Loading...
1/*
2 * xHCI host controller driver
3 *
4 * Copyright (C) 2008 Intel Corp.
5 *
6 * Author: Sarah Sharp
7 * Some code borrowed from the Linux EHCI driver.
8 *
9 * This program is free software; you can redistribute it and/or modify
10 * it under the terms of the GNU General Public License version 2 as
11 * published by the Free Software Foundation.
12 *
13 * This program is distributed in the hope that it will be useful, but
14 * WITHOUT ANY WARRANTY; without even the implied warranty of MERCHANTABILITY
15 * or FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License
16 * for more details.
17 *
18 * You should have received a copy of the GNU General Public License
19 * along with this program; if not, write to the Free Software Foundation,
20 * Inc., 675 Mass Ave, Cambridge, MA 02139, USA.
21 */
22
23#include <linux/pci.h>
24#include <linux/irq.h>
25#include <linux/log2.h>
26#include <linux/module.h>
27#include <linux/moduleparam.h>
28#include <linux/slab.h>
29
30#include "xhci.h"
31
32#define DRIVER_AUTHOR "Sarah Sharp"
33#define DRIVER_DESC "'eXtensible' Host Controller (xHC) Driver"
34
35/* Some 0.95 hardware can't handle the chain bit on a Link TRB being cleared */
36static int link_quirk;
37module_param(link_quirk, int, S_IRUGO | S_IWUSR);
38MODULE_PARM_DESC(link_quirk, "Don't clear the chain bit on a link TRB");
39
40/* TODO: copied from ehci-hcd.c - can this be refactored? */
41/*
42 * handshake - spin reading hc until handshake completes or fails
43 * @ptr: address of hc register to be read
44 * @mask: bits to look at in result of read
45 * @done: value of those bits when handshake succeeds
46 * @usec: timeout in microseconds
47 *
48 * Returns negative errno, or zero on success
49 *
50 * Success happens when the "mask" bits have the specified value (hardware
51 * handshake done). There are two failure modes: "usec" have passed (major
52 * hardware flakeout), or the register reads as all-ones (hardware removed).
53 */
54static int handshake(struct xhci_hcd *xhci, void __iomem *ptr,
55 u32 mask, u32 done, int usec)
56{
57 u32 result;
58
59 do {
60 result = xhci_readl(xhci, ptr);
61 if (result == ~(u32)0) /* card removed */
62 return -ENODEV;
63 result &= mask;
64 if (result == done)
65 return 0;
66 udelay(1);
67 usec--;
68 } while (usec > 0);
69 return -ETIMEDOUT;
70}
71
72/*
73 * Disable interrupts and begin the xHCI halting process.
74 */
75void xhci_quiesce(struct xhci_hcd *xhci)
76{
77 u32 halted;
78 u32 cmd;
79 u32 mask;
80
81 mask = ~(XHCI_IRQS);
82 halted = xhci_readl(xhci, &xhci->op_regs->status) & STS_HALT;
83 if (!halted)
84 mask &= ~CMD_RUN;
85
86 cmd = xhci_readl(xhci, &xhci->op_regs->command);
87 cmd &= mask;
88 xhci_writel(xhci, cmd, &xhci->op_regs->command);
89}
90
91/*
92 * Force HC into halt state.
93 *
94 * Disable any IRQs and clear the run/stop bit.
95 * HC will complete any current and actively pipelined transactions, and
96 * should halt within 16 ms of the run/stop bit being cleared.
97 * Read HC Halted bit in the status register to see when the HC is finished.
98 */
99int xhci_halt(struct xhci_hcd *xhci)
100{
101 int ret;
102 xhci_dbg(xhci, "// Halt the HC\n");
103 xhci_quiesce(xhci);
104
105 ret = handshake(xhci, &xhci->op_regs->status,
106 STS_HALT, STS_HALT, XHCI_MAX_HALT_USEC);
107 if (!ret)
108 xhci->xhc_state |= XHCI_STATE_HALTED;
109 return ret;
110}
111
112/*
113 * Set the run bit and wait for the host to be running.
114 */
115static int xhci_start(struct xhci_hcd *xhci)
116{
117 u32 temp;
118 int ret;
119
120 temp = xhci_readl(xhci, &xhci->op_regs->command);
121 temp |= (CMD_RUN);
122 xhci_dbg(xhci, "// Turn on HC, cmd = 0x%x.\n",
123 temp);
124 xhci_writel(xhci, temp, &xhci->op_regs->command);
125
126 /*
127 * Wait for the HCHalted Status bit to be 0 to indicate the host is
128 * running.
129 */
130 ret = handshake(xhci, &xhci->op_regs->status,
131 STS_HALT, 0, XHCI_MAX_HALT_USEC);
132 if (ret == -ETIMEDOUT)
133 xhci_err(xhci, "Host took too long to start, "
134 "waited %u microseconds.\n",
135 XHCI_MAX_HALT_USEC);
136 if (!ret)
137 xhci->xhc_state &= ~XHCI_STATE_HALTED;
138 return ret;
139}
140
141/*
142 * Reset a halted HC.
143 *
144 * This resets pipelines, timers, counters, state machines, etc.
145 * Transactions will be terminated immediately, and operational registers
146 * will be set to their defaults.
147 */
148int xhci_reset(struct xhci_hcd *xhci)
149{
150 u32 command;
151 u32 state;
152 int ret;
153
154 state = xhci_readl(xhci, &xhci->op_regs->status);
155 if ((state & STS_HALT) == 0) {
156 xhci_warn(xhci, "Host controller not halted, aborting reset.\n");
157 return 0;
158 }
159
160 xhci_dbg(xhci, "// Reset the HC\n");
161 command = xhci_readl(xhci, &xhci->op_regs->command);
162 command |= CMD_RESET;
163 xhci_writel(xhci, command, &xhci->op_regs->command);
164
165 ret = handshake(xhci, &xhci->op_regs->command,
166 CMD_RESET, 0, 250 * 1000);
167 if (ret)
168 return ret;
169
170 xhci_dbg(xhci, "Wait for controller to be ready for doorbell rings\n");
171 /*
172 * xHCI cannot write to any doorbells or operational registers other
173 * than status until the "Controller Not Ready" flag is cleared.
174 */
175 return handshake(xhci, &xhci->op_regs->status, STS_CNR, 0, 250 * 1000);
176}
177
178/*
179 * Free IRQs
180 * free all IRQs request
181 */
182static void xhci_free_irq(struct xhci_hcd *xhci)
183{
184 int i;
185 struct pci_dev *pdev = to_pci_dev(xhci_to_hcd(xhci)->self.controller);
186
187 /* return if using legacy interrupt */
188 if (xhci_to_hcd(xhci)->irq >= 0)
189 return;
190
191 if (xhci->msix_entries) {
192 for (i = 0; i < xhci->msix_count; i++)
193 if (xhci->msix_entries[i].vector)
194 free_irq(xhci->msix_entries[i].vector,
195 xhci_to_hcd(xhci));
196 } else if (pdev->irq >= 0)
197 free_irq(pdev->irq, xhci_to_hcd(xhci));
198
199 return;
200}
201
202/*
203 * Set up MSI
204 */
205static int xhci_setup_msi(struct xhci_hcd *xhci)
206{
207 int ret;
208 struct pci_dev *pdev = to_pci_dev(xhci_to_hcd(xhci)->self.controller);
209
210 ret = pci_enable_msi(pdev);
211 if (ret) {
212 xhci_err(xhci, "failed to allocate MSI entry\n");
213 return ret;
214 }
215
216 ret = request_irq(pdev->irq, (irq_handler_t)xhci_msi_irq,
217 0, "xhci_hcd", xhci_to_hcd(xhci));
218 if (ret) {
219 xhci_err(xhci, "disable MSI interrupt\n");
220 pci_disable_msi(pdev);
221 }
222
223 return ret;
224}
225
226/*
227 * Set up MSI-X
228 */
229static int xhci_setup_msix(struct xhci_hcd *xhci)
230{
231 int i, ret = 0;
232 struct usb_hcd *hcd = xhci_to_hcd(xhci);
233 struct pci_dev *pdev = to_pci_dev(hcd->self.controller);
234
235 /*
236 * calculate number of msi-x vectors supported.
237 * - HCS_MAX_INTRS: the max number of interrupts the host can handle,
238 * with max number of interrupters based on the xhci HCSPARAMS1.
239 * - num_online_cpus: maximum msi-x vectors per CPUs core.
240 * Add additional 1 vector to ensure always available interrupt.
241 */
242 xhci->msix_count = min(num_online_cpus() + 1,
243 HCS_MAX_INTRS(xhci->hcs_params1));
244
245 xhci->msix_entries =
246 kmalloc((sizeof(struct msix_entry))*xhci->msix_count,
247 GFP_KERNEL);
248 if (!xhci->msix_entries) {
249 xhci_err(xhci, "Failed to allocate MSI-X entries\n");
250 return -ENOMEM;
251 }
252
253 for (i = 0; i < xhci->msix_count; i++) {
254 xhci->msix_entries[i].entry = i;
255 xhci->msix_entries[i].vector = 0;
256 }
257
258 ret = pci_enable_msix(pdev, xhci->msix_entries, xhci->msix_count);
259 if (ret) {
260 xhci_err(xhci, "Failed to enable MSI-X\n");
261 goto free_entries;
262 }
263
264 for (i = 0; i < xhci->msix_count; i++) {
265 ret = request_irq(xhci->msix_entries[i].vector,
266 (irq_handler_t)xhci_msi_irq,
267 0, "xhci_hcd", xhci_to_hcd(xhci));
268 if (ret)
269 goto disable_msix;
270 }
271
272 hcd->msix_enabled = 1;
273 return ret;
274
275disable_msix:
276 xhci_err(xhci, "disable MSI-X interrupt\n");
277 xhci_free_irq(xhci);
278 pci_disable_msix(pdev);
279free_entries:
280 kfree(xhci->msix_entries);
281 xhci->msix_entries = NULL;
282 return ret;
283}
284
285/* Free any IRQs and disable MSI-X */
286static void xhci_cleanup_msix(struct xhci_hcd *xhci)
287{
288 struct usb_hcd *hcd = xhci_to_hcd(xhci);
289 struct pci_dev *pdev = to_pci_dev(hcd->self.controller);
290
291 xhci_free_irq(xhci);
292
293 if (xhci->msix_entries) {
294 pci_disable_msix(pdev);
295 kfree(xhci->msix_entries);
296 xhci->msix_entries = NULL;
297 } else {
298 pci_disable_msi(pdev);
299 }
300
301 hcd->msix_enabled = 0;
302 return;
303}
304
305/*
306 * Initialize memory for HCD and xHC (one-time init).
307 *
308 * Program the PAGESIZE register, initialize the device context array, create
309 * device contexts (?), set up a command ring segment (or two?), create event
310 * ring (one for now).
311 */
312int xhci_init(struct usb_hcd *hcd)
313{
314 struct xhci_hcd *xhci = hcd_to_xhci(hcd);
315 int retval = 0;
316
317 xhci_dbg(xhci, "xhci_init\n");
318 spin_lock_init(&xhci->lock);
319 if (link_quirk) {
320 xhci_dbg(xhci, "QUIRK: Not clearing Link TRB chain bits.\n");
321 xhci->quirks |= XHCI_LINK_TRB_QUIRK;
322 } else {
323 xhci_dbg(xhci, "xHCI doesn't need link TRB QUIRK\n");
324 }
325 retval = xhci_mem_init(xhci, GFP_KERNEL);
326 xhci_dbg(xhci, "Finished xhci_init\n");
327
328 return retval;
329}
330
331/*-------------------------------------------------------------------------*/
332
333
334#ifdef CONFIG_USB_XHCI_HCD_DEBUGGING
335static void xhci_event_ring_work(unsigned long arg)
336{
337 unsigned long flags;
338 int temp;
339 u64 temp_64;
340 struct xhci_hcd *xhci = (struct xhci_hcd *) arg;
341 int i, j;
342
343 xhci_dbg(xhci, "Poll event ring: %lu\n", jiffies);
344
345 spin_lock_irqsave(&xhci->lock, flags);
346 temp = xhci_readl(xhci, &xhci->op_regs->status);
347 xhci_dbg(xhci, "op reg status = 0x%x\n", temp);
348 if (temp == 0xffffffff || (xhci->xhc_state & XHCI_STATE_DYING) ||
349 (xhci->xhc_state & XHCI_STATE_HALTED)) {
350 xhci_dbg(xhci, "HW died, polling stopped.\n");
351 spin_unlock_irqrestore(&xhci->lock, flags);
352 return;
353 }
354
355 temp = xhci_readl(xhci, &xhci->ir_set->irq_pending);
356 xhci_dbg(xhci, "ir_set 0 pending = 0x%x\n", temp);
357 xhci_dbg(xhci, "HC error bitmask = 0x%x\n", xhci->error_bitmask);
358 xhci->error_bitmask = 0;
359 xhci_dbg(xhci, "Event ring:\n");
360 xhci_debug_segment(xhci, xhci->event_ring->deq_seg);
361 xhci_dbg_ring_ptrs(xhci, xhci->event_ring);
362 temp_64 = xhci_read_64(xhci, &xhci->ir_set->erst_dequeue);
363 temp_64 &= ~ERST_PTR_MASK;
364 xhci_dbg(xhci, "ERST deq = 64'h%0lx\n", (long unsigned int) temp_64);
365 xhci_dbg(xhci, "Command ring:\n");
366 xhci_debug_segment(xhci, xhci->cmd_ring->deq_seg);
367 xhci_dbg_ring_ptrs(xhci, xhci->cmd_ring);
368 xhci_dbg_cmd_ptrs(xhci);
369 for (i = 0; i < MAX_HC_SLOTS; ++i) {
370 if (!xhci->devs[i])
371 continue;
372 for (j = 0; j < 31; ++j) {
373 xhci_dbg_ep_rings(xhci, i, j, &xhci->devs[i]->eps[j]);
374 }
375 }
376 spin_unlock_irqrestore(&xhci->lock, flags);
377
378 if (!xhci->zombie)
379 mod_timer(&xhci->event_ring_timer, jiffies + POLL_TIMEOUT * HZ);
380 else
381 xhci_dbg(xhci, "Quit polling the event ring.\n");
382}
383#endif
384
385static int xhci_run_finished(struct xhci_hcd *xhci)
386{
387 if (xhci_start(xhci)) {
388 xhci_halt(xhci);
389 return -ENODEV;
390 }
391 xhci->shared_hcd->state = HC_STATE_RUNNING;
392
393 if (xhci->quirks & XHCI_NEC_HOST)
394 xhci_ring_cmd_db(xhci);
395
396 xhci_dbg(xhci, "Finished xhci_run for USB3 roothub\n");
397 return 0;
398}
399
400/*
401 * Start the HC after it was halted.
402 *
403 * This function is called by the USB core when the HC driver is added.
404 * Its opposite is xhci_stop().
405 *
406 * xhci_init() must be called once before this function can be called.
407 * Reset the HC, enable device slot contexts, program DCBAAP, and
408 * set command ring pointer and event ring pointer.
409 *
410 * Setup MSI-X vectors and enable interrupts.
411 */
412int xhci_run(struct usb_hcd *hcd)
413{
414 u32 temp;
415 u64 temp_64;
416 u32 ret;
417 struct xhci_hcd *xhci = hcd_to_xhci(hcd);
418 struct pci_dev *pdev = to_pci_dev(xhci_to_hcd(xhci)->self.controller);
419
420 /* Start the xHCI host controller running only after the USB 2.0 roothub
421 * is setup.
422 */
423
424 hcd->uses_new_polling = 1;
425 if (!usb_hcd_is_primary_hcd(hcd))
426 return xhci_run_finished(xhci);
427
428 xhci_dbg(xhci, "xhci_run\n");
429 /* unregister the legacy interrupt */
430 if (hcd->irq)
431 free_irq(hcd->irq, hcd);
432 hcd->irq = -1;
433
434 /* Some Fresco Logic host controllers advertise MSI, but fail to
435 * generate interrupts. Don't even try to enable MSI.
436 */
437 if (xhci->quirks & XHCI_BROKEN_MSI)
438 goto legacy_irq;
439
440 ret = xhci_setup_msix(xhci);
441 if (ret)
442 /* fall back to msi*/
443 ret = xhci_setup_msi(xhci);
444
445 if (ret) {
446legacy_irq:
447 /* fall back to legacy interrupt*/
448 ret = request_irq(pdev->irq, &usb_hcd_irq, IRQF_SHARED,
449 hcd->irq_descr, hcd);
450 if (ret) {
451 xhci_err(xhci, "request interrupt %d failed\n",
452 pdev->irq);
453 return ret;
454 }
455 hcd->irq = pdev->irq;
456 }
457
458#ifdef CONFIG_USB_XHCI_HCD_DEBUGGING
459 init_timer(&xhci->event_ring_timer);
460 xhci->event_ring_timer.data = (unsigned long) xhci;
461 xhci->event_ring_timer.function = xhci_event_ring_work;
462 /* Poll the event ring */
463 xhci->event_ring_timer.expires = jiffies + POLL_TIMEOUT * HZ;
464 xhci->zombie = 0;
465 xhci_dbg(xhci, "Setting event ring polling timer\n");
466 add_timer(&xhci->event_ring_timer);
467#endif
468
469 xhci_dbg(xhci, "Command ring memory map follows:\n");
470 xhci_debug_ring(xhci, xhci->cmd_ring);
471 xhci_dbg_ring_ptrs(xhci, xhci->cmd_ring);
472 xhci_dbg_cmd_ptrs(xhci);
473
474 xhci_dbg(xhci, "ERST memory map follows:\n");
475 xhci_dbg_erst(xhci, &xhci->erst);
476 xhci_dbg(xhci, "Event ring:\n");
477 xhci_debug_ring(xhci, xhci->event_ring);
478 xhci_dbg_ring_ptrs(xhci, xhci->event_ring);
479 temp_64 = xhci_read_64(xhci, &xhci->ir_set->erst_dequeue);
480 temp_64 &= ~ERST_PTR_MASK;
481 xhci_dbg(xhci, "ERST deq = 64'h%0lx\n", (long unsigned int) temp_64);
482
483 xhci_dbg(xhci, "// Set the interrupt modulation register\n");
484 temp = xhci_readl(xhci, &xhci->ir_set->irq_control);
485 temp &= ~ER_IRQ_INTERVAL_MASK;
486 temp |= (u32) 160;
487 xhci_writel(xhci, temp, &xhci->ir_set->irq_control);
488
489 /* Set the HCD state before we enable the irqs */
490 temp = xhci_readl(xhci, &xhci->op_regs->command);
491 temp |= (CMD_EIE);
492 xhci_dbg(xhci, "// Enable interrupts, cmd = 0x%x.\n",
493 temp);
494 xhci_writel(xhci, temp, &xhci->op_regs->command);
495
496 temp = xhci_readl(xhci, &xhci->ir_set->irq_pending);
497 xhci_dbg(xhci, "// Enabling event ring interrupter %p by writing 0x%x to irq_pending\n",
498 xhci->ir_set, (unsigned int) ER_IRQ_ENABLE(temp));
499 xhci_writel(xhci, ER_IRQ_ENABLE(temp),
500 &xhci->ir_set->irq_pending);
501 xhci_print_ir_set(xhci, 0);
502
503 if (xhci->quirks & XHCI_NEC_HOST)
504 xhci_queue_vendor_command(xhci, 0, 0, 0,
505 TRB_TYPE(TRB_NEC_GET_FW));
506
507 xhci_dbg(xhci, "Finished xhci_run for USB2 roothub\n");
508 return 0;
509}
510
511static void xhci_only_stop_hcd(struct usb_hcd *hcd)
512{
513 struct xhci_hcd *xhci = hcd_to_xhci(hcd);
514
515 spin_lock_irq(&xhci->lock);
516 xhci_halt(xhci);
517
518 /* The shared_hcd is going to be deallocated shortly (the USB core only
519 * calls this function when allocation fails in usb_add_hcd(), or
520 * usb_remove_hcd() is called). So we need to unset xHCI's pointer.
521 */
522 xhci->shared_hcd = NULL;
523 spin_unlock_irq(&xhci->lock);
524}
525
526/*
527 * Stop xHCI driver.
528 *
529 * This function is called by the USB core when the HC driver is removed.
530 * Its opposite is xhci_run().
531 *
532 * Disable device contexts, disable IRQs, and quiesce the HC.
533 * Reset the HC, finish any completed transactions, and cleanup memory.
534 */
535void xhci_stop(struct usb_hcd *hcd)
536{
537 u32 temp;
538 struct xhci_hcd *xhci = hcd_to_xhci(hcd);
539
540 if (!usb_hcd_is_primary_hcd(hcd)) {
541 xhci_only_stop_hcd(xhci->shared_hcd);
542 return;
543 }
544
545 spin_lock_irq(&xhci->lock);
546 /* Make sure the xHC is halted for a USB3 roothub
547 * (xhci_stop() could be called as part of failed init).
548 */
549 xhci_halt(xhci);
550 xhci_reset(xhci);
551 spin_unlock_irq(&xhci->lock);
552
553 xhci_cleanup_msix(xhci);
554
555#ifdef CONFIG_USB_XHCI_HCD_DEBUGGING
556 /* Tell the event ring poll function not to reschedule */
557 xhci->zombie = 1;
558 del_timer_sync(&xhci->event_ring_timer);
559#endif
560
561 if (xhci->quirks & XHCI_AMD_PLL_FIX)
562 usb_amd_dev_put();
563
564 xhci_dbg(xhci, "// Disabling event ring interrupts\n");
565 temp = xhci_readl(xhci, &xhci->op_regs->status);
566 xhci_writel(xhci, temp & ~STS_EINT, &xhci->op_regs->status);
567 temp = xhci_readl(xhci, &xhci->ir_set->irq_pending);
568 xhci_writel(xhci, ER_IRQ_DISABLE(temp),
569 &xhci->ir_set->irq_pending);
570 xhci_print_ir_set(xhci, 0);
571
572 xhci_dbg(xhci, "cleaning up memory\n");
573 xhci_mem_cleanup(xhci);
574 xhci_dbg(xhci, "xhci_stop completed - status = %x\n",
575 xhci_readl(xhci, &xhci->op_regs->status));
576}
577
578/*
579 * Shutdown HC (not bus-specific)
580 *
581 * This is called when the machine is rebooting or halting. We assume that the
582 * machine will be powered off, and the HC's internal state will be reset.
583 * Don't bother to free memory.
584 *
585 * This will only ever be called with the main usb_hcd (the USB3 roothub).
586 */
587void xhci_shutdown(struct usb_hcd *hcd)
588{
589 struct xhci_hcd *xhci = hcd_to_xhci(hcd);
590
591 spin_lock_irq(&xhci->lock);
592 xhci_halt(xhci);
593 spin_unlock_irq(&xhci->lock);
594
595 xhci_cleanup_msix(xhci);
596
597 xhci_dbg(xhci, "xhci_shutdown completed - status = %x\n",
598 xhci_readl(xhci, &xhci->op_regs->status));
599}
600
601#ifdef CONFIG_PM
602static void xhci_save_registers(struct xhci_hcd *xhci)
603{
604 xhci->s3.command = xhci_readl(xhci, &xhci->op_regs->command);
605 xhci->s3.dev_nt = xhci_readl(xhci, &xhci->op_regs->dev_notification);
606 xhci->s3.dcbaa_ptr = xhci_read_64(xhci, &xhci->op_regs->dcbaa_ptr);
607 xhci->s3.config_reg = xhci_readl(xhci, &xhci->op_regs->config_reg);
608 xhci->s3.irq_pending = xhci_readl(xhci, &xhci->ir_set->irq_pending);
609 xhci->s3.irq_control = xhci_readl(xhci, &xhci->ir_set->irq_control);
610 xhci->s3.erst_size = xhci_readl(xhci, &xhci->ir_set->erst_size);
611 xhci->s3.erst_base = xhci_read_64(xhci, &xhci->ir_set->erst_base);
612 xhci->s3.erst_dequeue = xhci_read_64(xhci, &xhci->ir_set->erst_dequeue);
613}
614
615static void xhci_restore_registers(struct xhci_hcd *xhci)
616{
617 xhci_writel(xhci, xhci->s3.command, &xhci->op_regs->command);
618 xhci_writel(xhci, xhci->s3.dev_nt, &xhci->op_regs->dev_notification);
619 xhci_write_64(xhci, xhci->s3.dcbaa_ptr, &xhci->op_regs->dcbaa_ptr);
620 xhci_writel(xhci, xhci->s3.config_reg, &xhci->op_regs->config_reg);
621 xhci_writel(xhci, xhci->s3.irq_pending, &xhci->ir_set->irq_pending);
622 xhci_writel(xhci, xhci->s3.irq_control, &xhci->ir_set->irq_control);
623 xhci_writel(xhci, xhci->s3.erst_size, &xhci->ir_set->erst_size);
624 xhci_write_64(xhci, xhci->s3.erst_base, &xhci->ir_set->erst_base);
625}
626
627static void xhci_set_cmd_ring_deq(struct xhci_hcd *xhci)
628{
629 u64 val_64;
630
631 /* step 2: initialize command ring buffer */
632 val_64 = xhci_read_64(xhci, &xhci->op_regs->cmd_ring);
633 val_64 = (val_64 & (u64) CMD_RING_RSVD_BITS) |
634 (xhci_trb_virt_to_dma(xhci->cmd_ring->deq_seg,
635 xhci->cmd_ring->dequeue) &
636 (u64) ~CMD_RING_RSVD_BITS) |
637 xhci->cmd_ring->cycle_state;
638 xhci_dbg(xhci, "// Setting command ring address to 0x%llx\n",
639 (long unsigned long) val_64);
640 xhci_write_64(xhci, val_64, &xhci->op_regs->cmd_ring);
641}
642
643/*
644 * The whole command ring must be cleared to zero when we suspend the host.
645 *
646 * The host doesn't save the command ring pointer in the suspend well, so we
647 * need to re-program it on resume. Unfortunately, the pointer must be 64-byte
648 * aligned, because of the reserved bits in the command ring dequeue pointer
649 * register. Therefore, we can't just set the dequeue pointer back in the
650 * middle of the ring (TRBs are 16-byte aligned).
651 */
652static void xhci_clear_command_ring(struct xhci_hcd *xhci)
653{
654 struct xhci_ring *ring;
655 struct xhci_segment *seg;
656
657 ring = xhci->cmd_ring;
658 seg = ring->deq_seg;
659 do {
660 memset(seg->trbs, 0, SEGMENT_SIZE);
661 seg = seg->next;
662 } while (seg != ring->deq_seg);
663
664 /* Reset the software enqueue and dequeue pointers */
665 ring->deq_seg = ring->first_seg;
666 ring->dequeue = ring->first_seg->trbs;
667 ring->enq_seg = ring->deq_seg;
668 ring->enqueue = ring->dequeue;
669
670 /*
671 * Ring is now zeroed, so the HW should look for change of ownership
672 * when the cycle bit is set to 1.
673 */
674 ring->cycle_state = 1;
675
676 /*
677 * Reset the hardware dequeue pointer.
678 * Yes, this will need to be re-written after resume, but we're paranoid
679 * and want to make sure the hardware doesn't access bogus memory
680 * because, say, the BIOS or an SMI started the host without changing
681 * the command ring pointers.
682 */
683 xhci_set_cmd_ring_deq(xhci);
684}
685
686/*
687 * Stop HC (not bus-specific)
688 *
689 * This is called when the machine transition into S3/S4 mode.
690 *
691 */
692int xhci_suspend(struct xhci_hcd *xhci)
693{
694 int rc = 0;
695 struct usb_hcd *hcd = xhci_to_hcd(xhci);
696 u32 command;
697 int i;
698
699 spin_lock_irq(&xhci->lock);
700 clear_bit(HCD_FLAG_HW_ACCESSIBLE, &hcd->flags);
701 clear_bit(HCD_FLAG_HW_ACCESSIBLE, &xhci->shared_hcd->flags);
702 /* step 1: stop endpoint */
703 /* skipped assuming that port suspend has done */
704
705 /* step 2: clear Run/Stop bit */
706 command = xhci_readl(xhci, &xhci->op_regs->command);
707 command &= ~CMD_RUN;
708 xhci_writel(xhci, command, &xhci->op_regs->command);
709 if (handshake(xhci, &xhci->op_regs->status,
710 STS_HALT, STS_HALT, 100*100)) {
711 xhci_warn(xhci, "WARN: xHC CMD_RUN timeout\n");
712 spin_unlock_irq(&xhci->lock);
713 return -ETIMEDOUT;
714 }
715 xhci_clear_command_ring(xhci);
716
717 /* step 3: save registers */
718 xhci_save_registers(xhci);
719
720 /* step 4: set CSS flag */
721 command = xhci_readl(xhci, &xhci->op_regs->command);
722 command |= CMD_CSS;
723 xhci_writel(xhci, command, &xhci->op_regs->command);
724 if (handshake(xhci, &xhci->op_regs->status, STS_SAVE, 0, 10*100)) {
725 xhci_warn(xhci, "WARN: xHC CMD_CSS timeout\n");
726 spin_unlock_irq(&xhci->lock);
727 return -ETIMEDOUT;
728 }
729 spin_unlock_irq(&xhci->lock);
730
731 /* step 5: remove core well power */
732 /* synchronize irq when using MSI-X */
733 if (xhci->msix_entries) {
734 for (i = 0; i < xhci->msix_count; i++)
735 synchronize_irq(xhci->msix_entries[i].vector);
736 }
737
738 return rc;
739}
740
741/*
742 * start xHC (not bus-specific)
743 *
744 * This is called when the machine transition from S3/S4 mode.
745 *
746 */
747int xhci_resume(struct xhci_hcd *xhci, bool hibernated)
748{
749 u32 command, temp = 0;
750 struct usb_hcd *hcd = xhci_to_hcd(xhci);
751 struct usb_hcd *secondary_hcd;
752 int retval;
753
754 /* Wait a bit if either of the roothubs need to settle from the
755 * transition into bus suspend.
756 */
757 if (time_before(jiffies, xhci->bus_state[0].next_statechange) ||
758 time_before(jiffies,
759 xhci->bus_state[1].next_statechange))
760 msleep(100);
761
762 spin_lock_irq(&xhci->lock);
763 if (xhci->quirks & XHCI_RESET_ON_RESUME)
764 hibernated = true;
765
766 if (!hibernated) {
767 /* step 1: restore register */
768 xhci_restore_registers(xhci);
769 /* step 2: initialize command ring buffer */
770 xhci_set_cmd_ring_deq(xhci);
771 /* step 3: restore state and start state*/
772 /* step 3: set CRS flag */
773 command = xhci_readl(xhci, &xhci->op_regs->command);
774 command |= CMD_CRS;
775 xhci_writel(xhci, command, &xhci->op_regs->command);
776 if (handshake(xhci, &xhci->op_regs->status,
777 STS_RESTORE, 0, 10*100)) {
778 xhci_dbg(xhci, "WARN: xHC CMD_CSS timeout\n");
779 spin_unlock_irq(&xhci->lock);
780 return -ETIMEDOUT;
781 }
782 temp = xhci_readl(xhci, &xhci->op_regs->status);
783 }
784
785 /* If restore operation fails, re-initialize the HC during resume */
786 if ((temp & STS_SRE) || hibernated) {
787 /* Let the USB core know _both_ roothubs lost power. */
788 usb_root_hub_lost_power(xhci->main_hcd->self.root_hub);
789 usb_root_hub_lost_power(xhci->shared_hcd->self.root_hub);
790
791 xhci_dbg(xhci, "Stop HCD\n");
792 xhci_halt(xhci);
793 xhci_reset(xhci);
794 spin_unlock_irq(&xhci->lock);
795 xhci_cleanup_msix(xhci);
796
797#ifdef CONFIG_USB_XHCI_HCD_DEBUGGING
798 /* Tell the event ring poll function not to reschedule */
799 xhci->zombie = 1;
800 del_timer_sync(&xhci->event_ring_timer);
801#endif
802
803 xhci_dbg(xhci, "// Disabling event ring interrupts\n");
804 temp = xhci_readl(xhci, &xhci->op_regs->status);
805 xhci_writel(xhci, temp & ~STS_EINT, &xhci->op_regs->status);
806 temp = xhci_readl(xhci, &xhci->ir_set->irq_pending);
807 xhci_writel(xhci, ER_IRQ_DISABLE(temp),
808 &xhci->ir_set->irq_pending);
809 xhci_print_ir_set(xhci, 0);
810
811 xhci_dbg(xhci, "cleaning up memory\n");
812 xhci_mem_cleanup(xhci);
813 xhci_dbg(xhci, "xhci_stop completed - status = %x\n",
814 xhci_readl(xhci, &xhci->op_regs->status));
815
816 /* USB core calls the PCI reinit and start functions twice:
817 * first with the primary HCD, and then with the secondary HCD.
818 * If we don't do the same, the host will never be started.
819 */
820 if (!usb_hcd_is_primary_hcd(hcd))
821 secondary_hcd = hcd;
822 else
823 secondary_hcd = xhci->shared_hcd;
824
825 xhci_dbg(xhci, "Initialize the xhci_hcd\n");
826 retval = xhci_init(hcd->primary_hcd);
827 if (retval)
828 return retval;
829 xhci_dbg(xhci, "Start the primary HCD\n");
830 retval = xhci_run(hcd->primary_hcd);
831 if (retval)
832 goto failed_restart;
833
834 xhci_dbg(xhci, "Start the secondary HCD\n");
835 retval = xhci_run(secondary_hcd);
836 if (!retval) {
837 set_bit(HCD_FLAG_HW_ACCESSIBLE, &hcd->flags);
838 set_bit(HCD_FLAG_HW_ACCESSIBLE,
839 &xhci->shared_hcd->flags);
840 }
841failed_restart:
842 hcd->state = HC_STATE_SUSPENDED;
843 xhci->shared_hcd->state = HC_STATE_SUSPENDED;
844 return retval;
845 }
846
847 /* step 4: set Run/Stop bit */
848 command = xhci_readl(xhci, &xhci->op_regs->command);
849 command |= CMD_RUN;
850 xhci_writel(xhci, command, &xhci->op_regs->command);
851 handshake(xhci, &xhci->op_regs->status, STS_HALT,
852 0, 250 * 1000);
853
854 /* step 5: walk topology and initialize portsc,
855 * portpmsc and portli
856 */
857 /* this is done in bus_resume */
858
859 /* step 6: restart each of the previously
860 * Running endpoints by ringing their doorbells
861 */
862
863 set_bit(HCD_FLAG_HW_ACCESSIBLE, &hcd->flags);
864 set_bit(HCD_FLAG_HW_ACCESSIBLE, &xhci->shared_hcd->flags);
865
866 spin_unlock_irq(&xhci->lock);
867 return 0;
868}
869#endif /* CONFIG_PM */
870
871/*-------------------------------------------------------------------------*/
872
873/**
874 * xhci_get_endpoint_index - Used for passing endpoint bitmasks between the core and
875 * HCDs. Find the index for an endpoint given its descriptor. Use the return
876 * value to right shift 1 for the bitmask.
877 *
878 * Index = (epnum * 2) + direction - 1,
879 * where direction = 0 for OUT, 1 for IN.
880 * For control endpoints, the IN index is used (OUT index is unused), so
881 * index = (epnum * 2) + direction - 1 = (epnum * 2) + 1 - 1 = (epnum * 2)
882 */
883unsigned int xhci_get_endpoint_index(struct usb_endpoint_descriptor *desc)
884{
885 unsigned int index;
886 if (usb_endpoint_xfer_control(desc))
887 index = (unsigned int) (usb_endpoint_num(desc)*2);
888 else
889 index = (unsigned int) (usb_endpoint_num(desc)*2) +
890 (usb_endpoint_dir_in(desc) ? 1 : 0) - 1;
891 return index;
892}
893
894/* Find the flag for this endpoint (for use in the control context). Use the
895 * endpoint index to create a bitmask. The slot context is bit 0, endpoint 0 is
896 * bit 1, etc.
897 */
898unsigned int xhci_get_endpoint_flag(struct usb_endpoint_descriptor *desc)
899{
900 return 1 << (xhci_get_endpoint_index(desc) + 1);
901}
902
903/* Find the flag for this endpoint (for use in the control context). Use the
904 * endpoint index to create a bitmask. The slot context is bit 0, endpoint 0 is
905 * bit 1, etc.
906 */
907unsigned int xhci_get_endpoint_flag_from_index(unsigned int ep_index)
908{
909 return 1 << (ep_index + 1);
910}
911
912/* Compute the last valid endpoint context index. Basically, this is the
913 * endpoint index plus one. For slot contexts with more than valid endpoint,
914 * we find the most significant bit set in the added contexts flags.
915 * e.g. ep 1 IN (with epnum 0x81) => added_ctxs = 0b1000
916 * fls(0b1000) = 4, but the endpoint context index is 3, so subtract one.
917 */
918unsigned int xhci_last_valid_endpoint(u32 added_ctxs)
919{
920 return fls(added_ctxs) - 1;
921}
922
923/* Returns 1 if the arguments are OK;
924 * returns 0 this is a root hub; returns -EINVAL for NULL pointers.
925 */
926static int xhci_check_args(struct usb_hcd *hcd, struct usb_device *udev,
927 struct usb_host_endpoint *ep, int check_ep, bool check_virt_dev,
928 const char *func) {
929 struct xhci_hcd *xhci;
930 struct xhci_virt_device *virt_dev;
931
932 if (!hcd || (check_ep && !ep) || !udev) {
933 printk(KERN_DEBUG "xHCI %s called with invalid args\n",
934 func);
935 return -EINVAL;
936 }
937 if (!udev->parent) {
938 printk(KERN_DEBUG "xHCI %s called for root hub\n",
939 func);
940 return 0;
941 }
942
943 xhci = hcd_to_xhci(hcd);
944 if (xhci->xhc_state & XHCI_STATE_HALTED)
945 return -ENODEV;
946
947 if (check_virt_dev) {
948 if (!udev->slot_id || !xhci->devs
949 || !xhci->devs[udev->slot_id]) {
950 printk(KERN_DEBUG "xHCI %s called with unaddressed "
951 "device\n", func);
952 return -EINVAL;
953 }
954
955 virt_dev = xhci->devs[udev->slot_id];
956 if (virt_dev->udev != udev) {
957 printk(KERN_DEBUG "xHCI %s called with udev and "
958 "virt_dev does not match\n", func);
959 return -EINVAL;
960 }
961 }
962
963 return 1;
964}
965
966static int xhci_configure_endpoint(struct xhci_hcd *xhci,
967 struct usb_device *udev, struct xhci_command *command,
968 bool ctx_change, bool must_succeed);
969
970/*
971 * Full speed devices may have a max packet size greater than 8 bytes, but the
972 * USB core doesn't know that until it reads the first 8 bytes of the
973 * descriptor. If the usb_device's max packet size changes after that point,
974 * we need to issue an evaluate context command and wait on it.
975 */
976static int xhci_check_maxpacket(struct xhci_hcd *xhci, unsigned int slot_id,
977 unsigned int ep_index, struct urb *urb)
978{
979 struct xhci_container_ctx *in_ctx;
980 struct xhci_container_ctx *out_ctx;
981 struct xhci_input_control_ctx *ctrl_ctx;
982 struct xhci_ep_ctx *ep_ctx;
983 int max_packet_size;
984 int hw_max_packet_size;
985 int ret = 0;
986
987 out_ctx = xhci->devs[slot_id]->out_ctx;
988 ep_ctx = xhci_get_ep_ctx(xhci, out_ctx, ep_index);
989 hw_max_packet_size = MAX_PACKET_DECODED(le32_to_cpu(ep_ctx->ep_info2));
990 max_packet_size = le16_to_cpu(urb->dev->ep0.desc.wMaxPacketSize);
991 if (hw_max_packet_size != max_packet_size) {
992 xhci_dbg(xhci, "Max Packet Size for ep 0 changed.\n");
993 xhci_dbg(xhci, "Max packet size in usb_device = %d\n",
994 max_packet_size);
995 xhci_dbg(xhci, "Max packet size in xHCI HW = %d\n",
996 hw_max_packet_size);
997 xhci_dbg(xhci, "Issuing evaluate context command.\n");
998
999 /* Set up the modified control endpoint 0 */
1000 xhci_endpoint_copy(xhci, xhci->devs[slot_id]->in_ctx,
1001 xhci->devs[slot_id]->out_ctx, ep_index);
1002 in_ctx = xhci->devs[slot_id]->in_ctx;
1003 ep_ctx = xhci_get_ep_ctx(xhci, in_ctx, ep_index);
1004 ep_ctx->ep_info2 &= cpu_to_le32(~MAX_PACKET_MASK);
1005 ep_ctx->ep_info2 |= cpu_to_le32(MAX_PACKET(max_packet_size));
1006
1007 /* Set up the input context flags for the command */
1008 /* FIXME: This won't work if a non-default control endpoint
1009 * changes max packet sizes.
1010 */
1011 ctrl_ctx = xhci_get_input_control_ctx(xhci, in_ctx);
1012 ctrl_ctx->add_flags = cpu_to_le32(EP0_FLAG);
1013 ctrl_ctx->drop_flags = 0;
1014
1015 xhci_dbg(xhci, "Slot %d input context\n", slot_id);
1016 xhci_dbg_ctx(xhci, in_ctx, ep_index);
1017 xhci_dbg(xhci, "Slot %d output context\n", slot_id);
1018 xhci_dbg_ctx(xhci, out_ctx, ep_index);
1019
1020 ret = xhci_configure_endpoint(xhci, urb->dev, NULL,
1021 true, false);
1022
1023 /* Clean up the input context for later use by bandwidth
1024 * functions.
1025 */
1026 ctrl_ctx->add_flags = cpu_to_le32(SLOT_FLAG);
1027 }
1028 return ret;
1029}
1030
1031/*
1032 * non-error returns are a promise to giveback() the urb later
1033 * we drop ownership so next owner (or urb unlink) can get it
1034 */
1035int xhci_urb_enqueue(struct usb_hcd *hcd, struct urb *urb, gfp_t mem_flags)
1036{
1037 struct xhci_hcd *xhci = hcd_to_xhci(hcd);
1038 unsigned long flags;
1039 int ret = 0;
1040 unsigned int slot_id, ep_index;
1041 struct urb_priv *urb_priv;
1042 int size, i;
1043
1044 if (!urb || xhci_check_args(hcd, urb->dev, urb->ep,
1045 true, true, __func__) <= 0)
1046 return -EINVAL;
1047
1048 slot_id = urb->dev->slot_id;
1049 ep_index = xhci_get_endpoint_index(&urb->ep->desc);
1050
1051 if (!HCD_HW_ACCESSIBLE(hcd)) {
1052 if (!in_interrupt())
1053 xhci_dbg(xhci, "urb submitted during PCI suspend\n");
1054 ret = -ESHUTDOWN;
1055 goto exit;
1056 }
1057
1058 if (usb_endpoint_xfer_isoc(&urb->ep->desc))
1059 size = urb->number_of_packets;
1060 else
1061 size = 1;
1062
1063 urb_priv = kzalloc(sizeof(struct urb_priv) +
1064 size * sizeof(struct xhci_td *), mem_flags);
1065 if (!urb_priv)
1066 return -ENOMEM;
1067
1068 for (i = 0; i < size; i++) {
1069 urb_priv->td[i] = kzalloc(sizeof(struct xhci_td), mem_flags);
1070 if (!urb_priv->td[i]) {
1071 urb_priv->length = i;
1072 xhci_urb_free_priv(xhci, urb_priv);
1073 return -ENOMEM;
1074 }
1075 }
1076
1077 urb_priv->length = size;
1078 urb_priv->td_cnt = 0;
1079 urb->hcpriv = urb_priv;
1080
1081 if (usb_endpoint_xfer_control(&urb->ep->desc)) {
1082 /* Check to see if the max packet size for the default control
1083 * endpoint changed during FS device enumeration
1084 */
1085 if (urb->dev->speed == USB_SPEED_FULL) {
1086 ret = xhci_check_maxpacket(xhci, slot_id,
1087 ep_index, urb);
1088 if (ret < 0) {
1089 xhci_urb_free_priv(xhci, urb_priv);
1090 urb->hcpriv = NULL;
1091 return ret;
1092 }
1093 }
1094
1095 /* We have a spinlock and interrupts disabled, so we must pass
1096 * atomic context to this function, which may allocate memory.
1097 */
1098 spin_lock_irqsave(&xhci->lock, flags);
1099 if (xhci->xhc_state & XHCI_STATE_DYING)
1100 goto dying;
1101 ret = xhci_queue_ctrl_tx(xhci, GFP_ATOMIC, urb,
1102 slot_id, ep_index);
1103 if (ret)
1104 goto free_priv;
1105 spin_unlock_irqrestore(&xhci->lock, flags);
1106 } else if (usb_endpoint_xfer_bulk(&urb->ep->desc)) {
1107 spin_lock_irqsave(&xhci->lock, flags);
1108 if (xhci->xhc_state & XHCI_STATE_DYING)
1109 goto dying;
1110 if (xhci->devs[slot_id]->eps[ep_index].ep_state &
1111 EP_GETTING_STREAMS) {
1112 xhci_warn(xhci, "WARN: Can't enqueue URB while bulk ep "
1113 "is transitioning to using streams.\n");
1114 ret = -EINVAL;
1115 } else if (xhci->devs[slot_id]->eps[ep_index].ep_state &
1116 EP_GETTING_NO_STREAMS) {
1117 xhci_warn(xhci, "WARN: Can't enqueue URB while bulk ep "
1118 "is transitioning to "
1119 "not having streams.\n");
1120 ret = -EINVAL;
1121 } else {
1122 ret = xhci_queue_bulk_tx(xhci, GFP_ATOMIC, urb,
1123 slot_id, ep_index);
1124 }
1125 if (ret)
1126 goto free_priv;
1127 spin_unlock_irqrestore(&xhci->lock, flags);
1128 } else if (usb_endpoint_xfer_int(&urb->ep->desc)) {
1129 spin_lock_irqsave(&xhci->lock, flags);
1130 if (xhci->xhc_state & XHCI_STATE_DYING)
1131 goto dying;
1132 ret = xhci_queue_intr_tx(xhci, GFP_ATOMIC, urb,
1133 slot_id, ep_index);
1134 if (ret)
1135 goto free_priv;
1136 spin_unlock_irqrestore(&xhci->lock, flags);
1137 } else {
1138 spin_lock_irqsave(&xhci->lock, flags);
1139 if (xhci->xhc_state & XHCI_STATE_DYING)
1140 goto dying;
1141 ret = xhci_queue_isoc_tx_prepare(xhci, GFP_ATOMIC, urb,
1142 slot_id, ep_index);
1143 if (ret)
1144 goto free_priv;
1145 spin_unlock_irqrestore(&xhci->lock, flags);
1146 }
1147exit:
1148 return ret;
1149dying:
1150 xhci_dbg(xhci, "Ep 0x%x: URB %p submitted for "
1151 "non-responsive xHCI host.\n",
1152 urb->ep->desc.bEndpointAddress, urb);
1153 ret = -ESHUTDOWN;
1154free_priv:
1155 xhci_urb_free_priv(xhci, urb_priv);
1156 urb->hcpriv = NULL;
1157 spin_unlock_irqrestore(&xhci->lock, flags);
1158 return ret;
1159}
1160
1161/* Get the right ring for the given URB.
1162 * If the endpoint supports streams, boundary check the URB's stream ID.
1163 * If the endpoint doesn't support streams, return the singular endpoint ring.
1164 */
1165static struct xhci_ring *xhci_urb_to_transfer_ring(struct xhci_hcd *xhci,
1166 struct urb *urb)
1167{
1168 unsigned int slot_id;
1169 unsigned int ep_index;
1170 unsigned int stream_id;
1171 struct xhci_virt_ep *ep;
1172
1173 slot_id = urb->dev->slot_id;
1174 ep_index = xhci_get_endpoint_index(&urb->ep->desc);
1175 stream_id = urb->stream_id;
1176 ep = &xhci->devs[slot_id]->eps[ep_index];
1177 /* Common case: no streams */
1178 if (!(ep->ep_state & EP_HAS_STREAMS))
1179 return ep->ring;
1180
1181 if (stream_id == 0) {
1182 xhci_warn(xhci,
1183 "WARN: Slot ID %u, ep index %u has streams, "
1184 "but URB has no stream ID.\n",
1185 slot_id, ep_index);
1186 return NULL;
1187 }
1188
1189 if (stream_id < ep->stream_info->num_streams)
1190 return ep->stream_info->stream_rings[stream_id];
1191
1192 xhci_warn(xhci,
1193 "WARN: Slot ID %u, ep index %u has "
1194 "stream IDs 1 to %u allocated, "
1195 "but stream ID %u is requested.\n",
1196 slot_id, ep_index,
1197 ep->stream_info->num_streams - 1,
1198 stream_id);
1199 return NULL;
1200}
1201
1202/*
1203 * Remove the URB's TD from the endpoint ring. This may cause the HC to stop
1204 * USB transfers, potentially stopping in the middle of a TRB buffer. The HC
1205 * should pick up where it left off in the TD, unless a Set Transfer Ring
1206 * Dequeue Pointer is issued.
1207 *
1208 * The TRBs that make up the buffers for the canceled URB will be "removed" from
1209 * the ring. Since the ring is a contiguous structure, they can't be physically
1210 * removed. Instead, there are two options:
1211 *
1212 * 1) If the HC is in the middle of processing the URB to be canceled, we
1213 * simply move the ring's dequeue pointer past those TRBs using the Set
1214 * Transfer Ring Dequeue Pointer command. This will be the common case,
1215 * when drivers timeout on the last submitted URB and attempt to cancel.
1216 *
1217 * 2) If the HC is in the middle of a different TD, we turn the TRBs into a
1218 * series of 1-TRB transfer no-op TDs. (No-ops shouldn't be chained.) The
1219 * HC will need to invalidate the any TRBs it has cached after the stop
1220 * endpoint command, as noted in the xHCI 0.95 errata.
1221 *
1222 * 3) The TD may have completed by the time the Stop Endpoint Command
1223 * completes, so software needs to handle that case too.
1224 *
1225 * This function should protect against the TD enqueueing code ringing the
1226 * doorbell while this code is waiting for a Stop Endpoint command to complete.
1227 * It also needs to account for multiple cancellations on happening at the same
1228 * time for the same endpoint.
1229 *
1230 * Note that this function can be called in any context, or so says
1231 * usb_hcd_unlink_urb()
1232 */
1233int xhci_urb_dequeue(struct usb_hcd *hcd, struct urb *urb, int status)
1234{
1235 unsigned long flags;
1236 int ret, i;
1237 u32 temp;
1238 struct xhci_hcd *xhci;
1239 struct urb_priv *urb_priv;
1240 struct xhci_td *td;
1241 unsigned int ep_index;
1242 struct xhci_ring *ep_ring;
1243 struct xhci_virt_ep *ep;
1244
1245 xhci = hcd_to_xhci(hcd);
1246 spin_lock_irqsave(&xhci->lock, flags);
1247 /* Make sure the URB hasn't completed or been unlinked already */
1248 ret = usb_hcd_check_unlink_urb(hcd, urb, status);
1249 if (ret || !urb->hcpriv)
1250 goto done;
1251 temp = xhci_readl(xhci, &xhci->op_regs->status);
1252 if (temp == 0xffffffff || (xhci->xhc_state & XHCI_STATE_HALTED)) {
1253 xhci_dbg(xhci, "HW died, freeing TD.\n");
1254 urb_priv = urb->hcpriv;
1255 for (i = urb_priv->td_cnt; i < urb_priv->length; i++) {
1256 td = urb_priv->td[i];
1257 if (!list_empty(&td->td_list))
1258 list_del_init(&td->td_list);
1259 if (!list_empty(&td->cancelled_td_list))
1260 list_del_init(&td->cancelled_td_list);
1261 }
1262
1263 usb_hcd_unlink_urb_from_ep(hcd, urb);
1264 spin_unlock_irqrestore(&xhci->lock, flags);
1265 usb_hcd_giveback_urb(hcd, urb, -ESHUTDOWN);
1266 xhci_urb_free_priv(xhci, urb_priv);
1267 return ret;
1268 }
1269 if ((xhci->xhc_state & XHCI_STATE_DYING) ||
1270 (xhci->xhc_state & XHCI_STATE_HALTED)) {
1271 xhci_dbg(xhci, "Ep 0x%x: URB %p to be canceled on "
1272 "non-responsive xHCI host.\n",
1273 urb->ep->desc.bEndpointAddress, urb);
1274 /* Let the stop endpoint command watchdog timer (which set this
1275 * state) finish cleaning up the endpoint TD lists. We must
1276 * have caught it in the middle of dropping a lock and giving
1277 * back an URB.
1278 */
1279 goto done;
1280 }
1281
1282 xhci_dbg(xhci, "Cancel URB %p\n", urb);
1283 xhci_dbg(xhci, "Event ring:\n");
1284 xhci_debug_ring(xhci, xhci->event_ring);
1285 ep_index = xhci_get_endpoint_index(&urb->ep->desc);
1286 ep = &xhci->devs[urb->dev->slot_id]->eps[ep_index];
1287 ep_ring = xhci_urb_to_transfer_ring(xhci, urb);
1288 if (!ep_ring) {
1289 ret = -EINVAL;
1290 goto done;
1291 }
1292
1293 xhci_dbg(xhci, "Endpoint ring:\n");
1294 xhci_debug_ring(xhci, ep_ring);
1295
1296 urb_priv = urb->hcpriv;
1297
1298 for (i = urb_priv->td_cnt; i < urb_priv->length; i++) {
1299 td = urb_priv->td[i];
1300 list_add_tail(&td->cancelled_td_list, &ep->cancelled_td_list);
1301 }
1302
1303 /* Queue a stop endpoint command, but only if this is
1304 * the first cancellation to be handled.
1305 */
1306 if (!(ep->ep_state & EP_HALT_PENDING)) {
1307 ep->ep_state |= EP_HALT_PENDING;
1308 ep->stop_cmds_pending++;
1309 ep->stop_cmd_timer.expires = jiffies +
1310 XHCI_STOP_EP_CMD_TIMEOUT * HZ;
1311 add_timer(&ep->stop_cmd_timer);
1312 xhci_queue_stop_endpoint(xhci, urb->dev->slot_id, ep_index, 0);
1313 xhci_ring_cmd_db(xhci);
1314 }
1315done:
1316 spin_unlock_irqrestore(&xhci->lock, flags);
1317 return ret;
1318}
1319
1320/* Drop an endpoint from a new bandwidth configuration for this device.
1321 * Only one call to this function is allowed per endpoint before
1322 * check_bandwidth() or reset_bandwidth() must be called.
1323 * A call to xhci_drop_endpoint() followed by a call to xhci_add_endpoint() will
1324 * add the endpoint to the schedule with possibly new parameters denoted by a
1325 * different endpoint descriptor in usb_host_endpoint.
1326 * A call to xhci_add_endpoint() followed by a call to xhci_drop_endpoint() is
1327 * not allowed.
1328 *
1329 * The USB core will not allow URBs to be queued to an endpoint that is being
1330 * disabled, so there's no need for mutual exclusion to protect
1331 * the xhci->devs[slot_id] structure.
1332 */
1333int xhci_drop_endpoint(struct usb_hcd *hcd, struct usb_device *udev,
1334 struct usb_host_endpoint *ep)
1335{
1336 struct xhci_hcd *xhci;
1337 struct xhci_container_ctx *in_ctx, *out_ctx;
1338 struct xhci_input_control_ctx *ctrl_ctx;
1339 struct xhci_slot_ctx *slot_ctx;
1340 unsigned int last_ctx;
1341 unsigned int ep_index;
1342 struct xhci_ep_ctx *ep_ctx;
1343 u32 drop_flag;
1344 u32 new_add_flags, new_drop_flags, new_slot_info;
1345 int ret;
1346
1347 ret = xhci_check_args(hcd, udev, ep, 1, true, __func__);
1348 if (ret <= 0)
1349 return ret;
1350 xhci = hcd_to_xhci(hcd);
1351 if (xhci->xhc_state & XHCI_STATE_DYING)
1352 return -ENODEV;
1353
1354 xhci_dbg(xhci, "%s called for udev %p\n", __func__, udev);
1355 drop_flag = xhci_get_endpoint_flag(&ep->desc);
1356 if (drop_flag == SLOT_FLAG || drop_flag == EP0_FLAG) {
1357 xhci_dbg(xhci, "xHCI %s - can't drop slot or ep 0 %#x\n",
1358 __func__, drop_flag);
1359 return 0;
1360 }
1361
1362 in_ctx = xhci->devs[udev->slot_id]->in_ctx;
1363 out_ctx = xhci->devs[udev->slot_id]->out_ctx;
1364 ctrl_ctx = xhci_get_input_control_ctx(xhci, in_ctx);
1365 ep_index = xhci_get_endpoint_index(&ep->desc);
1366 ep_ctx = xhci_get_ep_ctx(xhci, out_ctx, ep_index);
1367 /* If the HC already knows the endpoint is disabled,
1368 * or the HCD has noted it is disabled, ignore this request
1369 */
1370 if (((ep_ctx->ep_info & cpu_to_le32(EP_STATE_MASK)) ==
1371 cpu_to_le32(EP_STATE_DISABLED)) ||
1372 le32_to_cpu(ctrl_ctx->drop_flags) &
1373 xhci_get_endpoint_flag(&ep->desc)) {
1374 xhci_warn(xhci, "xHCI %s called with disabled ep %p\n",
1375 __func__, ep);
1376 return 0;
1377 }
1378
1379 ctrl_ctx->drop_flags |= cpu_to_le32(drop_flag);
1380 new_drop_flags = le32_to_cpu(ctrl_ctx->drop_flags);
1381
1382 ctrl_ctx->add_flags &= cpu_to_le32(~drop_flag);
1383 new_add_flags = le32_to_cpu(ctrl_ctx->add_flags);
1384
1385 last_ctx = xhci_last_valid_endpoint(le32_to_cpu(ctrl_ctx->add_flags));
1386 slot_ctx = xhci_get_slot_ctx(xhci, in_ctx);
1387 /* Update the last valid endpoint context, if we deleted the last one */
1388 if ((le32_to_cpu(slot_ctx->dev_info) & LAST_CTX_MASK) >
1389 LAST_CTX(last_ctx)) {
1390 slot_ctx->dev_info &= cpu_to_le32(~LAST_CTX_MASK);
1391 slot_ctx->dev_info |= cpu_to_le32(LAST_CTX(last_ctx));
1392 }
1393 new_slot_info = le32_to_cpu(slot_ctx->dev_info);
1394
1395 xhci_endpoint_zero(xhci, xhci->devs[udev->slot_id], ep);
1396
1397 xhci_dbg(xhci, "drop ep 0x%x, slot id %d, new drop flags = %#x, new add flags = %#x, new slot info = %#x\n",
1398 (unsigned int) ep->desc.bEndpointAddress,
1399 udev->slot_id,
1400 (unsigned int) new_drop_flags,
1401 (unsigned int) new_add_flags,
1402 (unsigned int) new_slot_info);
1403 return 0;
1404}
1405
1406/* Add an endpoint to a new possible bandwidth configuration for this device.
1407 * Only one call to this function is allowed per endpoint before
1408 * check_bandwidth() or reset_bandwidth() must be called.
1409 * A call to xhci_drop_endpoint() followed by a call to xhci_add_endpoint() will
1410 * add the endpoint to the schedule with possibly new parameters denoted by a
1411 * different endpoint descriptor in usb_host_endpoint.
1412 * A call to xhci_add_endpoint() followed by a call to xhci_drop_endpoint() is
1413 * not allowed.
1414 *
1415 * The USB core will not allow URBs to be queued to an endpoint until the
1416 * configuration or alt setting is installed in the device, so there's no need
1417 * for mutual exclusion to protect the xhci->devs[slot_id] structure.
1418 */
1419int xhci_add_endpoint(struct usb_hcd *hcd, struct usb_device *udev,
1420 struct usb_host_endpoint *ep)
1421{
1422 struct xhci_hcd *xhci;
1423 struct xhci_container_ctx *in_ctx, *out_ctx;
1424 unsigned int ep_index;
1425 struct xhci_ep_ctx *ep_ctx;
1426 struct xhci_slot_ctx *slot_ctx;
1427 struct xhci_input_control_ctx *ctrl_ctx;
1428 u32 added_ctxs;
1429 unsigned int last_ctx;
1430 u32 new_add_flags, new_drop_flags, new_slot_info;
1431 struct xhci_virt_device *virt_dev;
1432 int ret = 0;
1433
1434 ret = xhci_check_args(hcd, udev, ep, 1, true, __func__);
1435 if (ret <= 0) {
1436 /* So we won't queue a reset ep command for a root hub */
1437 ep->hcpriv = NULL;
1438 return ret;
1439 }
1440 xhci = hcd_to_xhci(hcd);
1441 if (xhci->xhc_state & XHCI_STATE_DYING)
1442 return -ENODEV;
1443
1444 added_ctxs = xhci_get_endpoint_flag(&ep->desc);
1445 last_ctx = xhci_last_valid_endpoint(added_ctxs);
1446 if (added_ctxs == SLOT_FLAG || added_ctxs == EP0_FLAG) {
1447 /* FIXME when we have to issue an evaluate endpoint command to
1448 * deal with ep0 max packet size changing once we get the
1449 * descriptors
1450 */
1451 xhci_dbg(xhci, "xHCI %s - can't add slot or ep 0 %#x\n",
1452 __func__, added_ctxs);
1453 return 0;
1454 }
1455
1456 virt_dev = xhci->devs[udev->slot_id];
1457 in_ctx = virt_dev->in_ctx;
1458 out_ctx = virt_dev->out_ctx;
1459 ctrl_ctx = xhci_get_input_control_ctx(xhci, in_ctx);
1460 ep_index = xhci_get_endpoint_index(&ep->desc);
1461 ep_ctx = xhci_get_ep_ctx(xhci, out_ctx, ep_index);
1462
1463 /* If this endpoint is already in use, and the upper layers are trying
1464 * to add it again without dropping it, reject the addition.
1465 */
1466 if (virt_dev->eps[ep_index].ring &&
1467 !(le32_to_cpu(ctrl_ctx->drop_flags) &
1468 xhci_get_endpoint_flag(&ep->desc))) {
1469 xhci_warn(xhci, "Trying to add endpoint 0x%x "
1470 "without dropping it.\n",
1471 (unsigned int) ep->desc.bEndpointAddress);
1472 return -EINVAL;
1473 }
1474
1475 /* If the HCD has already noted the endpoint is enabled,
1476 * ignore this request.
1477 */
1478 if (le32_to_cpu(ctrl_ctx->add_flags) &
1479 xhci_get_endpoint_flag(&ep->desc)) {
1480 xhci_warn(xhci, "xHCI %s called with enabled ep %p\n",
1481 __func__, ep);
1482 return 0;
1483 }
1484
1485 /*
1486 * Configuration and alternate setting changes must be done in
1487 * process context, not interrupt context (or so documenation
1488 * for usb_set_interface() and usb_set_configuration() claim).
1489 */
1490 if (xhci_endpoint_init(xhci, virt_dev, udev, ep, GFP_NOIO) < 0) {
1491 dev_dbg(&udev->dev, "%s - could not initialize ep %#x\n",
1492 __func__, ep->desc.bEndpointAddress);
1493 return -ENOMEM;
1494 }
1495
1496 ctrl_ctx->add_flags |= cpu_to_le32(added_ctxs);
1497 new_add_flags = le32_to_cpu(ctrl_ctx->add_flags);
1498
1499 /* If xhci_endpoint_disable() was called for this endpoint, but the
1500 * xHC hasn't been notified yet through the check_bandwidth() call,
1501 * this re-adds a new state for the endpoint from the new endpoint
1502 * descriptors. We must drop and re-add this endpoint, so we leave the
1503 * drop flags alone.
1504 */
1505 new_drop_flags = le32_to_cpu(ctrl_ctx->drop_flags);
1506
1507 slot_ctx = xhci_get_slot_ctx(xhci, in_ctx);
1508 /* Update the last valid endpoint context, if we just added one past */
1509 if ((le32_to_cpu(slot_ctx->dev_info) & LAST_CTX_MASK) <
1510 LAST_CTX(last_ctx)) {
1511 slot_ctx->dev_info &= cpu_to_le32(~LAST_CTX_MASK);
1512 slot_ctx->dev_info |= cpu_to_le32(LAST_CTX(last_ctx));
1513 }
1514 new_slot_info = le32_to_cpu(slot_ctx->dev_info);
1515
1516 /* Store the usb_device pointer for later use */
1517 ep->hcpriv = udev;
1518
1519 xhci_dbg(xhci, "add ep 0x%x, slot id %d, new drop flags = %#x, new add flags = %#x, new slot info = %#x\n",
1520 (unsigned int) ep->desc.bEndpointAddress,
1521 udev->slot_id,
1522 (unsigned int) new_drop_flags,
1523 (unsigned int) new_add_flags,
1524 (unsigned int) new_slot_info);
1525 return 0;
1526}
1527
1528static void xhci_zero_in_ctx(struct xhci_hcd *xhci, struct xhci_virt_device *virt_dev)
1529{
1530 struct xhci_input_control_ctx *ctrl_ctx;
1531 struct xhci_ep_ctx *ep_ctx;
1532 struct xhci_slot_ctx *slot_ctx;
1533 int i;
1534
1535 /* When a device's add flag and drop flag are zero, any subsequent
1536 * configure endpoint command will leave that endpoint's state
1537 * untouched. Make sure we don't leave any old state in the input
1538 * endpoint contexts.
1539 */
1540 ctrl_ctx = xhci_get_input_control_ctx(xhci, virt_dev->in_ctx);
1541 ctrl_ctx->drop_flags = 0;
1542 ctrl_ctx->add_flags = 0;
1543 slot_ctx = xhci_get_slot_ctx(xhci, virt_dev->in_ctx);
1544 slot_ctx->dev_info &= cpu_to_le32(~LAST_CTX_MASK);
1545 /* Endpoint 0 is always valid */
1546 slot_ctx->dev_info |= cpu_to_le32(LAST_CTX(1));
1547 for (i = 1; i < 31; ++i) {
1548 ep_ctx = xhci_get_ep_ctx(xhci, virt_dev->in_ctx, i);
1549 ep_ctx->ep_info = 0;
1550 ep_ctx->ep_info2 = 0;
1551 ep_ctx->deq = 0;
1552 ep_ctx->tx_info = 0;
1553 }
1554}
1555
1556static int xhci_configure_endpoint_result(struct xhci_hcd *xhci,
1557 struct usb_device *udev, u32 *cmd_status)
1558{
1559 int ret;
1560
1561 switch (*cmd_status) {
1562 case COMP_ENOMEM:
1563 dev_warn(&udev->dev, "Not enough host controller resources "
1564 "for new device state.\n");
1565 ret = -ENOMEM;
1566 /* FIXME: can we allocate more resources for the HC? */
1567 break;
1568 case COMP_BW_ERR:
1569 dev_warn(&udev->dev, "Not enough bandwidth "
1570 "for new device state.\n");
1571 ret = -ENOSPC;
1572 /* FIXME: can we go back to the old state? */
1573 break;
1574 case COMP_TRB_ERR:
1575 /* the HCD set up something wrong */
1576 dev_warn(&udev->dev, "ERROR: Endpoint drop flag = 0, "
1577 "add flag = 1, "
1578 "and endpoint is not disabled.\n");
1579 ret = -EINVAL;
1580 break;
1581 case COMP_DEV_ERR:
1582 dev_warn(&udev->dev, "ERROR: Incompatible device for endpoint "
1583 "configure command.\n");
1584 ret = -ENODEV;
1585 break;
1586 case COMP_SUCCESS:
1587 dev_dbg(&udev->dev, "Successful Endpoint Configure command\n");
1588 ret = 0;
1589 break;
1590 default:
1591 xhci_err(xhci, "ERROR: unexpected command completion "
1592 "code 0x%x.\n", *cmd_status);
1593 ret = -EINVAL;
1594 break;
1595 }
1596 return ret;
1597}
1598
1599static int xhci_evaluate_context_result(struct xhci_hcd *xhci,
1600 struct usb_device *udev, u32 *cmd_status)
1601{
1602 int ret;
1603 struct xhci_virt_device *virt_dev = xhci->devs[udev->slot_id];
1604
1605 switch (*cmd_status) {
1606 case COMP_EINVAL:
1607 dev_warn(&udev->dev, "WARN: xHCI driver setup invalid evaluate "
1608 "context command.\n");
1609 ret = -EINVAL;
1610 break;
1611 case COMP_EBADSLT:
1612 dev_warn(&udev->dev, "WARN: slot not enabled for"
1613 "evaluate context command.\n");
1614 case COMP_CTX_STATE:
1615 dev_warn(&udev->dev, "WARN: invalid context state for "
1616 "evaluate context command.\n");
1617 xhci_dbg_ctx(xhci, virt_dev->out_ctx, 1);
1618 ret = -EINVAL;
1619 break;
1620 case COMP_DEV_ERR:
1621 dev_warn(&udev->dev, "ERROR: Incompatible device for evaluate "
1622 "context command.\n");
1623 ret = -ENODEV;
1624 break;
1625 case COMP_MEL_ERR:
1626 /* Max Exit Latency too large error */
1627 dev_warn(&udev->dev, "WARN: Max Exit Latency too large\n");
1628 ret = -EINVAL;
1629 break;
1630 case COMP_SUCCESS:
1631 dev_dbg(&udev->dev, "Successful evaluate context command\n");
1632 ret = 0;
1633 break;
1634 default:
1635 xhci_err(xhci, "ERROR: unexpected command completion "
1636 "code 0x%x.\n", *cmd_status);
1637 ret = -EINVAL;
1638 break;
1639 }
1640 return ret;
1641}
1642
1643static u32 xhci_count_num_new_endpoints(struct xhci_hcd *xhci,
1644 struct xhci_container_ctx *in_ctx)
1645{
1646 struct xhci_input_control_ctx *ctrl_ctx;
1647 u32 valid_add_flags;
1648 u32 valid_drop_flags;
1649
1650 ctrl_ctx = xhci_get_input_control_ctx(xhci, in_ctx);
1651 /* Ignore the slot flag (bit 0), and the default control endpoint flag
1652 * (bit 1). The default control endpoint is added during the Address
1653 * Device command and is never removed until the slot is disabled.
1654 */
1655 valid_add_flags = ctrl_ctx->add_flags >> 2;
1656 valid_drop_flags = ctrl_ctx->drop_flags >> 2;
1657
1658 /* Use hweight32 to count the number of ones in the add flags, or
1659 * number of endpoints added. Don't count endpoints that are changed
1660 * (both added and dropped).
1661 */
1662 return hweight32(valid_add_flags) -
1663 hweight32(valid_add_flags & valid_drop_flags);
1664}
1665
1666static unsigned int xhci_count_num_dropped_endpoints(struct xhci_hcd *xhci,
1667 struct xhci_container_ctx *in_ctx)
1668{
1669 struct xhci_input_control_ctx *ctrl_ctx;
1670 u32 valid_add_flags;
1671 u32 valid_drop_flags;
1672
1673 ctrl_ctx = xhci_get_input_control_ctx(xhci, in_ctx);
1674 valid_add_flags = ctrl_ctx->add_flags >> 2;
1675 valid_drop_flags = ctrl_ctx->drop_flags >> 2;
1676
1677 return hweight32(valid_drop_flags) -
1678 hweight32(valid_add_flags & valid_drop_flags);
1679}
1680
1681/*
1682 * We need to reserve the new number of endpoints before the configure endpoint
1683 * command completes. We can't subtract the dropped endpoints from the number
1684 * of active endpoints until the command completes because we can oversubscribe
1685 * the host in this case:
1686 *
1687 * - the first configure endpoint command drops more endpoints than it adds
1688 * - a second configure endpoint command that adds more endpoints is queued
1689 * - the first configure endpoint command fails, so the config is unchanged
1690 * - the second command may succeed, even though there isn't enough resources
1691 *
1692 * Must be called with xhci->lock held.
1693 */
1694static int xhci_reserve_host_resources(struct xhci_hcd *xhci,
1695 struct xhci_container_ctx *in_ctx)
1696{
1697 u32 added_eps;
1698
1699 added_eps = xhci_count_num_new_endpoints(xhci, in_ctx);
1700 if (xhci->num_active_eps + added_eps > xhci->limit_active_eps) {
1701 xhci_dbg(xhci, "Not enough ep ctxs: "
1702 "%u active, need to add %u, limit is %u.\n",
1703 xhci->num_active_eps, added_eps,
1704 xhci->limit_active_eps);
1705 return -ENOMEM;
1706 }
1707 xhci->num_active_eps += added_eps;
1708 xhci_dbg(xhci, "Adding %u ep ctxs, %u now active.\n", added_eps,
1709 xhci->num_active_eps);
1710 return 0;
1711}
1712
1713/*
1714 * The configure endpoint was failed by the xHC for some other reason, so we
1715 * need to revert the resources that failed configuration would have used.
1716 *
1717 * Must be called with xhci->lock held.
1718 */
1719static void xhci_free_host_resources(struct xhci_hcd *xhci,
1720 struct xhci_container_ctx *in_ctx)
1721{
1722 u32 num_failed_eps;
1723
1724 num_failed_eps = xhci_count_num_new_endpoints(xhci, in_ctx);
1725 xhci->num_active_eps -= num_failed_eps;
1726 xhci_dbg(xhci, "Removing %u failed ep ctxs, %u now active.\n",
1727 num_failed_eps,
1728 xhci->num_active_eps);
1729}
1730
1731/*
1732 * Now that the command has completed, clean up the active endpoint count by
1733 * subtracting out the endpoints that were dropped (but not changed).
1734 *
1735 * Must be called with xhci->lock held.
1736 */
1737static void xhci_finish_resource_reservation(struct xhci_hcd *xhci,
1738 struct xhci_container_ctx *in_ctx)
1739{
1740 u32 num_dropped_eps;
1741
1742 num_dropped_eps = xhci_count_num_dropped_endpoints(xhci, in_ctx);
1743 xhci->num_active_eps -= num_dropped_eps;
1744 if (num_dropped_eps)
1745 xhci_dbg(xhci, "Removing %u dropped ep ctxs, %u now active.\n",
1746 num_dropped_eps,
1747 xhci->num_active_eps);
1748}
1749
1750/* Issue a configure endpoint command or evaluate context command
1751 * and wait for it to finish.
1752 */
1753static int xhci_configure_endpoint(struct xhci_hcd *xhci,
1754 struct usb_device *udev,
1755 struct xhci_command *command,
1756 bool ctx_change, bool must_succeed)
1757{
1758 int ret;
1759 int timeleft;
1760 unsigned long flags;
1761 struct xhci_container_ctx *in_ctx;
1762 struct completion *cmd_completion;
1763 u32 *cmd_status;
1764 struct xhci_virt_device *virt_dev;
1765
1766 spin_lock_irqsave(&xhci->lock, flags);
1767 virt_dev = xhci->devs[udev->slot_id];
1768 if (command) {
1769 in_ctx = command->in_ctx;
1770 if ((xhci->quirks & XHCI_EP_LIMIT_QUIRK) &&
1771 xhci_reserve_host_resources(xhci, in_ctx)) {
1772 spin_unlock_irqrestore(&xhci->lock, flags);
1773 xhci_warn(xhci, "Not enough host resources, "
1774 "active endpoint contexts = %u\n",
1775 xhci->num_active_eps);
1776 return -ENOMEM;
1777 }
1778
1779 cmd_completion = command->completion;
1780 cmd_status = &command->status;
1781 command->command_trb = xhci->cmd_ring->enqueue;
1782
1783 /* Enqueue pointer can be left pointing to the link TRB,
1784 * we must handle that
1785 */
1786 if (TRB_TYPE_LINK_LE32(command->command_trb->link.control))
1787 command->command_trb =
1788 xhci->cmd_ring->enq_seg->next->trbs;
1789
1790 list_add_tail(&command->cmd_list, &virt_dev->cmd_list);
1791 } else {
1792 in_ctx = virt_dev->in_ctx;
1793 if ((xhci->quirks & XHCI_EP_LIMIT_QUIRK) &&
1794 xhci_reserve_host_resources(xhci, in_ctx)) {
1795 spin_unlock_irqrestore(&xhci->lock, flags);
1796 xhci_warn(xhci, "Not enough host resources, "
1797 "active endpoint contexts = %u\n",
1798 xhci->num_active_eps);
1799 return -ENOMEM;
1800 }
1801 cmd_completion = &virt_dev->cmd_completion;
1802 cmd_status = &virt_dev->cmd_status;
1803 }
1804 init_completion(cmd_completion);
1805
1806 if (!ctx_change)
1807 ret = xhci_queue_configure_endpoint(xhci, in_ctx->dma,
1808 udev->slot_id, must_succeed);
1809 else
1810 ret = xhci_queue_evaluate_context(xhci, in_ctx->dma,
1811 udev->slot_id);
1812 if (ret < 0) {
1813 if (command)
1814 list_del(&command->cmd_list);
1815 if ((xhci->quirks & XHCI_EP_LIMIT_QUIRK))
1816 xhci_free_host_resources(xhci, in_ctx);
1817 spin_unlock_irqrestore(&xhci->lock, flags);
1818 xhci_dbg(xhci, "FIXME allocate a new ring segment\n");
1819 return -ENOMEM;
1820 }
1821 xhci_ring_cmd_db(xhci);
1822 spin_unlock_irqrestore(&xhci->lock, flags);
1823
1824 /* Wait for the configure endpoint command to complete */
1825 timeleft = wait_for_completion_interruptible_timeout(
1826 cmd_completion,
1827 USB_CTRL_SET_TIMEOUT);
1828 if (timeleft <= 0) {
1829 xhci_warn(xhci, "%s while waiting for %s command\n",
1830 timeleft == 0 ? "Timeout" : "Signal",
1831 ctx_change == 0 ?
1832 "configure endpoint" :
1833 "evaluate context");
1834 /* FIXME cancel the configure endpoint command */
1835 return -ETIME;
1836 }
1837
1838 if (!ctx_change)
1839 ret = xhci_configure_endpoint_result(xhci, udev, cmd_status);
1840 else
1841 ret = xhci_evaluate_context_result(xhci, udev, cmd_status);
1842
1843 if ((xhci->quirks & XHCI_EP_LIMIT_QUIRK)) {
1844 spin_lock_irqsave(&xhci->lock, flags);
1845 /* If the command failed, remove the reserved resources.
1846 * Otherwise, clean up the estimate to include dropped eps.
1847 */
1848 if (ret)
1849 xhci_free_host_resources(xhci, in_ctx);
1850 else
1851 xhci_finish_resource_reservation(xhci, in_ctx);
1852 spin_unlock_irqrestore(&xhci->lock, flags);
1853 }
1854 return ret;
1855}
1856
1857/* Called after one or more calls to xhci_add_endpoint() or
1858 * xhci_drop_endpoint(). If this call fails, the USB core is expected
1859 * to call xhci_reset_bandwidth().
1860 *
1861 * Since we are in the middle of changing either configuration or
1862 * installing a new alt setting, the USB core won't allow URBs to be
1863 * enqueued for any endpoint on the old config or interface. Nothing
1864 * else should be touching the xhci->devs[slot_id] structure, so we
1865 * don't need to take the xhci->lock for manipulating that.
1866 */
1867int xhci_check_bandwidth(struct usb_hcd *hcd, struct usb_device *udev)
1868{
1869 int i;
1870 int ret = 0;
1871 struct xhci_hcd *xhci;
1872 struct xhci_virt_device *virt_dev;
1873 struct xhci_input_control_ctx *ctrl_ctx;
1874 struct xhci_slot_ctx *slot_ctx;
1875
1876 ret = xhci_check_args(hcd, udev, NULL, 0, true, __func__);
1877 if (ret <= 0)
1878 return ret;
1879 xhci = hcd_to_xhci(hcd);
1880 if (xhci->xhc_state & XHCI_STATE_DYING)
1881 return -ENODEV;
1882
1883 xhci_dbg(xhci, "%s called for udev %p\n", __func__, udev);
1884 virt_dev = xhci->devs[udev->slot_id];
1885
1886 /* See section 4.6.6 - A0 = 1; A1 = D0 = D1 = 0 */
1887 ctrl_ctx = xhci_get_input_control_ctx(xhci, virt_dev->in_ctx);
1888 ctrl_ctx->add_flags |= cpu_to_le32(SLOT_FLAG);
1889 ctrl_ctx->add_flags &= cpu_to_le32(~EP0_FLAG);
1890 ctrl_ctx->drop_flags &= cpu_to_le32(~(SLOT_FLAG | EP0_FLAG));
1891 xhci_dbg(xhci, "New Input Control Context:\n");
1892 slot_ctx = xhci_get_slot_ctx(xhci, virt_dev->in_ctx);
1893 xhci_dbg_ctx(xhci, virt_dev->in_ctx,
1894 LAST_CTX_TO_EP_NUM(le32_to_cpu(slot_ctx->dev_info)));
1895
1896 ret = xhci_configure_endpoint(xhci, udev, NULL,
1897 false, false);
1898 if (ret) {
1899 /* Callee should call reset_bandwidth() */
1900 return ret;
1901 }
1902
1903 xhci_dbg(xhci, "Output context after successful config ep cmd:\n");
1904 xhci_dbg_ctx(xhci, virt_dev->out_ctx,
1905 LAST_CTX_TO_EP_NUM(le32_to_cpu(slot_ctx->dev_info)));
1906
1907 /* Free any rings that were dropped, but not changed. */
1908 for (i = 1; i < 31; ++i) {
1909 if ((le32_to_cpu(ctrl_ctx->drop_flags) & (1 << (i + 1))) &&
1910 !(le32_to_cpu(ctrl_ctx->add_flags) & (1 << (i + 1))))
1911 xhci_free_or_cache_endpoint_ring(xhci, virt_dev, i);
1912 }
1913 xhci_zero_in_ctx(xhci, virt_dev);
1914 /*
1915 * Install any rings for completely new endpoints or changed endpoints,
1916 * and free or cache any old rings from changed endpoints.
1917 */
1918 for (i = 1; i < 31; ++i) {
1919 if (!virt_dev->eps[i].new_ring)
1920 continue;
1921 /* Only cache or free the old ring if it exists.
1922 * It may not if this is the first add of an endpoint.
1923 */
1924 if (virt_dev->eps[i].ring) {
1925 xhci_free_or_cache_endpoint_ring(xhci, virt_dev, i);
1926 }
1927 virt_dev->eps[i].ring = virt_dev->eps[i].new_ring;
1928 virt_dev->eps[i].new_ring = NULL;
1929 }
1930
1931 return ret;
1932}
1933
1934void xhci_reset_bandwidth(struct usb_hcd *hcd, struct usb_device *udev)
1935{
1936 struct xhci_hcd *xhci;
1937 struct xhci_virt_device *virt_dev;
1938 int i, ret;
1939
1940 ret = xhci_check_args(hcd, udev, NULL, 0, true, __func__);
1941 if (ret <= 0)
1942 return;
1943 xhci = hcd_to_xhci(hcd);
1944
1945 xhci_dbg(xhci, "%s called for udev %p\n", __func__, udev);
1946 virt_dev = xhci->devs[udev->slot_id];
1947 /* Free any rings allocated for added endpoints */
1948 for (i = 0; i < 31; ++i) {
1949 if (virt_dev->eps[i].new_ring) {
1950 xhci_ring_free(xhci, virt_dev->eps[i].new_ring);
1951 virt_dev->eps[i].new_ring = NULL;
1952 }
1953 }
1954 xhci_zero_in_ctx(xhci, virt_dev);
1955}
1956
1957static void xhci_setup_input_ctx_for_config_ep(struct xhci_hcd *xhci,
1958 struct xhci_container_ctx *in_ctx,
1959 struct xhci_container_ctx *out_ctx,
1960 u32 add_flags, u32 drop_flags)
1961{
1962 struct xhci_input_control_ctx *ctrl_ctx;
1963 ctrl_ctx = xhci_get_input_control_ctx(xhci, in_ctx);
1964 ctrl_ctx->add_flags = cpu_to_le32(add_flags);
1965 ctrl_ctx->drop_flags = cpu_to_le32(drop_flags);
1966 xhci_slot_copy(xhci, in_ctx, out_ctx);
1967 ctrl_ctx->add_flags |= cpu_to_le32(SLOT_FLAG);
1968
1969 xhci_dbg(xhci, "Input Context:\n");
1970 xhci_dbg_ctx(xhci, in_ctx, xhci_last_valid_endpoint(add_flags));
1971}
1972
1973static void xhci_setup_input_ctx_for_quirk(struct xhci_hcd *xhci,
1974 unsigned int slot_id, unsigned int ep_index,
1975 struct xhci_dequeue_state *deq_state)
1976{
1977 struct xhci_container_ctx *in_ctx;
1978 struct xhci_ep_ctx *ep_ctx;
1979 u32 added_ctxs;
1980 dma_addr_t addr;
1981
1982 xhci_endpoint_copy(xhci, xhci->devs[slot_id]->in_ctx,
1983 xhci->devs[slot_id]->out_ctx, ep_index);
1984 in_ctx = xhci->devs[slot_id]->in_ctx;
1985 ep_ctx = xhci_get_ep_ctx(xhci, in_ctx, ep_index);
1986 addr = xhci_trb_virt_to_dma(deq_state->new_deq_seg,
1987 deq_state->new_deq_ptr);
1988 if (addr == 0) {
1989 xhci_warn(xhci, "WARN Cannot submit config ep after "
1990 "reset ep command\n");
1991 xhci_warn(xhci, "WARN deq seg = %p, deq ptr = %p\n",
1992 deq_state->new_deq_seg,
1993 deq_state->new_deq_ptr);
1994 return;
1995 }
1996 ep_ctx->deq = cpu_to_le64(addr | deq_state->new_cycle_state);
1997
1998 added_ctxs = xhci_get_endpoint_flag_from_index(ep_index);
1999 xhci_setup_input_ctx_for_config_ep(xhci, xhci->devs[slot_id]->in_ctx,
2000 xhci->devs[slot_id]->out_ctx, added_ctxs, added_ctxs);
2001}
2002
2003void xhci_cleanup_stalled_ring(struct xhci_hcd *xhci,
2004 struct usb_device *udev, unsigned int ep_index)
2005{
2006 struct xhci_dequeue_state deq_state;
2007 struct xhci_virt_ep *ep;
2008
2009 xhci_dbg(xhci, "Cleaning up stalled endpoint ring\n");
2010 ep = &xhci->devs[udev->slot_id]->eps[ep_index];
2011 /* We need to move the HW's dequeue pointer past this TD,
2012 * or it will attempt to resend it on the next doorbell ring.
2013 */
2014 xhci_find_new_dequeue_state(xhci, udev->slot_id,
2015 ep_index, ep->stopped_stream, ep->stopped_td,
2016 &deq_state);
2017
2018 /* HW with the reset endpoint quirk will use the saved dequeue state to
2019 * issue a configure endpoint command later.
2020 */
2021 if (!(xhci->quirks & XHCI_RESET_EP_QUIRK)) {
2022 xhci_dbg(xhci, "Queueing new dequeue state\n");
2023 xhci_queue_new_dequeue_state(xhci, udev->slot_id,
2024 ep_index, ep->stopped_stream, &deq_state);
2025 } else {
2026 /* Better hope no one uses the input context between now and the
2027 * reset endpoint completion!
2028 * XXX: No idea how this hardware will react when stream rings
2029 * are enabled.
2030 */
2031 xhci_dbg(xhci, "Setting up input context for "
2032 "configure endpoint command\n");
2033 xhci_setup_input_ctx_for_quirk(xhci, udev->slot_id,
2034 ep_index, &deq_state);
2035 }
2036}
2037
2038/* Deal with stalled endpoints. The core should have sent the control message
2039 * to clear the halt condition. However, we need to make the xHCI hardware
2040 * reset its sequence number, since a device will expect a sequence number of
2041 * zero after the halt condition is cleared.
2042 * Context: in_interrupt
2043 */
2044void xhci_endpoint_reset(struct usb_hcd *hcd,
2045 struct usb_host_endpoint *ep)
2046{
2047 struct xhci_hcd *xhci;
2048 struct usb_device *udev;
2049 unsigned int ep_index;
2050 unsigned long flags;
2051 int ret;
2052 struct xhci_virt_ep *virt_ep;
2053
2054 xhci = hcd_to_xhci(hcd);
2055 udev = (struct usb_device *) ep->hcpriv;
2056 /* Called with a root hub endpoint (or an endpoint that wasn't added
2057 * with xhci_add_endpoint()
2058 */
2059 if (!ep->hcpriv)
2060 return;
2061 ep_index = xhci_get_endpoint_index(&ep->desc);
2062 virt_ep = &xhci->devs[udev->slot_id]->eps[ep_index];
2063 if (!virt_ep->stopped_td) {
2064 xhci_dbg(xhci, "Endpoint 0x%x not halted, refusing to reset.\n",
2065 ep->desc.bEndpointAddress);
2066 return;
2067 }
2068 if (usb_endpoint_xfer_control(&ep->desc)) {
2069 xhci_dbg(xhci, "Control endpoint stall already handled.\n");
2070 return;
2071 }
2072
2073 xhci_dbg(xhci, "Queueing reset endpoint command\n");
2074 spin_lock_irqsave(&xhci->lock, flags);
2075 ret = xhci_queue_reset_ep(xhci, udev->slot_id, ep_index);
2076 /*
2077 * Can't change the ring dequeue pointer until it's transitioned to the
2078 * stopped state, which is only upon a successful reset endpoint
2079 * command. Better hope that last command worked!
2080 */
2081 if (!ret) {
2082 xhci_cleanup_stalled_ring(xhci, udev, ep_index);
2083 kfree(virt_ep->stopped_td);
2084 xhci_ring_cmd_db(xhci);
2085 }
2086 virt_ep->stopped_td = NULL;
2087 virt_ep->stopped_trb = NULL;
2088 virt_ep->stopped_stream = 0;
2089 spin_unlock_irqrestore(&xhci->lock, flags);
2090
2091 if (ret)
2092 xhci_warn(xhci, "FIXME allocate a new ring segment\n");
2093}
2094
2095static int xhci_check_streams_endpoint(struct xhci_hcd *xhci,
2096 struct usb_device *udev, struct usb_host_endpoint *ep,
2097 unsigned int slot_id)
2098{
2099 int ret;
2100 unsigned int ep_index;
2101 unsigned int ep_state;
2102
2103 if (!ep)
2104 return -EINVAL;
2105 ret = xhci_check_args(xhci_to_hcd(xhci), udev, ep, 1, true, __func__);
2106 if (ret <= 0)
2107 return -EINVAL;
2108 if (ep->ss_ep_comp.bmAttributes == 0) {
2109 xhci_warn(xhci, "WARN: SuperSpeed Endpoint Companion"
2110 " descriptor for ep 0x%x does not support streams\n",
2111 ep->desc.bEndpointAddress);
2112 return -EINVAL;
2113 }
2114
2115 ep_index = xhci_get_endpoint_index(&ep->desc);
2116 ep_state = xhci->devs[slot_id]->eps[ep_index].ep_state;
2117 if (ep_state & EP_HAS_STREAMS ||
2118 ep_state & EP_GETTING_STREAMS) {
2119 xhci_warn(xhci, "WARN: SuperSpeed bulk endpoint 0x%x "
2120 "already has streams set up.\n",
2121 ep->desc.bEndpointAddress);
2122 xhci_warn(xhci, "Send email to xHCI maintainer and ask for "
2123 "dynamic stream context array reallocation.\n");
2124 return -EINVAL;
2125 }
2126 if (!list_empty(&xhci->devs[slot_id]->eps[ep_index].ring->td_list)) {
2127 xhci_warn(xhci, "Cannot setup streams for SuperSpeed bulk "
2128 "endpoint 0x%x; URBs are pending.\n",
2129 ep->desc.bEndpointAddress);
2130 return -EINVAL;
2131 }
2132 return 0;
2133}
2134
2135static void xhci_calculate_streams_entries(struct xhci_hcd *xhci,
2136 unsigned int *num_streams, unsigned int *num_stream_ctxs)
2137{
2138 unsigned int max_streams;
2139
2140 /* The stream context array size must be a power of two */
2141 *num_stream_ctxs = roundup_pow_of_two(*num_streams);
2142 /*
2143 * Find out how many primary stream array entries the host controller
2144 * supports. Later we may use secondary stream arrays (similar to 2nd
2145 * level page entries), but that's an optional feature for xHCI host
2146 * controllers. xHCs must support at least 4 stream IDs.
2147 */
2148 max_streams = HCC_MAX_PSA(xhci->hcc_params);
2149 if (*num_stream_ctxs > max_streams) {
2150 xhci_dbg(xhci, "xHCI HW only supports %u stream ctx entries.\n",
2151 max_streams);
2152 *num_stream_ctxs = max_streams;
2153 *num_streams = max_streams;
2154 }
2155}
2156
2157/* Returns an error code if one of the endpoint already has streams.
2158 * This does not change any data structures, it only checks and gathers
2159 * information.
2160 */
2161static int xhci_calculate_streams_and_bitmask(struct xhci_hcd *xhci,
2162 struct usb_device *udev,
2163 struct usb_host_endpoint **eps, unsigned int num_eps,
2164 unsigned int *num_streams, u32 *changed_ep_bitmask)
2165{
2166 unsigned int max_streams;
2167 unsigned int endpoint_flag;
2168 int i;
2169 int ret;
2170
2171 for (i = 0; i < num_eps; i++) {
2172 ret = xhci_check_streams_endpoint(xhci, udev,
2173 eps[i], udev->slot_id);
2174 if (ret < 0)
2175 return ret;
2176
2177 max_streams = USB_SS_MAX_STREAMS(
2178 eps[i]->ss_ep_comp.bmAttributes);
2179 if (max_streams < (*num_streams - 1)) {
2180 xhci_dbg(xhci, "Ep 0x%x only supports %u stream IDs.\n",
2181 eps[i]->desc.bEndpointAddress,
2182 max_streams);
2183 *num_streams = max_streams+1;
2184 }
2185
2186 endpoint_flag = xhci_get_endpoint_flag(&eps[i]->desc);
2187 if (*changed_ep_bitmask & endpoint_flag)
2188 return -EINVAL;
2189 *changed_ep_bitmask |= endpoint_flag;
2190 }
2191 return 0;
2192}
2193
2194static u32 xhci_calculate_no_streams_bitmask(struct xhci_hcd *xhci,
2195 struct usb_device *udev,
2196 struct usb_host_endpoint **eps, unsigned int num_eps)
2197{
2198 u32 changed_ep_bitmask = 0;
2199 unsigned int slot_id;
2200 unsigned int ep_index;
2201 unsigned int ep_state;
2202 int i;
2203
2204 slot_id = udev->slot_id;
2205 if (!xhci->devs[slot_id])
2206 return 0;
2207
2208 for (i = 0; i < num_eps; i++) {
2209 ep_index = xhci_get_endpoint_index(&eps[i]->desc);
2210 ep_state = xhci->devs[slot_id]->eps[ep_index].ep_state;
2211 /* Are streams already being freed for the endpoint? */
2212 if (ep_state & EP_GETTING_NO_STREAMS) {
2213 xhci_warn(xhci, "WARN Can't disable streams for "
2214 "endpoint 0x%x\n, "
2215 "streams are being disabled already.",
2216 eps[i]->desc.bEndpointAddress);
2217 return 0;
2218 }
2219 /* Are there actually any streams to free? */
2220 if (!(ep_state & EP_HAS_STREAMS) &&
2221 !(ep_state & EP_GETTING_STREAMS)) {
2222 xhci_warn(xhci, "WARN Can't disable streams for "
2223 "endpoint 0x%x\n, "
2224 "streams are already disabled!",
2225 eps[i]->desc.bEndpointAddress);
2226 xhci_warn(xhci, "WARN xhci_free_streams() called "
2227 "with non-streams endpoint\n");
2228 return 0;
2229 }
2230 changed_ep_bitmask |= xhci_get_endpoint_flag(&eps[i]->desc);
2231 }
2232 return changed_ep_bitmask;
2233}
2234
2235/*
2236 * The USB device drivers use this function (though the HCD interface in USB
2237 * core) to prepare a set of bulk endpoints to use streams. Streams are used to
2238 * coordinate mass storage command queueing across multiple endpoints (basically
2239 * a stream ID == a task ID).
2240 *
2241 * Setting up streams involves allocating the same size stream context array
2242 * for each endpoint and issuing a configure endpoint command for all endpoints.
2243 *
2244 * Don't allow the call to succeed if one endpoint only supports one stream
2245 * (which means it doesn't support streams at all).
2246 *
2247 * Drivers may get less stream IDs than they asked for, if the host controller
2248 * hardware or endpoints claim they can't support the number of requested
2249 * stream IDs.
2250 */
2251int xhci_alloc_streams(struct usb_hcd *hcd, struct usb_device *udev,
2252 struct usb_host_endpoint **eps, unsigned int num_eps,
2253 unsigned int num_streams, gfp_t mem_flags)
2254{
2255 int i, ret;
2256 struct xhci_hcd *xhci;
2257 struct xhci_virt_device *vdev;
2258 struct xhci_command *config_cmd;
2259 unsigned int ep_index;
2260 unsigned int num_stream_ctxs;
2261 unsigned long flags;
2262 u32 changed_ep_bitmask = 0;
2263
2264 if (!eps)
2265 return -EINVAL;
2266
2267 /* Add one to the number of streams requested to account for
2268 * stream 0 that is reserved for xHCI usage.
2269 */
2270 num_streams += 1;
2271 xhci = hcd_to_xhci(hcd);
2272 xhci_dbg(xhci, "Driver wants %u stream IDs (including stream 0).\n",
2273 num_streams);
2274
2275 config_cmd = xhci_alloc_command(xhci, true, true, mem_flags);
2276 if (!config_cmd) {
2277 xhci_dbg(xhci, "Could not allocate xHCI command structure.\n");
2278 return -ENOMEM;
2279 }
2280
2281 /* Check to make sure all endpoints are not already configured for
2282 * streams. While we're at it, find the maximum number of streams that
2283 * all the endpoints will support and check for duplicate endpoints.
2284 */
2285 spin_lock_irqsave(&xhci->lock, flags);
2286 ret = xhci_calculate_streams_and_bitmask(xhci, udev, eps,
2287 num_eps, &num_streams, &changed_ep_bitmask);
2288 if (ret < 0) {
2289 xhci_free_command(xhci, config_cmd);
2290 spin_unlock_irqrestore(&xhci->lock, flags);
2291 return ret;
2292 }
2293 if (num_streams <= 1) {
2294 xhci_warn(xhci, "WARN: endpoints can't handle "
2295 "more than one stream.\n");
2296 xhci_free_command(xhci, config_cmd);
2297 spin_unlock_irqrestore(&xhci->lock, flags);
2298 return -EINVAL;
2299 }
2300 vdev = xhci->devs[udev->slot_id];
2301 /* Mark each endpoint as being in transition, so
2302 * xhci_urb_enqueue() will reject all URBs.
2303 */
2304 for (i = 0; i < num_eps; i++) {
2305 ep_index = xhci_get_endpoint_index(&eps[i]->desc);
2306 vdev->eps[ep_index].ep_state |= EP_GETTING_STREAMS;
2307 }
2308 spin_unlock_irqrestore(&xhci->lock, flags);
2309
2310 /* Setup internal data structures and allocate HW data structures for
2311 * streams (but don't install the HW structures in the input context
2312 * until we're sure all memory allocation succeeded).
2313 */
2314 xhci_calculate_streams_entries(xhci, &num_streams, &num_stream_ctxs);
2315 xhci_dbg(xhci, "Need %u stream ctx entries for %u stream IDs.\n",
2316 num_stream_ctxs, num_streams);
2317
2318 for (i = 0; i < num_eps; i++) {
2319 ep_index = xhci_get_endpoint_index(&eps[i]->desc);
2320 vdev->eps[ep_index].stream_info = xhci_alloc_stream_info(xhci,
2321 num_stream_ctxs,
2322 num_streams, mem_flags);
2323 if (!vdev->eps[ep_index].stream_info)
2324 goto cleanup;
2325 /* Set maxPstreams in endpoint context and update deq ptr to
2326 * point to stream context array. FIXME
2327 */
2328 }
2329
2330 /* Set up the input context for a configure endpoint command. */
2331 for (i = 0; i < num_eps; i++) {
2332 struct xhci_ep_ctx *ep_ctx;
2333
2334 ep_index = xhci_get_endpoint_index(&eps[i]->desc);
2335 ep_ctx = xhci_get_ep_ctx(xhci, config_cmd->in_ctx, ep_index);
2336
2337 xhci_endpoint_copy(xhci, config_cmd->in_ctx,
2338 vdev->out_ctx, ep_index);
2339 xhci_setup_streams_ep_input_ctx(xhci, ep_ctx,
2340 vdev->eps[ep_index].stream_info);
2341 }
2342 /* Tell the HW to drop its old copy of the endpoint context info
2343 * and add the updated copy from the input context.
2344 */
2345 xhci_setup_input_ctx_for_config_ep(xhci, config_cmd->in_ctx,
2346 vdev->out_ctx, changed_ep_bitmask, changed_ep_bitmask);
2347
2348 /* Issue and wait for the configure endpoint command */
2349 ret = xhci_configure_endpoint(xhci, udev, config_cmd,
2350 false, false);
2351
2352 /* xHC rejected the configure endpoint command for some reason, so we
2353 * leave the old ring intact and free our internal streams data
2354 * structure.
2355 */
2356 if (ret < 0)
2357 goto cleanup;
2358
2359 spin_lock_irqsave(&xhci->lock, flags);
2360 for (i = 0; i < num_eps; i++) {
2361 ep_index = xhci_get_endpoint_index(&eps[i]->desc);
2362 vdev->eps[ep_index].ep_state &= ~EP_GETTING_STREAMS;
2363 xhci_dbg(xhci, "Slot %u ep ctx %u now has streams.\n",
2364 udev->slot_id, ep_index);
2365 vdev->eps[ep_index].ep_state |= EP_HAS_STREAMS;
2366 }
2367 xhci_free_command(xhci, config_cmd);
2368 spin_unlock_irqrestore(&xhci->lock, flags);
2369
2370 /* Subtract 1 for stream 0, which drivers can't use */
2371 return num_streams - 1;
2372
2373cleanup:
2374 /* If it didn't work, free the streams! */
2375 for (i = 0; i < num_eps; i++) {
2376 ep_index = xhci_get_endpoint_index(&eps[i]->desc);
2377 xhci_free_stream_info(xhci, vdev->eps[ep_index].stream_info);
2378 vdev->eps[ep_index].stream_info = NULL;
2379 /* FIXME Unset maxPstreams in endpoint context and
2380 * update deq ptr to point to normal string ring.
2381 */
2382 vdev->eps[ep_index].ep_state &= ~EP_GETTING_STREAMS;
2383 vdev->eps[ep_index].ep_state &= ~EP_HAS_STREAMS;
2384 xhci_endpoint_zero(xhci, vdev, eps[i]);
2385 }
2386 xhci_free_command(xhci, config_cmd);
2387 return -ENOMEM;
2388}
2389
2390/* Transition the endpoint from using streams to being a "normal" endpoint
2391 * without streams.
2392 *
2393 * Modify the endpoint context state, submit a configure endpoint command,
2394 * and free all endpoint rings for streams if that completes successfully.
2395 */
2396int xhci_free_streams(struct usb_hcd *hcd, struct usb_device *udev,
2397 struct usb_host_endpoint **eps, unsigned int num_eps,
2398 gfp_t mem_flags)
2399{
2400 int i, ret;
2401 struct xhci_hcd *xhci;
2402 struct xhci_virt_device *vdev;
2403 struct xhci_command *command;
2404 unsigned int ep_index;
2405 unsigned long flags;
2406 u32 changed_ep_bitmask;
2407
2408 xhci = hcd_to_xhci(hcd);
2409 vdev = xhci->devs[udev->slot_id];
2410
2411 /* Set up a configure endpoint command to remove the streams rings */
2412 spin_lock_irqsave(&xhci->lock, flags);
2413 changed_ep_bitmask = xhci_calculate_no_streams_bitmask(xhci,
2414 udev, eps, num_eps);
2415 if (changed_ep_bitmask == 0) {
2416 spin_unlock_irqrestore(&xhci->lock, flags);
2417 return -EINVAL;
2418 }
2419
2420 /* Use the xhci_command structure from the first endpoint. We may have
2421 * allocated too many, but the driver may call xhci_free_streams() for
2422 * each endpoint it grouped into one call to xhci_alloc_streams().
2423 */
2424 ep_index = xhci_get_endpoint_index(&eps[0]->desc);
2425 command = vdev->eps[ep_index].stream_info->free_streams_command;
2426 for (i = 0; i < num_eps; i++) {
2427 struct xhci_ep_ctx *ep_ctx;
2428
2429 ep_index = xhci_get_endpoint_index(&eps[i]->desc);
2430 ep_ctx = xhci_get_ep_ctx(xhci, command->in_ctx, ep_index);
2431 xhci->devs[udev->slot_id]->eps[ep_index].ep_state |=
2432 EP_GETTING_NO_STREAMS;
2433
2434 xhci_endpoint_copy(xhci, command->in_ctx,
2435 vdev->out_ctx, ep_index);
2436 xhci_setup_no_streams_ep_input_ctx(xhci, ep_ctx,
2437 &vdev->eps[ep_index]);
2438 }
2439 xhci_setup_input_ctx_for_config_ep(xhci, command->in_ctx,
2440 vdev->out_ctx, changed_ep_bitmask, changed_ep_bitmask);
2441 spin_unlock_irqrestore(&xhci->lock, flags);
2442
2443 /* Issue and wait for the configure endpoint command,
2444 * which must succeed.
2445 */
2446 ret = xhci_configure_endpoint(xhci, udev, command,
2447 false, true);
2448
2449 /* xHC rejected the configure endpoint command for some reason, so we
2450 * leave the streams rings intact.
2451 */
2452 if (ret < 0)
2453 return ret;
2454
2455 spin_lock_irqsave(&xhci->lock, flags);
2456 for (i = 0; i < num_eps; i++) {
2457 ep_index = xhci_get_endpoint_index(&eps[i]->desc);
2458 xhci_free_stream_info(xhci, vdev->eps[ep_index].stream_info);
2459 vdev->eps[ep_index].stream_info = NULL;
2460 /* FIXME Unset maxPstreams in endpoint context and
2461 * update deq ptr to point to normal string ring.
2462 */
2463 vdev->eps[ep_index].ep_state &= ~EP_GETTING_NO_STREAMS;
2464 vdev->eps[ep_index].ep_state &= ~EP_HAS_STREAMS;
2465 }
2466 spin_unlock_irqrestore(&xhci->lock, flags);
2467
2468 return 0;
2469}
2470
2471/*
2472 * Deletes endpoint resources for endpoints that were active before a Reset
2473 * Device command, or a Disable Slot command. The Reset Device command leaves
2474 * the control endpoint intact, whereas the Disable Slot command deletes it.
2475 *
2476 * Must be called with xhci->lock held.
2477 */
2478void xhci_free_device_endpoint_resources(struct xhci_hcd *xhci,
2479 struct xhci_virt_device *virt_dev, bool drop_control_ep)
2480{
2481 int i;
2482 unsigned int num_dropped_eps = 0;
2483 unsigned int drop_flags = 0;
2484
2485 for (i = (drop_control_ep ? 0 : 1); i < 31; i++) {
2486 if (virt_dev->eps[i].ring) {
2487 drop_flags |= 1 << i;
2488 num_dropped_eps++;
2489 }
2490 }
2491 xhci->num_active_eps -= num_dropped_eps;
2492 if (num_dropped_eps)
2493 xhci_dbg(xhci, "Dropped %u ep ctxs, flags = 0x%x, "
2494 "%u now active.\n",
2495 num_dropped_eps, drop_flags,
2496 xhci->num_active_eps);
2497}
2498
2499/*
2500 * This submits a Reset Device Command, which will set the device state to 0,
2501 * set the device address to 0, and disable all the endpoints except the default
2502 * control endpoint. The USB core should come back and call
2503 * xhci_address_device(), and then re-set up the configuration. If this is
2504 * called because of a usb_reset_and_verify_device(), then the old alternate
2505 * settings will be re-installed through the normal bandwidth allocation
2506 * functions.
2507 *
2508 * Wait for the Reset Device command to finish. Remove all structures
2509 * associated with the endpoints that were disabled. Clear the input device
2510 * structure? Cache the rings? Reset the control endpoint 0 max packet size?
2511 *
2512 * If the virt_dev to be reset does not exist or does not match the udev,
2513 * it means the device is lost, possibly due to the xHC restore error and
2514 * re-initialization during S3/S4. In this case, call xhci_alloc_dev() to
2515 * re-allocate the device.
2516 */
2517int xhci_discover_or_reset_device(struct usb_hcd *hcd, struct usb_device *udev)
2518{
2519 int ret, i;
2520 unsigned long flags;
2521 struct xhci_hcd *xhci;
2522 unsigned int slot_id;
2523 struct xhci_virt_device *virt_dev;
2524 struct xhci_command *reset_device_cmd;
2525 int timeleft;
2526 int last_freed_endpoint;
2527 struct xhci_slot_ctx *slot_ctx;
2528
2529 ret = xhci_check_args(hcd, udev, NULL, 0, false, __func__);
2530 if (ret <= 0)
2531 return ret;
2532 xhci = hcd_to_xhci(hcd);
2533 slot_id = udev->slot_id;
2534 virt_dev = xhci->devs[slot_id];
2535 if (!virt_dev) {
2536 xhci_dbg(xhci, "The device to be reset with slot ID %u does "
2537 "not exist. Re-allocate the device\n", slot_id);
2538 ret = xhci_alloc_dev(hcd, udev);
2539 if (ret == 1)
2540 return 0;
2541 else
2542 return -EINVAL;
2543 }
2544
2545 if (virt_dev->udev != udev) {
2546 /* If the virt_dev and the udev does not match, this virt_dev
2547 * may belong to another udev.
2548 * Re-allocate the device.
2549 */
2550 xhci_dbg(xhci, "The device to be reset with slot ID %u does "
2551 "not match the udev. Re-allocate the device\n",
2552 slot_id);
2553 ret = xhci_alloc_dev(hcd, udev);
2554 if (ret == 1)
2555 return 0;
2556 else
2557 return -EINVAL;
2558 }
2559
2560 /* If device is not setup, there is no point in resetting it */
2561 slot_ctx = xhci_get_slot_ctx(xhci, virt_dev->out_ctx);
2562 if (GET_SLOT_STATE(le32_to_cpu(slot_ctx->dev_state)) ==
2563 SLOT_STATE_DISABLED)
2564 return 0;
2565
2566 xhci_dbg(xhci, "Resetting device with slot ID %u\n", slot_id);
2567 /* Allocate the command structure that holds the struct completion.
2568 * Assume we're in process context, since the normal device reset
2569 * process has to wait for the device anyway. Storage devices are
2570 * reset as part of error handling, so use GFP_NOIO instead of
2571 * GFP_KERNEL.
2572 */
2573 reset_device_cmd = xhci_alloc_command(xhci, false, true, GFP_NOIO);
2574 if (!reset_device_cmd) {
2575 xhci_dbg(xhci, "Couldn't allocate command structure.\n");
2576 return -ENOMEM;
2577 }
2578
2579 /* Attempt to submit the Reset Device command to the command ring */
2580 spin_lock_irqsave(&xhci->lock, flags);
2581 reset_device_cmd->command_trb = xhci->cmd_ring->enqueue;
2582
2583 /* Enqueue pointer can be left pointing to the link TRB,
2584 * we must handle that
2585 */
2586 if (TRB_TYPE_LINK_LE32(reset_device_cmd->command_trb->link.control))
2587 reset_device_cmd->command_trb =
2588 xhci->cmd_ring->enq_seg->next->trbs;
2589
2590 list_add_tail(&reset_device_cmd->cmd_list, &virt_dev->cmd_list);
2591 ret = xhci_queue_reset_device(xhci, slot_id);
2592 if (ret) {
2593 xhci_dbg(xhci, "FIXME: allocate a command ring segment\n");
2594 list_del(&reset_device_cmd->cmd_list);
2595 spin_unlock_irqrestore(&xhci->lock, flags);
2596 goto command_cleanup;
2597 }
2598 xhci_ring_cmd_db(xhci);
2599 spin_unlock_irqrestore(&xhci->lock, flags);
2600
2601 /* Wait for the Reset Device command to finish */
2602 timeleft = wait_for_completion_interruptible_timeout(
2603 reset_device_cmd->completion,
2604 USB_CTRL_SET_TIMEOUT);
2605 if (timeleft <= 0) {
2606 xhci_warn(xhci, "%s while waiting for reset device command\n",
2607 timeleft == 0 ? "Timeout" : "Signal");
2608 spin_lock_irqsave(&xhci->lock, flags);
2609 /* The timeout might have raced with the event ring handler, so
2610 * only delete from the list if the item isn't poisoned.
2611 */
2612 if (reset_device_cmd->cmd_list.next != LIST_POISON1)
2613 list_del(&reset_device_cmd->cmd_list);
2614 spin_unlock_irqrestore(&xhci->lock, flags);
2615 ret = -ETIME;
2616 goto command_cleanup;
2617 }
2618
2619 /* The Reset Device command can't fail, according to the 0.95/0.96 spec,
2620 * unless we tried to reset a slot ID that wasn't enabled,
2621 * or the device wasn't in the addressed or configured state.
2622 */
2623 ret = reset_device_cmd->status;
2624 switch (ret) {
2625 case COMP_EBADSLT: /* 0.95 completion code for bad slot ID */
2626 case COMP_CTX_STATE: /* 0.96 completion code for same thing */
2627 xhci_info(xhci, "Can't reset device (slot ID %u) in %s state\n",
2628 slot_id,
2629 xhci_get_slot_state(xhci, virt_dev->out_ctx));
2630 xhci_info(xhci, "Not freeing device rings.\n");
2631 /* Don't treat this as an error. May change my mind later. */
2632 ret = 0;
2633 goto command_cleanup;
2634 case COMP_SUCCESS:
2635 xhci_dbg(xhci, "Successful reset device command.\n");
2636 break;
2637 default:
2638 if (xhci_is_vendor_info_code(xhci, ret))
2639 break;
2640 xhci_warn(xhci, "Unknown completion code %u for "
2641 "reset device command.\n", ret);
2642 ret = -EINVAL;
2643 goto command_cleanup;
2644 }
2645
2646 /* Free up host controller endpoint resources */
2647 if ((xhci->quirks & XHCI_EP_LIMIT_QUIRK)) {
2648 spin_lock_irqsave(&xhci->lock, flags);
2649 /* Don't delete the default control endpoint resources */
2650 xhci_free_device_endpoint_resources(xhci, virt_dev, false);
2651 spin_unlock_irqrestore(&xhci->lock, flags);
2652 }
2653
2654 /* Everything but endpoint 0 is disabled, so free or cache the rings. */
2655 last_freed_endpoint = 1;
2656 for (i = 1; i < 31; ++i) {
2657 struct xhci_virt_ep *ep = &virt_dev->eps[i];
2658
2659 if (ep->ep_state & EP_HAS_STREAMS) {
2660 xhci_free_stream_info(xhci, ep->stream_info);
2661 ep->stream_info = NULL;
2662 ep->ep_state &= ~EP_HAS_STREAMS;
2663 }
2664
2665 if (ep->ring) {
2666 xhci_free_or_cache_endpoint_ring(xhci, virt_dev, i);
2667 last_freed_endpoint = i;
2668 }
2669 }
2670 xhci_dbg(xhci, "Output context after successful reset device cmd:\n");
2671 xhci_dbg_ctx(xhci, virt_dev->out_ctx, last_freed_endpoint);
2672 ret = 0;
2673
2674command_cleanup:
2675 xhci_free_command(xhci, reset_device_cmd);
2676 return ret;
2677}
2678
2679/*
2680 * At this point, the struct usb_device is about to go away, the device has
2681 * disconnected, and all traffic has been stopped and the endpoints have been
2682 * disabled. Free any HC data structures associated with that device.
2683 */
2684void xhci_free_dev(struct usb_hcd *hcd, struct usb_device *udev)
2685{
2686 struct xhci_hcd *xhci = hcd_to_xhci(hcd);
2687 struct xhci_virt_device *virt_dev;
2688 unsigned long flags;
2689 u32 state;
2690 int i, ret;
2691
2692 ret = xhci_check_args(hcd, udev, NULL, 0, true, __func__);
2693 /* If the host is halted due to driver unload, we still need to free the
2694 * device.
2695 */
2696 if (ret <= 0 && ret != -ENODEV)
2697 return;
2698
2699 virt_dev = xhci->devs[udev->slot_id];
2700
2701 /* Stop any wayward timer functions (which may grab the lock) */
2702 for (i = 0; i < 31; ++i) {
2703 virt_dev->eps[i].ep_state &= ~EP_HALT_PENDING;
2704 del_timer_sync(&virt_dev->eps[i].stop_cmd_timer);
2705 }
2706
2707 spin_lock_irqsave(&xhci->lock, flags);
2708 /* Don't disable the slot if the host controller is dead. */
2709 state = xhci_readl(xhci, &xhci->op_regs->status);
2710 if (state == 0xffffffff || (xhci->xhc_state & XHCI_STATE_DYING) ||
2711 (xhci->xhc_state & XHCI_STATE_HALTED)) {
2712 xhci_free_virt_device(xhci, udev->slot_id);
2713 spin_unlock_irqrestore(&xhci->lock, flags);
2714 return;
2715 }
2716
2717 if (xhci_queue_slot_control(xhci, TRB_DISABLE_SLOT, udev->slot_id)) {
2718 spin_unlock_irqrestore(&xhci->lock, flags);
2719 xhci_dbg(xhci, "FIXME: allocate a command ring segment\n");
2720 return;
2721 }
2722 xhci_ring_cmd_db(xhci);
2723 spin_unlock_irqrestore(&xhci->lock, flags);
2724 /*
2725 * Event command completion handler will free any data structures
2726 * associated with the slot. XXX Can free sleep?
2727 */
2728}
2729
2730/*
2731 * Checks if we have enough host controller resources for the default control
2732 * endpoint.
2733 *
2734 * Must be called with xhci->lock held.
2735 */
2736static int xhci_reserve_host_control_ep_resources(struct xhci_hcd *xhci)
2737{
2738 if (xhci->num_active_eps + 1 > xhci->limit_active_eps) {
2739 xhci_dbg(xhci, "Not enough ep ctxs: "
2740 "%u active, need to add 1, limit is %u.\n",
2741 xhci->num_active_eps, xhci->limit_active_eps);
2742 return -ENOMEM;
2743 }
2744 xhci->num_active_eps += 1;
2745 xhci_dbg(xhci, "Adding 1 ep ctx, %u now active.\n",
2746 xhci->num_active_eps);
2747 return 0;
2748}
2749
2750
2751/*
2752 * Returns 0 if the xHC ran out of device slots, the Enable Slot command
2753 * timed out, or allocating memory failed. Returns 1 on success.
2754 */
2755int xhci_alloc_dev(struct usb_hcd *hcd, struct usb_device *udev)
2756{
2757 struct xhci_hcd *xhci = hcd_to_xhci(hcd);
2758 unsigned long flags;
2759 int timeleft;
2760 int ret;
2761
2762 spin_lock_irqsave(&xhci->lock, flags);
2763 ret = xhci_queue_slot_control(xhci, TRB_ENABLE_SLOT, 0);
2764 if (ret) {
2765 spin_unlock_irqrestore(&xhci->lock, flags);
2766 xhci_dbg(xhci, "FIXME: allocate a command ring segment\n");
2767 return 0;
2768 }
2769 xhci_ring_cmd_db(xhci);
2770 spin_unlock_irqrestore(&xhci->lock, flags);
2771
2772 /* XXX: how much time for xHC slot assignment? */
2773 timeleft = wait_for_completion_interruptible_timeout(&xhci->addr_dev,
2774 USB_CTRL_SET_TIMEOUT);
2775 if (timeleft <= 0) {
2776 xhci_warn(xhci, "%s while waiting for a slot\n",
2777 timeleft == 0 ? "Timeout" : "Signal");
2778 /* FIXME cancel the enable slot request */
2779 return 0;
2780 }
2781
2782 if (!xhci->slot_id) {
2783 xhci_err(xhci, "Error while assigning device slot ID\n");
2784 return 0;
2785 }
2786
2787 if ((xhci->quirks & XHCI_EP_LIMIT_QUIRK)) {
2788 spin_lock_irqsave(&xhci->lock, flags);
2789 ret = xhci_reserve_host_control_ep_resources(xhci);
2790 if (ret) {
2791 spin_unlock_irqrestore(&xhci->lock, flags);
2792 xhci_warn(xhci, "Not enough host resources, "
2793 "active endpoint contexts = %u\n",
2794 xhci->num_active_eps);
2795 goto disable_slot;
2796 }
2797 spin_unlock_irqrestore(&xhci->lock, flags);
2798 }
2799 /* Use GFP_NOIO, since this function can be called from
2800 * xhci_discover_or_reset_device(), which may be called as part of
2801 * mass storage driver error handling.
2802 */
2803 if (!xhci_alloc_virt_device(xhci, xhci->slot_id, udev, GFP_NOIO)) {
2804 xhci_warn(xhci, "Could not allocate xHCI USB device data structures\n");
2805 goto disable_slot;
2806 }
2807 udev->slot_id = xhci->slot_id;
2808 /* Is this a LS or FS device under a HS hub? */
2809 /* Hub or peripherial? */
2810 return 1;
2811
2812disable_slot:
2813 /* Disable slot, if we can do it without mem alloc */
2814 spin_lock_irqsave(&xhci->lock, flags);
2815 if (!xhci_queue_slot_control(xhci, TRB_DISABLE_SLOT, udev->slot_id))
2816 xhci_ring_cmd_db(xhci);
2817 spin_unlock_irqrestore(&xhci->lock, flags);
2818 return 0;
2819}
2820
2821/*
2822 * Issue an Address Device command (which will issue a SetAddress request to
2823 * the device).
2824 * We should be protected by the usb_address0_mutex in khubd's hub_port_init, so
2825 * we should only issue and wait on one address command at the same time.
2826 *
2827 * We add one to the device address issued by the hardware because the USB core
2828 * uses address 1 for the root hubs (even though they're not really devices).
2829 */
2830int xhci_address_device(struct usb_hcd *hcd, struct usb_device *udev)
2831{
2832 unsigned long flags;
2833 int timeleft;
2834 struct xhci_virt_device *virt_dev;
2835 int ret = 0;
2836 struct xhci_hcd *xhci = hcd_to_xhci(hcd);
2837 struct xhci_slot_ctx *slot_ctx;
2838 struct xhci_input_control_ctx *ctrl_ctx;
2839 u64 temp_64;
2840
2841 if (!udev->slot_id) {
2842 xhci_dbg(xhci, "Bad Slot ID %d\n", udev->slot_id);
2843 return -EINVAL;
2844 }
2845
2846 virt_dev = xhci->devs[udev->slot_id];
2847
2848 if (WARN_ON(!virt_dev)) {
2849 /*
2850 * In plug/unplug torture test with an NEC controller,
2851 * a zero-dereference was observed once due to virt_dev = 0.
2852 * Print useful debug rather than crash if it is observed again!
2853 */
2854 xhci_warn(xhci, "Virt dev invalid for slot_id 0x%x!\n",
2855 udev->slot_id);
2856 return -EINVAL;
2857 }
2858
2859 slot_ctx = xhci_get_slot_ctx(xhci, virt_dev->in_ctx);
2860 /*
2861 * If this is the first Set Address since device plug-in or
2862 * virt_device realloaction after a resume with an xHCI power loss,
2863 * then set up the slot context.
2864 */
2865 if (!slot_ctx->dev_info)
2866 xhci_setup_addressable_virt_dev(xhci, udev);
2867 /* Otherwise, update the control endpoint ring enqueue pointer. */
2868 else
2869 xhci_copy_ep0_dequeue_into_input_ctx(xhci, udev);
2870 xhci_dbg(xhci, "Slot ID %d Input Context:\n", udev->slot_id);
2871 xhci_dbg_ctx(xhci, virt_dev->in_ctx, 2);
2872
2873 spin_lock_irqsave(&xhci->lock, flags);
2874 ret = xhci_queue_address_device(xhci, virt_dev->in_ctx->dma,
2875 udev->slot_id);
2876 if (ret) {
2877 spin_unlock_irqrestore(&xhci->lock, flags);
2878 xhci_dbg(xhci, "FIXME: allocate a command ring segment\n");
2879 return ret;
2880 }
2881 xhci_ring_cmd_db(xhci);
2882 spin_unlock_irqrestore(&xhci->lock, flags);
2883
2884 /* ctrl tx can take up to 5 sec; XXX: need more time for xHC? */
2885 timeleft = wait_for_completion_interruptible_timeout(&xhci->addr_dev,
2886 USB_CTRL_SET_TIMEOUT);
2887 /* FIXME: From section 4.3.4: "Software shall be responsible for timing
2888 * the SetAddress() "recovery interval" required by USB and aborting the
2889 * command on a timeout.
2890 */
2891 if (timeleft <= 0) {
2892 xhci_warn(xhci, "%s while waiting for a slot\n",
2893 timeleft == 0 ? "Timeout" : "Signal");
2894 /* FIXME cancel the address device command */
2895 return -ETIME;
2896 }
2897
2898 switch (virt_dev->cmd_status) {
2899 case COMP_CTX_STATE:
2900 case COMP_EBADSLT:
2901 xhci_err(xhci, "Setup ERROR: address device command for slot %d.\n",
2902 udev->slot_id);
2903 ret = -EINVAL;
2904 break;
2905 case COMP_TX_ERR:
2906 dev_warn(&udev->dev, "Device not responding to set address.\n");
2907 ret = -EPROTO;
2908 break;
2909 case COMP_DEV_ERR:
2910 dev_warn(&udev->dev, "ERROR: Incompatible device for address "
2911 "device command.\n");
2912 ret = -ENODEV;
2913 break;
2914 case COMP_SUCCESS:
2915 xhci_dbg(xhci, "Successful Address Device command\n");
2916 break;
2917 default:
2918 xhci_err(xhci, "ERROR: unexpected command completion "
2919 "code 0x%x.\n", virt_dev->cmd_status);
2920 xhci_dbg(xhci, "Slot ID %d Output Context:\n", udev->slot_id);
2921 xhci_dbg_ctx(xhci, virt_dev->out_ctx, 2);
2922 ret = -EINVAL;
2923 break;
2924 }
2925 if (ret) {
2926 return ret;
2927 }
2928 temp_64 = xhci_read_64(xhci, &xhci->op_regs->dcbaa_ptr);
2929 xhci_dbg(xhci, "Op regs DCBAA ptr = %#016llx\n", temp_64);
2930 xhci_dbg(xhci, "Slot ID %d dcbaa entry @%p = %#016llx\n",
2931 udev->slot_id,
2932 &xhci->dcbaa->dev_context_ptrs[udev->slot_id],
2933 (unsigned long long)
2934 le64_to_cpu(xhci->dcbaa->dev_context_ptrs[udev->slot_id]));
2935 xhci_dbg(xhci, "Output Context DMA address = %#08llx\n",
2936 (unsigned long long)virt_dev->out_ctx->dma);
2937 xhci_dbg(xhci, "Slot ID %d Input Context:\n", udev->slot_id);
2938 xhci_dbg_ctx(xhci, virt_dev->in_ctx, 2);
2939 xhci_dbg(xhci, "Slot ID %d Output Context:\n", udev->slot_id);
2940 xhci_dbg_ctx(xhci, virt_dev->out_ctx, 2);
2941 /*
2942 * USB core uses address 1 for the roothubs, so we add one to the
2943 * address given back to us by the HC.
2944 */
2945 slot_ctx = xhci_get_slot_ctx(xhci, virt_dev->out_ctx);
2946 /* Use kernel assigned address for devices; store xHC assigned
2947 * address locally. */
2948 virt_dev->address = (le32_to_cpu(slot_ctx->dev_state) & DEV_ADDR_MASK)
2949 + 1;
2950 /* Zero the input context control for later use */
2951 ctrl_ctx = xhci_get_input_control_ctx(xhci, virt_dev->in_ctx);
2952 ctrl_ctx->add_flags = 0;
2953 ctrl_ctx->drop_flags = 0;
2954
2955 xhci_dbg(xhci, "Internal device address = %d\n", virt_dev->address);
2956
2957 return 0;
2958}
2959
2960/* Once a hub descriptor is fetched for a device, we need to update the xHC's
2961 * internal data structures for the device.
2962 */
2963int xhci_update_hub_device(struct usb_hcd *hcd, struct usb_device *hdev,
2964 struct usb_tt *tt, gfp_t mem_flags)
2965{
2966 struct xhci_hcd *xhci = hcd_to_xhci(hcd);
2967 struct xhci_virt_device *vdev;
2968 struct xhci_command *config_cmd;
2969 struct xhci_input_control_ctx *ctrl_ctx;
2970 struct xhci_slot_ctx *slot_ctx;
2971 unsigned long flags;
2972 unsigned think_time;
2973 int ret;
2974
2975 /* Ignore root hubs */
2976 if (!hdev->parent)
2977 return 0;
2978
2979 vdev = xhci->devs[hdev->slot_id];
2980 if (!vdev) {
2981 xhci_warn(xhci, "Cannot update hub desc for unknown device.\n");
2982 return -EINVAL;
2983 }
2984 config_cmd = xhci_alloc_command(xhci, true, true, mem_flags);
2985 if (!config_cmd) {
2986 xhci_dbg(xhci, "Could not allocate xHCI command structure.\n");
2987 return -ENOMEM;
2988 }
2989
2990 spin_lock_irqsave(&xhci->lock, flags);
2991 xhci_slot_copy(xhci, config_cmd->in_ctx, vdev->out_ctx);
2992 ctrl_ctx = xhci_get_input_control_ctx(xhci, config_cmd->in_ctx);
2993 ctrl_ctx->add_flags |= cpu_to_le32(SLOT_FLAG);
2994 slot_ctx = xhci_get_slot_ctx(xhci, config_cmd->in_ctx);
2995 slot_ctx->dev_info |= cpu_to_le32(DEV_HUB);
2996 if (tt->multi)
2997 slot_ctx->dev_info |= cpu_to_le32(DEV_MTT);
2998 if (xhci->hci_version > 0x95) {
2999 xhci_dbg(xhci, "xHCI version %x needs hub "
3000 "TT think time and number of ports\n",
3001 (unsigned int) xhci->hci_version);
3002 slot_ctx->dev_info2 |= cpu_to_le32(XHCI_MAX_PORTS(hdev->maxchild));
3003 /* Set TT think time - convert from ns to FS bit times.
3004 * 0 = 8 FS bit times, 1 = 16 FS bit times,
3005 * 2 = 24 FS bit times, 3 = 32 FS bit times.
3006 *
3007 * xHCI 1.0: this field shall be 0 if the device is not a
3008 * High-spped hub.
3009 */
3010 think_time = tt->think_time;
3011 if (think_time != 0)
3012 think_time = (think_time / 666) - 1;
3013 if (xhci->hci_version < 0x100 || hdev->speed == USB_SPEED_HIGH)
3014 slot_ctx->tt_info |=
3015 cpu_to_le32(TT_THINK_TIME(think_time));
3016 } else {
3017 xhci_dbg(xhci, "xHCI version %x doesn't need hub "
3018 "TT think time or number of ports\n",
3019 (unsigned int) xhci->hci_version);
3020 }
3021 slot_ctx->dev_state = 0;
3022 spin_unlock_irqrestore(&xhci->lock, flags);
3023
3024 xhci_dbg(xhci, "Set up %s for hub device.\n",
3025 (xhci->hci_version > 0x95) ?
3026 "configure endpoint" : "evaluate context");
3027 xhci_dbg(xhci, "Slot %u Input Context:\n", hdev->slot_id);
3028 xhci_dbg_ctx(xhci, config_cmd->in_ctx, 0);
3029
3030 /* Issue and wait for the configure endpoint or
3031 * evaluate context command.
3032 */
3033 if (xhci->hci_version > 0x95)
3034 ret = xhci_configure_endpoint(xhci, hdev, config_cmd,
3035 false, false);
3036 else
3037 ret = xhci_configure_endpoint(xhci, hdev, config_cmd,
3038 true, false);
3039
3040 xhci_dbg(xhci, "Slot %u Output Context:\n", hdev->slot_id);
3041 xhci_dbg_ctx(xhci, vdev->out_ctx, 0);
3042
3043 xhci_free_command(xhci, config_cmd);
3044 return ret;
3045}
3046
3047int xhci_get_frame(struct usb_hcd *hcd)
3048{
3049 struct xhci_hcd *xhci = hcd_to_xhci(hcd);
3050 /* EHCI mods by the periodic size. Why? */
3051 return xhci_readl(xhci, &xhci->run_regs->microframe_index) >> 3;
3052}
3053
3054MODULE_DESCRIPTION(DRIVER_DESC);
3055MODULE_AUTHOR(DRIVER_AUTHOR);
3056MODULE_LICENSE("GPL");
3057
3058static int __init xhci_hcd_init(void)
3059{
3060#ifdef CONFIG_PCI
3061 int retval = 0;
3062
3063 retval = xhci_register_pci();
3064
3065 if (retval < 0) {
3066 printk(KERN_DEBUG "Problem registering PCI driver.");
3067 return retval;
3068 }
3069#endif
3070 /*
3071 * Check the compiler generated sizes of structures that must be laid
3072 * out in specific ways for hardware access.
3073 */
3074 BUILD_BUG_ON(sizeof(struct xhci_doorbell_array) != 256*32/8);
3075 BUILD_BUG_ON(sizeof(struct xhci_slot_ctx) != 8*32/8);
3076 BUILD_BUG_ON(sizeof(struct xhci_ep_ctx) != 8*32/8);
3077 /* xhci_device_control has eight fields, and also
3078 * embeds one xhci_slot_ctx and 31 xhci_ep_ctx
3079 */
3080 BUILD_BUG_ON(sizeof(struct xhci_stream_ctx) != 4*32/8);
3081 BUILD_BUG_ON(sizeof(union xhci_trb) != 4*32/8);
3082 BUILD_BUG_ON(sizeof(struct xhci_erst_entry) != 4*32/8);
3083 BUILD_BUG_ON(sizeof(struct xhci_cap_regs) != 7*32/8);
3084 BUILD_BUG_ON(sizeof(struct xhci_intr_reg) != 8*32/8);
3085 /* xhci_run_regs has eight fields and embeds 128 xhci_intr_regs */
3086 BUILD_BUG_ON(sizeof(struct xhci_run_regs) != (8+8*128)*32/8);
3087 BUILD_BUG_ON(sizeof(struct xhci_doorbell_array) != 256*32/8);
3088 return 0;
3089}
3090module_init(xhci_hcd_init);
3091
3092static void __exit xhci_hcd_cleanup(void)
3093{
3094#ifdef CONFIG_PCI
3095 xhci_unregister_pci();
3096#endif
3097}
3098module_exit(xhci_hcd_cleanup);
1// SPDX-License-Identifier: GPL-2.0
2/*
3 * xHCI host controller driver
4 *
5 * Copyright (C) 2008 Intel Corp.
6 *
7 * Author: Sarah Sharp
8 * Some code borrowed from the Linux EHCI driver.
9 */
10
11#include <linux/pci.h>
12#include <linux/iopoll.h>
13#include <linux/irq.h>
14#include <linux/log2.h>
15#include <linux/module.h>
16#include <linux/moduleparam.h>
17#include <linux/slab.h>
18#include <linux/dmi.h>
19#include <linux/dma-mapping.h>
20
21#include "xhci.h"
22#include "xhci-trace.h"
23#include "xhci-debugfs.h"
24#include "xhci-dbgcap.h"
25
26#define DRIVER_AUTHOR "Sarah Sharp"
27#define DRIVER_DESC "'eXtensible' Host Controller (xHC) Driver"
28
29#define PORT_WAKE_BITS (PORT_WKOC_E | PORT_WKDISC_E | PORT_WKCONN_E)
30
31/* Some 0.95 hardware can't handle the chain bit on a Link TRB being cleared */
32static int link_quirk;
33module_param(link_quirk, int, S_IRUGO | S_IWUSR);
34MODULE_PARM_DESC(link_quirk, "Don't clear the chain bit on a link TRB");
35
36static unsigned long long quirks;
37module_param(quirks, ullong, S_IRUGO);
38MODULE_PARM_DESC(quirks, "Bit flags for quirks to be enabled as default");
39
40static bool td_on_ring(struct xhci_td *td, struct xhci_ring *ring)
41{
42 struct xhci_segment *seg = ring->first_seg;
43
44 if (!td || !td->start_seg)
45 return false;
46 do {
47 if (seg == td->start_seg)
48 return true;
49 seg = seg->next;
50 } while (seg && seg != ring->first_seg);
51
52 return false;
53}
54
55/*
56 * xhci_handshake - spin reading hc until handshake completes or fails
57 * @ptr: address of hc register to be read
58 * @mask: bits to look at in result of read
59 * @done: value of those bits when handshake succeeds
60 * @usec: timeout in microseconds
61 *
62 * Returns negative errno, or zero on success
63 *
64 * Success happens when the "mask" bits have the specified value (hardware
65 * handshake done). There are two failure modes: "usec" have passed (major
66 * hardware flakeout), or the register reads as all-ones (hardware removed).
67 */
68int xhci_handshake(void __iomem *ptr, u32 mask, u32 done, int usec)
69{
70 u32 result;
71 int ret;
72
73 ret = readl_poll_timeout_atomic(ptr, result,
74 (result & mask) == done ||
75 result == U32_MAX,
76 1, usec);
77 if (result == U32_MAX) /* card removed */
78 return -ENODEV;
79
80 return ret;
81}
82
83/*
84 * Disable interrupts and begin the xHCI halting process.
85 */
86void xhci_quiesce(struct xhci_hcd *xhci)
87{
88 u32 halted;
89 u32 cmd;
90 u32 mask;
91
92 mask = ~(XHCI_IRQS);
93 halted = readl(&xhci->op_regs->status) & STS_HALT;
94 if (!halted)
95 mask &= ~CMD_RUN;
96
97 cmd = readl(&xhci->op_regs->command);
98 cmd &= mask;
99 writel(cmd, &xhci->op_regs->command);
100}
101
102/*
103 * Force HC into halt state.
104 *
105 * Disable any IRQs and clear the run/stop bit.
106 * HC will complete any current and actively pipelined transactions, and
107 * should halt within 16 ms of the run/stop bit being cleared.
108 * Read HC Halted bit in the status register to see when the HC is finished.
109 */
110int xhci_halt(struct xhci_hcd *xhci)
111{
112 int ret;
113 xhci_dbg_trace(xhci, trace_xhci_dbg_init, "// Halt the HC");
114 xhci_quiesce(xhci);
115
116 ret = xhci_handshake(&xhci->op_regs->status,
117 STS_HALT, STS_HALT, XHCI_MAX_HALT_USEC);
118 if (ret) {
119 xhci_warn(xhci, "Host halt failed, %d\n", ret);
120 return ret;
121 }
122 xhci->xhc_state |= XHCI_STATE_HALTED;
123 xhci->cmd_ring_state = CMD_RING_STATE_STOPPED;
124 return ret;
125}
126
127/*
128 * Set the run bit and wait for the host to be running.
129 */
130int xhci_start(struct xhci_hcd *xhci)
131{
132 u32 temp;
133 int ret;
134
135 temp = readl(&xhci->op_regs->command);
136 temp |= (CMD_RUN);
137 xhci_dbg_trace(xhci, trace_xhci_dbg_init, "// Turn on HC, cmd = 0x%x.",
138 temp);
139 writel(temp, &xhci->op_regs->command);
140
141 /*
142 * Wait for the HCHalted Status bit to be 0 to indicate the host is
143 * running.
144 */
145 ret = xhci_handshake(&xhci->op_regs->status,
146 STS_HALT, 0, XHCI_MAX_HALT_USEC);
147 if (ret == -ETIMEDOUT)
148 xhci_err(xhci, "Host took too long to start, "
149 "waited %u microseconds.\n",
150 XHCI_MAX_HALT_USEC);
151 if (!ret)
152 /* clear state flags. Including dying, halted or removing */
153 xhci->xhc_state = 0;
154
155 return ret;
156}
157
158/*
159 * Reset a halted HC.
160 *
161 * This resets pipelines, timers, counters, state machines, etc.
162 * Transactions will be terminated immediately, and operational registers
163 * will be set to their defaults.
164 */
165int xhci_reset(struct xhci_hcd *xhci)
166{
167 u32 command;
168 u32 state;
169 int ret;
170
171 state = readl(&xhci->op_regs->status);
172
173 if (state == ~(u32)0) {
174 xhci_warn(xhci, "Host not accessible, reset failed.\n");
175 return -ENODEV;
176 }
177
178 if ((state & STS_HALT) == 0) {
179 xhci_warn(xhci, "Host controller not halted, aborting reset.\n");
180 return 0;
181 }
182
183 xhci_dbg_trace(xhci, trace_xhci_dbg_init, "// Reset the HC");
184 command = readl(&xhci->op_regs->command);
185 command |= CMD_RESET;
186 writel(command, &xhci->op_regs->command);
187
188 /* Existing Intel xHCI controllers require a delay of 1 mS,
189 * after setting the CMD_RESET bit, and before accessing any
190 * HC registers. This allows the HC to complete the
191 * reset operation and be ready for HC register access.
192 * Without this delay, the subsequent HC register access,
193 * may result in a system hang very rarely.
194 */
195 if (xhci->quirks & XHCI_INTEL_HOST)
196 udelay(1000);
197
198 ret = xhci_handshake(&xhci->op_regs->command,
199 CMD_RESET, 0, 10 * 1000 * 1000);
200 if (ret)
201 return ret;
202
203 if (xhci->quirks & XHCI_ASMEDIA_MODIFY_FLOWCONTROL)
204 usb_asmedia_modifyflowcontrol(to_pci_dev(xhci_to_hcd(xhci)->self.controller));
205
206 xhci_dbg_trace(xhci, trace_xhci_dbg_init,
207 "Wait for controller to be ready for doorbell rings");
208 /*
209 * xHCI cannot write to any doorbells or operational registers other
210 * than status until the "Controller Not Ready" flag is cleared.
211 */
212 ret = xhci_handshake(&xhci->op_regs->status,
213 STS_CNR, 0, 10 * 1000 * 1000);
214
215 xhci->usb2_rhub.bus_state.port_c_suspend = 0;
216 xhci->usb2_rhub.bus_state.suspended_ports = 0;
217 xhci->usb2_rhub.bus_state.resuming_ports = 0;
218 xhci->usb3_rhub.bus_state.port_c_suspend = 0;
219 xhci->usb3_rhub.bus_state.suspended_ports = 0;
220 xhci->usb3_rhub.bus_state.resuming_ports = 0;
221
222 return ret;
223}
224
225static void xhci_zero_64b_regs(struct xhci_hcd *xhci)
226{
227 struct device *dev = xhci_to_hcd(xhci)->self.sysdev;
228 int err, i;
229 u64 val;
230 u32 intrs;
231
232 /*
233 * Some Renesas controllers get into a weird state if they are
234 * reset while programmed with 64bit addresses (they will preserve
235 * the top half of the address in internal, non visible
236 * registers). You end up with half the address coming from the
237 * kernel, and the other half coming from the firmware. Also,
238 * changing the programming leads to extra accesses even if the
239 * controller is supposed to be halted. The controller ends up with
240 * a fatal fault, and is then ripe for being properly reset.
241 *
242 * Special care is taken to only apply this if the device is behind
243 * an iommu. Doing anything when there is no iommu is definitely
244 * unsafe...
245 */
246 if (!(xhci->quirks & XHCI_ZERO_64B_REGS) || !device_iommu_mapped(dev))
247 return;
248
249 xhci_info(xhci, "Zeroing 64bit base registers, expecting fault\n");
250
251 /* Clear HSEIE so that faults do not get signaled */
252 val = readl(&xhci->op_regs->command);
253 val &= ~CMD_HSEIE;
254 writel(val, &xhci->op_regs->command);
255
256 /* Clear HSE (aka FATAL) */
257 val = readl(&xhci->op_regs->status);
258 val |= STS_FATAL;
259 writel(val, &xhci->op_regs->status);
260
261 /* Now zero the registers, and brace for impact */
262 val = xhci_read_64(xhci, &xhci->op_regs->dcbaa_ptr);
263 if (upper_32_bits(val))
264 xhci_write_64(xhci, 0, &xhci->op_regs->dcbaa_ptr);
265 val = xhci_read_64(xhci, &xhci->op_regs->cmd_ring);
266 if (upper_32_bits(val))
267 xhci_write_64(xhci, 0, &xhci->op_regs->cmd_ring);
268
269 intrs = min_t(u32, HCS_MAX_INTRS(xhci->hcs_params1),
270 ARRAY_SIZE(xhci->run_regs->ir_set));
271
272 for (i = 0; i < intrs; i++) {
273 struct xhci_intr_reg __iomem *ir;
274
275 ir = &xhci->run_regs->ir_set[i];
276 val = xhci_read_64(xhci, &ir->erst_base);
277 if (upper_32_bits(val))
278 xhci_write_64(xhci, 0, &ir->erst_base);
279 val= xhci_read_64(xhci, &ir->erst_dequeue);
280 if (upper_32_bits(val))
281 xhci_write_64(xhci, 0, &ir->erst_dequeue);
282 }
283
284 /* Wait for the fault to appear. It will be cleared on reset */
285 err = xhci_handshake(&xhci->op_regs->status,
286 STS_FATAL, STS_FATAL,
287 XHCI_MAX_HALT_USEC);
288 if (!err)
289 xhci_info(xhci, "Fault detected\n");
290}
291
292#ifdef CONFIG_USB_PCI
293/*
294 * Set up MSI
295 */
296static int xhci_setup_msi(struct xhci_hcd *xhci)
297{
298 int ret;
299 /*
300 * TODO:Check with MSI Soc for sysdev
301 */
302 struct pci_dev *pdev = to_pci_dev(xhci_to_hcd(xhci)->self.controller);
303
304 ret = pci_alloc_irq_vectors(pdev, 1, 1, PCI_IRQ_MSI);
305 if (ret < 0) {
306 xhci_dbg_trace(xhci, trace_xhci_dbg_init,
307 "failed to allocate MSI entry");
308 return ret;
309 }
310
311 ret = request_irq(pdev->irq, xhci_msi_irq,
312 0, "xhci_hcd", xhci_to_hcd(xhci));
313 if (ret) {
314 xhci_dbg_trace(xhci, trace_xhci_dbg_init,
315 "disable MSI interrupt");
316 pci_free_irq_vectors(pdev);
317 }
318
319 return ret;
320}
321
322/*
323 * Set up MSI-X
324 */
325static int xhci_setup_msix(struct xhci_hcd *xhci)
326{
327 int i, ret = 0;
328 struct usb_hcd *hcd = xhci_to_hcd(xhci);
329 struct pci_dev *pdev = to_pci_dev(hcd->self.controller);
330
331 /*
332 * calculate number of msi-x vectors supported.
333 * - HCS_MAX_INTRS: the max number of interrupts the host can handle,
334 * with max number of interrupters based on the xhci HCSPARAMS1.
335 * - num_online_cpus: maximum msi-x vectors per CPUs core.
336 * Add additional 1 vector to ensure always available interrupt.
337 */
338 xhci->msix_count = min(num_online_cpus() + 1,
339 HCS_MAX_INTRS(xhci->hcs_params1));
340
341 ret = pci_alloc_irq_vectors(pdev, xhci->msix_count, xhci->msix_count,
342 PCI_IRQ_MSIX);
343 if (ret < 0) {
344 xhci_dbg_trace(xhci, trace_xhci_dbg_init,
345 "Failed to enable MSI-X");
346 return ret;
347 }
348
349 for (i = 0; i < xhci->msix_count; i++) {
350 ret = request_irq(pci_irq_vector(pdev, i), xhci_msi_irq, 0,
351 "xhci_hcd", xhci_to_hcd(xhci));
352 if (ret)
353 goto disable_msix;
354 }
355
356 hcd->msix_enabled = 1;
357 return ret;
358
359disable_msix:
360 xhci_dbg_trace(xhci, trace_xhci_dbg_init, "disable MSI-X interrupt");
361 while (--i >= 0)
362 free_irq(pci_irq_vector(pdev, i), xhci_to_hcd(xhci));
363 pci_free_irq_vectors(pdev);
364 return ret;
365}
366
367/* Free any IRQs and disable MSI-X */
368static void xhci_cleanup_msix(struct xhci_hcd *xhci)
369{
370 struct usb_hcd *hcd = xhci_to_hcd(xhci);
371 struct pci_dev *pdev = to_pci_dev(hcd->self.controller);
372
373 if (xhci->quirks & XHCI_PLAT)
374 return;
375
376 /* return if using legacy interrupt */
377 if (hcd->irq > 0)
378 return;
379
380 if (hcd->msix_enabled) {
381 int i;
382
383 for (i = 0; i < xhci->msix_count; i++)
384 free_irq(pci_irq_vector(pdev, i), xhci_to_hcd(xhci));
385 } else {
386 free_irq(pci_irq_vector(pdev, 0), xhci_to_hcd(xhci));
387 }
388
389 pci_free_irq_vectors(pdev);
390 hcd->msix_enabled = 0;
391}
392
393static void __maybe_unused xhci_msix_sync_irqs(struct xhci_hcd *xhci)
394{
395 struct usb_hcd *hcd = xhci_to_hcd(xhci);
396
397 if (hcd->msix_enabled) {
398 struct pci_dev *pdev = to_pci_dev(hcd->self.controller);
399 int i;
400
401 for (i = 0; i < xhci->msix_count; i++)
402 synchronize_irq(pci_irq_vector(pdev, i));
403 }
404}
405
406static int xhci_try_enable_msi(struct usb_hcd *hcd)
407{
408 struct xhci_hcd *xhci = hcd_to_xhci(hcd);
409 struct pci_dev *pdev;
410 int ret;
411
412 /* The xhci platform device has set up IRQs through usb_add_hcd. */
413 if (xhci->quirks & XHCI_PLAT)
414 return 0;
415
416 pdev = to_pci_dev(xhci_to_hcd(xhci)->self.controller);
417 /*
418 * Some Fresco Logic host controllers advertise MSI, but fail to
419 * generate interrupts. Don't even try to enable MSI.
420 */
421 if (xhci->quirks & XHCI_BROKEN_MSI)
422 goto legacy_irq;
423
424 /* unregister the legacy interrupt */
425 if (hcd->irq)
426 free_irq(hcd->irq, hcd);
427 hcd->irq = 0;
428
429 ret = xhci_setup_msix(xhci);
430 if (ret)
431 /* fall back to msi*/
432 ret = xhci_setup_msi(xhci);
433
434 if (!ret) {
435 hcd->msi_enabled = 1;
436 return 0;
437 }
438
439 if (!pdev->irq) {
440 xhci_err(xhci, "No msi-x/msi found and no IRQ in BIOS\n");
441 return -EINVAL;
442 }
443
444 legacy_irq:
445 if (!strlen(hcd->irq_descr))
446 snprintf(hcd->irq_descr, sizeof(hcd->irq_descr), "%s:usb%d",
447 hcd->driver->description, hcd->self.busnum);
448
449 /* fall back to legacy interrupt*/
450 ret = request_irq(pdev->irq, &usb_hcd_irq, IRQF_SHARED,
451 hcd->irq_descr, hcd);
452 if (ret) {
453 xhci_err(xhci, "request interrupt %d failed\n",
454 pdev->irq);
455 return ret;
456 }
457 hcd->irq = pdev->irq;
458 return 0;
459}
460
461#else
462
463static inline int xhci_try_enable_msi(struct usb_hcd *hcd)
464{
465 return 0;
466}
467
468static inline void xhci_cleanup_msix(struct xhci_hcd *xhci)
469{
470}
471
472static inline void xhci_msix_sync_irqs(struct xhci_hcd *xhci)
473{
474}
475
476#endif
477
478static void compliance_mode_recovery(struct timer_list *t)
479{
480 struct xhci_hcd *xhci;
481 struct usb_hcd *hcd;
482 struct xhci_hub *rhub;
483 u32 temp;
484 int i;
485
486 xhci = from_timer(xhci, t, comp_mode_recovery_timer);
487 rhub = &xhci->usb3_rhub;
488
489 for (i = 0; i < rhub->num_ports; i++) {
490 temp = readl(rhub->ports[i]->addr);
491 if ((temp & PORT_PLS_MASK) == USB_SS_PORT_LS_COMP_MOD) {
492 /*
493 * Compliance Mode Detected. Letting USB Core
494 * handle the Warm Reset
495 */
496 xhci_dbg_trace(xhci, trace_xhci_dbg_quirks,
497 "Compliance mode detected->port %d",
498 i + 1);
499 xhci_dbg_trace(xhci, trace_xhci_dbg_quirks,
500 "Attempting compliance mode recovery");
501 hcd = xhci->shared_hcd;
502
503 if (hcd->state == HC_STATE_SUSPENDED)
504 usb_hcd_resume_root_hub(hcd);
505
506 usb_hcd_poll_rh_status(hcd);
507 }
508 }
509
510 if (xhci->port_status_u0 != ((1 << rhub->num_ports) - 1))
511 mod_timer(&xhci->comp_mode_recovery_timer,
512 jiffies + msecs_to_jiffies(COMP_MODE_RCVRY_MSECS));
513}
514
515/*
516 * Quirk to work around issue generated by the SN65LVPE502CP USB3.0 re-driver
517 * that causes ports behind that hardware to enter compliance mode sometimes.
518 * The quirk creates a timer that polls every 2 seconds the link state of
519 * each host controller's port and recovers it by issuing a Warm reset
520 * if Compliance mode is detected, otherwise the port will become "dead" (no
521 * device connections or disconnections will be detected anymore). Becasue no
522 * status event is generated when entering compliance mode (per xhci spec),
523 * this quirk is needed on systems that have the failing hardware installed.
524 */
525static void compliance_mode_recovery_timer_init(struct xhci_hcd *xhci)
526{
527 xhci->port_status_u0 = 0;
528 timer_setup(&xhci->comp_mode_recovery_timer, compliance_mode_recovery,
529 0);
530 xhci->comp_mode_recovery_timer.expires = jiffies +
531 msecs_to_jiffies(COMP_MODE_RCVRY_MSECS);
532
533 add_timer(&xhci->comp_mode_recovery_timer);
534 xhci_dbg_trace(xhci, trace_xhci_dbg_quirks,
535 "Compliance mode recovery timer initialized");
536}
537
538/*
539 * This function identifies the systems that have installed the SN65LVPE502CP
540 * USB3.0 re-driver and that need the Compliance Mode Quirk.
541 * Systems:
542 * Vendor: Hewlett-Packard -> System Models: Z420, Z620 and Z820
543 */
544static bool xhci_compliance_mode_recovery_timer_quirk_check(void)
545{
546 const char *dmi_product_name, *dmi_sys_vendor;
547
548 dmi_product_name = dmi_get_system_info(DMI_PRODUCT_NAME);
549 dmi_sys_vendor = dmi_get_system_info(DMI_SYS_VENDOR);
550 if (!dmi_product_name || !dmi_sys_vendor)
551 return false;
552
553 if (!(strstr(dmi_sys_vendor, "Hewlett-Packard")))
554 return false;
555
556 if (strstr(dmi_product_name, "Z420") ||
557 strstr(dmi_product_name, "Z620") ||
558 strstr(dmi_product_name, "Z820") ||
559 strstr(dmi_product_name, "Z1 Workstation"))
560 return true;
561
562 return false;
563}
564
565static int xhci_all_ports_seen_u0(struct xhci_hcd *xhci)
566{
567 return (xhci->port_status_u0 == ((1 << xhci->usb3_rhub.num_ports) - 1));
568}
569
570
571/*
572 * Initialize memory for HCD and xHC (one-time init).
573 *
574 * Program the PAGESIZE register, initialize the device context array, create
575 * device contexts (?), set up a command ring segment (or two?), create event
576 * ring (one for now).
577 */
578static int xhci_init(struct usb_hcd *hcd)
579{
580 struct xhci_hcd *xhci = hcd_to_xhci(hcd);
581 int retval = 0;
582
583 xhci_dbg_trace(xhci, trace_xhci_dbg_init, "xhci_init");
584 spin_lock_init(&xhci->lock);
585 if (xhci->hci_version == 0x95 && link_quirk) {
586 xhci_dbg_trace(xhci, trace_xhci_dbg_quirks,
587 "QUIRK: Not clearing Link TRB chain bits.");
588 xhci->quirks |= XHCI_LINK_TRB_QUIRK;
589 } else {
590 xhci_dbg_trace(xhci, trace_xhci_dbg_init,
591 "xHCI doesn't need link TRB QUIRK");
592 }
593 retval = xhci_mem_init(xhci, GFP_KERNEL);
594 xhci_dbg_trace(xhci, trace_xhci_dbg_init, "Finished xhci_init");
595
596 /* Initializing Compliance Mode Recovery Data If Needed */
597 if (xhci_compliance_mode_recovery_timer_quirk_check()) {
598 xhci->quirks |= XHCI_COMP_MODE_QUIRK;
599 compliance_mode_recovery_timer_init(xhci);
600 }
601
602 return retval;
603}
604
605/*-------------------------------------------------------------------------*/
606
607
608static int xhci_run_finished(struct xhci_hcd *xhci)
609{
610 if (xhci_start(xhci)) {
611 xhci_halt(xhci);
612 return -ENODEV;
613 }
614 xhci->shared_hcd->state = HC_STATE_RUNNING;
615 xhci->cmd_ring_state = CMD_RING_STATE_RUNNING;
616
617 if (xhci->quirks & XHCI_NEC_HOST)
618 xhci_ring_cmd_db(xhci);
619
620 xhci_dbg_trace(xhci, trace_xhci_dbg_init,
621 "Finished xhci_run for USB3 roothub");
622 return 0;
623}
624
625/*
626 * Start the HC after it was halted.
627 *
628 * This function is called by the USB core when the HC driver is added.
629 * Its opposite is xhci_stop().
630 *
631 * xhci_init() must be called once before this function can be called.
632 * Reset the HC, enable device slot contexts, program DCBAAP, and
633 * set command ring pointer and event ring pointer.
634 *
635 * Setup MSI-X vectors and enable interrupts.
636 */
637int xhci_run(struct usb_hcd *hcd)
638{
639 u32 temp;
640 u64 temp_64;
641 int ret;
642 struct xhci_hcd *xhci = hcd_to_xhci(hcd);
643
644 /* Start the xHCI host controller running only after the USB 2.0 roothub
645 * is setup.
646 */
647
648 hcd->uses_new_polling = 1;
649 if (!usb_hcd_is_primary_hcd(hcd))
650 return xhci_run_finished(xhci);
651
652 xhci_dbg_trace(xhci, trace_xhci_dbg_init, "xhci_run");
653
654 ret = xhci_try_enable_msi(hcd);
655 if (ret)
656 return ret;
657
658 temp_64 = xhci_read_64(xhci, &xhci->ir_set->erst_dequeue);
659 temp_64 &= ~ERST_PTR_MASK;
660 xhci_dbg_trace(xhci, trace_xhci_dbg_init,
661 "ERST deq = 64'h%0lx", (long unsigned int) temp_64);
662
663 xhci_dbg_trace(xhci, trace_xhci_dbg_init,
664 "// Set the interrupt modulation register");
665 temp = readl(&xhci->ir_set->irq_control);
666 temp &= ~ER_IRQ_INTERVAL_MASK;
667 temp |= (xhci->imod_interval / 250) & ER_IRQ_INTERVAL_MASK;
668 writel(temp, &xhci->ir_set->irq_control);
669
670 /* Set the HCD state before we enable the irqs */
671 temp = readl(&xhci->op_regs->command);
672 temp |= (CMD_EIE);
673 xhci_dbg_trace(xhci, trace_xhci_dbg_init,
674 "// Enable interrupts, cmd = 0x%x.", temp);
675 writel(temp, &xhci->op_regs->command);
676
677 temp = readl(&xhci->ir_set->irq_pending);
678 xhci_dbg_trace(xhci, trace_xhci_dbg_init,
679 "// Enabling event ring interrupter %p by writing 0x%x to irq_pending",
680 xhci->ir_set, (unsigned int) ER_IRQ_ENABLE(temp));
681 writel(ER_IRQ_ENABLE(temp), &xhci->ir_set->irq_pending);
682
683 if (xhci->quirks & XHCI_NEC_HOST) {
684 struct xhci_command *command;
685
686 command = xhci_alloc_command(xhci, false, GFP_KERNEL);
687 if (!command)
688 return -ENOMEM;
689
690 ret = xhci_queue_vendor_command(xhci, command, 0, 0, 0,
691 TRB_TYPE(TRB_NEC_GET_FW));
692 if (ret)
693 xhci_free_command(xhci, command);
694 }
695 set_bit(HCD_FLAG_DEFER_RH_REGISTER, &hcd->flags);
696 xhci_dbg_trace(xhci, trace_xhci_dbg_init,
697 "Finished xhci_run for USB2 roothub");
698
699 xhci_dbc_init(xhci);
700
701 xhci_debugfs_init(xhci);
702
703 return 0;
704}
705EXPORT_SYMBOL_GPL(xhci_run);
706
707/*
708 * Stop xHCI driver.
709 *
710 * This function is called by the USB core when the HC driver is removed.
711 * Its opposite is xhci_run().
712 *
713 * Disable device contexts, disable IRQs, and quiesce the HC.
714 * Reset the HC, finish any completed transactions, and cleanup memory.
715 */
716static void xhci_stop(struct usb_hcd *hcd)
717{
718 u32 temp;
719 struct xhci_hcd *xhci = hcd_to_xhci(hcd);
720
721 mutex_lock(&xhci->mutex);
722
723 /* Only halt host and free memory after both hcds are removed */
724 if (!usb_hcd_is_primary_hcd(hcd)) {
725 mutex_unlock(&xhci->mutex);
726 return;
727 }
728
729 xhci_dbc_exit(xhci);
730
731 spin_lock_irq(&xhci->lock);
732 xhci->xhc_state |= XHCI_STATE_HALTED;
733 xhci->cmd_ring_state = CMD_RING_STATE_STOPPED;
734 xhci_halt(xhci);
735 xhci_reset(xhci);
736 spin_unlock_irq(&xhci->lock);
737
738 xhci_cleanup_msix(xhci);
739
740 /* Deleting Compliance Mode Recovery Timer */
741 if ((xhci->quirks & XHCI_COMP_MODE_QUIRK) &&
742 (!(xhci_all_ports_seen_u0(xhci)))) {
743 del_timer_sync(&xhci->comp_mode_recovery_timer);
744 xhci_dbg_trace(xhci, trace_xhci_dbg_quirks,
745 "%s: compliance mode recovery timer deleted",
746 __func__);
747 }
748
749 if (xhci->quirks & XHCI_AMD_PLL_FIX)
750 usb_amd_dev_put();
751
752 xhci_dbg_trace(xhci, trace_xhci_dbg_init,
753 "// Disabling event ring interrupts");
754 temp = readl(&xhci->op_regs->status);
755 writel((temp & ~0x1fff) | STS_EINT, &xhci->op_regs->status);
756 temp = readl(&xhci->ir_set->irq_pending);
757 writel(ER_IRQ_DISABLE(temp), &xhci->ir_set->irq_pending);
758
759 xhci_dbg_trace(xhci, trace_xhci_dbg_init, "cleaning up memory");
760 xhci_mem_cleanup(xhci);
761 xhci_debugfs_exit(xhci);
762 xhci_dbg_trace(xhci, trace_xhci_dbg_init,
763 "xhci_stop completed - status = %x",
764 readl(&xhci->op_regs->status));
765 mutex_unlock(&xhci->mutex);
766}
767
768/*
769 * Shutdown HC (not bus-specific)
770 *
771 * This is called when the machine is rebooting or halting. We assume that the
772 * machine will be powered off, and the HC's internal state will be reset.
773 * Don't bother to free memory.
774 *
775 * This will only ever be called with the main usb_hcd (the USB3 roothub).
776 */
777void xhci_shutdown(struct usb_hcd *hcd)
778{
779 struct xhci_hcd *xhci = hcd_to_xhci(hcd);
780
781 if (xhci->quirks & XHCI_SPURIOUS_REBOOT)
782 usb_disable_xhci_ports(to_pci_dev(hcd->self.sysdev));
783
784 spin_lock_irq(&xhci->lock);
785 xhci_halt(xhci);
786 /* Workaround for spurious wakeups at shutdown with HSW */
787 if (xhci->quirks & XHCI_SPURIOUS_WAKEUP)
788 xhci_reset(xhci);
789 spin_unlock_irq(&xhci->lock);
790
791 xhci_cleanup_msix(xhci);
792
793 xhci_dbg_trace(xhci, trace_xhci_dbg_init,
794 "xhci_shutdown completed - status = %x",
795 readl(&xhci->op_regs->status));
796}
797EXPORT_SYMBOL_GPL(xhci_shutdown);
798
799#ifdef CONFIG_PM
800static void xhci_save_registers(struct xhci_hcd *xhci)
801{
802 xhci->s3.command = readl(&xhci->op_regs->command);
803 xhci->s3.dev_nt = readl(&xhci->op_regs->dev_notification);
804 xhci->s3.dcbaa_ptr = xhci_read_64(xhci, &xhci->op_regs->dcbaa_ptr);
805 xhci->s3.config_reg = readl(&xhci->op_regs->config_reg);
806 xhci->s3.erst_size = readl(&xhci->ir_set->erst_size);
807 xhci->s3.erst_base = xhci_read_64(xhci, &xhci->ir_set->erst_base);
808 xhci->s3.erst_dequeue = xhci_read_64(xhci, &xhci->ir_set->erst_dequeue);
809 xhci->s3.irq_pending = readl(&xhci->ir_set->irq_pending);
810 xhci->s3.irq_control = readl(&xhci->ir_set->irq_control);
811}
812
813static void xhci_restore_registers(struct xhci_hcd *xhci)
814{
815 writel(xhci->s3.command, &xhci->op_regs->command);
816 writel(xhci->s3.dev_nt, &xhci->op_regs->dev_notification);
817 xhci_write_64(xhci, xhci->s3.dcbaa_ptr, &xhci->op_regs->dcbaa_ptr);
818 writel(xhci->s3.config_reg, &xhci->op_regs->config_reg);
819 writel(xhci->s3.erst_size, &xhci->ir_set->erst_size);
820 xhci_write_64(xhci, xhci->s3.erst_base, &xhci->ir_set->erst_base);
821 xhci_write_64(xhci, xhci->s3.erst_dequeue, &xhci->ir_set->erst_dequeue);
822 writel(xhci->s3.irq_pending, &xhci->ir_set->irq_pending);
823 writel(xhci->s3.irq_control, &xhci->ir_set->irq_control);
824}
825
826static void xhci_set_cmd_ring_deq(struct xhci_hcd *xhci)
827{
828 u64 val_64;
829
830 /* step 2: initialize command ring buffer */
831 val_64 = xhci_read_64(xhci, &xhci->op_regs->cmd_ring);
832 val_64 = (val_64 & (u64) CMD_RING_RSVD_BITS) |
833 (xhci_trb_virt_to_dma(xhci->cmd_ring->deq_seg,
834 xhci->cmd_ring->dequeue) &
835 (u64) ~CMD_RING_RSVD_BITS) |
836 xhci->cmd_ring->cycle_state;
837 xhci_dbg_trace(xhci, trace_xhci_dbg_init,
838 "// Setting command ring address to 0x%llx",
839 (long unsigned long) val_64);
840 xhci_write_64(xhci, val_64, &xhci->op_regs->cmd_ring);
841}
842
843/*
844 * The whole command ring must be cleared to zero when we suspend the host.
845 *
846 * The host doesn't save the command ring pointer in the suspend well, so we
847 * need to re-program it on resume. Unfortunately, the pointer must be 64-byte
848 * aligned, because of the reserved bits in the command ring dequeue pointer
849 * register. Therefore, we can't just set the dequeue pointer back in the
850 * middle of the ring (TRBs are 16-byte aligned).
851 */
852static void xhci_clear_command_ring(struct xhci_hcd *xhci)
853{
854 struct xhci_ring *ring;
855 struct xhci_segment *seg;
856
857 ring = xhci->cmd_ring;
858 seg = ring->deq_seg;
859 do {
860 memset(seg->trbs, 0,
861 sizeof(union xhci_trb) * (TRBS_PER_SEGMENT - 1));
862 seg->trbs[TRBS_PER_SEGMENT - 1].link.control &=
863 cpu_to_le32(~TRB_CYCLE);
864 seg = seg->next;
865 } while (seg != ring->deq_seg);
866
867 /* Reset the software enqueue and dequeue pointers */
868 ring->deq_seg = ring->first_seg;
869 ring->dequeue = ring->first_seg->trbs;
870 ring->enq_seg = ring->deq_seg;
871 ring->enqueue = ring->dequeue;
872
873 ring->num_trbs_free = ring->num_segs * (TRBS_PER_SEGMENT - 1) - 1;
874 /*
875 * Ring is now zeroed, so the HW should look for change of ownership
876 * when the cycle bit is set to 1.
877 */
878 ring->cycle_state = 1;
879
880 /*
881 * Reset the hardware dequeue pointer.
882 * Yes, this will need to be re-written after resume, but we're paranoid
883 * and want to make sure the hardware doesn't access bogus memory
884 * because, say, the BIOS or an SMI started the host without changing
885 * the command ring pointers.
886 */
887 xhci_set_cmd_ring_deq(xhci);
888}
889
890/*
891 * Disable port wake bits if do_wakeup is not set.
892 *
893 * Also clear a possible internal port wake state left hanging for ports that
894 * detected termination but never successfully enumerated (trained to 0U).
895 * Internal wake causes immediate xHCI wake after suspend. PORT_CSC write done
896 * at enumeration clears this wake, force one here as well for unconnected ports
897 */
898
899static void xhci_disable_hub_port_wake(struct xhci_hcd *xhci,
900 struct xhci_hub *rhub,
901 bool do_wakeup)
902{
903 unsigned long flags;
904 u32 t1, t2, portsc;
905 int i;
906
907 spin_lock_irqsave(&xhci->lock, flags);
908
909 for (i = 0; i < rhub->num_ports; i++) {
910 portsc = readl(rhub->ports[i]->addr);
911 t1 = xhci_port_state_to_neutral(portsc);
912 t2 = t1;
913
914 /* clear wake bits if do_wake is not set */
915 if (!do_wakeup)
916 t2 &= ~PORT_WAKE_BITS;
917
918 /* Don't touch csc bit if connected or connect change is set */
919 if (!(portsc & (PORT_CSC | PORT_CONNECT)))
920 t2 |= PORT_CSC;
921
922 if (t1 != t2) {
923 writel(t2, rhub->ports[i]->addr);
924 xhci_dbg(xhci, "config port %d-%d wake bits, portsc: 0x%x, write: 0x%x\n",
925 rhub->hcd->self.busnum, i + 1, portsc, t2);
926 }
927 }
928 spin_unlock_irqrestore(&xhci->lock, flags);
929}
930
931static bool xhci_pending_portevent(struct xhci_hcd *xhci)
932{
933 struct xhci_port **ports;
934 int port_index;
935 u32 status;
936 u32 portsc;
937
938 status = readl(&xhci->op_regs->status);
939 if (status & STS_EINT)
940 return true;
941 /*
942 * Checking STS_EINT is not enough as there is a lag between a change
943 * bit being set and the Port Status Change Event that it generated
944 * being written to the Event Ring. See note in xhci 1.1 section 4.19.2.
945 */
946
947 port_index = xhci->usb2_rhub.num_ports;
948 ports = xhci->usb2_rhub.ports;
949 while (port_index--) {
950 portsc = readl(ports[port_index]->addr);
951 if (portsc & PORT_CHANGE_MASK ||
952 (portsc & PORT_PLS_MASK) == XDEV_RESUME)
953 return true;
954 }
955 port_index = xhci->usb3_rhub.num_ports;
956 ports = xhci->usb3_rhub.ports;
957 while (port_index--) {
958 portsc = readl(ports[port_index]->addr);
959 if (portsc & PORT_CHANGE_MASK ||
960 (portsc & PORT_PLS_MASK) == XDEV_RESUME)
961 return true;
962 }
963 return false;
964}
965
966/*
967 * Stop HC (not bus-specific)
968 *
969 * This is called when the machine transition into S3/S4 mode.
970 *
971 */
972int xhci_suspend(struct xhci_hcd *xhci, bool do_wakeup)
973{
974 int rc = 0;
975 unsigned int delay = XHCI_MAX_HALT_USEC * 2;
976 struct usb_hcd *hcd = xhci_to_hcd(xhci);
977 u32 command;
978 u32 res;
979
980 if (!hcd->state)
981 return 0;
982
983 if (hcd->state != HC_STATE_SUSPENDED ||
984 xhci->shared_hcd->state != HC_STATE_SUSPENDED)
985 return -EINVAL;
986
987 /* Clear root port wake on bits if wakeup not allowed. */
988 xhci_disable_hub_port_wake(xhci, &xhci->usb3_rhub, do_wakeup);
989 xhci_disable_hub_port_wake(xhci, &xhci->usb2_rhub, do_wakeup);
990
991 if (!HCD_HW_ACCESSIBLE(hcd))
992 return 0;
993
994 xhci_dbc_suspend(xhci);
995
996 /* Don't poll the roothubs on bus suspend. */
997 xhci_dbg(xhci, "%s: stopping port polling.\n", __func__);
998 clear_bit(HCD_FLAG_POLL_RH, &hcd->flags);
999 del_timer_sync(&hcd->rh_timer);
1000 clear_bit(HCD_FLAG_POLL_RH, &xhci->shared_hcd->flags);
1001 del_timer_sync(&xhci->shared_hcd->rh_timer);
1002
1003 if (xhci->quirks & XHCI_SUSPEND_DELAY)
1004 usleep_range(1000, 1500);
1005
1006 spin_lock_irq(&xhci->lock);
1007 clear_bit(HCD_FLAG_HW_ACCESSIBLE, &hcd->flags);
1008 clear_bit(HCD_FLAG_HW_ACCESSIBLE, &xhci->shared_hcd->flags);
1009 /* step 1: stop endpoint */
1010 /* skipped assuming that port suspend has done */
1011
1012 /* step 2: clear Run/Stop bit */
1013 command = readl(&xhci->op_regs->command);
1014 command &= ~CMD_RUN;
1015 writel(command, &xhci->op_regs->command);
1016
1017 /* Some chips from Fresco Logic need an extraordinary delay */
1018 delay *= (xhci->quirks & XHCI_SLOW_SUSPEND) ? 10 : 1;
1019
1020 if (xhci_handshake(&xhci->op_regs->status,
1021 STS_HALT, STS_HALT, delay)) {
1022 xhci_warn(xhci, "WARN: xHC CMD_RUN timeout\n");
1023 spin_unlock_irq(&xhci->lock);
1024 return -ETIMEDOUT;
1025 }
1026 xhci_clear_command_ring(xhci);
1027
1028 /* step 3: save registers */
1029 xhci_save_registers(xhci);
1030
1031 /* step 4: set CSS flag */
1032 command = readl(&xhci->op_regs->command);
1033 command |= CMD_CSS;
1034 writel(command, &xhci->op_regs->command);
1035 xhci->broken_suspend = 0;
1036 if (xhci_handshake(&xhci->op_regs->status,
1037 STS_SAVE, 0, 20 * 1000)) {
1038 /*
1039 * AMD SNPS xHC 3.0 occasionally does not clear the
1040 * SSS bit of USBSTS and when driver tries to poll
1041 * to see if the xHC clears BIT(8) which never happens
1042 * and driver assumes that controller is not responding
1043 * and times out. To workaround this, its good to check
1044 * if SRE and HCE bits are not set (as per xhci
1045 * Section 5.4.2) and bypass the timeout.
1046 */
1047 res = readl(&xhci->op_regs->status);
1048 if ((xhci->quirks & XHCI_SNPS_BROKEN_SUSPEND) &&
1049 (((res & STS_SRE) == 0) &&
1050 ((res & STS_HCE) == 0))) {
1051 xhci->broken_suspend = 1;
1052 } else {
1053 xhci_warn(xhci, "WARN: xHC save state timeout\n");
1054 spin_unlock_irq(&xhci->lock);
1055 return -ETIMEDOUT;
1056 }
1057 }
1058 spin_unlock_irq(&xhci->lock);
1059
1060 /*
1061 * Deleting Compliance Mode Recovery Timer because the xHCI Host
1062 * is about to be suspended.
1063 */
1064 if ((xhci->quirks & XHCI_COMP_MODE_QUIRK) &&
1065 (!(xhci_all_ports_seen_u0(xhci)))) {
1066 del_timer_sync(&xhci->comp_mode_recovery_timer);
1067 xhci_dbg_trace(xhci, trace_xhci_dbg_quirks,
1068 "%s: compliance mode recovery timer deleted",
1069 __func__);
1070 }
1071
1072 /* step 5: remove core well power */
1073 /* synchronize irq when using MSI-X */
1074 xhci_msix_sync_irqs(xhci);
1075
1076 return rc;
1077}
1078EXPORT_SYMBOL_GPL(xhci_suspend);
1079
1080/*
1081 * start xHC (not bus-specific)
1082 *
1083 * This is called when the machine transition from S3/S4 mode.
1084 *
1085 */
1086int xhci_resume(struct xhci_hcd *xhci, bool hibernated)
1087{
1088 u32 command, temp = 0;
1089 struct usb_hcd *hcd = xhci_to_hcd(xhci);
1090 struct usb_hcd *secondary_hcd;
1091 int retval = 0;
1092 bool comp_timer_running = false;
1093 bool pending_portevent = false;
1094
1095 if (!hcd->state)
1096 return 0;
1097
1098 /* Wait a bit if either of the roothubs need to settle from the
1099 * transition into bus suspend.
1100 */
1101
1102 if (time_before(jiffies, xhci->usb2_rhub.bus_state.next_statechange) ||
1103 time_before(jiffies, xhci->usb3_rhub.bus_state.next_statechange))
1104 msleep(100);
1105
1106 set_bit(HCD_FLAG_HW_ACCESSIBLE, &hcd->flags);
1107 set_bit(HCD_FLAG_HW_ACCESSIBLE, &xhci->shared_hcd->flags);
1108
1109 spin_lock_irq(&xhci->lock);
1110 if ((xhci->quirks & XHCI_RESET_ON_RESUME) || xhci->broken_suspend)
1111 hibernated = true;
1112
1113 if (!hibernated) {
1114 /*
1115 * Some controllers might lose power during suspend, so wait
1116 * for controller not ready bit to clear, just as in xHC init.
1117 */
1118 retval = xhci_handshake(&xhci->op_regs->status,
1119 STS_CNR, 0, 10 * 1000 * 1000);
1120 if (retval) {
1121 xhci_warn(xhci, "Controller not ready at resume %d\n",
1122 retval);
1123 spin_unlock_irq(&xhci->lock);
1124 return retval;
1125 }
1126 /* step 1: restore register */
1127 xhci_restore_registers(xhci);
1128 /* step 2: initialize command ring buffer */
1129 xhci_set_cmd_ring_deq(xhci);
1130 /* step 3: restore state and start state*/
1131 /* step 3: set CRS flag */
1132 command = readl(&xhci->op_regs->command);
1133 command |= CMD_CRS;
1134 writel(command, &xhci->op_regs->command);
1135 /*
1136 * Some controllers take up to 55+ ms to complete the controller
1137 * restore so setting the timeout to 100ms. Xhci specification
1138 * doesn't mention any timeout value.
1139 */
1140 if (xhci_handshake(&xhci->op_regs->status,
1141 STS_RESTORE, 0, 100 * 1000)) {
1142 xhci_warn(xhci, "WARN: xHC restore state timeout\n");
1143 spin_unlock_irq(&xhci->lock);
1144 return -ETIMEDOUT;
1145 }
1146 temp = readl(&xhci->op_regs->status);
1147 }
1148
1149 /* If restore operation fails, re-initialize the HC during resume */
1150 if ((temp & STS_SRE) || hibernated) {
1151
1152 if ((xhci->quirks & XHCI_COMP_MODE_QUIRK) &&
1153 !(xhci_all_ports_seen_u0(xhci))) {
1154 del_timer_sync(&xhci->comp_mode_recovery_timer);
1155 xhci_dbg_trace(xhci, trace_xhci_dbg_quirks,
1156 "Compliance Mode Recovery Timer deleted!");
1157 }
1158
1159 /* Let the USB core know _both_ roothubs lost power. */
1160 usb_root_hub_lost_power(xhci->main_hcd->self.root_hub);
1161 usb_root_hub_lost_power(xhci->shared_hcd->self.root_hub);
1162
1163 xhci_dbg(xhci, "Stop HCD\n");
1164 xhci_halt(xhci);
1165 xhci_zero_64b_regs(xhci);
1166 retval = xhci_reset(xhci);
1167 spin_unlock_irq(&xhci->lock);
1168 if (retval)
1169 return retval;
1170 xhci_cleanup_msix(xhci);
1171
1172 xhci_dbg(xhci, "// Disabling event ring interrupts\n");
1173 temp = readl(&xhci->op_regs->status);
1174 writel((temp & ~0x1fff) | STS_EINT, &xhci->op_regs->status);
1175 temp = readl(&xhci->ir_set->irq_pending);
1176 writel(ER_IRQ_DISABLE(temp), &xhci->ir_set->irq_pending);
1177
1178 xhci_dbg(xhci, "cleaning up memory\n");
1179 xhci_mem_cleanup(xhci);
1180 xhci_debugfs_exit(xhci);
1181 xhci_dbg(xhci, "xhci_stop completed - status = %x\n",
1182 readl(&xhci->op_regs->status));
1183
1184 /* USB core calls the PCI reinit and start functions twice:
1185 * first with the primary HCD, and then with the secondary HCD.
1186 * If we don't do the same, the host will never be started.
1187 */
1188 if (!usb_hcd_is_primary_hcd(hcd))
1189 secondary_hcd = hcd;
1190 else
1191 secondary_hcd = xhci->shared_hcd;
1192
1193 xhci_dbg(xhci, "Initialize the xhci_hcd\n");
1194 retval = xhci_init(hcd->primary_hcd);
1195 if (retval)
1196 return retval;
1197 comp_timer_running = true;
1198
1199 xhci_dbg(xhci, "Start the primary HCD\n");
1200 retval = xhci_run(hcd->primary_hcd);
1201 if (!retval) {
1202 xhci_dbg(xhci, "Start the secondary HCD\n");
1203 retval = xhci_run(secondary_hcd);
1204 }
1205 hcd->state = HC_STATE_SUSPENDED;
1206 xhci->shared_hcd->state = HC_STATE_SUSPENDED;
1207 goto done;
1208 }
1209
1210 /* step 4: set Run/Stop bit */
1211 command = readl(&xhci->op_regs->command);
1212 command |= CMD_RUN;
1213 writel(command, &xhci->op_regs->command);
1214 xhci_handshake(&xhci->op_regs->status, STS_HALT,
1215 0, 250 * 1000);
1216
1217 /* step 5: walk topology and initialize portsc,
1218 * portpmsc and portli
1219 */
1220 /* this is done in bus_resume */
1221
1222 /* step 6: restart each of the previously
1223 * Running endpoints by ringing their doorbells
1224 */
1225
1226 spin_unlock_irq(&xhci->lock);
1227
1228 xhci_dbc_resume(xhci);
1229
1230 done:
1231 if (retval == 0) {
1232 /*
1233 * Resume roothubs only if there are pending events.
1234 * USB 3 devices resend U3 LFPS wake after a 100ms delay if
1235 * the first wake signalling failed, give it that chance.
1236 */
1237 pending_portevent = xhci_pending_portevent(xhci);
1238 if (!pending_portevent) {
1239 msleep(120);
1240 pending_portevent = xhci_pending_portevent(xhci);
1241 }
1242
1243 if (pending_portevent) {
1244 usb_hcd_resume_root_hub(xhci->shared_hcd);
1245 usb_hcd_resume_root_hub(hcd);
1246 }
1247 }
1248 /*
1249 * If system is subject to the Quirk, Compliance Mode Timer needs to
1250 * be re-initialized Always after a system resume. Ports are subject
1251 * to suffer the Compliance Mode issue again. It doesn't matter if
1252 * ports have entered previously to U0 before system's suspension.
1253 */
1254 if ((xhci->quirks & XHCI_COMP_MODE_QUIRK) && !comp_timer_running)
1255 compliance_mode_recovery_timer_init(xhci);
1256
1257 if (xhci->quirks & XHCI_ASMEDIA_MODIFY_FLOWCONTROL)
1258 usb_asmedia_modifyflowcontrol(to_pci_dev(hcd->self.controller));
1259
1260 /* Re-enable port polling. */
1261 xhci_dbg(xhci, "%s: starting port polling.\n", __func__);
1262 set_bit(HCD_FLAG_POLL_RH, &xhci->shared_hcd->flags);
1263 usb_hcd_poll_rh_status(xhci->shared_hcd);
1264 set_bit(HCD_FLAG_POLL_RH, &hcd->flags);
1265 usb_hcd_poll_rh_status(hcd);
1266
1267 return retval;
1268}
1269EXPORT_SYMBOL_GPL(xhci_resume);
1270#endif /* CONFIG_PM */
1271
1272/*-------------------------------------------------------------------------*/
1273
1274static int xhci_map_temp_buffer(struct usb_hcd *hcd, struct urb *urb)
1275{
1276 void *temp;
1277 int ret = 0;
1278 unsigned int buf_len;
1279 enum dma_data_direction dir;
1280
1281 dir = usb_urb_dir_in(urb) ? DMA_FROM_DEVICE : DMA_TO_DEVICE;
1282 buf_len = urb->transfer_buffer_length;
1283
1284 temp = kzalloc_node(buf_len, GFP_ATOMIC,
1285 dev_to_node(hcd->self.sysdev));
1286
1287 if (usb_urb_dir_out(urb))
1288 sg_pcopy_to_buffer(urb->sg, urb->num_sgs,
1289 temp, buf_len, 0);
1290
1291 urb->transfer_buffer = temp;
1292 urb->transfer_dma = dma_map_single(hcd->self.sysdev,
1293 urb->transfer_buffer,
1294 urb->transfer_buffer_length,
1295 dir);
1296
1297 if (dma_mapping_error(hcd->self.sysdev,
1298 urb->transfer_dma)) {
1299 ret = -EAGAIN;
1300 kfree(temp);
1301 } else {
1302 urb->transfer_flags |= URB_DMA_MAP_SINGLE;
1303 }
1304
1305 return ret;
1306}
1307
1308static bool xhci_urb_temp_buffer_required(struct usb_hcd *hcd,
1309 struct urb *urb)
1310{
1311 bool ret = false;
1312 unsigned int i;
1313 unsigned int len = 0;
1314 unsigned int trb_size;
1315 unsigned int max_pkt;
1316 struct scatterlist *sg;
1317 struct scatterlist *tail_sg;
1318
1319 tail_sg = urb->sg;
1320 max_pkt = usb_endpoint_maxp(&urb->ep->desc);
1321
1322 if (!urb->num_sgs)
1323 return ret;
1324
1325 if (urb->dev->speed >= USB_SPEED_SUPER)
1326 trb_size = TRB_CACHE_SIZE_SS;
1327 else
1328 trb_size = TRB_CACHE_SIZE_HS;
1329
1330 if (urb->transfer_buffer_length != 0 &&
1331 !(urb->transfer_flags & URB_NO_TRANSFER_DMA_MAP)) {
1332 for_each_sg(urb->sg, sg, urb->num_sgs, i) {
1333 len = len + sg->length;
1334 if (i > trb_size - 2) {
1335 len = len - tail_sg->length;
1336 if (len < max_pkt) {
1337 ret = true;
1338 break;
1339 }
1340
1341 tail_sg = sg_next(tail_sg);
1342 }
1343 }
1344 }
1345 return ret;
1346}
1347
1348static void xhci_unmap_temp_buf(struct usb_hcd *hcd, struct urb *urb)
1349{
1350 unsigned int len;
1351 unsigned int buf_len;
1352 enum dma_data_direction dir;
1353
1354 dir = usb_urb_dir_in(urb) ? DMA_FROM_DEVICE : DMA_TO_DEVICE;
1355
1356 buf_len = urb->transfer_buffer_length;
1357
1358 if (IS_ENABLED(CONFIG_HAS_DMA) &&
1359 (urb->transfer_flags & URB_DMA_MAP_SINGLE))
1360 dma_unmap_single(hcd->self.sysdev,
1361 urb->transfer_dma,
1362 urb->transfer_buffer_length,
1363 dir);
1364
1365 if (usb_urb_dir_in(urb)) {
1366 len = sg_pcopy_from_buffer(urb->sg, urb->num_sgs,
1367 urb->transfer_buffer,
1368 buf_len,
1369 0);
1370 if (len != buf_len) {
1371 xhci_dbg(hcd_to_xhci(hcd),
1372 "Copy from tmp buf to urb sg list failed\n");
1373 urb->actual_length = len;
1374 }
1375 }
1376 urb->transfer_flags &= ~URB_DMA_MAP_SINGLE;
1377 kfree(urb->transfer_buffer);
1378 urb->transfer_buffer = NULL;
1379}
1380
1381/*
1382 * Bypass the DMA mapping if URB is suitable for Immediate Transfer (IDT),
1383 * we'll copy the actual data into the TRB address register. This is limited to
1384 * transfers up to 8 bytes on output endpoints of any kind with wMaxPacketSize
1385 * >= 8 bytes. If suitable for IDT only one Transfer TRB per TD is allowed.
1386 */
1387static int xhci_map_urb_for_dma(struct usb_hcd *hcd, struct urb *urb,
1388 gfp_t mem_flags)
1389{
1390 struct xhci_hcd *xhci;
1391
1392 xhci = hcd_to_xhci(hcd);
1393
1394 if (xhci_urb_suitable_for_idt(urb))
1395 return 0;
1396
1397 if (xhci->quirks & XHCI_SG_TRB_CACHE_SIZE_QUIRK) {
1398 if (xhci_urb_temp_buffer_required(hcd, urb))
1399 return xhci_map_temp_buffer(hcd, urb);
1400 }
1401 return usb_hcd_map_urb_for_dma(hcd, urb, mem_flags);
1402}
1403
1404static void xhci_unmap_urb_for_dma(struct usb_hcd *hcd, struct urb *urb)
1405{
1406 struct xhci_hcd *xhci;
1407 bool unmap_temp_buf = false;
1408
1409 xhci = hcd_to_xhci(hcd);
1410
1411 if (urb->num_sgs && (urb->transfer_flags & URB_DMA_MAP_SINGLE))
1412 unmap_temp_buf = true;
1413
1414 if ((xhci->quirks & XHCI_SG_TRB_CACHE_SIZE_QUIRK) && unmap_temp_buf)
1415 xhci_unmap_temp_buf(hcd, urb);
1416 else
1417 usb_hcd_unmap_urb_for_dma(hcd, urb);
1418}
1419
1420/**
1421 * xhci_get_endpoint_index - Used for passing endpoint bitmasks between the core and
1422 * HCDs. Find the index for an endpoint given its descriptor. Use the return
1423 * value to right shift 1 for the bitmask.
1424 *
1425 * Index = (epnum * 2) + direction - 1,
1426 * where direction = 0 for OUT, 1 for IN.
1427 * For control endpoints, the IN index is used (OUT index is unused), so
1428 * index = (epnum * 2) + direction - 1 = (epnum * 2) + 1 - 1 = (epnum * 2)
1429 */
1430unsigned int xhci_get_endpoint_index(struct usb_endpoint_descriptor *desc)
1431{
1432 unsigned int index;
1433 if (usb_endpoint_xfer_control(desc))
1434 index = (unsigned int) (usb_endpoint_num(desc)*2);
1435 else
1436 index = (unsigned int) (usb_endpoint_num(desc)*2) +
1437 (usb_endpoint_dir_in(desc) ? 1 : 0) - 1;
1438 return index;
1439}
1440EXPORT_SYMBOL_GPL(xhci_get_endpoint_index);
1441
1442/* The reverse operation to xhci_get_endpoint_index. Calculate the USB endpoint
1443 * address from the XHCI endpoint index.
1444 */
1445unsigned int xhci_get_endpoint_address(unsigned int ep_index)
1446{
1447 unsigned int number = DIV_ROUND_UP(ep_index, 2);
1448 unsigned int direction = ep_index % 2 ? USB_DIR_OUT : USB_DIR_IN;
1449 return direction | number;
1450}
1451
1452/* Find the flag for this endpoint (for use in the control context). Use the
1453 * endpoint index to create a bitmask. The slot context is bit 0, endpoint 0 is
1454 * bit 1, etc.
1455 */
1456static unsigned int xhci_get_endpoint_flag(struct usb_endpoint_descriptor *desc)
1457{
1458 return 1 << (xhci_get_endpoint_index(desc) + 1);
1459}
1460
1461/* Compute the last valid endpoint context index. Basically, this is the
1462 * endpoint index plus one. For slot contexts with more than valid endpoint,
1463 * we find the most significant bit set in the added contexts flags.
1464 * e.g. ep 1 IN (with epnum 0x81) => added_ctxs = 0b1000
1465 * fls(0b1000) = 4, but the endpoint context index is 3, so subtract one.
1466 */
1467unsigned int xhci_last_valid_endpoint(u32 added_ctxs)
1468{
1469 return fls(added_ctxs) - 1;
1470}
1471
1472/* Returns 1 if the arguments are OK;
1473 * returns 0 this is a root hub; returns -EINVAL for NULL pointers.
1474 */
1475static int xhci_check_args(struct usb_hcd *hcd, struct usb_device *udev,
1476 struct usb_host_endpoint *ep, int check_ep, bool check_virt_dev,
1477 const char *func) {
1478 struct xhci_hcd *xhci;
1479 struct xhci_virt_device *virt_dev;
1480
1481 if (!hcd || (check_ep && !ep) || !udev) {
1482 pr_debug("xHCI %s called with invalid args\n", func);
1483 return -EINVAL;
1484 }
1485 if (!udev->parent) {
1486 pr_debug("xHCI %s called for root hub\n", func);
1487 return 0;
1488 }
1489
1490 xhci = hcd_to_xhci(hcd);
1491 if (check_virt_dev) {
1492 if (!udev->slot_id || !xhci->devs[udev->slot_id]) {
1493 xhci_dbg(xhci, "xHCI %s called with unaddressed device\n",
1494 func);
1495 return -EINVAL;
1496 }
1497
1498 virt_dev = xhci->devs[udev->slot_id];
1499 if (virt_dev->udev != udev) {
1500 xhci_dbg(xhci, "xHCI %s called with udev and "
1501 "virt_dev does not match\n", func);
1502 return -EINVAL;
1503 }
1504 }
1505
1506 if (xhci->xhc_state & XHCI_STATE_HALTED)
1507 return -ENODEV;
1508
1509 return 1;
1510}
1511
1512static int xhci_configure_endpoint(struct xhci_hcd *xhci,
1513 struct usb_device *udev, struct xhci_command *command,
1514 bool ctx_change, bool must_succeed);
1515
1516/*
1517 * Full speed devices may have a max packet size greater than 8 bytes, but the
1518 * USB core doesn't know that until it reads the first 8 bytes of the
1519 * descriptor. If the usb_device's max packet size changes after that point,
1520 * we need to issue an evaluate context command and wait on it.
1521 */
1522static int xhci_check_maxpacket(struct xhci_hcd *xhci, unsigned int slot_id,
1523 unsigned int ep_index, struct urb *urb, gfp_t mem_flags)
1524{
1525 struct xhci_container_ctx *out_ctx;
1526 struct xhci_input_control_ctx *ctrl_ctx;
1527 struct xhci_ep_ctx *ep_ctx;
1528 struct xhci_command *command;
1529 int max_packet_size;
1530 int hw_max_packet_size;
1531 int ret = 0;
1532
1533 out_ctx = xhci->devs[slot_id]->out_ctx;
1534 ep_ctx = xhci_get_ep_ctx(xhci, out_ctx, ep_index);
1535 hw_max_packet_size = MAX_PACKET_DECODED(le32_to_cpu(ep_ctx->ep_info2));
1536 max_packet_size = usb_endpoint_maxp(&urb->dev->ep0.desc);
1537 if (hw_max_packet_size != max_packet_size) {
1538 xhci_dbg_trace(xhci, trace_xhci_dbg_context_change,
1539 "Max Packet Size for ep 0 changed.");
1540 xhci_dbg_trace(xhci, trace_xhci_dbg_context_change,
1541 "Max packet size in usb_device = %d",
1542 max_packet_size);
1543 xhci_dbg_trace(xhci, trace_xhci_dbg_context_change,
1544 "Max packet size in xHCI HW = %d",
1545 hw_max_packet_size);
1546 xhci_dbg_trace(xhci, trace_xhci_dbg_context_change,
1547 "Issuing evaluate context command.");
1548
1549 /* Set up the input context flags for the command */
1550 /* FIXME: This won't work if a non-default control endpoint
1551 * changes max packet sizes.
1552 */
1553
1554 command = xhci_alloc_command(xhci, true, mem_flags);
1555 if (!command)
1556 return -ENOMEM;
1557
1558 command->in_ctx = xhci->devs[slot_id]->in_ctx;
1559 ctrl_ctx = xhci_get_input_control_ctx(command->in_ctx);
1560 if (!ctrl_ctx) {
1561 xhci_warn(xhci, "%s: Could not get input context, bad type.\n",
1562 __func__);
1563 ret = -ENOMEM;
1564 goto command_cleanup;
1565 }
1566 /* Set up the modified control endpoint 0 */
1567 xhci_endpoint_copy(xhci, xhci->devs[slot_id]->in_ctx,
1568 xhci->devs[slot_id]->out_ctx, ep_index);
1569
1570 ep_ctx = xhci_get_ep_ctx(xhci, command->in_ctx, ep_index);
1571 ep_ctx->ep_info &= cpu_to_le32(~EP_STATE_MASK);/* must clear */
1572 ep_ctx->ep_info2 &= cpu_to_le32(~MAX_PACKET_MASK);
1573 ep_ctx->ep_info2 |= cpu_to_le32(MAX_PACKET(max_packet_size));
1574
1575 ctrl_ctx->add_flags = cpu_to_le32(EP0_FLAG);
1576 ctrl_ctx->drop_flags = 0;
1577
1578 ret = xhci_configure_endpoint(xhci, urb->dev, command,
1579 true, false);
1580
1581 /* Clean up the input context for later use by bandwidth
1582 * functions.
1583 */
1584 ctrl_ctx->add_flags = cpu_to_le32(SLOT_FLAG);
1585command_cleanup:
1586 kfree(command->completion);
1587 kfree(command);
1588 }
1589 return ret;
1590}
1591
1592/*
1593 * non-error returns are a promise to giveback() the urb later
1594 * we drop ownership so next owner (or urb unlink) can get it
1595 */
1596static int xhci_urb_enqueue(struct usb_hcd *hcd, struct urb *urb, gfp_t mem_flags)
1597{
1598 struct xhci_hcd *xhci = hcd_to_xhci(hcd);
1599 unsigned long flags;
1600 int ret = 0;
1601 unsigned int slot_id, ep_index;
1602 unsigned int *ep_state;
1603 struct urb_priv *urb_priv;
1604 int num_tds;
1605
1606 if (!urb || xhci_check_args(hcd, urb->dev, urb->ep,
1607 true, true, __func__) <= 0)
1608 return -EINVAL;
1609
1610 slot_id = urb->dev->slot_id;
1611 ep_index = xhci_get_endpoint_index(&urb->ep->desc);
1612 ep_state = &xhci->devs[slot_id]->eps[ep_index].ep_state;
1613
1614 if (!HCD_HW_ACCESSIBLE(hcd))
1615 return -ESHUTDOWN;
1616
1617 if (xhci->devs[slot_id]->flags & VDEV_PORT_ERROR) {
1618 xhci_dbg(xhci, "Can't queue urb, port error, link inactive\n");
1619 return -ENODEV;
1620 }
1621
1622 if (usb_endpoint_xfer_isoc(&urb->ep->desc))
1623 num_tds = urb->number_of_packets;
1624 else if (usb_endpoint_is_bulk_out(&urb->ep->desc) &&
1625 urb->transfer_buffer_length > 0 &&
1626 urb->transfer_flags & URB_ZERO_PACKET &&
1627 !(urb->transfer_buffer_length % usb_endpoint_maxp(&urb->ep->desc)))
1628 num_tds = 2;
1629 else
1630 num_tds = 1;
1631
1632 urb_priv = kzalloc(struct_size(urb_priv, td, num_tds), mem_flags);
1633 if (!urb_priv)
1634 return -ENOMEM;
1635
1636 urb_priv->num_tds = num_tds;
1637 urb_priv->num_tds_done = 0;
1638 urb->hcpriv = urb_priv;
1639
1640 trace_xhci_urb_enqueue(urb);
1641
1642 if (usb_endpoint_xfer_control(&urb->ep->desc)) {
1643 /* Check to see if the max packet size for the default control
1644 * endpoint changed during FS device enumeration
1645 */
1646 if (urb->dev->speed == USB_SPEED_FULL) {
1647 ret = xhci_check_maxpacket(xhci, slot_id,
1648 ep_index, urb, mem_flags);
1649 if (ret < 0) {
1650 xhci_urb_free_priv(urb_priv);
1651 urb->hcpriv = NULL;
1652 return ret;
1653 }
1654 }
1655 }
1656
1657 spin_lock_irqsave(&xhci->lock, flags);
1658
1659 if (xhci->xhc_state & XHCI_STATE_DYING) {
1660 xhci_dbg(xhci, "Ep 0x%x: URB %p submitted for non-responsive xHCI host.\n",
1661 urb->ep->desc.bEndpointAddress, urb);
1662 ret = -ESHUTDOWN;
1663 goto free_priv;
1664 }
1665 if (*ep_state & (EP_GETTING_STREAMS | EP_GETTING_NO_STREAMS)) {
1666 xhci_warn(xhci, "WARN: Can't enqueue URB, ep in streams transition state %x\n",
1667 *ep_state);
1668 ret = -EINVAL;
1669 goto free_priv;
1670 }
1671 if (*ep_state & EP_SOFT_CLEAR_TOGGLE) {
1672 xhci_warn(xhci, "Can't enqueue URB while manually clearing toggle\n");
1673 ret = -EINVAL;
1674 goto free_priv;
1675 }
1676
1677 switch (usb_endpoint_type(&urb->ep->desc)) {
1678
1679 case USB_ENDPOINT_XFER_CONTROL:
1680 ret = xhci_queue_ctrl_tx(xhci, GFP_ATOMIC, urb,
1681 slot_id, ep_index);
1682 break;
1683 case USB_ENDPOINT_XFER_BULK:
1684 ret = xhci_queue_bulk_tx(xhci, GFP_ATOMIC, urb,
1685 slot_id, ep_index);
1686 break;
1687 case USB_ENDPOINT_XFER_INT:
1688 ret = xhci_queue_intr_tx(xhci, GFP_ATOMIC, urb,
1689 slot_id, ep_index);
1690 break;
1691 case USB_ENDPOINT_XFER_ISOC:
1692 ret = xhci_queue_isoc_tx_prepare(xhci, GFP_ATOMIC, urb,
1693 slot_id, ep_index);
1694 }
1695
1696 if (ret) {
1697free_priv:
1698 xhci_urb_free_priv(urb_priv);
1699 urb->hcpriv = NULL;
1700 }
1701 spin_unlock_irqrestore(&xhci->lock, flags);
1702 return ret;
1703}
1704
1705/*
1706 * Remove the URB's TD from the endpoint ring. This may cause the HC to stop
1707 * USB transfers, potentially stopping in the middle of a TRB buffer. The HC
1708 * should pick up where it left off in the TD, unless a Set Transfer Ring
1709 * Dequeue Pointer is issued.
1710 *
1711 * The TRBs that make up the buffers for the canceled URB will be "removed" from
1712 * the ring. Since the ring is a contiguous structure, they can't be physically
1713 * removed. Instead, there are two options:
1714 *
1715 * 1) If the HC is in the middle of processing the URB to be canceled, we
1716 * simply move the ring's dequeue pointer past those TRBs using the Set
1717 * Transfer Ring Dequeue Pointer command. This will be the common case,
1718 * when drivers timeout on the last submitted URB and attempt to cancel.
1719 *
1720 * 2) If the HC is in the middle of a different TD, we turn the TRBs into a
1721 * series of 1-TRB transfer no-op TDs. (No-ops shouldn't be chained.) The
1722 * HC will need to invalidate the any TRBs it has cached after the stop
1723 * endpoint command, as noted in the xHCI 0.95 errata.
1724 *
1725 * 3) The TD may have completed by the time the Stop Endpoint Command
1726 * completes, so software needs to handle that case too.
1727 *
1728 * This function should protect against the TD enqueueing code ringing the
1729 * doorbell while this code is waiting for a Stop Endpoint command to complete.
1730 * It also needs to account for multiple cancellations on happening at the same
1731 * time for the same endpoint.
1732 *
1733 * Note that this function can be called in any context, or so says
1734 * usb_hcd_unlink_urb()
1735 */
1736static int xhci_urb_dequeue(struct usb_hcd *hcd, struct urb *urb, int status)
1737{
1738 unsigned long flags;
1739 int ret, i;
1740 u32 temp;
1741 struct xhci_hcd *xhci;
1742 struct urb_priv *urb_priv;
1743 struct xhci_td *td;
1744 unsigned int ep_index;
1745 struct xhci_ring *ep_ring;
1746 struct xhci_virt_ep *ep;
1747 struct xhci_command *command;
1748 struct xhci_virt_device *vdev;
1749
1750 xhci = hcd_to_xhci(hcd);
1751 spin_lock_irqsave(&xhci->lock, flags);
1752
1753 trace_xhci_urb_dequeue(urb);
1754
1755 /* Make sure the URB hasn't completed or been unlinked already */
1756 ret = usb_hcd_check_unlink_urb(hcd, urb, status);
1757 if (ret)
1758 goto done;
1759
1760 /* give back URB now if we can't queue it for cancel */
1761 vdev = xhci->devs[urb->dev->slot_id];
1762 urb_priv = urb->hcpriv;
1763 if (!vdev || !urb_priv)
1764 goto err_giveback;
1765
1766 ep_index = xhci_get_endpoint_index(&urb->ep->desc);
1767 ep = &vdev->eps[ep_index];
1768 ep_ring = xhci_urb_to_transfer_ring(xhci, urb);
1769 if (!ep || !ep_ring)
1770 goto err_giveback;
1771
1772 /* If xHC is dead take it down and return ALL URBs in xhci_hc_died() */
1773 temp = readl(&xhci->op_regs->status);
1774 if (temp == ~(u32)0 || xhci->xhc_state & XHCI_STATE_DYING) {
1775 xhci_hc_died(xhci);
1776 goto done;
1777 }
1778
1779 /*
1780 * check ring is not re-allocated since URB was enqueued. If it is, then
1781 * make sure none of the ring related pointers in this URB private data
1782 * are touched, such as td_list, otherwise we overwrite freed data
1783 */
1784 if (!td_on_ring(&urb_priv->td[0], ep_ring)) {
1785 xhci_err(xhci, "Canceled URB td not found on endpoint ring");
1786 for (i = urb_priv->num_tds_done; i < urb_priv->num_tds; i++) {
1787 td = &urb_priv->td[i];
1788 if (!list_empty(&td->cancelled_td_list))
1789 list_del_init(&td->cancelled_td_list);
1790 }
1791 goto err_giveback;
1792 }
1793
1794 if (xhci->xhc_state & XHCI_STATE_HALTED) {
1795 xhci_dbg_trace(xhci, trace_xhci_dbg_cancel_urb,
1796 "HC halted, freeing TD manually.");
1797 for (i = urb_priv->num_tds_done;
1798 i < urb_priv->num_tds;
1799 i++) {
1800 td = &urb_priv->td[i];
1801 if (!list_empty(&td->td_list))
1802 list_del_init(&td->td_list);
1803 if (!list_empty(&td->cancelled_td_list))
1804 list_del_init(&td->cancelled_td_list);
1805 }
1806 goto err_giveback;
1807 }
1808
1809 i = urb_priv->num_tds_done;
1810 if (i < urb_priv->num_tds)
1811 xhci_dbg_trace(xhci, trace_xhci_dbg_cancel_urb,
1812 "Cancel URB %p, dev %s, ep 0x%x, "
1813 "starting at offset 0x%llx",
1814 urb, urb->dev->devpath,
1815 urb->ep->desc.bEndpointAddress,
1816 (unsigned long long) xhci_trb_virt_to_dma(
1817 urb_priv->td[i].start_seg,
1818 urb_priv->td[i].first_trb));
1819
1820 for (; i < urb_priv->num_tds; i++) {
1821 td = &urb_priv->td[i];
1822 /* TD can already be on cancelled list if ep halted on it */
1823 if (list_empty(&td->cancelled_td_list)) {
1824 td->cancel_status = TD_DIRTY;
1825 list_add_tail(&td->cancelled_td_list,
1826 &ep->cancelled_td_list);
1827 }
1828 }
1829
1830 /* Queue a stop endpoint command, but only if this is
1831 * the first cancellation to be handled.
1832 */
1833 if (!(ep->ep_state & EP_STOP_CMD_PENDING)) {
1834 command = xhci_alloc_command(xhci, false, GFP_ATOMIC);
1835 if (!command) {
1836 ret = -ENOMEM;
1837 goto done;
1838 }
1839 ep->ep_state |= EP_STOP_CMD_PENDING;
1840 ep->stop_cmd_timer.expires = jiffies +
1841 XHCI_STOP_EP_CMD_TIMEOUT * HZ;
1842 add_timer(&ep->stop_cmd_timer);
1843 xhci_queue_stop_endpoint(xhci, command, urb->dev->slot_id,
1844 ep_index, 0);
1845 xhci_ring_cmd_db(xhci);
1846 }
1847done:
1848 spin_unlock_irqrestore(&xhci->lock, flags);
1849 return ret;
1850
1851err_giveback:
1852 if (urb_priv)
1853 xhci_urb_free_priv(urb_priv);
1854 usb_hcd_unlink_urb_from_ep(hcd, urb);
1855 spin_unlock_irqrestore(&xhci->lock, flags);
1856 usb_hcd_giveback_urb(hcd, urb, -ESHUTDOWN);
1857 return ret;
1858}
1859
1860/* Drop an endpoint from a new bandwidth configuration for this device.
1861 * Only one call to this function is allowed per endpoint before
1862 * check_bandwidth() or reset_bandwidth() must be called.
1863 * A call to xhci_drop_endpoint() followed by a call to xhci_add_endpoint() will
1864 * add the endpoint to the schedule with possibly new parameters denoted by a
1865 * different endpoint descriptor in usb_host_endpoint.
1866 * A call to xhci_add_endpoint() followed by a call to xhci_drop_endpoint() is
1867 * not allowed.
1868 *
1869 * The USB core will not allow URBs to be queued to an endpoint that is being
1870 * disabled, so there's no need for mutual exclusion to protect
1871 * the xhci->devs[slot_id] structure.
1872 */
1873int xhci_drop_endpoint(struct usb_hcd *hcd, struct usb_device *udev,
1874 struct usb_host_endpoint *ep)
1875{
1876 struct xhci_hcd *xhci;
1877 struct xhci_container_ctx *in_ctx, *out_ctx;
1878 struct xhci_input_control_ctx *ctrl_ctx;
1879 unsigned int ep_index;
1880 struct xhci_ep_ctx *ep_ctx;
1881 u32 drop_flag;
1882 u32 new_add_flags, new_drop_flags;
1883 int ret;
1884
1885 ret = xhci_check_args(hcd, udev, ep, 1, true, __func__);
1886 if (ret <= 0)
1887 return ret;
1888 xhci = hcd_to_xhci(hcd);
1889 if (xhci->xhc_state & XHCI_STATE_DYING)
1890 return -ENODEV;
1891
1892 xhci_dbg(xhci, "%s called for udev %p\n", __func__, udev);
1893 drop_flag = xhci_get_endpoint_flag(&ep->desc);
1894 if (drop_flag == SLOT_FLAG || drop_flag == EP0_FLAG) {
1895 xhci_dbg(xhci, "xHCI %s - can't drop slot or ep 0 %#x\n",
1896 __func__, drop_flag);
1897 return 0;
1898 }
1899
1900 in_ctx = xhci->devs[udev->slot_id]->in_ctx;
1901 out_ctx = xhci->devs[udev->slot_id]->out_ctx;
1902 ctrl_ctx = xhci_get_input_control_ctx(in_ctx);
1903 if (!ctrl_ctx) {
1904 xhci_warn(xhci, "%s: Could not get input context, bad type.\n",
1905 __func__);
1906 return 0;
1907 }
1908
1909 ep_index = xhci_get_endpoint_index(&ep->desc);
1910 ep_ctx = xhci_get_ep_ctx(xhci, out_ctx, ep_index);
1911 /* If the HC already knows the endpoint is disabled,
1912 * or the HCD has noted it is disabled, ignore this request
1913 */
1914 if ((GET_EP_CTX_STATE(ep_ctx) == EP_STATE_DISABLED) ||
1915 le32_to_cpu(ctrl_ctx->drop_flags) &
1916 xhci_get_endpoint_flag(&ep->desc)) {
1917 /* Do not warn when called after a usb_device_reset */
1918 if (xhci->devs[udev->slot_id]->eps[ep_index].ring != NULL)
1919 xhci_warn(xhci, "xHCI %s called with disabled ep %p\n",
1920 __func__, ep);
1921 return 0;
1922 }
1923
1924 ctrl_ctx->drop_flags |= cpu_to_le32(drop_flag);
1925 new_drop_flags = le32_to_cpu(ctrl_ctx->drop_flags);
1926
1927 ctrl_ctx->add_flags &= cpu_to_le32(~drop_flag);
1928 new_add_flags = le32_to_cpu(ctrl_ctx->add_flags);
1929
1930 xhci_debugfs_remove_endpoint(xhci, xhci->devs[udev->slot_id], ep_index);
1931
1932 xhci_endpoint_zero(xhci, xhci->devs[udev->slot_id], ep);
1933
1934 xhci_dbg(xhci, "drop ep 0x%x, slot id %d, new drop flags = %#x, new add flags = %#x\n",
1935 (unsigned int) ep->desc.bEndpointAddress,
1936 udev->slot_id,
1937 (unsigned int) new_drop_flags,
1938 (unsigned int) new_add_flags);
1939 return 0;
1940}
1941EXPORT_SYMBOL_GPL(xhci_drop_endpoint);
1942
1943/* Add an endpoint to a new possible bandwidth configuration for this device.
1944 * Only one call to this function is allowed per endpoint before
1945 * check_bandwidth() or reset_bandwidth() must be called.
1946 * A call to xhci_drop_endpoint() followed by a call to xhci_add_endpoint() will
1947 * add the endpoint to the schedule with possibly new parameters denoted by a
1948 * different endpoint descriptor in usb_host_endpoint.
1949 * A call to xhci_add_endpoint() followed by a call to xhci_drop_endpoint() is
1950 * not allowed.
1951 *
1952 * The USB core will not allow URBs to be queued to an endpoint until the
1953 * configuration or alt setting is installed in the device, so there's no need
1954 * for mutual exclusion to protect the xhci->devs[slot_id] structure.
1955 */
1956int xhci_add_endpoint(struct usb_hcd *hcd, struct usb_device *udev,
1957 struct usb_host_endpoint *ep)
1958{
1959 struct xhci_hcd *xhci;
1960 struct xhci_container_ctx *in_ctx;
1961 unsigned int ep_index;
1962 struct xhci_input_control_ctx *ctrl_ctx;
1963 struct xhci_ep_ctx *ep_ctx;
1964 u32 added_ctxs;
1965 u32 new_add_flags, new_drop_flags;
1966 struct xhci_virt_device *virt_dev;
1967 int ret = 0;
1968
1969 ret = xhci_check_args(hcd, udev, ep, 1, true, __func__);
1970 if (ret <= 0) {
1971 /* So we won't queue a reset ep command for a root hub */
1972 ep->hcpriv = NULL;
1973 return ret;
1974 }
1975 xhci = hcd_to_xhci(hcd);
1976 if (xhci->xhc_state & XHCI_STATE_DYING)
1977 return -ENODEV;
1978
1979 added_ctxs = xhci_get_endpoint_flag(&ep->desc);
1980 if (added_ctxs == SLOT_FLAG || added_ctxs == EP0_FLAG) {
1981 /* FIXME when we have to issue an evaluate endpoint command to
1982 * deal with ep0 max packet size changing once we get the
1983 * descriptors
1984 */
1985 xhci_dbg(xhci, "xHCI %s - can't add slot or ep 0 %#x\n",
1986 __func__, added_ctxs);
1987 return 0;
1988 }
1989
1990 virt_dev = xhci->devs[udev->slot_id];
1991 in_ctx = virt_dev->in_ctx;
1992 ctrl_ctx = xhci_get_input_control_ctx(in_ctx);
1993 if (!ctrl_ctx) {
1994 xhci_warn(xhci, "%s: Could not get input context, bad type.\n",
1995 __func__);
1996 return 0;
1997 }
1998
1999 ep_index = xhci_get_endpoint_index(&ep->desc);
2000 /* If this endpoint is already in use, and the upper layers are trying
2001 * to add it again without dropping it, reject the addition.
2002 */
2003 if (virt_dev->eps[ep_index].ring &&
2004 !(le32_to_cpu(ctrl_ctx->drop_flags) & added_ctxs)) {
2005 xhci_warn(xhci, "Trying to add endpoint 0x%x "
2006 "without dropping it.\n",
2007 (unsigned int) ep->desc.bEndpointAddress);
2008 return -EINVAL;
2009 }
2010
2011 /* If the HCD has already noted the endpoint is enabled,
2012 * ignore this request.
2013 */
2014 if (le32_to_cpu(ctrl_ctx->add_flags) & added_ctxs) {
2015 xhci_warn(xhci, "xHCI %s called with enabled ep %p\n",
2016 __func__, ep);
2017 return 0;
2018 }
2019
2020 /*
2021 * Configuration and alternate setting changes must be done in
2022 * process context, not interrupt context (or so documenation
2023 * for usb_set_interface() and usb_set_configuration() claim).
2024 */
2025 if (xhci_endpoint_init(xhci, virt_dev, udev, ep, GFP_NOIO) < 0) {
2026 dev_dbg(&udev->dev, "%s - could not initialize ep %#x\n",
2027 __func__, ep->desc.bEndpointAddress);
2028 return -ENOMEM;
2029 }
2030
2031 ctrl_ctx->add_flags |= cpu_to_le32(added_ctxs);
2032 new_add_flags = le32_to_cpu(ctrl_ctx->add_flags);
2033
2034 /* If xhci_endpoint_disable() was called for this endpoint, but the
2035 * xHC hasn't been notified yet through the check_bandwidth() call,
2036 * this re-adds a new state for the endpoint from the new endpoint
2037 * descriptors. We must drop and re-add this endpoint, so we leave the
2038 * drop flags alone.
2039 */
2040 new_drop_flags = le32_to_cpu(ctrl_ctx->drop_flags);
2041
2042 /* Store the usb_device pointer for later use */
2043 ep->hcpriv = udev;
2044
2045 ep_ctx = xhci_get_ep_ctx(xhci, virt_dev->in_ctx, ep_index);
2046 trace_xhci_add_endpoint(ep_ctx);
2047
2048 xhci_dbg(xhci, "add ep 0x%x, slot id %d, new drop flags = %#x, new add flags = %#x\n",
2049 (unsigned int) ep->desc.bEndpointAddress,
2050 udev->slot_id,
2051 (unsigned int) new_drop_flags,
2052 (unsigned int) new_add_flags);
2053 return 0;
2054}
2055EXPORT_SYMBOL_GPL(xhci_add_endpoint);
2056
2057static void xhci_zero_in_ctx(struct xhci_hcd *xhci, struct xhci_virt_device *virt_dev)
2058{
2059 struct xhci_input_control_ctx *ctrl_ctx;
2060 struct xhci_ep_ctx *ep_ctx;
2061 struct xhci_slot_ctx *slot_ctx;
2062 int i;
2063
2064 ctrl_ctx = xhci_get_input_control_ctx(virt_dev->in_ctx);
2065 if (!ctrl_ctx) {
2066 xhci_warn(xhci, "%s: Could not get input context, bad type.\n",
2067 __func__);
2068 return;
2069 }
2070
2071 /* When a device's add flag and drop flag are zero, any subsequent
2072 * configure endpoint command will leave that endpoint's state
2073 * untouched. Make sure we don't leave any old state in the input
2074 * endpoint contexts.
2075 */
2076 ctrl_ctx->drop_flags = 0;
2077 ctrl_ctx->add_flags = 0;
2078 slot_ctx = xhci_get_slot_ctx(xhci, virt_dev->in_ctx);
2079 slot_ctx->dev_info &= cpu_to_le32(~LAST_CTX_MASK);
2080 /* Endpoint 0 is always valid */
2081 slot_ctx->dev_info |= cpu_to_le32(LAST_CTX(1));
2082 for (i = 1; i < 31; i++) {
2083 ep_ctx = xhci_get_ep_ctx(xhci, virt_dev->in_ctx, i);
2084 ep_ctx->ep_info = 0;
2085 ep_ctx->ep_info2 = 0;
2086 ep_ctx->deq = 0;
2087 ep_ctx->tx_info = 0;
2088 }
2089}
2090
2091static int xhci_configure_endpoint_result(struct xhci_hcd *xhci,
2092 struct usb_device *udev, u32 *cmd_status)
2093{
2094 int ret;
2095
2096 switch (*cmd_status) {
2097 case COMP_COMMAND_ABORTED:
2098 case COMP_COMMAND_RING_STOPPED:
2099 xhci_warn(xhci, "Timeout while waiting for configure endpoint command\n");
2100 ret = -ETIME;
2101 break;
2102 case COMP_RESOURCE_ERROR:
2103 dev_warn(&udev->dev,
2104 "Not enough host controller resources for new device state.\n");
2105 ret = -ENOMEM;
2106 /* FIXME: can we allocate more resources for the HC? */
2107 break;
2108 case COMP_BANDWIDTH_ERROR:
2109 case COMP_SECONDARY_BANDWIDTH_ERROR:
2110 dev_warn(&udev->dev,
2111 "Not enough bandwidth for new device state.\n");
2112 ret = -ENOSPC;
2113 /* FIXME: can we go back to the old state? */
2114 break;
2115 case COMP_TRB_ERROR:
2116 /* the HCD set up something wrong */
2117 dev_warn(&udev->dev, "ERROR: Endpoint drop flag = 0, "
2118 "add flag = 1, "
2119 "and endpoint is not disabled.\n");
2120 ret = -EINVAL;
2121 break;
2122 case COMP_INCOMPATIBLE_DEVICE_ERROR:
2123 dev_warn(&udev->dev,
2124 "ERROR: Incompatible device for endpoint configure command.\n");
2125 ret = -ENODEV;
2126 break;
2127 case COMP_SUCCESS:
2128 xhci_dbg_trace(xhci, trace_xhci_dbg_context_change,
2129 "Successful Endpoint Configure command");
2130 ret = 0;
2131 break;
2132 default:
2133 xhci_err(xhci, "ERROR: unexpected command completion code 0x%x.\n",
2134 *cmd_status);
2135 ret = -EINVAL;
2136 break;
2137 }
2138 return ret;
2139}
2140
2141static int xhci_evaluate_context_result(struct xhci_hcd *xhci,
2142 struct usb_device *udev, u32 *cmd_status)
2143{
2144 int ret;
2145
2146 switch (*cmd_status) {
2147 case COMP_COMMAND_ABORTED:
2148 case COMP_COMMAND_RING_STOPPED:
2149 xhci_warn(xhci, "Timeout while waiting for evaluate context command\n");
2150 ret = -ETIME;
2151 break;
2152 case COMP_PARAMETER_ERROR:
2153 dev_warn(&udev->dev,
2154 "WARN: xHCI driver setup invalid evaluate context command.\n");
2155 ret = -EINVAL;
2156 break;
2157 case COMP_SLOT_NOT_ENABLED_ERROR:
2158 dev_warn(&udev->dev,
2159 "WARN: slot not enabled for evaluate context command.\n");
2160 ret = -EINVAL;
2161 break;
2162 case COMP_CONTEXT_STATE_ERROR:
2163 dev_warn(&udev->dev,
2164 "WARN: invalid context state for evaluate context command.\n");
2165 ret = -EINVAL;
2166 break;
2167 case COMP_INCOMPATIBLE_DEVICE_ERROR:
2168 dev_warn(&udev->dev,
2169 "ERROR: Incompatible device for evaluate context command.\n");
2170 ret = -ENODEV;
2171 break;
2172 case COMP_MAX_EXIT_LATENCY_TOO_LARGE_ERROR:
2173 /* Max Exit Latency too large error */
2174 dev_warn(&udev->dev, "WARN: Max Exit Latency too large\n");
2175 ret = -EINVAL;
2176 break;
2177 case COMP_SUCCESS:
2178 xhci_dbg_trace(xhci, trace_xhci_dbg_context_change,
2179 "Successful evaluate context command");
2180 ret = 0;
2181 break;
2182 default:
2183 xhci_err(xhci, "ERROR: unexpected command completion code 0x%x.\n",
2184 *cmd_status);
2185 ret = -EINVAL;
2186 break;
2187 }
2188 return ret;
2189}
2190
2191static u32 xhci_count_num_new_endpoints(struct xhci_hcd *xhci,
2192 struct xhci_input_control_ctx *ctrl_ctx)
2193{
2194 u32 valid_add_flags;
2195 u32 valid_drop_flags;
2196
2197 /* Ignore the slot flag (bit 0), and the default control endpoint flag
2198 * (bit 1). The default control endpoint is added during the Address
2199 * Device command and is never removed until the slot is disabled.
2200 */
2201 valid_add_flags = le32_to_cpu(ctrl_ctx->add_flags) >> 2;
2202 valid_drop_flags = le32_to_cpu(ctrl_ctx->drop_flags) >> 2;
2203
2204 /* Use hweight32 to count the number of ones in the add flags, or
2205 * number of endpoints added. Don't count endpoints that are changed
2206 * (both added and dropped).
2207 */
2208 return hweight32(valid_add_flags) -
2209 hweight32(valid_add_flags & valid_drop_flags);
2210}
2211
2212static unsigned int xhci_count_num_dropped_endpoints(struct xhci_hcd *xhci,
2213 struct xhci_input_control_ctx *ctrl_ctx)
2214{
2215 u32 valid_add_flags;
2216 u32 valid_drop_flags;
2217
2218 valid_add_flags = le32_to_cpu(ctrl_ctx->add_flags) >> 2;
2219 valid_drop_flags = le32_to_cpu(ctrl_ctx->drop_flags) >> 2;
2220
2221 return hweight32(valid_drop_flags) -
2222 hweight32(valid_add_flags & valid_drop_flags);
2223}
2224
2225/*
2226 * We need to reserve the new number of endpoints before the configure endpoint
2227 * command completes. We can't subtract the dropped endpoints from the number
2228 * of active endpoints until the command completes because we can oversubscribe
2229 * the host in this case:
2230 *
2231 * - the first configure endpoint command drops more endpoints than it adds
2232 * - a second configure endpoint command that adds more endpoints is queued
2233 * - the first configure endpoint command fails, so the config is unchanged
2234 * - the second command may succeed, even though there isn't enough resources
2235 *
2236 * Must be called with xhci->lock held.
2237 */
2238static int xhci_reserve_host_resources(struct xhci_hcd *xhci,
2239 struct xhci_input_control_ctx *ctrl_ctx)
2240{
2241 u32 added_eps;
2242
2243 added_eps = xhci_count_num_new_endpoints(xhci, ctrl_ctx);
2244 if (xhci->num_active_eps + added_eps > xhci->limit_active_eps) {
2245 xhci_dbg_trace(xhci, trace_xhci_dbg_quirks,
2246 "Not enough ep ctxs: "
2247 "%u active, need to add %u, limit is %u.",
2248 xhci->num_active_eps, added_eps,
2249 xhci->limit_active_eps);
2250 return -ENOMEM;
2251 }
2252 xhci->num_active_eps += added_eps;
2253 xhci_dbg_trace(xhci, trace_xhci_dbg_quirks,
2254 "Adding %u ep ctxs, %u now active.", added_eps,
2255 xhci->num_active_eps);
2256 return 0;
2257}
2258
2259/*
2260 * The configure endpoint was failed by the xHC for some other reason, so we
2261 * need to revert the resources that failed configuration would have used.
2262 *
2263 * Must be called with xhci->lock held.
2264 */
2265static void xhci_free_host_resources(struct xhci_hcd *xhci,
2266 struct xhci_input_control_ctx *ctrl_ctx)
2267{
2268 u32 num_failed_eps;
2269
2270 num_failed_eps = xhci_count_num_new_endpoints(xhci, ctrl_ctx);
2271 xhci->num_active_eps -= num_failed_eps;
2272 xhci_dbg_trace(xhci, trace_xhci_dbg_quirks,
2273 "Removing %u failed ep ctxs, %u now active.",
2274 num_failed_eps,
2275 xhci->num_active_eps);
2276}
2277
2278/*
2279 * Now that the command has completed, clean up the active endpoint count by
2280 * subtracting out the endpoints that were dropped (but not changed).
2281 *
2282 * Must be called with xhci->lock held.
2283 */
2284static void xhci_finish_resource_reservation(struct xhci_hcd *xhci,
2285 struct xhci_input_control_ctx *ctrl_ctx)
2286{
2287 u32 num_dropped_eps;
2288
2289 num_dropped_eps = xhci_count_num_dropped_endpoints(xhci, ctrl_ctx);
2290 xhci->num_active_eps -= num_dropped_eps;
2291 if (num_dropped_eps)
2292 xhci_dbg_trace(xhci, trace_xhci_dbg_quirks,
2293 "Removing %u dropped ep ctxs, %u now active.",
2294 num_dropped_eps,
2295 xhci->num_active_eps);
2296}
2297
2298static unsigned int xhci_get_block_size(struct usb_device *udev)
2299{
2300 switch (udev->speed) {
2301 case USB_SPEED_LOW:
2302 case USB_SPEED_FULL:
2303 return FS_BLOCK;
2304 case USB_SPEED_HIGH:
2305 return HS_BLOCK;
2306 case USB_SPEED_SUPER:
2307 case USB_SPEED_SUPER_PLUS:
2308 return SS_BLOCK;
2309 case USB_SPEED_UNKNOWN:
2310 case USB_SPEED_WIRELESS:
2311 default:
2312 /* Should never happen */
2313 return 1;
2314 }
2315}
2316
2317static unsigned int
2318xhci_get_largest_overhead(struct xhci_interval_bw *interval_bw)
2319{
2320 if (interval_bw->overhead[LS_OVERHEAD_TYPE])
2321 return LS_OVERHEAD;
2322 if (interval_bw->overhead[FS_OVERHEAD_TYPE])
2323 return FS_OVERHEAD;
2324 return HS_OVERHEAD;
2325}
2326
2327/* If we are changing a LS/FS device under a HS hub,
2328 * make sure (if we are activating a new TT) that the HS bus has enough
2329 * bandwidth for this new TT.
2330 */
2331static int xhci_check_tt_bw_table(struct xhci_hcd *xhci,
2332 struct xhci_virt_device *virt_dev,
2333 int old_active_eps)
2334{
2335 struct xhci_interval_bw_table *bw_table;
2336 struct xhci_tt_bw_info *tt_info;
2337
2338 /* Find the bandwidth table for the root port this TT is attached to. */
2339 bw_table = &xhci->rh_bw[virt_dev->real_port - 1].bw_table;
2340 tt_info = virt_dev->tt_info;
2341 /* If this TT already had active endpoints, the bandwidth for this TT
2342 * has already been added. Removing all periodic endpoints (and thus
2343 * making the TT enactive) will only decrease the bandwidth used.
2344 */
2345 if (old_active_eps)
2346 return 0;
2347 if (old_active_eps == 0 && tt_info->active_eps != 0) {
2348 if (bw_table->bw_used + TT_HS_OVERHEAD > HS_BW_LIMIT)
2349 return -ENOMEM;
2350 return 0;
2351 }
2352 /* Not sure why we would have no new active endpoints...
2353 *
2354 * Maybe because of an Evaluate Context change for a hub update or a
2355 * control endpoint 0 max packet size change?
2356 * FIXME: skip the bandwidth calculation in that case.
2357 */
2358 return 0;
2359}
2360
2361static int xhci_check_ss_bw(struct xhci_hcd *xhci,
2362 struct xhci_virt_device *virt_dev)
2363{
2364 unsigned int bw_reserved;
2365
2366 bw_reserved = DIV_ROUND_UP(SS_BW_RESERVED*SS_BW_LIMIT_IN, 100);
2367 if (virt_dev->bw_table->ss_bw_in > (SS_BW_LIMIT_IN - bw_reserved))
2368 return -ENOMEM;
2369
2370 bw_reserved = DIV_ROUND_UP(SS_BW_RESERVED*SS_BW_LIMIT_OUT, 100);
2371 if (virt_dev->bw_table->ss_bw_out > (SS_BW_LIMIT_OUT - bw_reserved))
2372 return -ENOMEM;
2373
2374 return 0;
2375}
2376
2377/*
2378 * This algorithm is a very conservative estimate of the worst-case scheduling
2379 * scenario for any one interval. The hardware dynamically schedules the
2380 * packets, so we can't tell which microframe could be the limiting factor in
2381 * the bandwidth scheduling. This only takes into account periodic endpoints.
2382 *
2383 * Obviously, we can't solve an NP complete problem to find the minimum worst
2384 * case scenario. Instead, we come up with an estimate that is no less than
2385 * the worst case bandwidth used for any one microframe, but may be an
2386 * over-estimate.
2387 *
2388 * We walk the requirements for each endpoint by interval, starting with the
2389 * smallest interval, and place packets in the schedule where there is only one
2390 * possible way to schedule packets for that interval. In order to simplify
2391 * this algorithm, we record the largest max packet size for each interval, and
2392 * assume all packets will be that size.
2393 *
2394 * For interval 0, we obviously must schedule all packets for each interval.
2395 * The bandwidth for interval 0 is just the amount of data to be transmitted
2396 * (the sum of all max ESIT payload sizes, plus any overhead per packet times
2397 * the number of packets).
2398 *
2399 * For interval 1, we have two possible microframes to schedule those packets
2400 * in. For this algorithm, if we can schedule the same number of packets for
2401 * each possible scheduling opportunity (each microframe), we will do so. The
2402 * remaining number of packets will be saved to be transmitted in the gaps in
2403 * the next interval's scheduling sequence.
2404 *
2405 * As we move those remaining packets to be scheduled with interval 2 packets,
2406 * we have to double the number of remaining packets to transmit. This is
2407 * because the intervals are actually powers of 2, and we would be transmitting
2408 * the previous interval's packets twice in this interval. We also have to be
2409 * sure that when we look at the largest max packet size for this interval, we
2410 * also look at the largest max packet size for the remaining packets and take
2411 * the greater of the two.
2412 *
2413 * The algorithm continues to evenly distribute packets in each scheduling
2414 * opportunity, and push the remaining packets out, until we get to the last
2415 * interval. Then those packets and their associated overhead are just added
2416 * to the bandwidth used.
2417 */
2418static int xhci_check_bw_table(struct xhci_hcd *xhci,
2419 struct xhci_virt_device *virt_dev,
2420 int old_active_eps)
2421{
2422 unsigned int bw_reserved;
2423 unsigned int max_bandwidth;
2424 unsigned int bw_used;
2425 unsigned int block_size;
2426 struct xhci_interval_bw_table *bw_table;
2427 unsigned int packet_size = 0;
2428 unsigned int overhead = 0;
2429 unsigned int packets_transmitted = 0;
2430 unsigned int packets_remaining = 0;
2431 unsigned int i;
2432
2433 if (virt_dev->udev->speed >= USB_SPEED_SUPER)
2434 return xhci_check_ss_bw(xhci, virt_dev);
2435
2436 if (virt_dev->udev->speed == USB_SPEED_HIGH) {
2437 max_bandwidth = HS_BW_LIMIT;
2438 /* Convert percent of bus BW reserved to blocks reserved */
2439 bw_reserved = DIV_ROUND_UP(HS_BW_RESERVED * max_bandwidth, 100);
2440 } else {
2441 max_bandwidth = FS_BW_LIMIT;
2442 bw_reserved = DIV_ROUND_UP(FS_BW_RESERVED * max_bandwidth, 100);
2443 }
2444
2445 bw_table = virt_dev->bw_table;
2446 /* We need to translate the max packet size and max ESIT payloads into
2447 * the units the hardware uses.
2448 */
2449 block_size = xhci_get_block_size(virt_dev->udev);
2450
2451 /* If we are manipulating a LS/FS device under a HS hub, double check
2452 * that the HS bus has enough bandwidth if we are activing a new TT.
2453 */
2454 if (virt_dev->tt_info) {
2455 xhci_dbg_trace(xhci, trace_xhci_dbg_quirks,
2456 "Recalculating BW for rootport %u",
2457 virt_dev->real_port);
2458 if (xhci_check_tt_bw_table(xhci, virt_dev, old_active_eps)) {
2459 xhci_warn(xhci, "Not enough bandwidth on HS bus for "
2460 "newly activated TT.\n");
2461 return -ENOMEM;
2462 }
2463 xhci_dbg_trace(xhci, trace_xhci_dbg_quirks,
2464 "Recalculating BW for TT slot %u port %u",
2465 virt_dev->tt_info->slot_id,
2466 virt_dev->tt_info->ttport);
2467 } else {
2468 xhci_dbg_trace(xhci, trace_xhci_dbg_quirks,
2469 "Recalculating BW for rootport %u",
2470 virt_dev->real_port);
2471 }
2472
2473 /* Add in how much bandwidth will be used for interval zero, or the
2474 * rounded max ESIT payload + number of packets * largest overhead.
2475 */
2476 bw_used = DIV_ROUND_UP(bw_table->interval0_esit_payload, block_size) +
2477 bw_table->interval_bw[0].num_packets *
2478 xhci_get_largest_overhead(&bw_table->interval_bw[0]);
2479
2480 for (i = 1; i < XHCI_MAX_INTERVAL; i++) {
2481 unsigned int bw_added;
2482 unsigned int largest_mps;
2483 unsigned int interval_overhead;
2484
2485 /*
2486 * How many packets could we transmit in this interval?
2487 * If packets didn't fit in the previous interval, we will need
2488 * to transmit that many packets twice within this interval.
2489 */
2490 packets_remaining = 2 * packets_remaining +
2491 bw_table->interval_bw[i].num_packets;
2492
2493 /* Find the largest max packet size of this or the previous
2494 * interval.
2495 */
2496 if (list_empty(&bw_table->interval_bw[i].endpoints))
2497 largest_mps = 0;
2498 else {
2499 struct xhci_virt_ep *virt_ep;
2500 struct list_head *ep_entry;
2501
2502 ep_entry = bw_table->interval_bw[i].endpoints.next;
2503 virt_ep = list_entry(ep_entry,
2504 struct xhci_virt_ep, bw_endpoint_list);
2505 /* Convert to blocks, rounding up */
2506 largest_mps = DIV_ROUND_UP(
2507 virt_ep->bw_info.max_packet_size,
2508 block_size);
2509 }
2510 if (largest_mps > packet_size)
2511 packet_size = largest_mps;
2512
2513 /* Use the larger overhead of this or the previous interval. */
2514 interval_overhead = xhci_get_largest_overhead(
2515 &bw_table->interval_bw[i]);
2516 if (interval_overhead > overhead)
2517 overhead = interval_overhead;
2518
2519 /* How many packets can we evenly distribute across
2520 * (1 << (i + 1)) possible scheduling opportunities?
2521 */
2522 packets_transmitted = packets_remaining >> (i + 1);
2523
2524 /* Add in the bandwidth used for those scheduled packets */
2525 bw_added = packets_transmitted * (overhead + packet_size);
2526
2527 /* How many packets do we have remaining to transmit? */
2528 packets_remaining = packets_remaining % (1 << (i + 1));
2529
2530 /* What largest max packet size should those packets have? */
2531 /* If we've transmitted all packets, don't carry over the
2532 * largest packet size.
2533 */
2534 if (packets_remaining == 0) {
2535 packet_size = 0;
2536 overhead = 0;
2537 } else if (packets_transmitted > 0) {
2538 /* Otherwise if we do have remaining packets, and we've
2539 * scheduled some packets in this interval, take the
2540 * largest max packet size from endpoints with this
2541 * interval.
2542 */
2543 packet_size = largest_mps;
2544 overhead = interval_overhead;
2545 }
2546 /* Otherwise carry over packet_size and overhead from the last
2547 * time we had a remainder.
2548 */
2549 bw_used += bw_added;
2550 if (bw_used > max_bandwidth) {
2551 xhci_warn(xhci, "Not enough bandwidth. "
2552 "Proposed: %u, Max: %u\n",
2553 bw_used, max_bandwidth);
2554 return -ENOMEM;
2555 }
2556 }
2557 /*
2558 * Ok, we know we have some packets left over after even-handedly
2559 * scheduling interval 15. We don't know which microframes they will
2560 * fit into, so we over-schedule and say they will be scheduled every
2561 * microframe.
2562 */
2563 if (packets_remaining > 0)
2564 bw_used += overhead + packet_size;
2565
2566 if (!virt_dev->tt_info && virt_dev->udev->speed == USB_SPEED_HIGH) {
2567 unsigned int port_index = virt_dev->real_port - 1;
2568
2569 /* OK, we're manipulating a HS device attached to a
2570 * root port bandwidth domain. Include the number of active TTs
2571 * in the bandwidth used.
2572 */
2573 bw_used += TT_HS_OVERHEAD *
2574 xhci->rh_bw[port_index].num_active_tts;
2575 }
2576
2577 xhci_dbg_trace(xhci, trace_xhci_dbg_quirks,
2578 "Final bandwidth: %u, Limit: %u, Reserved: %u, "
2579 "Available: %u " "percent",
2580 bw_used, max_bandwidth, bw_reserved,
2581 (max_bandwidth - bw_used - bw_reserved) * 100 /
2582 max_bandwidth);
2583
2584 bw_used += bw_reserved;
2585 if (bw_used > max_bandwidth) {
2586 xhci_warn(xhci, "Not enough bandwidth. Proposed: %u, Max: %u\n",
2587 bw_used, max_bandwidth);
2588 return -ENOMEM;
2589 }
2590
2591 bw_table->bw_used = bw_used;
2592 return 0;
2593}
2594
2595static bool xhci_is_async_ep(unsigned int ep_type)
2596{
2597 return (ep_type != ISOC_OUT_EP && ep_type != INT_OUT_EP &&
2598 ep_type != ISOC_IN_EP &&
2599 ep_type != INT_IN_EP);
2600}
2601
2602static bool xhci_is_sync_in_ep(unsigned int ep_type)
2603{
2604 return (ep_type == ISOC_IN_EP || ep_type == INT_IN_EP);
2605}
2606
2607static unsigned int xhci_get_ss_bw_consumed(struct xhci_bw_info *ep_bw)
2608{
2609 unsigned int mps = DIV_ROUND_UP(ep_bw->max_packet_size, SS_BLOCK);
2610
2611 if (ep_bw->ep_interval == 0)
2612 return SS_OVERHEAD_BURST +
2613 (ep_bw->mult * ep_bw->num_packets *
2614 (SS_OVERHEAD + mps));
2615 return DIV_ROUND_UP(ep_bw->mult * ep_bw->num_packets *
2616 (SS_OVERHEAD + mps + SS_OVERHEAD_BURST),
2617 1 << ep_bw->ep_interval);
2618
2619}
2620
2621static void xhci_drop_ep_from_interval_table(struct xhci_hcd *xhci,
2622 struct xhci_bw_info *ep_bw,
2623 struct xhci_interval_bw_table *bw_table,
2624 struct usb_device *udev,
2625 struct xhci_virt_ep *virt_ep,
2626 struct xhci_tt_bw_info *tt_info)
2627{
2628 struct xhci_interval_bw *interval_bw;
2629 int normalized_interval;
2630
2631 if (xhci_is_async_ep(ep_bw->type))
2632 return;
2633
2634 if (udev->speed >= USB_SPEED_SUPER) {
2635 if (xhci_is_sync_in_ep(ep_bw->type))
2636 xhci->devs[udev->slot_id]->bw_table->ss_bw_in -=
2637 xhci_get_ss_bw_consumed(ep_bw);
2638 else
2639 xhci->devs[udev->slot_id]->bw_table->ss_bw_out -=
2640 xhci_get_ss_bw_consumed(ep_bw);
2641 return;
2642 }
2643
2644 /* SuperSpeed endpoints never get added to intervals in the table, so
2645 * this check is only valid for HS/FS/LS devices.
2646 */
2647 if (list_empty(&virt_ep->bw_endpoint_list))
2648 return;
2649 /* For LS/FS devices, we need to translate the interval expressed in
2650 * microframes to frames.
2651 */
2652 if (udev->speed == USB_SPEED_HIGH)
2653 normalized_interval = ep_bw->ep_interval;
2654 else
2655 normalized_interval = ep_bw->ep_interval - 3;
2656
2657 if (normalized_interval == 0)
2658 bw_table->interval0_esit_payload -= ep_bw->max_esit_payload;
2659 interval_bw = &bw_table->interval_bw[normalized_interval];
2660 interval_bw->num_packets -= ep_bw->num_packets;
2661 switch (udev->speed) {
2662 case USB_SPEED_LOW:
2663 interval_bw->overhead[LS_OVERHEAD_TYPE] -= 1;
2664 break;
2665 case USB_SPEED_FULL:
2666 interval_bw->overhead[FS_OVERHEAD_TYPE] -= 1;
2667 break;
2668 case USB_SPEED_HIGH:
2669 interval_bw->overhead[HS_OVERHEAD_TYPE] -= 1;
2670 break;
2671 case USB_SPEED_SUPER:
2672 case USB_SPEED_SUPER_PLUS:
2673 case USB_SPEED_UNKNOWN:
2674 case USB_SPEED_WIRELESS:
2675 /* Should never happen because only LS/FS/HS endpoints will get
2676 * added to the endpoint list.
2677 */
2678 return;
2679 }
2680 if (tt_info)
2681 tt_info->active_eps -= 1;
2682 list_del_init(&virt_ep->bw_endpoint_list);
2683}
2684
2685static void xhci_add_ep_to_interval_table(struct xhci_hcd *xhci,
2686 struct xhci_bw_info *ep_bw,
2687 struct xhci_interval_bw_table *bw_table,
2688 struct usb_device *udev,
2689 struct xhci_virt_ep *virt_ep,
2690 struct xhci_tt_bw_info *tt_info)
2691{
2692 struct xhci_interval_bw *interval_bw;
2693 struct xhci_virt_ep *smaller_ep;
2694 int normalized_interval;
2695
2696 if (xhci_is_async_ep(ep_bw->type))
2697 return;
2698
2699 if (udev->speed == USB_SPEED_SUPER) {
2700 if (xhci_is_sync_in_ep(ep_bw->type))
2701 xhci->devs[udev->slot_id]->bw_table->ss_bw_in +=
2702 xhci_get_ss_bw_consumed(ep_bw);
2703 else
2704 xhci->devs[udev->slot_id]->bw_table->ss_bw_out +=
2705 xhci_get_ss_bw_consumed(ep_bw);
2706 return;
2707 }
2708
2709 /* For LS/FS devices, we need to translate the interval expressed in
2710 * microframes to frames.
2711 */
2712 if (udev->speed == USB_SPEED_HIGH)
2713 normalized_interval = ep_bw->ep_interval;
2714 else
2715 normalized_interval = ep_bw->ep_interval - 3;
2716
2717 if (normalized_interval == 0)
2718 bw_table->interval0_esit_payload += ep_bw->max_esit_payload;
2719 interval_bw = &bw_table->interval_bw[normalized_interval];
2720 interval_bw->num_packets += ep_bw->num_packets;
2721 switch (udev->speed) {
2722 case USB_SPEED_LOW:
2723 interval_bw->overhead[LS_OVERHEAD_TYPE] += 1;
2724 break;
2725 case USB_SPEED_FULL:
2726 interval_bw->overhead[FS_OVERHEAD_TYPE] += 1;
2727 break;
2728 case USB_SPEED_HIGH:
2729 interval_bw->overhead[HS_OVERHEAD_TYPE] += 1;
2730 break;
2731 case USB_SPEED_SUPER:
2732 case USB_SPEED_SUPER_PLUS:
2733 case USB_SPEED_UNKNOWN:
2734 case USB_SPEED_WIRELESS:
2735 /* Should never happen because only LS/FS/HS endpoints will get
2736 * added to the endpoint list.
2737 */
2738 return;
2739 }
2740
2741 if (tt_info)
2742 tt_info->active_eps += 1;
2743 /* Insert the endpoint into the list, largest max packet size first. */
2744 list_for_each_entry(smaller_ep, &interval_bw->endpoints,
2745 bw_endpoint_list) {
2746 if (ep_bw->max_packet_size >=
2747 smaller_ep->bw_info.max_packet_size) {
2748 /* Add the new ep before the smaller endpoint */
2749 list_add_tail(&virt_ep->bw_endpoint_list,
2750 &smaller_ep->bw_endpoint_list);
2751 return;
2752 }
2753 }
2754 /* Add the new endpoint at the end of the list. */
2755 list_add_tail(&virt_ep->bw_endpoint_list,
2756 &interval_bw->endpoints);
2757}
2758
2759void xhci_update_tt_active_eps(struct xhci_hcd *xhci,
2760 struct xhci_virt_device *virt_dev,
2761 int old_active_eps)
2762{
2763 struct xhci_root_port_bw_info *rh_bw_info;
2764 if (!virt_dev->tt_info)
2765 return;
2766
2767 rh_bw_info = &xhci->rh_bw[virt_dev->real_port - 1];
2768 if (old_active_eps == 0 &&
2769 virt_dev->tt_info->active_eps != 0) {
2770 rh_bw_info->num_active_tts += 1;
2771 rh_bw_info->bw_table.bw_used += TT_HS_OVERHEAD;
2772 } else if (old_active_eps != 0 &&
2773 virt_dev->tt_info->active_eps == 0) {
2774 rh_bw_info->num_active_tts -= 1;
2775 rh_bw_info->bw_table.bw_used -= TT_HS_OVERHEAD;
2776 }
2777}
2778
2779static int xhci_reserve_bandwidth(struct xhci_hcd *xhci,
2780 struct xhci_virt_device *virt_dev,
2781 struct xhci_container_ctx *in_ctx)
2782{
2783 struct xhci_bw_info ep_bw_info[31];
2784 int i;
2785 struct xhci_input_control_ctx *ctrl_ctx;
2786 int old_active_eps = 0;
2787
2788 if (virt_dev->tt_info)
2789 old_active_eps = virt_dev->tt_info->active_eps;
2790
2791 ctrl_ctx = xhci_get_input_control_ctx(in_ctx);
2792 if (!ctrl_ctx) {
2793 xhci_warn(xhci, "%s: Could not get input context, bad type.\n",
2794 __func__);
2795 return -ENOMEM;
2796 }
2797
2798 for (i = 0; i < 31; i++) {
2799 if (!EP_IS_ADDED(ctrl_ctx, i) && !EP_IS_DROPPED(ctrl_ctx, i))
2800 continue;
2801
2802 /* Make a copy of the BW info in case we need to revert this */
2803 memcpy(&ep_bw_info[i], &virt_dev->eps[i].bw_info,
2804 sizeof(ep_bw_info[i]));
2805 /* Drop the endpoint from the interval table if the endpoint is
2806 * being dropped or changed.
2807 */
2808 if (EP_IS_DROPPED(ctrl_ctx, i))
2809 xhci_drop_ep_from_interval_table(xhci,
2810 &virt_dev->eps[i].bw_info,
2811 virt_dev->bw_table,
2812 virt_dev->udev,
2813 &virt_dev->eps[i],
2814 virt_dev->tt_info);
2815 }
2816 /* Overwrite the information stored in the endpoints' bw_info */
2817 xhci_update_bw_info(xhci, virt_dev->in_ctx, ctrl_ctx, virt_dev);
2818 for (i = 0; i < 31; i++) {
2819 /* Add any changed or added endpoints to the interval table */
2820 if (EP_IS_ADDED(ctrl_ctx, i))
2821 xhci_add_ep_to_interval_table(xhci,
2822 &virt_dev->eps[i].bw_info,
2823 virt_dev->bw_table,
2824 virt_dev->udev,
2825 &virt_dev->eps[i],
2826 virt_dev->tt_info);
2827 }
2828
2829 if (!xhci_check_bw_table(xhci, virt_dev, old_active_eps)) {
2830 /* Ok, this fits in the bandwidth we have.
2831 * Update the number of active TTs.
2832 */
2833 xhci_update_tt_active_eps(xhci, virt_dev, old_active_eps);
2834 return 0;
2835 }
2836
2837 /* We don't have enough bandwidth for this, revert the stored info. */
2838 for (i = 0; i < 31; i++) {
2839 if (!EP_IS_ADDED(ctrl_ctx, i) && !EP_IS_DROPPED(ctrl_ctx, i))
2840 continue;
2841
2842 /* Drop the new copies of any added or changed endpoints from
2843 * the interval table.
2844 */
2845 if (EP_IS_ADDED(ctrl_ctx, i)) {
2846 xhci_drop_ep_from_interval_table(xhci,
2847 &virt_dev->eps[i].bw_info,
2848 virt_dev->bw_table,
2849 virt_dev->udev,
2850 &virt_dev->eps[i],
2851 virt_dev->tt_info);
2852 }
2853 /* Revert the endpoint back to its old information */
2854 memcpy(&virt_dev->eps[i].bw_info, &ep_bw_info[i],
2855 sizeof(ep_bw_info[i]));
2856 /* Add any changed or dropped endpoints back into the table */
2857 if (EP_IS_DROPPED(ctrl_ctx, i))
2858 xhci_add_ep_to_interval_table(xhci,
2859 &virt_dev->eps[i].bw_info,
2860 virt_dev->bw_table,
2861 virt_dev->udev,
2862 &virt_dev->eps[i],
2863 virt_dev->tt_info);
2864 }
2865 return -ENOMEM;
2866}
2867
2868
2869/* Issue a configure endpoint command or evaluate context command
2870 * and wait for it to finish.
2871 */
2872static int xhci_configure_endpoint(struct xhci_hcd *xhci,
2873 struct usb_device *udev,
2874 struct xhci_command *command,
2875 bool ctx_change, bool must_succeed)
2876{
2877 int ret;
2878 unsigned long flags;
2879 struct xhci_input_control_ctx *ctrl_ctx;
2880 struct xhci_virt_device *virt_dev;
2881 struct xhci_slot_ctx *slot_ctx;
2882
2883 if (!command)
2884 return -EINVAL;
2885
2886 spin_lock_irqsave(&xhci->lock, flags);
2887
2888 if (xhci->xhc_state & XHCI_STATE_DYING) {
2889 spin_unlock_irqrestore(&xhci->lock, flags);
2890 return -ESHUTDOWN;
2891 }
2892
2893 virt_dev = xhci->devs[udev->slot_id];
2894
2895 ctrl_ctx = xhci_get_input_control_ctx(command->in_ctx);
2896 if (!ctrl_ctx) {
2897 spin_unlock_irqrestore(&xhci->lock, flags);
2898 xhci_warn(xhci, "%s: Could not get input context, bad type.\n",
2899 __func__);
2900 return -ENOMEM;
2901 }
2902
2903 if ((xhci->quirks & XHCI_EP_LIMIT_QUIRK) &&
2904 xhci_reserve_host_resources(xhci, ctrl_ctx)) {
2905 spin_unlock_irqrestore(&xhci->lock, flags);
2906 xhci_warn(xhci, "Not enough host resources, "
2907 "active endpoint contexts = %u\n",
2908 xhci->num_active_eps);
2909 return -ENOMEM;
2910 }
2911 if ((xhci->quirks & XHCI_SW_BW_CHECKING) &&
2912 xhci_reserve_bandwidth(xhci, virt_dev, command->in_ctx)) {
2913 if ((xhci->quirks & XHCI_EP_LIMIT_QUIRK))
2914 xhci_free_host_resources(xhci, ctrl_ctx);
2915 spin_unlock_irqrestore(&xhci->lock, flags);
2916 xhci_warn(xhci, "Not enough bandwidth\n");
2917 return -ENOMEM;
2918 }
2919
2920 slot_ctx = xhci_get_slot_ctx(xhci, command->in_ctx);
2921
2922 trace_xhci_configure_endpoint_ctrl_ctx(ctrl_ctx);
2923 trace_xhci_configure_endpoint(slot_ctx);
2924
2925 if (!ctx_change)
2926 ret = xhci_queue_configure_endpoint(xhci, command,
2927 command->in_ctx->dma,
2928 udev->slot_id, must_succeed);
2929 else
2930 ret = xhci_queue_evaluate_context(xhci, command,
2931 command->in_ctx->dma,
2932 udev->slot_id, must_succeed);
2933 if (ret < 0) {
2934 if ((xhci->quirks & XHCI_EP_LIMIT_QUIRK))
2935 xhci_free_host_resources(xhci, ctrl_ctx);
2936 spin_unlock_irqrestore(&xhci->lock, flags);
2937 xhci_dbg_trace(xhci, trace_xhci_dbg_context_change,
2938 "FIXME allocate a new ring segment");
2939 return -ENOMEM;
2940 }
2941 xhci_ring_cmd_db(xhci);
2942 spin_unlock_irqrestore(&xhci->lock, flags);
2943
2944 /* Wait for the configure endpoint command to complete */
2945 wait_for_completion(command->completion);
2946
2947 if (!ctx_change)
2948 ret = xhci_configure_endpoint_result(xhci, udev,
2949 &command->status);
2950 else
2951 ret = xhci_evaluate_context_result(xhci, udev,
2952 &command->status);
2953
2954 if ((xhci->quirks & XHCI_EP_LIMIT_QUIRK)) {
2955 spin_lock_irqsave(&xhci->lock, flags);
2956 /* If the command failed, remove the reserved resources.
2957 * Otherwise, clean up the estimate to include dropped eps.
2958 */
2959 if (ret)
2960 xhci_free_host_resources(xhci, ctrl_ctx);
2961 else
2962 xhci_finish_resource_reservation(xhci, ctrl_ctx);
2963 spin_unlock_irqrestore(&xhci->lock, flags);
2964 }
2965 return ret;
2966}
2967
2968static void xhci_check_bw_drop_ep_streams(struct xhci_hcd *xhci,
2969 struct xhci_virt_device *vdev, int i)
2970{
2971 struct xhci_virt_ep *ep = &vdev->eps[i];
2972
2973 if (ep->ep_state & EP_HAS_STREAMS) {
2974 xhci_warn(xhci, "WARN: endpoint 0x%02x has streams on set_interface, freeing streams.\n",
2975 xhci_get_endpoint_address(i));
2976 xhci_free_stream_info(xhci, ep->stream_info);
2977 ep->stream_info = NULL;
2978 ep->ep_state &= ~EP_HAS_STREAMS;
2979 }
2980}
2981
2982/* Called after one or more calls to xhci_add_endpoint() or
2983 * xhci_drop_endpoint(). If this call fails, the USB core is expected
2984 * to call xhci_reset_bandwidth().
2985 *
2986 * Since we are in the middle of changing either configuration or
2987 * installing a new alt setting, the USB core won't allow URBs to be
2988 * enqueued for any endpoint on the old config or interface. Nothing
2989 * else should be touching the xhci->devs[slot_id] structure, so we
2990 * don't need to take the xhci->lock for manipulating that.
2991 */
2992int xhci_check_bandwidth(struct usb_hcd *hcd, struct usb_device *udev)
2993{
2994 int i;
2995 int ret = 0;
2996 struct xhci_hcd *xhci;
2997 struct xhci_virt_device *virt_dev;
2998 struct xhci_input_control_ctx *ctrl_ctx;
2999 struct xhci_slot_ctx *slot_ctx;
3000 struct xhci_command *command;
3001
3002 ret = xhci_check_args(hcd, udev, NULL, 0, true, __func__);
3003 if (ret <= 0)
3004 return ret;
3005 xhci = hcd_to_xhci(hcd);
3006 if ((xhci->xhc_state & XHCI_STATE_DYING) ||
3007 (xhci->xhc_state & XHCI_STATE_REMOVING))
3008 return -ENODEV;
3009
3010 xhci_dbg(xhci, "%s called for udev %p\n", __func__, udev);
3011 virt_dev = xhci->devs[udev->slot_id];
3012
3013 command = xhci_alloc_command(xhci, true, GFP_KERNEL);
3014 if (!command)
3015 return -ENOMEM;
3016
3017 command->in_ctx = virt_dev->in_ctx;
3018
3019 /* See section 4.6.6 - A0 = 1; A1 = D0 = D1 = 0 */
3020 ctrl_ctx = xhci_get_input_control_ctx(command->in_ctx);
3021 if (!ctrl_ctx) {
3022 xhci_warn(xhci, "%s: Could not get input context, bad type.\n",
3023 __func__);
3024 ret = -ENOMEM;
3025 goto command_cleanup;
3026 }
3027 ctrl_ctx->add_flags |= cpu_to_le32(SLOT_FLAG);
3028 ctrl_ctx->add_flags &= cpu_to_le32(~EP0_FLAG);
3029 ctrl_ctx->drop_flags &= cpu_to_le32(~(SLOT_FLAG | EP0_FLAG));
3030
3031 /* Don't issue the command if there's no endpoints to update. */
3032 if (ctrl_ctx->add_flags == cpu_to_le32(SLOT_FLAG) &&
3033 ctrl_ctx->drop_flags == 0) {
3034 ret = 0;
3035 goto command_cleanup;
3036 }
3037 /* Fix up Context Entries field. Minimum value is EP0 == BIT(1). */
3038 slot_ctx = xhci_get_slot_ctx(xhci, virt_dev->in_ctx);
3039 for (i = 31; i >= 1; i--) {
3040 __le32 le32 = cpu_to_le32(BIT(i));
3041
3042 if ((virt_dev->eps[i-1].ring && !(ctrl_ctx->drop_flags & le32))
3043 || (ctrl_ctx->add_flags & le32) || i == 1) {
3044 slot_ctx->dev_info &= cpu_to_le32(~LAST_CTX_MASK);
3045 slot_ctx->dev_info |= cpu_to_le32(LAST_CTX(i));
3046 break;
3047 }
3048 }
3049
3050 ret = xhci_configure_endpoint(xhci, udev, command,
3051 false, false);
3052 if (ret)
3053 /* Callee should call reset_bandwidth() */
3054 goto command_cleanup;
3055
3056 /* Free any rings that were dropped, but not changed. */
3057 for (i = 1; i < 31; i++) {
3058 if ((le32_to_cpu(ctrl_ctx->drop_flags) & (1 << (i + 1))) &&
3059 !(le32_to_cpu(ctrl_ctx->add_flags) & (1 << (i + 1)))) {
3060 xhci_free_endpoint_ring(xhci, virt_dev, i);
3061 xhci_check_bw_drop_ep_streams(xhci, virt_dev, i);
3062 }
3063 }
3064 xhci_zero_in_ctx(xhci, virt_dev);
3065 /*
3066 * Install any rings for completely new endpoints or changed endpoints,
3067 * and free any old rings from changed endpoints.
3068 */
3069 for (i = 1; i < 31; i++) {
3070 if (!virt_dev->eps[i].new_ring)
3071 continue;
3072 /* Only free the old ring if it exists.
3073 * It may not if this is the first add of an endpoint.
3074 */
3075 if (virt_dev->eps[i].ring) {
3076 xhci_free_endpoint_ring(xhci, virt_dev, i);
3077 }
3078 xhci_check_bw_drop_ep_streams(xhci, virt_dev, i);
3079 virt_dev->eps[i].ring = virt_dev->eps[i].new_ring;
3080 virt_dev->eps[i].new_ring = NULL;
3081 xhci_debugfs_create_endpoint(xhci, virt_dev, i);
3082 }
3083command_cleanup:
3084 kfree(command->completion);
3085 kfree(command);
3086
3087 return ret;
3088}
3089EXPORT_SYMBOL_GPL(xhci_check_bandwidth);
3090
3091void xhci_reset_bandwidth(struct usb_hcd *hcd, struct usb_device *udev)
3092{
3093 struct xhci_hcd *xhci;
3094 struct xhci_virt_device *virt_dev;
3095 int i, ret;
3096
3097 ret = xhci_check_args(hcd, udev, NULL, 0, true, __func__);
3098 if (ret <= 0)
3099 return;
3100 xhci = hcd_to_xhci(hcd);
3101
3102 xhci_dbg(xhci, "%s called for udev %p\n", __func__, udev);
3103 virt_dev = xhci->devs[udev->slot_id];
3104 /* Free any rings allocated for added endpoints */
3105 for (i = 0; i < 31; i++) {
3106 if (virt_dev->eps[i].new_ring) {
3107 xhci_debugfs_remove_endpoint(xhci, virt_dev, i);
3108 xhci_ring_free(xhci, virt_dev->eps[i].new_ring);
3109 virt_dev->eps[i].new_ring = NULL;
3110 }
3111 }
3112 xhci_zero_in_ctx(xhci, virt_dev);
3113}
3114EXPORT_SYMBOL_GPL(xhci_reset_bandwidth);
3115
3116static void xhci_setup_input_ctx_for_config_ep(struct xhci_hcd *xhci,
3117 struct xhci_container_ctx *in_ctx,
3118 struct xhci_container_ctx *out_ctx,
3119 struct xhci_input_control_ctx *ctrl_ctx,
3120 u32 add_flags, u32 drop_flags)
3121{
3122 ctrl_ctx->add_flags = cpu_to_le32(add_flags);
3123 ctrl_ctx->drop_flags = cpu_to_le32(drop_flags);
3124 xhci_slot_copy(xhci, in_ctx, out_ctx);
3125 ctrl_ctx->add_flags |= cpu_to_le32(SLOT_FLAG);
3126}
3127
3128static void xhci_endpoint_disable(struct usb_hcd *hcd,
3129 struct usb_host_endpoint *host_ep)
3130{
3131 struct xhci_hcd *xhci;
3132 struct xhci_virt_device *vdev;
3133 struct xhci_virt_ep *ep;
3134 struct usb_device *udev;
3135 unsigned long flags;
3136 unsigned int ep_index;
3137
3138 xhci = hcd_to_xhci(hcd);
3139rescan:
3140 spin_lock_irqsave(&xhci->lock, flags);
3141
3142 udev = (struct usb_device *)host_ep->hcpriv;
3143 if (!udev || !udev->slot_id)
3144 goto done;
3145
3146 vdev = xhci->devs[udev->slot_id];
3147 if (!vdev)
3148 goto done;
3149
3150 ep_index = xhci_get_endpoint_index(&host_ep->desc);
3151 ep = &vdev->eps[ep_index];
3152 if (!ep)
3153 goto done;
3154
3155 /* wait for hub_tt_work to finish clearing hub TT */
3156 if (ep->ep_state & EP_CLEARING_TT) {
3157 spin_unlock_irqrestore(&xhci->lock, flags);
3158 schedule_timeout_uninterruptible(1);
3159 goto rescan;
3160 }
3161
3162 if (ep->ep_state)
3163 xhci_dbg(xhci, "endpoint disable with ep_state 0x%x\n",
3164 ep->ep_state);
3165done:
3166 host_ep->hcpriv = NULL;
3167 spin_unlock_irqrestore(&xhci->lock, flags);
3168}
3169
3170/*
3171 * Called after usb core issues a clear halt control message.
3172 * The host side of the halt should already be cleared by a reset endpoint
3173 * command issued when the STALL event was received.
3174 *
3175 * The reset endpoint command may only be issued to endpoints in the halted
3176 * state. For software that wishes to reset the data toggle or sequence number
3177 * of an endpoint that isn't in the halted state this function will issue a
3178 * configure endpoint command with the Drop and Add bits set for the target
3179 * endpoint. Refer to the additional note in xhci spcification section 4.6.8.
3180 */
3181
3182static void xhci_endpoint_reset(struct usb_hcd *hcd,
3183 struct usb_host_endpoint *host_ep)
3184{
3185 struct xhci_hcd *xhci;
3186 struct usb_device *udev;
3187 struct xhci_virt_device *vdev;
3188 struct xhci_virt_ep *ep;
3189 struct xhci_input_control_ctx *ctrl_ctx;
3190 struct xhci_command *stop_cmd, *cfg_cmd;
3191 unsigned int ep_index;
3192 unsigned long flags;
3193 u32 ep_flag;
3194 int err;
3195
3196 xhci = hcd_to_xhci(hcd);
3197 if (!host_ep->hcpriv)
3198 return;
3199 udev = (struct usb_device *) host_ep->hcpriv;
3200 vdev = xhci->devs[udev->slot_id];
3201
3202 /*
3203 * vdev may be lost due to xHC restore error and re-initialization
3204 * during S3/S4 resume. A new vdev will be allocated later by
3205 * xhci_discover_or_reset_device()
3206 */
3207 if (!udev->slot_id || !vdev)
3208 return;
3209 ep_index = xhci_get_endpoint_index(&host_ep->desc);
3210 ep = &vdev->eps[ep_index];
3211 if (!ep)
3212 return;
3213
3214 /* Bail out if toggle is already being cleared by a endpoint reset */
3215 spin_lock_irqsave(&xhci->lock, flags);
3216 if (ep->ep_state & EP_HARD_CLEAR_TOGGLE) {
3217 ep->ep_state &= ~EP_HARD_CLEAR_TOGGLE;
3218 spin_unlock_irqrestore(&xhci->lock, flags);
3219 return;
3220 }
3221 spin_unlock_irqrestore(&xhci->lock, flags);
3222 /* Only interrupt and bulk ep's use data toggle, USB2 spec 5.5.4-> */
3223 if (usb_endpoint_xfer_control(&host_ep->desc) ||
3224 usb_endpoint_xfer_isoc(&host_ep->desc))
3225 return;
3226
3227 ep_flag = xhci_get_endpoint_flag(&host_ep->desc);
3228
3229 if (ep_flag == SLOT_FLAG || ep_flag == EP0_FLAG)
3230 return;
3231
3232 stop_cmd = xhci_alloc_command(xhci, true, GFP_NOWAIT);
3233 if (!stop_cmd)
3234 return;
3235
3236 cfg_cmd = xhci_alloc_command_with_ctx(xhci, true, GFP_NOWAIT);
3237 if (!cfg_cmd)
3238 goto cleanup;
3239
3240 spin_lock_irqsave(&xhci->lock, flags);
3241
3242 /* block queuing new trbs and ringing ep doorbell */
3243 ep->ep_state |= EP_SOFT_CLEAR_TOGGLE;
3244
3245 /*
3246 * Make sure endpoint ring is empty before resetting the toggle/seq.
3247 * Driver is required to synchronously cancel all transfer request.
3248 * Stop the endpoint to force xHC to update the output context
3249 */
3250
3251 if (!list_empty(&ep->ring->td_list)) {
3252 dev_err(&udev->dev, "EP not empty, refuse reset\n");
3253 spin_unlock_irqrestore(&xhci->lock, flags);
3254 xhci_free_command(xhci, cfg_cmd);
3255 goto cleanup;
3256 }
3257
3258 err = xhci_queue_stop_endpoint(xhci, stop_cmd, udev->slot_id,
3259 ep_index, 0);
3260 if (err < 0) {
3261 spin_unlock_irqrestore(&xhci->lock, flags);
3262 xhci_free_command(xhci, cfg_cmd);
3263 xhci_dbg(xhci, "%s: Failed to queue stop ep command, %d ",
3264 __func__, err);
3265 goto cleanup;
3266 }
3267
3268 xhci_ring_cmd_db(xhci);
3269 spin_unlock_irqrestore(&xhci->lock, flags);
3270
3271 wait_for_completion(stop_cmd->completion);
3272
3273 spin_lock_irqsave(&xhci->lock, flags);
3274
3275 /* config ep command clears toggle if add and drop ep flags are set */
3276 ctrl_ctx = xhci_get_input_control_ctx(cfg_cmd->in_ctx);
3277 if (!ctrl_ctx) {
3278 spin_unlock_irqrestore(&xhci->lock, flags);
3279 xhci_free_command(xhci, cfg_cmd);
3280 xhci_warn(xhci, "%s: Could not get input context, bad type.\n",
3281 __func__);
3282 goto cleanup;
3283 }
3284
3285 xhci_setup_input_ctx_for_config_ep(xhci, cfg_cmd->in_ctx, vdev->out_ctx,
3286 ctrl_ctx, ep_flag, ep_flag);
3287 xhci_endpoint_copy(xhci, cfg_cmd->in_ctx, vdev->out_ctx, ep_index);
3288
3289 err = xhci_queue_configure_endpoint(xhci, cfg_cmd, cfg_cmd->in_ctx->dma,
3290 udev->slot_id, false);
3291 if (err < 0) {
3292 spin_unlock_irqrestore(&xhci->lock, flags);
3293 xhci_free_command(xhci, cfg_cmd);
3294 xhci_dbg(xhci, "%s: Failed to queue config ep command, %d ",
3295 __func__, err);
3296 goto cleanup;
3297 }
3298
3299 xhci_ring_cmd_db(xhci);
3300 spin_unlock_irqrestore(&xhci->lock, flags);
3301
3302 wait_for_completion(cfg_cmd->completion);
3303
3304 xhci_free_command(xhci, cfg_cmd);
3305cleanup:
3306 xhci_free_command(xhci, stop_cmd);
3307 spin_lock_irqsave(&xhci->lock, flags);
3308 if (ep->ep_state & EP_SOFT_CLEAR_TOGGLE)
3309 ep->ep_state &= ~EP_SOFT_CLEAR_TOGGLE;
3310 spin_unlock_irqrestore(&xhci->lock, flags);
3311}
3312
3313static int xhci_check_streams_endpoint(struct xhci_hcd *xhci,
3314 struct usb_device *udev, struct usb_host_endpoint *ep,
3315 unsigned int slot_id)
3316{
3317 int ret;
3318 unsigned int ep_index;
3319 unsigned int ep_state;
3320
3321 if (!ep)
3322 return -EINVAL;
3323 ret = xhci_check_args(xhci_to_hcd(xhci), udev, ep, 1, true, __func__);
3324 if (ret <= 0)
3325 return -EINVAL;
3326 if (usb_ss_max_streams(&ep->ss_ep_comp) == 0) {
3327 xhci_warn(xhci, "WARN: SuperSpeed Endpoint Companion"
3328 " descriptor for ep 0x%x does not support streams\n",
3329 ep->desc.bEndpointAddress);
3330 return -EINVAL;
3331 }
3332
3333 ep_index = xhci_get_endpoint_index(&ep->desc);
3334 ep_state = xhci->devs[slot_id]->eps[ep_index].ep_state;
3335 if (ep_state & EP_HAS_STREAMS ||
3336 ep_state & EP_GETTING_STREAMS) {
3337 xhci_warn(xhci, "WARN: SuperSpeed bulk endpoint 0x%x "
3338 "already has streams set up.\n",
3339 ep->desc.bEndpointAddress);
3340 xhci_warn(xhci, "Send email to xHCI maintainer and ask for "
3341 "dynamic stream context array reallocation.\n");
3342 return -EINVAL;
3343 }
3344 if (!list_empty(&xhci->devs[slot_id]->eps[ep_index].ring->td_list)) {
3345 xhci_warn(xhci, "Cannot setup streams for SuperSpeed bulk "
3346 "endpoint 0x%x; URBs are pending.\n",
3347 ep->desc.bEndpointAddress);
3348 return -EINVAL;
3349 }
3350 return 0;
3351}
3352
3353static void xhci_calculate_streams_entries(struct xhci_hcd *xhci,
3354 unsigned int *num_streams, unsigned int *num_stream_ctxs)
3355{
3356 unsigned int max_streams;
3357
3358 /* The stream context array size must be a power of two */
3359 *num_stream_ctxs = roundup_pow_of_two(*num_streams);
3360 /*
3361 * Find out how many primary stream array entries the host controller
3362 * supports. Later we may use secondary stream arrays (similar to 2nd
3363 * level page entries), but that's an optional feature for xHCI host
3364 * controllers. xHCs must support at least 4 stream IDs.
3365 */
3366 max_streams = HCC_MAX_PSA(xhci->hcc_params);
3367 if (*num_stream_ctxs > max_streams) {
3368 xhci_dbg(xhci, "xHCI HW only supports %u stream ctx entries.\n",
3369 max_streams);
3370 *num_stream_ctxs = max_streams;
3371 *num_streams = max_streams;
3372 }
3373}
3374
3375/* Returns an error code if one of the endpoint already has streams.
3376 * This does not change any data structures, it only checks and gathers
3377 * information.
3378 */
3379static int xhci_calculate_streams_and_bitmask(struct xhci_hcd *xhci,
3380 struct usb_device *udev,
3381 struct usb_host_endpoint **eps, unsigned int num_eps,
3382 unsigned int *num_streams, u32 *changed_ep_bitmask)
3383{
3384 unsigned int max_streams;
3385 unsigned int endpoint_flag;
3386 int i;
3387 int ret;
3388
3389 for (i = 0; i < num_eps; i++) {
3390 ret = xhci_check_streams_endpoint(xhci, udev,
3391 eps[i], udev->slot_id);
3392 if (ret < 0)
3393 return ret;
3394
3395 max_streams = usb_ss_max_streams(&eps[i]->ss_ep_comp);
3396 if (max_streams < (*num_streams - 1)) {
3397 xhci_dbg(xhci, "Ep 0x%x only supports %u stream IDs.\n",
3398 eps[i]->desc.bEndpointAddress,
3399 max_streams);
3400 *num_streams = max_streams+1;
3401 }
3402
3403 endpoint_flag = xhci_get_endpoint_flag(&eps[i]->desc);
3404 if (*changed_ep_bitmask & endpoint_flag)
3405 return -EINVAL;
3406 *changed_ep_bitmask |= endpoint_flag;
3407 }
3408 return 0;
3409}
3410
3411static u32 xhci_calculate_no_streams_bitmask(struct xhci_hcd *xhci,
3412 struct usb_device *udev,
3413 struct usb_host_endpoint **eps, unsigned int num_eps)
3414{
3415 u32 changed_ep_bitmask = 0;
3416 unsigned int slot_id;
3417 unsigned int ep_index;
3418 unsigned int ep_state;
3419 int i;
3420
3421 slot_id = udev->slot_id;
3422 if (!xhci->devs[slot_id])
3423 return 0;
3424
3425 for (i = 0; i < num_eps; i++) {
3426 ep_index = xhci_get_endpoint_index(&eps[i]->desc);
3427 ep_state = xhci->devs[slot_id]->eps[ep_index].ep_state;
3428 /* Are streams already being freed for the endpoint? */
3429 if (ep_state & EP_GETTING_NO_STREAMS) {
3430 xhci_warn(xhci, "WARN Can't disable streams for "
3431 "endpoint 0x%x, "
3432 "streams are being disabled already\n",
3433 eps[i]->desc.bEndpointAddress);
3434 return 0;
3435 }
3436 /* Are there actually any streams to free? */
3437 if (!(ep_state & EP_HAS_STREAMS) &&
3438 !(ep_state & EP_GETTING_STREAMS)) {
3439 xhci_warn(xhci, "WARN Can't disable streams for "
3440 "endpoint 0x%x, "
3441 "streams are already disabled!\n",
3442 eps[i]->desc.bEndpointAddress);
3443 xhci_warn(xhci, "WARN xhci_free_streams() called "
3444 "with non-streams endpoint\n");
3445 return 0;
3446 }
3447 changed_ep_bitmask |= xhci_get_endpoint_flag(&eps[i]->desc);
3448 }
3449 return changed_ep_bitmask;
3450}
3451
3452/*
3453 * The USB device drivers use this function (through the HCD interface in USB
3454 * core) to prepare a set of bulk endpoints to use streams. Streams are used to
3455 * coordinate mass storage command queueing across multiple endpoints (basically
3456 * a stream ID == a task ID).
3457 *
3458 * Setting up streams involves allocating the same size stream context array
3459 * for each endpoint and issuing a configure endpoint command for all endpoints.
3460 *
3461 * Don't allow the call to succeed if one endpoint only supports one stream
3462 * (which means it doesn't support streams at all).
3463 *
3464 * Drivers may get less stream IDs than they asked for, if the host controller
3465 * hardware or endpoints claim they can't support the number of requested
3466 * stream IDs.
3467 */
3468static int xhci_alloc_streams(struct usb_hcd *hcd, struct usb_device *udev,
3469 struct usb_host_endpoint **eps, unsigned int num_eps,
3470 unsigned int num_streams, gfp_t mem_flags)
3471{
3472 int i, ret;
3473 struct xhci_hcd *xhci;
3474 struct xhci_virt_device *vdev;
3475 struct xhci_command *config_cmd;
3476 struct xhci_input_control_ctx *ctrl_ctx;
3477 unsigned int ep_index;
3478 unsigned int num_stream_ctxs;
3479 unsigned int max_packet;
3480 unsigned long flags;
3481 u32 changed_ep_bitmask = 0;
3482
3483 if (!eps)
3484 return -EINVAL;
3485
3486 /* Add one to the number of streams requested to account for
3487 * stream 0 that is reserved for xHCI usage.
3488 */
3489 num_streams += 1;
3490 xhci = hcd_to_xhci(hcd);
3491 xhci_dbg(xhci, "Driver wants %u stream IDs (including stream 0).\n",
3492 num_streams);
3493
3494 /* MaxPSASize value 0 (2 streams) means streams are not supported */
3495 if ((xhci->quirks & XHCI_BROKEN_STREAMS) ||
3496 HCC_MAX_PSA(xhci->hcc_params) < 4) {
3497 xhci_dbg(xhci, "xHCI controller does not support streams.\n");
3498 return -ENOSYS;
3499 }
3500
3501 config_cmd = xhci_alloc_command_with_ctx(xhci, true, mem_flags);
3502 if (!config_cmd)
3503 return -ENOMEM;
3504
3505 ctrl_ctx = xhci_get_input_control_ctx(config_cmd->in_ctx);
3506 if (!ctrl_ctx) {
3507 xhci_warn(xhci, "%s: Could not get input context, bad type.\n",
3508 __func__);
3509 xhci_free_command(xhci, config_cmd);
3510 return -ENOMEM;
3511 }
3512
3513 /* Check to make sure all endpoints are not already configured for
3514 * streams. While we're at it, find the maximum number of streams that
3515 * all the endpoints will support and check for duplicate endpoints.
3516 */
3517 spin_lock_irqsave(&xhci->lock, flags);
3518 ret = xhci_calculate_streams_and_bitmask(xhci, udev, eps,
3519 num_eps, &num_streams, &changed_ep_bitmask);
3520 if (ret < 0) {
3521 xhci_free_command(xhci, config_cmd);
3522 spin_unlock_irqrestore(&xhci->lock, flags);
3523 return ret;
3524 }
3525 if (num_streams <= 1) {
3526 xhci_warn(xhci, "WARN: endpoints can't handle "
3527 "more than one stream.\n");
3528 xhci_free_command(xhci, config_cmd);
3529 spin_unlock_irqrestore(&xhci->lock, flags);
3530 return -EINVAL;
3531 }
3532 vdev = xhci->devs[udev->slot_id];
3533 /* Mark each endpoint as being in transition, so
3534 * xhci_urb_enqueue() will reject all URBs.
3535 */
3536 for (i = 0; i < num_eps; i++) {
3537 ep_index = xhci_get_endpoint_index(&eps[i]->desc);
3538 vdev->eps[ep_index].ep_state |= EP_GETTING_STREAMS;
3539 }
3540 spin_unlock_irqrestore(&xhci->lock, flags);
3541
3542 /* Setup internal data structures and allocate HW data structures for
3543 * streams (but don't install the HW structures in the input context
3544 * until we're sure all memory allocation succeeded).
3545 */
3546 xhci_calculate_streams_entries(xhci, &num_streams, &num_stream_ctxs);
3547 xhci_dbg(xhci, "Need %u stream ctx entries for %u stream IDs.\n",
3548 num_stream_ctxs, num_streams);
3549
3550 for (i = 0; i < num_eps; i++) {
3551 ep_index = xhci_get_endpoint_index(&eps[i]->desc);
3552 max_packet = usb_endpoint_maxp(&eps[i]->desc);
3553 vdev->eps[ep_index].stream_info = xhci_alloc_stream_info(xhci,
3554 num_stream_ctxs,
3555 num_streams,
3556 max_packet, mem_flags);
3557 if (!vdev->eps[ep_index].stream_info)
3558 goto cleanup;
3559 /* Set maxPstreams in endpoint context and update deq ptr to
3560 * point to stream context array. FIXME
3561 */
3562 }
3563
3564 /* Set up the input context for a configure endpoint command. */
3565 for (i = 0; i < num_eps; i++) {
3566 struct xhci_ep_ctx *ep_ctx;
3567
3568 ep_index = xhci_get_endpoint_index(&eps[i]->desc);
3569 ep_ctx = xhci_get_ep_ctx(xhci, config_cmd->in_ctx, ep_index);
3570
3571 xhci_endpoint_copy(xhci, config_cmd->in_ctx,
3572 vdev->out_ctx, ep_index);
3573 xhci_setup_streams_ep_input_ctx(xhci, ep_ctx,
3574 vdev->eps[ep_index].stream_info);
3575 }
3576 /* Tell the HW to drop its old copy of the endpoint context info
3577 * and add the updated copy from the input context.
3578 */
3579 xhci_setup_input_ctx_for_config_ep(xhci, config_cmd->in_ctx,
3580 vdev->out_ctx, ctrl_ctx,
3581 changed_ep_bitmask, changed_ep_bitmask);
3582
3583 /* Issue and wait for the configure endpoint command */
3584 ret = xhci_configure_endpoint(xhci, udev, config_cmd,
3585 false, false);
3586
3587 /* xHC rejected the configure endpoint command for some reason, so we
3588 * leave the old ring intact and free our internal streams data
3589 * structure.
3590 */
3591 if (ret < 0)
3592 goto cleanup;
3593
3594 spin_lock_irqsave(&xhci->lock, flags);
3595 for (i = 0; i < num_eps; i++) {
3596 ep_index = xhci_get_endpoint_index(&eps[i]->desc);
3597 vdev->eps[ep_index].ep_state &= ~EP_GETTING_STREAMS;
3598 xhci_dbg(xhci, "Slot %u ep ctx %u now has streams.\n",
3599 udev->slot_id, ep_index);
3600 vdev->eps[ep_index].ep_state |= EP_HAS_STREAMS;
3601 }
3602 xhci_free_command(xhci, config_cmd);
3603 spin_unlock_irqrestore(&xhci->lock, flags);
3604
3605 for (i = 0; i < num_eps; i++) {
3606 ep_index = xhci_get_endpoint_index(&eps[i]->desc);
3607 xhci_debugfs_create_stream_files(xhci, vdev, ep_index);
3608 }
3609 /* Subtract 1 for stream 0, which drivers can't use */
3610 return num_streams - 1;
3611
3612cleanup:
3613 /* If it didn't work, free the streams! */
3614 for (i = 0; i < num_eps; i++) {
3615 ep_index = xhci_get_endpoint_index(&eps[i]->desc);
3616 xhci_free_stream_info(xhci, vdev->eps[ep_index].stream_info);
3617 vdev->eps[ep_index].stream_info = NULL;
3618 /* FIXME Unset maxPstreams in endpoint context and
3619 * update deq ptr to point to normal string ring.
3620 */
3621 vdev->eps[ep_index].ep_state &= ~EP_GETTING_STREAMS;
3622 vdev->eps[ep_index].ep_state &= ~EP_HAS_STREAMS;
3623 xhci_endpoint_zero(xhci, vdev, eps[i]);
3624 }
3625 xhci_free_command(xhci, config_cmd);
3626 return -ENOMEM;
3627}
3628
3629/* Transition the endpoint from using streams to being a "normal" endpoint
3630 * without streams.
3631 *
3632 * Modify the endpoint context state, submit a configure endpoint command,
3633 * and free all endpoint rings for streams if that completes successfully.
3634 */
3635static int xhci_free_streams(struct usb_hcd *hcd, struct usb_device *udev,
3636 struct usb_host_endpoint **eps, unsigned int num_eps,
3637 gfp_t mem_flags)
3638{
3639 int i, ret;
3640 struct xhci_hcd *xhci;
3641 struct xhci_virt_device *vdev;
3642 struct xhci_command *command;
3643 struct xhci_input_control_ctx *ctrl_ctx;
3644 unsigned int ep_index;
3645 unsigned long flags;
3646 u32 changed_ep_bitmask;
3647
3648 xhci = hcd_to_xhci(hcd);
3649 vdev = xhci->devs[udev->slot_id];
3650
3651 /* Set up a configure endpoint command to remove the streams rings */
3652 spin_lock_irqsave(&xhci->lock, flags);
3653 changed_ep_bitmask = xhci_calculate_no_streams_bitmask(xhci,
3654 udev, eps, num_eps);
3655 if (changed_ep_bitmask == 0) {
3656 spin_unlock_irqrestore(&xhci->lock, flags);
3657 return -EINVAL;
3658 }
3659
3660 /* Use the xhci_command structure from the first endpoint. We may have
3661 * allocated too many, but the driver may call xhci_free_streams() for
3662 * each endpoint it grouped into one call to xhci_alloc_streams().
3663 */
3664 ep_index = xhci_get_endpoint_index(&eps[0]->desc);
3665 command = vdev->eps[ep_index].stream_info->free_streams_command;
3666 ctrl_ctx = xhci_get_input_control_ctx(command->in_ctx);
3667 if (!ctrl_ctx) {
3668 spin_unlock_irqrestore(&xhci->lock, flags);
3669 xhci_warn(xhci, "%s: Could not get input context, bad type.\n",
3670 __func__);
3671 return -EINVAL;
3672 }
3673
3674 for (i = 0; i < num_eps; i++) {
3675 struct xhci_ep_ctx *ep_ctx;
3676
3677 ep_index = xhci_get_endpoint_index(&eps[i]->desc);
3678 ep_ctx = xhci_get_ep_ctx(xhci, command->in_ctx, ep_index);
3679 xhci->devs[udev->slot_id]->eps[ep_index].ep_state |=
3680 EP_GETTING_NO_STREAMS;
3681
3682 xhci_endpoint_copy(xhci, command->in_ctx,
3683 vdev->out_ctx, ep_index);
3684 xhci_setup_no_streams_ep_input_ctx(ep_ctx,
3685 &vdev->eps[ep_index]);
3686 }
3687 xhci_setup_input_ctx_for_config_ep(xhci, command->in_ctx,
3688 vdev->out_ctx, ctrl_ctx,
3689 changed_ep_bitmask, changed_ep_bitmask);
3690 spin_unlock_irqrestore(&xhci->lock, flags);
3691
3692 /* Issue and wait for the configure endpoint command,
3693 * which must succeed.
3694 */
3695 ret = xhci_configure_endpoint(xhci, udev, command,
3696 false, true);
3697
3698 /* xHC rejected the configure endpoint command for some reason, so we
3699 * leave the streams rings intact.
3700 */
3701 if (ret < 0)
3702 return ret;
3703
3704 spin_lock_irqsave(&xhci->lock, flags);
3705 for (i = 0; i < num_eps; i++) {
3706 ep_index = xhci_get_endpoint_index(&eps[i]->desc);
3707 xhci_free_stream_info(xhci, vdev->eps[ep_index].stream_info);
3708 vdev->eps[ep_index].stream_info = NULL;
3709 /* FIXME Unset maxPstreams in endpoint context and
3710 * update deq ptr to point to normal string ring.
3711 */
3712 vdev->eps[ep_index].ep_state &= ~EP_GETTING_NO_STREAMS;
3713 vdev->eps[ep_index].ep_state &= ~EP_HAS_STREAMS;
3714 }
3715 spin_unlock_irqrestore(&xhci->lock, flags);
3716
3717 return 0;
3718}
3719
3720/*
3721 * Deletes endpoint resources for endpoints that were active before a Reset
3722 * Device command, or a Disable Slot command. The Reset Device command leaves
3723 * the control endpoint intact, whereas the Disable Slot command deletes it.
3724 *
3725 * Must be called with xhci->lock held.
3726 */
3727void xhci_free_device_endpoint_resources(struct xhci_hcd *xhci,
3728 struct xhci_virt_device *virt_dev, bool drop_control_ep)
3729{
3730 int i;
3731 unsigned int num_dropped_eps = 0;
3732 unsigned int drop_flags = 0;
3733
3734 for (i = (drop_control_ep ? 0 : 1); i < 31; i++) {
3735 if (virt_dev->eps[i].ring) {
3736 drop_flags |= 1 << i;
3737 num_dropped_eps++;
3738 }
3739 }
3740 xhci->num_active_eps -= num_dropped_eps;
3741 if (num_dropped_eps)
3742 xhci_dbg_trace(xhci, trace_xhci_dbg_quirks,
3743 "Dropped %u ep ctxs, flags = 0x%x, "
3744 "%u now active.",
3745 num_dropped_eps, drop_flags,
3746 xhci->num_active_eps);
3747}
3748
3749/*
3750 * This submits a Reset Device Command, which will set the device state to 0,
3751 * set the device address to 0, and disable all the endpoints except the default
3752 * control endpoint. The USB core should come back and call
3753 * xhci_address_device(), and then re-set up the configuration. If this is
3754 * called because of a usb_reset_and_verify_device(), then the old alternate
3755 * settings will be re-installed through the normal bandwidth allocation
3756 * functions.
3757 *
3758 * Wait for the Reset Device command to finish. Remove all structures
3759 * associated with the endpoints that were disabled. Clear the input device
3760 * structure? Reset the control endpoint 0 max packet size?
3761 *
3762 * If the virt_dev to be reset does not exist or does not match the udev,
3763 * it means the device is lost, possibly due to the xHC restore error and
3764 * re-initialization during S3/S4. In this case, call xhci_alloc_dev() to
3765 * re-allocate the device.
3766 */
3767static int xhci_discover_or_reset_device(struct usb_hcd *hcd,
3768 struct usb_device *udev)
3769{
3770 int ret, i;
3771 unsigned long flags;
3772 struct xhci_hcd *xhci;
3773 unsigned int slot_id;
3774 struct xhci_virt_device *virt_dev;
3775 struct xhci_command *reset_device_cmd;
3776 struct xhci_slot_ctx *slot_ctx;
3777 int old_active_eps = 0;
3778
3779 ret = xhci_check_args(hcd, udev, NULL, 0, false, __func__);
3780 if (ret <= 0)
3781 return ret;
3782 xhci = hcd_to_xhci(hcd);
3783 slot_id = udev->slot_id;
3784 virt_dev = xhci->devs[slot_id];
3785 if (!virt_dev) {
3786 xhci_dbg(xhci, "The device to be reset with slot ID %u does "
3787 "not exist. Re-allocate the device\n", slot_id);
3788 ret = xhci_alloc_dev(hcd, udev);
3789 if (ret == 1)
3790 return 0;
3791 else
3792 return -EINVAL;
3793 }
3794
3795 if (virt_dev->tt_info)
3796 old_active_eps = virt_dev->tt_info->active_eps;
3797
3798 if (virt_dev->udev != udev) {
3799 /* If the virt_dev and the udev does not match, this virt_dev
3800 * may belong to another udev.
3801 * Re-allocate the device.
3802 */
3803 xhci_dbg(xhci, "The device to be reset with slot ID %u does "
3804 "not match the udev. Re-allocate the device\n",
3805 slot_id);
3806 ret = xhci_alloc_dev(hcd, udev);
3807 if (ret == 1)
3808 return 0;
3809 else
3810 return -EINVAL;
3811 }
3812
3813 /* If device is not setup, there is no point in resetting it */
3814 slot_ctx = xhci_get_slot_ctx(xhci, virt_dev->out_ctx);
3815 if (GET_SLOT_STATE(le32_to_cpu(slot_ctx->dev_state)) ==
3816 SLOT_STATE_DISABLED)
3817 return 0;
3818
3819 trace_xhci_discover_or_reset_device(slot_ctx);
3820
3821 xhci_dbg(xhci, "Resetting device with slot ID %u\n", slot_id);
3822 /* Allocate the command structure that holds the struct completion.
3823 * Assume we're in process context, since the normal device reset
3824 * process has to wait for the device anyway. Storage devices are
3825 * reset as part of error handling, so use GFP_NOIO instead of
3826 * GFP_KERNEL.
3827 */
3828 reset_device_cmd = xhci_alloc_command(xhci, true, GFP_NOIO);
3829 if (!reset_device_cmd) {
3830 xhci_dbg(xhci, "Couldn't allocate command structure.\n");
3831 return -ENOMEM;
3832 }
3833
3834 /* Attempt to submit the Reset Device command to the command ring */
3835 spin_lock_irqsave(&xhci->lock, flags);
3836
3837 ret = xhci_queue_reset_device(xhci, reset_device_cmd, slot_id);
3838 if (ret) {
3839 xhci_dbg(xhci, "FIXME: allocate a command ring segment\n");
3840 spin_unlock_irqrestore(&xhci->lock, flags);
3841 goto command_cleanup;
3842 }
3843 xhci_ring_cmd_db(xhci);
3844 spin_unlock_irqrestore(&xhci->lock, flags);
3845
3846 /* Wait for the Reset Device command to finish */
3847 wait_for_completion(reset_device_cmd->completion);
3848
3849 /* The Reset Device command can't fail, according to the 0.95/0.96 spec,
3850 * unless we tried to reset a slot ID that wasn't enabled,
3851 * or the device wasn't in the addressed or configured state.
3852 */
3853 ret = reset_device_cmd->status;
3854 switch (ret) {
3855 case COMP_COMMAND_ABORTED:
3856 case COMP_COMMAND_RING_STOPPED:
3857 xhci_warn(xhci, "Timeout waiting for reset device command\n");
3858 ret = -ETIME;
3859 goto command_cleanup;
3860 case COMP_SLOT_NOT_ENABLED_ERROR: /* 0.95 completion for bad slot ID */
3861 case COMP_CONTEXT_STATE_ERROR: /* 0.96 completion code for same thing */
3862 xhci_dbg(xhci, "Can't reset device (slot ID %u) in %s state\n",
3863 slot_id,
3864 xhci_get_slot_state(xhci, virt_dev->out_ctx));
3865 xhci_dbg(xhci, "Not freeing device rings.\n");
3866 /* Don't treat this as an error. May change my mind later. */
3867 ret = 0;
3868 goto command_cleanup;
3869 case COMP_SUCCESS:
3870 xhci_dbg(xhci, "Successful reset device command.\n");
3871 break;
3872 default:
3873 if (xhci_is_vendor_info_code(xhci, ret))
3874 break;
3875 xhci_warn(xhci, "Unknown completion code %u for "
3876 "reset device command.\n", ret);
3877 ret = -EINVAL;
3878 goto command_cleanup;
3879 }
3880
3881 /* Free up host controller endpoint resources */
3882 if ((xhci->quirks & XHCI_EP_LIMIT_QUIRK)) {
3883 spin_lock_irqsave(&xhci->lock, flags);
3884 /* Don't delete the default control endpoint resources */
3885 xhci_free_device_endpoint_resources(xhci, virt_dev, false);
3886 spin_unlock_irqrestore(&xhci->lock, flags);
3887 }
3888
3889 /* Everything but endpoint 0 is disabled, so free the rings. */
3890 for (i = 1; i < 31; i++) {
3891 struct xhci_virt_ep *ep = &virt_dev->eps[i];
3892
3893 if (ep->ep_state & EP_HAS_STREAMS) {
3894 xhci_warn(xhci, "WARN: endpoint 0x%02x has streams on device reset, freeing streams.\n",
3895 xhci_get_endpoint_address(i));
3896 xhci_free_stream_info(xhci, ep->stream_info);
3897 ep->stream_info = NULL;
3898 ep->ep_state &= ~EP_HAS_STREAMS;
3899 }
3900
3901 if (ep->ring) {
3902 xhci_debugfs_remove_endpoint(xhci, virt_dev, i);
3903 xhci_free_endpoint_ring(xhci, virt_dev, i);
3904 }
3905 if (!list_empty(&virt_dev->eps[i].bw_endpoint_list))
3906 xhci_drop_ep_from_interval_table(xhci,
3907 &virt_dev->eps[i].bw_info,
3908 virt_dev->bw_table,
3909 udev,
3910 &virt_dev->eps[i],
3911 virt_dev->tt_info);
3912 xhci_clear_endpoint_bw_info(&virt_dev->eps[i].bw_info);
3913 }
3914 /* If necessary, update the number of active TTs on this root port */
3915 xhci_update_tt_active_eps(xhci, virt_dev, old_active_eps);
3916 virt_dev->flags = 0;
3917 ret = 0;
3918
3919command_cleanup:
3920 xhci_free_command(xhci, reset_device_cmd);
3921 return ret;
3922}
3923
3924/*
3925 * At this point, the struct usb_device is about to go away, the device has
3926 * disconnected, and all traffic has been stopped and the endpoints have been
3927 * disabled. Free any HC data structures associated with that device.
3928 */
3929static void xhci_free_dev(struct usb_hcd *hcd, struct usb_device *udev)
3930{
3931 struct xhci_hcd *xhci = hcd_to_xhci(hcd);
3932 struct xhci_virt_device *virt_dev;
3933 struct xhci_slot_ctx *slot_ctx;
3934 int i, ret;
3935
3936#ifndef CONFIG_USB_DEFAULT_PERSIST
3937 /*
3938 * We called pm_runtime_get_noresume when the device was attached.
3939 * Decrement the counter here to allow controller to runtime suspend
3940 * if no devices remain.
3941 */
3942 if (xhci->quirks & XHCI_RESET_ON_RESUME)
3943 pm_runtime_put_noidle(hcd->self.controller);
3944#endif
3945
3946 ret = xhci_check_args(hcd, udev, NULL, 0, true, __func__);
3947 /* If the host is halted due to driver unload, we still need to free the
3948 * device.
3949 */
3950 if (ret <= 0 && ret != -ENODEV)
3951 return;
3952
3953 virt_dev = xhci->devs[udev->slot_id];
3954 slot_ctx = xhci_get_slot_ctx(xhci, virt_dev->out_ctx);
3955 trace_xhci_free_dev(slot_ctx);
3956
3957 /* Stop any wayward timer functions (which may grab the lock) */
3958 for (i = 0; i < 31; i++) {
3959 virt_dev->eps[i].ep_state &= ~EP_STOP_CMD_PENDING;
3960 del_timer_sync(&virt_dev->eps[i].stop_cmd_timer);
3961 }
3962 virt_dev->udev = NULL;
3963 ret = xhci_disable_slot(xhci, udev->slot_id);
3964 if (ret)
3965 xhci_free_virt_device(xhci, udev->slot_id);
3966}
3967
3968int xhci_disable_slot(struct xhci_hcd *xhci, u32 slot_id)
3969{
3970 struct xhci_command *command;
3971 unsigned long flags;
3972 u32 state;
3973 int ret = 0;
3974
3975 command = xhci_alloc_command(xhci, false, GFP_KERNEL);
3976 if (!command)
3977 return -ENOMEM;
3978
3979 xhci_debugfs_remove_slot(xhci, slot_id);
3980
3981 spin_lock_irqsave(&xhci->lock, flags);
3982 /* Don't disable the slot if the host controller is dead. */
3983 state = readl(&xhci->op_regs->status);
3984 if (state == 0xffffffff || (xhci->xhc_state & XHCI_STATE_DYING) ||
3985 (xhci->xhc_state & XHCI_STATE_HALTED)) {
3986 spin_unlock_irqrestore(&xhci->lock, flags);
3987 kfree(command);
3988 return -ENODEV;
3989 }
3990
3991 ret = xhci_queue_slot_control(xhci, command, TRB_DISABLE_SLOT,
3992 slot_id);
3993 if (ret) {
3994 spin_unlock_irqrestore(&xhci->lock, flags);
3995 kfree(command);
3996 return ret;
3997 }
3998 xhci_ring_cmd_db(xhci);
3999 spin_unlock_irqrestore(&xhci->lock, flags);
4000 return ret;
4001}
4002
4003/*
4004 * Checks if we have enough host controller resources for the default control
4005 * endpoint.
4006 *
4007 * Must be called with xhci->lock held.
4008 */
4009static int xhci_reserve_host_control_ep_resources(struct xhci_hcd *xhci)
4010{
4011 if (xhci->num_active_eps + 1 > xhci->limit_active_eps) {
4012 xhci_dbg_trace(xhci, trace_xhci_dbg_quirks,
4013 "Not enough ep ctxs: "
4014 "%u active, need to add 1, limit is %u.",
4015 xhci->num_active_eps, xhci->limit_active_eps);
4016 return -ENOMEM;
4017 }
4018 xhci->num_active_eps += 1;
4019 xhci_dbg_trace(xhci, trace_xhci_dbg_quirks,
4020 "Adding 1 ep ctx, %u now active.",
4021 xhci->num_active_eps);
4022 return 0;
4023}
4024
4025
4026/*
4027 * Returns 0 if the xHC ran out of device slots, the Enable Slot command
4028 * timed out, or allocating memory failed. Returns 1 on success.
4029 */
4030int xhci_alloc_dev(struct usb_hcd *hcd, struct usb_device *udev)
4031{
4032 struct xhci_hcd *xhci = hcd_to_xhci(hcd);
4033 struct xhci_virt_device *vdev;
4034 struct xhci_slot_ctx *slot_ctx;
4035 unsigned long flags;
4036 int ret, slot_id;
4037 struct xhci_command *command;
4038
4039 command = xhci_alloc_command(xhci, true, GFP_KERNEL);
4040 if (!command)
4041 return 0;
4042
4043 spin_lock_irqsave(&xhci->lock, flags);
4044 ret = xhci_queue_slot_control(xhci, command, TRB_ENABLE_SLOT, 0);
4045 if (ret) {
4046 spin_unlock_irqrestore(&xhci->lock, flags);
4047 xhci_dbg(xhci, "FIXME: allocate a command ring segment\n");
4048 xhci_free_command(xhci, command);
4049 return 0;
4050 }
4051 xhci_ring_cmd_db(xhci);
4052 spin_unlock_irqrestore(&xhci->lock, flags);
4053
4054 wait_for_completion(command->completion);
4055 slot_id = command->slot_id;
4056
4057 if (!slot_id || command->status != COMP_SUCCESS) {
4058 xhci_err(xhci, "Error while assigning device slot ID\n");
4059 xhci_err(xhci, "Max number of devices this xHCI host supports is %u.\n",
4060 HCS_MAX_SLOTS(
4061 readl(&xhci->cap_regs->hcs_params1)));
4062 xhci_free_command(xhci, command);
4063 return 0;
4064 }
4065
4066 xhci_free_command(xhci, command);
4067
4068 if ((xhci->quirks & XHCI_EP_LIMIT_QUIRK)) {
4069 spin_lock_irqsave(&xhci->lock, flags);
4070 ret = xhci_reserve_host_control_ep_resources(xhci);
4071 if (ret) {
4072 spin_unlock_irqrestore(&xhci->lock, flags);
4073 xhci_warn(xhci, "Not enough host resources, "
4074 "active endpoint contexts = %u\n",
4075 xhci->num_active_eps);
4076 goto disable_slot;
4077 }
4078 spin_unlock_irqrestore(&xhci->lock, flags);
4079 }
4080 /* Use GFP_NOIO, since this function can be called from
4081 * xhci_discover_or_reset_device(), which may be called as part of
4082 * mass storage driver error handling.
4083 */
4084 if (!xhci_alloc_virt_device(xhci, slot_id, udev, GFP_NOIO)) {
4085 xhci_warn(xhci, "Could not allocate xHCI USB device data structures\n");
4086 goto disable_slot;
4087 }
4088 vdev = xhci->devs[slot_id];
4089 slot_ctx = xhci_get_slot_ctx(xhci, vdev->out_ctx);
4090 trace_xhci_alloc_dev(slot_ctx);
4091
4092 udev->slot_id = slot_id;
4093
4094 xhci_debugfs_create_slot(xhci, slot_id);
4095
4096#ifndef CONFIG_USB_DEFAULT_PERSIST
4097 /*
4098 * If resetting upon resume, we can't put the controller into runtime
4099 * suspend if there is a device attached.
4100 */
4101 if (xhci->quirks & XHCI_RESET_ON_RESUME)
4102 pm_runtime_get_noresume(hcd->self.controller);
4103#endif
4104
4105 /* Is this a LS or FS device under a HS hub? */
4106 /* Hub or peripherial? */
4107 return 1;
4108
4109disable_slot:
4110 ret = xhci_disable_slot(xhci, udev->slot_id);
4111 if (ret)
4112 xhci_free_virt_device(xhci, udev->slot_id);
4113
4114 return 0;
4115}
4116
4117/*
4118 * Issue an Address Device command and optionally send a corresponding
4119 * SetAddress request to the device.
4120 */
4121static int xhci_setup_device(struct usb_hcd *hcd, struct usb_device *udev,
4122 enum xhci_setup_dev setup)
4123{
4124 const char *act = setup == SETUP_CONTEXT_ONLY ? "context" : "address";
4125 unsigned long flags;
4126 struct xhci_virt_device *virt_dev;
4127 int ret = 0;
4128 struct xhci_hcd *xhci = hcd_to_xhci(hcd);
4129 struct xhci_slot_ctx *slot_ctx;
4130 struct xhci_input_control_ctx *ctrl_ctx;
4131 u64 temp_64;
4132 struct xhci_command *command = NULL;
4133
4134 mutex_lock(&xhci->mutex);
4135
4136 if (xhci->xhc_state) { /* dying, removing or halted */
4137 ret = -ESHUTDOWN;
4138 goto out;
4139 }
4140
4141 if (!udev->slot_id) {
4142 xhci_dbg_trace(xhci, trace_xhci_dbg_address,
4143 "Bad Slot ID %d", udev->slot_id);
4144 ret = -EINVAL;
4145 goto out;
4146 }
4147
4148 virt_dev = xhci->devs[udev->slot_id];
4149
4150 if (WARN_ON(!virt_dev)) {
4151 /*
4152 * In plug/unplug torture test with an NEC controller,
4153 * a zero-dereference was observed once due to virt_dev = 0.
4154 * Print useful debug rather than crash if it is observed again!
4155 */
4156 xhci_warn(xhci, "Virt dev invalid for slot_id 0x%x!\n",
4157 udev->slot_id);
4158 ret = -EINVAL;
4159 goto out;
4160 }
4161 slot_ctx = xhci_get_slot_ctx(xhci, virt_dev->out_ctx);
4162 trace_xhci_setup_device_slot(slot_ctx);
4163
4164 if (setup == SETUP_CONTEXT_ONLY) {
4165 if (GET_SLOT_STATE(le32_to_cpu(slot_ctx->dev_state)) ==
4166 SLOT_STATE_DEFAULT) {
4167 xhci_dbg(xhci, "Slot already in default state\n");
4168 goto out;
4169 }
4170 }
4171
4172 command = xhci_alloc_command(xhci, true, GFP_KERNEL);
4173 if (!command) {
4174 ret = -ENOMEM;
4175 goto out;
4176 }
4177
4178 command->in_ctx = virt_dev->in_ctx;
4179
4180 slot_ctx = xhci_get_slot_ctx(xhci, virt_dev->in_ctx);
4181 ctrl_ctx = xhci_get_input_control_ctx(virt_dev->in_ctx);
4182 if (!ctrl_ctx) {
4183 xhci_warn(xhci, "%s: Could not get input context, bad type.\n",
4184 __func__);
4185 ret = -EINVAL;
4186 goto out;
4187 }
4188 /*
4189 * If this is the first Set Address since device plug-in or
4190 * virt_device realloaction after a resume with an xHCI power loss,
4191 * then set up the slot context.
4192 */
4193 if (!slot_ctx->dev_info)
4194 xhci_setup_addressable_virt_dev(xhci, udev);
4195 /* Otherwise, update the control endpoint ring enqueue pointer. */
4196 else
4197 xhci_copy_ep0_dequeue_into_input_ctx(xhci, udev);
4198 ctrl_ctx->add_flags = cpu_to_le32(SLOT_FLAG | EP0_FLAG);
4199 ctrl_ctx->drop_flags = 0;
4200
4201 trace_xhci_address_ctx(xhci, virt_dev->in_ctx,
4202 le32_to_cpu(slot_ctx->dev_info) >> 27);
4203
4204 trace_xhci_address_ctrl_ctx(ctrl_ctx);
4205 spin_lock_irqsave(&xhci->lock, flags);
4206 trace_xhci_setup_device(virt_dev);
4207 ret = xhci_queue_address_device(xhci, command, virt_dev->in_ctx->dma,
4208 udev->slot_id, setup);
4209 if (ret) {
4210 spin_unlock_irqrestore(&xhci->lock, flags);
4211 xhci_dbg_trace(xhci, trace_xhci_dbg_address,
4212 "FIXME: allocate a command ring segment");
4213 goto out;
4214 }
4215 xhci_ring_cmd_db(xhci);
4216 spin_unlock_irqrestore(&xhci->lock, flags);
4217
4218 /* ctrl tx can take up to 5 sec; XXX: need more time for xHC? */
4219 wait_for_completion(command->completion);
4220
4221 /* FIXME: From section 4.3.4: "Software shall be responsible for timing
4222 * the SetAddress() "recovery interval" required by USB and aborting the
4223 * command on a timeout.
4224 */
4225 switch (command->status) {
4226 case COMP_COMMAND_ABORTED:
4227 case COMP_COMMAND_RING_STOPPED:
4228 xhci_warn(xhci, "Timeout while waiting for setup device command\n");
4229 ret = -ETIME;
4230 break;
4231 case COMP_CONTEXT_STATE_ERROR:
4232 case COMP_SLOT_NOT_ENABLED_ERROR:
4233 xhci_err(xhci, "Setup ERROR: setup %s command for slot %d.\n",
4234 act, udev->slot_id);
4235 ret = -EINVAL;
4236 break;
4237 case COMP_USB_TRANSACTION_ERROR:
4238 dev_warn(&udev->dev, "Device not responding to setup %s.\n", act);
4239
4240 mutex_unlock(&xhci->mutex);
4241 ret = xhci_disable_slot(xhci, udev->slot_id);
4242 if (!ret)
4243 xhci_alloc_dev(hcd, udev);
4244 kfree(command->completion);
4245 kfree(command);
4246 return -EPROTO;
4247 case COMP_INCOMPATIBLE_DEVICE_ERROR:
4248 dev_warn(&udev->dev,
4249 "ERROR: Incompatible device for setup %s command\n", act);
4250 ret = -ENODEV;
4251 break;
4252 case COMP_SUCCESS:
4253 xhci_dbg_trace(xhci, trace_xhci_dbg_address,
4254 "Successful setup %s command", act);
4255 break;
4256 default:
4257 xhci_err(xhci,
4258 "ERROR: unexpected setup %s command completion code 0x%x.\n",
4259 act, command->status);
4260 trace_xhci_address_ctx(xhci, virt_dev->out_ctx, 1);
4261 ret = -EINVAL;
4262 break;
4263 }
4264 if (ret)
4265 goto out;
4266 temp_64 = xhci_read_64(xhci, &xhci->op_regs->dcbaa_ptr);
4267 xhci_dbg_trace(xhci, trace_xhci_dbg_address,
4268 "Op regs DCBAA ptr = %#016llx", temp_64);
4269 xhci_dbg_trace(xhci, trace_xhci_dbg_address,
4270 "Slot ID %d dcbaa entry @%p = %#016llx",
4271 udev->slot_id,
4272 &xhci->dcbaa->dev_context_ptrs[udev->slot_id],
4273 (unsigned long long)
4274 le64_to_cpu(xhci->dcbaa->dev_context_ptrs[udev->slot_id]));
4275 xhci_dbg_trace(xhci, trace_xhci_dbg_address,
4276 "Output Context DMA address = %#08llx",
4277 (unsigned long long)virt_dev->out_ctx->dma);
4278 trace_xhci_address_ctx(xhci, virt_dev->in_ctx,
4279 le32_to_cpu(slot_ctx->dev_info) >> 27);
4280 /*
4281 * USB core uses address 1 for the roothubs, so we add one to the
4282 * address given back to us by the HC.
4283 */
4284 trace_xhci_address_ctx(xhci, virt_dev->out_ctx,
4285 le32_to_cpu(slot_ctx->dev_info) >> 27);
4286 /* Zero the input context control for later use */
4287 ctrl_ctx->add_flags = 0;
4288 ctrl_ctx->drop_flags = 0;
4289 slot_ctx = xhci_get_slot_ctx(xhci, virt_dev->out_ctx);
4290 udev->devaddr = (u8)(le32_to_cpu(slot_ctx->dev_state) & DEV_ADDR_MASK);
4291
4292 xhci_dbg_trace(xhci, trace_xhci_dbg_address,
4293 "Internal device address = %d",
4294 le32_to_cpu(slot_ctx->dev_state) & DEV_ADDR_MASK);
4295out:
4296 mutex_unlock(&xhci->mutex);
4297 if (command) {
4298 kfree(command->completion);
4299 kfree(command);
4300 }
4301 return ret;
4302}
4303
4304static int xhci_address_device(struct usb_hcd *hcd, struct usb_device *udev)
4305{
4306 return xhci_setup_device(hcd, udev, SETUP_CONTEXT_ADDRESS);
4307}
4308
4309static int xhci_enable_device(struct usb_hcd *hcd, struct usb_device *udev)
4310{
4311 return xhci_setup_device(hcd, udev, SETUP_CONTEXT_ONLY);
4312}
4313
4314/*
4315 * Transfer the port index into real index in the HW port status
4316 * registers. Caculate offset between the port's PORTSC register
4317 * and port status base. Divide the number of per port register
4318 * to get the real index. The raw port number bases 1.
4319 */
4320int xhci_find_raw_port_number(struct usb_hcd *hcd, int port1)
4321{
4322 struct xhci_hub *rhub;
4323
4324 rhub = xhci_get_rhub(hcd);
4325 return rhub->ports[port1 - 1]->hw_portnum + 1;
4326}
4327
4328/*
4329 * Issue an Evaluate Context command to change the Maximum Exit Latency in the
4330 * slot context. If that succeeds, store the new MEL in the xhci_virt_device.
4331 */
4332static int __maybe_unused xhci_change_max_exit_latency(struct xhci_hcd *xhci,
4333 struct usb_device *udev, u16 max_exit_latency)
4334{
4335 struct xhci_virt_device *virt_dev;
4336 struct xhci_command *command;
4337 struct xhci_input_control_ctx *ctrl_ctx;
4338 struct xhci_slot_ctx *slot_ctx;
4339 unsigned long flags;
4340 int ret;
4341
4342 spin_lock_irqsave(&xhci->lock, flags);
4343
4344 virt_dev = xhci->devs[udev->slot_id];
4345
4346 /*
4347 * virt_dev might not exists yet if xHC resumed from hibernate (S4) and
4348 * xHC was re-initialized. Exit latency will be set later after
4349 * hub_port_finish_reset() is done and xhci->devs[] are re-allocated
4350 */
4351
4352 if (!virt_dev || max_exit_latency == virt_dev->current_mel) {
4353 spin_unlock_irqrestore(&xhci->lock, flags);
4354 return 0;
4355 }
4356
4357 /* Attempt to issue an Evaluate Context command to change the MEL. */
4358 command = xhci->lpm_command;
4359 ctrl_ctx = xhci_get_input_control_ctx(command->in_ctx);
4360 if (!ctrl_ctx) {
4361 spin_unlock_irqrestore(&xhci->lock, flags);
4362 xhci_warn(xhci, "%s: Could not get input context, bad type.\n",
4363 __func__);
4364 return -ENOMEM;
4365 }
4366
4367 xhci_slot_copy(xhci, command->in_ctx, virt_dev->out_ctx);
4368 spin_unlock_irqrestore(&xhci->lock, flags);
4369
4370 ctrl_ctx->add_flags |= cpu_to_le32(SLOT_FLAG);
4371 slot_ctx = xhci_get_slot_ctx(xhci, command->in_ctx);
4372 slot_ctx->dev_info2 &= cpu_to_le32(~((u32) MAX_EXIT));
4373 slot_ctx->dev_info2 |= cpu_to_le32(max_exit_latency);
4374 slot_ctx->dev_state = 0;
4375
4376 xhci_dbg_trace(xhci, trace_xhci_dbg_context_change,
4377 "Set up evaluate context for LPM MEL change.");
4378
4379 /* Issue and wait for the evaluate context command. */
4380 ret = xhci_configure_endpoint(xhci, udev, command,
4381 true, true);
4382
4383 if (!ret) {
4384 spin_lock_irqsave(&xhci->lock, flags);
4385 virt_dev->current_mel = max_exit_latency;
4386 spin_unlock_irqrestore(&xhci->lock, flags);
4387 }
4388 return ret;
4389}
4390
4391#ifdef CONFIG_PM
4392
4393/* BESL to HIRD Encoding array for USB2 LPM */
4394static int xhci_besl_encoding[16] = {125, 150, 200, 300, 400, 500, 1000, 2000,
4395 3000, 4000, 5000, 6000, 7000, 8000, 9000, 10000};
4396
4397/* Calculate HIRD/BESL for USB2 PORTPMSC*/
4398static int xhci_calculate_hird_besl(struct xhci_hcd *xhci,
4399 struct usb_device *udev)
4400{
4401 int u2del, besl, besl_host;
4402 int besl_device = 0;
4403 u32 field;
4404
4405 u2del = HCS_U2_LATENCY(xhci->hcs_params3);
4406 field = le32_to_cpu(udev->bos->ext_cap->bmAttributes);
4407
4408 if (field & USB_BESL_SUPPORT) {
4409 for (besl_host = 0; besl_host < 16; besl_host++) {
4410 if (xhci_besl_encoding[besl_host] >= u2del)
4411 break;
4412 }
4413 /* Use baseline BESL value as default */
4414 if (field & USB_BESL_BASELINE_VALID)
4415 besl_device = USB_GET_BESL_BASELINE(field);
4416 else if (field & USB_BESL_DEEP_VALID)
4417 besl_device = USB_GET_BESL_DEEP(field);
4418 } else {
4419 if (u2del <= 50)
4420 besl_host = 0;
4421 else
4422 besl_host = (u2del - 51) / 75 + 1;
4423 }
4424
4425 besl = besl_host + besl_device;
4426 if (besl > 15)
4427 besl = 15;
4428
4429 return besl;
4430}
4431
4432/* Calculate BESLD, L1 timeout and HIRDM for USB2 PORTHLPMC */
4433static int xhci_calculate_usb2_hw_lpm_params(struct usb_device *udev)
4434{
4435 u32 field;
4436 int l1;
4437 int besld = 0;
4438 int hirdm = 0;
4439
4440 field = le32_to_cpu(udev->bos->ext_cap->bmAttributes);
4441
4442 /* xHCI l1 is set in steps of 256us, xHCI 1.0 section 5.4.11.2 */
4443 l1 = udev->l1_params.timeout / 256;
4444
4445 /* device has preferred BESLD */
4446 if (field & USB_BESL_DEEP_VALID) {
4447 besld = USB_GET_BESL_DEEP(field);
4448 hirdm = 1;
4449 }
4450
4451 return PORT_BESLD(besld) | PORT_L1_TIMEOUT(l1) | PORT_HIRDM(hirdm);
4452}
4453
4454static int xhci_set_usb2_hardware_lpm(struct usb_hcd *hcd,
4455 struct usb_device *udev, int enable)
4456{
4457 struct xhci_hcd *xhci = hcd_to_xhci(hcd);
4458 struct xhci_port **ports;
4459 __le32 __iomem *pm_addr, *hlpm_addr;
4460 u32 pm_val, hlpm_val, field;
4461 unsigned int port_num;
4462 unsigned long flags;
4463 int hird, exit_latency;
4464 int ret;
4465
4466 if (xhci->quirks & XHCI_HW_LPM_DISABLE)
4467 return -EPERM;
4468
4469 if (hcd->speed >= HCD_USB3 || !xhci->hw_lpm_support ||
4470 !udev->lpm_capable)
4471 return -EPERM;
4472
4473 if (!udev->parent || udev->parent->parent ||
4474 udev->descriptor.bDeviceClass == USB_CLASS_HUB)
4475 return -EPERM;
4476
4477 if (udev->usb2_hw_lpm_capable != 1)
4478 return -EPERM;
4479
4480 spin_lock_irqsave(&xhci->lock, flags);
4481
4482 ports = xhci->usb2_rhub.ports;
4483 port_num = udev->portnum - 1;
4484 pm_addr = ports[port_num]->addr + PORTPMSC;
4485 pm_val = readl(pm_addr);
4486 hlpm_addr = ports[port_num]->addr + PORTHLPMC;
4487
4488 xhci_dbg(xhci, "%s port %d USB2 hardware LPM\n",
4489 enable ? "enable" : "disable", port_num + 1);
4490
4491 if (enable) {
4492 /* Host supports BESL timeout instead of HIRD */
4493 if (udev->usb2_hw_lpm_besl_capable) {
4494 /* if device doesn't have a preferred BESL value use a
4495 * default one which works with mixed HIRD and BESL
4496 * systems. See XHCI_DEFAULT_BESL definition in xhci.h
4497 */
4498 field = le32_to_cpu(udev->bos->ext_cap->bmAttributes);
4499 if ((field & USB_BESL_SUPPORT) &&
4500 (field & USB_BESL_BASELINE_VALID))
4501 hird = USB_GET_BESL_BASELINE(field);
4502 else
4503 hird = udev->l1_params.besl;
4504
4505 exit_latency = xhci_besl_encoding[hird];
4506 spin_unlock_irqrestore(&xhci->lock, flags);
4507
4508 /* USB 3.0 code dedicate one xhci->lpm_command->in_ctx
4509 * input context for link powermanagement evaluate
4510 * context commands. It is protected by hcd->bandwidth
4511 * mutex and is shared by all devices. We need to set
4512 * the max ext latency in USB 2 BESL LPM as well, so
4513 * use the same mutex and xhci_change_max_exit_latency()
4514 */
4515 mutex_lock(hcd->bandwidth_mutex);
4516 ret = xhci_change_max_exit_latency(xhci, udev,
4517 exit_latency);
4518 mutex_unlock(hcd->bandwidth_mutex);
4519
4520 if (ret < 0)
4521 return ret;
4522 spin_lock_irqsave(&xhci->lock, flags);
4523
4524 hlpm_val = xhci_calculate_usb2_hw_lpm_params(udev);
4525 writel(hlpm_val, hlpm_addr);
4526 /* flush write */
4527 readl(hlpm_addr);
4528 } else {
4529 hird = xhci_calculate_hird_besl(xhci, udev);
4530 }
4531
4532 pm_val &= ~PORT_HIRD_MASK;
4533 pm_val |= PORT_HIRD(hird) | PORT_RWE | PORT_L1DS(udev->slot_id);
4534 writel(pm_val, pm_addr);
4535 pm_val = readl(pm_addr);
4536 pm_val |= PORT_HLE;
4537 writel(pm_val, pm_addr);
4538 /* flush write */
4539 readl(pm_addr);
4540 } else {
4541 pm_val &= ~(PORT_HLE | PORT_RWE | PORT_HIRD_MASK | PORT_L1DS_MASK);
4542 writel(pm_val, pm_addr);
4543 /* flush write */
4544 readl(pm_addr);
4545 if (udev->usb2_hw_lpm_besl_capable) {
4546 spin_unlock_irqrestore(&xhci->lock, flags);
4547 mutex_lock(hcd->bandwidth_mutex);
4548 xhci_change_max_exit_latency(xhci, udev, 0);
4549 mutex_unlock(hcd->bandwidth_mutex);
4550 readl_poll_timeout(ports[port_num]->addr, pm_val,
4551 (pm_val & PORT_PLS_MASK) == XDEV_U0,
4552 100, 10000);
4553 return 0;
4554 }
4555 }
4556
4557 spin_unlock_irqrestore(&xhci->lock, flags);
4558 return 0;
4559}
4560
4561/* check if a usb2 port supports a given extened capability protocol
4562 * only USB2 ports extended protocol capability values are cached.
4563 * Return 1 if capability is supported
4564 */
4565static int xhci_check_usb2_port_capability(struct xhci_hcd *xhci, int port,
4566 unsigned capability)
4567{
4568 u32 port_offset, port_count;
4569 int i;
4570
4571 for (i = 0; i < xhci->num_ext_caps; i++) {
4572 if (xhci->ext_caps[i] & capability) {
4573 /* port offsets starts at 1 */
4574 port_offset = XHCI_EXT_PORT_OFF(xhci->ext_caps[i]) - 1;
4575 port_count = XHCI_EXT_PORT_COUNT(xhci->ext_caps[i]);
4576 if (port >= port_offset &&
4577 port < port_offset + port_count)
4578 return 1;
4579 }
4580 }
4581 return 0;
4582}
4583
4584static int xhci_update_device(struct usb_hcd *hcd, struct usb_device *udev)
4585{
4586 struct xhci_hcd *xhci = hcd_to_xhci(hcd);
4587 int portnum = udev->portnum - 1;
4588
4589 if (hcd->speed >= HCD_USB3 || !udev->lpm_capable)
4590 return 0;
4591
4592 /* we only support lpm for non-hub device connected to root hub yet */
4593 if (!udev->parent || udev->parent->parent ||
4594 udev->descriptor.bDeviceClass == USB_CLASS_HUB)
4595 return 0;
4596
4597 if (xhci->hw_lpm_support == 1 &&
4598 xhci_check_usb2_port_capability(
4599 xhci, portnum, XHCI_HLC)) {
4600 udev->usb2_hw_lpm_capable = 1;
4601 udev->l1_params.timeout = XHCI_L1_TIMEOUT;
4602 udev->l1_params.besl = XHCI_DEFAULT_BESL;
4603 if (xhci_check_usb2_port_capability(xhci, portnum,
4604 XHCI_BLC))
4605 udev->usb2_hw_lpm_besl_capable = 1;
4606 }
4607
4608 return 0;
4609}
4610
4611/*---------------------- USB 3.0 Link PM functions ------------------------*/
4612
4613/* Service interval in nanoseconds = 2^(bInterval - 1) * 125us * 1000ns / 1us */
4614static unsigned long long xhci_service_interval_to_ns(
4615 struct usb_endpoint_descriptor *desc)
4616{
4617 return (1ULL << (desc->bInterval - 1)) * 125 * 1000;
4618}
4619
4620static u16 xhci_get_timeout_no_hub_lpm(struct usb_device *udev,
4621 enum usb3_link_state state)
4622{
4623 unsigned long long sel;
4624 unsigned long long pel;
4625 unsigned int max_sel_pel;
4626 char *state_name;
4627
4628 switch (state) {
4629 case USB3_LPM_U1:
4630 /* Convert SEL and PEL stored in nanoseconds to microseconds */
4631 sel = DIV_ROUND_UP(udev->u1_params.sel, 1000);
4632 pel = DIV_ROUND_UP(udev->u1_params.pel, 1000);
4633 max_sel_pel = USB3_LPM_MAX_U1_SEL_PEL;
4634 state_name = "U1";
4635 break;
4636 case USB3_LPM_U2:
4637 sel = DIV_ROUND_UP(udev->u2_params.sel, 1000);
4638 pel = DIV_ROUND_UP(udev->u2_params.pel, 1000);
4639 max_sel_pel = USB3_LPM_MAX_U2_SEL_PEL;
4640 state_name = "U2";
4641 break;
4642 default:
4643 dev_warn(&udev->dev, "%s: Can't get timeout for non-U1 or U2 state.\n",
4644 __func__);
4645 return USB3_LPM_DISABLED;
4646 }
4647
4648 if (sel <= max_sel_pel && pel <= max_sel_pel)
4649 return USB3_LPM_DEVICE_INITIATED;
4650
4651 if (sel > max_sel_pel)
4652 dev_dbg(&udev->dev, "Device-initiated %s disabled "
4653 "due to long SEL %llu ms\n",
4654 state_name, sel);
4655 else
4656 dev_dbg(&udev->dev, "Device-initiated %s disabled "
4657 "due to long PEL %llu ms\n",
4658 state_name, pel);
4659 return USB3_LPM_DISABLED;
4660}
4661
4662/* The U1 timeout should be the maximum of the following values:
4663 * - For control endpoints, U1 system exit latency (SEL) * 3
4664 * - For bulk endpoints, U1 SEL * 5
4665 * - For interrupt endpoints:
4666 * - Notification EPs, U1 SEL * 3
4667 * - Periodic EPs, max(105% of bInterval, U1 SEL * 2)
4668 * - For isochronous endpoints, max(105% of bInterval, U1 SEL * 2)
4669 */
4670static unsigned long long xhci_calculate_intel_u1_timeout(
4671 struct usb_device *udev,
4672 struct usb_endpoint_descriptor *desc)
4673{
4674 unsigned long long timeout_ns;
4675 int ep_type;
4676 int intr_type;
4677
4678 ep_type = usb_endpoint_type(desc);
4679 switch (ep_type) {
4680 case USB_ENDPOINT_XFER_CONTROL:
4681 timeout_ns = udev->u1_params.sel * 3;
4682 break;
4683 case USB_ENDPOINT_XFER_BULK:
4684 timeout_ns = udev->u1_params.sel * 5;
4685 break;
4686 case USB_ENDPOINT_XFER_INT:
4687 intr_type = usb_endpoint_interrupt_type(desc);
4688 if (intr_type == USB_ENDPOINT_INTR_NOTIFICATION) {
4689 timeout_ns = udev->u1_params.sel * 3;
4690 break;
4691 }
4692 /* Otherwise the calculation is the same as isoc eps */
4693 fallthrough;
4694 case USB_ENDPOINT_XFER_ISOC:
4695 timeout_ns = xhci_service_interval_to_ns(desc);
4696 timeout_ns = DIV_ROUND_UP_ULL(timeout_ns * 105, 100);
4697 if (timeout_ns < udev->u1_params.sel * 2)
4698 timeout_ns = udev->u1_params.sel * 2;
4699 break;
4700 default:
4701 return 0;
4702 }
4703
4704 return timeout_ns;
4705}
4706
4707/* Returns the hub-encoded U1 timeout value. */
4708static u16 xhci_calculate_u1_timeout(struct xhci_hcd *xhci,
4709 struct usb_device *udev,
4710 struct usb_endpoint_descriptor *desc)
4711{
4712 unsigned long long timeout_ns;
4713
4714 /* Prevent U1 if service interval is shorter than U1 exit latency */
4715 if (usb_endpoint_xfer_int(desc) || usb_endpoint_xfer_isoc(desc)) {
4716 if (xhci_service_interval_to_ns(desc) <= udev->u1_params.mel) {
4717 dev_dbg(&udev->dev, "Disable U1, ESIT shorter than exit latency\n");
4718 return USB3_LPM_DISABLED;
4719 }
4720 }
4721
4722 if (xhci->quirks & XHCI_INTEL_HOST)
4723 timeout_ns = xhci_calculate_intel_u1_timeout(udev, desc);
4724 else
4725 timeout_ns = udev->u1_params.sel;
4726
4727 /* The U1 timeout is encoded in 1us intervals.
4728 * Don't return a timeout of zero, because that's USB3_LPM_DISABLED.
4729 */
4730 if (timeout_ns == USB3_LPM_DISABLED)
4731 timeout_ns = 1;
4732 else
4733 timeout_ns = DIV_ROUND_UP_ULL(timeout_ns, 1000);
4734
4735 /* If the necessary timeout value is bigger than what we can set in the
4736 * USB 3.0 hub, we have to disable hub-initiated U1.
4737 */
4738 if (timeout_ns <= USB3_LPM_U1_MAX_TIMEOUT)
4739 return timeout_ns;
4740 dev_dbg(&udev->dev, "Hub-initiated U1 disabled "
4741 "due to long timeout %llu ms\n", timeout_ns);
4742 return xhci_get_timeout_no_hub_lpm(udev, USB3_LPM_U1);
4743}
4744
4745/* The U2 timeout should be the maximum of:
4746 * - 10 ms (to avoid the bandwidth impact on the scheduler)
4747 * - largest bInterval of any active periodic endpoint (to avoid going
4748 * into lower power link states between intervals).
4749 * - the U2 Exit Latency of the device
4750 */
4751static unsigned long long xhci_calculate_intel_u2_timeout(
4752 struct usb_device *udev,
4753 struct usb_endpoint_descriptor *desc)
4754{
4755 unsigned long long timeout_ns;
4756 unsigned long long u2_del_ns;
4757
4758 timeout_ns = 10 * 1000 * 1000;
4759
4760 if ((usb_endpoint_xfer_int(desc) || usb_endpoint_xfer_isoc(desc)) &&
4761 (xhci_service_interval_to_ns(desc) > timeout_ns))
4762 timeout_ns = xhci_service_interval_to_ns(desc);
4763
4764 u2_del_ns = le16_to_cpu(udev->bos->ss_cap->bU2DevExitLat) * 1000ULL;
4765 if (u2_del_ns > timeout_ns)
4766 timeout_ns = u2_del_ns;
4767
4768 return timeout_ns;
4769}
4770
4771/* Returns the hub-encoded U2 timeout value. */
4772static u16 xhci_calculate_u2_timeout(struct xhci_hcd *xhci,
4773 struct usb_device *udev,
4774 struct usb_endpoint_descriptor *desc)
4775{
4776 unsigned long long timeout_ns;
4777
4778 /* Prevent U2 if service interval is shorter than U2 exit latency */
4779 if (usb_endpoint_xfer_int(desc) || usb_endpoint_xfer_isoc(desc)) {
4780 if (xhci_service_interval_to_ns(desc) <= udev->u2_params.mel) {
4781 dev_dbg(&udev->dev, "Disable U2, ESIT shorter than exit latency\n");
4782 return USB3_LPM_DISABLED;
4783 }
4784 }
4785
4786 if (xhci->quirks & XHCI_INTEL_HOST)
4787 timeout_ns = xhci_calculate_intel_u2_timeout(udev, desc);
4788 else
4789 timeout_ns = udev->u2_params.sel;
4790
4791 /* The U2 timeout is encoded in 256us intervals */
4792 timeout_ns = DIV_ROUND_UP_ULL(timeout_ns, 256 * 1000);
4793 /* If the necessary timeout value is bigger than what we can set in the
4794 * USB 3.0 hub, we have to disable hub-initiated U2.
4795 */
4796 if (timeout_ns <= USB3_LPM_U2_MAX_TIMEOUT)
4797 return timeout_ns;
4798 dev_dbg(&udev->dev, "Hub-initiated U2 disabled "
4799 "due to long timeout %llu ms\n", timeout_ns);
4800 return xhci_get_timeout_no_hub_lpm(udev, USB3_LPM_U2);
4801}
4802
4803static u16 xhci_call_host_update_timeout_for_endpoint(struct xhci_hcd *xhci,
4804 struct usb_device *udev,
4805 struct usb_endpoint_descriptor *desc,
4806 enum usb3_link_state state,
4807 u16 *timeout)
4808{
4809 if (state == USB3_LPM_U1)
4810 return xhci_calculate_u1_timeout(xhci, udev, desc);
4811 else if (state == USB3_LPM_U2)
4812 return xhci_calculate_u2_timeout(xhci, udev, desc);
4813
4814 return USB3_LPM_DISABLED;
4815}
4816
4817static int xhci_update_timeout_for_endpoint(struct xhci_hcd *xhci,
4818 struct usb_device *udev,
4819 struct usb_endpoint_descriptor *desc,
4820 enum usb3_link_state state,
4821 u16 *timeout)
4822{
4823 u16 alt_timeout;
4824
4825 alt_timeout = xhci_call_host_update_timeout_for_endpoint(xhci, udev,
4826 desc, state, timeout);
4827
4828 /* If we found we can't enable hub-initiated LPM, and
4829 * the U1 or U2 exit latency was too high to allow
4830 * device-initiated LPM as well, then we will disable LPM
4831 * for this device, so stop searching any further.
4832 */
4833 if (alt_timeout == USB3_LPM_DISABLED) {
4834 *timeout = alt_timeout;
4835 return -E2BIG;
4836 }
4837 if (alt_timeout > *timeout)
4838 *timeout = alt_timeout;
4839 return 0;
4840}
4841
4842static int xhci_update_timeout_for_interface(struct xhci_hcd *xhci,
4843 struct usb_device *udev,
4844 struct usb_host_interface *alt,
4845 enum usb3_link_state state,
4846 u16 *timeout)
4847{
4848 int j;
4849
4850 for (j = 0; j < alt->desc.bNumEndpoints; j++) {
4851 if (xhci_update_timeout_for_endpoint(xhci, udev,
4852 &alt->endpoint[j].desc, state, timeout))
4853 return -E2BIG;
4854 }
4855 return 0;
4856}
4857
4858static int xhci_check_intel_tier_policy(struct usb_device *udev,
4859 enum usb3_link_state state)
4860{
4861 struct usb_device *parent;
4862 unsigned int num_hubs;
4863
4864 if (state == USB3_LPM_U2)
4865 return 0;
4866
4867 /* Don't enable U1 if the device is on a 2nd tier hub or lower. */
4868 for (parent = udev->parent, num_hubs = 0; parent->parent;
4869 parent = parent->parent)
4870 num_hubs++;
4871
4872 if (num_hubs < 2)
4873 return 0;
4874
4875 dev_dbg(&udev->dev, "Disabling U1 link state for device"
4876 " below second-tier hub.\n");
4877 dev_dbg(&udev->dev, "Plug device into first-tier hub "
4878 "to decrease power consumption.\n");
4879 return -E2BIG;
4880}
4881
4882static int xhci_check_tier_policy(struct xhci_hcd *xhci,
4883 struct usb_device *udev,
4884 enum usb3_link_state state)
4885{
4886 if (xhci->quirks & XHCI_INTEL_HOST)
4887 return xhci_check_intel_tier_policy(udev, state);
4888 else
4889 return 0;
4890}
4891
4892/* Returns the U1 or U2 timeout that should be enabled.
4893 * If the tier check or timeout setting functions return with a non-zero exit
4894 * code, that means the timeout value has been finalized and we shouldn't look
4895 * at any more endpoints.
4896 */
4897static u16 xhci_calculate_lpm_timeout(struct usb_hcd *hcd,
4898 struct usb_device *udev, enum usb3_link_state state)
4899{
4900 struct xhci_hcd *xhci = hcd_to_xhci(hcd);
4901 struct usb_host_config *config;
4902 char *state_name;
4903 int i;
4904 u16 timeout = USB3_LPM_DISABLED;
4905
4906 if (state == USB3_LPM_U1)
4907 state_name = "U1";
4908 else if (state == USB3_LPM_U2)
4909 state_name = "U2";
4910 else {
4911 dev_warn(&udev->dev, "Can't enable unknown link state %i\n",
4912 state);
4913 return timeout;
4914 }
4915
4916 if (xhci_check_tier_policy(xhci, udev, state) < 0)
4917 return timeout;
4918
4919 /* Gather some information about the currently installed configuration
4920 * and alternate interface settings.
4921 */
4922 if (xhci_update_timeout_for_endpoint(xhci, udev, &udev->ep0.desc,
4923 state, &timeout))
4924 return timeout;
4925
4926 config = udev->actconfig;
4927 if (!config)
4928 return timeout;
4929
4930 for (i = 0; i < config->desc.bNumInterfaces; i++) {
4931 struct usb_driver *driver;
4932 struct usb_interface *intf = config->interface[i];
4933
4934 if (!intf)
4935 continue;
4936
4937 /* Check if any currently bound drivers want hub-initiated LPM
4938 * disabled.
4939 */
4940 if (intf->dev.driver) {
4941 driver = to_usb_driver(intf->dev.driver);
4942 if (driver && driver->disable_hub_initiated_lpm) {
4943 dev_dbg(&udev->dev, "Hub-initiated %s disabled at request of driver %s\n",
4944 state_name, driver->name);
4945 timeout = xhci_get_timeout_no_hub_lpm(udev,
4946 state);
4947 if (timeout == USB3_LPM_DISABLED)
4948 return timeout;
4949 }
4950 }
4951
4952 /* Not sure how this could happen... */
4953 if (!intf->cur_altsetting)
4954 continue;
4955
4956 if (xhci_update_timeout_for_interface(xhci, udev,
4957 intf->cur_altsetting,
4958 state, &timeout))
4959 return timeout;
4960 }
4961 return timeout;
4962}
4963
4964static int calculate_max_exit_latency(struct usb_device *udev,
4965 enum usb3_link_state state_changed,
4966 u16 hub_encoded_timeout)
4967{
4968 unsigned long long u1_mel_us = 0;
4969 unsigned long long u2_mel_us = 0;
4970 unsigned long long mel_us = 0;
4971 bool disabling_u1;
4972 bool disabling_u2;
4973 bool enabling_u1;
4974 bool enabling_u2;
4975
4976 disabling_u1 = (state_changed == USB3_LPM_U1 &&
4977 hub_encoded_timeout == USB3_LPM_DISABLED);
4978 disabling_u2 = (state_changed == USB3_LPM_U2 &&
4979 hub_encoded_timeout == USB3_LPM_DISABLED);
4980
4981 enabling_u1 = (state_changed == USB3_LPM_U1 &&
4982 hub_encoded_timeout != USB3_LPM_DISABLED);
4983 enabling_u2 = (state_changed == USB3_LPM_U2 &&
4984 hub_encoded_timeout != USB3_LPM_DISABLED);
4985
4986 /* If U1 was already enabled and we're not disabling it,
4987 * or we're going to enable U1, account for the U1 max exit latency.
4988 */
4989 if ((udev->u1_params.timeout != USB3_LPM_DISABLED && !disabling_u1) ||
4990 enabling_u1)
4991 u1_mel_us = DIV_ROUND_UP(udev->u1_params.mel, 1000);
4992 if ((udev->u2_params.timeout != USB3_LPM_DISABLED && !disabling_u2) ||
4993 enabling_u2)
4994 u2_mel_us = DIV_ROUND_UP(udev->u2_params.mel, 1000);
4995
4996 if (u1_mel_us > u2_mel_us)
4997 mel_us = u1_mel_us;
4998 else
4999 mel_us = u2_mel_us;
5000 /* xHCI host controller max exit latency field is only 16 bits wide. */
5001 if (mel_us > MAX_EXIT) {
5002 dev_warn(&udev->dev, "Link PM max exit latency of %lluus "
5003 "is too big.\n", mel_us);
5004 return -E2BIG;
5005 }
5006 return mel_us;
5007}
5008
5009/* Returns the USB3 hub-encoded value for the U1/U2 timeout. */
5010static int xhci_enable_usb3_lpm_timeout(struct usb_hcd *hcd,
5011 struct usb_device *udev, enum usb3_link_state state)
5012{
5013 struct xhci_hcd *xhci;
5014 u16 hub_encoded_timeout;
5015 int mel;
5016 int ret;
5017
5018 xhci = hcd_to_xhci(hcd);
5019 /* The LPM timeout values are pretty host-controller specific, so don't
5020 * enable hub-initiated timeouts unless the vendor has provided
5021 * information about their timeout algorithm.
5022 */
5023 if (!xhci || !(xhci->quirks & XHCI_LPM_SUPPORT) ||
5024 !xhci->devs[udev->slot_id])
5025 return USB3_LPM_DISABLED;
5026
5027 hub_encoded_timeout = xhci_calculate_lpm_timeout(hcd, udev, state);
5028 mel = calculate_max_exit_latency(udev, state, hub_encoded_timeout);
5029 if (mel < 0) {
5030 /* Max Exit Latency is too big, disable LPM. */
5031 hub_encoded_timeout = USB3_LPM_DISABLED;
5032 mel = 0;
5033 }
5034
5035 ret = xhci_change_max_exit_latency(xhci, udev, mel);
5036 if (ret)
5037 return ret;
5038 return hub_encoded_timeout;
5039}
5040
5041static int xhci_disable_usb3_lpm_timeout(struct usb_hcd *hcd,
5042 struct usb_device *udev, enum usb3_link_state state)
5043{
5044 struct xhci_hcd *xhci;
5045 u16 mel;
5046
5047 xhci = hcd_to_xhci(hcd);
5048 if (!xhci || !(xhci->quirks & XHCI_LPM_SUPPORT) ||
5049 !xhci->devs[udev->slot_id])
5050 return 0;
5051
5052 mel = calculate_max_exit_latency(udev, state, USB3_LPM_DISABLED);
5053 return xhci_change_max_exit_latency(xhci, udev, mel);
5054}
5055#else /* CONFIG_PM */
5056
5057static int xhci_set_usb2_hardware_lpm(struct usb_hcd *hcd,
5058 struct usb_device *udev, int enable)
5059{
5060 return 0;
5061}
5062
5063static int xhci_update_device(struct usb_hcd *hcd, struct usb_device *udev)
5064{
5065 return 0;
5066}
5067
5068static int xhci_enable_usb3_lpm_timeout(struct usb_hcd *hcd,
5069 struct usb_device *udev, enum usb3_link_state state)
5070{
5071 return USB3_LPM_DISABLED;
5072}
5073
5074static int xhci_disable_usb3_lpm_timeout(struct usb_hcd *hcd,
5075 struct usb_device *udev, enum usb3_link_state state)
5076{
5077 return 0;
5078}
5079#endif /* CONFIG_PM */
5080
5081/*-------------------------------------------------------------------------*/
5082
5083/* Once a hub descriptor is fetched for a device, we need to update the xHC's
5084 * internal data structures for the device.
5085 */
5086static int xhci_update_hub_device(struct usb_hcd *hcd, struct usb_device *hdev,
5087 struct usb_tt *tt, gfp_t mem_flags)
5088{
5089 struct xhci_hcd *xhci = hcd_to_xhci(hcd);
5090 struct xhci_virt_device *vdev;
5091 struct xhci_command *config_cmd;
5092 struct xhci_input_control_ctx *ctrl_ctx;
5093 struct xhci_slot_ctx *slot_ctx;
5094 unsigned long flags;
5095 unsigned think_time;
5096 int ret;
5097
5098 /* Ignore root hubs */
5099 if (!hdev->parent)
5100 return 0;
5101
5102 vdev = xhci->devs[hdev->slot_id];
5103 if (!vdev) {
5104 xhci_warn(xhci, "Cannot update hub desc for unknown device.\n");
5105 return -EINVAL;
5106 }
5107
5108 config_cmd = xhci_alloc_command_with_ctx(xhci, true, mem_flags);
5109 if (!config_cmd)
5110 return -ENOMEM;
5111
5112 ctrl_ctx = xhci_get_input_control_ctx(config_cmd->in_ctx);
5113 if (!ctrl_ctx) {
5114 xhci_warn(xhci, "%s: Could not get input context, bad type.\n",
5115 __func__);
5116 xhci_free_command(xhci, config_cmd);
5117 return -ENOMEM;
5118 }
5119
5120 spin_lock_irqsave(&xhci->lock, flags);
5121 if (hdev->speed == USB_SPEED_HIGH &&
5122 xhci_alloc_tt_info(xhci, vdev, hdev, tt, GFP_ATOMIC)) {
5123 xhci_dbg(xhci, "Could not allocate xHCI TT structure.\n");
5124 xhci_free_command(xhci, config_cmd);
5125 spin_unlock_irqrestore(&xhci->lock, flags);
5126 return -ENOMEM;
5127 }
5128
5129 xhci_slot_copy(xhci, config_cmd->in_ctx, vdev->out_ctx);
5130 ctrl_ctx->add_flags |= cpu_to_le32(SLOT_FLAG);
5131 slot_ctx = xhci_get_slot_ctx(xhci, config_cmd->in_ctx);
5132 slot_ctx->dev_info |= cpu_to_le32(DEV_HUB);
5133 /*
5134 * refer to section 6.2.2: MTT should be 0 for full speed hub,
5135 * but it may be already set to 1 when setup an xHCI virtual
5136 * device, so clear it anyway.
5137 */
5138 if (tt->multi)
5139 slot_ctx->dev_info |= cpu_to_le32(DEV_MTT);
5140 else if (hdev->speed == USB_SPEED_FULL)
5141 slot_ctx->dev_info &= cpu_to_le32(~DEV_MTT);
5142
5143 if (xhci->hci_version > 0x95) {
5144 xhci_dbg(xhci, "xHCI version %x needs hub "
5145 "TT think time and number of ports\n",
5146 (unsigned int) xhci->hci_version);
5147 slot_ctx->dev_info2 |= cpu_to_le32(XHCI_MAX_PORTS(hdev->maxchild));
5148 /* Set TT think time - convert from ns to FS bit times.
5149 * 0 = 8 FS bit times, 1 = 16 FS bit times,
5150 * 2 = 24 FS bit times, 3 = 32 FS bit times.
5151 *
5152 * xHCI 1.0: this field shall be 0 if the device is not a
5153 * High-spped hub.
5154 */
5155 think_time = tt->think_time;
5156 if (think_time != 0)
5157 think_time = (think_time / 666) - 1;
5158 if (xhci->hci_version < 0x100 || hdev->speed == USB_SPEED_HIGH)
5159 slot_ctx->tt_info |=
5160 cpu_to_le32(TT_THINK_TIME(think_time));
5161 } else {
5162 xhci_dbg(xhci, "xHCI version %x doesn't need hub "
5163 "TT think time or number of ports\n",
5164 (unsigned int) xhci->hci_version);
5165 }
5166 slot_ctx->dev_state = 0;
5167 spin_unlock_irqrestore(&xhci->lock, flags);
5168
5169 xhci_dbg(xhci, "Set up %s for hub device.\n",
5170 (xhci->hci_version > 0x95) ?
5171 "configure endpoint" : "evaluate context");
5172
5173 /* Issue and wait for the configure endpoint or
5174 * evaluate context command.
5175 */
5176 if (xhci->hci_version > 0x95)
5177 ret = xhci_configure_endpoint(xhci, hdev, config_cmd,
5178 false, false);
5179 else
5180 ret = xhci_configure_endpoint(xhci, hdev, config_cmd,
5181 true, false);
5182
5183 xhci_free_command(xhci, config_cmd);
5184 return ret;
5185}
5186
5187static int xhci_get_frame(struct usb_hcd *hcd)
5188{
5189 struct xhci_hcd *xhci = hcd_to_xhci(hcd);
5190 /* EHCI mods by the periodic size. Why? */
5191 return readl(&xhci->run_regs->microframe_index) >> 3;
5192}
5193
5194int xhci_gen_setup(struct usb_hcd *hcd, xhci_get_quirks_t get_quirks)
5195{
5196 struct xhci_hcd *xhci;
5197 /*
5198 * TODO: Check with DWC3 clients for sysdev according to
5199 * quirks
5200 */
5201 struct device *dev = hcd->self.sysdev;
5202 unsigned int minor_rev;
5203 int retval;
5204
5205 /* Accept arbitrarily long scatter-gather lists */
5206 hcd->self.sg_tablesize = ~0;
5207
5208 /* support to build packet from discontinuous buffers */
5209 hcd->self.no_sg_constraint = 1;
5210
5211 /* XHCI controllers don't stop the ep queue on short packets :| */
5212 hcd->self.no_stop_on_short = 1;
5213
5214 xhci = hcd_to_xhci(hcd);
5215
5216 if (usb_hcd_is_primary_hcd(hcd)) {
5217 xhci->main_hcd = hcd;
5218 xhci->usb2_rhub.hcd = hcd;
5219 /* Mark the first roothub as being USB 2.0.
5220 * The xHCI driver will register the USB 3.0 roothub.
5221 */
5222 hcd->speed = HCD_USB2;
5223 hcd->self.root_hub->speed = USB_SPEED_HIGH;
5224 /*
5225 * USB 2.0 roothub under xHCI has an integrated TT,
5226 * (rate matching hub) as opposed to having an OHCI/UHCI
5227 * companion controller.
5228 */
5229 hcd->has_tt = 1;
5230 } else {
5231 /*
5232 * Early xHCI 1.1 spec did not mention USB 3.1 capable hosts
5233 * should return 0x31 for sbrn, or that the minor revision
5234 * is a two digit BCD containig minor and sub-minor numbers.
5235 * This was later clarified in xHCI 1.2.
5236 *
5237 * Some USB 3.1 capable hosts therefore have sbrn 0x30, and
5238 * minor revision set to 0x1 instead of 0x10.
5239 */
5240 if (xhci->usb3_rhub.min_rev == 0x1)
5241 minor_rev = 1;
5242 else
5243 minor_rev = xhci->usb3_rhub.min_rev / 0x10;
5244
5245 switch (minor_rev) {
5246 case 2:
5247 hcd->speed = HCD_USB32;
5248 hcd->self.root_hub->speed = USB_SPEED_SUPER_PLUS;
5249 hcd->self.root_hub->rx_lanes = 2;
5250 hcd->self.root_hub->tx_lanes = 2;
5251 hcd->self.root_hub->ssp_rate = USB_SSP_GEN_2x2;
5252 break;
5253 case 1:
5254 hcd->speed = HCD_USB31;
5255 hcd->self.root_hub->speed = USB_SPEED_SUPER_PLUS;
5256 hcd->self.root_hub->ssp_rate = USB_SSP_GEN_2x1;
5257 break;
5258 }
5259 xhci_info(xhci, "Host supports USB 3.%x %sSuperSpeed\n",
5260 minor_rev,
5261 minor_rev ? "Enhanced " : "");
5262
5263 xhci->usb3_rhub.hcd = hcd;
5264 /* xHCI private pointer was set in xhci_pci_probe for the second
5265 * registered roothub.
5266 */
5267 return 0;
5268 }
5269
5270 mutex_init(&xhci->mutex);
5271 xhci->cap_regs = hcd->regs;
5272 xhci->op_regs = hcd->regs +
5273 HC_LENGTH(readl(&xhci->cap_regs->hc_capbase));
5274 xhci->run_regs = hcd->regs +
5275 (readl(&xhci->cap_regs->run_regs_off) & RTSOFF_MASK);
5276 /* Cache read-only capability registers */
5277 xhci->hcs_params1 = readl(&xhci->cap_regs->hcs_params1);
5278 xhci->hcs_params2 = readl(&xhci->cap_regs->hcs_params2);
5279 xhci->hcs_params3 = readl(&xhci->cap_regs->hcs_params3);
5280 xhci->hcc_params = readl(&xhci->cap_regs->hc_capbase);
5281 xhci->hci_version = HC_VERSION(xhci->hcc_params);
5282 xhci->hcc_params = readl(&xhci->cap_regs->hcc_params);
5283 if (xhci->hci_version > 0x100)
5284 xhci->hcc_params2 = readl(&xhci->cap_regs->hcc_params2);
5285
5286 xhci->quirks |= quirks;
5287
5288 get_quirks(dev, xhci);
5289
5290 /* In xhci controllers which follow xhci 1.0 spec gives a spurious
5291 * success event after a short transfer. This quirk will ignore such
5292 * spurious event.
5293 */
5294 if (xhci->hci_version > 0x96)
5295 xhci->quirks |= XHCI_SPURIOUS_SUCCESS;
5296
5297 /* Make sure the HC is halted. */
5298 retval = xhci_halt(xhci);
5299 if (retval)
5300 return retval;
5301
5302 xhci_zero_64b_regs(xhci);
5303
5304 xhci_dbg(xhci, "Resetting HCD\n");
5305 /* Reset the internal HC memory state and registers. */
5306 retval = xhci_reset(xhci);
5307 if (retval)
5308 return retval;
5309 xhci_dbg(xhci, "Reset complete\n");
5310
5311 /*
5312 * On some xHCI controllers (e.g. R-Car SoCs), the AC64 bit (bit 0)
5313 * of HCCPARAMS1 is set to 1. However, the xHCs don't support 64-bit
5314 * address memory pointers actually. So, this driver clears the AC64
5315 * bit of xhci->hcc_params to call dma_set_coherent_mask(dev,
5316 * DMA_BIT_MASK(32)) in this xhci_gen_setup().
5317 */
5318 if (xhci->quirks & XHCI_NO_64BIT_SUPPORT)
5319 xhci->hcc_params &= ~BIT(0);
5320
5321 /* Set dma_mask and coherent_dma_mask to 64-bits,
5322 * if xHC supports 64-bit addressing */
5323 if (HCC_64BIT_ADDR(xhci->hcc_params) &&
5324 !dma_set_mask(dev, DMA_BIT_MASK(64))) {
5325 xhci_dbg(xhci, "Enabling 64-bit DMA addresses.\n");
5326 dma_set_coherent_mask(dev, DMA_BIT_MASK(64));
5327 } else {
5328 /*
5329 * This is to avoid error in cases where a 32-bit USB
5330 * controller is used on a 64-bit capable system.
5331 */
5332 retval = dma_set_mask(dev, DMA_BIT_MASK(32));
5333 if (retval)
5334 return retval;
5335 xhci_dbg(xhci, "Enabling 32-bit DMA addresses.\n");
5336 dma_set_coherent_mask(dev, DMA_BIT_MASK(32));
5337 }
5338
5339 xhci_dbg(xhci, "Calling HCD init\n");
5340 /* Initialize HCD and host controller data structures. */
5341 retval = xhci_init(hcd);
5342 if (retval)
5343 return retval;
5344 xhci_dbg(xhci, "Called HCD init\n");
5345
5346 xhci_info(xhci, "hcc params 0x%08x hci version 0x%x quirks 0x%016llx\n",
5347 xhci->hcc_params, xhci->hci_version, xhci->quirks);
5348
5349 return 0;
5350}
5351EXPORT_SYMBOL_GPL(xhci_gen_setup);
5352
5353static void xhci_clear_tt_buffer_complete(struct usb_hcd *hcd,
5354 struct usb_host_endpoint *ep)
5355{
5356 struct xhci_hcd *xhci;
5357 struct usb_device *udev;
5358 unsigned int slot_id;
5359 unsigned int ep_index;
5360 unsigned long flags;
5361
5362 xhci = hcd_to_xhci(hcd);
5363
5364 spin_lock_irqsave(&xhci->lock, flags);
5365 udev = (struct usb_device *)ep->hcpriv;
5366 slot_id = udev->slot_id;
5367 ep_index = xhci_get_endpoint_index(&ep->desc);
5368
5369 xhci->devs[slot_id]->eps[ep_index].ep_state &= ~EP_CLEARING_TT;
5370 xhci_ring_doorbell_for_active_rings(xhci, slot_id, ep_index);
5371 spin_unlock_irqrestore(&xhci->lock, flags);
5372}
5373
5374static const struct hc_driver xhci_hc_driver = {
5375 .description = "xhci-hcd",
5376 .product_desc = "xHCI Host Controller",
5377 .hcd_priv_size = sizeof(struct xhci_hcd),
5378
5379 /*
5380 * generic hardware linkage
5381 */
5382 .irq = xhci_irq,
5383 .flags = HCD_MEMORY | HCD_DMA | HCD_USB3 | HCD_SHARED |
5384 HCD_BH,
5385
5386 /*
5387 * basic lifecycle operations
5388 */
5389 .reset = NULL, /* set in xhci_init_driver() */
5390 .start = xhci_run,
5391 .stop = xhci_stop,
5392 .shutdown = xhci_shutdown,
5393
5394 /*
5395 * managing i/o requests and associated device resources
5396 */
5397 .map_urb_for_dma = xhci_map_urb_for_dma,
5398 .unmap_urb_for_dma = xhci_unmap_urb_for_dma,
5399 .urb_enqueue = xhci_urb_enqueue,
5400 .urb_dequeue = xhci_urb_dequeue,
5401 .alloc_dev = xhci_alloc_dev,
5402 .free_dev = xhci_free_dev,
5403 .alloc_streams = xhci_alloc_streams,
5404 .free_streams = xhci_free_streams,
5405 .add_endpoint = xhci_add_endpoint,
5406 .drop_endpoint = xhci_drop_endpoint,
5407 .endpoint_disable = xhci_endpoint_disable,
5408 .endpoint_reset = xhci_endpoint_reset,
5409 .check_bandwidth = xhci_check_bandwidth,
5410 .reset_bandwidth = xhci_reset_bandwidth,
5411 .address_device = xhci_address_device,
5412 .enable_device = xhci_enable_device,
5413 .update_hub_device = xhci_update_hub_device,
5414 .reset_device = xhci_discover_or_reset_device,
5415
5416 /*
5417 * scheduling support
5418 */
5419 .get_frame_number = xhci_get_frame,
5420
5421 /*
5422 * root hub support
5423 */
5424 .hub_control = xhci_hub_control,
5425 .hub_status_data = xhci_hub_status_data,
5426 .bus_suspend = xhci_bus_suspend,
5427 .bus_resume = xhci_bus_resume,
5428 .get_resuming_ports = xhci_get_resuming_ports,
5429
5430 /*
5431 * call back when device connected and addressed
5432 */
5433 .update_device = xhci_update_device,
5434 .set_usb2_hw_lpm = xhci_set_usb2_hardware_lpm,
5435 .enable_usb3_lpm_timeout = xhci_enable_usb3_lpm_timeout,
5436 .disable_usb3_lpm_timeout = xhci_disable_usb3_lpm_timeout,
5437 .find_raw_port_number = xhci_find_raw_port_number,
5438 .clear_tt_buffer_complete = xhci_clear_tt_buffer_complete,
5439};
5440
5441void xhci_init_driver(struct hc_driver *drv,
5442 const struct xhci_driver_overrides *over)
5443{
5444 BUG_ON(!over);
5445
5446 /* Copy the generic table to drv then apply the overrides */
5447 *drv = xhci_hc_driver;
5448
5449 if (over) {
5450 drv->hcd_priv_size += over->extra_priv_size;
5451 if (over->reset)
5452 drv->reset = over->reset;
5453 if (over->start)
5454 drv->start = over->start;
5455 if (over->add_endpoint)
5456 drv->add_endpoint = over->add_endpoint;
5457 if (over->drop_endpoint)
5458 drv->drop_endpoint = over->drop_endpoint;
5459 if (over->check_bandwidth)
5460 drv->check_bandwidth = over->check_bandwidth;
5461 if (over->reset_bandwidth)
5462 drv->reset_bandwidth = over->reset_bandwidth;
5463 }
5464}
5465EXPORT_SYMBOL_GPL(xhci_init_driver);
5466
5467MODULE_DESCRIPTION(DRIVER_DESC);
5468MODULE_AUTHOR(DRIVER_AUTHOR);
5469MODULE_LICENSE("GPL");
5470
5471static int __init xhci_hcd_init(void)
5472{
5473 /*
5474 * Check the compiler generated sizes of structures that must be laid
5475 * out in specific ways for hardware access.
5476 */
5477 BUILD_BUG_ON(sizeof(struct xhci_doorbell_array) != 256*32/8);
5478 BUILD_BUG_ON(sizeof(struct xhci_slot_ctx) != 8*32/8);
5479 BUILD_BUG_ON(sizeof(struct xhci_ep_ctx) != 8*32/8);
5480 /* xhci_device_control has eight fields, and also
5481 * embeds one xhci_slot_ctx and 31 xhci_ep_ctx
5482 */
5483 BUILD_BUG_ON(sizeof(struct xhci_stream_ctx) != 4*32/8);
5484 BUILD_BUG_ON(sizeof(union xhci_trb) != 4*32/8);
5485 BUILD_BUG_ON(sizeof(struct xhci_erst_entry) != 4*32/8);
5486 BUILD_BUG_ON(sizeof(struct xhci_cap_regs) != 8*32/8);
5487 BUILD_BUG_ON(sizeof(struct xhci_intr_reg) != 8*32/8);
5488 /* xhci_run_regs has eight fields and embeds 128 xhci_intr_regs */
5489 BUILD_BUG_ON(sizeof(struct xhci_run_regs) != (8+8*128)*32/8);
5490
5491 if (usb_disabled())
5492 return -ENODEV;
5493
5494 xhci_debugfs_create_root();
5495
5496 return 0;
5497}
5498
5499/*
5500 * If an init function is provided, an exit function must also be provided
5501 * to allow module unload.
5502 */
5503static void __exit xhci_hcd_fini(void)
5504{
5505 xhci_debugfs_remove_root();
5506}
5507
5508module_init(xhci_hcd_init);
5509module_exit(xhci_hcd_fini);