Linux Audio

Check our new training course

Loading...
v3.1
   1/*
   2 * xHCI host controller driver
   3 *
   4 * Copyright (C) 2008 Intel Corp.
   5 *
   6 * Author: Sarah Sharp
   7 * Some code borrowed from the Linux EHCI driver.
   8 *
   9 * This program is free software; you can redistribute it and/or modify
  10 * it under the terms of the GNU General Public License version 2 as
  11 * published by the Free Software Foundation.
  12 *
  13 * This program is distributed in the hope that it will be useful, but
  14 * WITHOUT ANY WARRANTY; without even the implied warranty of MERCHANTABILITY
  15 * or FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public License
  16 * for more details.
  17 *
  18 * You should have received a copy of the GNU General Public License
  19 * along with this program; if not, write to the Free Software Foundation,
  20 * Inc., 675 Mass Ave, Cambridge, MA 02139, USA.
  21 */
  22
  23#include <linux/pci.h>
  24#include <linux/irq.h>
  25#include <linux/log2.h>
  26#include <linux/module.h>
  27#include <linux/moduleparam.h>
  28#include <linux/slab.h>
 
  29
  30#include "xhci.h"
  31
  32#define DRIVER_AUTHOR "Sarah Sharp"
  33#define DRIVER_DESC "'eXtensible' Host Controller (xHC) Driver"
  34
  35/* Some 0.95 hardware can't handle the chain bit on a Link TRB being cleared */
  36static int link_quirk;
  37module_param(link_quirk, int, S_IRUGO | S_IWUSR);
  38MODULE_PARM_DESC(link_quirk, "Don't clear the chain bit on a link TRB");
  39
  40/* TODO: copied from ehci-hcd.c - can this be refactored? */
  41/*
  42 * handshake - spin reading hc until handshake completes or fails
  43 * @ptr: address of hc register to be read
  44 * @mask: bits to look at in result of read
  45 * @done: value of those bits when handshake succeeds
  46 * @usec: timeout in microseconds
  47 *
  48 * Returns negative errno, or zero on success
  49 *
  50 * Success happens when the "mask" bits have the specified value (hardware
  51 * handshake done).  There are two failure modes:  "usec" have passed (major
  52 * hardware flakeout), or the register reads as all-ones (hardware removed).
  53 */
  54static int handshake(struct xhci_hcd *xhci, void __iomem *ptr,
  55		      u32 mask, u32 done, int usec)
  56{
  57	u32	result;
  58
  59	do {
  60		result = xhci_readl(xhci, ptr);
  61		if (result == ~(u32)0)		/* card removed */
  62			return -ENODEV;
  63		result &= mask;
  64		if (result == done)
  65			return 0;
  66		udelay(1);
  67		usec--;
  68	} while (usec > 0);
  69	return -ETIMEDOUT;
  70}
  71
  72/*
  73 * Disable interrupts and begin the xHCI halting process.
  74 */
  75void xhci_quiesce(struct xhci_hcd *xhci)
  76{
  77	u32 halted;
  78	u32 cmd;
  79	u32 mask;
  80
  81	mask = ~(XHCI_IRQS);
  82	halted = xhci_readl(xhci, &xhci->op_regs->status) & STS_HALT;
  83	if (!halted)
  84		mask &= ~CMD_RUN;
  85
  86	cmd = xhci_readl(xhci, &xhci->op_regs->command);
  87	cmd &= mask;
  88	xhci_writel(xhci, cmd, &xhci->op_regs->command);
  89}
  90
  91/*
  92 * Force HC into halt state.
  93 *
  94 * Disable any IRQs and clear the run/stop bit.
  95 * HC will complete any current and actively pipelined transactions, and
  96 * should halt within 16 ms of the run/stop bit being cleared.
  97 * Read HC Halted bit in the status register to see when the HC is finished.
  98 */
  99int xhci_halt(struct xhci_hcd *xhci)
 100{
 101	int ret;
 102	xhci_dbg(xhci, "// Halt the HC\n");
 103	xhci_quiesce(xhci);
 104
 105	ret = handshake(xhci, &xhci->op_regs->status,
 106			STS_HALT, STS_HALT, XHCI_MAX_HALT_USEC);
 107	if (!ret)
 108		xhci->xhc_state |= XHCI_STATE_HALTED;
 
 
 
 
 109	return ret;
 110}
 111
 112/*
 113 * Set the run bit and wait for the host to be running.
 114 */
 115static int xhci_start(struct xhci_hcd *xhci)
 116{
 117	u32 temp;
 118	int ret;
 119
 120	temp = xhci_readl(xhci, &xhci->op_regs->command);
 121	temp |= (CMD_RUN);
 122	xhci_dbg(xhci, "// Turn on HC, cmd = 0x%x.\n",
 123			temp);
 124	xhci_writel(xhci, temp, &xhci->op_regs->command);
 125
 126	/*
 127	 * Wait for the HCHalted Status bit to be 0 to indicate the host is
 128	 * running.
 129	 */
 130	ret = handshake(xhci, &xhci->op_regs->status,
 131			STS_HALT, 0, XHCI_MAX_HALT_USEC);
 132	if (ret == -ETIMEDOUT)
 133		xhci_err(xhci, "Host took too long to start, "
 134				"waited %u microseconds.\n",
 135				XHCI_MAX_HALT_USEC);
 136	if (!ret)
 137		xhci->xhc_state &= ~XHCI_STATE_HALTED;
 138	return ret;
 139}
 140
 141/*
 142 * Reset a halted HC.
 143 *
 144 * This resets pipelines, timers, counters, state machines, etc.
 145 * Transactions will be terminated immediately, and operational registers
 146 * will be set to their defaults.
 147 */
 148int xhci_reset(struct xhci_hcd *xhci)
 149{
 150	u32 command;
 151	u32 state;
 152	int ret;
 153
 154	state = xhci_readl(xhci, &xhci->op_regs->status);
 155	if ((state & STS_HALT) == 0) {
 156		xhci_warn(xhci, "Host controller not halted, aborting reset.\n");
 157		return 0;
 158	}
 159
 160	xhci_dbg(xhci, "// Reset the HC\n");
 161	command = xhci_readl(xhci, &xhci->op_regs->command);
 162	command |= CMD_RESET;
 163	xhci_writel(xhci, command, &xhci->op_regs->command);
 164
 165	ret = handshake(xhci, &xhci->op_regs->command,
 166			CMD_RESET, 0, 250 * 1000);
 167	if (ret)
 168		return ret;
 169
 170	xhci_dbg(xhci, "Wait for controller to be ready for doorbell rings\n");
 171	/*
 172	 * xHCI cannot write to any doorbells or operational registers other
 173	 * than status until the "Controller Not Ready" flag is cleared.
 174	 */
 175	return handshake(xhci, &xhci->op_regs->status, STS_CNR, 0, 250 * 1000);
 
 
 
 
 
 
 
 
 
 176}
 177
 178/*
 179 * Free IRQs
 180 * free all IRQs request
 181 */
 182static void xhci_free_irq(struct xhci_hcd *xhci)
 183{
 184	int i;
 185	struct pci_dev *pdev = to_pci_dev(xhci_to_hcd(xhci)->self.controller);
 186
 187	/* return if using legacy interrupt */
 188	if (xhci_to_hcd(xhci)->irq >= 0)
 189		return;
 190
 191	if (xhci->msix_entries) {
 192		for (i = 0; i < xhci->msix_count; i++)
 193			if (xhci->msix_entries[i].vector)
 194				free_irq(xhci->msix_entries[i].vector,
 195						xhci_to_hcd(xhci));
 196	} else if (pdev->irq >= 0)
 197		free_irq(pdev->irq, xhci_to_hcd(xhci));
 198
 199	return;
 
 
 
 
 200}
 201
 202/*
 203 * Set up MSI
 204 */
 205static int xhci_setup_msi(struct xhci_hcd *xhci)
 206{
 207	int ret;
 208	struct pci_dev  *pdev = to_pci_dev(xhci_to_hcd(xhci)->self.controller);
 209
 210	ret = pci_enable_msi(pdev);
 211	if (ret) {
 212		xhci_err(xhci, "failed to allocate MSI entry\n");
 213		return ret;
 214	}
 215
 216	ret = request_irq(pdev->irq, (irq_handler_t)xhci_msi_irq,
 217				0, "xhci_hcd", xhci_to_hcd(xhci));
 218	if (ret) {
 219		xhci_err(xhci, "disable MSI interrupt\n");
 220		pci_disable_msi(pdev);
 221	}
 222
 223	return ret;
 224}
 225
 226/*
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 227 * Set up MSI-X
 228 */
 229static int xhci_setup_msix(struct xhci_hcd *xhci)
 230{
 231	int i, ret = 0;
 232	struct usb_hcd *hcd = xhci_to_hcd(xhci);
 233	struct pci_dev *pdev = to_pci_dev(hcd->self.controller);
 234
 235	/*
 236	 * calculate number of msi-x vectors supported.
 237	 * - HCS_MAX_INTRS: the max number of interrupts the host can handle,
 238	 *   with max number of interrupters based on the xhci HCSPARAMS1.
 239	 * - num_online_cpus: maximum msi-x vectors per CPUs core.
 240	 *   Add additional 1 vector to ensure always available interrupt.
 241	 */
 242	xhci->msix_count = min(num_online_cpus() + 1,
 243				HCS_MAX_INTRS(xhci->hcs_params1));
 244
 245	xhci->msix_entries =
 246		kmalloc((sizeof(struct msix_entry))*xhci->msix_count,
 247				GFP_KERNEL);
 248	if (!xhci->msix_entries) {
 249		xhci_err(xhci, "Failed to allocate MSI-X entries\n");
 250		return -ENOMEM;
 251	}
 252
 253	for (i = 0; i < xhci->msix_count; i++) {
 254		xhci->msix_entries[i].entry = i;
 255		xhci->msix_entries[i].vector = 0;
 256	}
 257
 258	ret = pci_enable_msix(pdev, xhci->msix_entries, xhci->msix_count);
 259	if (ret) {
 260		xhci_err(xhci, "Failed to enable MSI-X\n");
 261		goto free_entries;
 262	}
 263
 264	for (i = 0; i < xhci->msix_count; i++) {
 265		ret = request_irq(xhci->msix_entries[i].vector,
 266				(irq_handler_t)xhci_msi_irq,
 267				0, "xhci_hcd", xhci_to_hcd(xhci));
 268		if (ret)
 269			goto disable_msix;
 270	}
 271
 272	hcd->msix_enabled = 1;
 273	return ret;
 274
 275disable_msix:
 276	xhci_err(xhci, "disable MSI-X interrupt\n");
 277	xhci_free_irq(xhci);
 278	pci_disable_msix(pdev);
 279free_entries:
 280	kfree(xhci->msix_entries);
 281	xhci->msix_entries = NULL;
 282	return ret;
 283}
 284
 285/* Free any IRQs and disable MSI-X */
 286static void xhci_cleanup_msix(struct xhci_hcd *xhci)
 287{
 288	struct usb_hcd *hcd = xhci_to_hcd(xhci);
 289	struct pci_dev *pdev = to_pci_dev(hcd->self.controller);
 290
 291	xhci_free_irq(xhci);
 292
 293	if (xhci->msix_entries) {
 294		pci_disable_msix(pdev);
 295		kfree(xhci->msix_entries);
 296		xhci->msix_entries = NULL;
 297	} else {
 298		pci_disable_msi(pdev);
 299	}
 300
 301	hcd->msix_enabled = 0;
 302	return;
 303}
 304
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 305/*
 306 * Initialize memory for HCD and xHC (one-time init).
 307 *
 308 * Program the PAGESIZE register, initialize the device context array, create
 309 * device contexts (?), set up a command ring segment (or two?), create event
 310 * ring (one for now).
 311 */
 312int xhci_init(struct usb_hcd *hcd)
 313{
 314	struct xhci_hcd *xhci = hcd_to_xhci(hcd);
 315	int retval = 0;
 316
 317	xhci_dbg(xhci, "xhci_init\n");
 318	spin_lock_init(&xhci->lock);
 319	if (link_quirk) {
 320		xhci_dbg(xhci, "QUIRK: Not clearing Link TRB chain bits.\n");
 321		xhci->quirks |= XHCI_LINK_TRB_QUIRK;
 322	} else {
 323		xhci_dbg(xhci, "xHCI doesn't need link TRB QUIRK\n");
 324	}
 325	retval = xhci_mem_init(xhci, GFP_KERNEL);
 326	xhci_dbg(xhci, "Finished xhci_init\n");
 327
 
 
 
 
 
 
 328	return retval;
 329}
 330
 331/*-------------------------------------------------------------------------*/
 332
 333
 334#ifdef CONFIG_USB_XHCI_HCD_DEBUGGING
 335static void xhci_event_ring_work(unsigned long arg)
 336{
 337	unsigned long flags;
 338	int temp;
 339	u64 temp_64;
 340	struct xhci_hcd *xhci = (struct xhci_hcd *) arg;
 341	int i, j;
 342
 343	xhci_dbg(xhci, "Poll event ring: %lu\n", jiffies);
 344
 345	spin_lock_irqsave(&xhci->lock, flags);
 346	temp = xhci_readl(xhci, &xhci->op_regs->status);
 347	xhci_dbg(xhci, "op reg status = 0x%x\n", temp);
 348	if (temp == 0xffffffff || (xhci->xhc_state & XHCI_STATE_DYING) ||
 349			(xhci->xhc_state & XHCI_STATE_HALTED)) {
 350		xhci_dbg(xhci, "HW died, polling stopped.\n");
 351		spin_unlock_irqrestore(&xhci->lock, flags);
 352		return;
 353	}
 354
 355	temp = xhci_readl(xhci, &xhci->ir_set->irq_pending);
 356	xhci_dbg(xhci, "ir_set 0 pending = 0x%x\n", temp);
 357	xhci_dbg(xhci, "HC error bitmask = 0x%x\n", xhci->error_bitmask);
 358	xhci->error_bitmask = 0;
 359	xhci_dbg(xhci, "Event ring:\n");
 360	xhci_debug_segment(xhci, xhci->event_ring->deq_seg);
 361	xhci_dbg_ring_ptrs(xhci, xhci->event_ring);
 362	temp_64 = xhci_read_64(xhci, &xhci->ir_set->erst_dequeue);
 363	temp_64 &= ~ERST_PTR_MASK;
 364	xhci_dbg(xhci, "ERST deq = 64'h%0lx\n", (long unsigned int) temp_64);
 365	xhci_dbg(xhci, "Command ring:\n");
 366	xhci_debug_segment(xhci, xhci->cmd_ring->deq_seg);
 367	xhci_dbg_ring_ptrs(xhci, xhci->cmd_ring);
 368	xhci_dbg_cmd_ptrs(xhci);
 369	for (i = 0; i < MAX_HC_SLOTS; ++i) {
 370		if (!xhci->devs[i])
 371			continue;
 372		for (j = 0; j < 31; ++j) {
 373			xhci_dbg_ep_rings(xhci, i, j, &xhci->devs[i]->eps[j]);
 374		}
 375	}
 376	spin_unlock_irqrestore(&xhci->lock, flags);
 377
 378	if (!xhci->zombie)
 379		mod_timer(&xhci->event_ring_timer, jiffies + POLL_TIMEOUT * HZ);
 380	else
 381		xhci_dbg(xhci, "Quit polling the event ring.\n");
 382}
 383#endif
 384
 385static int xhci_run_finished(struct xhci_hcd *xhci)
 386{
 387	if (xhci_start(xhci)) {
 388		xhci_halt(xhci);
 389		return -ENODEV;
 390	}
 391	xhci->shared_hcd->state = HC_STATE_RUNNING;
 
 392
 393	if (xhci->quirks & XHCI_NEC_HOST)
 394		xhci_ring_cmd_db(xhci);
 395
 396	xhci_dbg(xhci, "Finished xhci_run for USB3 roothub\n");
 397	return 0;
 398}
 399
 400/*
 401 * Start the HC after it was halted.
 402 *
 403 * This function is called by the USB core when the HC driver is added.
 404 * Its opposite is xhci_stop().
 405 *
 406 * xhci_init() must be called once before this function can be called.
 407 * Reset the HC, enable device slot contexts, program DCBAAP, and
 408 * set command ring pointer and event ring pointer.
 409 *
 410 * Setup MSI-X vectors and enable interrupts.
 411 */
 412int xhci_run(struct usb_hcd *hcd)
 413{
 414	u32 temp;
 415	u64 temp_64;
 416	u32 ret;
 417	struct xhci_hcd *xhci = hcd_to_xhci(hcd);
 418	struct pci_dev  *pdev = to_pci_dev(xhci_to_hcd(xhci)->self.controller);
 419
 420	/* Start the xHCI host controller running only after the USB 2.0 roothub
 421	 * is setup.
 422	 */
 423
 424	hcd->uses_new_polling = 1;
 425	if (!usb_hcd_is_primary_hcd(hcd))
 426		return xhci_run_finished(xhci);
 427
 428	xhci_dbg(xhci, "xhci_run\n");
 429	/* unregister the legacy interrupt */
 430	if (hcd->irq)
 431		free_irq(hcd->irq, hcd);
 432	hcd->irq = -1;
 433
 434	/* Some Fresco Logic host controllers advertise MSI, but fail to
 435	 * generate interrupts.  Don't even try to enable MSI.
 436	 */
 437	if (xhci->quirks & XHCI_BROKEN_MSI)
 438		goto legacy_irq;
 439
 440	ret = xhci_setup_msix(xhci);
 441	if (ret)
 442		/* fall back to msi*/
 443		ret = xhci_setup_msi(xhci);
 444
 445	if (ret) {
 446legacy_irq:
 447		/* fall back to legacy interrupt*/
 448		ret = request_irq(pdev->irq, &usb_hcd_irq, IRQF_SHARED,
 449					hcd->irq_descr, hcd);
 450		if (ret) {
 451			xhci_err(xhci, "request interrupt %d failed\n",
 452					pdev->irq);
 453			return ret;
 454		}
 455		hcd->irq = pdev->irq;
 456	}
 457
 458#ifdef CONFIG_USB_XHCI_HCD_DEBUGGING
 459	init_timer(&xhci->event_ring_timer);
 460	xhci->event_ring_timer.data = (unsigned long) xhci;
 461	xhci->event_ring_timer.function = xhci_event_ring_work;
 462	/* Poll the event ring */
 463	xhci->event_ring_timer.expires = jiffies + POLL_TIMEOUT * HZ;
 464	xhci->zombie = 0;
 465	xhci_dbg(xhci, "Setting event ring polling timer\n");
 466	add_timer(&xhci->event_ring_timer);
 467#endif
 468
 469	xhci_dbg(xhci, "Command ring memory map follows:\n");
 470	xhci_debug_ring(xhci, xhci->cmd_ring);
 471	xhci_dbg_ring_ptrs(xhci, xhci->cmd_ring);
 472	xhci_dbg_cmd_ptrs(xhci);
 473
 474	xhci_dbg(xhci, "ERST memory map follows:\n");
 475	xhci_dbg_erst(xhci, &xhci->erst);
 476	xhci_dbg(xhci, "Event ring:\n");
 477	xhci_debug_ring(xhci, xhci->event_ring);
 478	xhci_dbg_ring_ptrs(xhci, xhci->event_ring);
 479	temp_64 = xhci_read_64(xhci, &xhci->ir_set->erst_dequeue);
 480	temp_64 &= ~ERST_PTR_MASK;
 481	xhci_dbg(xhci, "ERST deq = 64'h%0lx\n", (long unsigned int) temp_64);
 482
 483	xhci_dbg(xhci, "// Set the interrupt modulation register\n");
 484	temp = xhci_readl(xhci, &xhci->ir_set->irq_control);
 485	temp &= ~ER_IRQ_INTERVAL_MASK;
 486	temp |= (u32) 160;
 487	xhci_writel(xhci, temp, &xhci->ir_set->irq_control);
 488
 489	/* Set the HCD state before we enable the irqs */
 490	temp = xhci_readl(xhci, &xhci->op_regs->command);
 491	temp |= (CMD_EIE);
 492	xhci_dbg(xhci, "// Enable interrupts, cmd = 0x%x.\n",
 493			temp);
 494	xhci_writel(xhci, temp, &xhci->op_regs->command);
 495
 496	temp = xhci_readl(xhci, &xhci->ir_set->irq_pending);
 497	xhci_dbg(xhci, "// Enabling event ring interrupter %p by writing 0x%x to irq_pending\n",
 498			xhci->ir_set, (unsigned int) ER_IRQ_ENABLE(temp));
 499	xhci_writel(xhci, ER_IRQ_ENABLE(temp),
 500			&xhci->ir_set->irq_pending);
 501	xhci_print_ir_set(xhci, 0);
 502
 503	if (xhci->quirks & XHCI_NEC_HOST)
 504		xhci_queue_vendor_command(xhci, 0, 0, 0,
 505				TRB_TYPE(TRB_NEC_GET_FW));
 506
 507	xhci_dbg(xhci, "Finished xhci_run for USB2 roothub\n");
 508	return 0;
 509}
 510
 511static void xhci_only_stop_hcd(struct usb_hcd *hcd)
 512{
 513	struct xhci_hcd *xhci = hcd_to_xhci(hcd);
 514
 515	spin_lock_irq(&xhci->lock);
 516	xhci_halt(xhci);
 517
 518	/* The shared_hcd is going to be deallocated shortly (the USB core only
 519	 * calls this function when allocation fails in usb_add_hcd(), or
 520	 * usb_remove_hcd() is called).  So we need to unset xHCI's pointer.
 521	 */
 522	xhci->shared_hcd = NULL;
 523	spin_unlock_irq(&xhci->lock);
 524}
 525
 526/*
 527 * Stop xHCI driver.
 528 *
 529 * This function is called by the USB core when the HC driver is removed.
 530 * Its opposite is xhci_run().
 531 *
 532 * Disable device contexts, disable IRQs, and quiesce the HC.
 533 * Reset the HC, finish any completed transactions, and cleanup memory.
 534 */
 535void xhci_stop(struct usb_hcd *hcd)
 536{
 537	u32 temp;
 538	struct xhci_hcd *xhci = hcd_to_xhci(hcd);
 539
 540	if (!usb_hcd_is_primary_hcd(hcd)) {
 541		xhci_only_stop_hcd(xhci->shared_hcd);
 542		return;
 543	}
 544
 545	spin_lock_irq(&xhci->lock);
 546	/* Make sure the xHC is halted for a USB3 roothub
 547	 * (xhci_stop() could be called as part of failed init).
 548	 */
 549	xhci_halt(xhci);
 550	xhci_reset(xhci);
 551	spin_unlock_irq(&xhci->lock);
 552
 553	xhci_cleanup_msix(xhci);
 554
 555#ifdef CONFIG_USB_XHCI_HCD_DEBUGGING
 556	/* Tell the event ring poll function not to reschedule */
 557	xhci->zombie = 1;
 558	del_timer_sync(&xhci->event_ring_timer);
 559#endif
 560
 
 
 
 
 
 561	if (xhci->quirks & XHCI_AMD_PLL_FIX)
 562		usb_amd_dev_put();
 563
 564	xhci_dbg(xhci, "// Disabling event ring interrupts\n");
 565	temp = xhci_readl(xhci, &xhci->op_regs->status);
 566	xhci_writel(xhci, temp & ~STS_EINT, &xhci->op_regs->status);
 567	temp = xhci_readl(xhci, &xhci->ir_set->irq_pending);
 568	xhci_writel(xhci, ER_IRQ_DISABLE(temp),
 569			&xhci->ir_set->irq_pending);
 570	xhci_print_ir_set(xhci, 0);
 571
 572	xhci_dbg(xhci, "cleaning up memory\n");
 573	xhci_mem_cleanup(xhci);
 574	xhci_dbg(xhci, "xhci_stop completed - status = %x\n",
 575		    xhci_readl(xhci, &xhci->op_regs->status));
 576}
 577
 578/*
 579 * Shutdown HC (not bus-specific)
 580 *
 581 * This is called when the machine is rebooting or halting.  We assume that the
 582 * machine will be powered off, and the HC's internal state will be reset.
 583 * Don't bother to free memory.
 584 *
 585 * This will only ever be called with the main usb_hcd (the USB3 roothub).
 586 */
 587void xhci_shutdown(struct usb_hcd *hcd)
 588{
 589	struct xhci_hcd *xhci = hcd_to_xhci(hcd);
 590
 
 
 
 591	spin_lock_irq(&xhci->lock);
 592	xhci_halt(xhci);
 593	spin_unlock_irq(&xhci->lock);
 594
 595	xhci_cleanup_msix(xhci);
 596
 597	xhci_dbg(xhci, "xhci_shutdown completed - status = %x\n",
 598		    xhci_readl(xhci, &xhci->op_regs->status));
 599}
 600
 601#ifdef CONFIG_PM
 602static void xhci_save_registers(struct xhci_hcd *xhci)
 603{
 604	xhci->s3.command = xhci_readl(xhci, &xhci->op_regs->command);
 605	xhci->s3.dev_nt = xhci_readl(xhci, &xhci->op_regs->dev_notification);
 606	xhci->s3.dcbaa_ptr = xhci_read_64(xhci, &xhci->op_regs->dcbaa_ptr);
 607	xhci->s3.config_reg = xhci_readl(xhci, &xhci->op_regs->config_reg);
 608	xhci->s3.irq_pending = xhci_readl(xhci, &xhci->ir_set->irq_pending);
 609	xhci->s3.irq_control = xhci_readl(xhci, &xhci->ir_set->irq_control);
 610	xhci->s3.erst_size = xhci_readl(xhci, &xhci->ir_set->erst_size);
 611	xhci->s3.erst_base = xhci_read_64(xhci, &xhci->ir_set->erst_base);
 612	xhci->s3.erst_dequeue = xhci_read_64(xhci, &xhci->ir_set->erst_dequeue);
 
 
 613}
 614
 615static void xhci_restore_registers(struct xhci_hcd *xhci)
 616{
 617	xhci_writel(xhci, xhci->s3.command, &xhci->op_regs->command);
 618	xhci_writel(xhci, xhci->s3.dev_nt, &xhci->op_regs->dev_notification);
 619	xhci_write_64(xhci, xhci->s3.dcbaa_ptr, &xhci->op_regs->dcbaa_ptr);
 620	xhci_writel(xhci, xhci->s3.config_reg, &xhci->op_regs->config_reg);
 621	xhci_writel(xhci, xhci->s3.irq_pending, &xhci->ir_set->irq_pending);
 622	xhci_writel(xhci, xhci->s3.irq_control, &xhci->ir_set->irq_control);
 623	xhci_writel(xhci, xhci->s3.erst_size, &xhci->ir_set->erst_size);
 624	xhci_write_64(xhci, xhci->s3.erst_base, &xhci->ir_set->erst_base);
 
 
 
 625}
 626
 627static void xhci_set_cmd_ring_deq(struct xhci_hcd *xhci)
 628{
 629	u64	val_64;
 630
 631	/* step 2: initialize command ring buffer */
 632	val_64 = xhci_read_64(xhci, &xhci->op_regs->cmd_ring);
 633	val_64 = (val_64 & (u64) CMD_RING_RSVD_BITS) |
 634		(xhci_trb_virt_to_dma(xhci->cmd_ring->deq_seg,
 635				      xhci->cmd_ring->dequeue) &
 636		 (u64) ~CMD_RING_RSVD_BITS) |
 637		xhci->cmd_ring->cycle_state;
 638	xhci_dbg(xhci, "// Setting command ring address to 0x%llx\n",
 639			(long unsigned long) val_64);
 640	xhci_write_64(xhci, val_64, &xhci->op_regs->cmd_ring);
 641}
 642
 643/*
 644 * The whole command ring must be cleared to zero when we suspend the host.
 645 *
 646 * The host doesn't save the command ring pointer in the suspend well, so we
 647 * need to re-program it on resume.  Unfortunately, the pointer must be 64-byte
 648 * aligned, because of the reserved bits in the command ring dequeue pointer
 649 * register.  Therefore, we can't just set the dequeue pointer back in the
 650 * middle of the ring (TRBs are 16-byte aligned).
 651 */
 652static void xhci_clear_command_ring(struct xhci_hcd *xhci)
 653{
 654	struct xhci_ring *ring;
 655	struct xhci_segment *seg;
 656
 657	ring = xhci->cmd_ring;
 658	seg = ring->deq_seg;
 659	do {
 660		memset(seg->trbs, 0, SEGMENT_SIZE);
 
 
 
 661		seg = seg->next;
 662	} while (seg != ring->deq_seg);
 663
 664	/* Reset the software enqueue and dequeue pointers */
 665	ring->deq_seg = ring->first_seg;
 666	ring->dequeue = ring->first_seg->trbs;
 667	ring->enq_seg = ring->deq_seg;
 668	ring->enqueue = ring->dequeue;
 669
 
 670	/*
 671	 * Ring is now zeroed, so the HW should look for change of ownership
 672	 * when the cycle bit is set to 1.
 673	 */
 674	ring->cycle_state = 1;
 675
 676	/*
 677	 * Reset the hardware dequeue pointer.
 678	 * Yes, this will need to be re-written after resume, but we're paranoid
 679	 * and want to make sure the hardware doesn't access bogus memory
 680	 * because, say, the BIOS or an SMI started the host without changing
 681	 * the command ring pointers.
 682	 */
 683	xhci_set_cmd_ring_deq(xhci);
 684}
 685
 686/*
 687 * Stop HC (not bus-specific)
 688 *
 689 * This is called when the machine transition into S3/S4 mode.
 690 *
 691 */
 692int xhci_suspend(struct xhci_hcd *xhci)
 693{
 694	int			rc = 0;
 695	struct usb_hcd		*hcd = xhci_to_hcd(xhci);
 696	u32			command;
 697	int			i;
 698
 699	spin_lock_irq(&xhci->lock);
 700	clear_bit(HCD_FLAG_HW_ACCESSIBLE, &hcd->flags);
 701	clear_bit(HCD_FLAG_HW_ACCESSIBLE, &xhci->shared_hcd->flags);
 702	/* step 1: stop endpoint */
 703	/* skipped assuming that port suspend has done */
 704
 705	/* step 2: clear Run/Stop bit */
 706	command = xhci_readl(xhci, &xhci->op_regs->command);
 707	command &= ~CMD_RUN;
 708	xhci_writel(xhci, command, &xhci->op_regs->command);
 709	if (handshake(xhci, &xhci->op_regs->status,
 710		      STS_HALT, STS_HALT, 100*100)) {
 711		xhci_warn(xhci, "WARN: xHC CMD_RUN timeout\n");
 712		spin_unlock_irq(&xhci->lock);
 713		return -ETIMEDOUT;
 714	}
 715	xhci_clear_command_ring(xhci);
 716
 717	/* step 3: save registers */
 718	xhci_save_registers(xhci);
 719
 720	/* step 4: set CSS flag */
 721	command = xhci_readl(xhci, &xhci->op_regs->command);
 722	command |= CMD_CSS;
 723	xhci_writel(xhci, command, &xhci->op_regs->command);
 724	if (handshake(xhci, &xhci->op_regs->status, STS_SAVE, 0, 10*100)) {
 725		xhci_warn(xhci, "WARN: xHC CMD_CSS timeout\n");
 726		spin_unlock_irq(&xhci->lock);
 727		return -ETIMEDOUT;
 728	}
 729	spin_unlock_irq(&xhci->lock);
 730
 
 
 
 
 
 
 
 
 
 
 731	/* step 5: remove core well power */
 732	/* synchronize irq when using MSI-X */
 733	if (xhci->msix_entries) {
 734		for (i = 0; i < xhci->msix_count; i++)
 735			synchronize_irq(xhci->msix_entries[i].vector);
 736	}
 737
 738	return rc;
 739}
 740
 741/*
 742 * start xHC (not bus-specific)
 743 *
 744 * This is called when the machine transition from S3/S4 mode.
 745 *
 746 */
 747int xhci_resume(struct xhci_hcd *xhci, bool hibernated)
 748{
 749	u32			command, temp = 0;
 750	struct usb_hcd		*hcd = xhci_to_hcd(xhci);
 751	struct usb_hcd		*secondary_hcd;
 752	int			retval;
 753
 754	/* Wait a bit if either of the roothubs need to settle from the
 755	 * transition into bus suspend.
 756	 */
 757	if (time_before(jiffies, xhci->bus_state[0].next_statechange) ||
 758			time_before(jiffies,
 759				xhci->bus_state[1].next_statechange))
 760		msleep(100);
 761
 
 
 
 762	spin_lock_irq(&xhci->lock);
 763	if (xhci->quirks & XHCI_RESET_ON_RESUME)
 764		hibernated = true;
 765
 766	if (!hibernated) {
 767		/* step 1: restore register */
 768		xhci_restore_registers(xhci);
 769		/* step 2: initialize command ring buffer */
 770		xhci_set_cmd_ring_deq(xhci);
 771		/* step 3: restore state and start state*/
 772		/* step 3: set CRS flag */
 773		command = xhci_readl(xhci, &xhci->op_regs->command);
 774		command |= CMD_CRS;
 775		xhci_writel(xhci, command, &xhci->op_regs->command);
 776		if (handshake(xhci, &xhci->op_regs->status,
 777			      STS_RESTORE, 0, 10*100)) {
 778			xhci_dbg(xhci, "WARN: xHC CMD_CSS timeout\n");
 779			spin_unlock_irq(&xhci->lock);
 780			return -ETIMEDOUT;
 781		}
 782		temp = xhci_readl(xhci, &xhci->op_regs->status);
 783	}
 784
 785	/* If restore operation fails, re-initialize the HC during resume */
 786	if ((temp & STS_SRE) || hibernated) {
 787		/* Let the USB core know _both_ roothubs lost power. */
 788		usb_root_hub_lost_power(xhci->main_hcd->self.root_hub);
 789		usb_root_hub_lost_power(xhci->shared_hcd->self.root_hub);
 790
 791		xhci_dbg(xhci, "Stop HCD\n");
 792		xhci_halt(xhci);
 793		xhci_reset(xhci);
 794		spin_unlock_irq(&xhci->lock);
 795		xhci_cleanup_msix(xhci);
 796
 797#ifdef CONFIG_USB_XHCI_HCD_DEBUGGING
 798		/* Tell the event ring poll function not to reschedule */
 799		xhci->zombie = 1;
 800		del_timer_sync(&xhci->event_ring_timer);
 801#endif
 802
 803		xhci_dbg(xhci, "// Disabling event ring interrupts\n");
 804		temp = xhci_readl(xhci, &xhci->op_regs->status);
 805		xhci_writel(xhci, temp & ~STS_EINT, &xhci->op_regs->status);
 806		temp = xhci_readl(xhci, &xhci->ir_set->irq_pending);
 807		xhci_writel(xhci, ER_IRQ_DISABLE(temp),
 808				&xhci->ir_set->irq_pending);
 809		xhci_print_ir_set(xhci, 0);
 810
 811		xhci_dbg(xhci, "cleaning up memory\n");
 812		xhci_mem_cleanup(xhci);
 813		xhci_dbg(xhci, "xhci_stop completed - status = %x\n",
 814			    xhci_readl(xhci, &xhci->op_regs->status));
 815
 816		/* USB core calls the PCI reinit and start functions twice:
 817		 * first with the primary HCD, and then with the secondary HCD.
 818		 * If we don't do the same, the host will never be started.
 819		 */
 820		if (!usb_hcd_is_primary_hcd(hcd))
 821			secondary_hcd = hcd;
 822		else
 823			secondary_hcd = xhci->shared_hcd;
 824
 825		xhci_dbg(xhci, "Initialize the xhci_hcd\n");
 826		retval = xhci_init(hcd->primary_hcd);
 827		if (retval)
 828			return retval;
 829		xhci_dbg(xhci, "Start the primary HCD\n");
 830		retval = xhci_run(hcd->primary_hcd);
 831		if (retval)
 832			goto failed_restart;
 833
 834		xhci_dbg(xhci, "Start the secondary HCD\n");
 835		retval = xhci_run(secondary_hcd);
 836		if (!retval) {
 837			set_bit(HCD_FLAG_HW_ACCESSIBLE, &hcd->flags);
 838			set_bit(HCD_FLAG_HW_ACCESSIBLE,
 839					&xhci->shared_hcd->flags);
 840		}
 841failed_restart:
 842		hcd->state = HC_STATE_SUSPENDED;
 843		xhci->shared_hcd->state = HC_STATE_SUSPENDED;
 844		return retval;
 845	}
 846
 847	/* step 4: set Run/Stop bit */
 848	command = xhci_readl(xhci, &xhci->op_regs->command);
 849	command |= CMD_RUN;
 850	xhci_writel(xhci, command, &xhci->op_regs->command);
 851	handshake(xhci, &xhci->op_regs->status, STS_HALT,
 852		  0, 250 * 1000);
 853
 854	/* step 5: walk topology and initialize portsc,
 855	 * portpmsc and portli
 856	 */
 857	/* this is done in bus_resume */
 858
 859	/* step 6: restart each of the previously
 860	 * Running endpoints by ringing their doorbells
 861	 */
 862
 863	set_bit(HCD_FLAG_HW_ACCESSIBLE, &hcd->flags);
 864	set_bit(HCD_FLAG_HW_ACCESSIBLE, &xhci->shared_hcd->flags);
 865
 866	spin_unlock_irq(&xhci->lock);
 867	return 0;
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 868}
 869#endif	/* CONFIG_PM */
 870
 871/*-------------------------------------------------------------------------*/
 872
 873/**
 874 * xhci_get_endpoint_index - Used for passing endpoint bitmasks between the core and
 875 * HCDs.  Find the index for an endpoint given its descriptor.  Use the return
 876 * value to right shift 1 for the bitmask.
 877 *
 878 * Index  = (epnum * 2) + direction - 1,
 879 * where direction = 0 for OUT, 1 for IN.
 880 * For control endpoints, the IN index is used (OUT index is unused), so
 881 * index = (epnum * 2) + direction - 1 = (epnum * 2) + 1 - 1 = (epnum * 2)
 882 */
 883unsigned int xhci_get_endpoint_index(struct usb_endpoint_descriptor *desc)
 884{
 885	unsigned int index;
 886	if (usb_endpoint_xfer_control(desc))
 887		index = (unsigned int) (usb_endpoint_num(desc)*2);
 888	else
 889		index = (unsigned int) (usb_endpoint_num(desc)*2) +
 890			(usb_endpoint_dir_in(desc) ? 1 : 0) - 1;
 891	return index;
 892}
 893
 894/* Find the flag for this endpoint (for use in the control context).  Use the
 895 * endpoint index to create a bitmask.  The slot context is bit 0, endpoint 0 is
 896 * bit 1, etc.
 897 */
 898unsigned int xhci_get_endpoint_flag(struct usb_endpoint_descriptor *desc)
 899{
 900	return 1 << (xhci_get_endpoint_index(desc) + 1);
 901}
 902
 903/* Find the flag for this endpoint (for use in the control context).  Use the
 904 * endpoint index to create a bitmask.  The slot context is bit 0, endpoint 0 is
 905 * bit 1, etc.
 906 */
 907unsigned int xhci_get_endpoint_flag_from_index(unsigned int ep_index)
 908{
 909	return 1 << (ep_index + 1);
 910}
 911
 912/* Compute the last valid endpoint context index.  Basically, this is the
 913 * endpoint index plus one.  For slot contexts with more than valid endpoint,
 914 * we find the most significant bit set in the added contexts flags.
 915 * e.g. ep 1 IN (with epnum 0x81) => added_ctxs = 0b1000
 916 * fls(0b1000) = 4, but the endpoint context index is 3, so subtract one.
 917 */
 918unsigned int xhci_last_valid_endpoint(u32 added_ctxs)
 919{
 920	return fls(added_ctxs) - 1;
 921}
 922
 923/* Returns 1 if the arguments are OK;
 924 * returns 0 this is a root hub; returns -EINVAL for NULL pointers.
 925 */
 926static int xhci_check_args(struct usb_hcd *hcd, struct usb_device *udev,
 927		struct usb_host_endpoint *ep, int check_ep, bool check_virt_dev,
 928		const char *func) {
 929	struct xhci_hcd	*xhci;
 930	struct xhci_virt_device	*virt_dev;
 931
 932	if (!hcd || (check_ep && !ep) || !udev) {
 933		printk(KERN_DEBUG "xHCI %s called with invalid args\n",
 934				func);
 935		return -EINVAL;
 936	}
 937	if (!udev->parent) {
 938		printk(KERN_DEBUG "xHCI %s called for root hub\n",
 939				func);
 940		return 0;
 941	}
 942
 943	xhci = hcd_to_xhci(hcd);
 944	if (xhci->xhc_state & XHCI_STATE_HALTED)
 945		return -ENODEV;
 946
 947	if (check_virt_dev) {
 948		if (!udev->slot_id || !xhci->devs
 949			|| !xhci->devs[udev->slot_id]) {
 950			printk(KERN_DEBUG "xHCI %s called with unaddressed "
 951						"device\n", func);
 952			return -EINVAL;
 953		}
 954
 955		virt_dev = xhci->devs[udev->slot_id];
 956		if (virt_dev->udev != udev) {
 957			printk(KERN_DEBUG "xHCI %s called with udev and "
 958					  "virt_dev does not match\n", func);
 959			return -EINVAL;
 960		}
 961	}
 962
 963	return 1;
 964}
 965
 966static int xhci_configure_endpoint(struct xhci_hcd *xhci,
 967		struct usb_device *udev, struct xhci_command *command,
 968		bool ctx_change, bool must_succeed);
 969
 970/*
 971 * Full speed devices may have a max packet size greater than 8 bytes, but the
 972 * USB core doesn't know that until it reads the first 8 bytes of the
 973 * descriptor.  If the usb_device's max packet size changes after that point,
 974 * we need to issue an evaluate context command and wait on it.
 975 */
 976static int xhci_check_maxpacket(struct xhci_hcd *xhci, unsigned int slot_id,
 977		unsigned int ep_index, struct urb *urb)
 978{
 979	struct xhci_container_ctx *in_ctx;
 980	struct xhci_container_ctx *out_ctx;
 981	struct xhci_input_control_ctx *ctrl_ctx;
 982	struct xhci_ep_ctx *ep_ctx;
 983	int max_packet_size;
 984	int hw_max_packet_size;
 985	int ret = 0;
 986
 987	out_ctx = xhci->devs[slot_id]->out_ctx;
 988	ep_ctx = xhci_get_ep_ctx(xhci, out_ctx, ep_index);
 989	hw_max_packet_size = MAX_PACKET_DECODED(le32_to_cpu(ep_ctx->ep_info2));
 990	max_packet_size = le16_to_cpu(urb->dev->ep0.desc.wMaxPacketSize);
 991	if (hw_max_packet_size != max_packet_size) {
 992		xhci_dbg(xhci, "Max Packet Size for ep 0 changed.\n");
 993		xhci_dbg(xhci, "Max packet size in usb_device = %d\n",
 994				max_packet_size);
 995		xhci_dbg(xhci, "Max packet size in xHCI HW = %d\n",
 996				hw_max_packet_size);
 997		xhci_dbg(xhci, "Issuing evaluate context command.\n");
 998
 999		/* Set up the modified control endpoint 0 */
1000		xhci_endpoint_copy(xhci, xhci->devs[slot_id]->in_ctx,
1001				xhci->devs[slot_id]->out_ctx, ep_index);
1002		in_ctx = xhci->devs[slot_id]->in_ctx;
1003		ep_ctx = xhci_get_ep_ctx(xhci, in_ctx, ep_index);
1004		ep_ctx->ep_info2 &= cpu_to_le32(~MAX_PACKET_MASK);
1005		ep_ctx->ep_info2 |= cpu_to_le32(MAX_PACKET(max_packet_size));
1006
1007		/* Set up the input context flags for the command */
1008		/* FIXME: This won't work if a non-default control endpoint
1009		 * changes max packet sizes.
1010		 */
1011		ctrl_ctx = xhci_get_input_control_ctx(xhci, in_ctx);
1012		ctrl_ctx->add_flags = cpu_to_le32(EP0_FLAG);
1013		ctrl_ctx->drop_flags = 0;
1014
1015		xhci_dbg(xhci, "Slot %d input context\n", slot_id);
1016		xhci_dbg_ctx(xhci, in_ctx, ep_index);
1017		xhci_dbg(xhci, "Slot %d output context\n", slot_id);
1018		xhci_dbg_ctx(xhci, out_ctx, ep_index);
1019
1020		ret = xhci_configure_endpoint(xhci, urb->dev, NULL,
1021				true, false);
1022
1023		/* Clean up the input context for later use by bandwidth
1024		 * functions.
1025		 */
1026		ctrl_ctx->add_flags = cpu_to_le32(SLOT_FLAG);
1027	}
1028	return ret;
1029}
1030
1031/*
1032 * non-error returns are a promise to giveback() the urb later
1033 * we drop ownership so next owner (or urb unlink) can get it
1034 */
1035int xhci_urb_enqueue(struct usb_hcd *hcd, struct urb *urb, gfp_t mem_flags)
1036{
1037	struct xhci_hcd *xhci = hcd_to_xhci(hcd);
 
1038	unsigned long flags;
1039	int ret = 0;
1040	unsigned int slot_id, ep_index;
1041	struct urb_priv	*urb_priv;
1042	int size, i;
1043
1044	if (!urb || xhci_check_args(hcd, urb->dev, urb->ep,
1045					true, true, __func__) <= 0)
1046		return -EINVAL;
1047
1048	slot_id = urb->dev->slot_id;
1049	ep_index = xhci_get_endpoint_index(&urb->ep->desc);
1050
1051	if (!HCD_HW_ACCESSIBLE(hcd)) {
1052		if (!in_interrupt())
1053			xhci_dbg(xhci, "urb submitted during PCI suspend\n");
1054		ret = -ESHUTDOWN;
1055		goto exit;
1056	}
1057
1058	if (usb_endpoint_xfer_isoc(&urb->ep->desc))
1059		size = urb->number_of_packets;
1060	else
1061		size = 1;
1062
1063	urb_priv = kzalloc(sizeof(struct urb_priv) +
1064				  size * sizeof(struct xhci_td *), mem_flags);
1065	if (!urb_priv)
1066		return -ENOMEM;
1067
 
 
 
 
 
 
1068	for (i = 0; i < size; i++) {
1069		urb_priv->td[i] = kzalloc(sizeof(struct xhci_td), mem_flags);
1070		if (!urb_priv->td[i]) {
1071			urb_priv->length = i;
1072			xhci_urb_free_priv(xhci, urb_priv);
1073			return -ENOMEM;
1074		}
1075	}
1076
1077	urb_priv->length = size;
1078	urb_priv->td_cnt = 0;
1079	urb->hcpriv = urb_priv;
1080
1081	if (usb_endpoint_xfer_control(&urb->ep->desc)) {
1082		/* Check to see if the max packet size for the default control
1083		 * endpoint changed during FS device enumeration
1084		 */
1085		if (urb->dev->speed == USB_SPEED_FULL) {
1086			ret = xhci_check_maxpacket(xhci, slot_id,
1087					ep_index, urb);
1088			if (ret < 0) {
1089				xhci_urb_free_priv(xhci, urb_priv);
1090				urb->hcpriv = NULL;
1091				return ret;
1092			}
1093		}
1094
1095		/* We have a spinlock and interrupts disabled, so we must pass
1096		 * atomic context to this function, which may allocate memory.
1097		 */
1098		spin_lock_irqsave(&xhci->lock, flags);
1099		if (xhci->xhc_state & XHCI_STATE_DYING)
1100			goto dying;
1101		ret = xhci_queue_ctrl_tx(xhci, GFP_ATOMIC, urb,
1102				slot_id, ep_index);
1103		if (ret)
1104			goto free_priv;
1105		spin_unlock_irqrestore(&xhci->lock, flags);
1106	} else if (usb_endpoint_xfer_bulk(&urb->ep->desc)) {
1107		spin_lock_irqsave(&xhci->lock, flags);
1108		if (xhci->xhc_state & XHCI_STATE_DYING)
1109			goto dying;
1110		if (xhci->devs[slot_id]->eps[ep_index].ep_state &
1111				EP_GETTING_STREAMS) {
1112			xhci_warn(xhci, "WARN: Can't enqueue URB while bulk ep "
1113					"is transitioning to using streams.\n");
1114			ret = -EINVAL;
1115		} else if (xhci->devs[slot_id]->eps[ep_index].ep_state &
1116				EP_GETTING_NO_STREAMS) {
1117			xhci_warn(xhci, "WARN: Can't enqueue URB while bulk ep "
1118					"is transitioning to "
1119					"not having streams.\n");
1120			ret = -EINVAL;
1121		} else {
1122			ret = xhci_queue_bulk_tx(xhci, GFP_ATOMIC, urb,
1123					slot_id, ep_index);
1124		}
1125		if (ret)
1126			goto free_priv;
1127		spin_unlock_irqrestore(&xhci->lock, flags);
1128	} else if (usb_endpoint_xfer_int(&urb->ep->desc)) {
1129		spin_lock_irqsave(&xhci->lock, flags);
1130		if (xhci->xhc_state & XHCI_STATE_DYING)
1131			goto dying;
1132		ret = xhci_queue_intr_tx(xhci, GFP_ATOMIC, urb,
1133				slot_id, ep_index);
1134		if (ret)
1135			goto free_priv;
1136		spin_unlock_irqrestore(&xhci->lock, flags);
1137	} else {
1138		spin_lock_irqsave(&xhci->lock, flags);
1139		if (xhci->xhc_state & XHCI_STATE_DYING)
1140			goto dying;
1141		ret = xhci_queue_isoc_tx_prepare(xhci, GFP_ATOMIC, urb,
1142				slot_id, ep_index);
1143		if (ret)
1144			goto free_priv;
1145		spin_unlock_irqrestore(&xhci->lock, flags);
1146	}
1147exit:
1148	return ret;
1149dying:
1150	xhci_dbg(xhci, "Ep 0x%x: URB %p submitted for "
1151			"non-responsive xHCI host.\n",
1152			urb->ep->desc.bEndpointAddress, urb);
1153	ret = -ESHUTDOWN;
1154free_priv:
1155	xhci_urb_free_priv(xhci, urb_priv);
1156	urb->hcpriv = NULL;
1157	spin_unlock_irqrestore(&xhci->lock, flags);
1158	return ret;
1159}
1160
1161/* Get the right ring for the given URB.
1162 * If the endpoint supports streams, boundary check the URB's stream ID.
1163 * If the endpoint doesn't support streams, return the singular endpoint ring.
1164 */
1165static struct xhci_ring *xhci_urb_to_transfer_ring(struct xhci_hcd *xhci,
1166		struct urb *urb)
1167{
1168	unsigned int slot_id;
1169	unsigned int ep_index;
1170	unsigned int stream_id;
1171	struct xhci_virt_ep *ep;
1172
1173	slot_id = urb->dev->slot_id;
1174	ep_index = xhci_get_endpoint_index(&urb->ep->desc);
1175	stream_id = urb->stream_id;
1176	ep = &xhci->devs[slot_id]->eps[ep_index];
1177	/* Common case: no streams */
1178	if (!(ep->ep_state & EP_HAS_STREAMS))
1179		return ep->ring;
1180
1181	if (stream_id == 0) {
1182		xhci_warn(xhci,
1183				"WARN: Slot ID %u, ep index %u has streams, "
1184				"but URB has no stream ID.\n",
1185				slot_id, ep_index);
1186		return NULL;
1187	}
1188
1189	if (stream_id < ep->stream_info->num_streams)
1190		return ep->stream_info->stream_rings[stream_id];
1191
1192	xhci_warn(xhci,
1193			"WARN: Slot ID %u, ep index %u has "
1194			"stream IDs 1 to %u allocated, "
1195			"but stream ID %u is requested.\n",
1196			slot_id, ep_index,
1197			ep->stream_info->num_streams - 1,
1198			stream_id);
1199	return NULL;
1200}
1201
1202/*
1203 * Remove the URB's TD from the endpoint ring.  This may cause the HC to stop
1204 * USB transfers, potentially stopping in the middle of a TRB buffer.  The HC
1205 * should pick up where it left off in the TD, unless a Set Transfer Ring
1206 * Dequeue Pointer is issued.
1207 *
1208 * The TRBs that make up the buffers for the canceled URB will be "removed" from
1209 * the ring.  Since the ring is a contiguous structure, they can't be physically
1210 * removed.  Instead, there are two options:
1211 *
1212 *  1) If the HC is in the middle of processing the URB to be canceled, we
1213 *     simply move the ring's dequeue pointer past those TRBs using the Set
1214 *     Transfer Ring Dequeue Pointer command.  This will be the common case,
1215 *     when drivers timeout on the last submitted URB and attempt to cancel.
1216 *
1217 *  2) If the HC is in the middle of a different TD, we turn the TRBs into a
1218 *     series of 1-TRB transfer no-op TDs.  (No-ops shouldn't be chained.)  The
1219 *     HC will need to invalidate the any TRBs it has cached after the stop
1220 *     endpoint command, as noted in the xHCI 0.95 errata.
1221 *
1222 *  3) The TD may have completed by the time the Stop Endpoint Command
1223 *     completes, so software needs to handle that case too.
1224 *
1225 * This function should protect against the TD enqueueing code ringing the
1226 * doorbell while this code is waiting for a Stop Endpoint command to complete.
1227 * It also needs to account for multiple cancellations on happening at the same
1228 * time for the same endpoint.
1229 *
1230 * Note that this function can be called in any context, or so says
1231 * usb_hcd_unlink_urb()
1232 */
1233int xhci_urb_dequeue(struct usb_hcd *hcd, struct urb *urb, int status)
1234{
1235	unsigned long flags;
1236	int ret, i;
1237	u32 temp;
1238	struct xhci_hcd *xhci;
1239	struct urb_priv	*urb_priv;
1240	struct xhci_td *td;
1241	unsigned int ep_index;
1242	struct xhci_ring *ep_ring;
1243	struct xhci_virt_ep *ep;
1244
1245	xhci = hcd_to_xhci(hcd);
1246	spin_lock_irqsave(&xhci->lock, flags);
1247	/* Make sure the URB hasn't completed or been unlinked already */
1248	ret = usb_hcd_check_unlink_urb(hcd, urb, status);
1249	if (ret || !urb->hcpriv)
1250		goto done;
1251	temp = xhci_readl(xhci, &xhci->op_regs->status);
1252	if (temp == 0xffffffff || (xhci->xhc_state & XHCI_STATE_HALTED)) {
1253		xhci_dbg(xhci, "HW died, freeing TD.\n");
1254		urb_priv = urb->hcpriv;
1255		for (i = urb_priv->td_cnt; i < urb_priv->length; i++) {
1256			td = urb_priv->td[i];
1257			if (!list_empty(&td->td_list))
1258				list_del_init(&td->td_list);
1259			if (!list_empty(&td->cancelled_td_list))
1260				list_del_init(&td->cancelled_td_list);
1261		}
1262
1263		usb_hcd_unlink_urb_from_ep(hcd, urb);
1264		spin_unlock_irqrestore(&xhci->lock, flags);
1265		usb_hcd_giveback_urb(hcd, urb, -ESHUTDOWN);
1266		xhci_urb_free_priv(xhci, urb_priv);
1267		return ret;
1268	}
1269	if ((xhci->xhc_state & XHCI_STATE_DYING) ||
1270			(xhci->xhc_state & XHCI_STATE_HALTED)) {
1271		xhci_dbg(xhci, "Ep 0x%x: URB %p to be canceled on "
1272				"non-responsive xHCI host.\n",
1273				urb->ep->desc.bEndpointAddress, urb);
1274		/* Let the stop endpoint command watchdog timer (which set this
1275		 * state) finish cleaning up the endpoint TD lists.  We must
1276		 * have caught it in the middle of dropping a lock and giving
1277		 * back an URB.
1278		 */
1279		goto done;
1280	}
1281
1282	xhci_dbg(xhci, "Cancel URB %p\n", urb);
1283	xhci_dbg(xhci, "Event ring:\n");
1284	xhci_debug_ring(xhci, xhci->event_ring);
1285	ep_index = xhci_get_endpoint_index(&urb->ep->desc);
1286	ep = &xhci->devs[urb->dev->slot_id]->eps[ep_index];
1287	ep_ring = xhci_urb_to_transfer_ring(xhci, urb);
1288	if (!ep_ring) {
1289		ret = -EINVAL;
1290		goto done;
1291	}
1292
1293	xhci_dbg(xhci, "Endpoint ring:\n");
1294	xhci_debug_ring(xhci, ep_ring);
1295
1296	urb_priv = urb->hcpriv;
 
 
 
 
 
 
 
 
 
1297
1298	for (i = urb_priv->td_cnt; i < urb_priv->length; i++) {
1299		td = urb_priv->td[i];
1300		list_add_tail(&td->cancelled_td_list, &ep->cancelled_td_list);
1301	}
1302
1303	/* Queue a stop endpoint command, but only if this is
1304	 * the first cancellation to be handled.
1305	 */
1306	if (!(ep->ep_state & EP_HALT_PENDING)) {
1307		ep->ep_state |= EP_HALT_PENDING;
1308		ep->stop_cmds_pending++;
1309		ep->stop_cmd_timer.expires = jiffies +
1310			XHCI_STOP_EP_CMD_TIMEOUT * HZ;
1311		add_timer(&ep->stop_cmd_timer);
1312		xhci_queue_stop_endpoint(xhci, urb->dev->slot_id, ep_index, 0);
1313		xhci_ring_cmd_db(xhci);
1314	}
1315done:
1316	spin_unlock_irqrestore(&xhci->lock, flags);
1317	return ret;
1318}
1319
1320/* Drop an endpoint from a new bandwidth configuration for this device.
1321 * Only one call to this function is allowed per endpoint before
1322 * check_bandwidth() or reset_bandwidth() must be called.
1323 * A call to xhci_drop_endpoint() followed by a call to xhci_add_endpoint() will
1324 * add the endpoint to the schedule with possibly new parameters denoted by a
1325 * different endpoint descriptor in usb_host_endpoint.
1326 * A call to xhci_add_endpoint() followed by a call to xhci_drop_endpoint() is
1327 * not allowed.
1328 *
1329 * The USB core will not allow URBs to be queued to an endpoint that is being
1330 * disabled, so there's no need for mutual exclusion to protect
1331 * the xhci->devs[slot_id] structure.
1332 */
1333int xhci_drop_endpoint(struct usb_hcd *hcd, struct usb_device *udev,
1334		struct usb_host_endpoint *ep)
1335{
1336	struct xhci_hcd *xhci;
1337	struct xhci_container_ctx *in_ctx, *out_ctx;
1338	struct xhci_input_control_ctx *ctrl_ctx;
1339	struct xhci_slot_ctx *slot_ctx;
1340	unsigned int last_ctx;
1341	unsigned int ep_index;
1342	struct xhci_ep_ctx *ep_ctx;
1343	u32 drop_flag;
1344	u32 new_add_flags, new_drop_flags, new_slot_info;
1345	int ret;
1346
1347	ret = xhci_check_args(hcd, udev, ep, 1, true, __func__);
1348	if (ret <= 0)
1349		return ret;
1350	xhci = hcd_to_xhci(hcd);
1351	if (xhci->xhc_state & XHCI_STATE_DYING)
1352		return -ENODEV;
1353
1354	xhci_dbg(xhci, "%s called for udev %p\n", __func__, udev);
1355	drop_flag = xhci_get_endpoint_flag(&ep->desc);
1356	if (drop_flag == SLOT_FLAG || drop_flag == EP0_FLAG) {
1357		xhci_dbg(xhci, "xHCI %s - can't drop slot or ep 0 %#x\n",
1358				__func__, drop_flag);
1359		return 0;
1360	}
1361
1362	in_ctx = xhci->devs[udev->slot_id]->in_ctx;
1363	out_ctx = xhci->devs[udev->slot_id]->out_ctx;
1364	ctrl_ctx = xhci_get_input_control_ctx(xhci, in_ctx);
1365	ep_index = xhci_get_endpoint_index(&ep->desc);
1366	ep_ctx = xhci_get_ep_ctx(xhci, out_ctx, ep_index);
1367	/* If the HC already knows the endpoint is disabled,
1368	 * or the HCD has noted it is disabled, ignore this request
1369	 */
1370	if (((ep_ctx->ep_info & cpu_to_le32(EP_STATE_MASK)) ==
1371	     cpu_to_le32(EP_STATE_DISABLED)) ||
1372	    le32_to_cpu(ctrl_ctx->drop_flags) &
1373	    xhci_get_endpoint_flag(&ep->desc)) {
1374		xhci_warn(xhci, "xHCI %s called with disabled ep %p\n",
1375				__func__, ep);
1376		return 0;
1377	}
1378
1379	ctrl_ctx->drop_flags |= cpu_to_le32(drop_flag);
1380	new_drop_flags = le32_to_cpu(ctrl_ctx->drop_flags);
1381
1382	ctrl_ctx->add_flags &= cpu_to_le32(~drop_flag);
1383	new_add_flags = le32_to_cpu(ctrl_ctx->add_flags);
1384
1385	last_ctx = xhci_last_valid_endpoint(le32_to_cpu(ctrl_ctx->add_flags));
1386	slot_ctx = xhci_get_slot_ctx(xhci, in_ctx);
1387	/* Update the last valid endpoint context, if we deleted the last one */
1388	if ((le32_to_cpu(slot_ctx->dev_info) & LAST_CTX_MASK) >
1389	    LAST_CTX(last_ctx)) {
1390		slot_ctx->dev_info &= cpu_to_le32(~LAST_CTX_MASK);
1391		slot_ctx->dev_info |= cpu_to_le32(LAST_CTX(last_ctx));
1392	}
1393	new_slot_info = le32_to_cpu(slot_ctx->dev_info);
1394
1395	xhci_endpoint_zero(xhci, xhci->devs[udev->slot_id], ep);
1396
1397	xhci_dbg(xhci, "drop ep 0x%x, slot id %d, new drop flags = %#x, new add flags = %#x, new slot info = %#x\n",
1398			(unsigned int) ep->desc.bEndpointAddress,
1399			udev->slot_id,
1400			(unsigned int) new_drop_flags,
1401			(unsigned int) new_add_flags,
1402			(unsigned int) new_slot_info);
1403	return 0;
1404}
1405
1406/* Add an endpoint to a new possible bandwidth configuration for this device.
1407 * Only one call to this function is allowed per endpoint before
1408 * check_bandwidth() or reset_bandwidth() must be called.
1409 * A call to xhci_drop_endpoint() followed by a call to xhci_add_endpoint() will
1410 * add the endpoint to the schedule with possibly new parameters denoted by a
1411 * different endpoint descriptor in usb_host_endpoint.
1412 * A call to xhci_add_endpoint() followed by a call to xhci_drop_endpoint() is
1413 * not allowed.
1414 *
1415 * The USB core will not allow URBs to be queued to an endpoint until the
1416 * configuration or alt setting is installed in the device, so there's no need
1417 * for mutual exclusion to protect the xhci->devs[slot_id] structure.
1418 */
1419int xhci_add_endpoint(struct usb_hcd *hcd, struct usb_device *udev,
1420		struct usb_host_endpoint *ep)
1421{
1422	struct xhci_hcd *xhci;
1423	struct xhci_container_ctx *in_ctx, *out_ctx;
1424	unsigned int ep_index;
1425	struct xhci_ep_ctx *ep_ctx;
1426	struct xhci_slot_ctx *slot_ctx;
1427	struct xhci_input_control_ctx *ctrl_ctx;
1428	u32 added_ctxs;
1429	unsigned int last_ctx;
1430	u32 new_add_flags, new_drop_flags, new_slot_info;
1431	struct xhci_virt_device *virt_dev;
1432	int ret = 0;
1433
1434	ret = xhci_check_args(hcd, udev, ep, 1, true, __func__);
1435	if (ret <= 0) {
1436		/* So we won't queue a reset ep command for a root hub */
1437		ep->hcpriv = NULL;
1438		return ret;
1439	}
1440	xhci = hcd_to_xhci(hcd);
1441	if (xhci->xhc_state & XHCI_STATE_DYING)
1442		return -ENODEV;
1443
1444	added_ctxs = xhci_get_endpoint_flag(&ep->desc);
1445	last_ctx = xhci_last_valid_endpoint(added_ctxs);
1446	if (added_ctxs == SLOT_FLAG || added_ctxs == EP0_FLAG) {
1447		/* FIXME when we have to issue an evaluate endpoint command to
1448		 * deal with ep0 max packet size changing once we get the
1449		 * descriptors
1450		 */
1451		xhci_dbg(xhci, "xHCI %s - can't add slot or ep 0 %#x\n",
1452				__func__, added_ctxs);
1453		return 0;
1454	}
1455
1456	virt_dev = xhci->devs[udev->slot_id];
1457	in_ctx = virt_dev->in_ctx;
1458	out_ctx = virt_dev->out_ctx;
1459	ctrl_ctx = xhci_get_input_control_ctx(xhci, in_ctx);
1460	ep_index = xhci_get_endpoint_index(&ep->desc);
1461	ep_ctx = xhci_get_ep_ctx(xhci, out_ctx, ep_index);
1462
1463	/* If this endpoint is already in use, and the upper layers are trying
1464	 * to add it again without dropping it, reject the addition.
1465	 */
1466	if (virt_dev->eps[ep_index].ring &&
1467			!(le32_to_cpu(ctrl_ctx->drop_flags) &
1468				xhci_get_endpoint_flag(&ep->desc))) {
1469		xhci_warn(xhci, "Trying to add endpoint 0x%x "
1470				"without dropping it.\n",
1471				(unsigned int) ep->desc.bEndpointAddress);
1472		return -EINVAL;
1473	}
1474
1475	/* If the HCD has already noted the endpoint is enabled,
1476	 * ignore this request.
1477	 */
1478	if (le32_to_cpu(ctrl_ctx->add_flags) &
1479	    xhci_get_endpoint_flag(&ep->desc)) {
1480		xhci_warn(xhci, "xHCI %s called with enabled ep %p\n",
1481				__func__, ep);
1482		return 0;
1483	}
1484
1485	/*
1486	 * Configuration and alternate setting changes must be done in
1487	 * process context, not interrupt context (or so documenation
1488	 * for usb_set_interface() and usb_set_configuration() claim).
1489	 */
1490	if (xhci_endpoint_init(xhci, virt_dev, udev, ep, GFP_NOIO) < 0) {
1491		dev_dbg(&udev->dev, "%s - could not initialize ep %#x\n",
1492				__func__, ep->desc.bEndpointAddress);
1493		return -ENOMEM;
1494	}
1495
1496	ctrl_ctx->add_flags |= cpu_to_le32(added_ctxs);
1497	new_add_flags = le32_to_cpu(ctrl_ctx->add_flags);
1498
1499	/* If xhci_endpoint_disable() was called for this endpoint, but the
1500	 * xHC hasn't been notified yet through the check_bandwidth() call,
1501	 * this re-adds a new state for the endpoint from the new endpoint
1502	 * descriptors.  We must drop and re-add this endpoint, so we leave the
1503	 * drop flags alone.
1504	 */
1505	new_drop_flags = le32_to_cpu(ctrl_ctx->drop_flags);
1506
1507	slot_ctx = xhci_get_slot_ctx(xhci, in_ctx);
1508	/* Update the last valid endpoint context, if we just added one past */
1509	if ((le32_to_cpu(slot_ctx->dev_info) & LAST_CTX_MASK) <
1510	    LAST_CTX(last_ctx)) {
1511		slot_ctx->dev_info &= cpu_to_le32(~LAST_CTX_MASK);
1512		slot_ctx->dev_info |= cpu_to_le32(LAST_CTX(last_ctx));
1513	}
1514	new_slot_info = le32_to_cpu(slot_ctx->dev_info);
1515
1516	/* Store the usb_device pointer for later use */
1517	ep->hcpriv = udev;
1518
1519	xhci_dbg(xhci, "add ep 0x%x, slot id %d, new drop flags = %#x, new add flags = %#x, new slot info = %#x\n",
1520			(unsigned int) ep->desc.bEndpointAddress,
1521			udev->slot_id,
1522			(unsigned int) new_drop_flags,
1523			(unsigned int) new_add_flags,
1524			(unsigned int) new_slot_info);
1525	return 0;
1526}
1527
1528static void xhci_zero_in_ctx(struct xhci_hcd *xhci, struct xhci_virt_device *virt_dev)
1529{
1530	struct xhci_input_control_ctx *ctrl_ctx;
1531	struct xhci_ep_ctx *ep_ctx;
1532	struct xhci_slot_ctx *slot_ctx;
1533	int i;
1534
1535	/* When a device's add flag and drop flag are zero, any subsequent
1536	 * configure endpoint command will leave that endpoint's state
1537	 * untouched.  Make sure we don't leave any old state in the input
1538	 * endpoint contexts.
1539	 */
1540	ctrl_ctx = xhci_get_input_control_ctx(xhci, virt_dev->in_ctx);
1541	ctrl_ctx->drop_flags = 0;
1542	ctrl_ctx->add_flags = 0;
1543	slot_ctx = xhci_get_slot_ctx(xhci, virt_dev->in_ctx);
1544	slot_ctx->dev_info &= cpu_to_le32(~LAST_CTX_MASK);
1545	/* Endpoint 0 is always valid */
1546	slot_ctx->dev_info |= cpu_to_le32(LAST_CTX(1));
1547	for (i = 1; i < 31; ++i) {
1548		ep_ctx = xhci_get_ep_ctx(xhci, virt_dev->in_ctx, i);
1549		ep_ctx->ep_info = 0;
1550		ep_ctx->ep_info2 = 0;
1551		ep_ctx->deq = 0;
1552		ep_ctx->tx_info = 0;
1553	}
1554}
1555
1556static int xhci_configure_endpoint_result(struct xhci_hcd *xhci,
1557		struct usb_device *udev, u32 *cmd_status)
1558{
1559	int ret;
1560
1561	switch (*cmd_status) {
1562	case COMP_ENOMEM:
1563		dev_warn(&udev->dev, "Not enough host controller resources "
1564				"for new device state.\n");
1565		ret = -ENOMEM;
1566		/* FIXME: can we allocate more resources for the HC? */
1567		break;
1568	case COMP_BW_ERR:
 
1569		dev_warn(&udev->dev, "Not enough bandwidth "
1570				"for new device state.\n");
1571		ret = -ENOSPC;
1572		/* FIXME: can we go back to the old state? */
1573		break;
1574	case COMP_TRB_ERR:
1575		/* the HCD set up something wrong */
1576		dev_warn(&udev->dev, "ERROR: Endpoint drop flag = 0, "
1577				"add flag = 1, "
1578				"and endpoint is not disabled.\n");
1579		ret = -EINVAL;
1580		break;
1581	case COMP_DEV_ERR:
1582		dev_warn(&udev->dev, "ERROR: Incompatible device for endpoint "
1583				"configure command.\n");
1584		ret = -ENODEV;
1585		break;
1586	case COMP_SUCCESS:
1587		dev_dbg(&udev->dev, "Successful Endpoint Configure command\n");
1588		ret = 0;
1589		break;
1590	default:
1591		xhci_err(xhci, "ERROR: unexpected command completion "
1592				"code 0x%x.\n", *cmd_status);
1593		ret = -EINVAL;
1594		break;
1595	}
1596	return ret;
1597}
1598
1599static int xhci_evaluate_context_result(struct xhci_hcd *xhci,
1600		struct usb_device *udev, u32 *cmd_status)
1601{
1602	int ret;
1603	struct xhci_virt_device *virt_dev = xhci->devs[udev->slot_id];
1604
1605	switch (*cmd_status) {
1606	case COMP_EINVAL:
1607		dev_warn(&udev->dev, "WARN: xHCI driver setup invalid evaluate "
1608				"context command.\n");
1609		ret = -EINVAL;
1610		break;
1611	case COMP_EBADSLT:
1612		dev_warn(&udev->dev, "WARN: slot not enabled for"
1613				"evaluate context command.\n");
1614	case COMP_CTX_STATE:
1615		dev_warn(&udev->dev, "WARN: invalid context state for "
1616				"evaluate context command.\n");
1617		xhci_dbg_ctx(xhci, virt_dev->out_ctx, 1);
1618		ret = -EINVAL;
1619		break;
1620	case COMP_DEV_ERR:
1621		dev_warn(&udev->dev, "ERROR: Incompatible device for evaluate "
1622				"context command.\n");
1623		ret = -ENODEV;
1624		break;
1625	case COMP_MEL_ERR:
1626		/* Max Exit Latency too large error */
1627		dev_warn(&udev->dev, "WARN: Max Exit Latency too large\n");
1628		ret = -EINVAL;
1629		break;
1630	case COMP_SUCCESS:
1631		dev_dbg(&udev->dev, "Successful evaluate context command\n");
1632		ret = 0;
1633		break;
1634	default:
1635		xhci_err(xhci, "ERROR: unexpected command completion "
1636				"code 0x%x.\n", *cmd_status);
1637		ret = -EINVAL;
1638		break;
1639	}
1640	return ret;
1641}
1642
1643static u32 xhci_count_num_new_endpoints(struct xhci_hcd *xhci,
1644		struct xhci_container_ctx *in_ctx)
1645{
1646	struct xhci_input_control_ctx *ctrl_ctx;
1647	u32 valid_add_flags;
1648	u32 valid_drop_flags;
1649
1650	ctrl_ctx = xhci_get_input_control_ctx(xhci, in_ctx);
1651	/* Ignore the slot flag (bit 0), and the default control endpoint flag
1652	 * (bit 1).  The default control endpoint is added during the Address
1653	 * Device command and is never removed until the slot is disabled.
1654	 */
1655	valid_add_flags = ctrl_ctx->add_flags >> 2;
1656	valid_drop_flags = ctrl_ctx->drop_flags >> 2;
1657
1658	/* Use hweight32 to count the number of ones in the add flags, or
1659	 * number of endpoints added.  Don't count endpoints that are changed
1660	 * (both added and dropped).
1661	 */
1662	return hweight32(valid_add_flags) -
1663		hweight32(valid_add_flags & valid_drop_flags);
1664}
1665
1666static unsigned int xhci_count_num_dropped_endpoints(struct xhci_hcd *xhci,
1667		struct xhci_container_ctx *in_ctx)
1668{
1669	struct xhci_input_control_ctx *ctrl_ctx;
1670	u32 valid_add_flags;
1671	u32 valid_drop_flags;
1672
1673	ctrl_ctx = xhci_get_input_control_ctx(xhci, in_ctx);
1674	valid_add_flags = ctrl_ctx->add_flags >> 2;
1675	valid_drop_flags = ctrl_ctx->drop_flags >> 2;
1676
1677	return hweight32(valid_drop_flags) -
1678		hweight32(valid_add_flags & valid_drop_flags);
1679}
1680
1681/*
1682 * We need to reserve the new number of endpoints before the configure endpoint
1683 * command completes.  We can't subtract the dropped endpoints from the number
1684 * of active endpoints until the command completes because we can oversubscribe
1685 * the host in this case:
1686 *
1687 *  - the first configure endpoint command drops more endpoints than it adds
1688 *  - a second configure endpoint command that adds more endpoints is queued
1689 *  - the first configure endpoint command fails, so the config is unchanged
1690 *  - the second command may succeed, even though there isn't enough resources
1691 *
1692 * Must be called with xhci->lock held.
1693 */
1694static int xhci_reserve_host_resources(struct xhci_hcd *xhci,
1695		struct xhci_container_ctx *in_ctx)
1696{
1697	u32 added_eps;
1698
1699	added_eps = xhci_count_num_new_endpoints(xhci, in_ctx);
1700	if (xhci->num_active_eps + added_eps > xhci->limit_active_eps) {
1701		xhci_dbg(xhci, "Not enough ep ctxs: "
1702				"%u active, need to add %u, limit is %u.\n",
1703				xhci->num_active_eps, added_eps,
1704				xhci->limit_active_eps);
1705		return -ENOMEM;
1706	}
1707	xhci->num_active_eps += added_eps;
1708	xhci_dbg(xhci, "Adding %u ep ctxs, %u now active.\n", added_eps,
1709			xhci->num_active_eps);
1710	return 0;
1711}
1712
1713/*
1714 * The configure endpoint was failed by the xHC for some other reason, so we
1715 * need to revert the resources that failed configuration would have used.
1716 *
1717 * Must be called with xhci->lock held.
1718 */
1719static void xhci_free_host_resources(struct xhci_hcd *xhci,
1720		struct xhci_container_ctx *in_ctx)
1721{
1722	u32 num_failed_eps;
1723
1724	num_failed_eps = xhci_count_num_new_endpoints(xhci, in_ctx);
1725	xhci->num_active_eps -= num_failed_eps;
1726	xhci_dbg(xhci, "Removing %u failed ep ctxs, %u now active.\n",
1727			num_failed_eps,
1728			xhci->num_active_eps);
1729}
1730
1731/*
1732 * Now that the command has completed, clean up the active endpoint count by
1733 * subtracting out the endpoints that were dropped (but not changed).
1734 *
1735 * Must be called with xhci->lock held.
1736 */
1737static void xhci_finish_resource_reservation(struct xhci_hcd *xhci,
1738		struct xhci_container_ctx *in_ctx)
1739{
1740	u32 num_dropped_eps;
1741
1742	num_dropped_eps = xhci_count_num_dropped_endpoints(xhci, in_ctx);
1743	xhci->num_active_eps -= num_dropped_eps;
1744	if (num_dropped_eps)
1745		xhci_dbg(xhci, "Removing %u dropped ep ctxs, %u now active.\n",
1746				num_dropped_eps,
1747				xhci->num_active_eps);
1748}
1749
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1750/* Issue a configure endpoint command or evaluate context command
1751 * and wait for it to finish.
1752 */
1753static int xhci_configure_endpoint(struct xhci_hcd *xhci,
1754		struct usb_device *udev,
1755		struct xhci_command *command,
1756		bool ctx_change, bool must_succeed)
1757{
1758	int ret;
1759	int timeleft;
1760	unsigned long flags;
1761	struct xhci_container_ctx *in_ctx;
1762	struct completion *cmd_completion;
1763	u32 *cmd_status;
1764	struct xhci_virt_device *virt_dev;
 
1765
1766	spin_lock_irqsave(&xhci->lock, flags);
1767	virt_dev = xhci->devs[udev->slot_id];
1768	if (command) {
 
1769		in_ctx = command->in_ctx;
1770		if ((xhci->quirks & XHCI_EP_LIMIT_QUIRK) &&
1771				xhci_reserve_host_resources(xhci, in_ctx)) {
1772			spin_unlock_irqrestore(&xhci->lock, flags);
1773			xhci_warn(xhci, "Not enough host resources, "
1774					"active endpoint contexts = %u\n",
1775					xhci->num_active_eps);
1776			return -ENOMEM;
1777		}
 
 
 
 
 
 
 
 
 
 
 
1778
 
1779		cmd_completion = command->completion;
1780		cmd_status = &command->status;
1781		command->command_trb = xhci->cmd_ring->enqueue;
1782
1783		/* Enqueue pointer can be left pointing to the link TRB,
1784		 * we must handle that
1785		 */
1786		if (TRB_TYPE_LINK_LE32(command->command_trb->link.control))
1787			command->command_trb =
1788				xhci->cmd_ring->enq_seg->next->trbs;
1789
1790		list_add_tail(&command->cmd_list, &virt_dev->cmd_list);
1791	} else {
1792		in_ctx = virt_dev->in_ctx;
1793		if ((xhci->quirks & XHCI_EP_LIMIT_QUIRK) &&
1794				xhci_reserve_host_resources(xhci, in_ctx)) {
1795			spin_unlock_irqrestore(&xhci->lock, flags);
1796			xhci_warn(xhci, "Not enough host resources, "
1797					"active endpoint contexts = %u\n",
1798					xhci->num_active_eps);
1799			return -ENOMEM;
1800		}
1801		cmd_completion = &virt_dev->cmd_completion;
1802		cmd_status = &virt_dev->cmd_status;
1803	}
1804	init_completion(cmd_completion);
1805
 
1806	if (!ctx_change)
1807		ret = xhci_queue_configure_endpoint(xhci, in_ctx->dma,
1808				udev->slot_id, must_succeed);
1809	else
1810		ret = xhci_queue_evaluate_context(xhci, in_ctx->dma,
1811				udev->slot_id);
1812	if (ret < 0) {
1813		if (command)
1814			list_del(&command->cmd_list);
1815		if ((xhci->quirks & XHCI_EP_LIMIT_QUIRK))
1816			xhci_free_host_resources(xhci, in_ctx);
1817		spin_unlock_irqrestore(&xhci->lock, flags);
1818		xhci_dbg(xhci, "FIXME allocate a new ring segment\n");
1819		return -ENOMEM;
1820	}
1821	xhci_ring_cmd_db(xhci);
1822	spin_unlock_irqrestore(&xhci->lock, flags);
1823
1824	/* Wait for the configure endpoint command to complete */
1825	timeleft = wait_for_completion_interruptible_timeout(
1826			cmd_completion,
1827			USB_CTRL_SET_TIMEOUT);
1828	if (timeleft <= 0) {
1829		xhci_warn(xhci, "%s while waiting for %s command\n",
1830				timeleft == 0 ? "Timeout" : "Signal",
1831				ctx_change == 0 ?
1832					"configure endpoint" :
1833					"evaluate context");
1834		/* FIXME cancel the configure endpoint command */
 
 
 
1835		return -ETIME;
1836	}
1837
1838	if (!ctx_change)
1839		ret = xhci_configure_endpoint_result(xhci, udev, cmd_status);
1840	else
1841		ret = xhci_evaluate_context_result(xhci, udev, cmd_status);
1842
1843	if ((xhci->quirks & XHCI_EP_LIMIT_QUIRK)) {
1844		spin_lock_irqsave(&xhci->lock, flags);
1845		/* If the command failed, remove the reserved resources.
1846		 * Otherwise, clean up the estimate to include dropped eps.
1847		 */
1848		if (ret)
1849			xhci_free_host_resources(xhci, in_ctx);
1850		else
1851			xhci_finish_resource_reservation(xhci, in_ctx);
1852		spin_unlock_irqrestore(&xhci->lock, flags);
1853	}
1854	return ret;
1855}
1856
1857/* Called after one or more calls to xhci_add_endpoint() or
1858 * xhci_drop_endpoint().  If this call fails, the USB core is expected
1859 * to call xhci_reset_bandwidth().
1860 *
1861 * Since we are in the middle of changing either configuration or
1862 * installing a new alt setting, the USB core won't allow URBs to be
1863 * enqueued for any endpoint on the old config or interface.  Nothing
1864 * else should be touching the xhci->devs[slot_id] structure, so we
1865 * don't need to take the xhci->lock for manipulating that.
1866 */
1867int xhci_check_bandwidth(struct usb_hcd *hcd, struct usb_device *udev)
1868{
1869	int i;
1870	int ret = 0;
1871	struct xhci_hcd *xhci;
1872	struct xhci_virt_device	*virt_dev;
1873	struct xhci_input_control_ctx *ctrl_ctx;
1874	struct xhci_slot_ctx *slot_ctx;
1875
1876	ret = xhci_check_args(hcd, udev, NULL, 0, true, __func__);
1877	if (ret <= 0)
1878		return ret;
1879	xhci = hcd_to_xhci(hcd);
1880	if (xhci->xhc_state & XHCI_STATE_DYING)
1881		return -ENODEV;
1882
1883	xhci_dbg(xhci, "%s called for udev %p\n", __func__, udev);
1884	virt_dev = xhci->devs[udev->slot_id];
1885
1886	/* See section 4.6.6 - A0 = 1; A1 = D0 = D1 = 0 */
1887	ctrl_ctx = xhci_get_input_control_ctx(xhci, virt_dev->in_ctx);
1888	ctrl_ctx->add_flags |= cpu_to_le32(SLOT_FLAG);
1889	ctrl_ctx->add_flags &= cpu_to_le32(~EP0_FLAG);
1890	ctrl_ctx->drop_flags &= cpu_to_le32(~(SLOT_FLAG | EP0_FLAG));
 
 
 
 
 
 
1891	xhci_dbg(xhci, "New Input Control Context:\n");
1892	slot_ctx = xhci_get_slot_ctx(xhci, virt_dev->in_ctx);
1893	xhci_dbg_ctx(xhci, virt_dev->in_ctx,
1894		     LAST_CTX_TO_EP_NUM(le32_to_cpu(slot_ctx->dev_info)));
1895
1896	ret = xhci_configure_endpoint(xhci, udev, NULL,
1897			false, false);
1898	if (ret) {
1899		/* Callee should call reset_bandwidth() */
1900		return ret;
1901	}
1902
1903	xhci_dbg(xhci, "Output context after successful config ep cmd:\n");
1904	xhci_dbg_ctx(xhci, virt_dev->out_ctx,
1905		     LAST_CTX_TO_EP_NUM(le32_to_cpu(slot_ctx->dev_info)));
1906
1907	/* Free any rings that were dropped, but not changed. */
1908	for (i = 1; i < 31; ++i) {
1909		if ((le32_to_cpu(ctrl_ctx->drop_flags) & (1 << (i + 1))) &&
1910		    !(le32_to_cpu(ctrl_ctx->add_flags) & (1 << (i + 1))))
1911			xhci_free_or_cache_endpoint_ring(xhci, virt_dev, i);
1912	}
1913	xhci_zero_in_ctx(xhci, virt_dev);
1914	/*
1915	 * Install any rings for completely new endpoints or changed endpoints,
1916	 * and free or cache any old rings from changed endpoints.
1917	 */
1918	for (i = 1; i < 31; ++i) {
1919		if (!virt_dev->eps[i].new_ring)
1920			continue;
1921		/* Only cache or free the old ring if it exists.
1922		 * It may not if this is the first add of an endpoint.
1923		 */
1924		if (virt_dev->eps[i].ring) {
1925			xhci_free_or_cache_endpoint_ring(xhci, virt_dev, i);
1926		}
1927		virt_dev->eps[i].ring = virt_dev->eps[i].new_ring;
1928		virt_dev->eps[i].new_ring = NULL;
1929	}
1930
1931	return ret;
1932}
1933
1934void xhci_reset_bandwidth(struct usb_hcd *hcd, struct usb_device *udev)
1935{
1936	struct xhci_hcd *xhci;
1937	struct xhci_virt_device	*virt_dev;
1938	int i, ret;
1939
1940	ret = xhci_check_args(hcd, udev, NULL, 0, true, __func__);
1941	if (ret <= 0)
1942		return;
1943	xhci = hcd_to_xhci(hcd);
1944
1945	xhci_dbg(xhci, "%s called for udev %p\n", __func__, udev);
1946	virt_dev = xhci->devs[udev->slot_id];
1947	/* Free any rings allocated for added endpoints */
1948	for (i = 0; i < 31; ++i) {
1949		if (virt_dev->eps[i].new_ring) {
1950			xhci_ring_free(xhci, virt_dev->eps[i].new_ring);
1951			virt_dev->eps[i].new_ring = NULL;
1952		}
1953	}
1954	xhci_zero_in_ctx(xhci, virt_dev);
1955}
1956
1957static void xhci_setup_input_ctx_for_config_ep(struct xhci_hcd *xhci,
1958		struct xhci_container_ctx *in_ctx,
1959		struct xhci_container_ctx *out_ctx,
1960		u32 add_flags, u32 drop_flags)
1961{
1962	struct xhci_input_control_ctx *ctrl_ctx;
1963	ctrl_ctx = xhci_get_input_control_ctx(xhci, in_ctx);
1964	ctrl_ctx->add_flags = cpu_to_le32(add_flags);
1965	ctrl_ctx->drop_flags = cpu_to_le32(drop_flags);
1966	xhci_slot_copy(xhci, in_ctx, out_ctx);
1967	ctrl_ctx->add_flags |= cpu_to_le32(SLOT_FLAG);
1968
1969	xhci_dbg(xhci, "Input Context:\n");
1970	xhci_dbg_ctx(xhci, in_ctx, xhci_last_valid_endpoint(add_flags));
1971}
1972
1973static void xhci_setup_input_ctx_for_quirk(struct xhci_hcd *xhci,
1974		unsigned int slot_id, unsigned int ep_index,
1975		struct xhci_dequeue_state *deq_state)
1976{
1977	struct xhci_container_ctx *in_ctx;
1978	struct xhci_ep_ctx *ep_ctx;
1979	u32 added_ctxs;
1980	dma_addr_t addr;
1981
1982	xhci_endpoint_copy(xhci, xhci->devs[slot_id]->in_ctx,
1983			xhci->devs[slot_id]->out_ctx, ep_index);
1984	in_ctx = xhci->devs[slot_id]->in_ctx;
1985	ep_ctx = xhci_get_ep_ctx(xhci, in_ctx, ep_index);
1986	addr = xhci_trb_virt_to_dma(deq_state->new_deq_seg,
1987			deq_state->new_deq_ptr);
1988	if (addr == 0) {
1989		xhci_warn(xhci, "WARN Cannot submit config ep after "
1990				"reset ep command\n");
1991		xhci_warn(xhci, "WARN deq seg = %p, deq ptr = %p\n",
1992				deq_state->new_deq_seg,
1993				deq_state->new_deq_ptr);
1994		return;
1995	}
1996	ep_ctx->deq = cpu_to_le64(addr | deq_state->new_cycle_state);
1997
1998	added_ctxs = xhci_get_endpoint_flag_from_index(ep_index);
1999	xhci_setup_input_ctx_for_config_ep(xhci, xhci->devs[slot_id]->in_ctx,
2000			xhci->devs[slot_id]->out_ctx, added_ctxs, added_ctxs);
2001}
2002
2003void xhci_cleanup_stalled_ring(struct xhci_hcd *xhci,
2004		struct usb_device *udev, unsigned int ep_index)
2005{
2006	struct xhci_dequeue_state deq_state;
2007	struct xhci_virt_ep *ep;
2008
2009	xhci_dbg(xhci, "Cleaning up stalled endpoint ring\n");
2010	ep = &xhci->devs[udev->slot_id]->eps[ep_index];
2011	/* We need to move the HW's dequeue pointer past this TD,
2012	 * or it will attempt to resend it on the next doorbell ring.
2013	 */
2014	xhci_find_new_dequeue_state(xhci, udev->slot_id,
2015			ep_index, ep->stopped_stream, ep->stopped_td,
2016			&deq_state);
2017
2018	/* HW with the reset endpoint quirk will use the saved dequeue state to
2019	 * issue a configure endpoint command later.
2020	 */
2021	if (!(xhci->quirks & XHCI_RESET_EP_QUIRK)) {
2022		xhci_dbg(xhci, "Queueing new dequeue state\n");
2023		xhci_queue_new_dequeue_state(xhci, udev->slot_id,
2024				ep_index, ep->stopped_stream, &deq_state);
2025	} else {
2026		/* Better hope no one uses the input context between now and the
2027		 * reset endpoint completion!
2028		 * XXX: No idea how this hardware will react when stream rings
2029		 * are enabled.
2030		 */
2031		xhci_dbg(xhci, "Setting up input context for "
2032				"configure endpoint command\n");
2033		xhci_setup_input_ctx_for_quirk(xhci, udev->slot_id,
2034				ep_index, &deq_state);
2035	}
2036}
2037
2038/* Deal with stalled endpoints.  The core should have sent the control message
2039 * to clear the halt condition.  However, we need to make the xHCI hardware
2040 * reset its sequence number, since a device will expect a sequence number of
2041 * zero after the halt condition is cleared.
2042 * Context: in_interrupt
2043 */
2044void xhci_endpoint_reset(struct usb_hcd *hcd,
2045		struct usb_host_endpoint *ep)
2046{
2047	struct xhci_hcd *xhci;
2048	struct usb_device *udev;
2049	unsigned int ep_index;
2050	unsigned long flags;
2051	int ret;
2052	struct xhci_virt_ep *virt_ep;
2053
2054	xhci = hcd_to_xhci(hcd);
2055	udev = (struct usb_device *) ep->hcpriv;
2056	/* Called with a root hub endpoint (or an endpoint that wasn't added
2057	 * with xhci_add_endpoint()
2058	 */
2059	if (!ep->hcpriv)
2060		return;
2061	ep_index = xhci_get_endpoint_index(&ep->desc);
2062	virt_ep = &xhci->devs[udev->slot_id]->eps[ep_index];
2063	if (!virt_ep->stopped_td) {
2064		xhci_dbg(xhci, "Endpoint 0x%x not halted, refusing to reset.\n",
2065				ep->desc.bEndpointAddress);
2066		return;
2067	}
2068	if (usb_endpoint_xfer_control(&ep->desc)) {
2069		xhci_dbg(xhci, "Control endpoint stall already handled.\n");
2070		return;
2071	}
2072
2073	xhci_dbg(xhci, "Queueing reset endpoint command\n");
2074	spin_lock_irqsave(&xhci->lock, flags);
2075	ret = xhci_queue_reset_ep(xhci, udev->slot_id, ep_index);
2076	/*
2077	 * Can't change the ring dequeue pointer until it's transitioned to the
2078	 * stopped state, which is only upon a successful reset endpoint
2079	 * command.  Better hope that last command worked!
2080	 */
2081	if (!ret) {
2082		xhci_cleanup_stalled_ring(xhci, udev, ep_index);
2083		kfree(virt_ep->stopped_td);
2084		xhci_ring_cmd_db(xhci);
2085	}
2086	virt_ep->stopped_td = NULL;
2087	virt_ep->stopped_trb = NULL;
2088	virt_ep->stopped_stream = 0;
2089	spin_unlock_irqrestore(&xhci->lock, flags);
2090
2091	if (ret)
2092		xhci_warn(xhci, "FIXME allocate a new ring segment\n");
2093}
2094
2095static int xhci_check_streams_endpoint(struct xhci_hcd *xhci,
2096		struct usb_device *udev, struct usb_host_endpoint *ep,
2097		unsigned int slot_id)
2098{
2099	int ret;
2100	unsigned int ep_index;
2101	unsigned int ep_state;
2102
2103	if (!ep)
2104		return -EINVAL;
2105	ret = xhci_check_args(xhci_to_hcd(xhci), udev, ep, 1, true, __func__);
2106	if (ret <= 0)
2107		return -EINVAL;
2108	if (ep->ss_ep_comp.bmAttributes == 0) {
2109		xhci_warn(xhci, "WARN: SuperSpeed Endpoint Companion"
2110				" descriptor for ep 0x%x does not support streams\n",
2111				ep->desc.bEndpointAddress);
2112		return -EINVAL;
2113	}
2114
2115	ep_index = xhci_get_endpoint_index(&ep->desc);
2116	ep_state = xhci->devs[slot_id]->eps[ep_index].ep_state;
2117	if (ep_state & EP_HAS_STREAMS ||
2118			ep_state & EP_GETTING_STREAMS) {
2119		xhci_warn(xhci, "WARN: SuperSpeed bulk endpoint 0x%x "
2120				"already has streams set up.\n",
2121				ep->desc.bEndpointAddress);
2122		xhci_warn(xhci, "Send email to xHCI maintainer and ask for "
2123				"dynamic stream context array reallocation.\n");
2124		return -EINVAL;
2125	}
2126	if (!list_empty(&xhci->devs[slot_id]->eps[ep_index].ring->td_list)) {
2127		xhci_warn(xhci, "Cannot setup streams for SuperSpeed bulk "
2128				"endpoint 0x%x; URBs are pending.\n",
2129				ep->desc.bEndpointAddress);
2130		return -EINVAL;
2131	}
2132	return 0;
2133}
2134
2135static void xhci_calculate_streams_entries(struct xhci_hcd *xhci,
2136		unsigned int *num_streams, unsigned int *num_stream_ctxs)
2137{
2138	unsigned int max_streams;
2139
2140	/* The stream context array size must be a power of two */
2141	*num_stream_ctxs = roundup_pow_of_two(*num_streams);
2142	/*
2143	 * Find out how many primary stream array entries the host controller
2144	 * supports.  Later we may use secondary stream arrays (similar to 2nd
2145	 * level page entries), but that's an optional feature for xHCI host
2146	 * controllers. xHCs must support at least 4 stream IDs.
2147	 */
2148	max_streams = HCC_MAX_PSA(xhci->hcc_params);
2149	if (*num_stream_ctxs > max_streams) {
2150		xhci_dbg(xhci, "xHCI HW only supports %u stream ctx entries.\n",
2151				max_streams);
2152		*num_stream_ctxs = max_streams;
2153		*num_streams = max_streams;
2154	}
2155}
2156
2157/* Returns an error code if one of the endpoint already has streams.
2158 * This does not change any data structures, it only checks and gathers
2159 * information.
2160 */
2161static int xhci_calculate_streams_and_bitmask(struct xhci_hcd *xhci,
2162		struct usb_device *udev,
2163		struct usb_host_endpoint **eps, unsigned int num_eps,
2164		unsigned int *num_streams, u32 *changed_ep_bitmask)
2165{
2166	unsigned int max_streams;
2167	unsigned int endpoint_flag;
2168	int i;
2169	int ret;
2170
2171	for (i = 0; i < num_eps; i++) {
2172		ret = xhci_check_streams_endpoint(xhci, udev,
2173				eps[i], udev->slot_id);
2174		if (ret < 0)
2175			return ret;
2176
2177		max_streams = USB_SS_MAX_STREAMS(
2178				eps[i]->ss_ep_comp.bmAttributes);
2179		if (max_streams < (*num_streams - 1)) {
2180			xhci_dbg(xhci, "Ep 0x%x only supports %u stream IDs.\n",
2181					eps[i]->desc.bEndpointAddress,
2182					max_streams);
2183			*num_streams = max_streams+1;
2184		}
2185
2186		endpoint_flag = xhci_get_endpoint_flag(&eps[i]->desc);
2187		if (*changed_ep_bitmask & endpoint_flag)
2188			return -EINVAL;
2189		*changed_ep_bitmask |= endpoint_flag;
2190	}
2191	return 0;
2192}
2193
2194static u32 xhci_calculate_no_streams_bitmask(struct xhci_hcd *xhci,
2195		struct usb_device *udev,
2196		struct usb_host_endpoint **eps, unsigned int num_eps)
2197{
2198	u32 changed_ep_bitmask = 0;
2199	unsigned int slot_id;
2200	unsigned int ep_index;
2201	unsigned int ep_state;
2202	int i;
2203
2204	slot_id = udev->slot_id;
2205	if (!xhci->devs[slot_id])
2206		return 0;
2207
2208	for (i = 0; i < num_eps; i++) {
2209		ep_index = xhci_get_endpoint_index(&eps[i]->desc);
2210		ep_state = xhci->devs[slot_id]->eps[ep_index].ep_state;
2211		/* Are streams already being freed for the endpoint? */
2212		if (ep_state & EP_GETTING_NO_STREAMS) {
2213			xhci_warn(xhci, "WARN Can't disable streams for "
2214					"endpoint 0x%x\n, "
2215					"streams are being disabled already.",
2216					eps[i]->desc.bEndpointAddress);
2217			return 0;
2218		}
2219		/* Are there actually any streams to free? */
2220		if (!(ep_state & EP_HAS_STREAMS) &&
2221				!(ep_state & EP_GETTING_STREAMS)) {
2222			xhci_warn(xhci, "WARN Can't disable streams for "
2223					"endpoint 0x%x\n, "
2224					"streams are already disabled!",
2225					eps[i]->desc.bEndpointAddress);
2226			xhci_warn(xhci, "WARN xhci_free_streams() called "
2227					"with non-streams endpoint\n");
2228			return 0;
2229		}
2230		changed_ep_bitmask |= xhci_get_endpoint_flag(&eps[i]->desc);
2231	}
2232	return changed_ep_bitmask;
2233}
2234
2235/*
2236 * The USB device drivers use this function (though the HCD interface in USB
2237 * core) to prepare a set of bulk endpoints to use streams.  Streams are used to
2238 * coordinate mass storage command queueing across multiple endpoints (basically
2239 * a stream ID == a task ID).
2240 *
2241 * Setting up streams involves allocating the same size stream context array
2242 * for each endpoint and issuing a configure endpoint command for all endpoints.
2243 *
2244 * Don't allow the call to succeed if one endpoint only supports one stream
2245 * (which means it doesn't support streams at all).
2246 *
2247 * Drivers may get less stream IDs than they asked for, if the host controller
2248 * hardware or endpoints claim they can't support the number of requested
2249 * stream IDs.
2250 */
2251int xhci_alloc_streams(struct usb_hcd *hcd, struct usb_device *udev,
2252		struct usb_host_endpoint **eps, unsigned int num_eps,
2253		unsigned int num_streams, gfp_t mem_flags)
2254{
2255	int i, ret;
2256	struct xhci_hcd *xhci;
2257	struct xhci_virt_device *vdev;
2258	struct xhci_command *config_cmd;
2259	unsigned int ep_index;
2260	unsigned int num_stream_ctxs;
2261	unsigned long flags;
2262	u32 changed_ep_bitmask = 0;
2263
2264	if (!eps)
2265		return -EINVAL;
2266
2267	/* Add one to the number of streams requested to account for
2268	 * stream 0 that is reserved for xHCI usage.
2269	 */
2270	num_streams += 1;
2271	xhci = hcd_to_xhci(hcd);
2272	xhci_dbg(xhci, "Driver wants %u stream IDs (including stream 0).\n",
2273			num_streams);
2274
2275	config_cmd = xhci_alloc_command(xhci, true, true, mem_flags);
2276	if (!config_cmd) {
2277		xhci_dbg(xhci, "Could not allocate xHCI command structure.\n");
2278		return -ENOMEM;
2279	}
2280
2281	/* Check to make sure all endpoints are not already configured for
2282	 * streams.  While we're at it, find the maximum number of streams that
2283	 * all the endpoints will support and check for duplicate endpoints.
2284	 */
2285	spin_lock_irqsave(&xhci->lock, flags);
2286	ret = xhci_calculate_streams_and_bitmask(xhci, udev, eps,
2287			num_eps, &num_streams, &changed_ep_bitmask);
2288	if (ret < 0) {
2289		xhci_free_command(xhci, config_cmd);
2290		spin_unlock_irqrestore(&xhci->lock, flags);
2291		return ret;
2292	}
2293	if (num_streams <= 1) {
2294		xhci_warn(xhci, "WARN: endpoints can't handle "
2295				"more than one stream.\n");
2296		xhci_free_command(xhci, config_cmd);
2297		spin_unlock_irqrestore(&xhci->lock, flags);
2298		return -EINVAL;
2299	}
2300	vdev = xhci->devs[udev->slot_id];
2301	/* Mark each endpoint as being in transition, so
2302	 * xhci_urb_enqueue() will reject all URBs.
2303	 */
2304	for (i = 0; i < num_eps; i++) {
2305		ep_index = xhci_get_endpoint_index(&eps[i]->desc);
2306		vdev->eps[ep_index].ep_state |= EP_GETTING_STREAMS;
2307	}
2308	spin_unlock_irqrestore(&xhci->lock, flags);
2309
2310	/* Setup internal data structures and allocate HW data structures for
2311	 * streams (but don't install the HW structures in the input context
2312	 * until we're sure all memory allocation succeeded).
2313	 */
2314	xhci_calculate_streams_entries(xhci, &num_streams, &num_stream_ctxs);
2315	xhci_dbg(xhci, "Need %u stream ctx entries for %u stream IDs.\n",
2316			num_stream_ctxs, num_streams);
2317
2318	for (i = 0; i < num_eps; i++) {
2319		ep_index = xhci_get_endpoint_index(&eps[i]->desc);
2320		vdev->eps[ep_index].stream_info = xhci_alloc_stream_info(xhci,
2321				num_stream_ctxs,
2322				num_streams, mem_flags);
2323		if (!vdev->eps[ep_index].stream_info)
2324			goto cleanup;
2325		/* Set maxPstreams in endpoint context and update deq ptr to
2326		 * point to stream context array. FIXME
2327		 */
2328	}
2329
2330	/* Set up the input context for a configure endpoint command. */
2331	for (i = 0; i < num_eps; i++) {
2332		struct xhci_ep_ctx *ep_ctx;
2333
2334		ep_index = xhci_get_endpoint_index(&eps[i]->desc);
2335		ep_ctx = xhci_get_ep_ctx(xhci, config_cmd->in_ctx, ep_index);
2336
2337		xhci_endpoint_copy(xhci, config_cmd->in_ctx,
2338				vdev->out_ctx, ep_index);
2339		xhci_setup_streams_ep_input_ctx(xhci, ep_ctx,
2340				vdev->eps[ep_index].stream_info);
2341	}
2342	/* Tell the HW to drop its old copy of the endpoint context info
2343	 * and add the updated copy from the input context.
2344	 */
2345	xhci_setup_input_ctx_for_config_ep(xhci, config_cmd->in_ctx,
2346			vdev->out_ctx, changed_ep_bitmask, changed_ep_bitmask);
2347
2348	/* Issue and wait for the configure endpoint command */
2349	ret = xhci_configure_endpoint(xhci, udev, config_cmd,
2350			false, false);
2351
2352	/* xHC rejected the configure endpoint command for some reason, so we
2353	 * leave the old ring intact and free our internal streams data
2354	 * structure.
2355	 */
2356	if (ret < 0)
2357		goto cleanup;
2358
2359	spin_lock_irqsave(&xhci->lock, flags);
2360	for (i = 0; i < num_eps; i++) {
2361		ep_index = xhci_get_endpoint_index(&eps[i]->desc);
2362		vdev->eps[ep_index].ep_state &= ~EP_GETTING_STREAMS;
2363		xhci_dbg(xhci, "Slot %u ep ctx %u now has streams.\n",
2364			 udev->slot_id, ep_index);
2365		vdev->eps[ep_index].ep_state |= EP_HAS_STREAMS;
2366	}
2367	xhci_free_command(xhci, config_cmd);
2368	spin_unlock_irqrestore(&xhci->lock, flags);
2369
2370	/* Subtract 1 for stream 0, which drivers can't use */
2371	return num_streams - 1;
2372
2373cleanup:
2374	/* If it didn't work, free the streams! */
2375	for (i = 0; i < num_eps; i++) {
2376		ep_index = xhci_get_endpoint_index(&eps[i]->desc);
2377		xhci_free_stream_info(xhci, vdev->eps[ep_index].stream_info);
2378		vdev->eps[ep_index].stream_info = NULL;
2379		/* FIXME Unset maxPstreams in endpoint context and
2380		 * update deq ptr to point to normal string ring.
2381		 */
2382		vdev->eps[ep_index].ep_state &= ~EP_GETTING_STREAMS;
2383		vdev->eps[ep_index].ep_state &= ~EP_HAS_STREAMS;
2384		xhci_endpoint_zero(xhci, vdev, eps[i]);
2385	}
2386	xhci_free_command(xhci, config_cmd);
2387	return -ENOMEM;
2388}
2389
2390/* Transition the endpoint from using streams to being a "normal" endpoint
2391 * without streams.
2392 *
2393 * Modify the endpoint context state, submit a configure endpoint command,
2394 * and free all endpoint rings for streams if that completes successfully.
2395 */
2396int xhci_free_streams(struct usb_hcd *hcd, struct usb_device *udev,
2397		struct usb_host_endpoint **eps, unsigned int num_eps,
2398		gfp_t mem_flags)
2399{
2400	int i, ret;
2401	struct xhci_hcd *xhci;
2402	struct xhci_virt_device *vdev;
2403	struct xhci_command *command;
2404	unsigned int ep_index;
2405	unsigned long flags;
2406	u32 changed_ep_bitmask;
2407
2408	xhci = hcd_to_xhci(hcd);
2409	vdev = xhci->devs[udev->slot_id];
2410
2411	/* Set up a configure endpoint command to remove the streams rings */
2412	spin_lock_irqsave(&xhci->lock, flags);
2413	changed_ep_bitmask = xhci_calculate_no_streams_bitmask(xhci,
2414			udev, eps, num_eps);
2415	if (changed_ep_bitmask == 0) {
2416		spin_unlock_irqrestore(&xhci->lock, flags);
2417		return -EINVAL;
2418	}
2419
2420	/* Use the xhci_command structure from the first endpoint.  We may have
2421	 * allocated too many, but the driver may call xhci_free_streams() for
2422	 * each endpoint it grouped into one call to xhci_alloc_streams().
2423	 */
2424	ep_index = xhci_get_endpoint_index(&eps[0]->desc);
2425	command = vdev->eps[ep_index].stream_info->free_streams_command;
2426	for (i = 0; i < num_eps; i++) {
2427		struct xhci_ep_ctx *ep_ctx;
2428
2429		ep_index = xhci_get_endpoint_index(&eps[i]->desc);
2430		ep_ctx = xhci_get_ep_ctx(xhci, command->in_ctx, ep_index);
2431		xhci->devs[udev->slot_id]->eps[ep_index].ep_state |=
2432			EP_GETTING_NO_STREAMS;
2433
2434		xhci_endpoint_copy(xhci, command->in_ctx,
2435				vdev->out_ctx, ep_index);
2436		xhci_setup_no_streams_ep_input_ctx(xhci, ep_ctx,
2437				&vdev->eps[ep_index]);
2438	}
2439	xhci_setup_input_ctx_for_config_ep(xhci, command->in_ctx,
2440			vdev->out_ctx, changed_ep_bitmask, changed_ep_bitmask);
2441	spin_unlock_irqrestore(&xhci->lock, flags);
2442
2443	/* Issue and wait for the configure endpoint command,
2444	 * which must succeed.
2445	 */
2446	ret = xhci_configure_endpoint(xhci, udev, command,
2447			false, true);
2448
2449	/* xHC rejected the configure endpoint command for some reason, so we
2450	 * leave the streams rings intact.
2451	 */
2452	if (ret < 0)
2453		return ret;
2454
2455	spin_lock_irqsave(&xhci->lock, flags);
2456	for (i = 0; i < num_eps; i++) {
2457		ep_index = xhci_get_endpoint_index(&eps[i]->desc);
2458		xhci_free_stream_info(xhci, vdev->eps[ep_index].stream_info);
2459		vdev->eps[ep_index].stream_info = NULL;
2460		/* FIXME Unset maxPstreams in endpoint context and
2461		 * update deq ptr to point to normal string ring.
2462		 */
2463		vdev->eps[ep_index].ep_state &= ~EP_GETTING_NO_STREAMS;
2464		vdev->eps[ep_index].ep_state &= ~EP_HAS_STREAMS;
2465	}
2466	spin_unlock_irqrestore(&xhci->lock, flags);
2467
2468	return 0;
2469}
2470
2471/*
2472 * Deletes endpoint resources for endpoints that were active before a Reset
2473 * Device command, or a Disable Slot command.  The Reset Device command leaves
2474 * the control endpoint intact, whereas the Disable Slot command deletes it.
2475 *
2476 * Must be called with xhci->lock held.
2477 */
2478void xhci_free_device_endpoint_resources(struct xhci_hcd *xhci,
2479	struct xhci_virt_device *virt_dev, bool drop_control_ep)
2480{
2481	int i;
2482	unsigned int num_dropped_eps = 0;
2483	unsigned int drop_flags = 0;
2484
2485	for (i = (drop_control_ep ? 0 : 1); i < 31; i++) {
2486		if (virt_dev->eps[i].ring) {
2487			drop_flags |= 1 << i;
2488			num_dropped_eps++;
2489		}
2490	}
2491	xhci->num_active_eps -= num_dropped_eps;
2492	if (num_dropped_eps)
2493		xhci_dbg(xhci, "Dropped %u ep ctxs, flags = 0x%x, "
2494				"%u now active.\n",
2495				num_dropped_eps, drop_flags,
2496				xhci->num_active_eps);
2497}
2498
2499/*
2500 * This submits a Reset Device Command, which will set the device state to 0,
2501 * set the device address to 0, and disable all the endpoints except the default
2502 * control endpoint.  The USB core should come back and call
2503 * xhci_address_device(), and then re-set up the configuration.  If this is
2504 * called because of a usb_reset_and_verify_device(), then the old alternate
2505 * settings will be re-installed through the normal bandwidth allocation
2506 * functions.
2507 *
2508 * Wait for the Reset Device command to finish.  Remove all structures
2509 * associated with the endpoints that were disabled.  Clear the input device
2510 * structure?  Cache the rings?  Reset the control endpoint 0 max packet size?
2511 *
2512 * If the virt_dev to be reset does not exist or does not match the udev,
2513 * it means the device is lost, possibly due to the xHC restore error and
2514 * re-initialization during S3/S4. In this case, call xhci_alloc_dev() to
2515 * re-allocate the device.
2516 */
2517int xhci_discover_or_reset_device(struct usb_hcd *hcd, struct usb_device *udev)
2518{
2519	int ret, i;
2520	unsigned long flags;
2521	struct xhci_hcd *xhci;
2522	unsigned int slot_id;
2523	struct xhci_virt_device *virt_dev;
2524	struct xhci_command *reset_device_cmd;
2525	int timeleft;
2526	int last_freed_endpoint;
2527	struct xhci_slot_ctx *slot_ctx;
 
2528
2529	ret = xhci_check_args(hcd, udev, NULL, 0, false, __func__);
2530	if (ret <= 0)
2531		return ret;
2532	xhci = hcd_to_xhci(hcd);
2533	slot_id = udev->slot_id;
2534	virt_dev = xhci->devs[slot_id];
2535	if (!virt_dev) {
2536		xhci_dbg(xhci, "The device to be reset with slot ID %u does "
2537				"not exist. Re-allocate the device\n", slot_id);
2538		ret = xhci_alloc_dev(hcd, udev);
2539		if (ret == 1)
2540			return 0;
2541		else
2542			return -EINVAL;
2543	}
2544
2545	if (virt_dev->udev != udev) {
2546		/* If the virt_dev and the udev does not match, this virt_dev
2547		 * may belong to another udev.
2548		 * Re-allocate the device.
2549		 */
2550		xhci_dbg(xhci, "The device to be reset with slot ID %u does "
2551				"not match the udev. Re-allocate the device\n",
2552				slot_id);
2553		ret = xhci_alloc_dev(hcd, udev);
2554		if (ret == 1)
2555			return 0;
2556		else
2557			return -EINVAL;
2558	}
2559
2560	/* If device is not setup, there is no point in resetting it */
2561	slot_ctx = xhci_get_slot_ctx(xhci, virt_dev->out_ctx);
2562	if (GET_SLOT_STATE(le32_to_cpu(slot_ctx->dev_state)) ==
2563						SLOT_STATE_DISABLED)
2564		return 0;
2565
2566	xhci_dbg(xhci, "Resetting device with slot ID %u\n", slot_id);
2567	/* Allocate the command structure that holds the struct completion.
2568	 * Assume we're in process context, since the normal device reset
2569	 * process has to wait for the device anyway.  Storage devices are
2570	 * reset as part of error handling, so use GFP_NOIO instead of
2571	 * GFP_KERNEL.
2572	 */
2573	reset_device_cmd = xhci_alloc_command(xhci, false, true, GFP_NOIO);
2574	if (!reset_device_cmd) {
2575		xhci_dbg(xhci, "Couldn't allocate command structure.\n");
2576		return -ENOMEM;
2577	}
2578
2579	/* Attempt to submit the Reset Device command to the command ring */
2580	spin_lock_irqsave(&xhci->lock, flags);
2581	reset_device_cmd->command_trb = xhci->cmd_ring->enqueue;
2582
2583	/* Enqueue pointer can be left pointing to the link TRB,
2584	 * we must handle that
2585	 */
2586	if (TRB_TYPE_LINK_LE32(reset_device_cmd->command_trb->link.control))
2587		reset_device_cmd->command_trb =
2588			xhci->cmd_ring->enq_seg->next->trbs;
2589
2590	list_add_tail(&reset_device_cmd->cmd_list, &virt_dev->cmd_list);
2591	ret = xhci_queue_reset_device(xhci, slot_id);
2592	if (ret) {
2593		xhci_dbg(xhci, "FIXME: allocate a command ring segment\n");
2594		list_del(&reset_device_cmd->cmd_list);
2595		spin_unlock_irqrestore(&xhci->lock, flags);
2596		goto command_cleanup;
2597	}
2598	xhci_ring_cmd_db(xhci);
2599	spin_unlock_irqrestore(&xhci->lock, flags);
2600
2601	/* Wait for the Reset Device command to finish */
2602	timeleft = wait_for_completion_interruptible_timeout(
2603			reset_device_cmd->completion,
2604			USB_CTRL_SET_TIMEOUT);
2605	if (timeleft <= 0) {
2606		xhci_warn(xhci, "%s while waiting for reset device command\n",
2607				timeleft == 0 ? "Timeout" : "Signal");
2608		spin_lock_irqsave(&xhci->lock, flags);
2609		/* The timeout might have raced with the event ring handler, so
2610		 * only delete from the list if the item isn't poisoned.
2611		 */
2612		if (reset_device_cmd->cmd_list.next != LIST_POISON1)
2613			list_del(&reset_device_cmd->cmd_list);
2614		spin_unlock_irqrestore(&xhci->lock, flags);
2615		ret = -ETIME;
2616		goto command_cleanup;
2617	}
2618
2619	/* The Reset Device command can't fail, according to the 0.95/0.96 spec,
2620	 * unless we tried to reset a slot ID that wasn't enabled,
2621	 * or the device wasn't in the addressed or configured state.
2622	 */
2623	ret = reset_device_cmd->status;
2624	switch (ret) {
2625	case COMP_EBADSLT: /* 0.95 completion code for bad slot ID */
2626	case COMP_CTX_STATE: /* 0.96 completion code for same thing */
2627		xhci_info(xhci, "Can't reset device (slot ID %u) in %s state\n",
2628				slot_id,
2629				xhci_get_slot_state(xhci, virt_dev->out_ctx));
2630		xhci_info(xhci, "Not freeing device rings.\n");
2631		/* Don't treat this as an error.  May change my mind later. */
2632		ret = 0;
2633		goto command_cleanup;
2634	case COMP_SUCCESS:
2635		xhci_dbg(xhci, "Successful reset device command.\n");
2636		break;
2637	default:
2638		if (xhci_is_vendor_info_code(xhci, ret))
2639			break;
2640		xhci_warn(xhci, "Unknown completion code %u for "
2641				"reset device command.\n", ret);
2642		ret = -EINVAL;
2643		goto command_cleanup;
2644	}
2645
2646	/* Free up host controller endpoint resources */
2647	if ((xhci->quirks & XHCI_EP_LIMIT_QUIRK)) {
2648		spin_lock_irqsave(&xhci->lock, flags);
2649		/* Don't delete the default control endpoint resources */
2650		xhci_free_device_endpoint_resources(xhci, virt_dev, false);
2651		spin_unlock_irqrestore(&xhci->lock, flags);
2652	}
2653
2654	/* Everything but endpoint 0 is disabled, so free or cache the rings. */
2655	last_freed_endpoint = 1;
2656	for (i = 1; i < 31; ++i) {
2657		struct xhci_virt_ep *ep = &virt_dev->eps[i];
2658
2659		if (ep->ep_state & EP_HAS_STREAMS) {
2660			xhci_free_stream_info(xhci, ep->stream_info);
2661			ep->stream_info = NULL;
2662			ep->ep_state &= ~EP_HAS_STREAMS;
2663		}
2664
2665		if (ep->ring) {
2666			xhci_free_or_cache_endpoint_ring(xhci, virt_dev, i);
2667			last_freed_endpoint = i;
2668		}
 
 
 
 
 
 
 
 
2669	}
 
 
 
2670	xhci_dbg(xhci, "Output context after successful reset device cmd:\n");
2671	xhci_dbg_ctx(xhci, virt_dev->out_ctx, last_freed_endpoint);
2672	ret = 0;
2673
2674command_cleanup:
2675	xhci_free_command(xhci, reset_device_cmd);
2676	return ret;
2677}
2678
2679/*
2680 * At this point, the struct usb_device is about to go away, the device has
2681 * disconnected, and all traffic has been stopped and the endpoints have been
2682 * disabled.  Free any HC data structures associated with that device.
2683 */
2684void xhci_free_dev(struct usb_hcd *hcd, struct usb_device *udev)
2685{
2686	struct xhci_hcd *xhci = hcd_to_xhci(hcd);
2687	struct xhci_virt_device *virt_dev;
2688	unsigned long flags;
2689	u32 state;
2690	int i, ret;
2691
2692	ret = xhci_check_args(hcd, udev, NULL, 0, true, __func__);
2693	/* If the host is halted due to driver unload, we still need to free the
2694	 * device.
2695	 */
2696	if (ret <= 0 && ret != -ENODEV)
2697		return;
2698
2699	virt_dev = xhci->devs[udev->slot_id];
2700
2701	/* Stop any wayward timer functions (which may grab the lock) */
2702	for (i = 0; i < 31; ++i) {
2703		virt_dev->eps[i].ep_state &= ~EP_HALT_PENDING;
2704		del_timer_sync(&virt_dev->eps[i].stop_cmd_timer);
2705	}
2706
 
 
 
 
 
2707	spin_lock_irqsave(&xhci->lock, flags);
2708	/* Don't disable the slot if the host controller is dead. */
2709	state = xhci_readl(xhci, &xhci->op_regs->status);
2710	if (state == 0xffffffff || (xhci->xhc_state & XHCI_STATE_DYING) ||
2711			(xhci->xhc_state & XHCI_STATE_HALTED)) {
2712		xhci_free_virt_device(xhci, udev->slot_id);
2713		spin_unlock_irqrestore(&xhci->lock, flags);
2714		return;
2715	}
2716
2717	if (xhci_queue_slot_control(xhci, TRB_DISABLE_SLOT, udev->slot_id)) {
2718		spin_unlock_irqrestore(&xhci->lock, flags);
2719		xhci_dbg(xhci, "FIXME: allocate a command ring segment\n");
2720		return;
2721	}
2722	xhci_ring_cmd_db(xhci);
2723	spin_unlock_irqrestore(&xhci->lock, flags);
2724	/*
2725	 * Event command completion handler will free any data structures
2726	 * associated with the slot.  XXX Can free sleep?
2727	 */
2728}
2729
2730/*
2731 * Checks if we have enough host controller resources for the default control
2732 * endpoint.
2733 *
2734 * Must be called with xhci->lock held.
2735 */
2736static int xhci_reserve_host_control_ep_resources(struct xhci_hcd *xhci)
2737{
2738	if (xhci->num_active_eps + 1 > xhci->limit_active_eps) {
2739		xhci_dbg(xhci, "Not enough ep ctxs: "
2740				"%u active, need to add 1, limit is %u.\n",
2741				xhci->num_active_eps, xhci->limit_active_eps);
2742		return -ENOMEM;
2743	}
2744	xhci->num_active_eps += 1;
2745	xhci_dbg(xhci, "Adding 1 ep ctx, %u now active.\n",
2746			xhci->num_active_eps);
2747	return 0;
2748}
2749
2750
2751/*
2752 * Returns 0 if the xHC ran out of device slots, the Enable Slot command
2753 * timed out, or allocating memory failed.  Returns 1 on success.
2754 */
2755int xhci_alloc_dev(struct usb_hcd *hcd, struct usb_device *udev)
2756{
2757	struct xhci_hcd *xhci = hcd_to_xhci(hcd);
2758	unsigned long flags;
2759	int timeleft;
2760	int ret;
 
2761
2762	spin_lock_irqsave(&xhci->lock, flags);
 
2763	ret = xhci_queue_slot_control(xhci, TRB_ENABLE_SLOT, 0);
2764	if (ret) {
2765		spin_unlock_irqrestore(&xhci->lock, flags);
2766		xhci_dbg(xhci, "FIXME: allocate a command ring segment\n");
2767		return 0;
2768	}
2769	xhci_ring_cmd_db(xhci);
2770	spin_unlock_irqrestore(&xhci->lock, flags);
2771
2772	/* XXX: how much time for xHC slot assignment? */
2773	timeleft = wait_for_completion_interruptible_timeout(&xhci->addr_dev,
2774			USB_CTRL_SET_TIMEOUT);
2775	if (timeleft <= 0) {
2776		xhci_warn(xhci, "%s while waiting for a slot\n",
2777				timeleft == 0 ? "Timeout" : "Signal");
2778		/* FIXME cancel the enable slot request */
2779		return 0;
2780	}
2781
2782	if (!xhci->slot_id) {
2783		xhci_err(xhci, "Error while assigning device slot ID\n");
2784		return 0;
2785	}
2786
2787	if ((xhci->quirks & XHCI_EP_LIMIT_QUIRK)) {
2788		spin_lock_irqsave(&xhci->lock, flags);
2789		ret = xhci_reserve_host_control_ep_resources(xhci);
2790		if (ret) {
2791			spin_unlock_irqrestore(&xhci->lock, flags);
2792			xhci_warn(xhci, "Not enough host resources, "
2793					"active endpoint contexts = %u\n",
2794					xhci->num_active_eps);
2795			goto disable_slot;
2796		}
2797		spin_unlock_irqrestore(&xhci->lock, flags);
2798	}
2799	/* Use GFP_NOIO, since this function can be called from
2800	 * xhci_discover_or_reset_device(), which may be called as part of
2801	 * mass storage driver error handling.
2802	 */
2803	if (!xhci_alloc_virt_device(xhci, xhci->slot_id, udev, GFP_NOIO)) {
2804		xhci_warn(xhci, "Could not allocate xHCI USB device data structures\n");
2805		goto disable_slot;
2806	}
2807	udev->slot_id = xhci->slot_id;
2808	/* Is this a LS or FS device under a HS hub? */
2809	/* Hub or peripherial? */
2810	return 1;
2811
2812disable_slot:
2813	/* Disable slot, if we can do it without mem alloc */
2814	spin_lock_irqsave(&xhci->lock, flags);
2815	if (!xhci_queue_slot_control(xhci, TRB_DISABLE_SLOT, udev->slot_id))
2816		xhci_ring_cmd_db(xhci);
2817	spin_unlock_irqrestore(&xhci->lock, flags);
2818	return 0;
2819}
2820
2821/*
2822 * Issue an Address Device command (which will issue a SetAddress request to
2823 * the device).
2824 * We should be protected by the usb_address0_mutex in khubd's hub_port_init, so
2825 * we should only issue and wait on one address command at the same time.
2826 *
2827 * We add one to the device address issued by the hardware because the USB core
2828 * uses address 1 for the root hubs (even though they're not really devices).
2829 */
2830int xhci_address_device(struct usb_hcd *hcd, struct usb_device *udev)
2831{
2832	unsigned long flags;
2833	int timeleft;
2834	struct xhci_virt_device *virt_dev;
2835	int ret = 0;
2836	struct xhci_hcd *xhci = hcd_to_xhci(hcd);
2837	struct xhci_slot_ctx *slot_ctx;
2838	struct xhci_input_control_ctx *ctrl_ctx;
2839	u64 temp_64;
 
2840
2841	if (!udev->slot_id) {
2842		xhci_dbg(xhci, "Bad Slot ID %d\n", udev->slot_id);
2843		return -EINVAL;
2844	}
2845
2846	virt_dev = xhci->devs[udev->slot_id];
2847
2848	if (WARN_ON(!virt_dev)) {
2849		/*
2850		 * In plug/unplug torture test with an NEC controller,
2851		 * a zero-dereference was observed once due to virt_dev = 0.
2852		 * Print useful debug rather than crash if it is observed again!
2853		 */
2854		xhci_warn(xhci, "Virt dev invalid for slot_id 0x%x!\n",
2855			udev->slot_id);
2856		return -EINVAL;
2857	}
2858
2859	slot_ctx = xhci_get_slot_ctx(xhci, virt_dev->in_ctx);
2860	/*
2861	 * If this is the first Set Address since device plug-in or
2862	 * virt_device realloaction after a resume with an xHCI power loss,
2863	 * then set up the slot context.
2864	 */
2865	if (!slot_ctx->dev_info)
2866		xhci_setup_addressable_virt_dev(xhci, udev);
2867	/* Otherwise, update the control endpoint ring enqueue pointer. */
2868	else
2869		xhci_copy_ep0_dequeue_into_input_ctx(xhci, udev);
 
 
 
 
2870	xhci_dbg(xhci, "Slot ID %d Input Context:\n", udev->slot_id);
2871	xhci_dbg_ctx(xhci, virt_dev->in_ctx, 2);
2872
2873	spin_lock_irqsave(&xhci->lock, flags);
 
2874	ret = xhci_queue_address_device(xhci, virt_dev->in_ctx->dma,
2875					udev->slot_id);
2876	if (ret) {
2877		spin_unlock_irqrestore(&xhci->lock, flags);
2878		xhci_dbg(xhci, "FIXME: allocate a command ring segment\n");
2879		return ret;
2880	}
2881	xhci_ring_cmd_db(xhci);
2882	spin_unlock_irqrestore(&xhci->lock, flags);
2883
2884	/* ctrl tx can take up to 5 sec; XXX: need more time for xHC? */
2885	timeleft = wait_for_completion_interruptible_timeout(&xhci->addr_dev,
2886			USB_CTRL_SET_TIMEOUT);
2887	/* FIXME: From section 4.3.4: "Software shall be responsible for timing
2888	 * the SetAddress() "recovery interval" required by USB and aborting the
2889	 * command on a timeout.
2890	 */
2891	if (timeleft <= 0) {
2892		xhci_warn(xhci, "%s while waiting for a slot\n",
2893				timeleft == 0 ? "Timeout" : "Signal");
2894		/* FIXME cancel the address device command */
 
 
 
2895		return -ETIME;
2896	}
2897
2898	switch (virt_dev->cmd_status) {
2899	case COMP_CTX_STATE:
2900	case COMP_EBADSLT:
2901		xhci_err(xhci, "Setup ERROR: address device command for slot %d.\n",
2902				udev->slot_id);
2903		ret = -EINVAL;
2904		break;
2905	case COMP_TX_ERR:
2906		dev_warn(&udev->dev, "Device not responding to set address.\n");
2907		ret = -EPROTO;
2908		break;
2909	case COMP_DEV_ERR:
2910		dev_warn(&udev->dev, "ERROR: Incompatible device for address "
2911				"device command.\n");
2912		ret = -ENODEV;
2913		break;
2914	case COMP_SUCCESS:
2915		xhci_dbg(xhci, "Successful Address Device command\n");
2916		break;
2917	default:
2918		xhci_err(xhci, "ERROR: unexpected command completion "
2919				"code 0x%x.\n", virt_dev->cmd_status);
2920		xhci_dbg(xhci, "Slot ID %d Output Context:\n", udev->slot_id);
2921		xhci_dbg_ctx(xhci, virt_dev->out_ctx, 2);
2922		ret = -EINVAL;
2923		break;
2924	}
2925	if (ret) {
2926		return ret;
2927	}
2928	temp_64 = xhci_read_64(xhci, &xhci->op_regs->dcbaa_ptr);
2929	xhci_dbg(xhci, "Op regs DCBAA ptr = %#016llx\n", temp_64);
2930	xhci_dbg(xhci, "Slot ID %d dcbaa entry @%p = %#016llx\n",
2931		 udev->slot_id,
2932		 &xhci->dcbaa->dev_context_ptrs[udev->slot_id],
2933		 (unsigned long long)
2934		 le64_to_cpu(xhci->dcbaa->dev_context_ptrs[udev->slot_id]));
2935	xhci_dbg(xhci, "Output Context DMA address = %#08llx\n",
2936			(unsigned long long)virt_dev->out_ctx->dma);
2937	xhci_dbg(xhci, "Slot ID %d Input Context:\n", udev->slot_id);
2938	xhci_dbg_ctx(xhci, virt_dev->in_ctx, 2);
2939	xhci_dbg(xhci, "Slot ID %d Output Context:\n", udev->slot_id);
2940	xhci_dbg_ctx(xhci, virt_dev->out_ctx, 2);
2941	/*
2942	 * USB core uses address 1 for the roothubs, so we add one to the
2943	 * address given back to us by the HC.
2944	 */
2945	slot_ctx = xhci_get_slot_ctx(xhci, virt_dev->out_ctx);
2946	/* Use kernel assigned address for devices; store xHC assigned
2947	 * address locally. */
2948	virt_dev->address = (le32_to_cpu(slot_ctx->dev_state) & DEV_ADDR_MASK)
2949		+ 1;
2950	/* Zero the input context control for later use */
2951	ctrl_ctx = xhci_get_input_control_ctx(xhci, virt_dev->in_ctx);
2952	ctrl_ctx->add_flags = 0;
2953	ctrl_ctx->drop_flags = 0;
2954
2955	xhci_dbg(xhci, "Internal device address = %d\n", virt_dev->address);
2956
2957	return 0;
2958}
2959
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
2960/* Once a hub descriptor is fetched for a device, we need to update the xHC's
2961 * internal data structures for the device.
2962 */
2963int xhci_update_hub_device(struct usb_hcd *hcd, struct usb_device *hdev,
2964			struct usb_tt *tt, gfp_t mem_flags)
2965{
2966	struct xhci_hcd *xhci = hcd_to_xhci(hcd);
2967	struct xhci_virt_device *vdev;
2968	struct xhci_command *config_cmd;
2969	struct xhci_input_control_ctx *ctrl_ctx;
2970	struct xhci_slot_ctx *slot_ctx;
2971	unsigned long flags;
2972	unsigned think_time;
2973	int ret;
2974
2975	/* Ignore root hubs */
2976	if (!hdev->parent)
2977		return 0;
2978
2979	vdev = xhci->devs[hdev->slot_id];
2980	if (!vdev) {
2981		xhci_warn(xhci, "Cannot update hub desc for unknown device.\n");
2982		return -EINVAL;
2983	}
2984	config_cmd = xhci_alloc_command(xhci, true, true, mem_flags);
2985	if (!config_cmd) {
2986		xhci_dbg(xhci, "Could not allocate xHCI command structure.\n");
2987		return -ENOMEM;
2988	}
2989
2990	spin_lock_irqsave(&xhci->lock, flags);
 
 
 
 
 
 
 
 
2991	xhci_slot_copy(xhci, config_cmd->in_ctx, vdev->out_ctx);
2992	ctrl_ctx = xhci_get_input_control_ctx(xhci, config_cmd->in_ctx);
2993	ctrl_ctx->add_flags |= cpu_to_le32(SLOT_FLAG);
2994	slot_ctx = xhci_get_slot_ctx(xhci, config_cmd->in_ctx);
2995	slot_ctx->dev_info |= cpu_to_le32(DEV_HUB);
2996	if (tt->multi)
2997		slot_ctx->dev_info |= cpu_to_le32(DEV_MTT);
2998	if (xhci->hci_version > 0x95) {
2999		xhci_dbg(xhci, "xHCI version %x needs hub "
3000				"TT think time and number of ports\n",
3001				(unsigned int) xhci->hci_version);
3002		slot_ctx->dev_info2 |= cpu_to_le32(XHCI_MAX_PORTS(hdev->maxchild));
3003		/* Set TT think time - convert from ns to FS bit times.
3004		 * 0 = 8 FS bit times, 1 = 16 FS bit times,
3005		 * 2 = 24 FS bit times, 3 = 32 FS bit times.
3006		 *
3007		 * xHCI 1.0: this field shall be 0 if the device is not a
3008		 * High-spped hub.
3009		 */
3010		think_time = tt->think_time;
3011		if (think_time != 0)
3012			think_time = (think_time / 666) - 1;
3013		if (xhci->hci_version < 0x100 || hdev->speed == USB_SPEED_HIGH)
3014			slot_ctx->tt_info |=
3015				cpu_to_le32(TT_THINK_TIME(think_time));
3016	} else {
3017		xhci_dbg(xhci, "xHCI version %x doesn't need hub "
3018				"TT think time or number of ports\n",
3019				(unsigned int) xhci->hci_version);
3020	}
3021	slot_ctx->dev_state = 0;
3022	spin_unlock_irqrestore(&xhci->lock, flags);
3023
3024	xhci_dbg(xhci, "Set up %s for hub device.\n",
3025			(xhci->hci_version > 0x95) ?
3026			"configure endpoint" : "evaluate context");
3027	xhci_dbg(xhci, "Slot %u Input Context:\n", hdev->slot_id);
3028	xhci_dbg_ctx(xhci, config_cmd->in_ctx, 0);
3029
3030	/* Issue and wait for the configure endpoint or
3031	 * evaluate context command.
3032	 */
3033	if (xhci->hci_version > 0x95)
3034		ret = xhci_configure_endpoint(xhci, hdev, config_cmd,
3035				false, false);
3036	else
3037		ret = xhci_configure_endpoint(xhci, hdev, config_cmd,
3038				true, false);
3039
3040	xhci_dbg(xhci, "Slot %u Output Context:\n", hdev->slot_id);
3041	xhci_dbg_ctx(xhci, vdev->out_ctx, 0);
3042
3043	xhci_free_command(xhci, config_cmd);
3044	return ret;
3045}
3046
3047int xhci_get_frame(struct usb_hcd *hcd)
3048{
3049	struct xhci_hcd *xhci = hcd_to_xhci(hcd);
3050	/* EHCI mods by the periodic size.  Why? */
3051	return xhci_readl(xhci, &xhci->run_regs->microframe_index) >> 3;
3052}
3053
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
3054MODULE_DESCRIPTION(DRIVER_DESC);
3055MODULE_AUTHOR(DRIVER_AUTHOR);
3056MODULE_LICENSE("GPL");
3057
3058static int __init xhci_hcd_init(void)
3059{
3060#ifdef CONFIG_PCI
3061	int retval = 0;
3062
3063	retval = xhci_register_pci();
3064
3065	if (retval < 0) {
3066		printk(KERN_DEBUG "Problem registering PCI driver.");
3067		return retval;
3068	}
3069#endif
 
 
 
 
3070	/*
3071	 * Check the compiler generated sizes of structures that must be laid
3072	 * out in specific ways for hardware access.
3073	 */
3074	BUILD_BUG_ON(sizeof(struct xhci_doorbell_array) != 256*32/8);
3075	BUILD_BUG_ON(sizeof(struct xhci_slot_ctx) != 8*32/8);
3076	BUILD_BUG_ON(sizeof(struct xhci_ep_ctx) != 8*32/8);
3077	/* xhci_device_control has eight fields, and also
3078	 * embeds one xhci_slot_ctx and 31 xhci_ep_ctx
3079	 */
3080	BUILD_BUG_ON(sizeof(struct xhci_stream_ctx) != 4*32/8);
3081	BUILD_BUG_ON(sizeof(union xhci_trb) != 4*32/8);
3082	BUILD_BUG_ON(sizeof(struct xhci_erst_entry) != 4*32/8);
3083	BUILD_BUG_ON(sizeof(struct xhci_cap_regs) != 7*32/8);
3084	BUILD_BUG_ON(sizeof(struct xhci_intr_reg) != 8*32/8);
3085	/* xhci_run_regs has eight fields and embeds 128 xhci_intr_regs */
3086	BUILD_BUG_ON(sizeof(struct xhci_run_regs) != (8+8*128)*32/8);
3087	BUILD_BUG_ON(sizeof(struct xhci_doorbell_array) != 256*32/8);
3088	return 0;
 
 
 
3089}
3090module_init(xhci_hcd_init);
3091
3092static void __exit xhci_hcd_cleanup(void)
3093{
3094#ifdef CONFIG_PCI
3095	xhci_unregister_pci();
3096#endif
3097}
3098module_exit(xhci_hcd_cleanup);
v3.5.6
   1/*
   2 * xHCI host controller driver
   3 *
   4 * Copyright (C) 2008 Intel Corp.
   5 *
   6 * Author: Sarah Sharp
   7 * Some code borrowed from the Linux EHCI driver.
   8 *
   9 * This program is free software; you can redistribute it and/or modify
  10 * it under the terms of the GNU General Public License version 2 as
  11 * published by the Free Software Foundation.
  12 *
  13 * This program is distributed in the hope that it will be useful, but
  14 * WITHOUT ANY WARRANTY; without even the implied warranty of MERCHANTABILITY
  15 * or FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public License
  16 * for more details.
  17 *
  18 * You should have received a copy of the GNU General Public License
  19 * along with this program; if not, write to the Free Software Foundation,
  20 * Inc., 675 Mass Ave, Cambridge, MA 02139, USA.
  21 */
  22
  23#include <linux/pci.h>
  24#include <linux/irq.h>
  25#include <linux/log2.h>
  26#include <linux/module.h>
  27#include <linux/moduleparam.h>
  28#include <linux/slab.h>
  29#include <linux/dmi.h>
  30
  31#include "xhci.h"
  32
  33#define DRIVER_AUTHOR "Sarah Sharp"
  34#define DRIVER_DESC "'eXtensible' Host Controller (xHC) Driver"
  35
  36/* Some 0.95 hardware can't handle the chain bit on a Link TRB being cleared */
  37static int link_quirk;
  38module_param(link_quirk, int, S_IRUGO | S_IWUSR);
  39MODULE_PARM_DESC(link_quirk, "Don't clear the chain bit on a link TRB");
  40
  41/* TODO: copied from ehci-hcd.c - can this be refactored? */
  42/*
  43 * handshake - spin reading hc until handshake completes or fails
  44 * @ptr: address of hc register to be read
  45 * @mask: bits to look at in result of read
  46 * @done: value of those bits when handshake succeeds
  47 * @usec: timeout in microseconds
  48 *
  49 * Returns negative errno, or zero on success
  50 *
  51 * Success happens when the "mask" bits have the specified value (hardware
  52 * handshake done).  There are two failure modes:  "usec" have passed (major
  53 * hardware flakeout), or the register reads as all-ones (hardware removed).
  54 */
  55int handshake(struct xhci_hcd *xhci, void __iomem *ptr,
  56		      u32 mask, u32 done, int usec)
  57{
  58	u32	result;
  59
  60	do {
  61		result = xhci_readl(xhci, ptr);
  62		if (result == ~(u32)0)		/* card removed */
  63			return -ENODEV;
  64		result &= mask;
  65		if (result == done)
  66			return 0;
  67		udelay(1);
  68		usec--;
  69	} while (usec > 0);
  70	return -ETIMEDOUT;
  71}
  72
  73/*
  74 * Disable interrupts and begin the xHCI halting process.
  75 */
  76void xhci_quiesce(struct xhci_hcd *xhci)
  77{
  78	u32 halted;
  79	u32 cmd;
  80	u32 mask;
  81
  82	mask = ~(XHCI_IRQS);
  83	halted = xhci_readl(xhci, &xhci->op_regs->status) & STS_HALT;
  84	if (!halted)
  85		mask &= ~CMD_RUN;
  86
  87	cmd = xhci_readl(xhci, &xhci->op_regs->command);
  88	cmd &= mask;
  89	xhci_writel(xhci, cmd, &xhci->op_regs->command);
  90}
  91
  92/*
  93 * Force HC into halt state.
  94 *
  95 * Disable any IRQs and clear the run/stop bit.
  96 * HC will complete any current and actively pipelined transactions, and
  97 * should halt within 16 ms of the run/stop bit being cleared.
  98 * Read HC Halted bit in the status register to see when the HC is finished.
  99 */
 100int xhci_halt(struct xhci_hcd *xhci)
 101{
 102	int ret;
 103	xhci_dbg(xhci, "// Halt the HC\n");
 104	xhci_quiesce(xhci);
 105
 106	ret = handshake(xhci, &xhci->op_regs->status,
 107			STS_HALT, STS_HALT, XHCI_MAX_HALT_USEC);
 108	if (!ret) {
 109		xhci->xhc_state |= XHCI_STATE_HALTED;
 110		xhci->cmd_ring_state = CMD_RING_STATE_STOPPED;
 111	} else
 112		xhci_warn(xhci, "Host not halted after %u microseconds.\n",
 113				XHCI_MAX_HALT_USEC);
 114	return ret;
 115}
 116
 117/*
 118 * Set the run bit and wait for the host to be running.
 119 */
 120static int xhci_start(struct xhci_hcd *xhci)
 121{
 122	u32 temp;
 123	int ret;
 124
 125	temp = xhci_readl(xhci, &xhci->op_regs->command);
 126	temp |= (CMD_RUN);
 127	xhci_dbg(xhci, "// Turn on HC, cmd = 0x%x.\n",
 128			temp);
 129	xhci_writel(xhci, temp, &xhci->op_regs->command);
 130
 131	/*
 132	 * Wait for the HCHalted Status bit to be 0 to indicate the host is
 133	 * running.
 134	 */
 135	ret = handshake(xhci, &xhci->op_regs->status,
 136			STS_HALT, 0, XHCI_MAX_HALT_USEC);
 137	if (ret == -ETIMEDOUT)
 138		xhci_err(xhci, "Host took too long to start, "
 139				"waited %u microseconds.\n",
 140				XHCI_MAX_HALT_USEC);
 141	if (!ret)
 142		xhci->xhc_state &= ~XHCI_STATE_HALTED;
 143	return ret;
 144}
 145
 146/*
 147 * Reset a halted HC.
 148 *
 149 * This resets pipelines, timers, counters, state machines, etc.
 150 * Transactions will be terminated immediately, and operational registers
 151 * will be set to their defaults.
 152 */
 153int xhci_reset(struct xhci_hcd *xhci)
 154{
 155	u32 command;
 156	u32 state;
 157	int ret, i;
 158
 159	state = xhci_readl(xhci, &xhci->op_regs->status);
 160	if ((state & STS_HALT) == 0) {
 161		xhci_warn(xhci, "Host controller not halted, aborting reset.\n");
 162		return 0;
 163	}
 164
 165	xhci_dbg(xhci, "// Reset the HC\n");
 166	command = xhci_readl(xhci, &xhci->op_regs->command);
 167	command |= CMD_RESET;
 168	xhci_writel(xhci, command, &xhci->op_regs->command);
 169
 170	ret = handshake(xhci, &xhci->op_regs->command,
 171			CMD_RESET, 0, 10 * 1000 * 1000);
 172	if (ret)
 173		return ret;
 174
 175	xhci_dbg(xhci, "Wait for controller to be ready for doorbell rings\n");
 176	/*
 177	 * xHCI cannot write to any doorbells or operational registers other
 178	 * than status until the "Controller Not Ready" flag is cleared.
 179	 */
 180	ret = handshake(xhci, &xhci->op_regs->status,
 181			STS_CNR, 0, 10 * 1000 * 1000);
 182
 183	for (i = 0; i < 2; ++i) {
 184		xhci->bus_state[i].port_c_suspend = 0;
 185		xhci->bus_state[i].suspended_ports = 0;
 186		xhci->bus_state[i].resuming_ports = 0;
 187	}
 188
 189	return ret;
 190}
 191
 192#ifdef CONFIG_PCI
 193static int xhci_free_msi(struct xhci_hcd *xhci)
 
 
 
 194{
 195	int i;
 
 196
 197	if (!xhci->msix_entries)
 198		return -EINVAL;
 
 
 
 
 
 
 
 
 
 199
 200	for (i = 0; i < xhci->msix_count; i++)
 201		if (xhci->msix_entries[i].vector)
 202			free_irq(xhci->msix_entries[i].vector,
 203					xhci_to_hcd(xhci));
 204	return 0;
 205}
 206
 207/*
 208 * Set up MSI
 209 */
 210static int xhci_setup_msi(struct xhci_hcd *xhci)
 211{
 212	int ret;
 213	struct pci_dev  *pdev = to_pci_dev(xhci_to_hcd(xhci)->self.controller);
 214
 215	ret = pci_enable_msi(pdev);
 216	if (ret) {
 217		xhci_dbg(xhci, "failed to allocate MSI entry\n");
 218		return ret;
 219	}
 220
 221	ret = request_irq(pdev->irq, (irq_handler_t)xhci_msi_irq,
 222				0, "xhci_hcd", xhci_to_hcd(xhci));
 223	if (ret) {
 224		xhci_dbg(xhci, "disable MSI interrupt\n");
 225		pci_disable_msi(pdev);
 226	}
 227
 228	return ret;
 229}
 230
 231/*
 232 * Free IRQs
 233 * free all IRQs request
 234 */
 235static void xhci_free_irq(struct xhci_hcd *xhci)
 236{
 237	struct pci_dev *pdev = to_pci_dev(xhci_to_hcd(xhci)->self.controller);
 238	int ret;
 239
 240	/* return if using legacy interrupt */
 241	if (xhci_to_hcd(xhci)->irq > 0)
 242		return;
 243
 244	ret = xhci_free_msi(xhci);
 245	if (!ret)
 246		return;
 247	if (pdev->irq > 0)
 248		free_irq(pdev->irq, xhci_to_hcd(xhci));
 249
 250	return;
 251}
 252
 253/*
 254 * Set up MSI-X
 255 */
 256static int xhci_setup_msix(struct xhci_hcd *xhci)
 257{
 258	int i, ret = 0;
 259	struct usb_hcd *hcd = xhci_to_hcd(xhci);
 260	struct pci_dev *pdev = to_pci_dev(hcd->self.controller);
 261
 262	/*
 263	 * calculate number of msi-x vectors supported.
 264	 * - HCS_MAX_INTRS: the max number of interrupts the host can handle,
 265	 *   with max number of interrupters based on the xhci HCSPARAMS1.
 266	 * - num_online_cpus: maximum msi-x vectors per CPUs core.
 267	 *   Add additional 1 vector to ensure always available interrupt.
 268	 */
 269	xhci->msix_count = min(num_online_cpus() + 1,
 270				HCS_MAX_INTRS(xhci->hcs_params1));
 271
 272	xhci->msix_entries =
 273		kmalloc((sizeof(struct msix_entry))*xhci->msix_count,
 274				GFP_KERNEL);
 275	if (!xhci->msix_entries) {
 276		xhci_err(xhci, "Failed to allocate MSI-X entries\n");
 277		return -ENOMEM;
 278	}
 279
 280	for (i = 0; i < xhci->msix_count; i++) {
 281		xhci->msix_entries[i].entry = i;
 282		xhci->msix_entries[i].vector = 0;
 283	}
 284
 285	ret = pci_enable_msix(pdev, xhci->msix_entries, xhci->msix_count);
 286	if (ret) {
 287		xhci_dbg(xhci, "Failed to enable MSI-X\n");
 288		goto free_entries;
 289	}
 290
 291	for (i = 0; i < xhci->msix_count; i++) {
 292		ret = request_irq(xhci->msix_entries[i].vector,
 293				(irq_handler_t)xhci_msi_irq,
 294				0, "xhci_hcd", xhci_to_hcd(xhci));
 295		if (ret)
 296			goto disable_msix;
 297	}
 298
 299	hcd->msix_enabled = 1;
 300	return ret;
 301
 302disable_msix:
 303	xhci_dbg(xhci, "disable MSI-X interrupt\n");
 304	xhci_free_irq(xhci);
 305	pci_disable_msix(pdev);
 306free_entries:
 307	kfree(xhci->msix_entries);
 308	xhci->msix_entries = NULL;
 309	return ret;
 310}
 311
 312/* Free any IRQs and disable MSI-X */
 313static void xhci_cleanup_msix(struct xhci_hcd *xhci)
 314{
 315	struct usb_hcd *hcd = xhci_to_hcd(xhci);
 316	struct pci_dev *pdev = to_pci_dev(hcd->self.controller);
 317
 318	xhci_free_irq(xhci);
 319
 320	if (xhci->msix_entries) {
 321		pci_disable_msix(pdev);
 322		kfree(xhci->msix_entries);
 323		xhci->msix_entries = NULL;
 324	} else {
 325		pci_disable_msi(pdev);
 326	}
 327
 328	hcd->msix_enabled = 0;
 329	return;
 330}
 331
 332static void xhci_msix_sync_irqs(struct xhci_hcd *xhci)
 333{
 334	int i;
 335
 336	if (xhci->msix_entries) {
 337		for (i = 0; i < xhci->msix_count; i++)
 338			synchronize_irq(xhci->msix_entries[i].vector);
 339	}
 340}
 341
 342static int xhci_try_enable_msi(struct usb_hcd *hcd)
 343{
 344	struct xhci_hcd *xhci = hcd_to_xhci(hcd);
 345	struct pci_dev  *pdev = to_pci_dev(xhci_to_hcd(xhci)->self.controller);
 346	int ret;
 347
 348	/*
 349	 * Some Fresco Logic host controllers advertise MSI, but fail to
 350	 * generate interrupts.  Don't even try to enable MSI.
 351	 */
 352	if (xhci->quirks & XHCI_BROKEN_MSI)
 353		return 0;
 354
 355	/* unregister the legacy interrupt */
 356	if (hcd->irq)
 357		free_irq(hcd->irq, hcd);
 358	hcd->irq = 0;
 359
 360	ret = xhci_setup_msix(xhci);
 361	if (ret)
 362		/* fall back to msi*/
 363		ret = xhci_setup_msi(xhci);
 364
 365	if (!ret)
 366		/* hcd->irq is 0, we have MSI */
 367		return 0;
 368
 369	if (!pdev->irq) {
 370		xhci_err(xhci, "No msi-x/msi found and no IRQ in BIOS\n");
 371		return -EINVAL;
 372	}
 373
 374	/* fall back to legacy interrupt*/
 375	ret = request_irq(pdev->irq, &usb_hcd_irq, IRQF_SHARED,
 376			hcd->irq_descr, hcd);
 377	if (ret) {
 378		xhci_err(xhci, "request interrupt %d failed\n",
 379				pdev->irq);
 380		return ret;
 381	}
 382	hcd->irq = pdev->irq;
 383	return 0;
 384}
 385
 386#else
 387
 388static int xhci_try_enable_msi(struct usb_hcd *hcd)
 389{
 390	return 0;
 391}
 392
 393static void xhci_cleanup_msix(struct xhci_hcd *xhci)
 394{
 395}
 396
 397static void xhci_msix_sync_irqs(struct xhci_hcd *xhci)
 398{
 399}
 400
 401#endif
 402
 403static void compliance_mode_recovery(unsigned long arg)
 404{
 405	struct xhci_hcd *xhci;
 406	struct usb_hcd *hcd;
 407	u32 temp;
 408	int i;
 409
 410	xhci = (struct xhci_hcd *)arg;
 411
 412	for (i = 0; i < xhci->num_usb3_ports; i++) {
 413		temp = xhci_readl(xhci, xhci->usb3_ports[i]);
 414		if ((temp & PORT_PLS_MASK) == USB_SS_PORT_LS_COMP_MOD) {
 415			/*
 416			 * Compliance Mode Detected. Letting USB Core
 417			 * handle the Warm Reset
 418			 */
 419			xhci_dbg(xhci, "Compliance Mode Detected->Port %d!\n",
 420					i + 1);
 421			xhci_dbg(xhci, "Attempting Recovery routine!\n");
 422			hcd = xhci->shared_hcd;
 423
 424			if (hcd->state == HC_STATE_SUSPENDED)
 425				usb_hcd_resume_root_hub(hcd);
 426
 427			usb_hcd_poll_rh_status(hcd);
 428		}
 429	}
 430
 431	if (xhci->port_status_u0 != ((1 << xhci->num_usb3_ports)-1))
 432		mod_timer(&xhci->comp_mode_recovery_timer,
 433			jiffies + msecs_to_jiffies(COMP_MODE_RCVRY_MSECS));
 434}
 435
 436/*
 437 * Quirk to work around issue generated by the SN65LVPE502CP USB3.0 re-driver
 438 * that causes ports behind that hardware to enter compliance mode sometimes.
 439 * The quirk creates a timer that polls every 2 seconds the link state of
 440 * each host controller's port and recovers it by issuing a Warm reset
 441 * if Compliance mode is detected, otherwise the port will become "dead" (no
 442 * device connections or disconnections will be detected anymore). Becasue no
 443 * status event is generated when entering compliance mode (per xhci spec),
 444 * this quirk is needed on systems that have the failing hardware installed.
 445 */
 446static void compliance_mode_recovery_timer_init(struct xhci_hcd *xhci)
 447{
 448	xhci->port_status_u0 = 0;
 449	init_timer(&xhci->comp_mode_recovery_timer);
 450
 451	xhci->comp_mode_recovery_timer.data = (unsigned long) xhci;
 452	xhci->comp_mode_recovery_timer.function = compliance_mode_recovery;
 453	xhci->comp_mode_recovery_timer.expires = jiffies +
 454			msecs_to_jiffies(COMP_MODE_RCVRY_MSECS);
 455
 456	set_timer_slack(&xhci->comp_mode_recovery_timer,
 457			msecs_to_jiffies(COMP_MODE_RCVRY_MSECS));
 458	add_timer(&xhci->comp_mode_recovery_timer);
 459	xhci_dbg(xhci, "Compliance Mode Recovery Timer Initialized.\n");
 460}
 461
 462/*
 463 * This function identifies the systems that have installed the SN65LVPE502CP
 464 * USB3.0 re-driver and that need the Compliance Mode Quirk.
 465 * Systems:
 466 * Vendor: Hewlett-Packard -> System Models: Z420, Z620 and Z820
 467 */
 468static bool compliance_mode_recovery_timer_quirk_check(void)
 469{
 470	const char *dmi_product_name, *dmi_sys_vendor;
 471
 472	dmi_product_name = dmi_get_system_info(DMI_PRODUCT_NAME);
 473	dmi_sys_vendor = dmi_get_system_info(DMI_SYS_VENDOR);
 474	if (!dmi_product_name || !dmi_sys_vendor)
 475		return false;
 476
 477	if (!(strstr(dmi_sys_vendor, "Hewlett-Packard")))
 478		return false;
 479
 480	if (strstr(dmi_product_name, "Z420") ||
 481			strstr(dmi_product_name, "Z620") ||
 482			strstr(dmi_product_name, "Z820"))
 483		return true;
 484
 485	return false;
 486}
 487
 488static int xhci_all_ports_seen_u0(struct xhci_hcd *xhci)
 489{
 490	return (xhci->port_status_u0 == ((1 << xhci->num_usb3_ports)-1));
 491}
 492
 493
 494/*
 495 * Initialize memory for HCD and xHC (one-time init).
 496 *
 497 * Program the PAGESIZE register, initialize the device context array, create
 498 * device contexts (?), set up a command ring segment (or two?), create event
 499 * ring (one for now).
 500 */
 501int xhci_init(struct usb_hcd *hcd)
 502{
 503	struct xhci_hcd *xhci = hcd_to_xhci(hcd);
 504	int retval = 0;
 505
 506	xhci_dbg(xhci, "xhci_init\n");
 507	spin_lock_init(&xhci->lock);
 508	if (xhci->hci_version == 0x95 && link_quirk) {
 509		xhci_dbg(xhci, "QUIRK: Not clearing Link TRB chain bits.\n");
 510		xhci->quirks |= XHCI_LINK_TRB_QUIRK;
 511	} else {
 512		xhci_dbg(xhci, "xHCI doesn't need link TRB QUIRK\n");
 513	}
 514	retval = xhci_mem_init(xhci, GFP_KERNEL);
 515	xhci_dbg(xhci, "Finished xhci_init\n");
 516
 517	/* Initializing Compliance Mode Recovery Data If Needed */
 518	if (compliance_mode_recovery_timer_quirk_check()) {
 519		xhci->quirks |= XHCI_COMP_MODE_QUIRK;
 520		compliance_mode_recovery_timer_init(xhci);
 521	}
 522
 523	return retval;
 524}
 525
 526/*-------------------------------------------------------------------------*/
 527
 528
 529#ifdef CONFIG_USB_XHCI_HCD_DEBUGGING
 530static void xhci_event_ring_work(unsigned long arg)
 531{
 532	unsigned long flags;
 533	int temp;
 534	u64 temp_64;
 535	struct xhci_hcd *xhci = (struct xhci_hcd *) arg;
 536	int i, j;
 537
 538	xhci_dbg(xhci, "Poll event ring: %lu\n", jiffies);
 539
 540	spin_lock_irqsave(&xhci->lock, flags);
 541	temp = xhci_readl(xhci, &xhci->op_regs->status);
 542	xhci_dbg(xhci, "op reg status = 0x%x\n", temp);
 543	if (temp == 0xffffffff || (xhci->xhc_state & XHCI_STATE_DYING) ||
 544			(xhci->xhc_state & XHCI_STATE_HALTED)) {
 545		xhci_dbg(xhci, "HW died, polling stopped.\n");
 546		spin_unlock_irqrestore(&xhci->lock, flags);
 547		return;
 548	}
 549
 550	temp = xhci_readl(xhci, &xhci->ir_set->irq_pending);
 551	xhci_dbg(xhci, "ir_set 0 pending = 0x%x\n", temp);
 552	xhci_dbg(xhci, "HC error bitmask = 0x%x\n", xhci->error_bitmask);
 553	xhci->error_bitmask = 0;
 554	xhci_dbg(xhci, "Event ring:\n");
 555	xhci_debug_segment(xhci, xhci->event_ring->deq_seg);
 556	xhci_dbg_ring_ptrs(xhci, xhci->event_ring);
 557	temp_64 = xhci_read_64(xhci, &xhci->ir_set->erst_dequeue);
 558	temp_64 &= ~ERST_PTR_MASK;
 559	xhci_dbg(xhci, "ERST deq = 64'h%0lx\n", (long unsigned int) temp_64);
 560	xhci_dbg(xhci, "Command ring:\n");
 561	xhci_debug_segment(xhci, xhci->cmd_ring->deq_seg);
 562	xhci_dbg_ring_ptrs(xhci, xhci->cmd_ring);
 563	xhci_dbg_cmd_ptrs(xhci);
 564	for (i = 0; i < MAX_HC_SLOTS; ++i) {
 565		if (!xhci->devs[i])
 566			continue;
 567		for (j = 0; j < 31; ++j) {
 568			xhci_dbg_ep_rings(xhci, i, j, &xhci->devs[i]->eps[j]);
 569		}
 570	}
 571	spin_unlock_irqrestore(&xhci->lock, flags);
 572
 573	if (!xhci->zombie)
 574		mod_timer(&xhci->event_ring_timer, jiffies + POLL_TIMEOUT * HZ);
 575	else
 576		xhci_dbg(xhci, "Quit polling the event ring.\n");
 577}
 578#endif
 579
 580static int xhci_run_finished(struct xhci_hcd *xhci)
 581{
 582	if (xhci_start(xhci)) {
 583		xhci_halt(xhci);
 584		return -ENODEV;
 585	}
 586	xhci->shared_hcd->state = HC_STATE_RUNNING;
 587	xhci->cmd_ring_state = CMD_RING_STATE_RUNNING;
 588
 589	if (xhci->quirks & XHCI_NEC_HOST)
 590		xhci_ring_cmd_db(xhci);
 591
 592	xhci_dbg(xhci, "Finished xhci_run for USB3 roothub\n");
 593	return 0;
 594}
 595
 596/*
 597 * Start the HC after it was halted.
 598 *
 599 * This function is called by the USB core when the HC driver is added.
 600 * Its opposite is xhci_stop().
 601 *
 602 * xhci_init() must be called once before this function can be called.
 603 * Reset the HC, enable device slot contexts, program DCBAAP, and
 604 * set command ring pointer and event ring pointer.
 605 *
 606 * Setup MSI-X vectors and enable interrupts.
 607 */
 608int xhci_run(struct usb_hcd *hcd)
 609{
 610	u32 temp;
 611	u64 temp_64;
 612	int ret;
 613	struct xhci_hcd *xhci = hcd_to_xhci(hcd);
 
 614
 615	/* Start the xHCI host controller running only after the USB 2.0 roothub
 616	 * is setup.
 617	 */
 618
 619	hcd->uses_new_polling = 1;
 620	if (!usb_hcd_is_primary_hcd(hcd))
 621		return xhci_run_finished(xhci);
 622
 623	xhci_dbg(xhci, "xhci_run\n");
 
 
 
 
 624
 625	ret = xhci_try_enable_msi(hcd);
 
 
 
 
 
 
 626	if (ret)
 627		return ret;
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 628
 629#ifdef CONFIG_USB_XHCI_HCD_DEBUGGING
 630	init_timer(&xhci->event_ring_timer);
 631	xhci->event_ring_timer.data = (unsigned long) xhci;
 632	xhci->event_ring_timer.function = xhci_event_ring_work;
 633	/* Poll the event ring */
 634	xhci->event_ring_timer.expires = jiffies + POLL_TIMEOUT * HZ;
 635	xhci->zombie = 0;
 636	xhci_dbg(xhci, "Setting event ring polling timer\n");
 637	add_timer(&xhci->event_ring_timer);
 638#endif
 639
 640	xhci_dbg(xhci, "Command ring memory map follows:\n");
 641	xhci_debug_ring(xhci, xhci->cmd_ring);
 642	xhci_dbg_ring_ptrs(xhci, xhci->cmd_ring);
 643	xhci_dbg_cmd_ptrs(xhci);
 644
 645	xhci_dbg(xhci, "ERST memory map follows:\n");
 646	xhci_dbg_erst(xhci, &xhci->erst);
 647	xhci_dbg(xhci, "Event ring:\n");
 648	xhci_debug_ring(xhci, xhci->event_ring);
 649	xhci_dbg_ring_ptrs(xhci, xhci->event_ring);
 650	temp_64 = xhci_read_64(xhci, &xhci->ir_set->erst_dequeue);
 651	temp_64 &= ~ERST_PTR_MASK;
 652	xhci_dbg(xhci, "ERST deq = 64'h%0lx\n", (long unsigned int) temp_64);
 653
 654	xhci_dbg(xhci, "// Set the interrupt modulation register\n");
 655	temp = xhci_readl(xhci, &xhci->ir_set->irq_control);
 656	temp &= ~ER_IRQ_INTERVAL_MASK;
 657	temp |= (u32) 160;
 658	xhci_writel(xhci, temp, &xhci->ir_set->irq_control);
 659
 660	/* Set the HCD state before we enable the irqs */
 661	temp = xhci_readl(xhci, &xhci->op_regs->command);
 662	temp |= (CMD_EIE);
 663	xhci_dbg(xhci, "// Enable interrupts, cmd = 0x%x.\n",
 664			temp);
 665	xhci_writel(xhci, temp, &xhci->op_regs->command);
 666
 667	temp = xhci_readl(xhci, &xhci->ir_set->irq_pending);
 668	xhci_dbg(xhci, "// Enabling event ring interrupter %p by writing 0x%x to irq_pending\n",
 669			xhci->ir_set, (unsigned int) ER_IRQ_ENABLE(temp));
 670	xhci_writel(xhci, ER_IRQ_ENABLE(temp),
 671			&xhci->ir_set->irq_pending);
 672	xhci_print_ir_set(xhci, 0);
 673
 674	if (xhci->quirks & XHCI_NEC_HOST)
 675		xhci_queue_vendor_command(xhci, 0, 0, 0,
 676				TRB_TYPE(TRB_NEC_GET_FW));
 677
 678	xhci_dbg(xhci, "Finished xhci_run for USB2 roothub\n");
 679	return 0;
 680}
 681
 682static void xhci_only_stop_hcd(struct usb_hcd *hcd)
 683{
 684	struct xhci_hcd *xhci = hcd_to_xhci(hcd);
 685
 686	spin_lock_irq(&xhci->lock);
 687	xhci_halt(xhci);
 688
 689	/* The shared_hcd is going to be deallocated shortly (the USB core only
 690	 * calls this function when allocation fails in usb_add_hcd(), or
 691	 * usb_remove_hcd() is called).  So we need to unset xHCI's pointer.
 692	 */
 693	xhci->shared_hcd = NULL;
 694	spin_unlock_irq(&xhci->lock);
 695}
 696
 697/*
 698 * Stop xHCI driver.
 699 *
 700 * This function is called by the USB core when the HC driver is removed.
 701 * Its opposite is xhci_run().
 702 *
 703 * Disable device contexts, disable IRQs, and quiesce the HC.
 704 * Reset the HC, finish any completed transactions, and cleanup memory.
 705 */
 706void xhci_stop(struct usb_hcd *hcd)
 707{
 708	u32 temp;
 709	struct xhci_hcd *xhci = hcd_to_xhci(hcd);
 710
 711	if (!usb_hcd_is_primary_hcd(hcd)) {
 712		xhci_only_stop_hcd(xhci->shared_hcd);
 713		return;
 714	}
 715
 716	spin_lock_irq(&xhci->lock);
 717	/* Make sure the xHC is halted for a USB3 roothub
 718	 * (xhci_stop() could be called as part of failed init).
 719	 */
 720	xhci_halt(xhci);
 721	xhci_reset(xhci);
 722	spin_unlock_irq(&xhci->lock);
 723
 724	xhci_cleanup_msix(xhci);
 725
 726#ifdef CONFIG_USB_XHCI_HCD_DEBUGGING
 727	/* Tell the event ring poll function not to reschedule */
 728	xhci->zombie = 1;
 729	del_timer_sync(&xhci->event_ring_timer);
 730#endif
 731
 732	/* Deleting Compliance Mode Recovery Timer */
 733	if ((xhci->quirks & XHCI_COMP_MODE_QUIRK) &&
 734			(!(xhci_all_ports_seen_u0(xhci))))
 735		del_timer_sync(&xhci->comp_mode_recovery_timer);
 736
 737	if (xhci->quirks & XHCI_AMD_PLL_FIX)
 738		usb_amd_dev_put();
 739
 740	xhci_dbg(xhci, "// Disabling event ring interrupts\n");
 741	temp = xhci_readl(xhci, &xhci->op_regs->status);
 742	xhci_writel(xhci, temp & ~STS_EINT, &xhci->op_regs->status);
 743	temp = xhci_readl(xhci, &xhci->ir_set->irq_pending);
 744	xhci_writel(xhci, ER_IRQ_DISABLE(temp),
 745			&xhci->ir_set->irq_pending);
 746	xhci_print_ir_set(xhci, 0);
 747
 748	xhci_dbg(xhci, "cleaning up memory\n");
 749	xhci_mem_cleanup(xhci);
 750	xhci_dbg(xhci, "xhci_stop completed - status = %x\n",
 751		    xhci_readl(xhci, &xhci->op_regs->status));
 752}
 753
 754/*
 755 * Shutdown HC (not bus-specific)
 756 *
 757 * This is called when the machine is rebooting or halting.  We assume that the
 758 * machine will be powered off, and the HC's internal state will be reset.
 759 * Don't bother to free memory.
 760 *
 761 * This will only ever be called with the main usb_hcd (the USB3 roothub).
 762 */
 763void xhci_shutdown(struct usb_hcd *hcd)
 764{
 765	struct xhci_hcd *xhci = hcd_to_xhci(hcd);
 766
 767	if (xhci->quirks & XHCI_SPURIOUS_REBOOT)
 768		usb_disable_xhci_ports(to_pci_dev(hcd->self.controller));
 769
 770	spin_lock_irq(&xhci->lock);
 771	xhci_halt(xhci);
 772	spin_unlock_irq(&xhci->lock);
 773
 774	xhci_cleanup_msix(xhci);
 775
 776	xhci_dbg(xhci, "xhci_shutdown completed - status = %x\n",
 777		    xhci_readl(xhci, &xhci->op_regs->status));
 778}
 779
 780#ifdef CONFIG_PM
 781static void xhci_save_registers(struct xhci_hcd *xhci)
 782{
 783	xhci->s3.command = xhci_readl(xhci, &xhci->op_regs->command);
 784	xhci->s3.dev_nt = xhci_readl(xhci, &xhci->op_regs->dev_notification);
 785	xhci->s3.dcbaa_ptr = xhci_read_64(xhci, &xhci->op_regs->dcbaa_ptr);
 786	xhci->s3.config_reg = xhci_readl(xhci, &xhci->op_regs->config_reg);
 
 
 787	xhci->s3.erst_size = xhci_readl(xhci, &xhci->ir_set->erst_size);
 788	xhci->s3.erst_base = xhci_read_64(xhci, &xhci->ir_set->erst_base);
 789	xhci->s3.erst_dequeue = xhci_read_64(xhci, &xhci->ir_set->erst_dequeue);
 790	xhci->s3.irq_pending = xhci_readl(xhci, &xhci->ir_set->irq_pending);
 791	xhci->s3.irq_control = xhci_readl(xhci, &xhci->ir_set->irq_control);
 792}
 793
 794static void xhci_restore_registers(struct xhci_hcd *xhci)
 795{
 796	xhci_writel(xhci, xhci->s3.command, &xhci->op_regs->command);
 797	xhci_writel(xhci, xhci->s3.dev_nt, &xhci->op_regs->dev_notification);
 798	xhci_write_64(xhci, xhci->s3.dcbaa_ptr, &xhci->op_regs->dcbaa_ptr);
 799	xhci_writel(xhci, xhci->s3.config_reg, &xhci->op_regs->config_reg);
 
 
 800	xhci_writel(xhci, xhci->s3.erst_size, &xhci->ir_set->erst_size);
 801	xhci_write_64(xhci, xhci->s3.erst_base, &xhci->ir_set->erst_base);
 802	xhci_write_64(xhci, xhci->s3.erst_dequeue, &xhci->ir_set->erst_dequeue);
 803	xhci_writel(xhci, xhci->s3.irq_pending, &xhci->ir_set->irq_pending);
 804	xhci_writel(xhci, xhci->s3.irq_control, &xhci->ir_set->irq_control);
 805}
 806
 807static void xhci_set_cmd_ring_deq(struct xhci_hcd *xhci)
 808{
 809	u64	val_64;
 810
 811	/* step 2: initialize command ring buffer */
 812	val_64 = xhci_read_64(xhci, &xhci->op_regs->cmd_ring);
 813	val_64 = (val_64 & (u64) CMD_RING_RSVD_BITS) |
 814		(xhci_trb_virt_to_dma(xhci->cmd_ring->deq_seg,
 815				      xhci->cmd_ring->dequeue) &
 816		 (u64) ~CMD_RING_RSVD_BITS) |
 817		xhci->cmd_ring->cycle_state;
 818	xhci_dbg(xhci, "// Setting command ring address to 0x%llx\n",
 819			(long unsigned long) val_64);
 820	xhci_write_64(xhci, val_64, &xhci->op_regs->cmd_ring);
 821}
 822
 823/*
 824 * The whole command ring must be cleared to zero when we suspend the host.
 825 *
 826 * The host doesn't save the command ring pointer in the suspend well, so we
 827 * need to re-program it on resume.  Unfortunately, the pointer must be 64-byte
 828 * aligned, because of the reserved bits in the command ring dequeue pointer
 829 * register.  Therefore, we can't just set the dequeue pointer back in the
 830 * middle of the ring (TRBs are 16-byte aligned).
 831 */
 832static void xhci_clear_command_ring(struct xhci_hcd *xhci)
 833{
 834	struct xhci_ring *ring;
 835	struct xhci_segment *seg;
 836
 837	ring = xhci->cmd_ring;
 838	seg = ring->deq_seg;
 839	do {
 840		memset(seg->trbs, 0,
 841			sizeof(union xhci_trb) * (TRBS_PER_SEGMENT - 1));
 842		seg->trbs[TRBS_PER_SEGMENT - 1].link.control &=
 843			cpu_to_le32(~TRB_CYCLE);
 844		seg = seg->next;
 845	} while (seg != ring->deq_seg);
 846
 847	/* Reset the software enqueue and dequeue pointers */
 848	ring->deq_seg = ring->first_seg;
 849	ring->dequeue = ring->first_seg->trbs;
 850	ring->enq_seg = ring->deq_seg;
 851	ring->enqueue = ring->dequeue;
 852
 853	ring->num_trbs_free = ring->num_segs * (TRBS_PER_SEGMENT - 1) - 1;
 854	/*
 855	 * Ring is now zeroed, so the HW should look for change of ownership
 856	 * when the cycle bit is set to 1.
 857	 */
 858	ring->cycle_state = 1;
 859
 860	/*
 861	 * Reset the hardware dequeue pointer.
 862	 * Yes, this will need to be re-written after resume, but we're paranoid
 863	 * and want to make sure the hardware doesn't access bogus memory
 864	 * because, say, the BIOS or an SMI started the host without changing
 865	 * the command ring pointers.
 866	 */
 867	xhci_set_cmd_ring_deq(xhci);
 868}
 869
 870/*
 871 * Stop HC (not bus-specific)
 872 *
 873 * This is called when the machine transition into S3/S4 mode.
 874 *
 875 */
 876int xhci_suspend(struct xhci_hcd *xhci)
 877{
 878	int			rc = 0;
 879	struct usb_hcd		*hcd = xhci_to_hcd(xhci);
 880	u32			command;
 
 881
 882	spin_lock_irq(&xhci->lock);
 883	clear_bit(HCD_FLAG_HW_ACCESSIBLE, &hcd->flags);
 884	clear_bit(HCD_FLAG_HW_ACCESSIBLE, &xhci->shared_hcd->flags);
 885	/* step 1: stop endpoint */
 886	/* skipped assuming that port suspend has done */
 887
 888	/* step 2: clear Run/Stop bit */
 889	command = xhci_readl(xhci, &xhci->op_regs->command);
 890	command &= ~CMD_RUN;
 891	xhci_writel(xhci, command, &xhci->op_regs->command);
 892	if (handshake(xhci, &xhci->op_regs->status,
 893		      STS_HALT, STS_HALT, XHCI_MAX_HALT_USEC)) {
 894		xhci_warn(xhci, "WARN: xHC CMD_RUN timeout\n");
 895		spin_unlock_irq(&xhci->lock);
 896		return -ETIMEDOUT;
 897	}
 898	xhci_clear_command_ring(xhci);
 899
 900	/* step 3: save registers */
 901	xhci_save_registers(xhci);
 902
 903	/* step 4: set CSS flag */
 904	command = xhci_readl(xhci, &xhci->op_regs->command);
 905	command |= CMD_CSS;
 906	xhci_writel(xhci, command, &xhci->op_regs->command);
 907	if (handshake(xhci, &xhci->op_regs->status, STS_SAVE, 0, 10 * 1000)) {
 908		xhci_warn(xhci, "WARN: xHC save state timeout\n");
 909		spin_unlock_irq(&xhci->lock);
 910		return -ETIMEDOUT;
 911	}
 912	spin_unlock_irq(&xhci->lock);
 913
 914	/*
 915	 * Deleting Compliance Mode Recovery Timer because the xHCI Host
 916	 * is about to be suspended.
 917	 */
 918	if ((xhci->quirks & XHCI_COMP_MODE_QUIRK) &&
 919			(!(xhci_all_ports_seen_u0(xhci)))) {
 920		del_timer_sync(&xhci->comp_mode_recovery_timer);
 921		xhci_dbg(xhci, "Compliance Mode Recovery Timer Deleted!\n");
 922	}
 923
 924	/* step 5: remove core well power */
 925	/* synchronize irq when using MSI-X */
 926	xhci_msix_sync_irqs(xhci);
 
 
 
 927
 928	return rc;
 929}
 930
 931/*
 932 * start xHC (not bus-specific)
 933 *
 934 * This is called when the machine transition from S3/S4 mode.
 935 *
 936 */
 937int xhci_resume(struct xhci_hcd *xhci, bool hibernated)
 938{
 939	u32			command, temp = 0;
 940	struct usb_hcd		*hcd = xhci_to_hcd(xhci);
 941	struct usb_hcd		*secondary_hcd;
 942	int			retval = 0;
 943
 944	/* Wait a bit if either of the roothubs need to settle from the
 945	 * transition into bus suspend.
 946	 */
 947	if (time_before(jiffies, xhci->bus_state[0].next_statechange) ||
 948			time_before(jiffies,
 949				xhci->bus_state[1].next_statechange))
 950		msleep(100);
 951
 952	set_bit(HCD_FLAG_HW_ACCESSIBLE, &hcd->flags);
 953	set_bit(HCD_FLAG_HW_ACCESSIBLE, &xhci->shared_hcd->flags);
 954
 955	spin_lock_irq(&xhci->lock);
 956	if (xhci->quirks & XHCI_RESET_ON_RESUME)
 957		hibernated = true;
 958
 959	if (!hibernated) {
 960		/* step 1: restore register */
 961		xhci_restore_registers(xhci);
 962		/* step 2: initialize command ring buffer */
 963		xhci_set_cmd_ring_deq(xhci);
 964		/* step 3: restore state and start state*/
 965		/* step 3: set CRS flag */
 966		command = xhci_readl(xhci, &xhci->op_regs->command);
 967		command |= CMD_CRS;
 968		xhci_writel(xhci, command, &xhci->op_regs->command);
 969		if (handshake(xhci, &xhci->op_regs->status,
 970			      STS_RESTORE, 0, 10 * 1000)) {
 971			xhci_warn(xhci, "WARN: xHC restore state timeout\n");
 972			spin_unlock_irq(&xhci->lock);
 973			return -ETIMEDOUT;
 974		}
 975		temp = xhci_readl(xhci, &xhci->op_regs->status);
 976	}
 977
 978	/* If restore operation fails, re-initialize the HC during resume */
 979	if ((temp & STS_SRE) || hibernated) {
 980		/* Let the USB core know _both_ roothubs lost power. */
 981		usb_root_hub_lost_power(xhci->main_hcd->self.root_hub);
 982		usb_root_hub_lost_power(xhci->shared_hcd->self.root_hub);
 983
 984		xhci_dbg(xhci, "Stop HCD\n");
 985		xhci_halt(xhci);
 986		xhci_reset(xhci);
 987		spin_unlock_irq(&xhci->lock);
 988		xhci_cleanup_msix(xhci);
 989
 990#ifdef CONFIG_USB_XHCI_HCD_DEBUGGING
 991		/* Tell the event ring poll function not to reschedule */
 992		xhci->zombie = 1;
 993		del_timer_sync(&xhci->event_ring_timer);
 994#endif
 995
 996		xhci_dbg(xhci, "// Disabling event ring interrupts\n");
 997		temp = xhci_readl(xhci, &xhci->op_regs->status);
 998		xhci_writel(xhci, temp & ~STS_EINT, &xhci->op_regs->status);
 999		temp = xhci_readl(xhci, &xhci->ir_set->irq_pending);
1000		xhci_writel(xhci, ER_IRQ_DISABLE(temp),
1001				&xhci->ir_set->irq_pending);
1002		xhci_print_ir_set(xhci, 0);
1003
1004		xhci_dbg(xhci, "cleaning up memory\n");
1005		xhci_mem_cleanup(xhci);
1006		xhci_dbg(xhci, "xhci_stop completed - status = %x\n",
1007			    xhci_readl(xhci, &xhci->op_regs->status));
1008
1009		/* USB core calls the PCI reinit and start functions twice:
1010		 * first with the primary HCD, and then with the secondary HCD.
1011		 * If we don't do the same, the host will never be started.
1012		 */
1013		if (!usb_hcd_is_primary_hcd(hcd))
1014			secondary_hcd = hcd;
1015		else
1016			secondary_hcd = xhci->shared_hcd;
1017
1018		xhci_dbg(xhci, "Initialize the xhci_hcd\n");
1019		retval = xhci_init(hcd->primary_hcd);
1020		if (retval)
1021			return retval;
1022		xhci_dbg(xhci, "Start the primary HCD\n");
1023		retval = xhci_run(hcd->primary_hcd);
 
 
 
 
 
1024		if (!retval) {
1025			xhci_dbg(xhci, "Start the secondary HCD\n");
1026			retval = xhci_run(secondary_hcd);
 
1027		}
 
1028		hcd->state = HC_STATE_SUSPENDED;
1029		xhci->shared_hcd->state = HC_STATE_SUSPENDED;
1030		goto done;
1031	}
1032
1033	/* step 4: set Run/Stop bit */
1034	command = xhci_readl(xhci, &xhci->op_regs->command);
1035	command |= CMD_RUN;
1036	xhci_writel(xhci, command, &xhci->op_regs->command);
1037	handshake(xhci, &xhci->op_regs->status, STS_HALT,
1038		  0, 250 * 1000);
1039
1040	/* step 5: walk topology and initialize portsc,
1041	 * portpmsc and portli
1042	 */
1043	/* this is done in bus_resume */
1044
1045	/* step 6: restart each of the previously
1046	 * Running endpoints by ringing their doorbells
1047	 */
1048
 
 
 
1049	spin_unlock_irq(&xhci->lock);
1050
1051 done:
1052	if (retval == 0) {
1053		usb_hcd_resume_root_hub(hcd);
1054		usb_hcd_resume_root_hub(xhci->shared_hcd);
1055	}
1056
1057	/*
1058	 * If system is subject to the Quirk, Compliance Mode Timer needs to
1059	 * be re-initialized Always after a system resume. Ports are subject
1060	 * to suffer the Compliance Mode issue again. It doesn't matter if
1061	 * ports have entered previously to U0 before system's suspension.
1062	 */
1063	if (xhci->quirks & XHCI_COMP_MODE_QUIRK)
1064		compliance_mode_recovery_timer_init(xhci);
1065
1066	return retval;
1067}
1068#endif	/* CONFIG_PM */
1069
1070/*-------------------------------------------------------------------------*/
1071
1072/**
1073 * xhci_get_endpoint_index - Used for passing endpoint bitmasks between the core and
1074 * HCDs.  Find the index for an endpoint given its descriptor.  Use the return
1075 * value to right shift 1 for the bitmask.
1076 *
1077 * Index  = (epnum * 2) + direction - 1,
1078 * where direction = 0 for OUT, 1 for IN.
1079 * For control endpoints, the IN index is used (OUT index is unused), so
1080 * index = (epnum * 2) + direction - 1 = (epnum * 2) + 1 - 1 = (epnum * 2)
1081 */
1082unsigned int xhci_get_endpoint_index(struct usb_endpoint_descriptor *desc)
1083{
1084	unsigned int index;
1085	if (usb_endpoint_xfer_control(desc))
1086		index = (unsigned int) (usb_endpoint_num(desc)*2);
1087	else
1088		index = (unsigned int) (usb_endpoint_num(desc)*2) +
1089			(usb_endpoint_dir_in(desc) ? 1 : 0) - 1;
1090	return index;
1091}
1092
1093/* Find the flag for this endpoint (for use in the control context).  Use the
1094 * endpoint index to create a bitmask.  The slot context is bit 0, endpoint 0 is
1095 * bit 1, etc.
1096 */
1097unsigned int xhci_get_endpoint_flag(struct usb_endpoint_descriptor *desc)
1098{
1099	return 1 << (xhci_get_endpoint_index(desc) + 1);
1100}
1101
1102/* Find the flag for this endpoint (for use in the control context).  Use the
1103 * endpoint index to create a bitmask.  The slot context is bit 0, endpoint 0 is
1104 * bit 1, etc.
1105 */
1106unsigned int xhci_get_endpoint_flag_from_index(unsigned int ep_index)
1107{
1108	return 1 << (ep_index + 1);
1109}
1110
1111/* Compute the last valid endpoint context index.  Basically, this is the
1112 * endpoint index plus one.  For slot contexts with more than valid endpoint,
1113 * we find the most significant bit set in the added contexts flags.
1114 * e.g. ep 1 IN (with epnum 0x81) => added_ctxs = 0b1000
1115 * fls(0b1000) = 4, but the endpoint context index is 3, so subtract one.
1116 */
1117unsigned int xhci_last_valid_endpoint(u32 added_ctxs)
1118{
1119	return fls(added_ctxs) - 1;
1120}
1121
1122/* Returns 1 if the arguments are OK;
1123 * returns 0 this is a root hub; returns -EINVAL for NULL pointers.
1124 */
1125static int xhci_check_args(struct usb_hcd *hcd, struct usb_device *udev,
1126		struct usb_host_endpoint *ep, int check_ep, bool check_virt_dev,
1127		const char *func) {
1128	struct xhci_hcd	*xhci;
1129	struct xhci_virt_device	*virt_dev;
1130
1131	if (!hcd || (check_ep && !ep) || !udev) {
1132		printk(KERN_DEBUG "xHCI %s called with invalid args\n",
1133				func);
1134		return -EINVAL;
1135	}
1136	if (!udev->parent) {
1137		printk(KERN_DEBUG "xHCI %s called for root hub\n",
1138				func);
1139		return 0;
1140	}
1141
1142	xhci = hcd_to_xhci(hcd);
1143	if (xhci->xhc_state & XHCI_STATE_HALTED)
1144		return -ENODEV;
1145
1146	if (check_virt_dev) {
1147		if (!udev->slot_id || !xhci->devs[udev->slot_id]) {
 
1148			printk(KERN_DEBUG "xHCI %s called with unaddressed "
1149						"device\n", func);
1150			return -EINVAL;
1151		}
1152
1153		virt_dev = xhci->devs[udev->slot_id];
1154		if (virt_dev->udev != udev) {
1155			printk(KERN_DEBUG "xHCI %s called with udev and "
1156					  "virt_dev does not match\n", func);
1157			return -EINVAL;
1158		}
1159	}
1160
1161	return 1;
1162}
1163
1164static int xhci_configure_endpoint(struct xhci_hcd *xhci,
1165		struct usb_device *udev, struct xhci_command *command,
1166		bool ctx_change, bool must_succeed);
1167
1168/*
1169 * Full speed devices may have a max packet size greater than 8 bytes, but the
1170 * USB core doesn't know that until it reads the first 8 bytes of the
1171 * descriptor.  If the usb_device's max packet size changes after that point,
1172 * we need to issue an evaluate context command and wait on it.
1173 */
1174static int xhci_check_maxpacket(struct xhci_hcd *xhci, unsigned int slot_id,
1175		unsigned int ep_index, struct urb *urb)
1176{
1177	struct xhci_container_ctx *in_ctx;
1178	struct xhci_container_ctx *out_ctx;
1179	struct xhci_input_control_ctx *ctrl_ctx;
1180	struct xhci_ep_ctx *ep_ctx;
1181	int max_packet_size;
1182	int hw_max_packet_size;
1183	int ret = 0;
1184
1185	out_ctx = xhci->devs[slot_id]->out_ctx;
1186	ep_ctx = xhci_get_ep_ctx(xhci, out_ctx, ep_index);
1187	hw_max_packet_size = MAX_PACKET_DECODED(le32_to_cpu(ep_ctx->ep_info2));
1188	max_packet_size = usb_endpoint_maxp(&urb->dev->ep0.desc);
1189	if (hw_max_packet_size != max_packet_size) {
1190		xhci_dbg(xhci, "Max Packet Size for ep 0 changed.\n");
1191		xhci_dbg(xhci, "Max packet size in usb_device = %d\n",
1192				max_packet_size);
1193		xhci_dbg(xhci, "Max packet size in xHCI HW = %d\n",
1194				hw_max_packet_size);
1195		xhci_dbg(xhci, "Issuing evaluate context command.\n");
1196
1197		/* Set up the modified control endpoint 0 */
1198		xhci_endpoint_copy(xhci, xhci->devs[slot_id]->in_ctx,
1199				xhci->devs[slot_id]->out_ctx, ep_index);
1200		in_ctx = xhci->devs[slot_id]->in_ctx;
1201		ep_ctx = xhci_get_ep_ctx(xhci, in_ctx, ep_index);
1202		ep_ctx->ep_info2 &= cpu_to_le32(~MAX_PACKET_MASK);
1203		ep_ctx->ep_info2 |= cpu_to_le32(MAX_PACKET(max_packet_size));
1204
1205		/* Set up the input context flags for the command */
1206		/* FIXME: This won't work if a non-default control endpoint
1207		 * changes max packet sizes.
1208		 */
1209		ctrl_ctx = xhci_get_input_control_ctx(xhci, in_ctx);
1210		ctrl_ctx->add_flags = cpu_to_le32(EP0_FLAG);
1211		ctrl_ctx->drop_flags = 0;
1212
1213		xhci_dbg(xhci, "Slot %d input context\n", slot_id);
1214		xhci_dbg_ctx(xhci, in_ctx, ep_index);
1215		xhci_dbg(xhci, "Slot %d output context\n", slot_id);
1216		xhci_dbg_ctx(xhci, out_ctx, ep_index);
1217
1218		ret = xhci_configure_endpoint(xhci, urb->dev, NULL,
1219				true, false);
1220
1221		/* Clean up the input context for later use by bandwidth
1222		 * functions.
1223		 */
1224		ctrl_ctx->add_flags = cpu_to_le32(SLOT_FLAG);
1225	}
1226	return ret;
1227}
1228
1229/*
1230 * non-error returns are a promise to giveback() the urb later
1231 * we drop ownership so next owner (or urb unlink) can get it
1232 */
1233int xhci_urb_enqueue(struct usb_hcd *hcd, struct urb *urb, gfp_t mem_flags)
1234{
1235	struct xhci_hcd *xhci = hcd_to_xhci(hcd);
1236	struct xhci_td *buffer;
1237	unsigned long flags;
1238	int ret = 0;
1239	unsigned int slot_id, ep_index;
1240	struct urb_priv	*urb_priv;
1241	int size, i;
1242
1243	if (!urb || xhci_check_args(hcd, urb->dev, urb->ep,
1244					true, true, __func__) <= 0)
1245		return -EINVAL;
1246
1247	slot_id = urb->dev->slot_id;
1248	ep_index = xhci_get_endpoint_index(&urb->ep->desc);
1249
1250	if (!HCD_HW_ACCESSIBLE(hcd)) {
1251		if (!in_interrupt())
1252			xhci_dbg(xhci, "urb submitted during PCI suspend\n");
1253		ret = -ESHUTDOWN;
1254		goto exit;
1255	}
1256
1257	if (usb_endpoint_xfer_isoc(&urb->ep->desc))
1258		size = urb->number_of_packets;
1259	else
1260		size = 1;
1261
1262	urb_priv = kzalloc(sizeof(struct urb_priv) +
1263				  size * sizeof(struct xhci_td *), mem_flags);
1264	if (!urb_priv)
1265		return -ENOMEM;
1266
1267	buffer = kzalloc(size * sizeof(struct xhci_td), mem_flags);
1268	if (!buffer) {
1269		kfree(urb_priv);
1270		return -ENOMEM;
1271	}
1272
1273	for (i = 0; i < size; i++) {
1274		urb_priv->td[i] = buffer;
1275		buffer++;
 
 
 
 
1276	}
1277
1278	urb_priv->length = size;
1279	urb_priv->td_cnt = 0;
1280	urb->hcpriv = urb_priv;
1281
1282	if (usb_endpoint_xfer_control(&urb->ep->desc)) {
1283		/* Check to see if the max packet size for the default control
1284		 * endpoint changed during FS device enumeration
1285		 */
1286		if (urb->dev->speed == USB_SPEED_FULL) {
1287			ret = xhci_check_maxpacket(xhci, slot_id,
1288					ep_index, urb);
1289			if (ret < 0) {
1290				xhci_urb_free_priv(xhci, urb_priv);
1291				urb->hcpriv = NULL;
1292				return ret;
1293			}
1294		}
1295
1296		/* We have a spinlock and interrupts disabled, so we must pass
1297		 * atomic context to this function, which may allocate memory.
1298		 */
1299		spin_lock_irqsave(&xhci->lock, flags);
1300		if (xhci->xhc_state & XHCI_STATE_DYING)
1301			goto dying;
1302		ret = xhci_queue_ctrl_tx(xhci, GFP_ATOMIC, urb,
1303				slot_id, ep_index);
1304		if (ret)
1305			goto free_priv;
1306		spin_unlock_irqrestore(&xhci->lock, flags);
1307	} else if (usb_endpoint_xfer_bulk(&urb->ep->desc)) {
1308		spin_lock_irqsave(&xhci->lock, flags);
1309		if (xhci->xhc_state & XHCI_STATE_DYING)
1310			goto dying;
1311		if (xhci->devs[slot_id]->eps[ep_index].ep_state &
1312				EP_GETTING_STREAMS) {
1313			xhci_warn(xhci, "WARN: Can't enqueue URB while bulk ep "
1314					"is transitioning to using streams.\n");
1315			ret = -EINVAL;
1316		} else if (xhci->devs[slot_id]->eps[ep_index].ep_state &
1317				EP_GETTING_NO_STREAMS) {
1318			xhci_warn(xhci, "WARN: Can't enqueue URB while bulk ep "
1319					"is transitioning to "
1320					"not having streams.\n");
1321			ret = -EINVAL;
1322		} else {
1323			ret = xhci_queue_bulk_tx(xhci, GFP_ATOMIC, urb,
1324					slot_id, ep_index);
1325		}
1326		if (ret)
1327			goto free_priv;
1328		spin_unlock_irqrestore(&xhci->lock, flags);
1329	} else if (usb_endpoint_xfer_int(&urb->ep->desc)) {
1330		spin_lock_irqsave(&xhci->lock, flags);
1331		if (xhci->xhc_state & XHCI_STATE_DYING)
1332			goto dying;
1333		ret = xhci_queue_intr_tx(xhci, GFP_ATOMIC, urb,
1334				slot_id, ep_index);
1335		if (ret)
1336			goto free_priv;
1337		spin_unlock_irqrestore(&xhci->lock, flags);
1338	} else {
1339		spin_lock_irqsave(&xhci->lock, flags);
1340		if (xhci->xhc_state & XHCI_STATE_DYING)
1341			goto dying;
1342		ret = xhci_queue_isoc_tx_prepare(xhci, GFP_ATOMIC, urb,
1343				slot_id, ep_index);
1344		if (ret)
1345			goto free_priv;
1346		spin_unlock_irqrestore(&xhci->lock, flags);
1347	}
1348exit:
1349	return ret;
1350dying:
1351	xhci_dbg(xhci, "Ep 0x%x: URB %p submitted for "
1352			"non-responsive xHCI host.\n",
1353			urb->ep->desc.bEndpointAddress, urb);
1354	ret = -ESHUTDOWN;
1355free_priv:
1356	xhci_urb_free_priv(xhci, urb_priv);
1357	urb->hcpriv = NULL;
1358	spin_unlock_irqrestore(&xhci->lock, flags);
1359	return ret;
1360}
1361
1362/* Get the right ring for the given URB.
1363 * If the endpoint supports streams, boundary check the URB's stream ID.
1364 * If the endpoint doesn't support streams, return the singular endpoint ring.
1365 */
1366static struct xhci_ring *xhci_urb_to_transfer_ring(struct xhci_hcd *xhci,
1367		struct urb *urb)
1368{
1369	unsigned int slot_id;
1370	unsigned int ep_index;
1371	unsigned int stream_id;
1372	struct xhci_virt_ep *ep;
1373
1374	slot_id = urb->dev->slot_id;
1375	ep_index = xhci_get_endpoint_index(&urb->ep->desc);
1376	stream_id = urb->stream_id;
1377	ep = &xhci->devs[slot_id]->eps[ep_index];
1378	/* Common case: no streams */
1379	if (!(ep->ep_state & EP_HAS_STREAMS))
1380		return ep->ring;
1381
1382	if (stream_id == 0) {
1383		xhci_warn(xhci,
1384				"WARN: Slot ID %u, ep index %u has streams, "
1385				"but URB has no stream ID.\n",
1386				slot_id, ep_index);
1387		return NULL;
1388	}
1389
1390	if (stream_id < ep->stream_info->num_streams)
1391		return ep->stream_info->stream_rings[stream_id];
1392
1393	xhci_warn(xhci,
1394			"WARN: Slot ID %u, ep index %u has "
1395			"stream IDs 1 to %u allocated, "
1396			"but stream ID %u is requested.\n",
1397			slot_id, ep_index,
1398			ep->stream_info->num_streams - 1,
1399			stream_id);
1400	return NULL;
1401}
1402
1403/*
1404 * Remove the URB's TD from the endpoint ring.  This may cause the HC to stop
1405 * USB transfers, potentially stopping in the middle of a TRB buffer.  The HC
1406 * should pick up where it left off in the TD, unless a Set Transfer Ring
1407 * Dequeue Pointer is issued.
1408 *
1409 * The TRBs that make up the buffers for the canceled URB will be "removed" from
1410 * the ring.  Since the ring is a contiguous structure, they can't be physically
1411 * removed.  Instead, there are two options:
1412 *
1413 *  1) If the HC is in the middle of processing the URB to be canceled, we
1414 *     simply move the ring's dequeue pointer past those TRBs using the Set
1415 *     Transfer Ring Dequeue Pointer command.  This will be the common case,
1416 *     when drivers timeout on the last submitted URB and attempt to cancel.
1417 *
1418 *  2) If the HC is in the middle of a different TD, we turn the TRBs into a
1419 *     series of 1-TRB transfer no-op TDs.  (No-ops shouldn't be chained.)  The
1420 *     HC will need to invalidate the any TRBs it has cached after the stop
1421 *     endpoint command, as noted in the xHCI 0.95 errata.
1422 *
1423 *  3) The TD may have completed by the time the Stop Endpoint Command
1424 *     completes, so software needs to handle that case too.
1425 *
1426 * This function should protect against the TD enqueueing code ringing the
1427 * doorbell while this code is waiting for a Stop Endpoint command to complete.
1428 * It also needs to account for multiple cancellations on happening at the same
1429 * time for the same endpoint.
1430 *
1431 * Note that this function can be called in any context, or so says
1432 * usb_hcd_unlink_urb()
1433 */
1434int xhci_urb_dequeue(struct usb_hcd *hcd, struct urb *urb, int status)
1435{
1436	unsigned long flags;
1437	int ret, i;
1438	u32 temp;
1439	struct xhci_hcd *xhci;
1440	struct urb_priv	*urb_priv;
1441	struct xhci_td *td;
1442	unsigned int ep_index;
1443	struct xhci_ring *ep_ring;
1444	struct xhci_virt_ep *ep;
1445
1446	xhci = hcd_to_xhci(hcd);
1447	spin_lock_irqsave(&xhci->lock, flags);
1448	/* Make sure the URB hasn't completed or been unlinked already */
1449	ret = usb_hcd_check_unlink_urb(hcd, urb, status);
1450	if (ret || !urb->hcpriv)
1451		goto done;
1452	temp = xhci_readl(xhci, &xhci->op_regs->status);
1453	if (temp == 0xffffffff || (xhci->xhc_state & XHCI_STATE_HALTED)) {
1454		xhci_dbg(xhci, "HW died, freeing TD.\n");
1455		urb_priv = urb->hcpriv;
1456		for (i = urb_priv->td_cnt; i < urb_priv->length; i++) {
1457			td = urb_priv->td[i];
1458			if (!list_empty(&td->td_list))
1459				list_del_init(&td->td_list);
1460			if (!list_empty(&td->cancelled_td_list))
1461				list_del_init(&td->cancelled_td_list);
1462		}
1463
1464		usb_hcd_unlink_urb_from_ep(hcd, urb);
1465		spin_unlock_irqrestore(&xhci->lock, flags);
1466		usb_hcd_giveback_urb(hcd, urb, -ESHUTDOWN);
1467		xhci_urb_free_priv(xhci, urb_priv);
1468		return ret;
1469	}
1470	if ((xhci->xhc_state & XHCI_STATE_DYING) ||
1471			(xhci->xhc_state & XHCI_STATE_HALTED)) {
1472		xhci_dbg(xhci, "Ep 0x%x: URB %p to be canceled on "
1473				"non-responsive xHCI host.\n",
1474				urb->ep->desc.bEndpointAddress, urb);
1475		/* Let the stop endpoint command watchdog timer (which set this
1476		 * state) finish cleaning up the endpoint TD lists.  We must
1477		 * have caught it in the middle of dropping a lock and giving
1478		 * back an URB.
1479		 */
1480		goto done;
1481	}
1482
 
 
 
1483	ep_index = xhci_get_endpoint_index(&urb->ep->desc);
1484	ep = &xhci->devs[urb->dev->slot_id]->eps[ep_index];
1485	ep_ring = xhci_urb_to_transfer_ring(xhci, urb);
1486	if (!ep_ring) {
1487		ret = -EINVAL;
1488		goto done;
1489	}
1490
 
 
 
1491	urb_priv = urb->hcpriv;
1492	i = urb_priv->td_cnt;
1493	if (i < urb_priv->length)
1494		xhci_dbg(xhci, "Cancel URB %p, dev %s, ep 0x%x, "
1495				"starting at offset 0x%llx\n",
1496				urb, urb->dev->devpath,
1497				urb->ep->desc.bEndpointAddress,
1498				(unsigned long long) xhci_trb_virt_to_dma(
1499					urb_priv->td[i]->start_seg,
1500					urb_priv->td[i]->first_trb));
1501
1502	for (; i < urb_priv->length; i++) {
1503		td = urb_priv->td[i];
1504		list_add_tail(&td->cancelled_td_list, &ep->cancelled_td_list);
1505	}
1506
1507	/* Queue a stop endpoint command, but only if this is
1508	 * the first cancellation to be handled.
1509	 */
1510	if (!(ep->ep_state & EP_HALT_PENDING)) {
1511		ep->ep_state |= EP_HALT_PENDING;
1512		ep->stop_cmds_pending++;
1513		ep->stop_cmd_timer.expires = jiffies +
1514			XHCI_STOP_EP_CMD_TIMEOUT * HZ;
1515		add_timer(&ep->stop_cmd_timer);
1516		xhci_queue_stop_endpoint(xhci, urb->dev->slot_id, ep_index, 0);
1517		xhci_ring_cmd_db(xhci);
1518	}
1519done:
1520	spin_unlock_irqrestore(&xhci->lock, flags);
1521	return ret;
1522}
1523
1524/* Drop an endpoint from a new bandwidth configuration for this device.
1525 * Only one call to this function is allowed per endpoint before
1526 * check_bandwidth() or reset_bandwidth() must be called.
1527 * A call to xhci_drop_endpoint() followed by a call to xhci_add_endpoint() will
1528 * add the endpoint to the schedule with possibly new parameters denoted by a
1529 * different endpoint descriptor in usb_host_endpoint.
1530 * A call to xhci_add_endpoint() followed by a call to xhci_drop_endpoint() is
1531 * not allowed.
1532 *
1533 * The USB core will not allow URBs to be queued to an endpoint that is being
1534 * disabled, so there's no need for mutual exclusion to protect
1535 * the xhci->devs[slot_id] structure.
1536 */
1537int xhci_drop_endpoint(struct usb_hcd *hcd, struct usb_device *udev,
1538		struct usb_host_endpoint *ep)
1539{
1540	struct xhci_hcd *xhci;
1541	struct xhci_container_ctx *in_ctx, *out_ctx;
1542	struct xhci_input_control_ctx *ctrl_ctx;
1543	struct xhci_slot_ctx *slot_ctx;
1544	unsigned int last_ctx;
1545	unsigned int ep_index;
1546	struct xhci_ep_ctx *ep_ctx;
1547	u32 drop_flag;
1548	u32 new_add_flags, new_drop_flags, new_slot_info;
1549	int ret;
1550
1551	ret = xhci_check_args(hcd, udev, ep, 1, true, __func__);
1552	if (ret <= 0)
1553		return ret;
1554	xhci = hcd_to_xhci(hcd);
1555	if (xhci->xhc_state & XHCI_STATE_DYING)
1556		return -ENODEV;
1557
1558	xhci_dbg(xhci, "%s called for udev %p\n", __func__, udev);
1559	drop_flag = xhci_get_endpoint_flag(&ep->desc);
1560	if (drop_flag == SLOT_FLAG || drop_flag == EP0_FLAG) {
1561		xhci_dbg(xhci, "xHCI %s - can't drop slot or ep 0 %#x\n",
1562				__func__, drop_flag);
1563		return 0;
1564	}
1565
1566	in_ctx = xhci->devs[udev->slot_id]->in_ctx;
1567	out_ctx = xhci->devs[udev->slot_id]->out_ctx;
1568	ctrl_ctx = xhci_get_input_control_ctx(xhci, in_ctx);
1569	ep_index = xhci_get_endpoint_index(&ep->desc);
1570	ep_ctx = xhci_get_ep_ctx(xhci, out_ctx, ep_index);
1571	/* If the HC already knows the endpoint is disabled,
1572	 * or the HCD has noted it is disabled, ignore this request
1573	 */
1574	if (((ep_ctx->ep_info & cpu_to_le32(EP_STATE_MASK)) ==
1575	     cpu_to_le32(EP_STATE_DISABLED)) ||
1576	    le32_to_cpu(ctrl_ctx->drop_flags) &
1577	    xhci_get_endpoint_flag(&ep->desc)) {
1578		xhci_warn(xhci, "xHCI %s called with disabled ep %p\n",
1579				__func__, ep);
1580		return 0;
1581	}
1582
1583	ctrl_ctx->drop_flags |= cpu_to_le32(drop_flag);
1584	new_drop_flags = le32_to_cpu(ctrl_ctx->drop_flags);
1585
1586	ctrl_ctx->add_flags &= cpu_to_le32(~drop_flag);
1587	new_add_flags = le32_to_cpu(ctrl_ctx->add_flags);
1588
1589	last_ctx = xhci_last_valid_endpoint(le32_to_cpu(ctrl_ctx->add_flags));
1590	slot_ctx = xhci_get_slot_ctx(xhci, in_ctx);
1591	/* Update the last valid endpoint context, if we deleted the last one */
1592	if ((le32_to_cpu(slot_ctx->dev_info) & LAST_CTX_MASK) >
1593	    LAST_CTX(last_ctx)) {
1594		slot_ctx->dev_info &= cpu_to_le32(~LAST_CTX_MASK);
1595		slot_ctx->dev_info |= cpu_to_le32(LAST_CTX(last_ctx));
1596	}
1597	new_slot_info = le32_to_cpu(slot_ctx->dev_info);
1598
1599	xhci_endpoint_zero(xhci, xhci->devs[udev->slot_id], ep);
1600
1601	xhci_dbg(xhci, "drop ep 0x%x, slot id %d, new drop flags = %#x, new add flags = %#x, new slot info = %#x\n",
1602			(unsigned int) ep->desc.bEndpointAddress,
1603			udev->slot_id,
1604			(unsigned int) new_drop_flags,
1605			(unsigned int) new_add_flags,
1606			(unsigned int) new_slot_info);
1607	return 0;
1608}
1609
1610/* Add an endpoint to a new possible bandwidth configuration for this device.
1611 * Only one call to this function is allowed per endpoint before
1612 * check_bandwidth() or reset_bandwidth() must be called.
1613 * A call to xhci_drop_endpoint() followed by a call to xhci_add_endpoint() will
1614 * add the endpoint to the schedule with possibly new parameters denoted by a
1615 * different endpoint descriptor in usb_host_endpoint.
1616 * A call to xhci_add_endpoint() followed by a call to xhci_drop_endpoint() is
1617 * not allowed.
1618 *
1619 * The USB core will not allow URBs to be queued to an endpoint until the
1620 * configuration or alt setting is installed in the device, so there's no need
1621 * for mutual exclusion to protect the xhci->devs[slot_id] structure.
1622 */
1623int xhci_add_endpoint(struct usb_hcd *hcd, struct usb_device *udev,
1624		struct usb_host_endpoint *ep)
1625{
1626	struct xhci_hcd *xhci;
1627	struct xhci_container_ctx *in_ctx, *out_ctx;
1628	unsigned int ep_index;
1629	struct xhci_ep_ctx *ep_ctx;
1630	struct xhci_slot_ctx *slot_ctx;
1631	struct xhci_input_control_ctx *ctrl_ctx;
1632	u32 added_ctxs;
1633	unsigned int last_ctx;
1634	u32 new_add_flags, new_drop_flags, new_slot_info;
1635	struct xhci_virt_device *virt_dev;
1636	int ret = 0;
1637
1638	ret = xhci_check_args(hcd, udev, ep, 1, true, __func__);
1639	if (ret <= 0) {
1640		/* So we won't queue a reset ep command for a root hub */
1641		ep->hcpriv = NULL;
1642		return ret;
1643	}
1644	xhci = hcd_to_xhci(hcd);
1645	if (xhci->xhc_state & XHCI_STATE_DYING)
1646		return -ENODEV;
1647
1648	added_ctxs = xhci_get_endpoint_flag(&ep->desc);
1649	last_ctx = xhci_last_valid_endpoint(added_ctxs);
1650	if (added_ctxs == SLOT_FLAG || added_ctxs == EP0_FLAG) {
1651		/* FIXME when we have to issue an evaluate endpoint command to
1652		 * deal with ep0 max packet size changing once we get the
1653		 * descriptors
1654		 */
1655		xhci_dbg(xhci, "xHCI %s - can't add slot or ep 0 %#x\n",
1656				__func__, added_ctxs);
1657		return 0;
1658	}
1659
1660	virt_dev = xhci->devs[udev->slot_id];
1661	in_ctx = virt_dev->in_ctx;
1662	out_ctx = virt_dev->out_ctx;
1663	ctrl_ctx = xhci_get_input_control_ctx(xhci, in_ctx);
1664	ep_index = xhci_get_endpoint_index(&ep->desc);
1665	ep_ctx = xhci_get_ep_ctx(xhci, out_ctx, ep_index);
1666
1667	/* If this endpoint is already in use, and the upper layers are trying
1668	 * to add it again without dropping it, reject the addition.
1669	 */
1670	if (virt_dev->eps[ep_index].ring &&
1671			!(le32_to_cpu(ctrl_ctx->drop_flags) &
1672				xhci_get_endpoint_flag(&ep->desc))) {
1673		xhci_warn(xhci, "Trying to add endpoint 0x%x "
1674				"without dropping it.\n",
1675				(unsigned int) ep->desc.bEndpointAddress);
1676		return -EINVAL;
1677	}
1678
1679	/* If the HCD has already noted the endpoint is enabled,
1680	 * ignore this request.
1681	 */
1682	if (le32_to_cpu(ctrl_ctx->add_flags) &
1683	    xhci_get_endpoint_flag(&ep->desc)) {
1684		xhci_warn(xhci, "xHCI %s called with enabled ep %p\n",
1685				__func__, ep);
1686		return 0;
1687	}
1688
1689	/*
1690	 * Configuration and alternate setting changes must be done in
1691	 * process context, not interrupt context (or so documenation
1692	 * for usb_set_interface() and usb_set_configuration() claim).
1693	 */
1694	if (xhci_endpoint_init(xhci, virt_dev, udev, ep, GFP_NOIO) < 0) {
1695		dev_dbg(&udev->dev, "%s - could not initialize ep %#x\n",
1696				__func__, ep->desc.bEndpointAddress);
1697		return -ENOMEM;
1698	}
1699
1700	ctrl_ctx->add_flags |= cpu_to_le32(added_ctxs);
1701	new_add_flags = le32_to_cpu(ctrl_ctx->add_flags);
1702
1703	/* If xhci_endpoint_disable() was called for this endpoint, but the
1704	 * xHC hasn't been notified yet through the check_bandwidth() call,
1705	 * this re-adds a new state for the endpoint from the new endpoint
1706	 * descriptors.  We must drop and re-add this endpoint, so we leave the
1707	 * drop flags alone.
1708	 */
1709	new_drop_flags = le32_to_cpu(ctrl_ctx->drop_flags);
1710
1711	slot_ctx = xhci_get_slot_ctx(xhci, in_ctx);
1712	/* Update the last valid endpoint context, if we just added one past */
1713	if ((le32_to_cpu(slot_ctx->dev_info) & LAST_CTX_MASK) <
1714	    LAST_CTX(last_ctx)) {
1715		slot_ctx->dev_info &= cpu_to_le32(~LAST_CTX_MASK);
1716		slot_ctx->dev_info |= cpu_to_le32(LAST_CTX(last_ctx));
1717	}
1718	new_slot_info = le32_to_cpu(slot_ctx->dev_info);
1719
1720	/* Store the usb_device pointer for later use */
1721	ep->hcpriv = udev;
1722
1723	xhci_dbg(xhci, "add ep 0x%x, slot id %d, new drop flags = %#x, new add flags = %#x, new slot info = %#x\n",
1724			(unsigned int) ep->desc.bEndpointAddress,
1725			udev->slot_id,
1726			(unsigned int) new_drop_flags,
1727			(unsigned int) new_add_flags,
1728			(unsigned int) new_slot_info);
1729	return 0;
1730}
1731
1732static void xhci_zero_in_ctx(struct xhci_hcd *xhci, struct xhci_virt_device *virt_dev)
1733{
1734	struct xhci_input_control_ctx *ctrl_ctx;
1735	struct xhci_ep_ctx *ep_ctx;
1736	struct xhci_slot_ctx *slot_ctx;
1737	int i;
1738
1739	/* When a device's add flag and drop flag are zero, any subsequent
1740	 * configure endpoint command will leave that endpoint's state
1741	 * untouched.  Make sure we don't leave any old state in the input
1742	 * endpoint contexts.
1743	 */
1744	ctrl_ctx = xhci_get_input_control_ctx(xhci, virt_dev->in_ctx);
1745	ctrl_ctx->drop_flags = 0;
1746	ctrl_ctx->add_flags = 0;
1747	slot_ctx = xhci_get_slot_ctx(xhci, virt_dev->in_ctx);
1748	slot_ctx->dev_info &= cpu_to_le32(~LAST_CTX_MASK);
1749	/* Endpoint 0 is always valid */
1750	slot_ctx->dev_info |= cpu_to_le32(LAST_CTX(1));
1751	for (i = 1; i < 31; ++i) {
1752		ep_ctx = xhci_get_ep_ctx(xhci, virt_dev->in_ctx, i);
1753		ep_ctx->ep_info = 0;
1754		ep_ctx->ep_info2 = 0;
1755		ep_ctx->deq = 0;
1756		ep_ctx->tx_info = 0;
1757	}
1758}
1759
1760static int xhci_configure_endpoint_result(struct xhci_hcd *xhci,
1761		struct usb_device *udev, u32 *cmd_status)
1762{
1763	int ret;
1764
1765	switch (*cmd_status) {
1766	case COMP_ENOMEM:
1767		dev_warn(&udev->dev, "Not enough host controller resources "
1768				"for new device state.\n");
1769		ret = -ENOMEM;
1770		/* FIXME: can we allocate more resources for the HC? */
1771		break;
1772	case COMP_BW_ERR:
1773	case COMP_2ND_BW_ERR:
1774		dev_warn(&udev->dev, "Not enough bandwidth "
1775				"for new device state.\n");
1776		ret = -ENOSPC;
1777		/* FIXME: can we go back to the old state? */
1778		break;
1779	case COMP_TRB_ERR:
1780		/* the HCD set up something wrong */
1781		dev_warn(&udev->dev, "ERROR: Endpoint drop flag = 0, "
1782				"add flag = 1, "
1783				"and endpoint is not disabled.\n");
1784		ret = -EINVAL;
1785		break;
1786	case COMP_DEV_ERR:
1787		dev_warn(&udev->dev, "ERROR: Incompatible device for endpoint "
1788				"configure command.\n");
1789		ret = -ENODEV;
1790		break;
1791	case COMP_SUCCESS:
1792		dev_dbg(&udev->dev, "Successful Endpoint Configure command\n");
1793		ret = 0;
1794		break;
1795	default:
1796		xhci_err(xhci, "ERROR: unexpected command completion "
1797				"code 0x%x.\n", *cmd_status);
1798		ret = -EINVAL;
1799		break;
1800	}
1801	return ret;
1802}
1803
1804static int xhci_evaluate_context_result(struct xhci_hcd *xhci,
1805		struct usb_device *udev, u32 *cmd_status)
1806{
1807	int ret;
1808	struct xhci_virt_device *virt_dev = xhci->devs[udev->slot_id];
1809
1810	switch (*cmd_status) {
1811	case COMP_EINVAL:
1812		dev_warn(&udev->dev, "WARN: xHCI driver setup invalid evaluate "
1813				"context command.\n");
1814		ret = -EINVAL;
1815		break;
1816	case COMP_EBADSLT:
1817		dev_warn(&udev->dev, "WARN: slot not enabled for"
1818				"evaluate context command.\n");
1819	case COMP_CTX_STATE:
1820		dev_warn(&udev->dev, "WARN: invalid context state for "
1821				"evaluate context command.\n");
1822		xhci_dbg_ctx(xhci, virt_dev->out_ctx, 1);
1823		ret = -EINVAL;
1824		break;
1825	case COMP_DEV_ERR:
1826		dev_warn(&udev->dev, "ERROR: Incompatible device for evaluate "
1827				"context command.\n");
1828		ret = -ENODEV;
1829		break;
1830	case COMP_MEL_ERR:
1831		/* Max Exit Latency too large error */
1832		dev_warn(&udev->dev, "WARN: Max Exit Latency too large\n");
1833		ret = -EINVAL;
1834		break;
1835	case COMP_SUCCESS:
1836		dev_dbg(&udev->dev, "Successful evaluate context command\n");
1837		ret = 0;
1838		break;
1839	default:
1840		xhci_err(xhci, "ERROR: unexpected command completion "
1841				"code 0x%x.\n", *cmd_status);
1842		ret = -EINVAL;
1843		break;
1844	}
1845	return ret;
1846}
1847
1848static u32 xhci_count_num_new_endpoints(struct xhci_hcd *xhci,
1849		struct xhci_container_ctx *in_ctx)
1850{
1851	struct xhci_input_control_ctx *ctrl_ctx;
1852	u32 valid_add_flags;
1853	u32 valid_drop_flags;
1854
1855	ctrl_ctx = xhci_get_input_control_ctx(xhci, in_ctx);
1856	/* Ignore the slot flag (bit 0), and the default control endpoint flag
1857	 * (bit 1).  The default control endpoint is added during the Address
1858	 * Device command and is never removed until the slot is disabled.
1859	 */
1860	valid_add_flags = ctrl_ctx->add_flags >> 2;
1861	valid_drop_flags = ctrl_ctx->drop_flags >> 2;
1862
1863	/* Use hweight32 to count the number of ones in the add flags, or
1864	 * number of endpoints added.  Don't count endpoints that are changed
1865	 * (both added and dropped).
1866	 */
1867	return hweight32(valid_add_flags) -
1868		hweight32(valid_add_flags & valid_drop_flags);
1869}
1870
1871static unsigned int xhci_count_num_dropped_endpoints(struct xhci_hcd *xhci,
1872		struct xhci_container_ctx *in_ctx)
1873{
1874	struct xhci_input_control_ctx *ctrl_ctx;
1875	u32 valid_add_flags;
1876	u32 valid_drop_flags;
1877
1878	ctrl_ctx = xhci_get_input_control_ctx(xhci, in_ctx);
1879	valid_add_flags = ctrl_ctx->add_flags >> 2;
1880	valid_drop_flags = ctrl_ctx->drop_flags >> 2;
1881
1882	return hweight32(valid_drop_flags) -
1883		hweight32(valid_add_flags & valid_drop_flags);
1884}
1885
1886/*
1887 * We need to reserve the new number of endpoints before the configure endpoint
1888 * command completes.  We can't subtract the dropped endpoints from the number
1889 * of active endpoints until the command completes because we can oversubscribe
1890 * the host in this case:
1891 *
1892 *  - the first configure endpoint command drops more endpoints than it adds
1893 *  - a second configure endpoint command that adds more endpoints is queued
1894 *  - the first configure endpoint command fails, so the config is unchanged
1895 *  - the second command may succeed, even though there isn't enough resources
1896 *
1897 * Must be called with xhci->lock held.
1898 */
1899static int xhci_reserve_host_resources(struct xhci_hcd *xhci,
1900		struct xhci_container_ctx *in_ctx)
1901{
1902	u32 added_eps;
1903
1904	added_eps = xhci_count_num_new_endpoints(xhci, in_ctx);
1905	if (xhci->num_active_eps + added_eps > xhci->limit_active_eps) {
1906		xhci_dbg(xhci, "Not enough ep ctxs: "
1907				"%u active, need to add %u, limit is %u.\n",
1908				xhci->num_active_eps, added_eps,
1909				xhci->limit_active_eps);
1910		return -ENOMEM;
1911	}
1912	xhci->num_active_eps += added_eps;
1913	xhci_dbg(xhci, "Adding %u ep ctxs, %u now active.\n", added_eps,
1914			xhci->num_active_eps);
1915	return 0;
1916}
1917
1918/*
1919 * The configure endpoint was failed by the xHC for some other reason, so we
1920 * need to revert the resources that failed configuration would have used.
1921 *
1922 * Must be called with xhci->lock held.
1923 */
1924static void xhci_free_host_resources(struct xhci_hcd *xhci,
1925		struct xhci_container_ctx *in_ctx)
1926{
1927	u32 num_failed_eps;
1928
1929	num_failed_eps = xhci_count_num_new_endpoints(xhci, in_ctx);
1930	xhci->num_active_eps -= num_failed_eps;
1931	xhci_dbg(xhci, "Removing %u failed ep ctxs, %u now active.\n",
1932			num_failed_eps,
1933			xhci->num_active_eps);
1934}
1935
1936/*
1937 * Now that the command has completed, clean up the active endpoint count by
1938 * subtracting out the endpoints that were dropped (but not changed).
1939 *
1940 * Must be called with xhci->lock held.
1941 */
1942static void xhci_finish_resource_reservation(struct xhci_hcd *xhci,
1943		struct xhci_container_ctx *in_ctx)
1944{
1945	u32 num_dropped_eps;
1946
1947	num_dropped_eps = xhci_count_num_dropped_endpoints(xhci, in_ctx);
1948	xhci->num_active_eps -= num_dropped_eps;
1949	if (num_dropped_eps)
1950		xhci_dbg(xhci, "Removing %u dropped ep ctxs, %u now active.\n",
1951				num_dropped_eps,
1952				xhci->num_active_eps);
1953}
1954
1955unsigned int xhci_get_block_size(struct usb_device *udev)
1956{
1957	switch (udev->speed) {
1958	case USB_SPEED_LOW:
1959	case USB_SPEED_FULL:
1960		return FS_BLOCK;
1961	case USB_SPEED_HIGH:
1962		return HS_BLOCK;
1963	case USB_SPEED_SUPER:
1964		return SS_BLOCK;
1965	case USB_SPEED_UNKNOWN:
1966	case USB_SPEED_WIRELESS:
1967	default:
1968		/* Should never happen */
1969		return 1;
1970	}
1971}
1972
1973unsigned int xhci_get_largest_overhead(struct xhci_interval_bw *interval_bw)
1974{
1975	if (interval_bw->overhead[LS_OVERHEAD_TYPE])
1976		return LS_OVERHEAD;
1977	if (interval_bw->overhead[FS_OVERHEAD_TYPE])
1978		return FS_OVERHEAD;
1979	return HS_OVERHEAD;
1980}
1981
1982/* If we are changing a LS/FS device under a HS hub,
1983 * make sure (if we are activating a new TT) that the HS bus has enough
1984 * bandwidth for this new TT.
1985 */
1986static int xhci_check_tt_bw_table(struct xhci_hcd *xhci,
1987		struct xhci_virt_device *virt_dev,
1988		int old_active_eps)
1989{
1990	struct xhci_interval_bw_table *bw_table;
1991	struct xhci_tt_bw_info *tt_info;
1992
1993	/* Find the bandwidth table for the root port this TT is attached to. */
1994	bw_table = &xhci->rh_bw[virt_dev->real_port - 1].bw_table;
1995	tt_info = virt_dev->tt_info;
1996	/* If this TT already had active endpoints, the bandwidth for this TT
1997	 * has already been added.  Removing all periodic endpoints (and thus
1998	 * making the TT enactive) will only decrease the bandwidth used.
1999	 */
2000	if (old_active_eps)
2001		return 0;
2002	if (old_active_eps == 0 && tt_info->active_eps != 0) {
2003		if (bw_table->bw_used + TT_HS_OVERHEAD > HS_BW_LIMIT)
2004			return -ENOMEM;
2005		return 0;
2006	}
2007	/* Not sure why we would have no new active endpoints...
2008	 *
2009	 * Maybe because of an Evaluate Context change for a hub update or a
2010	 * control endpoint 0 max packet size change?
2011	 * FIXME: skip the bandwidth calculation in that case.
2012	 */
2013	return 0;
2014}
2015
2016static int xhci_check_ss_bw(struct xhci_hcd *xhci,
2017		struct xhci_virt_device *virt_dev)
2018{
2019	unsigned int bw_reserved;
2020
2021	bw_reserved = DIV_ROUND_UP(SS_BW_RESERVED*SS_BW_LIMIT_IN, 100);
2022	if (virt_dev->bw_table->ss_bw_in > (SS_BW_LIMIT_IN - bw_reserved))
2023		return -ENOMEM;
2024
2025	bw_reserved = DIV_ROUND_UP(SS_BW_RESERVED*SS_BW_LIMIT_OUT, 100);
2026	if (virt_dev->bw_table->ss_bw_out > (SS_BW_LIMIT_OUT - bw_reserved))
2027		return -ENOMEM;
2028
2029	return 0;
2030}
2031
2032/*
2033 * This algorithm is a very conservative estimate of the worst-case scheduling
2034 * scenario for any one interval.  The hardware dynamically schedules the
2035 * packets, so we can't tell which microframe could be the limiting factor in
2036 * the bandwidth scheduling.  This only takes into account periodic endpoints.
2037 *
2038 * Obviously, we can't solve an NP complete problem to find the minimum worst
2039 * case scenario.  Instead, we come up with an estimate that is no less than
2040 * the worst case bandwidth used for any one microframe, but may be an
2041 * over-estimate.
2042 *
2043 * We walk the requirements for each endpoint by interval, starting with the
2044 * smallest interval, and place packets in the schedule where there is only one
2045 * possible way to schedule packets for that interval.  In order to simplify
2046 * this algorithm, we record the largest max packet size for each interval, and
2047 * assume all packets will be that size.
2048 *
2049 * For interval 0, we obviously must schedule all packets for each interval.
2050 * The bandwidth for interval 0 is just the amount of data to be transmitted
2051 * (the sum of all max ESIT payload sizes, plus any overhead per packet times
2052 * the number of packets).
2053 *
2054 * For interval 1, we have two possible microframes to schedule those packets
2055 * in.  For this algorithm, if we can schedule the same number of packets for
2056 * each possible scheduling opportunity (each microframe), we will do so.  The
2057 * remaining number of packets will be saved to be transmitted in the gaps in
2058 * the next interval's scheduling sequence.
2059 *
2060 * As we move those remaining packets to be scheduled with interval 2 packets,
2061 * we have to double the number of remaining packets to transmit.  This is
2062 * because the intervals are actually powers of 2, and we would be transmitting
2063 * the previous interval's packets twice in this interval.  We also have to be
2064 * sure that when we look at the largest max packet size for this interval, we
2065 * also look at the largest max packet size for the remaining packets and take
2066 * the greater of the two.
2067 *
2068 * The algorithm continues to evenly distribute packets in each scheduling
2069 * opportunity, and push the remaining packets out, until we get to the last
2070 * interval.  Then those packets and their associated overhead are just added
2071 * to the bandwidth used.
2072 */
2073static int xhci_check_bw_table(struct xhci_hcd *xhci,
2074		struct xhci_virt_device *virt_dev,
2075		int old_active_eps)
2076{
2077	unsigned int bw_reserved;
2078	unsigned int max_bandwidth;
2079	unsigned int bw_used;
2080	unsigned int block_size;
2081	struct xhci_interval_bw_table *bw_table;
2082	unsigned int packet_size = 0;
2083	unsigned int overhead = 0;
2084	unsigned int packets_transmitted = 0;
2085	unsigned int packets_remaining = 0;
2086	unsigned int i;
2087
2088	if (virt_dev->udev->speed == USB_SPEED_SUPER)
2089		return xhci_check_ss_bw(xhci, virt_dev);
2090
2091	if (virt_dev->udev->speed == USB_SPEED_HIGH) {
2092		max_bandwidth = HS_BW_LIMIT;
2093		/* Convert percent of bus BW reserved to blocks reserved */
2094		bw_reserved = DIV_ROUND_UP(HS_BW_RESERVED * max_bandwidth, 100);
2095	} else {
2096		max_bandwidth = FS_BW_LIMIT;
2097		bw_reserved = DIV_ROUND_UP(FS_BW_RESERVED * max_bandwidth, 100);
2098	}
2099
2100	bw_table = virt_dev->bw_table;
2101	/* We need to translate the max packet size and max ESIT payloads into
2102	 * the units the hardware uses.
2103	 */
2104	block_size = xhci_get_block_size(virt_dev->udev);
2105
2106	/* If we are manipulating a LS/FS device under a HS hub, double check
2107	 * that the HS bus has enough bandwidth if we are activing a new TT.
2108	 */
2109	if (virt_dev->tt_info) {
2110		xhci_dbg(xhci, "Recalculating BW for rootport %u\n",
2111				virt_dev->real_port);
2112		if (xhci_check_tt_bw_table(xhci, virt_dev, old_active_eps)) {
2113			xhci_warn(xhci, "Not enough bandwidth on HS bus for "
2114					"newly activated TT.\n");
2115			return -ENOMEM;
2116		}
2117		xhci_dbg(xhci, "Recalculating BW for TT slot %u port %u\n",
2118				virt_dev->tt_info->slot_id,
2119				virt_dev->tt_info->ttport);
2120	} else {
2121		xhci_dbg(xhci, "Recalculating BW for rootport %u\n",
2122				virt_dev->real_port);
2123	}
2124
2125	/* Add in how much bandwidth will be used for interval zero, or the
2126	 * rounded max ESIT payload + number of packets * largest overhead.
2127	 */
2128	bw_used = DIV_ROUND_UP(bw_table->interval0_esit_payload, block_size) +
2129		bw_table->interval_bw[0].num_packets *
2130		xhci_get_largest_overhead(&bw_table->interval_bw[0]);
2131
2132	for (i = 1; i < XHCI_MAX_INTERVAL; i++) {
2133		unsigned int bw_added;
2134		unsigned int largest_mps;
2135		unsigned int interval_overhead;
2136
2137		/*
2138		 * How many packets could we transmit in this interval?
2139		 * If packets didn't fit in the previous interval, we will need
2140		 * to transmit that many packets twice within this interval.
2141		 */
2142		packets_remaining = 2 * packets_remaining +
2143			bw_table->interval_bw[i].num_packets;
2144
2145		/* Find the largest max packet size of this or the previous
2146		 * interval.
2147		 */
2148		if (list_empty(&bw_table->interval_bw[i].endpoints))
2149			largest_mps = 0;
2150		else {
2151			struct xhci_virt_ep *virt_ep;
2152			struct list_head *ep_entry;
2153
2154			ep_entry = bw_table->interval_bw[i].endpoints.next;
2155			virt_ep = list_entry(ep_entry,
2156					struct xhci_virt_ep, bw_endpoint_list);
2157			/* Convert to blocks, rounding up */
2158			largest_mps = DIV_ROUND_UP(
2159					virt_ep->bw_info.max_packet_size,
2160					block_size);
2161		}
2162		if (largest_mps > packet_size)
2163			packet_size = largest_mps;
2164
2165		/* Use the larger overhead of this or the previous interval. */
2166		interval_overhead = xhci_get_largest_overhead(
2167				&bw_table->interval_bw[i]);
2168		if (interval_overhead > overhead)
2169			overhead = interval_overhead;
2170
2171		/* How many packets can we evenly distribute across
2172		 * (1 << (i + 1)) possible scheduling opportunities?
2173		 */
2174		packets_transmitted = packets_remaining >> (i + 1);
2175
2176		/* Add in the bandwidth used for those scheduled packets */
2177		bw_added = packets_transmitted * (overhead + packet_size);
2178
2179		/* How many packets do we have remaining to transmit? */
2180		packets_remaining = packets_remaining % (1 << (i + 1));
2181
2182		/* What largest max packet size should those packets have? */
2183		/* If we've transmitted all packets, don't carry over the
2184		 * largest packet size.
2185		 */
2186		if (packets_remaining == 0) {
2187			packet_size = 0;
2188			overhead = 0;
2189		} else if (packets_transmitted > 0) {
2190			/* Otherwise if we do have remaining packets, and we've
2191			 * scheduled some packets in this interval, take the
2192			 * largest max packet size from endpoints with this
2193			 * interval.
2194			 */
2195			packet_size = largest_mps;
2196			overhead = interval_overhead;
2197		}
2198		/* Otherwise carry over packet_size and overhead from the last
2199		 * time we had a remainder.
2200		 */
2201		bw_used += bw_added;
2202		if (bw_used > max_bandwidth) {
2203			xhci_warn(xhci, "Not enough bandwidth. "
2204					"Proposed: %u, Max: %u\n",
2205				bw_used, max_bandwidth);
2206			return -ENOMEM;
2207		}
2208	}
2209	/*
2210	 * Ok, we know we have some packets left over after even-handedly
2211	 * scheduling interval 15.  We don't know which microframes they will
2212	 * fit into, so we over-schedule and say they will be scheduled every
2213	 * microframe.
2214	 */
2215	if (packets_remaining > 0)
2216		bw_used += overhead + packet_size;
2217
2218	if (!virt_dev->tt_info && virt_dev->udev->speed == USB_SPEED_HIGH) {
2219		unsigned int port_index = virt_dev->real_port - 1;
2220
2221		/* OK, we're manipulating a HS device attached to a
2222		 * root port bandwidth domain.  Include the number of active TTs
2223		 * in the bandwidth used.
2224		 */
2225		bw_used += TT_HS_OVERHEAD *
2226			xhci->rh_bw[port_index].num_active_tts;
2227	}
2228
2229	xhci_dbg(xhci, "Final bandwidth: %u, Limit: %u, Reserved: %u, "
2230		"Available: %u " "percent\n",
2231		bw_used, max_bandwidth, bw_reserved,
2232		(max_bandwidth - bw_used - bw_reserved) * 100 /
2233		max_bandwidth);
2234
2235	bw_used += bw_reserved;
2236	if (bw_used > max_bandwidth) {
2237		xhci_warn(xhci, "Not enough bandwidth. Proposed: %u, Max: %u\n",
2238				bw_used, max_bandwidth);
2239		return -ENOMEM;
2240	}
2241
2242	bw_table->bw_used = bw_used;
2243	return 0;
2244}
2245
2246static bool xhci_is_async_ep(unsigned int ep_type)
2247{
2248	return (ep_type != ISOC_OUT_EP && ep_type != INT_OUT_EP &&
2249					ep_type != ISOC_IN_EP &&
2250					ep_type != INT_IN_EP);
2251}
2252
2253static bool xhci_is_sync_in_ep(unsigned int ep_type)
2254{
2255	return (ep_type == ISOC_IN_EP || ep_type != INT_IN_EP);
2256}
2257
2258static unsigned int xhci_get_ss_bw_consumed(struct xhci_bw_info *ep_bw)
2259{
2260	unsigned int mps = DIV_ROUND_UP(ep_bw->max_packet_size, SS_BLOCK);
2261
2262	if (ep_bw->ep_interval == 0)
2263		return SS_OVERHEAD_BURST +
2264			(ep_bw->mult * ep_bw->num_packets *
2265					(SS_OVERHEAD + mps));
2266	return DIV_ROUND_UP(ep_bw->mult * ep_bw->num_packets *
2267				(SS_OVERHEAD + mps + SS_OVERHEAD_BURST),
2268				1 << ep_bw->ep_interval);
2269
2270}
2271
2272void xhci_drop_ep_from_interval_table(struct xhci_hcd *xhci,
2273		struct xhci_bw_info *ep_bw,
2274		struct xhci_interval_bw_table *bw_table,
2275		struct usb_device *udev,
2276		struct xhci_virt_ep *virt_ep,
2277		struct xhci_tt_bw_info *tt_info)
2278{
2279	struct xhci_interval_bw	*interval_bw;
2280	int normalized_interval;
2281
2282	if (xhci_is_async_ep(ep_bw->type))
2283		return;
2284
2285	if (udev->speed == USB_SPEED_SUPER) {
2286		if (xhci_is_sync_in_ep(ep_bw->type))
2287			xhci->devs[udev->slot_id]->bw_table->ss_bw_in -=
2288				xhci_get_ss_bw_consumed(ep_bw);
2289		else
2290			xhci->devs[udev->slot_id]->bw_table->ss_bw_out -=
2291				xhci_get_ss_bw_consumed(ep_bw);
2292		return;
2293	}
2294
2295	/* SuperSpeed endpoints never get added to intervals in the table, so
2296	 * this check is only valid for HS/FS/LS devices.
2297	 */
2298	if (list_empty(&virt_ep->bw_endpoint_list))
2299		return;
2300	/* For LS/FS devices, we need to translate the interval expressed in
2301	 * microframes to frames.
2302	 */
2303	if (udev->speed == USB_SPEED_HIGH)
2304		normalized_interval = ep_bw->ep_interval;
2305	else
2306		normalized_interval = ep_bw->ep_interval - 3;
2307
2308	if (normalized_interval == 0)
2309		bw_table->interval0_esit_payload -= ep_bw->max_esit_payload;
2310	interval_bw = &bw_table->interval_bw[normalized_interval];
2311	interval_bw->num_packets -= ep_bw->num_packets;
2312	switch (udev->speed) {
2313	case USB_SPEED_LOW:
2314		interval_bw->overhead[LS_OVERHEAD_TYPE] -= 1;
2315		break;
2316	case USB_SPEED_FULL:
2317		interval_bw->overhead[FS_OVERHEAD_TYPE] -= 1;
2318		break;
2319	case USB_SPEED_HIGH:
2320		interval_bw->overhead[HS_OVERHEAD_TYPE] -= 1;
2321		break;
2322	case USB_SPEED_SUPER:
2323	case USB_SPEED_UNKNOWN:
2324	case USB_SPEED_WIRELESS:
2325		/* Should never happen because only LS/FS/HS endpoints will get
2326		 * added to the endpoint list.
2327		 */
2328		return;
2329	}
2330	if (tt_info)
2331		tt_info->active_eps -= 1;
2332	list_del_init(&virt_ep->bw_endpoint_list);
2333}
2334
2335static void xhci_add_ep_to_interval_table(struct xhci_hcd *xhci,
2336		struct xhci_bw_info *ep_bw,
2337		struct xhci_interval_bw_table *bw_table,
2338		struct usb_device *udev,
2339		struct xhci_virt_ep *virt_ep,
2340		struct xhci_tt_bw_info *tt_info)
2341{
2342	struct xhci_interval_bw	*interval_bw;
2343	struct xhci_virt_ep *smaller_ep;
2344	int normalized_interval;
2345
2346	if (xhci_is_async_ep(ep_bw->type))
2347		return;
2348
2349	if (udev->speed == USB_SPEED_SUPER) {
2350		if (xhci_is_sync_in_ep(ep_bw->type))
2351			xhci->devs[udev->slot_id]->bw_table->ss_bw_in +=
2352				xhci_get_ss_bw_consumed(ep_bw);
2353		else
2354			xhci->devs[udev->slot_id]->bw_table->ss_bw_out +=
2355				xhci_get_ss_bw_consumed(ep_bw);
2356		return;
2357	}
2358
2359	/* For LS/FS devices, we need to translate the interval expressed in
2360	 * microframes to frames.
2361	 */
2362	if (udev->speed == USB_SPEED_HIGH)
2363		normalized_interval = ep_bw->ep_interval;
2364	else
2365		normalized_interval = ep_bw->ep_interval - 3;
2366
2367	if (normalized_interval == 0)
2368		bw_table->interval0_esit_payload += ep_bw->max_esit_payload;
2369	interval_bw = &bw_table->interval_bw[normalized_interval];
2370	interval_bw->num_packets += ep_bw->num_packets;
2371	switch (udev->speed) {
2372	case USB_SPEED_LOW:
2373		interval_bw->overhead[LS_OVERHEAD_TYPE] += 1;
2374		break;
2375	case USB_SPEED_FULL:
2376		interval_bw->overhead[FS_OVERHEAD_TYPE] += 1;
2377		break;
2378	case USB_SPEED_HIGH:
2379		interval_bw->overhead[HS_OVERHEAD_TYPE] += 1;
2380		break;
2381	case USB_SPEED_SUPER:
2382	case USB_SPEED_UNKNOWN:
2383	case USB_SPEED_WIRELESS:
2384		/* Should never happen because only LS/FS/HS endpoints will get
2385		 * added to the endpoint list.
2386		 */
2387		return;
2388	}
2389
2390	if (tt_info)
2391		tt_info->active_eps += 1;
2392	/* Insert the endpoint into the list, largest max packet size first. */
2393	list_for_each_entry(smaller_ep, &interval_bw->endpoints,
2394			bw_endpoint_list) {
2395		if (ep_bw->max_packet_size >=
2396				smaller_ep->bw_info.max_packet_size) {
2397			/* Add the new ep before the smaller endpoint */
2398			list_add_tail(&virt_ep->bw_endpoint_list,
2399					&smaller_ep->bw_endpoint_list);
2400			return;
2401		}
2402	}
2403	/* Add the new endpoint at the end of the list. */
2404	list_add_tail(&virt_ep->bw_endpoint_list,
2405			&interval_bw->endpoints);
2406}
2407
2408void xhci_update_tt_active_eps(struct xhci_hcd *xhci,
2409		struct xhci_virt_device *virt_dev,
2410		int old_active_eps)
2411{
2412	struct xhci_root_port_bw_info *rh_bw_info;
2413	if (!virt_dev->tt_info)
2414		return;
2415
2416	rh_bw_info = &xhci->rh_bw[virt_dev->real_port - 1];
2417	if (old_active_eps == 0 &&
2418				virt_dev->tt_info->active_eps != 0) {
2419		rh_bw_info->num_active_tts += 1;
2420		rh_bw_info->bw_table.bw_used += TT_HS_OVERHEAD;
2421	} else if (old_active_eps != 0 &&
2422				virt_dev->tt_info->active_eps == 0) {
2423		rh_bw_info->num_active_tts -= 1;
2424		rh_bw_info->bw_table.bw_used -= TT_HS_OVERHEAD;
2425	}
2426}
2427
2428static int xhci_reserve_bandwidth(struct xhci_hcd *xhci,
2429		struct xhci_virt_device *virt_dev,
2430		struct xhci_container_ctx *in_ctx)
2431{
2432	struct xhci_bw_info ep_bw_info[31];
2433	int i;
2434	struct xhci_input_control_ctx *ctrl_ctx;
2435	int old_active_eps = 0;
2436
2437	if (virt_dev->tt_info)
2438		old_active_eps = virt_dev->tt_info->active_eps;
2439
2440	ctrl_ctx = xhci_get_input_control_ctx(xhci, in_ctx);
2441
2442	for (i = 0; i < 31; i++) {
2443		if (!EP_IS_ADDED(ctrl_ctx, i) && !EP_IS_DROPPED(ctrl_ctx, i))
2444			continue;
2445
2446		/* Make a copy of the BW info in case we need to revert this */
2447		memcpy(&ep_bw_info[i], &virt_dev->eps[i].bw_info,
2448				sizeof(ep_bw_info[i]));
2449		/* Drop the endpoint from the interval table if the endpoint is
2450		 * being dropped or changed.
2451		 */
2452		if (EP_IS_DROPPED(ctrl_ctx, i))
2453			xhci_drop_ep_from_interval_table(xhci,
2454					&virt_dev->eps[i].bw_info,
2455					virt_dev->bw_table,
2456					virt_dev->udev,
2457					&virt_dev->eps[i],
2458					virt_dev->tt_info);
2459	}
2460	/* Overwrite the information stored in the endpoints' bw_info */
2461	xhci_update_bw_info(xhci, virt_dev->in_ctx, ctrl_ctx, virt_dev);
2462	for (i = 0; i < 31; i++) {
2463		/* Add any changed or added endpoints to the interval table */
2464		if (EP_IS_ADDED(ctrl_ctx, i))
2465			xhci_add_ep_to_interval_table(xhci,
2466					&virt_dev->eps[i].bw_info,
2467					virt_dev->bw_table,
2468					virt_dev->udev,
2469					&virt_dev->eps[i],
2470					virt_dev->tt_info);
2471	}
2472
2473	if (!xhci_check_bw_table(xhci, virt_dev, old_active_eps)) {
2474		/* Ok, this fits in the bandwidth we have.
2475		 * Update the number of active TTs.
2476		 */
2477		xhci_update_tt_active_eps(xhci, virt_dev, old_active_eps);
2478		return 0;
2479	}
2480
2481	/* We don't have enough bandwidth for this, revert the stored info. */
2482	for (i = 0; i < 31; i++) {
2483		if (!EP_IS_ADDED(ctrl_ctx, i) && !EP_IS_DROPPED(ctrl_ctx, i))
2484			continue;
2485
2486		/* Drop the new copies of any added or changed endpoints from
2487		 * the interval table.
2488		 */
2489		if (EP_IS_ADDED(ctrl_ctx, i)) {
2490			xhci_drop_ep_from_interval_table(xhci,
2491					&virt_dev->eps[i].bw_info,
2492					virt_dev->bw_table,
2493					virt_dev->udev,
2494					&virt_dev->eps[i],
2495					virt_dev->tt_info);
2496		}
2497		/* Revert the endpoint back to its old information */
2498		memcpy(&virt_dev->eps[i].bw_info, &ep_bw_info[i],
2499				sizeof(ep_bw_info[i]));
2500		/* Add any changed or dropped endpoints back into the table */
2501		if (EP_IS_DROPPED(ctrl_ctx, i))
2502			xhci_add_ep_to_interval_table(xhci,
2503					&virt_dev->eps[i].bw_info,
2504					virt_dev->bw_table,
2505					virt_dev->udev,
2506					&virt_dev->eps[i],
2507					virt_dev->tt_info);
2508	}
2509	return -ENOMEM;
2510}
2511
2512
2513/* Issue a configure endpoint command or evaluate context command
2514 * and wait for it to finish.
2515 */
2516static int xhci_configure_endpoint(struct xhci_hcd *xhci,
2517		struct usb_device *udev,
2518		struct xhci_command *command,
2519		bool ctx_change, bool must_succeed)
2520{
2521	int ret;
2522	int timeleft;
2523	unsigned long flags;
2524	struct xhci_container_ctx *in_ctx;
2525	struct completion *cmd_completion;
2526	u32 *cmd_status;
2527	struct xhci_virt_device *virt_dev;
2528	union xhci_trb *cmd_trb;
2529
2530	spin_lock_irqsave(&xhci->lock, flags);
2531	virt_dev = xhci->devs[udev->slot_id];
2532
2533	if (command)
2534		in_ctx = command->in_ctx;
2535	else
2536		in_ctx = virt_dev->in_ctx;
2537
2538	if ((xhci->quirks & XHCI_EP_LIMIT_QUIRK) &&
2539			xhci_reserve_host_resources(xhci, in_ctx)) {
2540		spin_unlock_irqrestore(&xhci->lock, flags);
2541		xhci_warn(xhci, "Not enough host resources, "
2542				"active endpoint contexts = %u\n",
2543				xhci->num_active_eps);
2544		return -ENOMEM;
2545	}
2546	if ((xhci->quirks & XHCI_SW_BW_CHECKING) &&
2547			xhci_reserve_bandwidth(xhci, virt_dev, in_ctx)) {
2548		if ((xhci->quirks & XHCI_EP_LIMIT_QUIRK))
2549			xhci_free_host_resources(xhci, in_ctx);
2550		spin_unlock_irqrestore(&xhci->lock, flags);
2551		xhci_warn(xhci, "Not enough bandwidth\n");
2552		return -ENOMEM;
2553	}
2554
2555	if (command) {
2556		cmd_completion = command->completion;
2557		cmd_status = &command->status;
2558		command->command_trb = xhci->cmd_ring->enqueue;
2559
2560		/* Enqueue pointer can be left pointing to the link TRB,
2561		 * we must handle that
2562		 */
2563		if (TRB_TYPE_LINK_LE32(command->command_trb->link.control))
2564			command->command_trb =
2565				xhci->cmd_ring->enq_seg->next->trbs;
2566
2567		list_add_tail(&command->cmd_list, &virt_dev->cmd_list);
2568	} else {
 
 
 
 
 
 
 
 
 
2569		cmd_completion = &virt_dev->cmd_completion;
2570		cmd_status = &virt_dev->cmd_status;
2571	}
2572	init_completion(cmd_completion);
2573
2574	cmd_trb = xhci->cmd_ring->dequeue;
2575	if (!ctx_change)
2576		ret = xhci_queue_configure_endpoint(xhci, in_ctx->dma,
2577				udev->slot_id, must_succeed);
2578	else
2579		ret = xhci_queue_evaluate_context(xhci, in_ctx->dma,
2580				udev->slot_id, must_succeed);
2581	if (ret < 0) {
2582		if (command)
2583			list_del(&command->cmd_list);
2584		if ((xhci->quirks & XHCI_EP_LIMIT_QUIRK))
2585			xhci_free_host_resources(xhci, in_ctx);
2586		spin_unlock_irqrestore(&xhci->lock, flags);
2587		xhci_dbg(xhci, "FIXME allocate a new ring segment\n");
2588		return -ENOMEM;
2589	}
2590	xhci_ring_cmd_db(xhci);
2591	spin_unlock_irqrestore(&xhci->lock, flags);
2592
2593	/* Wait for the configure endpoint command to complete */
2594	timeleft = wait_for_completion_interruptible_timeout(
2595			cmd_completion,
2596			XHCI_CMD_DEFAULT_TIMEOUT);
2597	if (timeleft <= 0) {
2598		xhci_warn(xhci, "%s while waiting for %s command\n",
2599				timeleft == 0 ? "Timeout" : "Signal",
2600				ctx_change == 0 ?
2601					"configure endpoint" :
2602					"evaluate context");
2603		/* cancel the configure endpoint command */
2604		ret = xhci_cancel_cmd(xhci, command, cmd_trb);
2605		if (ret < 0)
2606			return ret;
2607		return -ETIME;
2608	}
2609
2610	if (!ctx_change)
2611		ret = xhci_configure_endpoint_result(xhci, udev, cmd_status);
2612	else
2613		ret = xhci_evaluate_context_result(xhci, udev, cmd_status);
2614
2615	if ((xhci->quirks & XHCI_EP_LIMIT_QUIRK)) {
2616		spin_lock_irqsave(&xhci->lock, flags);
2617		/* If the command failed, remove the reserved resources.
2618		 * Otherwise, clean up the estimate to include dropped eps.
2619		 */
2620		if (ret)
2621			xhci_free_host_resources(xhci, in_ctx);
2622		else
2623			xhci_finish_resource_reservation(xhci, in_ctx);
2624		spin_unlock_irqrestore(&xhci->lock, flags);
2625	}
2626	return ret;
2627}
2628
2629/* Called after one or more calls to xhci_add_endpoint() or
2630 * xhci_drop_endpoint().  If this call fails, the USB core is expected
2631 * to call xhci_reset_bandwidth().
2632 *
2633 * Since we are in the middle of changing either configuration or
2634 * installing a new alt setting, the USB core won't allow URBs to be
2635 * enqueued for any endpoint on the old config or interface.  Nothing
2636 * else should be touching the xhci->devs[slot_id] structure, so we
2637 * don't need to take the xhci->lock for manipulating that.
2638 */
2639int xhci_check_bandwidth(struct usb_hcd *hcd, struct usb_device *udev)
2640{
2641	int i;
2642	int ret = 0;
2643	struct xhci_hcd *xhci;
2644	struct xhci_virt_device	*virt_dev;
2645	struct xhci_input_control_ctx *ctrl_ctx;
2646	struct xhci_slot_ctx *slot_ctx;
2647
2648	ret = xhci_check_args(hcd, udev, NULL, 0, true, __func__);
2649	if (ret <= 0)
2650		return ret;
2651	xhci = hcd_to_xhci(hcd);
2652	if (xhci->xhc_state & XHCI_STATE_DYING)
2653		return -ENODEV;
2654
2655	xhci_dbg(xhci, "%s called for udev %p\n", __func__, udev);
2656	virt_dev = xhci->devs[udev->slot_id];
2657
2658	/* See section 4.6.6 - A0 = 1; A1 = D0 = D1 = 0 */
2659	ctrl_ctx = xhci_get_input_control_ctx(xhci, virt_dev->in_ctx);
2660	ctrl_ctx->add_flags |= cpu_to_le32(SLOT_FLAG);
2661	ctrl_ctx->add_flags &= cpu_to_le32(~EP0_FLAG);
2662	ctrl_ctx->drop_flags &= cpu_to_le32(~(SLOT_FLAG | EP0_FLAG));
2663
2664	/* Don't issue the command if there's no endpoints to update. */
2665	if (ctrl_ctx->add_flags == cpu_to_le32(SLOT_FLAG) &&
2666			ctrl_ctx->drop_flags == 0)
2667		return 0;
2668
2669	xhci_dbg(xhci, "New Input Control Context:\n");
2670	slot_ctx = xhci_get_slot_ctx(xhci, virt_dev->in_ctx);
2671	xhci_dbg_ctx(xhci, virt_dev->in_ctx,
2672		     LAST_CTX_TO_EP_NUM(le32_to_cpu(slot_ctx->dev_info)));
2673
2674	ret = xhci_configure_endpoint(xhci, udev, NULL,
2675			false, false);
2676	if (ret) {
2677		/* Callee should call reset_bandwidth() */
2678		return ret;
2679	}
2680
2681	xhci_dbg(xhci, "Output context after successful config ep cmd:\n");
2682	xhci_dbg_ctx(xhci, virt_dev->out_ctx,
2683		     LAST_CTX_TO_EP_NUM(le32_to_cpu(slot_ctx->dev_info)));
2684
2685	/* Free any rings that were dropped, but not changed. */
2686	for (i = 1; i < 31; ++i) {
2687		if ((le32_to_cpu(ctrl_ctx->drop_flags) & (1 << (i + 1))) &&
2688		    !(le32_to_cpu(ctrl_ctx->add_flags) & (1 << (i + 1))))
2689			xhci_free_or_cache_endpoint_ring(xhci, virt_dev, i);
2690	}
2691	xhci_zero_in_ctx(xhci, virt_dev);
2692	/*
2693	 * Install any rings for completely new endpoints or changed endpoints,
2694	 * and free or cache any old rings from changed endpoints.
2695	 */
2696	for (i = 1; i < 31; ++i) {
2697		if (!virt_dev->eps[i].new_ring)
2698			continue;
2699		/* Only cache or free the old ring if it exists.
2700		 * It may not if this is the first add of an endpoint.
2701		 */
2702		if (virt_dev->eps[i].ring) {
2703			xhci_free_or_cache_endpoint_ring(xhci, virt_dev, i);
2704		}
2705		virt_dev->eps[i].ring = virt_dev->eps[i].new_ring;
2706		virt_dev->eps[i].new_ring = NULL;
2707	}
2708
2709	return ret;
2710}
2711
2712void xhci_reset_bandwidth(struct usb_hcd *hcd, struct usb_device *udev)
2713{
2714	struct xhci_hcd *xhci;
2715	struct xhci_virt_device	*virt_dev;
2716	int i, ret;
2717
2718	ret = xhci_check_args(hcd, udev, NULL, 0, true, __func__);
2719	if (ret <= 0)
2720		return;
2721	xhci = hcd_to_xhci(hcd);
2722
2723	xhci_dbg(xhci, "%s called for udev %p\n", __func__, udev);
2724	virt_dev = xhci->devs[udev->slot_id];
2725	/* Free any rings allocated for added endpoints */
2726	for (i = 0; i < 31; ++i) {
2727		if (virt_dev->eps[i].new_ring) {
2728			xhci_ring_free(xhci, virt_dev->eps[i].new_ring);
2729			virt_dev->eps[i].new_ring = NULL;
2730		}
2731	}
2732	xhci_zero_in_ctx(xhci, virt_dev);
2733}
2734
2735static void xhci_setup_input_ctx_for_config_ep(struct xhci_hcd *xhci,
2736		struct xhci_container_ctx *in_ctx,
2737		struct xhci_container_ctx *out_ctx,
2738		u32 add_flags, u32 drop_flags)
2739{
2740	struct xhci_input_control_ctx *ctrl_ctx;
2741	ctrl_ctx = xhci_get_input_control_ctx(xhci, in_ctx);
2742	ctrl_ctx->add_flags = cpu_to_le32(add_flags);
2743	ctrl_ctx->drop_flags = cpu_to_le32(drop_flags);
2744	xhci_slot_copy(xhci, in_ctx, out_ctx);
2745	ctrl_ctx->add_flags |= cpu_to_le32(SLOT_FLAG);
2746
2747	xhci_dbg(xhci, "Input Context:\n");
2748	xhci_dbg_ctx(xhci, in_ctx, xhci_last_valid_endpoint(add_flags));
2749}
2750
2751static void xhci_setup_input_ctx_for_quirk(struct xhci_hcd *xhci,
2752		unsigned int slot_id, unsigned int ep_index,
2753		struct xhci_dequeue_state *deq_state)
2754{
2755	struct xhci_container_ctx *in_ctx;
2756	struct xhci_ep_ctx *ep_ctx;
2757	u32 added_ctxs;
2758	dma_addr_t addr;
2759
2760	xhci_endpoint_copy(xhci, xhci->devs[slot_id]->in_ctx,
2761			xhci->devs[slot_id]->out_ctx, ep_index);
2762	in_ctx = xhci->devs[slot_id]->in_ctx;
2763	ep_ctx = xhci_get_ep_ctx(xhci, in_ctx, ep_index);
2764	addr = xhci_trb_virt_to_dma(deq_state->new_deq_seg,
2765			deq_state->new_deq_ptr);
2766	if (addr == 0) {
2767		xhci_warn(xhci, "WARN Cannot submit config ep after "
2768				"reset ep command\n");
2769		xhci_warn(xhci, "WARN deq seg = %p, deq ptr = %p\n",
2770				deq_state->new_deq_seg,
2771				deq_state->new_deq_ptr);
2772		return;
2773	}
2774	ep_ctx->deq = cpu_to_le64(addr | deq_state->new_cycle_state);
2775
2776	added_ctxs = xhci_get_endpoint_flag_from_index(ep_index);
2777	xhci_setup_input_ctx_for_config_ep(xhci, xhci->devs[slot_id]->in_ctx,
2778			xhci->devs[slot_id]->out_ctx, added_ctxs, added_ctxs);
2779}
2780
2781void xhci_cleanup_stalled_ring(struct xhci_hcd *xhci,
2782		struct usb_device *udev, unsigned int ep_index)
2783{
2784	struct xhci_dequeue_state deq_state;
2785	struct xhci_virt_ep *ep;
2786
2787	xhci_dbg(xhci, "Cleaning up stalled endpoint ring\n");
2788	ep = &xhci->devs[udev->slot_id]->eps[ep_index];
2789	/* We need to move the HW's dequeue pointer past this TD,
2790	 * or it will attempt to resend it on the next doorbell ring.
2791	 */
2792	xhci_find_new_dequeue_state(xhci, udev->slot_id,
2793			ep_index, ep->stopped_stream, ep->stopped_td,
2794			&deq_state);
2795
2796	/* HW with the reset endpoint quirk will use the saved dequeue state to
2797	 * issue a configure endpoint command later.
2798	 */
2799	if (!(xhci->quirks & XHCI_RESET_EP_QUIRK)) {
2800		xhci_dbg(xhci, "Queueing new dequeue state\n");
2801		xhci_queue_new_dequeue_state(xhci, udev->slot_id,
2802				ep_index, ep->stopped_stream, &deq_state);
2803	} else {
2804		/* Better hope no one uses the input context between now and the
2805		 * reset endpoint completion!
2806		 * XXX: No idea how this hardware will react when stream rings
2807		 * are enabled.
2808		 */
2809		xhci_dbg(xhci, "Setting up input context for "
2810				"configure endpoint command\n");
2811		xhci_setup_input_ctx_for_quirk(xhci, udev->slot_id,
2812				ep_index, &deq_state);
2813	}
2814}
2815
2816/* Deal with stalled endpoints.  The core should have sent the control message
2817 * to clear the halt condition.  However, we need to make the xHCI hardware
2818 * reset its sequence number, since a device will expect a sequence number of
2819 * zero after the halt condition is cleared.
2820 * Context: in_interrupt
2821 */
2822void xhci_endpoint_reset(struct usb_hcd *hcd,
2823		struct usb_host_endpoint *ep)
2824{
2825	struct xhci_hcd *xhci;
2826	struct usb_device *udev;
2827	unsigned int ep_index;
2828	unsigned long flags;
2829	int ret;
2830	struct xhci_virt_ep *virt_ep;
2831
2832	xhci = hcd_to_xhci(hcd);
2833	udev = (struct usb_device *) ep->hcpriv;
2834	/* Called with a root hub endpoint (or an endpoint that wasn't added
2835	 * with xhci_add_endpoint()
2836	 */
2837	if (!ep->hcpriv)
2838		return;
2839	ep_index = xhci_get_endpoint_index(&ep->desc);
2840	virt_ep = &xhci->devs[udev->slot_id]->eps[ep_index];
2841	if (!virt_ep->stopped_td) {
2842		xhci_dbg(xhci, "Endpoint 0x%x not halted, refusing to reset.\n",
2843				ep->desc.bEndpointAddress);
2844		return;
2845	}
2846	if (usb_endpoint_xfer_control(&ep->desc)) {
2847		xhci_dbg(xhci, "Control endpoint stall already handled.\n");
2848		return;
2849	}
2850
2851	xhci_dbg(xhci, "Queueing reset endpoint command\n");
2852	spin_lock_irqsave(&xhci->lock, flags);
2853	ret = xhci_queue_reset_ep(xhci, udev->slot_id, ep_index);
2854	/*
2855	 * Can't change the ring dequeue pointer until it's transitioned to the
2856	 * stopped state, which is only upon a successful reset endpoint
2857	 * command.  Better hope that last command worked!
2858	 */
2859	if (!ret) {
2860		xhci_cleanup_stalled_ring(xhci, udev, ep_index);
2861		kfree(virt_ep->stopped_td);
2862		xhci_ring_cmd_db(xhci);
2863	}
2864	virt_ep->stopped_td = NULL;
2865	virt_ep->stopped_trb = NULL;
2866	virt_ep->stopped_stream = 0;
2867	spin_unlock_irqrestore(&xhci->lock, flags);
2868
2869	if (ret)
2870		xhci_warn(xhci, "FIXME allocate a new ring segment\n");
2871}
2872
2873static int xhci_check_streams_endpoint(struct xhci_hcd *xhci,
2874		struct usb_device *udev, struct usb_host_endpoint *ep,
2875		unsigned int slot_id)
2876{
2877	int ret;
2878	unsigned int ep_index;
2879	unsigned int ep_state;
2880
2881	if (!ep)
2882		return -EINVAL;
2883	ret = xhci_check_args(xhci_to_hcd(xhci), udev, ep, 1, true, __func__);
2884	if (ret <= 0)
2885		return -EINVAL;
2886	if (ep->ss_ep_comp.bmAttributes == 0) {
2887		xhci_warn(xhci, "WARN: SuperSpeed Endpoint Companion"
2888				" descriptor for ep 0x%x does not support streams\n",
2889				ep->desc.bEndpointAddress);
2890		return -EINVAL;
2891	}
2892
2893	ep_index = xhci_get_endpoint_index(&ep->desc);
2894	ep_state = xhci->devs[slot_id]->eps[ep_index].ep_state;
2895	if (ep_state & EP_HAS_STREAMS ||
2896			ep_state & EP_GETTING_STREAMS) {
2897		xhci_warn(xhci, "WARN: SuperSpeed bulk endpoint 0x%x "
2898				"already has streams set up.\n",
2899				ep->desc.bEndpointAddress);
2900		xhci_warn(xhci, "Send email to xHCI maintainer and ask for "
2901				"dynamic stream context array reallocation.\n");
2902		return -EINVAL;
2903	}
2904	if (!list_empty(&xhci->devs[slot_id]->eps[ep_index].ring->td_list)) {
2905		xhci_warn(xhci, "Cannot setup streams for SuperSpeed bulk "
2906				"endpoint 0x%x; URBs are pending.\n",
2907				ep->desc.bEndpointAddress);
2908		return -EINVAL;
2909	}
2910	return 0;
2911}
2912
2913static void xhci_calculate_streams_entries(struct xhci_hcd *xhci,
2914		unsigned int *num_streams, unsigned int *num_stream_ctxs)
2915{
2916	unsigned int max_streams;
2917
2918	/* The stream context array size must be a power of two */
2919	*num_stream_ctxs = roundup_pow_of_two(*num_streams);
2920	/*
2921	 * Find out how many primary stream array entries the host controller
2922	 * supports.  Later we may use secondary stream arrays (similar to 2nd
2923	 * level page entries), but that's an optional feature for xHCI host
2924	 * controllers. xHCs must support at least 4 stream IDs.
2925	 */
2926	max_streams = HCC_MAX_PSA(xhci->hcc_params);
2927	if (*num_stream_ctxs > max_streams) {
2928		xhci_dbg(xhci, "xHCI HW only supports %u stream ctx entries.\n",
2929				max_streams);
2930		*num_stream_ctxs = max_streams;
2931		*num_streams = max_streams;
2932	}
2933}
2934
2935/* Returns an error code if one of the endpoint already has streams.
2936 * This does not change any data structures, it only checks and gathers
2937 * information.
2938 */
2939static int xhci_calculate_streams_and_bitmask(struct xhci_hcd *xhci,
2940		struct usb_device *udev,
2941		struct usb_host_endpoint **eps, unsigned int num_eps,
2942		unsigned int *num_streams, u32 *changed_ep_bitmask)
2943{
2944	unsigned int max_streams;
2945	unsigned int endpoint_flag;
2946	int i;
2947	int ret;
2948
2949	for (i = 0; i < num_eps; i++) {
2950		ret = xhci_check_streams_endpoint(xhci, udev,
2951				eps[i], udev->slot_id);
2952		if (ret < 0)
2953			return ret;
2954
2955		max_streams = usb_ss_max_streams(&eps[i]->ss_ep_comp);
 
2956		if (max_streams < (*num_streams - 1)) {
2957			xhci_dbg(xhci, "Ep 0x%x only supports %u stream IDs.\n",
2958					eps[i]->desc.bEndpointAddress,
2959					max_streams);
2960			*num_streams = max_streams+1;
2961		}
2962
2963		endpoint_flag = xhci_get_endpoint_flag(&eps[i]->desc);
2964		if (*changed_ep_bitmask & endpoint_flag)
2965			return -EINVAL;
2966		*changed_ep_bitmask |= endpoint_flag;
2967	}
2968	return 0;
2969}
2970
2971static u32 xhci_calculate_no_streams_bitmask(struct xhci_hcd *xhci,
2972		struct usb_device *udev,
2973		struct usb_host_endpoint **eps, unsigned int num_eps)
2974{
2975	u32 changed_ep_bitmask = 0;
2976	unsigned int slot_id;
2977	unsigned int ep_index;
2978	unsigned int ep_state;
2979	int i;
2980
2981	slot_id = udev->slot_id;
2982	if (!xhci->devs[slot_id])
2983		return 0;
2984
2985	for (i = 0; i < num_eps; i++) {
2986		ep_index = xhci_get_endpoint_index(&eps[i]->desc);
2987		ep_state = xhci->devs[slot_id]->eps[ep_index].ep_state;
2988		/* Are streams already being freed for the endpoint? */
2989		if (ep_state & EP_GETTING_NO_STREAMS) {
2990			xhci_warn(xhci, "WARN Can't disable streams for "
2991					"endpoint 0x%x\n, "
2992					"streams are being disabled already.",
2993					eps[i]->desc.bEndpointAddress);
2994			return 0;
2995		}
2996		/* Are there actually any streams to free? */
2997		if (!(ep_state & EP_HAS_STREAMS) &&
2998				!(ep_state & EP_GETTING_STREAMS)) {
2999			xhci_warn(xhci, "WARN Can't disable streams for "
3000					"endpoint 0x%x\n, "
3001					"streams are already disabled!",
3002					eps[i]->desc.bEndpointAddress);
3003			xhci_warn(xhci, "WARN xhci_free_streams() called "
3004					"with non-streams endpoint\n");
3005			return 0;
3006		}
3007		changed_ep_bitmask |= xhci_get_endpoint_flag(&eps[i]->desc);
3008	}
3009	return changed_ep_bitmask;
3010}
3011
3012/*
3013 * The USB device drivers use this function (though the HCD interface in USB
3014 * core) to prepare a set of bulk endpoints to use streams.  Streams are used to
3015 * coordinate mass storage command queueing across multiple endpoints (basically
3016 * a stream ID == a task ID).
3017 *
3018 * Setting up streams involves allocating the same size stream context array
3019 * for each endpoint and issuing a configure endpoint command for all endpoints.
3020 *
3021 * Don't allow the call to succeed if one endpoint only supports one stream
3022 * (which means it doesn't support streams at all).
3023 *
3024 * Drivers may get less stream IDs than they asked for, if the host controller
3025 * hardware or endpoints claim they can't support the number of requested
3026 * stream IDs.
3027 */
3028int xhci_alloc_streams(struct usb_hcd *hcd, struct usb_device *udev,
3029		struct usb_host_endpoint **eps, unsigned int num_eps,
3030		unsigned int num_streams, gfp_t mem_flags)
3031{
3032	int i, ret;
3033	struct xhci_hcd *xhci;
3034	struct xhci_virt_device *vdev;
3035	struct xhci_command *config_cmd;
3036	unsigned int ep_index;
3037	unsigned int num_stream_ctxs;
3038	unsigned long flags;
3039	u32 changed_ep_bitmask = 0;
3040
3041	if (!eps)
3042		return -EINVAL;
3043
3044	/* Add one to the number of streams requested to account for
3045	 * stream 0 that is reserved for xHCI usage.
3046	 */
3047	num_streams += 1;
3048	xhci = hcd_to_xhci(hcd);
3049	xhci_dbg(xhci, "Driver wants %u stream IDs (including stream 0).\n",
3050			num_streams);
3051
3052	config_cmd = xhci_alloc_command(xhci, true, true, mem_flags);
3053	if (!config_cmd) {
3054		xhci_dbg(xhci, "Could not allocate xHCI command structure.\n");
3055		return -ENOMEM;
3056	}
3057
3058	/* Check to make sure all endpoints are not already configured for
3059	 * streams.  While we're at it, find the maximum number of streams that
3060	 * all the endpoints will support and check for duplicate endpoints.
3061	 */
3062	spin_lock_irqsave(&xhci->lock, flags);
3063	ret = xhci_calculate_streams_and_bitmask(xhci, udev, eps,
3064			num_eps, &num_streams, &changed_ep_bitmask);
3065	if (ret < 0) {
3066		xhci_free_command(xhci, config_cmd);
3067		spin_unlock_irqrestore(&xhci->lock, flags);
3068		return ret;
3069	}
3070	if (num_streams <= 1) {
3071		xhci_warn(xhci, "WARN: endpoints can't handle "
3072				"more than one stream.\n");
3073		xhci_free_command(xhci, config_cmd);
3074		spin_unlock_irqrestore(&xhci->lock, flags);
3075		return -EINVAL;
3076	}
3077	vdev = xhci->devs[udev->slot_id];
3078	/* Mark each endpoint as being in transition, so
3079	 * xhci_urb_enqueue() will reject all URBs.
3080	 */
3081	for (i = 0; i < num_eps; i++) {
3082		ep_index = xhci_get_endpoint_index(&eps[i]->desc);
3083		vdev->eps[ep_index].ep_state |= EP_GETTING_STREAMS;
3084	}
3085	spin_unlock_irqrestore(&xhci->lock, flags);
3086
3087	/* Setup internal data structures and allocate HW data structures for
3088	 * streams (but don't install the HW structures in the input context
3089	 * until we're sure all memory allocation succeeded).
3090	 */
3091	xhci_calculate_streams_entries(xhci, &num_streams, &num_stream_ctxs);
3092	xhci_dbg(xhci, "Need %u stream ctx entries for %u stream IDs.\n",
3093			num_stream_ctxs, num_streams);
3094
3095	for (i = 0; i < num_eps; i++) {
3096		ep_index = xhci_get_endpoint_index(&eps[i]->desc);
3097		vdev->eps[ep_index].stream_info = xhci_alloc_stream_info(xhci,
3098				num_stream_ctxs,
3099				num_streams, mem_flags);
3100		if (!vdev->eps[ep_index].stream_info)
3101			goto cleanup;
3102		/* Set maxPstreams in endpoint context and update deq ptr to
3103		 * point to stream context array. FIXME
3104		 */
3105	}
3106
3107	/* Set up the input context for a configure endpoint command. */
3108	for (i = 0; i < num_eps; i++) {
3109		struct xhci_ep_ctx *ep_ctx;
3110
3111		ep_index = xhci_get_endpoint_index(&eps[i]->desc);
3112		ep_ctx = xhci_get_ep_ctx(xhci, config_cmd->in_ctx, ep_index);
3113
3114		xhci_endpoint_copy(xhci, config_cmd->in_ctx,
3115				vdev->out_ctx, ep_index);
3116		xhci_setup_streams_ep_input_ctx(xhci, ep_ctx,
3117				vdev->eps[ep_index].stream_info);
3118	}
3119	/* Tell the HW to drop its old copy of the endpoint context info
3120	 * and add the updated copy from the input context.
3121	 */
3122	xhci_setup_input_ctx_for_config_ep(xhci, config_cmd->in_ctx,
3123			vdev->out_ctx, changed_ep_bitmask, changed_ep_bitmask);
3124
3125	/* Issue and wait for the configure endpoint command */
3126	ret = xhci_configure_endpoint(xhci, udev, config_cmd,
3127			false, false);
3128
3129	/* xHC rejected the configure endpoint command for some reason, so we
3130	 * leave the old ring intact and free our internal streams data
3131	 * structure.
3132	 */
3133	if (ret < 0)
3134		goto cleanup;
3135
3136	spin_lock_irqsave(&xhci->lock, flags);
3137	for (i = 0; i < num_eps; i++) {
3138		ep_index = xhci_get_endpoint_index(&eps[i]->desc);
3139		vdev->eps[ep_index].ep_state &= ~EP_GETTING_STREAMS;
3140		xhci_dbg(xhci, "Slot %u ep ctx %u now has streams.\n",
3141			 udev->slot_id, ep_index);
3142		vdev->eps[ep_index].ep_state |= EP_HAS_STREAMS;
3143	}
3144	xhci_free_command(xhci, config_cmd);
3145	spin_unlock_irqrestore(&xhci->lock, flags);
3146
3147	/* Subtract 1 for stream 0, which drivers can't use */
3148	return num_streams - 1;
3149
3150cleanup:
3151	/* If it didn't work, free the streams! */
3152	for (i = 0; i < num_eps; i++) {
3153		ep_index = xhci_get_endpoint_index(&eps[i]->desc);
3154		xhci_free_stream_info(xhci, vdev->eps[ep_index].stream_info);
3155		vdev->eps[ep_index].stream_info = NULL;
3156		/* FIXME Unset maxPstreams in endpoint context and
3157		 * update deq ptr to point to normal string ring.
3158		 */
3159		vdev->eps[ep_index].ep_state &= ~EP_GETTING_STREAMS;
3160		vdev->eps[ep_index].ep_state &= ~EP_HAS_STREAMS;
3161		xhci_endpoint_zero(xhci, vdev, eps[i]);
3162	}
3163	xhci_free_command(xhci, config_cmd);
3164	return -ENOMEM;
3165}
3166
3167/* Transition the endpoint from using streams to being a "normal" endpoint
3168 * without streams.
3169 *
3170 * Modify the endpoint context state, submit a configure endpoint command,
3171 * and free all endpoint rings for streams if that completes successfully.
3172 */
3173int xhci_free_streams(struct usb_hcd *hcd, struct usb_device *udev,
3174		struct usb_host_endpoint **eps, unsigned int num_eps,
3175		gfp_t mem_flags)
3176{
3177	int i, ret;
3178	struct xhci_hcd *xhci;
3179	struct xhci_virt_device *vdev;
3180	struct xhci_command *command;
3181	unsigned int ep_index;
3182	unsigned long flags;
3183	u32 changed_ep_bitmask;
3184
3185	xhci = hcd_to_xhci(hcd);
3186	vdev = xhci->devs[udev->slot_id];
3187
3188	/* Set up a configure endpoint command to remove the streams rings */
3189	spin_lock_irqsave(&xhci->lock, flags);
3190	changed_ep_bitmask = xhci_calculate_no_streams_bitmask(xhci,
3191			udev, eps, num_eps);
3192	if (changed_ep_bitmask == 0) {
3193		spin_unlock_irqrestore(&xhci->lock, flags);
3194		return -EINVAL;
3195	}
3196
3197	/* Use the xhci_command structure from the first endpoint.  We may have
3198	 * allocated too many, but the driver may call xhci_free_streams() for
3199	 * each endpoint it grouped into one call to xhci_alloc_streams().
3200	 */
3201	ep_index = xhci_get_endpoint_index(&eps[0]->desc);
3202	command = vdev->eps[ep_index].stream_info->free_streams_command;
3203	for (i = 0; i < num_eps; i++) {
3204		struct xhci_ep_ctx *ep_ctx;
3205
3206		ep_index = xhci_get_endpoint_index(&eps[i]->desc);
3207		ep_ctx = xhci_get_ep_ctx(xhci, command->in_ctx, ep_index);
3208		xhci->devs[udev->slot_id]->eps[ep_index].ep_state |=
3209			EP_GETTING_NO_STREAMS;
3210
3211		xhci_endpoint_copy(xhci, command->in_ctx,
3212				vdev->out_ctx, ep_index);
3213		xhci_setup_no_streams_ep_input_ctx(xhci, ep_ctx,
3214				&vdev->eps[ep_index]);
3215	}
3216	xhci_setup_input_ctx_for_config_ep(xhci, command->in_ctx,
3217			vdev->out_ctx, changed_ep_bitmask, changed_ep_bitmask);
3218	spin_unlock_irqrestore(&xhci->lock, flags);
3219
3220	/* Issue and wait for the configure endpoint command,
3221	 * which must succeed.
3222	 */
3223	ret = xhci_configure_endpoint(xhci, udev, command,
3224			false, true);
3225
3226	/* xHC rejected the configure endpoint command for some reason, so we
3227	 * leave the streams rings intact.
3228	 */
3229	if (ret < 0)
3230		return ret;
3231
3232	spin_lock_irqsave(&xhci->lock, flags);
3233	for (i = 0; i < num_eps; i++) {
3234		ep_index = xhci_get_endpoint_index(&eps[i]->desc);
3235		xhci_free_stream_info(xhci, vdev->eps[ep_index].stream_info);
3236		vdev->eps[ep_index].stream_info = NULL;
3237		/* FIXME Unset maxPstreams in endpoint context and
3238		 * update deq ptr to point to normal string ring.
3239		 */
3240		vdev->eps[ep_index].ep_state &= ~EP_GETTING_NO_STREAMS;
3241		vdev->eps[ep_index].ep_state &= ~EP_HAS_STREAMS;
3242	}
3243	spin_unlock_irqrestore(&xhci->lock, flags);
3244
3245	return 0;
3246}
3247
3248/*
3249 * Deletes endpoint resources for endpoints that were active before a Reset
3250 * Device command, or a Disable Slot command.  The Reset Device command leaves
3251 * the control endpoint intact, whereas the Disable Slot command deletes it.
3252 *
3253 * Must be called with xhci->lock held.
3254 */
3255void xhci_free_device_endpoint_resources(struct xhci_hcd *xhci,
3256	struct xhci_virt_device *virt_dev, bool drop_control_ep)
3257{
3258	int i;
3259	unsigned int num_dropped_eps = 0;
3260	unsigned int drop_flags = 0;
3261
3262	for (i = (drop_control_ep ? 0 : 1); i < 31; i++) {
3263		if (virt_dev->eps[i].ring) {
3264			drop_flags |= 1 << i;
3265			num_dropped_eps++;
3266		}
3267	}
3268	xhci->num_active_eps -= num_dropped_eps;
3269	if (num_dropped_eps)
3270		xhci_dbg(xhci, "Dropped %u ep ctxs, flags = 0x%x, "
3271				"%u now active.\n",
3272				num_dropped_eps, drop_flags,
3273				xhci->num_active_eps);
3274}
3275
3276/*
3277 * This submits a Reset Device Command, which will set the device state to 0,
3278 * set the device address to 0, and disable all the endpoints except the default
3279 * control endpoint.  The USB core should come back and call
3280 * xhci_address_device(), and then re-set up the configuration.  If this is
3281 * called because of a usb_reset_and_verify_device(), then the old alternate
3282 * settings will be re-installed through the normal bandwidth allocation
3283 * functions.
3284 *
3285 * Wait for the Reset Device command to finish.  Remove all structures
3286 * associated with the endpoints that were disabled.  Clear the input device
3287 * structure?  Cache the rings?  Reset the control endpoint 0 max packet size?
3288 *
3289 * If the virt_dev to be reset does not exist or does not match the udev,
3290 * it means the device is lost, possibly due to the xHC restore error and
3291 * re-initialization during S3/S4. In this case, call xhci_alloc_dev() to
3292 * re-allocate the device.
3293 */
3294int xhci_discover_or_reset_device(struct usb_hcd *hcd, struct usb_device *udev)
3295{
3296	int ret, i;
3297	unsigned long flags;
3298	struct xhci_hcd *xhci;
3299	unsigned int slot_id;
3300	struct xhci_virt_device *virt_dev;
3301	struct xhci_command *reset_device_cmd;
3302	int timeleft;
3303	int last_freed_endpoint;
3304	struct xhci_slot_ctx *slot_ctx;
3305	int old_active_eps = 0;
3306
3307	ret = xhci_check_args(hcd, udev, NULL, 0, false, __func__);
3308	if (ret <= 0)
3309		return ret;
3310	xhci = hcd_to_xhci(hcd);
3311	slot_id = udev->slot_id;
3312	virt_dev = xhci->devs[slot_id];
3313	if (!virt_dev) {
3314		xhci_dbg(xhci, "The device to be reset with slot ID %u does "
3315				"not exist. Re-allocate the device\n", slot_id);
3316		ret = xhci_alloc_dev(hcd, udev);
3317		if (ret == 1)
3318			return 0;
3319		else
3320			return -EINVAL;
3321	}
3322
3323	if (virt_dev->udev != udev) {
3324		/* If the virt_dev and the udev does not match, this virt_dev
3325		 * may belong to another udev.
3326		 * Re-allocate the device.
3327		 */
3328		xhci_dbg(xhci, "The device to be reset with slot ID %u does "
3329				"not match the udev. Re-allocate the device\n",
3330				slot_id);
3331		ret = xhci_alloc_dev(hcd, udev);
3332		if (ret == 1)
3333			return 0;
3334		else
3335			return -EINVAL;
3336	}
3337
3338	/* If device is not setup, there is no point in resetting it */
3339	slot_ctx = xhci_get_slot_ctx(xhci, virt_dev->out_ctx);
3340	if (GET_SLOT_STATE(le32_to_cpu(slot_ctx->dev_state)) ==
3341						SLOT_STATE_DISABLED)
3342		return 0;
3343
3344	xhci_dbg(xhci, "Resetting device with slot ID %u\n", slot_id);
3345	/* Allocate the command structure that holds the struct completion.
3346	 * Assume we're in process context, since the normal device reset
3347	 * process has to wait for the device anyway.  Storage devices are
3348	 * reset as part of error handling, so use GFP_NOIO instead of
3349	 * GFP_KERNEL.
3350	 */
3351	reset_device_cmd = xhci_alloc_command(xhci, false, true, GFP_NOIO);
3352	if (!reset_device_cmd) {
3353		xhci_dbg(xhci, "Couldn't allocate command structure.\n");
3354		return -ENOMEM;
3355	}
3356
3357	/* Attempt to submit the Reset Device command to the command ring */
3358	spin_lock_irqsave(&xhci->lock, flags);
3359	reset_device_cmd->command_trb = xhci->cmd_ring->enqueue;
3360
3361	/* Enqueue pointer can be left pointing to the link TRB,
3362	 * we must handle that
3363	 */
3364	if (TRB_TYPE_LINK_LE32(reset_device_cmd->command_trb->link.control))
3365		reset_device_cmd->command_trb =
3366			xhci->cmd_ring->enq_seg->next->trbs;
3367
3368	list_add_tail(&reset_device_cmd->cmd_list, &virt_dev->cmd_list);
3369	ret = xhci_queue_reset_device(xhci, slot_id);
3370	if (ret) {
3371		xhci_dbg(xhci, "FIXME: allocate a command ring segment\n");
3372		list_del(&reset_device_cmd->cmd_list);
3373		spin_unlock_irqrestore(&xhci->lock, flags);
3374		goto command_cleanup;
3375	}
3376	xhci_ring_cmd_db(xhci);
3377	spin_unlock_irqrestore(&xhci->lock, flags);
3378
3379	/* Wait for the Reset Device command to finish */
3380	timeleft = wait_for_completion_interruptible_timeout(
3381			reset_device_cmd->completion,
3382			USB_CTRL_SET_TIMEOUT);
3383	if (timeleft <= 0) {
3384		xhci_warn(xhci, "%s while waiting for reset device command\n",
3385				timeleft == 0 ? "Timeout" : "Signal");
3386		spin_lock_irqsave(&xhci->lock, flags);
3387		/* The timeout might have raced with the event ring handler, so
3388		 * only delete from the list if the item isn't poisoned.
3389		 */
3390		if (reset_device_cmd->cmd_list.next != LIST_POISON1)
3391			list_del(&reset_device_cmd->cmd_list);
3392		spin_unlock_irqrestore(&xhci->lock, flags);
3393		ret = -ETIME;
3394		goto command_cleanup;
3395	}
3396
3397	/* The Reset Device command can't fail, according to the 0.95/0.96 spec,
3398	 * unless we tried to reset a slot ID that wasn't enabled,
3399	 * or the device wasn't in the addressed or configured state.
3400	 */
3401	ret = reset_device_cmd->status;
3402	switch (ret) {
3403	case COMP_EBADSLT: /* 0.95 completion code for bad slot ID */
3404	case COMP_CTX_STATE: /* 0.96 completion code for same thing */
3405		xhci_info(xhci, "Can't reset device (slot ID %u) in %s state\n",
3406				slot_id,
3407				xhci_get_slot_state(xhci, virt_dev->out_ctx));
3408		xhci_info(xhci, "Not freeing device rings.\n");
3409		/* Don't treat this as an error.  May change my mind later. */
3410		ret = 0;
3411		goto command_cleanup;
3412	case COMP_SUCCESS:
3413		xhci_dbg(xhci, "Successful reset device command.\n");
3414		break;
3415	default:
3416		if (xhci_is_vendor_info_code(xhci, ret))
3417			break;
3418		xhci_warn(xhci, "Unknown completion code %u for "
3419				"reset device command.\n", ret);
3420		ret = -EINVAL;
3421		goto command_cleanup;
3422	}
3423
3424	/* Free up host controller endpoint resources */
3425	if ((xhci->quirks & XHCI_EP_LIMIT_QUIRK)) {
3426		spin_lock_irqsave(&xhci->lock, flags);
3427		/* Don't delete the default control endpoint resources */
3428		xhci_free_device_endpoint_resources(xhci, virt_dev, false);
3429		spin_unlock_irqrestore(&xhci->lock, flags);
3430	}
3431
3432	/* Everything but endpoint 0 is disabled, so free or cache the rings. */
3433	last_freed_endpoint = 1;
3434	for (i = 1; i < 31; ++i) {
3435		struct xhci_virt_ep *ep = &virt_dev->eps[i];
3436
3437		if (ep->ep_state & EP_HAS_STREAMS) {
3438			xhci_free_stream_info(xhci, ep->stream_info);
3439			ep->stream_info = NULL;
3440			ep->ep_state &= ~EP_HAS_STREAMS;
3441		}
3442
3443		if (ep->ring) {
3444			xhci_free_or_cache_endpoint_ring(xhci, virt_dev, i);
3445			last_freed_endpoint = i;
3446		}
3447		if (!list_empty(&virt_dev->eps[i].bw_endpoint_list))
3448			xhci_drop_ep_from_interval_table(xhci,
3449					&virt_dev->eps[i].bw_info,
3450					virt_dev->bw_table,
3451					udev,
3452					&virt_dev->eps[i],
3453					virt_dev->tt_info);
3454		xhci_clear_endpoint_bw_info(&virt_dev->eps[i].bw_info);
3455	}
3456	/* If necessary, update the number of active TTs on this root port */
3457	xhci_update_tt_active_eps(xhci, virt_dev, old_active_eps);
3458
3459	xhci_dbg(xhci, "Output context after successful reset device cmd:\n");
3460	xhci_dbg_ctx(xhci, virt_dev->out_ctx, last_freed_endpoint);
3461	ret = 0;
3462
3463command_cleanup:
3464	xhci_free_command(xhci, reset_device_cmd);
3465	return ret;
3466}
3467
3468/*
3469 * At this point, the struct usb_device is about to go away, the device has
3470 * disconnected, and all traffic has been stopped and the endpoints have been
3471 * disabled.  Free any HC data structures associated with that device.
3472 */
3473void xhci_free_dev(struct usb_hcd *hcd, struct usb_device *udev)
3474{
3475	struct xhci_hcd *xhci = hcd_to_xhci(hcd);
3476	struct xhci_virt_device *virt_dev;
3477	unsigned long flags;
3478	u32 state;
3479	int i, ret;
3480
3481	ret = xhci_check_args(hcd, udev, NULL, 0, true, __func__);
3482	/* If the host is halted due to driver unload, we still need to free the
3483	 * device.
3484	 */
3485	if (ret <= 0 && ret != -ENODEV)
3486		return;
3487
3488	virt_dev = xhci->devs[udev->slot_id];
3489
3490	/* Stop any wayward timer functions (which may grab the lock) */
3491	for (i = 0; i < 31; ++i) {
3492		virt_dev->eps[i].ep_state &= ~EP_HALT_PENDING;
3493		del_timer_sync(&virt_dev->eps[i].stop_cmd_timer);
3494	}
3495
3496	if (udev->usb2_hw_lpm_enabled) {
3497		xhci_set_usb2_hardware_lpm(hcd, udev, 0);
3498		udev->usb2_hw_lpm_enabled = 0;
3499	}
3500
3501	spin_lock_irqsave(&xhci->lock, flags);
3502	/* Don't disable the slot if the host controller is dead. */
3503	state = xhci_readl(xhci, &xhci->op_regs->status);
3504	if (state == 0xffffffff || (xhci->xhc_state & XHCI_STATE_DYING) ||
3505			(xhci->xhc_state & XHCI_STATE_HALTED)) {
3506		xhci_free_virt_device(xhci, udev->slot_id);
3507		spin_unlock_irqrestore(&xhci->lock, flags);
3508		return;
3509	}
3510
3511	if (xhci_queue_slot_control(xhci, TRB_DISABLE_SLOT, udev->slot_id)) {
3512		spin_unlock_irqrestore(&xhci->lock, flags);
3513		xhci_dbg(xhci, "FIXME: allocate a command ring segment\n");
3514		return;
3515	}
3516	xhci_ring_cmd_db(xhci);
3517	spin_unlock_irqrestore(&xhci->lock, flags);
3518	/*
3519	 * Event command completion handler will free any data structures
3520	 * associated with the slot.  XXX Can free sleep?
3521	 */
3522}
3523
3524/*
3525 * Checks if we have enough host controller resources for the default control
3526 * endpoint.
3527 *
3528 * Must be called with xhci->lock held.
3529 */
3530static int xhci_reserve_host_control_ep_resources(struct xhci_hcd *xhci)
3531{
3532	if (xhci->num_active_eps + 1 > xhci->limit_active_eps) {
3533		xhci_dbg(xhci, "Not enough ep ctxs: "
3534				"%u active, need to add 1, limit is %u.\n",
3535				xhci->num_active_eps, xhci->limit_active_eps);
3536		return -ENOMEM;
3537	}
3538	xhci->num_active_eps += 1;
3539	xhci_dbg(xhci, "Adding 1 ep ctx, %u now active.\n",
3540			xhci->num_active_eps);
3541	return 0;
3542}
3543
3544
3545/*
3546 * Returns 0 if the xHC ran out of device slots, the Enable Slot command
3547 * timed out, or allocating memory failed.  Returns 1 on success.
3548 */
3549int xhci_alloc_dev(struct usb_hcd *hcd, struct usb_device *udev)
3550{
3551	struct xhci_hcd *xhci = hcd_to_xhci(hcd);
3552	unsigned long flags;
3553	int timeleft;
3554	int ret;
3555	union xhci_trb *cmd_trb;
3556
3557	spin_lock_irqsave(&xhci->lock, flags);
3558	cmd_trb = xhci->cmd_ring->dequeue;
3559	ret = xhci_queue_slot_control(xhci, TRB_ENABLE_SLOT, 0);
3560	if (ret) {
3561		spin_unlock_irqrestore(&xhci->lock, flags);
3562		xhci_dbg(xhci, "FIXME: allocate a command ring segment\n");
3563		return 0;
3564	}
3565	xhci_ring_cmd_db(xhci);
3566	spin_unlock_irqrestore(&xhci->lock, flags);
3567
3568	/* XXX: how much time for xHC slot assignment? */
3569	timeleft = wait_for_completion_interruptible_timeout(&xhci->addr_dev,
3570			XHCI_CMD_DEFAULT_TIMEOUT);
3571	if (timeleft <= 0) {
3572		xhci_warn(xhci, "%s while waiting for a slot\n",
3573				timeleft == 0 ? "Timeout" : "Signal");
3574		/* cancel the enable slot request */
3575		return xhci_cancel_cmd(xhci, NULL, cmd_trb);
3576	}
3577
3578	if (!xhci->slot_id) {
3579		xhci_err(xhci, "Error while assigning device slot ID\n");
3580		return 0;
3581	}
3582
3583	if ((xhci->quirks & XHCI_EP_LIMIT_QUIRK)) {
3584		spin_lock_irqsave(&xhci->lock, flags);
3585		ret = xhci_reserve_host_control_ep_resources(xhci);
3586		if (ret) {
3587			spin_unlock_irqrestore(&xhci->lock, flags);
3588			xhci_warn(xhci, "Not enough host resources, "
3589					"active endpoint contexts = %u\n",
3590					xhci->num_active_eps);
3591			goto disable_slot;
3592		}
3593		spin_unlock_irqrestore(&xhci->lock, flags);
3594	}
3595	/* Use GFP_NOIO, since this function can be called from
3596	 * xhci_discover_or_reset_device(), which may be called as part of
3597	 * mass storage driver error handling.
3598	 */
3599	if (!xhci_alloc_virt_device(xhci, xhci->slot_id, udev, GFP_NOIO)) {
3600		xhci_warn(xhci, "Could not allocate xHCI USB device data structures\n");
3601		goto disable_slot;
3602	}
3603	udev->slot_id = xhci->slot_id;
3604	/* Is this a LS or FS device under a HS hub? */
3605	/* Hub or peripherial? */
3606	return 1;
3607
3608disable_slot:
3609	/* Disable slot, if we can do it without mem alloc */
3610	spin_lock_irqsave(&xhci->lock, flags);
3611	if (!xhci_queue_slot_control(xhci, TRB_DISABLE_SLOT, udev->slot_id))
3612		xhci_ring_cmd_db(xhci);
3613	spin_unlock_irqrestore(&xhci->lock, flags);
3614	return 0;
3615}
3616
3617/*
3618 * Issue an Address Device command (which will issue a SetAddress request to
3619 * the device).
3620 * We should be protected by the usb_address0_mutex in khubd's hub_port_init, so
3621 * we should only issue and wait on one address command at the same time.
3622 *
3623 * We add one to the device address issued by the hardware because the USB core
3624 * uses address 1 for the root hubs (even though they're not really devices).
3625 */
3626int xhci_address_device(struct usb_hcd *hcd, struct usb_device *udev)
3627{
3628	unsigned long flags;
3629	int timeleft;
3630	struct xhci_virt_device *virt_dev;
3631	int ret = 0;
3632	struct xhci_hcd *xhci = hcd_to_xhci(hcd);
3633	struct xhci_slot_ctx *slot_ctx;
3634	struct xhci_input_control_ctx *ctrl_ctx;
3635	u64 temp_64;
3636	union xhci_trb *cmd_trb;
3637
3638	if (!udev->slot_id) {
3639		xhci_dbg(xhci, "Bad Slot ID %d\n", udev->slot_id);
3640		return -EINVAL;
3641	}
3642
3643	virt_dev = xhci->devs[udev->slot_id];
3644
3645	if (WARN_ON(!virt_dev)) {
3646		/*
3647		 * In plug/unplug torture test with an NEC controller,
3648		 * a zero-dereference was observed once due to virt_dev = 0.
3649		 * Print useful debug rather than crash if it is observed again!
3650		 */
3651		xhci_warn(xhci, "Virt dev invalid for slot_id 0x%x!\n",
3652			udev->slot_id);
3653		return -EINVAL;
3654	}
3655
3656	slot_ctx = xhci_get_slot_ctx(xhci, virt_dev->in_ctx);
3657	/*
3658	 * If this is the first Set Address since device plug-in or
3659	 * virt_device realloaction after a resume with an xHCI power loss,
3660	 * then set up the slot context.
3661	 */
3662	if (!slot_ctx->dev_info)
3663		xhci_setup_addressable_virt_dev(xhci, udev);
3664	/* Otherwise, update the control endpoint ring enqueue pointer. */
3665	else
3666		xhci_copy_ep0_dequeue_into_input_ctx(xhci, udev);
3667	ctrl_ctx = xhci_get_input_control_ctx(xhci, virt_dev->in_ctx);
3668	ctrl_ctx->add_flags = cpu_to_le32(SLOT_FLAG | EP0_FLAG);
3669	ctrl_ctx->drop_flags = 0;
3670
3671	xhci_dbg(xhci, "Slot ID %d Input Context:\n", udev->slot_id);
3672	xhci_dbg_ctx(xhci, virt_dev->in_ctx, 2);
3673
3674	spin_lock_irqsave(&xhci->lock, flags);
3675	cmd_trb = xhci->cmd_ring->dequeue;
3676	ret = xhci_queue_address_device(xhci, virt_dev->in_ctx->dma,
3677					udev->slot_id);
3678	if (ret) {
3679		spin_unlock_irqrestore(&xhci->lock, flags);
3680		xhci_dbg(xhci, "FIXME: allocate a command ring segment\n");
3681		return ret;
3682	}
3683	xhci_ring_cmd_db(xhci);
3684	spin_unlock_irqrestore(&xhci->lock, flags);
3685
3686	/* ctrl tx can take up to 5 sec; XXX: need more time for xHC? */
3687	timeleft = wait_for_completion_interruptible_timeout(&xhci->addr_dev,
3688			XHCI_CMD_DEFAULT_TIMEOUT);
3689	/* FIXME: From section 4.3.4: "Software shall be responsible for timing
3690	 * the SetAddress() "recovery interval" required by USB and aborting the
3691	 * command on a timeout.
3692	 */
3693	if (timeleft <= 0) {
3694		xhci_warn(xhci, "%s while waiting for address device command\n",
3695				timeleft == 0 ? "Timeout" : "Signal");
3696		/* cancel the address device command */
3697		ret = xhci_cancel_cmd(xhci, NULL, cmd_trb);
3698		if (ret < 0)
3699			return ret;
3700		return -ETIME;
3701	}
3702
3703	switch (virt_dev->cmd_status) {
3704	case COMP_CTX_STATE:
3705	case COMP_EBADSLT:
3706		xhci_err(xhci, "Setup ERROR: address device command for slot %d.\n",
3707				udev->slot_id);
3708		ret = -EINVAL;
3709		break;
3710	case COMP_TX_ERR:
3711		dev_warn(&udev->dev, "Device not responding to set address.\n");
3712		ret = -EPROTO;
3713		break;
3714	case COMP_DEV_ERR:
3715		dev_warn(&udev->dev, "ERROR: Incompatible device for address "
3716				"device command.\n");
3717		ret = -ENODEV;
3718		break;
3719	case COMP_SUCCESS:
3720		xhci_dbg(xhci, "Successful Address Device command\n");
3721		break;
3722	default:
3723		xhci_err(xhci, "ERROR: unexpected command completion "
3724				"code 0x%x.\n", virt_dev->cmd_status);
3725		xhci_dbg(xhci, "Slot ID %d Output Context:\n", udev->slot_id);
3726		xhci_dbg_ctx(xhci, virt_dev->out_ctx, 2);
3727		ret = -EINVAL;
3728		break;
3729	}
3730	if (ret) {
3731		return ret;
3732	}
3733	temp_64 = xhci_read_64(xhci, &xhci->op_regs->dcbaa_ptr);
3734	xhci_dbg(xhci, "Op regs DCBAA ptr = %#016llx\n", temp_64);
3735	xhci_dbg(xhci, "Slot ID %d dcbaa entry @%p = %#016llx\n",
3736		 udev->slot_id,
3737		 &xhci->dcbaa->dev_context_ptrs[udev->slot_id],
3738		 (unsigned long long)
3739		 le64_to_cpu(xhci->dcbaa->dev_context_ptrs[udev->slot_id]));
3740	xhci_dbg(xhci, "Output Context DMA address = %#08llx\n",
3741			(unsigned long long)virt_dev->out_ctx->dma);
3742	xhci_dbg(xhci, "Slot ID %d Input Context:\n", udev->slot_id);
3743	xhci_dbg_ctx(xhci, virt_dev->in_ctx, 2);
3744	xhci_dbg(xhci, "Slot ID %d Output Context:\n", udev->slot_id);
3745	xhci_dbg_ctx(xhci, virt_dev->out_ctx, 2);
3746	/*
3747	 * USB core uses address 1 for the roothubs, so we add one to the
3748	 * address given back to us by the HC.
3749	 */
3750	slot_ctx = xhci_get_slot_ctx(xhci, virt_dev->out_ctx);
3751	/* Use kernel assigned address for devices; store xHC assigned
3752	 * address locally. */
3753	virt_dev->address = (le32_to_cpu(slot_ctx->dev_state) & DEV_ADDR_MASK)
3754		+ 1;
3755	/* Zero the input context control for later use */
 
3756	ctrl_ctx->add_flags = 0;
3757	ctrl_ctx->drop_flags = 0;
3758
3759	xhci_dbg(xhci, "Internal device address = %d\n", virt_dev->address);
3760
3761	return 0;
3762}
3763
3764#ifdef CONFIG_USB_SUSPEND
3765
3766/* BESL to HIRD Encoding array for USB2 LPM */
3767static int xhci_besl_encoding[16] = {125, 150, 200, 300, 400, 500, 1000, 2000,
3768	3000, 4000, 5000, 6000, 7000, 8000, 9000, 10000};
3769
3770/* Calculate HIRD/BESL for USB2 PORTPMSC*/
3771static int xhci_calculate_hird_besl(struct xhci_hcd *xhci,
3772					struct usb_device *udev)
3773{
3774	int u2del, besl, besl_host;
3775	int besl_device = 0;
3776	u32 field;
3777
3778	u2del = HCS_U2_LATENCY(xhci->hcs_params3);
3779	field = le32_to_cpu(udev->bos->ext_cap->bmAttributes);
3780
3781	if (field & USB_BESL_SUPPORT) {
3782		for (besl_host = 0; besl_host < 16; besl_host++) {
3783			if (xhci_besl_encoding[besl_host] >= u2del)
3784				break;
3785		}
3786		/* Use baseline BESL value as default */
3787		if (field & USB_BESL_BASELINE_VALID)
3788			besl_device = USB_GET_BESL_BASELINE(field);
3789		else if (field & USB_BESL_DEEP_VALID)
3790			besl_device = USB_GET_BESL_DEEP(field);
3791	} else {
3792		if (u2del <= 50)
3793			besl_host = 0;
3794		else
3795			besl_host = (u2del - 51) / 75 + 1;
3796	}
3797
3798	besl = besl_host + besl_device;
3799	if (besl > 15)
3800		besl = 15;
3801
3802	return besl;
3803}
3804
3805static int xhci_usb2_software_lpm_test(struct usb_hcd *hcd,
3806					struct usb_device *udev)
3807{
3808	struct xhci_hcd	*xhci = hcd_to_xhci(hcd);
3809	struct dev_info	*dev_info;
3810	__le32 __iomem	**port_array;
3811	__le32 __iomem	*addr, *pm_addr;
3812	u32		temp, dev_id;
3813	unsigned int	port_num;
3814	unsigned long	flags;
3815	int		hird;
3816	int		ret;
3817
3818	if (hcd->speed == HCD_USB3 || !xhci->sw_lpm_support ||
3819			!udev->lpm_capable)
3820		return -EINVAL;
3821
3822	/* we only support lpm for non-hub device connected to root hub yet */
3823	if (!udev->parent || udev->parent->parent ||
3824			udev->descriptor.bDeviceClass == USB_CLASS_HUB)
3825		return -EINVAL;
3826
3827	spin_lock_irqsave(&xhci->lock, flags);
3828
3829	/* Look for devices in lpm_failed_devs list */
3830	dev_id = le16_to_cpu(udev->descriptor.idVendor) << 16 |
3831			le16_to_cpu(udev->descriptor.idProduct);
3832	list_for_each_entry(dev_info, &xhci->lpm_failed_devs, list) {
3833		if (dev_info->dev_id == dev_id) {
3834			ret = -EINVAL;
3835			goto finish;
3836		}
3837	}
3838
3839	port_array = xhci->usb2_ports;
3840	port_num = udev->portnum - 1;
3841
3842	if (port_num > HCS_MAX_PORTS(xhci->hcs_params1)) {
3843		xhci_dbg(xhci, "invalid port number %d\n", udev->portnum);
3844		ret = -EINVAL;
3845		goto finish;
3846	}
3847
3848	/*
3849	 * Test USB 2.0 software LPM.
3850	 * FIXME: some xHCI 1.0 hosts may implement a new register to set up
3851	 * hardware-controlled USB 2.0 LPM. See section 5.4.11 and 4.23.5.1.1.1
3852	 * in the June 2011 errata release.
3853	 */
3854	xhci_dbg(xhci, "test port %d software LPM\n", port_num);
3855	/*
3856	 * Set L1 Device Slot and HIRD/BESL.
3857	 * Check device's USB 2.0 extension descriptor to determine whether
3858	 * HIRD or BESL shoule be used. See USB2.0 LPM errata.
3859	 */
3860	pm_addr = port_array[port_num] + 1;
3861	hird = xhci_calculate_hird_besl(xhci, udev);
3862	temp = PORT_L1DS(udev->slot_id) | PORT_HIRD(hird);
3863	xhci_writel(xhci, temp, pm_addr);
3864
3865	/* Set port link state to U2(L1) */
3866	addr = port_array[port_num];
3867	xhci_set_link_state(xhci, port_array, port_num, XDEV_U2);
3868
3869	/* wait for ACK */
3870	spin_unlock_irqrestore(&xhci->lock, flags);
3871	msleep(10);
3872	spin_lock_irqsave(&xhci->lock, flags);
3873
3874	/* Check L1 Status */
3875	ret = handshake(xhci, pm_addr, PORT_L1S_MASK, PORT_L1S_SUCCESS, 125);
3876	if (ret != -ETIMEDOUT) {
3877		/* enter L1 successfully */
3878		temp = xhci_readl(xhci, addr);
3879		xhci_dbg(xhci, "port %d entered L1 state, port status 0x%x\n",
3880				port_num, temp);
3881		ret = 0;
3882	} else {
3883		temp = xhci_readl(xhci, pm_addr);
3884		xhci_dbg(xhci, "port %d software lpm failed, L1 status %d\n",
3885				port_num, temp & PORT_L1S_MASK);
3886		ret = -EINVAL;
3887	}
3888
3889	/* Resume the port */
3890	xhci_set_link_state(xhci, port_array, port_num, XDEV_U0);
3891
3892	spin_unlock_irqrestore(&xhci->lock, flags);
3893	msleep(10);
3894	spin_lock_irqsave(&xhci->lock, flags);
3895
3896	/* Clear PLC */
3897	xhci_test_and_clear_bit(xhci, port_array, port_num, PORT_PLC);
3898
3899	/* Check PORTSC to make sure the device is in the right state */
3900	if (!ret) {
3901		temp = xhci_readl(xhci, addr);
3902		xhci_dbg(xhci, "resumed port %d status 0x%x\n",	port_num, temp);
3903		if (!(temp & PORT_CONNECT) || !(temp & PORT_PE) ||
3904				(temp & PORT_PLS_MASK) != XDEV_U0) {
3905			xhci_dbg(xhci, "port L1 resume fail\n");
3906			ret = -EINVAL;
3907		}
3908	}
3909
3910	if (ret) {
3911		/* Insert dev to lpm_failed_devs list */
3912		xhci_warn(xhci, "device LPM test failed, may disconnect and "
3913				"re-enumerate\n");
3914		dev_info = kzalloc(sizeof(struct dev_info), GFP_ATOMIC);
3915		if (!dev_info) {
3916			ret = -ENOMEM;
3917			goto finish;
3918		}
3919		dev_info->dev_id = dev_id;
3920		INIT_LIST_HEAD(&dev_info->list);
3921		list_add(&dev_info->list, &xhci->lpm_failed_devs);
3922	} else {
3923		xhci_ring_device(xhci, udev->slot_id);
3924	}
3925
3926finish:
3927	spin_unlock_irqrestore(&xhci->lock, flags);
3928	return ret;
3929}
3930
3931int xhci_set_usb2_hardware_lpm(struct usb_hcd *hcd,
3932			struct usb_device *udev, int enable)
3933{
3934	struct xhci_hcd	*xhci = hcd_to_xhci(hcd);
3935	__le32 __iomem	**port_array;
3936	__le32 __iomem	*pm_addr;
3937	u32		temp;
3938	unsigned int	port_num;
3939	unsigned long	flags;
3940	int		hird;
3941
3942	if (hcd->speed == HCD_USB3 || !xhci->hw_lpm_support ||
3943			!udev->lpm_capable)
3944		return -EPERM;
3945
3946	if (!udev->parent || udev->parent->parent ||
3947			udev->descriptor.bDeviceClass == USB_CLASS_HUB)
3948		return -EPERM;
3949
3950	if (udev->usb2_hw_lpm_capable != 1)
3951		return -EPERM;
3952
3953	spin_lock_irqsave(&xhci->lock, flags);
3954
3955	port_array = xhci->usb2_ports;
3956	port_num = udev->portnum - 1;
3957	pm_addr = port_array[port_num] + 1;
3958	temp = xhci_readl(xhci, pm_addr);
3959
3960	xhci_dbg(xhci, "%s port %d USB2 hardware LPM\n",
3961			enable ? "enable" : "disable", port_num);
3962
3963	hird = xhci_calculate_hird_besl(xhci, udev);
3964
3965	if (enable) {
3966		temp &= ~PORT_HIRD_MASK;
3967		temp |= PORT_HIRD(hird) | PORT_RWE;
3968		xhci_writel(xhci, temp, pm_addr);
3969		temp = xhci_readl(xhci, pm_addr);
3970		temp |= PORT_HLE;
3971		xhci_writel(xhci, temp, pm_addr);
3972	} else {
3973		temp &= ~(PORT_HLE | PORT_RWE | PORT_HIRD_MASK);
3974		xhci_writel(xhci, temp, pm_addr);
3975	}
3976
3977	spin_unlock_irqrestore(&xhci->lock, flags);
3978	return 0;
3979}
3980
3981int xhci_update_device(struct usb_hcd *hcd, struct usb_device *udev)
3982{
3983	struct xhci_hcd	*xhci = hcd_to_xhci(hcd);
3984	int		ret;
3985
3986	ret = xhci_usb2_software_lpm_test(hcd, udev);
3987	if (!ret) {
3988		xhci_dbg(xhci, "software LPM test succeed\n");
3989		if (xhci->hw_lpm_support == 1) {
3990			udev->usb2_hw_lpm_capable = 1;
3991			ret = xhci_set_usb2_hardware_lpm(hcd, udev, 1);
3992			if (!ret)
3993				udev->usb2_hw_lpm_enabled = 1;
3994		}
3995	}
3996
3997	return 0;
3998}
3999
4000#else
4001
4002int xhci_set_usb2_hardware_lpm(struct usb_hcd *hcd,
4003				struct usb_device *udev, int enable)
4004{
4005	return 0;
4006}
4007
4008int xhci_update_device(struct usb_hcd *hcd, struct usb_device *udev)
4009{
4010	return 0;
4011}
4012
4013#endif /* CONFIG_USB_SUSPEND */
4014
4015/*---------------------- USB 3.0 Link PM functions ------------------------*/
4016
4017#ifdef CONFIG_PM
4018/* Service interval in nanoseconds = 2^(bInterval - 1) * 125us * 1000ns / 1us */
4019static unsigned long long xhci_service_interval_to_ns(
4020		struct usb_endpoint_descriptor *desc)
4021{
4022	return (1 << (desc->bInterval - 1)) * 125 * 1000;
4023}
4024
4025static u16 xhci_get_timeout_no_hub_lpm(struct usb_device *udev,
4026		enum usb3_link_state state)
4027{
4028	unsigned long long sel;
4029	unsigned long long pel;
4030	unsigned int max_sel_pel;
4031	char *state_name;
4032
4033	switch (state) {
4034	case USB3_LPM_U1:
4035		/* Convert SEL and PEL stored in nanoseconds to microseconds */
4036		sel = DIV_ROUND_UP(udev->u1_params.sel, 1000);
4037		pel = DIV_ROUND_UP(udev->u1_params.pel, 1000);
4038		max_sel_pel = USB3_LPM_MAX_U1_SEL_PEL;
4039		state_name = "U1";
4040		break;
4041	case USB3_LPM_U2:
4042		sel = DIV_ROUND_UP(udev->u2_params.sel, 1000);
4043		pel = DIV_ROUND_UP(udev->u2_params.pel, 1000);
4044		max_sel_pel = USB3_LPM_MAX_U2_SEL_PEL;
4045		state_name = "U2";
4046		break;
4047	default:
4048		dev_warn(&udev->dev, "%s: Can't get timeout for non-U1 or U2 state.\n",
4049				__func__);
4050		return USB3_LPM_DISABLED;
4051	}
4052
4053	if (sel <= max_sel_pel && pel <= max_sel_pel)
4054		return USB3_LPM_DEVICE_INITIATED;
4055
4056	if (sel > max_sel_pel)
4057		dev_dbg(&udev->dev, "Device-initiated %s disabled "
4058				"due to long SEL %llu ms\n",
4059				state_name, sel);
4060	else
4061		dev_dbg(&udev->dev, "Device-initiated %s disabled "
4062				"due to long PEL %llu\n ms",
4063				state_name, pel);
4064	return USB3_LPM_DISABLED;
4065}
4066
4067/* Returns the hub-encoded U1 timeout value.
4068 * The U1 timeout should be the maximum of the following values:
4069 *  - For control endpoints, U1 system exit latency (SEL) * 3
4070 *  - For bulk endpoints, U1 SEL * 5
4071 *  - For interrupt endpoints:
4072 *    - Notification EPs, U1 SEL * 3
4073 *    - Periodic EPs, max(105% of bInterval, U1 SEL * 2)
4074 *  - For isochronous endpoints, max(105% of bInterval, U1 SEL * 2)
4075 */
4076static u16 xhci_calculate_intel_u1_timeout(struct usb_device *udev,
4077		struct usb_endpoint_descriptor *desc)
4078{
4079	unsigned long long timeout_ns;
4080	int ep_type;
4081	int intr_type;
4082
4083	ep_type = usb_endpoint_type(desc);
4084	switch (ep_type) {
4085	case USB_ENDPOINT_XFER_CONTROL:
4086		timeout_ns = udev->u1_params.sel * 3;
4087		break;
4088	case USB_ENDPOINT_XFER_BULK:
4089		timeout_ns = udev->u1_params.sel * 5;
4090		break;
4091	case USB_ENDPOINT_XFER_INT:
4092		intr_type = usb_endpoint_interrupt_type(desc);
4093		if (intr_type == USB_ENDPOINT_INTR_NOTIFICATION) {
4094			timeout_ns = udev->u1_params.sel * 3;
4095			break;
4096		}
4097		/* Otherwise the calculation is the same as isoc eps */
4098	case USB_ENDPOINT_XFER_ISOC:
4099		timeout_ns = xhci_service_interval_to_ns(desc);
4100		timeout_ns = DIV_ROUND_UP_ULL(timeout_ns * 105, 100);
4101		if (timeout_ns < udev->u1_params.sel * 2)
4102			timeout_ns = udev->u1_params.sel * 2;
4103		break;
4104	default:
4105		return 0;
4106	}
4107
4108	/* The U1 timeout is encoded in 1us intervals. */
4109	timeout_ns = DIV_ROUND_UP_ULL(timeout_ns, 1000);
4110	/* Don't return a timeout of zero, because that's USB3_LPM_DISABLED. */
4111	if (timeout_ns == USB3_LPM_DISABLED)
4112		timeout_ns++;
4113
4114	/* If the necessary timeout value is bigger than what we can set in the
4115	 * USB 3.0 hub, we have to disable hub-initiated U1.
4116	 */
4117	if (timeout_ns <= USB3_LPM_U1_MAX_TIMEOUT)
4118		return timeout_ns;
4119	dev_dbg(&udev->dev, "Hub-initiated U1 disabled "
4120			"due to long timeout %llu ms\n", timeout_ns);
4121	return xhci_get_timeout_no_hub_lpm(udev, USB3_LPM_U1);
4122}
4123
4124/* Returns the hub-encoded U2 timeout value.
4125 * The U2 timeout should be the maximum of:
4126 *  - 10 ms (to avoid the bandwidth impact on the scheduler)
4127 *  - largest bInterval of any active periodic endpoint (to avoid going
4128 *    into lower power link states between intervals).
4129 *  - the U2 Exit Latency of the device
4130 */
4131static u16 xhci_calculate_intel_u2_timeout(struct usb_device *udev,
4132		struct usb_endpoint_descriptor *desc)
4133{
4134	unsigned long long timeout_ns;
4135	unsigned long long u2_del_ns;
4136
4137	timeout_ns = 10 * 1000 * 1000;
4138
4139	if ((usb_endpoint_xfer_int(desc) || usb_endpoint_xfer_isoc(desc)) &&
4140			(xhci_service_interval_to_ns(desc) > timeout_ns))
4141		timeout_ns = xhci_service_interval_to_ns(desc);
4142
4143	u2_del_ns = udev->bos->ss_cap->bU2DevExitLat * 1000;
4144	if (u2_del_ns > timeout_ns)
4145		timeout_ns = u2_del_ns;
4146
4147	/* The U2 timeout is encoded in 256us intervals */
4148	timeout_ns = DIV_ROUND_UP_ULL(timeout_ns, 256 * 1000);
4149	/* If the necessary timeout value is bigger than what we can set in the
4150	 * USB 3.0 hub, we have to disable hub-initiated U2.
4151	 */
4152	if (timeout_ns <= USB3_LPM_U2_MAX_TIMEOUT)
4153		return timeout_ns;
4154	dev_dbg(&udev->dev, "Hub-initiated U2 disabled "
4155			"due to long timeout %llu ms\n", timeout_ns);
4156	return xhci_get_timeout_no_hub_lpm(udev, USB3_LPM_U2);
4157}
4158
4159static u16 xhci_call_host_update_timeout_for_endpoint(struct xhci_hcd *xhci,
4160		struct usb_device *udev,
4161		struct usb_endpoint_descriptor *desc,
4162		enum usb3_link_state state,
4163		u16 *timeout)
4164{
4165	if (state == USB3_LPM_U1) {
4166		if (xhci->quirks & XHCI_INTEL_HOST)
4167			return xhci_calculate_intel_u1_timeout(udev, desc);
4168	} else {
4169		if (xhci->quirks & XHCI_INTEL_HOST)
4170			return xhci_calculate_intel_u2_timeout(udev, desc);
4171	}
4172
4173	return USB3_LPM_DISABLED;
4174}
4175
4176static int xhci_update_timeout_for_endpoint(struct xhci_hcd *xhci,
4177		struct usb_device *udev,
4178		struct usb_endpoint_descriptor *desc,
4179		enum usb3_link_state state,
4180		u16 *timeout)
4181{
4182	u16 alt_timeout;
4183
4184	alt_timeout = xhci_call_host_update_timeout_for_endpoint(xhci, udev,
4185		desc, state, timeout);
4186
4187	/* If we found we can't enable hub-initiated LPM, or
4188	 * the U1 or U2 exit latency was too high to allow
4189	 * device-initiated LPM as well, just stop searching.
4190	 */
4191	if (alt_timeout == USB3_LPM_DISABLED ||
4192			alt_timeout == USB3_LPM_DEVICE_INITIATED) {
4193		*timeout = alt_timeout;
4194		return -E2BIG;
4195	}
4196	if (alt_timeout > *timeout)
4197		*timeout = alt_timeout;
4198	return 0;
4199}
4200
4201static int xhci_update_timeout_for_interface(struct xhci_hcd *xhci,
4202		struct usb_device *udev,
4203		struct usb_host_interface *alt,
4204		enum usb3_link_state state,
4205		u16 *timeout)
4206{
4207	int j;
4208
4209	for (j = 0; j < alt->desc.bNumEndpoints; j++) {
4210		if (xhci_update_timeout_for_endpoint(xhci, udev,
4211					&alt->endpoint[j].desc, state, timeout))
4212			return -E2BIG;
4213		continue;
4214	}
4215	return 0;
4216}
4217
4218static int xhci_check_intel_tier_policy(struct usb_device *udev,
4219		enum usb3_link_state state)
4220{
4221	struct usb_device *parent;
4222	unsigned int num_hubs;
4223
4224	if (state == USB3_LPM_U2)
4225		return 0;
4226
4227	/* Don't enable U1 if the device is on a 2nd tier hub or lower. */
4228	for (parent = udev->parent, num_hubs = 0; parent->parent;
4229			parent = parent->parent)
4230		num_hubs++;
4231
4232	if (num_hubs < 2)
4233		return 0;
4234
4235	dev_dbg(&udev->dev, "Disabling U1 link state for device"
4236			" below second-tier hub.\n");
4237	dev_dbg(&udev->dev, "Plug device into first-tier hub "
4238			"to decrease power consumption.\n");
4239	return -E2BIG;
4240}
4241
4242static int xhci_check_tier_policy(struct xhci_hcd *xhci,
4243		struct usb_device *udev,
4244		enum usb3_link_state state)
4245{
4246	if (xhci->quirks & XHCI_INTEL_HOST)
4247		return xhci_check_intel_tier_policy(udev, state);
4248	return -EINVAL;
4249}
4250
4251/* Returns the U1 or U2 timeout that should be enabled.
4252 * If the tier check or timeout setting functions return with a non-zero exit
4253 * code, that means the timeout value has been finalized and we shouldn't look
4254 * at any more endpoints.
4255 */
4256static u16 xhci_calculate_lpm_timeout(struct usb_hcd *hcd,
4257			struct usb_device *udev, enum usb3_link_state state)
4258{
4259	struct xhci_hcd *xhci = hcd_to_xhci(hcd);
4260	struct usb_host_config *config;
4261	char *state_name;
4262	int i;
4263	u16 timeout = USB3_LPM_DISABLED;
4264
4265	if (state == USB3_LPM_U1)
4266		state_name = "U1";
4267	else if (state == USB3_LPM_U2)
4268		state_name = "U2";
4269	else {
4270		dev_warn(&udev->dev, "Can't enable unknown link state %i\n",
4271				state);
4272		return timeout;
4273	}
4274
4275	if (xhci_check_tier_policy(xhci, udev, state) < 0)
4276		return timeout;
4277
4278	/* Gather some information about the currently installed configuration
4279	 * and alternate interface settings.
4280	 */
4281	if (xhci_update_timeout_for_endpoint(xhci, udev, &udev->ep0.desc,
4282			state, &timeout))
4283		return timeout;
4284
4285	config = udev->actconfig;
4286	if (!config)
4287		return timeout;
4288
4289	for (i = 0; i < USB_MAXINTERFACES; i++) {
4290		struct usb_driver *driver;
4291		struct usb_interface *intf = config->interface[i];
4292
4293		if (!intf)
4294			continue;
4295
4296		/* Check if any currently bound drivers want hub-initiated LPM
4297		 * disabled.
4298		 */
4299		if (intf->dev.driver) {
4300			driver = to_usb_driver(intf->dev.driver);
4301			if (driver && driver->disable_hub_initiated_lpm) {
4302				dev_dbg(&udev->dev, "Hub-initiated %s disabled "
4303						"at request of driver %s\n",
4304						state_name, driver->name);
4305				return xhci_get_timeout_no_hub_lpm(udev, state);
4306			}
4307		}
4308
4309		/* Not sure how this could happen... */
4310		if (!intf->cur_altsetting)
4311			continue;
4312
4313		if (xhci_update_timeout_for_interface(xhci, udev,
4314					intf->cur_altsetting,
4315					state, &timeout))
4316			return timeout;
4317	}
4318	return timeout;
4319}
4320
4321/*
4322 * Issue an Evaluate Context command to change the Maximum Exit Latency in the
4323 * slot context.  If that succeeds, store the new MEL in the xhci_virt_device.
4324 */
4325static int xhci_change_max_exit_latency(struct xhci_hcd *xhci,
4326			struct usb_device *udev, u16 max_exit_latency)
4327{
4328	struct xhci_virt_device *virt_dev;
4329	struct xhci_command *command;
4330	struct xhci_input_control_ctx *ctrl_ctx;
4331	struct xhci_slot_ctx *slot_ctx;
4332	unsigned long flags;
4333	int ret;
4334
4335	spin_lock_irqsave(&xhci->lock, flags);
4336	if (max_exit_latency == xhci->devs[udev->slot_id]->current_mel) {
4337		spin_unlock_irqrestore(&xhci->lock, flags);
4338		return 0;
4339	}
4340
4341	/* Attempt to issue an Evaluate Context command to change the MEL. */
4342	virt_dev = xhci->devs[udev->slot_id];
4343	command = xhci->lpm_command;
4344	xhci_slot_copy(xhci, command->in_ctx, virt_dev->out_ctx);
4345	spin_unlock_irqrestore(&xhci->lock, flags);
4346
4347	ctrl_ctx = xhci_get_input_control_ctx(xhci, command->in_ctx);
4348	ctrl_ctx->add_flags |= cpu_to_le32(SLOT_FLAG);
4349	slot_ctx = xhci_get_slot_ctx(xhci, command->in_ctx);
4350	slot_ctx->dev_info2 &= cpu_to_le32(~((u32) MAX_EXIT));
4351	slot_ctx->dev_info2 |= cpu_to_le32(max_exit_latency);
4352
4353	xhci_dbg(xhci, "Set up evaluate context for LPM MEL change.\n");
4354	xhci_dbg(xhci, "Slot %u Input Context:\n", udev->slot_id);
4355	xhci_dbg_ctx(xhci, command->in_ctx, 0);
4356
4357	/* Issue and wait for the evaluate context command. */
4358	ret = xhci_configure_endpoint(xhci, udev, command,
4359			true, true);
4360	xhci_dbg(xhci, "Slot %u Output Context:\n", udev->slot_id);
4361	xhci_dbg_ctx(xhci, virt_dev->out_ctx, 0);
4362
4363	if (!ret) {
4364		spin_lock_irqsave(&xhci->lock, flags);
4365		virt_dev->current_mel = max_exit_latency;
4366		spin_unlock_irqrestore(&xhci->lock, flags);
4367	}
4368	return ret;
4369}
4370
4371static int calculate_max_exit_latency(struct usb_device *udev,
4372		enum usb3_link_state state_changed,
4373		u16 hub_encoded_timeout)
4374{
4375	unsigned long long u1_mel_us = 0;
4376	unsigned long long u2_mel_us = 0;
4377	unsigned long long mel_us = 0;
4378	bool disabling_u1;
4379	bool disabling_u2;
4380	bool enabling_u1;
4381	bool enabling_u2;
4382
4383	disabling_u1 = (state_changed == USB3_LPM_U1 &&
4384			hub_encoded_timeout == USB3_LPM_DISABLED);
4385	disabling_u2 = (state_changed == USB3_LPM_U2 &&
4386			hub_encoded_timeout == USB3_LPM_DISABLED);
4387
4388	enabling_u1 = (state_changed == USB3_LPM_U1 &&
4389			hub_encoded_timeout != USB3_LPM_DISABLED);
4390	enabling_u2 = (state_changed == USB3_LPM_U2 &&
4391			hub_encoded_timeout != USB3_LPM_DISABLED);
4392
4393	/* If U1 was already enabled and we're not disabling it,
4394	 * or we're going to enable U1, account for the U1 max exit latency.
4395	 */
4396	if ((udev->u1_params.timeout != USB3_LPM_DISABLED && !disabling_u1) ||
4397			enabling_u1)
4398		u1_mel_us = DIV_ROUND_UP(udev->u1_params.mel, 1000);
4399	if ((udev->u2_params.timeout != USB3_LPM_DISABLED && !disabling_u2) ||
4400			enabling_u2)
4401		u2_mel_us = DIV_ROUND_UP(udev->u2_params.mel, 1000);
4402
4403	if (u1_mel_us > u2_mel_us)
4404		mel_us = u1_mel_us;
4405	else
4406		mel_us = u2_mel_us;
4407	/* xHCI host controller max exit latency field is only 16 bits wide. */
4408	if (mel_us > MAX_EXIT) {
4409		dev_warn(&udev->dev, "Link PM max exit latency of %lluus "
4410				"is too big.\n", mel_us);
4411		return -E2BIG;
4412	}
4413	return mel_us;
4414}
4415
4416/* Returns the USB3 hub-encoded value for the U1/U2 timeout. */
4417int xhci_enable_usb3_lpm_timeout(struct usb_hcd *hcd,
4418			struct usb_device *udev, enum usb3_link_state state)
4419{
4420	struct xhci_hcd	*xhci;
4421	u16 hub_encoded_timeout;
4422	int mel;
4423	int ret;
4424
4425	xhci = hcd_to_xhci(hcd);
4426	/* The LPM timeout values are pretty host-controller specific, so don't
4427	 * enable hub-initiated timeouts unless the vendor has provided
4428	 * information about their timeout algorithm.
4429	 */
4430	if (!xhci || !(xhci->quirks & XHCI_LPM_SUPPORT) ||
4431			!xhci->devs[udev->slot_id])
4432		return USB3_LPM_DISABLED;
4433
4434	hub_encoded_timeout = xhci_calculate_lpm_timeout(hcd, udev, state);
4435	mel = calculate_max_exit_latency(udev, state, hub_encoded_timeout);
4436	if (mel < 0) {
4437		/* Max Exit Latency is too big, disable LPM. */
4438		hub_encoded_timeout = USB3_LPM_DISABLED;
4439		mel = 0;
4440	}
4441
4442	ret = xhci_change_max_exit_latency(xhci, udev, mel);
4443	if (ret)
4444		return ret;
4445	return hub_encoded_timeout;
4446}
4447
4448int xhci_disable_usb3_lpm_timeout(struct usb_hcd *hcd,
4449			struct usb_device *udev, enum usb3_link_state state)
4450{
4451	struct xhci_hcd	*xhci;
4452	u16 mel;
4453	int ret;
4454
4455	xhci = hcd_to_xhci(hcd);
4456	if (!xhci || !(xhci->quirks & XHCI_LPM_SUPPORT) ||
4457			!xhci->devs[udev->slot_id])
4458		return 0;
4459
4460	mel = calculate_max_exit_latency(udev, state, USB3_LPM_DISABLED);
4461	ret = xhci_change_max_exit_latency(xhci, udev, mel);
4462	if (ret)
4463		return ret;
4464	return 0;
4465}
4466#else /* CONFIG_PM */
4467
4468int xhci_enable_usb3_lpm_timeout(struct usb_hcd *hcd,
4469			struct usb_device *udev, enum usb3_link_state state)
4470{
4471	return USB3_LPM_DISABLED;
4472}
4473
4474int xhci_disable_usb3_lpm_timeout(struct usb_hcd *hcd,
4475			struct usb_device *udev, enum usb3_link_state state)
4476{
4477	return 0;
4478}
4479#endif	/* CONFIG_PM */
4480
4481/*-------------------------------------------------------------------------*/
4482
4483/* Once a hub descriptor is fetched for a device, we need to update the xHC's
4484 * internal data structures for the device.
4485 */
4486int xhci_update_hub_device(struct usb_hcd *hcd, struct usb_device *hdev,
4487			struct usb_tt *tt, gfp_t mem_flags)
4488{
4489	struct xhci_hcd *xhci = hcd_to_xhci(hcd);
4490	struct xhci_virt_device *vdev;
4491	struct xhci_command *config_cmd;
4492	struct xhci_input_control_ctx *ctrl_ctx;
4493	struct xhci_slot_ctx *slot_ctx;
4494	unsigned long flags;
4495	unsigned think_time;
4496	int ret;
4497
4498	/* Ignore root hubs */
4499	if (!hdev->parent)
4500		return 0;
4501
4502	vdev = xhci->devs[hdev->slot_id];
4503	if (!vdev) {
4504		xhci_warn(xhci, "Cannot update hub desc for unknown device.\n");
4505		return -EINVAL;
4506	}
4507	config_cmd = xhci_alloc_command(xhci, true, true, mem_flags);
4508	if (!config_cmd) {
4509		xhci_dbg(xhci, "Could not allocate xHCI command structure.\n");
4510		return -ENOMEM;
4511	}
4512
4513	spin_lock_irqsave(&xhci->lock, flags);
4514	if (hdev->speed == USB_SPEED_HIGH &&
4515			xhci_alloc_tt_info(xhci, vdev, hdev, tt, GFP_ATOMIC)) {
4516		xhci_dbg(xhci, "Could not allocate xHCI TT structure.\n");
4517		xhci_free_command(xhci, config_cmd);
4518		spin_unlock_irqrestore(&xhci->lock, flags);
4519		return -ENOMEM;
4520	}
4521
4522	xhci_slot_copy(xhci, config_cmd->in_ctx, vdev->out_ctx);
4523	ctrl_ctx = xhci_get_input_control_ctx(xhci, config_cmd->in_ctx);
4524	ctrl_ctx->add_flags |= cpu_to_le32(SLOT_FLAG);
4525	slot_ctx = xhci_get_slot_ctx(xhci, config_cmd->in_ctx);
4526	slot_ctx->dev_info |= cpu_to_le32(DEV_HUB);
4527	if (tt->multi)
4528		slot_ctx->dev_info |= cpu_to_le32(DEV_MTT);
4529	if (xhci->hci_version > 0x95) {
4530		xhci_dbg(xhci, "xHCI version %x needs hub "
4531				"TT think time and number of ports\n",
4532				(unsigned int) xhci->hci_version);
4533		slot_ctx->dev_info2 |= cpu_to_le32(XHCI_MAX_PORTS(hdev->maxchild));
4534		/* Set TT think time - convert from ns to FS bit times.
4535		 * 0 = 8 FS bit times, 1 = 16 FS bit times,
4536		 * 2 = 24 FS bit times, 3 = 32 FS bit times.
4537		 *
4538		 * xHCI 1.0: this field shall be 0 if the device is not a
4539		 * High-spped hub.
4540		 */
4541		think_time = tt->think_time;
4542		if (think_time != 0)
4543			think_time = (think_time / 666) - 1;
4544		if (xhci->hci_version < 0x100 || hdev->speed == USB_SPEED_HIGH)
4545			slot_ctx->tt_info |=
4546				cpu_to_le32(TT_THINK_TIME(think_time));
4547	} else {
4548		xhci_dbg(xhci, "xHCI version %x doesn't need hub "
4549				"TT think time or number of ports\n",
4550				(unsigned int) xhci->hci_version);
4551	}
4552	slot_ctx->dev_state = 0;
4553	spin_unlock_irqrestore(&xhci->lock, flags);
4554
4555	xhci_dbg(xhci, "Set up %s for hub device.\n",
4556			(xhci->hci_version > 0x95) ?
4557			"configure endpoint" : "evaluate context");
4558	xhci_dbg(xhci, "Slot %u Input Context:\n", hdev->slot_id);
4559	xhci_dbg_ctx(xhci, config_cmd->in_ctx, 0);
4560
4561	/* Issue and wait for the configure endpoint or
4562	 * evaluate context command.
4563	 */
4564	if (xhci->hci_version > 0x95)
4565		ret = xhci_configure_endpoint(xhci, hdev, config_cmd,
4566				false, false);
4567	else
4568		ret = xhci_configure_endpoint(xhci, hdev, config_cmd,
4569				true, false);
4570
4571	xhci_dbg(xhci, "Slot %u Output Context:\n", hdev->slot_id);
4572	xhci_dbg_ctx(xhci, vdev->out_ctx, 0);
4573
4574	xhci_free_command(xhci, config_cmd);
4575	return ret;
4576}
4577
4578int xhci_get_frame(struct usb_hcd *hcd)
4579{
4580	struct xhci_hcd *xhci = hcd_to_xhci(hcd);
4581	/* EHCI mods by the periodic size.  Why? */
4582	return xhci_readl(xhci, &xhci->run_regs->microframe_index) >> 3;
4583}
4584
4585int xhci_gen_setup(struct usb_hcd *hcd, xhci_get_quirks_t get_quirks)
4586{
4587	struct xhci_hcd		*xhci;
4588	struct device		*dev = hcd->self.controller;
4589	int			retval;
4590	u32			temp;
4591
4592	/* Accept arbitrarily long scatter-gather lists */
4593	hcd->self.sg_tablesize = ~0;
4594
4595	if (usb_hcd_is_primary_hcd(hcd)) {
4596		xhci = kzalloc(sizeof(struct xhci_hcd), GFP_KERNEL);
4597		if (!xhci)
4598			return -ENOMEM;
4599		*((struct xhci_hcd **) hcd->hcd_priv) = xhci;
4600		xhci->main_hcd = hcd;
4601		/* Mark the first roothub as being USB 2.0.
4602		 * The xHCI driver will register the USB 3.0 roothub.
4603		 */
4604		hcd->speed = HCD_USB2;
4605		hcd->self.root_hub->speed = USB_SPEED_HIGH;
4606		/*
4607		 * USB 2.0 roothub under xHCI has an integrated TT,
4608		 * (rate matching hub) as opposed to having an OHCI/UHCI
4609		 * companion controller.
4610		 */
4611		hcd->has_tt = 1;
4612	} else {
4613		/* xHCI private pointer was set in xhci_pci_probe for the second
4614		 * registered roothub.
4615		 */
4616		xhci = hcd_to_xhci(hcd);
4617		temp = xhci_readl(xhci, &xhci->cap_regs->hcc_params);
4618		if (HCC_64BIT_ADDR(temp)) {
4619			xhci_dbg(xhci, "Enabling 64-bit DMA addresses.\n");
4620			dma_set_mask(hcd->self.controller, DMA_BIT_MASK(64));
4621		} else {
4622			dma_set_mask(hcd->self.controller, DMA_BIT_MASK(32));
4623		}
4624		return 0;
4625	}
4626
4627	xhci->cap_regs = hcd->regs;
4628	xhci->op_regs = hcd->regs +
4629		HC_LENGTH(xhci_readl(xhci, &xhci->cap_regs->hc_capbase));
4630	xhci->run_regs = hcd->regs +
4631		(xhci_readl(xhci, &xhci->cap_regs->run_regs_off) & RTSOFF_MASK);
4632	/* Cache read-only capability registers */
4633	xhci->hcs_params1 = xhci_readl(xhci, &xhci->cap_regs->hcs_params1);
4634	xhci->hcs_params2 = xhci_readl(xhci, &xhci->cap_regs->hcs_params2);
4635	xhci->hcs_params3 = xhci_readl(xhci, &xhci->cap_regs->hcs_params3);
4636	xhci->hcc_params = xhci_readl(xhci, &xhci->cap_regs->hc_capbase);
4637	xhci->hci_version = HC_VERSION(xhci->hcc_params);
4638	xhci->hcc_params = xhci_readl(xhci, &xhci->cap_regs->hcc_params);
4639	xhci_print_registers(xhci);
4640
4641	get_quirks(dev, xhci);
4642
4643	/* Make sure the HC is halted. */
4644	retval = xhci_halt(xhci);
4645	if (retval)
4646		goto error;
4647
4648	xhci_dbg(xhci, "Resetting HCD\n");
4649	/* Reset the internal HC memory state and registers. */
4650	retval = xhci_reset(xhci);
4651	if (retval)
4652		goto error;
4653	xhci_dbg(xhci, "Reset complete\n");
4654
4655	temp = xhci_readl(xhci, &xhci->cap_regs->hcc_params);
4656	if (HCC_64BIT_ADDR(temp)) {
4657		xhci_dbg(xhci, "Enabling 64-bit DMA addresses.\n");
4658		dma_set_mask(hcd->self.controller, DMA_BIT_MASK(64));
4659	} else {
4660		dma_set_mask(hcd->self.controller, DMA_BIT_MASK(32));
4661	}
4662
4663	xhci_dbg(xhci, "Calling HCD init\n");
4664	/* Initialize HCD and host controller data structures. */
4665	retval = xhci_init(hcd);
4666	if (retval)
4667		goto error;
4668	xhci_dbg(xhci, "Called HCD init\n");
4669	return 0;
4670error:
4671	kfree(xhci);
4672	return retval;
4673}
4674
4675MODULE_DESCRIPTION(DRIVER_DESC);
4676MODULE_AUTHOR(DRIVER_AUTHOR);
4677MODULE_LICENSE("GPL");
4678
4679static int __init xhci_hcd_init(void)
4680{
4681	int retval;
 
4682
4683	retval = xhci_register_pci();
 
4684	if (retval < 0) {
4685		printk(KERN_DEBUG "Problem registering PCI driver.");
4686		return retval;
4687	}
4688	retval = xhci_register_plat();
4689	if (retval < 0) {
4690		printk(KERN_DEBUG "Problem registering platform driver.");
4691		goto unreg_pci;
4692	}
4693	/*
4694	 * Check the compiler generated sizes of structures that must be laid
4695	 * out in specific ways for hardware access.
4696	 */
4697	BUILD_BUG_ON(sizeof(struct xhci_doorbell_array) != 256*32/8);
4698	BUILD_BUG_ON(sizeof(struct xhci_slot_ctx) != 8*32/8);
4699	BUILD_BUG_ON(sizeof(struct xhci_ep_ctx) != 8*32/8);
4700	/* xhci_device_control has eight fields, and also
4701	 * embeds one xhci_slot_ctx and 31 xhci_ep_ctx
4702	 */
4703	BUILD_BUG_ON(sizeof(struct xhci_stream_ctx) != 4*32/8);
4704	BUILD_BUG_ON(sizeof(union xhci_trb) != 4*32/8);
4705	BUILD_BUG_ON(sizeof(struct xhci_erst_entry) != 4*32/8);
4706	BUILD_BUG_ON(sizeof(struct xhci_cap_regs) != 7*32/8);
4707	BUILD_BUG_ON(sizeof(struct xhci_intr_reg) != 8*32/8);
4708	/* xhci_run_regs has eight fields and embeds 128 xhci_intr_regs */
4709	BUILD_BUG_ON(sizeof(struct xhci_run_regs) != (8+8*128)*32/8);
 
4710	return 0;
4711unreg_pci:
4712	xhci_unregister_pci();
4713	return retval;
4714}
4715module_init(xhci_hcd_init);
4716
4717static void __exit xhci_hcd_cleanup(void)
4718{
 
4719	xhci_unregister_pci();
4720	xhci_unregister_plat();
4721}
4722module_exit(xhci_hcd_cleanup);