Loading...
1/*
2 * Register map access API
3 *
4 * Copyright 2011 Wolfson Microelectronics plc
5 *
6 * Author: Mark Brown <broonie@opensource.wolfsonmicro.com>
7 *
8 * This program is free software; you can redistribute it and/or modify
9 * it under the terms of the GNU General Public License version 2 as
10 * published by the Free Software Foundation.
11 */
12
13#include <linux/slab.h>
14#include <linux/module.h>
15#include <linux/mutex.h>
16#include <linux/err.h>
17
18#include <linux/regmap.h>
19
20struct regmap;
21
22struct regmap_format {
23 size_t buf_size;
24 size_t reg_bytes;
25 size_t val_bytes;
26 void (*format_write)(struct regmap *map,
27 unsigned int reg, unsigned int val);
28 void (*format_reg)(void *buf, unsigned int reg);
29 void (*format_val)(void *buf, unsigned int val);
30 unsigned int (*parse_val)(void *buf);
31};
32
33struct regmap {
34 struct mutex lock;
35
36 struct device *dev; /* Device we do I/O on */
37 void *work_buf; /* Scratch buffer used to format I/O */
38 struct regmap_format format; /* Buffer format */
39 const struct regmap_bus *bus;
40};
41
42static void regmap_format_4_12_write(struct regmap *map,
43 unsigned int reg, unsigned int val)
44{
45 __be16 *out = map->work_buf;
46 *out = cpu_to_be16((reg << 12) | val);
47}
48
49static void regmap_format_7_9_write(struct regmap *map,
50 unsigned int reg, unsigned int val)
51{
52 __be16 *out = map->work_buf;
53 *out = cpu_to_be16((reg << 9) | val);
54}
55
56static void regmap_format_8(void *buf, unsigned int val)
57{
58 u8 *b = buf;
59
60 b[0] = val;
61}
62
63static void regmap_format_16(void *buf, unsigned int val)
64{
65 __be16 *b = buf;
66
67 b[0] = cpu_to_be16(val);
68}
69
70static unsigned int regmap_parse_8(void *buf)
71{
72 u8 *b = buf;
73
74 return b[0];
75}
76
77static unsigned int regmap_parse_16(void *buf)
78{
79 __be16 *b = buf;
80
81 b[0] = be16_to_cpu(b[0]);
82
83 return b[0];
84}
85
86/**
87 * regmap_init(): Initialise register map
88 *
89 * @dev: Device that will be interacted with
90 * @bus: Bus-specific callbacks to use with device
91 * @config: Configuration for register map
92 *
93 * The return value will be an ERR_PTR() on error or a valid pointer to
94 * a struct regmap. This function should generally not be called
95 * directly, it should be called by bus-specific init functions.
96 */
97struct regmap *regmap_init(struct device *dev,
98 const struct regmap_bus *bus,
99 const struct regmap_config *config)
100{
101 struct regmap *map;
102 int ret = -EINVAL;
103
104 if (!bus || !config)
105 return NULL;
106
107 map = kzalloc(sizeof(*map), GFP_KERNEL);
108 if (map == NULL) {
109 ret = -ENOMEM;
110 goto err;
111 }
112
113 mutex_init(&map->lock);
114 map->format.buf_size = (config->reg_bits + config->val_bits) / 8;
115 map->format.reg_bytes = config->reg_bits / 8;
116 map->format.val_bytes = config->val_bits / 8;
117 map->dev = dev;
118 map->bus = bus;
119
120 switch (config->reg_bits) {
121 case 4:
122 switch (config->val_bits) {
123 case 12:
124 map->format.format_write = regmap_format_4_12_write;
125 break;
126 default:
127 goto err_map;
128 }
129 break;
130
131 case 7:
132 switch (config->val_bits) {
133 case 9:
134 map->format.format_write = regmap_format_7_9_write;
135 break;
136 default:
137 goto err_map;
138 }
139 break;
140
141 case 8:
142 map->format.format_reg = regmap_format_8;
143 break;
144
145 case 16:
146 map->format.format_reg = regmap_format_16;
147 break;
148
149 default:
150 goto err_map;
151 }
152
153 switch (config->val_bits) {
154 case 8:
155 map->format.format_val = regmap_format_8;
156 map->format.parse_val = regmap_parse_8;
157 break;
158 case 16:
159 map->format.format_val = regmap_format_16;
160 map->format.parse_val = regmap_parse_16;
161 break;
162 }
163
164 if (!map->format.format_write &&
165 !(map->format.format_reg && map->format.format_val))
166 goto err_map;
167
168 map->work_buf = kmalloc(map->format.buf_size, GFP_KERNEL);
169 if (map->work_buf == NULL) {
170 ret = -ENOMEM;
171 goto err_map;
172 }
173
174 return map;
175
176err_map:
177 kfree(map);
178err:
179 return ERR_PTR(ret);
180}
181EXPORT_SYMBOL_GPL(regmap_init);
182
183/**
184 * regmap_exit(): Free a previously allocated register map
185 */
186void regmap_exit(struct regmap *map)
187{
188 kfree(map->work_buf);
189 kfree(map);
190}
191EXPORT_SYMBOL_GPL(regmap_exit);
192
193static int _regmap_raw_write(struct regmap *map, unsigned int reg,
194 const void *val, size_t val_len)
195{
196 void *buf;
197 int ret = -ENOTSUPP;
198 size_t len;
199
200 map->format.format_reg(map->work_buf, reg);
201
202 /* Try to do a gather write if we can */
203 if (map->bus->gather_write)
204 ret = map->bus->gather_write(map->dev, map->work_buf,
205 map->format.reg_bytes,
206 val, val_len);
207
208 /* Otherwise fall back on linearising by hand. */
209 if (ret == -ENOTSUPP) {
210 len = map->format.reg_bytes + val_len;
211 buf = kmalloc(len, GFP_KERNEL);
212 if (!buf)
213 return -ENOMEM;
214
215 memcpy(buf, map->work_buf, map->format.reg_bytes);
216 memcpy(buf + map->format.reg_bytes, val, val_len);
217 ret = map->bus->write(map->dev, buf, len);
218
219 kfree(buf);
220 }
221
222 return ret;
223}
224
225static int _regmap_write(struct regmap *map, unsigned int reg,
226 unsigned int val)
227{
228 BUG_ON(!map->format.format_write && !map->format.format_val);
229
230 if (map->format.format_write) {
231 map->format.format_write(map, reg, val);
232
233 return map->bus->write(map->dev, map->work_buf,
234 map->format.buf_size);
235 } else {
236 map->format.format_val(map->work_buf + map->format.reg_bytes,
237 val);
238 return _regmap_raw_write(map, reg,
239 map->work_buf + map->format.reg_bytes,
240 map->format.val_bytes);
241 }
242}
243
244/**
245 * regmap_write(): Write a value to a single register
246 *
247 * @map: Register map to write to
248 * @reg: Register to write to
249 * @val: Value to be written
250 *
251 * A value of zero will be returned on success, a negative errno will
252 * be returned in error cases.
253 */
254int regmap_write(struct regmap *map, unsigned int reg, unsigned int val)
255{
256 int ret;
257
258 mutex_lock(&map->lock);
259
260 ret = _regmap_write(map, reg, val);
261
262 mutex_unlock(&map->lock);
263
264 return ret;
265}
266EXPORT_SYMBOL_GPL(regmap_write);
267
268/**
269 * regmap_raw_write(): Write raw values to one or more registers
270 *
271 * @map: Register map to write to
272 * @reg: Initial register to write to
273 * @val: Block of data to be written, laid out for direct transmission to the
274 * device
275 * @val_len: Length of data pointed to by val.
276 *
277 * This function is intended to be used for things like firmware
278 * download where a large block of data needs to be transferred to the
279 * device. No formatting will be done on the data provided.
280 *
281 * A value of zero will be returned on success, a negative errno will
282 * be returned in error cases.
283 */
284int regmap_raw_write(struct regmap *map, unsigned int reg,
285 const void *val, size_t val_len)
286{
287 int ret;
288
289 mutex_lock(&map->lock);
290
291 ret = _regmap_raw_write(map, reg, val, val_len);
292
293 mutex_unlock(&map->lock);
294
295 return ret;
296}
297EXPORT_SYMBOL_GPL(regmap_raw_write);
298
299static int _regmap_raw_read(struct regmap *map, unsigned int reg, void *val,
300 unsigned int val_len)
301{
302 u8 *u8 = map->work_buf;
303 int ret;
304
305 map->format.format_reg(map->work_buf, reg);
306
307 /*
308 * Some buses flag reads by setting the high bits in the
309 * register addresss; since it's always the high bits for all
310 * current formats we can do this here rather than in
311 * formatting. This may break if we get interesting formats.
312 */
313 if (map->bus->read_flag_mask)
314 u8[0] |= map->bus->read_flag_mask;
315
316 ret = map->bus->read(map->dev, map->work_buf, map->format.reg_bytes,
317 val, val_len);
318 if (ret != 0)
319 return ret;
320
321 return 0;
322}
323
324static int _regmap_read(struct regmap *map, unsigned int reg,
325 unsigned int *val)
326{
327 int ret;
328
329 if (!map->format.parse_val)
330 return -EINVAL;
331
332 ret = _regmap_raw_read(map, reg, map->work_buf, map->format.val_bytes);
333 if (ret == 0)
334 *val = map->format.parse_val(map->work_buf);
335
336 return ret;
337}
338
339/**
340 * regmap_read(): Read a value from a single register
341 *
342 * @map: Register map to write to
343 * @reg: Register to be read from
344 * @val: Pointer to store read value
345 *
346 * A value of zero will be returned on success, a negative errno will
347 * be returned in error cases.
348 */
349int regmap_read(struct regmap *map, unsigned int reg, unsigned int *val)
350{
351 int ret;
352
353 mutex_lock(&map->lock);
354
355 ret = _regmap_read(map, reg, val);
356
357 mutex_unlock(&map->lock);
358
359 return ret;
360}
361EXPORT_SYMBOL_GPL(regmap_read);
362
363/**
364 * regmap_raw_read(): Read raw data from the device
365 *
366 * @map: Register map to write to
367 * @reg: First register to be read from
368 * @val: Pointer to store read value
369 * @val_len: Size of data to read
370 *
371 * A value of zero will be returned on success, a negative errno will
372 * be returned in error cases.
373 */
374int regmap_raw_read(struct regmap *map, unsigned int reg, void *val,
375 size_t val_len)
376{
377 int ret;
378
379 mutex_lock(&map->lock);
380
381 ret = _regmap_raw_read(map, reg, val, val_len);
382
383 mutex_unlock(&map->lock);
384
385 return ret;
386}
387EXPORT_SYMBOL_GPL(regmap_raw_read);
388
389/**
390 * regmap_bulk_read(): Read multiple registers from the device
391 *
392 * @map: Register map to write to
393 * @reg: First register to be read from
394 * @val: Pointer to store read value, in native register size for device
395 * @val_count: Number of registers to read
396 *
397 * A value of zero will be returned on success, a negative errno will
398 * be returned in error cases.
399 */
400int regmap_bulk_read(struct regmap *map, unsigned int reg, void *val,
401 size_t val_count)
402{
403 int ret, i;
404 size_t val_bytes = map->format.val_bytes;
405
406 if (!map->format.parse_val)
407 return -EINVAL;
408
409 ret = regmap_raw_read(map, reg, val, val_bytes * val_count);
410 if (ret != 0)
411 return ret;
412
413 for (i = 0; i < val_count * val_bytes; i += val_bytes)
414 map->format.parse_val(val + i);
415
416 return 0;
417}
418EXPORT_SYMBOL_GPL(regmap_bulk_read);
419
420/**
421 * remap_update_bits: Perform a read/modify/write cycle on the register map
422 *
423 * @map: Register map to update
424 * @reg: Register to update
425 * @mask: Bitmask to change
426 * @val: New value for bitmask
427 *
428 * Returns zero for success, a negative number on error.
429 */
430int regmap_update_bits(struct regmap *map, unsigned int reg,
431 unsigned int mask, unsigned int val)
432{
433 int ret;
434 unsigned int tmp;
435
436 mutex_lock(&map->lock);
437
438 ret = _regmap_read(map, reg, &tmp);
439 if (ret != 0)
440 goto out;
441
442 tmp &= ~mask;
443 tmp |= val & mask;
444
445 ret = _regmap_write(map, reg, tmp);
446
447out:
448 mutex_unlock(&map->lock);
449
450 return ret;
451}
452EXPORT_SYMBOL_GPL(regmap_update_bits);
1// SPDX-License-Identifier: GPL-2.0
2//
3// Register map access API
4//
5// Copyright 2011 Wolfson Microelectronics plc
6//
7// Author: Mark Brown <broonie@opensource.wolfsonmicro.com>
8
9#include <linux/device.h>
10#include <linux/slab.h>
11#include <linux/export.h>
12#include <linux/mutex.h>
13#include <linux/err.h>
14#include <linux/property.h>
15#include <linux/rbtree.h>
16#include <linux/sched.h>
17#include <linux/delay.h>
18#include <linux/log2.h>
19#include <linux/hwspinlock.h>
20#include <asm/unaligned.h>
21
22#define CREATE_TRACE_POINTS
23#include "trace.h"
24
25#include "internal.h"
26
27/*
28 * Sometimes for failures during very early init the trace
29 * infrastructure isn't available early enough to be used. For this
30 * sort of problem defining LOG_DEVICE will add printks for basic
31 * register I/O on a specific device.
32 */
33#undef LOG_DEVICE
34
35#ifdef LOG_DEVICE
36static inline bool regmap_should_log(struct regmap *map)
37{
38 return (map->dev && strcmp(dev_name(map->dev), LOG_DEVICE) == 0);
39}
40#else
41static inline bool regmap_should_log(struct regmap *map) { return false; }
42#endif
43
44
45static int _regmap_update_bits(struct regmap *map, unsigned int reg,
46 unsigned int mask, unsigned int val,
47 bool *change, bool force_write);
48
49static int _regmap_bus_reg_read(void *context, unsigned int reg,
50 unsigned int *val);
51static int _regmap_bus_read(void *context, unsigned int reg,
52 unsigned int *val);
53static int _regmap_bus_formatted_write(void *context, unsigned int reg,
54 unsigned int val);
55static int _regmap_bus_reg_write(void *context, unsigned int reg,
56 unsigned int val);
57static int _regmap_bus_raw_write(void *context, unsigned int reg,
58 unsigned int val);
59
60bool regmap_reg_in_ranges(unsigned int reg,
61 const struct regmap_range *ranges,
62 unsigned int nranges)
63{
64 const struct regmap_range *r;
65 int i;
66
67 for (i = 0, r = ranges; i < nranges; i++, r++)
68 if (regmap_reg_in_range(reg, r))
69 return true;
70 return false;
71}
72EXPORT_SYMBOL_GPL(regmap_reg_in_ranges);
73
74bool regmap_check_range_table(struct regmap *map, unsigned int reg,
75 const struct regmap_access_table *table)
76{
77 /* Check "no ranges" first */
78 if (regmap_reg_in_ranges(reg, table->no_ranges, table->n_no_ranges))
79 return false;
80
81 /* In case zero "yes ranges" are supplied, any reg is OK */
82 if (!table->n_yes_ranges)
83 return true;
84
85 return regmap_reg_in_ranges(reg, table->yes_ranges,
86 table->n_yes_ranges);
87}
88EXPORT_SYMBOL_GPL(regmap_check_range_table);
89
90bool regmap_writeable(struct regmap *map, unsigned int reg)
91{
92 if (map->max_register && reg > map->max_register)
93 return false;
94
95 if (map->writeable_reg)
96 return map->writeable_reg(map->dev, reg);
97
98 if (map->wr_table)
99 return regmap_check_range_table(map, reg, map->wr_table);
100
101 return true;
102}
103
104bool regmap_cached(struct regmap *map, unsigned int reg)
105{
106 int ret;
107 unsigned int val;
108
109 if (map->cache_type == REGCACHE_NONE)
110 return false;
111
112 if (!map->cache_ops)
113 return false;
114
115 if (map->max_register && reg > map->max_register)
116 return false;
117
118 map->lock(map->lock_arg);
119 ret = regcache_read(map, reg, &val);
120 map->unlock(map->lock_arg);
121 if (ret)
122 return false;
123
124 return true;
125}
126
127bool regmap_readable(struct regmap *map, unsigned int reg)
128{
129 if (!map->reg_read)
130 return false;
131
132 if (map->max_register && reg > map->max_register)
133 return false;
134
135 if (map->format.format_write)
136 return false;
137
138 if (map->readable_reg)
139 return map->readable_reg(map->dev, reg);
140
141 if (map->rd_table)
142 return regmap_check_range_table(map, reg, map->rd_table);
143
144 return true;
145}
146
147bool regmap_volatile(struct regmap *map, unsigned int reg)
148{
149 if (!map->format.format_write && !regmap_readable(map, reg))
150 return false;
151
152 if (map->volatile_reg)
153 return map->volatile_reg(map->dev, reg);
154
155 if (map->volatile_table)
156 return regmap_check_range_table(map, reg, map->volatile_table);
157
158 if (map->cache_ops)
159 return false;
160 else
161 return true;
162}
163
164bool regmap_precious(struct regmap *map, unsigned int reg)
165{
166 if (!regmap_readable(map, reg))
167 return false;
168
169 if (map->precious_reg)
170 return map->precious_reg(map->dev, reg);
171
172 if (map->precious_table)
173 return regmap_check_range_table(map, reg, map->precious_table);
174
175 return false;
176}
177
178bool regmap_writeable_noinc(struct regmap *map, unsigned int reg)
179{
180 if (map->writeable_noinc_reg)
181 return map->writeable_noinc_reg(map->dev, reg);
182
183 if (map->wr_noinc_table)
184 return regmap_check_range_table(map, reg, map->wr_noinc_table);
185
186 return true;
187}
188
189bool regmap_readable_noinc(struct regmap *map, unsigned int reg)
190{
191 if (map->readable_noinc_reg)
192 return map->readable_noinc_reg(map->dev, reg);
193
194 if (map->rd_noinc_table)
195 return regmap_check_range_table(map, reg, map->rd_noinc_table);
196
197 return true;
198}
199
200static bool regmap_volatile_range(struct regmap *map, unsigned int reg,
201 size_t num)
202{
203 unsigned int i;
204
205 for (i = 0; i < num; i++)
206 if (!regmap_volatile(map, reg + regmap_get_offset(map, i)))
207 return false;
208
209 return true;
210}
211
212static void regmap_format_12_20_write(struct regmap *map,
213 unsigned int reg, unsigned int val)
214{
215 u8 *out = map->work_buf;
216
217 out[0] = reg >> 4;
218 out[1] = (reg << 4) | (val >> 16);
219 out[2] = val >> 8;
220 out[3] = val;
221}
222
223
224static void regmap_format_2_6_write(struct regmap *map,
225 unsigned int reg, unsigned int val)
226{
227 u8 *out = map->work_buf;
228
229 *out = (reg << 6) | val;
230}
231
232static void regmap_format_4_12_write(struct regmap *map,
233 unsigned int reg, unsigned int val)
234{
235 __be16 *out = map->work_buf;
236 *out = cpu_to_be16((reg << 12) | val);
237}
238
239static void regmap_format_7_9_write(struct regmap *map,
240 unsigned int reg, unsigned int val)
241{
242 __be16 *out = map->work_buf;
243 *out = cpu_to_be16((reg << 9) | val);
244}
245
246static void regmap_format_7_17_write(struct regmap *map,
247 unsigned int reg, unsigned int val)
248{
249 u8 *out = map->work_buf;
250
251 out[2] = val;
252 out[1] = val >> 8;
253 out[0] = (val >> 16) | (reg << 1);
254}
255
256static void regmap_format_10_14_write(struct regmap *map,
257 unsigned int reg, unsigned int val)
258{
259 u8 *out = map->work_buf;
260
261 out[2] = val;
262 out[1] = (val >> 8) | (reg << 6);
263 out[0] = reg >> 2;
264}
265
266static void regmap_format_8(void *buf, unsigned int val, unsigned int shift)
267{
268 u8 *b = buf;
269
270 b[0] = val << shift;
271}
272
273static void regmap_format_16_be(void *buf, unsigned int val, unsigned int shift)
274{
275 put_unaligned_be16(val << shift, buf);
276}
277
278static void regmap_format_16_le(void *buf, unsigned int val, unsigned int shift)
279{
280 put_unaligned_le16(val << shift, buf);
281}
282
283static void regmap_format_16_native(void *buf, unsigned int val,
284 unsigned int shift)
285{
286 u16 v = val << shift;
287
288 memcpy(buf, &v, sizeof(v));
289}
290
291static void regmap_format_24(void *buf, unsigned int val, unsigned int shift)
292{
293 u8 *b = buf;
294
295 val <<= shift;
296
297 b[0] = val >> 16;
298 b[1] = val >> 8;
299 b[2] = val;
300}
301
302static void regmap_format_32_be(void *buf, unsigned int val, unsigned int shift)
303{
304 put_unaligned_be32(val << shift, buf);
305}
306
307static void regmap_format_32_le(void *buf, unsigned int val, unsigned int shift)
308{
309 put_unaligned_le32(val << shift, buf);
310}
311
312static void regmap_format_32_native(void *buf, unsigned int val,
313 unsigned int shift)
314{
315 u32 v = val << shift;
316
317 memcpy(buf, &v, sizeof(v));
318}
319
320#ifdef CONFIG_64BIT
321static void regmap_format_64_be(void *buf, unsigned int val, unsigned int shift)
322{
323 put_unaligned_be64((u64) val << shift, buf);
324}
325
326static void regmap_format_64_le(void *buf, unsigned int val, unsigned int shift)
327{
328 put_unaligned_le64((u64) val << shift, buf);
329}
330
331static void regmap_format_64_native(void *buf, unsigned int val,
332 unsigned int shift)
333{
334 u64 v = (u64) val << shift;
335
336 memcpy(buf, &v, sizeof(v));
337}
338#endif
339
340static void regmap_parse_inplace_noop(void *buf)
341{
342}
343
344static unsigned int regmap_parse_8(const void *buf)
345{
346 const u8 *b = buf;
347
348 return b[0];
349}
350
351static unsigned int regmap_parse_16_be(const void *buf)
352{
353 return get_unaligned_be16(buf);
354}
355
356static unsigned int regmap_parse_16_le(const void *buf)
357{
358 return get_unaligned_le16(buf);
359}
360
361static void regmap_parse_16_be_inplace(void *buf)
362{
363 u16 v = get_unaligned_be16(buf);
364
365 memcpy(buf, &v, sizeof(v));
366}
367
368static void regmap_parse_16_le_inplace(void *buf)
369{
370 u16 v = get_unaligned_le16(buf);
371
372 memcpy(buf, &v, sizeof(v));
373}
374
375static unsigned int regmap_parse_16_native(const void *buf)
376{
377 u16 v;
378
379 memcpy(&v, buf, sizeof(v));
380 return v;
381}
382
383static unsigned int regmap_parse_24(const void *buf)
384{
385 const u8 *b = buf;
386 unsigned int ret = b[2];
387 ret |= ((unsigned int)b[1]) << 8;
388 ret |= ((unsigned int)b[0]) << 16;
389
390 return ret;
391}
392
393static unsigned int regmap_parse_32_be(const void *buf)
394{
395 return get_unaligned_be32(buf);
396}
397
398static unsigned int regmap_parse_32_le(const void *buf)
399{
400 return get_unaligned_le32(buf);
401}
402
403static void regmap_parse_32_be_inplace(void *buf)
404{
405 u32 v = get_unaligned_be32(buf);
406
407 memcpy(buf, &v, sizeof(v));
408}
409
410static void regmap_parse_32_le_inplace(void *buf)
411{
412 u32 v = get_unaligned_le32(buf);
413
414 memcpy(buf, &v, sizeof(v));
415}
416
417static unsigned int regmap_parse_32_native(const void *buf)
418{
419 u32 v;
420
421 memcpy(&v, buf, sizeof(v));
422 return v;
423}
424
425#ifdef CONFIG_64BIT
426static unsigned int regmap_parse_64_be(const void *buf)
427{
428 return get_unaligned_be64(buf);
429}
430
431static unsigned int regmap_parse_64_le(const void *buf)
432{
433 return get_unaligned_le64(buf);
434}
435
436static void regmap_parse_64_be_inplace(void *buf)
437{
438 u64 v = get_unaligned_be64(buf);
439
440 memcpy(buf, &v, sizeof(v));
441}
442
443static void regmap_parse_64_le_inplace(void *buf)
444{
445 u64 v = get_unaligned_le64(buf);
446
447 memcpy(buf, &v, sizeof(v));
448}
449
450static unsigned int regmap_parse_64_native(const void *buf)
451{
452 u64 v;
453
454 memcpy(&v, buf, sizeof(v));
455 return v;
456}
457#endif
458
459static void regmap_lock_hwlock(void *__map)
460{
461 struct regmap *map = __map;
462
463 hwspin_lock_timeout(map->hwlock, UINT_MAX);
464}
465
466static void regmap_lock_hwlock_irq(void *__map)
467{
468 struct regmap *map = __map;
469
470 hwspin_lock_timeout_irq(map->hwlock, UINT_MAX);
471}
472
473static void regmap_lock_hwlock_irqsave(void *__map)
474{
475 struct regmap *map = __map;
476
477 hwspin_lock_timeout_irqsave(map->hwlock, UINT_MAX,
478 &map->spinlock_flags);
479}
480
481static void regmap_unlock_hwlock(void *__map)
482{
483 struct regmap *map = __map;
484
485 hwspin_unlock(map->hwlock);
486}
487
488static void regmap_unlock_hwlock_irq(void *__map)
489{
490 struct regmap *map = __map;
491
492 hwspin_unlock_irq(map->hwlock);
493}
494
495static void regmap_unlock_hwlock_irqrestore(void *__map)
496{
497 struct regmap *map = __map;
498
499 hwspin_unlock_irqrestore(map->hwlock, &map->spinlock_flags);
500}
501
502static void regmap_lock_unlock_none(void *__map)
503{
504
505}
506
507static void regmap_lock_mutex(void *__map)
508{
509 struct regmap *map = __map;
510 mutex_lock(&map->mutex);
511}
512
513static void regmap_unlock_mutex(void *__map)
514{
515 struct regmap *map = __map;
516 mutex_unlock(&map->mutex);
517}
518
519static void regmap_lock_spinlock(void *__map)
520__acquires(&map->spinlock)
521{
522 struct regmap *map = __map;
523 unsigned long flags;
524
525 spin_lock_irqsave(&map->spinlock, flags);
526 map->spinlock_flags = flags;
527}
528
529static void regmap_unlock_spinlock(void *__map)
530__releases(&map->spinlock)
531{
532 struct regmap *map = __map;
533 spin_unlock_irqrestore(&map->spinlock, map->spinlock_flags);
534}
535
536static void dev_get_regmap_release(struct device *dev, void *res)
537{
538 /*
539 * We don't actually have anything to do here; the goal here
540 * is not to manage the regmap but to provide a simple way to
541 * get the regmap back given a struct device.
542 */
543}
544
545static bool _regmap_range_add(struct regmap *map,
546 struct regmap_range_node *data)
547{
548 struct rb_root *root = &map->range_tree;
549 struct rb_node **new = &(root->rb_node), *parent = NULL;
550
551 while (*new) {
552 struct regmap_range_node *this =
553 rb_entry(*new, struct regmap_range_node, node);
554
555 parent = *new;
556 if (data->range_max < this->range_min)
557 new = &((*new)->rb_left);
558 else if (data->range_min > this->range_max)
559 new = &((*new)->rb_right);
560 else
561 return false;
562 }
563
564 rb_link_node(&data->node, parent, new);
565 rb_insert_color(&data->node, root);
566
567 return true;
568}
569
570static struct regmap_range_node *_regmap_range_lookup(struct regmap *map,
571 unsigned int reg)
572{
573 struct rb_node *node = map->range_tree.rb_node;
574
575 while (node) {
576 struct regmap_range_node *this =
577 rb_entry(node, struct regmap_range_node, node);
578
579 if (reg < this->range_min)
580 node = node->rb_left;
581 else if (reg > this->range_max)
582 node = node->rb_right;
583 else
584 return this;
585 }
586
587 return NULL;
588}
589
590static void regmap_range_exit(struct regmap *map)
591{
592 struct rb_node *next;
593 struct regmap_range_node *range_node;
594
595 next = rb_first(&map->range_tree);
596 while (next) {
597 range_node = rb_entry(next, struct regmap_range_node, node);
598 next = rb_next(&range_node->node);
599 rb_erase(&range_node->node, &map->range_tree);
600 kfree(range_node);
601 }
602
603 kfree(map->selector_work_buf);
604}
605
606static int regmap_set_name(struct regmap *map, const struct regmap_config *config)
607{
608 if (config->name) {
609 const char *name = kstrdup_const(config->name, GFP_KERNEL);
610
611 if (!name)
612 return -ENOMEM;
613
614 kfree_const(map->name);
615 map->name = name;
616 }
617
618 return 0;
619}
620
621int regmap_attach_dev(struct device *dev, struct regmap *map,
622 const struct regmap_config *config)
623{
624 struct regmap **m;
625 int ret;
626
627 map->dev = dev;
628
629 ret = regmap_set_name(map, config);
630 if (ret)
631 return ret;
632
633 regmap_debugfs_init(map);
634
635 /* Add a devres resource for dev_get_regmap() */
636 m = devres_alloc(dev_get_regmap_release, sizeof(*m), GFP_KERNEL);
637 if (!m) {
638 regmap_debugfs_exit(map);
639 return -ENOMEM;
640 }
641 *m = map;
642 devres_add(dev, m);
643
644 return 0;
645}
646EXPORT_SYMBOL_GPL(regmap_attach_dev);
647
648static enum regmap_endian regmap_get_reg_endian(const struct regmap_bus *bus,
649 const struct regmap_config *config)
650{
651 enum regmap_endian endian;
652
653 /* Retrieve the endianness specification from the regmap config */
654 endian = config->reg_format_endian;
655
656 /* If the regmap config specified a non-default value, use that */
657 if (endian != REGMAP_ENDIAN_DEFAULT)
658 return endian;
659
660 /* Retrieve the endianness specification from the bus config */
661 if (bus && bus->reg_format_endian_default)
662 endian = bus->reg_format_endian_default;
663
664 /* If the bus specified a non-default value, use that */
665 if (endian != REGMAP_ENDIAN_DEFAULT)
666 return endian;
667
668 /* Use this if no other value was found */
669 return REGMAP_ENDIAN_BIG;
670}
671
672enum regmap_endian regmap_get_val_endian(struct device *dev,
673 const struct regmap_bus *bus,
674 const struct regmap_config *config)
675{
676 struct fwnode_handle *fwnode = dev ? dev_fwnode(dev) : NULL;
677 enum regmap_endian endian;
678
679 /* Retrieve the endianness specification from the regmap config */
680 endian = config->val_format_endian;
681
682 /* If the regmap config specified a non-default value, use that */
683 if (endian != REGMAP_ENDIAN_DEFAULT)
684 return endian;
685
686 /* If the firmware node exist try to get endianness from it */
687 if (fwnode_property_read_bool(fwnode, "big-endian"))
688 endian = REGMAP_ENDIAN_BIG;
689 else if (fwnode_property_read_bool(fwnode, "little-endian"))
690 endian = REGMAP_ENDIAN_LITTLE;
691 else if (fwnode_property_read_bool(fwnode, "native-endian"))
692 endian = REGMAP_ENDIAN_NATIVE;
693
694 /* If the endianness was specified in fwnode, use that */
695 if (endian != REGMAP_ENDIAN_DEFAULT)
696 return endian;
697
698 /* Retrieve the endianness specification from the bus config */
699 if (bus && bus->val_format_endian_default)
700 endian = bus->val_format_endian_default;
701
702 /* If the bus specified a non-default value, use that */
703 if (endian != REGMAP_ENDIAN_DEFAULT)
704 return endian;
705
706 /* Use this if no other value was found */
707 return REGMAP_ENDIAN_BIG;
708}
709EXPORT_SYMBOL_GPL(regmap_get_val_endian);
710
711struct regmap *__regmap_init(struct device *dev,
712 const struct regmap_bus *bus,
713 void *bus_context,
714 const struct regmap_config *config,
715 struct lock_class_key *lock_key,
716 const char *lock_name)
717{
718 struct regmap *map;
719 int ret = -EINVAL;
720 enum regmap_endian reg_endian, val_endian;
721 int i, j;
722
723 if (!config)
724 goto err;
725
726 map = kzalloc(sizeof(*map), GFP_KERNEL);
727 if (map == NULL) {
728 ret = -ENOMEM;
729 goto err;
730 }
731
732 ret = regmap_set_name(map, config);
733 if (ret)
734 goto err_map;
735
736 ret = -EINVAL; /* Later error paths rely on this */
737
738 if (config->disable_locking) {
739 map->lock = map->unlock = regmap_lock_unlock_none;
740 map->can_sleep = config->can_sleep;
741 regmap_debugfs_disable(map);
742 } else if (config->lock && config->unlock) {
743 map->lock = config->lock;
744 map->unlock = config->unlock;
745 map->lock_arg = config->lock_arg;
746 map->can_sleep = config->can_sleep;
747 } else if (config->use_hwlock) {
748 map->hwlock = hwspin_lock_request_specific(config->hwlock_id);
749 if (!map->hwlock) {
750 ret = -ENXIO;
751 goto err_name;
752 }
753
754 switch (config->hwlock_mode) {
755 case HWLOCK_IRQSTATE:
756 map->lock = regmap_lock_hwlock_irqsave;
757 map->unlock = regmap_unlock_hwlock_irqrestore;
758 break;
759 case HWLOCK_IRQ:
760 map->lock = regmap_lock_hwlock_irq;
761 map->unlock = regmap_unlock_hwlock_irq;
762 break;
763 default:
764 map->lock = regmap_lock_hwlock;
765 map->unlock = regmap_unlock_hwlock;
766 break;
767 }
768
769 map->lock_arg = map;
770 } else {
771 if ((bus && bus->fast_io) ||
772 config->fast_io) {
773 spin_lock_init(&map->spinlock);
774 map->lock = regmap_lock_spinlock;
775 map->unlock = regmap_unlock_spinlock;
776 lockdep_set_class_and_name(&map->spinlock,
777 lock_key, lock_name);
778 } else {
779 mutex_init(&map->mutex);
780 map->lock = regmap_lock_mutex;
781 map->unlock = regmap_unlock_mutex;
782 map->can_sleep = true;
783 lockdep_set_class_and_name(&map->mutex,
784 lock_key, lock_name);
785 }
786 map->lock_arg = map;
787 }
788
789 /*
790 * When we write in fast-paths with regmap_bulk_write() don't allocate
791 * scratch buffers with sleeping allocations.
792 */
793 if ((bus && bus->fast_io) || config->fast_io)
794 map->alloc_flags = GFP_ATOMIC;
795 else
796 map->alloc_flags = GFP_KERNEL;
797
798 map->format.reg_bytes = DIV_ROUND_UP(config->reg_bits, 8);
799 map->format.pad_bytes = config->pad_bits / 8;
800 map->format.val_bytes = DIV_ROUND_UP(config->val_bits, 8);
801 map->format.buf_size = DIV_ROUND_UP(config->reg_bits +
802 config->val_bits + config->pad_bits, 8);
803 map->reg_shift = config->pad_bits % 8;
804 if (config->reg_stride)
805 map->reg_stride = config->reg_stride;
806 else
807 map->reg_stride = 1;
808 if (is_power_of_2(map->reg_stride))
809 map->reg_stride_order = ilog2(map->reg_stride);
810 else
811 map->reg_stride_order = -1;
812 map->use_single_read = config->use_single_read || !bus || !bus->read;
813 map->use_single_write = config->use_single_write || !bus || !bus->write;
814 map->can_multi_write = config->can_multi_write && bus && bus->write;
815 if (bus) {
816 map->max_raw_read = bus->max_raw_read;
817 map->max_raw_write = bus->max_raw_write;
818 }
819 map->dev = dev;
820 map->bus = bus;
821 map->bus_context = bus_context;
822 map->max_register = config->max_register;
823 map->wr_table = config->wr_table;
824 map->rd_table = config->rd_table;
825 map->volatile_table = config->volatile_table;
826 map->precious_table = config->precious_table;
827 map->wr_noinc_table = config->wr_noinc_table;
828 map->rd_noinc_table = config->rd_noinc_table;
829 map->writeable_reg = config->writeable_reg;
830 map->readable_reg = config->readable_reg;
831 map->volatile_reg = config->volatile_reg;
832 map->precious_reg = config->precious_reg;
833 map->writeable_noinc_reg = config->writeable_noinc_reg;
834 map->readable_noinc_reg = config->readable_noinc_reg;
835 map->cache_type = config->cache_type;
836
837 spin_lock_init(&map->async_lock);
838 INIT_LIST_HEAD(&map->async_list);
839 INIT_LIST_HEAD(&map->async_free);
840 init_waitqueue_head(&map->async_waitq);
841
842 if (config->read_flag_mask ||
843 config->write_flag_mask ||
844 config->zero_flag_mask) {
845 map->read_flag_mask = config->read_flag_mask;
846 map->write_flag_mask = config->write_flag_mask;
847 } else if (bus) {
848 map->read_flag_mask = bus->read_flag_mask;
849 }
850
851 if (!bus) {
852 map->reg_read = config->reg_read;
853 map->reg_write = config->reg_write;
854
855 map->defer_caching = false;
856 goto skip_format_initialization;
857 } else if (!bus->read || !bus->write) {
858 map->reg_read = _regmap_bus_reg_read;
859 map->reg_write = _regmap_bus_reg_write;
860 map->reg_update_bits = bus->reg_update_bits;
861
862 map->defer_caching = false;
863 goto skip_format_initialization;
864 } else {
865 map->reg_read = _regmap_bus_read;
866 map->reg_update_bits = bus->reg_update_bits;
867 }
868
869 reg_endian = regmap_get_reg_endian(bus, config);
870 val_endian = regmap_get_val_endian(dev, bus, config);
871
872 switch (config->reg_bits + map->reg_shift) {
873 case 2:
874 switch (config->val_bits) {
875 case 6:
876 map->format.format_write = regmap_format_2_6_write;
877 break;
878 default:
879 goto err_hwlock;
880 }
881 break;
882
883 case 4:
884 switch (config->val_bits) {
885 case 12:
886 map->format.format_write = regmap_format_4_12_write;
887 break;
888 default:
889 goto err_hwlock;
890 }
891 break;
892
893 case 7:
894 switch (config->val_bits) {
895 case 9:
896 map->format.format_write = regmap_format_7_9_write;
897 break;
898 case 17:
899 map->format.format_write = regmap_format_7_17_write;
900 break;
901 default:
902 goto err_hwlock;
903 }
904 break;
905
906 case 10:
907 switch (config->val_bits) {
908 case 14:
909 map->format.format_write = regmap_format_10_14_write;
910 break;
911 default:
912 goto err_hwlock;
913 }
914 break;
915
916 case 12:
917 switch (config->val_bits) {
918 case 20:
919 map->format.format_write = regmap_format_12_20_write;
920 break;
921 default:
922 goto err_hwlock;
923 }
924 break;
925
926 case 8:
927 map->format.format_reg = regmap_format_8;
928 break;
929
930 case 16:
931 switch (reg_endian) {
932 case REGMAP_ENDIAN_BIG:
933 map->format.format_reg = regmap_format_16_be;
934 break;
935 case REGMAP_ENDIAN_LITTLE:
936 map->format.format_reg = regmap_format_16_le;
937 break;
938 case REGMAP_ENDIAN_NATIVE:
939 map->format.format_reg = regmap_format_16_native;
940 break;
941 default:
942 goto err_hwlock;
943 }
944 break;
945
946 case 24:
947 if (reg_endian != REGMAP_ENDIAN_BIG)
948 goto err_hwlock;
949 map->format.format_reg = regmap_format_24;
950 break;
951
952 case 32:
953 switch (reg_endian) {
954 case REGMAP_ENDIAN_BIG:
955 map->format.format_reg = regmap_format_32_be;
956 break;
957 case REGMAP_ENDIAN_LITTLE:
958 map->format.format_reg = regmap_format_32_le;
959 break;
960 case REGMAP_ENDIAN_NATIVE:
961 map->format.format_reg = regmap_format_32_native;
962 break;
963 default:
964 goto err_hwlock;
965 }
966 break;
967
968#ifdef CONFIG_64BIT
969 case 64:
970 switch (reg_endian) {
971 case REGMAP_ENDIAN_BIG:
972 map->format.format_reg = regmap_format_64_be;
973 break;
974 case REGMAP_ENDIAN_LITTLE:
975 map->format.format_reg = regmap_format_64_le;
976 break;
977 case REGMAP_ENDIAN_NATIVE:
978 map->format.format_reg = regmap_format_64_native;
979 break;
980 default:
981 goto err_hwlock;
982 }
983 break;
984#endif
985
986 default:
987 goto err_hwlock;
988 }
989
990 if (val_endian == REGMAP_ENDIAN_NATIVE)
991 map->format.parse_inplace = regmap_parse_inplace_noop;
992
993 switch (config->val_bits) {
994 case 8:
995 map->format.format_val = regmap_format_8;
996 map->format.parse_val = regmap_parse_8;
997 map->format.parse_inplace = regmap_parse_inplace_noop;
998 break;
999 case 16:
1000 switch (val_endian) {
1001 case REGMAP_ENDIAN_BIG:
1002 map->format.format_val = regmap_format_16_be;
1003 map->format.parse_val = regmap_parse_16_be;
1004 map->format.parse_inplace = regmap_parse_16_be_inplace;
1005 break;
1006 case REGMAP_ENDIAN_LITTLE:
1007 map->format.format_val = regmap_format_16_le;
1008 map->format.parse_val = regmap_parse_16_le;
1009 map->format.parse_inplace = regmap_parse_16_le_inplace;
1010 break;
1011 case REGMAP_ENDIAN_NATIVE:
1012 map->format.format_val = regmap_format_16_native;
1013 map->format.parse_val = regmap_parse_16_native;
1014 break;
1015 default:
1016 goto err_hwlock;
1017 }
1018 break;
1019 case 24:
1020 if (val_endian != REGMAP_ENDIAN_BIG)
1021 goto err_hwlock;
1022 map->format.format_val = regmap_format_24;
1023 map->format.parse_val = regmap_parse_24;
1024 break;
1025 case 32:
1026 switch (val_endian) {
1027 case REGMAP_ENDIAN_BIG:
1028 map->format.format_val = regmap_format_32_be;
1029 map->format.parse_val = regmap_parse_32_be;
1030 map->format.parse_inplace = regmap_parse_32_be_inplace;
1031 break;
1032 case REGMAP_ENDIAN_LITTLE:
1033 map->format.format_val = regmap_format_32_le;
1034 map->format.parse_val = regmap_parse_32_le;
1035 map->format.parse_inplace = regmap_parse_32_le_inplace;
1036 break;
1037 case REGMAP_ENDIAN_NATIVE:
1038 map->format.format_val = regmap_format_32_native;
1039 map->format.parse_val = regmap_parse_32_native;
1040 break;
1041 default:
1042 goto err_hwlock;
1043 }
1044 break;
1045#ifdef CONFIG_64BIT
1046 case 64:
1047 switch (val_endian) {
1048 case REGMAP_ENDIAN_BIG:
1049 map->format.format_val = regmap_format_64_be;
1050 map->format.parse_val = regmap_parse_64_be;
1051 map->format.parse_inplace = regmap_parse_64_be_inplace;
1052 break;
1053 case REGMAP_ENDIAN_LITTLE:
1054 map->format.format_val = regmap_format_64_le;
1055 map->format.parse_val = regmap_parse_64_le;
1056 map->format.parse_inplace = regmap_parse_64_le_inplace;
1057 break;
1058 case REGMAP_ENDIAN_NATIVE:
1059 map->format.format_val = regmap_format_64_native;
1060 map->format.parse_val = regmap_parse_64_native;
1061 break;
1062 default:
1063 goto err_hwlock;
1064 }
1065 break;
1066#endif
1067 }
1068
1069 if (map->format.format_write) {
1070 if ((reg_endian != REGMAP_ENDIAN_BIG) ||
1071 (val_endian != REGMAP_ENDIAN_BIG))
1072 goto err_hwlock;
1073 map->use_single_write = true;
1074 }
1075
1076 if (!map->format.format_write &&
1077 !(map->format.format_reg && map->format.format_val))
1078 goto err_hwlock;
1079
1080 map->work_buf = kzalloc(map->format.buf_size, GFP_KERNEL);
1081 if (map->work_buf == NULL) {
1082 ret = -ENOMEM;
1083 goto err_hwlock;
1084 }
1085
1086 if (map->format.format_write) {
1087 map->defer_caching = false;
1088 map->reg_write = _regmap_bus_formatted_write;
1089 } else if (map->format.format_val) {
1090 map->defer_caching = true;
1091 map->reg_write = _regmap_bus_raw_write;
1092 }
1093
1094skip_format_initialization:
1095
1096 map->range_tree = RB_ROOT;
1097 for (i = 0; i < config->num_ranges; i++) {
1098 const struct regmap_range_cfg *range_cfg = &config->ranges[i];
1099 struct regmap_range_node *new;
1100
1101 /* Sanity check */
1102 if (range_cfg->range_max < range_cfg->range_min) {
1103 dev_err(map->dev, "Invalid range %d: %d < %d\n", i,
1104 range_cfg->range_max, range_cfg->range_min);
1105 goto err_range;
1106 }
1107
1108 if (range_cfg->range_max > map->max_register) {
1109 dev_err(map->dev, "Invalid range %d: %d > %d\n", i,
1110 range_cfg->range_max, map->max_register);
1111 goto err_range;
1112 }
1113
1114 if (range_cfg->selector_reg > map->max_register) {
1115 dev_err(map->dev,
1116 "Invalid range %d: selector out of map\n", i);
1117 goto err_range;
1118 }
1119
1120 if (range_cfg->window_len == 0) {
1121 dev_err(map->dev, "Invalid range %d: window_len 0\n",
1122 i);
1123 goto err_range;
1124 }
1125
1126 /* Make sure, that this register range has no selector
1127 or data window within its boundary */
1128 for (j = 0; j < config->num_ranges; j++) {
1129 unsigned sel_reg = config->ranges[j].selector_reg;
1130 unsigned win_min = config->ranges[j].window_start;
1131 unsigned win_max = win_min +
1132 config->ranges[j].window_len - 1;
1133
1134 /* Allow data window inside its own virtual range */
1135 if (j == i)
1136 continue;
1137
1138 if (range_cfg->range_min <= sel_reg &&
1139 sel_reg <= range_cfg->range_max) {
1140 dev_err(map->dev,
1141 "Range %d: selector for %d in window\n",
1142 i, j);
1143 goto err_range;
1144 }
1145
1146 if (!(win_max < range_cfg->range_min ||
1147 win_min > range_cfg->range_max)) {
1148 dev_err(map->dev,
1149 "Range %d: window for %d in window\n",
1150 i, j);
1151 goto err_range;
1152 }
1153 }
1154
1155 new = kzalloc(sizeof(*new), GFP_KERNEL);
1156 if (new == NULL) {
1157 ret = -ENOMEM;
1158 goto err_range;
1159 }
1160
1161 new->map = map;
1162 new->name = range_cfg->name;
1163 new->range_min = range_cfg->range_min;
1164 new->range_max = range_cfg->range_max;
1165 new->selector_reg = range_cfg->selector_reg;
1166 new->selector_mask = range_cfg->selector_mask;
1167 new->selector_shift = range_cfg->selector_shift;
1168 new->window_start = range_cfg->window_start;
1169 new->window_len = range_cfg->window_len;
1170
1171 if (!_regmap_range_add(map, new)) {
1172 dev_err(map->dev, "Failed to add range %d\n", i);
1173 kfree(new);
1174 goto err_range;
1175 }
1176
1177 if (map->selector_work_buf == NULL) {
1178 map->selector_work_buf =
1179 kzalloc(map->format.buf_size, GFP_KERNEL);
1180 if (map->selector_work_buf == NULL) {
1181 ret = -ENOMEM;
1182 goto err_range;
1183 }
1184 }
1185 }
1186
1187 ret = regcache_init(map, config);
1188 if (ret != 0)
1189 goto err_range;
1190
1191 if (dev) {
1192 ret = regmap_attach_dev(dev, map, config);
1193 if (ret != 0)
1194 goto err_regcache;
1195 } else {
1196 regmap_debugfs_init(map);
1197 }
1198
1199 return map;
1200
1201err_regcache:
1202 regcache_exit(map);
1203err_range:
1204 regmap_range_exit(map);
1205 kfree(map->work_buf);
1206err_hwlock:
1207 if (map->hwlock)
1208 hwspin_lock_free(map->hwlock);
1209err_name:
1210 kfree_const(map->name);
1211err_map:
1212 kfree(map);
1213err:
1214 return ERR_PTR(ret);
1215}
1216EXPORT_SYMBOL_GPL(__regmap_init);
1217
1218static void devm_regmap_release(struct device *dev, void *res)
1219{
1220 regmap_exit(*(struct regmap **)res);
1221}
1222
1223struct regmap *__devm_regmap_init(struct device *dev,
1224 const struct regmap_bus *bus,
1225 void *bus_context,
1226 const struct regmap_config *config,
1227 struct lock_class_key *lock_key,
1228 const char *lock_name)
1229{
1230 struct regmap **ptr, *regmap;
1231
1232 ptr = devres_alloc(devm_regmap_release, sizeof(*ptr), GFP_KERNEL);
1233 if (!ptr)
1234 return ERR_PTR(-ENOMEM);
1235
1236 regmap = __regmap_init(dev, bus, bus_context, config,
1237 lock_key, lock_name);
1238 if (!IS_ERR(regmap)) {
1239 *ptr = regmap;
1240 devres_add(dev, ptr);
1241 } else {
1242 devres_free(ptr);
1243 }
1244
1245 return regmap;
1246}
1247EXPORT_SYMBOL_GPL(__devm_regmap_init);
1248
1249static void regmap_field_init(struct regmap_field *rm_field,
1250 struct regmap *regmap, struct reg_field reg_field)
1251{
1252 rm_field->regmap = regmap;
1253 rm_field->reg = reg_field.reg;
1254 rm_field->shift = reg_field.lsb;
1255 rm_field->mask = GENMASK(reg_field.msb, reg_field.lsb);
1256 rm_field->id_size = reg_field.id_size;
1257 rm_field->id_offset = reg_field.id_offset;
1258}
1259
1260/**
1261 * devm_regmap_field_alloc() - Allocate and initialise a register field.
1262 *
1263 * @dev: Device that will be interacted with
1264 * @regmap: regmap bank in which this register field is located.
1265 * @reg_field: Register field with in the bank.
1266 *
1267 * The return value will be an ERR_PTR() on error or a valid pointer
1268 * to a struct regmap_field. The regmap_field will be automatically freed
1269 * by the device management code.
1270 */
1271struct regmap_field *devm_regmap_field_alloc(struct device *dev,
1272 struct regmap *regmap, struct reg_field reg_field)
1273{
1274 struct regmap_field *rm_field = devm_kzalloc(dev,
1275 sizeof(*rm_field), GFP_KERNEL);
1276 if (!rm_field)
1277 return ERR_PTR(-ENOMEM);
1278
1279 regmap_field_init(rm_field, regmap, reg_field);
1280
1281 return rm_field;
1282
1283}
1284EXPORT_SYMBOL_GPL(devm_regmap_field_alloc);
1285
1286
1287/**
1288 * regmap_field_bulk_alloc() - Allocate and initialise a bulk register field.
1289 *
1290 * @regmap: regmap bank in which this register field is located.
1291 * @rm_field: regmap register fields within the bank.
1292 * @reg_field: Register fields within the bank.
1293 * @num_fields: Number of register fields.
1294 *
1295 * The return value will be an -ENOMEM on error or zero for success.
1296 * Newly allocated regmap_fields should be freed by calling
1297 * regmap_field_bulk_free()
1298 */
1299int regmap_field_bulk_alloc(struct regmap *regmap,
1300 struct regmap_field **rm_field,
1301 struct reg_field *reg_field,
1302 int num_fields)
1303{
1304 struct regmap_field *rf;
1305 int i;
1306
1307 rf = kcalloc(num_fields, sizeof(*rf), GFP_KERNEL);
1308 if (!rf)
1309 return -ENOMEM;
1310
1311 for (i = 0; i < num_fields; i++) {
1312 regmap_field_init(&rf[i], regmap, reg_field[i]);
1313 rm_field[i] = &rf[i];
1314 }
1315
1316 return 0;
1317}
1318EXPORT_SYMBOL_GPL(regmap_field_bulk_alloc);
1319
1320/**
1321 * devm_regmap_field_bulk_alloc() - Allocate and initialise a bulk register
1322 * fields.
1323 *
1324 * @dev: Device that will be interacted with
1325 * @regmap: regmap bank in which this register field is located.
1326 * @rm_field: regmap register fields within the bank.
1327 * @reg_field: Register fields within the bank.
1328 * @num_fields: Number of register fields.
1329 *
1330 * The return value will be an -ENOMEM on error or zero for success.
1331 * Newly allocated regmap_fields will be automatically freed by the
1332 * device management code.
1333 */
1334int devm_regmap_field_bulk_alloc(struct device *dev,
1335 struct regmap *regmap,
1336 struct regmap_field **rm_field,
1337 struct reg_field *reg_field,
1338 int num_fields)
1339{
1340 struct regmap_field *rf;
1341 int i;
1342
1343 rf = devm_kcalloc(dev, num_fields, sizeof(*rf), GFP_KERNEL);
1344 if (!rf)
1345 return -ENOMEM;
1346
1347 for (i = 0; i < num_fields; i++) {
1348 regmap_field_init(&rf[i], regmap, reg_field[i]);
1349 rm_field[i] = &rf[i];
1350 }
1351
1352 return 0;
1353}
1354EXPORT_SYMBOL_GPL(devm_regmap_field_bulk_alloc);
1355
1356/**
1357 * regmap_field_bulk_free() - Free register field allocated using
1358 * regmap_field_bulk_alloc.
1359 *
1360 * @field: regmap fields which should be freed.
1361 */
1362void regmap_field_bulk_free(struct regmap_field *field)
1363{
1364 kfree(field);
1365}
1366EXPORT_SYMBOL_GPL(regmap_field_bulk_free);
1367
1368/**
1369 * devm_regmap_field_bulk_free() - Free a bulk register field allocated using
1370 * devm_regmap_field_bulk_alloc.
1371 *
1372 * @dev: Device that will be interacted with
1373 * @field: regmap field which should be freed.
1374 *
1375 * Free register field allocated using devm_regmap_field_bulk_alloc(). Usually
1376 * drivers need not call this function, as the memory allocated via devm
1377 * will be freed as per device-driver life-cycle.
1378 */
1379void devm_regmap_field_bulk_free(struct device *dev,
1380 struct regmap_field *field)
1381{
1382 devm_kfree(dev, field);
1383}
1384EXPORT_SYMBOL_GPL(devm_regmap_field_bulk_free);
1385
1386/**
1387 * devm_regmap_field_free() - Free a register field allocated using
1388 * devm_regmap_field_alloc.
1389 *
1390 * @dev: Device that will be interacted with
1391 * @field: regmap field which should be freed.
1392 *
1393 * Free register field allocated using devm_regmap_field_alloc(). Usually
1394 * drivers need not call this function, as the memory allocated via devm
1395 * will be freed as per device-driver life-cyle.
1396 */
1397void devm_regmap_field_free(struct device *dev,
1398 struct regmap_field *field)
1399{
1400 devm_kfree(dev, field);
1401}
1402EXPORT_SYMBOL_GPL(devm_regmap_field_free);
1403
1404/**
1405 * regmap_field_alloc() - Allocate and initialise a register field.
1406 *
1407 * @regmap: regmap bank in which this register field is located.
1408 * @reg_field: Register field with in the bank.
1409 *
1410 * The return value will be an ERR_PTR() on error or a valid pointer
1411 * to a struct regmap_field. The regmap_field should be freed by the
1412 * user once its finished working with it using regmap_field_free().
1413 */
1414struct regmap_field *regmap_field_alloc(struct regmap *regmap,
1415 struct reg_field reg_field)
1416{
1417 struct regmap_field *rm_field = kzalloc(sizeof(*rm_field), GFP_KERNEL);
1418
1419 if (!rm_field)
1420 return ERR_PTR(-ENOMEM);
1421
1422 regmap_field_init(rm_field, regmap, reg_field);
1423
1424 return rm_field;
1425}
1426EXPORT_SYMBOL_GPL(regmap_field_alloc);
1427
1428/**
1429 * regmap_field_free() - Free register field allocated using
1430 * regmap_field_alloc.
1431 *
1432 * @field: regmap field which should be freed.
1433 */
1434void regmap_field_free(struct regmap_field *field)
1435{
1436 kfree(field);
1437}
1438EXPORT_SYMBOL_GPL(regmap_field_free);
1439
1440/**
1441 * regmap_reinit_cache() - Reinitialise the current register cache
1442 *
1443 * @map: Register map to operate on.
1444 * @config: New configuration. Only the cache data will be used.
1445 *
1446 * Discard any existing register cache for the map and initialize a
1447 * new cache. This can be used to restore the cache to defaults or to
1448 * update the cache configuration to reflect runtime discovery of the
1449 * hardware.
1450 *
1451 * No explicit locking is done here, the user needs to ensure that
1452 * this function will not race with other calls to regmap.
1453 */
1454int regmap_reinit_cache(struct regmap *map, const struct regmap_config *config)
1455{
1456 int ret;
1457
1458 regcache_exit(map);
1459 regmap_debugfs_exit(map);
1460
1461 map->max_register = config->max_register;
1462 map->writeable_reg = config->writeable_reg;
1463 map->readable_reg = config->readable_reg;
1464 map->volatile_reg = config->volatile_reg;
1465 map->precious_reg = config->precious_reg;
1466 map->writeable_noinc_reg = config->writeable_noinc_reg;
1467 map->readable_noinc_reg = config->readable_noinc_reg;
1468 map->cache_type = config->cache_type;
1469
1470 ret = regmap_set_name(map, config);
1471 if (ret)
1472 return ret;
1473
1474 regmap_debugfs_init(map);
1475
1476 map->cache_bypass = false;
1477 map->cache_only = false;
1478
1479 return regcache_init(map, config);
1480}
1481EXPORT_SYMBOL_GPL(regmap_reinit_cache);
1482
1483/**
1484 * regmap_exit() - Free a previously allocated register map
1485 *
1486 * @map: Register map to operate on.
1487 */
1488void regmap_exit(struct regmap *map)
1489{
1490 struct regmap_async *async;
1491
1492 regcache_exit(map);
1493 regmap_debugfs_exit(map);
1494 regmap_range_exit(map);
1495 if (map->bus && map->bus->free_context)
1496 map->bus->free_context(map->bus_context);
1497 kfree(map->work_buf);
1498 while (!list_empty(&map->async_free)) {
1499 async = list_first_entry_or_null(&map->async_free,
1500 struct regmap_async,
1501 list);
1502 list_del(&async->list);
1503 kfree(async->work_buf);
1504 kfree(async);
1505 }
1506 if (map->hwlock)
1507 hwspin_lock_free(map->hwlock);
1508 if (map->lock == regmap_lock_mutex)
1509 mutex_destroy(&map->mutex);
1510 kfree_const(map->name);
1511 kfree(map->patch);
1512 if (map->bus && map->bus->free_on_exit)
1513 kfree(map->bus);
1514 kfree(map);
1515}
1516EXPORT_SYMBOL_GPL(regmap_exit);
1517
1518static int dev_get_regmap_match(struct device *dev, void *res, void *data)
1519{
1520 struct regmap **r = res;
1521 if (!r || !*r) {
1522 WARN_ON(!r || !*r);
1523 return 0;
1524 }
1525
1526 /* If the user didn't specify a name match any */
1527 if (data)
1528 return !strcmp((*r)->name, data);
1529 else
1530 return 1;
1531}
1532
1533/**
1534 * dev_get_regmap() - Obtain the regmap (if any) for a device
1535 *
1536 * @dev: Device to retrieve the map for
1537 * @name: Optional name for the register map, usually NULL.
1538 *
1539 * Returns the regmap for the device if one is present, or NULL. If
1540 * name is specified then it must match the name specified when
1541 * registering the device, if it is NULL then the first regmap found
1542 * will be used. Devices with multiple register maps are very rare,
1543 * generic code should normally not need to specify a name.
1544 */
1545struct regmap *dev_get_regmap(struct device *dev, const char *name)
1546{
1547 struct regmap **r = devres_find(dev, dev_get_regmap_release,
1548 dev_get_regmap_match, (void *)name);
1549
1550 if (!r)
1551 return NULL;
1552 return *r;
1553}
1554EXPORT_SYMBOL_GPL(dev_get_regmap);
1555
1556/**
1557 * regmap_get_device() - Obtain the device from a regmap
1558 *
1559 * @map: Register map to operate on.
1560 *
1561 * Returns the underlying device that the regmap has been created for.
1562 */
1563struct device *regmap_get_device(struct regmap *map)
1564{
1565 return map->dev;
1566}
1567EXPORT_SYMBOL_GPL(regmap_get_device);
1568
1569static int _regmap_select_page(struct regmap *map, unsigned int *reg,
1570 struct regmap_range_node *range,
1571 unsigned int val_num)
1572{
1573 void *orig_work_buf;
1574 unsigned int win_offset;
1575 unsigned int win_page;
1576 bool page_chg;
1577 int ret;
1578
1579 win_offset = (*reg - range->range_min) % range->window_len;
1580 win_page = (*reg - range->range_min) / range->window_len;
1581
1582 if (val_num > 1) {
1583 /* Bulk write shouldn't cross range boundary */
1584 if (*reg + val_num - 1 > range->range_max)
1585 return -EINVAL;
1586
1587 /* ... or single page boundary */
1588 if (val_num > range->window_len - win_offset)
1589 return -EINVAL;
1590 }
1591
1592 /* It is possible to have selector register inside data window.
1593 In that case, selector register is located on every page and
1594 it needs no page switching, when accessed alone. */
1595 if (val_num > 1 ||
1596 range->window_start + win_offset != range->selector_reg) {
1597 /* Use separate work_buf during page switching */
1598 orig_work_buf = map->work_buf;
1599 map->work_buf = map->selector_work_buf;
1600
1601 ret = _regmap_update_bits(map, range->selector_reg,
1602 range->selector_mask,
1603 win_page << range->selector_shift,
1604 &page_chg, false);
1605
1606 map->work_buf = orig_work_buf;
1607
1608 if (ret != 0)
1609 return ret;
1610 }
1611
1612 *reg = range->window_start + win_offset;
1613
1614 return 0;
1615}
1616
1617static void regmap_set_work_buf_flag_mask(struct regmap *map, int max_bytes,
1618 unsigned long mask)
1619{
1620 u8 *buf;
1621 int i;
1622
1623 if (!mask || !map->work_buf)
1624 return;
1625
1626 buf = map->work_buf;
1627
1628 for (i = 0; i < max_bytes; i++)
1629 buf[i] |= (mask >> (8 * i)) & 0xff;
1630}
1631
1632static int _regmap_raw_write_impl(struct regmap *map, unsigned int reg,
1633 const void *val, size_t val_len, bool noinc)
1634{
1635 struct regmap_range_node *range;
1636 unsigned long flags;
1637 void *work_val = map->work_buf + map->format.reg_bytes +
1638 map->format.pad_bytes;
1639 void *buf;
1640 int ret = -ENOTSUPP;
1641 size_t len;
1642 int i;
1643
1644 WARN_ON(!map->bus);
1645
1646 /* Check for unwritable or noinc registers in range
1647 * before we start
1648 */
1649 if (!regmap_writeable_noinc(map, reg)) {
1650 for (i = 0; i < val_len / map->format.val_bytes; i++) {
1651 unsigned int element =
1652 reg + regmap_get_offset(map, i);
1653 if (!regmap_writeable(map, element) ||
1654 regmap_writeable_noinc(map, element))
1655 return -EINVAL;
1656 }
1657 }
1658
1659 if (!map->cache_bypass && map->format.parse_val) {
1660 unsigned int ival;
1661 int val_bytes = map->format.val_bytes;
1662 for (i = 0; i < val_len / val_bytes; i++) {
1663 ival = map->format.parse_val(val + (i * val_bytes));
1664 ret = regcache_write(map,
1665 reg + regmap_get_offset(map, i),
1666 ival);
1667 if (ret) {
1668 dev_err(map->dev,
1669 "Error in caching of register: %x ret: %d\n",
1670 reg + regmap_get_offset(map, i), ret);
1671 return ret;
1672 }
1673 }
1674 if (map->cache_only) {
1675 map->cache_dirty = true;
1676 return 0;
1677 }
1678 }
1679
1680 range = _regmap_range_lookup(map, reg);
1681 if (range) {
1682 int val_num = val_len / map->format.val_bytes;
1683 int win_offset = (reg - range->range_min) % range->window_len;
1684 int win_residue = range->window_len - win_offset;
1685
1686 /* If the write goes beyond the end of the window split it */
1687 while (val_num > win_residue) {
1688 dev_dbg(map->dev, "Writing window %d/%zu\n",
1689 win_residue, val_len / map->format.val_bytes);
1690 ret = _regmap_raw_write_impl(map, reg, val,
1691 win_residue *
1692 map->format.val_bytes, noinc);
1693 if (ret != 0)
1694 return ret;
1695
1696 reg += win_residue;
1697 val_num -= win_residue;
1698 val += win_residue * map->format.val_bytes;
1699 val_len -= win_residue * map->format.val_bytes;
1700
1701 win_offset = (reg - range->range_min) %
1702 range->window_len;
1703 win_residue = range->window_len - win_offset;
1704 }
1705
1706 ret = _regmap_select_page(map, ®, range, noinc ? 1 : val_num);
1707 if (ret != 0)
1708 return ret;
1709 }
1710
1711 map->format.format_reg(map->work_buf, reg, map->reg_shift);
1712 regmap_set_work_buf_flag_mask(map, map->format.reg_bytes,
1713 map->write_flag_mask);
1714
1715 /*
1716 * Essentially all I/O mechanisms will be faster with a single
1717 * buffer to write. Since register syncs often generate raw
1718 * writes of single registers optimise that case.
1719 */
1720 if (val != work_val && val_len == map->format.val_bytes) {
1721 memcpy(work_val, val, map->format.val_bytes);
1722 val = work_val;
1723 }
1724
1725 if (map->async && map->bus->async_write) {
1726 struct regmap_async *async;
1727
1728 trace_regmap_async_write_start(map, reg, val_len);
1729
1730 spin_lock_irqsave(&map->async_lock, flags);
1731 async = list_first_entry_or_null(&map->async_free,
1732 struct regmap_async,
1733 list);
1734 if (async)
1735 list_del(&async->list);
1736 spin_unlock_irqrestore(&map->async_lock, flags);
1737
1738 if (!async) {
1739 async = map->bus->async_alloc();
1740 if (!async)
1741 return -ENOMEM;
1742
1743 async->work_buf = kzalloc(map->format.buf_size,
1744 GFP_KERNEL | GFP_DMA);
1745 if (!async->work_buf) {
1746 kfree(async);
1747 return -ENOMEM;
1748 }
1749 }
1750
1751 async->map = map;
1752
1753 /* If the caller supplied the value we can use it safely. */
1754 memcpy(async->work_buf, map->work_buf, map->format.pad_bytes +
1755 map->format.reg_bytes + map->format.val_bytes);
1756
1757 spin_lock_irqsave(&map->async_lock, flags);
1758 list_add_tail(&async->list, &map->async_list);
1759 spin_unlock_irqrestore(&map->async_lock, flags);
1760
1761 if (val != work_val)
1762 ret = map->bus->async_write(map->bus_context,
1763 async->work_buf,
1764 map->format.reg_bytes +
1765 map->format.pad_bytes,
1766 val, val_len, async);
1767 else
1768 ret = map->bus->async_write(map->bus_context,
1769 async->work_buf,
1770 map->format.reg_bytes +
1771 map->format.pad_bytes +
1772 val_len, NULL, 0, async);
1773
1774 if (ret != 0) {
1775 dev_err(map->dev, "Failed to schedule write: %d\n",
1776 ret);
1777
1778 spin_lock_irqsave(&map->async_lock, flags);
1779 list_move(&async->list, &map->async_free);
1780 spin_unlock_irqrestore(&map->async_lock, flags);
1781 }
1782
1783 return ret;
1784 }
1785
1786 trace_regmap_hw_write_start(map, reg, val_len / map->format.val_bytes);
1787
1788 /* If we're doing a single register write we can probably just
1789 * send the work_buf directly, otherwise try to do a gather
1790 * write.
1791 */
1792 if (val == work_val)
1793 ret = map->bus->write(map->bus_context, map->work_buf,
1794 map->format.reg_bytes +
1795 map->format.pad_bytes +
1796 val_len);
1797 else if (map->bus->gather_write)
1798 ret = map->bus->gather_write(map->bus_context, map->work_buf,
1799 map->format.reg_bytes +
1800 map->format.pad_bytes,
1801 val, val_len);
1802 else
1803 ret = -ENOTSUPP;
1804
1805 /* If that didn't work fall back on linearising by hand. */
1806 if (ret == -ENOTSUPP) {
1807 len = map->format.reg_bytes + map->format.pad_bytes + val_len;
1808 buf = kzalloc(len, GFP_KERNEL);
1809 if (!buf)
1810 return -ENOMEM;
1811
1812 memcpy(buf, map->work_buf, map->format.reg_bytes);
1813 memcpy(buf + map->format.reg_bytes + map->format.pad_bytes,
1814 val, val_len);
1815 ret = map->bus->write(map->bus_context, buf, len);
1816
1817 kfree(buf);
1818 } else if (ret != 0 && !map->cache_bypass && map->format.parse_val) {
1819 /* regcache_drop_region() takes lock that we already have,
1820 * thus call map->cache_ops->drop() directly
1821 */
1822 if (map->cache_ops && map->cache_ops->drop)
1823 map->cache_ops->drop(map, reg, reg + 1);
1824 }
1825
1826 trace_regmap_hw_write_done(map, reg, val_len / map->format.val_bytes);
1827
1828 return ret;
1829}
1830
1831/**
1832 * regmap_can_raw_write - Test if regmap_raw_write() is supported
1833 *
1834 * @map: Map to check.
1835 */
1836bool regmap_can_raw_write(struct regmap *map)
1837{
1838 return map->bus && map->bus->write && map->format.format_val &&
1839 map->format.format_reg;
1840}
1841EXPORT_SYMBOL_GPL(regmap_can_raw_write);
1842
1843/**
1844 * regmap_get_raw_read_max - Get the maximum size we can read
1845 *
1846 * @map: Map to check.
1847 */
1848size_t regmap_get_raw_read_max(struct regmap *map)
1849{
1850 return map->max_raw_read;
1851}
1852EXPORT_SYMBOL_GPL(regmap_get_raw_read_max);
1853
1854/**
1855 * regmap_get_raw_write_max - Get the maximum size we can read
1856 *
1857 * @map: Map to check.
1858 */
1859size_t regmap_get_raw_write_max(struct regmap *map)
1860{
1861 return map->max_raw_write;
1862}
1863EXPORT_SYMBOL_GPL(regmap_get_raw_write_max);
1864
1865static int _regmap_bus_formatted_write(void *context, unsigned int reg,
1866 unsigned int val)
1867{
1868 int ret;
1869 struct regmap_range_node *range;
1870 struct regmap *map = context;
1871
1872 WARN_ON(!map->bus || !map->format.format_write);
1873
1874 range = _regmap_range_lookup(map, reg);
1875 if (range) {
1876 ret = _regmap_select_page(map, ®, range, 1);
1877 if (ret != 0)
1878 return ret;
1879 }
1880
1881 map->format.format_write(map, reg, val);
1882
1883 trace_regmap_hw_write_start(map, reg, 1);
1884
1885 ret = map->bus->write(map->bus_context, map->work_buf,
1886 map->format.buf_size);
1887
1888 trace_regmap_hw_write_done(map, reg, 1);
1889
1890 return ret;
1891}
1892
1893static int _regmap_bus_reg_write(void *context, unsigned int reg,
1894 unsigned int val)
1895{
1896 struct regmap *map = context;
1897
1898 return map->bus->reg_write(map->bus_context, reg, val);
1899}
1900
1901static int _regmap_bus_raw_write(void *context, unsigned int reg,
1902 unsigned int val)
1903{
1904 struct regmap *map = context;
1905
1906 WARN_ON(!map->bus || !map->format.format_val);
1907
1908 map->format.format_val(map->work_buf + map->format.reg_bytes
1909 + map->format.pad_bytes, val, 0);
1910 return _regmap_raw_write_impl(map, reg,
1911 map->work_buf +
1912 map->format.reg_bytes +
1913 map->format.pad_bytes,
1914 map->format.val_bytes,
1915 false);
1916}
1917
1918static inline void *_regmap_map_get_context(struct regmap *map)
1919{
1920 return (map->bus) ? map : map->bus_context;
1921}
1922
1923int _regmap_write(struct regmap *map, unsigned int reg,
1924 unsigned int val)
1925{
1926 int ret;
1927 void *context = _regmap_map_get_context(map);
1928
1929 if (!regmap_writeable(map, reg))
1930 return -EIO;
1931
1932 if (!map->cache_bypass && !map->defer_caching) {
1933 ret = regcache_write(map, reg, val);
1934 if (ret != 0)
1935 return ret;
1936 if (map->cache_only) {
1937 map->cache_dirty = true;
1938 return 0;
1939 }
1940 }
1941
1942 ret = map->reg_write(context, reg, val);
1943 if (ret == 0) {
1944 if (regmap_should_log(map))
1945 dev_info(map->dev, "%x <= %x\n", reg, val);
1946
1947 trace_regmap_reg_write(map, reg, val);
1948 }
1949
1950 return ret;
1951}
1952
1953/**
1954 * regmap_write() - Write a value to a single register
1955 *
1956 * @map: Register map to write to
1957 * @reg: Register to write to
1958 * @val: Value to be written
1959 *
1960 * A value of zero will be returned on success, a negative errno will
1961 * be returned in error cases.
1962 */
1963int regmap_write(struct regmap *map, unsigned int reg, unsigned int val)
1964{
1965 int ret;
1966
1967 if (!IS_ALIGNED(reg, map->reg_stride))
1968 return -EINVAL;
1969
1970 map->lock(map->lock_arg);
1971
1972 ret = _regmap_write(map, reg, val);
1973
1974 map->unlock(map->lock_arg);
1975
1976 return ret;
1977}
1978EXPORT_SYMBOL_GPL(regmap_write);
1979
1980/**
1981 * regmap_write_async() - Write a value to a single register asynchronously
1982 *
1983 * @map: Register map to write to
1984 * @reg: Register to write to
1985 * @val: Value to be written
1986 *
1987 * A value of zero will be returned on success, a negative errno will
1988 * be returned in error cases.
1989 */
1990int regmap_write_async(struct regmap *map, unsigned int reg, unsigned int val)
1991{
1992 int ret;
1993
1994 if (!IS_ALIGNED(reg, map->reg_stride))
1995 return -EINVAL;
1996
1997 map->lock(map->lock_arg);
1998
1999 map->async = true;
2000
2001 ret = _regmap_write(map, reg, val);
2002
2003 map->async = false;
2004
2005 map->unlock(map->lock_arg);
2006
2007 return ret;
2008}
2009EXPORT_SYMBOL_GPL(regmap_write_async);
2010
2011int _regmap_raw_write(struct regmap *map, unsigned int reg,
2012 const void *val, size_t val_len, bool noinc)
2013{
2014 size_t val_bytes = map->format.val_bytes;
2015 size_t val_count = val_len / val_bytes;
2016 size_t chunk_count, chunk_bytes;
2017 size_t chunk_regs = val_count;
2018 int ret, i;
2019
2020 if (!val_count)
2021 return -EINVAL;
2022
2023 if (map->use_single_write)
2024 chunk_regs = 1;
2025 else if (map->max_raw_write && val_len > map->max_raw_write)
2026 chunk_regs = map->max_raw_write / val_bytes;
2027
2028 chunk_count = val_count / chunk_regs;
2029 chunk_bytes = chunk_regs * val_bytes;
2030
2031 /* Write as many bytes as possible with chunk_size */
2032 for (i = 0; i < chunk_count; i++) {
2033 ret = _regmap_raw_write_impl(map, reg, val, chunk_bytes, noinc);
2034 if (ret)
2035 return ret;
2036
2037 reg += regmap_get_offset(map, chunk_regs);
2038 val += chunk_bytes;
2039 val_len -= chunk_bytes;
2040 }
2041
2042 /* Write remaining bytes */
2043 if (val_len)
2044 ret = _regmap_raw_write_impl(map, reg, val, val_len, noinc);
2045
2046 return ret;
2047}
2048
2049/**
2050 * regmap_raw_write() - Write raw values to one or more registers
2051 *
2052 * @map: Register map to write to
2053 * @reg: Initial register to write to
2054 * @val: Block of data to be written, laid out for direct transmission to the
2055 * device
2056 * @val_len: Length of data pointed to by val.
2057 *
2058 * This function is intended to be used for things like firmware
2059 * download where a large block of data needs to be transferred to the
2060 * device. No formatting will be done on the data provided.
2061 *
2062 * A value of zero will be returned on success, a negative errno will
2063 * be returned in error cases.
2064 */
2065int regmap_raw_write(struct regmap *map, unsigned int reg,
2066 const void *val, size_t val_len)
2067{
2068 int ret;
2069
2070 if (!regmap_can_raw_write(map))
2071 return -EINVAL;
2072 if (val_len % map->format.val_bytes)
2073 return -EINVAL;
2074
2075 map->lock(map->lock_arg);
2076
2077 ret = _regmap_raw_write(map, reg, val, val_len, false);
2078
2079 map->unlock(map->lock_arg);
2080
2081 return ret;
2082}
2083EXPORT_SYMBOL_GPL(regmap_raw_write);
2084
2085/**
2086 * regmap_noinc_write(): Write data from a register without incrementing the
2087 * register number
2088 *
2089 * @map: Register map to write to
2090 * @reg: Register to write to
2091 * @val: Pointer to data buffer
2092 * @val_len: Length of output buffer in bytes.
2093 *
2094 * The regmap API usually assumes that bulk bus write operations will write a
2095 * range of registers. Some devices have certain registers for which a write
2096 * operation can write to an internal FIFO.
2097 *
2098 * The target register must be volatile but registers after it can be
2099 * completely unrelated cacheable registers.
2100 *
2101 * This will attempt multiple writes as required to write val_len bytes.
2102 *
2103 * A value of zero will be returned on success, a negative errno will be
2104 * returned in error cases.
2105 */
2106int regmap_noinc_write(struct regmap *map, unsigned int reg,
2107 const void *val, size_t val_len)
2108{
2109 size_t write_len;
2110 int ret;
2111
2112 if (!map->bus)
2113 return -EINVAL;
2114 if (!map->bus->write)
2115 return -ENOTSUPP;
2116 if (val_len % map->format.val_bytes)
2117 return -EINVAL;
2118 if (!IS_ALIGNED(reg, map->reg_stride))
2119 return -EINVAL;
2120 if (val_len == 0)
2121 return -EINVAL;
2122
2123 map->lock(map->lock_arg);
2124
2125 if (!regmap_volatile(map, reg) || !regmap_writeable_noinc(map, reg)) {
2126 ret = -EINVAL;
2127 goto out_unlock;
2128 }
2129
2130 while (val_len) {
2131 if (map->max_raw_write && map->max_raw_write < val_len)
2132 write_len = map->max_raw_write;
2133 else
2134 write_len = val_len;
2135 ret = _regmap_raw_write(map, reg, val, write_len, true);
2136 if (ret)
2137 goto out_unlock;
2138 val = ((u8 *)val) + write_len;
2139 val_len -= write_len;
2140 }
2141
2142out_unlock:
2143 map->unlock(map->lock_arg);
2144 return ret;
2145}
2146EXPORT_SYMBOL_GPL(regmap_noinc_write);
2147
2148/**
2149 * regmap_field_update_bits_base() - Perform a read/modify/write cycle a
2150 * register field.
2151 *
2152 * @field: Register field to write to
2153 * @mask: Bitmask to change
2154 * @val: Value to be written
2155 * @change: Boolean indicating if a write was done
2156 * @async: Boolean indicating asynchronously
2157 * @force: Boolean indicating use force update
2158 *
2159 * Perform a read/modify/write cycle on the register field with change,
2160 * async, force option.
2161 *
2162 * A value of zero will be returned on success, a negative errno will
2163 * be returned in error cases.
2164 */
2165int regmap_field_update_bits_base(struct regmap_field *field,
2166 unsigned int mask, unsigned int val,
2167 bool *change, bool async, bool force)
2168{
2169 mask = (mask << field->shift) & field->mask;
2170
2171 return regmap_update_bits_base(field->regmap, field->reg,
2172 mask, val << field->shift,
2173 change, async, force);
2174}
2175EXPORT_SYMBOL_GPL(regmap_field_update_bits_base);
2176
2177/**
2178 * regmap_fields_update_bits_base() - Perform a read/modify/write cycle a
2179 * register field with port ID
2180 *
2181 * @field: Register field to write to
2182 * @id: port ID
2183 * @mask: Bitmask to change
2184 * @val: Value to be written
2185 * @change: Boolean indicating if a write was done
2186 * @async: Boolean indicating asynchronously
2187 * @force: Boolean indicating use force update
2188 *
2189 * A value of zero will be returned on success, a negative errno will
2190 * be returned in error cases.
2191 */
2192int regmap_fields_update_bits_base(struct regmap_field *field, unsigned int id,
2193 unsigned int mask, unsigned int val,
2194 bool *change, bool async, bool force)
2195{
2196 if (id >= field->id_size)
2197 return -EINVAL;
2198
2199 mask = (mask << field->shift) & field->mask;
2200
2201 return regmap_update_bits_base(field->regmap,
2202 field->reg + (field->id_offset * id),
2203 mask, val << field->shift,
2204 change, async, force);
2205}
2206EXPORT_SYMBOL_GPL(regmap_fields_update_bits_base);
2207
2208/**
2209 * regmap_bulk_write() - Write multiple registers to the device
2210 *
2211 * @map: Register map to write to
2212 * @reg: First register to be write from
2213 * @val: Block of data to be written, in native register size for device
2214 * @val_count: Number of registers to write
2215 *
2216 * This function is intended to be used for writing a large block of
2217 * data to the device either in single transfer or multiple transfer.
2218 *
2219 * A value of zero will be returned on success, a negative errno will
2220 * be returned in error cases.
2221 */
2222int regmap_bulk_write(struct regmap *map, unsigned int reg, const void *val,
2223 size_t val_count)
2224{
2225 int ret = 0, i;
2226 size_t val_bytes = map->format.val_bytes;
2227
2228 if (!IS_ALIGNED(reg, map->reg_stride))
2229 return -EINVAL;
2230
2231 /*
2232 * Some devices don't support bulk write, for them we have a series of
2233 * single write operations.
2234 */
2235 if (!map->bus || !map->format.parse_inplace) {
2236 map->lock(map->lock_arg);
2237 for (i = 0; i < val_count; i++) {
2238 unsigned int ival;
2239
2240 switch (val_bytes) {
2241 case 1:
2242 ival = *(u8 *)(val + (i * val_bytes));
2243 break;
2244 case 2:
2245 ival = *(u16 *)(val + (i * val_bytes));
2246 break;
2247 case 4:
2248 ival = *(u32 *)(val + (i * val_bytes));
2249 break;
2250#ifdef CONFIG_64BIT
2251 case 8:
2252 ival = *(u64 *)(val + (i * val_bytes));
2253 break;
2254#endif
2255 default:
2256 ret = -EINVAL;
2257 goto out;
2258 }
2259
2260 ret = _regmap_write(map,
2261 reg + regmap_get_offset(map, i),
2262 ival);
2263 if (ret != 0)
2264 goto out;
2265 }
2266out:
2267 map->unlock(map->lock_arg);
2268 } else {
2269 void *wval;
2270
2271 wval = kmemdup(val, val_count * val_bytes, map->alloc_flags);
2272 if (!wval)
2273 return -ENOMEM;
2274
2275 for (i = 0; i < val_count * val_bytes; i += val_bytes)
2276 map->format.parse_inplace(wval + i);
2277
2278 ret = regmap_raw_write(map, reg, wval, val_bytes * val_count);
2279
2280 kfree(wval);
2281 }
2282 return ret;
2283}
2284EXPORT_SYMBOL_GPL(regmap_bulk_write);
2285
2286/*
2287 * _regmap_raw_multi_reg_write()
2288 *
2289 * the (register,newvalue) pairs in regs have not been formatted, but
2290 * they are all in the same page and have been changed to being page
2291 * relative. The page register has been written if that was necessary.
2292 */
2293static int _regmap_raw_multi_reg_write(struct regmap *map,
2294 const struct reg_sequence *regs,
2295 size_t num_regs)
2296{
2297 int ret;
2298 void *buf;
2299 int i;
2300 u8 *u8;
2301 size_t val_bytes = map->format.val_bytes;
2302 size_t reg_bytes = map->format.reg_bytes;
2303 size_t pad_bytes = map->format.pad_bytes;
2304 size_t pair_size = reg_bytes + pad_bytes + val_bytes;
2305 size_t len = pair_size * num_regs;
2306
2307 if (!len)
2308 return -EINVAL;
2309
2310 buf = kzalloc(len, GFP_KERNEL);
2311 if (!buf)
2312 return -ENOMEM;
2313
2314 /* We have to linearise by hand. */
2315
2316 u8 = buf;
2317
2318 for (i = 0; i < num_regs; i++) {
2319 unsigned int reg = regs[i].reg;
2320 unsigned int val = regs[i].def;
2321 trace_regmap_hw_write_start(map, reg, 1);
2322 map->format.format_reg(u8, reg, map->reg_shift);
2323 u8 += reg_bytes + pad_bytes;
2324 map->format.format_val(u8, val, 0);
2325 u8 += val_bytes;
2326 }
2327 u8 = buf;
2328 *u8 |= map->write_flag_mask;
2329
2330 ret = map->bus->write(map->bus_context, buf, len);
2331
2332 kfree(buf);
2333
2334 for (i = 0; i < num_regs; i++) {
2335 int reg = regs[i].reg;
2336 trace_regmap_hw_write_done(map, reg, 1);
2337 }
2338 return ret;
2339}
2340
2341static unsigned int _regmap_register_page(struct regmap *map,
2342 unsigned int reg,
2343 struct regmap_range_node *range)
2344{
2345 unsigned int win_page = (reg - range->range_min) / range->window_len;
2346
2347 return win_page;
2348}
2349
2350static int _regmap_range_multi_paged_reg_write(struct regmap *map,
2351 struct reg_sequence *regs,
2352 size_t num_regs)
2353{
2354 int ret;
2355 int i, n;
2356 struct reg_sequence *base;
2357 unsigned int this_page = 0;
2358 unsigned int page_change = 0;
2359 /*
2360 * the set of registers are not neccessarily in order, but
2361 * since the order of write must be preserved this algorithm
2362 * chops the set each time the page changes. This also applies
2363 * if there is a delay required at any point in the sequence.
2364 */
2365 base = regs;
2366 for (i = 0, n = 0; i < num_regs; i++, n++) {
2367 unsigned int reg = regs[i].reg;
2368 struct regmap_range_node *range;
2369
2370 range = _regmap_range_lookup(map, reg);
2371 if (range) {
2372 unsigned int win_page = _regmap_register_page(map, reg,
2373 range);
2374
2375 if (i == 0)
2376 this_page = win_page;
2377 if (win_page != this_page) {
2378 this_page = win_page;
2379 page_change = 1;
2380 }
2381 }
2382
2383 /* If we have both a page change and a delay make sure to
2384 * write the regs and apply the delay before we change the
2385 * page.
2386 */
2387
2388 if (page_change || regs[i].delay_us) {
2389
2390 /* For situations where the first write requires
2391 * a delay we need to make sure we don't call
2392 * raw_multi_reg_write with n=0
2393 * This can't occur with page breaks as we
2394 * never write on the first iteration
2395 */
2396 if (regs[i].delay_us && i == 0)
2397 n = 1;
2398
2399 ret = _regmap_raw_multi_reg_write(map, base, n);
2400 if (ret != 0)
2401 return ret;
2402
2403 if (regs[i].delay_us) {
2404 if (map->can_sleep)
2405 fsleep(regs[i].delay_us);
2406 else
2407 udelay(regs[i].delay_us);
2408 }
2409
2410 base += n;
2411 n = 0;
2412
2413 if (page_change) {
2414 ret = _regmap_select_page(map,
2415 &base[n].reg,
2416 range, 1);
2417 if (ret != 0)
2418 return ret;
2419
2420 page_change = 0;
2421 }
2422
2423 }
2424
2425 }
2426 if (n > 0)
2427 return _regmap_raw_multi_reg_write(map, base, n);
2428 return 0;
2429}
2430
2431static int _regmap_multi_reg_write(struct regmap *map,
2432 const struct reg_sequence *regs,
2433 size_t num_regs)
2434{
2435 int i;
2436 int ret;
2437
2438 if (!map->can_multi_write) {
2439 for (i = 0; i < num_regs; i++) {
2440 ret = _regmap_write(map, regs[i].reg, regs[i].def);
2441 if (ret != 0)
2442 return ret;
2443
2444 if (regs[i].delay_us) {
2445 if (map->can_sleep)
2446 fsleep(regs[i].delay_us);
2447 else
2448 udelay(regs[i].delay_us);
2449 }
2450 }
2451 return 0;
2452 }
2453
2454 if (!map->format.parse_inplace)
2455 return -EINVAL;
2456
2457 if (map->writeable_reg)
2458 for (i = 0; i < num_regs; i++) {
2459 int reg = regs[i].reg;
2460 if (!map->writeable_reg(map->dev, reg))
2461 return -EINVAL;
2462 if (!IS_ALIGNED(reg, map->reg_stride))
2463 return -EINVAL;
2464 }
2465
2466 if (!map->cache_bypass) {
2467 for (i = 0; i < num_regs; i++) {
2468 unsigned int val = regs[i].def;
2469 unsigned int reg = regs[i].reg;
2470 ret = regcache_write(map, reg, val);
2471 if (ret) {
2472 dev_err(map->dev,
2473 "Error in caching of register: %x ret: %d\n",
2474 reg, ret);
2475 return ret;
2476 }
2477 }
2478 if (map->cache_only) {
2479 map->cache_dirty = true;
2480 return 0;
2481 }
2482 }
2483
2484 WARN_ON(!map->bus);
2485
2486 for (i = 0; i < num_regs; i++) {
2487 unsigned int reg = regs[i].reg;
2488 struct regmap_range_node *range;
2489
2490 /* Coalesce all the writes between a page break or a delay
2491 * in a sequence
2492 */
2493 range = _regmap_range_lookup(map, reg);
2494 if (range || regs[i].delay_us) {
2495 size_t len = sizeof(struct reg_sequence)*num_regs;
2496 struct reg_sequence *base = kmemdup(regs, len,
2497 GFP_KERNEL);
2498 if (!base)
2499 return -ENOMEM;
2500 ret = _regmap_range_multi_paged_reg_write(map, base,
2501 num_regs);
2502 kfree(base);
2503
2504 return ret;
2505 }
2506 }
2507 return _regmap_raw_multi_reg_write(map, regs, num_regs);
2508}
2509
2510/**
2511 * regmap_multi_reg_write() - Write multiple registers to the device
2512 *
2513 * @map: Register map to write to
2514 * @regs: Array of structures containing register,value to be written
2515 * @num_regs: Number of registers to write
2516 *
2517 * Write multiple registers to the device where the set of register, value
2518 * pairs are supplied in any order, possibly not all in a single range.
2519 *
2520 * The 'normal' block write mode will send ultimately send data on the
2521 * target bus as R,V1,V2,V3,..,Vn where successively higher registers are
2522 * addressed. However, this alternative block multi write mode will send
2523 * the data as R1,V1,R2,V2,..,Rn,Vn on the target bus. The target device
2524 * must of course support the mode.
2525 *
2526 * A value of zero will be returned on success, a negative errno will be
2527 * returned in error cases.
2528 */
2529int regmap_multi_reg_write(struct regmap *map, const struct reg_sequence *regs,
2530 int num_regs)
2531{
2532 int ret;
2533
2534 map->lock(map->lock_arg);
2535
2536 ret = _regmap_multi_reg_write(map, regs, num_regs);
2537
2538 map->unlock(map->lock_arg);
2539
2540 return ret;
2541}
2542EXPORT_SYMBOL_GPL(regmap_multi_reg_write);
2543
2544/**
2545 * regmap_multi_reg_write_bypassed() - Write multiple registers to the
2546 * device but not the cache
2547 *
2548 * @map: Register map to write to
2549 * @regs: Array of structures containing register,value to be written
2550 * @num_regs: Number of registers to write
2551 *
2552 * Write multiple registers to the device but not the cache where the set
2553 * of register are supplied in any order.
2554 *
2555 * This function is intended to be used for writing a large block of data
2556 * atomically to the device in single transfer for those I2C client devices
2557 * that implement this alternative block write mode.
2558 *
2559 * A value of zero will be returned on success, a negative errno will
2560 * be returned in error cases.
2561 */
2562int regmap_multi_reg_write_bypassed(struct regmap *map,
2563 const struct reg_sequence *regs,
2564 int num_regs)
2565{
2566 int ret;
2567 bool bypass;
2568
2569 map->lock(map->lock_arg);
2570
2571 bypass = map->cache_bypass;
2572 map->cache_bypass = true;
2573
2574 ret = _regmap_multi_reg_write(map, regs, num_regs);
2575
2576 map->cache_bypass = bypass;
2577
2578 map->unlock(map->lock_arg);
2579
2580 return ret;
2581}
2582EXPORT_SYMBOL_GPL(regmap_multi_reg_write_bypassed);
2583
2584/**
2585 * regmap_raw_write_async() - Write raw values to one or more registers
2586 * asynchronously
2587 *
2588 * @map: Register map to write to
2589 * @reg: Initial register to write to
2590 * @val: Block of data to be written, laid out for direct transmission to the
2591 * device. Must be valid until regmap_async_complete() is called.
2592 * @val_len: Length of data pointed to by val.
2593 *
2594 * This function is intended to be used for things like firmware
2595 * download where a large block of data needs to be transferred to the
2596 * device. No formatting will be done on the data provided.
2597 *
2598 * If supported by the underlying bus the write will be scheduled
2599 * asynchronously, helping maximise I/O speed on higher speed buses
2600 * like SPI. regmap_async_complete() can be called to ensure that all
2601 * asynchrnous writes have been completed.
2602 *
2603 * A value of zero will be returned on success, a negative errno will
2604 * be returned in error cases.
2605 */
2606int regmap_raw_write_async(struct regmap *map, unsigned int reg,
2607 const void *val, size_t val_len)
2608{
2609 int ret;
2610
2611 if (val_len % map->format.val_bytes)
2612 return -EINVAL;
2613 if (!IS_ALIGNED(reg, map->reg_stride))
2614 return -EINVAL;
2615
2616 map->lock(map->lock_arg);
2617
2618 map->async = true;
2619
2620 ret = _regmap_raw_write(map, reg, val, val_len, false);
2621
2622 map->async = false;
2623
2624 map->unlock(map->lock_arg);
2625
2626 return ret;
2627}
2628EXPORT_SYMBOL_GPL(regmap_raw_write_async);
2629
2630static int _regmap_raw_read(struct regmap *map, unsigned int reg, void *val,
2631 unsigned int val_len, bool noinc)
2632{
2633 struct regmap_range_node *range;
2634 int ret;
2635
2636 WARN_ON(!map->bus);
2637
2638 if (!map->bus || !map->bus->read)
2639 return -EINVAL;
2640
2641 range = _regmap_range_lookup(map, reg);
2642 if (range) {
2643 ret = _regmap_select_page(map, ®, range,
2644 noinc ? 1 : val_len / map->format.val_bytes);
2645 if (ret != 0)
2646 return ret;
2647 }
2648
2649 map->format.format_reg(map->work_buf, reg, map->reg_shift);
2650 regmap_set_work_buf_flag_mask(map, map->format.reg_bytes,
2651 map->read_flag_mask);
2652 trace_regmap_hw_read_start(map, reg, val_len / map->format.val_bytes);
2653
2654 ret = map->bus->read(map->bus_context, map->work_buf,
2655 map->format.reg_bytes + map->format.pad_bytes,
2656 val, val_len);
2657
2658 trace_regmap_hw_read_done(map, reg, val_len / map->format.val_bytes);
2659
2660 return ret;
2661}
2662
2663static int _regmap_bus_reg_read(void *context, unsigned int reg,
2664 unsigned int *val)
2665{
2666 struct regmap *map = context;
2667
2668 return map->bus->reg_read(map->bus_context, reg, val);
2669}
2670
2671static int _regmap_bus_read(void *context, unsigned int reg,
2672 unsigned int *val)
2673{
2674 int ret;
2675 struct regmap *map = context;
2676 void *work_val = map->work_buf + map->format.reg_bytes +
2677 map->format.pad_bytes;
2678
2679 if (!map->format.parse_val)
2680 return -EINVAL;
2681
2682 ret = _regmap_raw_read(map, reg, work_val, map->format.val_bytes, false);
2683 if (ret == 0)
2684 *val = map->format.parse_val(work_val);
2685
2686 return ret;
2687}
2688
2689static int _regmap_read(struct regmap *map, unsigned int reg,
2690 unsigned int *val)
2691{
2692 int ret;
2693 void *context = _regmap_map_get_context(map);
2694
2695 if (!map->cache_bypass) {
2696 ret = regcache_read(map, reg, val);
2697 if (ret == 0)
2698 return 0;
2699 }
2700
2701 if (map->cache_only)
2702 return -EBUSY;
2703
2704 if (!regmap_readable(map, reg))
2705 return -EIO;
2706
2707 ret = map->reg_read(context, reg, val);
2708 if (ret == 0) {
2709 if (regmap_should_log(map))
2710 dev_info(map->dev, "%x => %x\n", reg, *val);
2711
2712 trace_regmap_reg_read(map, reg, *val);
2713
2714 if (!map->cache_bypass)
2715 regcache_write(map, reg, *val);
2716 }
2717
2718 return ret;
2719}
2720
2721/**
2722 * regmap_read() - Read a value from a single register
2723 *
2724 * @map: Register map to read from
2725 * @reg: Register to be read from
2726 * @val: Pointer to store read value
2727 *
2728 * A value of zero will be returned on success, a negative errno will
2729 * be returned in error cases.
2730 */
2731int regmap_read(struct regmap *map, unsigned int reg, unsigned int *val)
2732{
2733 int ret;
2734
2735 if (!IS_ALIGNED(reg, map->reg_stride))
2736 return -EINVAL;
2737
2738 map->lock(map->lock_arg);
2739
2740 ret = _regmap_read(map, reg, val);
2741
2742 map->unlock(map->lock_arg);
2743
2744 return ret;
2745}
2746EXPORT_SYMBOL_GPL(regmap_read);
2747
2748/**
2749 * regmap_raw_read() - Read raw data from the device
2750 *
2751 * @map: Register map to read from
2752 * @reg: First register to be read from
2753 * @val: Pointer to store read value
2754 * @val_len: Size of data to read
2755 *
2756 * A value of zero will be returned on success, a negative errno will
2757 * be returned in error cases.
2758 */
2759int regmap_raw_read(struct regmap *map, unsigned int reg, void *val,
2760 size_t val_len)
2761{
2762 size_t val_bytes = map->format.val_bytes;
2763 size_t val_count = val_len / val_bytes;
2764 unsigned int v;
2765 int ret, i;
2766
2767 if (!map->bus)
2768 return -EINVAL;
2769 if (val_len % map->format.val_bytes)
2770 return -EINVAL;
2771 if (!IS_ALIGNED(reg, map->reg_stride))
2772 return -EINVAL;
2773 if (val_count == 0)
2774 return -EINVAL;
2775
2776 map->lock(map->lock_arg);
2777
2778 if (regmap_volatile_range(map, reg, val_count) || map->cache_bypass ||
2779 map->cache_type == REGCACHE_NONE) {
2780 size_t chunk_count, chunk_bytes;
2781 size_t chunk_regs = val_count;
2782
2783 if (!map->bus->read) {
2784 ret = -ENOTSUPP;
2785 goto out;
2786 }
2787
2788 if (map->use_single_read)
2789 chunk_regs = 1;
2790 else if (map->max_raw_read && val_len > map->max_raw_read)
2791 chunk_regs = map->max_raw_read / val_bytes;
2792
2793 chunk_count = val_count / chunk_regs;
2794 chunk_bytes = chunk_regs * val_bytes;
2795
2796 /* Read bytes that fit into whole chunks */
2797 for (i = 0; i < chunk_count; i++) {
2798 ret = _regmap_raw_read(map, reg, val, chunk_bytes, false);
2799 if (ret != 0)
2800 goto out;
2801
2802 reg += regmap_get_offset(map, chunk_regs);
2803 val += chunk_bytes;
2804 val_len -= chunk_bytes;
2805 }
2806
2807 /* Read remaining bytes */
2808 if (val_len) {
2809 ret = _regmap_raw_read(map, reg, val, val_len, false);
2810 if (ret != 0)
2811 goto out;
2812 }
2813 } else {
2814 /* Otherwise go word by word for the cache; should be low
2815 * cost as we expect to hit the cache.
2816 */
2817 for (i = 0; i < val_count; i++) {
2818 ret = _regmap_read(map, reg + regmap_get_offset(map, i),
2819 &v);
2820 if (ret != 0)
2821 goto out;
2822
2823 map->format.format_val(val + (i * val_bytes), v, 0);
2824 }
2825 }
2826
2827 out:
2828 map->unlock(map->lock_arg);
2829
2830 return ret;
2831}
2832EXPORT_SYMBOL_GPL(regmap_raw_read);
2833
2834/**
2835 * regmap_noinc_read(): Read data from a register without incrementing the
2836 * register number
2837 *
2838 * @map: Register map to read from
2839 * @reg: Register to read from
2840 * @val: Pointer to data buffer
2841 * @val_len: Length of output buffer in bytes.
2842 *
2843 * The regmap API usually assumes that bulk bus read operations will read a
2844 * range of registers. Some devices have certain registers for which a read
2845 * operation read will read from an internal FIFO.
2846 *
2847 * The target register must be volatile but registers after it can be
2848 * completely unrelated cacheable registers.
2849 *
2850 * This will attempt multiple reads as required to read val_len bytes.
2851 *
2852 * A value of zero will be returned on success, a negative errno will be
2853 * returned in error cases.
2854 */
2855int regmap_noinc_read(struct regmap *map, unsigned int reg,
2856 void *val, size_t val_len)
2857{
2858 size_t read_len;
2859 int ret;
2860
2861 if (!map->bus)
2862 return -EINVAL;
2863 if (!map->bus->read)
2864 return -ENOTSUPP;
2865 if (val_len % map->format.val_bytes)
2866 return -EINVAL;
2867 if (!IS_ALIGNED(reg, map->reg_stride))
2868 return -EINVAL;
2869 if (val_len == 0)
2870 return -EINVAL;
2871
2872 map->lock(map->lock_arg);
2873
2874 if (!regmap_volatile(map, reg) || !regmap_readable_noinc(map, reg)) {
2875 ret = -EINVAL;
2876 goto out_unlock;
2877 }
2878
2879 while (val_len) {
2880 if (map->max_raw_read && map->max_raw_read < val_len)
2881 read_len = map->max_raw_read;
2882 else
2883 read_len = val_len;
2884 ret = _regmap_raw_read(map, reg, val, read_len, true);
2885 if (ret)
2886 goto out_unlock;
2887 val = ((u8 *)val) + read_len;
2888 val_len -= read_len;
2889 }
2890
2891out_unlock:
2892 map->unlock(map->lock_arg);
2893 return ret;
2894}
2895EXPORT_SYMBOL_GPL(regmap_noinc_read);
2896
2897/**
2898 * regmap_field_read(): Read a value to a single register field
2899 *
2900 * @field: Register field to read from
2901 * @val: Pointer to store read value
2902 *
2903 * A value of zero will be returned on success, a negative errno will
2904 * be returned in error cases.
2905 */
2906int regmap_field_read(struct regmap_field *field, unsigned int *val)
2907{
2908 int ret;
2909 unsigned int reg_val;
2910 ret = regmap_read(field->regmap, field->reg, ®_val);
2911 if (ret != 0)
2912 return ret;
2913
2914 reg_val &= field->mask;
2915 reg_val >>= field->shift;
2916 *val = reg_val;
2917
2918 return ret;
2919}
2920EXPORT_SYMBOL_GPL(regmap_field_read);
2921
2922/**
2923 * regmap_fields_read() - Read a value to a single register field with port ID
2924 *
2925 * @field: Register field to read from
2926 * @id: port ID
2927 * @val: Pointer to store read value
2928 *
2929 * A value of zero will be returned on success, a negative errno will
2930 * be returned in error cases.
2931 */
2932int regmap_fields_read(struct regmap_field *field, unsigned int id,
2933 unsigned int *val)
2934{
2935 int ret;
2936 unsigned int reg_val;
2937
2938 if (id >= field->id_size)
2939 return -EINVAL;
2940
2941 ret = regmap_read(field->regmap,
2942 field->reg + (field->id_offset * id),
2943 ®_val);
2944 if (ret != 0)
2945 return ret;
2946
2947 reg_val &= field->mask;
2948 reg_val >>= field->shift;
2949 *val = reg_val;
2950
2951 return ret;
2952}
2953EXPORT_SYMBOL_GPL(regmap_fields_read);
2954
2955/**
2956 * regmap_bulk_read() - Read multiple registers from the device
2957 *
2958 * @map: Register map to read from
2959 * @reg: First register to be read from
2960 * @val: Pointer to store read value, in native register size for device
2961 * @val_count: Number of registers to read
2962 *
2963 * A value of zero will be returned on success, a negative errno will
2964 * be returned in error cases.
2965 */
2966int regmap_bulk_read(struct regmap *map, unsigned int reg, void *val,
2967 size_t val_count)
2968{
2969 int ret, i;
2970 size_t val_bytes = map->format.val_bytes;
2971 bool vol = regmap_volatile_range(map, reg, val_count);
2972
2973 if (!IS_ALIGNED(reg, map->reg_stride))
2974 return -EINVAL;
2975 if (val_count == 0)
2976 return -EINVAL;
2977
2978 if (map->bus && map->format.parse_inplace && (vol || map->cache_type == REGCACHE_NONE)) {
2979 ret = regmap_raw_read(map, reg, val, val_bytes * val_count);
2980 if (ret != 0)
2981 return ret;
2982
2983 for (i = 0; i < val_count * val_bytes; i += val_bytes)
2984 map->format.parse_inplace(val + i);
2985 } else {
2986#ifdef CONFIG_64BIT
2987 u64 *u64 = val;
2988#endif
2989 u32 *u32 = val;
2990 u16 *u16 = val;
2991 u8 *u8 = val;
2992
2993 map->lock(map->lock_arg);
2994
2995 for (i = 0; i < val_count; i++) {
2996 unsigned int ival;
2997
2998 ret = _regmap_read(map, reg + regmap_get_offset(map, i),
2999 &ival);
3000 if (ret != 0)
3001 goto out;
3002
3003 switch (map->format.val_bytes) {
3004#ifdef CONFIG_64BIT
3005 case 8:
3006 u64[i] = ival;
3007 break;
3008#endif
3009 case 4:
3010 u32[i] = ival;
3011 break;
3012 case 2:
3013 u16[i] = ival;
3014 break;
3015 case 1:
3016 u8[i] = ival;
3017 break;
3018 default:
3019 ret = -EINVAL;
3020 goto out;
3021 }
3022 }
3023
3024out:
3025 map->unlock(map->lock_arg);
3026 }
3027
3028 return ret;
3029}
3030EXPORT_SYMBOL_GPL(regmap_bulk_read);
3031
3032static int _regmap_update_bits(struct regmap *map, unsigned int reg,
3033 unsigned int mask, unsigned int val,
3034 bool *change, bool force_write)
3035{
3036 int ret;
3037 unsigned int tmp, orig;
3038
3039 if (change)
3040 *change = false;
3041
3042 if (regmap_volatile(map, reg) && map->reg_update_bits) {
3043 ret = map->reg_update_bits(map->bus_context, reg, mask, val);
3044 if (ret == 0 && change)
3045 *change = true;
3046 } else {
3047 ret = _regmap_read(map, reg, &orig);
3048 if (ret != 0)
3049 return ret;
3050
3051 tmp = orig & ~mask;
3052 tmp |= val & mask;
3053
3054 if (force_write || (tmp != orig)) {
3055 ret = _regmap_write(map, reg, tmp);
3056 if (ret == 0 && change)
3057 *change = true;
3058 }
3059 }
3060
3061 return ret;
3062}
3063
3064/**
3065 * regmap_update_bits_base() - Perform a read/modify/write cycle on a register
3066 *
3067 * @map: Register map to update
3068 * @reg: Register to update
3069 * @mask: Bitmask to change
3070 * @val: New value for bitmask
3071 * @change: Boolean indicating if a write was done
3072 * @async: Boolean indicating asynchronously
3073 * @force: Boolean indicating use force update
3074 *
3075 * Perform a read/modify/write cycle on a register map with change, async, force
3076 * options.
3077 *
3078 * If async is true:
3079 *
3080 * With most buses the read must be done synchronously so this is most useful
3081 * for devices with a cache which do not need to interact with the hardware to
3082 * determine the current register value.
3083 *
3084 * Returns zero for success, a negative number on error.
3085 */
3086int regmap_update_bits_base(struct regmap *map, unsigned int reg,
3087 unsigned int mask, unsigned int val,
3088 bool *change, bool async, bool force)
3089{
3090 int ret;
3091
3092 map->lock(map->lock_arg);
3093
3094 map->async = async;
3095
3096 ret = _regmap_update_bits(map, reg, mask, val, change, force);
3097
3098 map->async = false;
3099
3100 map->unlock(map->lock_arg);
3101
3102 return ret;
3103}
3104EXPORT_SYMBOL_GPL(regmap_update_bits_base);
3105
3106/**
3107 * regmap_test_bits() - Check if all specified bits are set in a register.
3108 *
3109 * @map: Register map to operate on
3110 * @reg: Register to read from
3111 * @bits: Bits to test
3112 *
3113 * Returns 0 if at least one of the tested bits is not set, 1 if all tested
3114 * bits are set and a negative error number if the underlying regmap_read()
3115 * fails.
3116 */
3117int regmap_test_bits(struct regmap *map, unsigned int reg, unsigned int bits)
3118{
3119 unsigned int val, ret;
3120
3121 ret = regmap_read(map, reg, &val);
3122 if (ret)
3123 return ret;
3124
3125 return (val & bits) == bits;
3126}
3127EXPORT_SYMBOL_GPL(regmap_test_bits);
3128
3129void regmap_async_complete_cb(struct regmap_async *async, int ret)
3130{
3131 struct regmap *map = async->map;
3132 bool wake;
3133
3134 trace_regmap_async_io_complete(map);
3135
3136 spin_lock(&map->async_lock);
3137 list_move(&async->list, &map->async_free);
3138 wake = list_empty(&map->async_list);
3139
3140 if (ret != 0)
3141 map->async_ret = ret;
3142
3143 spin_unlock(&map->async_lock);
3144
3145 if (wake)
3146 wake_up(&map->async_waitq);
3147}
3148EXPORT_SYMBOL_GPL(regmap_async_complete_cb);
3149
3150static int regmap_async_is_done(struct regmap *map)
3151{
3152 unsigned long flags;
3153 int ret;
3154
3155 spin_lock_irqsave(&map->async_lock, flags);
3156 ret = list_empty(&map->async_list);
3157 spin_unlock_irqrestore(&map->async_lock, flags);
3158
3159 return ret;
3160}
3161
3162/**
3163 * regmap_async_complete - Ensure all asynchronous I/O has completed.
3164 *
3165 * @map: Map to operate on.
3166 *
3167 * Blocks until any pending asynchronous I/O has completed. Returns
3168 * an error code for any failed I/O operations.
3169 */
3170int regmap_async_complete(struct regmap *map)
3171{
3172 unsigned long flags;
3173 int ret;
3174
3175 /* Nothing to do with no async support */
3176 if (!map->bus || !map->bus->async_write)
3177 return 0;
3178
3179 trace_regmap_async_complete_start(map);
3180
3181 wait_event(map->async_waitq, regmap_async_is_done(map));
3182
3183 spin_lock_irqsave(&map->async_lock, flags);
3184 ret = map->async_ret;
3185 map->async_ret = 0;
3186 spin_unlock_irqrestore(&map->async_lock, flags);
3187
3188 trace_regmap_async_complete_done(map);
3189
3190 return ret;
3191}
3192EXPORT_SYMBOL_GPL(regmap_async_complete);
3193
3194/**
3195 * regmap_register_patch - Register and apply register updates to be applied
3196 * on device initialistion
3197 *
3198 * @map: Register map to apply updates to.
3199 * @regs: Values to update.
3200 * @num_regs: Number of entries in regs.
3201 *
3202 * Register a set of register updates to be applied to the device
3203 * whenever the device registers are synchronised with the cache and
3204 * apply them immediately. Typically this is used to apply
3205 * corrections to be applied to the device defaults on startup, such
3206 * as the updates some vendors provide to undocumented registers.
3207 *
3208 * The caller must ensure that this function cannot be called
3209 * concurrently with either itself or regcache_sync().
3210 */
3211int regmap_register_patch(struct regmap *map, const struct reg_sequence *regs,
3212 int num_regs)
3213{
3214 struct reg_sequence *p;
3215 int ret;
3216 bool bypass;
3217
3218 if (WARN_ONCE(num_regs <= 0, "invalid registers number (%d)\n",
3219 num_regs))
3220 return 0;
3221
3222 p = krealloc(map->patch,
3223 sizeof(struct reg_sequence) * (map->patch_regs + num_regs),
3224 GFP_KERNEL);
3225 if (p) {
3226 memcpy(p + map->patch_regs, regs, num_regs * sizeof(*regs));
3227 map->patch = p;
3228 map->patch_regs += num_regs;
3229 } else {
3230 return -ENOMEM;
3231 }
3232
3233 map->lock(map->lock_arg);
3234
3235 bypass = map->cache_bypass;
3236
3237 map->cache_bypass = true;
3238 map->async = true;
3239
3240 ret = _regmap_multi_reg_write(map, regs, num_regs);
3241
3242 map->async = false;
3243 map->cache_bypass = bypass;
3244
3245 map->unlock(map->lock_arg);
3246
3247 regmap_async_complete(map);
3248
3249 return ret;
3250}
3251EXPORT_SYMBOL_GPL(regmap_register_patch);
3252
3253/**
3254 * regmap_get_val_bytes() - Report the size of a register value
3255 *
3256 * @map: Register map to operate on.
3257 *
3258 * Report the size of a register value, mainly intended to for use by
3259 * generic infrastructure built on top of regmap.
3260 */
3261int regmap_get_val_bytes(struct regmap *map)
3262{
3263 if (map->format.format_write)
3264 return -EINVAL;
3265
3266 return map->format.val_bytes;
3267}
3268EXPORT_SYMBOL_GPL(regmap_get_val_bytes);
3269
3270/**
3271 * regmap_get_max_register() - Report the max register value
3272 *
3273 * @map: Register map to operate on.
3274 *
3275 * Report the max register value, mainly intended to for use by
3276 * generic infrastructure built on top of regmap.
3277 */
3278int regmap_get_max_register(struct regmap *map)
3279{
3280 return map->max_register ? map->max_register : -EINVAL;
3281}
3282EXPORT_SYMBOL_GPL(regmap_get_max_register);
3283
3284/**
3285 * regmap_get_reg_stride() - Report the register address stride
3286 *
3287 * @map: Register map to operate on.
3288 *
3289 * Report the register address stride, mainly intended to for use by
3290 * generic infrastructure built on top of regmap.
3291 */
3292int regmap_get_reg_stride(struct regmap *map)
3293{
3294 return map->reg_stride;
3295}
3296EXPORT_SYMBOL_GPL(regmap_get_reg_stride);
3297
3298int regmap_parse_val(struct regmap *map, const void *buf,
3299 unsigned int *val)
3300{
3301 if (!map->format.parse_val)
3302 return -EINVAL;
3303
3304 *val = map->format.parse_val(buf);
3305
3306 return 0;
3307}
3308EXPORT_SYMBOL_GPL(regmap_parse_val);
3309
3310static int __init regmap_initcall(void)
3311{
3312 regmap_debugfs_initcall();
3313
3314 return 0;
3315}
3316postcore_initcall(regmap_initcall);