Linux Audio

Check our new training course

Loading...
v3.1
  1/*
  2 * Register map access API
  3 *
  4 * Copyright 2011 Wolfson Microelectronics plc
  5 *
  6 * Author: Mark Brown <broonie@opensource.wolfsonmicro.com>
  7 *
  8 * This program is free software; you can redistribute it and/or modify
  9 * it under the terms of the GNU General Public License version 2 as
 10 * published by the Free Software Foundation.
 11 */
 12
 
 13#include <linux/slab.h>
 14#include <linux/module.h>
 15#include <linux/mutex.h>
 16#include <linux/err.h>
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 17
 18#include <linux/regmap.h>
 
 
 
 
 
 
 
 
 
 19
 20struct regmap;
 21
 22struct regmap_format {
 23	size_t buf_size;
 24	size_t reg_bytes;
 25	size_t val_bytes;
 26	void (*format_write)(struct regmap *map,
 27			     unsigned int reg, unsigned int val);
 28	void (*format_reg)(void *buf, unsigned int reg);
 29	void (*format_val)(void *buf, unsigned int val);
 30	unsigned int (*parse_val)(void *buf);
 31};
 32
 33struct regmap {
 34	struct mutex lock;
 35
 36	struct device *dev; /* Device we do I/O on */
 37	void *work_buf;     /* Scratch buffer used to format I/O */
 38	struct regmap_format format;  /* Buffer format */
 39	const struct regmap_bus *bus;
 40};
 41
 42static void regmap_format_4_12_write(struct regmap *map,
 43				     unsigned int reg, unsigned int val)
 44{
 45	__be16 *out = map->work_buf;
 46	*out = cpu_to_be16((reg << 12) | val);
 47}
 48
 49static void regmap_format_7_9_write(struct regmap *map,
 50				    unsigned int reg, unsigned int val)
 51{
 52	__be16 *out = map->work_buf;
 53	*out = cpu_to_be16((reg << 9) | val);
 54}
 55
 56static void regmap_format_8(void *buf, unsigned int val)
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 57{
 58	u8 *b = buf;
 59
 60	b[0] = val;
 61}
 62
 63static void regmap_format_16(void *buf, unsigned int val)
 64{
 65	__be16 *b = buf;
 
 66
 67	b[0] = cpu_to_be16(val);
 
 
 68}
 69
 70static unsigned int regmap_parse_8(void *buf)
 
 
 
 
 
 
 
 
 71{
 72	u8 *b = buf;
 73
 74	return b[0];
 
 
 
 
 75}
 76
 77static unsigned int regmap_parse_16(void *buf)
 78{
 79	__be16 *b = buf;
 
 
 
 
 
 
 80
 81	b[0] = be16_to_cpu(b[0]);
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 82
 83	return b[0];
 84}
 85
 86/**
 87 * regmap_init(): Initialise register map
 88 *
 89 * @dev: Device that will be interacted with
 90 * @bus: Bus-specific callbacks to use with device
 91 * @config: Configuration for register map
 92 *
 93 * The return value will be an ERR_PTR() on error or a valid pointer to
 94 * a struct regmap.  This function should generally not be called
 95 * directly, it should be called by bus-specific init functions.
 96 */
 97struct regmap *regmap_init(struct device *dev,
 98			   const struct regmap_bus *bus,
 99			   const struct regmap_config *config)
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
100{
101	struct regmap *map;
102	int ret = -EINVAL;
 
 
103
104	if (!bus || !config)
105		return NULL;
106
107	map = kzalloc(sizeof(*map), GFP_KERNEL);
108	if (map == NULL) {
109		ret = -ENOMEM;
110		goto err;
111	}
112
113	mutex_init(&map->lock);
114	map->format.buf_size = (config->reg_bits + config->val_bits) / 8;
115	map->format.reg_bytes = config->reg_bits / 8;
116	map->format.val_bytes = config->val_bits / 8;
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
117	map->dev = dev;
118	map->bus = bus;
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
119
120	switch (config->reg_bits) {
121	case 4:
122		switch (config->val_bits) {
123		case 12:
124			map->format.format_write = regmap_format_4_12_write;
125			break;
126		default:
127			goto err_map;
128		}
129		break;
130
131	case 7:
132		switch (config->val_bits) {
133		case 9:
134			map->format.format_write = regmap_format_7_9_write;
135			break;
 
 
 
136		default:
137			goto err_map;
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
138		}
139		break;
140
141	case 8:
142		map->format.format_reg = regmap_format_8;
143		break;
144
145	case 16:
146		map->format.format_reg = regmap_format_16;
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
147		break;
 
148
149	default:
150		goto err_map;
151	}
152
 
 
 
153	switch (config->val_bits) {
154	case 8:
155		map->format.format_val = regmap_format_8;
156		map->format.parse_val = regmap_parse_8;
 
157		break;
158	case 16:
159		map->format.format_val = regmap_format_16;
160		map->format.parse_val = regmap_parse_16;
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
161		break;
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
162	}
163
164	if (!map->format.format_write &&
165	    !(map->format.format_reg && map->format.format_val))
166		goto err_map;
167
168	map->work_buf = kmalloc(map->format.buf_size, GFP_KERNEL);
169	if (map->work_buf == NULL) {
170		ret = -ENOMEM;
171		goto err_map;
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
172	}
173
174	return map;
175
 
 
 
 
 
 
 
 
 
 
176err_map:
177	kfree(map);
178err:
179	return ERR_PTR(ret);
180}
181EXPORT_SYMBOL_GPL(regmap_init);
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
182
183/**
184 * regmap_exit(): Free a previously allocated register map
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
185 */
186void regmap_exit(struct regmap *map)
187{
 
 
 
 
 
 
 
188	kfree(map->work_buf);
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
189	kfree(map);
190}
191EXPORT_SYMBOL_GPL(regmap_exit);
192
193static int _regmap_raw_write(struct regmap *map, unsigned int reg,
194			     const void *val, size_t val_len)
195{
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
196	void *buf;
197	int ret = -ENOTSUPP;
198	size_t len;
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
199
200	map->format.format_reg(map->work_buf, reg);
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
201
202	/* Try to do a gather write if we can */
203	if (map->bus->gather_write)
204		ret = map->bus->gather_write(map->dev, map->work_buf,
205					     map->format.reg_bytes,
 
 
 
 
 
 
 
 
 
 
 
 
 
 
206					     val, val_len);
 
 
207
208	/* Otherwise fall back on linearising by hand. */
209	if (ret == -ENOTSUPP) {
210		len = map->format.reg_bytes + val_len;
211		buf = kmalloc(len, GFP_KERNEL);
212		if (!buf)
213			return -ENOMEM;
214
215		memcpy(buf, map->work_buf, map->format.reg_bytes);
216		memcpy(buf + map->format.reg_bytes, val, val_len);
217		ret = map->bus->write(map->dev, buf, len);
 
218
219		kfree(buf);
 
 
 
 
 
 
220	}
221
 
 
222	return ret;
223}
224
225static int _regmap_write(struct regmap *map, unsigned int reg,
226			 unsigned int val)
 
 
 
 
227{
228	BUG_ON(!map->format.format_write && !map->format.format_val);
 
 
 
229
230	if (map->format.format_write) {
231		map->format.format_write(map, reg, val);
 
 
 
 
 
 
 
 
232
233		return map->bus->write(map->dev, map->work_buf,
234				       map->format.buf_size);
235	} else {
236		map->format.format_val(map->work_buf + map->format.reg_bytes,
237				       val);
238		return _regmap_raw_write(map, reg,
239					 map->work_buf + map->format.reg_bytes,
240					 map->format.val_bytes);
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
241	}
 
 
242}
243
244/**
245 * regmap_write(): Write a value to a single register
246 *
247 * @map: Register map to write to
248 * @reg: Register to write to
249 * @val: Value to be written
250 *
251 * A value of zero will be returned on success, a negative errno will
252 * be returned in error cases.
253 */
254int regmap_write(struct regmap *map, unsigned int reg, unsigned int val)
255{
256	int ret;
257
258	mutex_lock(&map->lock);
 
 
 
259
260	ret = _regmap_write(map, reg, val);
261
262	mutex_unlock(&map->lock);
263
264	return ret;
265}
266EXPORT_SYMBOL_GPL(regmap_write);
267
268/**
269 * regmap_raw_write(): Write raw values to one or more registers
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
270 *
271 * @map: Register map to write to
272 * @reg: Initial register to write to
273 * @val: Block of data to be written, laid out for direct transmission to the
274 *       device
275 * @val_len: Length of data pointed to by val.
276 *
277 * This function is intended to be used for things like firmware
278 * download where a large block of data needs to be transferred to the
279 * device.  No formatting will be done on the data provided.
280 *
281 * A value of zero will be returned on success, a negative errno will
282 * be returned in error cases.
283 */
284int regmap_raw_write(struct regmap *map, unsigned int reg,
285		     const void *val, size_t val_len)
286{
287	int ret;
288
289	mutex_lock(&map->lock);
 
 
 
290
291	ret = _regmap_raw_write(map, reg, val, val_len);
292
293	mutex_unlock(&map->lock);
 
 
294
295	return ret;
296}
297EXPORT_SYMBOL_GPL(regmap_raw_write);
298
299static int _regmap_raw_read(struct regmap *map, unsigned int reg, void *val,
300			    unsigned int val_len)
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
301{
302	u8 *u8 = map->work_buf;
303	int ret;
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
304
305	map->format.format_reg(map->work_buf, reg);
306
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
307	/*
308	 * Some buses flag reads by setting the high bits in the
309	 * register addresss; since it's always the high bits for all
310	 * current formats we can do this here rather than in
311	 * formatting.  This may break if we get interesting formats.
312	 */
313	if (map->bus->read_flag_mask)
314		u8[0] |= map->bus->read_flag_mask;
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
315
316	ret = map->bus->read(map->dev, map->work_buf, map->format.reg_bytes,
317			     val, val_len);
318	if (ret != 0)
319		return ret;
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
320
 
 
 
 
 
 
 
 
321	return 0;
322}
323
324static int _regmap_read(struct regmap *map, unsigned int reg,
325			unsigned int *val)
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
326{
327	int ret;
328
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
329	if (!map->format.parse_val)
330		return -EINVAL;
331
332	ret = _regmap_raw_read(map, reg, map->work_buf, map->format.val_bytes);
333	if (ret == 0)
334		*val = map->format.parse_val(map->work_buf);
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
335
336	return ret;
337}
338
339/**
340 * regmap_read(): Read a value from a single register
341 *
342 * @map: Register map to write to
343 * @reg: Register to be read from
344 * @val: Pointer to store read value
345 *
346 * A value of zero will be returned on success, a negative errno will
347 * be returned in error cases.
348 */
349int regmap_read(struct regmap *map, unsigned int reg, unsigned int *val)
350{
351	int ret;
352
353	mutex_lock(&map->lock);
 
 
 
354
355	ret = _regmap_read(map, reg, val);
356
357	mutex_unlock(&map->lock);
358
359	return ret;
360}
361EXPORT_SYMBOL_GPL(regmap_read);
362
363/**
364 * regmap_raw_read(): Read raw data from the device
365 *
366 * @map: Register map to write to
367 * @reg: First register to be read from
368 * @val: Pointer to store read value
369 * @val_len: Size of data to read
370 *
371 * A value of zero will be returned on success, a negative errno will
372 * be returned in error cases.
373 */
374int regmap_raw_read(struct regmap *map, unsigned int reg, void *val,
375		    size_t val_len)
376{
377	int ret;
 
 
 
378
379	mutex_lock(&map->lock);
 
 
 
 
 
 
 
380
381	ret = _regmap_raw_read(map, reg, val, val_len);
382
383	mutex_unlock(&map->lock);
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
384
385	return ret;
386}
387EXPORT_SYMBOL_GPL(regmap_raw_read);
388
389/**
390 * regmap_bulk_read(): Read multiple registers from the device
 
391 *
392 * @map: Register map to write to
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
393 * @reg: First register to be read from
394 * @val: Pointer to store read value, in native register size for device
395 * @val_count: Number of registers to read
396 *
397 * A value of zero will be returned on success, a negative errno will
398 * be returned in error cases.
399 */
400int regmap_bulk_read(struct regmap *map, unsigned int reg, void *val,
401		     size_t val_count)
402{
403	int ret, i;
404	size_t val_bytes = map->format.val_bytes;
 
405
406	if (!map->format.parse_val)
 
 
407		return -EINVAL;
408
409	ret = regmap_raw_read(map, reg, val, val_bytes * val_count);
410	if (ret != 0)
411		return ret;
 
412
413	for (i = 0; i < val_count * val_bytes; i += val_bytes)
414		map->format.parse_val(val + i);
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
415
416	return 0;
 
 
 
 
417}
418EXPORT_SYMBOL_GPL(regmap_bulk_read);
419
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
420/**
421 * remap_update_bits: Perform a read/modify/write cycle on the register map
422 *
423 * @map: Register map to update
424 * @reg: Register to update
425 * @mask: Bitmask to change
426 * @val: New value for bitmask
 
 
 
 
 
 
 
 
 
 
 
 
427 *
428 * Returns zero for success, a negative number on error.
429 */
430int regmap_update_bits(struct regmap *map, unsigned int reg,
431		       unsigned int mask, unsigned int val)
 
432{
433	int ret;
434	unsigned int tmp;
435
436	mutex_lock(&map->lock);
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
437
438	ret = _regmap_read(map, reg, &tmp);
439	if (ret != 0)
440		goto out;
441
442	tmp &= ~mask;
443	tmp |= val & mask;
444
445	ret = _regmap_write(map, reg, tmp);
 
 
 
446
447out:
448	mutex_unlock(&map->lock);
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
449
450	return ret;
451}
452EXPORT_SYMBOL_GPL(regmap_update_bits);
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
v5.14.15
   1// SPDX-License-Identifier: GPL-2.0
   2//
   3// Register map access API
   4//
   5// Copyright 2011 Wolfson Microelectronics plc
   6//
   7// Author: Mark Brown <broonie@opensource.wolfsonmicro.com>
 
 
 
 
   8
   9#include <linux/device.h>
  10#include <linux/slab.h>
  11#include <linux/export.h>
  12#include <linux/mutex.h>
  13#include <linux/err.h>
  14#include <linux/property.h>
  15#include <linux/rbtree.h>
  16#include <linux/sched.h>
  17#include <linux/delay.h>
  18#include <linux/log2.h>
  19#include <linux/hwspinlock.h>
  20#include <asm/unaligned.h>
  21
  22#define CREATE_TRACE_POINTS
  23#include "trace.h"
  24
  25#include "internal.h"
  26
  27/*
  28 * Sometimes for failures during very early init the trace
  29 * infrastructure isn't available early enough to be used.  For this
  30 * sort of problem defining LOG_DEVICE will add printks for basic
  31 * register I/O on a specific device.
  32 */
  33#undef LOG_DEVICE
  34
  35#ifdef LOG_DEVICE
  36static inline bool regmap_should_log(struct regmap *map)
  37{
  38	return (map->dev && strcmp(dev_name(map->dev), LOG_DEVICE) == 0);
  39}
  40#else
  41static inline bool regmap_should_log(struct regmap *map) { return false; }
  42#endif
  43
  44
  45static int _regmap_update_bits(struct regmap *map, unsigned int reg,
  46			       unsigned int mask, unsigned int val,
  47			       bool *change, bool force_write);
  48
  49static int _regmap_bus_reg_read(void *context, unsigned int reg,
  50				unsigned int *val);
  51static int _regmap_bus_read(void *context, unsigned int reg,
  52			    unsigned int *val);
  53static int _regmap_bus_formatted_write(void *context, unsigned int reg,
  54				       unsigned int val);
  55static int _regmap_bus_reg_write(void *context, unsigned int reg,
  56				 unsigned int val);
  57static int _regmap_bus_raw_write(void *context, unsigned int reg,
  58				 unsigned int val);
  59
  60bool regmap_reg_in_ranges(unsigned int reg,
  61			  const struct regmap_range *ranges,
  62			  unsigned int nranges)
  63{
  64	const struct regmap_range *r;
  65	int i;
  66
  67	for (i = 0, r = ranges; i < nranges; i++, r++)
  68		if (regmap_reg_in_range(reg, r))
  69			return true;
  70	return false;
  71}
  72EXPORT_SYMBOL_GPL(regmap_reg_in_ranges);
  73
  74bool regmap_check_range_table(struct regmap *map, unsigned int reg,
  75			      const struct regmap_access_table *table)
  76{
  77	/* Check "no ranges" first */
  78	if (regmap_reg_in_ranges(reg, table->no_ranges, table->n_no_ranges))
  79		return false;
  80
  81	/* In case zero "yes ranges" are supplied, any reg is OK */
  82	if (!table->n_yes_ranges)
  83		return true;
  84
  85	return regmap_reg_in_ranges(reg, table->yes_ranges,
  86				    table->n_yes_ranges);
  87}
  88EXPORT_SYMBOL_GPL(regmap_check_range_table);
  89
  90bool regmap_writeable(struct regmap *map, unsigned int reg)
  91{
  92	if (map->max_register && reg > map->max_register)
  93		return false;
  94
  95	if (map->writeable_reg)
  96		return map->writeable_reg(map->dev, reg);
  97
  98	if (map->wr_table)
  99		return regmap_check_range_table(map, reg, map->wr_table);
 100
 101	return true;
 102}
 103
 104bool regmap_cached(struct regmap *map, unsigned int reg)
 105{
 106	int ret;
 107	unsigned int val;
 108
 109	if (map->cache_type == REGCACHE_NONE)
 110		return false;
 111
 112	if (!map->cache_ops)
 113		return false;
 114
 115	if (map->max_register && reg > map->max_register)
 116		return false;
 117
 118	map->lock(map->lock_arg);
 119	ret = regcache_read(map, reg, &val);
 120	map->unlock(map->lock_arg);
 121	if (ret)
 122		return false;
 123
 124	return true;
 125}
 126
 127bool regmap_readable(struct regmap *map, unsigned int reg)
 128{
 129	if (!map->reg_read)
 130		return false;
 131
 132	if (map->max_register && reg > map->max_register)
 133		return false;
 134
 135	if (map->format.format_write)
 136		return false;
 137
 138	if (map->readable_reg)
 139		return map->readable_reg(map->dev, reg);
 140
 141	if (map->rd_table)
 142		return regmap_check_range_table(map, reg, map->rd_table);
 143
 144	return true;
 145}
 146
 147bool regmap_volatile(struct regmap *map, unsigned int reg)
 148{
 149	if (!map->format.format_write && !regmap_readable(map, reg))
 150		return false;
 151
 152	if (map->volatile_reg)
 153		return map->volatile_reg(map->dev, reg);
 154
 155	if (map->volatile_table)
 156		return regmap_check_range_table(map, reg, map->volatile_table);
 157
 158	if (map->cache_ops)
 159		return false;
 160	else
 161		return true;
 162}
 163
 164bool regmap_precious(struct regmap *map, unsigned int reg)
 165{
 166	if (!regmap_readable(map, reg))
 167		return false;
 168
 169	if (map->precious_reg)
 170		return map->precious_reg(map->dev, reg);
 171
 172	if (map->precious_table)
 173		return regmap_check_range_table(map, reg, map->precious_table);
 174
 175	return false;
 176}
 177
 178bool regmap_writeable_noinc(struct regmap *map, unsigned int reg)
 179{
 180	if (map->writeable_noinc_reg)
 181		return map->writeable_noinc_reg(map->dev, reg);
 182
 183	if (map->wr_noinc_table)
 184		return regmap_check_range_table(map, reg, map->wr_noinc_table);
 185
 186	return true;
 187}
 188
 189bool regmap_readable_noinc(struct regmap *map, unsigned int reg)
 190{
 191	if (map->readable_noinc_reg)
 192		return map->readable_noinc_reg(map->dev, reg);
 193
 194	if (map->rd_noinc_table)
 195		return regmap_check_range_table(map, reg, map->rd_noinc_table);
 196
 197	return true;
 198}
 199
 200static bool regmap_volatile_range(struct regmap *map, unsigned int reg,
 201	size_t num)
 202{
 203	unsigned int i;
 204
 205	for (i = 0; i < num; i++)
 206		if (!regmap_volatile(map, reg + regmap_get_offset(map, i)))
 207			return false;
 208
 209	return true;
 210}
 211
 212static void regmap_format_12_20_write(struct regmap *map,
 213				     unsigned int reg, unsigned int val)
 214{
 215	u8 *out = map->work_buf;
 216
 217	out[0] = reg >> 4;
 218	out[1] = (reg << 4) | (val >> 16);
 219	out[2] = val >> 8;
 220	out[3] = val;
 221}
 222
 
 223
 224static void regmap_format_2_6_write(struct regmap *map,
 225				     unsigned int reg, unsigned int val)
 226{
 227	u8 *out = map->work_buf;
 228
 229	*out = (reg << 6) | val;
 230}
 
 
 
 
 
 
 
 
 
 
 
 
 231
 232static void regmap_format_4_12_write(struct regmap *map,
 233				     unsigned int reg, unsigned int val)
 234{
 235	__be16 *out = map->work_buf;
 236	*out = cpu_to_be16((reg << 12) | val);
 237}
 238
 239static void regmap_format_7_9_write(struct regmap *map,
 240				    unsigned int reg, unsigned int val)
 241{
 242	__be16 *out = map->work_buf;
 243	*out = cpu_to_be16((reg << 9) | val);
 244}
 245
 246static void regmap_format_7_17_write(struct regmap *map,
 247				    unsigned int reg, unsigned int val)
 248{
 249	u8 *out = map->work_buf;
 250
 251	out[2] = val;
 252	out[1] = val >> 8;
 253	out[0] = (val >> 16) | (reg << 1);
 254}
 255
 256static void regmap_format_10_14_write(struct regmap *map,
 257				    unsigned int reg, unsigned int val)
 258{
 259	u8 *out = map->work_buf;
 260
 261	out[2] = val;
 262	out[1] = (val >> 8) | (reg << 6);
 263	out[0] = reg >> 2;
 264}
 265
 266static void regmap_format_8(void *buf, unsigned int val, unsigned int shift)
 267{
 268	u8 *b = buf;
 269
 270	b[0] = val << shift;
 271}
 272
 273static void regmap_format_16_be(void *buf, unsigned int val, unsigned int shift)
 274{
 275	put_unaligned_be16(val << shift, buf);
 276}
 277
 278static void regmap_format_16_le(void *buf, unsigned int val, unsigned int shift)
 279{
 280	put_unaligned_le16(val << shift, buf);
 281}
 282
 283static void regmap_format_16_native(void *buf, unsigned int val,
 284				    unsigned int shift)
 285{
 286	u16 v = val << shift;
 287
 288	memcpy(buf, &v, sizeof(v));
 289}
 290
 291static void regmap_format_24(void *buf, unsigned int val, unsigned int shift)
 292{
 293	u8 *b = buf;
 294
 295	val <<= shift;
 296
 297	b[0] = val >> 16;
 298	b[1] = val >> 8;
 299	b[2] = val;
 300}
 301
 302static void regmap_format_32_be(void *buf, unsigned int val, unsigned int shift)
 303{
 304	put_unaligned_be32(val << shift, buf);
 305}
 306
 307static void regmap_format_32_le(void *buf, unsigned int val, unsigned int shift)
 308{
 309	put_unaligned_le32(val << shift, buf);
 310}
 311
 312static void regmap_format_32_native(void *buf, unsigned int val,
 313				    unsigned int shift)
 314{
 315	u32 v = val << shift;
 316
 317	memcpy(buf, &v, sizeof(v));
 318}
 319
 320#ifdef CONFIG_64BIT
 321static void regmap_format_64_be(void *buf, unsigned int val, unsigned int shift)
 322{
 323	put_unaligned_be64((u64) val << shift, buf);
 324}
 325
 326static void regmap_format_64_le(void *buf, unsigned int val, unsigned int shift)
 327{
 328	put_unaligned_le64((u64) val << shift, buf);
 329}
 330
 331static void regmap_format_64_native(void *buf, unsigned int val,
 332				    unsigned int shift)
 333{
 334	u64 v = (u64) val << shift;
 335
 336	memcpy(buf, &v, sizeof(v));
 337}
 338#endif
 339
 340static void regmap_parse_inplace_noop(void *buf)
 341{
 342}
 343
 344static unsigned int regmap_parse_8(const void *buf)
 345{
 346	const u8 *b = buf;
 347
 348	return b[0];
 349}
 350
 351static unsigned int regmap_parse_16_be(const void *buf)
 352{
 353	return get_unaligned_be16(buf);
 354}
 355
 356static unsigned int regmap_parse_16_le(const void *buf)
 357{
 358	return get_unaligned_le16(buf);
 359}
 360
 361static void regmap_parse_16_be_inplace(void *buf)
 362{
 363	u16 v = get_unaligned_be16(buf);
 364
 365	memcpy(buf, &v, sizeof(v));
 366}
 367
 368static void regmap_parse_16_le_inplace(void *buf)
 369{
 370	u16 v = get_unaligned_le16(buf);
 371
 372	memcpy(buf, &v, sizeof(v));
 373}
 374
 375static unsigned int regmap_parse_16_native(const void *buf)
 376{
 377	u16 v;
 378
 379	memcpy(&v, buf, sizeof(v));
 380	return v;
 381}
 382
 383static unsigned int regmap_parse_24(const void *buf)
 384{
 385	const u8 *b = buf;
 386	unsigned int ret = b[2];
 387	ret |= ((unsigned int)b[1]) << 8;
 388	ret |= ((unsigned int)b[0]) << 16;
 389
 390	return ret;
 391}
 392
 393static unsigned int regmap_parse_32_be(const void *buf)
 394{
 395	return get_unaligned_be32(buf);
 396}
 397
 398static unsigned int regmap_parse_32_le(const void *buf)
 399{
 400	return get_unaligned_le32(buf);
 401}
 402
 403static void regmap_parse_32_be_inplace(void *buf)
 404{
 405	u32 v = get_unaligned_be32(buf);
 406
 407	memcpy(buf, &v, sizeof(v));
 408}
 409
 410static void regmap_parse_32_le_inplace(void *buf)
 411{
 412	u32 v = get_unaligned_le32(buf);
 413
 414	memcpy(buf, &v, sizeof(v));
 415}
 416
 417static unsigned int regmap_parse_32_native(const void *buf)
 418{
 419	u32 v;
 420
 421	memcpy(&v, buf, sizeof(v));
 422	return v;
 423}
 424
 425#ifdef CONFIG_64BIT
 426static unsigned int regmap_parse_64_be(const void *buf)
 427{
 428	return get_unaligned_be64(buf);
 429}
 430
 431static unsigned int regmap_parse_64_le(const void *buf)
 432{
 433	return get_unaligned_le64(buf);
 434}
 435
 436static void regmap_parse_64_be_inplace(void *buf)
 437{
 438	u64 v =  get_unaligned_be64(buf);
 439
 440	memcpy(buf, &v, sizeof(v));
 441}
 442
 443static void regmap_parse_64_le_inplace(void *buf)
 444{
 445	u64 v = get_unaligned_le64(buf);
 446
 447	memcpy(buf, &v, sizeof(v));
 448}
 449
 450static unsigned int regmap_parse_64_native(const void *buf)
 451{
 452	u64 v;
 453
 454	memcpy(&v, buf, sizeof(v));
 455	return v;
 456}
 457#endif
 458
 459static void regmap_lock_hwlock(void *__map)
 460{
 461	struct regmap *map = __map;
 462
 463	hwspin_lock_timeout(map->hwlock, UINT_MAX);
 464}
 465
 466static void regmap_lock_hwlock_irq(void *__map)
 467{
 468	struct regmap *map = __map;
 469
 470	hwspin_lock_timeout_irq(map->hwlock, UINT_MAX);
 471}
 472
 473static void regmap_lock_hwlock_irqsave(void *__map)
 474{
 475	struct regmap *map = __map;
 476
 477	hwspin_lock_timeout_irqsave(map->hwlock, UINT_MAX,
 478				    &map->spinlock_flags);
 479}
 480
 481static void regmap_unlock_hwlock(void *__map)
 482{
 483	struct regmap *map = __map;
 484
 485	hwspin_unlock(map->hwlock);
 486}
 487
 488static void regmap_unlock_hwlock_irq(void *__map)
 489{
 490	struct regmap *map = __map;
 491
 492	hwspin_unlock_irq(map->hwlock);
 493}
 494
 495static void regmap_unlock_hwlock_irqrestore(void *__map)
 496{
 497	struct regmap *map = __map;
 498
 499	hwspin_unlock_irqrestore(map->hwlock, &map->spinlock_flags);
 500}
 501
 502static void regmap_lock_unlock_none(void *__map)
 503{
 504
 505}
 506
 507static void regmap_lock_mutex(void *__map)
 508{
 509	struct regmap *map = __map;
 510	mutex_lock(&map->mutex);
 511}
 512
 513static void regmap_unlock_mutex(void *__map)
 514{
 515	struct regmap *map = __map;
 516	mutex_unlock(&map->mutex);
 517}
 518
 519static void regmap_lock_spinlock(void *__map)
 520__acquires(&map->spinlock)
 521{
 522	struct regmap *map = __map;
 523	unsigned long flags;
 524
 525	spin_lock_irqsave(&map->spinlock, flags);
 526	map->spinlock_flags = flags;
 527}
 528
 529static void regmap_unlock_spinlock(void *__map)
 530__releases(&map->spinlock)
 531{
 532	struct regmap *map = __map;
 533	spin_unlock_irqrestore(&map->spinlock, map->spinlock_flags);
 534}
 535
 536static void dev_get_regmap_release(struct device *dev, void *res)
 537{
 538	/*
 539	 * We don't actually have anything to do here; the goal here
 540	 * is not to manage the regmap but to provide a simple way to
 541	 * get the regmap back given a struct device.
 542	 */
 543}
 544
 545static bool _regmap_range_add(struct regmap *map,
 546			      struct regmap_range_node *data)
 547{
 548	struct rb_root *root = &map->range_tree;
 549	struct rb_node **new = &(root->rb_node), *parent = NULL;
 550
 551	while (*new) {
 552		struct regmap_range_node *this =
 553			rb_entry(*new, struct regmap_range_node, node);
 554
 555		parent = *new;
 556		if (data->range_max < this->range_min)
 557			new = &((*new)->rb_left);
 558		else if (data->range_min > this->range_max)
 559			new = &((*new)->rb_right);
 560		else
 561			return false;
 562	}
 563
 564	rb_link_node(&data->node, parent, new);
 565	rb_insert_color(&data->node, root);
 566
 567	return true;
 568}
 569
 570static struct regmap_range_node *_regmap_range_lookup(struct regmap *map,
 571						      unsigned int reg)
 572{
 573	struct rb_node *node = map->range_tree.rb_node;
 574
 575	while (node) {
 576		struct regmap_range_node *this =
 577			rb_entry(node, struct regmap_range_node, node);
 578
 579		if (reg < this->range_min)
 580			node = node->rb_left;
 581		else if (reg > this->range_max)
 582			node = node->rb_right;
 583		else
 584			return this;
 585	}
 586
 587	return NULL;
 588}
 589
 590static void regmap_range_exit(struct regmap *map)
 591{
 592	struct rb_node *next;
 593	struct regmap_range_node *range_node;
 594
 595	next = rb_first(&map->range_tree);
 596	while (next) {
 597		range_node = rb_entry(next, struct regmap_range_node, node);
 598		next = rb_next(&range_node->node);
 599		rb_erase(&range_node->node, &map->range_tree);
 600		kfree(range_node);
 601	}
 602
 603	kfree(map->selector_work_buf);
 604}
 605
 606static int regmap_set_name(struct regmap *map, const struct regmap_config *config)
 607{
 608	if (config->name) {
 609		const char *name = kstrdup_const(config->name, GFP_KERNEL);
 610
 611		if (!name)
 612			return -ENOMEM;
 613
 614		kfree_const(map->name);
 615		map->name = name;
 616	}
 617
 618	return 0;
 619}
 620
 621int regmap_attach_dev(struct device *dev, struct regmap *map,
 622		      const struct regmap_config *config)
 623{
 624	struct regmap **m;
 625	int ret;
 626
 627	map->dev = dev;
 628
 629	ret = regmap_set_name(map, config);
 630	if (ret)
 631		return ret;
 632
 633	regmap_debugfs_init(map);
 634
 635	/* Add a devres resource for dev_get_regmap() */
 636	m = devres_alloc(dev_get_regmap_release, sizeof(*m), GFP_KERNEL);
 637	if (!m) {
 638		regmap_debugfs_exit(map);
 639		return -ENOMEM;
 640	}
 641	*m = map;
 642	devres_add(dev, m);
 643
 644	return 0;
 645}
 646EXPORT_SYMBOL_GPL(regmap_attach_dev);
 647
 648static enum regmap_endian regmap_get_reg_endian(const struct regmap_bus *bus,
 649					const struct regmap_config *config)
 650{
 651	enum regmap_endian endian;
 652
 653	/* Retrieve the endianness specification from the regmap config */
 654	endian = config->reg_format_endian;
 655
 656	/* If the regmap config specified a non-default value, use that */
 657	if (endian != REGMAP_ENDIAN_DEFAULT)
 658		return endian;
 659
 660	/* Retrieve the endianness specification from the bus config */
 661	if (bus && bus->reg_format_endian_default)
 662		endian = bus->reg_format_endian_default;
 663
 664	/* If the bus specified a non-default value, use that */
 665	if (endian != REGMAP_ENDIAN_DEFAULT)
 666		return endian;
 667
 668	/* Use this if no other value was found */
 669	return REGMAP_ENDIAN_BIG;
 670}
 671
 672enum regmap_endian regmap_get_val_endian(struct device *dev,
 673					 const struct regmap_bus *bus,
 674					 const struct regmap_config *config)
 675{
 676	struct fwnode_handle *fwnode = dev ? dev_fwnode(dev) : NULL;
 677	enum regmap_endian endian;
 678
 679	/* Retrieve the endianness specification from the regmap config */
 680	endian = config->val_format_endian;
 681
 682	/* If the regmap config specified a non-default value, use that */
 683	if (endian != REGMAP_ENDIAN_DEFAULT)
 684		return endian;
 685
 686	/* If the firmware node exist try to get endianness from it */
 687	if (fwnode_property_read_bool(fwnode, "big-endian"))
 688		endian = REGMAP_ENDIAN_BIG;
 689	else if (fwnode_property_read_bool(fwnode, "little-endian"))
 690		endian = REGMAP_ENDIAN_LITTLE;
 691	else if (fwnode_property_read_bool(fwnode, "native-endian"))
 692		endian = REGMAP_ENDIAN_NATIVE;
 693
 694	/* If the endianness was specified in fwnode, use that */
 695	if (endian != REGMAP_ENDIAN_DEFAULT)
 696		return endian;
 697
 698	/* Retrieve the endianness specification from the bus config */
 699	if (bus && bus->val_format_endian_default)
 700		endian = bus->val_format_endian_default;
 701
 702	/* If the bus specified a non-default value, use that */
 703	if (endian != REGMAP_ENDIAN_DEFAULT)
 704		return endian;
 705
 706	/* Use this if no other value was found */
 707	return REGMAP_ENDIAN_BIG;
 708}
 709EXPORT_SYMBOL_GPL(regmap_get_val_endian);
 710
 711struct regmap *__regmap_init(struct device *dev,
 712			     const struct regmap_bus *bus,
 713			     void *bus_context,
 714			     const struct regmap_config *config,
 715			     struct lock_class_key *lock_key,
 716			     const char *lock_name)
 717{
 718	struct regmap *map;
 719	int ret = -EINVAL;
 720	enum regmap_endian reg_endian, val_endian;
 721	int i, j;
 722
 723	if (!config)
 724		goto err;
 725
 726	map = kzalloc(sizeof(*map), GFP_KERNEL);
 727	if (map == NULL) {
 728		ret = -ENOMEM;
 729		goto err;
 730	}
 731
 732	ret = regmap_set_name(map, config);
 733	if (ret)
 734		goto err_map;
 735
 736	ret = -EINVAL; /* Later error paths rely on this */
 737
 738	if (config->disable_locking) {
 739		map->lock = map->unlock = regmap_lock_unlock_none;
 740		map->can_sleep = config->can_sleep;
 741		regmap_debugfs_disable(map);
 742	} else if (config->lock && config->unlock) {
 743		map->lock = config->lock;
 744		map->unlock = config->unlock;
 745		map->lock_arg = config->lock_arg;
 746		map->can_sleep = config->can_sleep;
 747	} else if (config->use_hwlock) {
 748		map->hwlock = hwspin_lock_request_specific(config->hwlock_id);
 749		if (!map->hwlock) {
 750			ret = -ENXIO;
 751			goto err_name;
 752		}
 753
 754		switch (config->hwlock_mode) {
 755		case HWLOCK_IRQSTATE:
 756			map->lock = regmap_lock_hwlock_irqsave;
 757			map->unlock = regmap_unlock_hwlock_irqrestore;
 758			break;
 759		case HWLOCK_IRQ:
 760			map->lock = regmap_lock_hwlock_irq;
 761			map->unlock = regmap_unlock_hwlock_irq;
 762			break;
 763		default:
 764			map->lock = regmap_lock_hwlock;
 765			map->unlock = regmap_unlock_hwlock;
 766			break;
 767		}
 768
 769		map->lock_arg = map;
 770	} else {
 771		if ((bus && bus->fast_io) ||
 772		    config->fast_io) {
 773			spin_lock_init(&map->spinlock);
 774			map->lock = regmap_lock_spinlock;
 775			map->unlock = regmap_unlock_spinlock;
 776			lockdep_set_class_and_name(&map->spinlock,
 777						   lock_key, lock_name);
 778		} else {
 779			mutex_init(&map->mutex);
 780			map->lock = regmap_lock_mutex;
 781			map->unlock = regmap_unlock_mutex;
 782			map->can_sleep = true;
 783			lockdep_set_class_and_name(&map->mutex,
 784						   lock_key, lock_name);
 785		}
 786		map->lock_arg = map;
 787	}
 788
 789	/*
 790	 * When we write in fast-paths with regmap_bulk_write() don't allocate
 791	 * scratch buffers with sleeping allocations.
 792	 */
 793	if ((bus && bus->fast_io) || config->fast_io)
 794		map->alloc_flags = GFP_ATOMIC;
 795	else
 796		map->alloc_flags = GFP_KERNEL;
 797
 798	map->format.reg_bytes = DIV_ROUND_UP(config->reg_bits, 8);
 799	map->format.pad_bytes = config->pad_bits / 8;
 800	map->format.val_bytes = DIV_ROUND_UP(config->val_bits, 8);
 801	map->format.buf_size = DIV_ROUND_UP(config->reg_bits +
 802			config->val_bits + config->pad_bits, 8);
 803	map->reg_shift = config->pad_bits % 8;
 804	if (config->reg_stride)
 805		map->reg_stride = config->reg_stride;
 806	else
 807		map->reg_stride = 1;
 808	if (is_power_of_2(map->reg_stride))
 809		map->reg_stride_order = ilog2(map->reg_stride);
 810	else
 811		map->reg_stride_order = -1;
 812	map->use_single_read = config->use_single_read || !bus || !bus->read;
 813	map->use_single_write = config->use_single_write || !bus || !bus->write;
 814	map->can_multi_write = config->can_multi_write && bus && bus->write;
 815	if (bus) {
 816		map->max_raw_read = bus->max_raw_read;
 817		map->max_raw_write = bus->max_raw_write;
 818	}
 819	map->dev = dev;
 820	map->bus = bus;
 821	map->bus_context = bus_context;
 822	map->max_register = config->max_register;
 823	map->wr_table = config->wr_table;
 824	map->rd_table = config->rd_table;
 825	map->volatile_table = config->volatile_table;
 826	map->precious_table = config->precious_table;
 827	map->wr_noinc_table = config->wr_noinc_table;
 828	map->rd_noinc_table = config->rd_noinc_table;
 829	map->writeable_reg = config->writeable_reg;
 830	map->readable_reg = config->readable_reg;
 831	map->volatile_reg = config->volatile_reg;
 832	map->precious_reg = config->precious_reg;
 833	map->writeable_noinc_reg = config->writeable_noinc_reg;
 834	map->readable_noinc_reg = config->readable_noinc_reg;
 835	map->cache_type = config->cache_type;
 836
 837	spin_lock_init(&map->async_lock);
 838	INIT_LIST_HEAD(&map->async_list);
 839	INIT_LIST_HEAD(&map->async_free);
 840	init_waitqueue_head(&map->async_waitq);
 841
 842	if (config->read_flag_mask ||
 843	    config->write_flag_mask ||
 844	    config->zero_flag_mask) {
 845		map->read_flag_mask = config->read_flag_mask;
 846		map->write_flag_mask = config->write_flag_mask;
 847	} else if (bus) {
 848		map->read_flag_mask = bus->read_flag_mask;
 849	}
 850
 851	if (!bus) {
 852		map->reg_read  = config->reg_read;
 853		map->reg_write = config->reg_write;
 854
 855		map->defer_caching = false;
 856		goto skip_format_initialization;
 857	} else if (!bus->read || !bus->write) {
 858		map->reg_read = _regmap_bus_reg_read;
 859		map->reg_write = _regmap_bus_reg_write;
 860		map->reg_update_bits = bus->reg_update_bits;
 861
 862		map->defer_caching = false;
 863		goto skip_format_initialization;
 864	} else {
 865		map->reg_read  = _regmap_bus_read;
 866		map->reg_update_bits = bus->reg_update_bits;
 867	}
 868
 869	reg_endian = regmap_get_reg_endian(bus, config);
 870	val_endian = regmap_get_val_endian(dev, bus, config);
 871
 872	switch (config->reg_bits + map->reg_shift) {
 873	case 2:
 874		switch (config->val_bits) {
 875		case 6:
 876			map->format.format_write = regmap_format_2_6_write;
 877			break;
 878		default:
 879			goto err_hwlock;
 880		}
 881		break;
 882
 
 883	case 4:
 884		switch (config->val_bits) {
 885		case 12:
 886			map->format.format_write = regmap_format_4_12_write;
 887			break;
 888		default:
 889			goto err_hwlock;
 890		}
 891		break;
 892
 893	case 7:
 894		switch (config->val_bits) {
 895		case 9:
 896			map->format.format_write = regmap_format_7_9_write;
 897			break;
 898		case 17:
 899			map->format.format_write = regmap_format_7_17_write;
 900			break;
 901		default:
 902			goto err_hwlock;
 903		}
 904		break;
 905
 906	case 10:
 907		switch (config->val_bits) {
 908		case 14:
 909			map->format.format_write = regmap_format_10_14_write;
 910			break;
 911		default:
 912			goto err_hwlock;
 913		}
 914		break;
 915
 916	case 12:
 917		switch (config->val_bits) {
 918		case 20:
 919			map->format.format_write = regmap_format_12_20_write;
 920			break;
 921		default:
 922			goto err_hwlock;
 923		}
 924		break;
 925
 926	case 8:
 927		map->format.format_reg = regmap_format_8;
 928		break;
 929
 930	case 16:
 931		switch (reg_endian) {
 932		case REGMAP_ENDIAN_BIG:
 933			map->format.format_reg = regmap_format_16_be;
 934			break;
 935		case REGMAP_ENDIAN_LITTLE:
 936			map->format.format_reg = regmap_format_16_le;
 937			break;
 938		case REGMAP_ENDIAN_NATIVE:
 939			map->format.format_reg = regmap_format_16_native;
 940			break;
 941		default:
 942			goto err_hwlock;
 943		}
 944		break;
 945
 946	case 24:
 947		if (reg_endian != REGMAP_ENDIAN_BIG)
 948			goto err_hwlock;
 949		map->format.format_reg = regmap_format_24;
 950		break;
 951
 952	case 32:
 953		switch (reg_endian) {
 954		case REGMAP_ENDIAN_BIG:
 955			map->format.format_reg = regmap_format_32_be;
 956			break;
 957		case REGMAP_ENDIAN_LITTLE:
 958			map->format.format_reg = regmap_format_32_le;
 959			break;
 960		case REGMAP_ENDIAN_NATIVE:
 961			map->format.format_reg = regmap_format_32_native;
 962			break;
 963		default:
 964			goto err_hwlock;
 965		}
 966		break;
 967
 968#ifdef CONFIG_64BIT
 969	case 64:
 970		switch (reg_endian) {
 971		case REGMAP_ENDIAN_BIG:
 972			map->format.format_reg = regmap_format_64_be;
 973			break;
 974		case REGMAP_ENDIAN_LITTLE:
 975			map->format.format_reg = regmap_format_64_le;
 976			break;
 977		case REGMAP_ENDIAN_NATIVE:
 978			map->format.format_reg = regmap_format_64_native;
 979			break;
 980		default:
 981			goto err_hwlock;
 982		}
 983		break;
 984#endif
 985
 986	default:
 987		goto err_hwlock;
 988	}
 989
 990	if (val_endian == REGMAP_ENDIAN_NATIVE)
 991		map->format.parse_inplace = regmap_parse_inplace_noop;
 992
 993	switch (config->val_bits) {
 994	case 8:
 995		map->format.format_val = regmap_format_8;
 996		map->format.parse_val = regmap_parse_8;
 997		map->format.parse_inplace = regmap_parse_inplace_noop;
 998		break;
 999	case 16:
1000		switch (val_endian) {
1001		case REGMAP_ENDIAN_BIG:
1002			map->format.format_val = regmap_format_16_be;
1003			map->format.parse_val = regmap_parse_16_be;
1004			map->format.parse_inplace = regmap_parse_16_be_inplace;
1005			break;
1006		case REGMAP_ENDIAN_LITTLE:
1007			map->format.format_val = regmap_format_16_le;
1008			map->format.parse_val = regmap_parse_16_le;
1009			map->format.parse_inplace = regmap_parse_16_le_inplace;
1010			break;
1011		case REGMAP_ENDIAN_NATIVE:
1012			map->format.format_val = regmap_format_16_native;
1013			map->format.parse_val = regmap_parse_16_native;
1014			break;
1015		default:
1016			goto err_hwlock;
1017		}
1018		break;
1019	case 24:
1020		if (val_endian != REGMAP_ENDIAN_BIG)
1021			goto err_hwlock;
1022		map->format.format_val = regmap_format_24;
1023		map->format.parse_val = regmap_parse_24;
1024		break;
1025	case 32:
1026		switch (val_endian) {
1027		case REGMAP_ENDIAN_BIG:
1028			map->format.format_val = regmap_format_32_be;
1029			map->format.parse_val = regmap_parse_32_be;
1030			map->format.parse_inplace = regmap_parse_32_be_inplace;
1031			break;
1032		case REGMAP_ENDIAN_LITTLE:
1033			map->format.format_val = regmap_format_32_le;
1034			map->format.parse_val = regmap_parse_32_le;
1035			map->format.parse_inplace = regmap_parse_32_le_inplace;
1036			break;
1037		case REGMAP_ENDIAN_NATIVE:
1038			map->format.format_val = regmap_format_32_native;
1039			map->format.parse_val = regmap_parse_32_native;
1040			break;
1041		default:
1042			goto err_hwlock;
1043		}
1044		break;
1045#ifdef CONFIG_64BIT
1046	case 64:
1047		switch (val_endian) {
1048		case REGMAP_ENDIAN_BIG:
1049			map->format.format_val = regmap_format_64_be;
1050			map->format.parse_val = regmap_parse_64_be;
1051			map->format.parse_inplace = regmap_parse_64_be_inplace;
1052			break;
1053		case REGMAP_ENDIAN_LITTLE:
1054			map->format.format_val = regmap_format_64_le;
1055			map->format.parse_val = regmap_parse_64_le;
1056			map->format.parse_inplace = regmap_parse_64_le_inplace;
1057			break;
1058		case REGMAP_ENDIAN_NATIVE:
1059			map->format.format_val = regmap_format_64_native;
1060			map->format.parse_val = regmap_parse_64_native;
1061			break;
1062		default:
1063			goto err_hwlock;
1064		}
1065		break;
1066#endif
1067	}
1068
1069	if (map->format.format_write) {
1070		if ((reg_endian != REGMAP_ENDIAN_BIG) ||
1071		    (val_endian != REGMAP_ENDIAN_BIG))
1072			goto err_hwlock;
1073		map->use_single_write = true;
1074	}
1075
1076	if (!map->format.format_write &&
1077	    !(map->format.format_reg && map->format.format_val))
1078		goto err_hwlock;
1079
1080	map->work_buf = kzalloc(map->format.buf_size, GFP_KERNEL);
1081	if (map->work_buf == NULL) {
1082		ret = -ENOMEM;
1083		goto err_hwlock;
1084	}
1085
1086	if (map->format.format_write) {
1087		map->defer_caching = false;
1088		map->reg_write = _regmap_bus_formatted_write;
1089	} else if (map->format.format_val) {
1090		map->defer_caching = true;
1091		map->reg_write = _regmap_bus_raw_write;
1092	}
1093
1094skip_format_initialization:
1095
1096	map->range_tree = RB_ROOT;
1097	for (i = 0; i < config->num_ranges; i++) {
1098		const struct regmap_range_cfg *range_cfg = &config->ranges[i];
1099		struct regmap_range_node *new;
1100
1101		/* Sanity check */
1102		if (range_cfg->range_max < range_cfg->range_min) {
1103			dev_err(map->dev, "Invalid range %d: %d < %d\n", i,
1104				range_cfg->range_max, range_cfg->range_min);
1105			goto err_range;
1106		}
1107
1108		if (range_cfg->range_max > map->max_register) {
1109			dev_err(map->dev, "Invalid range %d: %d > %d\n", i,
1110				range_cfg->range_max, map->max_register);
1111			goto err_range;
1112		}
1113
1114		if (range_cfg->selector_reg > map->max_register) {
1115			dev_err(map->dev,
1116				"Invalid range %d: selector out of map\n", i);
1117			goto err_range;
1118		}
1119
1120		if (range_cfg->window_len == 0) {
1121			dev_err(map->dev, "Invalid range %d: window_len 0\n",
1122				i);
1123			goto err_range;
1124		}
1125
1126		/* Make sure, that this register range has no selector
1127		   or data window within its boundary */
1128		for (j = 0; j < config->num_ranges; j++) {
1129			unsigned sel_reg = config->ranges[j].selector_reg;
1130			unsigned win_min = config->ranges[j].window_start;
1131			unsigned win_max = win_min +
1132					   config->ranges[j].window_len - 1;
1133
1134			/* Allow data window inside its own virtual range */
1135			if (j == i)
1136				continue;
1137
1138			if (range_cfg->range_min <= sel_reg &&
1139			    sel_reg <= range_cfg->range_max) {
1140				dev_err(map->dev,
1141					"Range %d: selector for %d in window\n",
1142					i, j);
1143				goto err_range;
1144			}
1145
1146			if (!(win_max < range_cfg->range_min ||
1147			      win_min > range_cfg->range_max)) {
1148				dev_err(map->dev,
1149					"Range %d: window for %d in window\n",
1150					i, j);
1151				goto err_range;
1152			}
1153		}
1154
1155		new = kzalloc(sizeof(*new), GFP_KERNEL);
1156		if (new == NULL) {
1157			ret = -ENOMEM;
1158			goto err_range;
1159		}
1160
1161		new->map = map;
1162		new->name = range_cfg->name;
1163		new->range_min = range_cfg->range_min;
1164		new->range_max = range_cfg->range_max;
1165		new->selector_reg = range_cfg->selector_reg;
1166		new->selector_mask = range_cfg->selector_mask;
1167		new->selector_shift = range_cfg->selector_shift;
1168		new->window_start = range_cfg->window_start;
1169		new->window_len = range_cfg->window_len;
1170
1171		if (!_regmap_range_add(map, new)) {
1172			dev_err(map->dev, "Failed to add range %d\n", i);
1173			kfree(new);
1174			goto err_range;
1175		}
1176
1177		if (map->selector_work_buf == NULL) {
1178			map->selector_work_buf =
1179				kzalloc(map->format.buf_size, GFP_KERNEL);
1180			if (map->selector_work_buf == NULL) {
1181				ret = -ENOMEM;
1182				goto err_range;
1183			}
1184		}
1185	}
1186
1187	ret = regcache_init(map, config);
1188	if (ret != 0)
1189		goto err_range;
1190
1191	if (dev) {
1192		ret = regmap_attach_dev(dev, map, config);
1193		if (ret != 0)
1194			goto err_regcache;
1195	} else {
1196		regmap_debugfs_init(map);
1197	}
1198
1199	return map;
1200
1201err_regcache:
1202	regcache_exit(map);
1203err_range:
1204	regmap_range_exit(map);
1205	kfree(map->work_buf);
1206err_hwlock:
1207	if (map->hwlock)
1208		hwspin_lock_free(map->hwlock);
1209err_name:
1210	kfree_const(map->name);
1211err_map:
1212	kfree(map);
1213err:
1214	return ERR_PTR(ret);
1215}
1216EXPORT_SYMBOL_GPL(__regmap_init);
1217
1218static void devm_regmap_release(struct device *dev, void *res)
1219{
1220	regmap_exit(*(struct regmap **)res);
1221}
1222
1223struct regmap *__devm_regmap_init(struct device *dev,
1224				  const struct regmap_bus *bus,
1225				  void *bus_context,
1226				  const struct regmap_config *config,
1227				  struct lock_class_key *lock_key,
1228				  const char *lock_name)
1229{
1230	struct regmap **ptr, *regmap;
1231
1232	ptr = devres_alloc(devm_regmap_release, sizeof(*ptr), GFP_KERNEL);
1233	if (!ptr)
1234		return ERR_PTR(-ENOMEM);
1235
1236	regmap = __regmap_init(dev, bus, bus_context, config,
1237			       lock_key, lock_name);
1238	if (!IS_ERR(regmap)) {
1239		*ptr = regmap;
1240		devres_add(dev, ptr);
1241	} else {
1242		devres_free(ptr);
1243	}
1244
1245	return regmap;
1246}
1247EXPORT_SYMBOL_GPL(__devm_regmap_init);
1248
1249static void regmap_field_init(struct regmap_field *rm_field,
1250	struct regmap *regmap, struct reg_field reg_field)
1251{
1252	rm_field->regmap = regmap;
1253	rm_field->reg = reg_field.reg;
1254	rm_field->shift = reg_field.lsb;
1255	rm_field->mask = GENMASK(reg_field.msb, reg_field.lsb);
1256	rm_field->id_size = reg_field.id_size;
1257	rm_field->id_offset = reg_field.id_offset;
1258}
1259
1260/**
1261 * devm_regmap_field_alloc() - Allocate and initialise a register field.
1262 *
1263 * @dev: Device that will be interacted with
1264 * @regmap: regmap bank in which this register field is located.
1265 * @reg_field: Register field with in the bank.
1266 *
1267 * The return value will be an ERR_PTR() on error or a valid pointer
1268 * to a struct regmap_field. The regmap_field will be automatically freed
1269 * by the device management code.
1270 */
1271struct regmap_field *devm_regmap_field_alloc(struct device *dev,
1272		struct regmap *regmap, struct reg_field reg_field)
1273{
1274	struct regmap_field *rm_field = devm_kzalloc(dev,
1275					sizeof(*rm_field), GFP_KERNEL);
1276	if (!rm_field)
1277		return ERR_PTR(-ENOMEM);
1278
1279	regmap_field_init(rm_field, regmap, reg_field);
1280
1281	return rm_field;
1282
1283}
1284EXPORT_SYMBOL_GPL(devm_regmap_field_alloc);
1285
1286
1287/**
1288 * regmap_field_bulk_alloc() - Allocate and initialise a bulk register field.
1289 *
1290 * @regmap: regmap bank in which this register field is located.
1291 * @rm_field: regmap register fields within the bank.
1292 * @reg_field: Register fields within the bank.
1293 * @num_fields: Number of register fields.
1294 *
1295 * The return value will be an -ENOMEM on error or zero for success.
1296 * Newly allocated regmap_fields should be freed by calling
1297 * regmap_field_bulk_free()
1298 */
1299int regmap_field_bulk_alloc(struct regmap *regmap,
1300			    struct regmap_field **rm_field,
1301			    struct reg_field *reg_field,
1302			    int num_fields)
1303{
1304	struct regmap_field *rf;
1305	int i;
1306
1307	rf = kcalloc(num_fields, sizeof(*rf), GFP_KERNEL);
1308	if (!rf)
1309		return -ENOMEM;
1310
1311	for (i = 0; i < num_fields; i++) {
1312		regmap_field_init(&rf[i], regmap, reg_field[i]);
1313		rm_field[i] = &rf[i];
1314	}
1315
1316	return 0;
1317}
1318EXPORT_SYMBOL_GPL(regmap_field_bulk_alloc);
1319
1320/**
1321 * devm_regmap_field_bulk_alloc() - Allocate and initialise a bulk register
1322 * fields.
1323 *
1324 * @dev: Device that will be interacted with
1325 * @regmap: regmap bank in which this register field is located.
1326 * @rm_field: regmap register fields within the bank.
1327 * @reg_field: Register fields within the bank.
1328 * @num_fields: Number of register fields.
1329 *
1330 * The return value will be an -ENOMEM on error or zero for success.
1331 * Newly allocated regmap_fields will be automatically freed by the
1332 * device management code.
1333 */
1334int devm_regmap_field_bulk_alloc(struct device *dev,
1335				 struct regmap *regmap,
1336				 struct regmap_field **rm_field,
1337				 struct reg_field *reg_field,
1338				 int num_fields)
1339{
1340	struct regmap_field *rf;
1341	int i;
1342
1343	rf = devm_kcalloc(dev, num_fields, sizeof(*rf), GFP_KERNEL);
1344	if (!rf)
1345		return -ENOMEM;
1346
1347	for (i = 0; i < num_fields; i++) {
1348		regmap_field_init(&rf[i], regmap, reg_field[i]);
1349		rm_field[i] = &rf[i];
1350	}
1351
1352	return 0;
1353}
1354EXPORT_SYMBOL_GPL(devm_regmap_field_bulk_alloc);
1355
1356/**
1357 * regmap_field_bulk_free() - Free register field allocated using
1358 *                       regmap_field_bulk_alloc.
1359 *
1360 * @field: regmap fields which should be freed.
1361 */
1362void regmap_field_bulk_free(struct regmap_field *field)
1363{
1364	kfree(field);
1365}
1366EXPORT_SYMBOL_GPL(regmap_field_bulk_free);
1367
1368/**
1369 * devm_regmap_field_bulk_free() - Free a bulk register field allocated using
1370 *                            devm_regmap_field_bulk_alloc.
1371 *
1372 * @dev: Device that will be interacted with
1373 * @field: regmap field which should be freed.
1374 *
1375 * Free register field allocated using devm_regmap_field_bulk_alloc(). Usually
1376 * drivers need not call this function, as the memory allocated via devm
1377 * will be freed as per device-driver life-cycle.
1378 */
1379void devm_regmap_field_bulk_free(struct device *dev,
1380				 struct regmap_field *field)
1381{
1382	devm_kfree(dev, field);
1383}
1384EXPORT_SYMBOL_GPL(devm_regmap_field_bulk_free);
1385
1386/**
1387 * devm_regmap_field_free() - Free a register field allocated using
1388 *                            devm_regmap_field_alloc.
1389 *
1390 * @dev: Device that will be interacted with
1391 * @field: regmap field which should be freed.
1392 *
1393 * Free register field allocated using devm_regmap_field_alloc(). Usually
1394 * drivers need not call this function, as the memory allocated via devm
1395 * will be freed as per device-driver life-cyle.
1396 */
1397void devm_regmap_field_free(struct device *dev,
1398	struct regmap_field *field)
1399{
1400	devm_kfree(dev, field);
1401}
1402EXPORT_SYMBOL_GPL(devm_regmap_field_free);
1403
1404/**
1405 * regmap_field_alloc() - Allocate and initialise a register field.
1406 *
1407 * @regmap: regmap bank in which this register field is located.
1408 * @reg_field: Register field with in the bank.
1409 *
1410 * The return value will be an ERR_PTR() on error or a valid pointer
1411 * to a struct regmap_field. The regmap_field should be freed by the
1412 * user once its finished working with it using regmap_field_free().
1413 */
1414struct regmap_field *regmap_field_alloc(struct regmap *regmap,
1415		struct reg_field reg_field)
1416{
1417	struct regmap_field *rm_field = kzalloc(sizeof(*rm_field), GFP_KERNEL);
1418
1419	if (!rm_field)
1420		return ERR_PTR(-ENOMEM);
1421
1422	regmap_field_init(rm_field, regmap, reg_field);
1423
1424	return rm_field;
1425}
1426EXPORT_SYMBOL_GPL(regmap_field_alloc);
1427
1428/**
1429 * regmap_field_free() - Free register field allocated using
1430 *                       regmap_field_alloc.
1431 *
1432 * @field: regmap field which should be freed.
1433 */
1434void regmap_field_free(struct regmap_field *field)
1435{
1436	kfree(field);
1437}
1438EXPORT_SYMBOL_GPL(regmap_field_free);
1439
1440/**
1441 * regmap_reinit_cache() - Reinitialise the current register cache
1442 *
1443 * @map: Register map to operate on.
1444 * @config: New configuration.  Only the cache data will be used.
1445 *
1446 * Discard any existing register cache for the map and initialize a
1447 * new cache.  This can be used to restore the cache to defaults or to
1448 * update the cache configuration to reflect runtime discovery of the
1449 * hardware.
1450 *
1451 * No explicit locking is done here, the user needs to ensure that
1452 * this function will not race with other calls to regmap.
1453 */
1454int regmap_reinit_cache(struct regmap *map, const struct regmap_config *config)
1455{
1456	int ret;
1457
1458	regcache_exit(map);
1459	regmap_debugfs_exit(map);
1460
1461	map->max_register = config->max_register;
1462	map->writeable_reg = config->writeable_reg;
1463	map->readable_reg = config->readable_reg;
1464	map->volatile_reg = config->volatile_reg;
1465	map->precious_reg = config->precious_reg;
1466	map->writeable_noinc_reg = config->writeable_noinc_reg;
1467	map->readable_noinc_reg = config->readable_noinc_reg;
1468	map->cache_type = config->cache_type;
1469
1470	ret = regmap_set_name(map, config);
1471	if (ret)
1472		return ret;
1473
1474	regmap_debugfs_init(map);
1475
1476	map->cache_bypass = false;
1477	map->cache_only = false;
1478
1479	return regcache_init(map, config);
1480}
1481EXPORT_SYMBOL_GPL(regmap_reinit_cache);
1482
1483/**
1484 * regmap_exit() - Free a previously allocated register map
1485 *
1486 * @map: Register map to operate on.
1487 */
1488void regmap_exit(struct regmap *map)
1489{
1490	struct regmap_async *async;
1491
1492	regcache_exit(map);
1493	regmap_debugfs_exit(map);
1494	regmap_range_exit(map);
1495	if (map->bus && map->bus->free_context)
1496		map->bus->free_context(map->bus_context);
1497	kfree(map->work_buf);
1498	while (!list_empty(&map->async_free)) {
1499		async = list_first_entry_or_null(&map->async_free,
1500						 struct regmap_async,
1501						 list);
1502		list_del(&async->list);
1503		kfree(async->work_buf);
1504		kfree(async);
1505	}
1506	if (map->hwlock)
1507		hwspin_lock_free(map->hwlock);
1508	if (map->lock == regmap_lock_mutex)
1509		mutex_destroy(&map->mutex);
1510	kfree_const(map->name);
1511	kfree(map->patch);
1512	if (map->bus && map->bus->free_on_exit)
1513		kfree(map->bus);
1514	kfree(map);
1515}
1516EXPORT_SYMBOL_GPL(regmap_exit);
1517
1518static int dev_get_regmap_match(struct device *dev, void *res, void *data)
 
1519{
1520	struct regmap **r = res;
1521	if (!r || !*r) {
1522		WARN_ON(!r || !*r);
1523		return 0;
1524	}
1525
1526	/* If the user didn't specify a name match any */
1527	if (data)
1528		return !strcmp((*r)->name, data);
1529	else
1530		return 1;
1531}
1532
1533/**
1534 * dev_get_regmap() - Obtain the regmap (if any) for a device
1535 *
1536 * @dev: Device to retrieve the map for
1537 * @name: Optional name for the register map, usually NULL.
1538 *
1539 * Returns the regmap for the device if one is present, or NULL.  If
1540 * name is specified then it must match the name specified when
1541 * registering the device, if it is NULL then the first regmap found
1542 * will be used.  Devices with multiple register maps are very rare,
1543 * generic code should normally not need to specify a name.
1544 */
1545struct regmap *dev_get_regmap(struct device *dev, const char *name)
1546{
1547	struct regmap **r = devres_find(dev, dev_get_regmap_release,
1548					dev_get_regmap_match, (void *)name);
1549
1550	if (!r)
1551		return NULL;
1552	return *r;
1553}
1554EXPORT_SYMBOL_GPL(dev_get_regmap);
1555
1556/**
1557 * regmap_get_device() - Obtain the device from a regmap
1558 *
1559 * @map: Register map to operate on.
1560 *
1561 * Returns the underlying device that the regmap has been created for.
1562 */
1563struct device *regmap_get_device(struct regmap *map)
1564{
1565	return map->dev;
1566}
1567EXPORT_SYMBOL_GPL(regmap_get_device);
1568
1569static int _regmap_select_page(struct regmap *map, unsigned int *reg,
1570			       struct regmap_range_node *range,
1571			       unsigned int val_num)
1572{
1573	void *orig_work_buf;
1574	unsigned int win_offset;
1575	unsigned int win_page;
1576	bool page_chg;
1577	int ret;
1578
1579	win_offset = (*reg - range->range_min) % range->window_len;
1580	win_page = (*reg - range->range_min) / range->window_len;
1581
1582	if (val_num > 1) {
1583		/* Bulk write shouldn't cross range boundary */
1584		if (*reg + val_num - 1 > range->range_max)
1585			return -EINVAL;
1586
1587		/* ... or single page boundary */
1588		if (val_num > range->window_len - win_offset)
1589			return -EINVAL;
1590	}
1591
1592	/* It is possible to have selector register inside data window.
1593	   In that case, selector register is located on every page and
1594	   it needs no page switching, when accessed alone. */
1595	if (val_num > 1 ||
1596	    range->window_start + win_offset != range->selector_reg) {
1597		/* Use separate work_buf during page switching */
1598		orig_work_buf = map->work_buf;
1599		map->work_buf = map->selector_work_buf;
1600
1601		ret = _regmap_update_bits(map, range->selector_reg,
1602					  range->selector_mask,
1603					  win_page << range->selector_shift,
1604					  &page_chg, false);
1605
1606		map->work_buf = orig_work_buf;
1607
1608		if (ret != 0)
1609			return ret;
1610	}
1611
1612	*reg = range->window_start + win_offset;
1613
1614	return 0;
1615}
1616
1617static void regmap_set_work_buf_flag_mask(struct regmap *map, int max_bytes,
1618					  unsigned long mask)
1619{
1620	u8 *buf;
1621	int i;
1622
1623	if (!mask || !map->work_buf)
1624		return;
1625
1626	buf = map->work_buf;
1627
1628	for (i = 0; i < max_bytes; i++)
1629		buf[i] |= (mask >> (8 * i)) & 0xff;
1630}
1631
1632static int _regmap_raw_write_impl(struct regmap *map, unsigned int reg,
1633				  const void *val, size_t val_len, bool noinc)
1634{
1635	struct regmap_range_node *range;
1636	unsigned long flags;
1637	void *work_val = map->work_buf + map->format.reg_bytes +
1638		map->format.pad_bytes;
1639	void *buf;
1640	int ret = -ENOTSUPP;
1641	size_t len;
1642	int i;
1643
1644	WARN_ON(!map->bus);
1645
1646	/* Check for unwritable or noinc registers in range
1647	 * before we start
1648	 */
1649	if (!regmap_writeable_noinc(map, reg)) {
1650		for (i = 0; i < val_len / map->format.val_bytes; i++) {
1651			unsigned int element =
1652				reg + regmap_get_offset(map, i);
1653			if (!regmap_writeable(map, element) ||
1654				regmap_writeable_noinc(map, element))
1655				return -EINVAL;
1656		}
1657	}
1658
1659	if (!map->cache_bypass && map->format.parse_val) {
1660		unsigned int ival;
1661		int val_bytes = map->format.val_bytes;
1662		for (i = 0; i < val_len / val_bytes; i++) {
1663			ival = map->format.parse_val(val + (i * val_bytes));
1664			ret = regcache_write(map,
1665					     reg + regmap_get_offset(map, i),
1666					     ival);
1667			if (ret) {
1668				dev_err(map->dev,
1669					"Error in caching of register: %x ret: %d\n",
1670					reg + regmap_get_offset(map, i), ret);
1671				return ret;
1672			}
1673		}
1674		if (map->cache_only) {
1675			map->cache_dirty = true;
1676			return 0;
1677		}
1678	}
1679
1680	range = _regmap_range_lookup(map, reg);
1681	if (range) {
1682		int val_num = val_len / map->format.val_bytes;
1683		int win_offset = (reg - range->range_min) % range->window_len;
1684		int win_residue = range->window_len - win_offset;
1685
1686		/* If the write goes beyond the end of the window split it */
1687		while (val_num > win_residue) {
1688			dev_dbg(map->dev, "Writing window %d/%zu\n",
1689				win_residue, val_len / map->format.val_bytes);
1690			ret = _regmap_raw_write_impl(map, reg, val,
1691						     win_residue *
1692						     map->format.val_bytes, noinc);
1693			if (ret != 0)
1694				return ret;
1695
1696			reg += win_residue;
1697			val_num -= win_residue;
1698			val += win_residue * map->format.val_bytes;
1699			val_len -= win_residue * map->format.val_bytes;
1700
1701			win_offset = (reg - range->range_min) %
1702				range->window_len;
1703			win_residue = range->window_len - win_offset;
1704		}
1705
1706		ret = _regmap_select_page(map, &reg, range, noinc ? 1 : val_num);
1707		if (ret != 0)
1708			return ret;
1709	}
1710
1711	map->format.format_reg(map->work_buf, reg, map->reg_shift);
1712	regmap_set_work_buf_flag_mask(map, map->format.reg_bytes,
1713				      map->write_flag_mask);
1714
1715	/*
1716	 * Essentially all I/O mechanisms will be faster with a single
1717	 * buffer to write.  Since register syncs often generate raw
1718	 * writes of single registers optimise that case.
1719	 */
1720	if (val != work_val && val_len == map->format.val_bytes) {
1721		memcpy(work_val, val, map->format.val_bytes);
1722		val = work_val;
1723	}
1724
1725	if (map->async && map->bus->async_write) {
1726		struct regmap_async *async;
1727
1728		trace_regmap_async_write_start(map, reg, val_len);
1729
1730		spin_lock_irqsave(&map->async_lock, flags);
1731		async = list_first_entry_or_null(&map->async_free,
1732						 struct regmap_async,
1733						 list);
1734		if (async)
1735			list_del(&async->list);
1736		spin_unlock_irqrestore(&map->async_lock, flags);
1737
1738		if (!async) {
1739			async = map->bus->async_alloc();
1740			if (!async)
1741				return -ENOMEM;
1742
1743			async->work_buf = kzalloc(map->format.buf_size,
1744						  GFP_KERNEL | GFP_DMA);
1745			if (!async->work_buf) {
1746				kfree(async);
1747				return -ENOMEM;
1748			}
1749		}
1750
1751		async->map = map;
1752
1753		/* If the caller supplied the value we can use it safely. */
1754		memcpy(async->work_buf, map->work_buf, map->format.pad_bytes +
1755		       map->format.reg_bytes + map->format.val_bytes);
1756
1757		spin_lock_irqsave(&map->async_lock, flags);
1758		list_add_tail(&async->list, &map->async_list);
1759		spin_unlock_irqrestore(&map->async_lock, flags);
1760
1761		if (val != work_val)
1762			ret = map->bus->async_write(map->bus_context,
1763						    async->work_buf,
1764						    map->format.reg_bytes +
1765						    map->format.pad_bytes,
1766						    val, val_len, async);
1767		else
1768			ret = map->bus->async_write(map->bus_context,
1769						    async->work_buf,
1770						    map->format.reg_bytes +
1771						    map->format.pad_bytes +
1772						    val_len, NULL, 0, async);
1773
1774		if (ret != 0) {
1775			dev_err(map->dev, "Failed to schedule write: %d\n",
1776				ret);
1777
1778			spin_lock_irqsave(&map->async_lock, flags);
1779			list_move(&async->list, &map->async_free);
1780			spin_unlock_irqrestore(&map->async_lock, flags);
1781		}
1782
1783		return ret;
1784	}
1785
1786	trace_regmap_hw_write_start(map, reg, val_len / map->format.val_bytes);
1787
1788	/* If we're doing a single register write we can probably just
1789	 * send the work_buf directly, otherwise try to do a gather
1790	 * write.
1791	 */
1792	if (val == work_val)
1793		ret = map->bus->write(map->bus_context, map->work_buf,
1794				      map->format.reg_bytes +
1795				      map->format.pad_bytes +
1796				      val_len);
1797	else if (map->bus->gather_write)
1798		ret = map->bus->gather_write(map->bus_context, map->work_buf,
1799					     map->format.reg_bytes +
1800					     map->format.pad_bytes,
1801					     val, val_len);
1802	else
1803		ret = -ENOTSUPP;
1804
1805	/* If that didn't work fall back on linearising by hand. */
1806	if (ret == -ENOTSUPP) {
1807		len = map->format.reg_bytes + map->format.pad_bytes + val_len;
1808		buf = kzalloc(len, GFP_KERNEL);
1809		if (!buf)
1810			return -ENOMEM;
1811
1812		memcpy(buf, map->work_buf, map->format.reg_bytes);
1813		memcpy(buf + map->format.reg_bytes + map->format.pad_bytes,
1814		       val, val_len);
1815		ret = map->bus->write(map->bus_context, buf, len);
1816
1817		kfree(buf);
1818	} else if (ret != 0 && !map->cache_bypass && map->format.parse_val) {
1819		/* regcache_drop_region() takes lock that we already have,
1820		 * thus call map->cache_ops->drop() directly
1821		 */
1822		if (map->cache_ops && map->cache_ops->drop)
1823			map->cache_ops->drop(map, reg, reg + 1);
1824	}
1825
1826	trace_regmap_hw_write_done(map, reg, val_len / map->format.val_bytes);
1827
1828	return ret;
1829}
1830
1831/**
1832 * regmap_can_raw_write - Test if regmap_raw_write() is supported
1833 *
1834 * @map: Map to check.
1835 */
1836bool regmap_can_raw_write(struct regmap *map)
1837{
1838	return map->bus && map->bus->write && map->format.format_val &&
1839		map->format.format_reg;
1840}
1841EXPORT_SYMBOL_GPL(regmap_can_raw_write);
1842
1843/**
1844 * regmap_get_raw_read_max - Get the maximum size we can read
1845 *
1846 * @map: Map to check.
1847 */
1848size_t regmap_get_raw_read_max(struct regmap *map)
1849{
1850	return map->max_raw_read;
1851}
1852EXPORT_SYMBOL_GPL(regmap_get_raw_read_max);
1853
1854/**
1855 * regmap_get_raw_write_max - Get the maximum size we can read
1856 *
1857 * @map: Map to check.
1858 */
1859size_t regmap_get_raw_write_max(struct regmap *map)
1860{
1861	return map->max_raw_write;
1862}
1863EXPORT_SYMBOL_GPL(regmap_get_raw_write_max);
1864
1865static int _regmap_bus_formatted_write(void *context, unsigned int reg,
1866				       unsigned int val)
1867{
1868	int ret;
1869	struct regmap_range_node *range;
1870	struct regmap *map = context;
1871
1872	WARN_ON(!map->bus || !map->format.format_write);
1873
1874	range = _regmap_range_lookup(map, reg);
1875	if (range) {
1876		ret = _regmap_select_page(map, &reg, range, 1);
1877		if (ret != 0)
1878			return ret;
1879	}
1880
1881	map->format.format_write(map, reg, val);
1882
1883	trace_regmap_hw_write_start(map, reg, 1);
1884
1885	ret = map->bus->write(map->bus_context, map->work_buf,
1886			      map->format.buf_size);
1887
1888	trace_regmap_hw_write_done(map, reg, 1);
1889
1890	return ret;
1891}
1892
1893static int _regmap_bus_reg_write(void *context, unsigned int reg,
1894				 unsigned int val)
1895{
1896	struct regmap *map = context;
1897
1898	return map->bus->reg_write(map->bus_context, reg, val);
1899}
1900
1901static int _regmap_bus_raw_write(void *context, unsigned int reg,
1902				 unsigned int val)
1903{
1904	struct regmap *map = context;
1905
1906	WARN_ON(!map->bus || !map->format.format_val);
1907
1908	map->format.format_val(map->work_buf + map->format.reg_bytes
1909			       + map->format.pad_bytes, val, 0);
1910	return _regmap_raw_write_impl(map, reg,
1911				      map->work_buf +
1912				      map->format.reg_bytes +
1913				      map->format.pad_bytes,
1914				      map->format.val_bytes,
1915				      false);
1916}
1917
1918static inline void *_regmap_map_get_context(struct regmap *map)
1919{
1920	return (map->bus) ? map : map->bus_context;
1921}
1922
1923int _regmap_write(struct regmap *map, unsigned int reg,
1924		  unsigned int val)
1925{
1926	int ret;
1927	void *context = _regmap_map_get_context(map);
1928
1929	if (!regmap_writeable(map, reg))
1930		return -EIO;
1931
1932	if (!map->cache_bypass && !map->defer_caching) {
1933		ret = regcache_write(map, reg, val);
1934		if (ret != 0)
1935			return ret;
1936		if (map->cache_only) {
1937			map->cache_dirty = true;
1938			return 0;
1939		}
1940	}
1941
1942	ret = map->reg_write(context, reg, val);
1943	if (ret == 0) {
1944		if (regmap_should_log(map))
1945			dev_info(map->dev, "%x <= %x\n", reg, val);
1946
1947		trace_regmap_reg_write(map, reg, val);
1948	}
1949
1950	return ret;
1951}
1952
1953/**
1954 * regmap_write() - Write a value to a single register
1955 *
1956 * @map: Register map to write to
1957 * @reg: Register to write to
1958 * @val: Value to be written
1959 *
1960 * A value of zero will be returned on success, a negative errno will
1961 * be returned in error cases.
1962 */
1963int regmap_write(struct regmap *map, unsigned int reg, unsigned int val)
1964{
1965	int ret;
1966
1967	if (!IS_ALIGNED(reg, map->reg_stride))
1968		return -EINVAL;
1969
1970	map->lock(map->lock_arg);
1971
1972	ret = _regmap_write(map, reg, val);
1973
1974	map->unlock(map->lock_arg);
1975
1976	return ret;
1977}
1978EXPORT_SYMBOL_GPL(regmap_write);
1979
1980/**
1981 * regmap_write_async() - Write a value to a single register asynchronously
1982 *
1983 * @map: Register map to write to
1984 * @reg: Register to write to
1985 * @val: Value to be written
1986 *
1987 * A value of zero will be returned on success, a negative errno will
1988 * be returned in error cases.
1989 */
1990int regmap_write_async(struct regmap *map, unsigned int reg, unsigned int val)
1991{
1992	int ret;
1993
1994	if (!IS_ALIGNED(reg, map->reg_stride))
1995		return -EINVAL;
1996
1997	map->lock(map->lock_arg);
1998
1999	map->async = true;
2000
2001	ret = _regmap_write(map, reg, val);
2002
2003	map->async = false;
2004
2005	map->unlock(map->lock_arg);
2006
2007	return ret;
2008}
2009EXPORT_SYMBOL_GPL(regmap_write_async);
2010
2011int _regmap_raw_write(struct regmap *map, unsigned int reg,
2012		      const void *val, size_t val_len, bool noinc)
2013{
2014	size_t val_bytes = map->format.val_bytes;
2015	size_t val_count = val_len / val_bytes;
2016	size_t chunk_count, chunk_bytes;
2017	size_t chunk_regs = val_count;
2018	int ret, i;
2019
2020	if (!val_count)
2021		return -EINVAL;
2022
2023	if (map->use_single_write)
2024		chunk_regs = 1;
2025	else if (map->max_raw_write && val_len > map->max_raw_write)
2026		chunk_regs = map->max_raw_write / val_bytes;
2027
2028	chunk_count = val_count / chunk_regs;
2029	chunk_bytes = chunk_regs * val_bytes;
2030
2031	/* Write as many bytes as possible with chunk_size */
2032	for (i = 0; i < chunk_count; i++) {
2033		ret = _regmap_raw_write_impl(map, reg, val, chunk_bytes, noinc);
2034		if (ret)
2035			return ret;
2036
2037		reg += regmap_get_offset(map, chunk_regs);
2038		val += chunk_bytes;
2039		val_len -= chunk_bytes;
2040	}
2041
2042	/* Write remaining bytes */
2043	if (val_len)
2044		ret = _regmap_raw_write_impl(map, reg, val, val_len, noinc);
2045
2046	return ret;
2047}
2048
2049/**
2050 * regmap_raw_write() - Write raw values to one or more registers
2051 *
2052 * @map: Register map to write to
2053 * @reg: Initial register to write to
2054 * @val: Block of data to be written, laid out for direct transmission to the
2055 *       device
2056 * @val_len: Length of data pointed to by val.
2057 *
2058 * This function is intended to be used for things like firmware
2059 * download where a large block of data needs to be transferred to the
2060 * device.  No formatting will be done on the data provided.
2061 *
2062 * A value of zero will be returned on success, a negative errno will
2063 * be returned in error cases.
2064 */
2065int regmap_raw_write(struct regmap *map, unsigned int reg,
2066		     const void *val, size_t val_len)
2067{
2068	int ret;
2069
2070	if (!regmap_can_raw_write(map))
2071		return -EINVAL;
2072	if (val_len % map->format.val_bytes)
2073		return -EINVAL;
2074
2075	map->lock(map->lock_arg);
2076
2077	ret = _regmap_raw_write(map, reg, val, val_len, false);
2078
2079	map->unlock(map->lock_arg);
2080
2081	return ret;
2082}
2083EXPORT_SYMBOL_GPL(regmap_raw_write);
2084
2085/**
2086 * regmap_noinc_write(): Write data from a register without incrementing the
2087 *			register number
2088 *
2089 * @map: Register map to write to
2090 * @reg: Register to write to
2091 * @val: Pointer to data buffer
2092 * @val_len: Length of output buffer in bytes.
2093 *
2094 * The regmap API usually assumes that bulk bus write operations will write a
2095 * range of registers. Some devices have certain registers for which a write
2096 * operation can write to an internal FIFO.
2097 *
2098 * The target register must be volatile but registers after it can be
2099 * completely unrelated cacheable registers.
2100 *
2101 * This will attempt multiple writes as required to write val_len bytes.
2102 *
2103 * A value of zero will be returned on success, a negative errno will be
2104 * returned in error cases.
2105 */
2106int regmap_noinc_write(struct regmap *map, unsigned int reg,
2107		      const void *val, size_t val_len)
2108{
2109	size_t write_len;
2110	int ret;
2111
2112	if (!map->bus)
2113		return -EINVAL;
2114	if (!map->bus->write)
2115		return -ENOTSUPP;
2116	if (val_len % map->format.val_bytes)
2117		return -EINVAL;
2118	if (!IS_ALIGNED(reg, map->reg_stride))
2119		return -EINVAL;
2120	if (val_len == 0)
2121		return -EINVAL;
2122
2123	map->lock(map->lock_arg);
2124
2125	if (!regmap_volatile(map, reg) || !regmap_writeable_noinc(map, reg)) {
2126		ret = -EINVAL;
2127		goto out_unlock;
2128	}
2129
2130	while (val_len) {
2131		if (map->max_raw_write && map->max_raw_write < val_len)
2132			write_len = map->max_raw_write;
2133		else
2134			write_len = val_len;
2135		ret = _regmap_raw_write(map, reg, val, write_len, true);
2136		if (ret)
2137			goto out_unlock;
2138		val = ((u8 *)val) + write_len;
2139		val_len -= write_len;
2140	}
2141
2142out_unlock:
2143	map->unlock(map->lock_arg);
2144	return ret;
2145}
2146EXPORT_SYMBOL_GPL(regmap_noinc_write);
2147
2148/**
2149 * regmap_field_update_bits_base() - Perform a read/modify/write cycle a
2150 *                                   register field.
2151 *
2152 * @field: Register field to write to
2153 * @mask: Bitmask to change
2154 * @val: Value to be written
2155 * @change: Boolean indicating if a write was done
2156 * @async: Boolean indicating asynchronously
2157 * @force: Boolean indicating use force update
2158 *
2159 * Perform a read/modify/write cycle on the register field with change,
2160 * async, force option.
2161 *
2162 * A value of zero will be returned on success, a negative errno will
2163 * be returned in error cases.
2164 */
2165int regmap_field_update_bits_base(struct regmap_field *field,
2166				  unsigned int mask, unsigned int val,
2167				  bool *change, bool async, bool force)
2168{
2169	mask = (mask << field->shift) & field->mask;
2170
2171	return regmap_update_bits_base(field->regmap, field->reg,
2172				       mask, val << field->shift,
2173				       change, async, force);
2174}
2175EXPORT_SYMBOL_GPL(regmap_field_update_bits_base);
2176
2177/**
2178 * regmap_fields_update_bits_base() - Perform a read/modify/write cycle a
2179 *                                    register field with port ID
2180 *
2181 * @field: Register field to write to
2182 * @id: port ID
2183 * @mask: Bitmask to change
2184 * @val: Value to be written
2185 * @change: Boolean indicating if a write was done
2186 * @async: Boolean indicating asynchronously
2187 * @force: Boolean indicating use force update
2188 *
2189 * A value of zero will be returned on success, a negative errno will
2190 * be returned in error cases.
2191 */
2192int regmap_fields_update_bits_base(struct regmap_field *field, unsigned int id,
2193				   unsigned int mask, unsigned int val,
2194				   bool *change, bool async, bool force)
2195{
2196	if (id >= field->id_size)
2197		return -EINVAL;
2198
2199	mask = (mask << field->shift) & field->mask;
2200
2201	return regmap_update_bits_base(field->regmap,
2202				       field->reg + (field->id_offset * id),
2203				       mask, val << field->shift,
2204				       change, async, force);
2205}
2206EXPORT_SYMBOL_GPL(regmap_fields_update_bits_base);
2207
2208/**
2209 * regmap_bulk_write() - Write multiple registers to the device
2210 *
2211 * @map: Register map to write to
2212 * @reg: First register to be write from
2213 * @val: Block of data to be written, in native register size for device
2214 * @val_count: Number of registers to write
2215 *
2216 * This function is intended to be used for writing a large block of
2217 * data to the device either in single transfer or multiple transfer.
2218 *
2219 * A value of zero will be returned on success, a negative errno will
2220 * be returned in error cases.
2221 */
2222int regmap_bulk_write(struct regmap *map, unsigned int reg, const void *val,
2223		     size_t val_count)
2224{
2225	int ret = 0, i;
2226	size_t val_bytes = map->format.val_bytes;
2227
2228	if (!IS_ALIGNED(reg, map->reg_stride))
2229		return -EINVAL;
2230
2231	/*
2232	 * Some devices don't support bulk write, for them we have a series of
2233	 * single write operations.
2234	 */
2235	if (!map->bus || !map->format.parse_inplace) {
2236		map->lock(map->lock_arg);
2237		for (i = 0; i < val_count; i++) {
2238			unsigned int ival;
2239
2240			switch (val_bytes) {
2241			case 1:
2242				ival = *(u8 *)(val + (i * val_bytes));
2243				break;
2244			case 2:
2245				ival = *(u16 *)(val + (i * val_bytes));
2246				break;
2247			case 4:
2248				ival = *(u32 *)(val + (i * val_bytes));
2249				break;
2250#ifdef CONFIG_64BIT
2251			case 8:
2252				ival = *(u64 *)(val + (i * val_bytes));
2253				break;
2254#endif
2255			default:
2256				ret = -EINVAL;
2257				goto out;
2258			}
2259
2260			ret = _regmap_write(map,
2261					    reg + regmap_get_offset(map, i),
2262					    ival);
2263			if (ret != 0)
2264				goto out;
2265		}
2266out:
2267		map->unlock(map->lock_arg);
2268	} else {
2269		void *wval;
2270
2271		wval = kmemdup(val, val_count * val_bytes, map->alloc_flags);
2272		if (!wval)
2273			return -ENOMEM;
2274
2275		for (i = 0; i < val_count * val_bytes; i += val_bytes)
2276			map->format.parse_inplace(wval + i);
2277
2278		ret = regmap_raw_write(map, reg, wval, val_bytes * val_count);
2279
2280		kfree(wval);
2281	}
2282	return ret;
2283}
2284EXPORT_SYMBOL_GPL(regmap_bulk_write);
2285
2286/*
2287 * _regmap_raw_multi_reg_write()
2288 *
2289 * the (register,newvalue) pairs in regs have not been formatted, but
2290 * they are all in the same page and have been changed to being page
2291 * relative. The page register has been written if that was necessary.
2292 */
2293static int _regmap_raw_multi_reg_write(struct regmap *map,
2294				       const struct reg_sequence *regs,
2295				       size_t num_regs)
2296{
 
2297	int ret;
2298	void *buf;
2299	int i;
2300	u8 *u8;
2301	size_t val_bytes = map->format.val_bytes;
2302	size_t reg_bytes = map->format.reg_bytes;
2303	size_t pad_bytes = map->format.pad_bytes;
2304	size_t pair_size = reg_bytes + pad_bytes + val_bytes;
2305	size_t len = pair_size * num_regs;
2306
2307	if (!len)
2308		return -EINVAL;
2309
2310	buf = kzalloc(len, GFP_KERNEL);
2311	if (!buf)
2312		return -ENOMEM;
2313
2314	/* We have to linearise by hand. */
2315
2316	u8 = buf;
2317
2318	for (i = 0; i < num_regs; i++) {
2319		unsigned int reg = regs[i].reg;
2320		unsigned int val = regs[i].def;
2321		trace_regmap_hw_write_start(map, reg, 1);
2322		map->format.format_reg(u8, reg, map->reg_shift);
2323		u8 += reg_bytes + pad_bytes;
2324		map->format.format_val(u8, val, 0);
2325		u8 += val_bytes;
2326	}
2327	u8 = buf;
2328	*u8 |= map->write_flag_mask;
2329
2330	ret = map->bus->write(map->bus_context, buf, len);
2331
2332	kfree(buf);
2333
2334	for (i = 0; i < num_regs; i++) {
2335		int reg = regs[i].reg;
2336		trace_regmap_hw_write_done(map, reg, 1);
2337	}
2338	return ret;
2339}
2340
2341static unsigned int _regmap_register_page(struct regmap *map,
2342					  unsigned int reg,
2343					  struct regmap_range_node *range)
2344{
2345	unsigned int win_page = (reg - range->range_min) / range->window_len;
2346
2347	return win_page;
2348}
2349
2350static int _regmap_range_multi_paged_reg_write(struct regmap *map,
2351					       struct reg_sequence *regs,
2352					       size_t num_regs)
2353{
2354	int ret;
2355	int i, n;
2356	struct reg_sequence *base;
2357	unsigned int this_page = 0;
2358	unsigned int page_change = 0;
2359	/*
2360	 * the set of registers are not neccessarily in order, but
2361	 * since the order of write must be preserved this algorithm
2362	 * chops the set each time the page changes. This also applies
2363	 * if there is a delay required at any point in the sequence.
2364	 */
2365	base = regs;
2366	for (i = 0, n = 0; i < num_regs; i++, n++) {
2367		unsigned int reg = regs[i].reg;
2368		struct regmap_range_node *range;
2369
2370		range = _regmap_range_lookup(map, reg);
2371		if (range) {
2372			unsigned int win_page = _regmap_register_page(map, reg,
2373								      range);
2374
2375			if (i == 0)
2376				this_page = win_page;
2377			if (win_page != this_page) {
2378				this_page = win_page;
2379				page_change = 1;
2380			}
2381		}
2382
2383		/* If we have both a page change and a delay make sure to
2384		 * write the regs and apply the delay before we change the
2385		 * page.
2386		 */
2387
2388		if (page_change || regs[i].delay_us) {
2389
2390				/* For situations where the first write requires
2391				 * a delay we need to make sure we don't call
2392				 * raw_multi_reg_write with n=0
2393				 * This can't occur with page breaks as we
2394				 * never write on the first iteration
2395				 */
2396				if (regs[i].delay_us && i == 0)
2397					n = 1;
2398
2399				ret = _regmap_raw_multi_reg_write(map, base, n);
2400				if (ret != 0)
2401					return ret;
2402
2403				if (regs[i].delay_us) {
2404					if (map->can_sleep)
2405						fsleep(regs[i].delay_us);
2406					else
2407						udelay(regs[i].delay_us);
2408				}
2409
2410				base += n;
2411				n = 0;
2412
2413				if (page_change) {
2414					ret = _regmap_select_page(map,
2415								  &base[n].reg,
2416								  range, 1);
2417					if (ret != 0)
2418						return ret;
2419
2420					page_change = 0;
2421				}
2422
2423		}
2424
2425	}
2426	if (n > 0)
2427		return _regmap_raw_multi_reg_write(map, base, n);
2428	return 0;
2429}
2430
2431static int _regmap_multi_reg_write(struct regmap *map,
2432				   const struct reg_sequence *regs,
2433				   size_t num_regs)
2434{
2435	int i;
2436	int ret;
2437
2438	if (!map->can_multi_write) {
2439		for (i = 0; i < num_regs; i++) {
2440			ret = _regmap_write(map, regs[i].reg, regs[i].def);
2441			if (ret != 0)
2442				return ret;
2443
2444			if (regs[i].delay_us) {
2445				if (map->can_sleep)
2446					fsleep(regs[i].delay_us);
2447				else
2448					udelay(regs[i].delay_us);
2449			}
2450		}
2451		return 0;
2452	}
2453
2454	if (!map->format.parse_inplace)
2455		return -EINVAL;
2456
2457	if (map->writeable_reg)
2458		for (i = 0; i < num_regs; i++) {
2459			int reg = regs[i].reg;
2460			if (!map->writeable_reg(map->dev, reg))
2461				return -EINVAL;
2462			if (!IS_ALIGNED(reg, map->reg_stride))
2463				return -EINVAL;
2464		}
2465
2466	if (!map->cache_bypass) {
2467		for (i = 0; i < num_regs; i++) {
2468			unsigned int val = regs[i].def;
2469			unsigned int reg = regs[i].reg;
2470			ret = regcache_write(map, reg, val);
2471			if (ret) {
2472				dev_err(map->dev,
2473				"Error in caching of register: %x ret: %d\n",
2474								reg, ret);
2475				return ret;
2476			}
2477		}
2478		if (map->cache_only) {
2479			map->cache_dirty = true;
2480			return 0;
2481		}
2482	}
2483
2484	WARN_ON(!map->bus);
2485
2486	for (i = 0; i < num_regs; i++) {
2487		unsigned int reg = regs[i].reg;
2488		struct regmap_range_node *range;
2489
2490		/* Coalesce all the writes between a page break or a delay
2491		 * in a sequence
2492		 */
2493		range = _regmap_range_lookup(map, reg);
2494		if (range || regs[i].delay_us) {
2495			size_t len = sizeof(struct reg_sequence)*num_regs;
2496			struct reg_sequence *base = kmemdup(regs, len,
2497							   GFP_KERNEL);
2498			if (!base)
2499				return -ENOMEM;
2500			ret = _regmap_range_multi_paged_reg_write(map, base,
2501								  num_regs);
2502			kfree(base);
2503
2504			return ret;
2505		}
2506	}
2507	return _regmap_raw_multi_reg_write(map, regs, num_regs);
2508}
2509
2510/**
2511 * regmap_multi_reg_write() - Write multiple registers to the device
2512 *
2513 * @map: Register map to write to
2514 * @regs: Array of structures containing register,value to be written
2515 * @num_regs: Number of registers to write
2516 *
2517 * Write multiple registers to the device where the set of register, value
2518 * pairs are supplied in any order, possibly not all in a single range.
2519 *
2520 * The 'normal' block write mode will send ultimately send data on the
2521 * target bus as R,V1,V2,V3,..,Vn where successively higher registers are
2522 * addressed. However, this alternative block multi write mode will send
2523 * the data as R1,V1,R2,V2,..,Rn,Vn on the target bus. The target device
2524 * must of course support the mode.
2525 *
2526 * A value of zero will be returned on success, a negative errno will be
2527 * returned in error cases.
2528 */
2529int regmap_multi_reg_write(struct regmap *map, const struct reg_sequence *regs,
2530			   int num_regs)
2531{
2532	int ret;
2533
2534	map->lock(map->lock_arg);
2535
2536	ret = _regmap_multi_reg_write(map, regs, num_regs);
2537
2538	map->unlock(map->lock_arg);
2539
2540	return ret;
2541}
2542EXPORT_SYMBOL_GPL(regmap_multi_reg_write);
2543
2544/**
2545 * regmap_multi_reg_write_bypassed() - Write multiple registers to the
2546 *                                     device but not the cache
2547 *
2548 * @map: Register map to write to
2549 * @regs: Array of structures containing register,value to be written
2550 * @num_regs: Number of registers to write
2551 *
2552 * Write multiple registers to the device but not the cache where the set
2553 * of register are supplied in any order.
2554 *
2555 * This function is intended to be used for writing a large block of data
2556 * atomically to the device in single transfer for those I2C client devices
2557 * that implement this alternative block write mode.
2558 *
2559 * A value of zero will be returned on success, a negative errno will
2560 * be returned in error cases.
2561 */
2562int regmap_multi_reg_write_bypassed(struct regmap *map,
2563				    const struct reg_sequence *regs,
2564				    int num_regs)
2565{
2566	int ret;
2567	bool bypass;
2568
2569	map->lock(map->lock_arg);
2570
2571	bypass = map->cache_bypass;
2572	map->cache_bypass = true;
2573
2574	ret = _regmap_multi_reg_write(map, regs, num_regs);
2575
2576	map->cache_bypass = bypass;
2577
2578	map->unlock(map->lock_arg);
2579
2580	return ret;
2581}
2582EXPORT_SYMBOL_GPL(regmap_multi_reg_write_bypassed);
2583
2584/**
2585 * regmap_raw_write_async() - Write raw values to one or more registers
2586 *                            asynchronously
2587 *
2588 * @map: Register map to write to
2589 * @reg: Initial register to write to
2590 * @val: Block of data to be written, laid out for direct transmission to the
2591 *       device.  Must be valid until regmap_async_complete() is called.
2592 * @val_len: Length of data pointed to by val.
2593 *
2594 * This function is intended to be used for things like firmware
2595 * download where a large block of data needs to be transferred to the
2596 * device.  No formatting will be done on the data provided.
2597 *
2598 * If supported by the underlying bus the write will be scheduled
2599 * asynchronously, helping maximise I/O speed on higher speed buses
2600 * like SPI.  regmap_async_complete() can be called to ensure that all
2601 * asynchrnous writes have been completed.
2602 *
2603 * A value of zero will be returned on success, a negative errno will
2604 * be returned in error cases.
2605 */
2606int regmap_raw_write_async(struct regmap *map, unsigned int reg,
2607			   const void *val, size_t val_len)
2608{
2609	int ret;
2610
2611	if (val_len % map->format.val_bytes)
2612		return -EINVAL;
2613	if (!IS_ALIGNED(reg, map->reg_stride))
2614		return -EINVAL;
2615
2616	map->lock(map->lock_arg);
2617
2618	map->async = true;
2619
2620	ret = _regmap_raw_write(map, reg, val, val_len, false);
2621
2622	map->async = false;
2623
2624	map->unlock(map->lock_arg);
2625
2626	return ret;
2627}
2628EXPORT_SYMBOL_GPL(regmap_raw_write_async);
2629
2630static int _regmap_raw_read(struct regmap *map, unsigned int reg, void *val,
2631			    unsigned int val_len, bool noinc)
2632{
2633	struct regmap_range_node *range;
2634	int ret;
2635
2636	WARN_ON(!map->bus);
2637
2638	if (!map->bus || !map->bus->read)
2639		return -EINVAL;
2640
2641	range = _regmap_range_lookup(map, reg);
2642	if (range) {
2643		ret = _regmap_select_page(map, &reg, range,
2644					  noinc ? 1 : val_len / map->format.val_bytes);
2645		if (ret != 0)
2646			return ret;
2647	}
2648
2649	map->format.format_reg(map->work_buf, reg, map->reg_shift);
2650	regmap_set_work_buf_flag_mask(map, map->format.reg_bytes,
2651				      map->read_flag_mask);
2652	trace_regmap_hw_read_start(map, reg, val_len / map->format.val_bytes);
2653
2654	ret = map->bus->read(map->bus_context, map->work_buf,
2655			     map->format.reg_bytes + map->format.pad_bytes,
2656			     val, val_len);
2657
2658	trace_regmap_hw_read_done(map, reg, val_len / map->format.val_bytes);
2659
2660	return ret;
2661}
2662
2663static int _regmap_bus_reg_read(void *context, unsigned int reg,
2664				unsigned int *val)
2665{
2666	struct regmap *map = context;
2667
2668	return map->bus->reg_read(map->bus_context, reg, val);
2669}
2670
2671static int _regmap_bus_read(void *context, unsigned int reg,
2672			    unsigned int *val)
2673{
2674	int ret;
2675	struct regmap *map = context;
2676	void *work_val = map->work_buf + map->format.reg_bytes +
2677		map->format.pad_bytes;
2678
2679	if (!map->format.parse_val)
2680		return -EINVAL;
2681
2682	ret = _regmap_raw_read(map, reg, work_val, map->format.val_bytes, false);
2683	if (ret == 0)
2684		*val = map->format.parse_val(work_val);
2685
2686	return ret;
2687}
2688
2689static int _regmap_read(struct regmap *map, unsigned int reg,
2690			unsigned int *val)
2691{
2692	int ret;
2693	void *context = _regmap_map_get_context(map);
2694
2695	if (!map->cache_bypass) {
2696		ret = regcache_read(map, reg, val);
2697		if (ret == 0)
2698			return 0;
2699	}
2700
2701	if (map->cache_only)
2702		return -EBUSY;
2703
2704	if (!regmap_readable(map, reg))
2705		return -EIO;
2706
2707	ret = map->reg_read(context, reg, val);
2708	if (ret == 0) {
2709		if (regmap_should_log(map))
2710			dev_info(map->dev, "%x => %x\n", reg, *val);
2711
2712		trace_regmap_reg_read(map, reg, *val);
2713
2714		if (!map->cache_bypass)
2715			regcache_write(map, reg, *val);
2716	}
2717
2718	return ret;
2719}
2720
2721/**
2722 * regmap_read() - Read a value from a single register
2723 *
2724 * @map: Register map to read from
2725 * @reg: Register to be read from
2726 * @val: Pointer to store read value
2727 *
2728 * A value of zero will be returned on success, a negative errno will
2729 * be returned in error cases.
2730 */
2731int regmap_read(struct regmap *map, unsigned int reg, unsigned int *val)
2732{
2733	int ret;
2734
2735	if (!IS_ALIGNED(reg, map->reg_stride))
2736		return -EINVAL;
2737
2738	map->lock(map->lock_arg);
2739
2740	ret = _regmap_read(map, reg, val);
2741
2742	map->unlock(map->lock_arg);
2743
2744	return ret;
2745}
2746EXPORT_SYMBOL_GPL(regmap_read);
2747
2748/**
2749 * regmap_raw_read() - Read raw data from the device
2750 *
2751 * @map: Register map to read from
2752 * @reg: First register to be read from
2753 * @val: Pointer to store read value
2754 * @val_len: Size of data to read
2755 *
2756 * A value of zero will be returned on success, a negative errno will
2757 * be returned in error cases.
2758 */
2759int regmap_raw_read(struct regmap *map, unsigned int reg, void *val,
2760		    size_t val_len)
2761{
2762	size_t val_bytes = map->format.val_bytes;
2763	size_t val_count = val_len / val_bytes;
2764	unsigned int v;
2765	int ret, i;
2766
2767	if (!map->bus)
2768		return -EINVAL;
2769	if (val_len % map->format.val_bytes)
2770		return -EINVAL;
2771	if (!IS_ALIGNED(reg, map->reg_stride))
2772		return -EINVAL;
2773	if (val_count == 0)
2774		return -EINVAL;
2775
2776	map->lock(map->lock_arg);
2777
2778	if (regmap_volatile_range(map, reg, val_count) || map->cache_bypass ||
2779	    map->cache_type == REGCACHE_NONE) {
2780		size_t chunk_count, chunk_bytes;
2781		size_t chunk_regs = val_count;
2782
2783		if (!map->bus->read) {
2784			ret = -ENOTSUPP;
2785			goto out;
2786		}
2787
2788		if (map->use_single_read)
2789			chunk_regs = 1;
2790		else if (map->max_raw_read && val_len > map->max_raw_read)
2791			chunk_regs = map->max_raw_read / val_bytes;
2792
2793		chunk_count = val_count / chunk_regs;
2794		chunk_bytes = chunk_regs * val_bytes;
2795
2796		/* Read bytes that fit into whole chunks */
2797		for (i = 0; i < chunk_count; i++) {
2798			ret = _regmap_raw_read(map, reg, val, chunk_bytes, false);
2799			if (ret != 0)
2800				goto out;
2801
2802			reg += regmap_get_offset(map, chunk_regs);
2803			val += chunk_bytes;
2804			val_len -= chunk_bytes;
2805		}
2806
2807		/* Read remaining bytes */
2808		if (val_len) {
2809			ret = _regmap_raw_read(map, reg, val, val_len, false);
2810			if (ret != 0)
2811				goto out;
2812		}
2813	} else {
2814		/* Otherwise go word by word for the cache; should be low
2815		 * cost as we expect to hit the cache.
2816		 */
2817		for (i = 0; i < val_count; i++) {
2818			ret = _regmap_read(map, reg + regmap_get_offset(map, i),
2819					   &v);
2820			if (ret != 0)
2821				goto out;
2822
2823			map->format.format_val(val + (i * val_bytes), v, 0);
2824		}
2825	}
2826
2827 out:
2828	map->unlock(map->lock_arg);
2829
2830	return ret;
2831}
2832EXPORT_SYMBOL_GPL(regmap_raw_read);
2833
2834/**
2835 * regmap_noinc_read(): Read data from a register without incrementing the
2836 *			register number
2837 *
2838 * @map: Register map to read from
2839 * @reg: Register to read from
2840 * @val: Pointer to data buffer
2841 * @val_len: Length of output buffer in bytes.
2842 *
2843 * The regmap API usually assumes that bulk bus read operations will read a
2844 * range of registers. Some devices have certain registers for which a read
2845 * operation read will read from an internal FIFO.
2846 *
2847 * The target register must be volatile but registers after it can be
2848 * completely unrelated cacheable registers.
2849 *
2850 * This will attempt multiple reads as required to read val_len bytes.
2851 *
2852 * A value of zero will be returned on success, a negative errno will be
2853 * returned in error cases.
2854 */
2855int regmap_noinc_read(struct regmap *map, unsigned int reg,
2856		      void *val, size_t val_len)
2857{
2858	size_t read_len;
2859	int ret;
2860
2861	if (!map->bus)
2862		return -EINVAL;
2863	if (!map->bus->read)
2864		return -ENOTSUPP;
2865	if (val_len % map->format.val_bytes)
2866		return -EINVAL;
2867	if (!IS_ALIGNED(reg, map->reg_stride))
2868		return -EINVAL;
2869	if (val_len == 0)
2870		return -EINVAL;
2871
2872	map->lock(map->lock_arg);
2873
2874	if (!regmap_volatile(map, reg) || !regmap_readable_noinc(map, reg)) {
2875		ret = -EINVAL;
2876		goto out_unlock;
2877	}
2878
2879	while (val_len) {
2880		if (map->max_raw_read && map->max_raw_read < val_len)
2881			read_len = map->max_raw_read;
2882		else
2883			read_len = val_len;
2884		ret = _regmap_raw_read(map, reg, val, read_len, true);
2885		if (ret)
2886			goto out_unlock;
2887		val = ((u8 *)val) + read_len;
2888		val_len -= read_len;
2889	}
2890
2891out_unlock:
2892	map->unlock(map->lock_arg);
2893	return ret;
2894}
2895EXPORT_SYMBOL_GPL(regmap_noinc_read);
2896
2897/**
2898 * regmap_field_read(): Read a value to a single register field
2899 *
2900 * @field: Register field to read from
2901 * @val: Pointer to store read value
2902 *
2903 * A value of zero will be returned on success, a negative errno will
2904 * be returned in error cases.
2905 */
2906int regmap_field_read(struct regmap_field *field, unsigned int *val)
2907{
2908	int ret;
2909	unsigned int reg_val;
2910	ret = regmap_read(field->regmap, field->reg, &reg_val);
2911	if (ret != 0)
2912		return ret;
2913
2914	reg_val &= field->mask;
2915	reg_val >>= field->shift;
2916	*val = reg_val;
2917
2918	return ret;
2919}
2920EXPORT_SYMBOL_GPL(regmap_field_read);
2921
2922/**
2923 * regmap_fields_read() - Read a value to a single register field with port ID
2924 *
2925 * @field: Register field to read from
2926 * @id: port ID
2927 * @val: Pointer to store read value
2928 *
2929 * A value of zero will be returned on success, a negative errno will
2930 * be returned in error cases.
2931 */
2932int regmap_fields_read(struct regmap_field *field, unsigned int id,
2933		       unsigned int *val)
2934{
2935	int ret;
2936	unsigned int reg_val;
2937
2938	if (id >= field->id_size)
2939		return -EINVAL;
2940
2941	ret = regmap_read(field->regmap,
2942			  field->reg + (field->id_offset * id),
2943			  &reg_val);
2944	if (ret != 0)
2945		return ret;
2946
2947	reg_val &= field->mask;
2948	reg_val >>= field->shift;
2949	*val = reg_val;
2950
2951	return ret;
2952}
2953EXPORT_SYMBOL_GPL(regmap_fields_read);
2954
2955/**
2956 * regmap_bulk_read() - Read multiple registers from the device
2957 *
2958 * @map: Register map to read from
2959 * @reg: First register to be read from
2960 * @val: Pointer to store read value, in native register size for device
2961 * @val_count: Number of registers to read
2962 *
2963 * A value of zero will be returned on success, a negative errno will
2964 * be returned in error cases.
2965 */
2966int regmap_bulk_read(struct regmap *map, unsigned int reg, void *val,
2967		     size_t val_count)
2968{
2969	int ret, i;
2970	size_t val_bytes = map->format.val_bytes;
2971	bool vol = regmap_volatile_range(map, reg, val_count);
2972
2973	if (!IS_ALIGNED(reg, map->reg_stride))
2974		return -EINVAL;
2975	if (val_count == 0)
2976		return -EINVAL;
2977
2978	if (map->bus && map->format.parse_inplace && (vol || map->cache_type == REGCACHE_NONE)) {
2979		ret = regmap_raw_read(map, reg, val, val_bytes * val_count);
2980		if (ret != 0)
2981			return ret;
2982
2983		for (i = 0; i < val_count * val_bytes; i += val_bytes)
2984			map->format.parse_inplace(val + i);
2985	} else {
2986#ifdef CONFIG_64BIT
2987		u64 *u64 = val;
2988#endif
2989		u32 *u32 = val;
2990		u16 *u16 = val;
2991		u8 *u8 = val;
2992
2993		map->lock(map->lock_arg);
2994
2995		for (i = 0; i < val_count; i++) {
2996			unsigned int ival;
2997
2998			ret = _regmap_read(map, reg + regmap_get_offset(map, i),
2999					   &ival);
3000			if (ret != 0)
3001				goto out;
3002
3003			switch (map->format.val_bytes) {
3004#ifdef CONFIG_64BIT
3005			case 8:
3006				u64[i] = ival;
3007				break;
3008#endif
3009			case 4:
3010				u32[i] = ival;
3011				break;
3012			case 2:
3013				u16[i] = ival;
3014				break;
3015			case 1:
3016				u8[i] = ival;
3017				break;
3018			default:
3019				ret = -EINVAL;
3020				goto out;
3021			}
3022		}
3023
3024out:
3025		map->unlock(map->lock_arg);
3026	}
3027
3028	return ret;
3029}
3030EXPORT_SYMBOL_GPL(regmap_bulk_read);
3031
3032static int _regmap_update_bits(struct regmap *map, unsigned int reg,
3033			       unsigned int mask, unsigned int val,
3034			       bool *change, bool force_write)
3035{
3036	int ret;
3037	unsigned int tmp, orig;
3038
3039	if (change)
3040		*change = false;
3041
3042	if (regmap_volatile(map, reg) && map->reg_update_bits) {
3043		ret = map->reg_update_bits(map->bus_context, reg, mask, val);
3044		if (ret == 0 && change)
3045			*change = true;
3046	} else {
3047		ret = _regmap_read(map, reg, &orig);
3048		if (ret != 0)
3049			return ret;
3050
3051		tmp = orig & ~mask;
3052		tmp |= val & mask;
3053
3054		if (force_write || (tmp != orig)) {
3055			ret = _regmap_write(map, reg, tmp);
3056			if (ret == 0 && change)
3057				*change = true;
3058		}
3059	}
3060
3061	return ret;
3062}
3063
3064/**
3065 * regmap_update_bits_base() - Perform a read/modify/write cycle on a register
3066 *
3067 * @map: Register map to update
3068 * @reg: Register to update
3069 * @mask: Bitmask to change
3070 * @val: New value for bitmask
3071 * @change: Boolean indicating if a write was done
3072 * @async: Boolean indicating asynchronously
3073 * @force: Boolean indicating use force update
3074 *
3075 * Perform a read/modify/write cycle on a register map with change, async, force
3076 * options.
3077 *
3078 * If async is true:
3079 *
3080 * With most buses the read must be done synchronously so this is most useful
3081 * for devices with a cache which do not need to interact with the hardware to
3082 * determine the current register value.
3083 *
3084 * Returns zero for success, a negative number on error.
3085 */
3086int regmap_update_bits_base(struct regmap *map, unsigned int reg,
3087			    unsigned int mask, unsigned int val,
3088			    bool *change, bool async, bool force)
3089{
3090	int ret;
 
3091
3092	map->lock(map->lock_arg);
3093
3094	map->async = async;
3095
3096	ret = _regmap_update_bits(map, reg, mask, val, change, force);
3097
3098	map->async = false;
3099
3100	map->unlock(map->lock_arg);
3101
3102	return ret;
3103}
3104EXPORT_SYMBOL_GPL(regmap_update_bits_base);
3105
3106/**
3107 * regmap_test_bits() - Check if all specified bits are set in a register.
3108 *
3109 * @map: Register map to operate on
3110 * @reg: Register to read from
3111 * @bits: Bits to test
3112 *
3113 * Returns 0 if at least one of the tested bits is not set, 1 if all tested
3114 * bits are set and a negative error number if the underlying regmap_read()
3115 * fails.
3116 */
3117int regmap_test_bits(struct regmap *map, unsigned int reg, unsigned int bits)
3118{
3119	unsigned int val, ret;
3120
3121	ret = regmap_read(map, reg, &val);
3122	if (ret)
3123		return ret;
3124
3125	return (val & bits) == bits;
3126}
3127EXPORT_SYMBOL_GPL(regmap_test_bits);
3128
3129void regmap_async_complete_cb(struct regmap_async *async, int ret)
3130{
3131	struct regmap *map = async->map;
3132	bool wake;
3133
3134	trace_regmap_async_io_complete(map);
3135
3136	spin_lock(&map->async_lock);
3137	list_move(&async->list, &map->async_free);
3138	wake = list_empty(&map->async_list);
3139
 
3140	if (ret != 0)
3141		map->async_ret = ret;
3142
3143	spin_unlock(&map->async_lock);
 
3144
3145	if (wake)
3146		wake_up(&map->async_waitq);
3147}
3148EXPORT_SYMBOL_GPL(regmap_async_complete_cb);
3149
3150static int regmap_async_is_done(struct regmap *map)
3151{
3152	unsigned long flags;
3153	int ret;
3154
3155	spin_lock_irqsave(&map->async_lock, flags);
3156	ret = list_empty(&map->async_list);
3157	spin_unlock_irqrestore(&map->async_lock, flags);
3158
3159	return ret;
3160}
3161
3162/**
3163 * regmap_async_complete - Ensure all asynchronous I/O has completed.
3164 *
3165 * @map: Map to operate on.
3166 *
3167 * Blocks until any pending asynchronous I/O has completed.  Returns
3168 * an error code for any failed I/O operations.
3169 */
3170int regmap_async_complete(struct regmap *map)
3171{
3172	unsigned long flags;
3173	int ret;
3174
3175	/* Nothing to do with no async support */
3176	if (!map->bus || !map->bus->async_write)
3177		return 0;
3178
3179	trace_regmap_async_complete_start(map);
3180
3181	wait_event(map->async_waitq, regmap_async_is_done(map));
3182
3183	spin_lock_irqsave(&map->async_lock, flags);
3184	ret = map->async_ret;
3185	map->async_ret = 0;
3186	spin_unlock_irqrestore(&map->async_lock, flags);
3187
3188	trace_regmap_async_complete_done(map);
3189
3190	return ret;
3191}
3192EXPORT_SYMBOL_GPL(regmap_async_complete);
3193
3194/**
3195 * regmap_register_patch - Register and apply register updates to be applied
3196 *                         on device initialistion
3197 *
3198 * @map: Register map to apply updates to.
3199 * @regs: Values to update.
3200 * @num_regs: Number of entries in regs.
3201 *
3202 * Register a set of register updates to be applied to the device
3203 * whenever the device registers are synchronised with the cache and
3204 * apply them immediately.  Typically this is used to apply
3205 * corrections to be applied to the device defaults on startup, such
3206 * as the updates some vendors provide to undocumented registers.
3207 *
3208 * The caller must ensure that this function cannot be called
3209 * concurrently with either itself or regcache_sync().
3210 */
3211int regmap_register_patch(struct regmap *map, const struct reg_sequence *regs,
3212			  int num_regs)
3213{
3214	struct reg_sequence *p;
3215	int ret;
3216	bool bypass;
3217
3218	if (WARN_ONCE(num_regs <= 0, "invalid registers number (%d)\n",
3219	    num_regs))
3220		return 0;
3221
3222	p = krealloc(map->patch,
3223		     sizeof(struct reg_sequence) * (map->patch_regs + num_regs),
3224		     GFP_KERNEL);
3225	if (p) {
3226		memcpy(p + map->patch_regs, regs, num_regs * sizeof(*regs));
3227		map->patch = p;
3228		map->patch_regs += num_regs;
3229	} else {
3230		return -ENOMEM;
3231	}
3232
3233	map->lock(map->lock_arg);
3234
3235	bypass = map->cache_bypass;
3236
3237	map->cache_bypass = true;
3238	map->async = true;
3239
3240	ret = _regmap_multi_reg_write(map, regs, num_regs);
3241
3242	map->async = false;
3243	map->cache_bypass = bypass;
3244
3245	map->unlock(map->lock_arg);
3246
3247	regmap_async_complete(map);
3248
3249	return ret;
3250}
3251EXPORT_SYMBOL_GPL(regmap_register_patch);
3252
3253/**
3254 * regmap_get_val_bytes() - Report the size of a register value
3255 *
3256 * @map: Register map to operate on.
3257 *
3258 * Report the size of a register value, mainly intended to for use by
3259 * generic infrastructure built on top of regmap.
3260 */
3261int regmap_get_val_bytes(struct regmap *map)
3262{
3263	if (map->format.format_write)
3264		return -EINVAL;
3265
3266	return map->format.val_bytes;
3267}
3268EXPORT_SYMBOL_GPL(regmap_get_val_bytes);
3269
3270/**
3271 * regmap_get_max_register() - Report the max register value
3272 *
3273 * @map: Register map to operate on.
3274 *
3275 * Report the max register value, mainly intended to for use by
3276 * generic infrastructure built on top of regmap.
3277 */
3278int regmap_get_max_register(struct regmap *map)
3279{
3280	return map->max_register ? map->max_register : -EINVAL;
3281}
3282EXPORT_SYMBOL_GPL(regmap_get_max_register);
3283
3284/**
3285 * regmap_get_reg_stride() - Report the register address stride
3286 *
3287 * @map: Register map to operate on.
3288 *
3289 * Report the register address stride, mainly intended to for use by
3290 * generic infrastructure built on top of regmap.
3291 */
3292int regmap_get_reg_stride(struct regmap *map)
3293{
3294	return map->reg_stride;
3295}
3296EXPORT_SYMBOL_GPL(regmap_get_reg_stride);
3297
3298int regmap_parse_val(struct regmap *map, const void *buf,
3299			unsigned int *val)
3300{
3301	if (!map->format.parse_val)
3302		return -EINVAL;
3303
3304	*val = map->format.parse_val(buf);
3305
3306	return 0;
3307}
3308EXPORT_SYMBOL_GPL(regmap_parse_val);
3309
3310static int __init regmap_initcall(void)
3311{
3312	regmap_debugfs_initcall();
3313
3314	return 0;
3315}
3316postcore_initcall(regmap_initcall);