Linux Audio

Check our new training course

Loading...
v3.1
 
   1/*
   2 * xHCI host controller driver
   3 *
   4 * Copyright (C) 2008 Intel Corp.
   5 *
   6 * Author: Sarah Sharp
   7 * Some code borrowed from the Linux EHCI driver.
   8 *
   9 * This program is free software; you can redistribute it and/or modify
  10 * it under the terms of the GNU General Public License version 2 as
  11 * published by the Free Software Foundation.
  12 *
  13 * This program is distributed in the hope that it will be useful, but
  14 * WITHOUT ANY WARRANTY; without even the implied warranty of MERCHANTABILITY
  15 * or FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public License
  16 * for more details.
  17 *
  18 * You should have received a copy of the GNU General Public License
  19 * along with this program; if not, write to the Free Software Foundation,
  20 * Inc., 675 Mass Ave, Cambridge, MA 02139, USA.
  21 */
  22
  23#include <linux/pci.h>
 
  24#include <linux/irq.h>
  25#include <linux/log2.h>
  26#include <linux/module.h>
  27#include <linux/moduleparam.h>
  28#include <linux/slab.h>
 
 
  29
  30#include "xhci.h"
 
 
 
  31
  32#define DRIVER_AUTHOR "Sarah Sharp"
  33#define DRIVER_DESC "'eXtensible' Host Controller (xHC) Driver"
  34
 
 
  35/* Some 0.95 hardware can't handle the chain bit on a Link TRB being cleared */
  36static int link_quirk;
  37module_param(link_quirk, int, S_IRUGO | S_IWUSR);
  38MODULE_PARM_DESC(link_quirk, "Don't clear the chain bit on a link TRB");
  39
  40/* TODO: copied from ehci-hcd.c - can this be refactored? */
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
  41/*
  42 * handshake - spin reading hc until handshake completes or fails
  43 * @ptr: address of hc register to be read
  44 * @mask: bits to look at in result of read
  45 * @done: value of those bits when handshake succeeds
  46 * @usec: timeout in microseconds
  47 *
  48 * Returns negative errno, or zero on success
  49 *
  50 * Success happens when the "mask" bits have the specified value (hardware
  51 * handshake done).  There are two failure modes:  "usec" have passed (major
  52 * hardware flakeout), or the register reads as all-ones (hardware removed).
  53 */
  54static int handshake(struct xhci_hcd *xhci, void __iomem *ptr,
  55		      u32 mask, u32 done, int usec)
  56{
  57	u32	result;
 
  58
  59	do {
  60		result = xhci_readl(xhci, ptr);
  61		if (result == ~(u32)0)		/* card removed */
  62			return -ENODEV;
  63		result &= mask;
  64		if (result == done)
  65			return 0;
  66		udelay(1);
  67		usec--;
  68	} while (usec > 0);
  69	return -ETIMEDOUT;
  70}
  71
  72/*
  73 * Disable interrupts and begin the xHCI halting process.
  74 */
  75void xhci_quiesce(struct xhci_hcd *xhci)
  76{
  77	u32 halted;
  78	u32 cmd;
  79	u32 mask;
  80
  81	mask = ~(XHCI_IRQS);
  82	halted = xhci_readl(xhci, &xhci->op_regs->status) & STS_HALT;
  83	if (!halted)
  84		mask &= ~CMD_RUN;
  85
  86	cmd = xhci_readl(xhci, &xhci->op_regs->command);
  87	cmd &= mask;
  88	xhci_writel(xhci, cmd, &xhci->op_regs->command);
  89}
  90
  91/*
  92 * Force HC into halt state.
  93 *
  94 * Disable any IRQs and clear the run/stop bit.
  95 * HC will complete any current and actively pipelined transactions, and
  96 * should halt within 16 ms of the run/stop bit being cleared.
  97 * Read HC Halted bit in the status register to see when the HC is finished.
  98 */
  99int xhci_halt(struct xhci_hcd *xhci)
 100{
 101	int ret;
 102	xhci_dbg(xhci, "// Halt the HC\n");
 103	xhci_quiesce(xhci);
 104
 105	ret = handshake(xhci, &xhci->op_regs->status,
 106			STS_HALT, STS_HALT, XHCI_MAX_HALT_USEC);
 107	if (!ret)
 108		xhci->xhc_state |= XHCI_STATE_HALTED;
 
 
 
 
 109	return ret;
 110}
 111
 112/*
 113 * Set the run bit and wait for the host to be running.
 114 */
 115static int xhci_start(struct xhci_hcd *xhci)
 116{
 117	u32 temp;
 118	int ret;
 119
 120	temp = xhci_readl(xhci, &xhci->op_regs->command);
 121	temp |= (CMD_RUN);
 122	xhci_dbg(xhci, "// Turn on HC, cmd = 0x%x.\n",
 123			temp);
 124	xhci_writel(xhci, temp, &xhci->op_regs->command);
 125
 126	/*
 127	 * Wait for the HCHalted Status bit to be 0 to indicate the host is
 128	 * running.
 129	 */
 130	ret = handshake(xhci, &xhci->op_regs->status,
 131			STS_HALT, 0, XHCI_MAX_HALT_USEC);
 132	if (ret == -ETIMEDOUT)
 133		xhci_err(xhci, "Host took too long to start, "
 134				"waited %u microseconds.\n",
 135				XHCI_MAX_HALT_USEC);
 136	if (!ret)
 137		xhci->xhc_state &= ~XHCI_STATE_HALTED;
 
 
 138	return ret;
 139}
 140
 141/*
 142 * Reset a halted HC.
 143 *
 144 * This resets pipelines, timers, counters, state machines, etc.
 145 * Transactions will be terminated immediately, and operational registers
 146 * will be set to their defaults.
 147 */
 148int xhci_reset(struct xhci_hcd *xhci)
 149{
 150	u32 command;
 151	u32 state;
 152	int ret;
 153
 154	state = xhci_readl(xhci, &xhci->op_regs->status);
 
 
 
 
 
 
 155	if ((state & STS_HALT) == 0) {
 156		xhci_warn(xhci, "Host controller not halted, aborting reset.\n");
 157		return 0;
 158	}
 159
 160	xhci_dbg(xhci, "// Reset the HC\n");
 161	command = xhci_readl(xhci, &xhci->op_regs->command);
 162	command |= CMD_RESET;
 163	xhci_writel(xhci, command, &xhci->op_regs->command);
 
 
 
 
 
 
 
 
 
 
 164
 165	ret = handshake(xhci, &xhci->op_regs->command,
 166			CMD_RESET, 0, 250 * 1000);
 167	if (ret)
 168		return ret;
 169
 170	xhci_dbg(xhci, "Wait for controller to be ready for doorbell rings\n");
 
 
 
 
 171	/*
 172	 * xHCI cannot write to any doorbells or operational registers other
 173	 * than status until the "Controller Not Ready" flag is cleared.
 174	 */
 175	return handshake(xhci, &xhci->op_regs->status, STS_CNR, 0, 250 * 1000);
 
 
 
 
 
 
 
 
 
 
 176}
 177
 178/*
 179 * Free IRQs
 180 * free all IRQs request
 181 */
 182static void xhci_free_irq(struct xhci_hcd *xhci)
 183{
 184	int i;
 185	struct pci_dev *pdev = to_pci_dev(xhci_to_hcd(xhci)->self.controller);
 
 
 186
 187	/* return if using legacy interrupt */
 188	if (xhci_to_hcd(xhci)->irq >= 0)
 
 
 
 
 
 
 
 
 
 
 
 
 
 189		return;
 190
 191	if (xhci->msix_entries) {
 192		for (i = 0; i < xhci->msix_count; i++)
 193			if (xhci->msix_entries[i].vector)
 194				free_irq(xhci->msix_entries[i].vector,
 195						xhci_to_hcd(xhci));
 196	} else if (pdev->irq >= 0)
 197		free_irq(pdev->irq, xhci_to_hcd(xhci));
 198
 199	return;
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 200}
 201
 
 202/*
 203 * Set up MSI
 204 */
 205static int xhci_setup_msi(struct xhci_hcd *xhci)
 206{
 207	int ret;
 
 
 
 208	struct pci_dev  *pdev = to_pci_dev(xhci_to_hcd(xhci)->self.controller);
 209
 210	ret = pci_enable_msi(pdev);
 211	if (ret) {
 212		xhci_err(xhci, "failed to allocate MSI entry\n");
 
 213		return ret;
 214	}
 215
 216	ret = request_irq(pdev->irq, (irq_handler_t)xhci_msi_irq,
 217				0, "xhci_hcd", xhci_to_hcd(xhci));
 218	if (ret) {
 219		xhci_err(xhci, "disable MSI interrupt\n");
 220		pci_disable_msi(pdev);
 
 221	}
 222
 223	return ret;
 224}
 225
 226/*
 227 * Set up MSI-X
 228 */
 229static int xhci_setup_msix(struct xhci_hcd *xhci)
 230{
 231	int i, ret = 0;
 232	struct usb_hcd *hcd = xhci_to_hcd(xhci);
 233	struct pci_dev *pdev = to_pci_dev(hcd->self.controller);
 234
 235	/*
 236	 * calculate number of msi-x vectors supported.
 237	 * - HCS_MAX_INTRS: the max number of interrupts the host can handle,
 238	 *   with max number of interrupters based on the xhci HCSPARAMS1.
 239	 * - num_online_cpus: maximum msi-x vectors per CPUs core.
 240	 *   Add additional 1 vector to ensure always available interrupt.
 241	 */
 242	xhci->msix_count = min(num_online_cpus() + 1,
 243				HCS_MAX_INTRS(xhci->hcs_params1));
 244
 245	xhci->msix_entries =
 246		kmalloc((sizeof(struct msix_entry))*xhci->msix_count,
 247				GFP_KERNEL);
 248	if (!xhci->msix_entries) {
 249		xhci_err(xhci, "Failed to allocate MSI-X entries\n");
 250		return -ENOMEM;
 251	}
 252
 253	for (i = 0; i < xhci->msix_count; i++) {
 254		xhci->msix_entries[i].entry = i;
 255		xhci->msix_entries[i].vector = 0;
 256	}
 257
 258	ret = pci_enable_msix(pdev, xhci->msix_entries, xhci->msix_count);
 259	if (ret) {
 260		xhci_err(xhci, "Failed to enable MSI-X\n");
 261		goto free_entries;
 262	}
 263
 264	for (i = 0; i < xhci->msix_count; i++) {
 265		ret = request_irq(xhci->msix_entries[i].vector,
 266				(irq_handler_t)xhci_msi_irq,
 267				0, "xhci_hcd", xhci_to_hcd(xhci));
 268		if (ret)
 269			goto disable_msix;
 270	}
 271
 272	hcd->msix_enabled = 1;
 273	return ret;
 274
 275disable_msix:
 276	xhci_err(xhci, "disable MSI-X interrupt\n");
 277	xhci_free_irq(xhci);
 278	pci_disable_msix(pdev);
 279free_entries:
 280	kfree(xhci->msix_entries);
 281	xhci->msix_entries = NULL;
 282	return ret;
 283}
 284
 285/* Free any IRQs and disable MSI-X */
 286static void xhci_cleanup_msix(struct xhci_hcd *xhci)
 287{
 288	struct usb_hcd *hcd = xhci_to_hcd(xhci);
 289	struct pci_dev *pdev = to_pci_dev(hcd->self.controller);
 290
 291	xhci_free_irq(xhci);
 
 292
 293	if (xhci->msix_entries) {
 294		pci_disable_msix(pdev);
 295		kfree(xhci->msix_entries);
 296		xhci->msix_entries = NULL;
 
 
 
 
 
 297	} else {
 298		pci_disable_msi(pdev);
 299	}
 300
 
 301	hcd->msix_enabled = 0;
 302	return;
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 303}
 304
 305/*
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 306 * Initialize memory for HCD and xHC (one-time init).
 307 *
 308 * Program the PAGESIZE register, initialize the device context array, create
 309 * device contexts (?), set up a command ring segment (or two?), create event
 310 * ring (one for now).
 311 */
 312int xhci_init(struct usb_hcd *hcd)
 313{
 314	struct xhci_hcd *xhci = hcd_to_xhci(hcd);
 315	int retval = 0;
 316
 317	xhci_dbg(xhci, "xhci_init\n");
 318	spin_lock_init(&xhci->lock);
 319	if (link_quirk) {
 320		xhci_dbg(xhci, "QUIRK: Not clearing Link TRB chain bits.\n");
 
 321		xhci->quirks |= XHCI_LINK_TRB_QUIRK;
 322	} else {
 323		xhci_dbg(xhci, "xHCI doesn't need link TRB QUIRK\n");
 
 324	}
 325	retval = xhci_mem_init(xhci, GFP_KERNEL);
 326	xhci_dbg(xhci, "Finished xhci_init\n");
 
 
 
 
 
 
 327
 328	return retval;
 329}
 330
 331/*-------------------------------------------------------------------------*/
 332
 333
 334#ifdef CONFIG_USB_XHCI_HCD_DEBUGGING
 335static void xhci_event_ring_work(unsigned long arg)
 336{
 337	unsigned long flags;
 338	int temp;
 339	u64 temp_64;
 340	struct xhci_hcd *xhci = (struct xhci_hcd *) arg;
 341	int i, j;
 342
 343	xhci_dbg(xhci, "Poll event ring: %lu\n", jiffies);
 344
 345	spin_lock_irqsave(&xhci->lock, flags);
 346	temp = xhci_readl(xhci, &xhci->op_regs->status);
 347	xhci_dbg(xhci, "op reg status = 0x%x\n", temp);
 348	if (temp == 0xffffffff || (xhci->xhc_state & XHCI_STATE_DYING) ||
 349			(xhci->xhc_state & XHCI_STATE_HALTED)) {
 350		xhci_dbg(xhci, "HW died, polling stopped.\n");
 351		spin_unlock_irqrestore(&xhci->lock, flags);
 352		return;
 353	}
 354
 355	temp = xhci_readl(xhci, &xhci->ir_set->irq_pending);
 356	xhci_dbg(xhci, "ir_set 0 pending = 0x%x\n", temp);
 357	xhci_dbg(xhci, "HC error bitmask = 0x%x\n", xhci->error_bitmask);
 358	xhci->error_bitmask = 0;
 359	xhci_dbg(xhci, "Event ring:\n");
 360	xhci_debug_segment(xhci, xhci->event_ring->deq_seg);
 361	xhci_dbg_ring_ptrs(xhci, xhci->event_ring);
 362	temp_64 = xhci_read_64(xhci, &xhci->ir_set->erst_dequeue);
 363	temp_64 &= ~ERST_PTR_MASK;
 364	xhci_dbg(xhci, "ERST deq = 64'h%0lx\n", (long unsigned int) temp_64);
 365	xhci_dbg(xhci, "Command ring:\n");
 366	xhci_debug_segment(xhci, xhci->cmd_ring->deq_seg);
 367	xhci_dbg_ring_ptrs(xhci, xhci->cmd_ring);
 368	xhci_dbg_cmd_ptrs(xhci);
 369	for (i = 0; i < MAX_HC_SLOTS; ++i) {
 370		if (!xhci->devs[i])
 371			continue;
 372		for (j = 0; j < 31; ++j) {
 373			xhci_dbg_ep_rings(xhci, i, j, &xhci->devs[i]->eps[j]);
 374		}
 375	}
 376	spin_unlock_irqrestore(&xhci->lock, flags);
 377
 378	if (!xhci->zombie)
 379		mod_timer(&xhci->event_ring_timer, jiffies + POLL_TIMEOUT * HZ);
 380	else
 381		xhci_dbg(xhci, "Quit polling the event ring.\n");
 382}
 383#endif
 384
 385static int xhci_run_finished(struct xhci_hcd *xhci)
 386{
 387	if (xhci_start(xhci)) {
 388		xhci_halt(xhci);
 389		return -ENODEV;
 390	}
 391	xhci->shared_hcd->state = HC_STATE_RUNNING;
 
 392
 393	if (xhci->quirks & XHCI_NEC_HOST)
 394		xhci_ring_cmd_db(xhci);
 395
 396	xhci_dbg(xhci, "Finished xhci_run for USB3 roothub\n");
 
 397	return 0;
 398}
 399
 400/*
 401 * Start the HC after it was halted.
 402 *
 403 * This function is called by the USB core when the HC driver is added.
 404 * Its opposite is xhci_stop().
 405 *
 406 * xhci_init() must be called once before this function can be called.
 407 * Reset the HC, enable device slot contexts, program DCBAAP, and
 408 * set command ring pointer and event ring pointer.
 409 *
 410 * Setup MSI-X vectors and enable interrupts.
 411 */
 412int xhci_run(struct usb_hcd *hcd)
 413{
 414	u32 temp;
 415	u64 temp_64;
 416	u32 ret;
 417	struct xhci_hcd *xhci = hcd_to_xhci(hcd);
 418	struct pci_dev  *pdev = to_pci_dev(xhci_to_hcd(xhci)->self.controller);
 419
 420	/* Start the xHCI host controller running only after the USB 2.0 roothub
 421	 * is setup.
 422	 */
 423
 424	hcd->uses_new_polling = 1;
 425	if (!usb_hcd_is_primary_hcd(hcd))
 426		return xhci_run_finished(xhci);
 427
 428	xhci_dbg(xhci, "xhci_run\n");
 429	/* unregister the legacy interrupt */
 430	if (hcd->irq)
 431		free_irq(hcd->irq, hcd);
 432	hcd->irq = -1;
 433
 434	/* Some Fresco Logic host controllers advertise MSI, but fail to
 435	 * generate interrupts.  Don't even try to enable MSI.
 436	 */
 437	if (xhci->quirks & XHCI_BROKEN_MSI)
 438		goto legacy_irq;
 439
 440	ret = xhci_setup_msix(xhci);
 441	if (ret)
 442		/* fall back to msi*/
 443		ret = xhci_setup_msi(xhci);
 444
 445	if (ret) {
 446legacy_irq:
 447		/* fall back to legacy interrupt*/
 448		ret = request_irq(pdev->irq, &usb_hcd_irq, IRQF_SHARED,
 449					hcd->irq_descr, hcd);
 450		if (ret) {
 451			xhci_err(xhci, "request interrupt %d failed\n",
 452					pdev->irq);
 453			return ret;
 454		}
 455		hcd->irq = pdev->irq;
 456	}
 457
 458#ifdef CONFIG_USB_XHCI_HCD_DEBUGGING
 459	init_timer(&xhci->event_ring_timer);
 460	xhci->event_ring_timer.data = (unsigned long) xhci;
 461	xhci->event_ring_timer.function = xhci_event_ring_work;
 462	/* Poll the event ring */
 463	xhci->event_ring_timer.expires = jiffies + POLL_TIMEOUT * HZ;
 464	xhci->zombie = 0;
 465	xhci_dbg(xhci, "Setting event ring polling timer\n");
 466	add_timer(&xhci->event_ring_timer);
 467#endif
 468
 469	xhci_dbg(xhci, "Command ring memory map follows:\n");
 470	xhci_debug_ring(xhci, xhci->cmd_ring);
 471	xhci_dbg_ring_ptrs(xhci, xhci->cmd_ring);
 472	xhci_dbg_cmd_ptrs(xhci);
 473
 474	xhci_dbg(xhci, "ERST memory map follows:\n");
 475	xhci_dbg_erst(xhci, &xhci->erst);
 476	xhci_dbg(xhci, "Event ring:\n");
 477	xhci_debug_ring(xhci, xhci->event_ring);
 478	xhci_dbg_ring_ptrs(xhci, xhci->event_ring);
 479	temp_64 = xhci_read_64(xhci, &xhci->ir_set->erst_dequeue);
 480	temp_64 &= ~ERST_PTR_MASK;
 481	xhci_dbg(xhci, "ERST deq = 64'h%0lx\n", (long unsigned int) temp_64);
 
 482
 483	xhci_dbg(xhci, "// Set the interrupt modulation register\n");
 484	temp = xhci_readl(xhci, &xhci->ir_set->irq_control);
 
 485	temp &= ~ER_IRQ_INTERVAL_MASK;
 486	temp |= (u32) 160;
 487	xhci_writel(xhci, temp, &xhci->ir_set->irq_control);
 488
 489	/* Set the HCD state before we enable the irqs */
 490	temp = xhci_readl(xhci, &xhci->op_regs->command);
 491	temp |= (CMD_EIE);
 492	xhci_dbg(xhci, "// Enable interrupts, cmd = 0x%x.\n",
 493			temp);
 494	xhci_writel(xhci, temp, &xhci->op_regs->command);
 495
 496	temp = xhci_readl(xhci, &xhci->ir_set->irq_pending);
 497	xhci_dbg(xhci, "// Enabling event ring interrupter %p by writing 0x%x to irq_pending\n",
 
 498			xhci->ir_set, (unsigned int) ER_IRQ_ENABLE(temp));
 499	xhci_writel(xhci, ER_IRQ_ENABLE(temp),
 500			&xhci->ir_set->irq_pending);
 501	xhci_print_ir_set(xhci, 0);
 502
 503	if (xhci->quirks & XHCI_NEC_HOST)
 504		xhci_queue_vendor_command(xhci, 0, 0, 0,
 505				TRB_TYPE(TRB_NEC_GET_FW));
 506
 507	xhci_dbg(xhci, "Finished xhci_run for USB2 roothub\n");
 508	return 0;
 509}
 510
 511static void xhci_only_stop_hcd(struct usb_hcd *hcd)
 512{
 513	struct xhci_hcd *xhci = hcd_to_xhci(hcd);
 
 
 
 
 
 514
 515	spin_lock_irq(&xhci->lock);
 516	xhci_halt(xhci);
 517
 518	/* The shared_hcd is going to be deallocated shortly (the USB core only
 519	 * calls this function when allocation fails in usb_add_hcd(), or
 520	 * usb_remove_hcd() is called).  So we need to unset xHCI's pointer.
 521	 */
 522	xhci->shared_hcd = NULL;
 523	spin_unlock_irq(&xhci->lock);
 524}
 
 525
 526/*
 527 * Stop xHCI driver.
 528 *
 529 * This function is called by the USB core when the HC driver is removed.
 530 * Its opposite is xhci_run().
 531 *
 532 * Disable device contexts, disable IRQs, and quiesce the HC.
 533 * Reset the HC, finish any completed transactions, and cleanup memory.
 534 */
 535void xhci_stop(struct usb_hcd *hcd)
 536{
 537	u32 temp;
 538	struct xhci_hcd *xhci = hcd_to_xhci(hcd);
 539
 
 
 
 540	if (!usb_hcd_is_primary_hcd(hcd)) {
 541		xhci_only_stop_hcd(xhci->shared_hcd);
 542		return;
 543	}
 544
 
 
 545	spin_lock_irq(&xhci->lock);
 546	/* Make sure the xHC is halted for a USB3 roothub
 547	 * (xhci_stop() could be called as part of failed init).
 548	 */
 549	xhci_halt(xhci);
 550	xhci_reset(xhci);
 551	spin_unlock_irq(&xhci->lock);
 552
 553	xhci_cleanup_msix(xhci);
 554
 555#ifdef CONFIG_USB_XHCI_HCD_DEBUGGING
 556	/* Tell the event ring poll function not to reschedule */
 557	xhci->zombie = 1;
 558	del_timer_sync(&xhci->event_ring_timer);
 559#endif
 
 
 
 560
 561	if (xhci->quirks & XHCI_AMD_PLL_FIX)
 562		usb_amd_dev_put();
 563
 564	xhci_dbg(xhci, "// Disabling event ring interrupts\n");
 565	temp = xhci_readl(xhci, &xhci->op_regs->status);
 566	xhci_writel(xhci, temp & ~STS_EINT, &xhci->op_regs->status);
 567	temp = xhci_readl(xhci, &xhci->ir_set->irq_pending);
 568	xhci_writel(xhci, ER_IRQ_DISABLE(temp),
 569			&xhci->ir_set->irq_pending);
 570	xhci_print_ir_set(xhci, 0);
 571
 572	xhci_dbg(xhci, "cleaning up memory\n");
 573	xhci_mem_cleanup(xhci);
 574	xhci_dbg(xhci, "xhci_stop completed - status = %x\n",
 575		    xhci_readl(xhci, &xhci->op_regs->status));
 
 
 
 576}
 577
 578/*
 579 * Shutdown HC (not bus-specific)
 580 *
 581 * This is called when the machine is rebooting or halting.  We assume that the
 582 * machine will be powered off, and the HC's internal state will be reset.
 583 * Don't bother to free memory.
 584 *
 585 * This will only ever be called with the main usb_hcd (the USB3 roothub).
 586 */
 587void xhci_shutdown(struct usb_hcd *hcd)
 588{
 589	struct xhci_hcd *xhci = hcd_to_xhci(hcd);
 590
 
 
 
 591	spin_lock_irq(&xhci->lock);
 592	xhci_halt(xhci);
 
 
 
 593	spin_unlock_irq(&xhci->lock);
 594
 595	xhci_cleanup_msix(xhci);
 596
 597	xhci_dbg(xhci, "xhci_shutdown completed - status = %x\n",
 598		    xhci_readl(xhci, &xhci->op_regs->status));
 
 599}
 
 600
 601#ifdef CONFIG_PM
 602static void xhci_save_registers(struct xhci_hcd *xhci)
 603{
 604	xhci->s3.command = xhci_readl(xhci, &xhci->op_regs->command);
 605	xhci->s3.dev_nt = xhci_readl(xhci, &xhci->op_regs->dev_notification);
 606	xhci->s3.dcbaa_ptr = xhci_read_64(xhci, &xhci->op_regs->dcbaa_ptr);
 607	xhci->s3.config_reg = xhci_readl(xhci, &xhci->op_regs->config_reg);
 608	xhci->s3.irq_pending = xhci_readl(xhci, &xhci->ir_set->irq_pending);
 609	xhci->s3.irq_control = xhci_readl(xhci, &xhci->ir_set->irq_control);
 610	xhci->s3.erst_size = xhci_readl(xhci, &xhci->ir_set->erst_size);
 611	xhci->s3.erst_base = xhci_read_64(xhci, &xhci->ir_set->erst_base);
 612	xhci->s3.erst_dequeue = xhci_read_64(xhci, &xhci->ir_set->erst_dequeue);
 
 
 613}
 614
 615static void xhci_restore_registers(struct xhci_hcd *xhci)
 616{
 617	xhci_writel(xhci, xhci->s3.command, &xhci->op_regs->command);
 618	xhci_writel(xhci, xhci->s3.dev_nt, &xhci->op_regs->dev_notification);
 619	xhci_write_64(xhci, xhci->s3.dcbaa_ptr, &xhci->op_regs->dcbaa_ptr);
 620	xhci_writel(xhci, xhci->s3.config_reg, &xhci->op_regs->config_reg);
 621	xhci_writel(xhci, xhci->s3.irq_pending, &xhci->ir_set->irq_pending);
 622	xhci_writel(xhci, xhci->s3.irq_control, &xhci->ir_set->irq_control);
 623	xhci_writel(xhci, xhci->s3.erst_size, &xhci->ir_set->erst_size);
 624	xhci_write_64(xhci, xhci->s3.erst_base, &xhci->ir_set->erst_base);
 
 
 
 625}
 626
 627static void xhci_set_cmd_ring_deq(struct xhci_hcd *xhci)
 628{
 629	u64	val_64;
 630
 631	/* step 2: initialize command ring buffer */
 632	val_64 = xhci_read_64(xhci, &xhci->op_regs->cmd_ring);
 633	val_64 = (val_64 & (u64) CMD_RING_RSVD_BITS) |
 634		(xhci_trb_virt_to_dma(xhci->cmd_ring->deq_seg,
 635				      xhci->cmd_ring->dequeue) &
 636		 (u64) ~CMD_RING_RSVD_BITS) |
 637		xhci->cmd_ring->cycle_state;
 638	xhci_dbg(xhci, "// Setting command ring address to 0x%llx\n",
 
 639			(long unsigned long) val_64);
 640	xhci_write_64(xhci, val_64, &xhci->op_regs->cmd_ring);
 641}
 642
 643/*
 644 * The whole command ring must be cleared to zero when we suspend the host.
 645 *
 646 * The host doesn't save the command ring pointer in the suspend well, so we
 647 * need to re-program it on resume.  Unfortunately, the pointer must be 64-byte
 648 * aligned, because of the reserved bits in the command ring dequeue pointer
 649 * register.  Therefore, we can't just set the dequeue pointer back in the
 650 * middle of the ring (TRBs are 16-byte aligned).
 651 */
 652static void xhci_clear_command_ring(struct xhci_hcd *xhci)
 653{
 654	struct xhci_ring *ring;
 655	struct xhci_segment *seg;
 656
 657	ring = xhci->cmd_ring;
 658	seg = ring->deq_seg;
 659	do {
 660		memset(seg->trbs, 0, SEGMENT_SIZE);
 
 
 
 661		seg = seg->next;
 662	} while (seg != ring->deq_seg);
 663
 664	/* Reset the software enqueue and dequeue pointers */
 665	ring->deq_seg = ring->first_seg;
 666	ring->dequeue = ring->first_seg->trbs;
 667	ring->enq_seg = ring->deq_seg;
 668	ring->enqueue = ring->dequeue;
 669
 
 670	/*
 671	 * Ring is now zeroed, so the HW should look for change of ownership
 672	 * when the cycle bit is set to 1.
 673	 */
 674	ring->cycle_state = 1;
 675
 676	/*
 677	 * Reset the hardware dequeue pointer.
 678	 * Yes, this will need to be re-written after resume, but we're paranoid
 679	 * and want to make sure the hardware doesn't access bogus memory
 680	 * because, say, the BIOS or an SMI started the host without changing
 681	 * the command ring pointers.
 682	 */
 683	xhci_set_cmd_ring_deq(xhci);
 684}
 685
 686/*
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 687 * Stop HC (not bus-specific)
 688 *
 689 * This is called when the machine transition into S3/S4 mode.
 690 *
 691 */
 692int xhci_suspend(struct xhci_hcd *xhci)
 693{
 694	int			rc = 0;
 
 695	struct usb_hcd		*hcd = xhci_to_hcd(xhci);
 696	u32			command;
 697	int			i;
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 698
 699	spin_lock_irq(&xhci->lock);
 700	clear_bit(HCD_FLAG_HW_ACCESSIBLE, &hcd->flags);
 701	clear_bit(HCD_FLAG_HW_ACCESSIBLE, &xhci->shared_hcd->flags);
 702	/* step 1: stop endpoint */
 703	/* skipped assuming that port suspend has done */
 704
 705	/* step 2: clear Run/Stop bit */
 706	command = xhci_readl(xhci, &xhci->op_regs->command);
 707	command &= ~CMD_RUN;
 708	xhci_writel(xhci, command, &xhci->op_regs->command);
 709	if (handshake(xhci, &xhci->op_regs->status,
 710		      STS_HALT, STS_HALT, 100*100)) {
 
 
 
 
 711		xhci_warn(xhci, "WARN: xHC CMD_RUN timeout\n");
 712		spin_unlock_irq(&xhci->lock);
 713		return -ETIMEDOUT;
 714	}
 715	xhci_clear_command_ring(xhci);
 716
 717	/* step 3: save registers */
 718	xhci_save_registers(xhci);
 719
 720	/* step 4: set CSS flag */
 721	command = xhci_readl(xhci, &xhci->op_regs->command);
 722	command |= CMD_CSS;
 723	xhci_writel(xhci, command, &xhci->op_regs->command);
 724	if (handshake(xhci, &xhci->op_regs->status, STS_SAVE, 0, 10*100)) {
 725		xhci_warn(xhci, "WARN: xHC CMD_CSS timeout\n");
 726		spin_unlock_irq(&xhci->lock);
 727		return -ETIMEDOUT;
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 728	}
 729	spin_unlock_irq(&xhci->lock);
 730
 
 
 
 
 
 
 
 
 
 
 
 
 731	/* step 5: remove core well power */
 732	/* synchronize irq when using MSI-X */
 733	if (xhci->msix_entries) {
 734		for (i = 0; i < xhci->msix_count; i++)
 735			synchronize_irq(xhci->msix_entries[i].vector);
 736	}
 737
 738	return rc;
 739}
 
 740
 741/*
 742 * start xHC (not bus-specific)
 743 *
 744 * This is called when the machine transition from S3/S4 mode.
 745 *
 746 */
 747int xhci_resume(struct xhci_hcd *xhci, bool hibernated)
 748{
 749	u32			command, temp = 0;
 750	struct usb_hcd		*hcd = xhci_to_hcd(xhci);
 751	struct usb_hcd		*secondary_hcd;
 752	int			retval;
 
 
 
 
 
 753
 754	/* Wait a bit if either of the roothubs need to settle from the
 755	 * transition into bus suspend.
 756	 */
 757	if (time_before(jiffies, xhci->bus_state[0].next_statechange) ||
 758			time_before(jiffies,
 759				xhci->bus_state[1].next_statechange))
 760		msleep(100);
 761
 
 
 
 762	spin_lock_irq(&xhci->lock);
 763	if (xhci->quirks & XHCI_RESET_ON_RESUME)
 764		hibernated = true;
 765
 766	if (!hibernated) {
 
 
 
 
 
 
 
 
 
 
 
 
 767		/* step 1: restore register */
 768		xhci_restore_registers(xhci);
 769		/* step 2: initialize command ring buffer */
 770		xhci_set_cmd_ring_deq(xhci);
 771		/* step 3: restore state and start state*/
 772		/* step 3: set CRS flag */
 773		command = xhci_readl(xhci, &xhci->op_regs->command);
 774		command |= CMD_CRS;
 775		xhci_writel(xhci, command, &xhci->op_regs->command);
 776		if (handshake(xhci, &xhci->op_regs->status,
 777			      STS_RESTORE, 0, 10*100)) {
 778			xhci_dbg(xhci, "WARN: xHC CMD_CSS timeout\n");
 
 
 
 
 
 779			spin_unlock_irq(&xhci->lock);
 780			return -ETIMEDOUT;
 781		}
 782		temp = xhci_readl(xhci, &xhci->op_regs->status);
 783	}
 784
 785	/* If restore operation fails, re-initialize the HC during resume */
 786	if ((temp & STS_SRE) || hibernated) {
 
 
 
 
 
 
 
 
 787		/* Let the USB core know _both_ roothubs lost power. */
 788		usb_root_hub_lost_power(xhci->main_hcd->self.root_hub);
 789		usb_root_hub_lost_power(xhci->shared_hcd->self.root_hub);
 790
 791		xhci_dbg(xhci, "Stop HCD\n");
 792		xhci_halt(xhci);
 793		xhci_reset(xhci);
 
 794		spin_unlock_irq(&xhci->lock);
 
 
 795		xhci_cleanup_msix(xhci);
 796
 797#ifdef CONFIG_USB_XHCI_HCD_DEBUGGING
 798		/* Tell the event ring poll function not to reschedule */
 799		xhci->zombie = 1;
 800		del_timer_sync(&xhci->event_ring_timer);
 801#endif
 802
 803		xhci_dbg(xhci, "// Disabling event ring interrupts\n");
 804		temp = xhci_readl(xhci, &xhci->op_regs->status);
 805		xhci_writel(xhci, temp & ~STS_EINT, &xhci->op_regs->status);
 806		temp = xhci_readl(xhci, &xhci->ir_set->irq_pending);
 807		xhci_writel(xhci, ER_IRQ_DISABLE(temp),
 808				&xhci->ir_set->irq_pending);
 809		xhci_print_ir_set(xhci, 0);
 810
 811		xhci_dbg(xhci, "cleaning up memory\n");
 812		xhci_mem_cleanup(xhci);
 
 813		xhci_dbg(xhci, "xhci_stop completed - status = %x\n",
 814			    xhci_readl(xhci, &xhci->op_regs->status));
 815
 816		/* USB core calls the PCI reinit and start functions twice:
 817		 * first with the primary HCD, and then with the secondary HCD.
 818		 * If we don't do the same, the host will never be started.
 819		 */
 820		if (!usb_hcd_is_primary_hcd(hcd))
 821			secondary_hcd = hcd;
 822		else
 823			secondary_hcd = xhci->shared_hcd;
 824
 825		xhci_dbg(xhci, "Initialize the xhci_hcd\n");
 826		retval = xhci_init(hcd->primary_hcd);
 827		if (retval)
 828			return retval;
 
 
 829		xhci_dbg(xhci, "Start the primary HCD\n");
 830		retval = xhci_run(hcd->primary_hcd);
 831		if (retval)
 832			goto failed_restart;
 833
 834		xhci_dbg(xhci, "Start the secondary HCD\n");
 835		retval = xhci_run(secondary_hcd);
 836		if (!retval) {
 837			set_bit(HCD_FLAG_HW_ACCESSIBLE, &hcd->flags);
 838			set_bit(HCD_FLAG_HW_ACCESSIBLE,
 839					&xhci->shared_hcd->flags);
 840		}
 841failed_restart:
 842		hcd->state = HC_STATE_SUSPENDED;
 843		xhci->shared_hcd->state = HC_STATE_SUSPENDED;
 844		return retval;
 845	}
 846
 847	/* step 4: set Run/Stop bit */
 848	command = xhci_readl(xhci, &xhci->op_regs->command);
 849	command |= CMD_RUN;
 850	xhci_writel(xhci, command, &xhci->op_regs->command);
 851	handshake(xhci, &xhci->op_regs->status, STS_HALT,
 852		  0, 250 * 1000);
 853
 854	/* step 5: walk topology and initialize portsc,
 855	 * portpmsc and portli
 856	 */
 857	/* this is done in bus_resume */
 858
 859	/* step 6: restart each of the previously
 860	 * Running endpoints by ringing their doorbells
 861	 */
 862
 863	set_bit(HCD_FLAG_HW_ACCESSIBLE, &hcd->flags);
 864	set_bit(HCD_FLAG_HW_ACCESSIBLE, &xhci->shared_hcd->flags);
 865
 866	spin_unlock_irq(&xhci->lock);
 867	return 0;
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 868}
 
 869#endif	/* CONFIG_PM */
 870
 871/*-------------------------------------------------------------------------*/
 872
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 873/**
 874 * xhci_get_endpoint_index - Used for passing endpoint bitmasks between the core and
 875 * HCDs.  Find the index for an endpoint given its descriptor.  Use the return
 876 * value to right shift 1 for the bitmask.
 877 *
 878 * Index  = (epnum * 2) + direction - 1,
 879 * where direction = 0 for OUT, 1 for IN.
 880 * For control endpoints, the IN index is used (OUT index is unused), so
 881 * index = (epnum * 2) + direction - 1 = (epnum * 2) + 1 - 1 = (epnum * 2)
 882 */
 883unsigned int xhci_get_endpoint_index(struct usb_endpoint_descriptor *desc)
 884{
 885	unsigned int index;
 886	if (usb_endpoint_xfer_control(desc))
 887		index = (unsigned int) (usb_endpoint_num(desc)*2);
 888	else
 889		index = (unsigned int) (usb_endpoint_num(desc)*2) +
 890			(usb_endpoint_dir_in(desc) ? 1 : 0) - 1;
 891	return index;
 892}
 
 893
 894/* Find the flag for this endpoint (for use in the control context).  Use the
 895 * endpoint index to create a bitmask.  The slot context is bit 0, endpoint 0 is
 896 * bit 1, etc.
 897 */
 898unsigned int xhci_get_endpoint_flag(struct usb_endpoint_descriptor *desc)
 899{
 900	return 1 << (xhci_get_endpoint_index(desc) + 1);
 
 
 901}
 902
 903/* Find the flag for this endpoint (for use in the control context).  Use the
 904 * endpoint index to create a bitmask.  The slot context is bit 0, endpoint 0 is
 905 * bit 1, etc.
 906 */
 907unsigned int xhci_get_endpoint_flag_from_index(unsigned int ep_index)
 908{
 909	return 1 << (ep_index + 1);
 910}
 911
 912/* Compute the last valid endpoint context index.  Basically, this is the
 913 * endpoint index plus one.  For slot contexts with more than valid endpoint,
 914 * we find the most significant bit set in the added contexts flags.
 915 * e.g. ep 1 IN (with epnum 0x81) => added_ctxs = 0b1000
 916 * fls(0b1000) = 4, but the endpoint context index is 3, so subtract one.
 917 */
 918unsigned int xhci_last_valid_endpoint(u32 added_ctxs)
 919{
 920	return fls(added_ctxs) - 1;
 921}
 922
 923/* Returns 1 if the arguments are OK;
 924 * returns 0 this is a root hub; returns -EINVAL for NULL pointers.
 925 */
 926static int xhci_check_args(struct usb_hcd *hcd, struct usb_device *udev,
 927		struct usb_host_endpoint *ep, int check_ep, bool check_virt_dev,
 928		const char *func) {
 929	struct xhci_hcd	*xhci;
 930	struct xhci_virt_device	*virt_dev;
 931
 932	if (!hcd || (check_ep && !ep) || !udev) {
 933		printk(KERN_DEBUG "xHCI %s called with invalid args\n",
 934				func);
 935		return -EINVAL;
 936	}
 937	if (!udev->parent) {
 938		printk(KERN_DEBUG "xHCI %s called for root hub\n",
 939				func);
 940		return 0;
 941	}
 942
 943	xhci = hcd_to_xhci(hcd);
 944	if (xhci->xhc_state & XHCI_STATE_HALTED)
 945		return -ENODEV;
 946
 947	if (check_virt_dev) {
 948		if (!udev->slot_id || !xhci->devs
 949			|| !xhci->devs[udev->slot_id]) {
 950			printk(KERN_DEBUG "xHCI %s called with unaddressed "
 951						"device\n", func);
 952			return -EINVAL;
 953		}
 954
 955		virt_dev = xhci->devs[udev->slot_id];
 956		if (virt_dev->udev != udev) {
 957			printk(KERN_DEBUG "xHCI %s called with udev and "
 958					  "virt_dev does not match\n", func);
 959			return -EINVAL;
 960		}
 961	}
 962
 
 
 
 963	return 1;
 964}
 965
 966static int xhci_configure_endpoint(struct xhci_hcd *xhci,
 967		struct usb_device *udev, struct xhci_command *command,
 968		bool ctx_change, bool must_succeed);
 969
 970/*
 971 * Full speed devices may have a max packet size greater than 8 bytes, but the
 972 * USB core doesn't know that until it reads the first 8 bytes of the
 973 * descriptor.  If the usb_device's max packet size changes after that point,
 974 * we need to issue an evaluate context command and wait on it.
 975 */
 976static int xhci_check_maxpacket(struct xhci_hcd *xhci, unsigned int slot_id,
 977		unsigned int ep_index, struct urb *urb)
 978{
 979	struct xhci_container_ctx *in_ctx;
 980	struct xhci_container_ctx *out_ctx;
 981	struct xhci_input_control_ctx *ctrl_ctx;
 982	struct xhci_ep_ctx *ep_ctx;
 
 983	int max_packet_size;
 984	int hw_max_packet_size;
 985	int ret = 0;
 986
 987	out_ctx = xhci->devs[slot_id]->out_ctx;
 988	ep_ctx = xhci_get_ep_ctx(xhci, out_ctx, ep_index);
 989	hw_max_packet_size = MAX_PACKET_DECODED(le32_to_cpu(ep_ctx->ep_info2));
 990	max_packet_size = le16_to_cpu(urb->dev->ep0.desc.wMaxPacketSize);
 991	if (hw_max_packet_size != max_packet_size) {
 992		xhci_dbg(xhci, "Max Packet Size for ep 0 changed.\n");
 993		xhci_dbg(xhci, "Max packet size in usb_device = %d\n",
 
 
 994				max_packet_size);
 995		xhci_dbg(xhci, "Max packet size in xHCI HW = %d\n",
 
 996				hw_max_packet_size);
 997		xhci_dbg(xhci, "Issuing evaluate context command.\n");
 
 
 
 
 
 
 998
 
 
 
 
 
 
 
 
 
 
 
 
 999		/* Set up the modified control endpoint 0 */
1000		xhci_endpoint_copy(xhci, xhci->devs[slot_id]->in_ctx,
1001				xhci->devs[slot_id]->out_ctx, ep_index);
1002		in_ctx = xhci->devs[slot_id]->in_ctx;
1003		ep_ctx = xhci_get_ep_ctx(xhci, in_ctx, ep_index);
 
1004		ep_ctx->ep_info2 &= cpu_to_le32(~MAX_PACKET_MASK);
1005		ep_ctx->ep_info2 |= cpu_to_le32(MAX_PACKET(max_packet_size));
1006
1007		/* Set up the input context flags for the command */
1008		/* FIXME: This won't work if a non-default control endpoint
1009		 * changes max packet sizes.
1010		 */
1011		ctrl_ctx = xhci_get_input_control_ctx(xhci, in_ctx);
1012		ctrl_ctx->add_flags = cpu_to_le32(EP0_FLAG);
1013		ctrl_ctx->drop_flags = 0;
1014
1015		xhci_dbg(xhci, "Slot %d input context\n", slot_id);
1016		xhci_dbg_ctx(xhci, in_ctx, ep_index);
1017		xhci_dbg(xhci, "Slot %d output context\n", slot_id);
1018		xhci_dbg_ctx(xhci, out_ctx, ep_index);
1019
1020		ret = xhci_configure_endpoint(xhci, urb->dev, NULL,
1021				true, false);
1022
1023		/* Clean up the input context for later use by bandwidth
1024		 * functions.
1025		 */
1026		ctrl_ctx->add_flags = cpu_to_le32(SLOT_FLAG);
 
 
 
1027	}
1028	return ret;
1029}
1030
1031/*
1032 * non-error returns are a promise to giveback() the urb later
1033 * we drop ownership so next owner (or urb unlink) can get it
1034 */
1035int xhci_urb_enqueue(struct usb_hcd *hcd, struct urb *urb, gfp_t mem_flags)
1036{
1037	struct xhci_hcd *xhci = hcd_to_xhci(hcd);
1038	unsigned long flags;
1039	int ret = 0;
1040	unsigned int slot_id, ep_index;
 
1041	struct urb_priv	*urb_priv;
1042	int size, i;
1043
1044	if (!urb || xhci_check_args(hcd, urb->dev, urb->ep,
1045					true, true, __func__) <= 0)
1046		return -EINVAL;
1047
1048	slot_id = urb->dev->slot_id;
1049	ep_index = xhci_get_endpoint_index(&urb->ep->desc);
 
1050
1051	if (!HCD_HW_ACCESSIBLE(hcd)) {
1052		if (!in_interrupt())
1053			xhci_dbg(xhci, "urb submitted during PCI suspend\n");
1054		ret = -ESHUTDOWN;
1055		goto exit;
 
1056	}
1057
1058	if (usb_endpoint_xfer_isoc(&urb->ep->desc))
1059		size = urb->number_of_packets;
 
 
 
 
 
1060	else
1061		size = 1;
1062
1063	urb_priv = kzalloc(sizeof(struct urb_priv) +
1064				  size * sizeof(struct xhci_td *), mem_flags);
1065	if (!urb_priv)
1066		return -ENOMEM;
1067
1068	for (i = 0; i < size; i++) {
1069		urb_priv->td[i] = kzalloc(sizeof(struct xhci_td), mem_flags);
1070		if (!urb_priv->td[i]) {
1071			urb_priv->length = i;
1072			xhci_urb_free_priv(xhci, urb_priv);
1073			return -ENOMEM;
1074		}
1075	}
1076
1077	urb_priv->length = size;
1078	urb_priv->td_cnt = 0;
1079	urb->hcpriv = urb_priv;
1080
 
 
1081	if (usb_endpoint_xfer_control(&urb->ep->desc)) {
1082		/* Check to see if the max packet size for the default control
1083		 * endpoint changed during FS device enumeration
1084		 */
1085		if (urb->dev->speed == USB_SPEED_FULL) {
1086			ret = xhci_check_maxpacket(xhci, slot_id,
1087					ep_index, urb);
1088			if (ret < 0) {
1089				xhci_urb_free_priv(xhci, urb_priv);
1090				urb->hcpriv = NULL;
1091				return ret;
1092			}
1093		}
 
1094
1095		/* We have a spinlock and interrupts disabled, so we must pass
1096		 * atomic context to this function, which may allocate memory.
1097		 */
1098		spin_lock_irqsave(&xhci->lock, flags);
1099		if (xhci->xhc_state & XHCI_STATE_DYING)
1100			goto dying;
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1101		ret = xhci_queue_ctrl_tx(xhci, GFP_ATOMIC, urb,
1102				slot_id, ep_index);
1103		if (ret)
1104			goto free_priv;
1105		spin_unlock_irqrestore(&xhci->lock, flags);
1106	} else if (usb_endpoint_xfer_bulk(&urb->ep->desc)) {
1107		spin_lock_irqsave(&xhci->lock, flags);
1108		if (xhci->xhc_state & XHCI_STATE_DYING)
1109			goto dying;
1110		if (xhci->devs[slot_id]->eps[ep_index].ep_state &
1111				EP_GETTING_STREAMS) {
1112			xhci_warn(xhci, "WARN: Can't enqueue URB while bulk ep "
1113					"is transitioning to using streams.\n");
1114			ret = -EINVAL;
1115		} else if (xhci->devs[slot_id]->eps[ep_index].ep_state &
1116				EP_GETTING_NO_STREAMS) {
1117			xhci_warn(xhci, "WARN: Can't enqueue URB while bulk ep "
1118					"is transitioning to "
1119					"not having streams.\n");
1120			ret = -EINVAL;
1121		} else {
1122			ret = xhci_queue_bulk_tx(xhci, GFP_ATOMIC, urb,
1123					slot_id, ep_index);
1124		}
1125		if (ret)
1126			goto free_priv;
1127		spin_unlock_irqrestore(&xhci->lock, flags);
1128	} else if (usb_endpoint_xfer_int(&urb->ep->desc)) {
1129		spin_lock_irqsave(&xhci->lock, flags);
1130		if (xhci->xhc_state & XHCI_STATE_DYING)
1131			goto dying;
1132		ret = xhci_queue_intr_tx(xhci, GFP_ATOMIC, urb,
1133				slot_id, ep_index);
1134		if (ret)
1135			goto free_priv;
1136		spin_unlock_irqrestore(&xhci->lock, flags);
1137	} else {
1138		spin_lock_irqsave(&xhci->lock, flags);
1139		if (xhci->xhc_state & XHCI_STATE_DYING)
1140			goto dying;
1141		ret = xhci_queue_isoc_tx_prepare(xhci, GFP_ATOMIC, urb,
1142				slot_id, ep_index);
1143		if (ret)
1144			goto free_priv;
1145		spin_unlock_irqrestore(&xhci->lock, flags);
1146	}
1147exit:
1148	return ret;
1149dying:
1150	xhci_dbg(xhci, "Ep 0x%x: URB %p submitted for "
1151			"non-responsive xHCI host.\n",
1152			urb->ep->desc.bEndpointAddress, urb);
1153	ret = -ESHUTDOWN;
1154free_priv:
1155	xhci_urb_free_priv(xhci, urb_priv);
1156	urb->hcpriv = NULL;
 
1157	spin_unlock_irqrestore(&xhci->lock, flags);
1158	return ret;
1159}
1160
1161/* Get the right ring for the given URB.
1162 * If the endpoint supports streams, boundary check the URB's stream ID.
1163 * If the endpoint doesn't support streams, return the singular endpoint ring.
1164 */
1165static struct xhci_ring *xhci_urb_to_transfer_ring(struct xhci_hcd *xhci,
1166		struct urb *urb)
1167{
1168	unsigned int slot_id;
1169	unsigned int ep_index;
1170	unsigned int stream_id;
1171	struct xhci_virt_ep *ep;
1172
1173	slot_id = urb->dev->slot_id;
1174	ep_index = xhci_get_endpoint_index(&urb->ep->desc);
1175	stream_id = urb->stream_id;
1176	ep = &xhci->devs[slot_id]->eps[ep_index];
1177	/* Common case: no streams */
1178	if (!(ep->ep_state & EP_HAS_STREAMS))
1179		return ep->ring;
1180
1181	if (stream_id == 0) {
1182		xhci_warn(xhci,
1183				"WARN: Slot ID %u, ep index %u has streams, "
1184				"but URB has no stream ID.\n",
1185				slot_id, ep_index);
1186		return NULL;
1187	}
1188
1189	if (stream_id < ep->stream_info->num_streams)
1190		return ep->stream_info->stream_rings[stream_id];
1191
1192	xhci_warn(xhci,
1193			"WARN: Slot ID %u, ep index %u has "
1194			"stream IDs 1 to %u allocated, "
1195			"but stream ID %u is requested.\n",
1196			slot_id, ep_index,
1197			ep->stream_info->num_streams - 1,
1198			stream_id);
1199	return NULL;
1200}
1201
1202/*
1203 * Remove the URB's TD from the endpoint ring.  This may cause the HC to stop
1204 * USB transfers, potentially stopping in the middle of a TRB buffer.  The HC
1205 * should pick up where it left off in the TD, unless a Set Transfer Ring
1206 * Dequeue Pointer is issued.
1207 *
1208 * The TRBs that make up the buffers for the canceled URB will be "removed" from
1209 * the ring.  Since the ring is a contiguous structure, they can't be physically
1210 * removed.  Instead, there are two options:
1211 *
1212 *  1) If the HC is in the middle of processing the URB to be canceled, we
1213 *     simply move the ring's dequeue pointer past those TRBs using the Set
1214 *     Transfer Ring Dequeue Pointer command.  This will be the common case,
1215 *     when drivers timeout on the last submitted URB and attempt to cancel.
1216 *
1217 *  2) If the HC is in the middle of a different TD, we turn the TRBs into a
1218 *     series of 1-TRB transfer no-op TDs.  (No-ops shouldn't be chained.)  The
1219 *     HC will need to invalidate the any TRBs it has cached after the stop
1220 *     endpoint command, as noted in the xHCI 0.95 errata.
1221 *
1222 *  3) The TD may have completed by the time the Stop Endpoint Command
1223 *     completes, so software needs to handle that case too.
1224 *
1225 * This function should protect against the TD enqueueing code ringing the
1226 * doorbell while this code is waiting for a Stop Endpoint command to complete.
1227 * It also needs to account for multiple cancellations on happening at the same
1228 * time for the same endpoint.
1229 *
1230 * Note that this function can be called in any context, or so says
1231 * usb_hcd_unlink_urb()
1232 */
1233int xhci_urb_dequeue(struct usb_hcd *hcd, struct urb *urb, int status)
1234{
1235	unsigned long flags;
1236	int ret, i;
1237	u32 temp;
1238	struct xhci_hcd *xhci;
1239	struct urb_priv	*urb_priv;
1240	struct xhci_td *td;
1241	unsigned int ep_index;
1242	struct xhci_ring *ep_ring;
1243	struct xhci_virt_ep *ep;
 
 
1244
1245	xhci = hcd_to_xhci(hcd);
1246	spin_lock_irqsave(&xhci->lock, flags);
 
 
 
1247	/* Make sure the URB hasn't completed or been unlinked already */
1248	ret = usb_hcd_check_unlink_urb(hcd, urb, status);
1249	if (ret || !urb->hcpriv)
1250		goto done;
1251	temp = xhci_readl(xhci, &xhci->op_regs->status);
1252	if (temp == 0xffffffff || (xhci->xhc_state & XHCI_STATE_HALTED)) {
1253		xhci_dbg(xhci, "HW died, freeing TD.\n");
1254		urb_priv = urb->hcpriv;
1255		for (i = urb_priv->td_cnt; i < urb_priv->length; i++) {
1256			td = urb_priv->td[i];
1257			if (!list_empty(&td->td_list))
1258				list_del_init(&td->td_list);
1259			if (!list_empty(&td->cancelled_td_list))
1260				list_del_init(&td->cancelled_td_list);
1261		}
1262
1263		usb_hcd_unlink_urb_from_ep(hcd, urb);
1264		spin_unlock_irqrestore(&xhci->lock, flags);
1265		usb_hcd_giveback_urb(hcd, urb, -ESHUTDOWN);
1266		xhci_urb_free_priv(xhci, urb_priv);
1267		return ret;
1268	}
1269	if ((xhci->xhc_state & XHCI_STATE_DYING) ||
1270			(xhci->xhc_state & XHCI_STATE_HALTED)) {
1271		xhci_dbg(xhci, "Ep 0x%x: URB %p to be canceled on "
1272				"non-responsive xHCI host.\n",
1273				urb->ep->desc.bEndpointAddress, urb);
1274		/* Let the stop endpoint command watchdog timer (which set this
1275		 * state) finish cleaning up the endpoint TD lists.  We must
1276		 * have caught it in the middle of dropping a lock and giving
1277		 * back an URB.
1278		 */
1279		goto done;
1280	}
1281
1282	xhci_dbg(xhci, "Cancel URB %p\n", urb);
1283	xhci_dbg(xhci, "Event ring:\n");
1284	xhci_debug_ring(xhci, xhci->event_ring);
1285	ep_index = xhci_get_endpoint_index(&urb->ep->desc);
1286	ep = &xhci->devs[urb->dev->slot_id]->eps[ep_index];
1287	ep_ring = xhci_urb_to_transfer_ring(xhci, urb);
1288	if (!ep_ring) {
1289		ret = -EINVAL;
 
 
 
 
 
1290		goto done;
1291	}
1292
1293	xhci_dbg(xhci, "Endpoint ring:\n");
1294	xhci_debug_ring(xhci, ep_ring);
 
 
 
 
 
 
 
 
 
 
 
 
1295
1296	urb_priv = urb->hcpriv;
 
 
 
 
 
 
 
 
 
 
 
 
 
1297
1298	for (i = urb_priv->td_cnt; i < urb_priv->length; i++) {
1299		td = urb_priv->td[i];
1300		list_add_tail(&td->cancelled_td_list, &ep->cancelled_td_list);
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1301	}
1302
1303	/* Queue a stop endpoint command, but only if this is
1304	 * the first cancellation to be handled.
1305	 */
1306	if (!(ep->ep_state & EP_HALT_PENDING)) {
1307		ep->ep_state |= EP_HALT_PENDING;
1308		ep->stop_cmds_pending++;
 
 
 
 
1309		ep->stop_cmd_timer.expires = jiffies +
1310			XHCI_STOP_EP_CMD_TIMEOUT * HZ;
1311		add_timer(&ep->stop_cmd_timer);
1312		xhci_queue_stop_endpoint(xhci, urb->dev->slot_id, ep_index, 0);
 
1313		xhci_ring_cmd_db(xhci);
1314	}
1315done:
1316	spin_unlock_irqrestore(&xhci->lock, flags);
1317	return ret;
 
 
 
 
 
 
 
 
1318}
1319
1320/* Drop an endpoint from a new bandwidth configuration for this device.
1321 * Only one call to this function is allowed per endpoint before
1322 * check_bandwidth() or reset_bandwidth() must be called.
1323 * A call to xhci_drop_endpoint() followed by a call to xhci_add_endpoint() will
1324 * add the endpoint to the schedule with possibly new parameters denoted by a
1325 * different endpoint descriptor in usb_host_endpoint.
1326 * A call to xhci_add_endpoint() followed by a call to xhci_drop_endpoint() is
1327 * not allowed.
1328 *
1329 * The USB core will not allow URBs to be queued to an endpoint that is being
1330 * disabled, so there's no need for mutual exclusion to protect
1331 * the xhci->devs[slot_id] structure.
1332 */
1333int xhci_drop_endpoint(struct usb_hcd *hcd, struct usb_device *udev,
1334		struct usb_host_endpoint *ep)
1335{
1336	struct xhci_hcd *xhci;
1337	struct xhci_container_ctx *in_ctx, *out_ctx;
1338	struct xhci_input_control_ctx *ctrl_ctx;
1339	struct xhci_slot_ctx *slot_ctx;
1340	unsigned int last_ctx;
1341	unsigned int ep_index;
1342	struct xhci_ep_ctx *ep_ctx;
1343	u32 drop_flag;
1344	u32 new_add_flags, new_drop_flags, new_slot_info;
1345	int ret;
1346
1347	ret = xhci_check_args(hcd, udev, ep, 1, true, __func__);
1348	if (ret <= 0)
1349		return ret;
1350	xhci = hcd_to_xhci(hcd);
1351	if (xhci->xhc_state & XHCI_STATE_DYING)
1352		return -ENODEV;
1353
1354	xhci_dbg(xhci, "%s called for udev %p\n", __func__, udev);
1355	drop_flag = xhci_get_endpoint_flag(&ep->desc);
1356	if (drop_flag == SLOT_FLAG || drop_flag == EP0_FLAG) {
1357		xhci_dbg(xhci, "xHCI %s - can't drop slot or ep 0 %#x\n",
1358				__func__, drop_flag);
1359		return 0;
1360	}
1361
1362	in_ctx = xhci->devs[udev->slot_id]->in_ctx;
1363	out_ctx = xhci->devs[udev->slot_id]->out_ctx;
1364	ctrl_ctx = xhci_get_input_control_ctx(xhci, in_ctx);
 
 
 
 
 
 
1365	ep_index = xhci_get_endpoint_index(&ep->desc);
1366	ep_ctx = xhci_get_ep_ctx(xhci, out_ctx, ep_index);
1367	/* If the HC already knows the endpoint is disabled,
1368	 * or the HCD has noted it is disabled, ignore this request
1369	 */
1370	if (((ep_ctx->ep_info & cpu_to_le32(EP_STATE_MASK)) ==
1371	     cpu_to_le32(EP_STATE_DISABLED)) ||
1372	    le32_to_cpu(ctrl_ctx->drop_flags) &
1373	    xhci_get_endpoint_flag(&ep->desc)) {
1374		xhci_warn(xhci, "xHCI %s called with disabled ep %p\n",
1375				__func__, ep);
 
 
1376		return 0;
1377	}
1378
1379	ctrl_ctx->drop_flags |= cpu_to_le32(drop_flag);
1380	new_drop_flags = le32_to_cpu(ctrl_ctx->drop_flags);
1381
1382	ctrl_ctx->add_flags &= cpu_to_le32(~drop_flag);
1383	new_add_flags = le32_to_cpu(ctrl_ctx->add_flags);
1384
1385	last_ctx = xhci_last_valid_endpoint(le32_to_cpu(ctrl_ctx->add_flags));
1386	slot_ctx = xhci_get_slot_ctx(xhci, in_ctx);
1387	/* Update the last valid endpoint context, if we deleted the last one */
1388	if ((le32_to_cpu(slot_ctx->dev_info) & LAST_CTX_MASK) >
1389	    LAST_CTX(last_ctx)) {
1390		slot_ctx->dev_info &= cpu_to_le32(~LAST_CTX_MASK);
1391		slot_ctx->dev_info |= cpu_to_le32(LAST_CTX(last_ctx));
1392	}
1393	new_slot_info = le32_to_cpu(slot_ctx->dev_info);
1394
1395	xhci_endpoint_zero(xhci, xhci->devs[udev->slot_id], ep);
1396
1397	xhci_dbg(xhci, "drop ep 0x%x, slot id %d, new drop flags = %#x, new add flags = %#x, new slot info = %#x\n",
1398			(unsigned int) ep->desc.bEndpointAddress,
1399			udev->slot_id,
1400			(unsigned int) new_drop_flags,
1401			(unsigned int) new_add_flags,
1402			(unsigned int) new_slot_info);
1403	return 0;
1404}
 
1405
1406/* Add an endpoint to a new possible bandwidth configuration for this device.
1407 * Only one call to this function is allowed per endpoint before
1408 * check_bandwidth() or reset_bandwidth() must be called.
1409 * A call to xhci_drop_endpoint() followed by a call to xhci_add_endpoint() will
1410 * add the endpoint to the schedule with possibly new parameters denoted by a
1411 * different endpoint descriptor in usb_host_endpoint.
1412 * A call to xhci_add_endpoint() followed by a call to xhci_drop_endpoint() is
1413 * not allowed.
1414 *
1415 * The USB core will not allow URBs to be queued to an endpoint until the
1416 * configuration or alt setting is installed in the device, so there's no need
1417 * for mutual exclusion to protect the xhci->devs[slot_id] structure.
1418 */
1419int xhci_add_endpoint(struct usb_hcd *hcd, struct usb_device *udev,
1420		struct usb_host_endpoint *ep)
1421{
1422	struct xhci_hcd *xhci;
1423	struct xhci_container_ctx *in_ctx, *out_ctx;
1424	unsigned int ep_index;
1425	struct xhci_ep_ctx *ep_ctx;
1426	struct xhci_slot_ctx *slot_ctx;
1427	struct xhci_input_control_ctx *ctrl_ctx;
 
1428	u32 added_ctxs;
1429	unsigned int last_ctx;
1430	u32 new_add_flags, new_drop_flags, new_slot_info;
1431	struct xhci_virt_device *virt_dev;
1432	int ret = 0;
1433
1434	ret = xhci_check_args(hcd, udev, ep, 1, true, __func__);
1435	if (ret <= 0) {
1436		/* So we won't queue a reset ep command for a root hub */
1437		ep->hcpriv = NULL;
1438		return ret;
1439	}
1440	xhci = hcd_to_xhci(hcd);
1441	if (xhci->xhc_state & XHCI_STATE_DYING)
1442		return -ENODEV;
1443
1444	added_ctxs = xhci_get_endpoint_flag(&ep->desc);
1445	last_ctx = xhci_last_valid_endpoint(added_ctxs);
1446	if (added_ctxs == SLOT_FLAG || added_ctxs == EP0_FLAG) {
1447		/* FIXME when we have to issue an evaluate endpoint command to
1448		 * deal with ep0 max packet size changing once we get the
1449		 * descriptors
1450		 */
1451		xhci_dbg(xhci, "xHCI %s - can't add slot or ep 0 %#x\n",
1452				__func__, added_ctxs);
1453		return 0;
1454	}
1455
1456	virt_dev = xhci->devs[udev->slot_id];
1457	in_ctx = virt_dev->in_ctx;
1458	out_ctx = virt_dev->out_ctx;
1459	ctrl_ctx = xhci_get_input_control_ctx(xhci, in_ctx);
1460	ep_index = xhci_get_endpoint_index(&ep->desc);
1461	ep_ctx = xhci_get_ep_ctx(xhci, out_ctx, ep_index);
 
 
1462
 
1463	/* If this endpoint is already in use, and the upper layers are trying
1464	 * to add it again without dropping it, reject the addition.
1465	 */
1466	if (virt_dev->eps[ep_index].ring &&
1467			!(le32_to_cpu(ctrl_ctx->drop_flags) &
1468				xhci_get_endpoint_flag(&ep->desc))) {
1469		xhci_warn(xhci, "Trying to add endpoint 0x%x "
1470				"without dropping it.\n",
1471				(unsigned int) ep->desc.bEndpointAddress);
1472		return -EINVAL;
1473	}
1474
1475	/* If the HCD has already noted the endpoint is enabled,
1476	 * ignore this request.
1477	 */
1478	if (le32_to_cpu(ctrl_ctx->add_flags) &
1479	    xhci_get_endpoint_flag(&ep->desc)) {
1480		xhci_warn(xhci, "xHCI %s called with enabled ep %p\n",
1481				__func__, ep);
1482		return 0;
1483	}
1484
1485	/*
1486	 * Configuration and alternate setting changes must be done in
1487	 * process context, not interrupt context (or so documenation
1488	 * for usb_set_interface() and usb_set_configuration() claim).
1489	 */
1490	if (xhci_endpoint_init(xhci, virt_dev, udev, ep, GFP_NOIO) < 0) {
1491		dev_dbg(&udev->dev, "%s - could not initialize ep %#x\n",
1492				__func__, ep->desc.bEndpointAddress);
1493		return -ENOMEM;
1494	}
1495
1496	ctrl_ctx->add_flags |= cpu_to_le32(added_ctxs);
1497	new_add_flags = le32_to_cpu(ctrl_ctx->add_flags);
1498
1499	/* If xhci_endpoint_disable() was called for this endpoint, but the
1500	 * xHC hasn't been notified yet through the check_bandwidth() call,
1501	 * this re-adds a new state for the endpoint from the new endpoint
1502	 * descriptors.  We must drop and re-add this endpoint, so we leave the
1503	 * drop flags alone.
1504	 */
1505	new_drop_flags = le32_to_cpu(ctrl_ctx->drop_flags);
1506
1507	slot_ctx = xhci_get_slot_ctx(xhci, in_ctx);
1508	/* Update the last valid endpoint context, if we just added one past */
1509	if ((le32_to_cpu(slot_ctx->dev_info) & LAST_CTX_MASK) <
1510	    LAST_CTX(last_ctx)) {
1511		slot_ctx->dev_info &= cpu_to_le32(~LAST_CTX_MASK);
1512		slot_ctx->dev_info |= cpu_to_le32(LAST_CTX(last_ctx));
1513	}
1514	new_slot_info = le32_to_cpu(slot_ctx->dev_info);
1515
1516	/* Store the usb_device pointer for later use */
1517	ep->hcpriv = udev;
1518
1519	xhci_dbg(xhci, "add ep 0x%x, slot id %d, new drop flags = %#x, new add flags = %#x, new slot info = %#x\n",
 
 
 
1520			(unsigned int) ep->desc.bEndpointAddress,
1521			udev->slot_id,
1522			(unsigned int) new_drop_flags,
1523			(unsigned int) new_add_flags,
1524			(unsigned int) new_slot_info);
1525	return 0;
1526}
 
1527
1528static void xhci_zero_in_ctx(struct xhci_hcd *xhci, struct xhci_virt_device *virt_dev)
1529{
1530	struct xhci_input_control_ctx *ctrl_ctx;
1531	struct xhci_ep_ctx *ep_ctx;
1532	struct xhci_slot_ctx *slot_ctx;
1533	int i;
1534
 
 
 
 
 
 
 
1535	/* When a device's add flag and drop flag are zero, any subsequent
1536	 * configure endpoint command will leave that endpoint's state
1537	 * untouched.  Make sure we don't leave any old state in the input
1538	 * endpoint contexts.
1539	 */
1540	ctrl_ctx = xhci_get_input_control_ctx(xhci, virt_dev->in_ctx);
1541	ctrl_ctx->drop_flags = 0;
1542	ctrl_ctx->add_flags = 0;
1543	slot_ctx = xhci_get_slot_ctx(xhci, virt_dev->in_ctx);
1544	slot_ctx->dev_info &= cpu_to_le32(~LAST_CTX_MASK);
1545	/* Endpoint 0 is always valid */
1546	slot_ctx->dev_info |= cpu_to_le32(LAST_CTX(1));
1547	for (i = 1; i < 31; ++i) {
1548		ep_ctx = xhci_get_ep_ctx(xhci, virt_dev->in_ctx, i);
1549		ep_ctx->ep_info = 0;
1550		ep_ctx->ep_info2 = 0;
1551		ep_ctx->deq = 0;
1552		ep_ctx->tx_info = 0;
1553	}
1554}
1555
1556static int xhci_configure_endpoint_result(struct xhci_hcd *xhci,
1557		struct usb_device *udev, u32 *cmd_status)
1558{
1559	int ret;
1560
1561	switch (*cmd_status) {
1562	case COMP_ENOMEM:
1563		dev_warn(&udev->dev, "Not enough host controller resources "
1564				"for new device state.\n");
 
 
 
 
 
1565		ret = -ENOMEM;
1566		/* FIXME: can we allocate more resources for the HC? */
1567		break;
1568	case COMP_BW_ERR:
1569		dev_warn(&udev->dev, "Not enough bandwidth "
1570				"for new device state.\n");
 
1571		ret = -ENOSPC;
1572		/* FIXME: can we go back to the old state? */
1573		break;
1574	case COMP_TRB_ERR:
1575		/* the HCD set up something wrong */
1576		dev_warn(&udev->dev, "ERROR: Endpoint drop flag = 0, "
1577				"add flag = 1, "
1578				"and endpoint is not disabled.\n");
1579		ret = -EINVAL;
1580		break;
1581	case COMP_DEV_ERR:
1582		dev_warn(&udev->dev, "ERROR: Incompatible device for endpoint "
1583				"configure command.\n");
1584		ret = -ENODEV;
1585		break;
1586	case COMP_SUCCESS:
1587		dev_dbg(&udev->dev, "Successful Endpoint Configure command\n");
 
1588		ret = 0;
1589		break;
1590	default:
1591		xhci_err(xhci, "ERROR: unexpected command completion "
1592				"code 0x%x.\n", *cmd_status);
1593		ret = -EINVAL;
1594		break;
1595	}
1596	return ret;
1597}
1598
1599static int xhci_evaluate_context_result(struct xhci_hcd *xhci,
1600		struct usb_device *udev, u32 *cmd_status)
1601{
1602	int ret;
1603	struct xhci_virt_device *virt_dev = xhci->devs[udev->slot_id];
1604
1605	switch (*cmd_status) {
1606	case COMP_EINVAL:
1607		dev_warn(&udev->dev, "WARN: xHCI driver setup invalid evaluate "
1608				"context command.\n");
 
 
 
 
 
 
 
 
 
 
1609		ret = -EINVAL;
1610		break;
1611	case COMP_EBADSLT:
1612		dev_warn(&udev->dev, "WARN: slot not enabled for"
1613				"evaluate context command.\n");
1614	case COMP_CTX_STATE:
1615		dev_warn(&udev->dev, "WARN: invalid context state for "
1616				"evaluate context command.\n");
1617		xhci_dbg_ctx(xhci, virt_dev->out_ctx, 1);
1618		ret = -EINVAL;
1619		break;
1620	case COMP_DEV_ERR:
1621		dev_warn(&udev->dev, "ERROR: Incompatible device for evaluate "
1622				"context command.\n");
1623		ret = -ENODEV;
1624		break;
1625	case COMP_MEL_ERR:
1626		/* Max Exit Latency too large error */
1627		dev_warn(&udev->dev, "WARN: Max Exit Latency too large\n");
1628		ret = -EINVAL;
1629		break;
1630	case COMP_SUCCESS:
1631		dev_dbg(&udev->dev, "Successful evaluate context command\n");
 
1632		ret = 0;
1633		break;
1634	default:
1635		xhci_err(xhci, "ERROR: unexpected command completion "
1636				"code 0x%x.\n", *cmd_status);
1637		ret = -EINVAL;
1638		break;
1639	}
1640	return ret;
1641}
1642
1643static u32 xhci_count_num_new_endpoints(struct xhci_hcd *xhci,
1644		struct xhci_container_ctx *in_ctx)
1645{
1646	struct xhci_input_control_ctx *ctrl_ctx;
1647	u32 valid_add_flags;
1648	u32 valid_drop_flags;
1649
1650	ctrl_ctx = xhci_get_input_control_ctx(xhci, in_ctx);
1651	/* Ignore the slot flag (bit 0), and the default control endpoint flag
1652	 * (bit 1).  The default control endpoint is added during the Address
1653	 * Device command and is never removed until the slot is disabled.
1654	 */
1655	valid_add_flags = ctrl_ctx->add_flags >> 2;
1656	valid_drop_flags = ctrl_ctx->drop_flags >> 2;
1657
1658	/* Use hweight32 to count the number of ones in the add flags, or
1659	 * number of endpoints added.  Don't count endpoints that are changed
1660	 * (both added and dropped).
1661	 */
1662	return hweight32(valid_add_flags) -
1663		hweight32(valid_add_flags & valid_drop_flags);
1664}
1665
1666static unsigned int xhci_count_num_dropped_endpoints(struct xhci_hcd *xhci,
1667		struct xhci_container_ctx *in_ctx)
1668{
1669	struct xhci_input_control_ctx *ctrl_ctx;
1670	u32 valid_add_flags;
1671	u32 valid_drop_flags;
1672
1673	ctrl_ctx = xhci_get_input_control_ctx(xhci, in_ctx);
1674	valid_add_flags = ctrl_ctx->add_flags >> 2;
1675	valid_drop_flags = ctrl_ctx->drop_flags >> 2;
1676
1677	return hweight32(valid_drop_flags) -
1678		hweight32(valid_add_flags & valid_drop_flags);
1679}
1680
1681/*
1682 * We need to reserve the new number of endpoints before the configure endpoint
1683 * command completes.  We can't subtract the dropped endpoints from the number
1684 * of active endpoints until the command completes because we can oversubscribe
1685 * the host in this case:
1686 *
1687 *  - the first configure endpoint command drops more endpoints than it adds
1688 *  - a second configure endpoint command that adds more endpoints is queued
1689 *  - the first configure endpoint command fails, so the config is unchanged
1690 *  - the second command may succeed, even though there isn't enough resources
1691 *
1692 * Must be called with xhci->lock held.
1693 */
1694static int xhci_reserve_host_resources(struct xhci_hcd *xhci,
1695		struct xhci_container_ctx *in_ctx)
1696{
1697	u32 added_eps;
1698
1699	added_eps = xhci_count_num_new_endpoints(xhci, in_ctx);
1700	if (xhci->num_active_eps + added_eps > xhci->limit_active_eps) {
1701		xhci_dbg(xhci, "Not enough ep ctxs: "
1702				"%u active, need to add %u, limit is %u.\n",
 
1703				xhci->num_active_eps, added_eps,
1704				xhci->limit_active_eps);
1705		return -ENOMEM;
1706	}
1707	xhci->num_active_eps += added_eps;
1708	xhci_dbg(xhci, "Adding %u ep ctxs, %u now active.\n", added_eps,
 
1709			xhci->num_active_eps);
1710	return 0;
1711}
1712
1713/*
1714 * The configure endpoint was failed by the xHC for some other reason, so we
1715 * need to revert the resources that failed configuration would have used.
1716 *
1717 * Must be called with xhci->lock held.
1718 */
1719static void xhci_free_host_resources(struct xhci_hcd *xhci,
1720		struct xhci_container_ctx *in_ctx)
1721{
1722	u32 num_failed_eps;
1723
1724	num_failed_eps = xhci_count_num_new_endpoints(xhci, in_ctx);
1725	xhci->num_active_eps -= num_failed_eps;
1726	xhci_dbg(xhci, "Removing %u failed ep ctxs, %u now active.\n",
 
1727			num_failed_eps,
1728			xhci->num_active_eps);
1729}
1730
1731/*
1732 * Now that the command has completed, clean up the active endpoint count by
1733 * subtracting out the endpoints that were dropped (but not changed).
1734 *
1735 * Must be called with xhci->lock held.
1736 */
1737static void xhci_finish_resource_reservation(struct xhci_hcd *xhci,
1738		struct xhci_container_ctx *in_ctx)
1739{
1740	u32 num_dropped_eps;
1741
1742	num_dropped_eps = xhci_count_num_dropped_endpoints(xhci, in_ctx);
1743	xhci->num_active_eps -= num_dropped_eps;
1744	if (num_dropped_eps)
1745		xhci_dbg(xhci, "Removing %u dropped ep ctxs, %u now active.\n",
 
1746				num_dropped_eps,
1747				xhci->num_active_eps);
1748}
1749
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1750/* Issue a configure endpoint command or evaluate context command
1751 * and wait for it to finish.
1752 */
1753static int xhci_configure_endpoint(struct xhci_hcd *xhci,
1754		struct usb_device *udev,
1755		struct xhci_command *command,
1756		bool ctx_change, bool must_succeed)
1757{
1758	int ret;
1759	int timeleft;
1760	unsigned long flags;
1761	struct xhci_container_ctx *in_ctx;
1762	struct completion *cmd_completion;
1763	u32 *cmd_status;
1764	struct xhci_virt_device *virt_dev;
 
 
 
 
1765
1766	spin_lock_irqsave(&xhci->lock, flags);
 
 
 
 
 
 
1767	virt_dev = xhci->devs[udev->slot_id];
1768	if (command) {
1769		in_ctx = command->in_ctx;
1770		if ((xhci->quirks & XHCI_EP_LIMIT_QUIRK) &&
1771				xhci_reserve_host_resources(xhci, in_ctx)) {
1772			spin_unlock_irqrestore(&xhci->lock, flags);
1773			xhci_warn(xhci, "Not enough host resources, "
1774					"active endpoint contexts = %u\n",
1775					xhci->num_active_eps);
1776			return -ENOMEM;
1777		}
1778
1779		cmd_completion = command->completion;
1780		cmd_status = &command->status;
1781		command->command_trb = xhci->cmd_ring->enqueue;
1782
1783		/* Enqueue pointer can be left pointing to the link TRB,
1784		 * we must handle that
1785		 */
1786		if (TRB_TYPE_LINK_LE32(command->command_trb->link.control))
1787			command->command_trb =
1788				xhci->cmd_ring->enq_seg->next->trbs;
1789
1790		list_add_tail(&command->cmd_list, &virt_dev->cmd_list);
1791	} else {
1792		in_ctx = virt_dev->in_ctx;
1793		if ((xhci->quirks & XHCI_EP_LIMIT_QUIRK) &&
1794				xhci_reserve_host_resources(xhci, in_ctx)) {
1795			spin_unlock_irqrestore(&xhci->lock, flags);
1796			xhci_warn(xhci, "Not enough host resources, "
1797					"active endpoint contexts = %u\n",
1798					xhci->num_active_eps);
1799			return -ENOMEM;
1800		}
1801		cmd_completion = &virt_dev->cmd_completion;
1802		cmd_status = &virt_dev->cmd_status;
 
 
1803	}
1804	init_completion(cmd_completion);
 
 
 
 
1805
1806	if (!ctx_change)
1807		ret = xhci_queue_configure_endpoint(xhci, in_ctx->dma,
 
1808				udev->slot_id, must_succeed);
1809	else
1810		ret = xhci_queue_evaluate_context(xhci, in_ctx->dma,
1811				udev->slot_id);
 
1812	if (ret < 0) {
1813		if (command)
1814			list_del(&command->cmd_list);
1815		if ((xhci->quirks & XHCI_EP_LIMIT_QUIRK))
1816			xhci_free_host_resources(xhci, in_ctx);
1817		spin_unlock_irqrestore(&xhci->lock, flags);
1818		xhci_dbg(xhci, "FIXME allocate a new ring segment\n");
 
1819		return -ENOMEM;
1820	}
1821	xhci_ring_cmd_db(xhci);
1822	spin_unlock_irqrestore(&xhci->lock, flags);
1823
1824	/* Wait for the configure endpoint command to complete */
1825	timeleft = wait_for_completion_interruptible_timeout(
1826			cmd_completion,
1827			USB_CTRL_SET_TIMEOUT);
1828	if (timeleft <= 0) {
1829		xhci_warn(xhci, "%s while waiting for %s command\n",
1830				timeleft == 0 ? "Timeout" : "Signal",
1831				ctx_change == 0 ?
1832					"configure endpoint" :
1833					"evaluate context");
1834		/* FIXME cancel the configure endpoint command */
1835		return -ETIME;
1836	}
1837
1838	if (!ctx_change)
1839		ret = xhci_configure_endpoint_result(xhci, udev, cmd_status);
 
1840	else
1841		ret = xhci_evaluate_context_result(xhci, udev, cmd_status);
 
1842
1843	if ((xhci->quirks & XHCI_EP_LIMIT_QUIRK)) {
1844		spin_lock_irqsave(&xhci->lock, flags);
1845		/* If the command failed, remove the reserved resources.
1846		 * Otherwise, clean up the estimate to include dropped eps.
1847		 */
1848		if (ret)
1849			xhci_free_host_resources(xhci, in_ctx);
1850		else
1851			xhci_finish_resource_reservation(xhci, in_ctx);
1852		spin_unlock_irqrestore(&xhci->lock, flags);
1853	}
1854	return ret;
1855}
1856
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1857/* Called after one or more calls to xhci_add_endpoint() or
1858 * xhci_drop_endpoint().  If this call fails, the USB core is expected
1859 * to call xhci_reset_bandwidth().
1860 *
1861 * Since we are in the middle of changing either configuration or
1862 * installing a new alt setting, the USB core won't allow URBs to be
1863 * enqueued for any endpoint on the old config or interface.  Nothing
1864 * else should be touching the xhci->devs[slot_id] structure, so we
1865 * don't need to take the xhci->lock for manipulating that.
1866 */
1867int xhci_check_bandwidth(struct usb_hcd *hcd, struct usb_device *udev)
1868{
1869	int i;
1870	int ret = 0;
1871	struct xhci_hcd *xhci;
1872	struct xhci_virt_device	*virt_dev;
1873	struct xhci_input_control_ctx *ctrl_ctx;
1874	struct xhci_slot_ctx *slot_ctx;
 
1875
1876	ret = xhci_check_args(hcd, udev, NULL, 0, true, __func__);
1877	if (ret <= 0)
1878		return ret;
1879	xhci = hcd_to_xhci(hcd);
1880	if (xhci->xhc_state & XHCI_STATE_DYING)
 
1881		return -ENODEV;
1882
1883	xhci_dbg(xhci, "%s called for udev %p\n", __func__, udev);
1884	virt_dev = xhci->devs[udev->slot_id];
1885
 
 
 
 
 
 
1886	/* See section 4.6.6 - A0 = 1; A1 = D0 = D1 = 0 */
1887	ctrl_ctx = xhci_get_input_control_ctx(xhci, virt_dev->in_ctx);
 
 
 
 
 
 
1888	ctrl_ctx->add_flags |= cpu_to_le32(SLOT_FLAG);
1889	ctrl_ctx->add_flags &= cpu_to_le32(~EP0_FLAG);
1890	ctrl_ctx->drop_flags &= cpu_to_le32(~(SLOT_FLAG | EP0_FLAG));
1891	xhci_dbg(xhci, "New Input Control Context:\n");
 
 
 
 
 
 
 
1892	slot_ctx = xhci_get_slot_ctx(xhci, virt_dev->in_ctx);
1893	xhci_dbg_ctx(xhci, virt_dev->in_ctx,
1894		     LAST_CTX_TO_EP_NUM(le32_to_cpu(slot_ctx->dev_info)));
1895
1896	ret = xhci_configure_endpoint(xhci, udev, NULL,
1897			false, false);
1898	if (ret) {
1899		/* Callee should call reset_bandwidth() */
1900		return ret;
 
1901	}
1902
1903	xhci_dbg(xhci, "Output context after successful config ep cmd:\n");
1904	xhci_dbg_ctx(xhci, virt_dev->out_ctx,
1905		     LAST_CTX_TO_EP_NUM(le32_to_cpu(slot_ctx->dev_info)));
 
 
1906
1907	/* Free any rings that were dropped, but not changed. */
1908	for (i = 1; i < 31; ++i) {
1909		if ((le32_to_cpu(ctrl_ctx->drop_flags) & (1 << (i + 1))) &&
1910		    !(le32_to_cpu(ctrl_ctx->add_flags) & (1 << (i + 1))))
1911			xhci_free_or_cache_endpoint_ring(xhci, virt_dev, i);
 
 
1912	}
1913	xhci_zero_in_ctx(xhci, virt_dev);
1914	/*
1915	 * Install any rings for completely new endpoints or changed endpoints,
1916	 * and free or cache any old rings from changed endpoints.
1917	 */
1918	for (i = 1; i < 31; ++i) {
1919		if (!virt_dev->eps[i].new_ring)
1920			continue;
1921		/* Only cache or free the old ring if it exists.
1922		 * It may not if this is the first add of an endpoint.
1923		 */
1924		if (virt_dev->eps[i].ring) {
1925			xhci_free_or_cache_endpoint_ring(xhci, virt_dev, i);
1926		}
 
1927		virt_dev->eps[i].ring = virt_dev->eps[i].new_ring;
1928		virt_dev->eps[i].new_ring = NULL;
 
1929	}
 
 
 
1930
1931	return ret;
1932}
 
1933
1934void xhci_reset_bandwidth(struct usb_hcd *hcd, struct usb_device *udev)
1935{
1936	struct xhci_hcd *xhci;
1937	struct xhci_virt_device	*virt_dev;
1938	int i, ret;
1939
1940	ret = xhci_check_args(hcd, udev, NULL, 0, true, __func__);
1941	if (ret <= 0)
1942		return;
1943	xhci = hcd_to_xhci(hcd);
1944
1945	xhci_dbg(xhci, "%s called for udev %p\n", __func__, udev);
1946	virt_dev = xhci->devs[udev->slot_id];
1947	/* Free any rings allocated for added endpoints */
1948	for (i = 0; i < 31; ++i) {
1949		if (virt_dev->eps[i].new_ring) {
 
1950			xhci_ring_free(xhci, virt_dev->eps[i].new_ring);
1951			virt_dev->eps[i].new_ring = NULL;
1952		}
1953	}
1954	xhci_zero_in_ctx(xhci, virt_dev);
1955}
 
1956
1957static void xhci_setup_input_ctx_for_config_ep(struct xhci_hcd *xhci,
1958		struct xhci_container_ctx *in_ctx,
1959		struct xhci_container_ctx *out_ctx,
 
1960		u32 add_flags, u32 drop_flags)
1961{
1962	struct xhci_input_control_ctx *ctrl_ctx;
1963	ctrl_ctx = xhci_get_input_control_ctx(xhci, in_ctx);
1964	ctrl_ctx->add_flags = cpu_to_le32(add_flags);
1965	ctrl_ctx->drop_flags = cpu_to_le32(drop_flags);
1966	xhci_slot_copy(xhci, in_ctx, out_ctx);
1967	ctrl_ctx->add_flags |= cpu_to_le32(SLOT_FLAG);
1968
1969	xhci_dbg(xhci, "Input Context:\n");
1970	xhci_dbg_ctx(xhci, in_ctx, xhci_last_valid_endpoint(add_flags));
1971}
1972
1973static void xhci_setup_input_ctx_for_quirk(struct xhci_hcd *xhci,
1974		unsigned int slot_id, unsigned int ep_index,
1975		struct xhci_dequeue_state *deq_state)
1976{
1977	struct xhci_container_ctx *in_ctx;
1978	struct xhci_ep_ctx *ep_ctx;
1979	u32 added_ctxs;
1980	dma_addr_t addr;
 
 
1981
1982	xhci_endpoint_copy(xhci, xhci->devs[slot_id]->in_ctx,
1983			xhci->devs[slot_id]->out_ctx, ep_index);
1984	in_ctx = xhci->devs[slot_id]->in_ctx;
1985	ep_ctx = xhci_get_ep_ctx(xhci, in_ctx, ep_index);
1986	addr = xhci_trb_virt_to_dma(deq_state->new_deq_seg,
1987			deq_state->new_deq_ptr);
1988	if (addr == 0) {
1989		xhci_warn(xhci, "WARN Cannot submit config ep after "
1990				"reset ep command\n");
1991		xhci_warn(xhci, "WARN deq seg = %p, deq ptr = %p\n",
1992				deq_state->new_deq_seg,
1993				deq_state->new_deq_ptr);
1994		return;
1995	}
1996	ep_ctx->deq = cpu_to_le64(addr | deq_state->new_cycle_state);
1997
1998	added_ctxs = xhci_get_endpoint_flag_from_index(ep_index);
1999	xhci_setup_input_ctx_for_config_ep(xhci, xhci->devs[slot_id]->in_ctx,
2000			xhci->devs[slot_id]->out_ctx, added_ctxs, added_ctxs);
2001}
2002
2003void xhci_cleanup_stalled_ring(struct xhci_hcd *xhci,
2004		struct usb_device *udev, unsigned int ep_index)
2005{
2006	struct xhci_dequeue_state deq_state;
2007	struct xhci_virt_ep *ep;
2008
2009	xhci_dbg(xhci, "Cleaning up stalled endpoint ring\n");
2010	ep = &xhci->devs[udev->slot_id]->eps[ep_index];
2011	/* We need to move the HW's dequeue pointer past this TD,
2012	 * or it will attempt to resend it on the next doorbell ring.
2013	 */
2014	xhci_find_new_dequeue_state(xhci, udev->slot_id,
2015			ep_index, ep->stopped_stream, ep->stopped_td,
2016			&deq_state);
2017
2018	/* HW with the reset endpoint quirk will use the saved dequeue state to
2019	 * issue a configure endpoint command later.
2020	 */
2021	if (!(xhci->quirks & XHCI_RESET_EP_QUIRK)) {
2022		xhci_dbg(xhci, "Queueing new dequeue state\n");
2023		xhci_queue_new_dequeue_state(xhci, udev->slot_id,
2024				ep_index, ep->stopped_stream, &deq_state);
2025	} else {
2026		/* Better hope no one uses the input context between now and the
2027		 * reset endpoint completion!
2028		 * XXX: No idea how this hardware will react when stream rings
2029		 * are enabled.
2030		 */
2031		xhci_dbg(xhci, "Setting up input context for "
2032				"configure endpoint command\n");
2033		xhci_setup_input_ctx_for_quirk(xhci, udev->slot_id,
2034				ep_index, &deq_state);
2035	}
 
 
 
 
 
 
 
2036}
2037
2038/* Deal with stalled endpoints.  The core should have sent the control message
2039 * to clear the halt condition.  However, we need to make the xHCI hardware
2040 * reset its sequence number, since a device will expect a sequence number of
2041 * zero after the halt condition is cleared.
2042 * Context: in_interrupt
 
 
 
 
 
2043 */
2044void xhci_endpoint_reset(struct usb_hcd *hcd,
2045		struct usb_host_endpoint *ep)
 
2046{
2047	struct xhci_hcd *xhci;
2048	struct usb_device *udev;
 
 
 
 
2049	unsigned int ep_index;
2050	unsigned long flags;
2051	int ret;
2052	struct xhci_virt_ep *virt_ep;
2053
2054	xhci = hcd_to_xhci(hcd);
2055	udev = (struct usb_device *) ep->hcpriv;
2056	/* Called with a root hub endpoint (or an endpoint that wasn't added
2057	 * with xhci_add_endpoint()
 
 
 
 
 
 
2058	 */
2059	if (!ep->hcpriv)
2060		return;
2061	ep_index = xhci_get_endpoint_index(&ep->desc);
2062	virt_ep = &xhci->devs[udev->slot_id]->eps[ep_index];
2063	if (!virt_ep->stopped_td) {
2064		xhci_dbg(xhci, "Endpoint 0x%x not halted, refusing to reset.\n",
2065				ep->desc.bEndpointAddress);
2066		return;
2067	}
2068	if (usb_endpoint_xfer_control(&ep->desc)) {
2069		xhci_dbg(xhci, "Control endpoint stall already handled.\n");
 
 
 
2070		return;
2071	}
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
2072
2073	xhci_dbg(xhci, "Queueing reset endpoint command\n");
2074	spin_lock_irqsave(&xhci->lock, flags);
2075	ret = xhci_queue_reset_ep(xhci, udev->slot_id, ep_index);
 
 
 
2076	/*
2077	 * Can't change the ring dequeue pointer until it's transitioned to the
2078	 * stopped state, which is only upon a successful reset endpoint
2079	 * command.  Better hope that last command worked!
2080	 */
2081	if (!ret) {
2082		xhci_cleanup_stalled_ring(xhci, udev, ep_index);
2083		kfree(virt_ep->stopped_td);
2084		xhci_ring_cmd_db(xhci);
 
 
2085	}
2086	virt_ep->stopped_td = NULL;
2087	virt_ep->stopped_trb = NULL;
2088	virt_ep->stopped_stream = 0;
 
 
 
 
 
 
 
 
 
2089	spin_unlock_irqrestore(&xhci->lock, flags);
2090
2091	if (ret)
2092		xhci_warn(xhci, "FIXME allocate a new ring segment\n");
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
2093}
2094
2095static int xhci_check_streams_endpoint(struct xhci_hcd *xhci,
2096		struct usb_device *udev, struct usb_host_endpoint *ep,
2097		unsigned int slot_id)
2098{
2099	int ret;
2100	unsigned int ep_index;
2101	unsigned int ep_state;
2102
2103	if (!ep)
2104		return -EINVAL;
2105	ret = xhci_check_args(xhci_to_hcd(xhci), udev, ep, 1, true, __func__);
2106	if (ret <= 0)
2107		return -EINVAL;
2108	if (ep->ss_ep_comp.bmAttributes == 0) {
2109		xhci_warn(xhci, "WARN: SuperSpeed Endpoint Companion"
2110				" descriptor for ep 0x%x does not support streams\n",
2111				ep->desc.bEndpointAddress);
2112		return -EINVAL;
2113	}
2114
2115	ep_index = xhci_get_endpoint_index(&ep->desc);
2116	ep_state = xhci->devs[slot_id]->eps[ep_index].ep_state;
2117	if (ep_state & EP_HAS_STREAMS ||
2118			ep_state & EP_GETTING_STREAMS) {
2119		xhci_warn(xhci, "WARN: SuperSpeed bulk endpoint 0x%x "
2120				"already has streams set up.\n",
2121				ep->desc.bEndpointAddress);
2122		xhci_warn(xhci, "Send email to xHCI maintainer and ask for "
2123				"dynamic stream context array reallocation.\n");
2124		return -EINVAL;
2125	}
2126	if (!list_empty(&xhci->devs[slot_id]->eps[ep_index].ring->td_list)) {
2127		xhci_warn(xhci, "Cannot setup streams for SuperSpeed bulk "
2128				"endpoint 0x%x; URBs are pending.\n",
2129				ep->desc.bEndpointAddress);
2130		return -EINVAL;
2131	}
2132	return 0;
2133}
2134
2135static void xhci_calculate_streams_entries(struct xhci_hcd *xhci,
2136		unsigned int *num_streams, unsigned int *num_stream_ctxs)
2137{
2138	unsigned int max_streams;
2139
2140	/* The stream context array size must be a power of two */
2141	*num_stream_ctxs = roundup_pow_of_two(*num_streams);
2142	/*
2143	 * Find out how many primary stream array entries the host controller
2144	 * supports.  Later we may use secondary stream arrays (similar to 2nd
2145	 * level page entries), but that's an optional feature for xHCI host
2146	 * controllers. xHCs must support at least 4 stream IDs.
2147	 */
2148	max_streams = HCC_MAX_PSA(xhci->hcc_params);
2149	if (*num_stream_ctxs > max_streams) {
2150		xhci_dbg(xhci, "xHCI HW only supports %u stream ctx entries.\n",
2151				max_streams);
2152		*num_stream_ctxs = max_streams;
2153		*num_streams = max_streams;
2154	}
2155}
2156
2157/* Returns an error code if one of the endpoint already has streams.
2158 * This does not change any data structures, it only checks and gathers
2159 * information.
2160 */
2161static int xhci_calculate_streams_and_bitmask(struct xhci_hcd *xhci,
2162		struct usb_device *udev,
2163		struct usb_host_endpoint **eps, unsigned int num_eps,
2164		unsigned int *num_streams, u32 *changed_ep_bitmask)
2165{
2166	unsigned int max_streams;
2167	unsigned int endpoint_flag;
2168	int i;
2169	int ret;
2170
2171	for (i = 0; i < num_eps; i++) {
2172		ret = xhci_check_streams_endpoint(xhci, udev,
2173				eps[i], udev->slot_id);
2174		if (ret < 0)
2175			return ret;
2176
2177		max_streams = USB_SS_MAX_STREAMS(
2178				eps[i]->ss_ep_comp.bmAttributes);
2179		if (max_streams < (*num_streams - 1)) {
2180			xhci_dbg(xhci, "Ep 0x%x only supports %u stream IDs.\n",
2181					eps[i]->desc.bEndpointAddress,
2182					max_streams);
2183			*num_streams = max_streams+1;
2184		}
2185
2186		endpoint_flag = xhci_get_endpoint_flag(&eps[i]->desc);
2187		if (*changed_ep_bitmask & endpoint_flag)
2188			return -EINVAL;
2189		*changed_ep_bitmask |= endpoint_flag;
2190	}
2191	return 0;
2192}
2193
2194static u32 xhci_calculate_no_streams_bitmask(struct xhci_hcd *xhci,
2195		struct usb_device *udev,
2196		struct usb_host_endpoint **eps, unsigned int num_eps)
2197{
2198	u32 changed_ep_bitmask = 0;
2199	unsigned int slot_id;
2200	unsigned int ep_index;
2201	unsigned int ep_state;
2202	int i;
2203
2204	slot_id = udev->slot_id;
2205	if (!xhci->devs[slot_id])
2206		return 0;
2207
2208	for (i = 0; i < num_eps; i++) {
2209		ep_index = xhci_get_endpoint_index(&eps[i]->desc);
2210		ep_state = xhci->devs[slot_id]->eps[ep_index].ep_state;
2211		/* Are streams already being freed for the endpoint? */
2212		if (ep_state & EP_GETTING_NO_STREAMS) {
2213			xhci_warn(xhci, "WARN Can't disable streams for "
2214					"endpoint 0x%x\n, "
2215					"streams are being disabled already.",
2216					eps[i]->desc.bEndpointAddress);
2217			return 0;
2218		}
2219		/* Are there actually any streams to free? */
2220		if (!(ep_state & EP_HAS_STREAMS) &&
2221				!(ep_state & EP_GETTING_STREAMS)) {
2222			xhci_warn(xhci, "WARN Can't disable streams for "
2223					"endpoint 0x%x\n, "
2224					"streams are already disabled!",
2225					eps[i]->desc.bEndpointAddress);
2226			xhci_warn(xhci, "WARN xhci_free_streams() called "
2227					"with non-streams endpoint\n");
2228			return 0;
2229		}
2230		changed_ep_bitmask |= xhci_get_endpoint_flag(&eps[i]->desc);
2231	}
2232	return changed_ep_bitmask;
2233}
2234
2235/*
2236 * The USB device drivers use this function (though the HCD interface in USB
2237 * core) to prepare a set of bulk endpoints to use streams.  Streams are used to
2238 * coordinate mass storage command queueing across multiple endpoints (basically
2239 * a stream ID == a task ID).
2240 *
2241 * Setting up streams involves allocating the same size stream context array
2242 * for each endpoint and issuing a configure endpoint command for all endpoints.
2243 *
2244 * Don't allow the call to succeed if one endpoint only supports one stream
2245 * (which means it doesn't support streams at all).
2246 *
2247 * Drivers may get less stream IDs than they asked for, if the host controller
2248 * hardware or endpoints claim they can't support the number of requested
2249 * stream IDs.
2250 */
2251int xhci_alloc_streams(struct usb_hcd *hcd, struct usb_device *udev,
2252		struct usb_host_endpoint **eps, unsigned int num_eps,
2253		unsigned int num_streams, gfp_t mem_flags)
2254{
2255	int i, ret;
2256	struct xhci_hcd *xhci;
2257	struct xhci_virt_device *vdev;
2258	struct xhci_command *config_cmd;
 
2259	unsigned int ep_index;
2260	unsigned int num_stream_ctxs;
 
2261	unsigned long flags;
2262	u32 changed_ep_bitmask = 0;
2263
2264	if (!eps)
2265		return -EINVAL;
2266
2267	/* Add one to the number of streams requested to account for
2268	 * stream 0 that is reserved for xHCI usage.
2269	 */
2270	num_streams += 1;
2271	xhci = hcd_to_xhci(hcd);
2272	xhci_dbg(xhci, "Driver wants %u stream IDs (including stream 0).\n",
2273			num_streams);
2274
2275	config_cmd = xhci_alloc_command(xhci, true, true, mem_flags);
2276	if (!config_cmd) {
2277		xhci_dbg(xhci, "Could not allocate xHCI command structure.\n");
 
 
 
 
 
 
 
 
 
 
 
 
 
2278		return -ENOMEM;
2279	}
2280
2281	/* Check to make sure all endpoints are not already configured for
2282	 * streams.  While we're at it, find the maximum number of streams that
2283	 * all the endpoints will support and check for duplicate endpoints.
2284	 */
2285	spin_lock_irqsave(&xhci->lock, flags);
2286	ret = xhci_calculate_streams_and_bitmask(xhci, udev, eps,
2287			num_eps, &num_streams, &changed_ep_bitmask);
2288	if (ret < 0) {
2289		xhci_free_command(xhci, config_cmd);
2290		spin_unlock_irqrestore(&xhci->lock, flags);
2291		return ret;
2292	}
2293	if (num_streams <= 1) {
2294		xhci_warn(xhci, "WARN: endpoints can't handle "
2295				"more than one stream.\n");
2296		xhci_free_command(xhci, config_cmd);
2297		spin_unlock_irqrestore(&xhci->lock, flags);
2298		return -EINVAL;
2299	}
2300	vdev = xhci->devs[udev->slot_id];
2301	/* Mark each endpoint as being in transition, so
2302	 * xhci_urb_enqueue() will reject all URBs.
2303	 */
2304	for (i = 0; i < num_eps; i++) {
2305		ep_index = xhci_get_endpoint_index(&eps[i]->desc);
2306		vdev->eps[ep_index].ep_state |= EP_GETTING_STREAMS;
2307	}
2308	spin_unlock_irqrestore(&xhci->lock, flags);
2309
2310	/* Setup internal data structures and allocate HW data structures for
2311	 * streams (but don't install the HW structures in the input context
2312	 * until we're sure all memory allocation succeeded).
2313	 */
2314	xhci_calculate_streams_entries(xhci, &num_streams, &num_stream_ctxs);
2315	xhci_dbg(xhci, "Need %u stream ctx entries for %u stream IDs.\n",
2316			num_stream_ctxs, num_streams);
2317
2318	for (i = 0; i < num_eps; i++) {
2319		ep_index = xhci_get_endpoint_index(&eps[i]->desc);
 
2320		vdev->eps[ep_index].stream_info = xhci_alloc_stream_info(xhci,
2321				num_stream_ctxs,
2322				num_streams, mem_flags);
 
2323		if (!vdev->eps[ep_index].stream_info)
2324			goto cleanup;
2325		/* Set maxPstreams in endpoint context and update deq ptr to
2326		 * point to stream context array. FIXME
2327		 */
2328	}
2329
2330	/* Set up the input context for a configure endpoint command. */
2331	for (i = 0; i < num_eps; i++) {
2332		struct xhci_ep_ctx *ep_ctx;
2333
2334		ep_index = xhci_get_endpoint_index(&eps[i]->desc);
2335		ep_ctx = xhci_get_ep_ctx(xhci, config_cmd->in_ctx, ep_index);
2336
2337		xhci_endpoint_copy(xhci, config_cmd->in_ctx,
2338				vdev->out_ctx, ep_index);
2339		xhci_setup_streams_ep_input_ctx(xhci, ep_ctx,
2340				vdev->eps[ep_index].stream_info);
2341	}
2342	/* Tell the HW to drop its old copy of the endpoint context info
2343	 * and add the updated copy from the input context.
2344	 */
2345	xhci_setup_input_ctx_for_config_ep(xhci, config_cmd->in_ctx,
2346			vdev->out_ctx, changed_ep_bitmask, changed_ep_bitmask);
 
2347
2348	/* Issue and wait for the configure endpoint command */
2349	ret = xhci_configure_endpoint(xhci, udev, config_cmd,
2350			false, false);
2351
2352	/* xHC rejected the configure endpoint command for some reason, so we
2353	 * leave the old ring intact and free our internal streams data
2354	 * structure.
2355	 */
2356	if (ret < 0)
2357		goto cleanup;
2358
2359	spin_lock_irqsave(&xhci->lock, flags);
2360	for (i = 0; i < num_eps; i++) {
2361		ep_index = xhci_get_endpoint_index(&eps[i]->desc);
2362		vdev->eps[ep_index].ep_state &= ~EP_GETTING_STREAMS;
2363		xhci_dbg(xhci, "Slot %u ep ctx %u now has streams.\n",
2364			 udev->slot_id, ep_index);
2365		vdev->eps[ep_index].ep_state |= EP_HAS_STREAMS;
2366	}
2367	xhci_free_command(xhci, config_cmd);
2368	spin_unlock_irqrestore(&xhci->lock, flags);
2369
 
 
 
 
2370	/* Subtract 1 for stream 0, which drivers can't use */
2371	return num_streams - 1;
2372
2373cleanup:
2374	/* If it didn't work, free the streams! */
2375	for (i = 0; i < num_eps; i++) {
2376		ep_index = xhci_get_endpoint_index(&eps[i]->desc);
2377		xhci_free_stream_info(xhci, vdev->eps[ep_index].stream_info);
2378		vdev->eps[ep_index].stream_info = NULL;
2379		/* FIXME Unset maxPstreams in endpoint context and
2380		 * update deq ptr to point to normal string ring.
2381		 */
2382		vdev->eps[ep_index].ep_state &= ~EP_GETTING_STREAMS;
2383		vdev->eps[ep_index].ep_state &= ~EP_HAS_STREAMS;
2384		xhci_endpoint_zero(xhci, vdev, eps[i]);
2385	}
2386	xhci_free_command(xhci, config_cmd);
2387	return -ENOMEM;
2388}
2389
2390/* Transition the endpoint from using streams to being a "normal" endpoint
2391 * without streams.
2392 *
2393 * Modify the endpoint context state, submit a configure endpoint command,
2394 * and free all endpoint rings for streams if that completes successfully.
2395 */
2396int xhci_free_streams(struct usb_hcd *hcd, struct usb_device *udev,
2397		struct usb_host_endpoint **eps, unsigned int num_eps,
2398		gfp_t mem_flags)
2399{
2400	int i, ret;
2401	struct xhci_hcd *xhci;
2402	struct xhci_virt_device *vdev;
2403	struct xhci_command *command;
 
2404	unsigned int ep_index;
2405	unsigned long flags;
2406	u32 changed_ep_bitmask;
2407
2408	xhci = hcd_to_xhci(hcd);
2409	vdev = xhci->devs[udev->slot_id];
2410
2411	/* Set up a configure endpoint command to remove the streams rings */
2412	spin_lock_irqsave(&xhci->lock, flags);
2413	changed_ep_bitmask = xhci_calculate_no_streams_bitmask(xhci,
2414			udev, eps, num_eps);
2415	if (changed_ep_bitmask == 0) {
2416		spin_unlock_irqrestore(&xhci->lock, flags);
2417		return -EINVAL;
2418	}
2419
2420	/* Use the xhci_command structure from the first endpoint.  We may have
2421	 * allocated too many, but the driver may call xhci_free_streams() for
2422	 * each endpoint it grouped into one call to xhci_alloc_streams().
2423	 */
2424	ep_index = xhci_get_endpoint_index(&eps[0]->desc);
2425	command = vdev->eps[ep_index].stream_info->free_streams_command;
 
 
 
 
 
 
 
 
2426	for (i = 0; i < num_eps; i++) {
2427		struct xhci_ep_ctx *ep_ctx;
2428
2429		ep_index = xhci_get_endpoint_index(&eps[i]->desc);
2430		ep_ctx = xhci_get_ep_ctx(xhci, command->in_ctx, ep_index);
2431		xhci->devs[udev->slot_id]->eps[ep_index].ep_state |=
2432			EP_GETTING_NO_STREAMS;
2433
2434		xhci_endpoint_copy(xhci, command->in_ctx,
2435				vdev->out_ctx, ep_index);
2436		xhci_setup_no_streams_ep_input_ctx(xhci, ep_ctx,
2437				&vdev->eps[ep_index]);
2438	}
2439	xhci_setup_input_ctx_for_config_ep(xhci, command->in_ctx,
2440			vdev->out_ctx, changed_ep_bitmask, changed_ep_bitmask);
 
2441	spin_unlock_irqrestore(&xhci->lock, flags);
2442
2443	/* Issue and wait for the configure endpoint command,
2444	 * which must succeed.
2445	 */
2446	ret = xhci_configure_endpoint(xhci, udev, command,
2447			false, true);
2448
2449	/* xHC rejected the configure endpoint command for some reason, so we
2450	 * leave the streams rings intact.
2451	 */
2452	if (ret < 0)
2453		return ret;
2454
2455	spin_lock_irqsave(&xhci->lock, flags);
2456	for (i = 0; i < num_eps; i++) {
2457		ep_index = xhci_get_endpoint_index(&eps[i]->desc);
2458		xhci_free_stream_info(xhci, vdev->eps[ep_index].stream_info);
2459		vdev->eps[ep_index].stream_info = NULL;
2460		/* FIXME Unset maxPstreams in endpoint context and
2461		 * update deq ptr to point to normal string ring.
2462		 */
2463		vdev->eps[ep_index].ep_state &= ~EP_GETTING_NO_STREAMS;
2464		vdev->eps[ep_index].ep_state &= ~EP_HAS_STREAMS;
2465	}
2466	spin_unlock_irqrestore(&xhci->lock, flags);
2467
2468	return 0;
2469}
2470
2471/*
2472 * Deletes endpoint resources for endpoints that were active before a Reset
2473 * Device command, or a Disable Slot command.  The Reset Device command leaves
2474 * the control endpoint intact, whereas the Disable Slot command deletes it.
2475 *
2476 * Must be called with xhci->lock held.
2477 */
2478void xhci_free_device_endpoint_resources(struct xhci_hcd *xhci,
2479	struct xhci_virt_device *virt_dev, bool drop_control_ep)
2480{
2481	int i;
2482	unsigned int num_dropped_eps = 0;
2483	unsigned int drop_flags = 0;
2484
2485	for (i = (drop_control_ep ? 0 : 1); i < 31; i++) {
2486		if (virt_dev->eps[i].ring) {
2487			drop_flags |= 1 << i;
2488			num_dropped_eps++;
2489		}
2490	}
2491	xhci->num_active_eps -= num_dropped_eps;
2492	if (num_dropped_eps)
2493		xhci_dbg(xhci, "Dropped %u ep ctxs, flags = 0x%x, "
2494				"%u now active.\n",
 
2495				num_dropped_eps, drop_flags,
2496				xhci->num_active_eps);
2497}
2498
2499/*
2500 * This submits a Reset Device Command, which will set the device state to 0,
2501 * set the device address to 0, and disable all the endpoints except the default
2502 * control endpoint.  The USB core should come back and call
2503 * xhci_address_device(), and then re-set up the configuration.  If this is
2504 * called because of a usb_reset_and_verify_device(), then the old alternate
2505 * settings will be re-installed through the normal bandwidth allocation
2506 * functions.
2507 *
2508 * Wait for the Reset Device command to finish.  Remove all structures
2509 * associated with the endpoints that were disabled.  Clear the input device
2510 * structure?  Cache the rings?  Reset the control endpoint 0 max packet size?
2511 *
2512 * If the virt_dev to be reset does not exist or does not match the udev,
2513 * it means the device is lost, possibly due to the xHC restore error and
2514 * re-initialization during S3/S4. In this case, call xhci_alloc_dev() to
2515 * re-allocate the device.
2516 */
2517int xhci_discover_or_reset_device(struct usb_hcd *hcd, struct usb_device *udev)
 
2518{
2519	int ret, i;
2520	unsigned long flags;
2521	struct xhci_hcd *xhci;
2522	unsigned int slot_id;
2523	struct xhci_virt_device *virt_dev;
2524	struct xhci_command *reset_device_cmd;
2525	int timeleft;
2526	int last_freed_endpoint;
2527	struct xhci_slot_ctx *slot_ctx;
 
2528
2529	ret = xhci_check_args(hcd, udev, NULL, 0, false, __func__);
2530	if (ret <= 0)
2531		return ret;
2532	xhci = hcd_to_xhci(hcd);
2533	slot_id = udev->slot_id;
2534	virt_dev = xhci->devs[slot_id];
2535	if (!virt_dev) {
2536		xhci_dbg(xhci, "The device to be reset with slot ID %u does "
2537				"not exist. Re-allocate the device\n", slot_id);
2538		ret = xhci_alloc_dev(hcd, udev);
2539		if (ret == 1)
2540			return 0;
2541		else
2542			return -EINVAL;
2543	}
2544
 
 
 
2545	if (virt_dev->udev != udev) {
2546		/* If the virt_dev and the udev does not match, this virt_dev
2547		 * may belong to another udev.
2548		 * Re-allocate the device.
2549		 */
2550		xhci_dbg(xhci, "The device to be reset with slot ID %u does "
2551				"not match the udev. Re-allocate the device\n",
2552				slot_id);
2553		ret = xhci_alloc_dev(hcd, udev);
2554		if (ret == 1)
2555			return 0;
2556		else
2557			return -EINVAL;
2558	}
2559
2560	/* If device is not setup, there is no point in resetting it */
2561	slot_ctx = xhci_get_slot_ctx(xhci, virt_dev->out_ctx);
2562	if (GET_SLOT_STATE(le32_to_cpu(slot_ctx->dev_state)) ==
2563						SLOT_STATE_DISABLED)
2564		return 0;
2565
 
 
2566	xhci_dbg(xhci, "Resetting device with slot ID %u\n", slot_id);
2567	/* Allocate the command structure that holds the struct completion.
2568	 * Assume we're in process context, since the normal device reset
2569	 * process has to wait for the device anyway.  Storage devices are
2570	 * reset as part of error handling, so use GFP_NOIO instead of
2571	 * GFP_KERNEL.
2572	 */
2573	reset_device_cmd = xhci_alloc_command(xhci, false, true, GFP_NOIO);
2574	if (!reset_device_cmd) {
2575		xhci_dbg(xhci, "Couldn't allocate command structure.\n");
2576		return -ENOMEM;
2577	}
2578
2579	/* Attempt to submit the Reset Device command to the command ring */
2580	spin_lock_irqsave(&xhci->lock, flags);
2581	reset_device_cmd->command_trb = xhci->cmd_ring->enqueue;
2582
2583	/* Enqueue pointer can be left pointing to the link TRB,
2584	 * we must handle that
2585	 */
2586	if (TRB_TYPE_LINK_LE32(reset_device_cmd->command_trb->link.control))
2587		reset_device_cmd->command_trb =
2588			xhci->cmd_ring->enq_seg->next->trbs;
2589
2590	list_add_tail(&reset_device_cmd->cmd_list, &virt_dev->cmd_list);
2591	ret = xhci_queue_reset_device(xhci, slot_id);
2592	if (ret) {
2593		xhci_dbg(xhci, "FIXME: allocate a command ring segment\n");
2594		list_del(&reset_device_cmd->cmd_list);
2595		spin_unlock_irqrestore(&xhci->lock, flags);
2596		goto command_cleanup;
2597	}
2598	xhci_ring_cmd_db(xhci);
2599	spin_unlock_irqrestore(&xhci->lock, flags);
2600
2601	/* Wait for the Reset Device command to finish */
2602	timeleft = wait_for_completion_interruptible_timeout(
2603			reset_device_cmd->completion,
2604			USB_CTRL_SET_TIMEOUT);
2605	if (timeleft <= 0) {
2606		xhci_warn(xhci, "%s while waiting for reset device command\n",
2607				timeleft == 0 ? "Timeout" : "Signal");
2608		spin_lock_irqsave(&xhci->lock, flags);
2609		/* The timeout might have raced with the event ring handler, so
2610		 * only delete from the list if the item isn't poisoned.
2611		 */
2612		if (reset_device_cmd->cmd_list.next != LIST_POISON1)
2613			list_del(&reset_device_cmd->cmd_list);
2614		spin_unlock_irqrestore(&xhci->lock, flags);
2615		ret = -ETIME;
2616		goto command_cleanup;
2617	}
2618
2619	/* The Reset Device command can't fail, according to the 0.95/0.96 spec,
2620	 * unless we tried to reset a slot ID that wasn't enabled,
2621	 * or the device wasn't in the addressed or configured state.
2622	 */
2623	ret = reset_device_cmd->status;
2624	switch (ret) {
2625	case COMP_EBADSLT: /* 0.95 completion code for bad slot ID */
2626	case COMP_CTX_STATE: /* 0.96 completion code for same thing */
2627		xhci_info(xhci, "Can't reset device (slot ID %u) in %s state\n",
 
 
 
 
 
2628				slot_id,
2629				xhci_get_slot_state(xhci, virt_dev->out_ctx));
2630		xhci_info(xhci, "Not freeing device rings.\n");
2631		/* Don't treat this as an error.  May change my mind later. */
2632		ret = 0;
2633		goto command_cleanup;
2634	case COMP_SUCCESS:
2635		xhci_dbg(xhci, "Successful reset device command.\n");
2636		break;
2637	default:
2638		if (xhci_is_vendor_info_code(xhci, ret))
2639			break;
2640		xhci_warn(xhci, "Unknown completion code %u for "
2641				"reset device command.\n", ret);
2642		ret = -EINVAL;
2643		goto command_cleanup;
2644	}
2645
2646	/* Free up host controller endpoint resources */
2647	if ((xhci->quirks & XHCI_EP_LIMIT_QUIRK)) {
2648		spin_lock_irqsave(&xhci->lock, flags);
2649		/* Don't delete the default control endpoint resources */
2650		xhci_free_device_endpoint_resources(xhci, virt_dev, false);
2651		spin_unlock_irqrestore(&xhci->lock, flags);
2652	}
2653
2654	/* Everything but endpoint 0 is disabled, so free or cache the rings. */
2655	last_freed_endpoint = 1;
2656	for (i = 1; i < 31; ++i) {
2657		struct xhci_virt_ep *ep = &virt_dev->eps[i];
2658
2659		if (ep->ep_state & EP_HAS_STREAMS) {
 
 
2660			xhci_free_stream_info(xhci, ep->stream_info);
2661			ep->stream_info = NULL;
2662			ep->ep_state &= ~EP_HAS_STREAMS;
2663		}
2664
2665		if (ep->ring) {
2666			xhci_free_or_cache_endpoint_ring(xhci, virt_dev, i);
2667			last_freed_endpoint = i;
2668		}
2669	}
2670	xhci_dbg(xhci, "Output context after successful reset device cmd:\n");
2671	xhci_dbg_ctx(xhci, virt_dev->out_ctx, last_freed_endpoint);
 
 
 
 
 
 
 
 
 
2672	ret = 0;
2673
2674command_cleanup:
2675	xhci_free_command(xhci, reset_device_cmd);
2676	return ret;
2677}
2678
2679/*
2680 * At this point, the struct usb_device is about to go away, the device has
2681 * disconnected, and all traffic has been stopped and the endpoints have been
2682 * disabled.  Free any HC data structures associated with that device.
2683 */
2684void xhci_free_dev(struct usb_hcd *hcd, struct usb_device *udev)
2685{
2686	struct xhci_hcd *xhci = hcd_to_xhci(hcd);
2687	struct xhci_virt_device *virt_dev;
2688	unsigned long flags;
2689	u32 state;
2690	int i, ret;
2691
 
 
 
 
 
 
 
 
 
 
2692	ret = xhci_check_args(hcd, udev, NULL, 0, true, __func__);
2693	/* If the host is halted due to driver unload, we still need to free the
2694	 * device.
2695	 */
2696	if (ret <= 0 && ret != -ENODEV)
2697		return;
2698
2699	virt_dev = xhci->devs[udev->slot_id];
 
 
2700
2701	/* Stop any wayward timer functions (which may grab the lock) */
2702	for (i = 0; i < 31; ++i) {
2703		virt_dev->eps[i].ep_state &= ~EP_HALT_PENDING;
2704		del_timer_sync(&virt_dev->eps[i].stop_cmd_timer);
2705	}
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
2706
2707	spin_lock_irqsave(&xhci->lock, flags);
2708	/* Don't disable the slot if the host controller is dead. */
2709	state = xhci_readl(xhci, &xhci->op_regs->status);
2710	if (state == 0xffffffff || (xhci->xhc_state & XHCI_STATE_DYING) ||
2711			(xhci->xhc_state & XHCI_STATE_HALTED)) {
2712		xhci_free_virt_device(xhci, udev->slot_id);
2713		spin_unlock_irqrestore(&xhci->lock, flags);
2714		return;
 
2715	}
2716
2717	if (xhci_queue_slot_control(xhci, TRB_DISABLE_SLOT, udev->slot_id)) {
 
 
2718		spin_unlock_irqrestore(&xhci->lock, flags);
2719		xhci_dbg(xhci, "FIXME: allocate a command ring segment\n");
2720		return;
2721	}
2722	xhci_ring_cmd_db(xhci);
2723	spin_unlock_irqrestore(&xhci->lock, flags);
2724	/*
2725	 * Event command completion handler will free any data structures
2726	 * associated with the slot.  XXX Can free sleep?
2727	 */
2728}
2729
2730/*
2731 * Checks if we have enough host controller resources for the default control
2732 * endpoint.
2733 *
2734 * Must be called with xhci->lock held.
2735 */
2736static int xhci_reserve_host_control_ep_resources(struct xhci_hcd *xhci)
2737{
2738	if (xhci->num_active_eps + 1 > xhci->limit_active_eps) {
2739		xhci_dbg(xhci, "Not enough ep ctxs: "
2740				"%u active, need to add 1, limit is %u.\n",
 
2741				xhci->num_active_eps, xhci->limit_active_eps);
2742		return -ENOMEM;
2743	}
2744	xhci->num_active_eps += 1;
2745	xhci_dbg(xhci, "Adding 1 ep ctx, %u now active.\n",
 
2746			xhci->num_active_eps);
2747	return 0;
2748}
2749
2750
2751/*
2752 * Returns 0 if the xHC ran out of device slots, the Enable Slot command
2753 * timed out, or allocating memory failed.  Returns 1 on success.
2754 */
2755int xhci_alloc_dev(struct usb_hcd *hcd, struct usb_device *udev)
2756{
2757	struct xhci_hcd *xhci = hcd_to_xhci(hcd);
 
 
2758	unsigned long flags;
2759	int timeleft;
2760	int ret;
 
 
 
 
2761
2762	spin_lock_irqsave(&xhci->lock, flags);
2763	ret = xhci_queue_slot_control(xhci, TRB_ENABLE_SLOT, 0);
2764	if (ret) {
2765		spin_unlock_irqrestore(&xhci->lock, flags);
2766		xhci_dbg(xhci, "FIXME: allocate a command ring segment\n");
 
2767		return 0;
2768	}
2769	xhci_ring_cmd_db(xhci);
2770	spin_unlock_irqrestore(&xhci->lock, flags);
2771
2772	/* XXX: how much time for xHC slot assignment? */
2773	timeleft = wait_for_completion_interruptible_timeout(&xhci->addr_dev,
2774			USB_CTRL_SET_TIMEOUT);
2775	if (timeleft <= 0) {
2776		xhci_warn(xhci, "%s while waiting for a slot\n",
2777				timeleft == 0 ? "Timeout" : "Signal");
2778		/* FIXME cancel the enable slot request */
2779		return 0;
2780	}
2781
2782	if (!xhci->slot_id) {
2783		xhci_err(xhci, "Error while assigning device slot ID\n");
 
 
 
 
2784		return 0;
2785	}
2786
 
 
2787	if ((xhci->quirks & XHCI_EP_LIMIT_QUIRK)) {
2788		spin_lock_irqsave(&xhci->lock, flags);
2789		ret = xhci_reserve_host_control_ep_resources(xhci);
2790		if (ret) {
2791			spin_unlock_irqrestore(&xhci->lock, flags);
2792			xhci_warn(xhci, "Not enough host resources, "
2793					"active endpoint contexts = %u\n",
2794					xhci->num_active_eps);
2795			goto disable_slot;
2796		}
2797		spin_unlock_irqrestore(&xhci->lock, flags);
2798	}
2799	/* Use GFP_NOIO, since this function can be called from
2800	 * xhci_discover_or_reset_device(), which may be called as part of
2801	 * mass storage driver error handling.
2802	 */
2803	if (!xhci_alloc_virt_device(xhci, xhci->slot_id, udev, GFP_NOIO)) {
2804		xhci_warn(xhci, "Could not allocate xHCI USB device data structures\n");
2805		goto disable_slot;
2806	}
2807	udev->slot_id = xhci->slot_id;
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
2808	/* Is this a LS or FS device under a HS hub? */
2809	/* Hub or peripherial? */
2810	return 1;
2811
2812disable_slot:
2813	/* Disable slot, if we can do it without mem alloc */
2814	spin_lock_irqsave(&xhci->lock, flags);
2815	if (!xhci_queue_slot_control(xhci, TRB_DISABLE_SLOT, udev->slot_id))
2816		xhci_ring_cmd_db(xhci);
2817	spin_unlock_irqrestore(&xhci->lock, flags);
2818	return 0;
2819}
2820
2821/*
2822 * Issue an Address Device command (which will issue a SetAddress request to
2823 * the device).
2824 * We should be protected by the usb_address0_mutex in khubd's hub_port_init, so
2825 * we should only issue and wait on one address command at the same time.
2826 *
2827 * We add one to the device address issued by the hardware because the USB core
2828 * uses address 1 for the root hubs (even though they're not really devices).
2829 */
2830int xhci_address_device(struct usb_hcd *hcd, struct usb_device *udev)
 
2831{
 
2832	unsigned long flags;
2833	int timeleft;
2834	struct xhci_virt_device *virt_dev;
2835	int ret = 0;
2836	struct xhci_hcd *xhci = hcd_to_xhci(hcd);
2837	struct xhci_slot_ctx *slot_ctx;
2838	struct xhci_input_control_ctx *ctrl_ctx;
2839	u64 temp_64;
 
 
 
 
 
 
 
 
2840
2841	if (!udev->slot_id) {
2842		xhci_dbg(xhci, "Bad Slot ID %d\n", udev->slot_id);
2843		return -EINVAL;
 
 
2844	}
2845
2846	virt_dev = xhci->devs[udev->slot_id];
2847
2848	if (WARN_ON(!virt_dev)) {
2849		/*
2850		 * In plug/unplug torture test with an NEC controller,
2851		 * a zero-dereference was observed once due to virt_dev = 0.
2852		 * Print useful debug rather than crash if it is observed again!
2853		 */
2854		xhci_warn(xhci, "Virt dev invalid for slot_id 0x%x!\n",
2855			udev->slot_id);
2856		return -EINVAL;
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
2857	}
2858
 
 
2859	slot_ctx = xhci_get_slot_ctx(xhci, virt_dev->in_ctx);
 
 
 
 
 
 
 
2860	/*
2861	 * If this is the first Set Address since device plug-in or
2862	 * virt_device realloaction after a resume with an xHCI power loss,
2863	 * then set up the slot context.
2864	 */
2865	if (!slot_ctx->dev_info)
2866		xhci_setup_addressable_virt_dev(xhci, udev);
2867	/* Otherwise, update the control endpoint ring enqueue pointer. */
2868	else
2869		xhci_copy_ep0_dequeue_into_input_ctx(xhci, udev);
2870	xhci_dbg(xhci, "Slot ID %d Input Context:\n", udev->slot_id);
2871	xhci_dbg_ctx(xhci, virt_dev->in_ctx, 2);
 
 
 
2872
 
2873	spin_lock_irqsave(&xhci->lock, flags);
2874	ret = xhci_queue_address_device(xhci, virt_dev->in_ctx->dma,
2875					udev->slot_id);
 
2876	if (ret) {
2877		spin_unlock_irqrestore(&xhci->lock, flags);
2878		xhci_dbg(xhci, "FIXME: allocate a command ring segment\n");
2879		return ret;
 
2880	}
2881	xhci_ring_cmd_db(xhci);
2882	spin_unlock_irqrestore(&xhci->lock, flags);
2883
2884	/* ctrl tx can take up to 5 sec; XXX: need more time for xHC? */
2885	timeleft = wait_for_completion_interruptible_timeout(&xhci->addr_dev,
2886			USB_CTRL_SET_TIMEOUT);
2887	/* FIXME: From section 4.3.4: "Software shall be responsible for timing
2888	 * the SetAddress() "recovery interval" required by USB and aborting the
2889	 * command on a timeout.
2890	 */
2891	if (timeleft <= 0) {
2892		xhci_warn(xhci, "%s while waiting for a slot\n",
2893				timeleft == 0 ? "Timeout" : "Signal");
2894		/* FIXME cancel the address device command */
2895		return -ETIME;
2896	}
2897
2898	switch (virt_dev->cmd_status) {
2899	case COMP_CTX_STATE:
2900	case COMP_EBADSLT:
2901		xhci_err(xhci, "Setup ERROR: address device command for slot %d.\n",
2902				udev->slot_id);
2903		ret = -EINVAL;
2904		break;
2905	case COMP_TX_ERR:
2906		dev_warn(&udev->dev, "Device not responding to set address.\n");
2907		ret = -EPROTO;
2908		break;
2909	case COMP_DEV_ERR:
2910		dev_warn(&udev->dev, "ERROR: Incompatible device for address "
2911				"device command.\n");
 
 
 
 
 
 
2912		ret = -ENODEV;
2913		break;
2914	case COMP_SUCCESS:
2915		xhci_dbg(xhci, "Successful Address Device command\n");
 
2916		break;
2917	default:
2918		xhci_err(xhci, "ERROR: unexpected command completion "
2919				"code 0x%x.\n", virt_dev->cmd_status);
2920		xhci_dbg(xhci, "Slot ID %d Output Context:\n", udev->slot_id);
2921		xhci_dbg_ctx(xhci, virt_dev->out_ctx, 2);
2922		ret = -EINVAL;
2923		break;
2924	}
2925	if (ret) {
2926		return ret;
2927	}
2928	temp_64 = xhci_read_64(xhci, &xhci->op_regs->dcbaa_ptr);
2929	xhci_dbg(xhci, "Op regs DCBAA ptr = %#016llx\n", temp_64);
2930	xhci_dbg(xhci, "Slot ID %d dcbaa entry @%p = %#016llx\n",
2931		 udev->slot_id,
2932		 &xhci->dcbaa->dev_context_ptrs[udev->slot_id],
2933		 (unsigned long long)
2934		 le64_to_cpu(xhci->dcbaa->dev_context_ptrs[udev->slot_id]));
2935	xhci_dbg(xhci, "Output Context DMA address = %#08llx\n",
 
 
 
2936			(unsigned long long)virt_dev->out_ctx->dma);
2937	xhci_dbg(xhci, "Slot ID %d Input Context:\n", udev->slot_id);
2938	xhci_dbg_ctx(xhci, virt_dev->in_ctx, 2);
2939	xhci_dbg(xhci, "Slot ID %d Output Context:\n", udev->slot_id);
2940	xhci_dbg_ctx(xhci, virt_dev->out_ctx, 2);
2941	/*
2942	 * USB core uses address 1 for the roothubs, so we add one to the
2943	 * address given back to us by the HC.
2944	 */
2945	slot_ctx = xhci_get_slot_ctx(xhci, virt_dev->out_ctx);
2946	/* Use kernel assigned address for devices; store xHC assigned
2947	 * address locally. */
2948	virt_dev->address = (le32_to_cpu(slot_ctx->dev_state) & DEV_ADDR_MASK)
2949		+ 1;
2950	/* Zero the input context control for later use */
2951	ctrl_ctx = xhci_get_input_control_ctx(xhci, virt_dev->in_ctx);
2952	ctrl_ctx->add_flags = 0;
2953	ctrl_ctx->drop_flags = 0;
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
2954
2955	xhci_dbg(xhci, "Internal device address = %d\n", virt_dev->address);
 
 
 
 
 
 
 
 
2956
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
2957	return 0;
2958}
2959
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
2960/* Once a hub descriptor is fetched for a device, we need to update the xHC's
2961 * internal data structures for the device.
2962 */
2963int xhci_update_hub_device(struct usb_hcd *hcd, struct usb_device *hdev,
2964			struct usb_tt *tt, gfp_t mem_flags)
2965{
2966	struct xhci_hcd *xhci = hcd_to_xhci(hcd);
2967	struct xhci_virt_device *vdev;
2968	struct xhci_command *config_cmd;
2969	struct xhci_input_control_ctx *ctrl_ctx;
2970	struct xhci_slot_ctx *slot_ctx;
2971	unsigned long flags;
2972	unsigned think_time;
2973	int ret;
2974
2975	/* Ignore root hubs */
2976	if (!hdev->parent)
2977		return 0;
2978
2979	vdev = xhci->devs[hdev->slot_id];
2980	if (!vdev) {
2981		xhci_warn(xhci, "Cannot update hub desc for unknown device.\n");
2982		return -EINVAL;
2983	}
2984	config_cmd = xhci_alloc_command(xhci, true, true, mem_flags);
2985	if (!config_cmd) {
2986		xhci_dbg(xhci, "Could not allocate xHCI command structure.\n");
 
 
 
 
 
 
 
2987		return -ENOMEM;
2988	}
2989
2990	spin_lock_irqsave(&xhci->lock, flags);
 
 
 
 
 
 
 
 
2991	xhci_slot_copy(xhci, config_cmd->in_ctx, vdev->out_ctx);
2992	ctrl_ctx = xhci_get_input_control_ctx(xhci, config_cmd->in_ctx);
2993	ctrl_ctx->add_flags |= cpu_to_le32(SLOT_FLAG);
2994	slot_ctx = xhci_get_slot_ctx(xhci, config_cmd->in_ctx);
2995	slot_ctx->dev_info |= cpu_to_le32(DEV_HUB);
 
 
 
 
 
2996	if (tt->multi)
2997		slot_ctx->dev_info |= cpu_to_le32(DEV_MTT);
 
 
 
2998	if (xhci->hci_version > 0x95) {
2999		xhci_dbg(xhci, "xHCI version %x needs hub "
3000				"TT think time and number of ports\n",
3001				(unsigned int) xhci->hci_version);
3002		slot_ctx->dev_info2 |= cpu_to_le32(XHCI_MAX_PORTS(hdev->maxchild));
3003		/* Set TT think time - convert from ns to FS bit times.
3004		 * 0 = 8 FS bit times, 1 = 16 FS bit times,
3005		 * 2 = 24 FS bit times, 3 = 32 FS bit times.
3006		 *
3007		 * xHCI 1.0: this field shall be 0 if the device is not a
3008		 * High-spped hub.
3009		 */
3010		think_time = tt->think_time;
3011		if (think_time != 0)
3012			think_time = (think_time / 666) - 1;
3013		if (xhci->hci_version < 0x100 || hdev->speed == USB_SPEED_HIGH)
3014			slot_ctx->tt_info |=
3015				cpu_to_le32(TT_THINK_TIME(think_time));
3016	} else {
3017		xhci_dbg(xhci, "xHCI version %x doesn't need hub "
3018				"TT think time or number of ports\n",
3019				(unsigned int) xhci->hci_version);
3020	}
3021	slot_ctx->dev_state = 0;
3022	spin_unlock_irqrestore(&xhci->lock, flags);
3023
3024	xhci_dbg(xhci, "Set up %s for hub device.\n",
3025			(xhci->hci_version > 0x95) ?
3026			"configure endpoint" : "evaluate context");
3027	xhci_dbg(xhci, "Slot %u Input Context:\n", hdev->slot_id);
3028	xhci_dbg_ctx(xhci, config_cmd->in_ctx, 0);
3029
3030	/* Issue and wait for the configure endpoint or
3031	 * evaluate context command.
3032	 */
3033	if (xhci->hci_version > 0x95)
3034		ret = xhci_configure_endpoint(xhci, hdev, config_cmd,
3035				false, false);
3036	else
3037		ret = xhci_configure_endpoint(xhci, hdev, config_cmd,
3038				true, false);
3039
3040	xhci_dbg(xhci, "Slot %u Output Context:\n", hdev->slot_id);
3041	xhci_dbg_ctx(xhci, vdev->out_ctx, 0);
3042
3043	xhci_free_command(xhci, config_cmd);
3044	return ret;
3045}
3046
3047int xhci_get_frame(struct usb_hcd *hcd)
3048{
3049	struct xhci_hcd *xhci = hcd_to_xhci(hcd);
3050	/* EHCI mods by the periodic size.  Why? */
3051	return xhci_readl(xhci, &xhci->run_regs->microframe_index) >> 3;
3052}
3053
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
3054MODULE_DESCRIPTION(DRIVER_DESC);
3055MODULE_AUTHOR(DRIVER_AUTHOR);
3056MODULE_LICENSE("GPL");
3057
3058static int __init xhci_hcd_init(void)
3059{
3060#ifdef CONFIG_PCI
3061	int retval = 0;
3062
3063	retval = xhci_register_pci();
3064
3065	if (retval < 0) {
3066		printk(KERN_DEBUG "Problem registering PCI driver.");
3067		return retval;
3068	}
3069#endif
3070	/*
3071	 * Check the compiler generated sizes of structures that must be laid
3072	 * out in specific ways for hardware access.
3073	 */
3074	BUILD_BUG_ON(sizeof(struct xhci_doorbell_array) != 256*32/8);
3075	BUILD_BUG_ON(sizeof(struct xhci_slot_ctx) != 8*32/8);
3076	BUILD_BUG_ON(sizeof(struct xhci_ep_ctx) != 8*32/8);
3077	/* xhci_device_control has eight fields, and also
3078	 * embeds one xhci_slot_ctx and 31 xhci_ep_ctx
3079	 */
3080	BUILD_BUG_ON(sizeof(struct xhci_stream_ctx) != 4*32/8);
3081	BUILD_BUG_ON(sizeof(union xhci_trb) != 4*32/8);
3082	BUILD_BUG_ON(sizeof(struct xhci_erst_entry) != 4*32/8);
3083	BUILD_BUG_ON(sizeof(struct xhci_cap_regs) != 7*32/8);
3084	BUILD_BUG_ON(sizeof(struct xhci_intr_reg) != 8*32/8);
3085	/* xhci_run_regs has eight fields and embeds 128 xhci_intr_regs */
3086	BUILD_BUG_ON(sizeof(struct xhci_run_regs) != (8+8*128)*32/8);
3087	BUILD_BUG_ON(sizeof(struct xhci_doorbell_array) != 256*32/8);
 
 
 
 
 
3088	return 0;
3089}
3090module_init(xhci_hcd_init);
3091
3092static void __exit xhci_hcd_cleanup(void)
 
 
 
 
3093{
3094#ifdef CONFIG_PCI
3095	xhci_unregister_pci();
3096#endif
3097}
3098module_exit(xhci_hcd_cleanup);
 
 
v5.14.15
   1// SPDX-License-Identifier: GPL-2.0
   2/*
   3 * xHCI host controller driver
   4 *
   5 * Copyright (C) 2008 Intel Corp.
   6 *
   7 * Author: Sarah Sharp
   8 * Some code borrowed from the Linux EHCI driver.
 
 
 
 
 
 
 
 
 
 
 
 
 
   9 */
  10
  11#include <linux/pci.h>
  12#include <linux/iopoll.h>
  13#include <linux/irq.h>
  14#include <linux/log2.h>
  15#include <linux/module.h>
  16#include <linux/moduleparam.h>
  17#include <linux/slab.h>
  18#include <linux/dmi.h>
  19#include <linux/dma-mapping.h>
  20
  21#include "xhci.h"
  22#include "xhci-trace.h"
  23#include "xhci-debugfs.h"
  24#include "xhci-dbgcap.h"
  25
  26#define DRIVER_AUTHOR "Sarah Sharp"
  27#define DRIVER_DESC "'eXtensible' Host Controller (xHC) Driver"
  28
  29#define	PORT_WAKE_BITS	(PORT_WKOC_E | PORT_WKDISC_E | PORT_WKCONN_E)
  30
  31/* Some 0.95 hardware can't handle the chain bit on a Link TRB being cleared */
  32static int link_quirk;
  33module_param(link_quirk, int, S_IRUGO | S_IWUSR);
  34MODULE_PARM_DESC(link_quirk, "Don't clear the chain bit on a link TRB");
  35
  36static unsigned long long quirks;
  37module_param(quirks, ullong, S_IRUGO);
  38MODULE_PARM_DESC(quirks, "Bit flags for quirks to be enabled as default");
  39
  40static bool td_on_ring(struct xhci_td *td, struct xhci_ring *ring)
  41{
  42	struct xhci_segment *seg = ring->first_seg;
  43
  44	if (!td || !td->start_seg)
  45		return false;
  46	do {
  47		if (seg == td->start_seg)
  48			return true;
  49		seg = seg->next;
  50	} while (seg && seg != ring->first_seg);
  51
  52	return false;
  53}
  54
  55/*
  56 * xhci_handshake - spin reading hc until handshake completes or fails
  57 * @ptr: address of hc register to be read
  58 * @mask: bits to look at in result of read
  59 * @done: value of those bits when handshake succeeds
  60 * @usec: timeout in microseconds
  61 *
  62 * Returns negative errno, or zero on success
  63 *
  64 * Success happens when the "mask" bits have the specified value (hardware
  65 * handshake done).  There are two failure modes:  "usec" have passed (major
  66 * hardware flakeout), or the register reads as all-ones (hardware removed).
  67 */
  68int xhci_handshake(void __iomem *ptr, u32 mask, u32 done, int usec)
 
  69{
  70	u32	result;
  71	int	ret;
  72
  73	ret = readl_poll_timeout_atomic(ptr, result,
  74					(result & mask) == done ||
  75					result == U32_MAX,
  76					1, usec);
  77	if (result == U32_MAX)		/* card removed */
  78		return -ENODEV;
  79
  80	return ret;
 
 
 
  81}
  82
  83/*
  84 * Disable interrupts and begin the xHCI halting process.
  85 */
  86void xhci_quiesce(struct xhci_hcd *xhci)
  87{
  88	u32 halted;
  89	u32 cmd;
  90	u32 mask;
  91
  92	mask = ~(XHCI_IRQS);
  93	halted = readl(&xhci->op_regs->status) & STS_HALT;
  94	if (!halted)
  95		mask &= ~CMD_RUN;
  96
  97	cmd = readl(&xhci->op_regs->command);
  98	cmd &= mask;
  99	writel(cmd, &xhci->op_regs->command);
 100}
 101
 102/*
 103 * Force HC into halt state.
 104 *
 105 * Disable any IRQs and clear the run/stop bit.
 106 * HC will complete any current and actively pipelined transactions, and
 107 * should halt within 16 ms of the run/stop bit being cleared.
 108 * Read HC Halted bit in the status register to see when the HC is finished.
 109 */
 110int xhci_halt(struct xhci_hcd *xhci)
 111{
 112	int ret;
 113	xhci_dbg_trace(xhci, trace_xhci_dbg_init, "// Halt the HC");
 114	xhci_quiesce(xhci);
 115
 116	ret = xhci_handshake(&xhci->op_regs->status,
 117			STS_HALT, STS_HALT, XHCI_MAX_HALT_USEC);
 118	if (ret) {
 119		xhci_warn(xhci, "Host halt failed, %d\n", ret);
 120		return ret;
 121	}
 122	xhci->xhc_state |= XHCI_STATE_HALTED;
 123	xhci->cmd_ring_state = CMD_RING_STATE_STOPPED;
 124	return ret;
 125}
 126
 127/*
 128 * Set the run bit and wait for the host to be running.
 129 */
 130int xhci_start(struct xhci_hcd *xhci)
 131{
 132	u32 temp;
 133	int ret;
 134
 135	temp = readl(&xhci->op_regs->command);
 136	temp |= (CMD_RUN);
 137	xhci_dbg_trace(xhci, trace_xhci_dbg_init, "// Turn on HC, cmd = 0x%x.",
 138			temp);
 139	writel(temp, &xhci->op_regs->command);
 140
 141	/*
 142	 * Wait for the HCHalted Status bit to be 0 to indicate the host is
 143	 * running.
 144	 */
 145	ret = xhci_handshake(&xhci->op_regs->status,
 146			STS_HALT, 0, XHCI_MAX_HALT_USEC);
 147	if (ret == -ETIMEDOUT)
 148		xhci_err(xhci, "Host took too long to start, "
 149				"waited %u microseconds.\n",
 150				XHCI_MAX_HALT_USEC);
 151	if (!ret)
 152		/* clear state flags. Including dying, halted or removing */
 153		xhci->xhc_state = 0;
 154
 155	return ret;
 156}
 157
 158/*
 159 * Reset a halted HC.
 160 *
 161 * This resets pipelines, timers, counters, state machines, etc.
 162 * Transactions will be terminated immediately, and operational registers
 163 * will be set to their defaults.
 164 */
 165int xhci_reset(struct xhci_hcd *xhci)
 166{
 167	u32 command;
 168	u32 state;
 169	int ret;
 170
 171	state = readl(&xhci->op_regs->status);
 172
 173	if (state == ~(u32)0) {
 174		xhci_warn(xhci, "Host not accessible, reset failed.\n");
 175		return -ENODEV;
 176	}
 177
 178	if ((state & STS_HALT) == 0) {
 179		xhci_warn(xhci, "Host controller not halted, aborting reset.\n");
 180		return 0;
 181	}
 182
 183	xhci_dbg_trace(xhci, trace_xhci_dbg_init, "// Reset the HC");
 184	command = readl(&xhci->op_regs->command);
 185	command |= CMD_RESET;
 186	writel(command, &xhci->op_regs->command);
 187
 188	/* Existing Intel xHCI controllers require a delay of 1 mS,
 189	 * after setting the CMD_RESET bit, and before accessing any
 190	 * HC registers. This allows the HC to complete the
 191	 * reset operation and be ready for HC register access.
 192	 * Without this delay, the subsequent HC register access,
 193	 * may result in a system hang very rarely.
 194	 */
 195	if (xhci->quirks & XHCI_INTEL_HOST)
 196		udelay(1000);
 197
 198	ret = xhci_handshake(&xhci->op_regs->command,
 199			CMD_RESET, 0, 10 * 1000 * 1000);
 200	if (ret)
 201		return ret;
 202
 203	if (xhci->quirks & XHCI_ASMEDIA_MODIFY_FLOWCONTROL)
 204		usb_asmedia_modifyflowcontrol(to_pci_dev(xhci_to_hcd(xhci)->self.controller));
 205
 206	xhci_dbg_trace(xhci, trace_xhci_dbg_init,
 207			 "Wait for controller to be ready for doorbell rings");
 208	/*
 209	 * xHCI cannot write to any doorbells or operational registers other
 210	 * than status until the "Controller Not Ready" flag is cleared.
 211	 */
 212	ret = xhci_handshake(&xhci->op_regs->status,
 213			STS_CNR, 0, 10 * 1000 * 1000);
 214
 215	xhci->usb2_rhub.bus_state.port_c_suspend = 0;
 216	xhci->usb2_rhub.bus_state.suspended_ports = 0;
 217	xhci->usb2_rhub.bus_state.resuming_ports = 0;
 218	xhci->usb3_rhub.bus_state.port_c_suspend = 0;
 219	xhci->usb3_rhub.bus_state.suspended_ports = 0;
 220	xhci->usb3_rhub.bus_state.resuming_ports = 0;
 221
 222	return ret;
 223}
 224
 225static void xhci_zero_64b_regs(struct xhci_hcd *xhci)
 
 
 
 
 226{
 227	struct device *dev = xhci_to_hcd(xhci)->self.sysdev;
 228	int err, i;
 229	u64 val;
 230	u32 intrs;
 231
 232	/*
 233	 * Some Renesas controllers get into a weird state if they are
 234	 * reset while programmed with 64bit addresses (they will preserve
 235	 * the top half of the address in internal, non visible
 236	 * registers). You end up with half the address coming from the
 237	 * kernel, and the other half coming from the firmware. Also,
 238	 * changing the programming leads to extra accesses even if the
 239	 * controller is supposed to be halted. The controller ends up with
 240	 * a fatal fault, and is then ripe for being properly reset.
 241	 *
 242	 * Special care is taken to only apply this if the device is behind
 243	 * an iommu. Doing anything when there is no iommu is definitely
 244	 * unsafe...
 245	 */
 246	if (!(xhci->quirks & XHCI_ZERO_64B_REGS) || !device_iommu_mapped(dev))
 247		return;
 248
 249	xhci_info(xhci, "Zeroing 64bit base registers, expecting fault\n");
 
 
 
 
 
 
 250
 251	/* Clear HSEIE so that faults do not get signaled */
 252	val = readl(&xhci->op_regs->command);
 253	val &= ~CMD_HSEIE;
 254	writel(val, &xhci->op_regs->command);
 255
 256	/* Clear HSE (aka FATAL) */
 257	val = readl(&xhci->op_regs->status);
 258	val |= STS_FATAL;
 259	writel(val, &xhci->op_regs->status);
 260
 261	/* Now zero the registers, and brace for impact */
 262	val = xhci_read_64(xhci, &xhci->op_regs->dcbaa_ptr);
 263	if (upper_32_bits(val))
 264		xhci_write_64(xhci, 0, &xhci->op_regs->dcbaa_ptr);
 265	val = xhci_read_64(xhci, &xhci->op_regs->cmd_ring);
 266	if (upper_32_bits(val))
 267		xhci_write_64(xhci, 0, &xhci->op_regs->cmd_ring);
 268
 269	intrs = min_t(u32, HCS_MAX_INTRS(xhci->hcs_params1),
 270		      ARRAY_SIZE(xhci->run_regs->ir_set));
 271
 272	for (i = 0; i < intrs; i++) {
 273		struct xhci_intr_reg __iomem *ir;
 274
 275		ir = &xhci->run_regs->ir_set[i];
 276		val = xhci_read_64(xhci, &ir->erst_base);
 277		if (upper_32_bits(val))
 278			xhci_write_64(xhci, 0, &ir->erst_base);
 279		val= xhci_read_64(xhci, &ir->erst_dequeue);
 280		if (upper_32_bits(val))
 281			xhci_write_64(xhci, 0, &ir->erst_dequeue);
 282	}
 283
 284	/* Wait for the fault to appear. It will be cleared on reset */
 285	err = xhci_handshake(&xhci->op_regs->status,
 286			     STS_FATAL, STS_FATAL,
 287			     XHCI_MAX_HALT_USEC);
 288	if (!err)
 289		xhci_info(xhci, "Fault detected\n");
 290}
 291
 292#ifdef CONFIG_USB_PCI
 293/*
 294 * Set up MSI
 295 */
 296static int xhci_setup_msi(struct xhci_hcd *xhci)
 297{
 298	int ret;
 299	/*
 300	 * TODO:Check with MSI Soc for sysdev
 301	 */
 302	struct pci_dev  *pdev = to_pci_dev(xhci_to_hcd(xhci)->self.controller);
 303
 304	ret = pci_alloc_irq_vectors(pdev, 1, 1, PCI_IRQ_MSI);
 305	if (ret < 0) {
 306		xhci_dbg_trace(xhci, trace_xhci_dbg_init,
 307				"failed to allocate MSI entry");
 308		return ret;
 309	}
 310
 311	ret = request_irq(pdev->irq, xhci_msi_irq,
 312				0, "xhci_hcd", xhci_to_hcd(xhci));
 313	if (ret) {
 314		xhci_dbg_trace(xhci, trace_xhci_dbg_init,
 315				"disable MSI interrupt");
 316		pci_free_irq_vectors(pdev);
 317	}
 318
 319	return ret;
 320}
 321
 322/*
 323 * Set up MSI-X
 324 */
 325static int xhci_setup_msix(struct xhci_hcd *xhci)
 326{
 327	int i, ret = 0;
 328	struct usb_hcd *hcd = xhci_to_hcd(xhci);
 329	struct pci_dev *pdev = to_pci_dev(hcd->self.controller);
 330
 331	/*
 332	 * calculate number of msi-x vectors supported.
 333	 * - HCS_MAX_INTRS: the max number of interrupts the host can handle,
 334	 *   with max number of interrupters based on the xhci HCSPARAMS1.
 335	 * - num_online_cpus: maximum msi-x vectors per CPUs core.
 336	 *   Add additional 1 vector to ensure always available interrupt.
 337	 */
 338	xhci->msix_count = min(num_online_cpus() + 1,
 339				HCS_MAX_INTRS(xhci->hcs_params1));
 340
 341	ret = pci_alloc_irq_vectors(pdev, xhci->msix_count, xhci->msix_count,
 342			PCI_IRQ_MSIX);
 343	if (ret < 0) {
 344		xhci_dbg_trace(xhci, trace_xhci_dbg_init,
 345				"Failed to enable MSI-X");
 346		return ret;
 
 
 
 
 
 
 
 
 
 
 
 347	}
 348
 349	for (i = 0; i < xhci->msix_count; i++) {
 350		ret = request_irq(pci_irq_vector(pdev, i), xhci_msi_irq, 0,
 351				"xhci_hcd", xhci_to_hcd(xhci));
 
 352		if (ret)
 353			goto disable_msix;
 354	}
 355
 356	hcd->msix_enabled = 1;
 357	return ret;
 358
 359disable_msix:
 360	xhci_dbg_trace(xhci, trace_xhci_dbg_init, "disable MSI-X interrupt");
 361	while (--i >= 0)
 362		free_irq(pci_irq_vector(pdev, i), xhci_to_hcd(xhci));
 363	pci_free_irq_vectors(pdev);
 
 
 364	return ret;
 365}
 366
 367/* Free any IRQs and disable MSI-X */
 368static void xhci_cleanup_msix(struct xhci_hcd *xhci)
 369{
 370	struct usb_hcd *hcd = xhci_to_hcd(xhci);
 371	struct pci_dev *pdev = to_pci_dev(hcd->self.controller);
 372
 373	if (xhci->quirks & XHCI_PLAT)
 374		return;
 375
 376	/* return if using legacy interrupt */
 377	if (hcd->irq > 0)
 378		return;
 379
 380	if (hcd->msix_enabled) {
 381		int i;
 382
 383		for (i = 0; i < xhci->msix_count; i++)
 384			free_irq(pci_irq_vector(pdev, i), xhci_to_hcd(xhci));
 385	} else {
 386		free_irq(pci_irq_vector(pdev, 0), xhci_to_hcd(xhci));
 387	}
 388
 389	pci_free_irq_vectors(pdev);
 390	hcd->msix_enabled = 0;
 391}
 392
 393static void __maybe_unused xhci_msix_sync_irqs(struct xhci_hcd *xhci)
 394{
 395	struct usb_hcd *hcd = xhci_to_hcd(xhci);
 396
 397	if (hcd->msix_enabled) {
 398		struct pci_dev *pdev = to_pci_dev(hcd->self.controller);
 399		int i;
 400
 401		for (i = 0; i < xhci->msix_count; i++)
 402			synchronize_irq(pci_irq_vector(pdev, i));
 403	}
 404}
 405
 406static int xhci_try_enable_msi(struct usb_hcd *hcd)
 407{
 408	struct xhci_hcd *xhci = hcd_to_xhci(hcd);
 409	struct pci_dev  *pdev;
 410	int ret;
 411
 412	/* The xhci platform device has set up IRQs through usb_add_hcd. */
 413	if (xhci->quirks & XHCI_PLAT)
 414		return 0;
 415
 416	pdev = to_pci_dev(xhci_to_hcd(xhci)->self.controller);
 417	/*
 418	 * Some Fresco Logic host controllers advertise MSI, but fail to
 419	 * generate interrupts.  Don't even try to enable MSI.
 420	 */
 421	if (xhci->quirks & XHCI_BROKEN_MSI)
 422		goto legacy_irq;
 423
 424	/* unregister the legacy interrupt */
 425	if (hcd->irq)
 426		free_irq(hcd->irq, hcd);
 427	hcd->irq = 0;
 428
 429	ret = xhci_setup_msix(xhci);
 430	if (ret)
 431		/* fall back to msi*/
 432		ret = xhci_setup_msi(xhci);
 433
 434	if (!ret) {
 435		hcd->msi_enabled = 1;
 436		return 0;
 437	}
 438
 439	if (!pdev->irq) {
 440		xhci_err(xhci, "No msi-x/msi found and no IRQ in BIOS\n");
 441		return -EINVAL;
 442	}
 443
 444 legacy_irq:
 445	if (!strlen(hcd->irq_descr))
 446		snprintf(hcd->irq_descr, sizeof(hcd->irq_descr), "%s:usb%d",
 447			 hcd->driver->description, hcd->self.busnum);
 448
 449	/* fall back to legacy interrupt*/
 450	ret = request_irq(pdev->irq, &usb_hcd_irq, IRQF_SHARED,
 451			hcd->irq_descr, hcd);
 452	if (ret) {
 453		xhci_err(xhci, "request interrupt %d failed\n",
 454				pdev->irq);
 455		return ret;
 456	}
 457	hcd->irq = pdev->irq;
 458	return 0;
 459}
 460
 461#else
 462
 463static inline int xhci_try_enable_msi(struct usb_hcd *hcd)
 464{
 465	return 0;
 466}
 467
 468static inline void xhci_cleanup_msix(struct xhci_hcd *xhci)
 469{
 470}
 471
 472static inline void xhci_msix_sync_irqs(struct xhci_hcd *xhci)
 473{
 474}
 475
 476#endif
 477
 478static void compliance_mode_recovery(struct timer_list *t)
 479{
 480	struct xhci_hcd *xhci;
 481	struct usb_hcd *hcd;
 482	struct xhci_hub *rhub;
 483	u32 temp;
 484	int i;
 485
 486	xhci = from_timer(xhci, t, comp_mode_recovery_timer);
 487	rhub = &xhci->usb3_rhub;
 488
 489	for (i = 0; i < rhub->num_ports; i++) {
 490		temp = readl(rhub->ports[i]->addr);
 491		if ((temp & PORT_PLS_MASK) == USB_SS_PORT_LS_COMP_MOD) {
 492			/*
 493			 * Compliance Mode Detected. Letting USB Core
 494			 * handle the Warm Reset
 495			 */
 496			xhci_dbg_trace(xhci, trace_xhci_dbg_quirks,
 497					"Compliance mode detected->port %d",
 498					i + 1);
 499			xhci_dbg_trace(xhci, trace_xhci_dbg_quirks,
 500					"Attempting compliance mode recovery");
 501			hcd = xhci->shared_hcd;
 502
 503			if (hcd->state == HC_STATE_SUSPENDED)
 504				usb_hcd_resume_root_hub(hcd);
 505
 506			usb_hcd_poll_rh_status(hcd);
 507		}
 508	}
 509
 510	if (xhci->port_status_u0 != ((1 << rhub->num_ports) - 1))
 511		mod_timer(&xhci->comp_mode_recovery_timer,
 512			jiffies + msecs_to_jiffies(COMP_MODE_RCVRY_MSECS));
 513}
 514
 515/*
 516 * Quirk to work around issue generated by the SN65LVPE502CP USB3.0 re-driver
 517 * that causes ports behind that hardware to enter compliance mode sometimes.
 518 * The quirk creates a timer that polls every 2 seconds the link state of
 519 * each host controller's port and recovers it by issuing a Warm reset
 520 * if Compliance mode is detected, otherwise the port will become "dead" (no
 521 * device connections or disconnections will be detected anymore). Becasue no
 522 * status event is generated when entering compliance mode (per xhci spec),
 523 * this quirk is needed on systems that have the failing hardware installed.
 524 */
 525static void compliance_mode_recovery_timer_init(struct xhci_hcd *xhci)
 526{
 527	xhci->port_status_u0 = 0;
 528	timer_setup(&xhci->comp_mode_recovery_timer, compliance_mode_recovery,
 529		    0);
 530	xhci->comp_mode_recovery_timer.expires = jiffies +
 531			msecs_to_jiffies(COMP_MODE_RCVRY_MSECS);
 532
 533	add_timer(&xhci->comp_mode_recovery_timer);
 534	xhci_dbg_trace(xhci, trace_xhci_dbg_quirks,
 535			"Compliance mode recovery timer initialized");
 536}
 537
 538/*
 539 * This function identifies the systems that have installed the SN65LVPE502CP
 540 * USB3.0 re-driver and that need the Compliance Mode Quirk.
 541 * Systems:
 542 * Vendor: Hewlett-Packard -> System Models: Z420, Z620 and Z820
 543 */
 544static bool xhci_compliance_mode_recovery_timer_quirk_check(void)
 545{
 546	const char *dmi_product_name, *dmi_sys_vendor;
 547
 548	dmi_product_name = dmi_get_system_info(DMI_PRODUCT_NAME);
 549	dmi_sys_vendor = dmi_get_system_info(DMI_SYS_VENDOR);
 550	if (!dmi_product_name || !dmi_sys_vendor)
 551		return false;
 552
 553	if (!(strstr(dmi_sys_vendor, "Hewlett-Packard")))
 554		return false;
 555
 556	if (strstr(dmi_product_name, "Z420") ||
 557			strstr(dmi_product_name, "Z620") ||
 558			strstr(dmi_product_name, "Z820") ||
 559			strstr(dmi_product_name, "Z1 Workstation"))
 560		return true;
 561
 562	return false;
 563}
 564
 565static int xhci_all_ports_seen_u0(struct xhci_hcd *xhci)
 566{
 567	return (xhci->port_status_u0 == ((1 << xhci->usb3_rhub.num_ports) - 1));
 568}
 569
 570
 571/*
 572 * Initialize memory for HCD and xHC (one-time init).
 573 *
 574 * Program the PAGESIZE register, initialize the device context array, create
 575 * device contexts (?), set up a command ring segment (or two?), create event
 576 * ring (one for now).
 577 */
 578static int xhci_init(struct usb_hcd *hcd)
 579{
 580	struct xhci_hcd *xhci = hcd_to_xhci(hcd);
 581	int retval = 0;
 582
 583	xhci_dbg_trace(xhci, trace_xhci_dbg_init, "xhci_init");
 584	spin_lock_init(&xhci->lock);
 585	if (xhci->hci_version == 0x95 && link_quirk) {
 586		xhci_dbg_trace(xhci, trace_xhci_dbg_quirks,
 587				"QUIRK: Not clearing Link TRB chain bits.");
 588		xhci->quirks |= XHCI_LINK_TRB_QUIRK;
 589	} else {
 590		xhci_dbg_trace(xhci, trace_xhci_dbg_init,
 591				"xHCI doesn't need link TRB QUIRK");
 592	}
 593	retval = xhci_mem_init(xhci, GFP_KERNEL);
 594	xhci_dbg_trace(xhci, trace_xhci_dbg_init, "Finished xhci_init");
 595
 596	/* Initializing Compliance Mode Recovery Data If Needed */
 597	if (xhci_compliance_mode_recovery_timer_quirk_check()) {
 598		xhci->quirks |= XHCI_COMP_MODE_QUIRK;
 599		compliance_mode_recovery_timer_init(xhci);
 600	}
 601
 602	return retval;
 603}
 604
 605/*-------------------------------------------------------------------------*/
 606
 607
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 608static int xhci_run_finished(struct xhci_hcd *xhci)
 609{
 610	if (xhci_start(xhci)) {
 611		xhci_halt(xhci);
 612		return -ENODEV;
 613	}
 614	xhci->shared_hcd->state = HC_STATE_RUNNING;
 615	xhci->cmd_ring_state = CMD_RING_STATE_RUNNING;
 616
 617	if (xhci->quirks & XHCI_NEC_HOST)
 618		xhci_ring_cmd_db(xhci);
 619
 620	xhci_dbg_trace(xhci, trace_xhci_dbg_init,
 621			"Finished xhci_run for USB3 roothub");
 622	return 0;
 623}
 624
 625/*
 626 * Start the HC after it was halted.
 627 *
 628 * This function is called by the USB core when the HC driver is added.
 629 * Its opposite is xhci_stop().
 630 *
 631 * xhci_init() must be called once before this function can be called.
 632 * Reset the HC, enable device slot contexts, program DCBAAP, and
 633 * set command ring pointer and event ring pointer.
 634 *
 635 * Setup MSI-X vectors and enable interrupts.
 636 */
 637int xhci_run(struct usb_hcd *hcd)
 638{
 639	u32 temp;
 640	u64 temp_64;
 641	int ret;
 642	struct xhci_hcd *xhci = hcd_to_xhci(hcd);
 
 643
 644	/* Start the xHCI host controller running only after the USB 2.0 roothub
 645	 * is setup.
 646	 */
 647
 648	hcd->uses_new_polling = 1;
 649	if (!usb_hcd_is_primary_hcd(hcd))
 650		return xhci_run_finished(xhci);
 651
 652	xhci_dbg_trace(xhci, trace_xhci_dbg_init, "xhci_run");
 
 
 
 
 
 
 
 
 
 
 653
 654	ret = xhci_try_enable_msi(hcd);
 655	if (ret)
 656		return ret;
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 657
 
 
 
 
 
 
 
 
 
 
 658	temp_64 = xhci_read_64(xhci, &xhci->ir_set->erst_dequeue);
 659	temp_64 &= ~ERST_PTR_MASK;
 660	xhci_dbg_trace(xhci, trace_xhci_dbg_init,
 661			"ERST deq = 64'h%0lx", (long unsigned int) temp_64);
 662
 663	xhci_dbg_trace(xhci, trace_xhci_dbg_init,
 664			"// Set the interrupt modulation register");
 665	temp = readl(&xhci->ir_set->irq_control);
 666	temp &= ~ER_IRQ_INTERVAL_MASK;
 667	temp |= (xhci->imod_interval / 250) & ER_IRQ_INTERVAL_MASK;
 668	writel(temp, &xhci->ir_set->irq_control);
 669
 670	/* Set the HCD state before we enable the irqs */
 671	temp = readl(&xhci->op_regs->command);
 672	temp |= (CMD_EIE);
 673	xhci_dbg_trace(xhci, trace_xhci_dbg_init,
 674			"// Enable interrupts, cmd = 0x%x.", temp);
 675	writel(temp, &xhci->op_regs->command);
 676
 677	temp = readl(&xhci->ir_set->irq_pending);
 678	xhci_dbg_trace(xhci, trace_xhci_dbg_init,
 679			"// Enabling event ring interrupter %p by writing 0x%x to irq_pending",
 680			xhci->ir_set, (unsigned int) ER_IRQ_ENABLE(temp));
 681	writel(ER_IRQ_ENABLE(temp), &xhci->ir_set->irq_pending);
 
 
 682
 683	if (xhci->quirks & XHCI_NEC_HOST) {
 684		struct xhci_command *command;
 
 685
 686		command = xhci_alloc_command(xhci, false, GFP_KERNEL);
 687		if (!command)
 688			return -ENOMEM;
 689
 690		ret = xhci_queue_vendor_command(xhci, command, 0, 0, 0,
 691				TRB_TYPE(TRB_NEC_GET_FW));
 692		if (ret)
 693			xhci_free_command(xhci, command);
 694	}
 695	set_bit(HCD_FLAG_DEFER_RH_REGISTER, &hcd->flags);
 696	xhci_dbg_trace(xhci, trace_xhci_dbg_init,
 697			"Finished xhci_run for USB2 roothub");
 698
 699	xhci_dbc_init(xhci);
 
 700
 701	xhci_debugfs_init(xhci);
 702
 703	return 0;
 
 
 
 704}
 705EXPORT_SYMBOL_GPL(xhci_run);
 706
 707/*
 708 * Stop xHCI driver.
 709 *
 710 * This function is called by the USB core when the HC driver is removed.
 711 * Its opposite is xhci_run().
 712 *
 713 * Disable device contexts, disable IRQs, and quiesce the HC.
 714 * Reset the HC, finish any completed transactions, and cleanup memory.
 715 */
 716static void xhci_stop(struct usb_hcd *hcd)
 717{
 718	u32 temp;
 719	struct xhci_hcd *xhci = hcd_to_xhci(hcd);
 720
 721	mutex_lock(&xhci->mutex);
 722
 723	/* Only halt host and free memory after both hcds are removed */
 724	if (!usb_hcd_is_primary_hcd(hcd)) {
 725		mutex_unlock(&xhci->mutex);
 726		return;
 727	}
 728
 729	xhci_dbc_exit(xhci);
 730
 731	spin_lock_irq(&xhci->lock);
 732	xhci->xhc_state |= XHCI_STATE_HALTED;
 733	xhci->cmd_ring_state = CMD_RING_STATE_STOPPED;
 
 734	xhci_halt(xhci);
 735	xhci_reset(xhci);
 736	spin_unlock_irq(&xhci->lock);
 737
 738	xhci_cleanup_msix(xhci);
 739
 740	/* Deleting Compliance Mode Recovery Timer */
 741	if ((xhci->quirks & XHCI_COMP_MODE_QUIRK) &&
 742			(!(xhci_all_ports_seen_u0(xhci)))) {
 743		del_timer_sync(&xhci->comp_mode_recovery_timer);
 744		xhci_dbg_trace(xhci, trace_xhci_dbg_quirks,
 745				"%s: compliance mode recovery timer deleted",
 746				__func__);
 747	}
 748
 749	if (xhci->quirks & XHCI_AMD_PLL_FIX)
 750		usb_amd_dev_put();
 751
 752	xhci_dbg_trace(xhci, trace_xhci_dbg_init,
 753			"// Disabling event ring interrupts");
 754	temp = readl(&xhci->op_regs->status);
 755	writel((temp & ~0x1fff) | STS_EINT, &xhci->op_regs->status);
 756	temp = readl(&xhci->ir_set->irq_pending);
 757	writel(ER_IRQ_DISABLE(temp), &xhci->ir_set->irq_pending);
 
 758
 759	xhci_dbg_trace(xhci, trace_xhci_dbg_init, "cleaning up memory");
 760	xhci_mem_cleanup(xhci);
 761	xhci_debugfs_exit(xhci);
 762	xhci_dbg_trace(xhci, trace_xhci_dbg_init,
 763			"xhci_stop completed - status = %x",
 764			readl(&xhci->op_regs->status));
 765	mutex_unlock(&xhci->mutex);
 766}
 767
 768/*
 769 * Shutdown HC (not bus-specific)
 770 *
 771 * This is called when the machine is rebooting or halting.  We assume that the
 772 * machine will be powered off, and the HC's internal state will be reset.
 773 * Don't bother to free memory.
 774 *
 775 * This will only ever be called with the main usb_hcd (the USB3 roothub).
 776 */
 777void xhci_shutdown(struct usb_hcd *hcd)
 778{
 779	struct xhci_hcd *xhci = hcd_to_xhci(hcd);
 780
 781	if (xhci->quirks & XHCI_SPURIOUS_REBOOT)
 782		usb_disable_xhci_ports(to_pci_dev(hcd->self.sysdev));
 783
 784	spin_lock_irq(&xhci->lock);
 785	xhci_halt(xhci);
 786	/* Workaround for spurious wakeups at shutdown with HSW */
 787	if (xhci->quirks & XHCI_SPURIOUS_WAKEUP)
 788		xhci_reset(xhci);
 789	spin_unlock_irq(&xhci->lock);
 790
 791	xhci_cleanup_msix(xhci);
 792
 793	xhci_dbg_trace(xhci, trace_xhci_dbg_init,
 794			"xhci_shutdown completed - status = %x",
 795			readl(&xhci->op_regs->status));
 796}
 797EXPORT_SYMBOL_GPL(xhci_shutdown);
 798
 799#ifdef CONFIG_PM
 800static void xhci_save_registers(struct xhci_hcd *xhci)
 801{
 802	xhci->s3.command = readl(&xhci->op_regs->command);
 803	xhci->s3.dev_nt = readl(&xhci->op_regs->dev_notification);
 804	xhci->s3.dcbaa_ptr = xhci_read_64(xhci, &xhci->op_regs->dcbaa_ptr);
 805	xhci->s3.config_reg = readl(&xhci->op_regs->config_reg);
 806	xhci->s3.erst_size = readl(&xhci->ir_set->erst_size);
 
 
 807	xhci->s3.erst_base = xhci_read_64(xhci, &xhci->ir_set->erst_base);
 808	xhci->s3.erst_dequeue = xhci_read_64(xhci, &xhci->ir_set->erst_dequeue);
 809	xhci->s3.irq_pending = readl(&xhci->ir_set->irq_pending);
 810	xhci->s3.irq_control = readl(&xhci->ir_set->irq_control);
 811}
 812
 813static void xhci_restore_registers(struct xhci_hcd *xhci)
 814{
 815	writel(xhci->s3.command, &xhci->op_regs->command);
 816	writel(xhci->s3.dev_nt, &xhci->op_regs->dev_notification);
 817	xhci_write_64(xhci, xhci->s3.dcbaa_ptr, &xhci->op_regs->dcbaa_ptr);
 818	writel(xhci->s3.config_reg, &xhci->op_regs->config_reg);
 819	writel(xhci->s3.erst_size, &xhci->ir_set->erst_size);
 
 
 820	xhci_write_64(xhci, xhci->s3.erst_base, &xhci->ir_set->erst_base);
 821	xhci_write_64(xhci, xhci->s3.erst_dequeue, &xhci->ir_set->erst_dequeue);
 822	writel(xhci->s3.irq_pending, &xhci->ir_set->irq_pending);
 823	writel(xhci->s3.irq_control, &xhci->ir_set->irq_control);
 824}
 825
 826static void xhci_set_cmd_ring_deq(struct xhci_hcd *xhci)
 827{
 828	u64	val_64;
 829
 830	/* step 2: initialize command ring buffer */
 831	val_64 = xhci_read_64(xhci, &xhci->op_regs->cmd_ring);
 832	val_64 = (val_64 & (u64) CMD_RING_RSVD_BITS) |
 833		(xhci_trb_virt_to_dma(xhci->cmd_ring->deq_seg,
 834				      xhci->cmd_ring->dequeue) &
 835		 (u64) ~CMD_RING_RSVD_BITS) |
 836		xhci->cmd_ring->cycle_state;
 837	xhci_dbg_trace(xhci, trace_xhci_dbg_init,
 838			"// Setting command ring address to 0x%llx",
 839			(long unsigned long) val_64);
 840	xhci_write_64(xhci, val_64, &xhci->op_regs->cmd_ring);
 841}
 842
 843/*
 844 * The whole command ring must be cleared to zero when we suspend the host.
 845 *
 846 * The host doesn't save the command ring pointer in the suspend well, so we
 847 * need to re-program it on resume.  Unfortunately, the pointer must be 64-byte
 848 * aligned, because of the reserved bits in the command ring dequeue pointer
 849 * register.  Therefore, we can't just set the dequeue pointer back in the
 850 * middle of the ring (TRBs are 16-byte aligned).
 851 */
 852static void xhci_clear_command_ring(struct xhci_hcd *xhci)
 853{
 854	struct xhci_ring *ring;
 855	struct xhci_segment *seg;
 856
 857	ring = xhci->cmd_ring;
 858	seg = ring->deq_seg;
 859	do {
 860		memset(seg->trbs, 0,
 861			sizeof(union xhci_trb) * (TRBS_PER_SEGMENT - 1));
 862		seg->trbs[TRBS_PER_SEGMENT - 1].link.control &=
 863			cpu_to_le32(~TRB_CYCLE);
 864		seg = seg->next;
 865	} while (seg != ring->deq_seg);
 866
 867	/* Reset the software enqueue and dequeue pointers */
 868	ring->deq_seg = ring->first_seg;
 869	ring->dequeue = ring->first_seg->trbs;
 870	ring->enq_seg = ring->deq_seg;
 871	ring->enqueue = ring->dequeue;
 872
 873	ring->num_trbs_free = ring->num_segs * (TRBS_PER_SEGMENT - 1) - 1;
 874	/*
 875	 * Ring is now zeroed, so the HW should look for change of ownership
 876	 * when the cycle bit is set to 1.
 877	 */
 878	ring->cycle_state = 1;
 879
 880	/*
 881	 * Reset the hardware dequeue pointer.
 882	 * Yes, this will need to be re-written after resume, but we're paranoid
 883	 * and want to make sure the hardware doesn't access bogus memory
 884	 * because, say, the BIOS or an SMI started the host without changing
 885	 * the command ring pointers.
 886	 */
 887	xhci_set_cmd_ring_deq(xhci);
 888}
 889
 890/*
 891 * Disable port wake bits if do_wakeup is not set.
 892 *
 893 * Also clear a possible internal port wake state left hanging for ports that
 894 * detected termination but never successfully enumerated (trained to 0U).
 895 * Internal wake causes immediate xHCI wake after suspend. PORT_CSC write done
 896 * at enumeration clears this wake, force one here as well for unconnected ports
 897 */
 898
 899static void xhci_disable_hub_port_wake(struct xhci_hcd *xhci,
 900				       struct xhci_hub *rhub,
 901				       bool do_wakeup)
 902{
 903	unsigned long flags;
 904	u32 t1, t2, portsc;
 905	int i;
 906
 907	spin_lock_irqsave(&xhci->lock, flags);
 908
 909	for (i = 0; i < rhub->num_ports; i++) {
 910		portsc = readl(rhub->ports[i]->addr);
 911		t1 = xhci_port_state_to_neutral(portsc);
 912		t2 = t1;
 913
 914		/* clear wake bits if do_wake is not set */
 915		if (!do_wakeup)
 916			t2 &= ~PORT_WAKE_BITS;
 917
 918		/* Don't touch csc bit if connected or connect change is set */
 919		if (!(portsc & (PORT_CSC | PORT_CONNECT)))
 920			t2 |= PORT_CSC;
 921
 922		if (t1 != t2) {
 923			writel(t2, rhub->ports[i]->addr);
 924			xhci_dbg(xhci, "config port %d-%d wake bits, portsc: 0x%x, write: 0x%x\n",
 925				 rhub->hcd->self.busnum, i + 1, portsc, t2);
 926		}
 927	}
 928	spin_unlock_irqrestore(&xhci->lock, flags);
 929}
 930
 931static bool xhci_pending_portevent(struct xhci_hcd *xhci)
 932{
 933	struct xhci_port	**ports;
 934	int			port_index;
 935	u32			status;
 936	u32			portsc;
 937
 938	status = readl(&xhci->op_regs->status);
 939	if (status & STS_EINT)
 940		return true;
 941	/*
 942	 * Checking STS_EINT is not enough as there is a lag between a change
 943	 * bit being set and the Port Status Change Event that it generated
 944	 * being written to the Event Ring. See note in xhci 1.1 section 4.19.2.
 945	 */
 946
 947	port_index = xhci->usb2_rhub.num_ports;
 948	ports = xhci->usb2_rhub.ports;
 949	while (port_index--) {
 950		portsc = readl(ports[port_index]->addr);
 951		if (portsc & PORT_CHANGE_MASK ||
 952		    (portsc & PORT_PLS_MASK) == XDEV_RESUME)
 953			return true;
 954	}
 955	port_index = xhci->usb3_rhub.num_ports;
 956	ports = xhci->usb3_rhub.ports;
 957	while (port_index--) {
 958		portsc = readl(ports[port_index]->addr);
 959		if (portsc & PORT_CHANGE_MASK ||
 960		    (portsc & PORT_PLS_MASK) == XDEV_RESUME)
 961			return true;
 962	}
 963	return false;
 964}
 965
 966/*
 967 * Stop HC (not bus-specific)
 968 *
 969 * This is called when the machine transition into S3/S4 mode.
 970 *
 971 */
 972int xhci_suspend(struct xhci_hcd *xhci, bool do_wakeup)
 973{
 974	int			rc = 0;
 975	unsigned int		delay = XHCI_MAX_HALT_USEC * 2;
 976	struct usb_hcd		*hcd = xhci_to_hcd(xhci);
 977	u32			command;
 978	u32			res;
 979
 980	if (!hcd->state)
 981		return 0;
 982
 983	if (hcd->state != HC_STATE_SUSPENDED ||
 984			xhci->shared_hcd->state != HC_STATE_SUSPENDED)
 985		return -EINVAL;
 986
 987	/* Clear root port wake on bits if wakeup not allowed. */
 988	xhci_disable_hub_port_wake(xhci, &xhci->usb3_rhub, do_wakeup);
 989	xhci_disable_hub_port_wake(xhci, &xhci->usb2_rhub, do_wakeup);
 990
 991	if (!HCD_HW_ACCESSIBLE(hcd))
 992		return 0;
 993
 994	xhci_dbc_suspend(xhci);
 995
 996	/* Don't poll the roothubs on bus suspend. */
 997	xhci_dbg(xhci, "%s: stopping port polling.\n", __func__);
 998	clear_bit(HCD_FLAG_POLL_RH, &hcd->flags);
 999	del_timer_sync(&hcd->rh_timer);
1000	clear_bit(HCD_FLAG_POLL_RH, &xhci->shared_hcd->flags);
1001	del_timer_sync(&xhci->shared_hcd->rh_timer);
1002
1003	if (xhci->quirks & XHCI_SUSPEND_DELAY)
1004		usleep_range(1000, 1500);
1005
1006	spin_lock_irq(&xhci->lock);
1007	clear_bit(HCD_FLAG_HW_ACCESSIBLE, &hcd->flags);
1008	clear_bit(HCD_FLAG_HW_ACCESSIBLE, &xhci->shared_hcd->flags);
1009	/* step 1: stop endpoint */
1010	/* skipped assuming that port suspend has done */
1011
1012	/* step 2: clear Run/Stop bit */
1013	command = readl(&xhci->op_regs->command);
1014	command &= ~CMD_RUN;
1015	writel(command, &xhci->op_regs->command);
1016
1017	/* Some chips from Fresco Logic need an extraordinary delay */
1018	delay *= (xhci->quirks & XHCI_SLOW_SUSPEND) ? 10 : 1;
1019
1020	if (xhci_handshake(&xhci->op_regs->status,
1021		      STS_HALT, STS_HALT, delay)) {
1022		xhci_warn(xhci, "WARN: xHC CMD_RUN timeout\n");
1023		spin_unlock_irq(&xhci->lock);
1024		return -ETIMEDOUT;
1025	}
1026	xhci_clear_command_ring(xhci);
1027
1028	/* step 3: save registers */
1029	xhci_save_registers(xhci);
1030
1031	/* step 4: set CSS flag */
1032	command = readl(&xhci->op_regs->command);
1033	command |= CMD_CSS;
1034	writel(command, &xhci->op_regs->command);
1035	xhci->broken_suspend = 0;
1036	if (xhci_handshake(&xhci->op_regs->status,
1037				STS_SAVE, 0, 20 * 1000)) {
1038	/*
1039	 * AMD SNPS xHC 3.0 occasionally does not clear the
1040	 * SSS bit of USBSTS and when driver tries to poll
1041	 * to see if the xHC clears BIT(8) which never happens
1042	 * and driver assumes that controller is not responding
1043	 * and times out. To workaround this, its good to check
1044	 * if SRE and HCE bits are not set (as per xhci
1045	 * Section 5.4.2) and bypass the timeout.
1046	 */
1047		res = readl(&xhci->op_regs->status);
1048		if ((xhci->quirks & XHCI_SNPS_BROKEN_SUSPEND) &&
1049		    (((res & STS_SRE) == 0) &&
1050				((res & STS_HCE) == 0))) {
1051			xhci->broken_suspend = 1;
1052		} else {
1053			xhci_warn(xhci, "WARN: xHC save state timeout\n");
1054			spin_unlock_irq(&xhci->lock);
1055			return -ETIMEDOUT;
1056		}
1057	}
1058	spin_unlock_irq(&xhci->lock);
1059
1060	/*
1061	 * Deleting Compliance Mode Recovery Timer because the xHCI Host
1062	 * is about to be suspended.
1063	 */
1064	if ((xhci->quirks & XHCI_COMP_MODE_QUIRK) &&
1065			(!(xhci_all_ports_seen_u0(xhci)))) {
1066		del_timer_sync(&xhci->comp_mode_recovery_timer);
1067		xhci_dbg_trace(xhci, trace_xhci_dbg_quirks,
1068				"%s: compliance mode recovery timer deleted",
1069				__func__);
1070	}
1071
1072	/* step 5: remove core well power */
1073	/* synchronize irq when using MSI-X */
1074	xhci_msix_sync_irqs(xhci);
 
 
 
1075
1076	return rc;
1077}
1078EXPORT_SYMBOL_GPL(xhci_suspend);
1079
1080/*
1081 * start xHC (not bus-specific)
1082 *
1083 * This is called when the machine transition from S3/S4 mode.
1084 *
1085 */
1086int xhci_resume(struct xhci_hcd *xhci, bool hibernated)
1087{
1088	u32			command, temp = 0;
1089	struct usb_hcd		*hcd = xhci_to_hcd(xhci);
1090	struct usb_hcd		*secondary_hcd;
1091	int			retval = 0;
1092	bool			comp_timer_running = false;
1093	bool			pending_portevent = false;
1094
1095	if (!hcd->state)
1096		return 0;
1097
1098	/* Wait a bit if either of the roothubs need to settle from the
1099	 * transition into bus suspend.
1100	 */
1101
1102	if (time_before(jiffies, xhci->usb2_rhub.bus_state.next_statechange) ||
1103	    time_before(jiffies, xhci->usb3_rhub.bus_state.next_statechange))
1104		msleep(100);
1105
1106	set_bit(HCD_FLAG_HW_ACCESSIBLE, &hcd->flags);
1107	set_bit(HCD_FLAG_HW_ACCESSIBLE, &xhci->shared_hcd->flags);
1108
1109	spin_lock_irq(&xhci->lock);
1110	if ((xhci->quirks & XHCI_RESET_ON_RESUME) || xhci->broken_suspend)
1111		hibernated = true;
1112
1113	if (!hibernated) {
1114		/*
1115		 * Some controllers might lose power during suspend, so wait
1116		 * for controller not ready bit to clear, just as in xHC init.
1117		 */
1118		retval = xhci_handshake(&xhci->op_regs->status,
1119					STS_CNR, 0, 10 * 1000 * 1000);
1120		if (retval) {
1121			xhci_warn(xhci, "Controller not ready at resume %d\n",
1122				  retval);
1123			spin_unlock_irq(&xhci->lock);
1124			return retval;
1125		}
1126		/* step 1: restore register */
1127		xhci_restore_registers(xhci);
1128		/* step 2: initialize command ring buffer */
1129		xhci_set_cmd_ring_deq(xhci);
1130		/* step 3: restore state and start state*/
1131		/* step 3: set CRS flag */
1132		command = readl(&xhci->op_regs->command);
1133		command |= CMD_CRS;
1134		writel(command, &xhci->op_regs->command);
1135		/*
1136		 * Some controllers take up to 55+ ms to complete the controller
1137		 * restore so setting the timeout to 100ms. Xhci specification
1138		 * doesn't mention any timeout value.
1139		 */
1140		if (xhci_handshake(&xhci->op_regs->status,
1141			      STS_RESTORE, 0, 100 * 1000)) {
1142			xhci_warn(xhci, "WARN: xHC restore state timeout\n");
1143			spin_unlock_irq(&xhci->lock);
1144			return -ETIMEDOUT;
1145		}
1146		temp = readl(&xhci->op_regs->status);
1147	}
1148
1149	/* If restore operation fails, re-initialize the HC during resume */
1150	if ((temp & STS_SRE) || hibernated) {
1151
1152		if ((xhci->quirks & XHCI_COMP_MODE_QUIRK) &&
1153				!(xhci_all_ports_seen_u0(xhci))) {
1154			del_timer_sync(&xhci->comp_mode_recovery_timer);
1155			xhci_dbg_trace(xhci, trace_xhci_dbg_quirks,
1156				"Compliance Mode Recovery Timer deleted!");
1157		}
1158
1159		/* Let the USB core know _both_ roothubs lost power. */
1160		usb_root_hub_lost_power(xhci->main_hcd->self.root_hub);
1161		usb_root_hub_lost_power(xhci->shared_hcd->self.root_hub);
1162
1163		xhci_dbg(xhci, "Stop HCD\n");
1164		xhci_halt(xhci);
1165		xhci_zero_64b_regs(xhci);
1166		retval = xhci_reset(xhci);
1167		spin_unlock_irq(&xhci->lock);
1168		if (retval)
1169			return retval;
1170		xhci_cleanup_msix(xhci);
1171
 
 
 
 
 
 
1172		xhci_dbg(xhci, "// Disabling event ring interrupts\n");
1173		temp = readl(&xhci->op_regs->status);
1174		writel((temp & ~0x1fff) | STS_EINT, &xhci->op_regs->status);
1175		temp = readl(&xhci->ir_set->irq_pending);
1176		writel(ER_IRQ_DISABLE(temp), &xhci->ir_set->irq_pending);
 
 
1177
1178		xhci_dbg(xhci, "cleaning up memory\n");
1179		xhci_mem_cleanup(xhci);
1180		xhci_debugfs_exit(xhci);
1181		xhci_dbg(xhci, "xhci_stop completed - status = %x\n",
1182			    readl(&xhci->op_regs->status));
1183
1184		/* USB core calls the PCI reinit and start functions twice:
1185		 * first with the primary HCD, and then with the secondary HCD.
1186		 * If we don't do the same, the host will never be started.
1187		 */
1188		if (!usb_hcd_is_primary_hcd(hcd))
1189			secondary_hcd = hcd;
1190		else
1191			secondary_hcd = xhci->shared_hcd;
1192
1193		xhci_dbg(xhci, "Initialize the xhci_hcd\n");
1194		retval = xhci_init(hcd->primary_hcd);
1195		if (retval)
1196			return retval;
1197		comp_timer_running = true;
1198
1199		xhci_dbg(xhci, "Start the primary HCD\n");
1200		retval = xhci_run(hcd->primary_hcd);
 
 
 
 
 
1201		if (!retval) {
1202			xhci_dbg(xhci, "Start the secondary HCD\n");
1203			retval = xhci_run(secondary_hcd);
 
1204		}
 
1205		hcd->state = HC_STATE_SUSPENDED;
1206		xhci->shared_hcd->state = HC_STATE_SUSPENDED;
1207		goto done;
1208	}
1209
1210	/* step 4: set Run/Stop bit */
1211	command = readl(&xhci->op_regs->command);
1212	command |= CMD_RUN;
1213	writel(command, &xhci->op_regs->command);
1214	xhci_handshake(&xhci->op_regs->status, STS_HALT,
1215		  0, 250 * 1000);
1216
1217	/* step 5: walk topology and initialize portsc,
1218	 * portpmsc and portli
1219	 */
1220	/* this is done in bus_resume */
1221
1222	/* step 6: restart each of the previously
1223	 * Running endpoints by ringing their doorbells
1224	 */
1225
 
 
 
1226	spin_unlock_irq(&xhci->lock);
1227
1228	xhci_dbc_resume(xhci);
1229
1230 done:
1231	if (retval == 0) {
1232		/*
1233		 * Resume roothubs only if there are pending events.
1234		 * USB 3 devices resend U3 LFPS wake after a 100ms delay if
1235		 * the first wake signalling failed, give it that chance.
1236		 */
1237		pending_portevent = xhci_pending_portevent(xhci);
1238		if (!pending_portevent) {
1239			msleep(120);
1240			pending_portevent = xhci_pending_portevent(xhci);
1241		}
1242
1243		if (pending_portevent) {
1244			usb_hcd_resume_root_hub(xhci->shared_hcd);
1245			usb_hcd_resume_root_hub(hcd);
1246		}
1247	}
1248	/*
1249	 * If system is subject to the Quirk, Compliance Mode Timer needs to
1250	 * be re-initialized Always after a system resume. Ports are subject
1251	 * to suffer the Compliance Mode issue again. It doesn't matter if
1252	 * ports have entered previously to U0 before system's suspension.
1253	 */
1254	if ((xhci->quirks & XHCI_COMP_MODE_QUIRK) && !comp_timer_running)
1255		compliance_mode_recovery_timer_init(xhci);
1256
1257	if (xhci->quirks & XHCI_ASMEDIA_MODIFY_FLOWCONTROL)
1258		usb_asmedia_modifyflowcontrol(to_pci_dev(hcd->self.controller));
1259
1260	/* Re-enable port polling. */
1261	xhci_dbg(xhci, "%s: starting port polling.\n", __func__);
1262	set_bit(HCD_FLAG_POLL_RH, &xhci->shared_hcd->flags);
1263	usb_hcd_poll_rh_status(xhci->shared_hcd);
1264	set_bit(HCD_FLAG_POLL_RH, &hcd->flags);
1265	usb_hcd_poll_rh_status(hcd);
1266
1267	return retval;
1268}
1269EXPORT_SYMBOL_GPL(xhci_resume);
1270#endif	/* CONFIG_PM */
1271
1272/*-------------------------------------------------------------------------*/
1273
1274static int xhci_map_temp_buffer(struct usb_hcd *hcd, struct urb *urb)
1275{
1276	void *temp;
1277	int ret = 0;
1278	unsigned int buf_len;
1279	enum dma_data_direction dir;
1280
1281	dir = usb_urb_dir_in(urb) ? DMA_FROM_DEVICE : DMA_TO_DEVICE;
1282	buf_len = urb->transfer_buffer_length;
1283
1284	temp = kzalloc_node(buf_len, GFP_ATOMIC,
1285			    dev_to_node(hcd->self.sysdev));
1286
1287	if (usb_urb_dir_out(urb))
1288		sg_pcopy_to_buffer(urb->sg, urb->num_sgs,
1289				   temp, buf_len, 0);
1290
1291	urb->transfer_buffer = temp;
1292	urb->transfer_dma = dma_map_single(hcd->self.sysdev,
1293					   urb->transfer_buffer,
1294					   urb->transfer_buffer_length,
1295					   dir);
1296
1297	if (dma_mapping_error(hcd->self.sysdev,
1298			      urb->transfer_dma)) {
1299		ret = -EAGAIN;
1300		kfree(temp);
1301	} else {
1302		urb->transfer_flags |= URB_DMA_MAP_SINGLE;
1303	}
1304
1305	return ret;
1306}
1307
1308static bool xhci_urb_temp_buffer_required(struct usb_hcd *hcd,
1309					  struct urb *urb)
1310{
1311	bool ret = false;
1312	unsigned int i;
1313	unsigned int len = 0;
1314	unsigned int trb_size;
1315	unsigned int max_pkt;
1316	struct scatterlist *sg;
1317	struct scatterlist *tail_sg;
1318
1319	tail_sg = urb->sg;
1320	max_pkt = usb_endpoint_maxp(&urb->ep->desc);
1321
1322	if (!urb->num_sgs)
1323		return ret;
1324
1325	if (urb->dev->speed >= USB_SPEED_SUPER)
1326		trb_size = TRB_CACHE_SIZE_SS;
1327	else
1328		trb_size = TRB_CACHE_SIZE_HS;
1329
1330	if (urb->transfer_buffer_length != 0 &&
1331	    !(urb->transfer_flags & URB_NO_TRANSFER_DMA_MAP)) {
1332		for_each_sg(urb->sg, sg, urb->num_sgs, i) {
1333			len = len + sg->length;
1334			if (i > trb_size - 2) {
1335				len = len - tail_sg->length;
1336				if (len < max_pkt) {
1337					ret = true;
1338					break;
1339				}
1340
1341				tail_sg = sg_next(tail_sg);
1342			}
1343		}
1344	}
1345	return ret;
1346}
1347
1348static void xhci_unmap_temp_buf(struct usb_hcd *hcd, struct urb *urb)
1349{
1350	unsigned int len;
1351	unsigned int buf_len;
1352	enum dma_data_direction dir;
1353
1354	dir = usb_urb_dir_in(urb) ? DMA_FROM_DEVICE : DMA_TO_DEVICE;
1355
1356	buf_len = urb->transfer_buffer_length;
1357
1358	if (IS_ENABLED(CONFIG_HAS_DMA) &&
1359	    (urb->transfer_flags & URB_DMA_MAP_SINGLE))
1360		dma_unmap_single(hcd->self.sysdev,
1361				 urb->transfer_dma,
1362				 urb->transfer_buffer_length,
1363				 dir);
1364
1365	if (usb_urb_dir_in(urb)) {
1366		len = sg_pcopy_from_buffer(urb->sg, urb->num_sgs,
1367					   urb->transfer_buffer,
1368					   buf_len,
1369					   0);
1370		if (len != buf_len) {
1371			xhci_dbg(hcd_to_xhci(hcd),
1372				 "Copy from tmp buf to urb sg list failed\n");
1373			urb->actual_length = len;
1374		}
1375	}
1376	urb->transfer_flags &= ~URB_DMA_MAP_SINGLE;
1377	kfree(urb->transfer_buffer);
1378	urb->transfer_buffer = NULL;
1379}
1380
1381/*
1382 * Bypass the DMA mapping if URB is suitable for Immediate Transfer (IDT),
1383 * we'll copy the actual data into the TRB address register. This is limited to
1384 * transfers up to 8 bytes on output endpoints of any kind with wMaxPacketSize
1385 * >= 8 bytes. If suitable for IDT only one Transfer TRB per TD is allowed.
1386 */
1387static int xhci_map_urb_for_dma(struct usb_hcd *hcd, struct urb *urb,
1388				gfp_t mem_flags)
1389{
1390	struct xhci_hcd *xhci;
1391
1392	xhci = hcd_to_xhci(hcd);
1393
1394	if (xhci_urb_suitable_for_idt(urb))
1395		return 0;
1396
1397	if (xhci->quirks & XHCI_SG_TRB_CACHE_SIZE_QUIRK) {
1398		if (xhci_urb_temp_buffer_required(hcd, urb))
1399			return xhci_map_temp_buffer(hcd, urb);
1400	}
1401	return usb_hcd_map_urb_for_dma(hcd, urb, mem_flags);
1402}
1403
1404static void xhci_unmap_urb_for_dma(struct usb_hcd *hcd, struct urb *urb)
1405{
1406	struct xhci_hcd *xhci;
1407	bool unmap_temp_buf = false;
1408
1409	xhci = hcd_to_xhci(hcd);
1410
1411	if (urb->num_sgs && (urb->transfer_flags & URB_DMA_MAP_SINGLE))
1412		unmap_temp_buf = true;
1413
1414	if ((xhci->quirks & XHCI_SG_TRB_CACHE_SIZE_QUIRK) && unmap_temp_buf)
1415		xhci_unmap_temp_buf(hcd, urb);
1416	else
1417		usb_hcd_unmap_urb_for_dma(hcd, urb);
1418}
1419
1420/**
1421 * xhci_get_endpoint_index - Used for passing endpoint bitmasks between the core and
1422 * HCDs.  Find the index for an endpoint given its descriptor.  Use the return
1423 * value to right shift 1 for the bitmask.
1424 *
1425 * Index  = (epnum * 2) + direction - 1,
1426 * where direction = 0 for OUT, 1 for IN.
1427 * For control endpoints, the IN index is used (OUT index is unused), so
1428 * index = (epnum * 2) + direction - 1 = (epnum * 2) + 1 - 1 = (epnum * 2)
1429 */
1430unsigned int xhci_get_endpoint_index(struct usb_endpoint_descriptor *desc)
1431{
1432	unsigned int index;
1433	if (usb_endpoint_xfer_control(desc))
1434		index = (unsigned int) (usb_endpoint_num(desc)*2);
1435	else
1436		index = (unsigned int) (usb_endpoint_num(desc)*2) +
1437			(usb_endpoint_dir_in(desc) ? 1 : 0) - 1;
1438	return index;
1439}
1440EXPORT_SYMBOL_GPL(xhci_get_endpoint_index);
1441
1442/* The reverse operation to xhci_get_endpoint_index. Calculate the USB endpoint
1443 * address from the XHCI endpoint index.
 
1444 */
1445unsigned int xhci_get_endpoint_address(unsigned int ep_index)
1446{
1447	unsigned int number = DIV_ROUND_UP(ep_index, 2);
1448	unsigned int direction = ep_index % 2 ? USB_DIR_OUT : USB_DIR_IN;
1449	return direction | number;
1450}
1451
1452/* Find the flag for this endpoint (for use in the control context).  Use the
1453 * endpoint index to create a bitmask.  The slot context is bit 0, endpoint 0 is
1454 * bit 1, etc.
1455 */
1456static unsigned int xhci_get_endpoint_flag(struct usb_endpoint_descriptor *desc)
1457{
1458	return 1 << (xhci_get_endpoint_index(desc) + 1);
1459}
1460
1461/* Compute the last valid endpoint context index.  Basically, this is the
1462 * endpoint index plus one.  For slot contexts with more than valid endpoint,
1463 * we find the most significant bit set in the added contexts flags.
1464 * e.g. ep 1 IN (with epnum 0x81) => added_ctxs = 0b1000
1465 * fls(0b1000) = 4, but the endpoint context index is 3, so subtract one.
1466 */
1467unsigned int xhci_last_valid_endpoint(u32 added_ctxs)
1468{
1469	return fls(added_ctxs) - 1;
1470}
1471
1472/* Returns 1 if the arguments are OK;
1473 * returns 0 this is a root hub; returns -EINVAL for NULL pointers.
1474 */
1475static int xhci_check_args(struct usb_hcd *hcd, struct usb_device *udev,
1476		struct usb_host_endpoint *ep, int check_ep, bool check_virt_dev,
1477		const char *func) {
1478	struct xhci_hcd	*xhci;
1479	struct xhci_virt_device	*virt_dev;
1480
1481	if (!hcd || (check_ep && !ep) || !udev) {
1482		pr_debug("xHCI %s called with invalid args\n", func);
 
1483		return -EINVAL;
1484	}
1485	if (!udev->parent) {
1486		pr_debug("xHCI %s called for root hub\n", func);
 
1487		return 0;
1488	}
1489
1490	xhci = hcd_to_xhci(hcd);
 
 
 
1491	if (check_virt_dev) {
1492		if (!udev->slot_id || !xhci->devs[udev->slot_id]) {
1493			xhci_dbg(xhci, "xHCI %s called with unaddressed device\n",
1494					func);
 
1495			return -EINVAL;
1496		}
1497
1498		virt_dev = xhci->devs[udev->slot_id];
1499		if (virt_dev->udev != udev) {
1500			xhci_dbg(xhci, "xHCI %s called with udev and "
1501					  "virt_dev does not match\n", func);
1502			return -EINVAL;
1503		}
1504	}
1505
1506	if (xhci->xhc_state & XHCI_STATE_HALTED)
1507		return -ENODEV;
1508
1509	return 1;
1510}
1511
1512static int xhci_configure_endpoint(struct xhci_hcd *xhci,
1513		struct usb_device *udev, struct xhci_command *command,
1514		bool ctx_change, bool must_succeed);
1515
1516/*
1517 * Full speed devices may have a max packet size greater than 8 bytes, but the
1518 * USB core doesn't know that until it reads the first 8 bytes of the
1519 * descriptor.  If the usb_device's max packet size changes after that point,
1520 * we need to issue an evaluate context command and wait on it.
1521 */
1522static int xhci_check_maxpacket(struct xhci_hcd *xhci, unsigned int slot_id,
1523		unsigned int ep_index, struct urb *urb, gfp_t mem_flags)
1524{
 
1525	struct xhci_container_ctx *out_ctx;
1526	struct xhci_input_control_ctx *ctrl_ctx;
1527	struct xhci_ep_ctx *ep_ctx;
1528	struct xhci_command *command;
1529	int max_packet_size;
1530	int hw_max_packet_size;
1531	int ret = 0;
1532
1533	out_ctx = xhci->devs[slot_id]->out_ctx;
1534	ep_ctx = xhci_get_ep_ctx(xhci, out_ctx, ep_index);
1535	hw_max_packet_size = MAX_PACKET_DECODED(le32_to_cpu(ep_ctx->ep_info2));
1536	max_packet_size = usb_endpoint_maxp(&urb->dev->ep0.desc);
1537	if (hw_max_packet_size != max_packet_size) {
1538		xhci_dbg_trace(xhci,  trace_xhci_dbg_context_change,
1539				"Max Packet Size for ep 0 changed.");
1540		xhci_dbg_trace(xhci,  trace_xhci_dbg_context_change,
1541				"Max packet size in usb_device = %d",
1542				max_packet_size);
1543		xhci_dbg_trace(xhci,  trace_xhci_dbg_context_change,
1544				"Max packet size in xHCI HW = %d",
1545				hw_max_packet_size);
1546		xhci_dbg_trace(xhci,  trace_xhci_dbg_context_change,
1547				"Issuing evaluate context command.");
1548
1549		/* Set up the input context flags for the command */
1550		/* FIXME: This won't work if a non-default control endpoint
1551		 * changes max packet sizes.
1552		 */
1553
1554		command = xhci_alloc_command(xhci, true, mem_flags);
1555		if (!command)
1556			return -ENOMEM;
1557
1558		command->in_ctx = xhci->devs[slot_id]->in_ctx;
1559		ctrl_ctx = xhci_get_input_control_ctx(command->in_ctx);
1560		if (!ctrl_ctx) {
1561			xhci_warn(xhci, "%s: Could not get input context, bad type.\n",
1562					__func__);
1563			ret = -ENOMEM;
1564			goto command_cleanup;
1565		}
1566		/* Set up the modified control endpoint 0 */
1567		xhci_endpoint_copy(xhci, xhci->devs[slot_id]->in_ctx,
1568				xhci->devs[slot_id]->out_ctx, ep_index);
1569
1570		ep_ctx = xhci_get_ep_ctx(xhci, command->in_ctx, ep_index);
1571		ep_ctx->ep_info &= cpu_to_le32(~EP_STATE_MASK);/* must clear */
1572		ep_ctx->ep_info2 &= cpu_to_le32(~MAX_PACKET_MASK);
1573		ep_ctx->ep_info2 |= cpu_to_le32(MAX_PACKET(max_packet_size));
1574
 
 
 
 
 
1575		ctrl_ctx->add_flags = cpu_to_le32(EP0_FLAG);
1576		ctrl_ctx->drop_flags = 0;
1577
1578		ret = xhci_configure_endpoint(xhci, urb->dev, command,
 
 
 
 
 
1579				true, false);
1580
1581		/* Clean up the input context for later use by bandwidth
1582		 * functions.
1583		 */
1584		ctrl_ctx->add_flags = cpu_to_le32(SLOT_FLAG);
1585command_cleanup:
1586		kfree(command->completion);
1587		kfree(command);
1588	}
1589	return ret;
1590}
1591
1592/*
1593 * non-error returns are a promise to giveback() the urb later
1594 * we drop ownership so next owner (or urb unlink) can get it
1595 */
1596static int xhci_urb_enqueue(struct usb_hcd *hcd, struct urb *urb, gfp_t mem_flags)
1597{
1598	struct xhci_hcd *xhci = hcd_to_xhci(hcd);
1599	unsigned long flags;
1600	int ret = 0;
1601	unsigned int slot_id, ep_index;
1602	unsigned int *ep_state;
1603	struct urb_priv	*urb_priv;
1604	int num_tds;
1605
1606	if (!urb || xhci_check_args(hcd, urb->dev, urb->ep,
1607					true, true, __func__) <= 0)
1608		return -EINVAL;
1609
1610	slot_id = urb->dev->slot_id;
1611	ep_index = xhci_get_endpoint_index(&urb->ep->desc);
1612	ep_state = &xhci->devs[slot_id]->eps[ep_index].ep_state;
1613
1614	if (!HCD_HW_ACCESSIBLE(hcd))
1615		return -ESHUTDOWN;
1616
1617	if (xhci->devs[slot_id]->flags & VDEV_PORT_ERROR) {
1618		xhci_dbg(xhci, "Can't queue urb, port error, link inactive\n");
1619		return -ENODEV;
1620	}
1621
1622	if (usb_endpoint_xfer_isoc(&urb->ep->desc))
1623		num_tds = urb->number_of_packets;
1624	else if (usb_endpoint_is_bulk_out(&urb->ep->desc) &&
1625	    urb->transfer_buffer_length > 0 &&
1626	    urb->transfer_flags & URB_ZERO_PACKET &&
1627	    !(urb->transfer_buffer_length % usb_endpoint_maxp(&urb->ep->desc)))
1628		num_tds = 2;
1629	else
1630		num_tds = 1;
1631
1632	urb_priv = kzalloc(struct_size(urb_priv, td, num_tds), mem_flags);
 
1633	if (!urb_priv)
1634		return -ENOMEM;
1635
1636	urb_priv->num_tds = num_tds;
1637	urb_priv->num_tds_done = 0;
 
 
 
 
 
 
 
 
 
1638	urb->hcpriv = urb_priv;
1639
1640	trace_xhci_urb_enqueue(urb);
1641
1642	if (usb_endpoint_xfer_control(&urb->ep->desc)) {
1643		/* Check to see if the max packet size for the default control
1644		 * endpoint changed during FS device enumeration
1645		 */
1646		if (urb->dev->speed == USB_SPEED_FULL) {
1647			ret = xhci_check_maxpacket(xhci, slot_id,
1648					ep_index, urb, mem_flags);
1649			if (ret < 0) {
1650				xhci_urb_free_priv(urb_priv);
1651				urb->hcpriv = NULL;
1652				return ret;
1653			}
1654		}
1655	}
1656
1657	spin_lock_irqsave(&xhci->lock, flags);
1658
1659	if (xhci->xhc_state & XHCI_STATE_DYING) {
1660		xhci_dbg(xhci, "Ep 0x%x: URB %p submitted for non-responsive xHCI host.\n",
1661			 urb->ep->desc.bEndpointAddress, urb);
1662		ret = -ESHUTDOWN;
1663		goto free_priv;
1664	}
1665	if (*ep_state & (EP_GETTING_STREAMS | EP_GETTING_NO_STREAMS)) {
1666		xhci_warn(xhci, "WARN: Can't enqueue URB, ep in streams transition state %x\n",
1667			  *ep_state);
1668		ret = -EINVAL;
1669		goto free_priv;
1670	}
1671	if (*ep_state & EP_SOFT_CLEAR_TOGGLE) {
1672		xhci_warn(xhci, "Can't enqueue URB while manually clearing toggle\n");
1673		ret = -EINVAL;
1674		goto free_priv;
1675	}
1676
1677	switch (usb_endpoint_type(&urb->ep->desc)) {
1678
1679	case USB_ENDPOINT_XFER_CONTROL:
1680		ret = xhci_queue_ctrl_tx(xhci, GFP_ATOMIC, urb,
1681					 slot_id, ep_index);
1682		break;
1683	case USB_ENDPOINT_XFER_BULK:
1684		ret = xhci_queue_bulk_tx(xhci, GFP_ATOMIC, urb,
1685					 slot_id, ep_index);
1686		break;
1687	case USB_ENDPOINT_XFER_INT:
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1688		ret = xhci_queue_intr_tx(xhci, GFP_ATOMIC, urb,
1689				slot_id, ep_index);
1690		break;
1691	case USB_ENDPOINT_XFER_ISOC:
 
 
 
 
 
1692		ret = xhci_queue_isoc_tx_prepare(xhci, GFP_ATOMIC, urb,
1693				slot_id, ep_index);
 
 
 
1694	}
1695
1696	if (ret) {
 
 
 
 
 
1697free_priv:
1698		xhci_urb_free_priv(urb_priv);
1699		urb->hcpriv = NULL;
1700	}
1701	spin_unlock_irqrestore(&xhci->lock, flags);
1702	return ret;
1703}
1704
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1705/*
1706 * Remove the URB's TD from the endpoint ring.  This may cause the HC to stop
1707 * USB transfers, potentially stopping in the middle of a TRB buffer.  The HC
1708 * should pick up where it left off in the TD, unless a Set Transfer Ring
1709 * Dequeue Pointer is issued.
1710 *
1711 * The TRBs that make up the buffers for the canceled URB will be "removed" from
1712 * the ring.  Since the ring is a contiguous structure, they can't be physically
1713 * removed.  Instead, there are two options:
1714 *
1715 *  1) If the HC is in the middle of processing the URB to be canceled, we
1716 *     simply move the ring's dequeue pointer past those TRBs using the Set
1717 *     Transfer Ring Dequeue Pointer command.  This will be the common case,
1718 *     when drivers timeout on the last submitted URB and attempt to cancel.
1719 *
1720 *  2) If the HC is in the middle of a different TD, we turn the TRBs into a
1721 *     series of 1-TRB transfer no-op TDs.  (No-ops shouldn't be chained.)  The
1722 *     HC will need to invalidate the any TRBs it has cached after the stop
1723 *     endpoint command, as noted in the xHCI 0.95 errata.
1724 *
1725 *  3) The TD may have completed by the time the Stop Endpoint Command
1726 *     completes, so software needs to handle that case too.
1727 *
1728 * This function should protect against the TD enqueueing code ringing the
1729 * doorbell while this code is waiting for a Stop Endpoint command to complete.
1730 * It also needs to account for multiple cancellations on happening at the same
1731 * time for the same endpoint.
1732 *
1733 * Note that this function can be called in any context, or so says
1734 * usb_hcd_unlink_urb()
1735 */
1736static int xhci_urb_dequeue(struct usb_hcd *hcd, struct urb *urb, int status)
1737{
1738	unsigned long flags;
1739	int ret, i;
1740	u32 temp;
1741	struct xhci_hcd *xhci;
1742	struct urb_priv	*urb_priv;
1743	struct xhci_td *td;
1744	unsigned int ep_index;
1745	struct xhci_ring *ep_ring;
1746	struct xhci_virt_ep *ep;
1747	struct xhci_command *command;
1748	struct xhci_virt_device *vdev;
1749
1750	xhci = hcd_to_xhci(hcd);
1751	spin_lock_irqsave(&xhci->lock, flags);
1752
1753	trace_xhci_urb_dequeue(urb);
1754
1755	/* Make sure the URB hasn't completed or been unlinked already */
1756	ret = usb_hcd_check_unlink_urb(hcd, urb, status);
1757	if (ret)
1758		goto done;
 
 
 
 
 
 
 
 
 
 
 
1759
1760	/* give back URB now if we can't queue it for cancel */
1761	vdev = xhci->devs[urb->dev->slot_id];
1762	urb_priv = urb->hcpriv;
1763	if (!vdev || !urb_priv)
1764		goto err_giveback;
 
 
 
 
 
 
 
 
 
 
 
 
 
1765
 
 
 
1766	ep_index = xhci_get_endpoint_index(&urb->ep->desc);
1767	ep = &vdev->eps[ep_index];
1768	ep_ring = xhci_urb_to_transfer_ring(xhci, urb);
1769	if (!ep || !ep_ring)
1770		goto err_giveback;
1771
1772	/* If xHC is dead take it down and return ALL URBs in xhci_hc_died() */
1773	temp = readl(&xhci->op_regs->status);
1774	if (temp == ~(u32)0 || xhci->xhc_state & XHCI_STATE_DYING) {
1775		xhci_hc_died(xhci);
1776		goto done;
1777	}
1778
1779	/*
1780	 * check ring is not re-allocated since URB was enqueued. If it is, then
1781	 * make sure none of the ring related pointers in this URB private data
1782	 * are touched, such as td_list, otherwise we overwrite freed data
1783	 */
1784	if (!td_on_ring(&urb_priv->td[0], ep_ring)) {
1785		xhci_err(xhci, "Canceled URB td not found on endpoint ring");
1786		for (i = urb_priv->num_tds_done; i < urb_priv->num_tds; i++) {
1787			td = &urb_priv->td[i];
1788			if (!list_empty(&td->cancelled_td_list))
1789				list_del_init(&td->cancelled_td_list);
1790		}
1791		goto err_giveback;
1792	}
1793
1794	if (xhci->xhc_state & XHCI_STATE_HALTED) {
1795		xhci_dbg_trace(xhci, trace_xhci_dbg_cancel_urb,
1796				"HC halted, freeing TD manually.");
1797		for (i = urb_priv->num_tds_done;
1798		     i < urb_priv->num_tds;
1799		     i++) {
1800			td = &urb_priv->td[i];
1801			if (!list_empty(&td->td_list))
1802				list_del_init(&td->td_list);
1803			if (!list_empty(&td->cancelled_td_list))
1804				list_del_init(&td->cancelled_td_list);
1805		}
1806		goto err_giveback;
1807	}
1808
1809	i = urb_priv->num_tds_done;
1810	if (i < urb_priv->num_tds)
1811		xhci_dbg_trace(xhci, trace_xhci_dbg_cancel_urb,
1812				"Cancel URB %p, dev %s, ep 0x%x, "
1813				"starting at offset 0x%llx",
1814				urb, urb->dev->devpath,
1815				urb->ep->desc.bEndpointAddress,
1816				(unsigned long long) xhci_trb_virt_to_dma(
1817					urb_priv->td[i].start_seg,
1818					urb_priv->td[i].first_trb));
1819
1820	for (; i < urb_priv->num_tds; i++) {
1821		td = &urb_priv->td[i];
1822		/* TD can already be on cancelled list if ep halted on it */
1823		if (list_empty(&td->cancelled_td_list)) {
1824			td->cancel_status = TD_DIRTY;
1825			list_add_tail(&td->cancelled_td_list,
1826				      &ep->cancelled_td_list);
1827		}
1828	}
1829
1830	/* Queue a stop endpoint command, but only if this is
1831	 * the first cancellation to be handled.
1832	 */
1833	if (!(ep->ep_state & EP_STOP_CMD_PENDING)) {
1834		command = xhci_alloc_command(xhci, false, GFP_ATOMIC);
1835		if (!command) {
1836			ret = -ENOMEM;
1837			goto done;
1838		}
1839		ep->ep_state |= EP_STOP_CMD_PENDING;
1840		ep->stop_cmd_timer.expires = jiffies +
1841			XHCI_STOP_EP_CMD_TIMEOUT * HZ;
1842		add_timer(&ep->stop_cmd_timer);
1843		xhci_queue_stop_endpoint(xhci, command, urb->dev->slot_id,
1844					 ep_index, 0);
1845		xhci_ring_cmd_db(xhci);
1846	}
1847done:
1848	spin_unlock_irqrestore(&xhci->lock, flags);
1849	return ret;
1850
1851err_giveback:
1852	if (urb_priv)
1853		xhci_urb_free_priv(urb_priv);
1854	usb_hcd_unlink_urb_from_ep(hcd, urb);
1855	spin_unlock_irqrestore(&xhci->lock, flags);
1856	usb_hcd_giveback_urb(hcd, urb, -ESHUTDOWN);
1857	return ret;
1858}
1859
1860/* Drop an endpoint from a new bandwidth configuration for this device.
1861 * Only one call to this function is allowed per endpoint before
1862 * check_bandwidth() or reset_bandwidth() must be called.
1863 * A call to xhci_drop_endpoint() followed by a call to xhci_add_endpoint() will
1864 * add the endpoint to the schedule with possibly new parameters denoted by a
1865 * different endpoint descriptor in usb_host_endpoint.
1866 * A call to xhci_add_endpoint() followed by a call to xhci_drop_endpoint() is
1867 * not allowed.
1868 *
1869 * The USB core will not allow URBs to be queued to an endpoint that is being
1870 * disabled, so there's no need for mutual exclusion to protect
1871 * the xhci->devs[slot_id] structure.
1872 */
1873int xhci_drop_endpoint(struct usb_hcd *hcd, struct usb_device *udev,
1874		       struct usb_host_endpoint *ep)
1875{
1876	struct xhci_hcd *xhci;
1877	struct xhci_container_ctx *in_ctx, *out_ctx;
1878	struct xhci_input_control_ctx *ctrl_ctx;
 
 
1879	unsigned int ep_index;
1880	struct xhci_ep_ctx *ep_ctx;
1881	u32 drop_flag;
1882	u32 new_add_flags, new_drop_flags;
1883	int ret;
1884
1885	ret = xhci_check_args(hcd, udev, ep, 1, true, __func__);
1886	if (ret <= 0)
1887		return ret;
1888	xhci = hcd_to_xhci(hcd);
1889	if (xhci->xhc_state & XHCI_STATE_DYING)
1890		return -ENODEV;
1891
1892	xhci_dbg(xhci, "%s called for udev %p\n", __func__, udev);
1893	drop_flag = xhci_get_endpoint_flag(&ep->desc);
1894	if (drop_flag == SLOT_FLAG || drop_flag == EP0_FLAG) {
1895		xhci_dbg(xhci, "xHCI %s - can't drop slot or ep 0 %#x\n",
1896				__func__, drop_flag);
1897		return 0;
1898	}
1899
1900	in_ctx = xhci->devs[udev->slot_id]->in_ctx;
1901	out_ctx = xhci->devs[udev->slot_id]->out_ctx;
1902	ctrl_ctx = xhci_get_input_control_ctx(in_ctx);
1903	if (!ctrl_ctx) {
1904		xhci_warn(xhci, "%s: Could not get input context, bad type.\n",
1905				__func__);
1906		return 0;
1907	}
1908
1909	ep_index = xhci_get_endpoint_index(&ep->desc);
1910	ep_ctx = xhci_get_ep_ctx(xhci, out_ctx, ep_index);
1911	/* If the HC already knows the endpoint is disabled,
1912	 * or the HCD has noted it is disabled, ignore this request
1913	 */
1914	if ((GET_EP_CTX_STATE(ep_ctx) == EP_STATE_DISABLED) ||
 
1915	    le32_to_cpu(ctrl_ctx->drop_flags) &
1916	    xhci_get_endpoint_flag(&ep->desc)) {
1917		/* Do not warn when called after a usb_device_reset */
1918		if (xhci->devs[udev->slot_id]->eps[ep_index].ring != NULL)
1919			xhci_warn(xhci, "xHCI %s called with disabled ep %p\n",
1920				  __func__, ep);
1921		return 0;
1922	}
1923
1924	ctrl_ctx->drop_flags |= cpu_to_le32(drop_flag);
1925	new_drop_flags = le32_to_cpu(ctrl_ctx->drop_flags);
1926
1927	ctrl_ctx->add_flags &= cpu_to_le32(~drop_flag);
1928	new_add_flags = le32_to_cpu(ctrl_ctx->add_flags);
1929
1930	xhci_debugfs_remove_endpoint(xhci, xhci->devs[udev->slot_id], ep_index);
 
 
 
 
 
 
 
 
1931
1932	xhci_endpoint_zero(xhci, xhci->devs[udev->slot_id], ep);
1933
1934	xhci_dbg(xhci, "drop ep 0x%x, slot id %d, new drop flags = %#x, new add flags = %#x\n",
1935			(unsigned int) ep->desc.bEndpointAddress,
1936			udev->slot_id,
1937			(unsigned int) new_drop_flags,
1938			(unsigned int) new_add_flags);
 
1939	return 0;
1940}
1941EXPORT_SYMBOL_GPL(xhci_drop_endpoint);
1942
1943/* Add an endpoint to a new possible bandwidth configuration for this device.
1944 * Only one call to this function is allowed per endpoint before
1945 * check_bandwidth() or reset_bandwidth() must be called.
1946 * A call to xhci_drop_endpoint() followed by a call to xhci_add_endpoint() will
1947 * add the endpoint to the schedule with possibly new parameters denoted by a
1948 * different endpoint descriptor in usb_host_endpoint.
1949 * A call to xhci_add_endpoint() followed by a call to xhci_drop_endpoint() is
1950 * not allowed.
1951 *
1952 * The USB core will not allow URBs to be queued to an endpoint until the
1953 * configuration or alt setting is installed in the device, so there's no need
1954 * for mutual exclusion to protect the xhci->devs[slot_id] structure.
1955 */
1956int xhci_add_endpoint(struct usb_hcd *hcd, struct usb_device *udev,
1957		      struct usb_host_endpoint *ep)
1958{
1959	struct xhci_hcd *xhci;
1960	struct xhci_container_ctx *in_ctx;
1961	unsigned int ep_index;
 
 
1962	struct xhci_input_control_ctx *ctrl_ctx;
1963	struct xhci_ep_ctx *ep_ctx;
1964	u32 added_ctxs;
1965	u32 new_add_flags, new_drop_flags;
 
1966	struct xhci_virt_device *virt_dev;
1967	int ret = 0;
1968
1969	ret = xhci_check_args(hcd, udev, ep, 1, true, __func__);
1970	if (ret <= 0) {
1971		/* So we won't queue a reset ep command for a root hub */
1972		ep->hcpriv = NULL;
1973		return ret;
1974	}
1975	xhci = hcd_to_xhci(hcd);
1976	if (xhci->xhc_state & XHCI_STATE_DYING)
1977		return -ENODEV;
1978
1979	added_ctxs = xhci_get_endpoint_flag(&ep->desc);
 
1980	if (added_ctxs == SLOT_FLAG || added_ctxs == EP0_FLAG) {
1981		/* FIXME when we have to issue an evaluate endpoint command to
1982		 * deal with ep0 max packet size changing once we get the
1983		 * descriptors
1984		 */
1985		xhci_dbg(xhci, "xHCI %s - can't add slot or ep 0 %#x\n",
1986				__func__, added_ctxs);
1987		return 0;
1988	}
1989
1990	virt_dev = xhci->devs[udev->slot_id];
1991	in_ctx = virt_dev->in_ctx;
1992	ctrl_ctx = xhci_get_input_control_ctx(in_ctx);
1993	if (!ctrl_ctx) {
1994		xhci_warn(xhci, "%s: Could not get input context, bad type.\n",
1995				__func__);
1996		return 0;
1997	}
1998
1999	ep_index = xhci_get_endpoint_index(&ep->desc);
2000	/* If this endpoint is already in use, and the upper layers are trying
2001	 * to add it again without dropping it, reject the addition.
2002	 */
2003	if (virt_dev->eps[ep_index].ring &&
2004			!(le32_to_cpu(ctrl_ctx->drop_flags) & added_ctxs)) {
 
2005		xhci_warn(xhci, "Trying to add endpoint 0x%x "
2006				"without dropping it.\n",
2007				(unsigned int) ep->desc.bEndpointAddress);
2008		return -EINVAL;
2009	}
2010
2011	/* If the HCD has already noted the endpoint is enabled,
2012	 * ignore this request.
2013	 */
2014	if (le32_to_cpu(ctrl_ctx->add_flags) & added_ctxs) {
 
2015		xhci_warn(xhci, "xHCI %s called with enabled ep %p\n",
2016				__func__, ep);
2017		return 0;
2018	}
2019
2020	/*
2021	 * Configuration and alternate setting changes must be done in
2022	 * process context, not interrupt context (or so documenation
2023	 * for usb_set_interface() and usb_set_configuration() claim).
2024	 */
2025	if (xhci_endpoint_init(xhci, virt_dev, udev, ep, GFP_NOIO) < 0) {
2026		dev_dbg(&udev->dev, "%s - could not initialize ep %#x\n",
2027				__func__, ep->desc.bEndpointAddress);
2028		return -ENOMEM;
2029	}
2030
2031	ctrl_ctx->add_flags |= cpu_to_le32(added_ctxs);
2032	new_add_flags = le32_to_cpu(ctrl_ctx->add_flags);
2033
2034	/* If xhci_endpoint_disable() was called for this endpoint, but the
2035	 * xHC hasn't been notified yet through the check_bandwidth() call,
2036	 * this re-adds a new state for the endpoint from the new endpoint
2037	 * descriptors.  We must drop and re-add this endpoint, so we leave the
2038	 * drop flags alone.
2039	 */
2040	new_drop_flags = le32_to_cpu(ctrl_ctx->drop_flags);
2041
 
 
 
 
 
 
 
 
 
2042	/* Store the usb_device pointer for later use */
2043	ep->hcpriv = udev;
2044
2045	ep_ctx = xhci_get_ep_ctx(xhci, virt_dev->in_ctx, ep_index);
2046	trace_xhci_add_endpoint(ep_ctx);
2047
2048	xhci_dbg(xhci, "add ep 0x%x, slot id %d, new drop flags = %#x, new add flags = %#x\n",
2049			(unsigned int) ep->desc.bEndpointAddress,
2050			udev->slot_id,
2051			(unsigned int) new_drop_flags,
2052			(unsigned int) new_add_flags);
 
2053	return 0;
2054}
2055EXPORT_SYMBOL_GPL(xhci_add_endpoint);
2056
2057static void xhci_zero_in_ctx(struct xhci_hcd *xhci, struct xhci_virt_device *virt_dev)
2058{
2059	struct xhci_input_control_ctx *ctrl_ctx;
2060	struct xhci_ep_ctx *ep_ctx;
2061	struct xhci_slot_ctx *slot_ctx;
2062	int i;
2063
2064	ctrl_ctx = xhci_get_input_control_ctx(virt_dev->in_ctx);
2065	if (!ctrl_ctx) {
2066		xhci_warn(xhci, "%s: Could not get input context, bad type.\n",
2067				__func__);
2068		return;
2069	}
2070
2071	/* When a device's add flag and drop flag are zero, any subsequent
2072	 * configure endpoint command will leave that endpoint's state
2073	 * untouched.  Make sure we don't leave any old state in the input
2074	 * endpoint contexts.
2075	 */
 
2076	ctrl_ctx->drop_flags = 0;
2077	ctrl_ctx->add_flags = 0;
2078	slot_ctx = xhci_get_slot_ctx(xhci, virt_dev->in_ctx);
2079	slot_ctx->dev_info &= cpu_to_le32(~LAST_CTX_MASK);
2080	/* Endpoint 0 is always valid */
2081	slot_ctx->dev_info |= cpu_to_le32(LAST_CTX(1));
2082	for (i = 1; i < 31; i++) {
2083		ep_ctx = xhci_get_ep_ctx(xhci, virt_dev->in_ctx, i);
2084		ep_ctx->ep_info = 0;
2085		ep_ctx->ep_info2 = 0;
2086		ep_ctx->deq = 0;
2087		ep_ctx->tx_info = 0;
2088	}
2089}
2090
2091static int xhci_configure_endpoint_result(struct xhci_hcd *xhci,
2092		struct usb_device *udev, u32 *cmd_status)
2093{
2094	int ret;
2095
2096	switch (*cmd_status) {
2097	case COMP_COMMAND_ABORTED:
2098	case COMP_COMMAND_RING_STOPPED:
2099		xhci_warn(xhci, "Timeout while waiting for configure endpoint command\n");
2100		ret = -ETIME;
2101		break;
2102	case COMP_RESOURCE_ERROR:
2103		dev_warn(&udev->dev,
2104			 "Not enough host controller resources for new device state.\n");
2105		ret = -ENOMEM;
2106		/* FIXME: can we allocate more resources for the HC? */
2107		break;
2108	case COMP_BANDWIDTH_ERROR:
2109	case COMP_SECONDARY_BANDWIDTH_ERROR:
2110		dev_warn(&udev->dev,
2111			 "Not enough bandwidth for new device state.\n");
2112		ret = -ENOSPC;
2113		/* FIXME: can we go back to the old state? */
2114		break;
2115	case COMP_TRB_ERROR:
2116		/* the HCD set up something wrong */
2117		dev_warn(&udev->dev, "ERROR: Endpoint drop flag = 0, "
2118				"add flag = 1, "
2119				"and endpoint is not disabled.\n");
2120		ret = -EINVAL;
2121		break;
2122	case COMP_INCOMPATIBLE_DEVICE_ERROR:
2123		dev_warn(&udev->dev,
2124			 "ERROR: Incompatible device for endpoint configure command.\n");
2125		ret = -ENODEV;
2126		break;
2127	case COMP_SUCCESS:
2128		xhci_dbg_trace(xhci, trace_xhci_dbg_context_change,
2129				"Successful Endpoint Configure command");
2130		ret = 0;
2131		break;
2132	default:
2133		xhci_err(xhci, "ERROR: unexpected command completion code 0x%x.\n",
2134				*cmd_status);
2135		ret = -EINVAL;
2136		break;
2137	}
2138	return ret;
2139}
2140
2141static int xhci_evaluate_context_result(struct xhci_hcd *xhci,
2142		struct usb_device *udev, u32 *cmd_status)
2143{
2144	int ret;
 
2145
2146	switch (*cmd_status) {
2147	case COMP_COMMAND_ABORTED:
2148	case COMP_COMMAND_RING_STOPPED:
2149		xhci_warn(xhci, "Timeout while waiting for evaluate context command\n");
2150		ret = -ETIME;
2151		break;
2152	case COMP_PARAMETER_ERROR:
2153		dev_warn(&udev->dev,
2154			 "WARN: xHCI driver setup invalid evaluate context command.\n");
2155		ret = -EINVAL;
2156		break;
2157	case COMP_SLOT_NOT_ENABLED_ERROR:
2158		dev_warn(&udev->dev,
2159			"WARN: slot not enabled for evaluate context command.\n");
2160		ret = -EINVAL;
2161		break;
2162	case COMP_CONTEXT_STATE_ERROR:
2163		dev_warn(&udev->dev,
2164			"WARN: invalid context state for evaluate context command.\n");
 
 
 
 
2165		ret = -EINVAL;
2166		break;
2167	case COMP_INCOMPATIBLE_DEVICE_ERROR:
2168		dev_warn(&udev->dev,
2169			"ERROR: Incompatible device for evaluate context command.\n");
2170		ret = -ENODEV;
2171		break;
2172	case COMP_MAX_EXIT_LATENCY_TOO_LARGE_ERROR:
2173		/* Max Exit Latency too large error */
2174		dev_warn(&udev->dev, "WARN: Max Exit Latency too large\n");
2175		ret = -EINVAL;
2176		break;
2177	case COMP_SUCCESS:
2178		xhci_dbg_trace(xhci, trace_xhci_dbg_context_change,
2179				"Successful evaluate context command");
2180		ret = 0;
2181		break;
2182	default:
2183		xhci_err(xhci, "ERROR: unexpected command completion code 0x%x.\n",
2184			*cmd_status);
2185		ret = -EINVAL;
2186		break;
2187	}
2188	return ret;
2189}
2190
2191static u32 xhci_count_num_new_endpoints(struct xhci_hcd *xhci,
2192		struct xhci_input_control_ctx *ctrl_ctx)
2193{
 
2194	u32 valid_add_flags;
2195	u32 valid_drop_flags;
2196
 
2197	/* Ignore the slot flag (bit 0), and the default control endpoint flag
2198	 * (bit 1).  The default control endpoint is added during the Address
2199	 * Device command and is never removed until the slot is disabled.
2200	 */
2201	valid_add_flags = le32_to_cpu(ctrl_ctx->add_flags) >> 2;
2202	valid_drop_flags = le32_to_cpu(ctrl_ctx->drop_flags) >> 2;
2203
2204	/* Use hweight32 to count the number of ones in the add flags, or
2205	 * number of endpoints added.  Don't count endpoints that are changed
2206	 * (both added and dropped).
2207	 */
2208	return hweight32(valid_add_flags) -
2209		hweight32(valid_add_flags & valid_drop_flags);
2210}
2211
2212static unsigned int xhci_count_num_dropped_endpoints(struct xhci_hcd *xhci,
2213		struct xhci_input_control_ctx *ctrl_ctx)
2214{
 
2215	u32 valid_add_flags;
2216	u32 valid_drop_flags;
2217
2218	valid_add_flags = le32_to_cpu(ctrl_ctx->add_flags) >> 2;
2219	valid_drop_flags = le32_to_cpu(ctrl_ctx->drop_flags) >> 2;
 
2220
2221	return hweight32(valid_drop_flags) -
2222		hweight32(valid_add_flags & valid_drop_flags);
2223}
2224
2225/*
2226 * We need to reserve the new number of endpoints before the configure endpoint
2227 * command completes.  We can't subtract the dropped endpoints from the number
2228 * of active endpoints until the command completes because we can oversubscribe
2229 * the host in this case:
2230 *
2231 *  - the first configure endpoint command drops more endpoints than it adds
2232 *  - a second configure endpoint command that adds more endpoints is queued
2233 *  - the first configure endpoint command fails, so the config is unchanged
2234 *  - the second command may succeed, even though there isn't enough resources
2235 *
2236 * Must be called with xhci->lock held.
2237 */
2238static int xhci_reserve_host_resources(struct xhci_hcd *xhci,
2239		struct xhci_input_control_ctx *ctrl_ctx)
2240{
2241	u32 added_eps;
2242
2243	added_eps = xhci_count_num_new_endpoints(xhci, ctrl_ctx);
2244	if (xhci->num_active_eps + added_eps > xhci->limit_active_eps) {
2245		xhci_dbg_trace(xhci, trace_xhci_dbg_quirks,
2246				"Not enough ep ctxs: "
2247				"%u active, need to add %u, limit is %u.",
2248				xhci->num_active_eps, added_eps,
2249				xhci->limit_active_eps);
2250		return -ENOMEM;
2251	}
2252	xhci->num_active_eps += added_eps;
2253	xhci_dbg_trace(xhci, trace_xhci_dbg_quirks,
2254			"Adding %u ep ctxs, %u now active.", added_eps,
2255			xhci->num_active_eps);
2256	return 0;
2257}
2258
2259/*
2260 * The configure endpoint was failed by the xHC for some other reason, so we
2261 * need to revert the resources that failed configuration would have used.
2262 *
2263 * Must be called with xhci->lock held.
2264 */
2265static void xhci_free_host_resources(struct xhci_hcd *xhci,
2266		struct xhci_input_control_ctx *ctrl_ctx)
2267{
2268	u32 num_failed_eps;
2269
2270	num_failed_eps = xhci_count_num_new_endpoints(xhci, ctrl_ctx);
2271	xhci->num_active_eps -= num_failed_eps;
2272	xhci_dbg_trace(xhci, trace_xhci_dbg_quirks,
2273			"Removing %u failed ep ctxs, %u now active.",
2274			num_failed_eps,
2275			xhci->num_active_eps);
2276}
2277
2278/*
2279 * Now that the command has completed, clean up the active endpoint count by
2280 * subtracting out the endpoints that were dropped (but not changed).
2281 *
2282 * Must be called with xhci->lock held.
2283 */
2284static void xhci_finish_resource_reservation(struct xhci_hcd *xhci,
2285		struct xhci_input_control_ctx *ctrl_ctx)
2286{
2287	u32 num_dropped_eps;
2288
2289	num_dropped_eps = xhci_count_num_dropped_endpoints(xhci, ctrl_ctx);
2290	xhci->num_active_eps -= num_dropped_eps;
2291	if (num_dropped_eps)
2292		xhci_dbg_trace(xhci, trace_xhci_dbg_quirks,
2293				"Removing %u dropped ep ctxs, %u now active.",
2294				num_dropped_eps,
2295				xhci->num_active_eps);
2296}
2297
2298static unsigned int xhci_get_block_size(struct usb_device *udev)
2299{
2300	switch (udev->speed) {
2301	case USB_SPEED_LOW:
2302	case USB_SPEED_FULL:
2303		return FS_BLOCK;
2304	case USB_SPEED_HIGH:
2305		return HS_BLOCK;
2306	case USB_SPEED_SUPER:
2307	case USB_SPEED_SUPER_PLUS:
2308		return SS_BLOCK;
2309	case USB_SPEED_UNKNOWN:
2310	case USB_SPEED_WIRELESS:
2311	default:
2312		/* Should never happen */
2313		return 1;
2314	}
2315}
2316
2317static unsigned int
2318xhci_get_largest_overhead(struct xhci_interval_bw *interval_bw)
2319{
2320	if (interval_bw->overhead[LS_OVERHEAD_TYPE])
2321		return LS_OVERHEAD;
2322	if (interval_bw->overhead[FS_OVERHEAD_TYPE])
2323		return FS_OVERHEAD;
2324	return HS_OVERHEAD;
2325}
2326
2327/* If we are changing a LS/FS device under a HS hub,
2328 * make sure (if we are activating a new TT) that the HS bus has enough
2329 * bandwidth for this new TT.
2330 */
2331static int xhci_check_tt_bw_table(struct xhci_hcd *xhci,
2332		struct xhci_virt_device *virt_dev,
2333		int old_active_eps)
2334{
2335	struct xhci_interval_bw_table *bw_table;
2336	struct xhci_tt_bw_info *tt_info;
2337
2338	/* Find the bandwidth table for the root port this TT is attached to. */
2339	bw_table = &xhci->rh_bw[virt_dev->real_port - 1].bw_table;
2340	tt_info = virt_dev->tt_info;
2341	/* If this TT already had active endpoints, the bandwidth for this TT
2342	 * has already been added.  Removing all periodic endpoints (and thus
2343	 * making the TT enactive) will only decrease the bandwidth used.
2344	 */
2345	if (old_active_eps)
2346		return 0;
2347	if (old_active_eps == 0 && tt_info->active_eps != 0) {
2348		if (bw_table->bw_used + TT_HS_OVERHEAD > HS_BW_LIMIT)
2349			return -ENOMEM;
2350		return 0;
2351	}
2352	/* Not sure why we would have no new active endpoints...
2353	 *
2354	 * Maybe because of an Evaluate Context change for a hub update or a
2355	 * control endpoint 0 max packet size change?
2356	 * FIXME: skip the bandwidth calculation in that case.
2357	 */
2358	return 0;
2359}
2360
2361static int xhci_check_ss_bw(struct xhci_hcd *xhci,
2362		struct xhci_virt_device *virt_dev)
2363{
2364	unsigned int bw_reserved;
2365
2366	bw_reserved = DIV_ROUND_UP(SS_BW_RESERVED*SS_BW_LIMIT_IN, 100);
2367	if (virt_dev->bw_table->ss_bw_in > (SS_BW_LIMIT_IN - bw_reserved))
2368		return -ENOMEM;
2369
2370	bw_reserved = DIV_ROUND_UP(SS_BW_RESERVED*SS_BW_LIMIT_OUT, 100);
2371	if (virt_dev->bw_table->ss_bw_out > (SS_BW_LIMIT_OUT - bw_reserved))
2372		return -ENOMEM;
2373
2374	return 0;
2375}
2376
2377/*
2378 * This algorithm is a very conservative estimate of the worst-case scheduling
2379 * scenario for any one interval.  The hardware dynamically schedules the
2380 * packets, so we can't tell which microframe could be the limiting factor in
2381 * the bandwidth scheduling.  This only takes into account periodic endpoints.
2382 *
2383 * Obviously, we can't solve an NP complete problem to find the minimum worst
2384 * case scenario.  Instead, we come up with an estimate that is no less than
2385 * the worst case bandwidth used for any one microframe, but may be an
2386 * over-estimate.
2387 *
2388 * We walk the requirements for each endpoint by interval, starting with the
2389 * smallest interval, and place packets in the schedule where there is only one
2390 * possible way to schedule packets for that interval.  In order to simplify
2391 * this algorithm, we record the largest max packet size for each interval, and
2392 * assume all packets will be that size.
2393 *
2394 * For interval 0, we obviously must schedule all packets for each interval.
2395 * The bandwidth for interval 0 is just the amount of data to be transmitted
2396 * (the sum of all max ESIT payload sizes, plus any overhead per packet times
2397 * the number of packets).
2398 *
2399 * For interval 1, we have two possible microframes to schedule those packets
2400 * in.  For this algorithm, if we can schedule the same number of packets for
2401 * each possible scheduling opportunity (each microframe), we will do so.  The
2402 * remaining number of packets will be saved to be transmitted in the gaps in
2403 * the next interval's scheduling sequence.
2404 *
2405 * As we move those remaining packets to be scheduled with interval 2 packets,
2406 * we have to double the number of remaining packets to transmit.  This is
2407 * because the intervals are actually powers of 2, and we would be transmitting
2408 * the previous interval's packets twice in this interval.  We also have to be
2409 * sure that when we look at the largest max packet size for this interval, we
2410 * also look at the largest max packet size for the remaining packets and take
2411 * the greater of the two.
2412 *
2413 * The algorithm continues to evenly distribute packets in each scheduling
2414 * opportunity, and push the remaining packets out, until we get to the last
2415 * interval.  Then those packets and their associated overhead are just added
2416 * to the bandwidth used.
2417 */
2418static int xhci_check_bw_table(struct xhci_hcd *xhci,
2419		struct xhci_virt_device *virt_dev,
2420		int old_active_eps)
2421{
2422	unsigned int bw_reserved;
2423	unsigned int max_bandwidth;
2424	unsigned int bw_used;
2425	unsigned int block_size;
2426	struct xhci_interval_bw_table *bw_table;
2427	unsigned int packet_size = 0;
2428	unsigned int overhead = 0;
2429	unsigned int packets_transmitted = 0;
2430	unsigned int packets_remaining = 0;
2431	unsigned int i;
2432
2433	if (virt_dev->udev->speed >= USB_SPEED_SUPER)
2434		return xhci_check_ss_bw(xhci, virt_dev);
2435
2436	if (virt_dev->udev->speed == USB_SPEED_HIGH) {
2437		max_bandwidth = HS_BW_LIMIT;
2438		/* Convert percent of bus BW reserved to blocks reserved */
2439		bw_reserved = DIV_ROUND_UP(HS_BW_RESERVED * max_bandwidth, 100);
2440	} else {
2441		max_bandwidth = FS_BW_LIMIT;
2442		bw_reserved = DIV_ROUND_UP(FS_BW_RESERVED * max_bandwidth, 100);
2443	}
2444
2445	bw_table = virt_dev->bw_table;
2446	/* We need to translate the max packet size and max ESIT payloads into
2447	 * the units the hardware uses.
2448	 */
2449	block_size = xhci_get_block_size(virt_dev->udev);
2450
2451	/* If we are manipulating a LS/FS device under a HS hub, double check
2452	 * that the HS bus has enough bandwidth if we are activing a new TT.
2453	 */
2454	if (virt_dev->tt_info) {
2455		xhci_dbg_trace(xhci, trace_xhci_dbg_quirks,
2456				"Recalculating BW for rootport %u",
2457				virt_dev->real_port);
2458		if (xhci_check_tt_bw_table(xhci, virt_dev, old_active_eps)) {
2459			xhci_warn(xhci, "Not enough bandwidth on HS bus for "
2460					"newly activated TT.\n");
2461			return -ENOMEM;
2462		}
2463		xhci_dbg_trace(xhci, trace_xhci_dbg_quirks,
2464				"Recalculating BW for TT slot %u port %u",
2465				virt_dev->tt_info->slot_id,
2466				virt_dev->tt_info->ttport);
2467	} else {
2468		xhci_dbg_trace(xhci, trace_xhci_dbg_quirks,
2469				"Recalculating BW for rootport %u",
2470				virt_dev->real_port);
2471	}
2472
2473	/* Add in how much bandwidth will be used for interval zero, or the
2474	 * rounded max ESIT payload + number of packets * largest overhead.
2475	 */
2476	bw_used = DIV_ROUND_UP(bw_table->interval0_esit_payload, block_size) +
2477		bw_table->interval_bw[0].num_packets *
2478		xhci_get_largest_overhead(&bw_table->interval_bw[0]);
2479
2480	for (i = 1; i < XHCI_MAX_INTERVAL; i++) {
2481		unsigned int bw_added;
2482		unsigned int largest_mps;
2483		unsigned int interval_overhead;
2484
2485		/*
2486		 * How many packets could we transmit in this interval?
2487		 * If packets didn't fit in the previous interval, we will need
2488		 * to transmit that many packets twice within this interval.
2489		 */
2490		packets_remaining = 2 * packets_remaining +
2491			bw_table->interval_bw[i].num_packets;
2492
2493		/* Find the largest max packet size of this or the previous
2494		 * interval.
2495		 */
2496		if (list_empty(&bw_table->interval_bw[i].endpoints))
2497			largest_mps = 0;
2498		else {
2499			struct xhci_virt_ep *virt_ep;
2500			struct list_head *ep_entry;
2501
2502			ep_entry = bw_table->interval_bw[i].endpoints.next;
2503			virt_ep = list_entry(ep_entry,
2504					struct xhci_virt_ep, bw_endpoint_list);
2505			/* Convert to blocks, rounding up */
2506			largest_mps = DIV_ROUND_UP(
2507					virt_ep->bw_info.max_packet_size,
2508					block_size);
2509		}
2510		if (largest_mps > packet_size)
2511			packet_size = largest_mps;
2512
2513		/* Use the larger overhead of this or the previous interval. */
2514		interval_overhead = xhci_get_largest_overhead(
2515				&bw_table->interval_bw[i]);
2516		if (interval_overhead > overhead)
2517			overhead = interval_overhead;
2518
2519		/* How many packets can we evenly distribute across
2520		 * (1 << (i + 1)) possible scheduling opportunities?
2521		 */
2522		packets_transmitted = packets_remaining >> (i + 1);
2523
2524		/* Add in the bandwidth used for those scheduled packets */
2525		bw_added = packets_transmitted * (overhead + packet_size);
2526
2527		/* How many packets do we have remaining to transmit? */
2528		packets_remaining = packets_remaining % (1 << (i + 1));
2529
2530		/* What largest max packet size should those packets have? */
2531		/* If we've transmitted all packets, don't carry over the
2532		 * largest packet size.
2533		 */
2534		if (packets_remaining == 0) {
2535			packet_size = 0;
2536			overhead = 0;
2537		} else if (packets_transmitted > 0) {
2538			/* Otherwise if we do have remaining packets, and we've
2539			 * scheduled some packets in this interval, take the
2540			 * largest max packet size from endpoints with this
2541			 * interval.
2542			 */
2543			packet_size = largest_mps;
2544			overhead = interval_overhead;
2545		}
2546		/* Otherwise carry over packet_size and overhead from the last
2547		 * time we had a remainder.
2548		 */
2549		bw_used += bw_added;
2550		if (bw_used > max_bandwidth) {
2551			xhci_warn(xhci, "Not enough bandwidth. "
2552					"Proposed: %u, Max: %u\n",
2553				bw_used, max_bandwidth);
2554			return -ENOMEM;
2555		}
2556	}
2557	/*
2558	 * Ok, we know we have some packets left over after even-handedly
2559	 * scheduling interval 15.  We don't know which microframes they will
2560	 * fit into, so we over-schedule and say they will be scheduled every
2561	 * microframe.
2562	 */
2563	if (packets_remaining > 0)
2564		bw_used += overhead + packet_size;
2565
2566	if (!virt_dev->tt_info && virt_dev->udev->speed == USB_SPEED_HIGH) {
2567		unsigned int port_index = virt_dev->real_port - 1;
2568
2569		/* OK, we're manipulating a HS device attached to a
2570		 * root port bandwidth domain.  Include the number of active TTs
2571		 * in the bandwidth used.
2572		 */
2573		bw_used += TT_HS_OVERHEAD *
2574			xhci->rh_bw[port_index].num_active_tts;
2575	}
2576
2577	xhci_dbg_trace(xhci, trace_xhci_dbg_quirks,
2578		"Final bandwidth: %u, Limit: %u, Reserved: %u, "
2579		"Available: %u " "percent",
2580		bw_used, max_bandwidth, bw_reserved,
2581		(max_bandwidth - bw_used - bw_reserved) * 100 /
2582		max_bandwidth);
2583
2584	bw_used += bw_reserved;
2585	if (bw_used > max_bandwidth) {
2586		xhci_warn(xhci, "Not enough bandwidth. Proposed: %u, Max: %u\n",
2587				bw_used, max_bandwidth);
2588		return -ENOMEM;
2589	}
2590
2591	bw_table->bw_used = bw_used;
2592	return 0;
2593}
2594
2595static bool xhci_is_async_ep(unsigned int ep_type)
2596{
2597	return (ep_type != ISOC_OUT_EP && ep_type != INT_OUT_EP &&
2598					ep_type != ISOC_IN_EP &&
2599					ep_type != INT_IN_EP);
2600}
2601
2602static bool xhci_is_sync_in_ep(unsigned int ep_type)
2603{
2604	return (ep_type == ISOC_IN_EP || ep_type == INT_IN_EP);
2605}
2606
2607static unsigned int xhci_get_ss_bw_consumed(struct xhci_bw_info *ep_bw)
2608{
2609	unsigned int mps = DIV_ROUND_UP(ep_bw->max_packet_size, SS_BLOCK);
2610
2611	if (ep_bw->ep_interval == 0)
2612		return SS_OVERHEAD_BURST +
2613			(ep_bw->mult * ep_bw->num_packets *
2614					(SS_OVERHEAD + mps));
2615	return DIV_ROUND_UP(ep_bw->mult * ep_bw->num_packets *
2616				(SS_OVERHEAD + mps + SS_OVERHEAD_BURST),
2617				1 << ep_bw->ep_interval);
2618
2619}
2620
2621static void xhci_drop_ep_from_interval_table(struct xhci_hcd *xhci,
2622		struct xhci_bw_info *ep_bw,
2623		struct xhci_interval_bw_table *bw_table,
2624		struct usb_device *udev,
2625		struct xhci_virt_ep *virt_ep,
2626		struct xhci_tt_bw_info *tt_info)
2627{
2628	struct xhci_interval_bw	*interval_bw;
2629	int normalized_interval;
2630
2631	if (xhci_is_async_ep(ep_bw->type))
2632		return;
2633
2634	if (udev->speed >= USB_SPEED_SUPER) {
2635		if (xhci_is_sync_in_ep(ep_bw->type))
2636			xhci->devs[udev->slot_id]->bw_table->ss_bw_in -=
2637				xhci_get_ss_bw_consumed(ep_bw);
2638		else
2639			xhci->devs[udev->slot_id]->bw_table->ss_bw_out -=
2640				xhci_get_ss_bw_consumed(ep_bw);
2641		return;
2642	}
2643
2644	/* SuperSpeed endpoints never get added to intervals in the table, so
2645	 * this check is only valid for HS/FS/LS devices.
2646	 */
2647	if (list_empty(&virt_ep->bw_endpoint_list))
2648		return;
2649	/* For LS/FS devices, we need to translate the interval expressed in
2650	 * microframes to frames.
2651	 */
2652	if (udev->speed == USB_SPEED_HIGH)
2653		normalized_interval = ep_bw->ep_interval;
2654	else
2655		normalized_interval = ep_bw->ep_interval - 3;
2656
2657	if (normalized_interval == 0)
2658		bw_table->interval0_esit_payload -= ep_bw->max_esit_payload;
2659	interval_bw = &bw_table->interval_bw[normalized_interval];
2660	interval_bw->num_packets -= ep_bw->num_packets;
2661	switch (udev->speed) {
2662	case USB_SPEED_LOW:
2663		interval_bw->overhead[LS_OVERHEAD_TYPE] -= 1;
2664		break;
2665	case USB_SPEED_FULL:
2666		interval_bw->overhead[FS_OVERHEAD_TYPE] -= 1;
2667		break;
2668	case USB_SPEED_HIGH:
2669		interval_bw->overhead[HS_OVERHEAD_TYPE] -= 1;
2670		break;
2671	case USB_SPEED_SUPER:
2672	case USB_SPEED_SUPER_PLUS:
2673	case USB_SPEED_UNKNOWN:
2674	case USB_SPEED_WIRELESS:
2675		/* Should never happen because only LS/FS/HS endpoints will get
2676		 * added to the endpoint list.
2677		 */
2678		return;
2679	}
2680	if (tt_info)
2681		tt_info->active_eps -= 1;
2682	list_del_init(&virt_ep->bw_endpoint_list);
2683}
2684
2685static void xhci_add_ep_to_interval_table(struct xhci_hcd *xhci,
2686		struct xhci_bw_info *ep_bw,
2687		struct xhci_interval_bw_table *bw_table,
2688		struct usb_device *udev,
2689		struct xhci_virt_ep *virt_ep,
2690		struct xhci_tt_bw_info *tt_info)
2691{
2692	struct xhci_interval_bw	*interval_bw;
2693	struct xhci_virt_ep *smaller_ep;
2694	int normalized_interval;
2695
2696	if (xhci_is_async_ep(ep_bw->type))
2697		return;
2698
2699	if (udev->speed == USB_SPEED_SUPER) {
2700		if (xhci_is_sync_in_ep(ep_bw->type))
2701			xhci->devs[udev->slot_id]->bw_table->ss_bw_in +=
2702				xhci_get_ss_bw_consumed(ep_bw);
2703		else
2704			xhci->devs[udev->slot_id]->bw_table->ss_bw_out +=
2705				xhci_get_ss_bw_consumed(ep_bw);
2706		return;
2707	}
2708
2709	/* For LS/FS devices, we need to translate the interval expressed in
2710	 * microframes to frames.
2711	 */
2712	if (udev->speed == USB_SPEED_HIGH)
2713		normalized_interval = ep_bw->ep_interval;
2714	else
2715		normalized_interval = ep_bw->ep_interval - 3;
2716
2717	if (normalized_interval == 0)
2718		bw_table->interval0_esit_payload += ep_bw->max_esit_payload;
2719	interval_bw = &bw_table->interval_bw[normalized_interval];
2720	interval_bw->num_packets += ep_bw->num_packets;
2721	switch (udev->speed) {
2722	case USB_SPEED_LOW:
2723		interval_bw->overhead[LS_OVERHEAD_TYPE] += 1;
2724		break;
2725	case USB_SPEED_FULL:
2726		interval_bw->overhead[FS_OVERHEAD_TYPE] += 1;
2727		break;
2728	case USB_SPEED_HIGH:
2729		interval_bw->overhead[HS_OVERHEAD_TYPE] += 1;
2730		break;
2731	case USB_SPEED_SUPER:
2732	case USB_SPEED_SUPER_PLUS:
2733	case USB_SPEED_UNKNOWN:
2734	case USB_SPEED_WIRELESS:
2735		/* Should never happen because only LS/FS/HS endpoints will get
2736		 * added to the endpoint list.
2737		 */
2738		return;
2739	}
2740
2741	if (tt_info)
2742		tt_info->active_eps += 1;
2743	/* Insert the endpoint into the list, largest max packet size first. */
2744	list_for_each_entry(smaller_ep, &interval_bw->endpoints,
2745			bw_endpoint_list) {
2746		if (ep_bw->max_packet_size >=
2747				smaller_ep->bw_info.max_packet_size) {
2748			/* Add the new ep before the smaller endpoint */
2749			list_add_tail(&virt_ep->bw_endpoint_list,
2750					&smaller_ep->bw_endpoint_list);
2751			return;
2752		}
2753	}
2754	/* Add the new endpoint at the end of the list. */
2755	list_add_tail(&virt_ep->bw_endpoint_list,
2756			&interval_bw->endpoints);
2757}
2758
2759void xhci_update_tt_active_eps(struct xhci_hcd *xhci,
2760		struct xhci_virt_device *virt_dev,
2761		int old_active_eps)
2762{
2763	struct xhci_root_port_bw_info *rh_bw_info;
2764	if (!virt_dev->tt_info)
2765		return;
2766
2767	rh_bw_info = &xhci->rh_bw[virt_dev->real_port - 1];
2768	if (old_active_eps == 0 &&
2769				virt_dev->tt_info->active_eps != 0) {
2770		rh_bw_info->num_active_tts += 1;
2771		rh_bw_info->bw_table.bw_used += TT_HS_OVERHEAD;
2772	} else if (old_active_eps != 0 &&
2773				virt_dev->tt_info->active_eps == 0) {
2774		rh_bw_info->num_active_tts -= 1;
2775		rh_bw_info->bw_table.bw_used -= TT_HS_OVERHEAD;
2776	}
2777}
2778
2779static int xhci_reserve_bandwidth(struct xhci_hcd *xhci,
2780		struct xhci_virt_device *virt_dev,
2781		struct xhci_container_ctx *in_ctx)
2782{
2783	struct xhci_bw_info ep_bw_info[31];
2784	int i;
2785	struct xhci_input_control_ctx *ctrl_ctx;
2786	int old_active_eps = 0;
2787
2788	if (virt_dev->tt_info)
2789		old_active_eps = virt_dev->tt_info->active_eps;
2790
2791	ctrl_ctx = xhci_get_input_control_ctx(in_ctx);
2792	if (!ctrl_ctx) {
2793		xhci_warn(xhci, "%s: Could not get input context, bad type.\n",
2794				__func__);
2795		return -ENOMEM;
2796	}
2797
2798	for (i = 0; i < 31; i++) {
2799		if (!EP_IS_ADDED(ctrl_ctx, i) && !EP_IS_DROPPED(ctrl_ctx, i))
2800			continue;
2801
2802		/* Make a copy of the BW info in case we need to revert this */
2803		memcpy(&ep_bw_info[i], &virt_dev->eps[i].bw_info,
2804				sizeof(ep_bw_info[i]));
2805		/* Drop the endpoint from the interval table if the endpoint is
2806		 * being dropped or changed.
2807		 */
2808		if (EP_IS_DROPPED(ctrl_ctx, i))
2809			xhci_drop_ep_from_interval_table(xhci,
2810					&virt_dev->eps[i].bw_info,
2811					virt_dev->bw_table,
2812					virt_dev->udev,
2813					&virt_dev->eps[i],
2814					virt_dev->tt_info);
2815	}
2816	/* Overwrite the information stored in the endpoints' bw_info */
2817	xhci_update_bw_info(xhci, virt_dev->in_ctx, ctrl_ctx, virt_dev);
2818	for (i = 0; i < 31; i++) {
2819		/* Add any changed or added endpoints to the interval table */
2820		if (EP_IS_ADDED(ctrl_ctx, i))
2821			xhci_add_ep_to_interval_table(xhci,
2822					&virt_dev->eps[i].bw_info,
2823					virt_dev->bw_table,
2824					virt_dev->udev,
2825					&virt_dev->eps[i],
2826					virt_dev->tt_info);
2827	}
2828
2829	if (!xhci_check_bw_table(xhci, virt_dev, old_active_eps)) {
2830		/* Ok, this fits in the bandwidth we have.
2831		 * Update the number of active TTs.
2832		 */
2833		xhci_update_tt_active_eps(xhci, virt_dev, old_active_eps);
2834		return 0;
2835	}
2836
2837	/* We don't have enough bandwidth for this, revert the stored info. */
2838	for (i = 0; i < 31; i++) {
2839		if (!EP_IS_ADDED(ctrl_ctx, i) && !EP_IS_DROPPED(ctrl_ctx, i))
2840			continue;
2841
2842		/* Drop the new copies of any added or changed endpoints from
2843		 * the interval table.
2844		 */
2845		if (EP_IS_ADDED(ctrl_ctx, i)) {
2846			xhci_drop_ep_from_interval_table(xhci,
2847					&virt_dev->eps[i].bw_info,
2848					virt_dev->bw_table,
2849					virt_dev->udev,
2850					&virt_dev->eps[i],
2851					virt_dev->tt_info);
2852		}
2853		/* Revert the endpoint back to its old information */
2854		memcpy(&virt_dev->eps[i].bw_info, &ep_bw_info[i],
2855				sizeof(ep_bw_info[i]));
2856		/* Add any changed or dropped endpoints back into the table */
2857		if (EP_IS_DROPPED(ctrl_ctx, i))
2858			xhci_add_ep_to_interval_table(xhci,
2859					&virt_dev->eps[i].bw_info,
2860					virt_dev->bw_table,
2861					virt_dev->udev,
2862					&virt_dev->eps[i],
2863					virt_dev->tt_info);
2864	}
2865	return -ENOMEM;
2866}
2867
2868
2869/* Issue a configure endpoint command or evaluate context command
2870 * and wait for it to finish.
2871 */
2872static int xhci_configure_endpoint(struct xhci_hcd *xhci,
2873		struct usb_device *udev,
2874		struct xhci_command *command,
2875		bool ctx_change, bool must_succeed)
2876{
2877	int ret;
 
2878	unsigned long flags;
2879	struct xhci_input_control_ctx *ctrl_ctx;
 
 
2880	struct xhci_virt_device *virt_dev;
2881	struct xhci_slot_ctx *slot_ctx;
2882
2883	if (!command)
2884		return -EINVAL;
2885
2886	spin_lock_irqsave(&xhci->lock, flags);
2887
2888	if (xhci->xhc_state & XHCI_STATE_DYING) {
2889		spin_unlock_irqrestore(&xhci->lock, flags);
2890		return -ESHUTDOWN;
2891	}
2892
2893	virt_dev = xhci->devs[udev->slot_id];
 
 
 
 
 
 
 
 
 
 
2894
2895	ctrl_ctx = xhci_get_input_control_ctx(command->in_ctx);
2896	if (!ctrl_ctx) {
2897		spin_unlock_irqrestore(&xhci->lock, flags);
2898		xhci_warn(xhci, "%s: Could not get input context, bad type.\n",
2899				__func__);
2900		return -ENOMEM;
2901	}
 
 
 
2902
2903	if ((xhci->quirks & XHCI_EP_LIMIT_QUIRK) &&
2904			xhci_reserve_host_resources(xhci, ctrl_ctx)) {
2905		spin_unlock_irqrestore(&xhci->lock, flags);
2906		xhci_warn(xhci, "Not enough host resources, "
2907				"active endpoint contexts = %u\n",
2908				xhci->num_active_eps);
2909		return -ENOMEM;
2910	}
2911	if ((xhci->quirks & XHCI_SW_BW_CHECKING) &&
2912	    xhci_reserve_bandwidth(xhci, virt_dev, command->in_ctx)) {
2913		if ((xhci->quirks & XHCI_EP_LIMIT_QUIRK))
2914			xhci_free_host_resources(xhci, ctrl_ctx);
2915		spin_unlock_irqrestore(&xhci->lock, flags);
2916		xhci_warn(xhci, "Not enough bandwidth\n");
2917		return -ENOMEM;
2918	}
2919
2920	slot_ctx = xhci_get_slot_ctx(xhci, command->in_ctx);
2921
2922	trace_xhci_configure_endpoint_ctrl_ctx(ctrl_ctx);
2923	trace_xhci_configure_endpoint(slot_ctx);
2924
2925	if (!ctx_change)
2926		ret = xhci_queue_configure_endpoint(xhci, command,
2927				command->in_ctx->dma,
2928				udev->slot_id, must_succeed);
2929	else
2930		ret = xhci_queue_evaluate_context(xhci, command,
2931				command->in_ctx->dma,
2932				udev->slot_id, must_succeed);
2933	if (ret < 0) {
 
 
2934		if ((xhci->quirks & XHCI_EP_LIMIT_QUIRK))
2935			xhci_free_host_resources(xhci, ctrl_ctx);
2936		spin_unlock_irqrestore(&xhci->lock, flags);
2937		xhci_dbg_trace(xhci,  trace_xhci_dbg_context_change,
2938				"FIXME allocate a new ring segment");
2939		return -ENOMEM;
2940	}
2941	xhci_ring_cmd_db(xhci);
2942	spin_unlock_irqrestore(&xhci->lock, flags);
2943
2944	/* Wait for the configure endpoint command to complete */
2945	wait_for_completion(command->completion);
 
 
 
 
 
 
 
 
 
 
 
2946
2947	if (!ctx_change)
2948		ret = xhci_configure_endpoint_result(xhci, udev,
2949						     &command->status);
2950	else
2951		ret = xhci_evaluate_context_result(xhci, udev,
2952						   &command->status);
2953
2954	if ((xhci->quirks & XHCI_EP_LIMIT_QUIRK)) {
2955		spin_lock_irqsave(&xhci->lock, flags);
2956		/* If the command failed, remove the reserved resources.
2957		 * Otherwise, clean up the estimate to include dropped eps.
2958		 */
2959		if (ret)
2960			xhci_free_host_resources(xhci, ctrl_ctx);
2961		else
2962			xhci_finish_resource_reservation(xhci, ctrl_ctx);
2963		spin_unlock_irqrestore(&xhci->lock, flags);
2964	}
2965	return ret;
2966}
2967
2968static void xhci_check_bw_drop_ep_streams(struct xhci_hcd *xhci,
2969	struct xhci_virt_device *vdev, int i)
2970{
2971	struct xhci_virt_ep *ep = &vdev->eps[i];
2972
2973	if (ep->ep_state & EP_HAS_STREAMS) {
2974		xhci_warn(xhci, "WARN: endpoint 0x%02x has streams on set_interface, freeing streams.\n",
2975				xhci_get_endpoint_address(i));
2976		xhci_free_stream_info(xhci, ep->stream_info);
2977		ep->stream_info = NULL;
2978		ep->ep_state &= ~EP_HAS_STREAMS;
2979	}
2980}
2981
2982/* Called after one or more calls to xhci_add_endpoint() or
2983 * xhci_drop_endpoint().  If this call fails, the USB core is expected
2984 * to call xhci_reset_bandwidth().
2985 *
2986 * Since we are in the middle of changing either configuration or
2987 * installing a new alt setting, the USB core won't allow URBs to be
2988 * enqueued for any endpoint on the old config or interface.  Nothing
2989 * else should be touching the xhci->devs[slot_id] structure, so we
2990 * don't need to take the xhci->lock for manipulating that.
2991 */
2992int xhci_check_bandwidth(struct usb_hcd *hcd, struct usb_device *udev)
2993{
2994	int i;
2995	int ret = 0;
2996	struct xhci_hcd *xhci;
2997	struct xhci_virt_device	*virt_dev;
2998	struct xhci_input_control_ctx *ctrl_ctx;
2999	struct xhci_slot_ctx *slot_ctx;
3000	struct xhci_command *command;
3001
3002	ret = xhci_check_args(hcd, udev, NULL, 0, true, __func__);
3003	if (ret <= 0)
3004		return ret;
3005	xhci = hcd_to_xhci(hcd);
3006	if ((xhci->xhc_state & XHCI_STATE_DYING) ||
3007		(xhci->xhc_state & XHCI_STATE_REMOVING))
3008		return -ENODEV;
3009
3010	xhci_dbg(xhci, "%s called for udev %p\n", __func__, udev);
3011	virt_dev = xhci->devs[udev->slot_id];
3012
3013	command = xhci_alloc_command(xhci, true, GFP_KERNEL);
3014	if (!command)
3015		return -ENOMEM;
3016
3017	command->in_ctx = virt_dev->in_ctx;
3018
3019	/* See section 4.6.6 - A0 = 1; A1 = D0 = D1 = 0 */
3020	ctrl_ctx = xhci_get_input_control_ctx(command->in_ctx);
3021	if (!ctrl_ctx) {
3022		xhci_warn(xhci, "%s: Could not get input context, bad type.\n",
3023				__func__);
3024		ret = -ENOMEM;
3025		goto command_cleanup;
3026	}
3027	ctrl_ctx->add_flags |= cpu_to_le32(SLOT_FLAG);
3028	ctrl_ctx->add_flags &= cpu_to_le32(~EP0_FLAG);
3029	ctrl_ctx->drop_flags &= cpu_to_le32(~(SLOT_FLAG | EP0_FLAG));
3030
3031	/* Don't issue the command if there's no endpoints to update. */
3032	if (ctrl_ctx->add_flags == cpu_to_le32(SLOT_FLAG) &&
3033	    ctrl_ctx->drop_flags == 0) {
3034		ret = 0;
3035		goto command_cleanup;
3036	}
3037	/* Fix up Context Entries field. Minimum value is EP0 == BIT(1). */
3038	slot_ctx = xhci_get_slot_ctx(xhci, virt_dev->in_ctx);
3039	for (i = 31; i >= 1; i--) {
3040		__le32 le32 = cpu_to_le32(BIT(i));
3041
3042		if ((virt_dev->eps[i-1].ring && !(ctrl_ctx->drop_flags & le32))
3043		    || (ctrl_ctx->add_flags & le32) || i == 1) {
3044			slot_ctx->dev_info &= cpu_to_le32(~LAST_CTX_MASK);
3045			slot_ctx->dev_info |= cpu_to_le32(LAST_CTX(i));
3046			break;
3047		}
3048	}
3049
3050	ret = xhci_configure_endpoint(xhci, udev, command,
3051			false, false);
3052	if (ret)
3053		/* Callee should call reset_bandwidth() */
3054		goto command_cleanup;
3055
3056	/* Free any rings that were dropped, but not changed. */
3057	for (i = 1; i < 31; i++) {
3058		if ((le32_to_cpu(ctrl_ctx->drop_flags) & (1 << (i + 1))) &&
3059		    !(le32_to_cpu(ctrl_ctx->add_flags) & (1 << (i + 1)))) {
3060			xhci_free_endpoint_ring(xhci, virt_dev, i);
3061			xhci_check_bw_drop_ep_streams(xhci, virt_dev, i);
3062		}
3063	}
3064	xhci_zero_in_ctx(xhci, virt_dev);
3065	/*
3066	 * Install any rings for completely new endpoints or changed endpoints,
3067	 * and free any old rings from changed endpoints.
3068	 */
3069	for (i = 1; i < 31; i++) {
3070		if (!virt_dev->eps[i].new_ring)
3071			continue;
3072		/* Only free the old ring if it exists.
3073		 * It may not if this is the first add of an endpoint.
3074		 */
3075		if (virt_dev->eps[i].ring) {
3076			xhci_free_endpoint_ring(xhci, virt_dev, i);
3077		}
3078		xhci_check_bw_drop_ep_streams(xhci, virt_dev, i);
3079		virt_dev->eps[i].ring = virt_dev->eps[i].new_ring;
3080		virt_dev->eps[i].new_ring = NULL;
3081		xhci_debugfs_create_endpoint(xhci, virt_dev, i);
3082	}
3083command_cleanup:
3084	kfree(command->completion);
3085	kfree(command);
3086
3087	return ret;
3088}
3089EXPORT_SYMBOL_GPL(xhci_check_bandwidth);
3090
3091void xhci_reset_bandwidth(struct usb_hcd *hcd, struct usb_device *udev)
3092{
3093	struct xhci_hcd *xhci;
3094	struct xhci_virt_device	*virt_dev;
3095	int i, ret;
3096
3097	ret = xhci_check_args(hcd, udev, NULL, 0, true, __func__);
3098	if (ret <= 0)
3099		return;
3100	xhci = hcd_to_xhci(hcd);
3101
3102	xhci_dbg(xhci, "%s called for udev %p\n", __func__, udev);
3103	virt_dev = xhci->devs[udev->slot_id];
3104	/* Free any rings allocated for added endpoints */
3105	for (i = 0; i < 31; i++) {
3106		if (virt_dev->eps[i].new_ring) {
3107			xhci_debugfs_remove_endpoint(xhci, virt_dev, i);
3108			xhci_ring_free(xhci, virt_dev->eps[i].new_ring);
3109			virt_dev->eps[i].new_ring = NULL;
3110		}
3111	}
3112	xhci_zero_in_ctx(xhci, virt_dev);
3113}
3114EXPORT_SYMBOL_GPL(xhci_reset_bandwidth);
3115
3116static void xhci_setup_input_ctx_for_config_ep(struct xhci_hcd *xhci,
3117		struct xhci_container_ctx *in_ctx,
3118		struct xhci_container_ctx *out_ctx,
3119		struct xhci_input_control_ctx *ctrl_ctx,
3120		u32 add_flags, u32 drop_flags)
3121{
 
 
3122	ctrl_ctx->add_flags = cpu_to_le32(add_flags);
3123	ctrl_ctx->drop_flags = cpu_to_le32(drop_flags);
3124	xhci_slot_copy(xhci, in_ctx, out_ctx);
3125	ctrl_ctx->add_flags |= cpu_to_le32(SLOT_FLAG);
 
 
 
3126}
3127
3128static void xhci_endpoint_disable(struct usb_hcd *hcd,
3129				  struct usb_host_endpoint *host_ep)
 
3130{
3131	struct xhci_hcd		*xhci;
3132	struct xhci_virt_device	*vdev;
3133	struct xhci_virt_ep	*ep;
3134	struct usb_device	*udev;
3135	unsigned long		flags;
3136	unsigned int		ep_index;
3137
3138	xhci = hcd_to_xhci(hcd);
3139rescan:
3140	spin_lock_irqsave(&xhci->lock, flags);
 
 
 
 
 
 
 
 
 
 
 
 
3141
3142	udev = (struct usb_device *)host_ep->hcpriv;
3143	if (!udev || !udev->slot_id)
3144		goto done;
 
3145
3146	vdev = xhci->devs[udev->slot_id];
3147	if (!vdev)
3148		goto done;
 
 
3149
3150	ep_index = xhci_get_endpoint_index(&host_ep->desc);
3151	ep = &vdev->eps[ep_index];
3152	if (!ep)
3153		goto done;
3154
3155	/* wait for hub_tt_work to finish clearing hub TT */
3156	if (ep->ep_state & EP_CLEARING_TT) {
3157		spin_unlock_irqrestore(&xhci->lock, flags);
3158		schedule_timeout_uninterruptible(1);
3159		goto rescan;
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
3160	}
3161
3162	if (ep->ep_state)
3163		xhci_dbg(xhci, "endpoint disable with ep_state 0x%x\n",
3164			 ep->ep_state);
3165done:
3166	host_ep->hcpriv = NULL;
3167	spin_unlock_irqrestore(&xhci->lock, flags);
3168}
3169
3170/*
3171 * Called after usb core issues a clear halt control message.
3172 * The host side of the halt should already be cleared by a reset endpoint
3173 * command issued when the STALL event was received.
3174 *
3175 * The reset endpoint command may only be issued to endpoints in the halted
3176 * state. For software that wishes to reset the data toggle or sequence number
3177 * of an endpoint that isn't in the halted state this function will issue a
3178 * configure endpoint command with the Drop and Add bits set for the target
3179 * endpoint. Refer to the additional note in xhci spcification section 4.6.8.
3180 */
3181
3182static void xhci_endpoint_reset(struct usb_hcd *hcd,
3183		struct usb_host_endpoint *host_ep)
3184{
3185	struct xhci_hcd *xhci;
3186	struct usb_device *udev;
3187	struct xhci_virt_device *vdev;
3188	struct xhci_virt_ep *ep;
3189	struct xhci_input_control_ctx *ctrl_ctx;
3190	struct xhci_command *stop_cmd, *cfg_cmd;
3191	unsigned int ep_index;
3192	unsigned long flags;
3193	u32 ep_flag;
3194	int err;
3195
3196	xhci = hcd_to_xhci(hcd);
3197	if (!host_ep->hcpriv)
3198		return;
3199	udev = (struct usb_device *) host_ep->hcpriv;
3200	vdev = xhci->devs[udev->slot_id];
3201
3202	/*
3203	 * vdev may be lost due to xHC restore error and re-initialization
3204	 * during S3/S4 resume. A new vdev will be allocated later by
3205	 * xhci_discover_or_reset_device()
3206	 */
3207	if (!udev->slot_id || !vdev)
3208		return;
3209	ep_index = xhci_get_endpoint_index(&host_ep->desc);
3210	ep = &vdev->eps[ep_index];
3211	if (!ep)
 
 
3212		return;
3213
3214	/* Bail out if toggle is already being cleared by a endpoint reset */
3215	spin_lock_irqsave(&xhci->lock, flags);
3216	if (ep->ep_state & EP_HARD_CLEAR_TOGGLE) {
3217		ep->ep_state &= ~EP_HARD_CLEAR_TOGGLE;
3218		spin_unlock_irqrestore(&xhci->lock, flags);
3219		return;
3220	}
3221	spin_unlock_irqrestore(&xhci->lock, flags);
3222	/* Only interrupt and bulk ep's use data toggle, USB2 spec 5.5.4-> */
3223	if (usb_endpoint_xfer_control(&host_ep->desc) ||
3224	    usb_endpoint_xfer_isoc(&host_ep->desc))
3225		return;
3226
3227	ep_flag = xhci_get_endpoint_flag(&host_ep->desc);
3228
3229	if (ep_flag == SLOT_FLAG || ep_flag == EP0_FLAG)
3230		return;
3231
3232	stop_cmd = xhci_alloc_command(xhci, true, GFP_NOWAIT);
3233	if (!stop_cmd)
3234		return;
3235
3236	cfg_cmd = xhci_alloc_command_with_ctx(xhci, true, GFP_NOWAIT);
3237	if (!cfg_cmd)
3238		goto cleanup;
3239
 
3240	spin_lock_irqsave(&xhci->lock, flags);
3241
3242	/* block queuing new trbs and ringing ep doorbell */
3243	ep->ep_state |= EP_SOFT_CLEAR_TOGGLE;
3244
3245	/*
3246	 * Make sure endpoint ring is empty before resetting the toggle/seq.
3247	 * Driver is required to synchronously cancel all transfer request.
3248	 * Stop the endpoint to force xHC to update the output context
3249	 */
3250
3251	if (!list_empty(&ep->ring->td_list)) {
3252		dev_err(&udev->dev, "EP not empty, refuse reset\n");
3253		spin_unlock_irqrestore(&xhci->lock, flags);
3254		xhci_free_command(xhci, cfg_cmd);
3255		goto cleanup;
3256	}
3257
3258	err = xhci_queue_stop_endpoint(xhci, stop_cmd, udev->slot_id,
3259					ep_index, 0);
3260	if (err < 0) {
3261		spin_unlock_irqrestore(&xhci->lock, flags);
3262		xhci_free_command(xhci, cfg_cmd);
3263		xhci_dbg(xhci, "%s: Failed to queue stop ep command, %d ",
3264				__func__, err);
3265		goto cleanup;
3266	}
3267
3268	xhci_ring_cmd_db(xhci);
3269	spin_unlock_irqrestore(&xhci->lock, flags);
3270
3271	wait_for_completion(stop_cmd->completion);
3272
3273	spin_lock_irqsave(&xhci->lock, flags);
3274
3275	/* config ep command clears toggle if add and drop ep flags are set */
3276	ctrl_ctx = xhci_get_input_control_ctx(cfg_cmd->in_ctx);
3277	if (!ctrl_ctx) {
3278		spin_unlock_irqrestore(&xhci->lock, flags);
3279		xhci_free_command(xhci, cfg_cmd);
3280		xhci_warn(xhci, "%s: Could not get input context, bad type.\n",
3281				__func__);
3282		goto cleanup;
3283	}
3284
3285	xhci_setup_input_ctx_for_config_ep(xhci, cfg_cmd->in_ctx, vdev->out_ctx,
3286					   ctrl_ctx, ep_flag, ep_flag);
3287	xhci_endpoint_copy(xhci, cfg_cmd->in_ctx, vdev->out_ctx, ep_index);
3288
3289	err = xhci_queue_configure_endpoint(xhci, cfg_cmd, cfg_cmd->in_ctx->dma,
3290				      udev->slot_id, false);
3291	if (err < 0) {
3292		spin_unlock_irqrestore(&xhci->lock, flags);
3293		xhci_free_command(xhci, cfg_cmd);
3294		xhci_dbg(xhci, "%s: Failed to queue config ep command, %d ",
3295				__func__, err);
3296		goto cleanup;
3297	}
3298
3299	xhci_ring_cmd_db(xhci);
3300	spin_unlock_irqrestore(&xhci->lock, flags);
3301
3302	wait_for_completion(cfg_cmd->completion);
3303
3304	xhci_free_command(xhci, cfg_cmd);
3305cleanup:
3306	xhci_free_command(xhci, stop_cmd);
3307	spin_lock_irqsave(&xhci->lock, flags);
3308	if (ep->ep_state & EP_SOFT_CLEAR_TOGGLE)
3309		ep->ep_state &= ~EP_SOFT_CLEAR_TOGGLE;
3310	spin_unlock_irqrestore(&xhci->lock, flags);
3311}
3312
3313static int xhci_check_streams_endpoint(struct xhci_hcd *xhci,
3314		struct usb_device *udev, struct usb_host_endpoint *ep,
3315		unsigned int slot_id)
3316{
3317	int ret;
3318	unsigned int ep_index;
3319	unsigned int ep_state;
3320
3321	if (!ep)
3322		return -EINVAL;
3323	ret = xhci_check_args(xhci_to_hcd(xhci), udev, ep, 1, true, __func__);
3324	if (ret <= 0)
3325		return -EINVAL;
3326	if (usb_ss_max_streams(&ep->ss_ep_comp) == 0) {
3327		xhci_warn(xhci, "WARN: SuperSpeed Endpoint Companion"
3328				" descriptor for ep 0x%x does not support streams\n",
3329				ep->desc.bEndpointAddress);
3330		return -EINVAL;
3331	}
3332
3333	ep_index = xhci_get_endpoint_index(&ep->desc);
3334	ep_state = xhci->devs[slot_id]->eps[ep_index].ep_state;
3335	if (ep_state & EP_HAS_STREAMS ||
3336			ep_state & EP_GETTING_STREAMS) {
3337		xhci_warn(xhci, "WARN: SuperSpeed bulk endpoint 0x%x "
3338				"already has streams set up.\n",
3339				ep->desc.bEndpointAddress);
3340		xhci_warn(xhci, "Send email to xHCI maintainer and ask for "
3341				"dynamic stream context array reallocation.\n");
3342		return -EINVAL;
3343	}
3344	if (!list_empty(&xhci->devs[slot_id]->eps[ep_index].ring->td_list)) {
3345		xhci_warn(xhci, "Cannot setup streams for SuperSpeed bulk "
3346				"endpoint 0x%x; URBs are pending.\n",
3347				ep->desc.bEndpointAddress);
3348		return -EINVAL;
3349	}
3350	return 0;
3351}
3352
3353static void xhci_calculate_streams_entries(struct xhci_hcd *xhci,
3354		unsigned int *num_streams, unsigned int *num_stream_ctxs)
3355{
3356	unsigned int max_streams;
3357
3358	/* The stream context array size must be a power of two */
3359	*num_stream_ctxs = roundup_pow_of_two(*num_streams);
3360	/*
3361	 * Find out how many primary stream array entries the host controller
3362	 * supports.  Later we may use secondary stream arrays (similar to 2nd
3363	 * level page entries), but that's an optional feature for xHCI host
3364	 * controllers. xHCs must support at least 4 stream IDs.
3365	 */
3366	max_streams = HCC_MAX_PSA(xhci->hcc_params);
3367	if (*num_stream_ctxs > max_streams) {
3368		xhci_dbg(xhci, "xHCI HW only supports %u stream ctx entries.\n",
3369				max_streams);
3370		*num_stream_ctxs = max_streams;
3371		*num_streams = max_streams;
3372	}
3373}
3374
3375/* Returns an error code if one of the endpoint already has streams.
3376 * This does not change any data structures, it only checks and gathers
3377 * information.
3378 */
3379static int xhci_calculate_streams_and_bitmask(struct xhci_hcd *xhci,
3380		struct usb_device *udev,
3381		struct usb_host_endpoint **eps, unsigned int num_eps,
3382		unsigned int *num_streams, u32 *changed_ep_bitmask)
3383{
3384	unsigned int max_streams;
3385	unsigned int endpoint_flag;
3386	int i;
3387	int ret;
3388
3389	for (i = 0; i < num_eps; i++) {
3390		ret = xhci_check_streams_endpoint(xhci, udev,
3391				eps[i], udev->slot_id);
3392		if (ret < 0)
3393			return ret;
3394
3395		max_streams = usb_ss_max_streams(&eps[i]->ss_ep_comp);
 
3396		if (max_streams < (*num_streams - 1)) {
3397			xhci_dbg(xhci, "Ep 0x%x only supports %u stream IDs.\n",
3398					eps[i]->desc.bEndpointAddress,
3399					max_streams);
3400			*num_streams = max_streams+1;
3401		}
3402
3403		endpoint_flag = xhci_get_endpoint_flag(&eps[i]->desc);
3404		if (*changed_ep_bitmask & endpoint_flag)
3405			return -EINVAL;
3406		*changed_ep_bitmask |= endpoint_flag;
3407	}
3408	return 0;
3409}
3410
3411static u32 xhci_calculate_no_streams_bitmask(struct xhci_hcd *xhci,
3412		struct usb_device *udev,
3413		struct usb_host_endpoint **eps, unsigned int num_eps)
3414{
3415	u32 changed_ep_bitmask = 0;
3416	unsigned int slot_id;
3417	unsigned int ep_index;
3418	unsigned int ep_state;
3419	int i;
3420
3421	slot_id = udev->slot_id;
3422	if (!xhci->devs[slot_id])
3423		return 0;
3424
3425	for (i = 0; i < num_eps; i++) {
3426		ep_index = xhci_get_endpoint_index(&eps[i]->desc);
3427		ep_state = xhci->devs[slot_id]->eps[ep_index].ep_state;
3428		/* Are streams already being freed for the endpoint? */
3429		if (ep_state & EP_GETTING_NO_STREAMS) {
3430			xhci_warn(xhci, "WARN Can't disable streams for "
3431					"endpoint 0x%x, "
3432					"streams are being disabled already\n",
3433					eps[i]->desc.bEndpointAddress);
3434			return 0;
3435		}
3436		/* Are there actually any streams to free? */
3437		if (!(ep_state & EP_HAS_STREAMS) &&
3438				!(ep_state & EP_GETTING_STREAMS)) {
3439			xhci_warn(xhci, "WARN Can't disable streams for "
3440					"endpoint 0x%x, "
3441					"streams are already disabled!\n",
3442					eps[i]->desc.bEndpointAddress);
3443			xhci_warn(xhci, "WARN xhci_free_streams() called "
3444					"with non-streams endpoint\n");
3445			return 0;
3446		}
3447		changed_ep_bitmask |= xhci_get_endpoint_flag(&eps[i]->desc);
3448	}
3449	return changed_ep_bitmask;
3450}
3451
3452/*
3453 * The USB device drivers use this function (through the HCD interface in USB
3454 * core) to prepare a set of bulk endpoints to use streams.  Streams are used to
3455 * coordinate mass storage command queueing across multiple endpoints (basically
3456 * a stream ID == a task ID).
3457 *
3458 * Setting up streams involves allocating the same size stream context array
3459 * for each endpoint and issuing a configure endpoint command for all endpoints.
3460 *
3461 * Don't allow the call to succeed if one endpoint only supports one stream
3462 * (which means it doesn't support streams at all).
3463 *
3464 * Drivers may get less stream IDs than they asked for, if the host controller
3465 * hardware or endpoints claim they can't support the number of requested
3466 * stream IDs.
3467 */
3468static int xhci_alloc_streams(struct usb_hcd *hcd, struct usb_device *udev,
3469		struct usb_host_endpoint **eps, unsigned int num_eps,
3470		unsigned int num_streams, gfp_t mem_flags)
3471{
3472	int i, ret;
3473	struct xhci_hcd *xhci;
3474	struct xhci_virt_device *vdev;
3475	struct xhci_command *config_cmd;
3476	struct xhci_input_control_ctx *ctrl_ctx;
3477	unsigned int ep_index;
3478	unsigned int num_stream_ctxs;
3479	unsigned int max_packet;
3480	unsigned long flags;
3481	u32 changed_ep_bitmask = 0;
3482
3483	if (!eps)
3484		return -EINVAL;
3485
3486	/* Add one to the number of streams requested to account for
3487	 * stream 0 that is reserved for xHCI usage.
3488	 */
3489	num_streams += 1;
3490	xhci = hcd_to_xhci(hcd);
3491	xhci_dbg(xhci, "Driver wants %u stream IDs (including stream 0).\n",
3492			num_streams);
3493
3494	/* MaxPSASize value 0 (2 streams) means streams are not supported */
3495	if ((xhci->quirks & XHCI_BROKEN_STREAMS) ||
3496			HCC_MAX_PSA(xhci->hcc_params) < 4) {
3497		xhci_dbg(xhci, "xHCI controller does not support streams.\n");
3498		return -ENOSYS;
3499	}
3500
3501	config_cmd = xhci_alloc_command_with_ctx(xhci, true, mem_flags);
3502	if (!config_cmd)
3503		return -ENOMEM;
3504
3505	ctrl_ctx = xhci_get_input_control_ctx(config_cmd->in_ctx);
3506	if (!ctrl_ctx) {
3507		xhci_warn(xhci, "%s: Could not get input context, bad type.\n",
3508				__func__);
3509		xhci_free_command(xhci, config_cmd);
3510		return -ENOMEM;
3511	}
3512
3513	/* Check to make sure all endpoints are not already configured for
3514	 * streams.  While we're at it, find the maximum number of streams that
3515	 * all the endpoints will support and check for duplicate endpoints.
3516	 */
3517	spin_lock_irqsave(&xhci->lock, flags);
3518	ret = xhci_calculate_streams_and_bitmask(xhci, udev, eps,
3519			num_eps, &num_streams, &changed_ep_bitmask);
3520	if (ret < 0) {
3521		xhci_free_command(xhci, config_cmd);
3522		spin_unlock_irqrestore(&xhci->lock, flags);
3523		return ret;
3524	}
3525	if (num_streams <= 1) {
3526		xhci_warn(xhci, "WARN: endpoints can't handle "
3527				"more than one stream.\n");
3528		xhci_free_command(xhci, config_cmd);
3529		spin_unlock_irqrestore(&xhci->lock, flags);
3530		return -EINVAL;
3531	}
3532	vdev = xhci->devs[udev->slot_id];
3533	/* Mark each endpoint as being in transition, so
3534	 * xhci_urb_enqueue() will reject all URBs.
3535	 */
3536	for (i = 0; i < num_eps; i++) {
3537		ep_index = xhci_get_endpoint_index(&eps[i]->desc);
3538		vdev->eps[ep_index].ep_state |= EP_GETTING_STREAMS;
3539	}
3540	spin_unlock_irqrestore(&xhci->lock, flags);
3541
3542	/* Setup internal data structures and allocate HW data structures for
3543	 * streams (but don't install the HW structures in the input context
3544	 * until we're sure all memory allocation succeeded).
3545	 */
3546	xhci_calculate_streams_entries(xhci, &num_streams, &num_stream_ctxs);
3547	xhci_dbg(xhci, "Need %u stream ctx entries for %u stream IDs.\n",
3548			num_stream_ctxs, num_streams);
3549
3550	for (i = 0; i < num_eps; i++) {
3551		ep_index = xhci_get_endpoint_index(&eps[i]->desc);
3552		max_packet = usb_endpoint_maxp(&eps[i]->desc);
3553		vdev->eps[ep_index].stream_info = xhci_alloc_stream_info(xhci,
3554				num_stream_ctxs,
3555				num_streams,
3556				max_packet, mem_flags);
3557		if (!vdev->eps[ep_index].stream_info)
3558			goto cleanup;
3559		/* Set maxPstreams in endpoint context and update deq ptr to
3560		 * point to stream context array. FIXME
3561		 */
3562	}
3563
3564	/* Set up the input context for a configure endpoint command. */
3565	for (i = 0; i < num_eps; i++) {
3566		struct xhci_ep_ctx *ep_ctx;
3567
3568		ep_index = xhci_get_endpoint_index(&eps[i]->desc);
3569		ep_ctx = xhci_get_ep_ctx(xhci, config_cmd->in_ctx, ep_index);
3570
3571		xhci_endpoint_copy(xhci, config_cmd->in_ctx,
3572				vdev->out_ctx, ep_index);
3573		xhci_setup_streams_ep_input_ctx(xhci, ep_ctx,
3574				vdev->eps[ep_index].stream_info);
3575	}
3576	/* Tell the HW to drop its old copy of the endpoint context info
3577	 * and add the updated copy from the input context.
3578	 */
3579	xhci_setup_input_ctx_for_config_ep(xhci, config_cmd->in_ctx,
3580			vdev->out_ctx, ctrl_ctx,
3581			changed_ep_bitmask, changed_ep_bitmask);
3582
3583	/* Issue and wait for the configure endpoint command */
3584	ret = xhci_configure_endpoint(xhci, udev, config_cmd,
3585			false, false);
3586
3587	/* xHC rejected the configure endpoint command for some reason, so we
3588	 * leave the old ring intact and free our internal streams data
3589	 * structure.
3590	 */
3591	if (ret < 0)
3592		goto cleanup;
3593
3594	spin_lock_irqsave(&xhci->lock, flags);
3595	for (i = 0; i < num_eps; i++) {
3596		ep_index = xhci_get_endpoint_index(&eps[i]->desc);
3597		vdev->eps[ep_index].ep_state &= ~EP_GETTING_STREAMS;
3598		xhci_dbg(xhci, "Slot %u ep ctx %u now has streams.\n",
3599			 udev->slot_id, ep_index);
3600		vdev->eps[ep_index].ep_state |= EP_HAS_STREAMS;
3601	}
3602	xhci_free_command(xhci, config_cmd);
3603	spin_unlock_irqrestore(&xhci->lock, flags);
3604
3605	for (i = 0; i < num_eps; i++) {
3606		ep_index = xhci_get_endpoint_index(&eps[i]->desc);
3607		xhci_debugfs_create_stream_files(xhci, vdev, ep_index);
3608	}
3609	/* Subtract 1 for stream 0, which drivers can't use */
3610	return num_streams - 1;
3611
3612cleanup:
3613	/* If it didn't work, free the streams! */
3614	for (i = 0; i < num_eps; i++) {
3615		ep_index = xhci_get_endpoint_index(&eps[i]->desc);
3616		xhci_free_stream_info(xhci, vdev->eps[ep_index].stream_info);
3617		vdev->eps[ep_index].stream_info = NULL;
3618		/* FIXME Unset maxPstreams in endpoint context and
3619		 * update deq ptr to point to normal string ring.
3620		 */
3621		vdev->eps[ep_index].ep_state &= ~EP_GETTING_STREAMS;
3622		vdev->eps[ep_index].ep_state &= ~EP_HAS_STREAMS;
3623		xhci_endpoint_zero(xhci, vdev, eps[i]);
3624	}
3625	xhci_free_command(xhci, config_cmd);
3626	return -ENOMEM;
3627}
3628
3629/* Transition the endpoint from using streams to being a "normal" endpoint
3630 * without streams.
3631 *
3632 * Modify the endpoint context state, submit a configure endpoint command,
3633 * and free all endpoint rings for streams if that completes successfully.
3634 */
3635static int xhci_free_streams(struct usb_hcd *hcd, struct usb_device *udev,
3636		struct usb_host_endpoint **eps, unsigned int num_eps,
3637		gfp_t mem_flags)
3638{
3639	int i, ret;
3640	struct xhci_hcd *xhci;
3641	struct xhci_virt_device *vdev;
3642	struct xhci_command *command;
3643	struct xhci_input_control_ctx *ctrl_ctx;
3644	unsigned int ep_index;
3645	unsigned long flags;
3646	u32 changed_ep_bitmask;
3647
3648	xhci = hcd_to_xhci(hcd);
3649	vdev = xhci->devs[udev->slot_id];
3650
3651	/* Set up a configure endpoint command to remove the streams rings */
3652	spin_lock_irqsave(&xhci->lock, flags);
3653	changed_ep_bitmask = xhci_calculate_no_streams_bitmask(xhci,
3654			udev, eps, num_eps);
3655	if (changed_ep_bitmask == 0) {
3656		spin_unlock_irqrestore(&xhci->lock, flags);
3657		return -EINVAL;
3658	}
3659
3660	/* Use the xhci_command structure from the first endpoint.  We may have
3661	 * allocated too many, but the driver may call xhci_free_streams() for
3662	 * each endpoint it grouped into one call to xhci_alloc_streams().
3663	 */
3664	ep_index = xhci_get_endpoint_index(&eps[0]->desc);
3665	command = vdev->eps[ep_index].stream_info->free_streams_command;
3666	ctrl_ctx = xhci_get_input_control_ctx(command->in_ctx);
3667	if (!ctrl_ctx) {
3668		spin_unlock_irqrestore(&xhci->lock, flags);
3669		xhci_warn(xhci, "%s: Could not get input context, bad type.\n",
3670				__func__);
3671		return -EINVAL;
3672	}
3673
3674	for (i = 0; i < num_eps; i++) {
3675		struct xhci_ep_ctx *ep_ctx;
3676
3677		ep_index = xhci_get_endpoint_index(&eps[i]->desc);
3678		ep_ctx = xhci_get_ep_ctx(xhci, command->in_ctx, ep_index);
3679		xhci->devs[udev->slot_id]->eps[ep_index].ep_state |=
3680			EP_GETTING_NO_STREAMS;
3681
3682		xhci_endpoint_copy(xhci, command->in_ctx,
3683				vdev->out_ctx, ep_index);
3684		xhci_setup_no_streams_ep_input_ctx(ep_ctx,
3685				&vdev->eps[ep_index]);
3686	}
3687	xhci_setup_input_ctx_for_config_ep(xhci, command->in_ctx,
3688			vdev->out_ctx, ctrl_ctx,
3689			changed_ep_bitmask, changed_ep_bitmask);
3690	spin_unlock_irqrestore(&xhci->lock, flags);
3691
3692	/* Issue and wait for the configure endpoint command,
3693	 * which must succeed.
3694	 */
3695	ret = xhci_configure_endpoint(xhci, udev, command,
3696			false, true);
3697
3698	/* xHC rejected the configure endpoint command for some reason, so we
3699	 * leave the streams rings intact.
3700	 */
3701	if (ret < 0)
3702		return ret;
3703
3704	spin_lock_irqsave(&xhci->lock, flags);
3705	for (i = 0; i < num_eps; i++) {
3706		ep_index = xhci_get_endpoint_index(&eps[i]->desc);
3707		xhci_free_stream_info(xhci, vdev->eps[ep_index].stream_info);
3708		vdev->eps[ep_index].stream_info = NULL;
3709		/* FIXME Unset maxPstreams in endpoint context and
3710		 * update deq ptr to point to normal string ring.
3711		 */
3712		vdev->eps[ep_index].ep_state &= ~EP_GETTING_NO_STREAMS;
3713		vdev->eps[ep_index].ep_state &= ~EP_HAS_STREAMS;
3714	}
3715	spin_unlock_irqrestore(&xhci->lock, flags);
3716
3717	return 0;
3718}
3719
3720/*
3721 * Deletes endpoint resources for endpoints that were active before a Reset
3722 * Device command, or a Disable Slot command.  The Reset Device command leaves
3723 * the control endpoint intact, whereas the Disable Slot command deletes it.
3724 *
3725 * Must be called with xhci->lock held.
3726 */
3727void xhci_free_device_endpoint_resources(struct xhci_hcd *xhci,
3728	struct xhci_virt_device *virt_dev, bool drop_control_ep)
3729{
3730	int i;
3731	unsigned int num_dropped_eps = 0;
3732	unsigned int drop_flags = 0;
3733
3734	for (i = (drop_control_ep ? 0 : 1); i < 31; i++) {
3735		if (virt_dev->eps[i].ring) {
3736			drop_flags |= 1 << i;
3737			num_dropped_eps++;
3738		}
3739	}
3740	xhci->num_active_eps -= num_dropped_eps;
3741	if (num_dropped_eps)
3742		xhci_dbg_trace(xhci, trace_xhci_dbg_quirks,
3743				"Dropped %u ep ctxs, flags = 0x%x, "
3744				"%u now active.",
3745				num_dropped_eps, drop_flags,
3746				xhci->num_active_eps);
3747}
3748
3749/*
3750 * This submits a Reset Device Command, which will set the device state to 0,
3751 * set the device address to 0, and disable all the endpoints except the default
3752 * control endpoint.  The USB core should come back and call
3753 * xhci_address_device(), and then re-set up the configuration.  If this is
3754 * called because of a usb_reset_and_verify_device(), then the old alternate
3755 * settings will be re-installed through the normal bandwidth allocation
3756 * functions.
3757 *
3758 * Wait for the Reset Device command to finish.  Remove all structures
3759 * associated with the endpoints that were disabled.  Clear the input device
3760 * structure? Reset the control endpoint 0 max packet size?
3761 *
3762 * If the virt_dev to be reset does not exist or does not match the udev,
3763 * it means the device is lost, possibly due to the xHC restore error and
3764 * re-initialization during S3/S4. In this case, call xhci_alloc_dev() to
3765 * re-allocate the device.
3766 */
3767static int xhci_discover_or_reset_device(struct usb_hcd *hcd,
3768		struct usb_device *udev)
3769{
3770	int ret, i;
3771	unsigned long flags;
3772	struct xhci_hcd *xhci;
3773	unsigned int slot_id;
3774	struct xhci_virt_device *virt_dev;
3775	struct xhci_command *reset_device_cmd;
 
 
3776	struct xhci_slot_ctx *slot_ctx;
3777	int old_active_eps = 0;
3778
3779	ret = xhci_check_args(hcd, udev, NULL, 0, false, __func__);
3780	if (ret <= 0)
3781		return ret;
3782	xhci = hcd_to_xhci(hcd);
3783	slot_id = udev->slot_id;
3784	virt_dev = xhci->devs[slot_id];
3785	if (!virt_dev) {
3786		xhci_dbg(xhci, "The device to be reset with slot ID %u does "
3787				"not exist. Re-allocate the device\n", slot_id);
3788		ret = xhci_alloc_dev(hcd, udev);
3789		if (ret == 1)
3790			return 0;
3791		else
3792			return -EINVAL;
3793	}
3794
3795	if (virt_dev->tt_info)
3796		old_active_eps = virt_dev->tt_info->active_eps;
3797
3798	if (virt_dev->udev != udev) {
3799		/* If the virt_dev and the udev does not match, this virt_dev
3800		 * may belong to another udev.
3801		 * Re-allocate the device.
3802		 */
3803		xhci_dbg(xhci, "The device to be reset with slot ID %u does "
3804				"not match the udev. Re-allocate the device\n",
3805				slot_id);
3806		ret = xhci_alloc_dev(hcd, udev);
3807		if (ret == 1)
3808			return 0;
3809		else
3810			return -EINVAL;
3811	}
3812
3813	/* If device is not setup, there is no point in resetting it */
3814	slot_ctx = xhci_get_slot_ctx(xhci, virt_dev->out_ctx);
3815	if (GET_SLOT_STATE(le32_to_cpu(slot_ctx->dev_state)) ==
3816						SLOT_STATE_DISABLED)
3817		return 0;
3818
3819	trace_xhci_discover_or_reset_device(slot_ctx);
3820
3821	xhci_dbg(xhci, "Resetting device with slot ID %u\n", slot_id);
3822	/* Allocate the command structure that holds the struct completion.
3823	 * Assume we're in process context, since the normal device reset
3824	 * process has to wait for the device anyway.  Storage devices are
3825	 * reset as part of error handling, so use GFP_NOIO instead of
3826	 * GFP_KERNEL.
3827	 */
3828	reset_device_cmd = xhci_alloc_command(xhci, true, GFP_NOIO);
3829	if (!reset_device_cmd) {
3830		xhci_dbg(xhci, "Couldn't allocate command structure.\n");
3831		return -ENOMEM;
3832	}
3833
3834	/* Attempt to submit the Reset Device command to the command ring */
3835	spin_lock_irqsave(&xhci->lock, flags);
 
3836
3837	ret = xhci_queue_reset_device(xhci, reset_device_cmd, slot_id);
 
 
 
 
 
 
 
 
3838	if (ret) {
3839		xhci_dbg(xhci, "FIXME: allocate a command ring segment\n");
 
3840		spin_unlock_irqrestore(&xhci->lock, flags);
3841		goto command_cleanup;
3842	}
3843	xhci_ring_cmd_db(xhci);
3844	spin_unlock_irqrestore(&xhci->lock, flags);
3845
3846	/* Wait for the Reset Device command to finish */
3847	wait_for_completion(reset_device_cmd->completion);
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
3848
3849	/* The Reset Device command can't fail, according to the 0.95/0.96 spec,
3850	 * unless we tried to reset a slot ID that wasn't enabled,
3851	 * or the device wasn't in the addressed or configured state.
3852	 */
3853	ret = reset_device_cmd->status;
3854	switch (ret) {
3855	case COMP_COMMAND_ABORTED:
3856	case COMP_COMMAND_RING_STOPPED:
3857		xhci_warn(xhci, "Timeout waiting for reset device command\n");
3858		ret = -ETIME;
3859		goto command_cleanup;
3860	case COMP_SLOT_NOT_ENABLED_ERROR: /* 0.95 completion for bad slot ID */
3861	case COMP_CONTEXT_STATE_ERROR: /* 0.96 completion code for same thing */
3862		xhci_dbg(xhci, "Can't reset device (slot ID %u) in %s state\n",
3863				slot_id,
3864				xhci_get_slot_state(xhci, virt_dev->out_ctx));
3865		xhci_dbg(xhci, "Not freeing device rings.\n");
3866		/* Don't treat this as an error.  May change my mind later. */
3867		ret = 0;
3868		goto command_cleanup;
3869	case COMP_SUCCESS:
3870		xhci_dbg(xhci, "Successful reset device command.\n");
3871		break;
3872	default:
3873		if (xhci_is_vendor_info_code(xhci, ret))
3874			break;
3875		xhci_warn(xhci, "Unknown completion code %u for "
3876				"reset device command.\n", ret);
3877		ret = -EINVAL;
3878		goto command_cleanup;
3879	}
3880
3881	/* Free up host controller endpoint resources */
3882	if ((xhci->quirks & XHCI_EP_LIMIT_QUIRK)) {
3883		spin_lock_irqsave(&xhci->lock, flags);
3884		/* Don't delete the default control endpoint resources */
3885		xhci_free_device_endpoint_resources(xhci, virt_dev, false);
3886		spin_unlock_irqrestore(&xhci->lock, flags);
3887	}
3888
3889	/* Everything but endpoint 0 is disabled, so free the rings. */
3890	for (i = 1; i < 31; i++) {
 
3891		struct xhci_virt_ep *ep = &virt_dev->eps[i];
3892
3893		if (ep->ep_state & EP_HAS_STREAMS) {
3894			xhci_warn(xhci, "WARN: endpoint 0x%02x has streams on device reset, freeing streams.\n",
3895					xhci_get_endpoint_address(i));
3896			xhci_free_stream_info(xhci, ep->stream_info);
3897			ep->stream_info = NULL;
3898			ep->ep_state &= ~EP_HAS_STREAMS;
3899		}
3900
3901		if (ep->ring) {
3902			xhci_debugfs_remove_endpoint(xhci, virt_dev, i);
3903			xhci_free_endpoint_ring(xhci, virt_dev, i);
3904		}
3905		if (!list_empty(&virt_dev->eps[i].bw_endpoint_list))
3906			xhci_drop_ep_from_interval_table(xhci,
3907					&virt_dev->eps[i].bw_info,
3908					virt_dev->bw_table,
3909					udev,
3910					&virt_dev->eps[i],
3911					virt_dev->tt_info);
3912		xhci_clear_endpoint_bw_info(&virt_dev->eps[i].bw_info);
3913	}
3914	/* If necessary, update the number of active TTs on this root port */
3915	xhci_update_tt_active_eps(xhci, virt_dev, old_active_eps);
3916	virt_dev->flags = 0;
3917	ret = 0;
3918
3919command_cleanup:
3920	xhci_free_command(xhci, reset_device_cmd);
3921	return ret;
3922}
3923
3924/*
3925 * At this point, the struct usb_device is about to go away, the device has
3926 * disconnected, and all traffic has been stopped and the endpoints have been
3927 * disabled.  Free any HC data structures associated with that device.
3928 */
3929static void xhci_free_dev(struct usb_hcd *hcd, struct usb_device *udev)
3930{
3931	struct xhci_hcd *xhci = hcd_to_xhci(hcd);
3932	struct xhci_virt_device *virt_dev;
3933	struct xhci_slot_ctx *slot_ctx;
 
3934	int i, ret;
3935
3936#ifndef CONFIG_USB_DEFAULT_PERSIST
3937	/*
3938	 * We called pm_runtime_get_noresume when the device was attached.
3939	 * Decrement the counter here to allow controller to runtime suspend
3940	 * if no devices remain.
3941	 */
3942	if (xhci->quirks & XHCI_RESET_ON_RESUME)
3943		pm_runtime_put_noidle(hcd->self.controller);
3944#endif
3945
3946	ret = xhci_check_args(hcd, udev, NULL, 0, true, __func__);
3947	/* If the host is halted due to driver unload, we still need to free the
3948	 * device.
3949	 */
3950	if (ret <= 0 && ret != -ENODEV)
3951		return;
3952
3953	virt_dev = xhci->devs[udev->slot_id];
3954	slot_ctx = xhci_get_slot_ctx(xhci, virt_dev->out_ctx);
3955	trace_xhci_free_dev(slot_ctx);
3956
3957	/* Stop any wayward timer functions (which may grab the lock) */
3958	for (i = 0; i < 31; i++) {
3959		virt_dev->eps[i].ep_state &= ~EP_STOP_CMD_PENDING;
3960		del_timer_sync(&virt_dev->eps[i].stop_cmd_timer);
3961	}
3962	virt_dev->udev = NULL;
3963	ret = xhci_disable_slot(xhci, udev->slot_id);
3964	if (ret)
3965		xhci_free_virt_device(xhci, udev->slot_id);
3966}
3967
3968int xhci_disable_slot(struct xhci_hcd *xhci, u32 slot_id)
3969{
3970	struct xhci_command *command;
3971	unsigned long flags;
3972	u32 state;
3973	int ret = 0;
3974
3975	command = xhci_alloc_command(xhci, false, GFP_KERNEL);
3976	if (!command)
3977		return -ENOMEM;
3978
3979	xhci_debugfs_remove_slot(xhci, slot_id);
3980
3981	spin_lock_irqsave(&xhci->lock, flags);
3982	/* Don't disable the slot if the host controller is dead. */
3983	state = readl(&xhci->op_regs->status);
3984	if (state == 0xffffffff || (xhci->xhc_state & XHCI_STATE_DYING) ||
3985			(xhci->xhc_state & XHCI_STATE_HALTED)) {
 
3986		spin_unlock_irqrestore(&xhci->lock, flags);
3987		kfree(command);
3988		return -ENODEV;
3989	}
3990
3991	ret = xhci_queue_slot_control(xhci, command, TRB_DISABLE_SLOT,
3992				slot_id);
3993	if (ret) {
3994		spin_unlock_irqrestore(&xhci->lock, flags);
3995		kfree(command);
3996		return ret;
3997	}
3998	xhci_ring_cmd_db(xhci);
3999	spin_unlock_irqrestore(&xhci->lock, flags);
4000	return ret;
 
 
 
4001}
4002
4003/*
4004 * Checks if we have enough host controller resources for the default control
4005 * endpoint.
4006 *
4007 * Must be called with xhci->lock held.
4008 */
4009static int xhci_reserve_host_control_ep_resources(struct xhci_hcd *xhci)
4010{
4011	if (xhci->num_active_eps + 1 > xhci->limit_active_eps) {
4012		xhci_dbg_trace(xhci, trace_xhci_dbg_quirks,
4013				"Not enough ep ctxs: "
4014				"%u active, need to add 1, limit is %u.",
4015				xhci->num_active_eps, xhci->limit_active_eps);
4016		return -ENOMEM;
4017	}
4018	xhci->num_active_eps += 1;
4019	xhci_dbg_trace(xhci, trace_xhci_dbg_quirks,
4020			"Adding 1 ep ctx, %u now active.",
4021			xhci->num_active_eps);
4022	return 0;
4023}
4024
4025
4026/*
4027 * Returns 0 if the xHC ran out of device slots, the Enable Slot command
4028 * timed out, or allocating memory failed.  Returns 1 on success.
4029 */
4030int xhci_alloc_dev(struct usb_hcd *hcd, struct usb_device *udev)
4031{
4032	struct xhci_hcd *xhci = hcd_to_xhci(hcd);
4033	struct xhci_virt_device *vdev;
4034	struct xhci_slot_ctx *slot_ctx;
4035	unsigned long flags;
4036	int ret, slot_id;
4037	struct xhci_command *command;
4038
4039	command = xhci_alloc_command(xhci, true, GFP_KERNEL);
4040	if (!command)
4041		return 0;
4042
4043	spin_lock_irqsave(&xhci->lock, flags);
4044	ret = xhci_queue_slot_control(xhci, command, TRB_ENABLE_SLOT, 0);
4045	if (ret) {
4046		spin_unlock_irqrestore(&xhci->lock, flags);
4047		xhci_dbg(xhci, "FIXME: allocate a command ring segment\n");
4048		xhci_free_command(xhci, command);
4049		return 0;
4050	}
4051	xhci_ring_cmd_db(xhci);
4052	spin_unlock_irqrestore(&xhci->lock, flags);
4053
4054	wait_for_completion(command->completion);
4055	slot_id = command->slot_id;
 
 
 
 
 
 
 
4056
4057	if (!slot_id || command->status != COMP_SUCCESS) {
4058		xhci_err(xhci, "Error while assigning device slot ID\n");
4059		xhci_err(xhci, "Max number of devices this xHCI host supports is %u.\n",
4060				HCS_MAX_SLOTS(
4061					readl(&xhci->cap_regs->hcs_params1)));
4062		xhci_free_command(xhci, command);
4063		return 0;
4064	}
4065
4066	xhci_free_command(xhci, command);
4067
4068	if ((xhci->quirks & XHCI_EP_LIMIT_QUIRK)) {
4069		spin_lock_irqsave(&xhci->lock, flags);
4070		ret = xhci_reserve_host_control_ep_resources(xhci);
4071		if (ret) {
4072			spin_unlock_irqrestore(&xhci->lock, flags);
4073			xhci_warn(xhci, "Not enough host resources, "
4074					"active endpoint contexts = %u\n",
4075					xhci->num_active_eps);
4076			goto disable_slot;
4077		}
4078		spin_unlock_irqrestore(&xhci->lock, flags);
4079	}
4080	/* Use GFP_NOIO, since this function can be called from
4081	 * xhci_discover_or_reset_device(), which may be called as part of
4082	 * mass storage driver error handling.
4083	 */
4084	if (!xhci_alloc_virt_device(xhci, slot_id, udev, GFP_NOIO)) {
4085		xhci_warn(xhci, "Could not allocate xHCI USB device data structures\n");
4086		goto disable_slot;
4087	}
4088	vdev = xhci->devs[slot_id];
4089	slot_ctx = xhci_get_slot_ctx(xhci, vdev->out_ctx);
4090	trace_xhci_alloc_dev(slot_ctx);
4091
4092	udev->slot_id = slot_id;
4093
4094	xhci_debugfs_create_slot(xhci, slot_id);
4095
4096#ifndef CONFIG_USB_DEFAULT_PERSIST
4097	/*
4098	 * If resetting upon resume, we can't put the controller into runtime
4099	 * suspend if there is a device attached.
4100	 */
4101	if (xhci->quirks & XHCI_RESET_ON_RESUME)
4102		pm_runtime_get_noresume(hcd->self.controller);
4103#endif
4104
4105	/* Is this a LS or FS device under a HS hub? */
4106	/* Hub or peripherial? */
4107	return 1;
4108
4109disable_slot:
4110	ret = xhci_disable_slot(xhci, udev->slot_id);
4111	if (ret)
4112		xhci_free_virt_device(xhci, udev->slot_id);
4113
 
4114	return 0;
4115}
4116
4117/*
4118 * Issue an Address Device command and optionally send a corresponding
4119 * SetAddress request to the device.
 
 
 
 
 
4120 */
4121static int xhci_setup_device(struct usb_hcd *hcd, struct usb_device *udev,
4122			     enum xhci_setup_dev setup)
4123{
4124	const char *act = setup == SETUP_CONTEXT_ONLY ? "context" : "address";
4125	unsigned long flags;
 
4126	struct xhci_virt_device *virt_dev;
4127	int ret = 0;
4128	struct xhci_hcd *xhci = hcd_to_xhci(hcd);
4129	struct xhci_slot_ctx *slot_ctx;
4130	struct xhci_input_control_ctx *ctrl_ctx;
4131	u64 temp_64;
4132	struct xhci_command *command = NULL;
4133
4134	mutex_lock(&xhci->mutex);
4135
4136	if (xhci->xhc_state) {	/* dying, removing or halted */
4137		ret = -ESHUTDOWN;
4138		goto out;
4139	}
4140
4141	if (!udev->slot_id) {
4142		xhci_dbg_trace(xhci, trace_xhci_dbg_address,
4143				"Bad Slot ID %d", udev->slot_id);
4144		ret = -EINVAL;
4145		goto out;
4146	}
4147
4148	virt_dev = xhci->devs[udev->slot_id];
4149
4150	if (WARN_ON(!virt_dev)) {
4151		/*
4152		 * In plug/unplug torture test with an NEC controller,
4153		 * a zero-dereference was observed once due to virt_dev = 0.
4154		 * Print useful debug rather than crash if it is observed again!
4155		 */
4156		xhci_warn(xhci, "Virt dev invalid for slot_id 0x%x!\n",
4157			udev->slot_id);
4158		ret = -EINVAL;
4159		goto out;
4160	}
4161	slot_ctx = xhci_get_slot_ctx(xhci, virt_dev->out_ctx);
4162	trace_xhci_setup_device_slot(slot_ctx);
4163
4164	if (setup == SETUP_CONTEXT_ONLY) {
4165		if (GET_SLOT_STATE(le32_to_cpu(slot_ctx->dev_state)) ==
4166		    SLOT_STATE_DEFAULT) {
4167			xhci_dbg(xhci, "Slot already in default state\n");
4168			goto out;
4169		}
4170	}
4171
4172	command = xhci_alloc_command(xhci, true, GFP_KERNEL);
4173	if (!command) {
4174		ret = -ENOMEM;
4175		goto out;
4176	}
4177
4178	command->in_ctx = virt_dev->in_ctx;
4179
4180	slot_ctx = xhci_get_slot_ctx(xhci, virt_dev->in_ctx);
4181	ctrl_ctx = xhci_get_input_control_ctx(virt_dev->in_ctx);
4182	if (!ctrl_ctx) {
4183		xhci_warn(xhci, "%s: Could not get input context, bad type.\n",
4184				__func__);
4185		ret = -EINVAL;
4186		goto out;
4187	}
4188	/*
4189	 * If this is the first Set Address since device plug-in or
4190	 * virt_device realloaction after a resume with an xHCI power loss,
4191	 * then set up the slot context.
4192	 */
4193	if (!slot_ctx->dev_info)
4194		xhci_setup_addressable_virt_dev(xhci, udev);
4195	/* Otherwise, update the control endpoint ring enqueue pointer. */
4196	else
4197		xhci_copy_ep0_dequeue_into_input_ctx(xhci, udev);
4198	ctrl_ctx->add_flags = cpu_to_le32(SLOT_FLAG | EP0_FLAG);
4199	ctrl_ctx->drop_flags = 0;
4200
4201	trace_xhci_address_ctx(xhci, virt_dev->in_ctx,
4202				le32_to_cpu(slot_ctx->dev_info) >> 27);
4203
4204	trace_xhci_address_ctrl_ctx(ctrl_ctx);
4205	spin_lock_irqsave(&xhci->lock, flags);
4206	trace_xhci_setup_device(virt_dev);
4207	ret = xhci_queue_address_device(xhci, command, virt_dev->in_ctx->dma,
4208					udev->slot_id, setup);
4209	if (ret) {
4210		spin_unlock_irqrestore(&xhci->lock, flags);
4211		xhci_dbg_trace(xhci, trace_xhci_dbg_address,
4212				"FIXME: allocate a command ring segment");
4213		goto out;
4214	}
4215	xhci_ring_cmd_db(xhci);
4216	spin_unlock_irqrestore(&xhci->lock, flags);
4217
4218	/* ctrl tx can take up to 5 sec; XXX: need more time for xHC? */
4219	wait_for_completion(command->completion);
4220
4221	/* FIXME: From section 4.3.4: "Software shall be responsible for timing
4222	 * the SetAddress() "recovery interval" required by USB and aborting the
4223	 * command on a timeout.
4224	 */
4225	switch (command->status) {
4226	case COMP_COMMAND_ABORTED:
4227	case COMP_COMMAND_RING_STOPPED:
4228		xhci_warn(xhci, "Timeout while waiting for setup device command\n");
4229		ret = -ETIME;
4230		break;
4231	case COMP_CONTEXT_STATE_ERROR:
4232	case COMP_SLOT_NOT_ENABLED_ERROR:
4233		xhci_err(xhci, "Setup ERROR: setup %s command for slot %d.\n",
4234			 act, udev->slot_id);
 
 
4235		ret = -EINVAL;
4236		break;
4237	case COMP_USB_TRANSACTION_ERROR:
4238		dev_warn(&udev->dev, "Device not responding to setup %s.\n", act);
4239
4240		mutex_unlock(&xhci->mutex);
4241		ret = xhci_disable_slot(xhci, udev->slot_id);
4242		if (!ret)
4243			xhci_alloc_dev(hcd, udev);
4244		kfree(command->completion);
4245		kfree(command);
4246		return -EPROTO;
4247	case COMP_INCOMPATIBLE_DEVICE_ERROR:
4248		dev_warn(&udev->dev,
4249			 "ERROR: Incompatible device for setup %s command\n", act);
4250		ret = -ENODEV;
4251		break;
4252	case COMP_SUCCESS:
4253		xhci_dbg_trace(xhci, trace_xhci_dbg_address,
4254			       "Successful setup %s command", act);
4255		break;
4256	default:
4257		xhci_err(xhci,
4258			 "ERROR: unexpected setup %s command completion code 0x%x.\n",
4259			 act, command->status);
4260		trace_xhci_address_ctx(xhci, virt_dev->out_ctx, 1);
4261		ret = -EINVAL;
4262		break;
4263	}
4264	if (ret)
4265		goto out;
 
4266	temp_64 = xhci_read_64(xhci, &xhci->op_regs->dcbaa_ptr);
4267	xhci_dbg_trace(xhci, trace_xhci_dbg_address,
4268			"Op regs DCBAA ptr = %#016llx", temp_64);
4269	xhci_dbg_trace(xhci, trace_xhci_dbg_address,
4270		"Slot ID %d dcbaa entry @%p = %#016llx",
4271		udev->slot_id,
4272		&xhci->dcbaa->dev_context_ptrs[udev->slot_id],
4273		(unsigned long long)
4274		le64_to_cpu(xhci->dcbaa->dev_context_ptrs[udev->slot_id]));
4275	xhci_dbg_trace(xhci, trace_xhci_dbg_address,
4276			"Output Context DMA address = %#08llx",
4277			(unsigned long long)virt_dev->out_ctx->dma);
4278	trace_xhci_address_ctx(xhci, virt_dev->in_ctx,
4279				le32_to_cpu(slot_ctx->dev_info) >> 27);
 
 
4280	/*
4281	 * USB core uses address 1 for the roothubs, so we add one to the
4282	 * address given back to us by the HC.
4283	 */
4284	trace_xhci_address_ctx(xhci, virt_dev->out_ctx,
4285				le32_to_cpu(slot_ctx->dev_info) >> 27);
 
 
 
4286	/* Zero the input context control for later use */
 
4287	ctrl_ctx->add_flags = 0;
4288	ctrl_ctx->drop_flags = 0;
4289	slot_ctx = xhci_get_slot_ctx(xhci, virt_dev->out_ctx);
4290	udev->devaddr = (u8)(le32_to_cpu(slot_ctx->dev_state) & DEV_ADDR_MASK);
4291
4292	xhci_dbg_trace(xhci, trace_xhci_dbg_address,
4293		       "Internal device address = %d",
4294		       le32_to_cpu(slot_ctx->dev_state) & DEV_ADDR_MASK);
4295out:
4296	mutex_unlock(&xhci->mutex);
4297	if (command) {
4298		kfree(command->completion);
4299		kfree(command);
4300	}
4301	return ret;
4302}
4303
4304static int xhci_address_device(struct usb_hcd *hcd, struct usb_device *udev)
4305{
4306	return xhci_setup_device(hcd, udev, SETUP_CONTEXT_ADDRESS);
4307}
4308
4309static int xhci_enable_device(struct usb_hcd *hcd, struct usb_device *udev)
4310{
4311	return xhci_setup_device(hcd, udev, SETUP_CONTEXT_ONLY);
4312}
4313
4314/*
4315 * Transfer the port index into real index in the HW port status
4316 * registers. Caculate offset between the port's PORTSC register
4317 * and port status base. Divide the number of per port register
4318 * to get the real index. The raw port number bases 1.
4319 */
4320int xhci_find_raw_port_number(struct usb_hcd *hcd, int port1)
4321{
4322	struct xhci_hub *rhub;
4323
4324	rhub = xhci_get_rhub(hcd);
4325	return rhub->ports[port1 - 1]->hw_portnum + 1;
4326}
4327
4328/*
4329 * Issue an Evaluate Context command to change the Maximum Exit Latency in the
4330 * slot context.  If that succeeds, store the new MEL in the xhci_virt_device.
4331 */
4332static int __maybe_unused xhci_change_max_exit_latency(struct xhci_hcd *xhci,
4333			struct usb_device *udev, u16 max_exit_latency)
4334{
4335	struct xhci_virt_device *virt_dev;
4336	struct xhci_command *command;
4337	struct xhci_input_control_ctx *ctrl_ctx;
4338	struct xhci_slot_ctx *slot_ctx;
4339	unsigned long flags;
4340	int ret;
4341
4342	spin_lock_irqsave(&xhci->lock, flags);
4343
4344	virt_dev = xhci->devs[udev->slot_id];
4345
4346	/*
4347	 * virt_dev might not exists yet if xHC resumed from hibernate (S4) and
4348	 * xHC was re-initialized. Exit latency will be set later after
4349	 * hub_port_finish_reset() is done and xhci->devs[] are re-allocated
4350	 */
4351
4352	if (!virt_dev || max_exit_latency == virt_dev->current_mel) {
4353		spin_unlock_irqrestore(&xhci->lock, flags);
4354		return 0;
4355	}
4356
4357	/* Attempt to issue an Evaluate Context command to change the MEL. */
4358	command = xhci->lpm_command;
4359	ctrl_ctx = xhci_get_input_control_ctx(command->in_ctx);
4360	if (!ctrl_ctx) {
4361		spin_unlock_irqrestore(&xhci->lock, flags);
4362		xhci_warn(xhci, "%s: Could not get input context, bad type.\n",
4363				__func__);
4364		return -ENOMEM;
4365	}
4366
4367	xhci_slot_copy(xhci, command->in_ctx, virt_dev->out_ctx);
4368	spin_unlock_irqrestore(&xhci->lock, flags);
4369
4370	ctrl_ctx->add_flags |= cpu_to_le32(SLOT_FLAG);
4371	slot_ctx = xhci_get_slot_ctx(xhci, command->in_ctx);
4372	slot_ctx->dev_info2 &= cpu_to_le32(~((u32) MAX_EXIT));
4373	slot_ctx->dev_info2 |= cpu_to_le32(max_exit_latency);
4374	slot_ctx->dev_state = 0;
4375
4376	xhci_dbg_trace(xhci, trace_xhci_dbg_context_change,
4377			"Set up evaluate context for LPM MEL change.");
4378
4379	/* Issue and wait for the evaluate context command. */
4380	ret = xhci_configure_endpoint(xhci, udev, command,
4381			true, true);
4382
4383	if (!ret) {
4384		spin_lock_irqsave(&xhci->lock, flags);
4385		virt_dev->current_mel = max_exit_latency;
4386		spin_unlock_irqrestore(&xhci->lock, flags);
4387	}
4388	return ret;
4389}
4390
4391#ifdef CONFIG_PM
4392
4393/* BESL to HIRD Encoding array for USB2 LPM */
4394static int xhci_besl_encoding[16] = {125, 150, 200, 300, 400, 500, 1000, 2000,
4395	3000, 4000, 5000, 6000, 7000, 8000, 9000, 10000};
4396
4397/* Calculate HIRD/BESL for USB2 PORTPMSC*/
4398static int xhci_calculate_hird_besl(struct xhci_hcd *xhci,
4399					struct usb_device *udev)
4400{
4401	int u2del, besl, besl_host;
4402	int besl_device = 0;
4403	u32 field;
4404
4405	u2del = HCS_U2_LATENCY(xhci->hcs_params3);
4406	field = le32_to_cpu(udev->bos->ext_cap->bmAttributes);
4407
4408	if (field & USB_BESL_SUPPORT) {
4409		for (besl_host = 0; besl_host < 16; besl_host++) {
4410			if (xhci_besl_encoding[besl_host] >= u2del)
4411				break;
4412		}
4413		/* Use baseline BESL value as default */
4414		if (field & USB_BESL_BASELINE_VALID)
4415			besl_device = USB_GET_BESL_BASELINE(field);
4416		else if (field & USB_BESL_DEEP_VALID)
4417			besl_device = USB_GET_BESL_DEEP(field);
4418	} else {
4419		if (u2del <= 50)
4420			besl_host = 0;
4421		else
4422			besl_host = (u2del - 51) / 75 + 1;
4423	}
4424
4425	besl = besl_host + besl_device;
4426	if (besl > 15)
4427		besl = 15;
4428
4429	return besl;
4430}
4431
4432/* Calculate BESLD, L1 timeout and HIRDM for USB2 PORTHLPMC */
4433static int xhci_calculate_usb2_hw_lpm_params(struct usb_device *udev)
4434{
4435	u32 field;
4436	int l1;
4437	int besld = 0;
4438	int hirdm = 0;
4439
4440	field = le32_to_cpu(udev->bos->ext_cap->bmAttributes);
4441
4442	/* xHCI l1 is set in steps of 256us, xHCI 1.0 section 5.4.11.2 */
4443	l1 = udev->l1_params.timeout / 256;
4444
4445	/* device has preferred BESLD */
4446	if (field & USB_BESL_DEEP_VALID) {
4447		besld = USB_GET_BESL_DEEP(field);
4448		hirdm = 1;
4449	}
4450
4451	return PORT_BESLD(besld) | PORT_L1_TIMEOUT(l1) | PORT_HIRDM(hirdm);
4452}
4453
4454static int xhci_set_usb2_hardware_lpm(struct usb_hcd *hcd,
4455			struct usb_device *udev, int enable)
4456{
4457	struct xhci_hcd	*xhci = hcd_to_xhci(hcd);
4458	struct xhci_port **ports;
4459	__le32 __iomem	*pm_addr, *hlpm_addr;
4460	u32		pm_val, hlpm_val, field;
4461	unsigned int	port_num;
4462	unsigned long	flags;
4463	int		hird, exit_latency;
4464	int		ret;
4465
4466	if (xhci->quirks & XHCI_HW_LPM_DISABLE)
4467		return -EPERM;
4468
4469	if (hcd->speed >= HCD_USB3 || !xhci->hw_lpm_support ||
4470			!udev->lpm_capable)
4471		return -EPERM;
4472
4473	if (!udev->parent || udev->parent->parent ||
4474			udev->descriptor.bDeviceClass == USB_CLASS_HUB)
4475		return -EPERM;
4476
4477	if (udev->usb2_hw_lpm_capable != 1)
4478		return -EPERM;
4479
4480	spin_lock_irqsave(&xhci->lock, flags);
4481
4482	ports = xhci->usb2_rhub.ports;
4483	port_num = udev->portnum - 1;
4484	pm_addr = ports[port_num]->addr + PORTPMSC;
4485	pm_val = readl(pm_addr);
4486	hlpm_addr = ports[port_num]->addr + PORTHLPMC;
4487
4488	xhci_dbg(xhci, "%s port %d USB2 hardware LPM\n",
4489			enable ? "enable" : "disable", port_num + 1);
4490
4491	if (enable) {
4492		/* Host supports BESL timeout instead of HIRD */
4493		if (udev->usb2_hw_lpm_besl_capable) {
4494			/* if device doesn't have a preferred BESL value use a
4495			 * default one which works with mixed HIRD and BESL
4496			 * systems. See XHCI_DEFAULT_BESL definition in xhci.h
4497			 */
4498			field = le32_to_cpu(udev->bos->ext_cap->bmAttributes);
4499			if ((field & USB_BESL_SUPPORT) &&
4500			    (field & USB_BESL_BASELINE_VALID))
4501				hird = USB_GET_BESL_BASELINE(field);
4502			else
4503				hird = udev->l1_params.besl;
4504
4505			exit_latency = xhci_besl_encoding[hird];
4506			spin_unlock_irqrestore(&xhci->lock, flags);
4507
4508			/* USB 3.0 code dedicate one xhci->lpm_command->in_ctx
4509			 * input context for link powermanagement evaluate
4510			 * context commands. It is protected by hcd->bandwidth
4511			 * mutex and is shared by all devices. We need to set
4512			 * the max ext latency in USB 2 BESL LPM as well, so
4513			 * use the same mutex and xhci_change_max_exit_latency()
4514			 */
4515			mutex_lock(hcd->bandwidth_mutex);
4516			ret = xhci_change_max_exit_latency(xhci, udev,
4517							   exit_latency);
4518			mutex_unlock(hcd->bandwidth_mutex);
4519
4520			if (ret < 0)
4521				return ret;
4522			spin_lock_irqsave(&xhci->lock, flags);
4523
4524			hlpm_val = xhci_calculate_usb2_hw_lpm_params(udev);
4525			writel(hlpm_val, hlpm_addr);
4526			/* flush write */
4527			readl(hlpm_addr);
4528		} else {
4529			hird = xhci_calculate_hird_besl(xhci, udev);
4530		}
4531
4532		pm_val &= ~PORT_HIRD_MASK;
4533		pm_val |= PORT_HIRD(hird) | PORT_RWE | PORT_L1DS(udev->slot_id);
4534		writel(pm_val, pm_addr);
4535		pm_val = readl(pm_addr);
4536		pm_val |= PORT_HLE;
4537		writel(pm_val, pm_addr);
4538		/* flush write */
4539		readl(pm_addr);
4540	} else {
4541		pm_val &= ~(PORT_HLE | PORT_RWE | PORT_HIRD_MASK | PORT_L1DS_MASK);
4542		writel(pm_val, pm_addr);
4543		/* flush write */
4544		readl(pm_addr);
4545		if (udev->usb2_hw_lpm_besl_capable) {
4546			spin_unlock_irqrestore(&xhci->lock, flags);
4547			mutex_lock(hcd->bandwidth_mutex);
4548			xhci_change_max_exit_latency(xhci, udev, 0);
4549			mutex_unlock(hcd->bandwidth_mutex);
4550			readl_poll_timeout(ports[port_num]->addr, pm_val,
4551					   (pm_val & PORT_PLS_MASK) == XDEV_U0,
4552					   100, 10000);
4553			return 0;
4554		}
4555	}
4556
4557	spin_unlock_irqrestore(&xhci->lock, flags);
4558	return 0;
4559}
4560
4561/* check if a usb2 port supports a given extened capability protocol
4562 * only USB2 ports extended protocol capability values are cached.
4563 * Return 1 if capability is supported
4564 */
4565static int xhci_check_usb2_port_capability(struct xhci_hcd *xhci, int port,
4566					   unsigned capability)
4567{
4568	u32 port_offset, port_count;
4569	int i;
4570
4571	for (i = 0; i < xhci->num_ext_caps; i++) {
4572		if (xhci->ext_caps[i] & capability) {
4573			/* port offsets starts at 1 */
4574			port_offset = XHCI_EXT_PORT_OFF(xhci->ext_caps[i]) - 1;
4575			port_count = XHCI_EXT_PORT_COUNT(xhci->ext_caps[i]);
4576			if (port >= port_offset &&
4577			    port < port_offset + port_count)
4578				return 1;
4579		}
4580	}
4581	return 0;
4582}
4583
4584static int xhci_update_device(struct usb_hcd *hcd, struct usb_device *udev)
4585{
4586	struct xhci_hcd	*xhci = hcd_to_xhci(hcd);
4587	int		portnum = udev->portnum - 1;
4588
4589	if (hcd->speed >= HCD_USB3 || !udev->lpm_capable)
4590		return 0;
4591
4592	/* we only support lpm for non-hub device connected to root hub yet */
4593	if (!udev->parent || udev->parent->parent ||
4594			udev->descriptor.bDeviceClass == USB_CLASS_HUB)
4595		return 0;
4596
4597	if (xhci->hw_lpm_support == 1 &&
4598			xhci_check_usb2_port_capability(
4599				xhci, portnum, XHCI_HLC)) {
4600		udev->usb2_hw_lpm_capable = 1;
4601		udev->l1_params.timeout = XHCI_L1_TIMEOUT;
4602		udev->l1_params.besl = XHCI_DEFAULT_BESL;
4603		if (xhci_check_usb2_port_capability(xhci, portnum,
4604					XHCI_BLC))
4605			udev->usb2_hw_lpm_besl_capable = 1;
4606	}
4607
4608	return 0;
4609}
4610
4611/*---------------------- USB 3.0 Link PM functions ------------------------*/
4612
4613/* Service interval in nanoseconds = 2^(bInterval - 1) * 125us * 1000ns / 1us */
4614static unsigned long long xhci_service_interval_to_ns(
4615		struct usb_endpoint_descriptor *desc)
4616{
4617	return (1ULL << (desc->bInterval - 1)) * 125 * 1000;
4618}
4619
4620static u16 xhci_get_timeout_no_hub_lpm(struct usb_device *udev,
4621		enum usb3_link_state state)
4622{
4623	unsigned long long sel;
4624	unsigned long long pel;
4625	unsigned int max_sel_pel;
4626	char *state_name;
4627
4628	switch (state) {
4629	case USB3_LPM_U1:
4630		/* Convert SEL and PEL stored in nanoseconds to microseconds */
4631		sel = DIV_ROUND_UP(udev->u1_params.sel, 1000);
4632		pel = DIV_ROUND_UP(udev->u1_params.pel, 1000);
4633		max_sel_pel = USB3_LPM_MAX_U1_SEL_PEL;
4634		state_name = "U1";
4635		break;
4636	case USB3_LPM_U2:
4637		sel = DIV_ROUND_UP(udev->u2_params.sel, 1000);
4638		pel = DIV_ROUND_UP(udev->u2_params.pel, 1000);
4639		max_sel_pel = USB3_LPM_MAX_U2_SEL_PEL;
4640		state_name = "U2";
4641		break;
4642	default:
4643		dev_warn(&udev->dev, "%s: Can't get timeout for non-U1 or U2 state.\n",
4644				__func__);
4645		return USB3_LPM_DISABLED;
4646	}
4647
4648	if (sel <= max_sel_pel && pel <= max_sel_pel)
4649		return USB3_LPM_DEVICE_INITIATED;
4650
4651	if (sel > max_sel_pel)
4652		dev_dbg(&udev->dev, "Device-initiated %s disabled "
4653				"due to long SEL %llu ms\n",
4654				state_name, sel);
4655	else
4656		dev_dbg(&udev->dev, "Device-initiated %s disabled "
4657				"due to long PEL %llu ms\n",
4658				state_name, pel);
4659	return USB3_LPM_DISABLED;
4660}
4661
4662/* The U1 timeout should be the maximum of the following values:
4663 *  - For control endpoints, U1 system exit latency (SEL) * 3
4664 *  - For bulk endpoints, U1 SEL * 5
4665 *  - For interrupt endpoints:
4666 *    - Notification EPs, U1 SEL * 3
4667 *    - Periodic EPs, max(105% of bInterval, U1 SEL * 2)
4668 *  - For isochronous endpoints, max(105% of bInterval, U1 SEL * 2)
4669 */
4670static unsigned long long xhci_calculate_intel_u1_timeout(
4671		struct usb_device *udev,
4672		struct usb_endpoint_descriptor *desc)
4673{
4674	unsigned long long timeout_ns;
4675	int ep_type;
4676	int intr_type;
4677
4678	ep_type = usb_endpoint_type(desc);
4679	switch (ep_type) {
4680	case USB_ENDPOINT_XFER_CONTROL:
4681		timeout_ns = udev->u1_params.sel * 3;
4682		break;
4683	case USB_ENDPOINT_XFER_BULK:
4684		timeout_ns = udev->u1_params.sel * 5;
4685		break;
4686	case USB_ENDPOINT_XFER_INT:
4687		intr_type = usb_endpoint_interrupt_type(desc);
4688		if (intr_type == USB_ENDPOINT_INTR_NOTIFICATION) {
4689			timeout_ns = udev->u1_params.sel * 3;
4690			break;
4691		}
4692		/* Otherwise the calculation is the same as isoc eps */
4693		fallthrough;
4694	case USB_ENDPOINT_XFER_ISOC:
4695		timeout_ns = xhci_service_interval_to_ns(desc);
4696		timeout_ns = DIV_ROUND_UP_ULL(timeout_ns * 105, 100);
4697		if (timeout_ns < udev->u1_params.sel * 2)
4698			timeout_ns = udev->u1_params.sel * 2;
4699		break;
4700	default:
4701		return 0;
4702	}
4703
4704	return timeout_ns;
4705}
4706
4707/* Returns the hub-encoded U1 timeout value. */
4708static u16 xhci_calculate_u1_timeout(struct xhci_hcd *xhci,
4709		struct usb_device *udev,
4710		struct usb_endpoint_descriptor *desc)
4711{
4712	unsigned long long timeout_ns;
4713
4714	/* Prevent U1 if service interval is shorter than U1 exit latency */
4715	if (usb_endpoint_xfer_int(desc) || usb_endpoint_xfer_isoc(desc)) {
4716		if (xhci_service_interval_to_ns(desc) <= udev->u1_params.mel) {
4717			dev_dbg(&udev->dev, "Disable U1, ESIT shorter than exit latency\n");
4718			return USB3_LPM_DISABLED;
4719		}
4720	}
4721
4722	if (xhci->quirks & XHCI_INTEL_HOST)
4723		timeout_ns = xhci_calculate_intel_u1_timeout(udev, desc);
4724	else
4725		timeout_ns = udev->u1_params.sel;
4726
4727	/* The U1 timeout is encoded in 1us intervals.
4728	 * Don't return a timeout of zero, because that's USB3_LPM_DISABLED.
4729	 */
4730	if (timeout_ns == USB3_LPM_DISABLED)
4731		timeout_ns = 1;
4732	else
4733		timeout_ns = DIV_ROUND_UP_ULL(timeout_ns, 1000);
4734
4735	/* If the necessary timeout value is bigger than what we can set in the
4736	 * USB 3.0 hub, we have to disable hub-initiated U1.
4737	 */
4738	if (timeout_ns <= USB3_LPM_U1_MAX_TIMEOUT)
4739		return timeout_ns;
4740	dev_dbg(&udev->dev, "Hub-initiated U1 disabled "
4741			"due to long timeout %llu ms\n", timeout_ns);
4742	return xhci_get_timeout_no_hub_lpm(udev, USB3_LPM_U1);
4743}
4744
4745/* The U2 timeout should be the maximum of:
4746 *  - 10 ms (to avoid the bandwidth impact on the scheduler)
4747 *  - largest bInterval of any active periodic endpoint (to avoid going
4748 *    into lower power link states between intervals).
4749 *  - the U2 Exit Latency of the device
4750 */
4751static unsigned long long xhci_calculate_intel_u2_timeout(
4752		struct usb_device *udev,
4753		struct usb_endpoint_descriptor *desc)
4754{
4755	unsigned long long timeout_ns;
4756	unsigned long long u2_del_ns;
4757
4758	timeout_ns = 10 * 1000 * 1000;
4759
4760	if ((usb_endpoint_xfer_int(desc) || usb_endpoint_xfer_isoc(desc)) &&
4761			(xhci_service_interval_to_ns(desc) > timeout_ns))
4762		timeout_ns = xhci_service_interval_to_ns(desc);
4763
4764	u2_del_ns = le16_to_cpu(udev->bos->ss_cap->bU2DevExitLat) * 1000ULL;
4765	if (u2_del_ns > timeout_ns)
4766		timeout_ns = u2_del_ns;
4767
4768	return timeout_ns;
4769}
4770
4771/* Returns the hub-encoded U2 timeout value. */
4772static u16 xhci_calculate_u2_timeout(struct xhci_hcd *xhci,
4773		struct usb_device *udev,
4774		struct usb_endpoint_descriptor *desc)
4775{
4776	unsigned long long timeout_ns;
4777
4778	/* Prevent U2 if service interval is shorter than U2 exit latency */
4779	if (usb_endpoint_xfer_int(desc) || usb_endpoint_xfer_isoc(desc)) {
4780		if (xhci_service_interval_to_ns(desc) <= udev->u2_params.mel) {
4781			dev_dbg(&udev->dev, "Disable U2, ESIT shorter than exit latency\n");
4782			return USB3_LPM_DISABLED;
4783		}
4784	}
4785
4786	if (xhci->quirks & XHCI_INTEL_HOST)
4787		timeout_ns = xhci_calculate_intel_u2_timeout(udev, desc);
4788	else
4789		timeout_ns = udev->u2_params.sel;
4790
4791	/* The U2 timeout is encoded in 256us intervals */
4792	timeout_ns = DIV_ROUND_UP_ULL(timeout_ns, 256 * 1000);
4793	/* If the necessary timeout value is bigger than what we can set in the
4794	 * USB 3.0 hub, we have to disable hub-initiated U2.
4795	 */
4796	if (timeout_ns <= USB3_LPM_U2_MAX_TIMEOUT)
4797		return timeout_ns;
4798	dev_dbg(&udev->dev, "Hub-initiated U2 disabled "
4799			"due to long timeout %llu ms\n", timeout_ns);
4800	return xhci_get_timeout_no_hub_lpm(udev, USB3_LPM_U2);
4801}
4802
4803static u16 xhci_call_host_update_timeout_for_endpoint(struct xhci_hcd *xhci,
4804		struct usb_device *udev,
4805		struct usb_endpoint_descriptor *desc,
4806		enum usb3_link_state state,
4807		u16 *timeout)
4808{
4809	if (state == USB3_LPM_U1)
4810		return xhci_calculate_u1_timeout(xhci, udev, desc);
4811	else if (state == USB3_LPM_U2)
4812		return xhci_calculate_u2_timeout(xhci, udev, desc);
4813
4814	return USB3_LPM_DISABLED;
4815}
4816
4817static int xhci_update_timeout_for_endpoint(struct xhci_hcd *xhci,
4818		struct usb_device *udev,
4819		struct usb_endpoint_descriptor *desc,
4820		enum usb3_link_state state,
4821		u16 *timeout)
4822{
4823	u16 alt_timeout;
4824
4825	alt_timeout = xhci_call_host_update_timeout_for_endpoint(xhci, udev,
4826		desc, state, timeout);
4827
4828	/* If we found we can't enable hub-initiated LPM, and
4829	 * the U1 or U2 exit latency was too high to allow
4830	 * device-initiated LPM as well, then we will disable LPM
4831	 * for this device, so stop searching any further.
4832	 */
4833	if (alt_timeout == USB3_LPM_DISABLED) {
4834		*timeout = alt_timeout;
4835		return -E2BIG;
4836	}
4837	if (alt_timeout > *timeout)
4838		*timeout = alt_timeout;
4839	return 0;
4840}
4841
4842static int xhci_update_timeout_for_interface(struct xhci_hcd *xhci,
4843		struct usb_device *udev,
4844		struct usb_host_interface *alt,
4845		enum usb3_link_state state,
4846		u16 *timeout)
4847{
4848	int j;
4849
4850	for (j = 0; j < alt->desc.bNumEndpoints; j++) {
4851		if (xhci_update_timeout_for_endpoint(xhci, udev,
4852					&alt->endpoint[j].desc, state, timeout))
4853			return -E2BIG;
4854	}
4855	return 0;
4856}
4857
4858static int xhci_check_intel_tier_policy(struct usb_device *udev,
4859		enum usb3_link_state state)
4860{
4861	struct usb_device *parent;
4862	unsigned int num_hubs;
4863
4864	if (state == USB3_LPM_U2)
4865		return 0;
4866
4867	/* Don't enable U1 if the device is on a 2nd tier hub or lower. */
4868	for (parent = udev->parent, num_hubs = 0; parent->parent;
4869			parent = parent->parent)
4870		num_hubs++;
4871
4872	if (num_hubs < 2)
4873		return 0;
4874
4875	dev_dbg(&udev->dev, "Disabling U1 link state for device"
4876			" below second-tier hub.\n");
4877	dev_dbg(&udev->dev, "Plug device into first-tier hub "
4878			"to decrease power consumption.\n");
4879	return -E2BIG;
4880}
4881
4882static int xhci_check_tier_policy(struct xhci_hcd *xhci,
4883		struct usb_device *udev,
4884		enum usb3_link_state state)
4885{
4886	if (xhci->quirks & XHCI_INTEL_HOST)
4887		return xhci_check_intel_tier_policy(udev, state);
4888	else
4889		return 0;
4890}
4891
4892/* Returns the U1 or U2 timeout that should be enabled.
4893 * If the tier check or timeout setting functions return with a non-zero exit
4894 * code, that means the timeout value has been finalized and we shouldn't look
4895 * at any more endpoints.
4896 */
4897static u16 xhci_calculate_lpm_timeout(struct usb_hcd *hcd,
4898			struct usb_device *udev, enum usb3_link_state state)
4899{
4900	struct xhci_hcd *xhci = hcd_to_xhci(hcd);
4901	struct usb_host_config *config;
4902	char *state_name;
4903	int i;
4904	u16 timeout = USB3_LPM_DISABLED;
4905
4906	if (state == USB3_LPM_U1)
4907		state_name = "U1";
4908	else if (state == USB3_LPM_U2)
4909		state_name = "U2";
4910	else {
4911		dev_warn(&udev->dev, "Can't enable unknown link state %i\n",
4912				state);
4913		return timeout;
4914	}
4915
4916	if (xhci_check_tier_policy(xhci, udev, state) < 0)
4917		return timeout;
4918
4919	/* Gather some information about the currently installed configuration
4920	 * and alternate interface settings.
4921	 */
4922	if (xhci_update_timeout_for_endpoint(xhci, udev, &udev->ep0.desc,
4923			state, &timeout))
4924		return timeout;
4925
4926	config = udev->actconfig;
4927	if (!config)
4928		return timeout;
4929
4930	for (i = 0; i < config->desc.bNumInterfaces; i++) {
4931		struct usb_driver *driver;
4932		struct usb_interface *intf = config->interface[i];
4933
4934		if (!intf)
4935			continue;
4936
4937		/* Check if any currently bound drivers want hub-initiated LPM
4938		 * disabled.
4939		 */
4940		if (intf->dev.driver) {
4941			driver = to_usb_driver(intf->dev.driver);
4942			if (driver && driver->disable_hub_initiated_lpm) {
4943				dev_dbg(&udev->dev, "Hub-initiated %s disabled at request of driver %s\n",
4944					state_name, driver->name);
4945				timeout = xhci_get_timeout_no_hub_lpm(udev,
4946								      state);
4947				if (timeout == USB3_LPM_DISABLED)
4948					return timeout;
4949			}
4950		}
4951
4952		/* Not sure how this could happen... */
4953		if (!intf->cur_altsetting)
4954			continue;
4955
4956		if (xhci_update_timeout_for_interface(xhci, udev,
4957					intf->cur_altsetting,
4958					state, &timeout))
4959			return timeout;
4960	}
4961	return timeout;
4962}
4963
4964static int calculate_max_exit_latency(struct usb_device *udev,
4965		enum usb3_link_state state_changed,
4966		u16 hub_encoded_timeout)
4967{
4968	unsigned long long u1_mel_us = 0;
4969	unsigned long long u2_mel_us = 0;
4970	unsigned long long mel_us = 0;
4971	bool disabling_u1;
4972	bool disabling_u2;
4973	bool enabling_u1;
4974	bool enabling_u2;
4975
4976	disabling_u1 = (state_changed == USB3_LPM_U1 &&
4977			hub_encoded_timeout == USB3_LPM_DISABLED);
4978	disabling_u2 = (state_changed == USB3_LPM_U2 &&
4979			hub_encoded_timeout == USB3_LPM_DISABLED);
4980
4981	enabling_u1 = (state_changed == USB3_LPM_U1 &&
4982			hub_encoded_timeout != USB3_LPM_DISABLED);
4983	enabling_u2 = (state_changed == USB3_LPM_U2 &&
4984			hub_encoded_timeout != USB3_LPM_DISABLED);
4985
4986	/* If U1 was already enabled and we're not disabling it,
4987	 * or we're going to enable U1, account for the U1 max exit latency.
4988	 */
4989	if ((udev->u1_params.timeout != USB3_LPM_DISABLED && !disabling_u1) ||
4990			enabling_u1)
4991		u1_mel_us = DIV_ROUND_UP(udev->u1_params.mel, 1000);
4992	if ((udev->u2_params.timeout != USB3_LPM_DISABLED && !disabling_u2) ||
4993			enabling_u2)
4994		u2_mel_us = DIV_ROUND_UP(udev->u2_params.mel, 1000);
4995
4996	if (u1_mel_us > u2_mel_us)
4997		mel_us = u1_mel_us;
4998	else
4999		mel_us = u2_mel_us;
5000	/* xHCI host controller max exit latency field is only 16 bits wide. */
5001	if (mel_us > MAX_EXIT) {
5002		dev_warn(&udev->dev, "Link PM max exit latency of %lluus "
5003				"is too big.\n", mel_us);
5004		return -E2BIG;
5005	}
5006	return mel_us;
5007}
5008
5009/* Returns the USB3 hub-encoded value for the U1/U2 timeout. */
5010static int xhci_enable_usb3_lpm_timeout(struct usb_hcd *hcd,
5011			struct usb_device *udev, enum usb3_link_state state)
5012{
5013	struct xhci_hcd	*xhci;
5014	u16 hub_encoded_timeout;
5015	int mel;
5016	int ret;
5017
5018	xhci = hcd_to_xhci(hcd);
5019	/* The LPM timeout values are pretty host-controller specific, so don't
5020	 * enable hub-initiated timeouts unless the vendor has provided
5021	 * information about their timeout algorithm.
5022	 */
5023	if (!xhci || !(xhci->quirks & XHCI_LPM_SUPPORT) ||
5024			!xhci->devs[udev->slot_id])
5025		return USB3_LPM_DISABLED;
5026
5027	hub_encoded_timeout = xhci_calculate_lpm_timeout(hcd, udev, state);
5028	mel = calculate_max_exit_latency(udev, state, hub_encoded_timeout);
5029	if (mel < 0) {
5030		/* Max Exit Latency is too big, disable LPM. */
5031		hub_encoded_timeout = USB3_LPM_DISABLED;
5032		mel = 0;
5033	}
5034
5035	ret = xhci_change_max_exit_latency(xhci, udev, mel);
5036	if (ret)
5037		return ret;
5038	return hub_encoded_timeout;
5039}
5040
5041static int xhci_disable_usb3_lpm_timeout(struct usb_hcd *hcd,
5042			struct usb_device *udev, enum usb3_link_state state)
5043{
5044	struct xhci_hcd	*xhci;
5045	u16 mel;
5046
5047	xhci = hcd_to_xhci(hcd);
5048	if (!xhci || !(xhci->quirks & XHCI_LPM_SUPPORT) ||
5049			!xhci->devs[udev->slot_id])
5050		return 0;
5051
5052	mel = calculate_max_exit_latency(udev, state, USB3_LPM_DISABLED);
5053	return xhci_change_max_exit_latency(xhci, udev, mel);
5054}
5055#else /* CONFIG_PM */
5056
5057static int xhci_set_usb2_hardware_lpm(struct usb_hcd *hcd,
5058				struct usb_device *udev, int enable)
5059{
5060	return 0;
5061}
5062
5063static int xhci_update_device(struct usb_hcd *hcd, struct usb_device *udev)
5064{
5065	return 0;
5066}
5067
5068static int xhci_enable_usb3_lpm_timeout(struct usb_hcd *hcd,
5069			struct usb_device *udev, enum usb3_link_state state)
5070{
5071	return USB3_LPM_DISABLED;
5072}
5073
5074static int xhci_disable_usb3_lpm_timeout(struct usb_hcd *hcd,
5075			struct usb_device *udev, enum usb3_link_state state)
5076{
5077	return 0;
5078}
5079#endif	/* CONFIG_PM */
5080
5081/*-------------------------------------------------------------------------*/
5082
5083/* Once a hub descriptor is fetched for a device, we need to update the xHC's
5084 * internal data structures for the device.
5085 */
5086static int xhci_update_hub_device(struct usb_hcd *hcd, struct usb_device *hdev,
5087			struct usb_tt *tt, gfp_t mem_flags)
5088{
5089	struct xhci_hcd *xhci = hcd_to_xhci(hcd);
5090	struct xhci_virt_device *vdev;
5091	struct xhci_command *config_cmd;
5092	struct xhci_input_control_ctx *ctrl_ctx;
5093	struct xhci_slot_ctx *slot_ctx;
5094	unsigned long flags;
5095	unsigned think_time;
5096	int ret;
5097
5098	/* Ignore root hubs */
5099	if (!hdev->parent)
5100		return 0;
5101
5102	vdev = xhci->devs[hdev->slot_id];
5103	if (!vdev) {
5104		xhci_warn(xhci, "Cannot update hub desc for unknown device.\n");
5105		return -EINVAL;
5106	}
5107
5108	config_cmd = xhci_alloc_command_with_ctx(xhci, true, mem_flags);
5109	if (!config_cmd)
5110		return -ENOMEM;
5111
5112	ctrl_ctx = xhci_get_input_control_ctx(config_cmd->in_ctx);
5113	if (!ctrl_ctx) {
5114		xhci_warn(xhci, "%s: Could not get input context, bad type.\n",
5115				__func__);
5116		xhci_free_command(xhci, config_cmd);
5117		return -ENOMEM;
5118	}
5119
5120	spin_lock_irqsave(&xhci->lock, flags);
5121	if (hdev->speed == USB_SPEED_HIGH &&
5122			xhci_alloc_tt_info(xhci, vdev, hdev, tt, GFP_ATOMIC)) {
5123		xhci_dbg(xhci, "Could not allocate xHCI TT structure.\n");
5124		xhci_free_command(xhci, config_cmd);
5125		spin_unlock_irqrestore(&xhci->lock, flags);
5126		return -ENOMEM;
5127	}
5128
5129	xhci_slot_copy(xhci, config_cmd->in_ctx, vdev->out_ctx);
 
5130	ctrl_ctx->add_flags |= cpu_to_le32(SLOT_FLAG);
5131	slot_ctx = xhci_get_slot_ctx(xhci, config_cmd->in_ctx);
5132	slot_ctx->dev_info |= cpu_to_le32(DEV_HUB);
5133	/*
5134	 * refer to section 6.2.2: MTT should be 0 for full speed hub,
5135	 * but it may be already set to 1 when setup an xHCI virtual
5136	 * device, so clear it anyway.
5137	 */
5138	if (tt->multi)
5139		slot_ctx->dev_info |= cpu_to_le32(DEV_MTT);
5140	else if (hdev->speed == USB_SPEED_FULL)
5141		slot_ctx->dev_info &= cpu_to_le32(~DEV_MTT);
5142
5143	if (xhci->hci_version > 0x95) {
5144		xhci_dbg(xhci, "xHCI version %x needs hub "
5145				"TT think time and number of ports\n",
5146				(unsigned int) xhci->hci_version);
5147		slot_ctx->dev_info2 |= cpu_to_le32(XHCI_MAX_PORTS(hdev->maxchild));
5148		/* Set TT think time - convert from ns to FS bit times.
5149		 * 0 = 8 FS bit times, 1 = 16 FS bit times,
5150		 * 2 = 24 FS bit times, 3 = 32 FS bit times.
5151		 *
5152		 * xHCI 1.0: this field shall be 0 if the device is not a
5153		 * High-spped hub.
5154		 */
5155		think_time = tt->think_time;
5156		if (think_time != 0)
5157			think_time = (think_time / 666) - 1;
5158		if (xhci->hci_version < 0x100 || hdev->speed == USB_SPEED_HIGH)
5159			slot_ctx->tt_info |=
5160				cpu_to_le32(TT_THINK_TIME(think_time));
5161	} else {
5162		xhci_dbg(xhci, "xHCI version %x doesn't need hub "
5163				"TT think time or number of ports\n",
5164				(unsigned int) xhci->hci_version);
5165	}
5166	slot_ctx->dev_state = 0;
5167	spin_unlock_irqrestore(&xhci->lock, flags);
5168
5169	xhci_dbg(xhci, "Set up %s for hub device.\n",
5170			(xhci->hci_version > 0x95) ?
5171			"configure endpoint" : "evaluate context");
 
 
5172
5173	/* Issue and wait for the configure endpoint or
5174	 * evaluate context command.
5175	 */
5176	if (xhci->hci_version > 0x95)
5177		ret = xhci_configure_endpoint(xhci, hdev, config_cmd,
5178				false, false);
5179	else
5180		ret = xhci_configure_endpoint(xhci, hdev, config_cmd,
5181				true, false);
5182
 
 
 
5183	xhci_free_command(xhci, config_cmd);
5184	return ret;
5185}
5186
5187static int xhci_get_frame(struct usb_hcd *hcd)
5188{
5189	struct xhci_hcd *xhci = hcd_to_xhci(hcd);
5190	/* EHCI mods by the periodic size.  Why? */
5191	return readl(&xhci->run_regs->microframe_index) >> 3;
5192}
5193
5194int xhci_gen_setup(struct usb_hcd *hcd, xhci_get_quirks_t get_quirks)
5195{
5196	struct xhci_hcd		*xhci;
5197	/*
5198	 * TODO: Check with DWC3 clients for sysdev according to
5199	 * quirks
5200	 */
5201	struct device		*dev = hcd->self.sysdev;
5202	unsigned int		minor_rev;
5203	int			retval;
5204
5205	/* Accept arbitrarily long scatter-gather lists */
5206	hcd->self.sg_tablesize = ~0;
5207
5208	/* support to build packet from discontinuous buffers */
5209	hcd->self.no_sg_constraint = 1;
5210
5211	/* XHCI controllers don't stop the ep queue on short packets :| */
5212	hcd->self.no_stop_on_short = 1;
5213
5214	xhci = hcd_to_xhci(hcd);
5215
5216	if (usb_hcd_is_primary_hcd(hcd)) {
5217		xhci->main_hcd = hcd;
5218		xhci->usb2_rhub.hcd = hcd;
5219		/* Mark the first roothub as being USB 2.0.
5220		 * The xHCI driver will register the USB 3.0 roothub.
5221		 */
5222		hcd->speed = HCD_USB2;
5223		hcd->self.root_hub->speed = USB_SPEED_HIGH;
5224		/*
5225		 * USB 2.0 roothub under xHCI has an integrated TT,
5226		 * (rate matching hub) as opposed to having an OHCI/UHCI
5227		 * companion controller.
5228		 */
5229		hcd->has_tt = 1;
5230	} else {
5231		/*
5232		 * Early xHCI 1.1 spec did not mention USB 3.1 capable hosts
5233		 * should return 0x31 for sbrn, or that the minor revision
5234		 * is a two digit BCD containig minor and sub-minor numbers.
5235		 * This was later clarified in xHCI 1.2.
5236		 *
5237		 * Some USB 3.1 capable hosts therefore have sbrn 0x30, and
5238		 * minor revision set to 0x1 instead of 0x10.
5239		 */
5240		if (xhci->usb3_rhub.min_rev == 0x1)
5241			minor_rev = 1;
5242		else
5243			minor_rev = xhci->usb3_rhub.min_rev / 0x10;
5244
5245		switch (minor_rev) {
5246		case 2:
5247			hcd->speed = HCD_USB32;
5248			hcd->self.root_hub->speed = USB_SPEED_SUPER_PLUS;
5249			hcd->self.root_hub->rx_lanes = 2;
5250			hcd->self.root_hub->tx_lanes = 2;
5251			hcd->self.root_hub->ssp_rate = USB_SSP_GEN_2x2;
5252			break;
5253		case 1:
5254			hcd->speed = HCD_USB31;
5255			hcd->self.root_hub->speed = USB_SPEED_SUPER_PLUS;
5256			hcd->self.root_hub->ssp_rate = USB_SSP_GEN_2x1;
5257			break;
5258		}
5259		xhci_info(xhci, "Host supports USB 3.%x %sSuperSpeed\n",
5260			  minor_rev,
5261			  minor_rev ? "Enhanced " : "");
5262
5263		xhci->usb3_rhub.hcd = hcd;
5264		/* xHCI private pointer was set in xhci_pci_probe for the second
5265		 * registered roothub.
5266		 */
5267		return 0;
5268	}
5269
5270	mutex_init(&xhci->mutex);
5271	xhci->cap_regs = hcd->regs;
5272	xhci->op_regs = hcd->regs +
5273		HC_LENGTH(readl(&xhci->cap_regs->hc_capbase));
5274	xhci->run_regs = hcd->regs +
5275		(readl(&xhci->cap_regs->run_regs_off) & RTSOFF_MASK);
5276	/* Cache read-only capability registers */
5277	xhci->hcs_params1 = readl(&xhci->cap_regs->hcs_params1);
5278	xhci->hcs_params2 = readl(&xhci->cap_regs->hcs_params2);
5279	xhci->hcs_params3 = readl(&xhci->cap_regs->hcs_params3);
5280	xhci->hcc_params = readl(&xhci->cap_regs->hc_capbase);
5281	xhci->hci_version = HC_VERSION(xhci->hcc_params);
5282	xhci->hcc_params = readl(&xhci->cap_regs->hcc_params);
5283	if (xhci->hci_version > 0x100)
5284		xhci->hcc_params2 = readl(&xhci->cap_regs->hcc_params2);
5285
5286	xhci->quirks |= quirks;
5287
5288	get_quirks(dev, xhci);
5289
5290	/* In xhci controllers which follow xhci 1.0 spec gives a spurious
5291	 * success event after a short transfer. This quirk will ignore such
5292	 * spurious event.
5293	 */
5294	if (xhci->hci_version > 0x96)
5295		xhci->quirks |= XHCI_SPURIOUS_SUCCESS;
5296
5297	/* Make sure the HC is halted. */
5298	retval = xhci_halt(xhci);
5299	if (retval)
5300		return retval;
5301
5302	xhci_zero_64b_regs(xhci);
5303
5304	xhci_dbg(xhci, "Resetting HCD\n");
5305	/* Reset the internal HC memory state and registers. */
5306	retval = xhci_reset(xhci);
5307	if (retval)
5308		return retval;
5309	xhci_dbg(xhci, "Reset complete\n");
5310
5311	/*
5312	 * On some xHCI controllers (e.g. R-Car SoCs), the AC64 bit (bit 0)
5313	 * of HCCPARAMS1 is set to 1. However, the xHCs don't support 64-bit
5314	 * address memory pointers actually. So, this driver clears the AC64
5315	 * bit of xhci->hcc_params to call dma_set_coherent_mask(dev,
5316	 * DMA_BIT_MASK(32)) in this xhci_gen_setup().
5317	 */
5318	if (xhci->quirks & XHCI_NO_64BIT_SUPPORT)
5319		xhci->hcc_params &= ~BIT(0);
5320
5321	/* Set dma_mask and coherent_dma_mask to 64-bits,
5322	 * if xHC supports 64-bit addressing */
5323	if (HCC_64BIT_ADDR(xhci->hcc_params) &&
5324			!dma_set_mask(dev, DMA_BIT_MASK(64))) {
5325		xhci_dbg(xhci, "Enabling 64-bit DMA addresses.\n");
5326		dma_set_coherent_mask(dev, DMA_BIT_MASK(64));
5327	} else {
5328		/*
5329		 * This is to avoid error in cases where a 32-bit USB
5330		 * controller is used on a 64-bit capable system.
5331		 */
5332		retval = dma_set_mask(dev, DMA_BIT_MASK(32));
5333		if (retval)
5334			return retval;
5335		xhci_dbg(xhci, "Enabling 32-bit DMA addresses.\n");
5336		dma_set_coherent_mask(dev, DMA_BIT_MASK(32));
5337	}
5338
5339	xhci_dbg(xhci, "Calling HCD init\n");
5340	/* Initialize HCD and host controller data structures. */
5341	retval = xhci_init(hcd);
5342	if (retval)
5343		return retval;
5344	xhci_dbg(xhci, "Called HCD init\n");
5345
5346	xhci_info(xhci, "hcc params 0x%08x hci version 0x%x quirks 0x%016llx\n",
5347		  xhci->hcc_params, xhci->hci_version, xhci->quirks);
5348
5349	return 0;
5350}
5351EXPORT_SYMBOL_GPL(xhci_gen_setup);
5352
5353static void xhci_clear_tt_buffer_complete(struct usb_hcd *hcd,
5354		struct usb_host_endpoint *ep)
5355{
5356	struct xhci_hcd *xhci;
5357	struct usb_device *udev;
5358	unsigned int slot_id;
5359	unsigned int ep_index;
5360	unsigned long flags;
5361
5362	xhci = hcd_to_xhci(hcd);
5363
5364	spin_lock_irqsave(&xhci->lock, flags);
5365	udev = (struct usb_device *)ep->hcpriv;
5366	slot_id = udev->slot_id;
5367	ep_index = xhci_get_endpoint_index(&ep->desc);
5368
5369	xhci->devs[slot_id]->eps[ep_index].ep_state &= ~EP_CLEARING_TT;
5370	xhci_ring_doorbell_for_active_rings(xhci, slot_id, ep_index);
5371	spin_unlock_irqrestore(&xhci->lock, flags);
5372}
5373
5374static const struct hc_driver xhci_hc_driver = {
5375	.description =		"xhci-hcd",
5376	.product_desc =		"xHCI Host Controller",
5377	.hcd_priv_size =	sizeof(struct xhci_hcd),
5378
5379	/*
5380	 * generic hardware linkage
5381	 */
5382	.irq =			xhci_irq,
5383	.flags =		HCD_MEMORY | HCD_DMA | HCD_USB3 | HCD_SHARED |
5384				HCD_BH,
5385
5386	/*
5387	 * basic lifecycle operations
5388	 */
5389	.reset =		NULL, /* set in xhci_init_driver() */
5390	.start =		xhci_run,
5391	.stop =			xhci_stop,
5392	.shutdown =		xhci_shutdown,
5393
5394	/*
5395	 * managing i/o requests and associated device resources
5396	 */
5397	.map_urb_for_dma =      xhci_map_urb_for_dma,
5398	.unmap_urb_for_dma =    xhci_unmap_urb_for_dma,
5399	.urb_enqueue =		xhci_urb_enqueue,
5400	.urb_dequeue =		xhci_urb_dequeue,
5401	.alloc_dev =		xhci_alloc_dev,
5402	.free_dev =		xhci_free_dev,
5403	.alloc_streams =	xhci_alloc_streams,
5404	.free_streams =		xhci_free_streams,
5405	.add_endpoint =		xhci_add_endpoint,
5406	.drop_endpoint =	xhci_drop_endpoint,
5407	.endpoint_disable =	xhci_endpoint_disable,
5408	.endpoint_reset =	xhci_endpoint_reset,
5409	.check_bandwidth =	xhci_check_bandwidth,
5410	.reset_bandwidth =	xhci_reset_bandwidth,
5411	.address_device =	xhci_address_device,
5412	.enable_device =	xhci_enable_device,
5413	.update_hub_device =	xhci_update_hub_device,
5414	.reset_device =		xhci_discover_or_reset_device,
5415
5416	/*
5417	 * scheduling support
5418	 */
5419	.get_frame_number =	xhci_get_frame,
5420
5421	/*
5422	 * root hub support
5423	 */
5424	.hub_control =		xhci_hub_control,
5425	.hub_status_data =	xhci_hub_status_data,
5426	.bus_suspend =		xhci_bus_suspend,
5427	.bus_resume =		xhci_bus_resume,
5428	.get_resuming_ports =	xhci_get_resuming_ports,
5429
5430	/*
5431	 * call back when device connected and addressed
5432	 */
5433	.update_device =        xhci_update_device,
5434	.set_usb2_hw_lpm =	xhci_set_usb2_hardware_lpm,
5435	.enable_usb3_lpm_timeout =	xhci_enable_usb3_lpm_timeout,
5436	.disable_usb3_lpm_timeout =	xhci_disable_usb3_lpm_timeout,
5437	.find_raw_port_number =	xhci_find_raw_port_number,
5438	.clear_tt_buffer_complete = xhci_clear_tt_buffer_complete,
5439};
5440
5441void xhci_init_driver(struct hc_driver *drv,
5442		      const struct xhci_driver_overrides *over)
5443{
5444	BUG_ON(!over);
5445
5446	/* Copy the generic table to drv then apply the overrides */
5447	*drv = xhci_hc_driver;
5448
5449	if (over) {
5450		drv->hcd_priv_size += over->extra_priv_size;
5451		if (over->reset)
5452			drv->reset = over->reset;
5453		if (over->start)
5454			drv->start = over->start;
5455		if (over->add_endpoint)
5456			drv->add_endpoint = over->add_endpoint;
5457		if (over->drop_endpoint)
5458			drv->drop_endpoint = over->drop_endpoint;
5459		if (over->check_bandwidth)
5460			drv->check_bandwidth = over->check_bandwidth;
5461		if (over->reset_bandwidth)
5462			drv->reset_bandwidth = over->reset_bandwidth;
5463	}
5464}
5465EXPORT_SYMBOL_GPL(xhci_init_driver);
5466
5467MODULE_DESCRIPTION(DRIVER_DESC);
5468MODULE_AUTHOR(DRIVER_AUTHOR);
5469MODULE_LICENSE("GPL");
5470
5471static int __init xhci_hcd_init(void)
5472{
 
 
 
 
 
 
 
 
 
 
5473	/*
5474	 * Check the compiler generated sizes of structures that must be laid
5475	 * out in specific ways for hardware access.
5476	 */
5477	BUILD_BUG_ON(sizeof(struct xhci_doorbell_array) != 256*32/8);
5478	BUILD_BUG_ON(sizeof(struct xhci_slot_ctx) != 8*32/8);
5479	BUILD_BUG_ON(sizeof(struct xhci_ep_ctx) != 8*32/8);
5480	/* xhci_device_control has eight fields, and also
5481	 * embeds one xhci_slot_ctx and 31 xhci_ep_ctx
5482	 */
5483	BUILD_BUG_ON(sizeof(struct xhci_stream_ctx) != 4*32/8);
5484	BUILD_BUG_ON(sizeof(union xhci_trb) != 4*32/8);
5485	BUILD_BUG_ON(sizeof(struct xhci_erst_entry) != 4*32/8);
5486	BUILD_BUG_ON(sizeof(struct xhci_cap_regs) != 8*32/8);
5487	BUILD_BUG_ON(sizeof(struct xhci_intr_reg) != 8*32/8);
5488	/* xhci_run_regs has eight fields and embeds 128 xhci_intr_regs */
5489	BUILD_BUG_ON(sizeof(struct xhci_run_regs) != (8+8*128)*32/8);
5490
5491	if (usb_disabled())
5492		return -ENODEV;
5493
5494	xhci_debugfs_create_root();
5495
5496	return 0;
5497}
 
5498
5499/*
5500 * If an init function is provided, an exit function must also be provided
5501 * to allow module unload.
5502 */
5503static void __exit xhci_hcd_fini(void)
5504{
5505	xhci_debugfs_remove_root();
 
 
5506}
5507
5508module_init(xhci_hcd_init);
5509module_exit(xhci_hcd_fini);