Linux Audio

Check our new training course

Loading...
Note: File does not exist in v3.1.
  1/*
  2 * Persistent Memory Driver
  3 *
  4 * Copyright (c) 2014-2015, Intel Corporation.
  5 * Copyright (c) 2015, Christoph Hellwig <hch@lst.de>.
  6 * Copyright (c) 2015, Boaz Harrosh <boaz@plexistor.com>.
  7 *
  8 * This program is free software; you can redistribute it and/or modify it
  9 * under the terms and conditions of the GNU General Public License,
 10 * version 2, as published by the Free Software Foundation.
 11 *
 12 * This program is distributed in the hope it will be useful, but WITHOUT
 13 * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
 14 * FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public License for
 15 * more details.
 16 */
 17
 18#include <asm/cacheflush.h>
 19#include <linux/blkdev.h>
 20#include <linux/hdreg.h>
 21#include <linux/init.h>
 22#include <linux/platform_device.h>
 23#include <linux/module.h>
 24#include <linux/moduleparam.h>
 25#include <linux/badblocks.h>
 26#include <linux/memremap.h>
 27#include <linux/vmalloc.h>
 28#include <linux/pfn_t.h>
 29#include <linux/slab.h>
 30#include <linux/pmem.h>
 31#include <linux/nd.h>
 32#include "pfn.h"
 33#include "nd.h"
 34
 35struct pmem_device {
 36	struct request_queue	*pmem_queue;
 37	struct gendisk		*pmem_disk;
 38	struct nd_namespace_common *ndns;
 39
 40	/* One contiguous memory region per device */
 41	phys_addr_t		phys_addr;
 42	/* when non-zero this device is hosting a 'pfn' instance */
 43	phys_addr_t		data_offset;
 44	u64			pfn_flags;
 45	void __pmem		*virt_addr;
 46	/* immutable base size of the namespace */
 47	size_t			size;
 48	/* trim size when namespace capacity has been section aligned */
 49	u32			pfn_pad;
 50	struct badblocks	bb;
 51};
 52
 53static bool is_bad_pmem(struct badblocks *bb, sector_t sector, unsigned int len)
 54{
 55	if (bb->count) {
 56		sector_t first_bad;
 57		int num_bad;
 58
 59		return !!badblocks_check(bb, sector, len / 512, &first_bad,
 60				&num_bad);
 61	}
 62
 63	return false;
 64}
 65
 66static void pmem_clear_poison(struct pmem_device *pmem, phys_addr_t offset,
 67		unsigned int len)
 68{
 69	struct device *dev = disk_to_dev(pmem->pmem_disk);
 70	sector_t sector;
 71	long cleared;
 72
 73	sector = (offset - pmem->data_offset) / 512;
 74	cleared = nvdimm_clear_poison(dev, pmem->phys_addr + offset, len);
 75
 76	if (cleared > 0 && cleared / 512) {
 77		dev_dbg(dev, "%s: %llx clear %ld sector%s\n",
 78				__func__, (unsigned long long) sector,
 79				cleared / 512, cleared / 512 > 1 ? "s" : "");
 80		badblocks_clear(&pmem->bb, sector, cleared / 512);
 81	}
 82	invalidate_pmem(pmem->virt_addr + offset, len);
 83}
 84
 85static int pmem_do_bvec(struct pmem_device *pmem, struct page *page,
 86			unsigned int len, unsigned int off, int rw,
 87			sector_t sector)
 88{
 89	int rc = 0;
 90	bool bad_pmem = false;
 91	void *mem = kmap_atomic(page);
 92	phys_addr_t pmem_off = sector * 512 + pmem->data_offset;
 93	void __pmem *pmem_addr = pmem->virt_addr + pmem_off;
 94
 95	if (unlikely(is_bad_pmem(&pmem->bb, sector, len)))
 96		bad_pmem = true;
 97
 98	if (rw == READ) {
 99		if (unlikely(bad_pmem))
100			rc = -EIO;
101		else {
102			rc = memcpy_from_pmem(mem + off, pmem_addr, len);
103			flush_dcache_page(page);
104		}
105	} else {
106		/*
107		 * Note that we write the data both before and after
108		 * clearing poison.  The write before clear poison
109		 * handles situations where the latest written data is
110		 * preserved and the clear poison operation simply marks
111		 * the address range as valid without changing the data.
112		 * In this case application software can assume that an
113		 * interrupted write will either return the new good
114		 * data or an error.
115		 *
116		 * However, if pmem_clear_poison() leaves the data in an
117		 * indeterminate state we need to perform the write
118		 * after clear poison.
119		 */
120		flush_dcache_page(page);
121		memcpy_to_pmem(pmem_addr, mem + off, len);
122		if (unlikely(bad_pmem)) {
123			pmem_clear_poison(pmem, pmem_off, len);
124			memcpy_to_pmem(pmem_addr, mem + off, len);
125		}
126	}
127
128	kunmap_atomic(mem);
129	return rc;
130}
131
132static blk_qc_t pmem_make_request(struct request_queue *q, struct bio *bio)
133{
134	int rc = 0;
135	bool do_acct;
136	unsigned long start;
137	struct bio_vec bvec;
138	struct bvec_iter iter;
139	struct block_device *bdev = bio->bi_bdev;
140	struct pmem_device *pmem = bdev->bd_disk->private_data;
141
142	do_acct = nd_iostat_start(bio, &start);
143	bio_for_each_segment(bvec, bio, iter) {
144		rc = pmem_do_bvec(pmem, bvec.bv_page, bvec.bv_len,
145				bvec.bv_offset, bio_data_dir(bio),
146				iter.bi_sector);
147		if (rc) {
148			bio->bi_error = rc;
149			break;
150		}
151	}
152	if (do_acct)
153		nd_iostat_end(bio, start);
154
155	if (bio_data_dir(bio))
156		wmb_pmem();
157
158	bio_endio(bio);
159	return BLK_QC_T_NONE;
160}
161
162static int pmem_rw_page(struct block_device *bdev, sector_t sector,
163		       struct page *page, int rw)
164{
165	struct pmem_device *pmem = bdev->bd_disk->private_data;
166	int rc;
167
168	rc = pmem_do_bvec(pmem, page, PAGE_SIZE, 0, rw, sector);
169	if (rw & WRITE)
170		wmb_pmem();
171
172	/*
173	 * The ->rw_page interface is subtle and tricky.  The core
174	 * retries on any error, so we can only invoke page_endio() in
175	 * the successful completion case.  Otherwise, we'll see crashes
176	 * caused by double completion.
177	 */
178	if (rc == 0)
179		page_endio(page, rw & WRITE, 0);
180
181	return rc;
182}
183
184static long pmem_direct_access(struct block_device *bdev, sector_t sector,
185		      void __pmem **kaddr, pfn_t *pfn)
186{
187	struct pmem_device *pmem = bdev->bd_disk->private_data;
188	resource_size_t offset = sector * 512 + pmem->data_offset;
189
190	*kaddr = pmem->virt_addr + offset;
191	*pfn = phys_to_pfn_t(pmem->phys_addr + offset, pmem->pfn_flags);
192
193	return pmem->size - pmem->pfn_pad - offset;
194}
195
196static const struct block_device_operations pmem_fops = {
197	.owner =		THIS_MODULE,
198	.rw_page =		pmem_rw_page,
199	.direct_access =	pmem_direct_access,
200	.revalidate_disk =	nvdimm_revalidate_disk,
201};
202
203static struct pmem_device *pmem_alloc(struct device *dev,
204		struct resource *res, int id)
205{
206	struct pmem_device *pmem;
207	struct request_queue *q;
208
209	pmem = devm_kzalloc(dev, sizeof(*pmem), GFP_KERNEL);
210	if (!pmem)
211		return ERR_PTR(-ENOMEM);
212
213	pmem->phys_addr = res->start;
214	pmem->size = resource_size(res);
215	if (!arch_has_wmb_pmem())
216		dev_warn(dev, "unable to guarantee persistence of writes\n");
217
218	if (!devm_request_mem_region(dev, pmem->phys_addr, pmem->size,
219			dev_name(dev))) {
220		dev_warn(dev, "could not reserve region [0x%pa:0x%zx]\n",
221				&pmem->phys_addr, pmem->size);
222		return ERR_PTR(-EBUSY);
223	}
224
225	q = blk_alloc_queue_node(GFP_KERNEL, dev_to_node(dev));
226	if (!q)
227		return ERR_PTR(-ENOMEM);
228
229	pmem->pfn_flags = PFN_DEV;
230	if (pmem_should_map_pages(dev)) {
231		pmem->virt_addr = (void __pmem *) devm_memremap_pages(dev, res,
232				&q->q_usage_counter, NULL);
233		pmem->pfn_flags |= PFN_MAP;
234	} else
235		pmem->virt_addr = (void __pmem *) devm_memremap(dev,
236				pmem->phys_addr, pmem->size,
237				ARCH_MEMREMAP_PMEM);
238
239	if (IS_ERR(pmem->virt_addr)) {
240		blk_cleanup_queue(q);
241		return (void __force *) pmem->virt_addr;
242	}
243
244	pmem->pmem_queue = q;
245	return pmem;
246}
247
248static void pmem_detach_disk(struct pmem_device *pmem)
249{
250	if (!pmem->pmem_disk)
251		return;
252
253	del_gendisk(pmem->pmem_disk);
254	put_disk(pmem->pmem_disk);
255	blk_cleanup_queue(pmem->pmem_queue);
256}
257
258static int pmem_attach_disk(struct device *dev,
259		struct nd_namespace_common *ndns, struct pmem_device *pmem)
260{
261	struct nd_namespace_io *nsio = to_nd_namespace_io(&ndns->dev);
262	int nid = dev_to_node(dev);
263	struct resource bb_res;
264	struct gendisk *disk;
265
266	blk_queue_make_request(pmem->pmem_queue, pmem_make_request);
267	blk_queue_physical_block_size(pmem->pmem_queue, PAGE_SIZE);
268	blk_queue_max_hw_sectors(pmem->pmem_queue, UINT_MAX);
269	blk_queue_bounce_limit(pmem->pmem_queue, BLK_BOUNCE_ANY);
270	queue_flag_set_unlocked(QUEUE_FLAG_NONROT, pmem->pmem_queue);
271
272	disk = alloc_disk_node(0, nid);
273	if (!disk) {
274		blk_cleanup_queue(pmem->pmem_queue);
275		return -ENOMEM;
276	}
277
278	disk->fops		= &pmem_fops;
279	disk->private_data	= pmem;
280	disk->queue		= pmem->pmem_queue;
281	disk->flags		= GENHD_FL_EXT_DEVT;
282	nvdimm_namespace_disk_name(ndns, disk->disk_name);
283	disk->driverfs_dev = dev;
284	set_capacity(disk, (pmem->size - pmem->pfn_pad - pmem->data_offset)
285			/ 512);
286	pmem->pmem_disk = disk;
287	devm_exit_badblocks(dev, &pmem->bb);
288	if (devm_init_badblocks(dev, &pmem->bb))
289		return -ENOMEM;
290	bb_res.start = nsio->res.start + pmem->data_offset;
291	bb_res.end = nsio->res.end;
292	if (is_nd_pfn(dev)) {
293		struct nd_pfn *nd_pfn = to_nd_pfn(dev);
294		struct nd_pfn_sb *pfn_sb = nd_pfn->pfn_sb;
295
296		bb_res.start += __le32_to_cpu(pfn_sb->start_pad);
297		bb_res.end -= __le32_to_cpu(pfn_sb->end_trunc);
298	}
299	nvdimm_badblocks_populate(to_nd_region(dev->parent), &pmem->bb,
300			&bb_res);
301	disk->bb = &pmem->bb;
302	add_disk(disk);
303	revalidate_disk(disk);
304
305	return 0;
306}
307
308static int pmem_rw_bytes(struct nd_namespace_common *ndns,
309		resource_size_t offset, void *buf, size_t size, int rw)
310{
311	struct pmem_device *pmem = dev_get_drvdata(ndns->claim);
312
313	if (unlikely(offset + size > pmem->size)) {
314		dev_WARN_ONCE(&ndns->dev, 1, "request out of range\n");
315		return -EFAULT;
316	}
317
318	if (rw == READ) {
319		unsigned int sz_align = ALIGN(size + (offset & (512 - 1)), 512);
320
321		if (unlikely(is_bad_pmem(&pmem->bb, offset / 512, sz_align)))
322			return -EIO;
323		return memcpy_from_pmem(buf, pmem->virt_addr + offset, size);
324	} else {
325		memcpy_to_pmem(pmem->virt_addr + offset, buf, size);
326		wmb_pmem();
327	}
328
329	return 0;
330}
331
332static int nd_pfn_init(struct nd_pfn *nd_pfn)
333{
334	struct nd_pfn_sb *pfn_sb = kzalloc(sizeof(*pfn_sb), GFP_KERNEL);
335	struct pmem_device *pmem = dev_get_drvdata(&nd_pfn->dev);
336	struct nd_namespace_common *ndns = nd_pfn->ndns;
337	u32 start_pad = 0, end_trunc = 0;
338	resource_size_t start, size;
339	struct nd_namespace_io *nsio;
340	struct nd_region *nd_region;
341	unsigned long npfns;
342	phys_addr_t offset;
343	u64 checksum;
344	int rc;
345
346	if (!pfn_sb)
347		return -ENOMEM;
348
349	nd_pfn->pfn_sb = pfn_sb;
350	rc = nd_pfn_validate(nd_pfn);
351	if (rc == -ENODEV)
352		/* no info block, do init */;
353	else
354		return rc;
355
356	nd_region = to_nd_region(nd_pfn->dev.parent);
357	if (nd_region->ro) {
358		dev_info(&nd_pfn->dev,
359				"%s is read-only, unable to init metadata\n",
360				dev_name(&nd_region->dev));
361		goto err;
362	}
363
364	memset(pfn_sb, 0, sizeof(*pfn_sb));
365
366	/*
367	 * Check if pmem collides with 'System RAM' when section aligned and
368	 * trim it accordingly
369	 */
370	nsio = to_nd_namespace_io(&ndns->dev);
371	start = PHYS_SECTION_ALIGN_DOWN(nsio->res.start);
372	size = resource_size(&nsio->res);
373	if (region_intersects(start, size, IORESOURCE_SYSTEM_RAM,
374				IORES_DESC_NONE) == REGION_MIXED) {
375
376		start = nsio->res.start;
377		start_pad = PHYS_SECTION_ALIGN_UP(start) - start;
378	}
379
380	start = nsio->res.start;
381	size = PHYS_SECTION_ALIGN_UP(start + size) - start;
382	if (region_intersects(start, size, IORESOURCE_SYSTEM_RAM,
383				IORES_DESC_NONE) == REGION_MIXED) {
384		size = resource_size(&nsio->res);
385		end_trunc = start + size - PHYS_SECTION_ALIGN_DOWN(start + size);
386	}
387
388	if (start_pad + end_trunc)
389		dev_info(&nd_pfn->dev, "%s section collision, truncate %d bytes\n",
390				dev_name(&ndns->dev), start_pad + end_trunc);
391
392	/*
393	 * Note, we use 64 here for the standard size of struct page,
394	 * debugging options may cause it to be larger in which case the
395	 * implementation will limit the pfns advertised through
396	 * ->direct_access() to those that are included in the memmap.
397	 */
398	start += start_pad;
399	npfns = (pmem->size - start_pad - end_trunc - SZ_8K) / SZ_4K;
400	if (nd_pfn->mode == PFN_MODE_PMEM) {
401		unsigned long memmap_size;
402
403		/*
404		 * vmemmap_populate_hugepages() allocates the memmap array in
405		 * PMD_SIZE chunks.
406		 */
407		memmap_size = ALIGN(64 * npfns, PMD_SIZE);
408		offset = ALIGN(start + SZ_8K + memmap_size, nd_pfn->align)
409			- start;
410	} else if (nd_pfn->mode == PFN_MODE_RAM)
411		offset = ALIGN(start + SZ_8K, nd_pfn->align) - start;
412	else
413		goto err;
414
415	if (offset + start_pad + end_trunc >= pmem->size) {
416		dev_err(&nd_pfn->dev, "%s unable to satisfy requested alignment\n",
417				dev_name(&ndns->dev));
418		goto err;
419	}
420
421	npfns = (pmem->size - offset - start_pad - end_trunc) / SZ_4K;
422	pfn_sb->mode = cpu_to_le32(nd_pfn->mode);
423	pfn_sb->dataoff = cpu_to_le64(offset);
424	pfn_sb->npfns = cpu_to_le64(npfns);
425	memcpy(pfn_sb->signature, PFN_SIG, PFN_SIG_LEN);
426	memcpy(pfn_sb->uuid, nd_pfn->uuid, 16);
427	memcpy(pfn_sb->parent_uuid, nd_dev_to_uuid(&ndns->dev), 16);
428	pfn_sb->version_major = cpu_to_le16(1);
429	pfn_sb->version_minor = cpu_to_le16(1);
430	pfn_sb->start_pad = cpu_to_le32(start_pad);
431	pfn_sb->end_trunc = cpu_to_le32(end_trunc);
432	checksum = nd_sb_checksum((struct nd_gen_sb *) pfn_sb);
433	pfn_sb->checksum = cpu_to_le64(checksum);
434
435	rc = nvdimm_write_bytes(ndns, SZ_4K, pfn_sb, sizeof(*pfn_sb));
436	if (rc)
437		goto err;
438
439	return 0;
440 err:
441	nd_pfn->pfn_sb = NULL;
442	kfree(pfn_sb);
443	return -ENXIO;
444}
445
446static int nvdimm_namespace_detach_pfn(struct nd_namespace_common *ndns)
447{
448	struct nd_pfn *nd_pfn = to_nd_pfn(ndns->claim);
449	struct pmem_device *pmem;
450
451	/* free pmem disk */
452	pmem = dev_get_drvdata(&nd_pfn->dev);
453	pmem_detach_disk(pmem);
454
455	/* release nd_pfn resources */
456	kfree(nd_pfn->pfn_sb);
457	nd_pfn->pfn_sb = NULL;
458
459	return 0;
460}
461
462/*
463 * We hotplug memory at section granularity, pad the reserved area from
464 * the previous section base to the namespace base address.
465 */
466static unsigned long init_altmap_base(resource_size_t base)
467{
468	unsigned long base_pfn = PHYS_PFN(base);
469
470	return PFN_SECTION_ALIGN_DOWN(base_pfn);
471}
472
473static unsigned long init_altmap_reserve(resource_size_t base)
474{
475	unsigned long reserve = PHYS_PFN(SZ_8K);
476	unsigned long base_pfn = PHYS_PFN(base);
477
478	reserve += base_pfn - PFN_SECTION_ALIGN_DOWN(base_pfn);
479	return reserve;
480}
481
482static int __nvdimm_namespace_attach_pfn(struct nd_pfn *nd_pfn)
483{
484	int rc;
485	struct resource res;
486	struct request_queue *q;
487	struct pmem_device *pmem;
488	struct vmem_altmap *altmap;
489	struct device *dev = &nd_pfn->dev;
490	struct nd_pfn_sb *pfn_sb = nd_pfn->pfn_sb;
491	struct nd_namespace_common *ndns = nd_pfn->ndns;
492	u32 start_pad = __le32_to_cpu(pfn_sb->start_pad);
493	u32 end_trunc = __le32_to_cpu(pfn_sb->end_trunc);
494	struct nd_namespace_io *nsio = to_nd_namespace_io(&ndns->dev);
495	resource_size_t base = nsio->res.start + start_pad;
496	struct vmem_altmap __altmap = {
497		.base_pfn = init_altmap_base(base),
498		.reserve = init_altmap_reserve(base),
499	};
500
501	pmem = dev_get_drvdata(dev);
502	pmem->data_offset = le64_to_cpu(pfn_sb->dataoff);
503	pmem->pfn_pad = start_pad + end_trunc;
504	nd_pfn->mode = le32_to_cpu(nd_pfn->pfn_sb->mode);
505	if (nd_pfn->mode == PFN_MODE_RAM) {
506		if (pmem->data_offset < SZ_8K)
507			return -EINVAL;
508		nd_pfn->npfns = le64_to_cpu(pfn_sb->npfns);
509		altmap = NULL;
510	} else if (nd_pfn->mode == PFN_MODE_PMEM) {
511		nd_pfn->npfns = (pmem->size - pmem->pfn_pad - pmem->data_offset)
512			/ PAGE_SIZE;
513		if (le64_to_cpu(nd_pfn->pfn_sb->npfns) > nd_pfn->npfns)
514			dev_info(&nd_pfn->dev,
515					"number of pfns truncated from %lld to %ld\n",
516					le64_to_cpu(nd_pfn->pfn_sb->npfns),
517					nd_pfn->npfns);
518		altmap = & __altmap;
519		altmap->free = PHYS_PFN(pmem->data_offset - SZ_8K);
520		altmap->alloc = 0;
521	} else {
522		rc = -ENXIO;
523		goto err;
524	}
525
526	/* establish pfn range for lookup, and switch to direct map */
527	q = pmem->pmem_queue;
528	memcpy(&res, &nsio->res, sizeof(res));
529	res.start += start_pad;
530	res.end -= end_trunc;
531	devm_memunmap(dev, (void __force *) pmem->virt_addr);
532	pmem->virt_addr = (void __pmem *) devm_memremap_pages(dev, &res,
533			&q->q_usage_counter, altmap);
534	pmem->pfn_flags |= PFN_MAP;
535	if (IS_ERR(pmem->virt_addr)) {
536		rc = PTR_ERR(pmem->virt_addr);
537		goto err;
538	}
539
540	/* attach pmem disk in "pfn-mode" */
541	rc = pmem_attach_disk(dev, ndns, pmem);
542	if (rc)
543		goto err;
544
545	return rc;
546 err:
547	nvdimm_namespace_detach_pfn(ndns);
548	return rc;
549
550}
551
552static int nvdimm_namespace_attach_pfn(struct nd_namespace_common *ndns)
553{
554	struct nd_pfn *nd_pfn = to_nd_pfn(ndns->claim);
555	int rc;
556
557	if (!nd_pfn->uuid || !nd_pfn->ndns)
558		return -ENODEV;
559
560	rc = nd_pfn_init(nd_pfn);
561	if (rc)
562		return rc;
563	/* we need a valid pfn_sb before we can init a vmem_altmap */
564	return __nvdimm_namespace_attach_pfn(nd_pfn);
565}
566
567static int nd_pmem_probe(struct device *dev)
568{
569	struct nd_region *nd_region = to_nd_region(dev->parent);
570	struct nd_namespace_common *ndns;
571	struct nd_namespace_io *nsio;
572	struct pmem_device *pmem;
573
574	ndns = nvdimm_namespace_common_probe(dev);
575	if (IS_ERR(ndns))
576		return PTR_ERR(ndns);
577
578	nsio = to_nd_namespace_io(&ndns->dev);
579	pmem = pmem_alloc(dev, &nsio->res, nd_region->id);
580	if (IS_ERR(pmem))
581		return PTR_ERR(pmem);
582
583	pmem->ndns = ndns;
584	dev_set_drvdata(dev, pmem);
585	ndns->rw_bytes = pmem_rw_bytes;
586	if (devm_init_badblocks(dev, &pmem->bb))
587		return -ENOMEM;
588	nvdimm_badblocks_populate(nd_region, &pmem->bb, &nsio->res);
589
590	if (is_nd_btt(dev)) {
591		/* btt allocates its own request_queue */
592		blk_cleanup_queue(pmem->pmem_queue);
593		pmem->pmem_queue = NULL;
594		return nvdimm_namespace_attach_btt(ndns);
595	}
596
597	if (is_nd_pfn(dev))
598		return nvdimm_namespace_attach_pfn(ndns);
599
600	if (nd_btt_probe(ndns, pmem) == 0 || nd_pfn_probe(ndns, pmem) == 0) {
601		/*
602		 * We'll come back as either btt-pmem, or pfn-pmem, so
603		 * drop the queue allocation for now.
604		 */
605		blk_cleanup_queue(pmem->pmem_queue);
606		return -ENXIO;
607	}
608
609	return pmem_attach_disk(dev, ndns, pmem);
610}
611
612static int nd_pmem_remove(struct device *dev)
613{
614	struct pmem_device *pmem = dev_get_drvdata(dev);
615
616	if (is_nd_btt(dev))
617		nvdimm_namespace_detach_btt(pmem->ndns);
618	else if (is_nd_pfn(dev))
619		nvdimm_namespace_detach_pfn(pmem->ndns);
620	else
621		pmem_detach_disk(pmem);
622
623	return 0;
624}
625
626static void nd_pmem_notify(struct device *dev, enum nvdimm_event event)
627{
628	struct pmem_device *pmem = dev_get_drvdata(dev);
629	struct nd_namespace_common *ndns = pmem->ndns;
630	struct nd_region *nd_region = to_nd_region(dev->parent);
631	struct nd_namespace_io *nsio = to_nd_namespace_io(&ndns->dev);
632	struct resource res = {
633		.start = nsio->res.start + pmem->data_offset,
634		.end = nsio->res.end,
635	};
636
637	if (event != NVDIMM_REVALIDATE_POISON)
638		return;
639
640	if (is_nd_pfn(dev)) {
641		struct nd_pfn *nd_pfn = to_nd_pfn(dev);
642		struct nd_pfn_sb *pfn_sb = nd_pfn->pfn_sb;
643
644		res.start += __le32_to_cpu(pfn_sb->start_pad);
645		res.end -= __le32_to_cpu(pfn_sb->end_trunc);
646	}
647
648	nvdimm_badblocks_populate(nd_region, &pmem->bb, &res);
649}
650
651MODULE_ALIAS("pmem");
652MODULE_ALIAS_ND_DEVICE(ND_DEVICE_NAMESPACE_IO);
653MODULE_ALIAS_ND_DEVICE(ND_DEVICE_NAMESPACE_PMEM);
654static struct nd_device_driver nd_pmem_driver = {
655	.probe = nd_pmem_probe,
656	.remove = nd_pmem_remove,
657	.notify = nd_pmem_notify,
658	.drv = {
659		.name = "nd_pmem",
660	},
661	.type = ND_DRIVER_NAMESPACE_IO | ND_DRIVER_NAMESPACE_PMEM,
662};
663
664static int __init pmem_init(void)
665{
666	return nd_driver_register(&nd_pmem_driver);
667}
668module_init(pmem_init);
669
670static void pmem_exit(void)
671{
672	driver_unregister(&nd_pmem_driver.drv);
673}
674module_exit(pmem_exit);
675
676MODULE_AUTHOR("Ross Zwisler <ross.zwisler@linux.intel.com>");
677MODULE_LICENSE("GPL v2");