Linux Audio

Check our new training course

Loading...
Note: File does not exist in v3.1.
  1/*
  2 * Persistent Memory Driver
  3 *
  4 * Copyright (c) 2014-2015, Intel Corporation.
  5 * Copyright (c) 2015, Christoph Hellwig <hch@lst.de>.
  6 * Copyright (c) 2015, Boaz Harrosh <boaz@plexistor.com>.
  7 *
  8 * This program is free software; you can redistribute it and/or modify it
  9 * under the terms and conditions of the GNU General Public License,
 10 * version 2, as published by the Free Software Foundation.
 11 *
 12 * This program is distributed in the hope it will be useful, but WITHOUT
 13 * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
 14 * FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public License for
 15 * more details.
 16 */
 17
 18#include <asm/cacheflush.h>
 19#include <linux/blkdev.h>
 20#include <linux/hdreg.h>
 21#include <linux/init.h>
 22#include <linux/platform_device.h>
 23#include <linux/module.h>
 24#include <linux/moduleparam.h>
 25#include <linux/badblocks.h>
 26#include <linux/memremap.h>
 27#include <linux/vmalloc.h>
 28#include <linux/blk-mq.h>
 29#include <linux/pfn_t.h>
 30#include <linux/slab.h>
 31#include <linux/uio.h>
 32#include <linux/dax.h>
 33#include <linux/nd.h>
 34#include <linux/backing-dev.h>
 35#include "pmem.h"
 36#include "pfn.h"
 37#include "nd.h"
 38#include "nd-core.h"
 39
 40static struct device *to_dev(struct pmem_device *pmem)
 41{
 42	/*
 43	 * nvdimm bus services need a 'dev' parameter, and we record the device
 44	 * at init in bb.dev.
 45	 */
 46	return pmem->bb.dev;
 47}
 48
 49static struct nd_region *to_region(struct pmem_device *pmem)
 50{
 51	return to_nd_region(to_dev(pmem)->parent);
 52}
 53
 54static blk_status_t pmem_clear_poison(struct pmem_device *pmem,
 55		phys_addr_t offset, unsigned int len)
 56{
 57	struct device *dev = to_dev(pmem);
 58	sector_t sector;
 59	long cleared;
 60	blk_status_t rc = BLK_STS_OK;
 61
 62	sector = (offset - pmem->data_offset) / 512;
 63
 64	cleared = nvdimm_clear_poison(dev, pmem->phys_addr + offset, len);
 65	if (cleared < len)
 66		rc = BLK_STS_IOERR;
 67	if (cleared > 0 && cleared / 512) {
 68		cleared /= 512;
 69		dev_dbg(dev, "%#llx clear %ld sector%s\n",
 70				(unsigned long long) sector, cleared,
 71				cleared > 1 ? "s" : "");
 72		badblocks_clear(&pmem->bb, sector, cleared);
 73		if (pmem->bb_state)
 74			sysfs_notify_dirent(pmem->bb_state);
 75	}
 76
 77	arch_invalidate_pmem(pmem->virt_addr + offset, len);
 78
 79	return rc;
 80}
 81
 82static void write_pmem(void *pmem_addr, struct page *page,
 83		unsigned int off, unsigned int len)
 84{
 85	unsigned int chunk;
 86	void *mem;
 87
 88	while (len) {
 89		mem = kmap_atomic(page);
 90		chunk = min_t(unsigned int, len, PAGE_SIZE);
 91		memcpy_flushcache(pmem_addr, mem + off, chunk);
 92		kunmap_atomic(mem);
 93		len -= chunk;
 94		off = 0;
 95		page++;
 96		pmem_addr += PAGE_SIZE;
 97	}
 98}
 99
100static blk_status_t read_pmem(struct page *page, unsigned int off,
101		void *pmem_addr, unsigned int len)
102{
103	unsigned int chunk;
104	int rc;
105	void *mem;
106
107	while (len) {
108		mem = kmap_atomic(page);
109		chunk = min_t(unsigned int, len, PAGE_SIZE);
110		rc = memcpy_mcsafe(mem + off, pmem_addr, chunk);
111		kunmap_atomic(mem);
112		if (rc)
113			return BLK_STS_IOERR;
114		len -= chunk;
115		off = 0;
116		page++;
117		pmem_addr += PAGE_SIZE;
118	}
119	return BLK_STS_OK;
120}
121
122static blk_status_t pmem_do_bvec(struct pmem_device *pmem, struct page *page,
123			unsigned int len, unsigned int off, bool is_write,
124			sector_t sector)
125{
126	blk_status_t rc = BLK_STS_OK;
127	bool bad_pmem = false;
128	phys_addr_t pmem_off = sector * 512 + pmem->data_offset;
129	void *pmem_addr = pmem->virt_addr + pmem_off;
130
131	if (unlikely(is_bad_pmem(&pmem->bb, sector, len)))
132		bad_pmem = true;
133
134	if (!is_write) {
135		if (unlikely(bad_pmem))
136			rc = BLK_STS_IOERR;
137		else {
138			rc = read_pmem(page, off, pmem_addr, len);
139			flush_dcache_page(page);
140		}
141	} else {
142		/*
143		 * Note that we write the data both before and after
144		 * clearing poison.  The write before clear poison
145		 * handles situations where the latest written data is
146		 * preserved and the clear poison operation simply marks
147		 * the address range as valid without changing the data.
148		 * In this case application software can assume that an
149		 * interrupted write will either return the new good
150		 * data or an error.
151		 *
152		 * However, if pmem_clear_poison() leaves the data in an
153		 * indeterminate state we need to perform the write
154		 * after clear poison.
155		 */
156		flush_dcache_page(page);
157		write_pmem(pmem_addr, page, off, len);
158		if (unlikely(bad_pmem)) {
159			rc = pmem_clear_poison(pmem, pmem_off, len);
160			write_pmem(pmem_addr, page, off, len);
161		}
162	}
163
164	return rc;
165}
166
167/* account for REQ_FLUSH rename, replace with REQ_PREFLUSH after v4.8-rc1 */
168#ifndef REQ_FLUSH
169#define REQ_FLUSH REQ_PREFLUSH
170#endif
171
172static blk_qc_t pmem_make_request(struct request_queue *q, struct bio *bio)
173{
174	blk_status_t rc = 0;
175	bool do_acct;
176	unsigned long start;
177	struct bio_vec bvec;
178	struct bvec_iter iter;
179	struct pmem_device *pmem = q->queuedata;
180	struct nd_region *nd_region = to_region(pmem);
181
182	if (bio->bi_opf & REQ_FLUSH)
183		nvdimm_flush(nd_region);
184
185	do_acct = nd_iostat_start(bio, &start);
186	bio_for_each_segment(bvec, bio, iter) {
187		rc = pmem_do_bvec(pmem, bvec.bv_page, bvec.bv_len,
188				bvec.bv_offset, op_is_write(bio_op(bio)),
189				iter.bi_sector);
190		if (rc) {
191			bio->bi_status = rc;
192			break;
193		}
194	}
195	if (do_acct)
196		nd_iostat_end(bio, start);
197
198	if (bio->bi_opf & REQ_FUA)
199		nvdimm_flush(nd_region);
200
201	bio_endio(bio);
202	return BLK_QC_T_NONE;
203}
204
205static int pmem_rw_page(struct block_device *bdev, sector_t sector,
206		       struct page *page, bool is_write)
207{
208	struct pmem_device *pmem = bdev->bd_queue->queuedata;
209	blk_status_t rc;
210
211	rc = pmem_do_bvec(pmem, page, hpage_nr_pages(page) * PAGE_SIZE,
212			  0, is_write, sector);
213
214	/*
215	 * The ->rw_page interface is subtle and tricky.  The core
216	 * retries on any error, so we can only invoke page_endio() in
217	 * the successful completion case.  Otherwise, we'll see crashes
218	 * caused by double completion.
219	 */
220	if (rc == 0)
221		page_endio(page, is_write, 0);
222
223	return blk_status_to_errno(rc);
224}
225
226/* see "strong" declaration in tools/testing/nvdimm/pmem-dax.c */
227__weak long __pmem_direct_access(struct pmem_device *pmem, pgoff_t pgoff,
228		long nr_pages, void **kaddr, pfn_t *pfn)
229{
230	resource_size_t offset = PFN_PHYS(pgoff) + pmem->data_offset;
231
232	if (unlikely(is_bad_pmem(&pmem->bb, PFN_PHYS(pgoff) / 512,
233					PFN_PHYS(nr_pages))))
234		return -EIO;
235	*kaddr = pmem->virt_addr + offset;
236	*pfn = phys_to_pfn_t(pmem->phys_addr + offset, pmem->pfn_flags);
237
238	/*
239	 * If badblocks are present, limit known good range to the
240	 * requested range.
241	 */
242	if (unlikely(pmem->bb.count))
243		return nr_pages;
244	return PHYS_PFN(pmem->size - pmem->pfn_pad - offset);
245}
246
247static const struct block_device_operations pmem_fops = {
248	.owner =		THIS_MODULE,
249	.rw_page =		pmem_rw_page,
250	.revalidate_disk =	nvdimm_revalidate_disk,
251};
252
253static long pmem_dax_direct_access(struct dax_device *dax_dev,
254		pgoff_t pgoff, long nr_pages, void **kaddr, pfn_t *pfn)
255{
256	struct pmem_device *pmem = dax_get_private(dax_dev);
257
258	return __pmem_direct_access(pmem, pgoff, nr_pages, kaddr, pfn);
259}
260
261static size_t pmem_copy_from_iter(struct dax_device *dax_dev, pgoff_t pgoff,
262		void *addr, size_t bytes, struct iov_iter *i)
263{
264	return copy_from_iter_flushcache(addr, bytes, i);
265}
266
267static const struct dax_operations pmem_dax_ops = {
268	.direct_access = pmem_dax_direct_access,
269	.copy_from_iter = pmem_copy_from_iter,
270};
271
272static const struct attribute_group *pmem_attribute_groups[] = {
273	&dax_attribute_group,
274	NULL,
275};
276
277static void pmem_release_queue(void *q)
278{
279	blk_cleanup_queue(q);
280}
281
282static void pmem_freeze_queue(void *q)
283{
284	blk_freeze_queue_start(q);
285}
286
287static void pmem_release_disk(void *__pmem)
288{
289	struct pmem_device *pmem = __pmem;
290
291	kill_dax(pmem->dax_dev);
292	put_dax(pmem->dax_dev);
293	del_gendisk(pmem->disk);
294	put_disk(pmem->disk);
295}
296
297static int pmem_attach_disk(struct device *dev,
298		struct nd_namespace_common *ndns)
299{
300	struct nd_namespace_io *nsio = to_nd_namespace_io(&ndns->dev);
301	struct nd_region *nd_region = to_nd_region(dev->parent);
302	int nid = dev_to_node(dev), fua, wbc;
303	struct resource *res = &nsio->res;
304	struct resource bb_res;
305	struct nd_pfn *nd_pfn = NULL;
306	struct dax_device *dax_dev;
307	struct nd_pfn_sb *pfn_sb;
308	struct pmem_device *pmem;
309	struct request_queue *q;
310	struct device *gendev;
311	struct gendisk *disk;
312	void *addr;
313	int rc;
314
315	pmem = devm_kzalloc(dev, sizeof(*pmem), GFP_KERNEL);
316	if (!pmem)
317		return -ENOMEM;
318
319	/* while nsio_rw_bytes is active, parse a pfn info block if present */
320	if (is_nd_pfn(dev)) {
321		nd_pfn = to_nd_pfn(dev);
322		rc = nvdimm_setup_pfn(nd_pfn, &pmem->pgmap);
323		if (rc)
324			return rc;
325	}
326
327	/* we're attaching a block device, disable raw namespace access */
328	devm_nsio_disable(dev, nsio);
329
330	dev_set_drvdata(dev, pmem);
331	pmem->phys_addr = res->start;
332	pmem->size = resource_size(res);
333	fua = nvdimm_has_flush(nd_region);
334	if (!IS_ENABLED(CONFIG_ARCH_HAS_UACCESS_FLUSHCACHE) || fua < 0) {
335		dev_warn(dev, "unable to guarantee persistence of writes\n");
336		fua = 0;
337	}
338	wbc = nvdimm_has_cache(nd_region);
339
340	if (!devm_request_mem_region(dev, res->start, resource_size(res),
341				dev_name(&ndns->dev))) {
342		dev_warn(dev, "could not reserve region %pR\n", res);
343		return -EBUSY;
344	}
345
346	q = blk_alloc_queue_node(GFP_KERNEL, dev_to_node(dev), NULL);
347	if (!q)
348		return -ENOMEM;
349
350	if (devm_add_action_or_reset(dev, pmem_release_queue, q))
351		return -ENOMEM;
352
353	pmem->pfn_flags = PFN_DEV;
354	pmem->pgmap.ref = &q->q_usage_counter;
355	if (is_nd_pfn(dev)) {
356		addr = devm_memremap_pages(dev, &pmem->pgmap);
357		pfn_sb = nd_pfn->pfn_sb;
358		pmem->data_offset = le64_to_cpu(pfn_sb->dataoff);
359		pmem->pfn_pad = resource_size(res) -
360			resource_size(&pmem->pgmap.res);
361		pmem->pfn_flags |= PFN_MAP;
362		memcpy(&bb_res, &pmem->pgmap.res, sizeof(bb_res));
363		bb_res.start += pmem->data_offset;
364	} else if (pmem_should_map_pages(dev)) {
365		memcpy(&pmem->pgmap.res, &nsio->res, sizeof(pmem->pgmap.res));
366		pmem->pgmap.altmap_valid = false;
367		addr = devm_memremap_pages(dev, &pmem->pgmap);
368		pmem->pfn_flags |= PFN_MAP;
369		memcpy(&bb_res, &pmem->pgmap.res, sizeof(bb_res));
370	} else
371		addr = devm_memremap(dev, pmem->phys_addr,
372				pmem->size, ARCH_MEMREMAP_PMEM);
373
374	/*
375	 * At release time the queue must be frozen before
376	 * devm_memremap_pages is unwound
377	 */
378	if (devm_add_action_or_reset(dev, pmem_freeze_queue, q))
379		return -ENOMEM;
380
381	if (IS_ERR(addr))
382		return PTR_ERR(addr);
383	pmem->virt_addr = addr;
384
385	blk_queue_write_cache(q, wbc, fua);
386	blk_queue_make_request(q, pmem_make_request);
387	blk_queue_physical_block_size(q, PAGE_SIZE);
388	blk_queue_logical_block_size(q, pmem_sector_size(ndns));
389	blk_queue_max_hw_sectors(q, UINT_MAX);
390	blk_queue_flag_set(QUEUE_FLAG_NONROT, q);
391	blk_queue_flag_set(QUEUE_FLAG_DAX, q);
392	q->queuedata = pmem;
393
394	disk = alloc_disk_node(0, nid);
395	if (!disk)
396		return -ENOMEM;
397	pmem->disk = disk;
398
399	disk->fops		= &pmem_fops;
400	disk->queue		= q;
401	disk->flags		= GENHD_FL_EXT_DEVT;
402	disk->queue->backing_dev_info->capabilities |= BDI_CAP_SYNCHRONOUS_IO;
403	nvdimm_namespace_disk_name(ndns, disk->disk_name);
404	set_capacity(disk, (pmem->size - pmem->pfn_pad - pmem->data_offset)
405			/ 512);
406	if (devm_init_badblocks(dev, &pmem->bb))
407		return -ENOMEM;
408	nvdimm_badblocks_populate(nd_region, &pmem->bb, &bb_res);
409	disk->bb = &pmem->bb;
410
411	dax_dev = alloc_dax(pmem, disk->disk_name, &pmem_dax_ops);
412	if (!dax_dev) {
413		put_disk(disk);
414		return -ENOMEM;
415	}
416	dax_write_cache(dax_dev, wbc);
417	pmem->dax_dev = dax_dev;
418
419	gendev = disk_to_dev(disk);
420	gendev->groups = pmem_attribute_groups;
421
422	device_add_disk(dev, disk);
423	if (devm_add_action_or_reset(dev, pmem_release_disk, pmem))
424		return -ENOMEM;
425
426	revalidate_disk(disk);
427
428	pmem->bb_state = sysfs_get_dirent(disk_to_dev(disk)->kobj.sd,
429					  "badblocks");
430	if (!pmem->bb_state)
431		dev_warn(dev, "'badblocks' notification disabled\n");
432
433	return 0;
434}
435
436static int nd_pmem_probe(struct device *dev)
437{
438	struct nd_namespace_common *ndns;
439
440	ndns = nvdimm_namespace_common_probe(dev);
441	if (IS_ERR(ndns))
442		return PTR_ERR(ndns);
443
444	if (devm_nsio_enable(dev, to_nd_namespace_io(&ndns->dev)))
445		return -ENXIO;
446
447	if (is_nd_btt(dev))
448		return nvdimm_namespace_attach_btt(ndns);
449
450	if (is_nd_pfn(dev))
451		return pmem_attach_disk(dev, ndns);
452
453	/* if we find a valid info-block we'll come back as that personality */
454	if (nd_btt_probe(dev, ndns) == 0 || nd_pfn_probe(dev, ndns) == 0
455			|| nd_dax_probe(dev, ndns) == 0)
456		return -ENXIO;
457
458	/* ...otherwise we're just a raw pmem device */
459	return pmem_attach_disk(dev, ndns);
460}
461
462static int nd_pmem_remove(struct device *dev)
463{
464	struct pmem_device *pmem = dev_get_drvdata(dev);
465
466	if (is_nd_btt(dev))
467		nvdimm_namespace_detach_btt(to_nd_btt(dev));
468	else {
469		/*
470		 * Note, this assumes device_lock() context to not race
471		 * nd_pmem_notify()
472		 */
473		sysfs_put(pmem->bb_state);
474		pmem->bb_state = NULL;
475	}
476	nvdimm_flush(to_nd_region(dev->parent));
477
478	return 0;
479}
480
481static void nd_pmem_shutdown(struct device *dev)
482{
483	nvdimm_flush(to_nd_region(dev->parent));
484}
485
486static void nd_pmem_notify(struct device *dev, enum nvdimm_event event)
487{
488	struct nd_region *nd_region;
489	resource_size_t offset = 0, end_trunc = 0;
490	struct nd_namespace_common *ndns;
491	struct nd_namespace_io *nsio;
492	struct resource res;
493	struct badblocks *bb;
494	struct kernfs_node *bb_state;
495
496	if (event != NVDIMM_REVALIDATE_POISON)
497		return;
498
499	if (is_nd_btt(dev)) {
500		struct nd_btt *nd_btt = to_nd_btt(dev);
501
502		ndns = nd_btt->ndns;
503		nd_region = to_nd_region(ndns->dev.parent);
504		nsio = to_nd_namespace_io(&ndns->dev);
505		bb = &nsio->bb;
506		bb_state = NULL;
507	} else {
508		struct pmem_device *pmem = dev_get_drvdata(dev);
509
510		nd_region = to_region(pmem);
511		bb = &pmem->bb;
512		bb_state = pmem->bb_state;
513
514		if (is_nd_pfn(dev)) {
515			struct nd_pfn *nd_pfn = to_nd_pfn(dev);
516			struct nd_pfn_sb *pfn_sb = nd_pfn->pfn_sb;
517
518			ndns = nd_pfn->ndns;
519			offset = pmem->data_offset +
520					__le32_to_cpu(pfn_sb->start_pad);
521			end_trunc = __le32_to_cpu(pfn_sb->end_trunc);
522		} else {
523			ndns = to_ndns(dev);
524		}
525
526		nsio = to_nd_namespace_io(&ndns->dev);
527	}
528
529	res.start = nsio->res.start + offset;
530	res.end = nsio->res.end - end_trunc;
531	nvdimm_badblocks_populate(nd_region, bb, &res);
532	if (bb_state)
533		sysfs_notify_dirent(bb_state);
534}
535
536MODULE_ALIAS("pmem");
537MODULE_ALIAS_ND_DEVICE(ND_DEVICE_NAMESPACE_IO);
538MODULE_ALIAS_ND_DEVICE(ND_DEVICE_NAMESPACE_PMEM);
539static struct nd_device_driver nd_pmem_driver = {
540	.probe = nd_pmem_probe,
541	.remove = nd_pmem_remove,
542	.notify = nd_pmem_notify,
543	.shutdown = nd_pmem_shutdown,
544	.drv = {
545		.name = "nd_pmem",
546	},
547	.type = ND_DRIVER_NAMESPACE_IO | ND_DRIVER_NAMESPACE_PMEM,
548};
549
550module_nd_driver(nd_pmem_driver);
551
552MODULE_AUTHOR("Ross Zwisler <ross.zwisler@linux.intel.com>");
553MODULE_LICENSE("GPL v2");