Linux Audio

Check our new training course

Loading...
Note: File does not exist in v3.1.
  1// SPDX-License-Identifier: GPL-2.0-only
  2/*
  3 * Persistent Memory Driver
  4 *
  5 * Copyright (c) 2014-2015, Intel Corporation.
  6 * Copyright (c) 2015, Christoph Hellwig <hch@lst.de>.
  7 * Copyright (c) 2015, Boaz Harrosh <boaz@plexistor.com>.
  8 */
  9
 10#include <asm/cacheflush.h>
 11#include <linux/blkdev.h>
 12#include <linux/hdreg.h>
 13#include <linux/init.h>
 14#include <linux/platform_device.h>
 15#include <linux/set_memory.h>
 16#include <linux/module.h>
 17#include <linux/moduleparam.h>
 18#include <linux/badblocks.h>
 19#include <linux/memremap.h>
 20#include <linux/vmalloc.h>
 21#include <linux/blk-mq.h>
 22#include <linux/pfn_t.h>
 23#include <linux/slab.h>
 24#include <linux/uio.h>
 25#include <linux/dax.h>
 26#include <linux/nd.h>
 27#include <linux/backing-dev.h>
 28#include "pmem.h"
 29#include "pfn.h"
 30#include "nd.h"
 31#include "nd-core.h"
 32
 33static struct device *to_dev(struct pmem_device *pmem)
 34{
 35	/*
 36	 * nvdimm bus services need a 'dev' parameter, and we record the device
 37	 * at init in bb.dev.
 38	 */
 39	return pmem->bb.dev;
 40}
 41
 42static struct nd_region *to_region(struct pmem_device *pmem)
 43{
 44	return to_nd_region(to_dev(pmem)->parent);
 45}
 46
 47static void hwpoison_clear(struct pmem_device *pmem,
 48		phys_addr_t phys, unsigned int len)
 49{
 50	unsigned long pfn_start, pfn_end, pfn;
 51
 52	/* only pmem in the linear map supports HWPoison */
 53	if (is_vmalloc_addr(pmem->virt_addr))
 54		return;
 55
 56	pfn_start = PHYS_PFN(phys);
 57	pfn_end = pfn_start + PHYS_PFN(len);
 58	for (pfn = pfn_start; pfn < pfn_end; pfn++) {
 59		struct page *page = pfn_to_page(pfn);
 60
 61		/*
 62		 * Note, no need to hold a get_dev_pagemap() reference
 63		 * here since we're in the driver I/O path and
 64		 * outstanding I/O requests pin the dev_pagemap.
 65		 */
 66		if (test_and_clear_pmem_poison(page))
 67			clear_mce_nospec(pfn);
 68	}
 69}
 70
 71static blk_status_t pmem_clear_poison(struct pmem_device *pmem,
 72		phys_addr_t offset, unsigned int len)
 73{
 74	struct device *dev = to_dev(pmem);
 75	sector_t sector;
 76	long cleared;
 77	blk_status_t rc = BLK_STS_OK;
 78
 79	sector = (offset - pmem->data_offset) / 512;
 80
 81	cleared = nvdimm_clear_poison(dev, pmem->phys_addr + offset, len);
 82	if (cleared < len)
 83		rc = BLK_STS_IOERR;
 84	if (cleared > 0 && cleared / 512) {
 85		hwpoison_clear(pmem, pmem->phys_addr + offset, cleared);
 86		cleared /= 512;
 87		dev_dbg(dev, "%#llx clear %ld sector%s\n",
 88				(unsigned long long) sector, cleared,
 89				cleared > 1 ? "s" : "");
 90		badblocks_clear(&pmem->bb, sector, cleared);
 91		if (pmem->bb_state)
 92			sysfs_notify_dirent(pmem->bb_state);
 93	}
 94
 95	arch_invalidate_pmem(pmem->virt_addr + offset, len);
 96
 97	return rc;
 98}
 99
100static void write_pmem(void *pmem_addr, struct page *page,
101		unsigned int off, unsigned int len)
102{
103	unsigned int chunk;
104	void *mem;
105
106	while (len) {
107		mem = kmap_atomic(page);
108		chunk = min_t(unsigned int, len, PAGE_SIZE - off);
109		memcpy_flushcache(pmem_addr, mem + off, chunk);
110		kunmap_atomic(mem);
111		len -= chunk;
112		off = 0;
113		page++;
114		pmem_addr += chunk;
115	}
116}
117
118static blk_status_t read_pmem(struct page *page, unsigned int off,
119		void *pmem_addr, unsigned int len)
120{
121	unsigned int chunk;
122	unsigned long rem;
123	void *mem;
124
125	while (len) {
126		mem = kmap_atomic(page);
127		chunk = min_t(unsigned int, len, PAGE_SIZE - off);
128		rem = memcpy_mcsafe(mem + off, pmem_addr, chunk);
129		kunmap_atomic(mem);
130		if (rem)
131			return BLK_STS_IOERR;
132		len -= chunk;
133		off = 0;
134		page++;
135		pmem_addr += chunk;
136	}
137	return BLK_STS_OK;
138}
139
140static blk_status_t pmem_do_bvec(struct pmem_device *pmem, struct page *page,
141			unsigned int len, unsigned int off, unsigned int op,
142			sector_t sector)
143{
144	blk_status_t rc = BLK_STS_OK;
145	bool bad_pmem = false;
146	phys_addr_t pmem_off = sector * 512 + pmem->data_offset;
147	void *pmem_addr = pmem->virt_addr + pmem_off;
148
149	if (unlikely(is_bad_pmem(&pmem->bb, sector, len)))
150		bad_pmem = true;
151
152	if (!op_is_write(op)) {
153		if (unlikely(bad_pmem))
154			rc = BLK_STS_IOERR;
155		else {
156			rc = read_pmem(page, off, pmem_addr, len);
157			flush_dcache_page(page);
158		}
159	} else {
160		/*
161		 * Note that we write the data both before and after
162		 * clearing poison.  The write before clear poison
163		 * handles situations where the latest written data is
164		 * preserved and the clear poison operation simply marks
165		 * the address range as valid without changing the data.
166		 * In this case application software can assume that an
167		 * interrupted write will either return the new good
168		 * data or an error.
169		 *
170		 * However, if pmem_clear_poison() leaves the data in an
171		 * indeterminate state we need to perform the write
172		 * after clear poison.
173		 */
174		flush_dcache_page(page);
175		write_pmem(pmem_addr, page, off, len);
176		if (unlikely(bad_pmem)) {
177			rc = pmem_clear_poison(pmem, pmem_off, len);
178			write_pmem(pmem_addr, page, off, len);
179		}
180	}
181
182	return rc;
183}
184
185static blk_qc_t pmem_make_request(struct request_queue *q, struct bio *bio)
186{
187	int ret = 0;
188	blk_status_t rc = 0;
189	bool do_acct;
190	unsigned long start;
191	struct bio_vec bvec;
192	struct bvec_iter iter;
193	struct pmem_device *pmem = q->queuedata;
194	struct nd_region *nd_region = to_region(pmem);
195
196	if (bio->bi_opf & REQ_PREFLUSH)
197		ret = nvdimm_flush(nd_region, bio);
198
199	do_acct = nd_iostat_start(bio, &start);
200	bio_for_each_segment(bvec, bio, iter) {
201		rc = pmem_do_bvec(pmem, bvec.bv_page, bvec.bv_len,
202				bvec.bv_offset, bio_op(bio), iter.bi_sector);
203		if (rc) {
204			bio->bi_status = rc;
205			break;
206		}
207	}
208	if (do_acct)
209		nd_iostat_end(bio, start);
210
211	if (bio->bi_opf & REQ_FUA)
212		ret = nvdimm_flush(nd_region, bio);
213
214	if (ret)
215		bio->bi_status = errno_to_blk_status(ret);
216
217	bio_endio(bio);
218	return BLK_QC_T_NONE;
219}
220
221static int pmem_rw_page(struct block_device *bdev, sector_t sector,
222		       struct page *page, unsigned int op)
223{
224	struct pmem_device *pmem = bdev->bd_queue->queuedata;
225	blk_status_t rc;
226
227	rc = pmem_do_bvec(pmem, page, hpage_nr_pages(page) * PAGE_SIZE,
228			  0, op, sector);
229
230	/*
231	 * The ->rw_page interface is subtle and tricky.  The core
232	 * retries on any error, so we can only invoke page_endio() in
233	 * the successful completion case.  Otherwise, we'll see crashes
234	 * caused by double completion.
235	 */
236	if (rc == 0)
237		page_endio(page, op_is_write(op), 0);
238
239	return blk_status_to_errno(rc);
240}
241
242/* see "strong" declaration in tools/testing/nvdimm/pmem-dax.c */
243__weak long __pmem_direct_access(struct pmem_device *pmem, pgoff_t pgoff,
244		long nr_pages, void **kaddr, pfn_t *pfn)
245{
246	resource_size_t offset = PFN_PHYS(pgoff) + pmem->data_offset;
247
248	if (unlikely(is_bad_pmem(&pmem->bb, PFN_PHYS(pgoff) / 512,
249					PFN_PHYS(nr_pages))))
250		return -EIO;
251
252	if (kaddr)
253		*kaddr = pmem->virt_addr + offset;
254	if (pfn)
255		*pfn = phys_to_pfn_t(pmem->phys_addr + offset, pmem->pfn_flags);
256
257	/*
258	 * If badblocks are present, limit known good range to the
259	 * requested range.
260	 */
261	if (unlikely(pmem->bb.count))
262		return nr_pages;
263	return PHYS_PFN(pmem->size - pmem->pfn_pad - offset);
264}
265
266static const struct block_device_operations pmem_fops = {
267	.owner =		THIS_MODULE,
268	.rw_page =		pmem_rw_page,
269	.revalidate_disk =	nvdimm_revalidate_disk,
270};
271
272static long pmem_dax_direct_access(struct dax_device *dax_dev,
273		pgoff_t pgoff, long nr_pages, void **kaddr, pfn_t *pfn)
274{
275	struct pmem_device *pmem = dax_get_private(dax_dev);
276
277	return __pmem_direct_access(pmem, pgoff, nr_pages, kaddr, pfn);
278}
279
280/*
281 * Use the 'no check' versions of copy_from_iter_flushcache() and
282 * copy_to_iter_mcsafe() to bypass HARDENED_USERCOPY overhead. Bounds
283 * checking, both file offset and device offset, is handled by
284 * dax_iomap_actor()
285 */
286static size_t pmem_copy_from_iter(struct dax_device *dax_dev, pgoff_t pgoff,
287		void *addr, size_t bytes, struct iov_iter *i)
288{
289	return _copy_from_iter_flushcache(addr, bytes, i);
290}
291
292static size_t pmem_copy_to_iter(struct dax_device *dax_dev, pgoff_t pgoff,
293		void *addr, size_t bytes, struct iov_iter *i)
294{
295	return _copy_to_iter_mcsafe(addr, bytes, i);
296}
297
298static const struct dax_operations pmem_dax_ops = {
299	.direct_access = pmem_dax_direct_access,
300	.dax_supported = generic_fsdax_supported,
301	.copy_from_iter = pmem_copy_from_iter,
302	.copy_to_iter = pmem_copy_to_iter,
303};
304
305static const struct attribute_group *pmem_attribute_groups[] = {
306	&dax_attribute_group,
307	NULL,
308};
309
310static void pmem_pagemap_cleanup(struct dev_pagemap *pgmap)
311{
312	struct request_queue *q =
313		container_of(pgmap->ref, struct request_queue, q_usage_counter);
314
315	blk_cleanup_queue(q);
316}
317
318static void pmem_release_queue(void *pgmap)
319{
320	pmem_pagemap_cleanup(pgmap);
321}
322
323static void pmem_pagemap_kill(struct dev_pagemap *pgmap)
324{
325	struct request_queue *q =
326		container_of(pgmap->ref, struct request_queue, q_usage_counter);
327
328	blk_freeze_queue_start(q);
329}
330
331static void pmem_release_disk(void *__pmem)
332{
333	struct pmem_device *pmem = __pmem;
334
335	kill_dax(pmem->dax_dev);
336	put_dax(pmem->dax_dev);
337	del_gendisk(pmem->disk);
338	put_disk(pmem->disk);
339}
340
341static void pmem_pagemap_page_free(struct page *page)
342{
343	wake_up_var(&page->_refcount);
344}
345
346static const struct dev_pagemap_ops fsdax_pagemap_ops = {
347	.page_free		= pmem_pagemap_page_free,
348	.kill			= pmem_pagemap_kill,
349	.cleanup		= pmem_pagemap_cleanup,
350};
351
352static int pmem_attach_disk(struct device *dev,
353		struct nd_namespace_common *ndns)
354{
355	struct nd_namespace_io *nsio = to_nd_namespace_io(&ndns->dev);
356	struct nd_region *nd_region = to_nd_region(dev->parent);
357	int nid = dev_to_node(dev), fua;
358	struct resource *res = &nsio->res;
359	struct resource bb_res;
360	struct nd_pfn *nd_pfn = NULL;
361	struct dax_device *dax_dev;
362	struct nd_pfn_sb *pfn_sb;
363	struct pmem_device *pmem;
364	struct request_queue *q;
365	struct device *gendev;
366	struct gendisk *disk;
367	void *addr;
368	int rc;
369	unsigned long flags = 0UL;
370
371	pmem = devm_kzalloc(dev, sizeof(*pmem), GFP_KERNEL);
372	if (!pmem)
373		return -ENOMEM;
374
375	/* while nsio_rw_bytes is active, parse a pfn info block if present */
376	if (is_nd_pfn(dev)) {
377		nd_pfn = to_nd_pfn(dev);
378		rc = nvdimm_setup_pfn(nd_pfn, &pmem->pgmap);
379		if (rc)
380			return rc;
381	}
382
383	/* we're attaching a block device, disable raw namespace access */
384	devm_nsio_disable(dev, nsio);
385
386	dev_set_drvdata(dev, pmem);
387	pmem->phys_addr = res->start;
388	pmem->size = resource_size(res);
389	fua = nvdimm_has_flush(nd_region);
390	if (!IS_ENABLED(CONFIG_ARCH_HAS_UACCESS_FLUSHCACHE) || fua < 0) {
391		dev_warn(dev, "unable to guarantee persistence of writes\n");
392		fua = 0;
393	}
394
395	if (!devm_request_mem_region(dev, res->start, resource_size(res),
396				dev_name(&ndns->dev))) {
397		dev_warn(dev, "could not reserve region %pR\n", res);
398		return -EBUSY;
399	}
400
401	q = blk_alloc_queue_node(GFP_KERNEL, dev_to_node(dev));
402	if (!q)
403		return -ENOMEM;
404
405	pmem->pfn_flags = PFN_DEV;
406	pmem->pgmap.ref = &q->q_usage_counter;
407	if (is_nd_pfn(dev)) {
408		pmem->pgmap.type = MEMORY_DEVICE_FS_DAX;
409		pmem->pgmap.ops = &fsdax_pagemap_ops;
410		addr = devm_memremap_pages(dev, &pmem->pgmap);
411		pfn_sb = nd_pfn->pfn_sb;
412		pmem->data_offset = le64_to_cpu(pfn_sb->dataoff);
413		pmem->pfn_pad = resource_size(res) -
414			resource_size(&pmem->pgmap.res);
415		pmem->pfn_flags |= PFN_MAP;
416		memcpy(&bb_res, &pmem->pgmap.res, sizeof(bb_res));
417		bb_res.start += pmem->data_offset;
418	} else if (pmem_should_map_pages(dev)) {
419		memcpy(&pmem->pgmap.res, &nsio->res, sizeof(pmem->pgmap.res));
420		pmem->pgmap.type = MEMORY_DEVICE_FS_DAX;
421		pmem->pgmap.ops = &fsdax_pagemap_ops;
422		addr = devm_memremap_pages(dev, &pmem->pgmap);
423		pmem->pfn_flags |= PFN_MAP;
424		memcpy(&bb_res, &pmem->pgmap.res, sizeof(bb_res));
425	} else {
426		if (devm_add_action_or_reset(dev, pmem_release_queue,
427					&pmem->pgmap))
428			return -ENOMEM;
429		addr = devm_memremap(dev, pmem->phys_addr,
430				pmem->size, ARCH_MEMREMAP_PMEM);
431		memcpy(&bb_res, &nsio->res, sizeof(bb_res));
432	}
433
434	if (IS_ERR(addr))
435		return PTR_ERR(addr);
436	pmem->virt_addr = addr;
437
438	blk_queue_write_cache(q, true, fua);
439	blk_queue_make_request(q, pmem_make_request);
440	blk_queue_physical_block_size(q, PAGE_SIZE);
441	blk_queue_logical_block_size(q, pmem_sector_size(ndns));
442	blk_queue_max_hw_sectors(q, UINT_MAX);
443	blk_queue_flag_set(QUEUE_FLAG_NONROT, q);
444	if (pmem->pfn_flags & PFN_MAP)
445		blk_queue_flag_set(QUEUE_FLAG_DAX, q);
446	q->queuedata = pmem;
447
448	disk = alloc_disk_node(0, nid);
449	if (!disk)
450		return -ENOMEM;
451	pmem->disk = disk;
452
453	disk->fops		= &pmem_fops;
454	disk->queue		= q;
455	disk->flags		= GENHD_FL_EXT_DEVT;
456	disk->queue->backing_dev_info->capabilities |= BDI_CAP_SYNCHRONOUS_IO;
457	nvdimm_namespace_disk_name(ndns, disk->disk_name);
458	set_capacity(disk, (pmem->size - pmem->pfn_pad - pmem->data_offset)
459			/ 512);
460	if (devm_init_badblocks(dev, &pmem->bb))
461		return -ENOMEM;
462	nvdimm_badblocks_populate(nd_region, &pmem->bb, &bb_res);
463	disk->bb = &pmem->bb;
464
465	if (is_nvdimm_sync(nd_region))
466		flags = DAXDEV_F_SYNC;
467	dax_dev = alloc_dax(pmem, disk->disk_name, &pmem_dax_ops, flags);
468	if (!dax_dev) {
469		put_disk(disk);
470		return -ENOMEM;
471	}
472	dax_write_cache(dax_dev, nvdimm_has_cache(nd_region));
473	pmem->dax_dev = dax_dev;
474	gendev = disk_to_dev(disk);
475	gendev->groups = pmem_attribute_groups;
476
477	device_add_disk(dev, disk, NULL);
478	if (devm_add_action_or_reset(dev, pmem_release_disk, pmem))
479		return -ENOMEM;
480
481	revalidate_disk(disk);
482
483	pmem->bb_state = sysfs_get_dirent(disk_to_dev(disk)->kobj.sd,
484					  "badblocks");
485	if (!pmem->bb_state)
486		dev_warn(dev, "'badblocks' notification disabled\n");
487
488	return 0;
489}
490
491static int nd_pmem_probe(struct device *dev)
492{
493	int ret;
494	struct nd_namespace_common *ndns;
495
496	ndns = nvdimm_namespace_common_probe(dev);
497	if (IS_ERR(ndns))
498		return PTR_ERR(ndns);
499
500	if (devm_nsio_enable(dev, to_nd_namespace_io(&ndns->dev)))
501		return -ENXIO;
502
503	if (is_nd_btt(dev))
504		return nvdimm_namespace_attach_btt(ndns);
505
506	if (is_nd_pfn(dev))
507		return pmem_attach_disk(dev, ndns);
508
509	ret = nd_btt_probe(dev, ndns);
510	if (ret == 0)
511		return -ENXIO;
512
513	/*
514	 * We have two failure conditions here, there is no
515	 * info reserver block or we found a valid info reserve block
516	 * but failed to initialize the pfn superblock.
517	 *
518	 * For the first case consider namespace as a raw pmem namespace
519	 * and attach a disk.
520	 *
521	 * For the latter, consider this a success and advance the namespace
522	 * seed.
523	 */
524	ret = nd_pfn_probe(dev, ndns);
525	if (ret == 0)
526		return -ENXIO;
527	else if (ret == -EOPNOTSUPP)
528		return ret;
529
530	ret = nd_dax_probe(dev, ndns);
531	if (ret == 0)
532		return -ENXIO;
533	else if (ret == -EOPNOTSUPP)
534		return ret;
535	return pmem_attach_disk(dev, ndns);
536}
537
538static int nd_pmem_remove(struct device *dev)
539{
540	struct pmem_device *pmem = dev_get_drvdata(dev);
541
542	if (is_nd_btt(dev))
543		nvdimm_namespace_detach_btt(to_nd_btt(dev));
544	else {
545		/*
546		 * Note, this assumes nd_device_lock() context to not
547		 * race nd_pmem_notify()
548		 */
549		sysfs_put(pmem->bb_state);
550		pmem->bb_state = NULL;
551	}
552	nvdimm_flush(to_nd_region(dev->parent), NULL);
553
554	return 0;
555}
556
557static void nd_pmem_shutdown(struct device *dev)
558{
559	nvdimm_flush(to_nd_region(dev->parent), NULL);
560}
561
562static void nd_pmem_notify(struct device *dev, enum nvdimm_event event)
563{
564	struct nd_region *nd_region;
565	resource_size_t offset = 0, end_trunc = 0;
566	struct nd_namespace_common *ndns;
567	struct nd_namespace_io *nsio;
568	struct resource res;
569	struct badblocks *bb;
570	struct kernfs_node *bb_state;
571
572	if (event != NVDIMM_REVALIDATE_POISON)
573		return;
574
575	if (is_nd_btt(dev)) {
576		struct nd_btt *nd_btt = to_nd_btt(dev);
577
578		ndns = nd_btt->ndns;
579		nd_region = to_nd_region(ndns->dev.parent);
580		nsio = to_nd_namespace_io(&ndns->dev);
581		bb = &nsio->bb;
582		bb_state = NULL;
583	} else {
584		struct pmem_device *pmem = dev_get_drvdata(dev);
585
586		nd_region = to_region(pmem);
587		bb = &pmem->bb;
588		bb_state = pmem->bb_state;
589
590		if (is_nd_pfn(dev)) {
591			struct nd_pfn *nd_pfn = to_nd_pfn(dev);
592			struct nd_pfn_sb *pfn_sb = nd_pfn->pfn_sb;
593
594			ndns = nd_pfn->ndns;
595			offset = pmem->data_offset +
596					__le32_to_cpu(pfn_sb->start_pad);
597			end_trunc = __le32_to_cpu(pfn_sb->end_trunc);
598		} else {
599			ndns = to_ndns(dev);
600		}
601
602		nsio = to_nd_namespace_io(&ndns->dev);
603	}
604
605	res.start = nsio->res.start + offset;
606	res.end = nsio->res.end - end_trunc;
607	nvdimm_badblocks_populate(nd_region, bb, &res);
608	if (bb_state)
609		sysfs_notify_dirent(bb_state);
610}
611
612MODULE_ALIAS("pmem");
613MODULE_ALIAS_ND_DEVICE(ND_DEVICE_NAMESPACE_IO);
614MODULE_ALIAS_ND_DEVICE(ND_DEVICE_NAMESPACE_PMEM);
615static struct nd_device_driver nd_pmem_driver = {
616	.probe = nd_pmem_probe,
617	.remove = nd_pmem_remove,
618	.notify = nd_pmem_notify,
619	.shutdown = nd_pmem_shutdown,
620	.drv = {
621		.name = "nd_pmem",
622	},
623	.type = ND_DRIVER_NAMESPACE_IO | ND_DRIVER_NAMESPACE_PMEM,
624};
625
626module_nd_driver(nd_pmem_driver);
627
628MODULE_AUTHOR("Ross Zwisler <ross.zwisler@linux.intel.com>");
629MODULE_LICENSE("GPL v2");