when holding delayed_node->mutex
 163 *
 164 * If mod = 1, add this node into the prepared list.
 165 */
 166static void btrfs_queue_delayed_node(struct btrfs_delayed_root *root,
 167				     struct btrfs_delayed_node *node,
 168				     int mod)
 169{
 170	spin_lock(&root->lock);
 171	if (node->in_list) {
 172		if (!list_empty(&node->p_list))
 173			list_move_tail(&node->p_list, &root->prepare_list);
 174		else if (mod)
 175			list_add_tail(&node->p_list, &root->prepare_list);
 176	} else {
 177		list_add_tail(&node->n_list, &root->node_list);
 178		list_add_tail(&node->p_list, &root->prepare_list);
 179		atomic_inc(&node->refs);	/* inserted into list */
 180		root->nodes++;
 181		node->in_list = 1;
 182	}
 183	spin_unlock(&root->lock);
 184}
 185
 186/* Call it when holding delayed_node->mutex */
 187static void btrfs_dequeue_delayed_node(struct btrfs_delayed_root *root,
 188				       struct btrfs_delayed_node *node)
 189{
 190	spin_lock(&root->lock);
 191	if (node->in_list) {
 192		root->nodes--;
 193		atomic_dec(&node->refs);	/* not in the list */
 194		list_del_init(&node->n_list);
 195		if (!list_empty(&node->p_list))
 196			list_del_init(&node->p_list);
 197		node->in_list = 0;
 198	}
 199	spin_unlock(&root->lock);
 200}
 201
 202struct btrfs_delayed_node *btrfs_first_delayed_node(
 203			struct btrfs_delayed_root *delayed_root)
 204{
 205	struct list_head *p;
 206	struct btrfs_delayed_node *node = NULL;
 207
 208	spin_lock(&delayed_root->lock);
 209	if (list_empty(&delayed_root->node_list))
 210		goto out;
 211
 212	p = delayed_root->node_list.next;
 213	node = list_entry(p, struct btrfs_delayed_node, n_list);
 214	atomic_inc(&node->refs);
 215out:
 216	spin_unlock(&delayed_root->lock);
 217
 218	return node;
 219}
 220
 221struct btrfs_delayed_node *btrfs_next_delayed_node(
 222						struct btrfs_delayed_node *node)
 223{
 224	struct btrfs_delayed_root *delayed_root;
 225	struct list_head *p;
 226	struct btrfs_delayed_node *next = NULL;
 227
 228	delayed_root = node->root->fs_info->delayed_root;
 229	spin_lock(&delayed_root->lock);
 230	if (!node->in_list) {	/* not in the list */
 
 231		if (list_empty(&delayed_root->node_list))
 232			goto out;
 233		p = delayed_root->node_list.next;
 234	} else if (list_is_last(&node->n_list, &delayed_root->node_list))
 235		goto out;
 236	else
 237		p = node->n_list.next;
 238
 239	next = list_entry(p, struct btrfs_delayed_node, n_list);
 240	atomic_inc(&next->refs);
 241out:
 242	spin_unlock(&delayed_root->lock);
 243
 244	return next;
 245}
 246
 247static void __btrfs_release_delayed_node(
 248				struct btrfs_delayed_node *delayed_node,
 249				int mod)
 250{
 251	struct btrfs_delayed_root *delayed_root;
 252
 253	if (!delayed_node)
 254		return;
 255
 256	delayed_root = delayed_node->root->fs_info->delayed_root;
 257
 258	mutex_lock(&delayed_node->mutex);
 259	if (delayed_node->count)
 260		btrfs_queue_delayed_node(delayed_root, delayed_node, mod);
 261	else
 262		btrfs_dequeue_delayed_node(delayed_root, delayed_node);
 263	mutex_unlock(&delayed_node->mutex);
 264
 265	if (atomic_dec_and_test(&delayed_node->refs)) {
 266		struct btrfs_root *root = delayed_node->root;
 
 267		spin_lock(&root->inode_lock);
 268		if (atomic_read(&delayed_node->refs) == 0) {
 269			radix_tree_delete(&root->delayed_nodes_tree,
 270					  delayed_node->inode_id);
 271			kmem_cache_free(delayed_node_cache, delayed_node);
 272		}
 
 
 273		spin_unlock(&root->inode_lock);
 
 274	}
 275}
 276
 277static inline void btrfs_release_delayed_node(struct btrfs_delayed_node *node)
 278{
 279	__btrfs_release_delayed_node(node, 0);
 280}
 281
 282struct btrfs_delayed_node *btrfs_first_prepared_delayed_node(
 283					struct btrfs_delayed_root *delayed_root)
 284{
 285	struct list_head *p;
 286	struct btrfs_delayed_node *node = NULL;
 287
 288	spin_lock(&delayed_root->lock);
 289	if (list_empty(&delayed_root->prepare_list))
 290		goto out;
 291
 292	p = delayed_root->prepare_list.next;
 293	list_del_init(p);
 294	node = list_entry(p, struct btrfs_delayed_node, p_list);
 295	atomic_inc(&node->refs);
 296out:
 297	spin_unlock(&delayed_root->lock);
 298
 299	return node;
 300}
 301
 302static inline void btrfs_release_prepared_delayed_node(
 303					struct btrfs_delayed_node *node)
 304{
 305	__btrfs_release_delayed_node(node, 1);
 306}
 307
 308struct btrfs_delayed_item *btrfs_alloc_delayed_item(u32 data_len)
 309{
 310	struct btrfs_delayed_item *item;
 311	item = kmalloc(sizeof(*item) + data_len, GFP_NOFS);
 312	if (item) {
 313		item->data_len = data_len;
 314		item->ins_or_del = 0;
 315		item->bytes_reserved = 0;
 316		item->delayed_node = NULL;
 317		atomic_set(&item->refs, 1);
 318	}
 319	return item;
 320}
 321
 322/*
 323 * __btrfs_lookup_delayed_item - look up the delayed item by key
 324 * @delayed_node: pointer to the delayed node
 325 * @key:	  the key to look up
 326 * @prev:	  used to store the prev item if the right item isn't found
 327 * @next:	  used to store the next item if the right item isn't found
 328 *
 329 * Note: if we don't find the right item, we will return the prev item and
 330 * the next item.
 331 */
 332static struct btrfs_delayed_item *__btrfs_lookup_delayed_item(
 333				struct rb_root *root,
 334				struct btrfs_key *key,
 335				struct btrfs_delayed_item **prev,
 336				struct btrfs_delayed_item **next)
 337{
 338	struct rb_node *node, *prev_node = NULL;
 339	struct btrfs_delayed_item *delayed_item = NULL;
 340	int ret = 0;
 341
 342	node = root->rb_node;
 343
 344	while (node) {
 345		delayed_item = rb_entry(node, struct btrfs_delayed_item,
 346					rb_node);
 347		prev_node = node;
 348		ret = btrfs_comp_cpu_keys(&delayed_item->key, key);
 349		if (ret < 0)
 350			node = node->rb_right;
 351		else if (ret > 0)
 352			node = node->rb_left;
 353		else
 354			return delayed_item;
 355	}
 356
 357	if (prev) {
 358		if (!prev_node)
 359			*prev = NULL;
 360		else if (ret < 0)
 361			*prev = delayed_item;
 362		else if ((node = rb_prev(prev_node)) != NULL) {
 363			*prev = rb_entry(node, struct btrfs_delayed_item,
 364					 rb_node);
 365		} else
 366			*prev = NULL;
 367	}
 368
 369	if (next) {
 370		if (!prev_node)
 371			*next = NULL;
 372		else if (ret > 0)
 373			*next = delayed_item;
 374		else if ((node = rb_next(prev_node)) != NULL) {
 375			*next = rb_entry(node, struct btrfs_delayed_item,
 376					 rb_node);
 377		} else
 378			*next = NULL;
 379	}
 380	return NULL;
 381}
 382
 383struct btrfs_delayed_item *__btrfs_lookup_delayed_insertion_item(
 384					struct btrfs_delayed_node *delayed_node,
 385					struct btrfs_key *key)
 386{
 387	struct btrfs_delayed_item *item;
 388
 389	item = __btrfs_lookup_delayed_item(&delayed_node->ins_root, key,
 390					   NULL, NULL);
 391	return item;
 392}
 393
 394struct btrfs_delayed_item *__btrfs_lookup_delayed_deletion_item(
 395					struct btrfs_delayed_node *delayed_node,
 396					struct btrfs_key *key)
 397{
 398	struct btrfs_delayed_item *item;
 399
 400	item = __btrfs_lookup_delayed_item(&delayed_node->del_root, key,
 401					   NULL, NULL);
 402	return item;
 403}
 404
 405struct btrfs_delayed_item *__btrfs_search_delayed_insertion_item(
 406					struct btrfs_delayed_node *delayed_node,
 407					struct btrfs_key *key)
 408{
 409	struct btrfs_delayed_item *item, *next;
 410
 411	item = __btrfs_lookup_delayed_item(&delayed_node->ins_root, key,
 412					   NULL, &next);
 413	if (!item)
 414		item = next;
 415
 416	return item;
 417}
 418
 419struct btrfs_delayed_item *__btrfs_search_delayed_deletion_item(
 420					struct btrfs_delayed_node *delayed_node,
 421					struct btrfs_key *key)
 422{
 423	struct btrfs_delayed_item *item, *next;
 424
 425	item = __btrfs_lookup_delayed_item(&delayed_node->del_root, key,
 426					   NULL, &next);
 427	if (!item)
 428		item = next;
 429
 430	return item;
 431}
 432
 433static int __btrfs_add_delayed_item(struct btrfs_delayed_node *delayed_node,
 434				    struct btrfs_delayed_item *ins,
 435				    int action)
 436{
 437	struct rb_node **p, *node;
 438	struct rb_node *parent_node = NULL;
 439	struct rb_root *root;
 440	struct btrfs_delayed_item *item;
 441	int cmp;
 
 442
 443	if (action == BTRFS_DELAYED_INSERTION_ITEM)
 444		root = &delayed_node->ins_root;
 445	else if (action == BTRFS_DELAYED_DELETION_ITEM)
 446		root = &delayed_node->del_root;
 447	else
 448		BUG();
 449	p = &root->rb_node;
 450	node = &ins->rb_node;
 451
 452	while (*p) {
 453		parent_node = *p;
 454		item = rb_entry(parent_node, struct btrfs_delayed_item,
 455				 rb_node);
 456
 457		cmp = btrfs_comp_cpu_keys(&item->key, &ins->key);
 458		if (cmp < 0)
 459			p = &(*p)->rb_right;
 460		else if (cmp > 0)
 
 461			p = &(*p)->rb_left;
 462		else
 463			return -EEXIST;
 
 464	}
 465
 466	rb_link_node(node, parent_node, p);
 467	rb_insert_color(node, root);
 468	ins->delayed_node = delayed_node;
 469	ins->ins_or_del = action;
 470
 471	if (ins->key.type == BTRFS_DIR_INDEX_KEY &&
 472	    action == BTRFS_DELAYED_INSERTION_ITEM &&
 473	    ins->key.offset >= delayed_node->index_cnt)
 474			delayed_node->index_cnt = ins->key.offset + 1;
 475
 476	delayed_node->count++;
 477	atomic_inc(&delayed_node->root->fs_info->delayed_root->items);
 478	return 0;
 479}
 480
 481static int __btrfs_add_delayed_insertion_item(struct btrfs_delayed_node *node,
 482					      struct btrfs_delayed_item *item)
 483{
 484	return __btrfs_add_delayed_item(node, item,
 485					BTRFS_DELAYED_INSERTION_ITEM);
 486}
 487
 488static int __btrfs_add_delayed_deletion_item(struct btrfs_delayed_node *node,
 489					     struct btrfs_delayed_item *item)
 490{
 491	return __btrfs_add_delayed_item(node, item,
 492					BTRFS_DELAYED_DELETION_ITEM);
 493}
 494
 
 
 
 
 
 
 
 
 
 
 495static void __btrfs_remove_delayed_item(struct btrfs_delayed_item *delayed_item)
 496{
 497	struct rb_root *root;
 498	struct btrfs_delayed_root *delayed_root;
 499
 
 
 
 500	delayed_root = delayed_item->delayed_node->root->fs_info->delayed_root;
 501
 502	BUG_ON(!delayed_root);
 503	BUG_ON(delayed_item->ins_or_del != BTRFS_DELAYED_DELETION_ITEM &&
 504	       delayed_item->ins_or_del != BTRFS_DELAYED_INSERTION_ITEM);
 505
 506	if (delayed_item->ins_or_del == BTRFS_DELAYED_INSERTION_ITEM)
 507		root = &delayed_item->delayed_node->ins_root;
 508	else
 509		root = &delayed_item->delayed_node->del_root;
 510
 511	rb_erase(&delayed_item->rb_node, root);
 512	delayed_item->delayed_node->count--;
 513	atomic_dec(&delayed_root->items);
 514	if (atomic_read(&delayed_root->items) < BTRFS_DELAYED_BACKGROUND &&
 515	    waitqueue_active(&delayed_root->wait))
 516		wake_up(&delayed_root->wait);
 517}
 518
 519static void btrfs_release_delayed_item(struct btrfs_delayed_item *item)
 520{
 521	if (item) {
 522		__btrfs_remove_delayed_item(item);
 523		if (atomic_dec_and_test(&item->refs))
 524			kfree(item);
 525	}
 526}
 527
 528struct btrfs_delayed_item *__btrfs_first_delayed_insertion_item(
 529					struct btrfs_delayed_node *delayed_node)
 530{
 531	struct rb_node *p;
 532	struct btrfs_delayed_item *item = NULL;
 533
 534	p = rb_first(&delayed_node->ins_root);
 535	if (p)
 536		item = rb_entry(p, struct btrfs_delayed_item, rb_node);
 537
 538	return item;
 539}
 540
 541struct btrfs_delayed_item *__btrfs_first_delayed_deletion_item(
 542					struct btrfs_delayed_node *delayed_node)
 543{
 544	struct rb_node *p;
 545	struct btrfs_delayed_item *item = NULL;
 546
 547	p = rb_first(&delayed_node->del_root);
 548	if (p)
 549		item = rb_entry(p, struct btrfs_delayed_item, rb_node);
 550
 551	return item;
 552}
 553
 554struct btrfs_delayed_item *__btrfs_next_delayed_item(
 555						struct btrfs_delayed_item *item)
 556{
 557	struct rb_node *p;
 558	struct btrfs_delayed_item *next = NULL;
 559
 560	p = rb_next(&item->rb_node);
 561	if (p)
 562		next = rb_entry(p, struct btrfs_delayed_item, rb_node);
 563
 564	return next;
 565}
 566
 567static inline struct btrfs_root *btrfs_get_fs_root(struct btrfs_root *root,
 568						   u64 root_id)
 569{
 570	struct btrfs_key root_key;
 571
 572	if (root->objectid == root_id)
 573		return root;
 574
 575	root_key.objectid = root_id;
 576	root_key.type = BTRFS_ROOT_ITEM_KEY;
 577	root_key.offset = (u64)-1;
 578	return btrfs_read_fs_root_no_name(root->fs_info, &root_key);
 579}
 580
 581static int btrfs_delayed_item_reserve_metadata(struct btrfs_trans_handle *trans,
 582					       struct btrfs_root *root,
 583					       struct btrfs_delayed_item *item)
 584{
 585	struct btrfs_block_rsv *src_rsv;
 586	struct btrfs_block_rsv *dst_rsv;
 
 587	u64 num_bytes;
 588	int ret;
 589
 590	if (!trans->bytes_reserved)
 591		return 0;
 592
 593	src_rsv = trans->block_rsv;
 594	dst_rsv = &root->fs_info->global_block_rsv;
 595
 596	num_bytes = btrfs_calc_trans_metadata_size(root, 1);
 597	ret = btrfs_block_rsv_migrate(src_rsv, dst_rsv, num_bytes);
 598	if (!ret)
 
 
 
 
 
 
 
 
 
 599		item->bytes_reserved = num_bytes;
 
 600
 601	return ret;
 602}
 603
 604static void btrfs_delayed_item_release_metadata(struct btrfs_root *root,
 605						struct btrfs_delayed_item *item)
 606{
 607	struct btrfs_block_rsv *rsv;
 
 608
 609	if (!item->bytes_reserved)
 610		return;
 611
 612	rsv = &root->fs_info->global_block_rsv;
 613	btrfs_block_rsv_release(root, rsv,
 614				item->bytes_reserved);
 
 
 
 
 
 
 615}
 616
 617static int btrfs_delayed_inode_reserve_metadata(
 618					struct btrfs_trans_handle *trans,
 619					struct btrfs_root *root,
 620					struct btrfs_delayed_node *node)
 621{
 
 622	struct btrfs_block_rsv *src_rsv;
 623	struct btrfs_block_rsv *dst_rsv;
 624	u64 num_bytes;
 625	int ret;
 626
 627	if (!trans->bytes_reserved)
 628		return 0;
 629
 630	src_rsv = trans->block_rsv;
 631	dst_rsv = &root->fs_info->global_block_rsv;
 632
 633	num_bytes = btrfs_calc_trans_metadata_size(root, 1);
 634	ret = btrfs_block_rsv_migrate(src_rsv, dst_rsv, num_bytes);
 635	if (!ret)
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 636		node->bytes_reserved = num_bytes;
 
 637
 638	return ret;
 639}
 640
 641static void btrfs_delayed_inode_release_metadata(struct btrfs_root *root,
 642						struct btrfs_delayed_node *node)
 
 643{
 644	struct btrfs_block_rsv *rsv;
 645
 646	if (!node->bytes_reserved)
 647		return;
 648
 649	rsv = &root->fs_info->global_block_rsv;
 650	btrfs_block_rsv_release(root, rsv,
 
 
 
 
 
 
 
 651				node->bytes_reserved);
 652	node->bytes_reserved = 0;
 653}
 654
 655/*
 656 * This helper will insert some continuous items into the same leaf according
 657 * to the free space of the leaf.
 658 */
 659static int btrfs_batch_insert_items(struct btrfs_trans_handle *trans,
 660				struct btrfs_root *root,
 661				struct btrfs_path *path,
 662				struct btrfs_delayed_item *item)
 663{
 664	struct btrfs_delayed_item *curr, *next;
 665	int free_space;
 666	int total_data_size = 0, total_size = 0;
 667	struct extent_buffer *leaf;
 668	char *data_ptr;
 669	struct btrfs_key *keys;
 670	u32 *data_size;
 671	struct list_head head;
 672	int slot;
 673	int nitems;
 674	int i;
 675	int ret = 0;
 676
 677	BUG_ON(!path->nodes[0]);
 678
 679	leaf = path->nodes[0];
 680	free_space = btrfs_leaf_free_space(root, leaf);
 681	INIT_LIST_HEAD(&head);
 682
 683	next = item;
 684	nitems = 0;
 685
 686	/*
 687	 * count the number of the continuous items that we can insert in batch
 688	 */
 689	while (total_size + next->data_len + sizeof(struct btrfs_item) <=
 690	       free_space) {
 691		total_data_size += next->data_len;
 692		total_size += next->data_len + sizeof(struct btrfs_item);
 693		list_add_tail(&next->tree_list, &head);
 694		nitems++;
 695
 696		curr = next;
 697		next = __btrfs_next_delayed_item(curr);
 698		if (!next)
 699			break;
 700
 701		if (!btrfs_is_continuous_delayed_item(curr, next))
 702			break;
 703	}
 704
 705	if (!nitems) {
 706		ret = 0;
 707		goto out;
 708	}
 709
 710	/*
 711	 * we need allocate some memory space, but it might cause the task
 712	 * to sleep, so we set all locked nodes in the path to blocking locks
 713	 * first.
 714	 */
 715	btrfs_set_path_blocking(path);
 716
 717	keys = kmalloc(sizeof(struct btrfs_key) * nitems, GFP_NOFS);
 718	if (!keys) {
 719		ret = -ENOMEM;
 720		goto out;
 721	}
 722
 723	data_size = kmalloc(sizeof(u32) * nitems, GFP_NOFS);
 724	if (!data_size) {
 725		ret = -ENOMEM;
 726		goto error;
 727	}
 728
 729	/* get keys of all the delayed items */
 730	i = 0;
 731	list_for_each_entry(next, &head, tree_list) {
 732		keys[i] = next->key;
 733		data_size[i] = next->data_len;
 734		i++;
 735	}
 736
 737	/* reset all the locked nodes in the patch to spinning locks. */
 738	btrfs_clear_path_blocking(path, NULL, 0);
 739
 740	/* insert the keys of the items */
 741	ret = setup_items_for_insert(trans, root, path, keys, data_size,
 742				     total_data_size, total_size, nitems);
 743	if (ret)
 744		goto error;
 745
 746	/* insert the dir index items */
 747	slot = path->slots[0];
 748	list_for_each_entry_safe(curr, next, &head, tree_list) {
 749		data_ptr = btrfs_item_ptr(leaf, slot, char);
 750		write_extent_buffer(leaf, &curr->data,
 751				    (unsigned long)data_ptr,
 752				    curr->data_len);
 753		slot++;
 754
 755		btrfs_delayed_item_release_metadata(root, curr);
 756
 757		list_del(&curr->tree_list);
 758		btrfs_release_delayed_item(curr);
 759	}
 760
 761error:
 762	kfree(data_size);
 763	kfree(keys);
 764out:
 765	return ret;
 766}
 767
 768/*
 769 * This helper can just do simple insertion that needn't extend item for new
 770 * data, such as directory name index insertion, inode insertion.
 771 */
 772static int btrfs_insert_delayed_item(struct btrfs_trans_handle *trans,
 773				     struct btrfs_root *root,
 774				     struct btrfs_path *path,
 775				     struct btrfs_delayed_item *delayed_item)
 776{
 777	struct extent_buffer *leaf;
 778	struct btrfs_item *item;
 779	char *ptr;
 780	int ret;
 781
 
 782	ret = btrfs_insert_empty_item(trans, root, path, &delayed_item->key,
 783				      delayed_item->data_len);
 
 784	if (ret < 0 && ret != -EEXIST)
 785		return ret;
 786
 787	leaf = path->nodes[0];
 788
 789	item = btrfs_item_nr(leaf, path->slots[0]);
 790	ptr = btrfs_item_ptr(leaf, path->slots[0], char);
 791
 792	write_extent_buffer(leaf, delayed_item->data, (unsigned long)ptr,
 793			    delayed_item->data_len);
 794	btrfs_mark_buffer_dirty(leaf);
 795
 796	btrfs_delayed_item_release_metadata(root, delayed_item);
 797	return 0;
 798}
 799
 800/*
 801 * we insert an item first, then if there are some continuous items, we try
 802 * to insert those items into the same leaf.
 803 */
 804static int btrfs_insert_delayed_items(struct btrfs_trans_handle *trans,
 805				      struct btrfs_path *path,
 806				      struct btrfs_root *root,
 807				      struct btrfs_delayed_node *node)
 808{
 809	struct btrfs_delayed_item *curr, *prev;
 810	int ret = 0;
 811
 812do_again:
 813	mutex_lock(&node->mutex);
 814	curr = __btrfs_first_delayed_insertion_item(node);
 815	if (!curr)
 816		goto insert_end;
 817
 818	ret = btrfs_insert_delayed_item(trans, root, path, curr);
 819	if (ret < 0) {
 820		btrfs_release_path(path);
 821		goto insert_end;
 822	}
 823
 824	prev = curr;
 825	curr = __btrfs_next_delayed_item(prev);
 826	if (curr && btrfs_is_continuous_delayed_item(prev, curr)) {
 827		/* insert the continuous items into the same leaf */
 828		path->slots[0]++;
 829		btrfs_batch_insert_items(trans, root, path, curr);
 830	}
 831	btrfs_release_delayed_item(prev);
 832	btrfs_mark_buffer_dirty(path->nodes[0]);
 833
 834	btrfs_release_path(path);
 835	mutex_unlock(&node->mutex);
 836	goto do_again;
 837
 838insert_end:
 839	mutex_unlock(&node->mutex);
 840	return ret;
 841}
 842
 843static int btrfs_batch_delete_items(struct btrfs_trans_handle *trans,
 844				    struct btrfs_root *root,
 845				    struct btrfs_path *path,
 846				    struct btrfs_delayed_item *item)
 847{
 848	struct btrfs_delayed_item *curr, *next;
 849	struct extent_buffer *leaf;
 850	struct btrfs_key key;
 851	struct list_head head;
 852	int nitems, i, last_item;
 853	int ret = 0;
 854
 855	BUG_ON(!path->nodes[0]);
 856
 857	leaf = path->nodes[0];
 858
 859	i = path->slots[0];
 860	last_item = btrfs_header_nritems(leaf) - 1;
 861	if (i > last_item)
 862		return -ENOENT;	/* FIXME: Is errno suitable? */
 863
 864	next = item;
 865	INIT_LIST_HEAD(&head);
 866	btrfs_item_key_to_cpu(leaf, &key, i);
 867	nitems = 0;
 868	/*
 869	 * count the number of the dir index items that we can delete in batch
 870	 */
 871	while (btrfs_comp_cpu_keys(&next->key, &key) == 0) {
 872		list_add_tail(&next->tree_list, &head);
 873		nitems++;
 874
 875		curr = next;
 876		next = __btrfs_next_delayed_item(curr);
 877		if (!next)
 878			break;
 879
 880		if (!btrfs_is_continuous_delayed_item(curr, next))
 881			break;
 882
 883		i++;
 884		if (i > last_item)
 885			break;
 886		btrfs_item_key_to_cpu(leaf, &key, i);
 887	}
 888
 889	if (!nitems)
 890		return 0;
 891
 892	ret = btrfs_del_items(trans, root, path, path->slots[0], nitems);
 893	if (ret)
 894		goto out;
 895
 896	list_for_each_entry_safe(curr, next, &head, tree_list) {
 897		btrfs_delayed_item_release_metadata(root, curr);
 898		list_del(&curr->tree_list);
 899		btrfs_release_delayed_item(curr);
 900	}
 901
 902out:
 903	return ret;
 904}
 905
 906static int btrfs_delete_delayed_items(struct btrfs_trans_handle *trans,
 907				      struct btrfs_path *path,
 908				      struct btrfs_root *root,
 909				      struct btrfs_delayed_node *node)
 910{
 911	struct btrfs_delayed_item *curr, *prev;
 
 912	int ret = 0;
 913
 914do_again:
 915	mutex_lock(&node->mutex);
 916	curr = __btrfs_first_delayed_deletion_item(node);
 917	if (!curr)
 918		goto delete_fail;
 919
 
 920	ret = btrfs_search_slot(trans, root, &curr->key, path, -1, 1);
 
 921	if (ret < 0)
 922		goto delete_fail;
 923	else if (ret > 0) {
 924		/*
 925		 * can't find the item which the node points to, so this node
 926		 * is invalid, just drop it.
 927		 */
 928		prev = curr;
 929		curr = __btrfs_next_delayed_item(prev);
 930		btrfs_release_delayed_item(prev);
 931		ret = 0;
 932		btrfs_release_path(path);
 933		if (curr)
 
 934			goto do_again;
 935		else
 936			goto delete_fail;
 937	}
 938
 939	btrfs_batch_delete_items(trans, root, path, curr);
 940	btrfs_release_path(path);
 941	mutex_unlock(&node->mutex);
 942	goto do_again;
 943
 944delete_fail:
 945	btrfs_release_path(path);
 946	mutex_unlock(&node->mutex);
 947	return ret;
 948}
 949
 950static void btrfs_release_delayed_inode(struct btrfs_delayed_node *delayed_node)
 951{
 952	struct btrfs_delayed_root *delayed_root;
 953
 954	if (delayed_node && delayed_node->inode_dirty) {
 
 955		BUG_ON(!delayed_node->root);
 956		delayed_node->inode_dirty = 0;
 957		delayed_node->count--;
 958
 959		delayed_root = delayed_node->root->fs_info->delayed_root;
 960		atomic_dec(&delayed_root->items);
 961		if (atomic_read(&delayed_root->items) <
 962		    BTRFS_DELAYED_BACKGROUND &&
 963		    waitqueue_active(&delayed_root->wait))
 964			wake_up(&delayed_root->wait);
 965	}
 966}
 967
 968static int btrfs_update_delayed_inode(struct btrfs_trans_handle *trans,
 969				      struct btrfs_root *root,
 970				      struct btrfs_path *path,
 971				      struct btrfs_delayed_node *node)
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 972{
 
 973	struct btrfs_key key;
 974	struct btrfs_inode_item *inode_item;
 975	struct extent_buffer *leaf;
 
 
 976	int ret;
 977
 978	mutex_lock(&node->mutex);
 979	if (!node->inode_dirty) {
 980		mutex_unlock(&node->mutex);
 981		return 0;
 982	}
 983
 984	key.objectid = node->inode_id;
 985	btrfs_set_key_type(&key, BTRFS_INODE_ITEM_KEY);
 986	key.offset = 0;
 987	ret = btrfs_lookup_inode(trans, root, path, &key, 1);
 988	if (ret > 0) {
 989		btrfs_release_path(path);
 990		mutex_unlock(&node->mutex);
 991		return -ENOENT;
 992	} else if (ret < 0) {
 993		mutex_unlock(&node->mutex);
 994		return ret;
 995	}
 996
 997	btrfs_unlock_up_safe(path, 1);
 
 
 
 
 
 
 
 
 
 
 
 
 998	leaf = path->nodes[0];
 999	inode_item = btrfs_item_ptr(leaf, path->slots[0],
1000				    struct btrfs_inode_item);
1001	write_extent_buffer(leaf, &node->inode_item, (unsigned long)inode_item,
1002			    sizeof(struct btrfs_inode_item));
1003	btrfs_mark_buffer_dirty(leaf);
1004	btrfs_release_path(path);
1005
1006	btrfs_delayed_inode_release_metadata(root, node);
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1007	btrfs_release_delayed_inode(node);
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1008	mutex_unlock(&node->mutex);
 
 
1009
1010	return 0;
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1011}
1012
1013/* Called when committing the transaction. */
1014int btrfs_run_delayed_items(struct btrfs_trans_handle *trans,
1015			    struct btrfs_root *root)
 
 
 
 
1016{
 
1017	struct btrfs_delayed_root *delayed_root;
1018	struct btrfs_delayed_node *curr_node, *prev_node;
1019	struct btrfs_path *path;
1020	struct btrfs_block_rsv *block_rsv;
1021	int ret = 0;
 
 
 
 
1022
1023	path = btrfs_alloc_path();
1024	if (!path)
1025		return -ENOMEM;
1026	path->leave_spinning = 1;
1027
1028	block_rsv = trans->block_rsv;
1029	trans->block_rsv = &root->fs_info->global_block_rsv;
1030
1031	delayed_root = btrfs_get_delayed_root(root);
1032
1033	curr_node = btrfs_first_delayed_node(delayed_root);
1034	while (curr_node) {
1035		root = curr_node->root;
1036		ret = btrfs_insert_delayed_items(trans, path, root,
1037						 curr_node);
1038		if (!ret)
1039			ret = btrfs_delete_delayed_items(trans, path, root,
1040							 curr_node);
1041		if (!ret)
1042			ret = btrfs_update_delayed_inode(trans, root, path,
1043							 curr_node);
1044		if (ret) {
1045			btrfs_release_delayed_node(curr_node);
 
 
1046			break;
1047		}
1048
1049		prev_node = curr_node;
1050		curr_node = btrfs_next_delayed_node(curr_node);
1051		btrfs_release_delayed_node(prev_node);
1052	}
1053
 
 
1054	btrfs_free_path(path);
1055	trans->block_rsv = block_rsv;
 
1056	return ret;
1057}
1058
1059static int __btrfs_commit_inode_delayed_items(struct btrfs_trans_handle *trans,
1060					      struct btrfs_delayed_node *node)
 
 
 
 
1061{
 
 
 
 
 
 
 
1062	struct btrfs_path *path;
1063	struct btrfs_block_rsv *block_rsv;
1064	int ret;
1065
 
 
 
 
 
 
 
 
 
 
 
1066	path = btrfs_alloc_path();
1067	if (!path)
 
1068		return -ENOMEM;
1069	path->leave_spinning = 1;
1070
1071	block_rsv = trans->block_rsv;
1072	trans->block_rsv = &node->root->fs_info->global_block_rsv;
1073
1074	ret = btrfs_insert_delayed_items(trans, path, node->root, node);
1075	if (!ret)
1076		ret = btrfs_delete_delayed_items(trans, path, node->root, node);
1077	if (!ret)
1078		ret = btrfs_update_delayed_inode(trans, node->root, path, node);
1079	btrfs_free_path(path);
1080
 
 
1081	trans->block_rsv = block_rsv;
 
1082	return ret;
1083}
1084
1085int btrfs_commit_inode_delayed_items(struct btrfs_trans_handle *trans,
1086				     struct inode *inode)
1087{
 
 
1088	struct btrfs_delayed_node *delayed_node = btrfs_get_delayed_node(inode);
 
 
1089	int ret;
1090
1091	if (!delayed_node)
1092		return 0;
1093
1094	mutex_lock(&delayed_node->mutex);
1095	if (!delayed_node->count) {
1096		mutex_unlock(&delayed_node->mutex);
1097		btrfs_release_delayed_node(delayed_node);
1098		return 0;
1099	}
1100	mutex_unlock(&delayed_node->mutex);
1101
1102	ret = __btrfs_commit_inode_delayed_items(trans, delayed_node);
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1103	btrfs_release_delayed_node(delayed_node);
 
1104	return ret;
1105}
1106
1107void btrfs_remove_delayed_node(struct inode *inode)
1108{
1109	struct btrfs_delayed_node *delayed_node;
1110
1111	delayed_node = ACCESS_ONCE(BTRFS_I(inode)->delayed_node);
1112	if (!delayed_node)
1113		return;
1114
1115	BTRFS_I(inode)->delayed_node = NULL;
1116	btrfs_release_delayed_node(delayed_node);
1117}
1118
1119struct btrfs_async_delayed_node {
1120	struct btrfs_root *root;
1121	struct btrfs_delayed_node *delayed_node;
1122	struct btrfs_work work;
1123};
1124
1125static void btrfs_async_run_delayed_node_done(struct btrfs_work *work)
1126{
1127	struct btrfs_async_delayed_node *async_node;
 
1128	struct btrfs_trans_handle *trans;
1129	struct btrfs_path *path;
1130	struct btrfs_delayed_node *delayed_node = NULL;
1131	struct btrfs_root *root;
1132	struct btrfs_block_rsv *block_rsv;
1133	unsigned long nr = 0;
1134	int need_requeue = 0;
1135	int ret;
1136
1137	async_node = container_of(work, struct btrfs_async_delayed_node, work);
 
1138
1139	path = btrfs_alloc_path();
1140	if (!path)
1141		goto out;
1142	path->leave_spinning = 1;
1143
1144	delayed_node = async_node->delayed_node;
1145	root = delayed_node->root;
 
 
1146
1147	trans = btrfs_join_transaction(root);
1148	if (IS_ERR(trans))
1149		goto free_path;
1150
1151	block_rsv = trans->block_rsv;
1152	trans->block_rsv = &root->fs_info->global_block_rsv;
1153
1154	ret = btrfs_insert_delayed_items(trans, path, root, delayed_node);
1155	if (!ret)
1156		ret = btrfs_delete_delayed_items(trans, path, root,
1157						 delayed_node);
 
 
 
1158
1159	if (!ret)
1160		btrfs_update_delayed_inode(trans, root, path, delayed_node);
1161
1162	/*
1163	 * Maybe new delayed items have been inserted, so we need requeue
1164	 * the work. Besides that, we must dequeue the empty delayed nodes
1165	 * to avoid the race between delayed items balance and the worker.
1166	 * The race like this:
1167	 * 	Task1				Worker thread
1168	 * 					count == 0, needn't requeue
1169	 * 					  also needn't insert the
1170	 * 					  delayed node into prepare
1171	 * 					  list again.
1172	 * 	add lots of delayed items
1173	 * 	queue the delayed node
1174	 * 	  already in the list,
1175	 * 	  and not in the prepare
1176	 * 	  list, it means the delayed
1177	 * 	  node is being dealt with
1178	 * 	  by the worker.
1179	 * 	do delayed items balance
1180	 * 	  the delayed node is being
1181	 * 	  dealt with by the worker
1182	 * 	  now, just wait.
1183	 * 	  				the worker goto idle.
1184	 * Task1 will sleep until the transaction is commited.
1185	 */
1186	mutex_lock(&delayed_node->mutex);
1187	if (delayed_node->count)
1188		need_requeue = 1;
1189	else
1190		btrfs_dequeue_delayed_node(root->fs_info->delayed_root,
1191					   delayed_node);
1192	mutex_unlock(&delayed_node->mutex);
1193
1194	nr = trans->blocks_used;
 
 
 
 
 
 
 
 
 
1195
1196	trans->block_rsv = block_rsv;
1197	btrfs_end_transaction_dmeta(trans, root);
1198	__btrfs_btree_balance_dirty(root, nr);
1199free_path:
1200	btrfs_free_path(path);
1201out:
1202	if (need_requeue)
1203		btrfs_requeue_work(&async_node->work);
1204	else {
1205		btrfs_release_prepared_delayed_node(delayed_node);
1206		kfree(async_node);
1207	}
1208}
1209
 
1210static int btrfs_wq_run_delayed_node(struct btrfs_delayed_root *delayed_root,
1211				     struct btrfs_root *root, int all)
1212{
1213	struct btrfs_async_delayed_node *async_node;
1214	struct btrfs_delayed_node *curr;
1215	int count = 0;
1216
1217again:
1218	curr = btrfs_first_prepared_delayed_node(delayed_root);
1219	if (!curr)
1220		return 0;
1221
1222	async_node = kmalloc(sizeof(*async_node), GFP_NOFS);
1223	if (!async_node) {
1224		btrfs_release_prepared_delayed_node(curr);
1225		return -ENOMEM;
1226	}
1227
1228	async_node->root = root;
1229	async_node->delayed_node = curr;
1230
1231	async_node->work.func = btrfs_async_run_delayed_node_done;
1232	async_node->work.flags = 0;
1233
1234	btrfs_queue_worker(&root->fs_info->delayed_workers, &async_node->work);
1235	count++;
1236
1237	if (all || count < 4)
1238		goto again;
 
 
1239
 
1240	return 0;
1241}
1242
1243void btrfs_assert_delayed_root_empty(struct btrfs_root *root)
1244{
1245	struct btrfs_delayed_root *delayed_root;
1246	delayed_root = btrfs_get_delayed_root(root);
1247	WARN_ON(btrfs_first_delayed_node(delayed_root));
1248}
1249
1250void btrfs_balance_delayed_items(struct btrfs_root *root)
1251{
1252	struct btrfs_delayed_root *delayed_root;
1253
1254	delayed_root = btrfs_get_delayed_root(root);
 
1255
1256	if (atomic_read(&delayed_root->items) < BTRFS_DELAYED_BACKGROUND)
 
 
 
 
 
 
 
 
 
 
 
1257		return;
1258
1259	if (atomic_read(&delayed_root->items) >= BTRFS_DELAYED_WRITEBACK) {
 
1260		int ret;
1261		ret = btrfs_wq_run_delayed_node(delayed_root, root, 1);
 
 
 
1262		if (ret)
1263			return;
1264
1265		wait_event_interruptible_timeout(
1266				delayed_root->wait,
1267				(atomic_read(&delayed_root->items) <
1268				 BTRFS_DELAYED_BACKGROUND),
1269				HZ);
1270		return;
1271	}
1272
1273	btrfs_wq_run_delayed_node(delayed_root, root, 0);
1274}
1275
 
1276int btrfs_insert_delayed_dir_index(struct btrfs_trans_handle *trans,
1277				   struct btrfs_root *root, const char *name,
1278				   int name_len, struct inode *dir,
1279				   struct btrfs_disk_key *disk_key, u8 type,
1280				   u64 index)
1281{
1282	struct btrfs_delayed_node *delayed_node;
1283	struct btrfs_delayed_item *delayed_item;
1284	struct btrfs_dir_item *dir_item;
1285	int ret;
1286
1287	delayed_node = btrfs_get_or_create_delayed_node(dir);
1288	if (IS_ERR(delayed_node))
1289		return PTR_ERR(delayed_node);
1290
1291	delayed_item = btrfs_alloc_delayed_item(sizeof(*dir_item) + name_len);
1292	if (!delayed_item) {
1293		ret = -ENOMEM;
1294		goto release_node;
1295	}
1296
1297	ret = btrfs_delayed_item_reserve_metadata(trans, root, delayed_item);
1298	/*
1299	 * we have reserved enough space when we start a new transaction,
1300	 * so reserving metadata failure is impossible
1301	 */
1302	BUG_ON(ret);
1303
1304	delayed_item->key.objectid = btrfs_ino(dir);
1305	btrfs_set_key_type(&delayed_item->key, BTRFS_DIR_INDEX_KEY);
1306	delayed_item->key.offset = index;
1307
1308	dir_item = (struct btrfs_dir_item *)delayed_item->data;
1309	dir_item->location = *disk_key;
1310	dir_item->transid = cpu_to_le64(trans->transid);
1311	dir_item->data_len = 0;
1312	dir_item->name_len = cpu_to_le16(name_len);
1313	dir_item->type = type;
1314	memcpy((char *)(dir_item + 1), name, name_len);
1315
 
 
 
 
 
 
 
1316	mutex_lock(&delayed_node->mutex);
1317	ret = __btrfs_add_delayed_insertion_item(delayed_node, delayed_item);
1318	if (unlikely(ret)) {
1319		printk(KERN_ERR "err add delayed dir index item(name: %s) into "
1320				"the insertion tree of the delayed node"
1321				"(root id: %llu, inode id: %llu, errno: %d)\n",
1322				name,
1323				(unsigned long long)delayed_node->root->objectid,
1324				(unsigned long long)delayed_node->inode_id,
1325				ret);
1326		BUG();
1327	}
1328	mutex_unlock(&delayed_node->mutex);
1329
1330release_node:
1331	btrfs_release_delayed_node(delayed_node);
1332	return ret;
1333}
1334
1335static int btrfs_delete_delayed_insertion_item(struct btrfs_root *root,
1336					       struct btrfs_delayed_node *node,
1337					       struct btrfs_key *key)
1338{
1339	struct btrfs_delayed_item *item;
1340
1341	mutex_lock(&node->mutex);
1342	item = __btrfs_lookup_delayed_insertion_item(node, key);
1343	if (!item) {
1344		mutex_unlock(&node->mutex);
1345		return 1;
1346	}
1347
1348	btrfs_delayed_item_release_metadata(root, item);
1349	btrfs_release_delayed_item(item);
1350	mutex_unlock(&node->mutex);
1351	return 0;
1352}
1353
1354int btrfs_delete_delayed_dir_index(struct btrfs_trans_handle *trans,
1355				   struct btrfs_root *root, struct inode *dir,
1356				   u64 index)
1357{
1358	struct btrfs_delayed_node *node;
1359	struct btrfs_delayed_item *item;
1360	struct btrfs_key item_key;
1361	int ret;
1362
1363	node = btrfs_get_or_create_delayed_node(dir);
1364	if (IS_ERR(node))
1365		return PTR_ERR(node);
1366
1367	item_key.objectid = btrfs_ino(dir);
1368	btrfs_set_key_type(&item_key, BTRFS_DIR_INDEX_KEY);
1369	item_key.offset = index;
1370
1371	ret = btrfs_delete_delayed_insertion_item(root, node, &item_key);
 
1372	if (!ret)
1373		goto end;
1374
1375	item = btrfs_alloc_delayed_item(0);
1376	if (!item) {
1377		ret = -ENOMEM;
1378		goto end;
1379	}
1380
1381	item->key = item_key;
1382
1383	ret = btrfs_delayed_item_reserve_metadata(trans, root, item);
1384	/*
1385	 * we have reserved enough space when we start a new transaction,
1386	 * so reserving metadata failure is impossible.
1387	 */
1388	BUG_ON(ret);
 
 
 
 
 
1389
1390	mutex_lock(&node->mutex);
1391	ret = __btrfs_add_delayed_deletion_item(node, item);
1392	if (unlikely(ret)) {
1393		printk(KERN_ERR "err add delayed dir index item(index: %llu) "
1394				"into the deletion tree of the delayed node"
1395				"(root id: %llu, inode id: %llu, errno: %d)\n",
1396				(unsigned long long)index,
1397				(unsigned long long)node->root->objectid,
1398				(unsigned long long)node->inode_id,
1399				ret);
1400		BUG();
1401	}
1402	mutex_unlock(&node->mutex);
1403end:
1404	btrfs_release_delayed_node(node);
1405	return ret;
1406}
1407
1408int btrfs_inode_delayed_dir_index_count(struct inode *inode)
1409{
1410	struct btrfs_delayed_node *delayed_node = btrfs_get_delayed_node(inode);
1411
1412	if (!delayed_node)
1413		return -ENOENT;
1414
1415	/*
1416	 * Since we have held i_mutex of this directory, it is impossible that
1417	 * a new directory index is added into the delayed node and index_cnt
1418	 * is updated now. So we needn't lock the delayed node.
1419	 */
1420	if (!delayed_node->index_cnt) {
1421		btrfs_release_delayed_node(delayed_node);
1422		return -EINVAL;
1423	}
1424
1425	BTRFS_I(inode)->index_cnt = delayed_node->index_cnt;
1426	btrfs_release_delayed_node(delayed_node);
1427	return 0;
1428}
1429
1430void btrfs_get_delayed_items(struct inode *inode, struct list_head *ins_list,
1431			     struct list_head *del_list)
 
1432{
1433	struct btrfs_delayed_node *delayed_node;
1434	struct btrfs_delayed_item *item;
1435
1436	delayed_node = btrfs_get_delayed_node(inode);
1437	if (!delayed_node)
1438		return;
 
 
 
 
 
 
 
1439
1440	mutex_lock(&delayed_node->mutex);
1441	item = __btrfs_first_delayed_insertion_item(delayed_node);
1442	while (item) {
1443		atomic_inc(&item->refs);
1444		list_add_tail(&item->readdir_list, ins_list);
1445		item = __btrfs_next_delayed_item(item);
1446	}
1447
1448	item = __btrfs_first_delayed_deletion_item(delayed_node);
1449	while (item) {
1450		atomic_inc(&item->refs);
1451		list_add_tail(&item->readdir_list, del_list);
1452		item = __btrfs_next_delayed_item(item);
1453	}
1454	mutex_unlock(&delayed_node->mutex);
1455	/*
1456	 * This delayed node is still cached in the btrfs inode, so refs
1457	 * must be > 1 now, and we needn't check it is going to be freed
1458	 * or not.
1459	 *
1460	 * Besides that, this function is used to read dir, we do not
1461	 * insert/delete delayed items in this period. So we also needn't
1462	 * requeue or dequeue this delayed node.
1463	 */
1464	atomic_dec(&delayed_node->refs);
 
 
1465}
1466
1467void btrfs_put_delayed_items(struct list_head *ins_list,
1468			     struct list_head *del_list)
 
1469{
1470	struct btrfs_delayed_item *curr, *next;
1471
1472	list_for_each_entry_safe(curr, next, ins_list, readdir_list) {
1473		list_del(&curr->readdir_list);
1474		if (atomic_dec_and_test(&curr->refs))
1475			kfree(curr);
1476	}
1477
1478	list_for_each_entry_safe(curr, next, del_list, readdir_list) {
1479		list_del(&curr->readdir_list);
1480		if (atomic_dec_and_test(&curr->refs))
1481			kfree(curr);
1482	}
 
 
 
 
 
 
1483}
1484
1485int btrfs_should_delete_dir_index(struct list_head *del_list,
1486				  u64 index)
1487{
1488	struct btrfs_delayed_item *curr, *next;
1489	int ret;
1490
1491	if (list_empty(del_list))
1492		return 0;
1493
1494	list_for_each_entry_safe(curr, next, del_list, readdir_list) {
1495		if (curr->key.offset > index)
1496			break;
1497
1498		list_del(&curr->readdir_list);
1499		ret = (curr->key.offset == index);
1500
1501		if (atomic_dec_and_test(&curr->refs))
1502			kfree(curr);
1503
1504		if (ret)
1505			return 1;
1506		else
1507			continue;
1508	}
1509	return 0;
1510}
1511
1512/*
1513 * btrfs_readdir_delayed_dir_index - read dir info stored in the delayed tree
1514 *
1515 */
1516int btrfs_readdir_delayed_dir_index(struct file *filp, void *dirent,
1517				    filldir_t filldir,
1518				    struct list_head *ins_list)
1519{
1520	struct btrfs_dir_item *di;
1521	struct btrfs_delayed_item *curr, *next;
1522	struct btrfs_key location;
1523	char *name;
1524	int name_len;
1525	int over = 0;
1526	unsigned char d_type;
1527
1528	if (list_empty(ins_list))
1529		return 0;
1530
1531	/*
1532	 * Changing the data of the delayed item is impossible. So
1533	 * we needn't lock them. And we have held i_mutex of the
1534	 * directory, nobody can delete any directory indexes now.
1535	 */
1536	list_for_each_entry_safe(curr, next, ins_list, readdir_list) {
1537		list_del(&curr->readdir_list);
1538
1539		if (curr->key.offset < filp->f_pos) {
1540			if (atomic_dec_and_test(&curr->refs))
1541				kfree(curr);
1542			continue;
1543		}
1544
1545		filp->f_pos = curr->key.offset;
1546
1547		di = (struct btrfs_dir_item *)curr->data;
1548		name = (char *)(di + 1);
1549		name_len = le16_to_cpu(di->name_len);
1550
1551		d_type = btrfs_filetype_table[di->type];
1552		btrfs_disk_key_to_cpu(&location, &di->location);
1553
1554		over = filldir(dirent, name, name_len, curr->key.offset,
1555			       location.objectid, d_type);
1556
1557		if (atomic_dec_and_test(&curr->refs))
1558			kfree(curr);
1559
1560		if (over)
1561			return 1;
 
1562	}
1563	return 0;
1564}
1565
1566BTRFS_SETGET_STACK_FUNCS(stack_inode_generation, struct btrfs_inode_item,
1567			 generation, 64);
1568BTRFS_SETGET_STACK_FUNCS(stack_inode_sequence, struct btrfs_inode_item,
1569			 sequence, 64);
1570BTRFS_SETGET_STACK_FUNCS(stack_inode_transid, struct btrfs_inode_item,
1571			 transid, 64);
1572BTRFS_SETGET_STACK_FUNCS(stack_inode_size, struct btrfs_inode_item, size, 64);
1573BTRFS_SETGET_STACK_FUNCS(stack_inode_nbytes, struct btrfs_inode_item,
1574			 nbytes, 64);
1575BTRFS_SETGET_STACK_FUNCS(stack_inode_block_group, struct btrfs_inode_item,
1576			 block_group, 64);
1577BTRFS_SETGET_STACK_FUNCS(stack_inode_nlink, struct btrfs_inode_item, nlink, 32);
1578BTRFS_SETGET_STACK_FUNCS(stack_inode_uid, struct btrfs_inode_item, uid, 32);
1579BTRFS_SETGET_STACK_FUNCS(stack_inode_gid, struct btrfs_inode_item, gid, 32);
1580BTRFS_SETGET_STACK_FUNCS(stack_inode_mode, struct btrfs_inode_item, mode, 32);
1581BTRFS_SETGET_STACK_FUNCS(stack_inode_rdev, struct btrfs_inode_item, rdev, 64);
1582BTRFS_SETGET_STACK_FUNCS(stack_inode_flags, struct btrfs_inode_item, flags, 64);
1583
1584BTRFS_SETGET_STACK_FUNCS(stack_timespec_sec, struct btrfs_timespec, sec, 64);
1585BTRFS_SETGET_STACK_FUNCS(stack_timespec_nsec, struct btrfs_timespec, nsec, 32);
1586
1587static void fill_stack_inode_item(struct btrfs_trans_handle *trans,
1588				  struct btrfs_inode_item *inode_item,
1589				  struct inode *inode)
1590{
1591	btrfs_set_stack_inode_uid(inode_item, inode->i_uid);
1592	btrfs_set_stack_inode_gid(inode_item, inode->i_gid);
1593	btrfs_set_stack_inode_size(inode_item, BTRFS_I(inode)->disk_i_size);
1594	btrfs_set_stack_inode_mode(inode_item, inode->i_mode);
1595	btrfs_set_stack_inode_nlink(inode_item, inode->i_nlink);
1596	btrfs_set_stack_inode_nbytes(inode_item, inode_get_bytes(inode));
1597	btrfs_set_stack_inode_generation(inode_item,
1598					 BTRFS_I(inode)->generation);
1599	btrfs_set_stack_inode_sequence(inode_item, BTRFS_I(inode)->sequence);
 
1600	btrfs_set_stack_inode_transid(inode_item, trans->transid);
1601	btrfs_set_stack_inode_rdev(inode_item, inode->i_rdev);
1602	btrfs_set_stack_inode_flags(inode_item, BTRFS_I(inode)->flags);
1603	btrfs_set_stack_inode_block_group(inode_item, 0);
1604
1605	btrfs_set_stack_timespec_sec(btrfs_inode_atime(inode_item),
1606				     inode->i_atime.tv_sec);
1607	btrfs_set_stack_timespec_nsec(btrfs_inode_atime(inode_item),
1608				      inode->i_atime.tv_nsec);
1609
1610	btrfs_set_stack_timespec_sec(btrfs_inode_mtime(inode_item),
1611				     inode->i_mtime.tv_sec);
1612	btrfs_set_stack_timespec_nsec(btrfs_inode_mtime(inode_item),
1613				      inode->i_mtime.tv_nsec);
1614
1615	btrfs_set_stack_timespec_sec(btrfs_inode_ctime(inode_item),
1616				     inode->i_ctime.tv_sec);
1617	btrfs_set_stack_timespec_nsec(btrfs_inode_ctime(inode_item),
1618				      inode->i_ctime.tv_nsec);
 
 
 
 
 
1619}
1620
1621int btrfs_fill_inode(struct inode *inode, u32 *rdev)
1622{
 
1623	struct btrfs_delayed_node *delayed_node;
1624	struct btrfs_inode_item *inode_item;
1625	struct btrfs_timespec *tspec;
1626
1627	delayed_node = btrfs_get_delayed_node(inode);
1628	if (!delayed_node)
1629		return -ENOENT;
1630
1631	mutex_lock(&delayed_node->mutex);
1632	if (!delayed_node->inode_dirty) {
1633		mutex_unlock(&delayed_node->mutex);
1634		btrfs_release_delayed_node(delayed_node);
1635		return -ENOENT;
1636	}
1637
1638	inode_item = &delayed_node->inode_item;
1639
1640	inode->i_uid = btrfs_stack_inode_uid(inode_item);
1641	inode->i_gid = btrfs_stack_inode_gid(inode_item);
1642	btrfs_i_size_write(inode, btrfs_stack_inode_size(inode_item));
 
 
1643	inode->i_mode = btrfs_stack_inode_mode(inode_item);
1644	inode->i_nlink = btrfs_stack_inode_nlink(inode_item);
1645	inode_set_bytes(inode, btrfs_stack_inode_nbytes(inode_item));
1646	BTRFS_I(inode)->generation = btrfs_stack_inode_generation(inode_item);
1647	BTRFS_I(inode)->sequence = btrfs_stack_inode_sequence(inode_item);
 
 
 
1648	inode->i_rdev = 0;
1649	*rdev = btrfs_stack_inode_rdev(inode_item);
1650	BTRFS_I(inode)->flags = btrfs_stack_inode_flags(inode_item);
1651
1652	tspec = btrfs_inode_atime(inode_item);
1653	inode->i_atime.tv_sec = btrfs_stack_timespec_sec(tspec);
1654	inode->i_atime.tv_nsec = btrfs_stack_timespec_nsec(tspec);
1655
1656	tspec = btrfs_inode_mtime(inode_item);
1657	inode->i_mtime.tv_sec = btrfs_stack_timespec_sec(tspec);
1658	inode->i_mtime.tv_nsec = btrfs_stack_timespec_nsec(tspec);
1659
1660	tspec = btrfs_inode_ctime(inode_item);
1661	inode->i_ctime.tv_sec = btrfs_stack_timespec_sec(tspec);
1662	inode->i_ctime.tv_nsec = btrfs_stack_timespec_nsec(tspec);
 
 
1663
1664	inode->i_generation = BTRFS_I(inode)->generation;
1665	BTRFS_I(inode)->index_cnt = (u64)-1;
1666
1667	mutex_unlock(&delayed_node->mutex);
1668	btrfs_release_delayed_node(delayed_node);
1669	return 0;
1670}
1671
1672int btrfs_delayed_update_inode(struct btrfs_trans_handle *trans,
1673			       struct btrfs_root *root, struct inode *inode)
 
1674{
1675	struct btrfs_delayed_node *delayed_node;
1676	int ret = 0;
1677
1678	delayed_node = btrfs_get_or_create_delayed_node(inode);
1679	if (IS_ERR(delayed_node))
1680		return PTR_ERR(delayed_node);
1681
1682	mutex_lock(&delayed_node->mutex);
1683	if (delayed_node->inode_dirty) {
1684		fill_stack_inode_item(trans, &delayed_node->inode_item, inode);
 
1685		goto release_node;
1686	}
1687
1688	ret = btrfs_delayed_inode_reserve_metadata(trans, root, delayed_node);
1689	/*
1690	 * we must reserve enough space when we start a new transaction,
1691	 * so reserving metadata failure is impossible
1692	 */
1693	BUG_ON(ret);
1694
1695	fill_stack_inode_item(trans, &delayed_node->inode_item, inode);
1696	delayed_node->inode_dirty = 1;
1697	delayed_node->count++;
1698	atomic_inc(&root->fs_info->delayed_root->items);
1699release_node:
1700	mutex_unlock(&delayed_node->mutex);
1701	btrfs_release_delayed_node(delayed_node);
1702	return ret;
1703}
1704
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1705static void __btrfs_kill_delayed_node(struct btrfs_delayed_node *delayed_node)
1706{
1707	struct btrfs_root *root = delayed_node->root;
 
1708	struct btrfs_delayed_item *curr_item, *prev_item;
1709
1710	mutex_lock(&delayed_node->mutex);
1711	curr_item = __btrfs_first_delayed_insertion_item(delayed_node);
1712	while (curr_item) {
1713		btrfs_delayed_item_release_metadata(root, curr_item);
1714		prev_item = curr_item;
1715		curr_item = __btrfs_next_delayed_item(prev_item);
1716		btrfs_release_delayed_item(prev_item);
1717	}
1718
1719	curr_item = __btrfs_first_delayed_deletion_item(delayed_node);
1720	while (curr_item) {
1721		btrfs_delayed_item_release_metadata(root, curr_item);
1722		prev_item = curr_item;
1723		curr_item = __btrfs_next_delayed_item(prev_item);
1724		btrfs_release_delayed_item(prev_item);
1725	}
1726
1727	if (delayed_node->inode_dirty) {
1728		btrfs_delayed_inode_release_metadata(root, delayed_node);
 
 
1729		btrfs_release_delayed_inode(delayed_node);
1730	}
1731	mutex_unlock(&delayed_node->mutex);
1732}
1733
1734void btrfs_kill_delayed_inode_items(struct inode *inode)
1735{
1736	struct btrfs_delayed_node *delayed_node;
1737
1738	delayed_node = btrfs_get_delayed_node(inode);
1739	if (!delayed_node)
1740		return;
1741
1742	__btrfs_kill_delayed_node(delayed_node);
1743	btrfs_release_delayed_node(delayed_node);
1744}
1745
1746void btrfs_kill_all_delayed_nodes(struct btrfs_root *root)
1747{
1748	u64 inode_id = 0;
1749	struct btrfs_delayed_node *delayed_nodes[8];
1750	int i, n;
1751
1752	while (1) {
1753		spin_lock(&root->inode_lock);
1754		n = radix_tree_gang_lookup(&root->delayed_nodes_tree,
1755					   (void **)delayed_nodes, inode_id,
1756					   ARRAY_SIZE(delayed_nodes));
1757		if (!n) {
1758			spin_unlock(&root->inode_lock);
1759			break;
1760		}
1761
1762		inode_id = delayed_nodes[n - 1]->inode_id + 1;
1763
1764		for (i = 0; i < n; i++)
1765			atomic_inc(&delayed_nodes[i]->refs);
 
 
 
 
 
1766		spin_unlock(&root->inode_lock);
1767
1768		for (i = 0; i < n; i++) {
 
 
1769			__btrfs_kill_delayed_node(delayed_nodes[i]);
1770			btrfs_release_delayed_node(delayed_nodes[i]);
1771		}
1772	}
1773}
v5.14.15
   1// SPDX-License-Identifier: GPL-2.0
   2/*
   3 * Copyright (C) 2011 Fujitsu.  All rights reserved.
   4 * Written by Miao Xie <miaox@cn.fujitsu.com>
 
 
 
 
 
 
 
 
 
 
 
 
 
 
   5 */
   6
   7#include <linux/slab.h>
   8#include <linux/iversion.h>
   9#include <linux/sched/mm.h>
  10#include "misc.h"
  11#include "delayed-inode.h"
  12#include "disk-io.h"
  13#include "transaction.h"
  14#include "ctree.h"
  15#include "qgroup.h"
  16#include "locking.h"
  17
  18#define BTRFS_DELAYED_WRITEBACK		512
  19#define BTRFS_DELAYED_BACKGROUND	128
  20#define BTRFS_DELAYED_BATCH		16
  21
  22static struct kmem_cache *delayed_node_cache;
  23
  24int __init btrfs_delayed_inode_init(void)
  25{
  26	delayed_node_cache = kmem_cache_create("btrfs_delayed_node",
  27					sizeof(struct btrfs_delayed_node),
  28					0,
  29					SLAB_MEM_SPREAD,
  30					NULL);
  31	if (!delayed_node_cache)
  32		return -ENOMEM;
  33	return 0;
  34}
  35
  36void __cold btrfs_delayed_inode_exit(void)
  37{
  38	kmem_cache_destroy(delayed_node_cache);
 
  39}
  40
  41static inline void btrfs_init_delayed_node(
  42				struct btrfs_delayed_node *delayed_node,
  43				struct btrfs_root *root, u64 inode_id)
  44{
  45	delayed_node->root = root;
  46	delayed_node->inode_id = inode_id;
  47	refcount_set(&delayed_node->refs, 0);
  48	delayed_node->ins_root = RB_ROOT_CACHED;
  49	delayed_node->del_root = RB_ROOT_CACHED;
 
 
 
  50	mutex_init(&delayed_node->mutex);
 
  51	INIT_LIST_HEAD(&delayed_node->n_list);
  52	INIT_LIST_HEAD(&delayed_node->p_list);
 
  53}
  54
  55static inline int btrfs_is_continuous_delayed_item(
  56					struct btrfs_delayed_item *item1,
  57					struct btrfs_delayed_item *item2)
  58{
  59	if (item1->key.type == BTRFS_DIR_INDEX_KEY &&
  60	    item1->key.objectid == item2->key.objectid &&
  61	    item1->key.type == item2->key.type &&
  62	    item1->key.offset + 1 == item2->key.offset)
  63		return 1;
  64	return 0;
  65}
  66
  67static struct btrfs_delayed_node *btrfs_get_delayed_node(
  68		struct btrfs_inode *btrfs_inode)
 
 
 
 
 
  69{
 
  70	struct btrfs_root *root = btrfs_inode->root;
  71	u64 ino = btrfs_ino(btrfs_inode);
  72	struct btrfs_delayed_node *node;
  73
  74	node = READ_ONCE(btrfs_inode->delayed_node);
  75	if (node) {
  76		refcount_inc(&node->refs);
  77		return node;
  78	}
  79
  80	spin_lock(&root->inode_lock);
  81	node = radix_tree_lookup(&root->delayed_nodes_tree, ino);
  82
  83	if (node) {
  84		if (btrfs_inode->delayed_node) {
  85			refcount_inc(&node->refs);	/* can be accessed */
  86			BUG_ON(btrfs_inode->delayed_node != node);
  87			spin_unlock(&root->inode_lock);
  88			return node;
  89		}
  90
  91		/*
  92		 * It's possible that we're racing into the middle of removing
  93		 * this node from the radix tree.  In this case, the refcount
  94		 * was zero and it should never go back to one.  Just return
  95		 * NULL like it was never in the radix at all; our release
  96		 * function is in the process of removing it.
  97		 *
  98		 * Some implementations of refcount_inc refuse to bump the
  99		 * refcount once it has hit zero.  If we don't do this dance
 100		 * here, refcount_inc() may decide to just WARN_ONCE() instead
 101		 * of actually bumping the refcount.
 102		 *
 103		 * If this node is properly in the radix, we want to bump the
 104		 * refcount twice, once for the inode and once for this get
 105		 * operation.
 106		 */
 107		if (refcount_inc_not_zero(&node->refs)) {
 108			refcount_inc(&node->refs);
 109			btrfs_inode->delayed_node = node;
 110		} else {
 111			node = NULL;
 112		}
 113
 114		spin_unlock(&root->inode_lock);
 115		return node;
 116	}
 117	spin_unlock(&root->inode_lock);
 118
 119	return NULL;
 120}
 121
 122/* Will return either the node or PTR_ERR(-ENOMEM) */
 123static struct btrfs_delayed_node *btrfs_get_or_create_delayed_node(
 124		struct btrfs_inode *btrfs_inode)
 125{
 126	struct btrfs_delayed_node *node;
 
 127	struct btrfs_root *root = btrfs_inode->root;
 128	u64 ino = btrfs_ino(btrfs_inode);
 129	int ret;
 130
 131again:
 132	node = btrfs_get_delayed_node(btrfs_inode);
 133	if (node)
 134		return node;
 135
 136	node = kmem_cache_zalloc(delayed_node_cache, GFP_NOFS);
 137	if (!node)
 138		return ERR_PTR(-ENOMEM);
 139	btrfs_init_delayed_node(node, root, ino);
 140
 141	/* cached in the btrfs inode and can be accessed */
 142	refcount_set(&node->refs, 2);
 143
 144	ret = radix_tree_preload(GFP_NOFS);
 145	if (ret) {
 146		kmem_cache_free(delayed_node_cache, node);
 147		return ERR_PTR(ret);
 148	}
 149
 150	spin_lock(&root->inode_lock);
 151	ret = radix_tree_insert(&root->delayed_nodes_tree, ino, node);
 152	if (ret == -EEXIST) {
 
 153		spin_unlock(&root->inode_lock);
 154		kmem_cache_free(delayed_node_cache, node);
 155		radix_tree_preload_end();
 156		goto again;
 157	}
 158	btrfs_inode->delayed_node = node;
 159	spin_unlock(&root->inode_lock);
 160	radix_tree_preload_end();
 161
 162	return node;
 163}
 164
 165/*
 166 * Call it when holding delayed_node->mutex
 167 *
 168 * If mod = 1, add this node into the prepared list.
 169 */
 170static void btrfs_queue_delayed_node(struct btrfs_delayed_root *root,
 171				     struct btrfs_delayed_node *node,
 172				     int mod)
 173{
 174	spin_lock(&root->lock);
 175	if (test_bit(BTRFS_DELAYED_NODE_IN_LIST, &node->flags)) {
 176		if (!list_empty(&node->p_list))
 177			list_move_tail(&node->p_list, &root->prepare_list);
 178		else if (mod)
 179			list_add_tail(&node->p_list, &root->prepare_list);
 180	} else {
 181		list_add_tail(&node->n_list, &root->node_list);
 182		list_add_tail(&node->p_list, &root->prepare_list);
 183		refcount_inc(&node->refs);	/* inserted into list */
 184		root->nodes++;
 185		set_bit(BTRFS_DELAYED_NODE_IN_LIST, &node->flags);
 186	}
 187	spin_unlock(&root->lock);
 188}
 189
 190/* Call it when holding delayed_node->mutex */
 191static void btrfs_dequeue_delayed_node(struct btrfs_delayed_root *root,
 192				       struct btrfs_delayed_node *node)
 193{
 194	spin_lock(&root->lock);
 195	if (test_bit(BTRFS_DELAYED_NODE_IN_LIST, &node->flags)) {
 196		root->nodes--;
 197		refcount_dec(&node->refs);	/* not in the list */
 198		list_del_init(&node->n_list);
 199		if (!list_empty(&node->p_list))
 200			list_del_init(&node->p_list);
 201		clear_bit(BTRFS_DELAYED_NODE_IN_LIST, &node->flags);
 202	}
 203	spin_unlock(&root->lock);
 204}
 205
 206static struct btrfs_delayed_node *btrfs_first_delayed_node(
 207			struct btrfs_delayed_root *delayed_root)
 208{
 209	struct list_head *p;
 210	struct btrfs_delayed_node *node = NULL;
 211
 212	spin_lock(&delayed_root->lock);
 213	if (list_empty(&delayed_root->node_list))
 214		goto out;
 215
 216	p = delayed_root->node_list.next;
 217	node = list_entry(p, struct btrfs_delayed_node, n_list);
 218	refcount_inc(&node->refs);
 219out:
 220	spin_unlock(&delayed_root->lock);
 221
 222	return node;
 223}
 224
 225static struct btrfs_delayed_node *btrfs_next_delayed_node(
 226						struct btrfs_delayed_node *node)
 227{
 228	struct btrfs_delayed_root *delayed_root;
 229	struct list_head *p;
 230	struct btrfs_delayed_node *next = NULL;
 231
 232	delayed_root = node->root->fs_info->delayed_root;
 233	spin_lock(&delayed_root->lock);
 234	if (!test_bit(BTRFS_DELAYED_NODE_IN_LIST, &node->flags)) {
 235		/* not in the list */
 236		if (list_empty(&delayed_root->node_list))
 237			goto out;
 238		p = delayed_root->node_list.next;
 239	} else if (list_is_last(&node->n_list, &delayed_root->node_list))
 240		goto out;
 241	else
 242		p = node->n_list.next;
 243
 244	next = list_entry(p, struct btrfs_delayed_node, n_list);
 245	refcount_inc(&next->refs);
 246out:
 247	spin_unlock(&delayed_root->lock);
 248
 249	return next;
 250}
 251
 252static void __btrfs_release_delayed_node(
 253				struct btrfs_delayed_node *delayed_node,
 254				int mod)
 255{
 256	struct btrfs_delayed_root *delayed_root;
 257
 258	if (!delayed_node)
 259		return;
 260
 261	delayed_root = delayed_node->root->fs_info->delayed_root;
 262
 263	mutex_lock(&delayed_node->mutex);
 264	if (delayed_node->count)
 265		btrfs_queue_delayed_node(delayed_root, delayed_node, mod);
 266	else
 267		btrfs_dequeue_delayed_node(delayed_root, delayed_node);
 268	mutex_unlock(&delayed_node->mutex);
 269
 270	if (refcount_dec_and_test(&delayed_node->refs)) {
 271		struct btrfs_root *root = delayed_node->root;
 272
 273		spin_lock(&root->inode_lock);
 274		/*
 275		 * Once our refcount goes to zero, nobody is allowed to bump it
 276		 * back up.  We can delete it now.
 277		 */
 278		ASSERT(refcount_read(&delayed_node->refs) == 0);
 279		radix_tree_delete(&root->delayed_nodes_tree,
 280				  delayed_node->inode_id);
 281		spin_unlock(&root->inode_lock);
 282		kmem_cache_free(delayed_node_cache, delayed_node);
 283	}
 284}
 285
 286static inline void btrfs_release_delayed_node(struct btrfs_delayed_node *node)
 287{
 288	__btrfs_release_delayed_node(node, 0);
 289}
 290
 291static struct btrfs_delayed_node *btrfs_first_prepared_delayed_node(
 292					struct btrfs_delayed_root *delayed_root)
 293{
 294	struct list_head *p;
 295	struct btrfs_delayed_node *node = NULL;
 296
 297	spin_lock(&delayed_root->lock);
 298	if (list_empty(&delayed_root->prepare_list))
 299		goto out;
 300
 301	p = delayed_root->prepare_list.next;
 302	list_del_init(p);
 303	node = list_entry(p, struct btrfs_delayed_node, p_list);
 304	refcount_inc(&node->refs);
 305out:
 306	spin_unlock(&delayed_root->lock);
 307
 308	return node;
 309}
 310
 311static inline void btrfs_release_prepared_delayed_node(
 312					struct btrfs_delayed_node *node)
 313{
 314	__btrfs_release_delayed_node(node, 1);
 315}
 316
 317static struct btrfs_delayed_item *btrfs_alloc_delayed_item(u32 data_len)
 318{
 319	struct btrfs_delayed_item *item;
 320	item = kmalloc(sizeof(*item) + data_len, GFP_NOFS);
 321	if (item) {
 322		item->data_len = data_len;
 323		item->ins_or_del = 0;
 324		item->bytes_reserved = 0;
 325		item->delayed_node = NULL;
 326		refcount_set(&item->refs, 1);
 327	}
 328	return item;
 329}
 330
 331/*
 332 * __btrfs_lookup_delayed_item - look up the delayed item by key
 333 * @delayed_node: pointer to the delayed node
 334 * @key:	  the key to look up
 335 * @prev:	  used to store the prev item if the right item isn't found
 336 * @next:	  used to store the next item if the right item isn't found
 337 *
 338 * Note: if we don't find the right item, we will return the prev item and
 339 * the next item.
 340 */
 341static struct btrfs_delayed_item *__btrfs_lookup_delayed_item(
 342				struct rb_root *root,
 343				struct btrfs_key *key,
 344				struct btrfs_delayed_item **prev,
 345				struct btrfs_delayed_item **next)
 346{
 347	struct rb_node *node, *prev_node = NULL;
 348	struct btrfs_delayed_item *delayed_item = NULL;
 349	int ret = 0;
 350
 351	node = root->rb_node;
 352
 353	while (node) {
 354		delayed_item = rb_entry(node, struct btrfs_delayed_item,
 355					rb_node);
 356		prev_node = node;
 357		ret = btrfs_comp_cpu_keys(&delayed_item->key, key);
 358		if (ret < 0)
 359			node = node->rb_right;
 360		else if (ret > 0)
 361			node = node->rb_left;
 362		else
 363			return delayed_item;
 364	}
 365
 366	if (prev) {
 367		if (!prev_node)
 368			*prev = NULL;
 369		else if (ret < 0)
 370			*prev = delayed_item;
 371		else if ((node = rb_prev(prev_node)) != NULL) {
 372			*prev = rb_entry(node, struct btrfs_delayed_item,
 373					 rb_node);
 374		} else
 375			*prev = NULL;
 376	}
 377
 378	if (next) {
 379		if (!prev_node)
 380			*next = NULL;
 381		else if (ret > 0)
 382			*next = delayed_item;
 383		else if ((node = rb_next(prev_node)) != NULL) {
 384			*next = rb_entry(node, struct btrfs_delayed_item,
 385					 rb_node);
 386		} else
 387			*next = NULL;
 388	}
 389	return NULL;
 390}
 391
 392static struct btrfs_delayed_item *__btrfs_lookup_delayed_insertion_item(
 
 
 
 
 
 
 
 
 
 
 
 393					struct btrfs_delayed_node *delayed_node,
 394					struct btrfs_key *key)
 395{
 396	return __btrfs_lookup_delayed_item(&delayed_node->ins_root.rb_root, key,
 
 
 397					   NULL, NULL);
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 398}
 399
 400static int __btrfs_add_delayed_item(struct btrfs_delayed_node *delayed_node,
 401				    struct btrfs_delayed_item *ins,
 402				    int action)
 403{
 404	struct rb_node **p, *node;
 405	struct rb_node *parent_node = NULL;
 406	struct rb_root_cached *root;
 407	struct btrfs_delayed_item *item;
 408	int cmp;
 409	bool leftmost = true;
 410
 411	if (action == BTRFS_DELAYED_INSERTION_ITEM)
 412		root = &delayed_node->ins_root;
 413	else if (action == BTRFS_DELAYED_DELETION_ITEM)
 414		root = &delayed_node->del_root;
 415	else
 416		BUG();
 417	p = &root->rb_root.rb_node;
 418	node = &ins->rb_node;
 419
 420	while (*p) {
 421		parent_node = *p;
 422		item = rb_entry(parent_node, struct btrfs_delayed_item,
 423				 rb_node);
 424
 425		cmp = btrfs_comp_cpu_keys(&item->key, &ins->key);
 426		if (cmp < 0) {
 427			p = &(*p)->rb_right;
 428			leftmost = false;
 429		} else if (cmp > 0) {
 430			p = &(*p)->rb_left;
 431		} else {
 432			return -EEXIST;
 433		}
 434	}
 435
 436	rb_link_node(node, parent_node, p);
 437	rb_insert_color_cached(node, root, leftmost);
 438	ins->delayed_node = delayed_node;
 439	ins->ins_or_del = action;
 440
 441	if (ins->key.type == BTRFS_DIR_INDEX_KEY &&
 442	    action == BTRFS_DELAYED_INSERTION_ITEM &&
 443	    ins->key.offset >= delayed_node->index_cnt)
 444			delayed_node->index_cnt = ins->key.offset + 1;
 445
 446	delayed_node->count++;
 447	atomic_inc(&delayed_node->root->fs_info->delayed_root->items);
 448	return 0;
 449}
 450
 451static int __btrfs_add_delayed_insertion_item(struct btrfs_delayed_node *node,
 452					      struct btrfs_delayed_item *item)
 453{
 454	return __btrfs_add_delayed_item(node, item,
 455					BTRFS_DELAYED_INSERTION_ITEM);
 456}
 457
 458static int __btrfs_add_delayed_deletion_item(struct btrfs_delayed_node *node,
 459					     struct btrfs_delayed_item *item)
 460{
 461	return __btrfs_add_delayed_item(node, item,
 462					BTRFS_DELAYED_DELETION_ITEM);
 463}
 464
 465static void finish_one_item(struct btrfs_delayed_root *delayed_root)
 466{
 467	int seq = atomic_inc_return(&delayed_root->items_seq);
 468
 469	/* atomic_dec_return implies a barrier */
 470	if ((atomic_dec_return(&delayed_root->items) <
 471	    BTRFS_DELAYED_BACKGROUND || seq % BTRFS_DELAYED_BATCH == 0))
 472		cond_wake_up_nomb(&delayed_root->wait);
 473}
 474
 475static void __btrfs_remove_delayed_item(struct btrfs_delayed_item *delayed_item)
 476{
 477	struct rb_root_cached *root;
 478	struct btrfs_delayed_root *delayed_root;
 479
 480	/* Not associated with any delayed_node */
 481	if (!delayed_item->delayed_node)
 482		return;
 483	delayed_root = delayed_item->delayed_node->root->fs_info->delayed_root;
 484
 485	BUG_ON(!delayed_root);
 486	BUG_ON(delayed_item->ins_or_del != BTRFS_DELAYED_DELETION_ITEM &&
 487	       delayed_item->ins_or_del != BTRFS_DELAYED_INSERTION_ITEM);
 488
 489	if (delayed_item->ins_or_del == BTRFS_DELAYED_INSERTION_ITEM)
 490		root = &delayed_item->delayed_node->ins_root;
 491	else
 492		root = &delayed_item->delayed_node->del_root;
 493
 494	rb_erase_cached(&delayed_item->rb_node, root);
 495	delayed_item->delayed_node->count--;
 496
 497	finish_one_item(delayed_root);
 
 
 498}
 499
 500static void btrfs_release_delayed_item(struct btrfs_delayed_item *item)
 501{
 502	if (item) {
 503		__btrfs_remove_delayed_item(item);
 504		if (refcount_dec_and_test(&item->refs))
 505			kfree(item);
 506	}
 507}
 508
 509static struct btrfs_delayed_item *__btrfs_first_delayed_insertion_item(
 510					struct btrfs_delayed_node *delayed_node)
 511{
 512	struct rb_node *p;
 513	struct btrfs_delayed_item *item = NULL;
 514
 515	p = rb_first_cached(&delayed_node->ins_root);
 516	if (p)
 517		item = rb_entry(p, struct btrfs_delayed_item, rb_node);
 518
 519	return item;
 520}
 521
 522static struct btrfs_delayed_item *__btrfs_first_delayed_deletion_item(
 523					struct btrfs_delayed_node *delayed_node)
 524{
 525	struct rb_node *p;
 526	struct btrfs_delayed_item *item = NULL;
 527
 528	p = rb_first_cached(&delayed_node->del_root);
 529	if (p)
 530		item = rb_entry(p, struct btrfs_delayed_item, rb_node);
 531
 532	return item;
 533}
 534
 535static struct btrfs_delayed_item *__btrfs_next_delayed_item(
 536						struct btrfs_delayed_item *item)
 537{
 538	struct rb_node *p;
 539	struct btrfs_delayed_item *next = NULL;
 540
 541	p = rb_next(&item->rb_node);
 542	if (p)
 543		next = rb_entry(p, struct btrfs_delayed_item, rb_node);
 544
 545	return next;
 546}
 547
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 548static int btrfs_delayed_item_reserve_metadata(struct btrfs_trans_handle *trans,
 549					       struct btrfs_root *root,
 550					       struct btrfs_delayed_item *item)
 551{
 552	struct btrfs_block_rsv *src_rsv;
 553	struct btrfs_block_rsv *dst_rsv;
 554	struct btrfs_fs_info *fs_info = root->fs_info;
 555	u64 num_bytes;
 556	int ret;
 557
 558	if (!trans->bytes_reserved)
 559		return 0;
 560
 561	src_rsv = trans->block_rsv;
 562	dst_rsv = &fs_info->delayed_block_rsv;
 563
 564	num_bytes = btrfs_calc_insert_metadata_size(fs_info, 1);
 565
 566	/*
 567	 * Here we migrate space rsv from transaction rsv, since have already
 568	 * reserved space when starting a transaction.  So no need to reserve
 569	 * qgroup space here.
 570	 */
 571	ret = btrfs_block_rsv_migrate(src_rsv, dst_rsv, num_bytes, true);
 572	if (!ret) {
 573		trace_btrfs_space_reservation(fs_info, "delayed_item",
 574					      item->key.objectid,
 575					      num_bytes, 1);
 576		item->bytes_reserved = num_bytes;
 577	}
 578
 579	return ret;
 580}
 581
 582static void btrfs_delayed_item_release_metadata(struct btrfs_root *root,
 583						struct btrfs_delayed_item *item)
 584{
 585	struct btrfs_block_rsv *rsv;
 586	struct btrfs_fs_info *fs_info = root->fs_info;
 587
 588	if (!item->bytes_reserved)
 589		return;
 590
 591	rsv = &fs_info->delayed_block_rsv;
 592	/*
 593	 * Check btrfs_delayed_item_reserve_metadata() to see why we don't need
 594	 * to release/reserve qgroup space.
 595	 */
 596	trace_btrfs_space_reservation(fs_info, "delayed_item",
 597				      item->key.objectid, item->bytes_reserved,
 598				      0);
 599	btrfs_block_rsv_release(fs_info, rsv, item->bytes_reserved, NULL);
 600}
 601
 602static int btrfs_delayed_inode_reserve_metadata(
 603					struct btrfs_trans_handle *trans,
 604					struct btrfs_root *root,
 605					struct btrfs_delayed_node *node)
 606{
 607	struct btrfs_fs_info *fs_info = root->fs_info;
 608	struct btrfs_block_rsv *src_rsv;
 609	struct btrfs_block_rsv *dst_rsv;
 610	u64 num_bytes;
 611	int ret;
 612
 
 
 
 613	src_rsv = trans->block_rsv;
 614	dst_rsv = &fs_info->delayed_block_rsv;
 615
 616	num_bytes = btrfs_calc_metadata_size(fs_info, 1);
 617
 618	/*
 619	 * btrfs_dirty_inode will update the inode under btrfs_join_transaction
 620	 * which doesn't reserve space for speed.  This is a problem since we
 621	 * still need to reserve space for this update, so try to reserve the
 622	 * space.
 623	 *
 624	 * Now if src_rsv == delalloc_block_rsv we'll let it just steal since
 625	 * we always reserve enough to update the inode item.
 626	 */
 627	if (!src_rsv || (!trans->bytes_reserved &&
 628			 src_rsv->type != BTRFS_BLOCK_RSV_DELALLOC)) {
 629		ret = btrfs_qgroup_reserve_meta(root, num_bytes,
 630					  BTRFS_QGROUP_RSV_META_PREALLOC, true);
 631		if (ret < 0)
 632			return ret;
 633		ret = btrfs_block_rsv_add(root, dst_rsv, num_bytes,
 634					  BTRFS_RESERVE_NO_FLUSH);
 635		/* NO_FLUSH could only fail with -ENOSPC */
 636		ASSERT(ret == 0 || ret == -ENOSPC);
 637		if (ret)
 638			btrfs_qgroup_free_meta_prealloc(root, num_bytes);
 639	} else {
 640		ret = btrfs_block_rsv_migrate(src_rsv, dst_rsv, num_bytes, true);
 641	}
 642
 643	if (!ret) {
 644		trace_btrfs_space_reservation(fs_info, "delayed_inode",
 645					      node->inode_id, num_bytes, 1);
 646		node->bytes_reserved = num_bytes;
 647	}
 648
 649	return ret;
 650}
 651
 652static void btrfs_delayed_inode_release_metadata(struct btrfs_fs_info *fs_info,
 653						struct btrfs_delayed_node *node,
 654						bool qgroup_free)
 655{
 656	struct btrfs_block_rsv *rsv;
 657
 658	if (!node->bytes_reserved)
 659		return;
 660
 661	rsv = &fs_info->delayed_block_rsv;
 662	trace_btrfs_space_reservation(fs_info, "delayed_inode",
 663				      node->inode_id, node->bytes_reserved, 0);
 664	btrfs_block_rsv_release(fs_info, rsv, node->bytes_reserved, NULL);
 665	if (qgroup_free)
 666		btrfs_qgroup_free_meta_prealloc(node->root,
 667				node->bytes_reserved);
 668	else
 669		btrfs_qgroup_convert_reserved_meta(node->root,
 670				node->bytes_reserved);
 671	node->bytes_reserved = 0;
 672}
 673
 674/*
 675 * This helper will insert some continuous items into the same leaf according
 676 * to the free space of the leaf.
 677 */
 678static int btrfs_batch_insert_items(struct btrfs_root *root,
 679				    struct btrfs_path *path,
 680				    struct btrfs_delayed_item *item)
 
 681{
 682	struct btrfs_delayed_item *curr, *next;
 683	int free_space;
 684	int total_size = 0;
 685	struct extent_buffer *leaf;
 686	char *data_ptr;
 687	struct btrfs_key *keys;
 688	u32 *data_size;
 689	struct list_head head;
 690	int slot;
 691	int nitems;
 692	int i;
 693	int ret = 0;
 694
 695	BUG_ON(!path->nodes[0]);
 696
 697	leaf = path->nodes[0];
 698	free_space = btrfs_leaf_free_space(leaf);
 699	INIT_LIST_HEAD(&head);
 700
 701	next = item;
 702	nitems = 0;
 703
 704	/*
 705	 * count the number of the continuous items that we can insert in batch
 706	 */
 707	while (total_size + next->data_len + sizeof(struct btrfs_item) <=
 708	       free_space) {
 
 709		total_size += next->data_len + sizeof(struct btrfs_item);
 710		list_add_tail(&next->tree_list, &head);
 711		nitems++;
 712
 713		curr = next;
 714		next = __btrfs_next_delayed_item(curr);
 715		if (!next)
 716			break;
 717
 718		if (!btrfs_is_continuous_delayed_item(curr, next))
 719			break;
 720	}
 721
 722	if (!nitems) {
 723		ret = 0;
 724		goto out;
 725	}
 726
 727	keys = kmalloc_array(nitems, sizeof(struct btrfs_key), GFP_NOFS);
 
 
 
 
 
 
 
 728	if (!keys) {
 729		ret = -ENOMEM;
 730		goto out;
 731	}
 732
 733	data_size = kmalloc_array(nitems, sizeof(u32), GFP_NOFS);
 734	if (!data_size) {
 735		ret = -ENOMEM;
 736		goto error;
 737	}
 738
 739	/* get keys of all the delayed items */
 740	i = 0;
 741	list_for_each_entry(next, &head, tree_list) {
 742		keys[i] = next->key;
 743		data_size[i] = next->data_len;
 744		i++;
 745	}
 746
 
 
 
 747	/* insert the keys of the items */
 748	setup_items_for_insert(root, path, keys, data_size, nitems);
 
 
 
 749
 750	/* insert the dir index items */
 751	slot = path->slots[0];
 752	list_for_each_entry_safe(curr, next, &head, tree_list) {
 753		data_ptr = btrfs_item_ptr(leaf, slot, char);
 754		write_extent_buffer(leaf, &curr->data,
 755				    (unsigned long)data_ptr,
 756				    curr->data_len);
 757		slot++;
 758
 759		btrfs_delayed_item_release_metadata(root, curr);
 760
 761		list_del(&curr->tree_list);
 762		btrfs_release_delayed_item(curr);
 763	}
 764
 765error:
 766	kfree(data_size);
 767	kfree(keys);
 768out:
 769	return ret;
 770}
 771
 772/*
 773 * This helper can just do simple insertion that needn't extend item for new
 774 * data, such as directory name index insertion, inode insertion.
 775 */
 776static int btrfs_insert_delayed_item(struct btrfs_trans_handle *trans,
 777				     struct btrfs_root *root,
 778				     struct btrfs_path *path,
 779				     struct btrfs_delayed_item *delayed_item)
 780{
 781	struct extent_buffer *leaf;
 782	unsigned int nofs_flag;
 783	char *ptr;
 784	int ret;
 785
 786	nofs_flag = memalloc_nofs_save();
 787	ret = btrfs_insert_empty_item(trans, root, path, &delayed_item->key,
 788				      delayed_item->data_len);
 789	memalloc_nofs_restore(nofs_flag);
 790	if (ret < 0 && ret != -EEXIST)
 791		return ret;
 792
 793	leaf = path->nodes[0];
 794
 
 795	ptr = btrfs_item_ptr(leaf, path->slots[0], char);
 796
 797	write_extent_buffer(leaf, delayed_item->data, (unsigned long)ptr,
 798			    delayed_item->data_len);
 799	btrfs_mark_buffer_dirty(leaf);
 800
 801	btrfs_delayed_item_release_metadata(root, delayed_item);
 802	return 0;
 803}
 804
 805/*
 806 * we insert an item first, then if there are some continuous items, we try
 807 * to insert those items into the same leaf.
 808 */
 809static int btrfs_insert_delayed_items(struct btrfs_trans_handle *trans,
 810				      struct btrfs_path *path,
 811				      struct btrfs_root *root,
 812				      struct btrfs_delayed_node *node)
 813{
 814	struct btrfs_delayed_item *curr, *prev;
 815	int ret = 0;
 816
 817do_again:
 818	mutex_lock(&node->mutex);
 819	curr = __btrfs_first_delayed_insertion_item(node);
 820	if (!curr)
 821		goto insert_end;
 822
 823	ret = btrfs_insert_delayed_item(trans, root, path, curr);
 824	if (ret < 0) {
 825		btrfs_release_path(path);
 826		goto insert_end;
 827	}
 828
 829	prev = curr;
 830	curr = __btrfs_next_delayed_item(prev);
 831	if (curr && btrfs_is_continuous_delayed_item(prev, curr)) {
 832		/* insert the continuous items into the same leaf */
 833		path->slots[0]++;
 834		btrfs_batch_insert_items(root, path, curr);
 835	}
 836	btrfs_release_delayed_item(prev);
 837	btrfs_mark_buffer_dirty(path->nodes[0]);
 838
 839	btrfs_release_path(path);
 840	mutex_unlock(&node->mutex);
 841	goto do_again;
 842
 843insert_end:
 844	mutex_unlock(&node->mutex);
 845	return ret;
 846}
 847
 848static int btrfs_batch_delete_items(struct btrfs_trans_handle *trans,
 849				    struct btrfs_root *root,
 850				    struct btrfs_path *path,
 851				    struct btrfs_delayed_item *item)
 852{
 853	struct btrfs_delayed_item *curr, *next;
 854	struct extent_buffer *leaf;
 855	struct btrfs_key key;
 856	struct list_head head;
 857	int nitems, i, last_item;
 858	int ret = 0;
 859
 860	BUG_ON(!path->nodes[0]);
 861
 862	leaf = path->nodes[0];
 863
 864	i = path->slots[0];
 865	last_item = btrfs_header_nritems(leaf) - 1;
 866	if (i > last_item)
 867		return -ENOENT;	/* FIXME: Is errno suitable? */
 868
 869	next = item;
 870	INIT_LIST_HEAD(&head);
 871	btrfs_item_key_to_cpu(leaf, &key, i);
 872	nitems = 0;
 873	/*
 874	 * count the number of the dir index items that we can delete in batch
 875	 */
 876	while (btrfs_comp_cpu_keys(&next->key, &key) == 0) {
 877		list_add_tail(&next->tree_list, &head);
 878		nitems++;
 879
 880		curr = next;
 881		next = __btrfs_next_delayed_item(curr);
 882		if (!next)
 883			break;
 884
 885		if (!btrfs_is_continuous_delayed_item(curr, next))
 886			break;
 887
 888		i++;
 889		if (i > last_item)
 890			break;
 891		btrfs_item_key_to_cpu(leaf, &key, i);
 892	}
 893
 894	if (!nitems)
 895		return 0;
 896
 897	ret = btrfs_del_items(trans, root, path, path->slots[0], nitems);
 898	if (ret)
 899		goto out;
 900
 901	list_for_each_entry_safe(curr, next, &head, tree_list) {
 902		btrfs_delayed_item_release_metadata(root, curr);
 903		list_del(&curr->tree_list);
 904		btrfs_release_delayed_item(curr);
 905	}
 906
 907out:
 908	return ret;
 909}
 910
 911static int btrfs_delete_delayed_items(struct btrfs_trans_handle *trans,
 912				      struct btrfs_path *path,
 913				      struct btrfs_root *root,
 914				      struct btrfs_delayed_node *node)
 915{
 916	struct btrfs_delayed_item *curr, *prev;
 917	unsigned int nofs_flag;
 918	int ret = 0;
 919
 920do_again:
 921	mutex_lock(&node->mutex);
 922	curr = __btrfs_first_delayed_deletion_item(node);
 923	if (!curr)
 924		goto delete_fail;
 925
 926	nofs_flag = memalloc_nofs_save();
 927	ret = btrfs_search_slot(trans, root, &curr->key, path, -1, 1);
 928	memalloc_nofs_restore(nofs_flag);
 929	if (ret < 0)
 930		goto delete_fail;
 931	else if (ret > 0) {
 932		/*
 933		 * can't find the item which the node points to, so this node
 934		 * is invalid, just drop it.
 935		 */
 936		prev = curr;
 937		curr = __btrfs_next_delayed_item(prev);
 938		btrfs_release_delayed_item(prev);
 939		ret = 0;
 940		btrfs_release_path(path);
 941		if (curr) {
 942			mutex_unlock(&node->mutex);
 943			goto do_again;
 944		} else
 945			goto delete_fail;
 946	}
 947
 948	btrfs_batch_delete_items(trans, root, path, curr);
 949	btrfs_release_path(path);
 950	mutex_unlock(&node->mutex);
 951	goto do_again;
 952
 953delete_fail:
 954	btrfs_release_path(path);
 955	mutex_unlock(&node->mutex);
 956	return ret;
 957}
 958
 959static void btrfs_release_delayed_inode(struct btrfs_delayed_node *delayed_node)
 960{
 961	struct btrfs_delayed_root *delayed_root;
 962
 963	if (delayed_node &&
 964	    test_bit(BTRFS_DELAYED_NODE_INODE_DIRTY, &delayed_node->flags)) {
 965		BUG_ON(!delayed_node->root);
 966		clear_bit(BTRFS_DELAYED_NODE_INODE_DIRTY, &delayed_node->flags);
 967		delayed_node->count--;
 968
 969		delayed_root = delayed_node->root->fs_info->delayed_root;
 970		finish_one_item(delayed_root);
 
 
 
 
 971	}
 972}
 973
 974static void btrfs_release_delayed_iref(struct btrfs_delayed_node *delayed_node)
 975{
 976
 977	if (test_and_clear_bit(BTRFS_DELAYED_NODE_DEL_IREF, &delayed_node->flags)) {
 978		struct btrfs_delayed_root *delayed_root;
 979
 980		ASSERT(delayed_node->root);
 981		delayed_node->count--;
 982
 983		delayed_root = delayed_node->root->fs_info->delayed_root;
 984		finish_one_item(delayed_root);
 985	}
 986}
 987
 988static int __btrfs_update_delayed_inode(struct btrfs_trans_handle *trans,
 989					struct btrfs_root *root,
 990					struct btrfs_path *path,
 991					struct btrfs_delayed_node *node)
 992{
 993	struct btrfs_fs_info *fs_info = root->fs_info;
 994	struct btrfs_key key;
 995	struct btrfs_inode_item *inode_item;
 996	struct extent_buffer *leaf;
 997	unsigned int nofs_flag;
 998	int mod;
 999	int ret;
1000
 
 
 
 
 
 
1001	key.objectid = node->inode_id;
1002	key.type = BTRFS_INODE_ITEM_KEY;
1003	key.offset = 0;
 
 
 
 
 
 
 
 
 
1004
1005	if (test_bit(BTRFS_DELAYED_NODE_DEL_IREF, &node->flags))
1006		mod = -1;
1007	else
1008		mod = 1;
1009
1010	nofs_flag = memalloc_nofs_save();
1011	ret = btrfs_lookup_inode(trans, root, path, &key, mod);
1012	memalloc_nofs_restore(nofs_flag);
1013	if (ret > 0)
1014		ret = -ENOENT;
1015	if (ret < 0)
1016		goto out;
1017
1018	leaf = path->nodes[0];
1019	inode_item = btrfs_item_ptr(leaf, path->slots[0],
1020				    struct btrfs_inode_item);
1021	write_extent_buffer(leaf, &node->inode_item, (unsigned long)inode_item,
1022			    sizeof(struct btrfs_inode_item));
1023	btrfs_mark_buffer_dirty(leaf);
 
1024
1025	if (!test_bit(BTRFS_DELAYED_NODE_DEL_IREF, &node->flags))
1026		goto out;
1027
1028	path->slots[0]++;
1029	if (path->slots[0] >= btrfs_header_nritems(leaf))
1030		goto search;
1031again:
1032	btrfs_item_key_to_cpu(leaf, &key, path->slots[0]);
1033	if (key.objectid != node->inode_id)
1034		goto out;
1035
1036	if (key.type != BTRFS_INODE_REF_KEY &&
1037	    key.type != BTRFS_INODE_EXTREF_KEY)
1038		goto out;
1039
1040	/*
1041	 * Delayed iref deletion is for the inode who has only one link,
1042	 * so there is only one iref. The case that several irefs are
1043	 * in the same item doesn't exist.
1044	 */
1045	btrfs_del_item(trans, root, path);
1046out:
1047	btrfs_release_delayed_iref(node);
1048	btrfs_release_path(path);
1049err_out:
1050	btrfs_delayed_inode_release_metadata(fs_info, node, (ret < 0));
1051	btrfs_release_delayed_inode(node);
1052
1053	/*
1054	 * If we fail to update the delayed inode we need to abort the
1055	 * transaction, because we could leave the inode with the improper
1056	 * counts behind.
1057	 */
1058	if (ret && ret != -ENOENT)
1059		btrfs_abort_transaction(trans, ret);
1060
1061	return ret;
1062
1063search:
1064	btrfs_release_path(path);
1065
1066	key.type = BTRFS_INODE_EXTREF_KEY;
1067	key.offset = -1;
1068
1069	nofs_flag = memalloc_nofs_save();
1070	ret = btrfs_search_slot(trans, root, &key, path, -1, 1);
1071	memalloc_nofs_restore(nofs_flag);
1072	if (ret < 0)
1073		goto err_out;
1074	ASSERT(ret);
1075
1076	ret = 0;
1077	leaf = path->nodes[0];
1078	path->slots[0]--;
1079	goto again;
1080}
1081
1082static inline int btrfs_update_delayed_inode(struct btrfs_trans_handle *trans,
1083					     struct btrfs_root *root,
1084					     struct btrfs_path *path,
1085					     struct btrfs_delayed_node *node)
1086{
1087	int ret;
1088
1089	mutex_lock(&node->mutex);
1090	if (!test_bit(BTRFS_DELAYED_NODE_INODE_DIRTY, &node->flags)) {
1091		mutex_unlock(&node->mutex);
1092		return 0;
1093	}
1094
1095	ret = __btrfs_update_delayed_inode(trans, root, path, node);
1096	mutex_unlock(&node->mutex);
1097	return ret;
1098}
1099
1100static inline int
1101__btrfs_commit_inode_delayed_items(struct btrfs_trans_handle *trans,
1102				   struct btrfs_path *path,
1103				   struct btrfs_delayed_node *node)
1104{
1105	int ret;
1106
1107	ret = btrfs_insert_delayed_items(trans, path, node->root, node);
1108	if (ret)
1109		return ret;
1110
1111	ret = btrfs_delete_delayed_items(trans, path, node->root, node);
1112	if (ret)
1113		return ret;
1114
1115	ret = btrfs_update_delayed_inode(trans, node->root, path, node);
1116	return ret;
1117}
1118
1119/*
1120 * Called when committing the transaction.
1121 * Returns 0 on success.
1122 * Returns < 0 on error and returns with an aborted transaction with any
1123 * outstanding delayed items cleaned up.
1124 */
1125static int __btrfs_run_delayed_items(struct btrfs_trans_handle *trans, int nr)
1126{
1127	struct btrfs_fs_info *fs_info = trans->fs_info;
1128	struct btrfs_delayed_root *delayed_root;
1129	struct btrfs_delayed_node *curr_node, *prev_node;
1130	struct btrfs_path *path;
1131	struct btrfs_block_rsv *block_rsv;
1132	int ret = 0;
1133	bool count = (nr > 0);
1134
1135	if (TRANS_ABORTED(trans))
1136		return -EIO;
1137
1138	path = btrfs_alloc_path();
1139	if (!path)
1140		return -ENOMEM;
 
1141
1142	block_rsv = trans->block_rsv;
1143	trans->block_rsv = &fs_info->delayed_block_rsv;
1144
1145	delayed_root = fs_info->delayed_root;
1146
1147	curr_node = btrfs_first_delayed_node(delayed_root);
1148	while (curr_node && (!count || nr--)) {
1149		ret = __btrfs_commit_inode_delayed_items(trans, path,
 
 
 
 
 
 
 
1150							 curr_node);
1151		if (ret) {
1152			btrfs_release_delayed_node(curr_node);
1153			curr_node = NULL;
1154			btrfs_abort_transaction(trans, ret);
1155			break;
1156		}
1157
1158		prev_node = curr_node;
1159		curr_node = btrfs_next_delayed_node(curr_node);
1160		btrfs_release_delayed_node(prev_node);
1161	}
1162
1163	if (curr_node)
1164		btrfs_release_delayed_node(curr_node);
1165	btrfs_free_path(path);
1166	trans->block_rsv = block_rsv;
1167
1168	return ret;
1169}
1170
1171int btrfs_run_delayed_items(struct btrfs_trans_handle *trans)
1172{
1173	return __btrfs_run_delayed_items(trans, -1);
1174}
1175
1176int btrfs_run_delayed_items_nr(struct btrfs_trans_handle *trans, int nr)
1177{
1178	return __btrfs_run_delayed_items(trans, nr);
1179}
1180
1181int btrfs_commit_inode_delayed_items(struct btrfs_trans_handle *trans,
1182				     struct btrfs_inode *inode)
1183{
1184	struct btrfs_delayed_node *delayed_node = btrfs_get_delayed_node(inode);
1185	struct btrfs_path *path;
1186	struct btrfs_block_rsv *block_rsv;
1187	int ret;
1188
1189	if (!delayed_node)
1190		return 0;
1191
1192	mutex_lock(&delayed_node->mutex);
1193	if (!delayed_node->count) {
1194		mutex_unlock(&delayed_node->mutex);
1195		btrfs_release_delayed_node(delayed_node);
1196		return 0;
1197	}
1198	mutex_unlock(&delayed_node->mutex);
1199
1200	path = btrfs_alloc_path();
1201	if (!path) {
1202		btrfs_release_delayed_node(delayed_node);
1203		return -ENOMEM;
1204	}
1205
1206	block_rsv = trans->block_rsv;
1207	trans->block_rsv = &delayed_node->root->fs_info->delayed_block_rsv;
1208
1209	ret = __btrfs_commit_inode_delayed_items(trans, path, delayed_node);
 
 
 
 
 
1210
1211	btrfs_release_delayed_node(delayed_node);
1212	btrfs_free_path(path);
1213	trans->block_rsv = block_rsv;
1214
1215	return ret;
1216}
1217
1218int btrfs_commit_inode_delayed_inode(struct btrfs_inode *inode)
 
1219{
1220	struct btrfs_fs_info *fs_info = inode->root->fs_info;
1221	struct btrfs_trans_handle *trans;
1222	struct btrfs_delayed_node *delayed_node = btrfs_get_delayed_node(inode);
1223	struct btrfs_path *path;
1224	struct btrfs_block_rsv *block_rsv;
1225	int ret;
1226
1227	if (!delayed_node)
1228		return 0;
1229
1230	mutex_lock(&delayed_node->mutex);
1231	if (!test_bit(BTRFS_DELAYED_NODE_INODE_DIRTY, &delayed_node->flags)) {
1232		mutex_unlock(&delayed_node->mutex);
1233		btrfs_release_delayed_node(delayed_node);
1234		return 0;
1235	}
1236	mutex_unlock(&delayed_node->mutex);
1237
1238	trans = btrfs_join_transaction(delayed_node->root);
1239	if (IS_ERR(trans)) {
1240		ret = PTR_ERR(trans);
1241		goto out;
1242	}
1243
1244	path = btrfs_alloc_path();
1245	if (!path) {
1246		ret = -ENOMEM;
1247		goto trans_out;
1248	}
1249
1250	block_rsv = trans->block_rsv;
1251	trans->block_rsv = &fs_info->delayed_block_rsv;
1252
1253	mutex_lock(&delayed_node->mutex);
1254	if (test_bit(BTRFS_DELAYED_NODE_INODE_DIRTY, &delayed_node->flags))
1255		ret = __btrfs_update_delayed_inode(trans, delayed_node->root,
1256						   path, delayed_node);
1257	else
1258		ret = 0;
1259	mutex_unlock(&delayed_node->mutex);
1260
1261	btrfs_free_path(path);
1262	trans->block_rsv = block_rsv;
1263trans_out:
1264	btrfs_end_transaction(trans);
1265	btrfs_btree_balance_dirty(fs_info);
1266out:
1267	btrfs_release_delayed_node(delayed_node);
1268
1269	return ret;
1270}
1271
1272void btrfs_remove_delayed_node(struct btrfs_inode *inode)
1273{
1274	struct btrfs_delayed_node *delayed_node;
1275
1276	delayed_node = READ_ONCE(inode->delayed_node);
1277	if (!delayed_node)
1278		return;
1279
1280	inode->delayed_node = NULL;
1281	btrfs_release_delayed_node(delayed_node);
1282}
1283
1284struct btrfs_async_delayed_work {
1285	struct btrfs_delayed_root *delayed_root;
1286	int nr;
1287	struct btrfs_work work;
1288};
1289
1290static void btrfs_async_run_delayed_root(struct btrfs_work *work)
1291{
1292	struct btrfs_async_delayed_work *async_work;
1293	struct btrfs_delayed_root *delayed_root;
1294	struct btrfs_trans_handle *trans;
1295	struct btrfs_path *path;
1296	struct btrfs_delayed_node *delayed_node = NULL;
1297	struct btrfs_root *root;
1298	struct btrfs_block_rsv *block_rsv;
1299	int total_done = 0;
 
 
1300
1301	async_work = container_of(work, struct btrfs_async_delayed_work, work);
1302	delayed_root = async_work->delayed_root;
1303
1304	path = btrfs_alloc_path();
1305	if (!path)
1306		goto out;
 
1307
1308	do {
1309		if (atomic_read(&delayed_root->items) <
1310		    BTRFS_DELAYED_BACKGROUND / 2)
1311			break;
1312
1313		delayed_node = btrfs_first_prepared_delayed_node(delayed_root);
1314		if (!delayed_node)
1315			break;
1316
1317		root = delayed_node->root;
 
1318
1319		trans = btrfs_join_transaction(root);
1320		if (IS_ERR(trans)) {
1321			btrfs_release_path(path);
1322			btrfs_release_prepared_delayed_node(delayed_node);
1323			total_done++;
1324			continue;
1325		}
1326
1327		block_rsv = trans->block_rsv;
1328		trans->block_rsv = &root->fs_info->delayed_block_rsv;
1329
1330		__btrfs_commit_inode_delayed_items(trans, path, delayed_node);
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1331
1332		trans->block_rsv = block_rsv;
1333		btrfs_end_transaction(trans);
1334		btrfs_btree_balance_dirty_nodelay(root->fs_info);
1335
1336		btrfs_release_path(path);
1337		btrfs_release_prepared_delayed_node(delayed_node);
1338		total_done++;
1339
1340	} while ((async_work->nr == 0 && total_done < BTRFS_DELAYED_WRITEBACK)
1341		 || total_done < async_work->nr);
1342
 
 
 
 
1343	btrfs_free_path(path);
1344out:
1345	wake_up(&delayed_root->wait);
1346	kfree(async_work);
 
 
 
 
1347}
1348
1349
1350static int btrfs_wq_run_delayed_node(struct btrfs_delayed_root *delayed_root,
1351				     struct btrfs_fs_info *fs_info, int nr)
1352{
1353	struct btrfs_async_delayed_work *async_work;
 
 
1354
1355	async_work = kmalloc(sizeof(*async_work), GFP_NOFS);
1356	if (!async_work)
 
 
 
 
 
 
1357		return -ENOMEM;
 
 
 
 
 
 
 
 
 
 
1358
1359	async_work->delayed_root = delayed_root;
1360	btrfs_init_work(&async_work->work, btrfs_async_run_delayed_root, NULL,
1361			NULL);
1362	async_work->nr = nr;
1363
1364	btrfs_queue_work(fs_info->delayed_workers, &async_work->work);
1365	return 0;
1366}
1367
1368void btrfs_assert_delayed_root_empty(struct btrfs_fs_info *fs_info)
1369{
1370	WARN_ON(btrfs_first_delayed_node(fs_info->delayed_root));
 
 
1371}
1372
1373static int could_end_wait(struct btrfs_delayed_root *delayed_root, int seq)
1374{
1375	int val = atomic_read(&delayed_root->items_seq);
1376
1377	if (val < seq || val >= seq + BTRFS_DELAYED_BATCH)
1378		return 1;
1379
1380	if (atomic_read(&delayed_root->items) < BTRFS_DELAYED_BACKGROUND)
1381		return 1;
1382
1383	return 0;
1384}
1385
1386void btrfs_balance_delayed_items(struct btrfs_fs_info *fs_info)
1387{
1388	struct btrfs_delayed_root *delayed_root = fs_info->delayed_root;
1389
1390	if ((atomic_read(&delayed_root->items) < BTRFS_DELAYED_BACKGROUND) ||
1391		btrfs_workqueue_normal_congested(fs_info->delayed_workers))
1392		return;
1393
1394	if (atomic_read(&delayed_root->items) >= BTRFS_DELAYED_WRITEBACK) {
1395		int seq;
1396		int ret;
1397
1398		seq = atomic_read(&delayed_root->items_seq);
1399
1400		ret = btrfs_wq_run_delayed_node(delayed_root, fs_info, 0);
1401		if (ret)
1402			return;
1403
1404		wait_event_interruptible(delayed_root->wait,
1405					 could_end_wait(delayed_root, seq));
 
 
 
1406		return;
1407	}
1408
1409	btrfs_wq_run_delayed_node(delayed_root, fs_info, BTRFS_DELAYED_BATCH);
1410}
1411
1412/* Will return 0 or -ENOMEM */
1413int btrfs_insert_delayed_dir_index(struct btrfs_trans_handle *trans,
1414				   const char *name, int name_len,
1415				   struct btrfs_inode *dir,
1416				   struct btrfs_disk_key *disk_key, u8 type,
1417				   u64 index)
1418{
1419	struct btrfs_delayed_node *delayed_node;
1420	struct btrfs_delayed_item *delayed_item;
1421	struct btrfs_dir_item *dir_item;
1422	int ret;
1423
1424	delayed_node = btrfs_get_or_create_delayed_node(dir);
1425	if (IS_ERR(delayed_node))
1426		return PTR_ERR(delayed_node);
1427
1428	delayed_item = btrfs_alloc_delayed_item(sizeof(*dir_item) + name_len);
1429	if (!delayed_item) {
1430		ret = -ENOMEM;
1431		goto release_node;
1432	}
1433
 
 
 
 
 
 
 
1434	delayed_item->key.objectid = btrfs_ino(dir);
1435	delayed_item->key.type = BTRFS_DIR_INDEX_KEY;
1436	delayed_item->key.offset = index;
1437
1438	dir_item = (struct btrfs_dir_item *)delayed_item->data;
1439	dir_item->location = *disk_key;
1440	btrfs_set_stack_dir_transid(dir_item, trans->transid);
1441	btrfs_set_stack_dir_data_len(dir_item, 0);
1442	btrfs_set_stack_dir_name_len(dir_item, name_len);
1443	btrfs_set_stack_dir_type(dir_item, type);
1444	memcpy((char *)(dir_item + 1), name, name_len);
1445
1446	ret = btrfs_delayed_item_reserve_metadata(trans, dir->root, delayed_item);
1447	/*
1448	 * we have reserved enough space when we start a new transaction,
1449	 * so reserving metadata failure is impossible
1450	 */
1451	BUG_ON(ret);
1452
1453	mutex_lock(&delayed_node->mutex);
1454	ret = __btrfs_add_delayed_insertion_item(delayed_node, delayed_item);
1455	if (unlikely(ret)) {
1456		btrfs_err(trans->fs_info,
1457			  "err add delayed dir index item(name: %.*s) into the insertion tree of the delayed node(root id: %llu, inode id: %llu, errno: %d)",
1458			  name_len, name, delayed_node->root->root_key.objectid,
1459			  delayed_node->inode_id, ret);
 
 
 
1460		BUG();
1461	}
1462	mutex_unlock(&delayed_node->mutex);
1463
1464release_node:
1465	btrfs_release_delayed_node(delayed_node);
1466	return ret;
1467}
1468
1469static int btrfs_delete_delayed_insertion_item(struct btrfs_fs_info *fs_info,
1470					       struct btrfs_delayed_node *node,
1471					       struct btrfs_key *key)
1472{
1473	struct btrfs_delayed_item *item;
1474
1475	mutex_lock(&node->mutex);
1476	item = __btrfs_lookup_delayed_insertion_item(node, key);
1477	if (!item) {
1478		mutex_unlock(&node->mutex);
1479		return 1;
1480	}
1481
1482	btrfs_delayed_item_release_metadata(node->root, item);
1483	btrfs_release_delayed_item(item);
1484	mutex_unlock(&node->mutex);
1485	return 0;
1486}
1487
1488int btrfs_delete_delayed_dir_index(struct btrfs_trans_handle *trans,
1489				   struct btrfs_inode *dir, u64 index)
 
1490{
1491	struct btrfs_delayed_node *node;
1492	struct btrfs_delayed_item *item;
1493	struct btrfs_key item_key;
1494	int ret;
1495
1496	node = btrfs_get_or_create_delayed_node(dir);
1497	if (IS_ERR(node))
1498		return PTR_ERR(node);
1499
1500	item_key.objectid = btrfs_ino(dir);
1501	item_key.type = BTRFS_DIR_INDEX_KEY;
1502	item_key.offset = index;
1503
1504	ret = btrfs_delete_delayed_insertion_item(trans->fs_info, node,
1505						  &item_key);
1506	if (!ret)
1507		goto end;
1508
1509	item = btrfs_alloc_delayed_item(0);
1510	if (!item) {
1511		ret = -ENOMEM;
1512		goto end;
1513	}
1514
1515	item->key = item_key;
1516
1517	ret = btrfs_delayed_item_reserve_metadata(trans, dir->root, item);
1518	/*
1519	 * we have reserved enough space when we start a new transaction,
1520	 * so reserving metadata failure is impossible.
1521	 */
1522	if (ret < 0) {
1523		btrfs_err(trans->fs_info,
1524"metadata reservation failed for delayed dir item deltiona, should have been reserved");
1525		btrfs_release_delayed_item(item);
1526		goto end;
1527	}
1528
1529	mutex_lock(&node->mutex);
1530	ret = __btrfs_add_delayed_deletion_item(node, item);
1531	if (unlikely(ret)) {
1532		btrfs_err(trans->fs_info,
1533			  "err add delayed dir index item(index: %llu) into the deletion tree of the delayed node(root id: %llu, inode id: %llu, errno: %d)",
1534			  index, node->root->root_key.objectid,
1535			  node->inode_id, ret);
1536		btrfs_delayed_item_release_metadata(dir->root, item);
1537		btrfs_release_delayed_item(item);
 
 
1538	}
1539	mutex_unlock(&node->mutex);
1540end:
1541	btrfs_release_delayed_node(node);
1542	return ret;
1543}
1544
1545int btrfs_inode_delayed_dir_index_count(struct btrfs_inode *inode)
1546{
1547	struct btrfs_delayed_node *delayed_node = btrfs_get_delayed_node(inode);
1548
1549	if (!delayed_node)
1550		return -ENOENT;
1551
1552	/*
1553	 * Since we have held i_mutex of this directory, it is impossible that
1554	 * a new directory index is added into the delayed node and index_cnt
1555	 * is updated now. So we needn't lock the delayed node.
1556	 */
1557	if (!delayed_node->index_cnt) {
1558		btrfs_release_delayed_node(delayed_node);
1559		return -EINVAL;
1560	}
1561
1562	inode->index_cnt = delayed_node->index_cnt;
1563	btrfs_release_delayed_node(delayed_node);
1564	return 0;
1565}
1566
1567bool btrfs_readdir_get_delayed_items(struct inode *inode,
1568				     struct list_head *ins_list,
1569				     struct list_head *del_list)
1570{
1571	struct btrfs_delayed_node *delayed_node;
1572	struct btrfs_delayed_item *item;
1573
1574	delayed_node = btrfs_get_delayed_node(BTRFS_I(inode));
1575	if (!delayed_node)
1576		return false;
1577
1578	/*
1579	 * We can only do one readdir with delayed items at a time because of
1580	 * item->readdir_list.
1581	 */
1582	btrfs_inode_unlock(inode, BTRFS_ILOCK_SHARED);
1583	btrfs_inode_lock(inode, 0);
1584
1585	mutex_lock(&delayed_node->mutex);
1586	item = __btrfs_first_delayed_insertion_item(delayed_node);
1587	while (item) {
1588		refcount_inc(&item->refs);
1589		list_add_tail(&item->readdir_list, ins_list);
1590		item = __btrfs_next_delayed_item(item);
1591	}
1592
1593	item = __btrfs_first_delayed_deletion_item(delayed_node);
1594	while (item) {
1595		refcount_inc(&item->refs);
1596		list_add_tail(&item->readdir_list, del_list);
1597		item = __btrfs_next_delayed_item(item);
1598	}
1599	mutex_unlock(&delayed_node->mutex);
1600	/*
1601	 * This delayed node is still cached in the btrfs inode, so refs
1602	 * must be > 1 now, and we needn't check it is going to be freed
1603	 * or not.
1604	 *
1605	 * Besides that, this function is used to read dir, we do not
1606	 * insert/delete delayed items in this period. So we also needn't
1607	 * requeue or dequeue this delayed node.
1608	 */
1609	refcount_dec(&delayed_node->refs);
1610
1611	return true;
1612}
1613
1614void btrfs_readdir_put_delayed_items(struct inode *inode,
1615				     struct list_head *ins_list,
1616				     struct list_head *del_list)
1617{
1618	struct btrfs_delayed_item *curr, *next;
1619
1620	list_for_each_entry_safe(curr, next, ins_list, readdir_list) {
1621		list_del(&curr->readdir_list);
1622		if (refcount_dec_and_test(&curr->refs))
1623			kfree(curr);
1624	}
1625
1626	list_for_each_entry_safe(curr, next, del_list, readdir_list) {
1627		list_del(&curr->readdir_list);
1628		if (refcount_dec_and_test(&curr->refs))
1629			kfree(curr);
1630	}
1631
1632	/*
1633	 * The VFS is going to do up_read(), so we need to downgrade back to a
1634	 * read lock.
1635	 */
1636	downgrade_write(&inode->i_rwsem);
1637}
1638
1639int btrfs_should_delete_dir_index(struct list_head *del_list,
1640				  u64 index)
1641{
1642	struct btrfs_delayed_item *curr;
1643	int ret = 0;
 
 
 
1644
1645	list_for_each_entry(curr, del_list, readdir_list) {
1646		if (curr->key.offset > index)
1647			break;
1648		if (curr->key.offset == index) {
1649			ret = 1;
1650			break;
1651		}
 
 
 
 
 
 
 
1652	}
1653	return ret;
1654}
1655
1656/*
1657 * btrfs_readdir_delayed_dir_index - read dir info stored in the delayed tree
1658 *
1659 */
1660int btrfs_readdir_delayed_dir_index(struct dir_context *ctx,
 
1661				    struct list_head *ins_list)
1662{
1663	struct btrfs_dir_item *di;
1664	struct btrfs_delayed_item *curr, *next;
1665	struct btrfs_key location;
1666	char *name;
1667	int name_len;
1668	int over = 0;
1669	unsigned char d_type;
1670
1671	if (list_empty(ins_list))
1672		return 0;
1673
1674	/*
1675	 * Changing the data of the delayed item is impossible. So
1676	 * we needn't lock them. And we have held i_mutex of the
1677	 * directory, nobody can delete any directory indexes now.
1678	 */
1679	list_for_each_entry_safe(curr, next, ins_list, readdir_list) {
1680		list_del(&curr->readdir_list);
1681
1682		if (curr->key.offset < ctx->pos) {
1683			if (refcount_dec_and_test(&curr->refs))
1684				kfree(curr);
1685			continue;
1686		}
1687
1688		ctx->pos = curr->key.offset;
1689
1690		di = (struct btrfs_dir_item *)curr->data;
1691		name = (char *)(di + 1);
1692		name_len = btrfs_stack_dir_name_len(di);
1693
1694		d_type = fs_ftype_to_dtype(di->type);
1695		btrfs_disk_key_to_cpu(&location, &di->location);
1696
1697		over = !dir_emit(ctx, name, name_len,
1698			       location.objectid, d_type);
1699
1700		if (refcount_dec_and_test(&curr->refs))
1701			kfree(curr);
1702
1703		if (over)
1704			return 1;
1705		ctx->pos++;
1706	}
1707	return 0;
1708}
1709
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1710static void fill_stack_inode_item(struct btrfs_trans_handle *trans,
1711				  struct btrfs_inode_item *inode_item,
1712				  struct inode *inode)
1713{
1714	btrfs_set_stack_inode_uid(inode_item, i_uid_read(inode));
1715	btrfs_set_stack_inode_gid(inode_item, i_gid_read(inode));
1716	btrfs_set_stack_inode_size(inode_item, BTRFS_I(inode)->disk_i_size);
1717	btrfs_set_stack_inode_mode(inode_item, inode->i_mode);
1718	btrfs_set_stack_inode_nlink(inode_item, inode->i_nlink);
1719	btrfs_set_stack_inode_nbytes(inode_item, inode_get_bytes(inode));
1720	btrfs_set_stack_inode_generation(inode_item,
1721					 BTRFS_I(inode)->generation);
1722	btrfs_set_stack_inode_sequence(inode_item,
1723				       inode_peek_iversion(inode));
1724	btrfs_set_stack_inode_transid(inode_item, trans->transid);
1725	btrfs_set_stack_inode_rdev(inode_item, inode->i_rdev);
1726	btrfs_set_stack_inode_flags(inode_item, BTRFS_I(inode)->flags);
1727	btrfs_set_stack_inode_block_group(inode_item, 0);
1728
1729	btrfs_set_stack_timespec_sec(&inode_item->atime,
1730				     inode->i_atime.tv_sec);
1731	btrfs_set_stack_timespec_nsec(&inode_item->atime,
1732				      inode->i_atime.tv_nsec);
1733
1734	btrfs_set_stack_timespec_sec(&inode_item->mtime,
1735				     inode->i_mtime.tv_sec);
1736	btrfs_set_stack_timespec_nsec(&inode_item->mtime,
1737				      inode->i_mtime.tv_nsec);
1738
1739	btrfs_set_stack_timespec_sec(&inode_item->ctime,
1740				     inode->i_ctime.tv_sec);
1741	btrfs_set_stack_timespec_nsec(&inode_item->ctime,
1742				      inode->i_ctime.tv_nsec);
1743
1744	btrfs_set_stack_timespec_sec(&inode_item->otime,
1745				     BTRFS_I(inode)->i_otime.tv_sec);
1746	btrfs_set_stack_timespec_nsec(&inode_item->otime,
1747				     BTRFS_I(inode)->i_otime.tv_nsec);
1748}
1749
1750int btrfs_fill_inode(struct inode *inode, u32 *rdev)
1751{
1752	struct btrfs_fs_info *fs_info = BTRFS_I(inode)->root->fs_info;
1753	struct btrfs_delayed_node *delayed_node;
1754	struct btrfs_inode_item *inode_item;
 
1755
1756	delayed_node = btrfs_get_delayed_node(BTRFS_I(inode));
1757	if (!delayed_node)
1758		return -ENOENT;
1759
1760	mutex_lock(&delayed_node->mutex);
1761	if (!test_bit(BTRFS_DELAYED_NODE_INODE_DIRTY, &delayed_node->flags)) {
1762		mutex_unlock(&delayed_node->mutex);
1763		btrfs_release_delayed_node(delayed_node);
1764		return -ENOENT;
1765	}
1766
1767	inode_item = &delayed_node->inode_item;
1768
1769	i_uid_write(inode, btrfs_stack_inode_uid(inode_item));
1770	i_gid_write(inode, btrfs_stack_inode_gid(inode_item));
1771	btrfs_i_size_write(BTRFS_I(inode), btrfs_stack_inode_size(inode_item));
1772	btrfs_inode_set_file_extent_range(BTRFS_I(inode), 0,
1773			round_up(i_size_read(inode), fs_info->sectorsize));
1774	inode->i_mode = btrfs_stack_inode_mode(inode_item);
1775	set_nlink(inode, btrfs_stack_inode_nlink(inode_item));
1776	inode_set_bytes(inode, btrfs_stack_inode_nbytes(inode_item));
1777	BTRFS_I(inode)->generation = btrfs_stack_inode_generation(inode_item);
1778        BTRFS_I(inode)->last_trans = btrfs_stack_inode_transid(inode_item);
1779
1780	inode_set_iversion_queried(inode,
1781				   btrfs_stack_inode_sequence(inode_item));
1782	inode->i_rdev = 0;
1783	*rdev = btrfs_stack_inode_rdev(inode_item);
1784	BTRFS_I(inode)->flags = btrfs_stack_inode_flags(inode_item);
1785
1786	inode->i_atime.tv_sec = btrfs_stack_timespec_sec(&inode_item->atime);
1787	inode->i_atime.tv_nsec = btrfs_stack_timespec_nsec(&inode_item->atime);
1788
1789	inode->i_mtime.tv_sec = btrfs_stack_timespec_sec(&inode_item->mtime);
1790	inode->i_mtime.tv_nsec = btrfs_stack_timespec_nsec(&inode_item->mtime);
1791
1792	inode->i_ctime.tv_sec = btrfs_stack_timespec_sec(&inode_item->ctime);
1793	inode->i_ctime.tv_nsec = btrfs_stack_timespec_nsec(&inode_item->ctime);
1794
1795	BTRFS_I(inode)->i_otime.tv_sec =
1796		btrfs_stack_timespec_sec(&inode_item->otime);
1797	BTRFS_I(inode)->i_otime.tv_nsec =
1798		btrfs_stack_timespec_nsec(&inode_item->otime);
1799
1800	inode->i_generation = BTRFS_I(inode)->generation;
1801	BTRFS_I(inode)->index_cnt = (u64)-1;
1802
1803	mutex_unlock(&delayed_node->mutex);
1804	btrfs_release_delayed_node(delayed_node);
1805	return 0;
1806}
1807
1808int btrfs_delayed_update_inode(struct btrfs_trans_handle *trans,
1809			       struct btrfs_root *root,
1810			       struct btrfs_inode *inode)
1811{
1812	struct btrfs_delayed_node *delayed_node;
1813	int ret = 0;
1814
1815	delayed_node = btrfs_get_or_create_delayed_node(inode);
1816	if (IS_ERR(delayed_node))
1817		return PTR_ERR(delayed_node);
1818
1819	mutex_lock(&delayed_node->mutex);
1820	if (test_bit(BTRFS_DELAYED_NODE_INODE_DIRTY, &delayed_node->flags)) {
1821		fill_stack_inode_item(trans, &delayed_node->inode_item,
1822				      &inode->vfs_inode);
1823		goto release_node;
1824	}
1825
1826	ret = btrfs_delayed_inode_reserve_metadata(trans, root, delayed_node);
1827	if (ret)
1828		goto release_node;
 
 
 
1829
1830	fill_stack_inode_item(trans, &delayed_node->inode_item, &inode->vfs_inode);
1831	set_bit(BTRFS_DELAYED_NODE_INODE_DIRTY, &delayed_node->flags);
1832	delayed_node->count++;
1833	atomic_inc(&root->fs_info->delayed_root->items);
1834release_node:
1835	mutex_unlock(&delayed_node->mutex);
1836	btrfs_release_delayed_node(delayed_node);
1837	return ret;
1838}
1839
1840int btrfs_delayed_delete_inode_ref(struct btrfs_inode *inode)
1841{
1842	struct btrfs_fs_info *fs_info = inode->root->fs_info;
1843	struct btrfs_delayed_node *delayed_node;
1844
1845	/*
1846	 * we don't do delayed inode updates during log recovery because it
1847	 * leads to enospc problems.  This means we also can't do
1848	 * delayed inode refs
1849	 */
1850	if (test_bit(BTRFS_FS_LOG_RECOVERING, &fs_info->flags))
1851		return -EAGAIN;
1852
1853	delayed_node = btrfs_get_or_create_delayed_node(inode);
1854	if (IS_ERR(delayed_node))
1855		return PTR_ERR(delayed_node);
1856
1857	/*
1858	 * We don't reserve space for inode ref deletion is because:
1859	 * - We ONLY do async inode ref deletion for the inode who has only
1860	 *   one link(i_nlink == 1), it means there is only one inode ref.
1861	 *   And in most case, the inode ref and the inode item are in the
1862	 *   same leaf, and we will deal with them at the same time.
1863	 *   Since we are sure we will reserve the space for the inode item,
1864	 *   it is unnecessary to reserve space for inode ref deletion.
1865	 * - If the inode ref and the inode item are not in the same leaf,
1866	 *   We also needn't worry about enospc problem, because we reserve
1867	 *   much more space for the inode update than it needs.
1868	 * - At the worst, we can steal some space from the global reservation.
1869	 *   It is very rare.
1870	 */
1871	mutex_lock(&delayed_node->mutex);
1872	if (test_bit(BTRFS_DELAYED_NODE_DEL_IREF, &delayed_node->flags))
1873		goto release_node;
1874
1875	set_bit(BTRFS_DELAYED_NODE_DEL_IREF, &delayed_node->flags);
1876	delayed_node->count++;
1877	atomic_inc(&fs_info->delayed_root->items);
1878release_node:
1879	mutex_unlock(&delayed_node->mutex);
1880	btrfs_release_delayed_node(delayed_node);
1881	return 0;
1882}
1883
1884static void __btrfs_kill_delayed_node(struct btrfs_delayed_node *delayed_node)
1885{
1886	struct btrfs_root *root = delayed_node->root;
1887	struct btrfs_fs_info *fs_info = root->fs_info;
1888	struct btrfs_delayed_item *curr_item, *prev_item;
1889
1890	mutex_lock(&delayed_node->mutex);
1891	curr_item = __btrfs_first_delayed_insertion_item(delayed_node);
1892	while (curr_item) {
1893		btrfs_delayed_item_release_metadata(root, curr_item);
1894		prev_item = curr_item;
1895		curr_item = __btrfs_next_delayed_item(prev_item);
1896		btrfs_release_delayed_item(prev_item);
1897	}
1898
1899	curr_item = __btrfs_first_delayed_deletion_item(delayed_node);
1900	while (curr_item) {
1901		btrfs_delayed_item_release_metadata(root, curr_item);
1902		prev_item = curr_item;
1903		curr_item = __btrfs_next_delayed_item(prev_item);
1904		btrfs_release_delayed_item(prev_item);
1905	}
1906
1907	btrfs_release_delayed_iref(delayed_node);
1908
1909	if (test_bit(BTRFS_DELAYED_NODE_INODE_DIRTY, &delayed_node->flags)) {
1910		btrfs_delayed_inode_release_metadata(fs_info, delayed_node, false);
1911		btrfs_release_delayed_inode(delayed_node);
1912	}
1913	mutex_unlock(&delayed_node->mutex);
1914}
1915
1916void btrfs_kill_delayed_inode_items(struct btrfs_inode *inode)
1917{
1918	struct btrfs_delayed_node *delayed_node;
1919
1920	delayed_node = btrfs_get_delayed_node(inode);
1921	if (!delayed_node)
1922		return;
1923
1924	__btrfs_kill_delayed_node(delayed_node);
1925	btrfs_release_delayed_node(delayed_node);
1926}
1927
1928void btrfs_kill_all_delayed_nodes(struct btrfs_root *root)
1929{
1930	u64 inode_id = 0;
1931	struct btrfs_delayed_node *delayed_nodes[8];
1932	int i, n;
1933
1934	while (1) {
1935		spin_lock(&root->inode_lock);
1936		n = radix_tree_gang_lookup(&root->delayed_nodes_tree,
1937					   (void **)delayed_nodes, inode_id,
1938					   ARRAY_SIZE(delayed_nodes));
1939		if (!n) {
1940			spin_unlock(&root->inode_lock);
1941			break;
1942		}
1943
1944		inode_id = delayed_nodes[n - 1]->inode_id + 1;
1945		for (i = 0; i < n; i++) {
1946			/*
1947			 * Don't increase refs in case the node is dead and
1948			 * about to be removed from the tree in the loop below
1949			 */
1950			if (!refcount_inc_not_zero(&delayed_nodes[i]->refs))
1951				delayed_nodes[i] = NULL;
1952		}
1953		spin_unlock(&root->inode_lock);
1954
1955		for (i = 0; i < n; i++) {
1956			if (!delayed_nodes[i])
1957				continue;
1958			__btrfs_kill_delayed_node(delayed_nodes[i]);
1959			btrfs_release_delayed_node(delayed_nodes[i]);
1960		}
1961	}
1962}
1963
1964void btrfs_destroy_delayed_inodes(struct btrfs_fs_info *fs_info)
1965{
1966	struct btrfs_delayed_node *curr_node, *prev_node;
1967
1968	curr_node = btrfs_first_delayed_node(fs_info->delayed_root);
1969	while (curr_node) {
1970		__btrfs_kill_delayed_node(curr_node);
1971
1972		prev_node = curr_node;
1973		curr_node = btrfs_next_delayed_node(curr_node);
1974		btrfs_release_delayed_node(prev_node);
1975	}
1976}
1977