Linux Audio

Check our new training course

Loading...
Note: File does not exist in v3.1.
  1// SPDX-License-Identifier: GPL-2.0-only
  2/*
  3 * Persistent Memory Driver
  4 *
  5 * Copyright (c) 2014-2015, Intel Corporation.
  6 * Copyright (c) 2015, Christoph Hellwig <hch@lst.de>.
  7 * Copyright (c) 2015, Boaz Harrosh <boaz@plexistor.com>.
  8 */
  9
 10#include <linux/blkdev.h>
 11#include <linux/pagemap.h>
 12#include <linux/hdreg.h>
 13#include <linux/init.h>
 14#include <linux/platform_device.h>
 15#include <linux/set_memory.h>
 16#include <linux/module.h>
 17#include <linux/moduleparam.h>
 18#include <linux/badblocks.h>
 19#include <linux/memremap.h>
 20#include <linux/vmalloc.h>
 21#include <linux/blk-mq.h>
 22#include <linux/pfn_t.h>
 23#include <linux/slab.h>
 24#include <linux/uio.h>
 25#include <linux/dax.h>
 26#include <linux/nd.h>
 27#include <linux/mm.h>
 28#include <asm/cacheflush.h>
 29#include "pmem.h"
 30#include "btt.h"
 31#include "pfn.h"
 32#include "nd.h"
 33
 34static struct device *to_dev(struct pmem_device *pmem)
 35{
 36	/*
 37	 * nvdimm bus services need a 'dev' parameter, and we record the device
 38	 * at init in bb.dev.
 39	 */
 40	return pmem->bb.dev;
 41}
 42
 43static struct nd_region *to_region(struct pmem_device *pmem)
 44{
 45	return to_nd_region(to_dev(pmem)->parent);
 46}
 47
 48static void hwpoison_clear(struct pmem_device *pmem,
 49		phys_addr_t phys, unsigned int len)
 50{
 51	unsigned long pfn_start, pfn_end, pfn;
 52
 53	/* only pmem in the linear map supports HWPoison */
 54	if (is_vmalloc_addr(pmem->virt_addr))
 55		return;
 56
 57	pfn_start = PHYS_PFN(phys);
 58	pfn_end = pfn_start + PHYS_PFN(len);
 59	for (pfn = pfn_start; pfn < pfn_end; pfn++) {
 60		struct page *page = pfn_to_page(pfn);
 61
 62		/*
 63		 * Note, no need to hold a get_dev_pagemap() reference
 64		 * here since we're in the driver I/O path and
 65		 * outstanding I/O requests pin the dev_pagemap.
 66		 */
 67		if (test_and_clear_pmem_poison(page))
 68			clear_mce_nospec(pfn);
 69	}
 70}
 71
 72static blk_status_t pmem_clear_poison(struct pmem_device *pmem,
 73		phys_addr_t offset, unsigned int len)
 74{
 75	struct device *dev = to_dev(pmem);
 76	sector_t sector;
 77	long cleared;
 78	blk_status_t rc = BLK_STS_OK;
 79
 80	sector = (offset - pmem->data_offset) / 512;
 81
 82	cleared = nvdimm_clear_poison(dev, pmem->phys_addr + offset, len);
 83	if (cleared < len)
 84		rc = BLK_STS_IOERR;
 85	if (cleared > 0 && cleared / 512) {
 86		hwpoison_clear(pmem, pmem->phys_addr + offset, cleared);
 87		cleared /= 512;
 88		dev_dbg(dev, "%#llx clear %ld sector%s\n",
 89				(unsigned long long) sector, cleared,
 90				cleared > 1 ? "s" : "");
 91		badblocks_clear(&pmem->bb, sector, cleared);
 92		if (pmem->bb_state)
 93			sysfs_notify_dirent(pmem->bb_state);
 94	}
 95
 96	arch_invalidate_pmem(pmem->virt_addr + offset, len);
 97
 98	return rc;
 99}
100
101static void write_pmem(void *pmem_addr, struct page *page,
102		unsigned int off, unsigned int len)
103{
104	unsigned int chunk;
105	void *mem;
106
107	while (len) {
108		mem = kmap_atomic(page);
109		chunk = min_t(unsigned int, len, PAGE_SIZE - off);
110		memcpy_flushcache(pmem_addr, mem + off, chunk);
111		kunmap_atomic(mem);
112		len -= chunk;
113		off = 0;
114		page++;
115		pmem_addr += chunk;
116	}
117}
118
119static blk_status_t read_pmem(struct page *page, unsigned int off,
120		void *pmem_addr, unsigned int len)
121{
122	unsigned int chunk;
123	unsigned long rem;
124	void *mem;
125
126	while (len) {
127		mem = kmap_atomic(page);
128		chunk = min_t(unsigned int, len, PAGE_SIZE - off);
129		rem = copy_mc_to_kernel(mem + off, pmem_addr, chunk);
130		kunmap_atomic(mem);
131		if (rem)
132			return BLK_STS_IOERR;
133		len -= chunk;
134		off = 0;
135		page++;
136		pmem_addr += chunk;
137	}
138	return BLK_STS_OK;
139}
140
141static blk_status_t pmem_do_read(struct pmem_device *pmem,
142			struct page *page, unsigned int page_off,
143			sector_t sector, unsigned int len)
144{
145	blk_status_t rc;
146	phys_addr_t pmem_off = sector * 512 + pmem->data_offset;
147	void *pmem_addr = pmem->virt_addr + pmem_off;
148
149	if (unlikely(is_bad_pmem(&pmem->bb, sector, len)))
150		return BLK_STS_IOERR;
151
152	rc = read_pmem(page, page_off, pmem_addr, len);
153	flush_dcache_page(page);
154	return rc;
155}
156
157static blk_status_t pmem_do_write(struct pmem_device *pmem,
158			struct page *page, unsigned int page_off,
159			sector_t sector, unsigned int len)
160{
161	blk_status_t rc = BLK_STS_OK;
162	bool bad_pmem = false;
163	phys_addr_t pmem_off = sector * 512 + pmem->data_offset;
164	void *pmem_addr = pmem->virt_addr + pmem_off;
165
166	if (unlikely(is_bad_pmem(&pmem->bb, sector, len)))
167		bad_pmem = true;
168
169	/*
170	 * Note that we write the data both before and after
171	 * clearing poison.  The write before clear poison
172	 * handles situations where the latest written data is
173	 * preserved and the clear poison operation simply marks
174	 * the address range as valid without changing the data.
175	 * In this case application software can assume that an
176	 * interrupted write will either return the new good
177	 * data or an error.
178	 *
179	 * However, if pmem_clear_poison() leaves the data in an
180	 * indeterminate state we need to perform the write
181	 * after clear poison.
182	 */
183	flush_dcache_page(page);
184	write_pmem(pmem_addr, page, page_off, len);
185	if (unlikely(bad_pmem)) {
186		rc = pmem_clear_poison(pmem, pmem_off, len);
187		write_pmem(pmem_addr, page, page_off, len);
188	}
189
190	return rc;
191}
192
193static blk_qc_t pmem_submit_bio(struct bio *bio)
194{
195	int ret = 0;
196	blk_status_t rc = 0;
197	bool do_acct;
198	unsigned long start;
199	struct bio_vec bvec;
200	struct bvec_iter iter;
201	struct pmem_device *pmem = bio->bi_bdev->bd_disk->private_data;
202	struct nd_region *nd_region = to_region(pmem);
203
204	if (bio->bi_opf & REQ_PREFLUSH)
205		ret = nvdimm_flush(nd_region, bio);
206
207	do_acct = blk_queue_io_stat(bio->bi_bdev->bd_disk->queue);
208	if (do_acct)
209		start = bio_start_io_acct(bio);
210	bio_for_each_segment(bvec, bio, iter) {
211		if (op_is_write(bio_op(bio)))
212			rc = pmem_do_write(pmem, bvec.bv_page, bvec.bv_offset,
213				iter.bi_sector, bvec.bv_len);
214		else
215			rc = pmem_do_read(pmem, bvec.bv_page, bvec.bv_offset,
216				iter.bi_sector, bvec.bv_len);
217		if (rc) {
218			bio->bi_status = rc;
219			break;
220		}
221	}
222	if (do_acct)
223		bio_end_io_acct(bio, start);
224
225	if (bio->bi_opf & REQ_FUA)
226		ret = nvdimm_flush(nd_region, bio);
227
228	if (ret)
229		bio->bi_status = errno_to_blk_status(ret);
230
231	bio_endio(bio);
232	return BLK_QC_T_NONE;
233}
234
235static int pmem_rw_page(struct block_device *bdev, sector_t sector,
236		       struct page *page, unsigned int op)
237{
238	struct pmem_device *pmem = bdev->bd_disk->private_data;
239	blk_status_t rc;
240
241	if (op_is_write(op))
242		rc = pmem_do_write(pmem, page, 0, sector, thp_size(page));
243	else
244		rc = pmem_do_read(pmem, page, 0, sector, thp_size(page));
245	/*
246	 * The ->rw_page interface is subtle and tricky.  The core
247	 * retries on any error, so we can only invoke page_endio() in
248	 * the successful completion case.  Otherwise, we'll see crashes
249	 * caused by double completion.
250	 */
251	if (rc == 0)
252		page_endio(page, op_is_write(op), 0);
253
254	return blk_status_to_errno(rc);
255}
256
257/* see "strong" declaration in tools/testing/nvdimm/pmem-dax.c */
258__weak long __pmem_direct_access(struct pmem_device *pmem, pgoff_t pgoff,
259		long nr_pages, void **kaddr, pfn_t *pfn)
260{
261	resource_size_t offset = PFN_PHYS(pgoff) + pmem->data_offset;
262
263	if (unlikely(is_bad_pmem(&pmem->bb, PFN_PHYS(pgoff) / 512,
264					PFN_PHYS(nr_pages))))
265		return -EIO;
266
267	if (kaddr)
268		*kaddr = pmem->virt_addr + offset;
269	if (pfn)
270		*pfn = phys_to_pfn_t(pmem->phys_addr + offset, pmem->pfn_flags);
271
272	/*
273	 * If badblocks are present, limit known good range to the
274	 * requested range.
275	 */
276	if (unlikely(pmem->bb.count))
277		return nr_pages;
278	return PHYS_PFN(pmem->size - pmem->pfn_pad - offset);
279}
280
281static const struct block_device_operations pmem_fops = {
282	.owner =		THIS_MODULE,
283	.submit_bio =		pmem_submit_bio,
284	.rw_page =		pmem_rw_page,
285};
286
287static int pmem_dax_zero_page_range(struct dax_device *dax_dev, pgoff_t pgoff,
288				    size_t nr_pages)
289{
290	struct pmem_device *pmem = dax_get_private(dax_dev);
291
292	return blk_status_to_errno(pmem_do_write(pmem, ZERO_PAGE(0), 0,
293				   PFN_PHYS(pgoff) >> SECTOR_SHIFT,
294				   PAGE_SIZE));
295}
296
297static long pmem_dax_direct_access(struct dax_device *dax_dev,
298		pgoff_t pgoff, long nr_pages, void **kaddr, pfn_t *pfn)
299{
300	struct pmem_device *pmem = dax_get_private(dax_dev);
301
302	return __pmem_direct_access(pmem, pgoff, nr_pages, kaddr, pfn);
303}
304
305/*
306 * Use the 'no check' versions of copy_from_iter_flushcache() and
307 * copy_mc_to_iter() to bypass HARDENED_USERCOPY overhead. Bounds
308 * checking, both file offset and device offset, is handled by
309 * dax_iomap_actor()
310 */
311static size_t pmem_copy_from_iter(struct dax_device *dax_dev, pgoff_t pgoff,
312		void *addr, size_t bytes, struct iov_iter *i)
313{
314	return _copy_from_iter_flushcache(addr, bytes, i);
315}
316
317static size_t pmem_copy_to_iter(struct dax_device *dax_dev, pgoff_t pgoff,
318		void *addr, size_t bytes, struct iov_iter *i)
319{
320	return _copy_mc_to_iter(addr, bytes, i);
321}
322
323static const struct dax_operations pmem_dax_ops = {
324	.direct_access = pmem_dax_direct_access,
325	.dax_supported = generic_fsdax_supported,
326	.copy_from_iter = pmem_copy_from_iter,
327	.copy_to_iter = pmem_copy_to_iter,
328	.zero_page_range = pmem_dax_zero_page_range,
329};
330
331static const struct attribute_group *pmem_attribute_groups[] = {
332	&dax_attribute_group,
333	NULL,
334};
335
336static void pmem_pagemap_cleanup(struct dev_pagemap *pgmap)
337{
338	struct pmem_device *pmem = pgmap->owner;
339
340	blk_cleanup_disk(pmem->disk);
341}
342
343static void pmem_release_queue(void *pgmap)
344{
345	pmem_pagemap_cleanup(pgmap);
346}
347
348static void pmem_pagemap_kill(struct dev_pagemap *pgmap)
349{
350	struct request_queue *q =
351		container_of(pgmap->ref, struct request_queue, q_usage_counter);
352
353	blk_freeze_queue_start(q);
354}
355
356static void pmem_release_disk(void *__pmem)
357{
358	struct pmem_device *pmem = __pmem;
359
360	kill_dax(pmem->dax_dev);
361	put_dax(pmem->dax_dev);
362	del_gendisk(pmem->disk);
363}
364
365static const struct dev_pagemap_ops fsdax_pagemap_ops = {
366	.kill			= pmem_pagemap_kill,
367	.cleanup		= pmem_pagemap_cleanup,
368};
369
370static int pmem_attach_disk(struct device *dev,
371		struct nd_namespace_common *ndns)
372{
373	struct nd_namespace_io *nsio = to_nd_namespace_io(&ndns->dev);
374	struct nd_region *nd_region = to_nd_region(dev->parent);
375	int nid = dev_to_node(dev), fua;
376	struct resource *res = &nsio->res;
377	struct range bb_range;
378	struct nd_pfn *nd_pfn = NULL;
379	struct dax_device *dax_dev;
380	struct nd_pfn_sb *pfn_sb;
381	struct pmem_device *pmem;
382	struct request_queue *q;
383	struct device *gendev;
384	struct gendisk *disk;
385	void *addr;
386	int rc;
387	unsigned long flags = 0UL;
388
389	pmem = devm_kzalloc(dev, sizeof(*pmem), GFP_KERNEL);
390	if (!pmem)
391		return -ENOMEM;
392
393	rc = devm_namespace_enable(dev, ndns, nd_info_block_reserve());
394	if (rc)
395		return rc;
396
397	/* while nsio_rw_bytes is active, parse a pfn info block if present */
398	if (is_nd_pfn(dev)) {
399		nd_pfn = to_nd_pfn(dev);
400		rc = nvdimm_setup_pfn(nd_pfn, &pmem->pgmap);
401		if (rc)
402			return rc;
403	}
404
405	/* we're attaching a block device, disable raw namespace access */
406	devm_namespace_disable(dev, ndns);
407
408	dev_set_drvdata(dev, pmem);
409	pmem->phys_addr = res->start;
410	pmem->size = resource_size(res);
411	fua = nvdimm_has_flush(nd_region);
412	if (!IS_ENABLED(CONFIG_ARCH_HAS_UACCESS_FLUSHCACHE) || fua < 0) {
413		dev_warn(dev, "unable to guarantee persistence of writes\n");
414		fua = 0;
415	}
416
417	if (!devm_request_mem_region(dev, res->start, resource_size(res),
418				dev_name(&ndns->dev))) {
419		dev_warn(dev, "could not reserve region %pR\n", res);
420		return -EBUSY;
421	}
422
423	disk = blk_alloc_disk(nid);
424	if (!disk)
425		return -ENOMEM;
426	q = disk->queue;
427
428	pmem->disk = disk;
429	pmem->pgmap.owner = pmem;
430	pmem->pfn_flags = PFN_DEV;
431	pmem->pgmap.ref = &q->q_usage_counter;
432	if (is_nd_pfn(dev)) {
433		pmem->pgmap.type = MEMORY_DEVICE_FS_DAX;
434		pmem->pgmap.ops = &fsdax_pagemap_ops;
435		addr = devm_memremap_pages(dev, &pmem->pgmap);
436		pfn_sb = nd_pfn->pfn_sb;
437		pmem->data_offset = le64_to_cpu(pfn_sb->dataoff);
438		pmem->pfn_pad = resource_size(res) -
439			range_len(&pmem->pgmap.range);
440		pmem->pfn_flags |= PFN_MAP;
441		bb_range = pmem->pgmap.range;
442		bb_range.start += pmem->data_offset;
443	} else if (pmem_should_map_pages(dev)) {
444		pmem->pgmap.range.start = res->start;
445		pmem->pgmap.range.end = res->end;
446		pmem->pgmap.nr_range = 1;
447		pmem->pgmap.type = MEMORY_DEVICE_FS_DAX;
448		pmem->pgmap.ops = &fsdax_pagemap_ops;
449		addr = devm_memremap_pages(dev, &pmem->pgmap);
450		pmem->pfn_flags |= PFN_MAP;
451		bb_range = pmem->pgmap.range;
452	} else {
453		addr = devm_memremap(dev, pmem->phys_addr,
454				pmem->size, ARCH_MEMREMAP_PMEM);
455		if (devm_add_action_or_reset(dev, pmem_release_queue,
456					&pmem->pgmap))
457			return -ENOMEM;
458		bb_range.start =  res->start;
459		bb_range.end = res->end;
460	}
461
462	if (IS_ERR(addr))
463		return PTR_ERR(addr);
464	pmem->virt_addr = addr;
465
466	blk_queue_write_cache(q, true, fua);
467	blk_queue_physical_block_size(q, PAGE_SIZE);
468	blk_queue_logical_block_size(q, pmem_sector_size(ndns));
469	blk_queue_max_hw_sectors(q, UINT_MAX);
470	blk_queue_flag_set(QUEUE_FLAG_NONROT, q);
471	if (pmem->pfn_flags & PFN_MAP)
472		blk_queue_flag_set(QUEUE_FLAG_DAX, q);
473
474	disk->fops		= &pmem_fops;
475	disk->private_data	= pmem;
476	nvdimm_namespace_disk_name(ndns, disk->disk_name);
477	set_capacity(disk, (pmem->size - pmem->pfn_pad - pmem->data_offset)
478			/ 512);
479	if (devm_init_badblocks(dev, &pmem->bb))
480		return -ENOMEM;
481	nvdimm_badblocks_populate(nd_region, &pmem->bb, &bb_range);
482	disk->bb = &pmem->bb;
483
484	if (is_nvdimm_sync(nd_region))
485		flags = DAXDEV_F_SYNC;
486	dax_dev = alloc_dax(pmem, disk->disk_name, &pmem_dax_ops, flags);
487	if (IS_ERR(dax_dev)) {
488		return PTR_ERR(dax_dev);
489	}
490	dax_write_cache(dax_dev, nvdimm_has_cache(nd_region));
491	pmem->dax_dev = dax_dev;
492	gendev = disk_to_dev(disk);
493	gendev->groups = pmem_attribute_groups;
494
495	device_add_disk(dev, disk, NULL);
496	if (devm_add_action_or_reset(dev, pmem_release_disk, pmem))
497		return -ENOMEM;
498
499	nvdimm_check_and_set_ro(disk);
500
501	pmem->bb_state = sysfs_get_dirent(disk_to_dev(disk)->kobj.sd,
502					  "badblocks");
503	if (!pmem->bb_state)
504		dev_warn(dev, "'badblocks' notification disabled\n");
505
506	return 0;
507}
508
509static int nd_pmem_probe(struct device *dev)
510{
511	int ret;
512	struct nd_namespace_common *ndns;
513
514	ndns = nvdimm_namespace_common_probe(dev);
515	if (IS_ERR(ndns))
516		return PTR_ERR(ndns);
517
518	if (is_nd_btt(dev))
519		return nvdimm_namespace_attach_btt(ndns);
520
521	if (is_nd_pfn(dev))
522		return pmem_attach_disk(dev, ndns);
523
524	ret = devm_namespace_enable(dev, ndns, nd_info_block_reserve());
525	if (ret)
526		return ret;
527
528	ret = nd_btt_probe(dev, ndns);
529	if (ret == 0)
530		return -ENXIO;
531
532	/*
533	 * We have two failure conditions here, there is no
534	 * info reserver block or we found a valid info reserve block
535	 * but failed to initialize the pfn superblock.
536	 *
537	 * For the first case consider namespace as a raw pmem namespace
538	 * and attach a disk.
539	 *
540	 * For the latter, consider this a success and advance the namespace
541	 * seed.
542	 */
543	ret = nd_pfn_probe(dev, ndns);
544	if (ret == 0)
545		return -ENXIO;
546	else if (ret == -EOPNOTSUPP)
547		return ret;
548
549	ret = nd_dax_probe(dev, ndns);
550	if (ret == 0)
551		return -ENXIO;
552	else if (ret == -EOPNOTSUPP)
553		return ret;
554
555	/* probe complete, attach handles namespace enabling */
556	devm_namespace_disable(dev, ndns);
557
558	return pmem_attach_disk(dev, ndns);
559}
560
561static void nd_pmem_remove(struct device *dev)
562{
563	struct pmem_device *pmem = dev_get_drvdata(dev);
564
565	if (is_nd_btt(dev))
566		nvdimm_namespace_detach_btt(to_nd_btt(dev));
567	else {
568		/*
569		 * Note, this assumes nd_device_lock() context to not
570		 * race nd_pmem_notify()
571		 */
572		sysfs_put(pmem->bb_state);
573		pmem->bb_state = NULL;
574	}
575	nvdimm_flush(to_nd_region(dev->parent), NULL);
576}
577
578static void nd_pmem_shutdown(struct device *dev)
579{
580	nvdimm_flush(to_nd_region(dev->parent), NULL);
581}
582
583static void pmem_revalidate_poison(struct device *dev)
584{
585	struct nd_region *nd_region;
586	resource_size_t offset = 0, end_trunc = 0;
587	struct nd_namespace_common *ndns;
588	struct nd_namespace_io *nsio;
589	struct badblocks *bb;
590	struct range range;
591	struct kernfs_node *bb_state;
592
593	if (is_nd_btt(dev)) {
594		struct nd_btt *nd_btt = to_nd_btt(dev);
595
596		ndns = nd_btt->ndns;
597		nd_region = to_nd_region(ndns->dev.parent);
598		nsio = to_nd_namespace_io(&ndns->dev);
599		bb = &nsio->bb;
600		bb_state = NULL;
601	} else {
602		struct pmem_device *pmem = dev_get_drvdata(dev);
603
604		nd_region = to_region(pmem);
605		bb = &pmem->bb;
606		bb_state = pmem->bb_state;
607
608		if (is_nd_pfn(dev)) {
609			struct nd_pfn *nd_pfn = to_nd_pfn(dev);
610			struct nd_pfn_sb *pfn_sb = nd_pfn->pfn_sb;
611
612			ndns = nd_pfn->ndns;
613			offset = pmem->data_offset +
614					__le32_to_cpu(pfn_sb->start_pad);
615			end_trunc = __le32_to_cpu(pfn_sb->end_trunc);
616		} else {
617			ndns = to_ndns(dev);
618		}
619
620		nsio = to_nd_namespace_io(&ndns->dev);
621	}
622
623	range.start = nsio->res.start + offset;
624	range.end = nsio->res.end - end_trunc;
625	nvdimm_badblocks_populate(nd_region, bb, &range);
626	if (bb_state)
627		sysfs_notify_dirent(bb_state);
628}
629
630static void pmem_revalidate_region(struct device *dev)
631{
632	struct pmem_device *pmem;
633
634	if (is_nd_btt(dev)) {
635		struct nd_btt *nd_btt = to_nd_btt(dev);
636		struct btt *btt = nd_btt->btt;
637
638		nvdimm_check_and_set_ro(btt->btt_disk);
639		return;
640	}
641
642	pmem = dev_get_drvdata(dev);
643	nvdimm_check_and_set_ro(pmem->disk);
644}
645
646static void nd_pmem_notify(struct device *dev, enum nvdimm_event event)
647{
648	switch (event) {
649	case NVDIMM_REVALIDATE_POISON:
650		pmem_revalidate_poison(dev);
651		break;
652	case NVDIMM_REVALIDATE_REGION:
653		pmem_revalidate_region(dev);
654		break;
655	default:
656		dev_WARN_ONCE(dev, 1, "notify: unknown event: %d\n", event);
657		break;
658	}
659}
660
661MODULE_ALIAS("pmem");
662MODULE_ALIAS_ND_DEVICE(ND_DEVICE_NAMESPACE_IO);
663MODULE_ALIAS_ND_DEVICE(ND_DEVICE_NAMESPACE_PMEM);
664static struct nd_device_driver nd_pmem_driver = {
665	.probe = nd_pmem_probe,
666	.remove = nd_pmem_remove,
667	.notify = nd_pmem_notify,
668	.shutdown = nd_pmem_shutdown,
669	.drv = {
670		.name = "nd_pmem",
671	},
672	.type = ND_DRIVER_NAMESPACE_IO | ND_DRIVER_NAMESPACE_PMEM,
673};
674
675module_nd_driver(nd_pmem_driver);
676
677MODULE_AUTHOR("Ross Zwisler <ross.zwisler@linux.intel.com>");
678MODULE_LICENSE("GPL v2");