Loading...
1/*
2 * Copyright (C) 2011 Fujitsu. All rights reserved.
3 * Written by Miao Xie <miaox@cn.fujitsu.com>
4 *
5 * This program is free software; you can redistribute it and/or
6 * modify it under the terms of the GNU General Public
7 * License v2 as published by the Free Software Foundation.
8 *
9 * This program is distributed in the hope that it will be useful,
10 * but WITHOUT ANY WARRANTY; without even the implied warranty of
11 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
12 * General Public License for more details.
13 *
14 * You should have received a copy of the GNU General Public
15 * License along with this program; if not, write to the
16 * Free Software Foundation, Inc., 59 Temple Place - Suite 330,
17 * Boston, MA 021110-1307, USA.
18 */
19
20#include <linux/slab.h>
21#include "delayed-inode.h"
22#include "disk-io.h"
23#include "transaction.h"
24
25#define BTRFS_DELAYED_WRITEBACK 400
26#define BTRFS_DELAYED_BACKGROUND 100
27
28static struct kmem_cache *delayed_node_cache;
29
30int __init btrfs_delayed_inode_init(void)
31{
32 delayed_node_cache = kmem_cache_create("delayed_node",
33 sizeof(struct btrfs_delayed_node),
34 0,
35 SLAB_RECLAIM_ACCOUNT | SLAB_MEM_SPREAD,
36 NULL);
37 if (!delayed_node_cache)
38 return -ENOMEM;
39 return 0;
40}
41
42void btrfs_delayed_inode_exit(void)
43{
44 if (delayed_node_cache)
45 kmem_cache_destroy(delayed_node_cache);
46}
47
48static inline void btrfs_init_delayed_node(
49 struct btrfs_delayed_node *delayed_node,
50 struct btrfs_root *root, u64 inode_id)
51{
52 delayed_node->root = root;
53 delayed_node->inode_id = inode_id;
54 atomic_set(&delayed_node->refs, 0);
55 delayed_node->count = 0;
56 delayed_node->in_list = 0;
57 delayed_node->inode_dirty = 0;
58 delayed_node->ins_root = RB_ROOT;
59 delayed_node->del_root = RB_ROOT;
60 mutex_init(&delayed_node->mutex);
61 delayed_node->index_cnt = 0;
62 INIT_LIST_HEAD(&delayed_node->n_list);
63 INIT_LIST_HEAD(&delayed_node->p_list);
64 delayed_node->bytes_reserved = 0;
65}
66
67static inline int btrfs_is_continuous_delayed_item(
68 struct btrfs_delayed_item *item1,
69 struct btrfs_delayed_item *item2)
70{
71 if (item1->key.type == BTRFS_DIR_INDEX_KEY &&
72 item1->key.objectid == item2->key.objectid &&
73 item1->key.type == item2->key.type &&
74 item1->key.offset + 1 == item2->key.offset)
75 return 1;
76 return 0;
77}
78
79static inline struct btrfs_delayed_root *btrfs_get_delayed_root(
80 struct btrfs_root *root)
81{
82 return root->fs_info->delayed_root;
83}
84
85static struct btrfs_delayed_node *btrfs_get_delayed_node(struct inode *inode)
86{
87 struct btrfs_inode *btrfs_inode = BTRFS_I(inode);
88 struct btrfs_root *root = btrfs_inode->root;
89 u64 ino = btrfs_ino(inode);
90 struct btrfs_delayed_node *node;
91
92 node = ACCESS_ONCE(btrfs_inode->delayed_node);
93 if (node) {
94 atomic_inc(&node->refs);
95 return node;
96 }
97
98 spin_lock(&root->inode_lock);
99 node = radix_tree_lookup(&root->delayed_nodes_tree, ino);
100 if (node) {
101 if (btrfs_inode->delayed_node) {
102 atomic_inc(&node->refs); /* can be accessed */
103 BUG_ON(btrfs_inode->delayed_node != node);
104 spin_unlock(&root->inode_lock);
105 return node;
106 }
107 btrfs_inode->delayed_node = node;
108 atomic_inc(&node->refs); /* can be accessed */
109 atomic_inc(&node->refs); /* cached in the inode */
110 spin_unlock(&root->inode_lock);
111 return node;
112 }
113 spin_unlock(&root->inode_lock);
114
115 return NULL;
116}
117
118static struct btrfs_delayed_node *btrfs_get_or_create_delayed_node(
119 struct inode *inode)
120{
121 struct btrfs_delayed_node *node;
122 struct btrfs_inode *btrfs_inode = BTRFS_I(inode);
123 struct btrfs_root *root = btrfs_inode->root;
124 u64 ino = btrfs_ino(inode);
125 int ret;
126
127again:
128 node = btrfs_get_delayed_node(inode);
129 if (node)
130 return node;
131
132 node = kmem_cache_alloc(delayed_node_cache, GFP_NOFS);
133 if (!node)
134 return ERR_PTR(-ENOMEM);
135 btrfs_init_delayed_node(node, root, ino);
136
137 atomic_inc(&node->refs); /* cached in the btrfs inode */
138 atomic_inc(&node->refs); /* can be accessed */
139
140 ret = radix_tree_preload(GFP_NOFS & ~__GFP_HIGHMEM);
141 if (ret) {
142 kmem_cache_free(delayed_node_cache, node);
143 return ERR_PTR(ret);
144 }
145
146 spin_lock(&root->inode_lock);
147 ret = radix_tree_insert(&root->delayed_nodes_tree, ino, node);
148 if (ret == -EEXIST) {
149 kmem_cache_free(delayed_node_cache, node);
150 spin_unlock(&root->inode_lock);
151 radix_tree_preload_end();
152 goto again;
153 }
154 btrfs_inode->delayed_node = node;
155 spin_unlock(&root->inode_lock);
156 radix_tree_preload_end();
157
158 return node;
159}
160
161/*
162 * Call it when holding delayed_node->mutex
163 *
164 * If mod = 1, add this node into the prepared list.
165 */
166static void btrfs_queue_delayed_node(struct btrfs_delayed_root *root,
167 struct btrfs_delayed_node *node,
168 int mod)
169{
170 spin_lock(&root->lock);
171 if (node->in_list) {
172 if (!list_empty(&node->p_list))
173 list_move_tail(&node->p_list, &root->prepare_list);
174 else if (mod)
175 list_add_tail(&node->p_list, &root->prepare_list);
176 } else {
177 list_add_tail(&node->n_list, &root->node_list);
178 list_add_tail(&node->p_list, &root->prepare_list);
179 atomic_inc(&node->refs); /* inserted into list */
180 root->nodes++;
181 node->in_list = 1;
182 }
183 spin_unlock(&root->lock);
184}
185
186/* Call it when holding delayed_node->mutex */
187static void btrfs_dequeue_delayed_node(struct btrfs_delayed_root *root,
188 struct btrfs_delayed_node *node)
189{
190 spin_lock(&root->lock);
191 if (node->in_list) {
192 root->nodes--;
193 atomic_dec(&node->refs); /* not in the list */
194 list_del_init(&node->n_list);
195 if (!list_empty(&node->p_list))
196 list_del_init(&node->p_list);
197 node->in_list = 0;
198 }
199 spin_unlock(&root->lock);
200}
201
202struct btrfs_delayed_node *btrfs_first_delayed_node(
203 struct btrfs_delayed_root *delayed_root)
204{
205 struct list_head *p;
206 struct btrfs_delayed_node *node = NULL;
207
208 spin_lock(&delayed_root->lock);
209 if (list_empty(&delayed_root->node_list))
210 goto out;
211
212 p = delayed_root->node_list.next;
213 node = list_entry(p, struct btrfs_delayed_node, n_list);
214 atomic_inc(&node->refs);
215out:
216 spin_unlock(&delayed_root->lock);
217
218 return node;
219}
220
221struct btrfs_delayed_node *btrfs_next_delayed_node(
222 struct btrfs_delayed_node *node)
223{
224 struct btrfs_delayed_root *delayed_root;
225 struct list_head *p;
226 struct btrfs_delayed_node *next = NULL;
227
228 delayed_root = node->root->fs_info->delayed_root;
229 spin_lock(&delayed_root->lock);
230 if (!node->in_list) { /* not in the list */
231 if (list_empty(&delayed_root->node_list))
232 goto out;
233 p = delayed_root->node_list.next;
234 } else if (list_is_last(&node->n_list, &delayed_root->node_list))
235 goto out;
236 else
237 p = node->n_list.next;
238
239 next = list_entry(p, struct btrfs_delayed_node, n_list);
240 atomic_inc(&next->refs);
241out:
242 spin_unlock(&delayed_root->lock);
243
244 return next;
245}
246
247static void __btrfs_release_delayed_node(
248 struct btrfs_delayed_node *delayed_node,
249 int mod)
250{
251 struct btrfs_delayed_root *delayed_root;
252
253 if (!delayed_node)
254 return;
255
256 delayed_root = delayed_node->root->fs_info->delayed_root;
257
258 mutex_lock(&delayed_node->mutex);
259 if (delayed_node->count)
260 btrfs_queue_delayed_node(delayed_root, delayed_node, mod);
261 else
262 btrfs_dequeue_delayed_node(delayed_root, delayed_node);
263 mutex_unlock(&delayed_node->mutex);
264
265 if (atomic_dec_and_test(&delayed_node->refs)) {
266 struct btrfs_root *root = delayed_node->root;
267 spin_lock(&root->inode_lock);
268 if (atomic_read(&delayed_node->refs) == 0) {
269 radix_tree_delete(&root->delayed_nodes_tree,
270 delayed_node->inode_id);
271 kmem_cache_free(delayed_node_cache, delayed_node);
272 }
273 spin_unlock(&root->inode_lock);
274 }
275}
276
277static inline void btrfs_release_delayed_node(struct btrfs_delayed_node *node)
278{
279 __btrfs_release_delayed_node(node, 0);
280}
281
282struct btrfs_delayed_node *btrfs_first_prepared_delayed_node(
283 struct btrfs_delayed_root *delayed_root)
284{
285 struct list_head *p;
286 struct btrfs_delayed_node *node = NULL;
287
288 spin_lock(&delayed_root->lock);
289 if (list_empty(&delayed_root->prepare_list))
290 goto out;
291
292 p = delayed_root->prepare_list.next;
293 list_del_init(p);
294 node = list_entry(p, struct btrfs_delayed_node, p_list);
295 atomic_inc(&node->refs);
296out:
297 spin_unlock(&delayed_root->lock);
298
299 return node;
300}
301
302static inline void btrfs_release_prepared_delayed_node(
303 struct btrfs_delayed_node *node)
304{
305 __btrfs_release_delayed_node(node, 1);
306}
307
308struct btrfs_delayed_item *btrfs_alloc_delayed_item(u32 data_len)
309{
310 struct btrfs_delayed_item *item;
311 item = kmalloc(sizeof(*item) + data_len, GFP_NOFS);
312 if (item) {
313 item->data_len = data_len;
314 item->ins_or_del = 0;
315 item->bytes_reserved = 0;
316 item->delayed_node = NULL;
317 atomic_set(&item->refs, 1);
318 }
319 return item;
320}
321
322/*
323 * __btrfs_lookup_delayed_item - look up the delayed item by key
324 * @delayed_node: pointer to the delayed node
325 * @key: the key to look up
326 * @prev: used to store the prev item if the right item isn't found
327 * @next: used to store the next item if the right item isn't found
328 *
329 * Note: if we don't find the right item, we will return the prev item and
330 * the next item.
331 */
332static struct btrfs_delayed_item *__btrfs_lookup_delayed_item(
333 struct rb_root *root,
334 struct btrfs_key *key,
335 struct btrfs_delayed_item **prev,
336 struct btrfs_delayed_item **next)
337{
338 struct rb_node *node, *prev_node = NULL;
339 struct btrfs_delayed_item *delayed_item = NULL;
340 int ret = 0;
341
342 node = root->rb_node;
343
344 while (node) {
345 delayed_item = rb_entry(node, struct btrfs_delayed_item,
346 rb_node);
347 prev_node = node;
348 ret = btrfs_comp_cpu_keys(&delayed_item->key, key);
349 if (ret < 0)
350 node = node->rb_right;
351 else if (ret > 0)
352 node = node->rb_left;
353 else
354 return delayed_item;
355 }
356
357 if (prev) {
358 if (!prev_node)
359 *prev = NULL;
360 else if (ret < 0)
361 *prev = delayed_item;
362 else if ((node = rb_prev(prev_node)) != NULL) {
363 *prev = rb_entry(node, struct btrfs_delayed_item,
364 rb_node);
365 } else
366 *prev = NULL;
367 }
368
369 if (next) {
370 if (!prev_node)
371 *next = NULL;
372 else if (ret > 0)
373 *next = delayed_item;
374 else if ((node = rb_next(prev_node)) != NULL) {
375 *next = rb_entry(node, struct btrfs_delayed_item,
376 rb_node);
377 } else
378 *next = NULL;
379 }
380 return NULL;
381}
382
383struct btrfs_delayed_item *__btrfs_lookup_delayed_insertion_item(
384 struct btrfs_delayed_node *delayed_node,
385 struct btrfs_key *key)
386{
387 struct btrfs_delayed_item *item;
388
389 item = __btrfs_lookup_delayed_item(&delayed_node->ins_root, key,
390 NULL, NULL);
391 return item;
392}
393
394struct btrfs_delayed_item *__btrfs_lookup_delayed_deletion_item(
395 struct btrfs_delayed_node *delayed_node,
396 struct btrfs_key *key)
397{
398 struct btrfs_delayed_item *item;
399
400 item = __btrfs_lookup_delayed_item(&delayed_node->del_root, key,
401 NULL, NULL);
402 return item;
403}
404
405struct btrfs_delayed_item *__btrfs_search_delayed_insertion_item(
406 struct btrfs_delayed_node *delayed_node,
407 struct btrfs_key *key)
408{
409 struct btrfs_delayed_item *item, *next;
410
411 item = __btrfs_lookup_delayed_item(&delayed_node->ins_root, key,
412 NULL, &next);
413 if (!item)
414 item = next;
415
416 return item;
417}
418
419struct btrfs_delayed_item *__btrfs_search_delayed_deletion_item(
420 struct btrfs_delayed_node *delayed_node,
421 struct btrfs_key *key)
422{
423 struct btrfs_delayed_item *item, *next;
424
425 item = __btrfs_lookup_delayed_item(&delayed_node->del_root, key,
426 NULL, &next);
427 if (!item)
428 item = next;
429
430 return item;
431}
432
433static int __btrfs_add_delayed_item(struct btrfs_delayed_node *delayed_node,
434 struct btrfs_delayed_item *ins,
435 int action)
436{
437 struct rb_node **p, *node;
438 struct rb_node *parent_node = NULL;
439 struct rb_root *root;
440 struct btrfs_delayed_item *item;
441 int cmp;
442
443 if (action == BTRFS_DELAYED_INSERTION_ITEM)
444 root = &delayed_node->ins_root;
445 else if (action == BTRFS_DELAYED_DELETION_ITEM)
446 root = &delayed_node->del_root;
447 else
448 BUG();
449 p = &root->rb_node;
450 node = &ins->rb_node;
451
452 while (*p) {
453 parent_node = *p;
454 item = rb_entry(parent_node, struct btrfs_delayed_item,
455 rb_node);
456
457 cmp = btrfs_comp_cpu_keys(&item->key, &ins->key);
458 if (cmp < 0)
459 p = &(*p)->rb_right;
460 else if (cmp > 0)
461 p = &(*p)->rb_left;
462 else
463 return -EEXIST;
464 }
465
466 rb_link_node(node, parent_node, p);
467 rb_insert_color(node, root);
468 ins->delayed_node = delayed_node;
469 ins->ins_or_del = action;
470
471 if (ins->key.type == BTRFS_DIR_INDEX_KEY &&
472 action == BTRFS_DELAYED_INSERTION_ITEM &&
473 ins->key.offset >= delayed_node->index_cnt)
474 delayed_node->index_cnt = ins->key.offset + 1;
475
476 delayed_node->count++;
477 atomic_inc(&delayed_node->root->fs_info->delayed_root->items);
478 return 0;
479}
480
481static int __btrfs_add_delayed_insertion_item(struct btrfs_delayed_node *node,
482 struct btrfs_delayed_item *item)
483{
484 return __btrfs_add_delayed_item(node, item,
485 BTRFS_DELAYED_INSERTION_ITEM);
486}
487
488static int __btrfs_add_delayed_deletion_item(struct btrfs_delayed_node *node,
489 struct btrfs_delayed_item *item)
490{
491 return __btrfs_add_delayed_item(node, item,
492 BTRFS_DELAYED_DELETION_ITEM);
493}
494
495static void __btrfs_remove_delayed_item(struct btrfs_delayed_item *delayed_item)
496{
497 struct rb_root *root;
498 struct btrfs_delayed_root *delayed_root;
499
500 delayed_root = delayed_item->delayed_node->root->fs_info->delayed_root;
501
502 BUG_ON(!delayed_root);
503 BUG_ON(delayed_item->ins_or_del != BTRFS_DELAYED_DELETION_ITEM &&
504 delayed_item->ins_or_del != BTRFS_DELAYED_INSERTION_ITEM);
505
506 if (delayed_item->ins_or_del == BTRFS_DELAYED_INSERTION_ITEM)
507 root = &delayed_item->delayed_node->ins_root;
508 else
509 root = &delayed_item->delayed_node->del_root;
510
511 rb_erase(&delayed_item->rb_node, root);
512 delayed_item->delayed_node->count--;
513 atomic_dec(&delayed_root->items);
514 if (atomic_read(&delayed_root->items) < BTRFS_DELAYED_BACKGROUND &&
515 waitqueue_active(&delayed_root->wait))
516 wake_up(&delayed_root->wait);
517}
518
519static void btrfs_release_delayed_item(struct btrfs_delayed_item *item)
520{
521 if (item) {
522 __btrfs_remove_delayed_item(item);
523 if (atomic_dec_and_test(&item->refs))
524 kfree(item);
525 }
526}
527
528struct btrfs_delayed_item *__btrfs_first_delayed_insertion_item(
529 struct btrfs_delayed_node *delayed_node)
530{
531 struct rb_node *p;
532 struct btrfs_delayed_item *item = NULL;
533
534 p = rb_first(&delayed_node->ins_root);
535 if (p)
536 item = rb_entry(p, struct btrfs_delayed_item, rb_node);
537
538 return item;
539}
540
541struct btrfs_delayed_item *__btrfs_first_delayed_deletion_item(
542 struct btrfs_delayed_node *delayed_node)
543{
544 struct rb_node *p;
545 struct btrfs_delayed_item *item = NULL;
546
547 p = rb_first(&delayed_node->del_root);
548 if (p)
549 item = rb_entry(p, struct btrfs_delayed_item, rb_node);
550
551 return item;
552}
553
554struct btrfs_delayed_item *__btrfs_next_delayed_item(
555 struct btrfs_delayed_item *item)
556{
557 struct rb_node *p;
558 struct btrfs_delayed_item *next = NULL;
559
560 p = rb_next(&item->rb_node);
561 if (p)
562 next = rb_entry(p, struct btrfs_delayed_item, rb_node);
563
564 return next;
565}
566
567static inline struct btrfs_root *btrfs_get_fs_root(struct btrfs_root *root,
568 u64 root_id)
569{
570 struct btrfs_key root_key;
571
572 if (root->objectid == root_id)
573 return root;
574
575 root_key.objectid = root_id;
576 root_key.type = BTRFS_ROOT_ITEM_KEY;
577 root_key.offset = (u64)-1;
578 return btrfs_read_fs_root_no_name(root->fs_info, &root_key);
579}
580
581static int btrfs_delayed_item_reserve_metadata(struct btrfs_trans_handle *trans,
582 struct btrfs_root *root,
583 struct btrfs_delayed_item *item)
584{
585 struct btrfs_block_rsv *src_rsv;
586 struct btrfs_block_rsv *dst_rsv;
587 u64 num_bytes;
588 int ret;
589
590 if (!trans->bytes_reserved)
591 return 0;
592
593 src_rsv = trans->block_rsv;
594 dst_rsv = &root->fs_info->global_block_rsv;
595
596 num_bytes = btrfs_calc_trans_metadata_size(root, 1);
597 ret = btrfs_block_rsv_migrate(src_rsv, dst_rsv, num_bytes);
598 if (!ret)
599 item->bytes_reserved = num_bytes;
600
601 return ret;
602}
603
604static void btrfs_delayed_item_release_metadata(struct btrfs_root *root,
605 struct btrfs_delayed_item *item)
606{
607 struct btrfs_block_rsv *rsv;
608
609 if (!item->bytes_reserved)
610 return;
611
612 rsv = &root->fs_info->global_block_rsv;
613 btrfs_block_rsv_release(root, rsv,
614 item->bytes_reserved);
615}
616
617static int btrfs_delayed_inode_reserve_metadata(
618 struct btrfs_trans_handle *trans,
619 struct btrfs_root *root,
620 struct btrfs_delayed_node *node)
621{
622 struct btrfs_block_rsv *src_rsv;
623 struct btrfs_block_rsv *dst_rsv;
624 u64 num_bytes;
625 int ret;
626
627 if (!trans->bytes_reserved)
628 return 0;
629
630 src_rsv = trans->block_rsv;
631 dst_rsv = &root->fs_info->global_block_rsv;
632
633 num_bytes = btrfs_calc_trans_metadata_size(root, 1);
634 ret = btrfs_block_rsv_migrate(src_rsv, dst_rsv, num_bytes);
635 if (!ret)
636 node->bytes_reserved = num_bytes;
637
638 return ret;
639}
640
641static void btrfs_delayed_inode_release_metadata(struct btrfs_root *root,
642 struct btrfs_delayed_node *node)
643{
644 struct btrfs_block_rsv *rsv;
645
646 if (!node->bytes_reserved)
647 return;
648
649 rsv = &root->fs_info->global_block_rsv;
650 btrfs_block_rsv_release(root, rsv,
651 node->bytes_reserved);
652 node->bytes_reserved = 0;
653}
654
655/*
656 * This helper will insert some continuous items into the same leaf according
657 * to the free space of the leaf.
658 */
659static int btrfs_batch_insert_items(struct btrfs_trans_handle *trans,
660 struct btrfs_root *root,
661 struct btrfs_path *path,
662 struct btrfs_delayed_item *item)
663{
664 struct btrfs_delayed_item *curr, *next;
665 int free_space;
666 int total_data_size = 0, total_size = 0;
667 struct extent_buffer *leaf;
668 char *data_ptr;
669 struct btrfs_key *keys;
670 u32 *data_size;
671 struct list_head head;
672 int slot;
673 int nitems;
674 int i;
675 int ret = 0;
676
677 BUG_ON(!path->nodes[0]);
678
679 leaf = path->nodes[0];
680 free_space = btrfs_leaf_free_space(root, leaf);
681 INIT_LIST_HEAD(&head);
682
683 next = item;
684 nitems = 0;
685
686 /*
687 * count the number of the continuous items that we can insert in batch
688 */
689 while (total_size + next->data_len + sizeof(struct btrfs_item) <=
690 free_space) {
691 total_data_size += next->data_len;
692 total_size += next->data_len + sizeof(struct btrfs_item);
693 list_add_tail(&next->tree_list, &head);
694 nitems++;
695
696 curr = next;
697 next = __btrfs_next_delayed_item(curr);
698 if (!next)
699 break;
700
701 if (!btrfs_is_continuous_delayed_item(curr, next))
702 break;
703 }
704
705 if (!nitems) {
706 ret = 0;
707 goto out;
708 }
709
710 /*
711 * we need allocate some memory space, but it might cause the task
712 * to sleep, so we set all locked nodes in the path to blocking locks
713 * first.
714 */
715 btrfs_set_path_blocking(path);
716
717 keys = kmalloc(sizeof(struct btrfs_key) * nitems, GFP_NOFS);
718 if (!keys) {
719 ret = -ENOMEM;
720 goto out;
721 }
722
723 data_size = kmalloc(sizeof(u32) * nitems, GFP_NOFS);
724 if (!data_size) {
725 ret = -ENOMEM;
726 goto error;
727 }
728
729 /* get keys of all the delayed items */
730 i = 0;
731 list_for_each_entry(next, &head, tree_list) {
732 keys[i] = next->key;
733 data_size[i] = next->data_len;
734 i++;
735 }
736
737 /* reset all the locked nodes in the patch to spinning locks. */
738 btrfs_clear_path_blocking(path, NULL, 0);
739
740 /* insert the keys of the items */
741 ret = setup_items_for_insert(trans, root, path, keys, data_size,
742 total_data_size, total_size, nitems);
743 if (ret)
744 goto error;
745
746 /* insert the dir index items */
747 slot = path->slots[0];
748 list_for_each_entry_safe(curr, next, &head, tree_list) {
749 data_ptr = btrfs_item_ptr(leaf, slot, char);
750 write_extent_buffer(leaf, &curr->data,
751 (unsigned long)data_ptr,
752 curr->data_len);
753 slot++;
754
755 btrfs_delayed_item_release_metadata(root, curr);
756
757 list_del(&curr->tree_list);
758 btrfs_release_delayed_item(curr);
759 }
760
761error:
762 kfree(data_size);
763 kfree(keys);
764out:
765 return ret;
766}
767
768/*
769 * This helper can just do simple insertion that needn't extend item for new
770 * data, such as directory name index insertion, inode insertion.
771 */
772static int btrfs_insert_delayed_item(struct btrfs_trans_handle *trans,
773 struct btrfs_root *root,
774 struct btrfs_path *path,
775 struct btrfs_delayed_item *delayed_item)
776{
777 struct extent_buffer *leaf;
778 struct btrfs_item *item;
779 char *ptr;
780 int ret;
781
782 ret = btrfs_insert_empty_item(trans, root, path, &delayed_item->key,
783 delayed_item->data_len);
784 if (ret < 0 && ret != -EEXIST)
785 return ret;
786
787 leaf = path->nodes[0];
788
789 item = btrfs_item_nr(leaf, path->slots[0]);
790 ptr = btrfs_item_ptr(leaf, path->slots[0], char);
791
792 write_extent_buffer(leaf, delayed_item->data, (unsigned long)ptr,
793 delayed_item->data_len);
794 btrfs_mark_buffer_dirty(leaf);
795
796 btrfs_delayed_item_release_metadata(root, delayed_item);
797 return 0;
798}
799
800/*
801 * we insert an item first, then if there are some continuous items, we try
802 * to insert those items into the same leaf.
803 */
804static int btrfs_insert_delayed_items(struct btrfs_trans_handle *trans,
805 struct btrfs_path *path,
806 struct btrfs_root *root,
807 struct btrfs_delayed_node *node)
808{
809 struct btrfs_delayed_item *curr, *prev;
810 int ret = 0;
811
812do_again:
813 mutex_lock(&node->mutex);
814 curr = __btrfs_first_delayed_insertion_item(node);
815 if (!curr)
816 goto insert_end;
817
818 ret = btrfs_insert_delayed_item(trans, root, path, curr);
819 if (ret < 0) {
820 btrfs_release_path(path);
821 goto insert_end;
822 }
823
824 prev = curr;
825 curr = __btrfs_next_delayed_item(prev);
826 if (curr && btrfs_is_continuous_delayed_item(prev, curr)) {
827 /* insert the continuous items into the same leaf */
828 path->slots[0]++;
829 btrfs_batch_insert_items(trans, root, path, curr);
830 }
831 btrfs_release_delayed_item(prev);
832 btrfs_mark_buffer_dirty(path->nodes[0]);
833
834 btrfs_release_path(path);
835 mutex_unlock(&node->mutex);
836 goto do_again;
837
838insert_end:
839 mutex_unlock(&node->mutex);
840 return ret;
841}
842
843static int btrfs_batch_delete_items(struct btrfs_trans_handle *trans,
844 struct btrfs_root *root,
845 struct btrfs_path *path,
846 struct btrfs_delayed_item *item)
847{
848 struct btrfs_delayed_item *curr, *next;
849 struct extent_buffer *leaf;
850 struct btrfs_key key;
851 struct list_head head;
852 int nitems, i, last_item;
853 int ret = 0;
854
855 BUG_ON(!path->nodes[0]);
856
857 leaf = path->nodes[0];
858
859 i = path->slots[0];
860 last_item = btrfs_header_nritems(leaf) - 1;
861 if (i > last_item)
862 return -ENOENT; /* FIXME: Is errno suitable? */
863
864 next = item;
865 INIT_LIST_HEAD(&head);
866 btrfs_item_key_to_cpu(leaf, &key, i);
867 nitems = 0;
868 /*
869 * count the number of the dir index items that we can delete in batch
870 */
871 while (btrfs_comp_cpu_keys(&next->key, &key) == 0) {
872 list_add_tail(&next->tree_list, &head);
873 nitems++;
874
875 curr = next;
876 next = __btrfs_next_delayed_item(curr);
877 if (!next)
878 break;
879
880 if (!btrfs_is_continuous_delayed_item(curr, next))
881 break;
882
883 i++;
884 if (i > last_item)
885 break;
886 btrfs_item_key_to_cpu(leaf, &key, i);
887 }
888
889 if (!nitems)
890 return 0;
891
892 ret = btrfs_del_items(trans, root, path, path->slots[0], nitems);
893 if (ret)
894 goto out;
895
896 list_for_each_entry_safe(curr, next, &head, tree_list) {
897 btrfs_delayed_item_release_metadata(root, curr);
898 list_del(&curr->tree_list);
899 btrfs_release_delayed_item(curr);
900 }
901
902out:
903 return ret;
904}
905
906static int btrfs_delete_delayed_items(struct btrfs_trans_handle *trans,
907 struct btrfs_path *path,
908 struct btrfs_root *root,
909 struct btrfs_delayed_node *node)
910{
911 struct btrfs_delayed_item *curr, *prev;
912 int ret = 0;
913
914do_again:
915 mutex_lock(&node->mutex);
916 curr = __btrfs_first_delayed_deletion_item(node);
917 if (!curr)
918 goto delete_fail;
919
920 ret = btrfs_search_slot(trans, root, &curr->key, path, -1, 1);
921 if (ret < 0)
922 goto delete_fail;
923 else if (ret > 0) {
924 /*
925 * can't find the item which the node points to, so this node
926 * is invalid, just drop it.
927 */
928 prev = curr;
929 curr = __btrfs_next_delayed_item(prev);
930 btrfs_release_delayed_item(prev);
931 ret = 0;
932 btrfs_release_path(path);
933 if (curr)
934 goto do_again;
935 else
936 goto delete_fail;
937 }
938
939 btrfs_batch_delete_items(trans, root, path, curr);
940 btrfs_release_path(path);
941 mutex_unlock(&node->mutex);
942 goto do_again;
943
944delete_fail:
945 btrfs_release_path(path);
946 mutex_unlock(&node->mutex);
947 return ret;
948}
949
950static void btrfs_release_delayed_inode(struct btrfs_delayed_node *delayed_node)
951{
952 struct btrfs_delayed_root *delayed_root;
953
954 if (delayed_node && delayed_node->inode_dirty) {
955 BUG_ON(!delayed_node->root);
956 delayed_node->inode_dirty = 0;
957 delayed_node->count--;
958
959 delayed_root = delayed_node->root->fs_info->delayed_root;
960 atomic_dec(&delayed_root->items);
961 if (atomic_read(&delayed_root->items) <
962 BTRFS_DELAYED_BACKGROUND &&
963 waitqueue_active(&delayed_root->wait))
964 wake_up(&delayed_root->wait);
965 }
966}
967
968static int btrfs_update_delayed_inode(struct btrfs_trans_handle *trans,
969 struct btrfs_root *root,
970 struct btrfs_path *path,
971 struct btrfs_delayed_node *node)
972{
973 struct btrfs_key key;
974 struct btrfs_inode_item *inode_item;
975 struct extent_buffer *leaf;
976 int ret;
977
978 mutex_lock(&node->mutex);
979 if (!node->inode_dirty) {
980 mutex_unlock(&node->mutex);
981 return 0;
982 }
983
984 key.objectid = node->inode_id;
985 btrfs_set_key_type(&key, BTRFS_INODE_ITEM_KEY);
986 key.offset = 0;
987 ret = btrfs_lookup_inode(trans, root, path, &key, 1);
988 if (ret > 0) {
989 btrfs_release_path(path);
990 mutex_unlock(&node->mutex);
991 return -ENOENT;
992 } else if (ret < 0) {
993 mutex_unlock(&node->mutex);
994 return ret;
995 }
996
997 btrfs_unlock_up_safe(path, 1);
998 leaf = path->nodes[0];
999 inode_item = btrfs_item_ptr(leaf, path->slots[0],
1000 struct btrfs_inode_item);
1001 write_extent_buffer(leaf, &node->inode_item, (unsigned long)inode_item,
1002 sizeof(struct btrfs_inode_item));
1003 btrfs_mark_buffer_dirty(leaf);
1004 btrfs_release_path(path);
1005
1006 btrfs_delayed_inode_release_metadata(root, node);
1007 btrfs_release_delayed_inode(node);
1008 mutex_unlock(&node->mutex);
1009
1010 return 0;
1011}
1012
1013/* Called when committing the transaction. */
1014int btrfs_run_delayed_items(struct btrfs_trans_handle *trans,
1015 struct btrfs_root *root)
1016{
1017 struct btrfs_delayed_root *delayed_root;
1018 struct btrfs_delayed_node *curr_node, *prev_node;
1019 struct btrfs_path *path;
1020 struct btrfs_block_rsv *block_rsv;
1021 int ret = 0;
1022
1023 path = btrfs_alloc_path();
1024 if (!path)
1025 return -ENOMEM;
1026 path->leave_spinning = 1;
1027
1028 block_rsv = trans->block_rsv;
1029 trans->block_rsv = &root->fs_info->global_block_rsv;
1030
1031 delayed_root = btrfs_get_delayed_root(root);
1032
1033 curr_node = btrfs_first_delayed_node(delayed_root);
1034 while (curr_node) {
1035 root = curr_node->root;
1036 ret = btrfs_insert_delayed_items(trans, path, root,
1037 curr_node);
1038 if (!ret)
1039 ret = btrfs_delete_delayed_items(trans, path, root,
1040 curr_node);
1041 if (!ret)
1042 ret = btrfs_update_delayed_inode(trans, root, path,
1043 curr_node);
1044 if (ret) {
1045 btrfs_release_delayed_node(curr_node);
1046 break;
1047 }
1048
1049 prev_node = curr_node;
1050 curr_node = btrfs_next_delayed_node(curr_node);
1051 btrfs_release_delayed_node(prev_node);
1052 }
1053
1054 btrfs_free_path(path);
1055 trans->block_rsv = block_rsv;
1056 return ret;
1057}
1058
1059static int __btrfs_commit_inode_delayed_items(struct btrfs_trans_handle *trans,
1060 struct btrfs_delayed_node *node)
1061{
1062 struct btrfs_path *path;
1063 struct btrfs_block_rsv *block_rsv;
1064 int ret;
1065
1066 path = btrfs_alloc_path();
1067 if (!path)
1068 return -ENOMEM;
1069 path->leave_spinning = 1;
1070
1071 block_rsv = trans->block_rsv;
1072 trans->block_rsv = &node->root->fs_info->global_block_rsv;
1073
1074 ret = btrfs_insert_delayed_items(trans, path, node->root, node);
1075 if (!ret)
1076 ret = btrfs_delete_delayed_items(trans, path, node->root, node);
1077 if (!ret)
1078 ret = btrfs_update_delayed_inode(trans, node->root, path, node);
1079 btrfs_free_path(path);
1080
1081 trans->block_rsv = block_rsv;
1082 return ret;
1083}
1084
1085int btrfs_commit_inode_delayed_items(struct btrfs_trans_handle *trans,
1086 struct inode *inode)
1087{
1088 struct btrfs_delayed_node *delayed_node = btrfs_get_delayed_node(inode);
1089 int ret;
1090
1091 if (!delayed_node)
1092 return 0;
1093
1094 mutex_lock(&delayed_node->mutex);
1095 if (!delayed_node->count) {
1096 mutex_unlock(&delayed_node->mutex);
1097 btrfs_release_delayed_node(delayed_node);
1098 return 0;
1099 }
1100 mutex_unlock(&delayed_node->mutex);
1101
1102 ret = __btrfs_commit_inode_delayed_items(trans, delayed_node);
1103 btrfs_release_delayed_node(delayed_node);
1104 return ret;
1105}
1106
1107void btrfs_remove_delayed_node(struct inode *inode)
1108{
1109 struct btrfs_delayed_node *delayed_node;
1110
1111 delayed_node = ACCESS_ONCE(BTRFS_I(inode)->delayed_node);
1112 if (!delayed_node)
1113 return;
1114
1115 BTRFS_I(inode)->delayed_node = NULL;
1116 btrfs_release_delayed_node(delayed_node);
1117}
1118
1119struct btrfs_async_delayed_node {
1120 struct btrfs_root *root;
1121 struct btrfs_delayed_node *delayed_node;
1122 struct btrfs_work work;
1123};
1124
1125static void btrfs_async_run_delayed_node_done(struct btrfs_work *work)
1126{
1127 struct btrfs_async_delayed_node *async_node;
1128 struct btrfs_trans_handle *trans;
1129 struct btrfs_path *path;
1130 struct btrfs_delayed_node *delayed_node = NULL;
1131 struct btrfs_root *root;
1132 struct btrfs_block_rsv *block_rsv;
1133 unsigned long nr = 0;
1134 int need_requeue = 0;
1135 int ret;
1136
1137 async_node = container_of(work, struct btrfs_async_delayed_node, work);
1138
1139 path = btrfs_alloc_path();
1140 if (!path)
1141 goto out;
1142 path->leave_spinning = 1;
1143
1144 delayed_node = async_node->delayed_node;
1145 root = delayed_node->root;
1146
1147 trans = btrfs_join_transaction(root);
1148 if (IS_ERR(trans))
1149 goto free_path;
1150
1151 block_rsv = trans->block_rsv;
1152 trans->block_rsv = &root->fs_info->global_block_rsv;
1153
1154 ret = btrfs_insert_delayed_items(trans, path, root, delayed_node);
1155 if (!ret)
1156 ret = btrfs_delete_delayed_items(trans, path, root,
1157 delayed_node);
1158
1159 if (!ret)
1160 btrfs_update_delayed_inode(trans, root, path, delayed_node);
1161
1162 /*
1163 * Maybe new delayed items have been inserted, so we need requeue
1164 * the work. Besides that, we must dequeue the empty delayed nodes
1165 * to avoid the race between delayed items balance and the worker.
1166 * The race like this:
1167 * Task1 Worker thread
1168 * count == 0, needn't requeue
1169 * also needn't insert the
1170 * delayed node into prepare
1171 * list again.
1172 * add lots of delayed items
1173 * queue the delayed node
1174 * already in the list,
1175 * and not in the prepare
1176 * list, it means the delayed
1177 * node is being dealt with
1178 * by the worker.
1179 * do delayed items balance
1180 * the delayed node is being
1181 * dealt with by the worker
1182 * now, just wait.
1183 * the worker goto idle.
1184 * Task1 will sleep until the transaction is commited.
1185 */
1186 mutex_lock(&delayed_node->mutex);
1187 if (delayed_node->count)
1188 need_requeue = 1;
1189 else
1190 btrfs_dequeue_delayed_node(root->fs_info->delayed_root,
1191 delayed_node);
1192 mutex_unlock(&delayed_node->mutex);
1193
1194 nr = trans->blocks_used;
1195
1196 trans->block_rsv = block_rsv;
1197 btrfs_end_transaction_dmeta(trans, root);
1198 __btrfs_btree_balance_dirty(root, nr);
1199free_path:
1200 btrfs_free_path(path);
1201out:
1202 if (need_requeue)
1203 btrfs_requeue_work(&async_node->work);
1204 else {
1205 btrfs_release_prepared_delayed_node(delayed_node);
1206 kfree(async_node);
1207 }
1208}
1209
1210static int btrfs_wq_run_delayed_node(struct btrfs_delayed_root *delayed_root,
1211 struct btrfs_root *root, int all)
1212{
1213 struct btrfs_async_delayed_node *async_node;
1214 struct btrfs_delayed_node *curr;
1215 int count = 0;
1216
1217again:
1218 curr = btrfs_first_prepared_delayed_node(delayed_root);
1219 if (!curr)
1220 return 0;
1221
1222 async_node = kmalloc(sizeof(*async_node), GFP_NOFS);
1223 if (!async_node) {
1224 btrfs_release_prepared_delayed_node(curr);
1225 return -ENOMEM;
1226 }
1227
1228 async_node->root = root;
1229 async_node->delayed_node = curr;
1230
1231 async_node->work.func = btrfs_async_run_delayed_node_done;
1232 async_node->work.flags = 0;
1233
1234 btrfs_queue_worker(&root->fs_info->delayed_workers, &async_node->work);
1235 count++;
1236
1237 if (all || count < 4)
1238 goto again;
1239
1240 return 0;
1241}
1242
1243void btrfs_assert_delayed_root_empty(struct btrfs_root *root)
1244{
1245 struct btrfs_delayed_root *delayed_root;
1246 delayed_root = btrfs_get_delayed_root(root);
1247 WARN_ON(btrfs_first_delayed_node(delayed_root));
1248}
1249
1250void btrfs_balance_delayed_items(struct btrfs_root *root)
1251{
1252 struct btrfs_delayed_root *delayed_root;
1253
1254 delayed_root = btrfs_get_delayed_root(root);
1255
1256 if (atomic_read(&delayed_root->items) < BTRFS_DELAYED_BACKGROUND)
1257 return;
1258
1259 if (atomic_read(&delayed_root->items) >= BTRFS_DELAYED_WRITEBACK) {
1260 int ret;
1261 ret = btrfs_wq_run_delayed_node(delayed_root, root, 1);
1262 if (ret)
1263 return;
1264
1265 wait_event_interruptible_timeout(
1266 delayed_root->wait,
1267 (atomic_read(&delayed_root->items) <
1268 BTRFS_DELAYED_BACKGROUND),
1269 HZ);
1270 return;
1271 }
1272
1273 btrfs_wq_run_delayed_node(delayed_root, root, 0);
1274}
1275
1276int btrfs_insert_delayed_dir_index(struct btrfs_trans_handle *trans,
1277 struct btrfs_root *root, const char *name,
1278 int name_len, struct inode *dir,
1279 struct btrfs_disk_key *disk_key, u8 type,
1280 u64 index)
1281{
1282 struct btrfs_delayed_node *delayed_node;
1283 struct btrfs_delayed_item *delayed_item;
1284 struct btrfs_dir_item *dir_item;
1285 int ret;
1286
1287 delayed_node = btrfs_get_or_create_delayed_node(dir);
1288 if (IS_ERR(delayed_node))
1289 return PTR_ERR(delayed_node);
1290
1291 delayed_item = btrfs_alloc_delayed_item(sizeof(*dir_item) + name_len);
1292 if (!delayed_item) {
1293 ret = -ENOMEM;
1294 goto release_node;
1295 }
1296
1297 ret = btrfs_delayed_item_reserve_metadata(trans, root, delayed_item);
1298 /*
1299 * we have reserved enough space when we start a new transaction,
1300 * so reserving metadata failure is impossible
1301 */
1302 BUG_ON(ret);
1303
1304 delayed_item->key.objectid = btrfs_ino(dir);
1305 btrfs_set_key_type(&delayed_item->key, BTRFS_DIR_INDEX_KEY);
1306 delayed_item->key.offset = index;
1307
1308 dir_item = (struct btrfs_dir_item *)delayed_item->data;
1309 dir_item->location = *disk_key;
1310 dir_item->transid = cpu_to_le64(trans->transid);
1311 dir_item->data_len = 0;
1312 dir_item->name_len = cpu_to_le16(name_len);
1313 dir_item->type = type;
1314 memcpy((char *)(dir_item + 1), name, name_len);
1315
1316 mutex_lock(&delayed_node->mutex);
1317 ret = __btrfs_add_delayed_insertion_item(delayed_node, delayed_item);
1318 if (unlikely(ret)) {
1319 printk(KERN_ERR "err add delayed dir index item(name: %s) into "
1320 "the insertion tree of the delayed node"
1321 "(root id: %llu, inode id: %llu, errno: %d)\n",
1322 name,
1323 (unsigned long long)delayed_node->root->objectid,
1324 (unsigned long long)delayed_node->inode_id,
1325 ret);
1326 BUG();
1327 }
1328 mutex_unlock(&delayed_node->mutex);
1329
1330release_node:
1331 btrfs_release_delayed_node(delayed_node);
1332 return ret;
1333}
1334
1335static int btrfs_delete_delayed_insertion_item(struct btrfs_root *root,
1336 struct btrfs_delayed_node *node,
1337 struct btrfs_key *key)
1338{
1339 struct btrfs_delayed_item *item;
1340
1341 mutex_lock(&node->mutex);
1342 item = __btrfs_lookup_delayed_insertion_item(node, key);
1343 if (!item) {
1344 mutex_unlock(&node->mutex);
1345 return 1;
1346 }
1347
1348 btrfs_delayed_item_release_metadata(root, item);
1349 btrfs_release_delayed_item(item);
1350 mutex_unlock(&node->mutex);
1351 return 0;
1352}
1353
1354int btrfs_delete_delayed_dir_index(struct btrfs_trans_handle *trans,
1355 struct btrfs_root *root, struct inode *dir,
1356 u64 index)
1357{
1358 struct btrfs_delayed_node *node;
1359 struct btrfs_delayed_item *item;
1360 struct btrfs_key item_key;
1361 int ret;
1362
1363 node = btrfs_get_or_create_delayed_node(dir);
1364 if (IS_ERR(node))
1365 return PTR_ERR(node);
1366
1367 item_key.objectid = btrfs_ino(dir);
1368 btrfs_set_key_type(&item_key, BTRFS_DIR_INDEX_KEY);
1369 item_key.offset = index;
1370
1371 ret = btrfs_delete_delayed_insertion_item(root, node, &item_key);
1372 if (!ret)
1373 goto end;
1374
1375 item = btrfs_alloc_delayed_item(0);
1376 if (!item) {
1377 ret = -ENOMEM;
1378 goto end;
1379 }
1380
1381 item->key = item_key;
1382
1383 ret = btrfs_delayed_item_reserve_metadata(trans, root, item);
1384 /*
1385 * we have reserved enough space when we start a new transaction,
1386 * so reserving metadata failure is impossible.
1387 */
1388 BUG_ON(ret);
1389
1390 mutex_lock(&node->mutex);
1391 ret = __btrfs_add_delayed_deletion_item(node, item);
1392 if (unlikely(ret)) {
1393 printk(KERN_ERR "err add delayed dir index item(index: %llu) "
1394 "into the deletion tree of the delayed node"
1395 "(root id: %llu, inode id: %llu, errno: %d)\n",
1396 (unsigned long long)index,
1397 (unsigned long long)node->root->objectid,
1398 (unsigned long long)node->inode_id,
1399 ret);
1400 BUG();
1401 }
1402 mutex_unlock(&node->mutex);
1403end:
1404 btrfs_release_delayed_node(node);
1405 return ret;
1406}
1407
1408int btrfs_inode_delayed_dir_index_count(struct inode *inode)
1409{
1410 struct btrfs_delayed_node *delayed_node = btrfs_get_delayed_node(inode);
1411
1412 if (!delayed_node)
1413 return -ENOENT;
1414
1415 /*
1416 * Since we have held i_mutex of this directory, it is impossible that
1417 * a new directory index is added into the delayed node and index_cnt
1418 * is updated now. So we needn't lock the delayed node.
1419 */
1420 if (!delayed_node->index_cnt) {
1421 btrfs_release_delayed_node(delayed_node);
1422 return -EINVAL;
1423 }
1424
1425 BTRFS_I(inode)->index_cnt = delayed_node->index_cnt;
1426 btrfs_release_delayed_node(delayed_node);
1427 return 0;
1428}
1429
1430void btrfs_get_delayed_items(struct inode *inode, struct list_head *ins_list,
1431 struct list_head *del_list)
1432{
1433 struct btrfs_delayed_node *delayed_node;
1434 struct btrfs_delayed_item *item;
1435
1436 delayed_node = btrfs_get_delayed_node(inode);
1437 if (!delayed_node)
1438 return;
1439
1440 mutex_lock(&delayed_node->mutex);
1441 item = __btrfs_first_delayed_insertion_item(delayed_node);
1442 while (item) {
1443 atomic_inc(&item->refs);
1444 list_add_tail(&item->readdir_list, ins_list);
1445 item = __btrfs_next_delayed_item(item);
1446 }
1447
1448 item = __btrfs_first_delayed_deletion_item(delayed_node);
1449 while (item) {
1450 atomic_inc(&item->refs);
1451 list_add_tail(&item->readdir_list, del_list);
1452 item = __btrfs_next_delayed_item(item);
1453 }
1454 mutex_unlock(&delayed_node->mutex);
1455 /*
1456 * This delayed node is still cached in the btrfs inode, so refs
1457 * must be > 1 now, and we needn't check it is going to be freed
1458 * or not.
1459 *
1460 * Besides that, this function is used to read dir, we do not
1461 * insert/delete delayed items in this period. So we also needn't
1462 * requeue or dequeue this delayed node.
1463 */
1464 atomic_dec(&delayed_node->refs);
1465}
1466
1467void btrfs_put_delayed_items(struct list_head *ins_list,
1468 struct list_head *del_list)
1469{
1470 struct btrfs_delayed_item *curr, *next;
1471
1472 list_for_each_entry_safe(curr, next, ins_list, readdir_list) {
1473 list_del(&curr->readdir_list);
1474 if (atomic_dec_and_test(&curr->refs))
1475 kfree(curr);
1476 }
1477
1478 list_for_each_entry_safe(curr, next, del_list, readdir_list) {
1479 list_del(&curr->readdir_list);
1480 if (atomic_dec_and_test(&curr->refs))
1481 kfree(curr);
1482 }
1483}
1484
1485int btrfs_should_delete_dir_index(struct list_head *del_list,
1486 u64 index)
1487{
1488 struct btrfs_delayed_item *curr, *next;
1489 int ret;
1490
1491 if (list_empty(del_list))
1492 return 0;
1493
1494 list_for_each_entry_safe(curr, next, del_list, readdir_list) {
1495 if (curr->key.offset > index)
1496 break;
1497
1498 list_del(&curr->readdir_list);
1499 ret = (curr->key.offset == index);
1500
1501 if (atomic_dec_and_test(&curr->refs))
1502 kfree(curr);
1503
1504 if (ret)
1505 return 1;
1506 else
1507 continue;
1508 }
1509 return 0;
1510}
1511
1512/*
1513 * btrfs_readdir_delayed_dir_index - read dir info stored in the delayed tree
1514 *
1515 */
1516int btrfs_readdir_delayed_dir_index(struct file *filp, void *dirent,
1517 filldir_t filldir,
1518 struct list_head *ins_list)
1519{
1520 struct btrfs_dir_item *di;
1521 struct btrfs_delayed_item *curr, *next;
1522 struct btrfs_key location;
1523 char *name;
1524 int name_len;
1525 int over = 0;
1526 unsigned char d_type;
1527
1528 if (list_empty(ins_list))
1529 return 0;
1530
1531 /*
1532 * Changing the data of the delayed item is impossible. So
1533 * we needn't lock them. And we have held i_mutex of the
1534 * directory, nobody can delete any directory indexes now.
1535 */
1536 list_for_each_entry_safe(curr, next, ins_list, readdir_list) {
1537 list_del(&curr->readdir_list);
1538
1539 if (curr->key.offset < filp->f_pos) {
1540 if (atomic_dec_and_test(&curr->refs))
1541 kfree(curr);
1542 continue;
1543 }
1544
1545 filp->f_pos = curr->key.offset;
1546
1547 di = (struct btrfs_dir_item *)curr->data;
1548 name = (char *)(di + 1);
1549 name_len = le16_to_cpu(di->name_len);
1550
1551 d_type = btrfs_filetype_table[di->type];
1552 btrfs_disk_key_to_cpu(&location, &di->location);
1553
1554 over = filldir(dirent, name, name_len, curr->key.offset,
1555 location.objectid, d_type);
1556
1557 if (atomic_dec_and_test(&curr->refs))
1558 kfree(curr);
1559
1560 if (over)
1561 return 1;
1562 }
1563 return 0;
1564}
1565
1566BTRFS_SETGET_STACK_FUNCS(stack_inode_generation, struct btrfs_inode_item,
1567 generation, 64);
1568BTRFS_SETGET_STACK_FUNCS(stack_inode_sequence, struct btrfs_inode_item,
1569 sequence, 64);
1570BTRFS_SETGET_STACK_FUNCS(stack_inode_transid, struct btrfs_inode_item,
1571 transid, 64);
1572BTRFS_SETGET_STACK_FUNCS(stack_inode_size, struct btrfs_inode_item, size, 64);
1573BTRFS_SETGET_STACK_FUNCS(stack_inode_nbytes, struct btrfs_inode_item,
1574 nbytes, 64);
1575BTRFS_SETGET_STACK_FUNCS(stack_inode_block_group, struct btrfs_inode_item,
1576 block_group, 64);
1577BTRFS_SETGET_STACK_FUNCS(stack_inode_nlink, struct btrfs_inode_item, nlink, 32);
1578BTRFS_SETGET_STACK_FUNCS(stack_inode_uid, struct btrfs_inode_item, uid, 32);
1579BTRFS_SETGET_STACK_FUNCS(stack_inode_gid, struct btrfs_inode_item, gid, 32);
1580BTRFS_SETGET_STACK_FUNCS(stack_inode_mode, struct btrfs_inode_item, mode, 32);
1581BTRFS_SETGET_STACK_FUNCS(stack_inode_rdev, struct btrfs_inode_item, rdev, 64);
1582BTRFS_SETGET_STACK_FUNCS(stack_inode_flags, struct btrfs_inode_item, flags, 64);
1583
1584BTRFS_SETGET_STACK_FUNCS(stack_timespec_sec, struct btrfs_timespec, sec, 64);
1585BTRFS_SETGET_STACK_FUNCS(stack_timespec_nsec, struct btrfs_timespec, nsec, 32);
1586
1587static void fill_stack_inode_item(struct btrfs_trans_handle *trans,
1588 struct btrfs_inode_item *inode_item,
1589 struct inode *inode)
1590{
1591 btrfs_set_stack_inode_uid(inode_item, inode->i_uid);
1592 btrfs_set_stack_inode_gid(inode_item, inode->i_gid);
1593 btrfs_set_stack_inode_size(inode_item, BTRFS_I(inode)->disk_i_size);
1594 btrfs_set_stack_inode_mode(inode_item, inode->i_mode);
1595 btrfs_set_stack_inode_nlink(inode_item, inode->i_nlink);
1596 btrfs_set_stack_inode_nbytes(inode_item, inode_get_bytes(inode));
1597 btrfs_set_stack_inode_generation(inode_item,
1598 BTRFS_I(inode)->generation);
1599 btrfs_set_stack_inode_sequence(inode_item, BTRFS_I(inode)->sequence);
1600 btrfs_set_stack_inode_transid(inode_item, trans->transid);
1601 btrfs_set_stack_inode_rdev(inode_item, inode->i_rdev);
1602 btrfs_set_stack_inode_flags(inode_item, BTRFS_I(inode)->flags);
1603 btrfs_set_stack_inode_block_group(inode_item, 0);
1604
1605 btrfs_set_stack_timespec_sec(btrfs_inode_atime(inode_item),
1606 inode->i_atime.tv_sec);
1607 btrfs_set_stack_timespec_nsec(btrfs_inode_atime(inode_item),
1608 inode->i_atime.tv_nsec);
1609
1610 btrfs_set_stack_timespec_sec(btrfs_inode_mtime(inode_item),
1611 inode->i_mtime.tv_sec);
1612 btrfs_set_stack_timespec_nsec(btrfs_inode_mtime(inode_item),
1613 inode->i_mtime.tv_nsec);
1614
1615 btrfs_set_stack_timespec_sec(btrfs_inode_ctime(inode_item),
1616 inode->i_ctime.tv_sec);
1617 btrfs_set_stack_timespec_nsec(btrfs_inode_ctime(inode_item),
1618 inode->i_ctime.tv_nsec);
1619}
1620
1621int btrfs_fill_inode(struct inode *inode, u32 *rdev)
1622{
1623 struct btrfs_delayed_node *delayed_node;
1624 struct btrfs_inode_item *inode_item;
1625 struct btrfs_timespec *tspec;
1626
1627 delayed_node = btrfs_get_delayed_node(inode);
1628 if (!delayed_node)
1629 return -ENOENT;
1630
1631 mutex_lock(&delayed_node->mutex);
1632 if (!delayed_node->inode_dirty) {
1633 mutex_unlock(&delayed_node->mutex);
1634 btrfs_release_delayed_node(delayed_node);
1635 return -ENOENT;
1636 }
1637
1638 inode_item = &delayed_node->inode_item;
1639
1640 inode->i_uid = btrfs_stack_inode_uid(inode_item);
1641 inode->i_gid = btrfs_stack_inode_gid(inode_item);
1642 btrfs_i_size_write(inode, btrfs_stack_inode_size(inode_item));
1643 inode->i_mode = btrfs_stack_inode_mode(inode_item);
1644 inode->i_nlink = btrfs_stack_inode_nlink(inode_item);
1645 inode_set_bytes(inode, btrfs_stack_inode_nbytes(inode_item));
1646 BTRFS_I(inode)->generation = btrfs_stack_inode_generation(inode_item);
1647 BTRFS_I(inode)->sequence = btrfs_stack_inode_sequence(inode_item);
1648 inode->i_rdev = 0;
1649 *rdev = btrfs_stack_inode_rdev(inode_item);
1650 BTRFS_I(inode)->flags = btrfs_stack_inode_flags(inode_item);
1651
1652 tspec = btrfs_inode_atime(inode_item);
1653 inode->i_atime.tv_sec = btrfs_stack_timespec_sec(tspec);
1654 inode->i_atime.tv_nsec = btrfs_stack_timespec_nsec(tspec);
1655
1656 tspec = btrfs_inode_mtime(inode_item);
1657 inode->i_mtime.tv_sec = btrfs_stack_timespec_sec(tspec);
1658 inode->i_mtime.tv_nsec = btrfs_stack_timespec_nsec(tspec);
1659
1660 tspec = btrfs_inode_ctime(inode_item);
1661 inode->i_ctime.tv_sec = btrfs_stack_timespec_sec(tspec);
1662 inode->i_ctime.tv_nsec = btrfs_stack_timespec_nsec(tspec);
1663
1664 inode->i_generation = BTRFS_I(inode)->generation;
1665 BTRFS_I(inode)->index_cnt = (u64)-1;
1666
1667 mutex_unlock(&delayed_node->mutex);
1668 btrfs_release_delayed_node(delayed_node);
1669 return 0;
1670}
1671
1672int btrfs_delayed_update_inode(struct btrfs_trans_handle *trans,
1673 struct btrfs_root *root, struct inode *inode)
1674{
1675 struct btrfs_delayed_node *delayed_node;
1676 int ret = 0;
1677
1678 delayed_node = btrfs_get_or_create_delayed_node(inode);
1679 if (IS_ERR(delayed_node))
1680 return PTR_ERR(delayed_node);
1681
1682 mutex_lock(&delayed_node->mutex);
1683 if (delayed_node->inode_dirty) {
1684 fill_stack_inode_item(trans, &delayed_node->inode_item, inode);
1685 goto release_node;
1686 }
1687
1688 ret = btrfs_delayed_inode_reserve_metadata(trans, root, delayed_node);
1689 /*
1690 * we must reserve enough space when we start a new transaction,
1691 * so reserving metadata failure is impossible
1692 */
1693 BUG_ON(ret);
1694
1695 fill_stack_inode_item(trans, &delayed_node->inode_item, inode);
1696 delayed_node->inode_dirty = 1;
1697 delayed_node->count++;
1698 atomic_inc(&root->fs_info->delayed_root->items);
1699release_node:
1700 mutex_unlock(&delayed_node->mutex);
1701 btrfs_release_delayed_node(delayed_node);
1702 return ret;
1703}
1704
1705static void __btrfs_kill_delayed_node(struct btrfs_delayed_node *delayed_node)
1706{
1707 struct btrfs_root *root = delayed_node->root;
1708 struct btrfs_delayed_item *curr_item, *prev_item;
1709
1710 mutex_lock(&delayed_node->mutex);
1711 curr_item = __btrfs_first_delayed_insertion_item(delayed_node);
1712 while (curr_item) {
1713 btrfs_delayed_item_release_metadata(root, curr_item);
1714 prev_item = curr_item;
1715 curr_item = __btrfs_next_delayed_item(prev_item);
1716 btrfs_release_delayed_item(prev_item);
1717 }
1718
1719 curr_item = __btrfs_first_delayed_deletion_item(delayed_node);
1720 while (curr_item) {
1721 btrfs_delayed_item_release_metadata(root, curr_item);
1722 prev_item = curr_item;
1723 curr_item = __btrfs_next_delayed_item(prev_item);
1724 btrfs_release_delayed_item(prev_item);
1725 }
1726
1727 if (delayed_node->inode_dirty) {
1728 btrfs_delayed_inode_release_metadata(root, delayed_node);
1729 btrfs_release_delayed_inode(delayed_node);
1730 }
1731 mutex_unlock(&delayed_node->mutex);
1732}
1733
1734void btrfs_kill_delayed_inode_items(struct inode *inode)
1735{
1736 struct btrfs_delayed_node *delayed_node;
1737
1738 delayed_node = btrfs_get_delayed_node(inode);
1739 if (!delayed_node)
1740 return;
1741
1742 __btrfs_kill_delayed_node(delayed_node);
1743 btrfs_release_delayed_node(delayed_node);
1744}
1745
1746void btrfs_kill_all_delayed_nodes(struct btrfs_root *root)
1747{
1748 u64 inode_id = 0;
1749 struct btrfs_delayed_node *delayed_nodes[8];
1750 int i, n;
1751
1752 while (1) {
1753 spin_lock(&root->inode_lock);
1754 n = radix_tree_gang_lookup(&root->delayed_nodes_tree,
1755 (void **)delayed_nodes, inode_id,
1756 ARRAY_SIZE(delayed_nodes));
1757 if (!n) {
1758 spin_unlock(&root->inode_lock);
1759 break;
1760 }
1761
1762 inode_id = delayed_nodes[n - 1]->inode_id + 1;
1763
1764 for (i = 0; i < n; i++)
1765 atomic_inc(&delayed_nodes[i]->refs);
1766 spin_unlock(&root->inode_lock);
1767
1768 for (i = 0; i < n; i++) {
1769 __btrfs_kill_delayed_node(delayed_nodes[i]);
1770 btrfs_release_delayed_node(delayed_nodes[i]);
1771 }
1772 }
1773}
1/*
2 * Copyright (C) 2011 Fujitsu. All rights reserved.
3 * Written by Miao Xie <miaox@cn.fujitsu.com>
4 *
5 * This program is free software; you can redistribute it and/or
6 * modify it under the terms of the GNU General Public
7 * License v2 as published by the Free Software Foundation.
8 *
9 * This program is distributed in the hope that it will be useful,
10 * but WITHOUT ANY WARRANTY; without even the implied warranty of
11 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
12 * General Public License for more details.
13 *
14 * You should have received a copy of the GNU General Public
15 * License along with this program; if not, write to the
16 * Free Software Foundation, Inc., 59 Temple Place - Suite 330,
17 * Boston, MA 021110-1307, USA.
18 */
19
20#include <linux/slab.h>
21#include "delayed-inode.h"
22#include "disk-io.h"
23#include "transaction.h"
24#include "ctree.h"
25
26#define BTRFS_DELAYED_WRITEBACK 512
27#define BTRFS_DELAYED_BACKGROUND 128
28#define BTRFS_DELAYED_BATCH 16
29
30static struct kmem_cache *delayed_node_cache;
31
32int __init btrfs_delayed_inode_init(void)
33{
34 delayed_node_cache = kmem_cache_create("btrfs_delayed_node",
35 sizeof(struct btrfs_delayed_node),
36 0,
37 SLAB_MEM_SPREAD,
38 NULL);
39 if (!delayed_node_cache)
40 return -ENOMEM;
41 return 0;
42}
43
44void btrfs_delayed_inode_exit(void)
45{
46 kmem_cache_destroy(delayed_node_cache);
47}
48
49static inline void btrfs_init_delayed_node(
50 struct btrfs_delayed_node *delayed_node,
51 struct btrfs_root *root, u64 inode_id)
52{
53 delayed_node->root = root;
54 delayed_node->inode_id = inode_id;
55 atomic_set(&delayed_node->refs, 0);
56 delayed_node->ins_root = RB_ROOT;
57 delayed_node->del_root = RB_ROOT;
58 mutex_init(&delayed_node->mutex);
59 INIT_LIST_HEAD(&delayed_node->n_list);
60 INIT_LIST_HEAD(&delayed_node->p_list);
61}
62
63static inline int btrfs_is_continuous_delayed_item(
64 struct btrfs_delayed_item *item1,
65 struct btrfs_delayed_item *item2)
66{
67 if (item1->key.type == BTRFS_DIR_INDEX_KEY &&
68 item1->key.objectid == item2->key.objectid &&
69 item1->key.type == item2->key.type &&
70 item1->key.offset + 1 == item2->key.offset)
71 return 1;
72 return 0;
73}
74
75static struct btrfs_delayed_node *btrfs_get_delayed_node(struct inode *inode)
76{
77 struct btrfs_inode *btrfs_inode = BTRFS_I(inode);
78 struct btrfs_root *root = btrfs_inode->root;
79 u64 ino = btrfs_ino(inode);
80 struct btrfs_delayed_node *node;
81
82 node = ACCESS_ONCE(btrfs_inode->delayed_node);
83 if (node) {
84 atomic_inc(&node->refs);
85 return node;
86 }
87
88 spin_lock(&root->inode_lock);
89 node = radix_tree_lookup(&root->delayed_nodes_tree, ino);
90 if (node) {
91 if (btrfs_inode->delayed_node) {
92 atomic_inc(&node->refs); /* can be accessed */
93 BUG_ON(btrfs_inode->delayed_node != node);
94 spin_unlock(&root->inode_lock);
95 return node;
96 }
97 btrfs_inode->delayed_node = node;
98 /* can be accessed and cached in the inode */
99 atomic_add(2, &node->refs);
100 spin_unlock(&root->inode_lock);
101 return node;
102 }
103 spin_unlock(&root->inode_lock);
104
105 return NULL;
106}
107
108/* Will return either the node or PTR_ERR(-ENOMEM) */
109static struct btrfs_delayed_node *btrfs_get_or_create_delayed_node(
110 struct inode *inode)
111{
112 struct btrfs_delayed_node *node;
113 struct btrfs_inode *btrfs_inode = BTRFS_I(inode);
114 struct btrfs_root *root = btrfs_inode->root;
115 u64 ino = btrfs_ino(inode);
116 int ret;
117
118again:
119 node = btrfs_get_delayed_node(inode);
120 if (node)
121 return node;
122
123 node = kmem_cache_zalloc(delayed_node_cache, GFP_NOFS);
124 if (!node)
125 return ERR_PTR(-ENOMEM);
126 btrfs_init_delayed_node(node, root, ino);
127
128 /* cached in the btrfs inode and can be accessed */
129 atomic_add(2, &node->refs);
130
131 ret = radix_tree_preload(GFP_NOFS);
132 if (ret) {
133 kmem_cache_free(delayed_node_cache, node);
134 return ERR_PTR(ret);
135 }
136
137 spin_lock(&root->inode_lock);
138 ret = radix_tree_insert(&root->delayed_nodes_tree, ino, node);
139 if (ret == -EEXIST) {
140 spin_unlock(&root->inode_lock);
141 kmem_cache_free(delayed_node_cache, node);
142 radix_tree_preload_end();
143 goto again;
144 }
145 btrfs_inode->delayed_node = node;
146 spin_unlock(&root->inode_lock);
147 radix_tree_preload_end();
148
149 return node;
150}
151
152/*
153 * Call it when holding delayed_node->mutex
154 *
155 * If mod = 1, add this node into the prepared list.
156 */
157static void btrfs_queue_delayed_node(struct btrfs_delayed_root *root,
158 struct btrfs_delayed_node *node,
159 int mod)
160{
161 spin_lock(&root->lock);
162 if (test_bit(BTRFS_DELAYED_NODE_IN_LIST, &node->flags)) {
163 if (!list_empty(&node->p_list))
164 list_move_tail(&node->p_list, &root->prepare_list);
165 else if (mod)
166 list_add_tail(&node->p_list, &root->prepare_list);
167 } else {
168 list_add_tail(&node->n_list, &root->node_list);
169 list_add_tail(&node->p_list, &root->prepare_list);
170 atomic_inc(&node->refs); /* inserted into list */
171 root->nodes++;
172 set_bit(BTRFS_DELAYED_NODE_IN_LIST, &node->flags);
173 }
174 spin_unlock(&root->lock);
175}
176
177/* Call it when holding delayed_node->mutex */
178static void btrfs_dequeue_delayed_node(struct btrfs_delayed_root *root,
179 struct btrfs_delayed_node *node)
180{
181 spin_lock(&root->lock);
182 if (test_bit(BTRFS_DELAYED_NODE_IN_LIST, &node->flags)) {
183 root->nodes--;
184 atomic_dec(&node->refs); /* not in the list */
185 list_del_init(&node->n_list);
186 if (!list_empty(&node->p_list))
187 list_del_init(&node->p_list);
188 clear_bit(BTRFS_DELAYED_NODE_IN_LIST, &node->flags);
189 }
190 spin_unlock(&root->lock);
191}
192
193static struct btrfs_delayed_node *btrfs_first_delayed_node(
194 struct btrfs_delayed_root *delayed_root)
195{
196 struct list_head *p;
197 struct btrfs_delayed_node *node = NULL;
198
199 spin_lock(&delayed_root->lock);
200 if (list_empty(&delayed_root->node_list))
201 goto out;
202
203 p = delayed_root->node_list.next;
204 node = list_entry(p, struct btrfs_delayed_node, n_list);
205 atomic_inc(&node->refs);
206out:
207 spin_unlock(&delayed_root->lock);
208
209 return node;
210}
211
212static struct btrfs_delayed_node *btrfs_next_delayed_node(
213 struct btrfs_delayed_node *node)
214{
215 struct btrfs_delayed_root *delayed_root;
216 struct list_head *p;
217 struct btrfs_delayed_node *next = NULL;
218
219 delayed_root = node->root->fs_info->delayed_root;
220 spin_lock(&delayed_root->lock);
221 if (!test_bit(BTRFS_DELAYED_NODE_IN_LIST, &node->flags)) {
222 /* not in the list */
223 if (list_empty(&delayed_root->node_list))
224 goto out;
225 p = delayed_root->node_list.next;
226 } else if (list_is_last(&node->n_list, &delayed_root->node_list))
227 goto out;
228 else
229 p = node->n_list.next;
230
231 next = list_entry(p, struct btrfs_delayed_node, n_list);
232 atomic_inc(&next->refs);
233out:
234 spin_unlock(&delayed_root->lock);
235
236 return next;
237}
238
239static void __btrfs_release_delayed_node(
240 struct btrfs_delayed_node *delayed_node,
241 int mod)
242{
243 struct btrfs_delayed_root *delayed_root;
244
245 if (!delayed_node)
246 return;
247
248 delayed_root = delayed_node->root->fs_info->delayed_root;
249
250 mutex_lock(&delayed_node->mutex);
251 if (delayed_node->count)
252 btrfs_queue_delayed_node(delayed_root, delayed_node, mod);
253 else
254 btrfs_dequeue_delayed_node(delayed_root, delayed_node);
255 mutex_unlock(&delayed_node->mutex);
256
257 if (atomic_dec_and_test(&delayed_node->refs)) {
258 bool free = false;
259 struct btrfs_root *root = delayed_node->root;
260 spin_lock(&root->inode_lock);
261 if (atomic_read(&delayed_node->refs) == 0) {
262 radix_tree_delete(&root->delayed_nodes_tree,
263 delayed_node->inode_id);
264 free = true;
265 }
266 spin_unlock(&root->inode_lock);
267 if (free)
268 kmem_cache_free(delayed_node_cache, delayed_node);
269 }
270}
271
272static inline void btrfs_release_delayed_node(struct btrfs_delayed_node *node)
273{
274 __btrfs_release_delayed_node(node, 0);
275}
276
277static struct btrfs_delayed_node *btrfs_first_prepared_delayed_node(
278 struct btrfs_delayed_root *delayed_root)
279{
280 struct list_head *p;
281 struct btrfs_delayed_node *node = NULL;
282
283 spin_lock(&delayed_root->lock);
284 if (list_empty(&delayed_root->prepare_list))
285 goto out;
286
287 p = delayed_root->prepare_list.next;
288 list_del_init(p);
289 node = list_entry(p, struct btrfs_delayed_node, p_list);
290 atomic_inc(&node->refs);
291out:
292 spin_unlock(&delayed_root->lock);
293
294 return node;
295}
296
297static inline void btrfs_release_prepared_delayed_node(
298 struct btrfs_delayed_node *node)
299{
300 __btrfs_release_delayed_node(node, 1);
301}
302
303static struct btrfs_delayed_item *btrfs_alloc_delayed_item(u32 data_len)
304{
305 struct btrfs_delayed_item *item;
306 item = kmalloc(sizeof(*item) + data_len, GFP_NOFS);
307 if (item) {
308 item->data_len = data_len;
309 item->ins_or_del = 0;
310 item->bytes_reserved = 0;
311 item->delayed_node = NULL;
312 atomic_set(&item->refs, 1);
313 }
314 return item;
315}
316
317/*
318 * __btrfs_lookup_delayed_item - look up the delayed item by key
319 * @delayed_node: pointer to the delayed node
320 * @key: the key to look up
321 * @prev: used to store the prev item if the right item isn't found
322 * @next: used to store the next item if the right item isn't found
323 *
324 * Note: if we don't find the right item, we will return the prev item and
325 * the next item.
326 */
327static struct btrfs_delayed_item *__btrfs_lookup_delayed_item(
328 struct rb_root *root,
329 struct btrfs_key *key,
330 struct btrfs_delayed_item **prev,
331 struct btrfs_delayed_item **next)
332{
333 struct rb_node *node, *prev_node = NULL;
334 struct btrfs_delayed_item *delayed_item = NULL;
335 int ret = 0;
336
337 node = root->rb_node;
338
339 while (node) {
340 delayed_item = rb_entry(node, struct btrfs_delayed_item,
341 rb_node);
342 prev_node = node;
343 ret = btrfs_comp_cpu_keys(&delayed_item->key, key);
344 if (ret < 0)
345 node = node->rb_right;
346 else if (ret > 0)
347 node = node->rb_left;
348 else
349 return delayed_item;
350 }
351
352 if (prev) {
353 if (!prev_node)
354 *prev = NULL;
355 else if (ret < 0)
356 *prev = delayed_item;
357 else if ((node = rb_prev(prev_node)) != NULL) {
358 *prev = rb_entry(node, struct btrfs_delayed_item,
359 rb_node);
360 } else
361 *prev = NULL;
362 }
363
364 if (next) {
365 if (!prev_node)
366 *next = NULL;
367 else if (ret > 0)
368 *next = delayed_item;
369 else if ((node = rb_next(prev_node)) != NULL) {
370 *next = rb_entry(node, struct btrfs_delayed_item,
371 rb_node);
372 } else
373 *next = NULL;
374 }
375 return NULL;
376}
377
378static struct btrfs_delayed_item *__btrfs_lookup_delayed_insertion_item(
379 struct btrfs_delayed_node *delayed_node,
380 struct btrfs_key *key)
381{
382 return __btrfs_lookup_delayed_item(&delayed_node->ins_root, key,
383 NULL, NULL);
384}
385
386static int __btrfs_add_delayed_item(struct btrfs_delayed_node *delayed_node,
387 struct btrfs_delayed_item *ins,
388 int action)
389{
390 struct rb_node **p, *node;
391 struct rb_node *parent_node = NULL;
392 struct rb_root *root;
393 struct btrfs_delayed_item *item;
394 int cmp;
395
396 if (action == BTRFS_DELAYED_INSERTION_ITEM)
397 root = &delayed_node->ins_root;
398 else if (action == BTRFS_DELAYED_DELETION_ITEM)
399 root = &delayed_node->del_root;
400 else
401 BUG();
402 p = &root->rb_node;
403 node = &ins->rb_node;
404
405 while (*p) {
406 parent_node = *p;
407 item = rb_entry(parent_node, struct btrfs_delayed_item,
408 rb_node);
409
410 cmp = btrfs_comp_cpu_keys(&item->key, &ins->key);
411 if (cmp < 0)
412 p = &(*p)->rb_right;
413 else if (cmp > 0)
414 p = &(*p)->rb_left;
415 else
416 return -EEXIST;
417 }
418
419 rb_link_node(node, parent_node, p);
420 rb_insert_color(node, root);
421 ins->delayed_node = delayed_node;
422 ins->ins_or_del = action;
423
424 if (ins->key.type == BTRFS_DIR_INDEX_KEY &&
425 action == BTRFS_DELAYED_INSERTION_ITEM &&
426 ins->key.offset >= delayed_node->index_cnt)
427 delayed_node->index_cnt = ins->key.offset + 1;
428
429 delayed_node->count++;
430 atomic_inc(&delayed_node->root->fs_info->delayed_root->items);
431 return 0;
432}
433
434static int __btrfs_add_delayed_insertion_item(struct btrfs_delayed_node *node,
435 struct btrfs_delayed_item *item)
436{
437 return __btrfs_add_delayed_item(node, item,
438 BTRFS_DELAYED_INSERTION_ITEM);
439}
440
441static int __btrfs_add_delayed_deletion_item(struct btrfs_delayed_node *node,
442 struct btrfs_delayed_item *item)
443{
444 return __btrfs_add_delayed_item(node, item,
445 BTRFS_DELAYED_DELETION_ITEM);
446}
447
448static void finish_one_item(struct btrfs_delayed_root *delayed_root)
449{
450 int seq = atomic_inc_return(&delayed_root->items_seq);
451
452 /*
453 * atomic_dec_return implies a barrier for waitqueue_active
454 */
455 if ((atomic_dec_return(&delayed_root->items) <
456 BTRFS_DELAYED_BACKGROUND || seq % BTRFS_DELAYED_BATCH == 0) &&
457 waitqueue_active(&delayed_root->wait))
458 wake_up(&delayed_root->wait);
459}
460
461static void __btrfs_remove_delayed_item(struct btrfs_delayed_item *delayed_item)
462{
463 struct rb_root *root;
464 struct btrfs_delayed_root *delayed_root;
465
466 delayed_root = delayed_item->delayed_node->root->fs_info->delayed_root;
467
468 BUG_ON(!delayed_root);
469 BUG_ON(delayed_item->ins_or_del != BTRFS_DELAYED_DELETION_ITEM &&
470 delayed_item->ins_or_del != BTRFS_DELAYED_INSERTION_ITEM);
471
472 if (delayed_item->ins_or_del == BTRFS_DELAYED_INSERTION_ITEM)
473 root = &delayed_item->delayed_node->ins_root;
474 else
475 root = &delayed_item->delayed_node->del_root;
476
477 rb_erase(&delayed_item->rb_node, root);
478 delayed_item->delayed_node->count--;
479
480 finish_one_item(delayed_root);
481}
482
483static void btrfs_release_delayed_item(struct btrfs_delayed_item *item)
484{
485 if (item) {
486 __btrfs_remove_delayed_item(item);
487 if (atomic_dec_and_test(&item->refs))
488 kfree(item);
489 }
490}
491
492static struct btrfs_delayed_item *__btrfs_first_delayed_insertion_item(
493 struct btrfs_delayed_node *delayed_node)
494{
495 struct rb_node *p;
496 struct btrfs_delayed_item *item = NULL;
497
498 p = rb_first(&delayed_node->ins_root);
499 if (p)
500 item = rb_entry(p, struct btrfs_delayed_item, rb_node);
501
502 return item;
503}
504
505static struct btrfs_delayed_item *__btrfs_first_delayed_deletion_item(
506 struct btrfs_delayed_node *delayed_node)
507{
508 struct rb_node *p;
509 struct btrfs_delayed_item *item = NULL;
510
511 p = rb_first(&delayed_node->del_root);
512 if (p)
513 item = rb_entry(p, struct btrfs_delayed_item, rb_node);
514
515 return item;
516}
517
518static struct btrfs_delayed_item *__btrfs_next_delayed_item(
519 struct btrfs_delayed_item *item)
520{
521 struct rb_node *p;
522 struct btrfs_delayed_item *next = NULL;
523
524 p = rb_next(&item->rb_node);
525 if (p)
526 next = rb_entry(p, struct btrfs_delayed_item, rb_node);
527
528 return next;
529}
530
531static int btrfs_delayed_item_reserve_metadata(struct btrfs_trans_handle *trans,
532 struct btrfs_fs_info *fs_info,
533 struct btrfs_delayed_item *item)
534{
535 struct btrfs_block_rsv *src_rsv;
536 struct btrfs_block_rsv *dst_rsv;
537 u64 num_bytes;
538 int ret;
539
540 if (!trans->bytes_reserved)
541 return 0;
542
543 src_rsv = trans->block_rsv;
544 dst_rsv = &fs_info->delayed_block_rsv;
545
546 num_bytes = btrfs_calc_trans_metadata_size(fs_info, 1);
547 ret = btrfs_block_rsv_migrate(src_rsv, dst_rsv, num_bytes, 1);
548 if (!ret) {
549 trace_btrfs_space_reservation(fs_info, "delayed_item",
550 item->key.objectid,
551 num_bytes, 1);
552 item->bytes_reserved = num_bytes;
553 }
554
555 return ret;
556}
557
558static void btrfs_delayed_item_release_metadata(struct btrfs_fs_info *fs_info,
559 struct btrfs_delayed_item *item)
560{
561 struct btrfs_block_rsv *rsv;
562
563 if (!item->bytes_reserved)
564 return;
565
566 rsv = &fs_info->delayed_block_rsv;
567 trace_btrfs_space_reservation(fs_info, "delayed_item",
568 item->key.objectid, item->bytes_reserved,
569 0);
570 btrfs_block_rsv_release(fs_info, rsv,
571 item->bytes_reserved);
572}
573
574static int btrfs_delayed_inode_reserve_metadata(
575 struct btrfs_trans_handle *trans,
576 struct btrfs_root *root,
577 struct inode *inode,
578 struct btrfs_delayed_node *node)
579{
580 struct btrfs_fs_info *fs_info = root->fs_info;
581 struct btrfs_block_rsv *src_rsv;
582 struct btrfs_block_rsv *dst_rsv;
583 u64 num_bytes;
584 int ret;
585 bool release = false;
586
587 src_rsv = trans->block_rsv;
588 dst_rsv = &fs_info->delayed_block_rsv;
589
590 num_bytes = btrfs_calc_trans_metadata_size(fs_info, 1);
591
592 /*
593 * If our block_rsv is the delalloc block reserve then check and see if
594 * we have our extra reservation for updating the inode. If not fall
595 * through and try to reserve space quickly.
596 *
597 * We used to try and steal from the delalloc block rsv or the global
598 * reserve, but we'd steal a full reservation, which isn't kind. We are
599 * here through delalloc which means we've likely just cowed down close
600 * to the leaf that contains the inode, so we would steal less just
601 * doing the fallback inode update, so if we do end up having to steal
602 * from the global block rsv we hopefully only steal one or two blocks
603 * worth which is less likely to hurt us.
604 */
605 if (src_rsv && src_rsv->type == BTRFS_BLOCK_RSV_DELALLOC) {
606 spin_lock(&BTRFS_I(inode)->lock);
607 if (test_and_clear_bit(BTRFS_INODE_DELALLOC_META_RESERVED,
608 &BTRFS_I(inode)->runtime_flags))
609 release = true;
610 else
611 src_rsv = NULL;
612 spin_unlock(&BTRFS_I(inode)->lock);
613 }
614
615 /*
616 * btrfs_dirty_inode will update the inode under btrfs_join_transaction
617 * which doesn't reserve space for speed. This is a problem since we
618 * still need to reserve space for this update, so try to reserve the
619 * space.
620 *
621 * Now if src_rsv == delalloc_block_rsv we'll let it just steal since
622 * we're accounted for.
623 */
624 if (!src_rsv || (!trans->bytes_reserved &&
625 src_rsv->type != BTRFS_BLOCK_RSV_DELALLOC)) {
626 ret = btrfs_block_rsv_add(root, dst_rsv, num_bytes,
627 BTRFS_RESERVE_NO_FLUSH);
628 /*
629 * Since we're under a transaction reserve_metadata_bytes could
630 * try to commit the transaction which will make it return
631 * EAGAIN to make us stop the transaction we have, so return
632 * ENOSPC instead so that btrfs_dirty_inode knows what to do.
633 */
634 if (ret == -EAGAIN)
635 ret = -ENOSPC;
636 if (!ret) {
637 node->bytes_reserved = num_bytes;
638 trace_btrfs_space_reservation(fs_info,
639 "delayed_inode",
640 btrfs_ino(inode),
641 num_bytes, 1);
642 }
643 return ret;
644 }
645
646 ret = btrfs_block_rsv_migrate(src_rsv, dst_rsv, num_bytes, 1);
647
648 /*
649 * Migrate only takes a reservation, it doesn't touch the size of the
650 * block_rsv. This is to simplify people who don't normally have things
651 * migrated from their block rsv. If they go to release their
652 * reservation, that will decrease the size as well, so if migrate
653 * reduced size we'd end up with a negative size. But for the
654 * delalloc_meta_reserved stuff we will only know to drop 1 reservation,
655 * but we could in fact do this reserve/migrate dance several times
656 * between the time we did the original reservation and we'd clean it
657 * up. So to take care of this, release the space for the meta
658 * reservation here. I think it may be time for a documentation page on
659 * how block rsvs. work.
660 */
661 if (!ret) {
662 trace_btrfs_space_reservation(fs_info, "delayed_inode",
663 btrfs_ino(inode), num_bytes, 1);
664 node->bytes_reserved = num_bytes;
665 }
666
667 if (release) {
668 trace_btrfs_space_reservation(fs_info, "delalloc",
669 btrfs_ino(inode), num_bytes, 0);
670 btrfs_block_rsv_release(fs_info, src_rsv, num_bytes);
671 }
672
673 return ret;
674}
675
676static void btrfs_delayed_inode_release_metadata(struct btrfs_fs_info *fs_info,
677 struct btrfs_delayed_node *node)
678{
679 struct btrfs_block_rsv *rsv;
680
681 if (!node->bytes_reserved)
682 return;
683
684 rsv = &fs_info->delayed_block_rsv;
685 trace_btrfs_space_reservation(fs_info, "delayed_inode",
686 node->inode_id, node->bytes_reserved, 0);
687 btrfs_block_rsv_release(fs_info, rsv,
688 node->bytes_reserved);
689 node->bytes_reserved = 0;
690}
691
692/*
693 * This helper will insert some continuous items into the same leaf according
694 * to the free space of the leaf.
695 */
696static int btrfs_batch_insert_items(struct btrfs_root *root,
697 struct btrfs_path *path,
698 struct btrfs_delayed_item *item)
699{
700 struct btrfs_fs_info *fs_info = root->fs_info;
701 struct btrfs_delayed_item *curr, *next;
702 int free_space;
703 int total_data_size = 0, total_size = 0;
704 struct extent_buffer *leaf;
705 char *data_ptr;
706 struct btrfs_key *keys;
707 u32 *data_size;
708 struct list_head head;
709 int slot;
710 int nitems;
711 int i;
712 int ret = 0;
713
714 BUG_ON(!path->nodes[0]);
715
716 leaf = path->nodes[0];
717 free_space = btrfs_leaf_free_space(fs_info, leaf);
718 INIT_LIST_HEAD(&head);
719
720 next = item;
721 nitems = 0;
722
723 /*
724 * count the number of the continuous items that we can insert in batch
725 */
726 while (total_size + next->data_len + sizeof(struct btrfs_item) <=
727 free_space) {
728 total_data_size += next->data_len;
729 total_size += next->data_len + sizeof(struct btrfs_item);
730 list_add_tail(&next->tree_list, &head);
731 nitems++;
732
733 curr = next;
734 next = __btrfs_next_delayed_item(curr);
735 if (!next)
736 break;
737
738 if (!btrfs_is_continuous_delayed_item(curr, next))
739 break;
740 }
741
742 if (!nitems) {
743 ret = 0;
744 goto out;
745 }
746
747 /*
748 * we need allocate some memory space, but it might cause the task
749 * to sleep, so we set all locked nodes in the path to blocking locks
750 * first.
751 */
752 btrfs_set_path_blocking(path);
753
754 keys = kmalloc_array(nitems, sizeof(struct btrfs_key), GFP_NOFS);
755 if (!keys) {
756 ret = -ENOMEM;
757 goto out;
758 }
759
760 data_size = kmalloc_array(nitems, sizeof(u32), GFP_NOFS);
761 if (!data_size) {
762 ret = -ENOMEM;
763 goto error;
764 }
765
766 /* get keys of all the delayed items */
767 i = 0;
768 list_for_each_entry(next, &head, tree_list) {
769 keys[i] = next->key;
770 data_size[i] = next->data_len;
771 i++;
772 }
773
774 /* reset all the locked nodes in the patch to spinning locks. */
775 btrfs_clear_path_blocking(path, NULL, 0);
776
777 /* insert the keys of the items */
778 setup_items_for_insert(root, path, keys, data_size,
779 total_data_size, total_size, nitems);
780
781 /* insert the dir index items */
782 slot = path->slots[0];
783 list_for_each_entry_safe(curr, next, &head, tree_list) {
784 data_ptr = btrfs_item_ptr(leaf, slot, char);
785 write_extent_buffer(leaf, &curr->data,
786 (unsigned long)data_ptr,
787 curr->data_len);
788 slot++;
789
790 btrfs_delayed_item_release_metadata(fs_info, curr);
791
792 list_del(&curr->tree_list);
793 btrfs_release_delayed_item(curr);
794 }
795
796error:
797 kfree(data_size);
798 kfree(keys);
799out:
800 return ret;
801}
802
803/*
804 * This helper can just do simple insertion that needn't extend item for new
805 * data, such as directory name index insertion, inode insertion.
806 */
807static int btrfs_insert_delayed_item(struct btrfs_trans_handle *trans,
808 struct btrfs_root *root,
809 struct btrfs_path *path,
810 struct btrfs_delayed_item *delayed_item)
811{
812 struct btrfs_fs_info *fs_info = root->fs_info;
813 struct extent_buffer *leaf;
814 char *ptr;
815 int ret;
816
817 ret = btrfs_insert_empty_item(trans, root, path, &delayed_item->key,
818 delayed_item->data_len);
819 if (ret < 0 && ret != -EEXIST)
820 return ret;
821
822 leaf = path->nodes[0];
823
824 ptr = btrfs_item_ptr(leaf, path->slots[0], char);
825
826 write_extent_buffer(leaf, delayed_item->data, (unsigned long)ptr,
827 delayed_item->data_len);
828 btrfs_mark_buffer_dirty(leaf);
829
830 btrfs_delayed_item_release_metadata(fs_info, delayed_item);
831 return 0;
832}
833
834/*
835 * we insert an item first, then if there are some continuous items, we try
836 * to insert those items into the same leaf.
837 */
838static int btrfs_insert_delayed_items(struct btrfs_trans_handle *trans,
839 struct btrfs_path *path,
840 struct btrfs_root *root,
841 struct btrfs_delayed_node *node)
842{
843 struct btrfs_delayed_item *curr, *prev;
844 int ret = 0;
845
846do_again:
847 mutex_lock(&node->mutex);
848 curr = __btrfs_first_delayed_insertion_item(node);
849 if (!curr)
850 goto insert_end;
851
852 ret = btrfs_insert_delayed_item(trans, root, path, curr);
853 if (ret < 0) {
854 btrfs_release_path(path);
855 goto insert_end;
856 }
857
858 prev = curr;
859 curr = __btrfs_next_delayed_item(prev);
860 if (curr && btrfs_is_continuous_delayed_item(prev, curr)) {
861 /* insert the continuous items into the same leaf */
862 path->slots[0]++;
863 btrfs_batch_insert_items(root, path, curr);
864 }
865 btrfs_release_delayed_item(prev);
866 btrfs_mark_buffer_dirty(path->nodes[0]);
867
868 btrfs_release_path(path);
869 mutex_unlock(&node->mutex);
870 goto do_again;
871
872insert_end:
873 mutex_unlock(&node->mutex);
874 return ret;
875}
876
877static int btrfs_batch_delete_items(struct btrfs_trans_handle *trans,
878 struct btrfs_root *root,
879 struct btrfs_path *path,
880 struct btrfs_delayed_item *item)
881{
882 struct btrfs_fs_info *fs_info = root->fs_info;
883 struct btrfs_delayed_item *curr, *next;
884 struct extent_buffer *leaf;
885 struct btrfs_key key;
886 struct list_head head;
887 int nitems, i, last_item;
888 int ret = 0;
889
890 BUG_ON(!path->nodes[0]);
891
892 leaf = path->nodes[0];
893
894 i = path->slots[0];
895 last_item = btrfs_header_nritems(leaf) - 1;
896 if (i > last_item)
897 return -ENOENT; /* FIXME: Is errno suitable? */
898
899 next = item;
900 INIT_LIST_HEAD(&head);
901 btrfs_item_key_to_cpu(leaf, &key, i);
902 nitems = 0;
903 /*
904 * count the number of the dir index items that we can delete in batch
905 */
906 while (btrfs_comp_cpu_keys(&next->key, &key) == 0) {
907 list_add_tail(&next->tree_list, &head);
908 nitems++;
909
910 curr = next;
911 next = __btrfs_next_delayed_item(curr);
912 if (!next)
913 break;
914
915 if (!btrfs_is_continuous_delayed_item(curr, next))
916 break;
917
918 i++;
919 if (i > last_item)
920 break;
921 btrfs_item_key_to_cpu(leaf, &key, i);
922 }
923
924 if (!nitems)
925 return 0;
926
927 ret = btrfs_del_items(trans, root, path, path->slots[0], nitems);
928 if (ret)
929 goto out;
930
931 list_for_each_entry_safe(curr, next, &head, tree_list) {
932 btrfs_delayed_item_release_metadata(fs_info, curr);
933 list_del(&curr->tree_list);
934 btrfs_release_delayed_item(curr);
935 }
936
937out:
938 return ret;
939}
940
941static int btrfs_delete_delayed_items(struct btrfs_trans_handle *trans,
942 struct btrfs_path *path,
943 struct btrfs_root *root,
944 struct btrfs_delayed_node *node)
945{
946 struct btrfs_delayed_item *curr, *prev;
947 int ret = 0;
948
949do_again:
950 mutex_lock(&node->mutex);
951 curr = __btrfs_first_delayed_deletion_item(node);
952 if (!curr)
953 goto delete_fail;
954
955 ret = btrfs_search_slot(trans, root, &curr->key, path, -1, 1);
956 if (ret < 0)
957 goto delete_fail;
958 else if (ret > 0) {
959 /*
960 * can't find the item which the node points to, so this node
961 * is invalid, just drop it.
962 */
963 prev = curr;
964 curr = __btrfs_next_delayed_item(prev);
965 btrfs_release_delayed_item(prev);
966 ret = 0;
967 btrfs_release_path(path);
968 if (curr) {
969 mutex_unlock(&node->mutex);
970 goto do_again;
971 } else
972 goto delete_fail;
973 }
974
975 btrfs_batch_delete_items(trans, root, path, curr);
976 btrfs_release_path(path);
977 mutex_unlock(&node->mutex);
978 goto do_again;
979
980delete_fail:
981 btrfs_release_path(path);
982 mutex_unlock(&node->mutex);
983 return ret;
984}
985
986static void btrfs_release_delayed_inode(struct btrfs_delayed_node *delayed_node)
987{
988 struct btrfs_delayed_root *delayed_root;
989
990 if (delayed_node &&
991 test_bit(BTRFS_DELAYED_NODE_INODE_DIRTY, &delayed_node->flags)) {
992 BUG_ON(!delayed_node->root);
993 clear_bit(BTRFS_DELAYED_NODE_INODE_DIRTY, &delayed_node->flags);
994 delayed_node->count--;
995
996 delayed_root = delayed_node->root->fs_info->delayed_root;
997 finish_one_item(delayed_root);
998 }
999}
1000
1001static void btrfs_release_delayed_iref(struct btrfs_delayed_node *delayed_node)
1002{
1003 struct btrfs_delayed_root *delayed_root;
1004
1005 ASSERT(delayed_node->root);
1006 clear_bit(BTRFS_DELAYED_NODE_DEL_IREF, &delayed_node->flags);
1007 delayed_node->count--;
1008
1009 delayed_root = delayed_node->root->fs_info->delayed_root;
1010 finish_one_item(delayed_root);
1011}
1012
1013static int __btrfs_update_delayed_inode(struct btrfs_trans_handle *trans,
1014 struct btrfs_root *root,
1015 struct btrfs_path *path,
1016 struct btrfs_delayed_node *node)
1017{
1018 struct btrfs_fs_info *fs_info = root->fs_info;
1019 struct btrfs_key key;
1020 struct btrfs_inode_item *inode_item;
1021 struct extent_buffer *leaf;
1022 int mod;
1023 int ret;
1024
1025 key.objectid = node->inode_id;
1026 key.type = BTRFS_INODE_ITEM_KEY;
1027 key.offset = 0;
1028
1029 if (test_bit(BTRFS_DELAYED_NODE_DEL_IREF, &node->flags))
1030 mod = -1;
1031 else
1032 mod = 1;
1033
1034 ret = btrfs_lookup_inode(trans, root, path, &key, mod);
1035 if (ret > 0) {
1036 btrfs_release_path(path);
1037 return -ENOENT;
1038 } else if (ret < 0) {
1039 return ret;
1040 }
1041
1042 leaf = path->nodes[0];
1043 inode_item = btrfs_item_ptr(leaf, path->slots[0],
1044 struct btrfs_inode_item);
1045 write_extent_buffer(leaf, &node->inode_item, (unsigned long)inode_item,
1046 sizeof(struct btrfs_inode_item));
1047 btrfs_mark_buffer_dirty(leaf);
1048
1049 if (!test_bit(BTRFS_DELAYED_NODE_DEL_IREF, &node->flags))
1050 goto no_iref;
1051
1052 path->slots[0]++;
1053 if (path->slots[0] >= btrfs_header_nritems(leaf))
1054 goto search;
1055again:
1056 btrfs_item_key_to_cpu(leaf, &key, path->slots[0]);
1057 if (key.objectid != node->inode_id)
1058 goto out;
1059
1060 if (key.type != BTRFS_INODE_REF_KEY &&
1061 key.type != BTRFS_INODE_EXTREF_KEY)
1062 goto out;
1063
1064 /*
1065 * Delayed iref deletion is for the inode who has only one link,
1066 * so there is only one iref. The case that several irefs are
1067 * in the same item doesn't exist.
1068 */
1069 btrfs_del_item(trans, root, path);
1070out:
1071 btrfs_release_delayed_iref(node);
1072no_iref:
1073 btrfs_release_path(path);
1074err_out:
1075 btrfs_delayed_inode_release_metadata(fs_info, node);
1076 btrfs_release_delayed_inode(node);
1077
1078 return ret;
1079
1080search:
1081 btrfs_release_path(path);
1082
1083 key.type = BTRFS_INODE_EXTREF_KEY;
1084 key.offset = -1;
1085 ret = btrfs_search_slot(trans, root, &key, path, -1, 1);
1086 if (ret < 0)
1087 goto err_out;
1088 ASSERT(ret);
1089
1090 ret = 0;
1091 leaf = path->nodes[0];
1092 path->slots[0]--;
1093 goto again;
1094}
1095
1096static inline int btrfs_update_delayed_inode(struct btrfs_trans_handle *trans,
1097 struct btrfs_root *root,
1098 struct btrfs_path *path,
1099 struct btrfs_delayed_node *node)
1100{
1101 int ret;
1102
1103 mutex_lock(&node->mutex);
1104 if (!test_bit(BTRFS_DELAYED_NODE_INODE_DIRTY, &node->flags)) {
1105 mutex_unlock(&node->mutex);
1106 return 0;
1107 }
1108
1109 ret = __btrfs_update_delayed_inode(trans, root, path, node);
1110 mutex_unlock(&node->mutex);
1111 return ret;
1112}
1113
1114static inline int
1115__btrfs_commit_inode_delayed_items(struct btrfs_trans_handle *trans,
1116 struct btrfs_path *path,
1117 struct btrfs_delayed_node *node)
1118{
1119 int ret;
1120
1121 ret = btrfs_insert_delayed_items(trans, path, node->root, node);
1122 if (ret)
1123 return ret;
1124
1125 ret = btrfs_delete_delayed_items(trans, path, node->root, node);
1126 if (ret)
1127 return ret;
1128
1129 ret = btrfs_update_delayed_inode(trans, node->root, path, node);
1130 return ret;
1131}
1132
1133/*
1134 * Called when committing the transaction.
1135 * Returns 0 on success.
1136 * Returns < 0 on error and returns with an aborted transaction with any
1137 * outstanding delayed items cleaned up.
1138 */
1139static int __btrfs_run_delayed_items(struct btrfs_trans_handle *trans,
1140 struct btrfs_fs_info *fs_info, int nr)
1141{
1142 struct btrfs_delayed_root *delayed_root;
1143 struct btrfs_delayed_node *curr_node, *prev_node;
1144 struct btrfs_path *path;
1145 struct btrfs_block_rsv *block_rsv;
1146 int ret = 0;
1147 bool count = (nr > 0);
1148
1149 if (trans->aborted)
1150 return -EIO;
1151
1152 path = btrfs_alloc_path();
1153 if (!path)
1154 return -ENOMEM;
1155 path->leave_spinning = 1;
1156
1157 block_rsv = trans->block_rsv;
1158 trans->block_rsv = &fs_info->delayed_block_rsv;
1159
1160 delayed_root = fs_info->delayed_root;
1161
1162 curr_node = btrfs_first_delayed_node(delayed_root);
1163 while (curr_node && (!count || (count && nr--))) {
1164 ret = __btrfs_commit_inode_delayed_items(trans, path,
1165 curr_node);
1166 if (ret) {
1167 btrfs_release_delayed_node(curr_node);
1168 curr_node = NULL;
1169 btrfs_abort_transaction(trans, ret);
1170 break;
1171 }
1172
1173 prev_node = curr_node;
1174 curr_node = btrfs_next_delayed_node(curr_node);
1175 btrfs_release_delayed_node(prev_node);
1176 }
1177
1178 if (curr_node)
1179 btrfs_release_delayed_node(curr_node);
1180 btrfs_free_path(path);
1181 trans->block_rsv = block_rsv;
1182
1183 return ret;
1184}
1185
1186int btrfs_run_delayed_items(struct btrfs_trans_handle *trans,
1187 struct btrfs_fs_info *fs_info)
1188{
1189 return __btrfs_run_delayed_items(trans, fs_info, -1);
1190}
1191
1192int btrfs_run_delayed_items_nr(struct btrfs_trans_handle *trans,
1193 struct btrfs_fs_info *fs_info, int nr)
1194{
1195 return __btrfs_run_delayed_items(trans, fs_info, nr);
1196}
1197
1198int btrfs_commit_inode_delayed_items(struct btrfs_trans_handle *trans,
1199 struct inode *inode)
1200{
1201 struct btrfs_delayed_node *delayed_node = btrfs_get_delayed_node(inode);
1202 struct btrfs_path *path;
1203 struct btrfs_block_rsv *block_rsv;
1204 int ret;
1205
1206 if (!delayed_node)
1207 return 0;
1208
1209 mutex_lock(&delayed_node->mutex);
1210 if (!delayed_node->count) {
1211 mutex_unlock(&delayed_node->mutex);
1212 btrfs_release_delayed_node(delayed_node);
1213 return 0;
1214 }
1215 mutex_unlock(&delayed_node->mutex);
1216
1217 path = btrfs_alloc_path();
1218 if (!path) {
1219 btrfs_release_delayed_node(delayed_node);
1220 return -ENOMEM;
1221 }
1222 path->leave_spinning = 1;
1223
1224 block_rsv = trans->block_rsv;
1225 trans->block_rsv = &delayed_node->root->fs_info->delayed_block_rsv;
1226
1227 ret = __btrfs_commit_inode_delayed_items(trans, path, delayed_node);
1228
1229 btrfs_release_delayed_node(delayed_node);
1230 btrfs_free_path(path);
1231 trans->block_rsv = block_rsv;
1232
1233 return ret;
1234}
1235
1236int btrfs_commit_inode_delayed_inode(struct inode *inode)
1237{
1238 struct btrfs_fs_info *fs_info = btrfs_sb(inode->i_sb);
1239 struct btrfs_trans_handle *trans;
1240 struct btrfs_delayed_node *delayed_node = btrfs_get_delayed_node(inode);
1241 struct btrfs_path *path;
1242 struct btrfs_block_rsv *block_rsv;
1243 int ret;
1244
1245 if (!delayed_node)
1246 return 0;
1247
1248 mutex_lock(&delayed_node->mutex);
1249 if (!test_bit(BTRFS_DELAYED_NODE_INODE_DIRTY, &delayed_node->flags)) {
1250 mutex_unlock(&delayed_node->mutex);
1251 btrfs_release_delayed_node(delayed_node);
1252 return 0;
1253 }
1254 mutex_unlock(&delayed_node->mutex);
1255
1256 trans = btrfs_join_transaction(delayed_node->root);
1257 if (IS_ERR(trans)) {
1258 ret = PTR_ERR(trans);
1259 goto out;
1260 }
1261
1262 path = btrfs_alloc_path();
1263 if (!path) {
1264 ret = -ENOMEM;
1265 goto trans_out;
1266 }
1267 path->leave_spinning = 1;
1268
1269 block_rsv = trans->block_rsv;
1270 trans->block_rsv = &fs_info->delayed_block_rsv;
1271
1272 mutex_lock(&delayed_node->mutex);
1273 if (test_bit(BTRFS_DELAYED_NODE_INODE_DIRTY, &delayed_node->flags))
1274 ret = __btrfs_update_delayed_inode(trans, delayed_node->root,
1275 path, delayed_node);
1276 else
1277 ret = 0;
1278 mutex_unlock(&delayed_node->mutex);
1279
1280 btrfs_free_path(path);
1281 trans->block_rsv = block_rsv;
1282trans_out:
1283 btrfs_end_transaction(trans);
1284 btrfs_btree_balance_dirty(fs_info);
1285out:
1286 btrfs_release_delayed_node(delayed_node);
1287
1288 return ret;
1289}
1290
1291void btrfs_remove_delayed_node(struct inode *inode)
1292{
1293 struct btrfs_delayed_node *delayed_node;
1294
1295 delayed_node = ACCESS_ONCE(BTRFS_I(inode)->delayed_node);
1296 if (!delayed_node)
1297 return;
1298
1299 BTRFS_I(inode)->delayed_node = NULL;
1300 btrfs_release_delayed_node(delayed_node);
1301}
1302
1303struct btrfs_async_delayed_work {
1304 struct btrfs_delayed_root *delayed_root;
1305 int nr;
1306 struct btrfs_work work;
1307};
1308
1309static void btrfs_async_run_delayed_root(struct btrfs_work *work)
1310{
1311 struct btrfs_async_delayed_work *async_work;
1312 struct btrfs_delayed_root *delayed_root;
1313 struct btrfs_trans_handle *trans;
1314 struct btrfs_path *path;
1315 struct btrfs_delayed_node *delayed_node = NULL;
1316 struct btrfs_root *root;
1317 struct btrfs_block_rsv *block_rsv;
1318 int total_done = 0;
1319
1320 async_work = container_of(work, struct btrfs_async_delayed_work, work);
1321 delayed_root = async_work->delayed_root;
1322
1323 path = btrfs_alloc_path();
1324 if (!path)
1325 goto out;
1326
1327again:
1328 if (atomic_read(&delayed_root->items) < BTRFS_DELAYED_BACKGROUND / 2)
1329 goto free_path;
1330
1331 delayed_node = btrfs_first_prepared_delayed_node(delayed_root);
1332 if (!delayed_node)
1333 goto free_path;
1334
1335 path->leave_spinning = 1;
1336 root = delayed_node->root;
1337
1338 trans = btrfs_join_transaction(root);
1339 if (IS_ERR(trans))
1340 goto release_path;
1341
1342 block_rsv = trans->block_rsv;
1343 trans->block_rsv = &root->fs_info->delayed_block_rsv;
1344
1345 __btrfs_commit_inode_delayed_items(trans, path, delayed_node);
1346
1347 trans->block_rsv = block_rsv;
1348 btrfs_end_transaction(trans);
1349 btrfs_btree_balance_dirty_nodelay(root->fs_info);
1350
1351release_path:
1352 btrfs_release_path(path);
1353 total_done++;
1354
1355 btrfs_release_prepared_delayed_node(delayed_node);
1356 if ((async_work->nr == 0 && total_done < BTRFS_DELAYED_WRITEBACK) ||
1357 total_done < async_work->nr)
1358 goto again;
1359
1360free_path:
1361 btrfs_free_path(path);
1362out:
1363 wake_up(&delayed_root->wait);
1364 kfree(async_work);
1365}
1366
1367
1368static int btrfs_wq_run_delayed_node(struct btrfs_delayed_root *delayed_root,
1369 struct btrfs_fs_info *fs_info, int nr)
1370{
1371 struct btrfs_async_delayed_work *async_work;
1372
1373 if (atomic_read(&delayed_root->items) < BTRFS_DELAYED_BACKGROUND ||
1374 btrfs_workqueue_normal_congested(fs_info->delayed_workers))
1375 return 0;
1376
1377 async_work = kmalloc(sizeof(*async_work), GFP_NOFS);
1378 if (!async_work)
1379 return -ENOMEM;
1380
1381 async_work->delayed_root = delayed_root;
1382 btrfs_init_work(&async_work->work, btrfs_delayed_meta_helper,
1383 btrfs_async_run_delayed_root, NULL, NULL);
1384 async_work->nr = nr;
1385
1386 btrfs_queue_work(fs_info->delayed_workers, &async_work->work);
1387 return 0;
1388}
1389
1390void btrfs_assert_delayed_root_empty(struct btrfs_fs_info *fs_info)
1391{
1392 WARN_ON(btrfs_first_delayed_node(fs_info->delayed_root));
1393}
1394
1395static int could_end_wait(struct btrfs_delayed_root *delayed_root, int seq)
1396{
1397 int val = atomic_read(&delayed_root->items_seq);
1398
1399 if (val < seq || val >= seq + BTRFS_DELAYED_BATCH)
1400 return 1;
1401
1402 if (atomic_read(&delayed_root->items) < BTRFS_DELAYED_BACKGROUND)
1403 return 1;
1404
1405 return 0;
1406}
1407
1408void btrfs_balance_delayed_items(struct btrfs_fs_info *fs_info)
1409{
1410 struct btrfs_delayed_root *delayed_root = fs_info->delayed_root;
1411
1412 if (atomic_read(&delayed_root->items) < BTRFS_DELAYED_BACKGROUND)
1413 return;
1414
1415 if (atomic_read(&delayed_root->items) >= BTRFS_DELAYED_WRITEBACK) {
1416 int seq;
1417 int ret;
1418
1419 seq = atomic_read(&delayed_root->items_seq);
1420
1421 ret = btrfs_wq_run_delayed_node(delayed_root, fs_info, 0);
1422 if (ret)
1423 return;
1424
1425 wait_event_interruptible(delayed_root->wait,
1426 could_end_wait(delayed_root, seq));
1427 return;
1428 }
1429
1430 btrfs_wq_run_delayed_node(delayed_root, fs_info, BTRFS_DELAYED_BATCH);
1431}
1432
1433/* Will return 0 or -ENOMEM */
1434int btrfs_insert_delayed_dir_index(struct btrfs_trans_handle *trans,
1435 struct btrfs_fs_info *fs_info,
1436 const char *name, int name_len,
1437 struct inode *dir,
1438 struct btrfs_disk_key *disk_key, u8 type,
1439 u64 index)
1440{
1441 struct btrfs_delayed_node *delayed_node;
1442 struct btrfs_delayed_item *delayed_item;
1443 struct btrfs_dir_item *dir_item;
1444 int ret;
1445
1446 delayed_node = btrfs_get_or_create_delayed_node(dir);
1447 if (IS_ERR(delayed_node))
1448 return PTR_ERR(delayed_node);
1449
1450 delayed_item = btrfs_alloc_delayed_item(sizeof(*dir_item) + name_len);
1451 if (!delayed_item) {
1452 ret = -ENOMEM;
1453 goto release_node;
1454 }
1455
1456 delayed_item->key.objectid = btrfs_ino(dir);
1457 delayed_item->key.type = BTRFS_DIR_INDEX_KEY;
1458 delayed_item->key.offset = index;
1459
1460 dir_item = (struct btrfs_dir_item *)delayed_item->data;
1461 dir_item->location = *disk_key;
1462 btrfs_set_stack_dir_transid(dir_item, trans->transid);
1463 btrfs_set_stack_dir_data_len(dir_item, 0);
1464 btrfs_set_stack_dir_name_len(dir_item, name_len);
1465 btrfs_set_stack_dir_type(dir_item, type);
1466 memcpy((char *)(dir_item + 1), name, name_len);
1467
1468 ret = btrfs_delayed_item_reserve_metadata(trans, fs_info, delayed_item);
1469 /*
1470 * we have reserved enough space when we start a new transaction,
1471 * so reserving metadata failure is impossible
1472 */
1473 BUG_ON(ret);
1474
1475
1476 mutex_lock(&delayed_node->mutex);
1477 ret = __btrfs_add_delayed_insertion_item(delayed_node, delayed_item);
1478 if (unlikely(ret)) {
1479 btrfs_err(fs_info,
1480 "err add delayed dir index item(name: %.*s) into the insertion tree of the delayed node(root id: %llu, inode id: %llu, errno: %d)",
1481 name_len, name, delayed_node->root->objectid,
1482 delayed_node->inode_id, ret);
1483 BUG();
1484 }
1485 mutex_unlock(&delayed_node->mutex);
1486
1487release_node:
1488 btrfs_release_delayed_node(delayed_node);
1489 return ret;
1490}
1491
1492static int btrfs_delete_delayed_insertion_item(struct btrfs_fs_info *fs_info,
1493 struct btrfs_delayed_node *node,
1494 struct btrfs_key *key)
1495{
1496 struct btrfs_delayed_item *item;
1497
1498 mutex_lock(&node->mutex);
1499 item = __btrfs_lookup_delayed_insertion_item(node, key);
1500 if (!item) {
1501 mutex_unlock(&node->mutex);
1502 return 1;
1503 }
1504
1505 btrfs_delayed_item_release_metadata(fs_info, item);
1506 btrfs_release_delayed_item(item);
1507 mutex_unlock(&node->mutex);
1508 return 0;
1509}
1510
1511int btrfs_delete_delayed_dir_index(struct btrfs_trans_handle *trans,
1512 struct btrfs_fs_info *fs_info,
1513 struct inode *dir, u64 index)
1514{
1515 struct btrfs_delayed_node *node;
1516 struct btrfs_delayed_item *item;
1517 struct btrfs_key item_key;
1518 int ret;
1519
1520 node = btrfs_get_or_create_delayed_node(dir);
1521 if (IS_ERR(node))
1522 return PTR_ERR(node);
1523
1524 item_key.objectid = btrfs_ino(dir);
1525 item_key.type = BTRFS_DIR_INDEX_KEY;
1526 item_key.offset = index;
1527
1528 ret = btrfs_delete_delayed_insertion_item(fs_info, node, &item_key);
1529 if (!ret)
1530 goto end;
1531
1532 item = btrfs_alloc_delayed_item(0);
1533 if (!item) {
1534 ret = -ENOMEM;
1535 goto end;
1536 }
1537
1538 item->key = item_key;
1539
1540 ret = btrfs_delayed_item_reserve_metadata(trans, fs_info, item);
1541 /*
1542 * we have reserved enough space when we start a new transaction,
1543 * so reserving metadata failure is impossible.
1544 */
1545 BUG_ON(ret);
1546
1547 mutex_lock(&node->mutex);
1548 ret = __btrfs_add_delayed_deletion_item(node, item);
1549 if (unlikely(ret)) {
1550 btrfs_err(fs_info,
1551 "err add delayed dir index item(index: %llu) into the deletion tree of the delayed node(root id: %llu, inode id: %llu, errno: %d)",
1552 index, node->root->objectid, node->inode_id, ret);
1553 BUG();
1554 }
1555 mutex_unlock(&node->mutex);
1556end:
1557 btrfs_release_delayed_node(node);
1558 return ret;
1559}
1560
1561int btrfs_inode_delayed_dir_index_count(struct inode *inode)
1562{
1563 struct btrfs_delayed_node *delayed_node = btrfs_get_delayed_node(inode);
1564
1565 if (!delayed_node)
1566 return -ENOENT;
1567
1568 /*
1569 * Since we have held i_mutex of this directory, it is impossible that
1570 * a new directory index is added into the delayed node and index_cnt
1571 * is updated now. So we needn't lock the delayed node.
1572 */
1573 if (!delayed_node->index_cnt) {
1574 btrfs_release_delayed_node(delayed_node);
1575 return -EINVAL;
1576 }
1577
1578 BTRFS_I(inode)->index_cnt = delayed_node->index_cnt;
1579 btrfs_release_delayed_node(delayed_node);
1580 return 0;
1581}
1582
1583bool btrfs_readdir_get_delayed_items(struct inode *inode,
1584 struct list_head *ins_list,
1585 struct list_head *del_list)
1586{
1587 struct btrfs_delayed_node *delayed_node;
1588 struct btrfs_delayed_item *item;
1589
1590 delayed_node = btrfs_get_delayed_node(inode);
1591 if (!delayed_node)
1592 return false;
1593
1594 /*
1595 * We can only do one readdir with delayed items at a time because of
1596 * item->readdir_list.
1597 */
1598 inode_unlock_shared(inode);
1599 inode_lock(inode);
1600
1601 mutex_lock(&delayed_node->mutex);
1602 item = __btrfs_first_delayed_insertion_item(delayed_node);
1603 while (item) {
1604 atomic_inc(&item->refs);
1605 list_add_tail(&item->readdir_list, ins_list);
1606 item = __btrfs_next_delayed_item(item);
1607 }
1608
1609 item = __btrfs_first_delayed_deletion_item(delayed_node);
1610 while (item) {
1611 atomic_inc(&item->refs);
1612 list_add_tail(&item->readdir_list, del_list);
1613 item = __btrfs_next_delayed_item(item);
1614 }
1615 mutex_unlock(&delayed_node->mutex);
1616 /*
1617 * This delayed node is still cached in the btrfs inode, so refs
1618 * must be > 1 now, and we needn't check it is going to be freed
1619 * or not.
1620 *
1621 * Besides that, this function is used to read dir, we do not
1622 * insert/delete delayed items in this period. So we also needn't
1623 * requeue or dequeue this delayed node.
1624 */
1625 atomic_dec(&delayed_node->refs);
1626
1627 return true;
1628}
1629
1630void btrfs_readdir_put_delayed_items(struct inode *inode,
1631 struct list_head *ins_list,
1632 struct list_head *del_list)
1633{
1634 struct btrfs_delayed_item *curr, *next;
1635
1636 list_for_each_entry_safe(curr, next, ins_list, readdir_list) {
1637 list_del(&curr->readdir_list);
1638 if (atomic_dec_and_test(&curr->refs))
1639 kfree(curr);
1640 }
1641
1642 list_for_each_entry_safe(curr, next, del_list, readdir_list) {
1643 list_del(&curr->readdir_list);
1644 if (atomic_dec_and_test(&curr->refs))
1645 kfree(curr);
1646 }
1647
1648 /*
1649 * The VFS is going to do up_read(), so we need to downgrade back to a
1650 * read lock.
1651 */
1652 downgrade_write(&inode->i_rwsem);
1653}
1654
1655int btrfs_should_delete_dir_index(struct list_head *del_list,
1656 u64 index)
1657{
1658 struct btrfs_delayed_item *curr, *next;
1659 int ret;
1660
1661 if (list_empty(del_list))
1662 return 0;
1663
1664 list_for_each_entry_safe(curr, next, del_list, readdir_list) {
1665 if (curr->key.offset > index)
1666 break;
1667
1668 list_del(&curr->readdir_list);
1669 ret = (curr->key.offset == index);
1670
1671 if (atomic_dec_and_test(&curr->refs))
1672 kfree(curr);
1673
1674 if (ret)
1675 return 1;
1676 else
1677 continue;
1678 }
1679 return 0;
1680}
1681
1682/*
1683 * btrfs_readdir_delayed_dir_index - read dir info stored in the delayed tree
1684 *
1685 */
1686int btrfs_readdir_delayed_dir_index(struct dir_context *ctx,
1687 struct list_head *ins_list)
1688{
1689 struct btrfs_dir_item *di;
1690 struct btrfs_delayed_item *curr, *next;
1691 struct btrfs_key location;
1692 char *name;
1693 int name_len;
1694 int over = 0;
1695 unsigned char d_type;
1696
1697 if (list_empty(ins_list))
1698 return 0;
1699
1700 /*
1701 * Changing the data of the delayed item is impossible. So
1702 * we needn't lock them. And we have held i_mutex of the
1703 * directory, nobody can delete any directory indexes now.
1704 */
1705 list_for_each_entry_safe(curr, next, ins_list, readdir_list) {
1706 list_del(&curr->readdir_list);
1707
1708 if (curr->key.offset < ctx->pos) {
1709 if (atomic_dec_and_test(&curr->refs))
1710 kfree(curr);
1711 continue;
1712 }
1713
1714 ctx->pos = curr->key.offset;
1715
1716 di = (struct btrfs_dir_item *)curr->data;
1717 name = (char *)(di + 1);
1718 name_len = btrfs_stack_dir_name_len(di);
1719
1720 d_type = btrfs_filetype_table[di->type];
1721 btrfs_disk_key_to_cpu(&location, &di->location);
1722
1723 over = !dir_emit(ctx, name, name_len,
1724 location.objectid, d_type);
1725
1726 if (atomic_dec_and_test(&curr->refs))
1727 kfree(curr);
1728
1729 if (over)
1730 return 1;
1731 }
1732 return 0;
1733}
1734
1735static void fill_stack_inode_item(struct btrfs_trans_handle *trans,
1736 struct btrfs_inode_item *inode_item,
1737 struct inode *inode)
1738{
1739 btrfs_set_stack_inode_uid(inode_item, i_uid_read(inode));
1740 btrfs_set_stack_inode_gid(inode_item, i_gid_read(inode));
1741 btrfs_set_stack_inode_size(inode_item, BTRFS_I(inode)->disk_i_size);
1742 btrfs_set_stack_inode_mode(inode_item, inode->i_mode);
1743 btrfs_set_stack_inode_nlink(inode_item, inode->i_nlink);
1744 btrfs_set_stack_inode_nbytes(inode_item, inode_get_bytes(inode));
1745 btrfs_set_stack_inode_generation(inode_item,
1746 BTRFS_I(inode)->generation);
1747 btrfs_set_stack_inode_sequence(inode_item, inode->i_version);
1748 btrfs_set_stack_inode_transid(inode_item, trans->transid);
1749 btrfs_set_stack_inode_rdev(inode_item, inode->i_rdev);
1750 btrfs_set_stack_inode_flags(inode_item, BTRFS_I(inode)->flags);
1751 btrfs_set_stack_inode_block_group(inode_item, 0);
1752
1753 btrfs_set_stack_timespec_sec(&inode_item->atime,
1754 inode->i_atime.tv_sec);
1755 btrfs_set_stack_timespec_nsec(&inode_item->atime,
1756 inode->i_atime.tv_nsec);
1757
1758 btrfs_set_stack_timespec_sec(&inode_item->mtime,
1759 inode->i_mtime.tv_sec);
1760 btrfs_set_stack_timespec_nsec(&inode_item->mtime,
1761 inode->i_mtime.tv_nsec);
1762
1763 btrfs_set_stack_timespec_sec(&inode_item->ctime,
1764 inode->i_ctime.tv_sec);
1765 btrfs_set_stack_timespec_nsec(&inode_item->ctime,
1766 inode->i_ctime.tv_nsec);
1767
1768 btrfs_set_stack_timespec_sec(&inode_item->otime,
1769 BTRFS_I(inode)->i_otime.tv_sec);
1770 btrfs_set_stack_timespec_nsec(&inode_item->otime,
1771 BTRFS_I(inode)->i_otime.tv_nsec);
1772}
1773
1774int btrfs_fill_inode(struct inode *inode, u32 *rdev)
1775{
1776 struct btrfs_delayed_node *delayed_node;
1777 struct btrfs_inode_item *inode_item;
1778
1779 delayed_node = btrfs_get_delayed_node(inode);
1780 if (!delayed_node)
1781 return -ENOENT;
1782
1783 mutex_lock(&delayed_node->mutex);
1784 if (!test_bit(BTRFS_DELAYED_NODE_INODE_DIRTY, &delayed_node->flags)) {
1785 mutex_unlock(&delayed_node->mutex);
1786 btrfs_release_delayed_node(delayed_node);
1787 return -ENOENT;
1788 }
1789
1790 inode_item = &delayed_node->inode_item;
1791
1792 i_uid_write(inode, btrfs_stack_inode_uid(inode_item));
1793 i_gid_write(inode, btrfs_stack_inode_gid(inode_item));
1794 btrfs_i_size_write(inode, btrfs_stack_inode_size(inode_item));
1795 inode->i_mode = btrfs_stack_inode_mode(inode_item);
1796 set_nlink(inode, btrfs_stack_inode_nlink(inode_item));
1797 inode_set_bytes(inode, btrfs_stack_inode_nbytes(inode_item));
1798 BTRFS_I(inode)->generation = btrfs_stack_inode_generation(inode_item);
1799 BTRFS_I(inode)->last_trans = btrfs_stack_inode_transid(inode_item);
1800
1801 inode->i_version = btrfs_stack_inode_sequence(inode_item);
1802 inode->i_rdev = 0;
1803 *rdev = btrfs_stack_inode_rdev(inode_item);
1804 BTRFS_I(inode)->flags = btrfs_stack_inode_flags(inode_item);
1805
1806 inode->i_atime.tv_sec = btrfs_stack_timespec_sec(&inode_item->atime);
1807 inode->i_atime.tv_nsec = btrfs_stack_timespec_nsec(&inode_item->atime);
1808
1809 inode->i_mtime.tv_sec = btrfs_stack_timespec_sec(&inode_item->mtime);
1810 inode->i_mtime.tv_nsec = btrfs_stack_timespec_nsec(&inode_item->mtime);
1811
1812 inode->i_ctime.tv_sec = btrfs_stack_timespec_sec(&inode_item->ctime);
1813 inode->i_ctime.tv_nsec = btrfs_stack_timespec_nsec(&inode_item->ctime);
1814
1815 BTRFS_I(inode)->i_otime.tv_sec =
1816 btrfs_stack_timespec_sec(&inode_item->otime);
1817 BTRFS_I(inode)->i_otime.tv_nsec =
1818 btrfs_stack_timespec_nsec(&inode_item->otime);
1819
1820 inode->i_generation = BTRFS_I(inode)->generation;
1821 BTRFS_I(inode)->index_cnt = (u64)-1;
1822
1823 mutex_unlock(&delayed_node->mutex);
1824 btrfs_release_delayed_node(delayed_node);
1825 return 0;
1826}
1827
1828int btrfs_delayed_update_inode(struct btrfs_trans_handle *trans,
1829 struct btrfs_root *root, struct inode *inode)
1830{
1831 struct btrfs_delayed_node *delayed_node;
1832 int ret = 0;
1833
1834 delayed_node = btrfs_get_or_create_delayed_node(inode);
1835 if (IS_ERR(delayed_node))
1836 return PTR_ERR(delayed_node);
1837
1838 mutex_lock(&delayed_node->mutex);
1839 if (test_bit(BTRFS_DELAYED_NODE_INODE_DIRTY, &delayed_node->flags)) {
1840 fill_stack_inode_item(trans, &delayed_node->inode_item, inode);
1841 goto release_node;
1842 }
1843
1844 ret = btrfs_delayed_inode_reserve_metadata(trans, root, inode,
1845 delayed_node);
1846 if (ret)
1847 goto release_node;
1848
1849 fill_stack_inode_item(trans, &delayed_node->inode_item, inode);
1850 set_bit(BTRFS_DELAYED_NODE_INODE_DIRTY, &delayed_node->flags);
1851 delayed_node->count++;
1852 atomic_inc(&root->fs_info->delayed_root->items);
1853release_node:
1854 mutex_unlock(&delayed_node->mutex);
1855 btrfs_release_delayed_node(delayed_node);
1856 return ret;
1857}
1858
1859int btrfs_delayed_delete_inode_ref(struct inode *inode)
1860{
1861 struct btrfs_fs_info *fs_info = btrfs_sb(inode->i_sb);
1862 struct btrfs_delayed_node *delayed_node;
1863
1864 /*
1865 * we don't do delayed inode updates during log recovery because it
1866 * leads to enospc problems. This means we also can't do
1867 * delayed inode refs
1868 */
1869 if (test_bit(BTRFS_FS_LOG_RECOVERING, &fs_info->flags))
1870 return -EAGAIN;
1871
1872 delayed_node = btrfs_get_or_create_delayed_node(inode);
1873 if (IS_ERR(delayed_node))
1874 return PTR_ERR(delayed_node);
1875
1876 /*
1877 * We don't reserve space for inode ref deletion is because:
1878 * - We ONLY do async inode ref deletion for the inode who has only
1879 * one link(i_nlink == 1), it means there is only one inode ref.
1880 * And in most case, the inode ref and the inode item are in the
1881 * same leaf, and we will deal with them at the same time.
1882 * Since we are sure we will reserve the space for the inode item,
1883 * it is unnecessary to reserve space for inode ref deletion.
1884 * - If the inode ref and the inode item are not in the same leaf,
1885 * We also needn't worry about enospc problem, because we reserve
1886 * much more space for the inode update than it needs.
1887 * - At the worst, we can steal some space from the global reservation.
1888 * It is very rare.
1889 */
1890 mutex_lock(&delayed_node->mutex);
1891 if (test_bit(BTRFS_DELAYED_NODE_DEL_IREF, &delayed_node->flags))
1892 goto release_node;
1893
1894 set_bit(BTRFS_DELAYED_NODE_DEL_IREF, &delayed_node->flags);
1895 delayed_node->count++;
1896 atomic_inc(&fs_info->delayed_root->items);
1897release_node:
1898 mutex_unlock(&delayed_node->mutex);
1899 btrfs_release_delayed_node(delayed_node);
1900 return 0;
1901}
1902
1903static void __btrfs_kill_delayed_node(struct btrfs_delayed_node *delayed_node)
1904{
1905 struct btrfs_root *root = delayed_node->root;
1906 struct btrfs_fs_info *fs_info = root->fs_info;
1907 struct btrfs_delayed_item *curr_item, *prev_item;
1908
1909 mutex_lock(&delayed_node->mutex);
1910 curr_item = __btrfs_first_delayed_insertion_item(delayed_node);
1911 while (curr_item) {
1912 btrfs_delayed_item_release_metadata(fs_info, curr_item);
1913 prev_item = curr_item;
1914 curr_item = __btrfs_next_delayed_item(prev_item);
1915 btrfs_release_delayed_item(prev_item);
1916 }
1917
1918 curr_item = __btrfs_first_delayed_deletion_item(delayed_node);
1919 while (curr_item) {
1920 btrfs_delayed_item_release_metadata(fs_info, curr_item);
1921 prev_item = curr_item;
1922 curr_item = __btrfs_next_delayed_item(prev_item);
1923 btrfs_release_delayed_item(prev_item);
1924 }
1925
1926 if (test_bit(BTRFS_DELAYED_NODE_DEL_IREF, &delayed_node->flags))
1927 btrfs_release_delayed_iref(delayed_node);
1928
1929 if (test_bit(BTRFS_DELAYED_NODE_INODE_DIRTY, &delayed_node->flags)) {
1930 btrfs_delayed_inode_release_metadata(fs_info, delayed_node);
1931 btrfs_release_delayed_inode(delayed_node);
1932 }
1933 mutex_unlock(&delayed_node->mutex);
1934}
1935
1936void btrfs_kill_delayed_inode_items(struct inode *inode)
1937{
1938 struct btrfs_delayed_node *delayed_node;
1939
1940 delayed_node = btrfs_get_delayed_node(inode);
1941 if (!delayed_node)
1942 return;
1943
1944 __btrfs_kill_delayed_node(delayed_node);
1945 btrfs_release_delayed_node(delayed_node);
1946}
1947
1948void btrfs_kill_all_delayed_nodes(struct btrfs_root *root)
1949{
1950 u64 inode_id = 0;
1951 struct btrfs_delayed_node *delayed_nodes[8];
1952 int i, n;
1953
1954 while (1) {
1955 spin_lock(&root->inode_lock);
1956 n = radix_tree_gang_lookup(&root->delayed_nodes_tree,
1957 (void **)delayed_nodes, inode_id,
1958 ARRAY_SIZE(delayed_nodes));
1959 if (!n) {
1960 spin_unlock(&root->inode_lock);
1961 break;
1962 }
1963
1964 inode_id = delayed_nodes[n - 1]->inode_id + 1;
1965
1966 for (i = 0; i < n; i++)
1967 atomic_inc(&delayed_nodes[i]->refs);
1968 spin_unlock(&root->inode_lock);
1969
1970 for (i = 0; i < n; i++) {
1971 __btrfs_kill_delayed_node(delayed_nodes[i]);
1972 btrfs_release_delayed_node(delayed_nodes[i]);
1973 }
1974 }
1975}
1976
1977void btrfs_destroy_delayed_inodes(struct btrfs_fs_info *fs_info)
1978{
1979 struct btrfs_delayed_node *curr_node, *prev_node;
1980
1981 curr_node = btrfs_first_delayed_node(fs_info->delayed_root);
1982 while (curr_node) {
1983 __btrfs_kill_delayed_node(curr_node);
1984
1985 prev_node = curr_node;
1986 curr_node = btrfs_next_delayed_node(curr_node);
1987 btrfs_release_delayed_node(prev_node);
1988 }
1989}
1990