Linux Audio

Check our new training course

Yocto distribution development and maintenance

Need a Yocto distribution for your embedded project?
Loading...
v3.1
   1/*
   2 * Copyright (C) 2011 Fujitsu.  All rights reserved.
   3 * Written by Miao Xie <miaox@cn.fujitsu.com>
   4 *
   5 * This program is free software; you can redistribute it and/or
   6 * modify it under the terms of the GNU General Public
   7 * License v2 as published by the Free Software Foundation.
   8 *
   9 * This program is distributed in the hope that it will be useful,
  10 * but WITHOUT ANY WARRANTY; without even the implied warranty of
  11 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the GNU
  12 * General Public License for more details.
  13 *
  14 * You should have received a copy of the GNU General Public
  15 * License along with this program; if not, write to the
  16 * Free Software Foundation, Inc., 59 Temple Place - Suite 330,
  17 * Boston, MA 021110-1307, USA.
  18 */
  19
  20#include <linux/slab.h>
  21#include "delayed-inode.h"
  22#include "disk-io.h"
  23#include "transaction.h"
 
  24
  25#define BTRFS_DELAYED_WRITEBACK		400
  26#define BTRFS_DELAYED_BACKGROUND	100
 
  27
  28static struct kmem_cache *delayed_node_cache;
  29
  30int __init btrfs_delayed_inode_init(void)
  31{
  32	delayed_node_cache = kmem_cache_create("delayed_node",
  33					sizeof(struct btrfs_delayed_node),
  34					0,
  35					SLAB_RECLAIM_ACCOUNT | SLAB_MEM_SPREAD,
  36					NULL);
  37	if (!delayed_node_cache)
  38		return -ENOMEM;
  39	return 0;
  40}
  41
  42void btrfs_delayed_inode_exit(void)
  43{
  44	if (delayed_node_cache)
  45		kmem_cache_destroy(delayed_node_cache);
  46}
  47
  48static inline void btrfs_init_delayed_node(
  49				struct btrfs_delayed_node *delayed_node,
  50				struct btrfs_root *root, u64 inode_id)
  51{
  52	delayed_node->root = root;
  53	delayed_node->inode_id = inode_id;
  54	atomic_set(&delayed_node->refs, 0);
  55	delayed_node->count = 0;
  56	delayed_node->in_list = 0;
  57	delayed_node->inode_dirty = 0;
  58	delayed_node->ins_root = RB_ROOT;
  59	delayed_node->del_root = RB_ROOT;
  60	mutex_init(&delayed_node->mutex);
  61	delayed_node->index_cnt = 0;
  62	INIT_LIST_HEAD(&delayed_node->n_list);
  63	INIT_LIST_HEAD(&delayed_node->p_list);
  64	delayed_node->bytes_reserved = 0;
  65}
  66
  67static inline int btrfs_is_continuous_delayed_item(
  68					struct btrfs_delayed_item *item1,
  69					struct btrfs_delayed_item *item2)
  70{
  71	if (item1->key.type == BTRFS_DIR_INDEX_KEY &&
  72	    item1->key.objectid == item2->key.objectid &&
  73	    item1->key.type == item2->key.type &&
  74	    item1->key.offset + 1 == item2->key.offset)
  75		return 1;
  76	return 0;
  77}
  78
  79static inline struct btrfs_delayed_root *btrfs_get_delayed_root(
  80							struct btrfs_root *root)
  81{
  82	return root->fs_info->delayed_root;
  83}
  84
  85static struct btrfs_delayed_node *btrfs_get_delayed_node(struct inode *inode)
  86{
  87	struct btrfs_inode *btrfs_inode = BTRFS_I(inode);
  88	struct btrfs_root *root = btrfs_inode->root;
  89	u64 ino = btrfs_ino(inode);
  90	struct btrfs_delayed_node *node;
  91
  92	node = ACCESS_ONCE(btrfs_inode->delayed_node);
  93	if (node) {
  94		atomic_inc(&node->refs);
  95		return node;
  96	}
  97
  98	spin_lock(&root->inode_lock);
  99	node = radix_tree_lookup(&root->delayed_nodes_tree, ino);
 100	if (node) {
 101		if (btrfs_inode->delayed_node) {
 102			atomic_inc(&node->refs);	/* can be accessed */
 103			BUG_ON(btrfs_inode->delayed_node != node);
 104			spin_unlock(&root->inode_lock);
 105			return node;
 106		}
 107		btrfs_inode->delayed_node = node;
 108		atomic_inc(&node->refs);	/* can be accessed */
 109		atomic_inc(&node->refs);	/* cached in the inode */
 110		spin_unlock(&root->inode_lock);
 111		return node;
 112	}
 113	spin_unlock(&root->inode_lock);
 114
 115	return NULL;
 116}
 117
 
 118static struct btrfs_delayed_node *btrfs_get_or_create_delayed_node(
 119							struct inode *inode)
 120{
 121	struct btrfs_delayed_node *node;
 122	struct btrfs_inode *btrfs_inode = BTRFS_I(inode);
 123	struct btrfs_root *root = btrfs_inode->root;
 124	u64 ino = btrfs_ino(inode);
 125	int ret;
 126
 127again:
 128	node = btrfs_get_delayed_node(inode);
 129	if (node)
 130		return node;
 131
 132	node = kmem_cache_alloc(delayed_node_cache, GFP_NOFS);
 133	if (!node)
 134		return ERR_PTR(-ENOMEM);
 135	btrfs_init_delayed_node(node, root, ino);
 136
 137	atomic_inc(&node->refs);	/* cached in the btrfs inode */
 138	atomic_inc(&node->refs);	/* can be accessed */
 139
 140	ret = radix_tree_preload(GFP_NOFS & ~__GFP_HIGHMEM);
 141	if (ret) {
 142		kmem_cache_free(delayed_node_cache, node);
 143		return ERR_PTR(ret);
 144	}
 145
 146	spin_lock(&root->inode_lock);
 147	ret = radix_tree_insert(&root->delayed_nodes_tree, ino, node);
 148	if (ret == -EEXIST) {
 149		kmem_cache_free(delayed_node_cache, node);
 150		spin_unlock(&root->inode_lock);
 
 151		radix_tree_preload_end();
 152		goto again;
 153	}
 154	btrfs_inode->delayed_node = node;
 155	spin_unlock(&root->inode_lock);
 156	radix_tree_preload_end();
 157
 158	return node;
 159}
 160
 161/*
 162 * Call it when holding delayed_node->mutex
 163 *
 164 * If mod = 1, add this node into the prepared list.
 165 */
 166static void btrfs_queue_delayed_node(struct btrfs_delayed_root *root,
 167				     struct btrfs_delayed_node *node,
 168				     int mod)
 169{
 170	spin_lock(&root->lock);
 171	if (node->in_list) {
 172		if (!list_empty(&node->p_list))
 173			list_move_tail(&node->p_list, &root->prepare_list);
 174		else if (mod)
 175			list_add_tail(&node->p_list, &root->prepare_list);
 176	} else {
 177		list_add_tail(&node->n_list, &root->node_list);
 178		list_add_tail(&node->p_list, &root->prepare_list);
 179		atomic_inc(&node->refs);	/* inserted into list */
 180		root->nodes++;
 181		node->in_list = 1;
 182	}
 183	spin_unlock(&root->lock);
 184}
 185
 186/* Call it when holding delayed_node->mutex */
 187static void btrfs_dequeue_delayed_node(struct btrfs_delayed_root *root,
 188				       struct btrfs_delayed_node *node)
 189{
 190	spin_lock(&root->lock);
 191	if (node->in_list) {
 192		root->nodes--;
 193		atomic_dec(&node->refs);	/* not in the list */
 194		list_del_init(&node->n_list);
 195		if (!list_empty(&node->p_list))
 196			list_del_init(&node->p_list);
 197		node->in_list = 0;
 198	}
 199	spin_unlock(&root->lock);
 200}
 201
 202struct btrfs_delayed_node *btrfs_first_delayed_node(
 203			struct btrfs_delayed_root *delayed_root)
 204{
 205	struct list_head *p;
 206	struct btrfs_delayed_node *node = NULL;
 207
 208	spin_lock(&delayed_root->lock);
 209	if (list_empty(&delayed_root->node_list))
 210		goto out;
 211
 212	p = delayed_root->node_list.next;
 213	node = list_entry(p, struct btrfs_delayed_node, n_list);
 214	atomic_inc(&node->refs);
 215out:
 216	spin_unlock(&delayed_root->lock);
 217
 218	return node;
 219}
 220
 221struct btrfs_delayed_node *btrfs_next_delayed_node(
 222						struct btrfs_delayed_node *node)
 223{
 224	struct btrfs_delayed_root *delayed_root;
 225	struct list_head *p;
 226	struct btrfs_delayed_node *next = NULL;
 227
 228	delayed_root = node->root->fs_info->delayed_root;
 229	spin_lock(&delayed_root->lock);
 230	if (!node->in_list) {	/* not in the list */
 
 231		if (list_empty(&delayed_root->node_list))
 232			goto out;
 233		p = delayed_root->node_list.next;
 234	} else if (list_is_last(&node->n_list, &delayed_root->node_list))
 235		goto out;
 236	else
 237		p = node->n_list.next;
 238
 239	next = list_entry(p, struct btrfs_delayed_node, n_list);
 240	atomic_inc(&next->refs);
 241out:
 242	spin_unlock(&delayed_root->lock);
 243
 244	return next;
 245}
 246
 247static void __btrfs_release_delayed_node(
 248				struct btrfs_delayed_node *delayed_node,
 249				int mod)
 250{
 251	struct btrfs_delayed_root *delayed_root;
 252
 253	if (!delayed_node)
 254		return;
 255
 256	delayed_root = delayed_node->root->fs_info->delayed_root;
 257
 258	mutex_lock(&delayed_node->mutex);
 259	if (delayed_node->count)
 260		btrfs_queue_delayed_node(delayed_root, delayed_node, mod);
 261	else
 262		btrfs_dequeue_delayed_node(delayed_root, delayed_node);
 263	mutex_unlock(&delayed_node->mutex);
 264
 265	if (atomic_dec_and_test(&delayed_node->refs)) {
 
 266		struct btrfs_root *root = delayed_node->root;
 267		spin_lock(&root->inode_lock);
 268		if (atomic_read(&delayed_node->refs) == 0) {
 269			radix_tree_delete(&root->delayed_nodes_tree,
 270					  delayed_node->inode_id);
 271			kmem_cache_free(delayed_node_cache, delayed_node);
 272		}
 273		spin_unlock(&root->inode_lock);
 
 
 274	}
 275}
 276
 277static inline void btrfs_release_delayed_node(struct btrfs_delayed_node *node)
 278{
 279	__btrfs_release_delayed_node(node, 0);
 280}
 281
 282struct btrfs_delayed_node *btrfs_first_prepared_delayed_node(
 283					struct btrfs_delayed_root *delayed_root)
 284{
 285	struct list_head *p;
 286	struct btrfs_delayed_node *node = NULL;
 287
 288	spin_lock(&delayed_root->lock);
 289	if (list_empty(&delayed_root->prepare_list))
 290		goto out;
 291
 292	p = delayed_root->prepare_list.next;
 293	list_del_init(p);
 294	node = list_entry(p, struct btrfs_delayed_node, p_list);
 295	atomic_inc(&node->refs);
 296out:
 297	spin_unlock(&delayed_root->lock);
 298
 299	return node;
 300}
 301
 302static inline void btrfs_release_prepared_delayed_node(
 303					struct btrfs_delayed_node *node)
 304{
 305	__btrfs_release_delayed_node(node, 1);
 306}
 307
 308struct btrfs_delayed_item *btrfs_alloc_delayed_item(u32 data_len)
 309{
 310	struct btrfs_delayed_item *item;
 311	item = kmalloc(sizeof(*item) + data_len, GFP_NOFS);
 312	if (item) {
 313		item->data_len = data_len;
 314		item->ins_or_del = 0;
 315		item->bytes_reserved = 0;
 316		item->delayed_node = NULL;
 317		atomic_set(&item->refs, 1);
 318	}
 319	return item;
 320}
 321
 322/*
 323 * __btrfs_lookup_delayed_item - look up the delayed item by key
 324 * @delayed_node: pointer to the delayed node
 325 * @key:	  the key to look up
 326 * @prev:	  used to store the prev item if the right item isn't found
 327 * @next:	  used to store the next item if the right item isn't found
 328 *
 329 * Note: if we don't find the right item, we will return the prev item and
 330 * the next item.
 331 */
 332static struct btrfs_delayed_item *__btrfs_lookup_delayed_item(
 333				struct rb_root *root,
 334				struct btrfs_key *key,
 335				struct btrfs_delayed_item **prev,
 336				struct btrfs_delayed_item **next)
 337{
 338	struct rb_node *node, *prev_node = NULL;
 339	struct btrfs_delayed_item *delayed_item = NULL;
 340	int ret = 0;
 341
 342	node = root->rb_node;
 343
 344	while (node) {
 345		delayed_item = rb_entry(node, struct btrfs_delayed_item,
 346					rb_node);
 347		prev_node = node;
 348		ret = btrfs_comp_cpu_keys(&delayed_item->key, key);
 349		if (ret < 0)
 350			node = node->rb_right;
 351		else if (ret > 0)
 352			node = node->rb_left;
 353		else
 354			return delayed_item;
 355	}
 356
 357	if (prev) {
 358		if (!prev_node)
 359			*prev = NULL;
 360		else if (ret < 0)
 361			*prev = delayed_item;
 362		else if ((node = rb_prev(prev_node)) != NULL) {
 363			*prev = rb_entry(node, struct btrfs_delayed_item,
 364					 rb_node);
 365		} else
 366			*prev = NULL;
 367	}
 368
 369	if (next) {
 370		if (!prev_node)
 371			*next = NULL;
 372		else if (ret > 0)
 373			*next = delayed_item;
 374		else if ((node = rb_next(prev_node)) != NULL) {
 375			*next = rb_entry(node, struct btrfs_delayed_item,
 376					 rb_node);
 377		} else
 378			*next = NULL;
 379	}
 380	return NULL;
 381}
 382
 383struct btrfs_delayed_item *__btrfs_lookup_delayed_insertion_item(
 384					struct btrfs_delayed_node *delayed_node,
 385					struct btrfs_key *key)
 386{
 387	struct btrfs_delayed_item *item;
 388
 389	item = __btrfs_lookup_delayed_item(&delayed_node->ins_root, key,
 390					   NULL, NULL);
 391	return item;
 392}
 393
 394struct btrfs_delayed_item *__btrfs_lookup_delayed_deletion_item(
 395					struct btrfs_delayed_node *delayed_node,
 396					struct btrfs_key *key)
 397{
 398	struct btrfs_delayed_item *item;
 399
 400	item = __btrfs_lookup_delayed_item(&delayed_node->del_root, key,
 401					   NULL, NULL);
 402	return item;
 403}
 404
 405struct btrfs_delayed_item *__btrfs_search_delayed_insertion_item(
 406					struct btrfs_delayed_node *delayed_node,
 407					struct btrfs_key *key)
 408{
 409	struct btrfs_delayed_item *item, *next;
 410
 411	item = __btrfs_lookup_delayed_item(&delayed_node->ins_root, key,
 412					   NULL, &next);
 413	if (!item)
 414		item = next;
 415
 416	return item;
 417}
 418
 419struct btrfs_delayed_item *__btrfs_search_delayed_deletion_item(
 420					struct btrfs_delayed_node *delayed_node,
 421					struct btrfs_key *key)
 422{
 423	struct btrfs_delayed_item *item, *next;
 424
 425	item = __btrfs_lookup_delayed_item(&delayed_node->del_root, key,
 426					   NULL, &next);
 427	if (!item)
 428		item = next;
 429
 430	return item;
 431}
 432
 433static int __btrfs_add_delayed_item(struct btrfs_delayed_node *delayed_node,
 434				    struct btrfs_delayed_item *ins,
 435				    int action)
 436{
 437	struct rb_node **p, *node;
 438	struct rb_node *parent_node = NULL;
 439	struct rb_root *root;
 440	struct btrfs_delayed_item *item;
 441	int cmp;
 442
 443	if (action == BTRFS_DELAYED_INSERTION_ITEM)
 444		root = &delayed_node->ins_root;
 445	else if (action == BTRFS_DELAYED_DELETION_ITEM)
 446		root = &delayed_node->del_root;
 447	else
 448		BUG();
 449	p = &root->rb_node;
 450	node = &ins->rb_node;
 451
 452	while (*p) {
 453		parent_node = *p;
 454		item = rb_entry(parent_node, struct btrfs_delayed_item,
 455				 rb_node);
 456
 457		cmp = btrfs_comp_cpu_keys(&item->key, &ins->key);
 458		if (cmp < 0)
 459			p = &(*p)->rb_right;
 460		else if (cmp > 0)
 461			p = &(*p)->rb_left;
 462		else
 463			return -EEXIST;
 464	}
 465
 466	rb_link_node(node, parent_node, p);
 467	rb_insert_color(node, root);
 468	ins->delayed_node = delayed_node;
 469	ins->ins_or_del = action;
 470
 471	if (ins->key.type == BTRFS_DIR_INDEX_KEY &&
 472	    action == BTRFS_DELAYED_INSERTION_ITEM &&
 473	    ins->key.offset >= delayed_node->index_cnt)
 474			delayed_node->index_cnt = ins->key.offset + 1;
 475
 476	delayed_node->count++;
 477	atomic_inc(&delayed_node->root->fs_info->delayed_root->items);
 478	return 0;
 479}
 480
 481static int __btrfs_add_delayed_insertion_item(struct btrfs_delayed_node *node,
 482					      struct btrfs_delayed_item *item)
 483{
 484	return __btrfs_add_delayed_item(node, item,
 485					BTRFS_DELAYED_INSERTION_ITEM);
 486}
 487
 488static int __btrfs_add_delayed_deletion_item(struct btrfs_delayed_node *node,
 489					     struct btrfs_delayed_item *item)
 490{
 491	return __btrfs_add_delayed_item(node, item,
 492					BTRFS_DELAYED_DELETION_ITEM);
 493}
 494
 
 
 
 
 
 
 
 
 
 
 
 
 
 495static void __btrfs_remove_delayed_item(struct btrfs_delayed_item *delayed_item)
 496{
 497	struct rb_root *root;
 498	struct btrfs_delayed_root *delayed_root;
 499
 500	delayed_root = delayed_item->delayed_node->root->fs_info->delayed_root;
 501
 502	BUG_ON(!delayed_root);
 503	BUG_ON(delayed_item->ins_or_del != BTRFS_DELAYED_DELETION_ITEM &&
 504	       delayed_item->ins_or_del != BTRFS_DELAYED_INSERTION_ITEM);
 505
 506	if (delayed_item->ins_or_del == BTRFS_DELAYED_INSERTION_ITEM)
 507		root = &delayed_item->delayed_node->ins_root;
 508	else
 509		root = &delayed_item->delayed_node->del_root;
 510
 511	rb_erase(&delayed_item->rb_node, root);
 512	delayed_item->delayed_node->count--;
 513	atomic_dec(&delayed_root->items);
 514	if (atomic_read(&delayed_root->items) < BTRFS_DELAYED_BACKGROUND &&
 515	    waitqueue_active(&delayed_root->wait))
 516		wake_up(&delayed_root->wait);
 517}
 518
 519static void btrfs_release_delayed_item(struct btrfs_delayed_item *item)
 520{
 521	if (item) {
 522		__btrfs_remove_delayed_item(item);
 523		if (atomic_dec_and_test(&item->refs))
 524			kfree(item);
 525	}
 526}
 527
 528struct btrfs_delayed_item *__btrfs_first_delayed_insertion_item(
 529					struct btrfs_delayed_node *delayed_node)
 530{
 531	struct rb_node *p;
 532	struct btrfs_delayed_item *item = NULL;
 533
 534	p = rb_first(&delayed_node->ins_root);
 535	if (p)
 536		item = rb_entry(p, struct btrfs_delayed_item, rb_node);
 537
 538	return item;
 539}
 540
 541struct btrfs_delayed_item *__btrfs_first_delayed_deletion_item(
 542					struct btrfs_delayed_node *delayed_node)
 543{
 544	struct rb_node *p;
 545	struct btrfs_delayed_item *item = NULL;
 546
 547	p = rb_first(&delayed_node->del_root);
 548	if (p)
 549		item = rb_entry(p, struct btrfs_delayed_item, rb_node);
 550
 551	return item;
 552}
 553
 554struct btrfs_delayed_item *__btrfs_next_delayed_item(
 555						struct btrfs_delayed_item *item)
 556{
 557	struct rb_node *p;
 558	struct btrfs_delayed_item *next = NULL;
 559
 560	p = rb_next(&item->rb_node);
 561	if (p)
 562		next = rb_entry(p, struct btrfs_delayed_item, rb_node);
 563
 564	return next;
 565}
 566
 567static inline struct btrfs_root *btrfs_get_fs_root(struct btrfs_root *root,
 568						   u64 root_id)
 569{
 570	struct btrfs_key root_key;
 571
 572	if (root->objectid == root_id)
 573		return root;
 574
 575	root_key.objectid = root_id;
 576	root_key.type = BTRFS_ROOT_ITEM_KEY;
 577	root_key.offset = (u64)-1;
 578	return btrfs_read_fs_root_no_name(root->fs_info, &root_key);
 579}
 580
 581static int btrfs_delayed_item_reserve_metadata(struct btrfs_trans_handle *trans,
 582					       struct btrfs_root *root,
 583					       struct btrfs_delayed_item *item)
 584{
 585	struct btrfs_block_rsv *src_rsv;
 586	struct btrfs_block_rsv *dst_rsv;
 587	u64 num_bytes;
 588	int ret;
 589
 590	if (!trans->bytes_reserved)
 591		return 0;
 592
 593	src_rsv = trans->block_rsv;
 594	dst_rsv = &root->fs_info->global_block_rsv;
 595
 596	num_bytes = btrfs_calc_trans_metadata_size(root, 1);
 597	ret = btrfs_block_rsv_migrate(src_rsv, dst_rsv, num_bytes);
 598	if (!ret)
 
 
 
 599		item->bytes_reserved = num_bytes;
 
 600
 601	return ret;
 602}
 603
 604static void btrfs_delayed_item_release_metadata(struct btrfs_root *root,
 605						struct btrfs_delayed_item *item)
 606{
 607	struct btrfs_block_rsv *rsv;
 608
 609	if (!item->bytes_reserved)
 610		return;
 611
 612	rsv = &root->fs_info->global_block_rsv;
 
 
 
 613	btrfs_block_rsv_release(root, rsv,
 614				item->bytes_reserved);
 615}
 616
 617static int btrfs_delayed_inode_reserve_metadata(
 618					struct btrfs_trans_handle *trans,
 619					struct btrfs_root *root,
 
 620					struct btrfs_delayed_node *node)
 621{
 622	struct btrfs_block_rsv *src_rsv;
 623	struct btrfs_block_rsv *dst_rsv;
 624	u64 num_bytes;
 625	int ret;
 626
 627	if (!trans->bytes_reserved)
 628		return 0;
 629
 630	src_rsv = trans->block_rsv;
 631	dst_rsv = &root->fs_info->global_block_rsv;
 632
 633	num_bytes = btrfs_calc_trans_metadata_size(root, 1);
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 634	ret = btrfs_block_rsv_migrate(src_rsv, dst_rsv, num_bytes);
 635	if (!ret)
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 636		node->bytes_reserved = num_bytes;
 
 
 
 
 
 
 
 637
 638	return ret;
 639}
 640
 641static void btrfs_delayed_inode_release_metadata(struct btrfs_root *root,
 642						struct btrfs_delayed_node *node)
 643{
 644	struct btrfs_block_rsv *rsv;
 645
 646	if (!node->bytes_reserved)
 647		return;
 648
 649	rsv = &root->fs_info->global_block_rsv;
 
 
 650	btrfs_block_rsv_release(root, rsv,
 651				node->bytes_reserved);
 652	node->bytes_reserved = 0;
 653}
 654
 655/*
 656 * This helper will insert some continuous items into the same leaf according
 657 * to the free space of the leaf.
 658 */
 659static int btrfs_batch_insert_items(struct btrfs_trans_handle *trans,
 660				struct btrfs_root *root,
 661				struct btrfs_path *path,
 662				struct btrfs_delayed_item *item)
 663{
 664	struct btrfs_delayed_item *curr, *next;
 665	int free_space;
 666	int total_data_size = 0, total_size = 0;
 667	struct extent_buffer *leaf;
 668	char *data_ptr;
 669	struct btrfs_key *keys;
 670	u32 *data_size;
 671	struct list_head head;
 672	int slot;
 673	int nitems;
 674	int i;
 675	int ret = 0;
 676
 677	BUG_ON(!path->nodes[0]);
 678
 679	leaf = path->nodes[0];
 680	free_space = btrfs_leaf_free_space(root, leaf);
 681	INIT_LIST_HEAD(&head);
 682
 683	next = item;
 684	nitems = 0;
 685
 686	/*
 687	 * count the number of the continuous items that we can insert in batch
 688	 */
 689	while (total_size + next->data_len + sizeof(struct btrfs_item) <=
 690	       free_space) {
 691		total_data_size += next->data_len;
 692		total_size += next->data_len + sizeof(struct btrfs_item);
 693		list_add_tail(&next->tree_list, &head);
 694		nitems++;
 695
 696		curr = next;
 697		next = __btrfs_next_delayed_item(curr);
 698		if (!next)
 699			break;
 700
 701		if (!btrfs_is_continuous_delayed_item(curr, next))
 702			break;
 703	}
 704
 705	if (!nitems) {
 706		ret = 0;
 707		goto out;
 708	}
 709
 710	/*
 711	 * we need allocate some memory space, but it might cause the task
 712	 * to sleep, so we set all locked nodes in the path to blocking locks
 713	 * first.
 714	 */
 715	btrfs_set_path_blocking(path);
 716
 717	keys = kmalloc(sizeof(struct btrfs_key) * nitems, GFP_NOFS);
 718	if (!keys) {
 719		ret = -ENOMEM;
 720		goto out;
 721	}
 722
 723	data_size = kmalloc(sizeof(u32) * nitems, GFP_NOFS);
 724	if (!data_size) {
 725		ret = -ENOMEM;
 726		goto error;
 727	}
 728
 729	/* get keys of all the delayed items */
 730	i = 0;
 731	list_for_each_entry(next, &head, tree_list) {
 732		keys[i] = next->key;
 733		data_size[i] = next->data_len;
 734		i++;
 735	}
 736
 737	/* reset all the locked nodes in the patch to spinning locks. */
 738	btrfs_clear_path_blocking(path, NULL, 0);
 739
 740	/* insert the keys of the items */
 741	ret = setup_items_for_insert(trans, root, path, keys, data_size,
 742				     total_data_size, total_size, nitems);
 743	if (ret)
 744		goto error;
 745
 746	/* insert the dir index items */
 747	slot = path->slots[0];
 748	list_for_each_entry_safe(curr, next, &head, tree_list) {
 749		data_ptr = btrfs_item_ptr(leaf, slot, char);
 750		write_extent_buffer(leaf, &curr->data,
 751				    (unsigned long)data_ptr,
 752				    curr->data_len);
 753		slot++;
 754
 755		btrfs_delayed_item_release_metadata(root, curr);
 756
 757		list_del(&curr->tree_list);
 758		btrfs_release_delayed_item(curr);
 759	}
 760
 761error:
 762	kfree(data_size);
 763	kfree(keys);
 764out:
 765	return ret;
 766}
 767
 768/*
 769 * This helper can just do simple insertion that needn't extend item for new
 770 * data, such as directory name index insertion, inode insertion.
 771 */
 772static int btrfs_insert_delayed_item(struct btrfs_trans_handle *trans,
 773				     struct btrfs_root *root,
 774				     struct btrfs_path *path,
 775				     struct btrfs_delayed_item *delayed_item)
 776{
 777	struct extent_buffer *leaf;
 778	struct btrfs_item *item;
 779	char *ptr;
 780	int ret;
 781
 782	ret = btrfs_insert_empty_item(trans, root, path, &delayed_item->key,
 783				      delayed_item->data_len);
 784	if (ret < 0 && ret != -EEXIST)
 785		return ret;
 786
 787	leaf = path->nodes[0];
 788
 789	item = btrfs_item_nr(leaf, path->slots[0]);
 790	ptr = btrfs_item_ptr(leaf, path->slots[0], char);
 791
 792	write_extent_buffer(leaf, delayed_item->data, (unsigned long)ptr,
 793			    delayed_item->data_len);
 794	btrfs_mark_buffer_dirty(leaf);
 795
 796	btrfs_delayed_item_release_metadata(root, delayed_item);
 797	return 0;
 798}
 799
 800/*
 801 * we insert an item first, then if there are some continuous items, we try
 802 * to insert those items into the same leaf.
 803 */
 804static int btrfs_insert_delayed_items(struct btrfs_trans_handle *trans,
 805				      struct btrfs_path *path,
 806				      struct btrfs_root *root,
 807				      struct btrfs_delayed_node *node)
 808{
 809	struct btrfs_delayed_item *curr, *prev;
 810	int ret = 0;
 811
 812do_again:
 813	mutex_lock(&node->mutex);
 814	curr = __btrfs_first_delayed_insertion_item(node);
 815	if (!curr)
 816		goto insert_end;
 817
 818	ret = btrfs_insert_delayed_item(trans, root, path, curr);
 819	if (ret < 0) {
 820		btrfs_release_path(path);
 821		goto insert_end;
 822	}
 823
 824	prev = curr;
 825	curr = __btrfs_next_delayed_item(prev);
 826	if (curr && btrfs_is_continuous_delayed_item(prev, curr)) {
 827		/* insert the continuous items into the same leaf */
 828		path->slots[0]++;
 829		btrfs_batch_insert_items(trans, root, path, curr);
 830	}
 831	btrfs_release_delayed_item(prev);
 832	btrfs_mark_buffer_dirty(path->nodes[0]);
 833
 834	btrfs_release_path(path);
 835	mutex_unlock(&node->mutex);
 836	goto do_again;
 837
 838insert_end:
 839	mutex_unlock(&node->mutex);
 840	return ret;
 841}
 842
 843static int btrfs_batch_delete_items(struct btrfs_trans_handle *trans,
 844				    struct btrfs_root *root,
 845				    struct btrfs_path *path,
 846				    struct btrfs_delayed_item *item)
 847{
 848	struct btrfs_delayed_item *curr, *next;
 849	struct extent_buffer *leaf;
 850	struct btrfs_key key;
 851	struct list_head head;
 852	int nitems, i, last_item;
 853	int ret = 0;
 854
 855	BUG_ON(!path->nodes[0]);
 856
 857	leaf = path->nodes[0];
 858
 859	i = path->slots[0];
 860	last_item = btrfs_header_nritems(leaf) - 1;
 861	if (i > last_item)
 862		return -ENOENT;	/* FIXME: Is errno suitable? */
 863
 864	next = item;
 865	INIT_LIST_HEAD(&head);
 866	btrfs_item_key_to_cpu(leaf, &key, i);
 867	nitems = 0;
 868	/*
 869	 * count the number of the dir index items that we can delete in batch
 870	 */
 871	while (btrfs_comp_cpu_keys(&next->key, &key) == 0) {
 872		list_add_tail(&next->tree_list, &head);
 873		nitems++;
 874
 875		curr = next;
 876		next = __btrfs_next_delayed_item(curr);
 877		if (!next)
 878			break;
 879
 880		if (!btrfs_is_continuous_delayed_item(curr, next))
 881			break;
 882
 883		i++;
 884		if (i > last_item)
 885			break;
 886		btrfs_item_key_to_cpu(leaf, &key, i);
 887	}
 888
 889	if (!nitems)
 890		return 0;
 891
 892	ret = btrfs_del_items(trans, root, path, path->slots[0], nitems);
 893	if (ret)
 894		goto out;
 895
 896	list_for_each_entry_safe(curr, next, &head, tree_list) {
 897		btrfs_delayed_item_release_metadata(root, curr);
 898		list_del(&curr->tree_list);
 899		btrfs_release_delayed_item(curr);
 900	}
 901
 902out:
 903	return ret;
 904}
 905
 906static int btrfs_delete_delayed_items(struct btrfs_trans_handle *trans,
 907				      struct btrfs_path *path,
 908				      struct btrfs_root *root,
 909				      struct btrfs_delayed_node *node)
 910{
 911	struct btrfs_delayed_item *curr, *prev;
 912	int ret = 0;
 913
 914do_again:
 915	mutex_lock(&node->mutex);
 916	curr = __btrfs_first_delayed_deletion_item(node);
 917	if (!curr)
 918		goto delete_fail;
 919
 920	ret = btrfs_search_slot(trans, root, &curr->key, path, -1, 1);
 921	if (ret < 0)
 922		goto delete_fail;
 923	else if (ret > 0) {
 924		/*
 925		 * can't find the item which the node points to, so this node
 926		 * is invalid, just drop it.
 927		 */
 928		prev = curr;
 929		curr = __btrfs_next_delayed_item(prev);
 930		btrfs_release_delayed_item(prev);
 931		ret = 0;
 932		btrfs_release_path(path);
 933		if (curr)
 
 934			goto do_again;
 935		else
 936			goto delete_fail;
 937	}
 938
 939	btrfs_batch_delete_items(trans, root, path, curr);
 940	btrfs_release_path(path);
 941	mutex_unlock(&node->mutex);
 942	goto do_again;
 943
 944delete_fail:
 945	btrfs_release_path(path);
 946	mutex_unlock(&node->mutex);
 947	return ret;
 948}
 949
 950static void btrfs_release_delayed_inode(struct btrfs_delayed_node *delayed_node)
 951{
 952	struct btrfs_delayed_root *delayed_root;
 953
 954	if (delayed_node && delayed_node->inode_dirty) {
 
 955		BUG_ON(!delayed_node->root);
 956		delayed_node->inode_dirty = 0;
 957		delayed_node->count--;
 958
 959		delayed_root = delayed_node->root->fs_info->delayed_root;
 960		atomic_dec(&delayed_root->items);
 961		if (atomic_read(&delayed_root->items) <
 962		    BTRFS_DELAYED_BACKGROUND &&
 963		    waitqueue_active(&delayed_root->wait))
 964			wake_up(&delayed_root->wait);
 965	}
 966}
 967
 968static int btrfs_update_delayed_inode(struct btrfs_trans_handle *trans,
 969				      struct btrfs_root *root,
 970				      struct btrfs_path *path,
 971				      struct btrfs_delayed_node *node)
 
 
 
 
 
 
 
 
 
 
 
 
 972{
 973	struct btrfs_key key;
 974	struct btrfs_inode_item *inode_item;
 975	struct extent_buffer *leaf;
 
 976	int ret;
 977
 978	mutex_lock(&node->mutex);
 979	if (!node->inode_dirty) {
 980		mutex_unlock(&node->mutex);
 981		return 0;
 982	}
 983
 984	key.objectid = node->inode_id;
 985	btrfs_set_key_type(&key, BTRFS_INODE_ITEM_KEY);
 986	key.offset = 0;
 987	ret = btrfs_lookup_inode(trans, root, path, &key, 1);
 
 
 
 
 
 
 988	if (ret > 0) {
 989		btrfs_release_path(path);
 990		mutex_unlock(&node->mutex);
 991		return -ENOENT;
 992	} else if (ret < 0) {
 993		mutex_unlock(&node->mutex);
 994		return ret;
 995	}
 996
 997	btrfs_unlock_up_safe(path, 1);
 998	leaf = path->nodes[0];
 999	inode_item = btrfs_item_ptr(leaf, path->slots[0],
1000				    struct btrfs_inode_item);
1001	write_extent_buffer(leaf, &node->inode_item, (unsigned long)inode_item,
1002			    sizeof(struct btrfs_inode_item));
1003	btrfs_mark_buffer_dirty(leaf);
1004	btrfs_release_path(path);
1005
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1006	btrfs_delayed_inode_release_metadata(root, node);
1007	btrfs_release_delayed_inode(node);
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1008	mutex_unlock(&node->mutex);
 
 
1009
1010	return 0;
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1011}
1012
1013/* Called when committing the transaction. */
1014int btrfs_run_delayed_items(struct btrfs_trans_handle *trans,
1015			    struct btrfs_root *root)
 
 
 
 
 
1016{
1017	struct btrfs_delayed_root *delayed_root;
1018	struct btrfs_delayed_node *curr_node, *prev_node;
1019	struct btrfs_path *path;
1020	struct btrfs_block_rsv *block_rsv;
1021	int ret = 0;
 
 
 
 
1022
1023	path = btrfs_alloc_path();
1024	if (!path)
1025		return -ENOMEM;
1026	path->leave_spinning = 1;
1027
1028	block_rsv = trans->block_rsv;
1029	trans->block_rsv = &root->fs_info->global_block_rsv;
1030
1031	delayed_root = btrfs_get_delayed_root(root);
1032
1033	curr_node = btrfs_first_delayed_node(delayed_root);
1034	while (curr_node) {
1035		root = curr_node->root;
1036		ret = btrfs_insert_delayed_items(trans, path, root,
1037						 curr_node);
1038		if (!ret)
1039			ret = btrfs_delete_delayed_items(trans, path, root,
1040							 curr_node);
1041		if (!ret)
1042			ret = btrfs_update_delayed_inode(trans, root, path,
1043							 curr_node);
1044		if (ret) {
1045			btrfs_release_delayed_node(curr_node);
 
 
1046			break;
1047		}
1048
1049		prev_node = curr_node;
1050		curr_node = btrfs_next_delayed_node(curr_node);
1051		btrfs_release_delayed_node(prev_node);
1052	}
1053
 
 
1054	btrfs_free_path(path);
1055	trans->block_rsv = block_rsv;
 
1056	return ret;
1057}
1058
1059static int __btrfs_commit_inode_delayed_items(struct btrfs_trans_handle *trans,
1060					      struct btrfs_delayed_node *node)
 
 
 
 
 
 
 
 
 
 
 
 
1061{
 
1062	struct btrfs_path *path;
1063	struct btrfs_block_rsv *block_rsv;
1064	int ret;
1065
 
 
 
 
 
 
 
 
 
 
 
1066	path = btrfs_alloc_path();
1067	if (!path)
 
1068		return -ENOMEM;
 
1069	path->leave_spinning = 1;
1070
1071	block_rsv = trans->block_rsv;
1072	trans->block_rsv = &node->root->fs_info->global_block_rsv;
1073
1074	ret = btrfs_insert_delayed_items(trans, path, node->root, node);
1075	if (!ret)
1076		ret = btrfs_delete_delayed_items(trans, path, node->root, node);
1077	if (!ret)
1078		ret = btrfs_update_delayed_inode(trans, node->root, path, node);
1079	btrfs_free_path(path);
1080
 
 
1081	trans->block_rsv = block_rsv;
 
1082	return ret;
1083}
1084
1085int btrfs_commit_inode_delayed_items(struct btrfs_trans_handle *trans,
1086				     struct inode *inode)
1087{
 
1088	struct btrfs_delayed_node *delayed_node = btrfs_get_delayed_node(inode);
 
 
1089	int ret;
1090
1091	if (!delayed_node)
1092		return 0;
1093
1094	mutex_lock(&delayed_node->mutex);
1095	if (!delayed_node->count) {
1096		mutex_unlock(&delayed_node->mutex);
1097		btrfs_release_delayed_node(delayed_node);
1098		return 0;
1099	}
1100	mutex_unlock(&delayed_node->mutex);
1101
1102	ret = __btrfs_commit_inode_delayed_items(trans, delayed_node);
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1103	btrfs_release_delayed_node(delayed_node);
 
1104	return ret;
1105}
1106
1107void btrfs_remove_delayed_node(struct inode *inode)
1108{
1109	struct btrfs_delayed_node *delayed_node;
1110
1111	delayed_node = ACCESS_ONCE(BTRFS_I(inode)->delayed_node);
1112	if (!delayed_node)
1113		return;
1114
1115	BTRFS_I(inode)->delayed_node = NULL;
1116	btrfs_release_delayed_node(delayed_node);
1117}
1118
1119struct btrfs_async_delayed_node {
1120	struct btrfs_root *root;
1121	struct btrfs_delayed_node *delayed_node;
1122	struct btrfs_work work;
1123};
1124
1125static void btrfs_async_run_delayed_node_done(struct btrfs_work *work)
1126{
1127	struct btrfs_async_delayed_node *async_node;
 
1128	struct btrfs_trans_handle *trans;
1129	struct btrfs_path *path;
1130	struct btrfs_delayed_node *delayed_node = NULL;
1131	struct btrfs_root *root;
1132	struct btrfs_block_rsv *block_rsv;
1133	unsigned long nr = 0;
1134	int need_requeue = 0;
1135	int ret;
1136
1137	async_node = container_of(work, struct btrfs_async_delayed_node, work);
 
1138
1139	path = btrfs_alloc_path();
1140	if (!path)
1141		goto out;
1142	path->leave_spinning = 1;
1143
1144	delayed_node = async_node->delayed_node;
 
 
 
 
 
 
 
 
1145	root = delayed_node->root;
1146
1147	trans = btrfs_join_transaction(root);
1148	if (IS_ERR(trans))
1149		goto free_path;
1150
1151	block_rsv = trans->block_rsv;
1152	trans->block_rsv = &root->fs_info->global_block_rsv;
1153
1154	ret = btrfs_insert_delayed_items(trans, path, root, delayed_node);
1155	if (!ret)
1156		ret = btrfs_delete_delayed_items(trans, path, root,
1157						 delayed_node);
1158
1159	if (!ret)
1160		btrfs_update_delayed_inode(trans, root, path, delayed_node);
 
1161
1162	/*
1163	 * Maybe new delayed items have been inserted, so we need requeue
1164	 * the work. Besides that, we must dequeue the empty delayed nodes
1165	 * to avoid the race between delayed items balance and the worker.
1166	 * The race like this:
1167	 * 	Task1				Worker thread
1168	 * 					count == 0, needn't requeue
1169	 * 					  also needn't insert the
1170	 * 					  delayed node into prepare
1171	 * 					  list again.
1172	 * 	add lots of delayed items
1173	 * 	queue the delayed node
1174	 * 	  already in the list,
1175	 * 	  and not in the prepare
1176	 * 	  list, it means the delayed
1177	 * 	  node is being dealt with
1178	 * 	  by the worker.
1179	 * 	do delayed items balance
1180	 * 	  the delayed node is being
1181	 * 	  dealt with by the worker
1182	 * 	  now, just wait.
1183	 * 	  				the worker goto idle.
1184	 * Task1 will sleep until the transaction is commited.
1185	 */
1186	mutex_lock(&delayed_node->mutex);
1187	if (delayed_node->count)
1188		need_requeue = 1;
1189	else
1190		btrfs_dequeue_delayed_node(root->fs_info->delayed_root,
1191					   delayed_node);
1192	mutex_unlock(&delayed_node->mutex);
1193
1194	nr = trans->blocks_used;
 
 
1195
1196	trans->block_rsv = block_rsv;
1197	btrfs_end_transaction_dmeta(trans, root);
1198	__btrfs_btree_balance_dirty(root, nr);
1199free_path:
1200	btrfs_free_path(path);
1201out:
1202	if (need_requeue)
1203		btrfs_requeue_work(&async_node->work);
1204	else {
1205		btrfs_release_prepared_delayed_node(delayed_node);
1206		kfree(async_node);
1207	}
1208}
1209
 
1210static int btrfs_wq_run_delayed_node(struct btrfs_delayed_root *delayed_root,
1211				     struct btrfs_root *root, int all)
1212{
1213	struct btrfs_async_delayed_node *async_node;
1214	struct btrfs_delayed_node *curr;
1215	int count = 0;
1216
1217again:
1218	curr = btrfs_first_prepared_delayed_node(delayed_root);
1219	if (!curr)
1220		return 0;
1221
1222	async_node = kmalloc(sizeof(*async_node), GFP_NOFS);
1223	if (!async_node) {
1224		btrfs_release_prepared_delayed_node(curr);
1225		return -ENOMEM;
1226	}
1227
1228	async_node->root = root;
1229	async_node->delayed_node = curr;
1230
1231	async_node->work.func = btrfs_async_run_delayed_node_done;
1232	async_node->work.flags = 0;
1233
1234	btrfs_queue_worker(&root->fs_info->delayed_workers, &async_node->work);
1235	count++;
1236
1237	if (all || count < 4)
1238		goto again;
1239
 
1240	return 0;
1241}
1242
1243void btrfs_assert_delayed_root_empty(struct btrfs_root *root)
1244{
1245	struct btrfs_delayed_root *delayed_root;
1246	delayed_root = btrfs_get_delayed_root(root);
1247	WARN_ON(btrfs_first_delayed_node(delayed_root));
1248}
1249
 
 
 
 
 
 
 
 
 
 
 
 
 
1250void btrfs_balance_delayed_items(struct btrfs_root *root)
1251{
1252	struct btrfs_delayed_root *delayed_root;
 
1253
1254	delayed_root = btrfs_get_delayed_root(root);
1255
1256	if (atomic_read(&delayed_root->items) < BTRFS_DELAYED_BACKGROUND)
1257		return;
1258
1259	if (atomic_read(&delayed_root->items) >= BTRFS_DELAYED_WRITEBACK) {
 
1260		int ret;
1261		ret = btrfs_wq_run_delayed_node(delayed_root, root, 1);
 
 
 
1262		if (ret)
1263			return;
1264
1265		wait_event_interruptible_timeout(
1266				delayed_root->wait,
1267				(atomic_read(&delayed_root->items) <
1268				 BTRFS_DELAYED_BACKGROUND),
1269				HZ);
1270		return;
1271	}
1272
1273	btrfs_wq_run_delayed_node(delayed_root, root, 0);
1274}
1275
 
1276int btrfs_insert_delayed_dir_index(struct btrfs_trans_handle *trans,
1277				   struct btrfs_root *root, const char *name,
1278				   int name_len, struct inode *dir,
1279				   struct btrfs_disk_key *disk_key, u8 type,
1280				   u64 index)
1281{
1282	struct btrfs_delayed_node *delayed_node;
1283	struct btrfs_delayed_item *delayed_item;
1284	struct btrfs_dir_item *dir_item;
1285	int ret;
1286
1287	delayed_node = btrfs_get_or_create_delayed_node(dir);
1288	if (IS_ERR(delayed_node))
1289		return PTR_ERR(delayed_node);
1290
1291	delayed_item = btrfs_alloc_delayed_item(sizeof(*dir_item) + name_len);
1292	if (!delayed_item) {
1293		ret = -ENOMEM;
1294		goto release_node;
1295	}
1296
 
 
 
 
 
 
 
 
 
 
 
 
1297	ret = btrfs_delayed_item_reserve_metadata(trans, root, delayed_item);
1298	/*
1299	 * we have reserved enough space when we start a new transaction,
1300	 * so reserving metadata failure is impossible
1301	 */
1302	BUG_ON(ret);
1303
1304	delayed_item->key.objectid = btrfs_ino(dir);
1305	btrfs_set_key_type(&delayed_item->key, BTRFS_DIR_INDEX_KEY);
1306	delayed_item->key.offset = index;
1307
1308	dir_item = (struct btrfs_dir_item *)delayed_item->data;
1309	dir_item->location = *disk_key;
1310	dir_item->transid = cpu_to_le64(trans->transid);
1311	dir_item->data_len = 0;
1312	dir_item->name_len = cpu_to_le16(name_len);
1313	dir_item->type = type;
1314	memcpy((char *)(dir_item + 1), name, name_len);
1315
1316	mutex_lock(&delayed_node->mutex);
1317	ret = __btrfs_add_delayed_insertion_item(delayed_node, delayed_item);
1318	if (unlikely(ret)) {
1319		printk(KERN_ERR "err add delayed dir index item(name: %s) into "
1320				"the insertion tree of the delayed node"
1321				"(root id: %llu, inode id: %llu, errno: %d)\n",
1322				name,
1323				(unsigned long long)delayed_node->root->objectid,
1324				(unsigned long long)delayed_node->inode_id,
1325				ret);
1326		BUG();
1327	}
1328	mutex_unlock(&delayed_node->mutex);
1329
1330release_node:
1331	btrfs_release_delayed_node(delayed_node);
1332	return ret;
1333}
1334
1335static int btrfs_delete_delayed_insertion_item(struct btrfs_root *root,
1336					       struct btrfs_delayed_node *node,
1337					       struct btrfs_key *key)
1338{
1339	struct btrfs_delayed_item *item;
1340
1341	mutex_lock(&node->mutex);
1342	item = __btrfs_lookup_delayed_insertion_item(node, key);
1343	if (!item) {
1344		mutex_unlock(&node->mutex);
1345		return 1;
1346	}
1347
1348	btrfs_delayed_item_release_metadata(root, item);
1349	btrfs_release_delayed_item(item);
1350	mutex_unlock(&node->mutex);
1351	return 0;
1352}
1353
1354int btrfs_delete_delayed_dir_index(struct btrfs_trans_handle *trans,
1355				   struct btrfs_root *root, struct inode *dir,
1356				   u64 index)
1357{
1358	struct btrfs_delayed_node *node;
1359	struct btrfs_delayed_item *item;
1360	struct btrfs_key item_key;
1361	int ret;
1362
1363	node = btrfs_get_or_create_delayed_node(dir);
1364	if (IS_ERR(node))
1365		return PTR_ERR(node);
1366
1367	item_key.objectid = btrfs_ino(dir);
1368	btrfs_set_key_type(&item_key, BTRFS_DIR_INDEX_KEY);
1369	item_key.offset = index;
1370
1371	ret = btrfs_delete_delayed_insertion_item(root, node, &item_key);
1372	if (!ret)
1373		goto end;
1374
1375	item = btrfs_alloc_delayed_item(0);
1376	if (!item) {
1377		ret = -ENOMEM;
1378		goto end;
1379	}
1380
1381	item->key = item_key;
1382
1383	ret = btrfs_delayed_item_reserve_metadata(trans, root, item);
1384	/*
1385	 * we have reserved enough space when we start a new transaction,
1386	 * so reserving metadata failure is impossible.
1387	 */
1388	BUG_ON(ret);
1389
1390	mutex_lock(&node->mutex);
1391	ret = __btrfs_add_delayed_deletion_item(node, item);
1392	if (unlikely(ret)) {
1393		printk(KERN_ERR "err add delayed dir index item(index: %llu) "
1394				"into the deletion tree of the delayed node"
1395				"(root id: %llu, inode id: %llu, errno: %d)\n",
1396				(unsigned long long)index,
1397				(unsigned long long)node->root->objectid,
1398				(unsigned long long)node->inode_id,
1399				ret);
1400		BUG();
1401	}
1402	mutex_unlock(&node->mutex);
1403end:
1404	btrfs_release_delayed_node(node);
1405	return ret;
1406}
1407
1408int btrfs_inode_delayed_dir_index_count(struct inode *inode)
1409{
1410	struct btrfs_delayed_node *delayed_node = btrfs_get_delayed_node(inode);
1411
1412	if (!delayed_node)
1413		return -ENOENT;
1414
1415	/*
1416	 * Since we have held i_mutex of this directory, it is impossible that
1417	 * a new directory index is added into the delayed node and index_cnt
1418	 * is updated now. So we needn't lock the delayed node.
1419	 */
1420	if (!delayed_node->index_cnt) {
1421		btrfs_release_delayed_node(delayed_node);
1422		return -EINVAL;
1423	}
1424
1425	BTRFS_I(inode)->index_cnt = delayed_node->index_cnt;
1426	btrfs_release_delayed_node(delayed_node);
1427	return 0;
1428}
1429
1430void btrfs_get_delayed_items(struct inode *inode, struct list_head *ins_list,
1431			     struct list_head *del_list)
1432{
1433	struct btrfs_delayed_node *delayed_node;
1434	struct btrfs_delayed_item *item;
1435
1436	delayed_node = btrfs_get_delayed_node(inode);
1437	if (!delayed_node)
1438		return;
1439
1440	mutex_lock(&delayed_node->mutex);
1441	item = __btrfs_first_delayed_insertion_item(delayed_node);
1442	while (item) {
1443		atomic_inc(&item->refs);
1444		list_add_tail(&item->readdir_list, ins_list);
1445		item = __btrfs_next_delayed_item(item);
1446	}
1447
1448	item = __btrfs_first_delayed_deletion_item(delayed_node);
1449	while (item) {
1450		atomic_inc(&item->refs);
1451		list_add_tail(&item->readdir_list, del_list);
1452		item = __btrfs_next_delayed_item(item);
1453	}
1454	mutex_unlock(&delayed_node->mutex);
1455	/*
1456	 * This delayed node is still cached in the btrfs inode, so refs
1457	 * must be > 1 now, and we needn't check it is going to be freed
1458	 * or not.
1459	 *
1460	 * Besides that, this function is used to read dir, we do not
1461	 * insert/delete delayed items in this period. So we also needn't
1462	 * requeue or dequeue this delayed node.
1463	 */
1464	atomic_dec(&delayed_node->refs);
1465}
1466
1467void btrfs_put_delayed_items(struct list_head *ins_list,
1468			     struct list_head *del_list)
1469{
1470	struct btrfs_delayed_item *curr, *next;
1471
1472	list_for_each_entry_safe(curr, next, ins_list, readdir_list) {
1473		list_del(&curr->readdir_list);
1474		if (atomic_dec_and_test(&curr->refs))
1475			kfree(curr);
1476	}
1477
1478	list_for_each_entry_safe(curr, next, del_list, readdir_list) {
1479		list_del(&curr->readdir_list);
1480		if (atomic_dec_and_test(&curr->refs))
1481			kfree(curr);
1482	}
1483}
1484
1485int btrfs_should_delete_dir_index(struct list_head *del_list,
1486				  u64 index)
1487{
1488	struct btrfs_delayed_item *curr, *next;
1489	int ret;
1490
1491	if (list_empty(del_list))
1492		return 0;
1493
1494	list_for_each_entry_safe(curr, next, del_list, readdir_list) {
1495		if (curr->key.offset > index)
1496			break;
1497
1498		list_del(&curr->readdir_list);
1499		ret = (curr->key.offset == index);
1500
1501		if (atomic_dec_and_test(&curr->refs))
1502			kfree(curr);
1503
1504		if (ret)
1505			return 1;
1506		else
1507			continue;
1508	}
1509	return 0;
1510}
1511
1512/*
1513 * btrfs_readdir_delayed_dir_index - read dir info stored in the delayed tree
1514 *
1515 */
1516int btrfs_readdir_delayed_dir_index(struct file *filp, void *dirent,
1517				    filldir_t filldir,
1518				    struct list_head *ins_list)
1519{
1520	struct btrfs_dir_item *di;
1521	struct btrfs_delayed_item *curr, *next;
1522	struct btrfs_key location;
1523	char *name;
1524	int name_len;
1525	int over = 0;
1526	unsigned char d_type;
1527
1528	if (list_empty(ins_list))
1529		return 0;
1530
1531	/*
1532	 * Changing the data of the delayed item is impossible. So
1533	 * we needn't lock them. And we have held i_mutex of the
1534	 * directory, nobody can delete any directory indexes now.
1535	 */
1536	list_for_each_entry_safe(curr, next, ins_list, readdir_list) {
1537		list_del(&curr->readdir_list);
1538
1539		if (curr->key.offset < filp->f_pos) {
1540			if (atomic_dec_and_test(&curr->refs))
1541				kfree(curr);
1542			continue;
1543		}
1544
1545		filp->f_pos = curr->key.offset;
1546
1547		di = (struct btrfs_dir_item *)curr->data;
1548		name = (char *)(di + 1);
1549		name_len = le16_to_cpu(di->name_len);
1550
1551		d_type = btrfs_filetype_table[di->type];
1552		btrfs_disk_key_to_cpu(&location, &di->location);
1553
1554		over = filldir(dirent, name, name_len, curr->key.offset,
1555			       location.objectid, d_type);
1556
1557		if (atomic_dec_and_test(&curr->refs))
1558			kfree(curr);
1559
1560		if (over)
1561			return 1;
 
1562	}
1563	return 0;
1564}
1565
1566BTRFS_SETGET_STACK_FUNCS(stack_inode_generation, struct btrfs_inode_item,
1567			 generation, 64);
1568BTRFS_SETGET_STACK_FUNCS(stack_inode_sequence, struct btrfs_inode_item,
1569			 sequence, 64);
1570BTRFS_SETGET_STACK_FUNCS(stack_inode_transid, struct btrfs_inode_item,
1571			 transid, 64);
1572BTRFS_SETGET_STACK_FUNCS(stack_inode_size, struct btrfs_inode_item, size, 64);
1573BTRFS_SETGET_STACK_FUNCS(stack_inode_nbytes, struct btrfs_inode_item,
1574			 nbytes, 64);
1575BTRFS_SETGET_STACK_FUNCS(stack_inode_block_group, struct btrfs_inode_item,
1576			 block_group, 64);
1577BTRFS_SETGET_STACK_FUNCS(stack_inode_nlink, struct btrfs_inode_item, nlink, 32);
1578BTRFS_SETGET_STACK_FUNCS(stack_inode_uid, struct btrfs_inode_item, uid, 32);
1579BTRFS_SETGET_STACK_FUNCS(stack_inode_gid, struct btrfs_inode_item, gid, 32);
1580BTRFS_SETGET_STACK_FUNCS(stack_inode_mode, struct btrfs_inode_item, mode, 32);
1581BTRFS_SETGET_STACK_FUNCS(stack_inode_rdev, struct btrfs_inode_item, rdev, 64);
1582BTRFS_SETGET_STACK_FUNCS(stack_inode_flags, struct btrfs_inode_item, flags, 64);
1583
1584BTRFS_SETGET_STACK_FUNCS(stack_timespec_sec, struct btrfs_timespec, sec, 64);
1585BTRFS_SETGET_STACK_FUNCS(stack_timespec_nsec, struct btrfs_timespec, nsec, 32);
1586
1587static void fill_stack_inode_item(struct btrfs_trans_handle *trans,
1588				  struct btrfs_inode_item *inode_item,
1589				  struct inode *inode)
1590{
1591	btrfs_set_stack_inode_uid(inode_item, inode->i_uid);
1592	btrfs_set_stack_inode_gid(inode_item, inode->i_gid);
1593	btrfs_set_stack_inode_size(inode_item, BTRFS_I(inode)->disk_i_size);
1594	btrfs_set_stack_inode_mode(inode_item, inode->i_mode);
1595	btrfs_set_stack_inode_nlink(inode_item, inode->i_nlink);
1596	btrfs_set_stack_inode_nbytes(inode_item, inode_get_bytes(inode));
1597	btrfs_set_stack_inode_generation(inode_item,
1598					 BTRFS_I(inode)->generation);
1599	btrfs_set_stack_inode_sequence(inode_item, BTRFS_I(inode)->sequence);
1600	btrfs_set_stack_inode_transid(inode_item, trans->transid);
1601	btrfs_set_stack_inode_rdev(inode_item, inode->i_rdev);
1602	btrfs_set_stack_inode_flags(inode_item, BTRFS_I(inode)->flags);
1603	btrfs_set_stack_inode_block_group(inode_item, 0);
1604
1605	btrfs_set_stack_timespec_sec(btrfs_inode_atime(inode_item),
1606				     inode->i_atime.tv_sec);
1607	btrfs_set_stack_timespec_nsec(btrfs_inode_atime(inode_item),
1608				      inode->i_atime.tv_nsec);
1609
1610	btrfs_set_stack_timespec_sec(btrfs_inode_mtime(inode_item),
1611				     inode->i_mtime.tv_sec);
1612	btrfs_set_stack_timespec_nsec(btrfs_inode_mtime(inode_item),
1613				      inode->i_mtime.tv_nsec);
1614
1615	btrfs_set_stack_timespec_sec(btrfs_inode_ctime(inode_item),
1616				     inode->i_ctime.tv_sec);
1617	btrfs_set_stack_timespec_nsec(btrfs_inode_ctime(inode_item),
1618				      inode->i_ctime.tv_nsec);
 
 
 
 
 
1619}
1620
1621int btrfs_fill_inode(struct inode *inode, u32 *rdev)
1622{
1623	struct btrfs_delayed_node *delayed_node;
1624	struct btrfs_inode_item *inode_item;
1625	struct btrfs_timespec *tspec;
1626
1627	delayed_node = btrfs_get_delayed_node(inode);
1628	if (!delayed_node)
1629		return -ENOENT;
1630
1631	mutex_lock(&delayed_node->mutex);
1632	if (!delayed_node->inode_dirty) {
1633		mutex_unlock(&delayed_node->mutex);
1634		btrfs_release_delayed_node(delayed_node);
1635		return -ENOENT;
1636	}
1637
1638	inode_item = &delayed_node->inode_item;
1639
1640	inode->i_uid = btrfs_stack_inode_uid(inode_item);
1641	inode->i_gid = btrfs_stack_inode_gid(inode_item);
1642	btrfs_i_size_write(inode, btrfs_stack_inode_size(inode_item));
1643	inode->i_mode = btrfs_stack_inode_mode(inode_item);
1644	inode->i_nlink = btrfs_stack_inode_nlink(inode_item);
1645	inode_set_bytes(inode, btrfs_stack_inode_nbytes(inode_item));
1646	BTRFS_I(inode)->generation = btrfs_stack_inode_generation(inode_item);
1647	BTRFS_I(inode)->sequence = btrfs_stack_inode_sequence(inode_item);
 
 
1648	inode->i_rdev = 0;
1649	*rdev = btrfs_stack_inode_rdev(inode_item);
1650	BTRFS_I(inode)->flags = btrfs_stack_inode_flags(inode_item);
1651
1652	tspec = btrfs_inode_atime(inode_item);
1653	inode->i_atime.tv_sec = btrfs_stack_timespec_sec(tspec);
1654	inode->i_atime.tv_nsec = btrfs_stack_timespec_nsec(tspec);
1655
1656	tspec = btrfs_inode_mtime(inode_item);
1657	inode->i_mtime.tv_sec = btrfs_stack_timespec_sec(tspec);
1658	inode->i_mtime.tv_nsec = btrfs_stack_timespec_nsec(tspec);
1659
1660	tspec = btrfs_inode_ctime(inode_item);
1661	inode->i_ctime.tv_sec = btrfs_stack_timespec_sec(tspec);
1662	inode->i_ctime.tv_nsec = btrfs_stack_timespec_nsec(tspec);
 
 
1663
1664	inode->i_generation = BTRFS_I(inode)->generation;
1665	BTRFS_I(inode)->index_cnt = (u64)-1;
1666
1667	mutex_unlock(&delayed_node->mutex);
1668	btrfs_release_delayed_node(delayed_node);
1669	return 0;
1670}
1671
1672int btrfs_delayed_update_inode(struct btrfs_trans_handle *trans,
1673			       struct btrfs_root *root, struct inode *inode)
1674{
1675	struct btrfs_delayed_node *delayed_node;
1676	int ret = 0;
1677
1678	delayed_node = btrfs_get_or_create_delayed_node(inode);
1679	if (IS_ERR(delayed_node))
1680		return PTR_ERR(delayed_node);
1681
1682	mutex_lock(&delayed_node->mutex);
1683	if (delayed_node->inode_dirty) {
1684		fill_stack_inode_item(trans, &delayed_node->inode_item, inode);
1685		goto release_node;
1686	}
1687
1688	ret = btrfs_delayed_inode_reserve_metadata(trans, root, delayed_node);
1689	/*
1690	 * we must reserve enough space when we start a new transaction,
1691	 * so reserving metadata failure is impossible
1692	 */
1693	BUG_ON(ret);
1694
1695	fill_stack_inode_item(trans, &delayed_node->inode_item, inode);
1696	delayed_node->inode_dirty = 1;
1697	delayed_node->count++;
1698	atomic_inc(&root->fs_info->delayed_root->items);
1699release_node:
1700	mutex_unlock(&delayed_node->mutex);
1701	btrfs_release_delayed_node(delayed_node);
1702	return ret;
1703}
1704
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1705static void __btrfs_kill_delayed_node(struct btrfs_delayed_node *delayed_node)
1706{
1707	struct btrfs_root *root = delayed_node->root;
1708	struct btrfs_delayed_item *curr_item, *prev_item;
1709
1710	mutex_lock(&delayed_node->mutex);
1711	curr_item = __btrfs_first_delayed_insertion_item(delayed_node);
1712	while (curr_item) {
1713		btrfs_delayed_item_release_metadata(root, curr_item);
1714		prev_item = curr_item;
1715		curr_item = __btrfs_next_delayed_item(prev_item);
1716		btrfs_release_delayed_item(prev_item);
1717	}
1718
1719	curr_item = __btrfs_first_delayed_deletion_item(delayed_node);
1720	while (curr_item) {
1721		btrfs_delayed_item_release_metadata(root, curr_item);
1722		prev_item = curr_item;
1723		curr_item = __btrfs_next_delayed_item(prev_item);
1724		btrfs_release_delayed_item(prev_item);
1725	}
1726
1727	if (delayed_node->inode_dirty) {
 
 
 
1728		btrfs_delayed_inode_release_metadata(root, delayed_node);
1729		btrfs_release_delayed_inode(delayed_node);
1730	}
1731	mutex_unlock(&delayed_node->mutex);
1732}
1733
1734void btrfs_kill_delayed_inode_items(struct inode *inode)
1735{
1736	struct btrfs_delayed_node *delayed_node;
1737
1738	delayed_node = btrfs_get_delayed_node(inode);
1739	if (!delayed_node)
1740		return;
1741
1742	__btrfs_kill_delayed_node(delayed_node);
1743	btrfs_release_delayed_node(delayed_node);
1744}
1745
1746void btrfs_kill_all_delayed_nodes(struct btrfs_root *root)
1747{
1748	u64 inode_id = 0;
1749	struct btrfs_delayed_node *delayed_nodes[8];
1750	int i, n;
1751
1752	while (1) {
1753		spin_lock(&root->inode_lock);
1754		n = radix_tree_gang_lookup(&root->delayed_nodes_tree,
1755					   (void **)delayed_nodes, inode_id,
1756					   ARRAY_SIZE(delayed_nodes));
1757		if (!n) {
1758			spin_unlock(&root->inode_lock);
1759			break;
1760		}
1761
1762		inode_id = delayed_nodes[n - 1]->inode_id + 1;
1763
1764		for (i = 0; i < n; i++)
1765			atomic_inc(&delayed_nodes[i]->refs);
1766		spin_unlock(&root->inode_lock);
1767
1768		for (i = 0; i < n; i++) {
1769			__btrfs_kill_delayed_node(delayed_nodes[i]);
1770			btrfs_release_delayed_node(delayed_nodes[i]);
1771		}
1772	}
1773}
v4.6
   1/*
   2 * Copyright (C) 2011 Fujitsu.  All rights reserved.
   3 * Written by Miao Xie <miaox@cn.fujitsu.com>
   4 *
   5 * This program is free software; you can redistribute it and/or
   6 * modify it under the terms of the GNU General Public
   7 * License v2 as published by the Free Software Foundation.
   8 *
   9 * This program is distributed in the hope that it will be useful,
  10 * but WITHOUT ANY WARRANTY; without even the implied warranty of
  11 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the GNU
  12 * General Public License for more details.
  13 *
  14 * You should have received a copy of the GNU General Public
  15 * License along with this program; if not, write to the
  16 * Free Software Foundation, Inc., 59 Temple Place - Suite 330,
  17 * Boston, MA 021110-1307, USA.
  18 */
  19
  20#include <linux/slab.h>
  21#include "delayed-inode.h"
  22#include "disk-io.h"
  23#include "transaction.h"
  24#include "ctree.h"
  25
  26#define BTRFS_DELAYED_WRITEBACK		512
  27#define BTRFS_DELAYED_BACKGROUND	128
  28#define BTRFS_DELAYED_BATCH		16
  29
  30static struct kmem_cache *delayed_node_cache;
  31
  32int __init btrfs_delayed_inode_init(void)
  33{
  34	delayed_node_cache = kmem_cache_create("btrfs_delayed_node",
  35					sizeof(struct btrfs_delayed_node),
  36					0,
  37					SLAB_RECLAIM_ACCOUNT | SLAB_MEM_SPREAD,
  38					NULL);
  39	if (!delayed_node_cache)
  40		return -ENOMEM;
  41	return 0;
  42}
  43
  44void btrfs_delayed_inode_exit(void)
  45{
  46	kmem_cache_destroy(delayed_node_cache);
 
  47}
  48
  49static inline void btrfs_init_delayed_node(
  50				struct btrfs_delayed_node *delayed_node,
  51				struct btrfs_root *root, u64 inode_id)
  52{
  53	delayed_node->root = root;
  54	delayed_node->inode_id = inode_id;
  55	atomic_set(&delayed_node->refs, 0);
 
 
 
  56	delayed_node->ins_root = RB_ROOT;
  57	delayed_node->del_root = RB_ROOT;
  58	mutex_init(&delayed_node->mutex);
 
  59	INIT_LIST_HEAD(&delayed_node->n_list);
  60	INIT_LIST_HEAD(&delayed_node->p_list);
 
  61}
  62
  63static inline int btrfs_is_continuous_delayed_item(
  64					struct btrfs_delayed_item *item1,
  65					struct btrfs_delayed_item *item2)
  66{
  67	if (item1->key.type == BTRFS_DIR_INDEX_KEY &&
  68	    item1->key.objectid == item2->key.objectid &&
  69	    item1->key.type == item2->key.type &&
  70	    item1->key.offset + 1 == item2->key.offset)
  71		return 1;
  72	return 0;
  73}
  74
  75static inline struct btrfs_delayed_root *btrfs_get_delayed_root(
  76							struct btrfs_root *root)
  77{
  78	return root->fs_info->delayed_root;
  79}
  80
  81static struct btrfs_delayed_node *btrfs_get_delayed_node(struct inode *inode)
  82{
  83	struct btrfs_inode *btrfs_inode = BTRFS_I(inode);
  84	struct btrfs_root *root = btrfs_inode->root;
  85	u64 ino = btrfs_ino(inode);
  86	struct btrfs_delayed_node *node;
  87
  88	node = ACCESS_ONCE(btrfs_inode->delayed_node);
  89	if (node) {
  90		atomic_inc(&node->refs);
  91		return node;
  92	}
  93
  94	spin_lock(&root->inode_lock);
  95	node = radix_tree_lookup(&root->delayed_nodes_tree, ino);
  96	if (node) {
  97		if (btrfs_inode->delayed_node) {
  98			atomic_inc(&node->refs);	/* can be accessed */
  99			BUG_ON(btrfs_inode->delayed_node != node);
 100			spin_unlock(&root->inode_lock);
 101			return node;
 102		}
 103		btrfs_inode->delayed_node = node;
 104		/* can be accessed and cached in the inode */
 105		atomic_add(2, &node->refs);
 106		spin_unlock(&root->inode_lock);
 107		return node;
 108	}
 109	spin_unlock(&root->inode_lock);
 110
 111	return NULL;
 112}
 113
 114/* Will return either the node or PTR_ERR(-ENOMEM) */
 115static struct btrfs_delayed_node *btrfs_get_or_create_delayed_node(
 116							struct inode *inode)
 117{
 118	struct btrfs_delayed_node *node;
 119	struct btrfs_inode *btrfs_inode = BTRFS_I(inode);
 120	struct btrfs_root *root = btrfs_inode->root;
 121	u64 ino = btrfs_ino(inode);
 122	int ret;
 123
 124again:
 125	node = btrfs_get_delayed_node(inode);
 126	if (node)
 127		return node;
 128
 129	node = kmem_cache_zalloc(delayed_node_cache, GFP_NOFS);
 130	if (!node)
 131		return ERR_PTR(-ENOMEM);
 132	btrfs_init_delayed_node(node, root, ino);
 133
 134	/* cached in the btrfs inode and can be accessed */
 135	atomic_add(2, &node->refs);
 136
 137	ret = radix_tree_preload(GFP_NOFS & ~__GFP_HIGHMEM);
 138	if (ret) {
 139		kmem_cache_free(delayed_node_cache, node);
 140		return ERR_PTR(ret);
 141	}
 142
 143	spin_lock(&root->inode_lock);
 144	ret = radix_tree_insert(&root->delayed_nodes_tree, ino, node);
 145	if (ret == -EEXIST) {
 
 146		spin_unlock(&root->inode_lock);
 147		kmem_cache_free(delayed_node_cache, node);
 148		radix_tree_preload_end();
 149		goto again;
 150	}
 151	btrfs_inode->delayed_node = node;
 152	spin_unlock(&root->inode_lock);
 153	radix_tree_preload_end();
 154
 155	return node;
 156}
 157
 158/*
 159 * Call it when holding delayed_node->mutex
 160 *
 161 * If mod = 1, add this node into the prepared list.
 162 */
 163static void btrfs_queue_delayed_node(struct btrfs_delayed_root *root,
 164				     struct btrfs_delayed_node *node,
 165				     int mod)
 166{
 167	spin_lock(&root->lock);
 168	if (test_bit(BTRFS_DELAYED_NODE_IN_LIST, &node->flags)) {
 169		if (!list_empty(&node->p_list))
 170			list_move_tail(&node->p_list, &root->prepare_list);
 171		else if (mod)
 172			list_add_tail(&node->p_list, &root->prepare_list);
 173	} else {
 174		list_add_tail(&node->n_list, &root->node_list);
 175		list_add_tail(&node->p_list, &root->prepare_list);
 176		atomic_inc(&node->refs);	/* inserted into list */
 177		root->nodes++;
 178		set_bit(BTRFS_DELAYED_NODE_IN_LIST, &node->flags);
 179	}
 180	spin_unlock(&root->lock);
 181}
 182
 183/* Call it when holding delayed_node->mutex */
 184static void btrfs_dequeue_delayed_node(struct btrfs_delayed_root *root,
 185				       struct btrfs_delayed_node *node)
 186{
 187	spin_lock(&root->lock);
 188	if (test_bit(BTRFS_DELAYED_NODE_IN_LIST, &node->flags)) {
 189		root->nodes--;
 190		atomic_dec(&node->refs);	/* not in the list */
 191		list_del_init(&node->n_list);
 192		if (!list_empty(&node->p_list))
 193			list_del_init(&node->p_list);
 194		clear_bit(BTRFS_DELAYED_NODE_IN_LIST, &node->flags);
 195	}
 196	spin_unlock(&root->lock);
 197}
 198
 199static struct btrfs_delayed_node *btrfs_first_delayed_node(
 200			struct btrfs_delayed_root *delayed_root)
 201{
 202	struct list_head *p;
 203	struct btrfs_delayed_node *node = NULL;
 204
 205	spin_lock(&delayed_root->lock);
 206	if (list_empty(&delayed_root->node_list))
 207		goto out;
 208
 209	p = delayed_root->node_list.next;
 210	node = list_entry(p, struct btrfs_delayed_node, n_list);
 211	atomic_inc(&node->refs);
 212out:
 213	spin_unlock(&delayed_root->lock);
 214
 215	return node;
 216}
 217
 218static struct btrfs_delayed_node *btrfs_next_delayed_node(
 219						struct btrfs_delayed_node *node)
 220{
 221	struct btrfs_delayed_root *delayed_root;
 222	struct list_head *p;
 223	struct btrfs_delayed_node *next = NULL;
 224
 225	delayed_root = node->root->fs_info->delayed_root;
 226	spin_lock(&delayed_root->lock);
 227	if (!test_bit(BTRFS_DELAYED_NODE_IN_LIST, &node->flags)) {
 228		/* not in the list */
 229		if (list_empty(&delayed_root->node_list))
 230			goto out;
 231		p = delayed_root->node_list.next;
 232	} else if (list_is_last(&node->n_list, &delayed_root->node_list))
 233		goto out;
 234	else
 235		p = node->n_list.next;
 236
 237	next = list_entry(p, struct btrfs_delayed_node, n_list);
 238	atomic_inc(&next->refs);
 239out:
 240	spin_unlock(&delayed_root->lock);
 241
 242	return next;
 243}
 244
 245static void __btrfs_release_delayed_node(
 246				struct btrfs_delayed_node *delayed_node,
 247				int mod)
 248{
 249	struct btrfs_delayed_root *delayed_root;
 250
 251	if (!delayed_node)
 252		return;
 253
 254	delayed_root = delayed_node->root->fs_info->delayed_root;
 255
 256	mutex_lock(&delayed_node->mutex);
 257	if (delayed_node->count)
 258		btrfs_queue_delayed_node(delayed_root, delayed_node, mod);
 259	else
 260		btrfs_dequeue_delayed_node(delayed_root, delayed_node);
 261	mutex_unlock(&delayed_node->mutex);
 262
 263	if (atomic_dec_and_test(&delayed_node->refs)) {
 264		bool free = false;
 265		struct btrfs_root *root = delayed_node->root;
 266		spin_lock(&root->inode_lock);
 267		if (atomic_read(&delayed_node->refs) == 0) {
 268			radix_tree_delete(&root->delayed_nodes_tree,
 269					  delayed_node->inode_id);
 270			free = true;
 271		}
 272		spin_unlock(&root->inode_lock);
 273		if (free)
 274			kmem_cache_free(delayed_node_cache, delayed_node);
 275	}
 276}
 277
 278static inline void btrfs_release_delayed_node(struct btrfs_delayed_node *node)
 279{
 280	__btrfs_release_delayed_node(node, 0);
 281}
 282
 283static struct btrfs_delayed_node *btrfs_first_prepared_delayed_node(
 284					struct btrfs_delayed_root *delayed_root)
 285{
 286	struct list_head *p;
 287	struct btrfs_delayed_node *node = NULL;
 288
 289	spin_lock(&delayed_root->lock);
 290	if (list_empty(&delayed_root->prepare_list))
 291		goto out;
 292
 293	p = delayed_root->prepare_list.next;
 294	list_del_init(p);
 295	node = list_entry(p, struct btrfs_delayed_node, p_list);
 296	atomic_inc(&node->refs);
 297out:
 298	spin_unlock(&delayed_root->lock);
 299
 300	return node;
 301}
 302
 303static inline void btrfs_release_prepared_delayed_node(
 304					struct btrfs_delayed_node *node)
 305{
 306	__btrfs_release_delayed_node(node, 1);
 307}
 308
 309static struct btrfs_delayed_item *btrfs_alloc_delayed_item(u32 data_len)
 310{
 311	struct btrfs_delayed_item *item;
 312	item = kmalloc(sizeof(*item) + data_len, GFP_NOFS);
 313	if (item) {
 314		item->data_len = data_len;
 315		item->ins_or_del = 0;
 316		item->bytes_reserved = 0;
 317		item->delayed_node = NULL;
 318		atomic_set(&item->refs, 1);
 319	}
 320	return item;
 321}
 322
 323/*
 324 * __btrfs_lookup_delayed_item - look up the delayed item by key
 325 * @delayed_node: pointer to the delayed node
 326 * @key:	  the key to look up
 327 * @prev:	  used to store the prev item if the right item isn't found
 328 * @next:	  used to store the next item if the right item isn't found
 329 *
 330 * Note: if we don't find the right item, we will return the prev item and
 331 * the next item.
 332 */
 333static struct btrfs_delayed_item *__btrfs_lookup_delayed_item(
 334				struct rb_root *root,
 335				struct btrfs_key *key,
 336				struct btrfs_delayed_item **prev,
 337				struct btrfs_delayed_item **next)
 338{
 339	struct rb_node *node, *prev_node = NULL;
 340	struct btrfs_delayed_item *delayed_item = NULL;
 341	int ret = 0;
 342
 343	node = root->rb_node;
 344
 345	while (node) {
 346		delayed_item = rb_entry(node, struct btrfs_delayed_item,
 347					rb_node);
 348		prev_node = node;
 349		ret = btrfs_comp_cpu_keys(&delayed_item->key, key);
 350		if (ret < 0)
 351			node = node->rb_right;
 352		else if (ret > 0)
 353			node = node->rb_left;
 354		else
 355			return delayed_item;
 356	}
 357
 358	if (prev) {
 359		if (!prev_node)
 360			*prev = NULL;
 361		else if (ret < 0)
 362			*prev = delayed_item;
 363		else if ((node = rb_prev(prev_node)) != NULL) {
 364			*prev = rb_entry(node, struct btrfs_delayed_item,
 365					 rb_node);
 366		} else
 367			*prev = NULL;
 368	}
 369
 370	if (next) {
 371		if (!prev_node)
 372			*next = NULL;
 373		else if (ret > 0)
 374			*next = delayed_item;
 375		else if ((node = rb_next(prev_node)) != NULL) {
 376			*next = rb_entry(node, struct btrfs_delayed_item,
 377					 rb_node);
 378		} else
 379			*next = NULL;
 380	}
 381	return NULL;
 382}
 383
 384static struct btrfs_delayed_item *__btrfs_lookup_delayed_insertion_item(
 385					struct btrfs_delayed_node *delayed_node,
 386					struct btrfs_key *key)
 387{
 388	struct btrfs_delayed_item *item;
 389
 390	item = __btrfs_lookup_delayed_item(&delayed_node->ins_root, key,
 391					   NULL, NULL);
 392	return item;
 393}
 394
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 395static int __btrfs_add_delayed_item(struct btrfs_delayed_node *delayed_node,
 396				    struct btrfs_delayed_item *ins,
 397				    int action)
 398{
 399	struct rb_node **p, *node;
 400	struct rb_node *parent_node = NULL;
 401	struct rb_root *root;
 402	struct btrfs_delayed_item *item;
 403	int cmp;
 404
 405	if (action == BTRFS_DELAYED_INSERTION_ITEM)
 406		root = &delayed_node->ins_root;
 407	else if (action == BTRFS_DELAYED_DELETION_ITEM)
 408		root = &delayed_node->del_root;
 409	else
 410		BUG();
 411	p = &root->rb_node;
 412	node = &ins->rb_node;
 413
 414	while (*p) {
 415		parent_node = *p;
 416		item = rb_entry(parent_node, struct btrfs_delayed_item,
 417				 rb_node);
 418
 419		cmp = btrfs_comp_cpu_keys(&item->key, &ins->key);
 420		if (cmp < 0)
 421			p = &(*p)->rb_right;
 422		else if (cmp > 0)
 423			p = &(*p)->rb_left;
 424		else
 425			return -EEXIST;
 426	}
 427
 428	rb_link_node(node, parent_node, p);
 429	rb_insert_color(node, root);
 430	ins->delayed_node = delayed_node;
 431	ins->ins_or_del = action;
 432
 433	if (ins->key.type == BTRFS_DIR_INDEX_KEY &&
 434	    action == BTRFS_DELAYED_INSERTION_ITEM &&
 435	    ins->key.offset >= delayed_node->index_cnt)
 436			delayed_node->index_cnt = ins->key.offset + 1;
 437
 438	delayed_node->count++;
 439	atomic_inc(&delayed_node->root->fs_info->delayed_root->items);
 440	return 0;
 441}
 442
 443static int __btrfs_add_delayed_insertion_item(struct btrfs_delayed_node *node,
 444					      struct btrfs_delayed_item *item)
 445{
 446	return __btrfs_add_delayed_item(node, item,
 447					BTRFS_DELAYED_INSERTION_ITEM);
 448}
 449
 450static int __btrfs_add_delayed_deletion_item(struct btrfs_delayed_node *node,
 451					     struct btrfs_delayed_item *item)
 452{
 453	return __btrfs_add_delayed_item(node, item,
 454					BTRFS_DELAYED_DELETION_ITEM);
 455}
 456
 457static void finish_one_item(struct btrfs_delayed_root *delayed_root)
 458{
 459	int seq = atomic_inc_return(&delayed_root->items_seq);
 460
 461	/*
 462	 * atomic_dec_return implies a barrier for waitqueue_active
 463	 */
 464	if ((atomic_dec_return(&delayed_root->items) <
 465	    BTRFS_DELAYED_BACKGROUND || seq % BTRFS_DELAYED_BATCH == 0) &&
 466	    waitqueue_active(&delayed_root->wait))
 467		wake_up(&delayed_root->wait);
 468}
 469
 470static void __btrfs_remove_delayed_item(struct btrfs_delayed_item *delayed_item)
 471{
 472	struct rb_root *root;
 473	struct btrfs_delayed_root *delayed_root;
 474
 475	delayed_root = delayed_item->delayed_node->root->fs_info->delayed_root;
 476
 477	BUG_ON(!delayed_root);
 478	BUG_ON(delayed_item->ins_or_del != BTRFS_DELAYED_DELETION_ITEM &&
 479	       delayed_item->ins_or_del != BTRFS_DELAYED_INSERTION_ITEM);
 480
 481	if (delayed_item->ins_or_del == BTRFS_DELAYED_INSERTION_ITEM)
 482		root = &delayed_item->delayed_node->ins_root;
 483	else
 484		root = &delayed_item->delayed_node->del_root;
 485
 486	rb_erase(&delayed_item->rb_node, root);
 487	delayed_item->delayed_node->count--;
 488
 489	finish_one_item(delayed_root);
 
 
 490}
 491
 492static void btrfs_release_delayed_item(struct btrfs_delayed_item *item)
 493{
 494	if (item) {
 495		__btrfs_remove_delayed_item(item);
 496		if (atomic_dec_and_test(&item->refs))
 497			kfree(item);
 498	}
 499}
 500
 501static struct btrfs_delayed_item *__btrfs_first_delayed_insertion_item(
 502					struct btrfs_delayed_node *delayed_node)
 503{
 504	struct rb_node *p;
 505	struct btrfs_delayed_item *item = NULL;
 506
 507	p = rb_first(&delayed_node->ins_root);
 508	if (p)
 509		item = rb_entry(p, struct btrfs_delayed_item, rb_node);
 510
 511	return item;
 512}
 513
 514static struct btrfs_delayed_item *__btrfs_first_delayed_deletion_item(
 515					struct btrfs_delayed_node *delayed_node)
 516{
 517	struct rb_node *p;
 518	struct btrfs_delayed_item *item = NULL;
 519
 520	p = rb_first(&delayed_node->del_root);
 521	if (p)
 522		item = rb_entry(p, struct btrfs_delayed_item, rb_node);
 523
 524	return item;
 525}
 526
 527static struct btrfs_delayed_item *__btrfs_next_delayed_item(
 528						struct btrfs_delayed_item *item)
 529{
 530	struct rb_node *p;
 531	struct btrfs_delayed_item *next = NULL;
 532
 533	p = rb_next(&item->rb_node);
 534	if (p)
 535		next = rb_entry(p, struct btrfs_delayed_item, rb_node);
 536
 537	return next;
 538}
 539
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 540static int btrfs_delayed_item_reserve_metadata(struct btrfs_trans_handle *trans,
 541					       struct btrfs_root *root,
 542					       struct btrfs_delayed_item *item)
 543{
 544	struct btrfs_block_rsv *src_rsv;
 545	struct btrfs_block_rsv *dst_rsv;
 546	u64 num_bytes;
 547	int ret;
 548
 549	if (!trans->bytes_reserved)
 550		return 0;
 551
 552	src_rsv = trans->block_rsv;
 553	dst_rsv = &root->fs_info->delayed_block_rsv;
 554
 555	num_bytes = btrfs_calc_trans_metadata_size(root, 1);
 556	ret = btrfs_block_rsv_migrate(src_rsv, dst_rsv, num_bytes);
 557	if (!ret) {
 558		trace_btrfs_space_reservation(root->fs_info, "delayed_item",
 559					      item->key.objectid,
 560					      num_bytes, 1);
 561		item->bytes_reserved = num_bytes;
 562	}
 563
 564	return ret;
 565}
 566
 567static void btrfs_delayed_item_release_metadata(struct btrfs_root *root,
 568						struct btrfs_delayed_item *item)
 569{
 570	struct btrfs_block_rsv *rsv;
 571
 572	if (!item->bytes_reserved)
 573		return;
 574
 575	rsv = &root->fs_info->delayed_block_rsv;
 576	trace_btrfs_space_reservation(root->fs_info, "delayed_item",
 577				      item->key.objectid, item->bytes_reserved,
 578				      0);
 579	btrfs_block_rsv_release(root, rsv,
 580				item->bytes_reserved);
 581}
 582
 583static int btrfs_delayed_inode_reserve_metadata(
 584					struct btrfs_trans_handle *trans,
 585					struct btrfs_root *root,
 586					struct inode *inode,
 587					struct btrfs_delayed_node *node)
 588{
 589	struct btrfs_block_rsv *src_rsv;
 590	struct btrfs_block_rsv *dst_rsv;
 591	u64 num_bytes;
 592	int ret;
 593	bool release = false;
 
 
 594
 595	src_rsv = trans->block_rsv;
 596	dst_rsv = &root->fs_info->delayed_block_rsv;
 597
 598	num_bytes = btrfs_calc_trans_metadata_size(root, 1);
 599
 600	/*
 601	 * btrfs_dirty_inode will update the inode under btrfs_join_transaction
 602	 * which doesn't reserve space for speed.  This is a problem since we
 603	 * still need to reserve space for this update, so try to reserve the
 604	 * space.
 605	 *
 606	 * Now if src_rsv == delalloc_block_rsv we'll let it just steal since
 607	 * we're accounted for.
 608	 */
 609	if (!src_rsv || (!trans->bytes_reserved &&
 610			 src_rsv->type != BTRFS_BLOCK_RSV_DELALLOC)) {
 611		ret = btrfs_block_rsv_add(root, dst_rsv, num_bytes,
 612					  BTRFS_RESERVE_NO_FLUSH);
 613		/*
 614		 * Since we're under a transaction reserve_metadata_bytes could
 615		 * try to commit the transaction which will make it return
 616		 * EAGAIN to make us stop the transaction we have, so return
 617		 * ENOSPC instead so that btrfs_dirty_inode knows what to do.
 618		 */
 619		if (ret == -EAGAIN)
 620			ret = -ENOSPC;
 621		if (!ret) {
 622			node->bytes_reserved = num_bytes;
 623			trace_btrfs_space_reservation(root->fs_info,
 624						      "delayed_inode",
 625						      btrfs_ino(inode),
 626						      num_bytes, 1);
 627		}
 628		return ret;
 629	} else if (src_rsv->type == BTRFS_BLOCK_RSV_DELALLOC) {
 630		spin_lock(&BTRFS_I(inode)->lock);
 631		if (test_and_clear_bit(BTRFS_INODE_DELALLOC_META_RESERVED,
 632				       &BTRFS_I(inode)->runtime_flags)) {
 633			spin_unlock(&BTRFS_I(inode)->lock);
 634			release = true;
 635			goto migrate;
 636		}
 637		spin_unlock(&BTRFS_I(inode)->lock);
 638
 639		/* Ok we didn't have space pre-reserved.  This shouldn't happen
 640		 * too often but it can happen if we do delalloc to an existing
 641		 * inode which gets dirtied because of the time update, and then
 642		 * isn't touched again until after the transaction commits and
 643		 * then we try to write out the data.  First try to be nice and
 644		 * reserve something strictly for us.  If not be a pain and try
 645		 * to steal from the delalloc block rsv.
 646		 */
 647		ret = btrfs_block_rsv_add(root, dst_rsv, num_bytes,
 648					  BTRFS_RESERVE_NO_FLUSH);
 649		if (!ret)
 650			goto out;
 651
 652		ret = btrfs_block_rsv_migrate(src_rsv, dst_rsv, num_bytes);
 653		if (!ret)
 654			goto out;
 655
 656		if (btrfs_test_opt(root, ENOSPC_DEBUG)) {
 657			btrfs_debug(root->fs_info,
 658				    "block rsv migrate returned %d", ret);
 659			WARN_ON(1);
 660		}
 661		/*
 662		 * Ok this is a problem, let's just steal from the global rsv
 663		 * since this really shouldn't happen that often.
 664		 */
 665		ret = btrfs_block_rsv_migrate(&root->fs_info->global_block_rsv,
 666					      dst_rsv, num_bytes);
 667		goto out;
 668	}
 669
 670migrate:
 671	ret = btrfs_block_rsv_migrate(src_rsv, dst_rsv, num_bytes);
 672
 673out:
 674	/*
 675	 * Migrate only takes a reservation, it doesn't touch the size of the
 676	 * block_rsv.  This is to simplify people who don't normally have things
 677	 * migrated from their block rsv.  If they go to release their
 678	 * reservation, that will decrease the size as well, so if migrate
 679	 * reduced size we'd end up with a negative size.  But for the
 680	 * delalloc_meta_reserved stuff we will only know to drop 1 reservation,
 681	 * but we could in fact do this reserve/migrate dance several times
 682	 * between the time we did the original reservation and we'd clean it
 683	 * up.  So to take care of this, release the space for the meta
 684	 * reservation here.  I think it may be time for a documentation page on
 685	 * how block rsvs. work.
 686	 */
 687	if (!ret) {
 688		trace_btrfs_space_reservation(root->fs_info, "delayed_inode",
 689					      btrfs_ino(inode), num_bytes, 1);
 690		node->bytes_reserved = num_bytes;
 691	}
 692
 693	if (release) {
 694		trace_btrfs_space_reservation(root->fs_info, "delalloc",
 695					      btrfs_ino(inode), num_bytes, 0);
 696		btrfs_block_rsv_release(root, src_rsv, num_bytes);
 697	}
 698
 699	return ret;
 700}
 701
 702static void btrfs_delayed_inode_release_metadata(struct btrfs_root *root,
 703						struct btrfs_delayed_node *node)
 704{
 705	struct btrfs_block_rsv *rsv;
 706
 707	if (!node->bytes_reserved)
 708		return;
 709
 710	rsv = &root->fs_info->delayed_block_rsv;
 711	trace_btrfs_space_reservation(root->fs_info, "delayed_inode",
 712				      node->inode_id, node->bytes_reserved, 0);
 713	btrfs_block_rsv_release(root, rsv,
 714				node->bytes_reserved);
 715	node->bytes_reserved = 0;
 716}
 717
 718/*
 719 * This helper will insert some continuous items into the same leaf according
 720 * to the free space of the leaf.
 721 */
 722static int btrfs_batch_insert_items(struct btrfs_root *root,
 723				    struct btrfs_path *path,
 724				    struct btrfs_delayed_item *item)
 
 725{
 726	struct btrfs_delayed_item *curr, *next;
 727	int free_space;
 728	int total_data_size = 0, total_size = 0;
 729	struct extent_buffer *leaf;
 730	char *data_ptr;
 731	struct btrfs_key *keys;
 732	u32 *data_size;
 733	struct list_head head;
 734	int slot;
 735	int nitems;
 736	int i;
 737	int ret = 0;
 738
 739	BUG_ON(!path->nodes[0]);
 740
 741	leaf = path->nodes[0];
 742	free_space = btrfs_leaf_free_space(root, leaf);
 743	INIT_LIST_HEAD(&head);
 744
 745	next = item;
 746	nitems = 0;
 747
 748	/*
 749	 * count the number of the continuous items that we can insert in batch
 750	 */
 751	while (total_size + next->data_len + sizeof(struct btrfs_item) <=
 752	       free_space) {
 753		total_data_size += next->data_len;
 754		total_size += next->data_len + sizeof(struct btrfs_item);
 755		list_add_tail(&next->tree_list, &head);
 756		nitems++;
 757
 758		curr = next;
 759		next = __btrfs_next_delayed_item(curr);
 760		if (!next)
 761			break;
 762
 763		if (!btrfs_is_continuous_delayed_item(curr, next))
 764			break;
 765	}
 766
 767	if (!nitems) {
 768		ret = 0;
 769		goto out;
 770	}
 771
 772	/*
 773	 * we need allocate some memory space, but it might cause the task
 774	 * to sleep, so we set all locked nodes in the path to blocking locks
 775	 * first.
 776	 */
 777	btrfs_set_path_blocking(path);
 778
 779	keys = kmalloc_array(nitems, sizeof(struct btrfs_key), GFP_NOFS);
 780	if (!keys) {
 781		ret = -ENOMEM;
 782		goto out;
 783	}
 784
 785	data_size = kmalloc_array(nitems, sizeof(u32), GFP_NOFS);
 786	if (!data_size) {
 787		ret = -ENOMEM;
 788		goto error;
 789	}
 790
 791	/* get keys of all the delayed items */
 792	i = 0;
 793	list_for_each_entry(next, &head, tree_list) {
 794		keys[i] = next->key;
 795		data_size[i] = next->data_len;
 796		i++;
 797	}
 798
 799	/* reset all the locked nodes in the patch to spinning locks. */
 800	btrfs_clear_path_blocking(path, NULL, 0);
 801
 802	/* insert the keys of the items */
 803	setup_items_for_insert(root, path, keys, data_size,
 804			       total_data_size, total_size, nitems);
 
 
 805
 806	/* insert the dir index items */
 807	slot = path->slots[0];
 808	list_for_each_entry_safe(curr, next, &head, tree_list) {
 809		data_ptr = btrfs_item_ptr(leaf, slot, char);
 810		write_extent_buffer(leaf, &curr->data,
 811				    (unsigned long)data_ptr,
 812				    curr->data_len);
 813		slot++;
 814
 815		btrfs_delayed_item_release_metadata(root, curr);
 816
 817		list_del(&curr->tree_list);
 818		btrfs_release_delayed_item(curr);
 819	}
 820
 821error:
 822	kfree(data_size);
 823	kfree(keys);
 824out:
 825	return ret;
 826}
 827
 828/*
 829 * This helper can just do simple insertion that needn't extend item for new
 830 * data, such as directory name index insertion, inode insertion.
 831 */
 832static int btrfs_insert_delayed_item(struct btrfs_trans_handle *trans,
 833				     struct btrfs_root *root,
 834				     struct btrfs_path *path,
 835				     struct btrfs_delayed_item *delayed_item)
 836{
 837	struct extent_buffer *leaf;
 
 838	char *ptr;
 839	int ret;
 840
 841	ret = btrfs_insert_empty_item(trans, root, path, &delayed_item->key,
 842				      delayed_item->data_len);
 843	if (ret < 0 && ret != -EEXIST)
 844		return ret;
 845
 846	leaf = path->nodes[0];
 847
 
 848	ptr = btrfs_item_ptr(leaf, path->slots[0], char);
 849
 850	write_extent_buffer(leaf, delayed_item->data, (unsigned long)ptr,
 851			    delayed_item->data_len);
 852	btrfs_mark_buffer_dirty(leaf);
 853
 854	btrfs_delayed_item_release_metadata(root, delayed_item);
 855	return 0;
 856}
 857
 858/*
 859 * we insert an item first, then if there are some continuous items, we try
 860 * to insert those items into the same leaf.
 861 */
 862static int btrfs_insert_delayed_items(struct btrfs_trans_handle *trans,
 863				      struct btrfs_path *path,
 864				      struct btrfs_root *root,
 865				      struct btrfs_delayed_node *node)
 866{
 867	struct btrfs_delayed_item *curr, *prev;
 868	int ret = 0;
 869
 870do_again:
 871	mutex_lock(&node->mutex);
 872	curr = __btrfs_first_delayed_insertion_item(node);
 873	if (!curr)
 874		goto insert_end;
 875
 876	ret = btrfs_insert_delayed_item(trans, root, path, curr);
 877	if (ret < 0) {
 878		btrfs_release_path(path);
 879		goto insert_end;
 880	}
 881
 882	prev = curr;
 883	curr = __btrfs_next_delayed_item(prev);
 884	if (curr && btrfs_is_continuous_delayed_item(prev, curr)) {
 885		/* insert the continuous items into the same leaf */
 886		path->slots[0]++;
 887		btrfs_batch_insert_items(root, path, curr);
 888	}
 889	btrfs_release_delayed_item(prev);
 890	btrfs_mark_buffer_dirty(path->nodes[0]);
 891
 892	btrfs_release_path(path);
 893	mutex_unlock(&node->mutex);
 894	goto do_again;
 895
 896insert_end:
 897	mutex_unlock(&node->mutex);
 898	return ret;
 899}
 900
 901static int btrfs_batch_delete_items(struct btrfs_trans_handle *trans,
 902				    struct btrfs_root *root,
 903				    struct btrfs_path *path,
 904				    struct btrfs_delayed_item *item)
 905{
 906	struct btrfs_delayed_item *curr, *next;
 907	struct extent_buffer *leaf;
 908	struct btrfs_key key;
 909	struct list_head head;
 910	int nitems, i, last_item;
 911	int ret = 0;
 912
 913	BUG_ON(!path->nodes[0]);
 914
 915	leaf = path->nodes[0];
 916
 917	i = path->slots[0];
 918	last_item = btrfs_header_nritems(leaf) - 1;
 919	if (i > last_item)
 920		return -ENOENT;	/* FIXME: Is errno suitable? */
 921
 922	next = item;
 923	INIT_LIST_HEAD(&head);
 924	btrfs_item_key_to_cpu(leaf, &key, i);
 925	nitems = 0;
 926	/*
 927	 * count the number of the dir index items that we can delete in batch
 928	 */
 929	while (btrfs_comp_cpu_keys(&next->key, &key) == 0) {
 930		list_add_tail(&next->tree_list, &head);
 931		nitems++;
 932
 933		curr = next;
 934		next = __btrfs_next_delayed_item(curr);
 935		if (!next)
 936			break;
 937
 938		if (!btrfs_is_continuous_delayed_item(curr, next))
 939			break;
 940
 941		i++;
 942		if (i > last_item)
 943			break;
 944		btrfs_item_key_to_cpu(leaf, &key, i);
 945	}
 946
 947	if (!nitems)
 948		return 0;
 949
 950	ret = btrfs_del_items(trans, root, path, path->slots[0], nitems);
 951	if (ret)
 952		goto out;
 953
 954	list_for_each_entry_safe(curr, next, &head, tree_list) {
 955		btrfs_delayed_item_release_metadata(root, curr);
 956		list_del(&curr->tree_list);
 957		btrfs_release_delayed_item(curr);
 958	}
 959
 960out:
 961	return ret;
 962}
 963
 964static int btrfs_delete_delayed_items(struct btrfs_trans_handle *trans,
 965				      struct btrfs_path *path,
 966				      struct btrfs_root *root,
 967				      struct btrfs_delayed_node *node)
 968{
 969	struct btrfs_delayed_item *curr, *prev;
 970	int ret = 0;
 971
 972do_again:
 973	mutex_lock(&node->mutex);
 974	curr = __btrfs_first_delayed_deletion_item(node);
 975	if (!curr)
 976		goto delete_fail;
 977
 978	ret = btrfs_search_slot(trans, root, &curr->key, path, -1, 1);
 979	if (ret < 0)
 980		goto delete_fail;
 981	else if (ret > 0) {
 982		/*
 983		 * can't find the item which the node points to, so this node
 984		 * is invalid, just drop it.
 985		 */
 986		prev = curr;
 987		curr = __btrfs_next_delayed_item(prev);
 988		btrfs_release_delayed_item(prev);
 989		ret = 0;
 990		btrfs_release_path(path);
 991		if (curr) {
 992			mutex_unlock(&node->mutex);
 993			goto do_again;
 994		} else
 995			goto delete_fail;
 996	}
 997
 998	btrfs_batch_delete_items(trans, root, path, curr);
 999	btrfs_release_path(path);
1000	mutex_unlock(&node->mutex);
1001	goto do_again;
1002
1003delete_fail:
1004	btrfs_release_path(path);
1005	mutex_unlock(&node->mutex);
1006	return ret;
1007}
1008
1009static void btrfs_release_delayed_inode(struct btrfs_delayed_node *delayed_node)
1010{
1011	struct btrfs_delayed_root *delayed_root;
1012
1013	if (delayed_node &&
1014	    test_bit(BTRFS_DELAYED_NODE_INODE_DIRTY, &delayed_node->flags)) {
1015		BUG_ON(!delayed_node->root);
1016		clear_bit(BTRFS_DELAYED_NODE_INODE_DIRTY, &delayed_node->flags);
1017		delayed_node->count--;
1018
1019		delayed_root = delayed_node->root->fs_info->delayed_root;
1020		finish_one_item(delayed_root);
 
 
 
 
1021	}
1022}
1023
1024static void btrfs_release_delayed_iref(struct btrfs_delayed_node *delayed_node)
1025{
1026	struct btrfs_delayed_root *delayed_root;
1027
1028	ASSERT(delayed_node->root);
1029	clear_bit(BTRFS_DELAYED_NODE_DEL_IREF, &delayed_node->flags);
1030	delayed_node->count--;
1031
1032	delayed_root = delayed_node->root->fs_info->delayed_root;
1033	finish_one_item(delayed_root);
1034}
1035
1036static int __btrfs_update_delayed_inode(struct btrfs_trans_handle *trans,
1037					struct btrfs_root *root,
1038					struct btrfs_path *path,
1039					struct btrfs_delayed_node *node)
1040{
1041	struct btrfs_key key;
1042	struct btrfs_inode_item *inode_item;
1043	struct extent_buffer *leaf;
1044	int mod;
1045	int ret;
1046
 
 
 
 
 
 
1047	key.objectid = node->inode_id;
1048	key.type = BTRFS_INODE_ITEM_KEY;
1049	key.offset = 0;
1050
1051	if (test_bit(BTRFS_DELAYED_NODE_DEL_IREF, &node->flags))
1052		mod = -1;
1053	else
1054		mod = 1;
1055
1056	ret = btrfs_lookup_inode(trans, root, path, &key, mod);
1057	if (ret > 0) {
1058		btrfs_release_path(path);
 
1059		return -ENOENT;
1060	} else if (ret < 0) {
 
1061		return ret;
1062	}
1063
 
1064	leaf = path->nodes[0];
1065	inode_item = btrfs_item_ptr(leaf, path->slots[0],
1066				    struct btrfs_inode_item);
1067	write_extent_buffer(leaf, &node->inode_item, (unsigned long)inode_item,
1068			    sizeof(struct btrfs_inode_item));
1069	btrfs_mark_buffer_dirty(leaf);
 
1070
1071	if (!test_bit(BTRFS_DELAYED_NODE_DEL_IREF, &node->flags))
1072		goto no_iref;
1073
1074	path->slots[0]++;
1075	if (path->slots[0] >= btrfs_header_nritems(leaf))
1076		goto search;
1077again:
1078	btrfs_item_key_to_cpu(leaf, &key, path->slots[0]);
1079	if (key.objectid != node->inode_id)
1080		goto out;
1081
1082	if (key.type != BTRFS_INODE_REF_KEY &&
1083	    key.type != BTRFS_INODE_EXTREF_KEY)
1084		goto out;
1085
1086	/*
1087	 * Delayed iref deletion is for the inode who has only one link,
1088	 * so there is only one iref. The case that several irefs are
1089	 * in the same item doesn't exist.
1090	 */
1091	btrfs_del_item(trans, root, path);
1092out:
1093	btrfs_release_delayed_iref(node);
1094no_iref:
1095	btrfs_release_path(path);
1096err_out:
1097	btrfs_delayed_inode_release_metadata(root, node);
1098	btrfs_release_delayed_inode(node);
1099
1100	return ret;
1101
1102search:
1103	btrfs_release_path(path);
1104
1105	key.type = BTRFS_INODE_EXTREF_KEY;
1106	key.offset = -1;
1107	ret = btrfs_search_slot(trans, root, &key, path, -1, 1);
1108	if (ret < 0)
1109		goto err_out;
1110	ASSERT(ret);
1111
1112	ret = 0;
1113	leaf = path->nodes[0];
1114	path->slots[0]--;
1115	goto again;
1116}
1117
1118static inline int btrfs_update_delayed_inode(struct btrfs_trans_handle *trans,
1119					     struct btrfs_root *root,
1120					     struct btrfs_path *path,
1121					     struct btrfs_delayed_node *node)
1122{
1123	int ret;
1124
1125	mutex_lock(&node->mutex);
1126	if (!test_bit(BTRFS_DELAYED_NODE_INODE_DIRTY, &node->flags)) {
1127		mutex_unlock(&node->mutex);
1128		return 0;
1129	}
1130
1131	ret = __btrfs_update_delayed_inode(trans, root, path, node);
1132	mutex_unlock(&node->mutex);
1133	return ret;
1134}
1135
1136static inline int
1137__btrfs_commit_inode_delayed_items(struct btrfs_trans_handle *trans,
1138				   struct btrfs_path *path,
1139				   struct btrfs_delayed_node *node)
1140{
1141	int ret;
1142
1143	ret = btrfs_insert_delayed_items(trans, path, node->root, node);
1144	if (ret)
1145		return ret;
1146
1147	ret = btrfs_delete_delayed_items(trans, path, node->root, node);
1148	if (ret)
1149		return ret;
1150
1151	ret = btrfs_update_delayed_inode(trans, node->root, path, node);
1152	return ret;
1153}
1154
1155/*
1156 * Called when committing the transaction.
1157 * Returns 0 on success.
1158 * Returns < 0 on error and returns with an aborted transaction with any
1159 * outstanding delayed items cleaned up.
1160 */
1161static int __btrfs_run_delayed_items(struct btrfs_trans_handle *trans,
1162				     struct btrfs_root *root, int nr)
1163{
1164	struct btrfs_delayed_root *delayed_root;
1165	struct btrfs_delayed_node *curr_node, *prev_node;
1166	struct btrfs_path *path;
1167	struct btrfs_block_rsv *block_rsv;
1168	int ret = 0;
1169	bool count = (nr > 0);
1170
1171	if (trans->aborted)
1172		return -EIO;
1173
1174	path = btrfs_alloc_path();
1175	if (!path)
1176		return -ENOMEM;
1177	path->leave_spinning = 1;
1178
1179	block_rsv = trans->block_rsv;
1180	trans->block_rsv = &root->fs_info->delayed_block_rsv;
1181
1182	delayed_root = btrfs_get_delayed_root(root);
1183
1184	curr_node = btrfs_first_delayed_node(delayed_root);
1185	while (curr_node && (!count || (count && nr--))) {
1186		ret = __btrfs_commit_inode_delayed_items(trans, path,
 
 
 
 
 
 
 
1187							 curr_node);
1188		if (ret) {
1189			btrfs_release_delayed_node(curr_node);
1190			curr_node = NULL;
1191			btrfs_abort_transaction(trans, root, ret);
1192			break;
1193		}
1194
1195		prev_node = curr_node;
1196		curr_node = btrfs_next_delayed_node(curr_node);
1197		btrfs_release_delayed_node(prev_node);
1198	}
1199
1200	if (curr_node)
1201		btrfs_release_delayed_node(curr_node);
1202	btrfs_free_path(path);
1203	trans->block_rsv = block_rsv;
1204
1205	return ret;
1206}
1207
1208int btrfs_run_delayed_items(struct btrfs_trans_handle *trans,
1209			    struct btrfs_root *root)
1210{
1211	return __btrfs_run_delayed_items(trans, root, -1);
1212}
1213
1214int btrfs_run_delayed_items_nr(struct btrfs_trans_handle *trans,
1215			       struct btrfs_root *root, int nr)
1216{
1217	return __btrfs_run_delayed_items(trans, root, nr);
1218}
1219
1220int btrfs_commit_inode_delayed_items(struct btrfs_trans_handle *trans,
1221				     struct inode *inode)
1222{
1223	struct btrfs_delayed_node *delayed_node = btrfs_get_delayed_node(inode);
1224	struct btrfs_path *path;
1225	struct btrfs_block_rsv *block_rsv;
1226	int ret;
1227
1228	if (!delayed_node)
1229		return 0;
1230
1231	mutex_lock(&delayed_node->mutex);
1232	if (!delayed_node->count) {
1233		mutex_unlock(&delayed_node->mutex);
1234		btrfs_release_delayed_node(delayed_node);
1235		return 0;
1236	}
1237	mutex_unlock(&delayed_node->mutex);
1238
1239	path = btrfs_alloc_path();
1240	if (!path) {
1241		btrfs_release_delayed_node(delayed_node);
1242		return -ENOMEM;
1243	}
1244	path->leave_spinning = 1;
1245
1246	block_rsv = trans->block_rsv;
1247	trans->block_rsv = &delayed_node->root->fs_info->delayed_block_rsv;
1248
1249	ret = __btrfs_commit_inode_delayed_items(trans, path, delayed_node);
 
 
 
 
 
1250
1251	btrfs_release_delayed_node(delayed_node);
1252	btrfs_free_path(path);
1253	trans->block_rsv = block_rsv;
1254
1255	return ret;
1256}
1257
1258int btrfs_commit_inode_delayed_inode(struct inode *inode)
 
1259{
1260	struct btrfs_trans_handle *trans;
1261	struct btrfs_delayed_node *delayed_node = btrfs_get_delayed_node(inode);
1262	struct btrfs_path *path;
1263	struct btrfs_block_rsv *block_rsv;
1264	int ret;
1265
1266	if (!delayed_node)
1267		return 0;
1268
1269	mutex_lock(&delayed_node->mutex);
1270	if (!test_bit(BTRFS_DELAYED_NODE_INODE_DIRTY, &delayed_node->flags)) {
1271		mutex_unlock(&delayed_node->mutex);
1272		btrfs_release_delayed_node(delayed_node);
1273		return 0;
1274	}
1275	mutex_unlock(&delayed_node->mutex);
1276
1277	trans = btrfs_join_transaction(delayed_node->root);
1278	if (IS_ERR(trans)) {
1279		ret = PTR_ERR(trans);
1280		goto out;
1281	}
1282
1283	path = btrfs_alloc_path();
1284	if (!path) {
1285		ret = -ENOMEM;
1286		goto trans_out;
1287	}
1288	path->leave_spinning = 1;
1289
1290	block_rsv = trans->block_rsv;
1291	trans->block_rsv = &delayed_node->root->fs_info->delayed_block_rsv;
1292
1293	mutex_lock(&delayed_node->mutex);
1294	if (test_bit(BTRFS_DELAYED_NODE_INODE_DIRTY, &delayed_node->flags))
1295		ret = __btrfs_update_delayed_inode(trans, delayed_node->root,
1296						   path, delayed_node);
1297	else
1298		ret = 0;
1299	mutex_unlock(&delayed_node->mutex);
1300
1301	btrfs_free_path(path);
1302	trans->block_rsv = block_rsv;
1303trans_out:
1304	btrfs_end_transaction(trans, delayed_node->root);
1305	btrfs_btree_balance_dirty(delayed_node->root);
1306out:
1307	btrfs_release_delayed_node(delayed_node);
1308
1309	return ret;
1310}
1311
1312void btrfs_remove_delayed_node(struct inode *inode)
1313{
1314	struct btrfs_delayed_node *delayed_node;
1315
1316	delayed_node = ACCESS_ONCE(BTRFS_I(inode)->delayed_node);
1317	if (!delayed_node)
1318		return;
1319
1320	BTRFS_I(inode)->delayed_node = NULL;
1321	btrfs_release_delayed_node(delayed_node);
1322}
1323
1324struct btrfs_async_delayed_work {
1325	struct btrfs_delayed_root *delayed_root;
1326	int nr;
1327	struct btrfs_work work;
1328};
1329
1330static void btrfs_async_run_delayed_root(struct btrfs_work *work)
1331{
1332	struct btrfs_async_delayed_work *async_work;
1333	struct btrfs_delayed_root *delayed_root;
1334	struct btrfs_trans_handle *trans;
1335	struct btrfs_path *path;
1336	struct btrfs_delayed_node *delayed_node = NULL;
1337	struct btrfs_root *root;
1338	struct btrfs_block_rsv *block_rsv;
1339	int total_done = 0;
 
 
1340
1341	async_work = container_of(work, struct btrfs_async_delayed_work, work);
1342	delayed_root = async_work->delayed_root;
1343
1344	path = btrfs_alloc_path();
1345	if (!path)
1346		goto out;
 
1347
1348again:
1349	if (atomic_read(&delayed_root->items) < BTRFS_DELAYED_BACKGROUND / 2)
1350		goto free_path;
1351
1352	delayed_node = btrfs_first_prepared_delayed_node(delayed_root);
1353	if (!delayed_node)
1354		goto free_path;
1355
1356	path->leave_spinning = 1;
1357	root = delayed_node->root;
1358
1359	trans = btrfs_join_transaction(root);
1360	if (IS_ERR(trans))
1361		goto release_path;
1362
1363	block_rsv = trans->block_rsv;
1364	trans->block_rsv = &root->fs_info->delayed_block_rsv;
1365
1366	__btrfs_commit_inode_delayed_items(trans, path, delayed_node);
 
 
 
1367
1368	trans->block_rsv = block_rsv;
1369	btrfs_end_transaction(trans, root);
1370	btrfs_btree_balance_dirty_nodelay(root);
1371
1372release_path:
1373	btrfs_release_path(path);
1374	total_done++;
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1375
1376	btrfs_release_prepared_delayed_node(delayed_node);
1377	if (async_work->nr == 0 || total_done < async_work->nr)
1378		goto again;
1379
 
 
 
1380free_path:
1381	btrfs_free_path(path);
1382out:
1383	wake_up(&delayed_root->wait);
1384	kfree(async_work);
 
 
 
 
1385}
1386
1387
1388static int btrfs_wq_run_delayed_node(struct btrfs_delayed_root *delayed_root,
1389				     struct btrfs_fs_info *fs_info, int nr)
1390{
1391	struct btrfs_async_delayed_work *async_work;
 
 
1392
1393	if (atomic_read(&delayed_root->items) < BTRFS_DELAYED_BACKGROUND)
 
 
1394		return 0;
1395
1396	async_work = kmalloc(sizeof(*async_work), GFP_NOFS);
1397	if (!async_work)
 
1398		return -ENOMEM;
 
 
 
 
 
 
 
1399
1400	async_work->delayed_root = delayed_root;
1401	btrfs_init_work(&async_work->work, btrfs_delayed_meta_helper,
1402			btrfs_async_run_delayed_root, NULL, NULL);
1403	async_work->nr = nr;
 
1404
1405	btrfs_queue_work(fs_info->delayed_workers, &async_work->work);
1406	return 0;
1407}
1408
1409void btrfs_assert_delayed_root_empty(struct btrfs_root *root)
1410{
1411	struct btrfs_delayed_root *delayed_root;
1412	delayed_root = btrfs_get_delayed_root(root);
1413	WARN_ON(btrfs_first_delayed_node(delayed_root));
1414}
1415
1416static int could_end_wait(struct btrfs_delayed_root *delayed_root, int seq)
1417{
1418	int val = atomic_read(&delayed_root->items_seq);
1419
1420	if (val < seq || val >= seq + BTRFS_DELAYED_BATCH)
1421		return 1;
1422
1423	if (atomic_read(&delayed_root->items) < BTRFS_DELAYED_BACKGROUND)
1424		return 1;
1425
1426	return 0;
1427}
1428
1429void btrfs_balance_delayed_items(struct btrfs_root *root)
1430{
1431	struct btrfs_delayed_root *delayed_root;
1432	struct btrfs_fs_info *fs_info = root->fs_info;
1433
1434	delayed_root = btrfs_get_delayed_root(root);
1435
1436	if (atomic_read(&delayed_root->items) < BTRFS_DELAYED_BACKGROUND)
1437		return;
1438
1439	if (atomic_read(&delayed_root->items) >= BTRFS_DELAYED_WRITEBACK) {
1440		int seq;
1441		int ret;
1442
1443		seq = atomic_read(&delayed_root->items_seq);
1444
1445		ret = btrfs_wq_run_delayed_node(delayed_root, fs_info, 0);
1446		if (ret)
1447			return;
1448
1449		wait_event_interruptible(delayed_root->wait,
1450					 could_end_wait(delayed_root, seq));
 
 
 
1451		return;
1452	}
1453
1454	btrfs_wq_run_delayed_node(delayed_root, fs_info, BTRFS_DELAYED_BATCH);
1455}
1456
1457/* Will return 0 or -ENOMEM */
1458int btrfs_insert_delayed_dir_index(struct btrfs_trans_handle *trans,
1459				   struct btrfs_root *root, const char *name,
1460				   int name_len, struct inode *dir,
1461				   struct btrfs_disk_key *disk_key, u8 type,
1462				   u64 index)
1463{
1464	struct btrfs_delayed_node *delayed_node;
1465	struct btrfs_delayed_item *delayed_item;
1466	struct btrfs_dir_item *dir_item;
1467	int ret;
1468
1469	delayed_node = btrfs_get_or_create_delayed_node(dir);
1470	if (IS_ERR(delayed_node))
1471		return PTR_ERR(delayed_node);
1472
1473	delayed_item = btrfs_alloc_delayed_item(sizeof(*dir_item) + name_len);
1474	if (!delayed_item) {
1475		ret = -ENOMEM;
1476		goto release_node;
1477	}
1478
1479	delayed_item->key.objectid = btrfs_ino(dir);
1480	delayed_item->key.type = BTRFS_DIR_INDEX_KEY;
1481	delayed_item->key.offset = index;
1482
1483	dir_item = (struct btrfs_dir_item *)delayed_item->data;
1484	dir_item->location = *disk_key;
1485	btrfs_set_stack_dir_transid(dir_item, trans->transid);
1486	btrfs_set_stack_dir_data_len(dir_item, 0);
1487	btrfs_set_stack_dir_name_len(dir_item, name_len);
1488	btrfs_set_stack_dir_type(dir_item, type);
1489	memcpy((char *)(dir_item + 1), name, name_len);
1490
1491	ret = btrfs_delayed_item_reserve_metadata(trans, root, delayed_item);
1492	/*
1493	 * we have reserved enough space when we start a new transaction,
1494	 * so reserving metadata failure is impossible
1495	 */
1496	BUG_ON(ret);
1497
 
 
 
 
 
 
 
 
 
 
 
1498
1499	mutex_lock(&delayed_node->mutex);
1500	ret = __btrfs_add_delayed_insertion_item(delayed_node, delayed_item);
1501	if (unlikely(ret)) {
1502		btrfs_err(root->fs_info, "err add delayed dir index item(name: %.*s) "
1503				"into the insertion tree of the delayed node"
1504				"(root id: %llu, inode id: %llu, errno: %d)",
1505				name_len, name, delayed_node->root->objectid,
1506				delayed_node->inode_id, ret);
 
 
1507		BUG();
1508	}
1509	mutex_unlock(&delayed_node->mutex);
1510
1511release_node:
1512	btrfs_release_delayed_node(delayed_node);
1513	return ret;
1514}
1515
1516static int btrfs_delete_delayed_insertion_item(struct btrfs_root *root,
1517					       struct btrfs_delayed_node *node,
1518					       struct btrfs_key *key)
1519{
1520	struct btrfs_delayed_item *item;
1521
1522	mutex_lock(&node->mutex);
1523	item = __btrfs_lookup_delayed_insertion_item(node, key);
1524	if (!item) {
1525		mutex_unlock(&node->mutex);
1526		return 1;
1527	}
1528
1529	btrfs_delayed_item_release_metadata(root, item);
1530	btrfs_release_delayed_item(item);
1531	mutex_unlock(&node->mutex);
1532	return 0;
1533}
1534
1535int btrfs_delete_delayed_dir_index(struct btrfs_trans_handle *trans,
1536				   struct btrfs_root *root, struct inode *dir,
1537				   u64 index)
1538{
1539	struct btrfs_delayed_node *node;
1540	struct btrfs_delayed_item *item;
1541	struct btrfs_key item_key;
1542	int ret;
1543
1544	node = btrfs_get_or_create_delayed_node(dir);
1545	if (IS_ERR(node))
1546		return PTR_ERR(node);
1547
1548	item_key.objectid = btrfs_ino(dir);
1549	item_key.type = BTRFS_DIR_INDEX_KEY;
1550	item_key.offset = index;
1551
1552	ret = btrfs_delete_delayed_insertion_item(root, node, &item_key);
1553	if (!ret)
1554		goto end;
1555
1556	item = btrfs_alloc_delayed_item(0);
1557	if (!item) {
1558		ret = -ENOMEM;
1559		goto end;
1560	}
1561
1562	item->key = item_key;
1563
1564	ret = btrfs_delayed_item_reserve_metadata(trans, root, item);
1565	/*
1566	 * we have reserved enough space when we start a new transaction,
1567	 * so reserving metadata failure is impossible.
1568	 */
1569	BUG_ON(ret);
1570
1571	mutex_lock(&node->mutex);
1572	ret = __btrfs_add_delayed_deletion_item(node, item);
1573	if (unlikely(ret)) {
1574		btrfs_err(root->fs_info, "err add delayed dir index item(index: %llu) "
1575				"into the deletion tree of the delayed node"
1576				"(root id: %llu, inode id: %llu, errno: %d)",
1577				index, node->root->objectid, node->inode_id,
 
 
1578				ret);
1579		BUG();
1580	}
1581	mutex_unlock(&node->mutex);
1582end:
1583	btrfs_release_delayed_node(node);
1584	return ret;
1585}
1586
1587int btrfs_inode_delayed_dir_index_count(struct inode *inode)
1588{
1589	struct btrfs_delayed_node *delayed_node = btrfs_get_delayed_node(inode);
1590
1591	if (!delayed_node)
1592		return -ENOENT;
1593
1594	/*
1595	 * Since we have held i_mutex of this directory, it is impossible that
1596	 * a new directory index is added into the delayed node and index_cnt
1597	 * is updated now. So we needn't lock the delayed node.
1598	 */
1599	if (!delayed_node->index_cnt) {
1600		btrfs_release_delayed_node(delayed_node);
1601		return -EINVAL;
1602	}
1603
1604	BTRFS_I(inode)->index_cnt = delayed_node->index_cnt;
1605	btrfs_release_delayed_node(delayed_node);
1606	return 0;
1607}
1608
1609void btrfs_get_delayed_items(struct inode *inode, struct list_head *ins_list,
1610			     struct list_head *del_list)
1611{
1612	struct btrfs_delayed_node *delayed_node;
1613	struct btrfs_delayed_item *item;
1614
1615	delayed_node = btrfs_get_delayed_node(inode);
1616	if (!delayed_node)
1617		return;
1618
1619	mutex_lock(&delayed_node->mutex);
1620	item = __btrfs_first_delayed_insertion_item(delayed_node);
1621	while (item) {
1622		atomic_inc(&item->refs);
1623		list_add_tail(&item->readdir_list, ins_list);
1624		item = __btrfs_next_delayed_item(item);
1625	}
1626
1627	item = __btrfs_first_delayed_deletion_item(delayed_node);
1628	while (item) {
1629		atomic_inc(&item->refs);
1630		list_add_tail(&item->readdir_list, del_list);
1631		item = __btrfs_next_delayed_item(item);
1632	}
1633	mutex_unlock(&delayed_node->mutex);
1634	/*
1635	 * This delayed node is still cached in the btrfs inode, so refs
1636	 * must be > 1 now, and we needn't check it is going to be freed
1637	 * or not.
1638	 *
1639	 * Besides that, this function is used to read dir, we do not
1640	 * insert/delete delayed items in this period. So we also needn't
1641	 * requeue or dequeue this delayed node.
1642	 */
1643	atomic_dec(&delayed_node->refs);
1644}
1645
1646void btrfs_put_delayed_items(struct list_head *ins_list,
1647			     struct list_head *del_list)
1648{
1649	struct btrfs_delayed_item *curr, *next;
1650
1651	list_for_each_entry_safe(curr, next, ins_list, readdir_list) {
1652		list_del(&curr->readdir_list);
1653		if (atomic_dec_and_test(&curr->refs))
1654			kfree(curr);
1655	}
1656
1657	list_for_each_entry_safe(curr, next, del_list, readdir_list) {
1658		list_del(&curr->readdir_list);
1659		if (atomic_dec_and_test(&curr->refs))
1660			kfree(curr);
1661	}
1662}
1663
1664int btrfs_should_delete_dir_index(struct list_head *del_list,
1665				  u64 index)
1666{
1667	struct btrfs_delayed_item *curr, *next;
1668	int ret;
1669
1670	if (list_empty(del_list))
1671		return 0;
1672
1673	list_for_each_entry_safe(curr, next, del_list, readdir_list) {
1674		if (curr->key.offset > index)
1675			break;
1676
1677		list_del(&curr->readdir_list);
1678		ret = (curr->key.offset == index);
1679
1680		if (atomic_dec_and_test(&curr->refs))
1681			kfree(curr);
1682
1683		if (ret)
1684			return 1;
1685		else
1686			continue;
1687	}
1688	return 0;
1689}
1690
1691/*
1692 * btrfs_readdir_delayed_dir_index - read dir info stored in the delayed tree
1693 *
1694 */
1695int btrfs_readdir_delayed_dir_index(struct dir_context *ctx,
1696				    struct list_head *ins_list, bool *emitted)
 
1697{
1698	struct btrfs_dir_item *di;
1699	struct btrfs_delayed_item *curr, *next;
1700	struct btrfs_key location;
1701	char *name;
1702	int name_len;
1703	int over = 0;
1704	unsigned char d_type;
1705
1706	if (list_empty(ins_list))
1707		return 0;
1708
1709	/*
1710	 * Changing the data of the delayed item is impossible. So
1711	 * we needn't lock them. And we have held i_mutex of the
1712	 * directory, nobody can delete any directory indexes now.
1713	 */
1714	list_for_each_entry_safe(curr, next, ins_list, readdir_list) {
1715		list_del(&curr->readdir_list);
1716
1717		if (curr->key.offset < ctx->pos) {
1718			if (atomic_dec_and_test(&curr->refs))
1719				kfree(curr);
1720			continue;
1721		}
1722
1723		ctx->pos = curr->key.offset;
1724
1725		di = (struct btrfs_dir_item *)curr->data;
1726		name = (char *)(di + 1);
1727		name_len = btrfs_stack_dir_name_len(di);
1728
1729		d_type = btrfs_filetype_table[di->type];
1730		btrfs_disk_key_to_cpu(&location, &di->location);
1731
1732		over = !dir_emit(ctx, name, name_len,
1733			       location.objectid, d_type);
1734
1735		if (atomic_dec_and_test(&curr->refs))
1736			kfree(curr);
1737
1738		if (over)
1739			return 1;
1740		*emitted = true;
1741	}
1742	return 0;
1743}
1744
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1745static void fill_stack_inode_item(struct btrfs_trans_handle *trans,
1746				  struct btrfs_inode_item *inode_item,
1747				  struct inode *inode)
1748{
1749	btrfs_set_stack_inode_uid(inode_item, i_uid_read(inode));
1750	btrfs_set_stack_inode_gid(inode_item, i_gid_read(inode));
1751	btrfs_set_stack_inode_size(inode_item, BTRFS_I(inode)->disk_i_size);
1752	btrfs_set_stack_inode_mode(inode_item, inode->i_mode);
1753	btrfs_set_stack_inode_nlink(inode_item, inode->i_nlink);
1754	btrfs_set_stack_inode_nbytes(inode_item, inode_get_bytes(inode));
1755	btrfs_set_stack_inode_generation(inode_item,
1756					 BTRFS_I(inode)->generation);
1757	btrfs_set_stack_inode_sequence(inode_item, inode->i_version);
1758	btrfs_set_stack_inode_transid(inode_item, trans->transid);
1759	btrfs_set_stack_inode_rdev(inode_item, inode->i_rdev);
1760	btrfs_set_stack_inode_flags(inode_item, BTRFS_I(inode)->flags);
1761	btrfs_set_stack_inode_block_group(inode_item, 0);
1762
1763	btrfs_set_stack_timespec_sec(&inode_item->atime,
1764				     inode->i_atime.tv_sec);
1765	btrfs_set_stack_timespec_nsec(&inode_item->atime,
1766				      inode->i_atime.tv_nsec);
1767
1768	btrfs_set_stack_timespec_sec(&inode_item->mtime,
1769				     inode->i_mtime.tv_sec);
1770	btrfs_set_stack_timespec_nsec(&inode_item->mtime,
1771				      inode->i_mtime.tv_nsec);
1772
1773	btrfs_set_stack_timespec_sec(&inode_item->ctime,
1774				     inode->i_ctime.tv_sec);
1775	btrfs_set_stack_timespec_nsec(&inode_item->ctime,
1776				      inode->i_ctime.tv_nsec);
1777
1778	btrfs_set_stack_timespec_sec(&inode_item->otime,
1779				     BTRFS_I(inode)->i_otime.tv_sec);
1780	btrfs_set_stack_timespec_nsec(&inode_item->otime,
1781				     BTRFS_I(inode)->i_otime.tv_nsec);
1782}
1783
1784int btrfs_fill_inode(struct inode *inode, u32 *rdev)
1785{
1786	struct btrfs_delayed_node *delayed_node;
1787	struct btrfs_inode_item *inode_item;
 
1788
1789	delayed_node = btrfs_get_delayed_node(inode);
1790	if (!delayed_node)
1791		return -ENOENT;
1792
1793	mutex_lock(&delayed_node->mutex);
1794	if (!test_bit(BTRFS_DELAYED_NODE_INODE_DIRTY, &delayed_node->flags)) {
1795		mutex_unlock(&delayed_node->mutex);
1796		btrfs_release_delayed_node(delayed_node);
1797		return -ENOENT;
1798	}
1799
1800	inode_item = &delayed_node->inode_item;
1801
1802	i_uid_write(inode, btrfs_stack_inode_uid(inode_item));
1803	i_gid_write(inode, btrfs_stack_inode_gid(inode_item));
1804	btrfs_i_size_write(inode, btrfs_stack_inode_size(inode_item));
1805	inode->i_mode = btrfs_stack_inode_mode(inode_item);
1806	set_nlink(inode, btrfs_stack_inode_nlink(inode_item));
1807	inode_set_bytes(inode, btrfs_stack_inode_nbytes(inode_item));
1808	BTRFS_I(inode)->generation = btrfs_stack_inode_generation(inode_item);
1809        BTRFS_I(inode)->last_trans = btrfs_stack_inode_transid(inode_item);
1810
1811	inode->i_version = btrfs_stack_inode_sequence(inode_item);
1812	inode->i_rdev = 0;
1813	*rdev = btrfs_stack_inode_rdev(inode_item);
1814	BTRFS_I(inode)->flags = btrfs_stack_inode_flags(inode_item);
1815
1816	inode->i_atime.tv_sec = btrfs_stack_timespec_sec(&inode_item->atime);
1817	inode->i_atime.tv_nsec = btrfs_stack_timespec_nsec(&inode_item->atime);
1818
1819	inode->i_mtime.tv_sec = btrfs_stack_timespec_sec(&inode_item->mtime);
1820	inode->i_mtime.tv_nsec = btrfs_stack_timespec_nsec(&inode_item->mtime);
1821
1822	inode->i_ctime.tv_sec = btrfs_stack_timespec_sec(&inode_item->ctime);
1823	inode->i_ctime.tv_nsec = btrfs_stack_timespec_nsec(&inode_item->ctime);
1824
1825	BTRFS_I(inode)->i_otime.tv_sec =
1826		btrfs_stack_timespec_sec(&inode_item->otime);
1827	BTRFS_I(inode)->i_otime.tv_nsec =
1828		btrfs_stack_timespec_nsec(&inode_item->otime);
1829
1830	inode->i_generation = BTRFS_I(inode)->generation;
1831	BTRFS_I(inode)->index_cnt = (u64)-1;
1832
1833	mutex_unlock(&delayed_node->mutex);
1834	btrfs_release_delayed_node(delayed_node);
1835	return 0;
1836}
1837
1838int btrfs_delayed_update_inode(struct btrfs_trans_handle *trans,
1839			       struct btrfs_root *root, struct inode *inode)
1840{
1841	struct btrfs_delayed_node *delayed_node;
1842	int ret = 0;
1843
1844	delayed_node = btrfs_get_or_create_delayed_node(inode);
1845	if (IS_ERR(delayed_node))
1846		return PTR_ERR(delayed_node);
1847
1848	mutex_lock(&delayed_node->mutex);
1849	if (test_bit(BTRFS_DELAYED_NODE_INODE_DIRTY, &delayed_node->flags)) {
1850		fill_stack_inode_item(trans, &delayed_node->inode_item, inode);
1851		goto release_node;
1852	}
1853
1854	ret = btrfs_delayed_inode_reserve_metadata(trans, root, inode,
1855						   delayed_node);
1856	if (ret)
1857		goto release_node;
 
 
1858
1859	fill_stack_inode_item(trans, &delayed_node->inode_item, inode);
1860	set_bit(BTRFS_DELAYED_NODE_INODE_DIRTY, &delayed_node->flags);
1861	delayed_node->count++;
1862	atomic_inc(&root->fs_info->delayed_root->items);
1863release_node:
1864	mutex_unlock(&delayed_node->mutex);
1865	btrfs_release_delayed_node(delayed_node);
1866	return ret;
1867}
1868
1869int btrfs_delayed_delete_inode_ref(struct inode *inode)
1870{
1871	struct btrfs_delayed_node *delayed_node;
1872
1873	/*
1874	 * we don't do delayed inode updates during log recovery because it
1875	 * leads to enospc problems.  This means we also can't do
1876	 * delayed inode refs
1877	 */
1878	if (BTRFS_I(inode)->root->fs_info->log_root_recovering)
1879		return -EAGAIN;
1880
1881	delayed_node = btrfs_get_or_create_delayed_node(inode);
1882	if (IS_ERR(delayed_node))
1883		return PTR_ERR(delayed_node);
1884
1885	/*
1886	 * We don't reserve space for inode ref deletion is because:
1887	 * - We ONLY do async inode ref deletion for the inode who has only
1888	 *   one link(i_nlink == 1), it means there is only one inode ref.
1889	 *   And in most case, the inode ref and the inode item are in the
1890	 *   same leaf, and we will deal with them at the same time.
1891	 *   Since we are sure we will reserve the space for the inode item,
1892	 *   it is unnecessary to reserve space for inode ref deletion.
1893	 * - If the inode ref and the inode item are not in the same leaf,
1894	 *   We also needn't worry about enospc problem, because we reserve
1895	 *   much more space for the inode update than it needs.
1896	 * - At the worst, we can steal some space from the global reservation.
1897	 *   It is very rare.
1898	 */
1899	mutex_lock(&delayed_node->mutex);
1900	if (test_bit(BTRFS_DELAYED_NODE_DEL_IREF, &delayed_node->flags))
1901		goto release_node;
1902
1903	set_bit(BTRFS_DELAYED_NODE_DEL_IREF, &delayed_node->flags);
1904	delayed_node->count++;
1905	atomic_inc(&BTRFS_I(inode)->root->fs_info->delayed_root->items);
1906release_node:
1907	mutex_unlock(&delayed_node->mutex);
1908	btrfs_release_delayed_node(delayed_node);
1909	return 0;
1910}
1911
1912static void __btrfs_kill_delayed_node(struct btrfs_delayed_node *delayed_node)
1913{
1914	struct btrfs_root *root = delayed_node->root;
1915	struct btrfs_delayed_item *curr_item, *prev_item;
1916
1917	mutex_lock(&delayed_node->mutex);
1918	curr_item = __btrfs_first_delayed_insertion_item(delayed_node);
1919	while (curr_item) {
1920		btrfs_delayed_item_release_metadata(root, curr_item);
1921		prev_item = curr_item;
1922		curr_item = __btrfs_next_delayed_item(prev_item);
1923		btrfs_release_delayed_item(prev_item);
1924	}
1925
1926	curr_item = __btrfs_first_delayed_deletion_item(delayed_node);
1927	while (curr_item) {
1928		btrfs_delayed_item_release_metadata(root, curr_item);
1929		prev_item = curr_item;
1930		curr_item = __btrfs_next_delayed_item(prev_item);
1931		btrfs_release_delayed_item(prev_item);
1932	}
1933
1934	if (test_bit(BTRFS_DELAYED_NODE_DEL_IREF, &delayed_node->flags))
1935		btrfs_release_delayed_iref(delayed_node);
1936
1937	if (test_bit(BTRFS_DELAYED_NODE_INODE_DIRTY, &delayed_node->flags)) {
1938		btrfs_delayed_inode_release_metadata(root, delayed_node);
1939		btrfs_release_delayed_inode(delayed_node);
1940	}
1941	mutex_unlock(&delayed_node->mutex);
1942}
1943
1944void btrfs_kill_delayed_inode_items(struct inode *inode)
1945{
1946	struct btrfs_delayed_node *delayed_node;
1947
1948	delayed_node = btrfs_get_delayed_node(inode);
1949	if (!delayed_node)
1950		return;
1951
1952	__btrfs_kill_delayed_node(delayed_node);
1953	btrfs_release_delayed_node(delayed_node);
1954}
1955
1956void btrfs_kill_all_delayed_nodes(struct btrfs_root *root)
1957{
1958	u64 inode_id = 0;
1959	struct btrfs_delayed_node *delayed_nodes[8];
1960	int i, n;
1961
1962	while (1) {
1963		spin_lock(&root->inode_lock);
1964		n = radix_tree_gang_lookup(&root->delayed_nodes_tree,
1965					   (void **)delayed_nodes, inode_id,
1966					   ARRAY_SIZE(delayed_nodes));
1967		if (!n) {
1968			spin_unlock(&root->inode_lock);
1969			break;
1970		}
1971
1972		inode_id = delayed_nodes[n - 1]->inode_id + 1;
1973
1974		for (i = 0; i < n; i++)
1975			atomic_inc(&delayed_nodes[i]->refs);
1976		spin_unlock(&root->inode_lock);
1977
1978		for (i = 0; i < n; i++) {
1979			__btrfs_kill_delayed_node(delayed_nodes[i]);
1980			btrfs_release_delayed_node(delayed_nodes[i]);
1981		}
1982	}
1983}
1984
1985void btrfs_destroy_delayed_inodes(struct btrfs_root *root)
1986{
1987	struct btrfs_delayed_root *delayed_root;
1988	struct btrfs_delayed_node *curr_node, *prev_node;
1989
1990	delayed_root = btrfs_get_delayed_root(root);
1991
1992	curr_node = btrfs_first_delayed_node(delayed_root);
1993	while (curr_node) {
1994		__btrfs_kill_delayed_node(curr_node);
1995
1996		prev_node = curr_node;
1997		curr_node = btrfs_next_delayed_node(curr_node);
1998		btrfs_release_delayed_node(prev_node);
1999	}
2000}
2001