Linux Audio

Check our new training course

Loading...
v3.1
  1/*
  2 * Register map access API
  3 *
  4 * Copyright 2011 Wolfson Microelectronics plc
  5 *
  6 * Author: Mark Brown <broonie@opensource.wolfsonmicro.com>
  7 *
  8 * This program is free software; you can redistribute it and/or modify
  9 * it under the terms of the GNU General Public License version 2 as
 10 * published by the Free Software Foundation.
 11 */
 12
 
 13#include <linux/slab.h>
 14#include <linux/module.h>
 15#include <linux/mutex.h>
 16#include <linux/err.h>
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 17
 18#include <linux/regmap.h>
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 19
 20struct regmap;
 
 
 21
 22struct regmap_format {
 23	size_t buf_size;
 24	size_t reg_bytes;
 25	size_t val_bytes;
 26	void (*format_write)(struct regmap *map,
 27			     unsigned int reg, unsigned int val);
 28	void (*format_reg)(void *buf, unsigned int reg);
 29	void (*format_val)(void *buf, unsigned int val);
 30	unsigned int (*parse_val)(void *buf);
 31};
 32
 33struct regmap {
 34	struct mutex lock;
 35
 36	struct device *dev; /* Device we do I/O on */
 37	void *work_buf;     /* Scratch buffer used to format I/O */
 38	struct regmap_format format;  /* Buffer format */
 39	const struct regmap_bus *bus;
 40};
 41
 42static void regmap_format_4_12_write(struct regmap *map,
 43				     unsigned int reg, unsigned int val)
 44{
 45	__be16 *out = map->work_buf;
 46	*out = cpu_to_be16((reg << 12) | val);
 47}
 48
 49static void regmap_format_7_9_write(struct regmap *map,
 50				    unsigned int reg, unsigned int val)
 51{
 52	__be16 *out = map->work_buf;
 53	*out = cpu_to_be16((reg << 9) | val);
 54}
 55
 56static void regmap_format_8(void *buf, unsigned int val)
 
 
 
 
 
 
 
 
 
 
 57{
 58	u8 *b = buf;
 59
 60	b[0] = val;
 61}
 62
 63static void regmap_format_16(void *buf, unsigned int val)
 64{
 65	__be16 *b = buf;
 66
 67	b[0] = cpu_to_be16(val);
 
 
 
 
 
 
 
 68}
 69
 70static unsigned int regmap_parse_8(void *buf)
 
 
 
 
 
 
 71{
 72	u8 *b = buf;
 73
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 74	return b[0];
 75}
 76
 77static unsigned int regmap_parse_16(void *buf)
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 78{
 79	__be16 *b = buf;
 80
 81	b[0] = be16_to_cpu(b[0]);
 
 82
 83	return b[0];
 
 
 
 
 84}
 85
 86/**
 87 * regmap_init(): Initialise register map
 88 *
 89 * @dev: Device that will be interacted with
 90 * @bus: Bus-specific callbacks to use with device
 91 * @config: Configuration for register map
 92 *
 93 * The return value will be an ERR_PTR() on error or a valid pointer to
 94 * a struct regmap.  This function should generally not be called
 95 * directly, it should be called by bus-specific init functions.
 96 */
 97struct regmap *regmap_init(struct device *dev,
 98			   const struct regmap_bus *bus,
 99			   const struct regmap_config *config)
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
100{
101	struct regmap *map;
102	int ret = -EINVAL;
 
 
103
104	if (!bus || !config)
105		return NULL;
106
107	map = kzalloc(sizeof(*map), GFP_KERNEL);
108	if (map == NULL) {
109		ret = -ENOMEM;
110		goto err;
111	}
112
113	mutex_init(&map->lock);
114	map->format.buf_size = (config->reg_bits + config->val_bits) / 8;
115	map->format.reg_bytes = config->reg_bits / 8;
116	map->format.val_bytes = config->val_bits / 8;
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
117	map->dev = dev;
118	map->bus = bus;
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
119
120	switch (config->reg_bits) {
121	case 4:
122		switch (config->val_bits) {
123		case 12:
124			map->format.format_write = regmap_format_4_12_write;
125			break;
126		default:
127			goto err_map;
128		}
129		break;
130
131	case 7:
132		switch (config->val_bits) {
133		case 9:
134			map->format.format_write = regmap_format_7_9_write;
135			break;
136		default:
137			goto err_map;
 
 
 
 
 
 
 
 
 
 
138		}
139		break;
140
141	case 8:
142		map->format.format_reg = regmap_format_8;
143		break;
144
145	case 16:
146		map->format.format_reg = regmap_format_16;
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
147		break;
 
148
149	default:
150		goto err_map;
151	}
152
 
 
 
153	switch (config->val_bits) {
154	case 8:
155		map->format.format_val = regmap_format_8;
156		map->format.parse_val = regmap_parse_8;
 
157		break;
158	case 16:
159		map->format.format_val = regmap_format_16;
160		map->format.parse_val = regmap_parse_16;
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
161		break;
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
162	}
163
164	if (!map->format.format_write &&
165	    !(map->format.format_reg && map->format.format_val))
166		goto err_map;
167
168	map->work_buf = kmalloc(map->format.buf_size, GFP_KERNEL);
169	if (map->work_buf == NULL) {
170		ret = -ENOMEM;
171		goto err_map;
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
172	}
173
174	return map;
175
 
 
 
 
 
 
 
 
 
 
176err_map:
177	kfree(map);
178err:
179	return ERR_PTR(ret);
180}
181EXPORT_SYMBOL_GPL(regmap_init);
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
182
183/**
184 * regmap_exit(): Free a previously allocated register map
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
185 */
186void regmap_exit(struct regmap *map)
187{
 
 
 
 
 
 
 
188	kfree(map->work_buf);
 
 
 
 
 
 
 
 
 
 
 
189	kfree(map);
190}
191EXPORT_SYMBOL_GPL(regmap_exit);
192
193static int _regmap_raw_write(struct regmap *map, unsigned int reg,
194			     const void *val, size_t val_len)
195{
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
196	void *buf;
197	int ret = -ENOTSUPP;
198	size_t len;
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
199
200	map->format.format_reg(map->work_buf, reg);
201
202	/* Try to do a gather write if we can */
203	if (map->bus->gather_write)
204		ret = map->bus->gather_write(map->dev, map->work_buf,
205					     map->format.reg_bytes,
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
206					     val, val_len);
207
208	/* Otherwise fall back on linearising by hand. */
209	if (ret == -ENOTSUPP) {
210		len = map->format.reg_bytes + val_len;
211		buf = kmalloc(len, GFP_KERNEL);
212		if (!buf)
213			return -ENOMEM;
214
215		memcpy(buf, map->work_buf, map->format.reg_bytes);
216		memcpy(buf + map->format.reg_bytes, val, val_len);
217		ret = map->bus->write(map->dev, buf, len);
 
218
219		kfree(buf);
 
 
 
 
 
 
220	}
221
 
 
222	return ret;
223}
224
225static int _regmap_write(struct regmap *map, unsigned int reg,
226			 unsigned int val)
 
 
 
 
227{
228	BUG_ON(!map->format.format_write && !map->format.format_val);
 
 
 
229
230	if (map->format.format_write) {
231		map->format.format_write(map, reg, val);
 
 
 
 
 
 
 
 
232
233		return map->bus->write(map->dev, map->work_buf,
234				       map->format.buf_size);
235	} else {
236		map->format.format_val(map->work_buf + map->format.reg_bytes,
237				       val);
238		return _regmap_raw_write(map, reg,
239					 map->work_buf + map->format.reg_bytes,
240					 map->format.val_bytes);
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
241	}
 
 
 
 
 
 
 
 
 
242}
243
244/**
245 * regmap_write(): Write a value to a single register
246 *
247 * @map: Register map to write to
248 * @reg: Register to write to
249 * @val: Value to be written
250 *
251 * A value of zero will be returned on success, a negative errno will
252 * be returned in error cases.
253 */
254int regmap_write(struct regmap *map, unsigned int reg, unsigned int val)
255{
256	int ret;
257
258	mutex_lock(&map->lock);
 
 
 
259
260	ret = _regmap_write(map, reg, val);
261
262	mutex_unlock(&map->lock);
263
264	return ret;
265}
266EXPORT_SYMBOL_GPL(regmap_write);
267
268/**
269 * regmap_raw_write(): Write raw values to one or more registers
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
270 *
271 * @map: Register map to write to
272 * @reg: Initial register to write to
273 * @val: Block of data to be written, laid out for direct transmission to the
274 *       device
275 * @val_len: Length of data pointed to by val.
276 *
277 * This function is intended to be used for things like firmware
278 * download where a large block of data needs to be transferred to the
279 * device.  No formatting will be done on the data provided.
280 *
281 * A value of zero will be returned on success, a negative errno will
282 * be returned in error cases.
283 */
284int regmap_raw_write(struct regmap *map, unsigned int reg,
285		     const void *val, size_t val_len)
286{
287	int ret;
288
289	mutex_lock(&map->lock);
 
 
 
 
 
290
291	ret = _regmap_raw_write(map, reg, val, val_len);
292
293	mutex_unlock(&map->lock);
294
295	return ret;
296}
297EXPORT_SYMBOL_GPL(regmap_raw_write);
298
299static int _regmap_raw_read(struct regmap *map, unsigned int reg, void *val,
300			    unsigned int val_len)
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
301{
302	u8 *u8 = map->work_buf;
303	int ret;
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
304
305	map->format.format_reg(map->work_buf, reg);
 
 
 
 
 
 
 
 
 
 
 
 
 
 
306
 
 
 
 
 
 
 
 
 
307	/*
308	 * Some buses flag reads by setting the high bits in the
309	 * register addresss; since it's always the high bits for all
310	 * current formats we can do this here rather than in
311	 * formatting.  This may break if we get interesting formats.
312	 */
313	if (map->bus->read_flag_mask)
314		u8[0] |= map->bus->read_flag_mask;
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
315
316	ret = map->bus->read(map->dev, map->work_buf, map->format.reg_bytes,
317			     val, val_len);
318	if (ret != 0)
319		return ret;
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
320
 
 
 
321	return 0;
322}
323
324static int _regmap_read(struct regmap *map, unsigned int reg,
325			unsigned int *val)
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
326{
327	int ret;
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
328
329	if (!map->format.parse_val)
330		return -EINVAL;
331
332	ret = _regmap_raw_read(map, reg, map->work_buf, map->format.val_bytes);
333	if (ret == 0)
334		*val = map->format.parse_val(map->work_buf);
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
335
336	return ret;
337}
338
339/**
340 * regmap_read(): Read a value from a single register
341 *
342 * @map: Register map to write to
343 * @reg: Register to be read from
344 * @val: Pointer to store read value
345 *
346 * A value of zero will be returned on success, a negative errno will
347 * be returned in error cases.
348 */
349int regmap_read(struct regmap *map, unsigned int reg, unsigned int *val)
350{
351	int ret;
352
353	mutex_lock(&map->lock);
 
 
 
354
355	ret = _regmap_read(map, reg, val);
356
357	mutex_unlock(&map->lock);
358
359	return ret;
360}
361EXPORT_SYMBOL_GPL(regmap_read);
362
363/**
364 * regmap_raw_read(): Read raw data from the device
365 *
366 * @map: Register map to write to
367 * @reg: First register to be read from
368 * @val: Pointer to store read value
369 * @val_len: Size of data to read
370 *
371 * A value of zero will be returned on success, a negative errno will
372 * be returned in error cases.
373 */
374int regmap_raw_read(struct regmap *map, unsigned int reg, void *val,
375		    size_t val_len)
376{
377	int ret;
 
 
 
378
379	mutex_lock(&map->lock);
 
 
 
 
 
 
 
380
381	ret = _regmap_raw_read(map, reg, val, val_len);
382
383	mutex_unlock(&map->lock);
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
384
385	return ret;
386}
387EXPORT_SYMBOL_GPL(regmap_raw_read);
388
389/**
390 * regmap_bulk_read(): Read multiple registers from the device
391 *
392 * @map: Register map to write to
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
393 * @reg: First register to be read from
394 * @val: Pointer to store read value, in native register size for device
395 * @val_count: Number of registers to read
396 *
397 * A value of zero will be returned on success, a negative errno will
398 * be returned in error cases.
399 */
400int regmap_bulk_read(struct regmap *map, unsigned int reg, void *val,
401		     size_t val_count)
402{
403	int ret, i;
404	size_t val_bytes = map->format.val_bytes;
 
405
406	if (!map->format.parse_val)
 
 
407		return -EINVAL;
408
409	ret = regmap_raw_read(map, reg, val, val_bytes * val_count);
410	if (ret != 0)
411		return ret;
 
412
413	for (i = 0; i < val_count * val_bytes; i += val_bytes)
414		map->format.parse_val(val + i);
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
415
416	return 0;
 
 
 
 
417}
418EXPORT_SYMBOL_GPL(regmap_bulk_read);
419
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
420/**
421 * remap_update_bits: Perform a read/modify/write cycle on the register map
422 *
423 * @map: Register map to update
424 * @reg: Register to update
425 * @mask: Bitmask to change
426 * @val: New value for bitmask
 
 
 
 
 
 
 
 
 
 
 
 
427 *
428 * Returns zero for success, a negative number on error.
429 */
430int regmap_update_bits(struct regmap *map, unsigned int reg,
431		       unsigned int mask, unsigned int val)
 
432{
433	int ret;
434	unsigned int tmp;
435
436	mutex_lock(&map->lock);
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
437
438	ret = _regmap_read(map, reg, &tmp);
439	if (ret != 0)
440		goto out;
441
442	tmp &= ~mask;
443	tmp |= val & mask;
444
445	ret = _regmap_write(map, reg, tmp);
 
 
 
446
447out:
448	mutex_unlock(&map->lock);
 
 
 
 
 
 
449
450	return ret;
451}
452EXPORT_SYMBOL_GPL(regmap_update_bits);
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
v4.17
   1/*
   2 * Register map access API
   3 *
   4 * Copyright 2011 Wolfson Microelectronics plc
   5 *
   6 * Author: Mark Brown <broonie@opensource.wolfsonmicro.com>
   7 *
   8 * This program is free software; you can redistribute it and/or modify
   9 * it under the terms of the GNU General Public License version 2 as
  10 * published by the Free Software Foundation.
  11 */
  12
  13#include <linux/device.h>
  14#include <linux/slab.h>
  15#include <linux/export.h>
  16#include <linux/mutex.h>
  17#include <linux/err.h>
  18#include <linux/of.h>
  19#include <linux/rbtree.h>
  20#include <linux/sched.h>
  21#include <linux/delay.h>
  22#include <linux/log2.h>
  23#include <linux/hwspinlock.h>
  24
  25#define CREATE_TRACE_POINTS
  26#include "trace.h"
  27
  28#include "internal.h"
  29
  30/*
  31 * Sometimes for failures during very early init the trace
  32 * infrastructure isn't available early enough to be used.  For this
  33 * sort of problem defining LOG_DEVICE will add printks for basic
  34 * register I/O on a specific device.
  35 */
  36#undef LOG_DEVICE
  37
  38static int _regmap_update_bits(struct regmap *map, unsigned int reg,
  39			       unsigned int mask, unsigned int val,
  40			       bool *change, bool force_write);
  41
  42static int _regmap_bus_reg_read(void *context, unsigned int reg,
  43				unsigned int *val);
  44static int _regmap_bus_read(void *context, unsigned int reg,
  45			    unsigned int *val);
  46static int _regmap_bus_formatted_write(void *context, unsigned int reg,
  47				       unsigned int val);
  48static int _regmap_bus_reg_write(void *context, unsigned int reg,
  49				 unsigned int val);
  50static int _regmap_bus_raw_write(void *context, unsigned int reg,
  51				 unsigned int val);
  52
  53bool regmap_reg_in_ranges(unsigned int reg,
  54			  const struct regmap_range *ranges,
  55			  unsigned int nranges)
  56{
  57	const struct regmap_range *r;
  58	int i;
  59
  60	for (i = 0, r = ranges; i < nranges; i++, r++)
  61		if (regmap_reg_in_range(reg, r))
  62			return true;
  63	return false;
  64}
  65EXPORT_SYMBOL_GPL(regmap_reg_in_ranges);
  66
  67bool regmap_check_range_table(struct regmap *map, unsigned int reg,
  68			      const struct regmap_access_table *table)
  69{
  70	/* Check "no ranges" first */
  71	if (regmap_reg_in_ranges(reg, table->no_ranges, table->n_no_ranges))
  72		return false;
  73
  74	/* In case zero "yes ranges" are supplied, any reg is OK */
  75	if (!table->n_yes_ranges)
  76		return true;
  77
  78	return regmap_reg_in_ranges(reg, table->yes_ranges,
  79				    table->n_yes_ranges);
  80}
  81EXPORT_SYMBOL_GPL(regmap_check_range_table);
  82
  83bool regmap_writeable(struct regmap *map, unsigned int reg)
  84{
  85	if (map->max_register && reg > map->max_register)
  86		return false;
  87
  88	if (map->writeable_reg)
  89		return map->writeable_reg(map->dev, reg);
  90
  91	if (map->wr_table)
  92		return regmap_check_range_table(map, reg, map->wr_table);
  93
  94	return true;
  95}
  96
  97bool regmap_cached(struct regmap *map, unsigned int reg)
  98{
  99	int ret;
 100	unsigned int val;
 101
 102	if (map->cache_type == REGCACHE_NONE)
 103		return false;
 104
 105	if (!map->cache_ops)
 106		return false;
 107
 108	if (map->max_register && reg > map->max_register)
 109		return false;
 110
 111	map->lock(map->lock_arg);
 112	ret = regcache_read(map, reg, &val);
 113	map->unlock(map->lock_arg);
 114	if (ret)
 115		return false;
 116
 117	return true;
 118}
 119
 120bool regmap_readable(struct regmap *map, unsigned int reg)
 121{
 122	if (!map->reg_read)
 123		return false;
 124
 125	if (map->max_register && reg > map->max_register)
 126		return false;
 127
 128	if (map->format.format_write)
 129		return false;
 130
 131	if (map->readable_reg)
 132		return map->readable_reg(map->dev, reg);
 133
 134	if (map->rd_table)
 135		return regmap_check_range_table(map, reg, map->rd_table);
 136
 137	return true;
 138}
 139
 140bool regmap_volatile(struct regmap *map, unsigned int reg)
 141{
 142	if (!map->format.format_write && !regmap_readable(map, reg))
 143		return false;
 144
 145	if (map->volatile_reg)
 146		return map->volatile_reg(map->dev, reg);
 147
 148	if (map->volatile_table)
 149		return regmap_check_range_table(map, reg, map->volatile_table);
 150
 151	if (map->cache_ops)
 152		return false;
 153	else
 154		return true;
 155}
 156
 157bool regmap_precious(struct regmap *map, unsigned int reg)
 158{
 159	if (!regmap_readable(map, reg))
 160		return false;
 161
 162	if (map->precious_reg)
 163		return map->precious_reg(map->dev, reg);
 164
 165	if (map->precious_table)
 166		return regmap_check_range_table(map, reg, map->precious_table);
 167
 168	return false;
 169}
 170
 171static bool regmap_volatile_range(struct regmap *map, unsigned int reg,
 172	size_t num)
 173{
 174	unsigned int i;
 175
 176	for (i = 0; i < num; i++)
 177		if (!regmap_volatile(map, reg + regmap_get_offset(map, i)))
 178			return false;
 179
 180	return true;
 181}
 182
 183static void regmap_format_2_6_write(struct regmap *map,
 184				     unsigned int reg, unsigned int val)
 185{
 186	u8 *out = map->work_buf;
 187
 188	*out = (reg << 6) | val;
 189}
 
 
 
 
 
 
 
 
 
 190
 191static void regmap_format_4_12_write(struct regmap *map,
 192				     unsigned int reg, unsigned int val)
 193{
 194	__be16 *out = map->work_buf;
 195	*out = cpu_to_be16((reg << 12) | val);
 196}
 197
 198static void regmap_format_7_9_write(struct regmap *map,
 199				    unsigned int reg, unsigned int val)
 200{
 201	__be16 *out = map->work_buf;
 202	*out = cpu_to_be16((reg << 9) | val);
 203}
 204
 205static void regmap_format_10_14_write(struct regmap *map,
 206				    unsigned int reg, unsigned int val)
 207{
 208	u8 *out = map->work_buf;
 209
 210	out[2] = val;
 211	out[1] = (val >> 8) | (reg << 6);
 212	out[0] = reg >> 2;
 213}
 214
 215static void regmap_format_8(void *buf, unsigned int val, unsigned int shift)
 216{
 217	u8 *b = buf;
 218
 219	b[0] = val << shift;
 220}
 221
 222static void regmap_format_16_be(void *buf, unsigned int val, unsigned int shift)
 223{
 224	__be16 *b = buf;
 225
 226	b[0] = cpu_to_be16(val << shift);
 227}
 228
 229static void regmap_format_16_le(void *buf, unsigned int val, unsigned int shift)
 230{
 231	__le16 *b = buf;
 232
 233	b[0] = cpu_to_le16(val << shift);
 234}
 235
 236static void regmap_format_16_native(void *buf, unsigned int val,
 237				    unsigned int shift)
 238{
 239	*(u16 *)buf = val << shift;
 240}
 241
 242static void regmap_format_24(void *buf, unsigned int val, unsigned int shift)
 243{
 244	u8 *b = buf;
 245
 246	val <<= shift;
 247
 248	b[0] = val >> 16;
 249	b[1] = val >> 8;
 250	b[2] = val;
 251}
 252
 253static void regmap_format_32_be(void *buf, unsigned int val, unsigned int shift)
 254{
 255	__be32 *b = buf;
 256
 257	b[0] = cpu_to_be32(val << shift);
 258}
 259
 260static void regmap_format_32_le(void *buf, unsigned int val, unsigned int shift)
 261{
 262	__le32 *b = buf;
 263
 264	b[0] = cpu_to_le32(val << shift);
 265}
 266
 267static void regmap_format_32_native(void *buf, unsigned int val,
 268				    unsigned int shift)
 269{
 270	*(u32 *)buf = val << shift;
 271}
 272
 273#ifdef CONFIG_64BIT
 274static void regmap_format_64_be(void *buf, unsigned int val, unsigned int shift)
 275{
 276	__be64 *b = buf;
 277
 278	b[0] = cpu_to_be64((u64)val << shift);
 279}
 280
 281static void regmap_format_64_le(void *buf, unsigned int val, unsigned int shift)
 282{
 283	__le64 *b = buf;
 284
 285	b[0] = cpu_to_le64((u64)val << shift);
 286}
 287
 288static void regmap_format_64_native(void *buf, unsigned int val,
 289				    unsigned int shift)
 290{
 291	*(u64 *)buf = (u64)val << shift;
 292}
 293#endif
 294
 295static void regmap_parse_inplace_noop(void *buf)
 296{
 297}
 298
 299static unsigned int regmap_parse_8(const void *buf)
 300{
 301	const u8 *b = buf;
 302
 303	return b[0];
 304}
 305
 306static unsigned int regmap_parse_16_be(const void *buf)
 307{
 308	const __be16 *b = buf;
 309
 310	return be16_to_cpu(b[0]);
 311}
 312
 313static unsigned int regmap_parse_16_le(const void *buf)
 314{
 315	const __le16 *b = buf;
 316
 317	return le16_to_cpu(b[0]);
 318}
 319
 320static void regmap_parse_16_be_inplace(void *buf)
 321{
 322	__be16 *b = buf;
 323
 324	b[0] = be16_to_cpu(b[0]);
 325}
 326
 327static void regmap_parse_16_le_inplace(void *buf)
 328{
 329	__le16 *b = buf;
 330
 331	b[0] = le16_to_cpu(b[0]);
 332}
 333
 334static unsigned int regmap_parse_16_native(const void *buf)
 335{
 336	return *(u16 *)buf;
 337}
 338
 339static unsigned int regmap_parse_24(const void *buf)
 340{
 341	const u8 *b = buf;
 342	unsigned int ret = b[2];
 343	ret |= ((unsigned int)b[1]) << 8;
 344	ret |= ((unsigned int)b[0]) << 16;
 345
 346	return ret;
 347}
 348
 349static unsigned int regmap_parse_32_be(const void *buf)
 350{
 351	const __be32 *b = buf;
 352
 353	return be32_to_cpu(b[0]);
 354}
 355
 356static unsigned int regmap_parse_32_le(const void *buf)
 357{
 358	const __le32 *b = buf;
 359
 360	return le32_to_cpu(b[0]);
 361}
 362
 363static void regmap_parse_32_be_inplace(void *buf)
 364{
 365	__be32 *b = buf;
 366
 367	b[0] = be32_to_cpu(b[0]);
 368}
 369
 370static void regmap_parse_32_le_inplace(void *buf)
 371{
 372	__le32 *b = buf;
 373
 374	b[0] = le32_to_cpu(b[0]);
 375}
 376
 377static unsigned int regmap_parse_32_native(const void *buf)
 378{
 379	return *(u32 *)buf;
 380}
 381
 382#ifdef CONFIG_64BIT
 383static unsigned int regmap_parse_64_be(const void *buf)
 384{
 385	const __be64 *b = buf;
 386
 387	return be64_to_cpu(b[0]);
 388}
 389
 390static unsigned int regmap_parse_64_le(const void *buf)
 391{
 392	const __le64 *b = buf;
 393
 394	return le64_to_cpu(b[0]);
 395}
 396
 397static void regmap_parse_64_be_inplace(void *buf)
 398{
 399	__be64 *b = buf;
 400
 401	b[0] = be64_to_cpu(b[0]);
 402}
 403
 404static void regmap_parse_64_le_inplace(void *buf)
 405{
 406	__le64 *b = buf;
 407
 408	b[0] = le64_to_cpu(b[0]);
 409}
 410
 411static unsigned int regmap_parse_64_native(const void *buf)
 412{
 413	return *(u64 *)buf;
 414}
 415#endif
 416
 417static void regmap_lock_hwlock(void *__map)
 418{
 419	struct regmap *map = __map;
 420
 421	hwspin_lock_timeout(map->hwlock, UINT_MAX);
 422}
 423
 424static void regmap_lock_hwlock_irq(void *__map)
 425{
 426	struct regmap *map = __map;
 427
 428	hwspin_lock_timeout_irq(map->hwlock, UINT_MAX);
 429}
 430
 431static void regmap_lock_hwlock_irqsave(void *__map)
 432{
 433	struct regmap *map = __map;
 434
 435	hwspin_lock_timeout_irqsave(map->hwlock, UINT_MAX,
 436				    &map->spinlock_flags);
 437}
 438
 439static void regmap_unlock_hwlock(void *__map)
 440{
 441	struct regmap *map = __map;
 442
 443	hwspin_unlock(map->hwlock);
 444}
 445
 446static void regmap_unlock_hwlock_irq(void *__map)
 447{
 448	struct regmap *map = __map;
 449
 450	hwspin_unlock_irq(map->hwlock);
 451}
 452
 453static void regmap_unlock_hwlock_irqrestore(void *__map)
 454{
 455	struct regmap *map = __map;
 456
 457	hwspin_unlock_irqrestore(map->hwlock, &map->spinlock_flags);
 458}
 459
 460static void regmap_lock_unlock_none(void *__map)
 461{
 462
 463}
 464
 465static void regmap_lock_mutex(void *__map)
 466{
 467	struct regmap *map = __map;
 468	mutex_lock(&map->mutex);
 469}
 470
 471static void regmap_unlock_mutex(void *__map)
 472{
 473	struct regmap *map = __map;
 474	mutex_unlock(&map->mutex);
 475}
 476
 477static void regmap_lock_spinlock(void *__map)
 478__acquires(&map->spinlock)
 479{
 480	struct regmap *map = __map;
 481	unsigned long flags;
 482
 483	spin_lock_irqsave(&map->spinlock, flags);
 484	map->spinlock_flags = flags;
 485}
 486
 487static void regmap_unlock_spinlock(void *__map)
 488__releases(&map->spinlock)
 489{
 490	struct regmap *map = __map;
 491	spin_unlock_irqrestore(&map->spinlock, map->spinlock_flags);
 492}
 493
 494static void dev_get_regmap_release(struct device *dev, void *res)
 495{
 496	/*
 497	 * We don't actually have anything to do here; the goal here
 498	 * is not to manage the regmap but to provide a simple way to
 499	 * get the regmap back given a struct device.
 500	 */
 501}
 502
 503static bool _regmap_range_add(struct regmap *map,
 504			      struct regmap_range_node *data)
 505{
 506	struct rb_root *root = &map->range_tree;
 507	struct rb_node **new = &(root->rb_node), *parent = NULL;
 508
 509	while (*new) {
 510		struct regmap_range_node *this =
 511			rb_entry(*new, struct regmap_range_node, node);
 512
 513		parent = *new;
 514		if (data->range_max < this->range_min)
 515			new = &((*new)->rb_left);
 516		else if (data->range_min > this->range_max)
 517			new = &((*new)->rb_right);
 518		else
 519			return false;
 520	}
 521
 522	rb_link_node(&data->node, parent, new);
 523	rb_insert_color(&data->node, root);
 524
 525	return true;
 526}
 527
 528static struct regmap_range_node *_regmap_range_lookup(struct regmap *map,
 529						      unsigned int reg)
 530{
 531	struct rb_node *node = map->range_tree.rb_node;
 532
 533	while (node) {
 534		struct regmap_range_node *this =
 535			rb_entry(node, struct regmap_range_node, node);
 536
 537		if (reg < this->range_min)
 538			node = node->rb_left;
 539		else if (reg > this->range_max)
 540			node = node->rb_right;
 541		else
 542			return this;
 543	}
 544
 545	return NULL;
 546}
 547
 548static void regmap_range_exit(struct regmap *map)
 549{
 550	struct rb_node *next;
 551	struct regmap_range_node *range_node;
 552
 553	next = rb_first(&map->range_tree);
 554	while (next) {
 555		range_node = rb_entry(next, struct regmap_range_node, node);
 556		next = rb_next(&range_node->node);
 557		rb_erase(&range_node->node, &map->range_tree);
 558		kfree(range_node);
 559	}
 560
 561	kfree(map->selector_work_buf);
 562}
 563
 564int regmap_attach_dev(struct device *dev, struct regmap *map,
 565		      const struct regmap_config *config)
 566{
 567	struct regmap **m;
 568
 569	map->dev = dev;
 570
 571	regmap_debugfs_init(map, config->name);
 572
 573	/* Add a devres resource for dev_get_regmap() */
 574	m = devres_alloc(dev_get_regmap_release, sizeof(*m), GFP_KERNEL);
 575	if (!m) {
 576		regmap_debugfs_exit(map);
 577		return -ENOMEM;
 578	}
 579	*m = map;
 580	devres_add(dev, m);
 581
 582	return 0;
 583}
 584EXPORT_SYMBOL_GPL(regmap_attach_dev);
 585
 586static enum regmap_endian regmap_get_reg_endian(const struct regmap_bus *bus,
 587					const struct regmap_config *config)
 588{
 589	enum regmap_endian endian;
 590
 591	/* Retrieve the endianness specification from the regmap config */
 592	endian = config->reg_format_endian;
 593
 594	/* If the regmap config specified a non-default value, use that */
 595	if (endian != REGMAP_ENDIAN_DEFAULT)
 596		return endian;
 597
 598	/* Retrieve the endianness specification from the bus config */
 599	if (bus && bus->reg_format_endian_default)
 600		endian = bus->reg_format_endian_default;
 601
 602	/* If the bus specified a non-default value, use that */
 603	if (endian != REGMAP_ENDIAN_DEFAULT)
 604		return endian;
 605
 606	/* Use this if no other value was found */
 607	return REGMAP_ENDIAN_BIG;
 608}
 609
 610enum regmap_endian regmap_get_val_endian(struct device *dev,
 611					 const struct regmap_bus *bus,
 612					 const struct regmap_config *config)
 613{
 614	struct device_node *np;
 615	enum regmap_endian endian;
 616
 617	/* Retrieve the endianness specification from the regmap config */
 618	endian = config->val_format_endian;
 619
 620	/* If the regmap config specified a non-default value, use that */
 621	if (endian != REGMAP_ENDIAN_DEFAULT)
 622		return endian;
 623
 624	/* If the dev and dev->of_node exist try to get endianness from DT */
 625	if (dev && dev->of_node) {
 626		np = dev->of_node;
 627
 628		/* Parse the device's DT node for an endianness specification */
 629		if (of_property_read_bool(np, "big-endian"))
 630			endian = REGMAP_ENDIAN_BIG;
 631		else if (of_property_read_bool(np, "little-endian"))
 632			endian = REGMAP_ENDIAN_LITTLE;
 633		else if (of_property_read_bool(np, "native-endian"))
 634			endian = REGMAP_ENDIAN_NATIVE;
 635
 636		/* If the endianness was specified in DT, use that */
 637		if (endian != REGMAP_ENDIAN_DEFAULT)
 638			return endian;
 639	}
 640
 641	/* Retrieve the endianness specification from the bus config */
 642	if (bus && bus->val_format_endian_default)
 643		endian = bus->val_format_endian_default;
 644
 645	/* If the bus specified a non-default value, use that */
 646	if (endian != REGMAP_ENDIAN_DEFAULT)
 647		return endian;
 648
 649	/* Use this if no other value was found */
 650	return REGMAP_ENDIAN_BIG;
 651}
 652EXPORT_SYMBOL_GPL(regmap_get_val_endian);
 653
 654struct regmap *__regmap_init(struct device *dev,
 655			     const struct regmap_bus *bus,
 656			     void *bus_context,
 657			     const struct regmap_config *config,
 658			     struct lock_class_key *lock_key,
 659			     const char *lock_name)
 660{
 661	struct regmap *map;
 662	int ret = -EINVAL;
 663	enum regmap_endian reg_endian, val_endian;
 664	int i, j;
 665
 666	if (!config)
 667		goto err;
 668
 669	map = kzalloc(sizeof(*map), GFP_KERNEL);
 670	if (map == NULL) {
 671		ret = -ENOMEM;
 672		goto err;
 673	}
 674
 675	if (config->name) {
 676		map->name = kstrdup_const(config->name, GFP_KERNEL);
 677		if (!map->name) {
 678			ret = -ENOMEM;
 679			goto err_map;
 680		}
 681	}
 682
 683	if (config->disable_locking) {
 684		map->lock = map->unlock = regmap_lock_unlock_none;
 685		regmap_debugfs_disable(map);
 686	} else if (config->lock && config->unlock) {
 687		map->lock = config->lock;
 688		map->unlock = config->unlock;
 689		map->lock_arg = config->lock_arg;
 690	} else if (config->use_hwlock) {
 691		map->hwlock = hwspin_lock_request_specific(config->hwlock_id);
 692		if (!map->hwlock) {
 693			ret = -ENXIO;
 694			goto err_name;
 695		}
 696
 697		switch (config->hwlock_mode) {
 698		case HWLOCK_IRQSTATE:
 699			map->lock = regmap_lock_hwlock_irqsave;
 700			map->unlock = regmap_unlock_hwlock_irqrestore;
 701			break;
 702		case HWLOCK_IRQ:
 703			map->lock = regmap_lock_hwlock_irq;
 704			map->unlock = regmap_unlock_hwlock_irq;
 705			break;
 706		default:
 707			map->lock = regmap_lock_hwlock;
 708			map->unlock = regmap_unlock_hwlock;
 709			break;
 710		}
 711
 712		map->lock_arg = map;
 713	} else {
 714		if ((bus && bus->fast_io) ||
 715		    config->fast_io) {
 716			spin_lock_init(&map->spinlock);
 717			map->lock = regmap_lock_spinlock;
 718			map->unlock = regmap_unlock_spinlock;
 719			lockdep_set_class_and_name(&map->spinlock,
 720						   lock_key, lock_name);
 721		} else {
 722			mutex_init(&map->mutex);
 723			map->lock = regmap_lock_mutex;
 724			map->unlock = regmap_unlock_mutex;
 725			lockdep_set_class_and_name(&map->mutex,
 726						   lock_key, lock_name);
 727		}
 728		map->lock_arg = map;
 729	}
 730
 731	/*
 732	 * When we write in fast-paths with regmap_bulk_write() don't allocate
 733	 * scratch buffers with sleeping allocations.
 734	 */
 735	if ((bus && bus->fast_io) || config->fast_io)
 736		map->alloc_flags = GFP_ATOMIC;
 737	else
 738		map->alloc_flags = GFP_KERNEL;
 739
 740	map->format.reg_bytes = DIV_ROUND_UP(config->reg_bits, 8);
 741	map->format.pad_bytes = config->pad_bits / 8;
 742	map->format.val_bytes = DIV_ROUND_UP(config->val_bits, 8);
 743	map->format.buf_size = DIV_ROUND_UP(config->reg_bits +
 744			config->val_bits + config->pad_bits, 8);
 745	map->reg_shift = config->pad_bits % 8;
 746	if (config->reg_stride)
 747		map->reg_stride = config->reg_stride;
 748	else
 749		map->reg_stride = 1;
 750	if (is_power_of_2(map->reg_stride))
 751		map->reg_stride_order = ilog2(map->reg_stride);
 752	else
 753		map->reg_stride_order = -1;
 754	map->use_single_read = config->use_single_rw || !bus || !bus->read;
 755	map->use_single_write = config->use_single_rw || !bus || !bus->write;
 756	map->can_multi_write = config->can_multi_write && bus && bus->write;
 757	if (bus) {
 758		map->max_raw_read = bus->max_raw_read;
 759		map->max_raw_write = bus->max_raw_write;
 760	}
 761	map->dev = dev;
 762	map->bus = bus;
 763	map->bus_context = bus_context;
 764	map->max_register = config->max_register;
 765	map->wr_table = config->wr_table;
 766	map->rd_table = config->rd_table;
 767	map->volatile_table = config->volatile_table;
 768	map->precious_table = config->precious_table;
 769	map->writeable_reg = config->writeable_reg;
 770	map->readable_reg = config->readable_reg;
 771	map->volatile_reg = config->volatile_reg;
 772	map->precious_reg = config->precious_reg;
 773	map->cache_type = config->cache_type;
 774
 775	spin_lock_init(&map->async_lock);
 776	INIT_LIST_HEAD(&map->async_list);
 777	INIT_LIST_HEAD(&map->async_free);
 778	init_waitqueue_head(&map->async_waitq);
 779
 780	if (config->read_flag_mask ||
 781	    config->write_flag_mask ||
 782	    config->zero_flag_mask) {
 783		map->read_flag_mask = config->read_flag_mask;
 784		map->write_flag_mask = config->write_flag_mask;
 785	} else if (bus) {
 786		map->read_flag_mask = bus->read_flag_mask;
 787	}
 788
 789	if (!bus) {
 790		map->reg_read  = config->reg_read;
 791		map->reg_write = config->reg_write;
 792
 793		map->defer_caching = false;
 794		goto skip_format_initialization;
 795	} else if (!bus->read || !bus->write) {
 796		map->reg_read = _regmap_bus_reg_read;
 797		map->reg_write = _regmap_bus_reg_write;
 798
 799		map->defer_caching = false;
 800		goto skip_format_initialization;
 801	} else {
 802		map->reg_read  = _regmap_bus_read;
 803		map->reg_update_bits = bus->reg_update_bits;
 804	}
 805
 806	reg_endian = regmap_get_reg_endian(bus, config);
 807	val_endian = regmap_get_val_endian(dev, bus, config);
 808
 809	switch (config->reg_bits + map->reg_shift) {
 810	case 2:
 811		switch (config->val_bits) {
 812		case 6:
 813			map->format.format_write = regmap_format_2_6_write;
 814			break;
 815		default:
 816			goto err_hwlock;
 817		}
 818		break;
 819
 
 820	case 4:
 821		switch (config->val_bits) {
 822		case 12:
 823			map->format.format_write = regmap_format_4_12_write;
 824			break;
 825		default:
 826			goto err_hwlock;
 827		}
 828		break;
 829
 830	case 7:
 831		switch (config->val_bits) {
 832		case 9:
 833			map->format.format_write = regmap_format_7_9_write;
 834			break;
 835		default:
 836			goto err_hwlock;
 837		}
 838		break;
 839
 840	case 10:
 841		switch (config->val_bits) {
 842		case 14:
 843			map->format.format_write = regmap_format_10_14_write;
 844			break;
 845		default:
 846			goto err_hwlock;
 847		}
 848		break;
 849
 850	case 8:
 851		map->format.format_reg = regmap_format_8;
 852		break;
 853
 854	case 16:
 855		switch (reg_endian) {
 856		case REGMAP_ENDIAN_BIG:
 857			map->format.format_reg = regmap_format_16_be;
 858			break;
 859		case REGMAP_ENDIAN_LITTLE:
 860			map->format.format_reg = regmap_format_16_le;
 861			break;
 862		case REGMAP_ENDIAN_NATIVE:
 863			map->format.format_reg = regmap_format_16_native;
 864			break;
 865		default:
 866			goto err_hwlock;
 867		}
 868		break;
 869
 870	case 24:
 871		if (reg_endian != REGMAP_ENDIAN_BIG)
 872			goto err_hwlock;
 873		map->format.format_reg = regmap_format_24;
 874		break;
 875
 876	case 32:
 877		switch (reg_endian) {
 878		case REGMAP_ENDIAN_BIG:
 879			map->format.format_reg = regmap_format_32_be;
 880			break;
 881		case REGMAP_ENDIAN_LITTLE:
 882			map->format.format_reg = regmap_format_32_le;
 883			break;
 884		case REGMAP_ENDIAN_NATIVE:
 885			map->format.format_reg = regmap_format_32_native;
 886			break;
 887		default:
 888			goto err_hwlock;
 889		}
 890		break;
 891
 892#ifdef CONFIG_64BIT
 893	case 64:
 894		switch (reg_endian) {
 895		case REGMAP_ENDIAN_BIG:
 896			map->format.format_reg = regmap_format_64_be;
 897			break;
 898		case REGMAP_ENDIAN_LITTLE:
 899			map->format.format_reg = regmap_format_64_le;
 900			break;
 901		case REGMAP_ENDIAN_NATIVE:
 902			map->format.format_reg = regmap_format_64_native;
 903			break;
 904		default:
 905			goto err_hwlock;
 906		}
 907		break;
 908#endif
 909
 910	default:
 911		goto err_hwlock;
 912	}
 913
 914	if (val_endian == REGMAP_ENDIAN_NATIVE)
 915		map->format.parse_inplace = regmap_parse_inplace_noop;
 916
 917	switch (config->val_bits) {
 918	case 8:
 919		map->format.format_val = regmap_format_8;
 920		map->format.parse_val = regmap_parse_8;
 921		map->format.parse_inplace = regmap_parse_inplace_noop;
 922		break;
 923	case 16:
 924		switch (val_endian) {
 925		case REGMAP_ENDIAN_BIG:
 926			map->format.format_val = regmap_format_16_be;
 927			map->format.parse_val = regmap_parse_16_be;
 928			map->format.parse_inplace = regmap_parse_16_be_inplace;
 929			break;
 930		case REGMAP_ENDIAN_LITTLE:
 931			map->format.format_val = regmap_format_16_le;
 932			map->format.parse_val = regmap_parse_16_le;
 933			map->format.parse_inplace = regmap_parse_16_le_inplace;
 934			break;
 935		case REGMAP_ENDIAN_NATIVE:
 936			map->format.format_val = regmap_format_16_native;
 937			map->format.parse_val = regmap_parse_16_native;
 938			break;
 939		default:
 940			goto err_hwlock;
 941		}
 942		break;
 943	case 24:
 944		if (val_endian != REGMAP_ENDIAN_BIG)
 945			goto err_hwlock;
 946		map->format.format_val = regmap_format_24;
 947		map->format.parse_val = regmap_parse_24;
 948		break;
 949	case 32:
 950		switch (val_endian) {
 951		case REGMAP_ENDIAN_BIG:
 952			map->format.format_val = regmap_format_32_be;
 953			map->format.parse_val = regmap_parse_32_be;
 954			map->format.parse_inplace = regmap_parse_32_be_inplace;
 955			break;
 956		case REGMAP_ENDIAN_LITTLE:
 957			map->format.format_val = regmap_format_32_le;
 958			map->format.parse_val = regmap_parse_32_le;
 959			map->format.parse_inplace = regmap_parse_32_le_inplace;
 960			break;
 961		case REGMAP_ENDIAN_NATIVE:
 962			map->format.format_val = regmap_format_32_native;
 963			map->format.parse_val = regmap_parse_32_native;
 964			break;
 965		default:
 966			goto err_hwlock;
 967		}
 968		break;
 969#ifdef CONFIG_64BIT
 970	case 64:
 971		switch (val_endian) {
 972		case REGMAP_ENDIAN_BIG:
 973			map->format.format_val = regmap_format_64_be;
 974			map->format.parse_val = regmap_parse_64_be;
 975			map->format.parse_inplace = regmap_parse_64_be_inplace;
 976			break;
 977		case REGMAP_ENDIAN_LITTLE:
 978			map->format.format_val = regmap_format_64_le;
 979			map->format.parse_val = regmap_parse_64_le;
 980			map->format.parse_inplace = regmap_parse_64_le_inplace;
 981			break;
 982		case REGMAP_ENDIAN_NATIVE:
 983			map->format.format_val = regmap_format_64_native;
 984			map->format.parse_val = regmap_parse_64_native;
 985			break;
 986		default:
 987			goto err_hwlock;
 988		}
 989		break;
 990#endif
 991	}
 992
 993	if (map->format.format_write) {
 994		if ((reg_endian != REGMAP_ENDIAN_BIG) ||
 995		    (val_endian != REGMAP_ENDIAN_BIG))
 996			goto err_hwlock;
 997		map->use_single_write = true;
 998	}
 999
1000	if (!map->format.format_write &&
1001	    !(map->format.format_reg && map->format.format_val))
1002		goto err_hwlock;
1003
1004	map->work_buf = kzalloc(map->format.buf_size, GFP_KERNEL);
1005	if (map->work_buf == NULL) {
1006		ret = -ENOMEM;
1007		goto err_hwlock;
1008	}
1009
1010	if (map->format.format_write) {
1011		map->defer_caching = false;
1012		map->reg_write = _regmap_bus_formatted_write;
1013	} else if (map->format.format_val) {
1014		map->defer_caching = true;
1015		map->reg_write = _regmap_bus_raw_write;
1016	}
1017
1018skip_format_initialization:
1019
1020	map->range_tree = RB_ROOT;
1021	for (i = 0; i < config->num_ranges; i++) {
1022		const struct regmap_range_cfg *range_cfg = &config->ranges[i];
1023		struct regmap_range_node *new;
1024
1025		/* Sanity check */
1026		if (range_cfg->range_max < range_cfg->range_min) {
1027			dev_err(map->dev, "Invalid range %d: %d < %d\n", i,
1028				range_cfg->range_max, range_cfg->range_min);
1029			goto err_range;
1030		}
1031
1032		if (range_cfg->range_max > map->max_register) {
1033			dev_err(map->dev, "Invalid range %d: %d > %d\n", i,
1034				range_cfg->range_max, map->max_register);
1035			goto err_range;
1036		}
1037
1038		if (range_cfg->selector_reg > map->max_register) {
1039			dev_err(map->dev,
1040				"Invalid range %d: selector out of map\n", i);
1041			goto err_range;
1042		}
1043
1044		if (range_cfg->window_len == 0) {
1045			dev_err(map->dev, "Invalid range %d: window_len 0\n",
1046				i);
1047			goto err_range;
1048		}
1049
1050		/* Make sure, that this register range has no selector
1051		   or data window within its boundary */
1052		for (j = 0; j < config->num_ranges; j++) {
1053			unsigned sel_reg = config->ranges[j].selector_reg;
1054			unsigned win_min = config->ranges[j].window_start;
1055			unsigned win_max = win_min +
1056					   config->ranges[j].window_len - 1;
1057
1058			/* Allow data window inside its own virtual range */
1059			if (j == i)
1060				continue;
1061
1062			if (range_cfg->range_min <= sel_reg &&
1063			    sel_reg <= range_cfg->range_max) {
1064				dev_err(map->dev,
1065					"Range %d: selector for %d in window\n",
1066					i, j);
1067				goto err_range;
1068			}
1069
1070			if (!(win_max < range_cfg->range_min ||
1071			      win_min > range_cfg->range_max)) {
1072				dev_err(map->dev,
1073					"Range %d: window for %d in window\n",
1074					i, j);
1075				goto err_range;
1076			}
1077		}
1078
1079		new = kzalloc(sizeof(*new), GFP_KERNEL);
1080		if (new == NULL) {
1081			ret = -ENOMEM;
1082			goto err_range;
1083		}
1084
1085		new->map = map;
1086		new->name = range_cfg->name;
1087		new->range_min = range_cfg->range_min;
1088		new->range_max = range_cfg->range_max;
1089		new->selector_reg = range_cfg->selector_reg;
1090		new->selector_mask = range_cfg->selector_mask;
1091		new->selector_shift = range_cfg->selector_shift;
1092		new->window_start = range_cfg->window_start;
1093		new->window_len = range_cfg->window_len;
1094
1095		if (!_regmap_range_add(map, new)) {
1096			dev_err(map->dev, "Failed to add range %d\n", i);
1097			kfree(new);
1098			goto err_range;
1099		}
1100
1101		if (map->selector_work_buf == NULL) {
1102			map->selector_work_buf =
1103				kzalloc(map->format.buf_size, GFP_KERNEL);
1104			if (map->selector_work_buf == NULL) {
1105				ret = -ENOMEM;
1106				goto err_range;
1107			}
1108		}
1109	}
1110
1111	ret = regcache_init(map, config);
1112	if (ret != 0)
1113		goto err_range;
1114
1115	if (dev) {
1116		ret = regmap_attach_dev(dev, map, config);
1117		if (ret != 0)
1118			goto err_regcache;
1119	} else {
1120		regmap_debugfs_init(map, config->name);
1121	}
1122
1123	return map;
1124
1125err_regcache:
1126	regcache_exit(map);
1127err_range:
1128	regmap_range_exit(map);
1129	kfree(map->work_buf);
1130err_hwlock:
1131	if (map->hwlock)
1132		hwspin_lock_free(map->hwlock);
1133err_name:
1134	kfree_const(map->name);
1135err_map:
1136	kfree(map);
1137err:
1138	return ERR_PTR(ret);
1139}
1140EXPORT_SYMBOL_GPL(__regmap_init);
1141
1142static void devm_regmap_release(struct device *dev, void *res)
1143{
1144	regmap_exit(*(struct regmap **)res);
1145}
1146
1147struct regmap *__devm_regmap_init(struct device *dev,
1148				  const struct regmap_bus *bus,
1149				  void *bus_context,
1150				  const struct regmap_config *config,
1151				  struct lock_class_key *lock_key,
1152				  const char *lock_name)
1153{
1154	struct regmap **ptr, *regmap;
1155
1156	ptr = devres_alloc(devm_regmap_release, sizeof(*ptr), GFP_KERNEL);
1157	if (!ptr)
1158		return ERR_PTR(-ENOMEM);
1159
1160	regmap = __regmap_init(dev, bus, bus_context, config,
1161			       lock_key, lock_name);
1162	if (!IS_ERR(regmap)) {
1163		*ptr = regmap;
1164		devres_add(dev, ptr);
1165	} else {
1166		devres_free(ptr);
1167	}
1168
1169	return regmap;
1170}
1171EXPORT_SYMBOL_GPL(__devm_regmap_init);
1172
1173static void regmap_field_init(struct regmap_field *rm_field,
1174	struct regmap *regmap, struct reg_field reg_field)
1175{
1176	rm_field->regmap = regmap;
1177	rm_field->reg = reg_field.reg;
1178	rm_field->shift = reg_field.lsb;
1179	rm_field->mask = GENMASK(reg_field.msb, reg_field.lsb);
1180	rm_field->id_size = reg_field.id_size;
1181	rm_field->id_offset = reg_field.id_offset;
1182}
1183
1184/**
1185 * devm_regmap_field_alloc() - Allocate and initialise a register field.
1186 *
1187 * @dev: Device that will be interacted with
1188 * @regmap: regmap bank in which this register field is located.
1189 * @reg_field: Register field with in the bank.
1190 *
1191 * The return value will be an ERR_PTR() on error or a valid pointer
1192 * to a struct regmap_field. The regmap_field will be automatically freed
1193 * by the device management code.
1194 */
1195struct regmap_field *devm_regmap_field_alloc(struct device *dev,
1196		struct regmap *regmap, struct reg_field reg_field)
1197{
1198	struct regmap_field *rm_field = devm_kzalloc(dev,
1199					sizeof(*rm_field), GFP_KERNEL);
1200	if (!rm_field)
1201		return ERR_PTR(-ENOMEM);
1202
1203	regmap_field_init(rm_field, regmap, reg_field);
1204
1205	return rm_field;
1206
1207}
1208EXPORT_SYMBOL_GPL(devm_regmap_field_alloc);
1209
1210/**
1211 * devm_regmap_field_free() - Free a register field allocated using
1212 *                            devm_regmap_field_alloc.
1213 *
1214 * @dev: Device that will be interacted with
1215 * @field: regmap field which should be freed.
1216 *
1217 * Free register field allocated using devm_regmap_field_alloc(). Usually
1218 * drivers need not call this function, as the memory allocated via devm
1219 * will be freed as per device-driver life-cyle.
1220 */
1221void devm_regmap_field_free(struct device *dev,
1222	struct regmap_field *field)
1223{
1224	devm_kfree(dev, field);
1225}
1226EXPORT_SYMBOL_GPL(devm_regmap_field_free);
1227
1228/**
1229 * regmap_field_alloc() - Allocate and initialise a register field.
1230 *
1231 * @regmap: regmap bank in which this register field is located.
1232 * @reg_field: Register field with in the bank.
1233 *
1234 * The return value will be an ERR_PTR() on error or a valid pointer
1235 * to a struct regmap_field. The regmap_field should be freed by the
1236 * user once its finished working with it using regmap_field_free().
1237 */
1238struct regmap_field *regmap_field_alloc(struct regmap *regmap,
1239		struct reg_field reg_field)
1240{
1241	struct regmap_field *rm_field = kzalloc(sizeof(*rm_field), GFP_KERNEL);
1242
1243	if (!rm_field)
1244		return ERR_PTR(-ENOMEM);
1245
1246	regmap_field_init(rm_field, regmap, reg_field);
1247
1248	return rm_field;
1249}
1250EXPORT_SYMBOL_GPL(regmap_field_alloc);
1251
1252/**
1253 * regmap_field_free() - Free register field allocated using
1254 *                       regmap_field_alloc.
1255 *
1256 * @field: regmap field which should be freed.
1257 */
1258void regmap_field_free(struct regmap_field *field)
1259{
1260	kfree(field);
1261}
1262EXPORT_SYMBOL_GPL(regmap_field_free);
1263
1264/**
1265 * regmap_reinit_cache() - Reinitialise the current register cache
1266 *
1267 * @map: Register map to operate on.
1268 * @config: New configuration.  Only the cache data will be used.
1269 *
1270 * Discard any existing register cache for the map and initialize a
1271 * new cache.  This can be used to restore the cache to defaults or to
1272 * update the cache configuration to reflect runtime discovery of the
1273 * hardware.
1274 *
1275 * No explicit locking is done here, the user needs to ensure that
1276 * this function will not race with other calls to regmap.
1277 */
1278int regmap_reinit_cache(struct regmap *map, const struct regmap_config *config)
1279{
1280	regcache_exit(map);
1281	regmap_debugfs_exit(map);
1282
1283	map->max_register = config->max_register;
1284	map->writeable_reg = config->writeable_reg;
1285	map->readable_reg = config->readable_reg;
1286	map->volatile_reg = config->volatile_reg;
1287	map->precious_reg = config->precious_reg;
1288	map->cache_type = config->cache_type;
1289
1290	regmap_debugfs_init(map, config->name);
1291
1292	map->cache_bypass = false;
1293	map->cache_only = false;
1294
1295	return regcache_init(map, config);
1296}
1297EXPORT_SYMBOL_GPL(regmap_reinit_cache);
1298
1299/**
1300 * regmap_exit() - Free a previously allocated register map
1301 *
1302 * @map: Register map to operate on.
1303 */
1304void regmap_exit(struct regmap *map)
1305{
1306	struct regmap_async *async;
1307
1308	regcache_exit(map);
1309	regmap_debugfs_exit(map);
1310	regmap_range_exit(map);
1311	if (map->bus && map->bus->free_context)
1312		map->bus->free_context(map->bus_context);
1313	kfree(map->work_buf);
1314	while (!list_empty(&map->async_free)) {
1315		async = list_first_entry_or_null(&map->async_free,
1316						 struct regmap_async,
1317						 list);
1318		list_del(&async->list);
1319		kfree(async->work_buf);
1320		kfree(async);
1321	}
1322	if (map->hwlock)
1323		hwspin_lock_free(map->hwlock);
1324	kfree_const(map->name);
1325	kfree(map);
1326}
1327EXPORT_SYMBOL_GPL(regmap_exit);
1328
1329static int dev_get_regmap_match(struct device *dev, void *res, void *data)
 
1330{
1331	struct regmap **r = res;
1332	if (!r || !*r) {
1333		WARN_ON(!r || !*r);
1334		return 0;
1335	}
1336
1337	/* If the user didn't specify a name match any */
1338	if (data)
1339		return (*r)->name == data;
1340	else
1341		return 1;
1342}
1343
1344/**
1345 * dev_get_regmap() - Obtain the regmap (if any) for a device
1346 *
1347 * @dev: Device to retrieve the map for
1348 * @name: Optional name for the register map, usually NULL.
1349 *
1350 * Returns the regmap for the device if one is present, or NULL.  If
1351 * name is specified then it must match the name specified when
1352 * registering the device, if it is NULL then the first regmap found
1353 * will be used.  Devices with multiple register maps are very rare,
1354 * generic code should normally not need to specify a name.
1355 */
1356struct regmap *dev_get_regmap(struct device *dev, const char *name)
1357{
1358	struct regmap **r = devres_find(dev, dev_get_regmap_release,
1359					dev_get_regmap_match, (void *)name);
1360
1361	if (!r)
1362		return NULL;
1363	return *r;
1364}
1365EXPORT_SYMBOL_GPL(dev_get_regmap);
1366
1367/**
1368 * regmap_get_device() - Obtain the device from a regmap
1369 *
1370 * @map: Register map to operate on.
1371 *
1372 * Returns the underlying device that the regmap has been created for.
1373 */
1374struct device *regmap_get_device(struct regmap *map)
1375{
1376	return map->dev;
1377}
1378EXPORT_SYMBOL_GPL(regmap_get_device);
1379
1380static int _regmap_select_page(struct regmap *map, unsigned int *reg,
1381			       struct regmap_range_node *range,
1382			       unsigned int val_num)
1383{
1384	void *orig_work_buf;
1385	unsigned int win_offset;
1386	unsigned int win_page;
1387	bool page_chg;
1388	int ret;
1389
1390	win_offset = (*reg - range->range_min) % range->window_len;
1391	win_page = (*reg - range->range_min) / range->window_len;
1392
1393	if (val_num > 1) {
1394		/* Bulk write shouldn't cross range boundary */
1395		if (*reg + val_num - 1 > range->range_max)
1396			return -EINVAL;
1397
1398		/* ... or single page boundary */
1399		if (val_num > range->window_len - win_offset)
1400			return -EINVAL;
1401	}
1402
1403	/* It is possible to have selector register inside data window.
1404	   In that case, selector register is located on every page and
1405	   it needs no page switching, when accessed alone. */
1406	if (val_num > 1 ||
1407	    range->window_start + win_offset != range->selector_reg) {
1408		/* Use separate work_buf during page switching */
1409		orig_work_buf = map->work_buf;
1410		map->work_buf = map->selector_work_buf;
1411
1412		ret = _regmap_update_bits(map, range->selector_reg,
1413					  range->selector_mask,
1414					  win_page << range->selector_shift,
1415					  &page_chg, false);
1416
1417		map->work_buf = orig_work_buf;
1418
1419		if (ret != 0)
1420			return ret;
1421	}
1422
1423	*reg = range->window_start + win_offset;
1424
1425	return 0;
1426}
1427
1428static void regmap_set_work_buf_flag_mask(struct regmap *map, int max_bytes,
1429					  unsigned long mask)
1430{
1431	u8 *buf;
1432	int i;
1433
1434	if (!mask || !map->work_buf)
1435		return;
1436
1437	buf = map->work_buf;
1438
1439	for (i = 0; i < max_bytes; i++)
1440		buf[i] |= (mask >> (8 * i)) & 0xff;
1441}
1442
1443static int _regmap_raw_write_impl(struct regmap *map, unsigned int reg,
1444				  const void *val, size_t val_len)
1445{
1446	struct regmap_range_node *range;
1447	unsigned long flags;
1448	void *work_val = map->work_buf + map->format.reg_bytes +
1449		map->format.pad_bytes;
1450	void *buf;
1451	int ret = -ENOTSUPP;
1452	size_t len;
1453	int i;
1454
1455	WARN_ON(!map->bus);
1456
1457	/* Check for unwritable registers before we start */
1458	if (map->writeable_reg)
1459		for (i = 0; i < val_len / map->format.val_bytes; i++)
1460			if (!map->writeable_reg(map->dev,
1461					       reg + regmap_get_offset(map, i)))
1462				return -EINVAL;
1463
1464	if (!map->cache_bypass && map->format.parse_val) {
1465		unsigned int ival;
1466		int val_bytes = map->format.val_bytes;
1467		for (i = 0; i < val_len / val_bytes; i++) {
1468			ival = map->format.parse_val(val + (i * val_bytes));
1469			ret = regcache_write(map,
1470					     reg + regmap_get_offset(map, i),
1471					     ival);
1472			if (ret) {
1473				dev_err(map->dev,
1474					"Error in caching of register: %x ret: %d\n",
1475					reg + i, ret);
1476				return ret;
1477			}
1478		}
1479		if (map->cache_only) {
1480			map->cache_dirty = true;
1481			return 0;
1482		}
1483	}
1484
1485	range = _regmap_range_lookup(map, reg);
1486	if (range) {
1487		int val_num = val_len / map->format.val_bytes;
1488		int win_offset = (reg - range->range_min) % range->window_len;
1489		int win_residue = range->window_len - win_offset;
1490
1491		/* If the write goes beyond the end of the window split it */
1492		while (val_num > win_residue) {
1493			dev_dbg(map->dev, "Writing window %d/%zu\n",
1494				win_residue, val_len / map->format.val_bytes);
1495			ret = _regmap_raw_write_impl(map, reg, val,
1496						     win_residue *
1497						     map->format.val_bytes);
1498			if (ret != 0)
1499				return ret;
1500
1501			reg += win_residue;
1502			val_num -= win_residue;
1503			val += win_residue * map->format.val_bytes;
1504			val_len -= win_residue * map->format.val_bytes;
1505
1506			win_offset = (reg - range->range_min) %
1507				range->window_len;
1508			win_residue = range->window_len - win_offset;
1509		}
1510
1511		ret = _regmap_select_page(map, &reg, range, val_num);
1512		if (ret != 0)
1513			return ret;
1514	}
1515
1516	map->format.format_reg(map->work_buf, reg, map->reg_shift);
1517	regmap_set_work_buf_flag_mask(map, map->format.reg_bytes,
1518				      map->write_flag_mask);
1519
1520	/*
1521	 * Essentially all I/O mechanisms will be faster with a single
1522	 * buffer to write.  Since register syncs often generate raw
1523	 * writes of single registers optimise that case.
1524	 */
1525	if (val != work_val && val_len == map->format.val_bytes) {
1526		memcpy(work_val, val, map->format.val_bytes);
1527		val = work_val;
1528	}
1529
1530	if (map->async && map->bus->async_write) {
1531		struct regmap_async *async;
1532
1533		trace_regmap_async_write_start(map, reg, val_len);
1534
1535		spin_lock_irqsave(&map->async_lock, flags);
1536		async = list_first_entry_or_null(&map->async_free,
1537						 struct regmap_async,
1538						 list);
1539		if (async)
1540			list_del(&async->list);
1541		spin_unlock_irqrestore(&map->async_lock, flags);
1542
1543		if (!async) {
1544			async = map->bus->async_alloc();
1545			if (!async)
1546				return -ENOMEM;
1547
1548			async->work_buf = kzalloc(map->format.buf_size,
1549						  GFP_KERNEL | GFP_DMA);
1550			if (!async->work_buf) {
1551				kfree(async);
1552				return -ENOMEM;
1553			}
1554		}
1555
1556		async->map = map;
1557
1558		/* If the caller supplied the value we can use it safely. */
1559		memcpy(async->work_buf, map->work_buf, map->format.pad_bytes +
1560		       map->format.reg_bytes + map->format.val_bytes);
1561
1562		spin_lock_irqsave(&map->async_lock, flags);
1563		list_add_tail(&async->list, &map->async_list);
1564		spin_unlock_irqrestore(&map->async_lock, flags);
1565
1566		if (val != work_val)
1567			ret = map->bus->async_write(map->bus_context,
1568						    async->work_buf,
1569						    map->format.reg_bytes +
1570						    map->format.pad_bytes,
1571						    val, val_len, async);
1572		else
1573			ret = map->bus->async_write(map->bus_context,
1574						    async->work_buf,
1575						    map->format.reg_bytes +
1576						    map->format.pad_bytes +
1577						    val_len, NULL, 0, async);
1578
1579		if (ret != 0) {
1580			dev_err(map->dev, "Failed to schedule write: %d\n",
1581				ret);
1582
1583			spin_lock_irqsave(&map->async_lock, flags);
1584			list_move(&async->list, &map->async_free);
1585			spin_unlock_irqrestore(&map->async_lock, flags);
1586		}
1587
1588		return ret;
1589	}
1590
1591	trace_regmap_hw_write_start(map, reg, val_len / map->format.val_bytes);
1592
1593	/* If we're doing a single register write we can probably just
1594	 * send the work_buf directly, otherwise try to do a gather
1595	 * write.
1596	 */
1597	if (val == work_val)
1598		ret = map->bus->write(map->bus_context, map->work_buf,
1599				      map->format.reg_bytes +
1600				      map->format.pad_bytes +
1601				      val_len);
1602	else if (map->bus->gather_write)
1603		ret = map->bus->gather_write(map->bus_context, map->work_buf,
1604					     map->format.reg_bytes +
1605					     map->format.pad_bytes,
1606					     val, val_len);
1607
1608	/* If that didn't work fall back on linearising by hand. */
1609	if (ret == -ENOTSUPP) {
1610		len = map->format.reg_bytes + map->format.pad_bytes + val_len;
1611		buf = kzalloc(len, GFP_KERNEL);
1612		if (!buf)
1613			return -ENOMEM;
1614
1615		memcpy(buf, map->work_buf, map->format.reg_bytes);
1616		memcpy(buf + map->format.reg_bytes + map->format.pad_bytes,
1617		       val, val_len);
1618		ret = map->bus->write(map->bus_context, buf, len);
1619
1620		kfree(buf);
1621	} else if (ret != 0 && !map->cache_bypass && map->format.parse_val) {
1622		/* regcache_drop_region() takes lock that we already have,
1623		 * thus call map->cache_ops->drop() directly
1624		 */
1625		if (map->cache_ops && map->cache_ops->drop)
1626			map->cache_ops->drop(map, reg, reg + 1);
1627	}
1628
1629	trace_regmap_hw_write_done(map, reg, val_len / map->format.val_bytes);
1630
1631	return ret;
1632}
1633
1634/**
1635 * regmap_can_raw_write - Test if regmap_raw_write() is supported
1636 *
1637 * @map: Map to check.
1638 */
1639bool regmap_can_raw_write(struct regmap *map)
1640{
1641	return map->bus && map->bus->write && map->format.format_val &&
1642		map->format.format_reg;
1643}
1644EXPORT_SYMBOL_GPL(regmap_can_raw_write);
1645
1646/**
1647 * regmap_get_raw_read_max - Get the maximum size we can read
1648 *
1649 * @map: Map to check.
1650 */
1651size_t regmap_get_raw_read_max(struct regmap *map)
1652{
1653	return map->max_raw_read;
1654}
1655EXPORT_SYMBOL_GPL(regmap_get_raw_read_max);
1656
1657/**
1658 * regmap_get_raw_write_max - Get the maximum size we can read
1659 *
1660 * @map: Map to check.
1661 */
1662size_t regmap_get_raw_write_max(struct regmap *map)
1663{
1664	return map->max_raw_write;
1665}
1666EXPORT_SYMBOL_GPL(regmap_get_raw_write_max);
1667
1668static int _regmap_bus_formatted_write(void *context, unsigned int reg,
1669				       unsigned int val)
1670{
1671	int ret;
1672	struct regmap_range_node *range;
1673	struct regmap *map = context;
1674
1675	WARN_ON(!map->bus || !map->format.format_write);
1676
1677	range = _regmap_range_lookup(map, reg);
1678	if (range) {
1679		ret = _regmap_select_page(map, &reg, range, 1);
1680		if (ret != 0)
1681			return ret;
1682	}
1683
1684	map->format.format_write(map, reg, val);
1685
1686	trace_regmap_hw_write_start(map, reg, 1);
1687
1688	ret = map->bus->write(map->bus_context, map->work_buf,
1689			      map->format.buf_size);
1690
1691	trace_regmap_hw_write_done(map, reg, 1);
1692
1693	return ret;
1694}
1695
1696static int _regmap_bus_reg_write(void *context, unsigned int reg,
1697				 unsigned int val)
1698{
1699	struct regmap *map = context;
1700
1701	return map->bus->reg_write(map->bus_context, reg, val);
1702}
1703
1704static int _regmap_bus_raw_write(void *context, unsigned int reg,
1705				 unsigned int val)
1706{
1707	struct regmap *map = context;
1708
1709	WARN_ON(!map->bus || !map->format.format_val);
1710
1711	map->format.format_val(map->work_buf + map->format.reg_bytes
1712			       + map->format.pad_bytes, val, 0);
1713	return _regmap_raw_write_impl(map, reg,
1714				      map->work_buf +
1715				      map->format.reg_bytes +
1716				      map->format.pad_bytes,
1717				      map->format.val_bytes);
1718}
1719
1720static inline void *_regmap_map_get_context(struct regmap *map)
1721{
1722	return (map->bus) ? map : map->bus_context;
1723}
1724
1725int _regmap_write(struct regmap *map, unsigned int reg,
1726		  unsigned int val)
1727{
1728	int ret;
1729	void *context = _regmap_map_get_context(map);
1730
1731	if (!regmap_writeable(map, reg))
1732		return -EIO;
1733
1734	if (!map->cache_bypass && !map->defer_caching) {
1735		ret = regcache_write(map, reg, val);
1736		if (ret != 0)
1737			return ret;
1738		if (map->cache_only) {
1739			map->cache_dirty = true;
1740			return 0;
1741		}
1742	}
1743
1744#ifdef LOG_DEVICE
1745	if (map->dev && strcmp(dev_name(map->dev), LOG_DEVICE) == 0)
1746		dev_info(map->dev, "%x <= %x\n", reg, val);
1747#endif
1748
1749	trace_regmap_reg_write(map, reg, val);
1750
1751	return map->reg_write(context, reg, val);
1752}
1753
1754/**
1755 * regmap_write() - Write a value to a single register
1756 *
1757 * @map: Register map to write to
1758 * @reg: Register to write to
1759 * @val: Value to be written
1760 *
1761 * A value of zero will be returned on success, a negative errno will
1762 * be returned in error cases.
1763 */
1764int regmap_write(struct regmap *map, unsigned int reg, unsigned int val)
1765{
1766	int ret;
1767
1768	if (!IS_ALIGNED(reg, map->reg_stride))
1769		return -EINVAL;
1770
1771	map->lock(map->lock_arg);
1772
1773	ret = _regmap_write(map, reg, val);
1774
1775	map->unlock(map->lock_arg);
1776
1777	return ret;
1778}
1779EXPORT_SYMBOL_GPL(regmap_write);
1780
1781/**
1782 * regmap_write_async() - Write a value to a single register asynchronously
1783 *
1784 * @map: Register map to write to
1785 * @reg: Register to write to
1786 * @val: Value to be written
1787 *
1788 * A value of zero will be returned on success, a negative errno will
1789 * be returned in error cases.
1790 */
1791int regmap_write_async(struct regmap *map, unsigned int reg, unsigned int val)
1792{
1793	int ret;
1794
1795	if (!IS_ALIGNED(reg, map->reg_stride))
1796		return -EINVAL;
1797
1798	map->lock(map->lock_arg);
1799
1800	map->async = true;
1801
1802	ret = _regmap_write(map, reg, val);
1803
1804	map->async = false;
1805
1806	map->unlock(map->lock_arg);
1807
1808	return ret;
1809}
1810EXPORT_SYMBOL_GPL(regmap_write_async);
1811
1812int _regmap_raw_write(struct regmap *map, unsigned int reg,
1813		      const void *val, size_t val_len)
1814{
1815	size_t val_bytes = map->format.val_bytes;
1816	size_t val_count = val_len / val_bytes;
1817	size_t chunk_count, chunk_bytes;
1818	size_t chunk_regs = val_count;
1819	int ret, i;
1820
1821	if (!val_count)
1822		return -EINVAL;
1823
1824	if (map->use_single_write)
1825		chunk_regs = 1;
1826	else if (map->max_raw_write && val_len > map->max_raw_write)
1827		chunk_regs = map->max_raw_write / val_bytes;
1828
1829	chunk_count = val_count / chunk_regs;
1830	chunk_bytes = chunk_regs * val_bytes;
1831
1832	/* Write as many bytes as possible with chunk_size */
1833	for (i = 0; i < chunk_count; i++) {
1834		ret = _regmap_raw_write_impl(map, reg, val, chunk_bytes);
1835		if (ret)
1836			return ret;
1837
1838		reg += regmap_get_offset(map, chunk_regs);
1839		val += chunk_bytes;
1840		val_len -= chunk_bytes;
1841	}
1842
1843	/* Write remaining bytes */
1844	if (val_len)
1845		ret = _regmap_raw_write_impl(map, reg, val, val_len);
1846
1847	return ret;
1848}
1849
1850/**
1851 * regmap_raw_write() - Write raw values to one or more registers
1852 *
1853 * @map: Register map to write to
1854 * @reg: Initial register to write to
1855 * @val: Block of data to be written, laid out for direct transmission to the
1856 *       device
1857 * @val_len: Length of data pointed to by val.
1858 *
1859 * This function is intended to be used for things like firmware
1860 * download where a large block of data needs to be transferred to the
1861 * device.  No formatting will be done on the data provided.
1862 *
1863 * A value of zero will be returned on success, a negative errno will
1864 * be returned in error cases.
1865 */
1866int regmap_raw_write(struct regmap *map, unsigned int reg,
1867		     const void *val, size_t val_len)
1868{
1869	int ret;
1870
1871	if (!regmap_can_raw_write(map))
1872		return -EINVAL;
1873	if (val_len % map->format.val_bytes)
1874		return -EINVAL;
1875
1876	map->lock(map->lock_arg);
1877
1878	ret = _regmap_raw_write(map, reg, val, val_len);
1879
1880	map->unlock(map->lock_arg);
1881
1882	return ret;
1883}
1884EXPORT_SYMBOL_GPL(regmap_raw_write);
1885
1886/**
1887 * regmap_field_update_bits_base() - Perform a read/modify/write cycle a
1888 *                                   register field.
1889 *
1890 * @field: Register field to write to
1891 * @mask: Bitmask to change
1892 * @val: Value to be written
1893 * @change: Boolean indicating if a write was done
1894 * @async: Boolean indicating asynchronously
1895 * @force: Boolean indicating use force update
1896 *
1897 * Perform a read/modify/write cycle on the register field with change,
1898 * async, force option.
1899 *
1900 * A value of zero will be returned on success, a negative errno will
1901 * be returned in error cases.
1902 */
1903int regmap_field_update_bits_base(struct regmap_field *field,
1904				  unsigned int mask, unsigned int val,
1905				  bool *change, bool async, bool force)
1906{
1907	mask = (mask << field->shift) & field->mask;
1908
1909	return regmap_update_bits_base(field->regmap, field->reg,
1910				       mask, val << field->shift,
1911				       change, async, force);
1912}
1913EXPORT_SYMBOL_GPL(regmap_field_update_bits_base);
1914
1915/**
1916 * regmap_fields_update_bits_base() - Perform a read/modify/write cycle a
1917 *                                    register field with port ID
1918 *
1919 * @field: Register field to write to
1920 * @id: port ID
1921 * @mask: Bitmask to change
1922 * @val: Value to be written
1923 * @change: Boolean indicating if a write was done
1924 * @async: Boolean indicating asynchronously
1925 * @force: Boolean indicating use force update
1926 *
1927 * A value of zero will be returned on success, a negative errno will
1928 * be returned in error cases.
1929 */
1930int regmap_fields_update_bits_base(struct regmap_field *field,  unsigned int id,
1931				   unsigned int mask, unsigned int val,
1932				   bool *change, bool async, bool force)
1933{
1934	if (id >= field->id_size)
1935		return -EINVAL;
1936
1937	mask = (mask << field->shift) & field->mask;
1938
1939	return regmap_update_bits_base(field->regmap,
1940				       field->reg + (field->id_offset * id),
1941				       mask, val << field->shift,
1942				       change, async, force);
1943}
1944EXPORT_SYMBOL_GPL(regmap_fields_update_bits_base);
1945
1946/**
1947 * regmap_bulk_write() - Write multiple registers to the device
1948 *
1949 * @map: Register map to write to
1950 * @reg: First register to be write from
1951 * @val: Block of data to be written, in native register size for device
1952 * @val_count: Number of registers to write
1953 *
1954 * This function is intended to be used for writing a large block of
1955 * data to the device either in single transfer or multiple transfer.
1956 *
1957 * A value of zero will be returned on success, a negative errno will
1958 * be returned in error cases.
1959 */
1960int regmap_bulk_write(struct regmap *map, unsigned int reg, const void *val,
1961		     size_t val_count)
1962{
1963	int ret = 0, i;
1964	size_t val_bytes = map->format.val_bytes;
1965
1966	if (!IS_ALIGNED(reg, map->reg_stride))
1967		return -EINVAL;
1968
1969	/*
1970	 * Some devices don't support bulk write, for them we have a series of
1971	 * single write operations.
1972	 */
1973	if (!map->bus || !map->format.parse_inplace) {
1974		map->lock(map->lock_arg);
1975		for (i = 0; i < val_count; i++) {
1976			unsigned int ival;
1977
1978			switch (val_bytes) {
1979			case 1:
1980				ival = *(u8 *)(val + (i * val_bytes));
1981				break;
1982			case 2:
1983				ival = *(u16 *)(val + (i * val_bytes));
1984				break;
1985			case 4:
1986				ival = *(u32 *)(val + (i * val_bytes));
1987				break;
1988#ifdef CONFIG_64BIT
1989			case 8:
1990				ival = *(u64 *)(val + (i * val_bytes));
1991				break;
1992#endif
1993			default:
1994				ret = -EINVAL;
1995				goto out;
1996			}
1997
1998			ret = _regmap_write(map,
1999					    reg + regmap_get_offset(map, i),
2000					    ival);
2001			if (ret != 0)
2002				goto out;
2003		}
2004out:
2005		map->unlock(map->lock_arg);
2006	} else {
2007		void *wval;
2008
2009		wval = kmemdup(val, val_count * val_bytes, map->alloc_flags);
2010		if (!wval)
2011			return -ENOMEM;
2012
2013		for (i = 0; i < val_count * val_bytes; i += val_bytes)
2014			map->format.parse_inplace(wval + i);
2015
2016		ret = regmap_raw_write(map, reg, wval, val_bytes * val_count);
2017
2018		kfree(wval);
2019	}
2020	return ret;
2021}
2022EXPORT_SYMBOL_GPL(regmap_bulk_write);
2023
2024/*
2025 * _regmap_raw_multi_reg_write()
2026 *
2027 * the (register,newvalue) pairs in regs have not been formatted, but
2028 * they are all in the same page and have been changed to being page
2029 * relative. The page register has been written if that was necessary.
2030 */
2031static int _regmap_raw_multi_reg_write(struct regmap *map,
2032				       const struct reg_sequence *regs,
2033				       size_t num_regs)
2034{
 
2035	int ret;
2036	void *buf;
2037	int i;
2038	u8 *u8;
2039	size_t val_bytes = map->format.val_bytes;
2040	size_t reg_bytes = map->format.reg_bytes;
2041	size_t pad_bytes = map->format.pad_bytes;
2042	size_t pair_size = reg_bytes + pad_bytes + val_bytes;
2043	size_t len = pair_size * num_regs;
2044
2045	if (!len)
2046		return -EINVAL;
2047
2048	buf = kzalloc(len, GFP_KERNEL);
2049	if (!buf)
2050		return -ENOMEM;
2051
2052	/* We have to linearise by hand. */
2053
2054	u8 = buf;
2055
2056	for (i = 0; i < num_regs; i++) {
2057		unsigned int reg = regs[i].reg;
2058		unsigned int val = regs[i].def;
2059		trace_regmap_hw_write_start(map, reg, 1);
2060		map->format.format_reg(u8, reg, map->reg_shift);
2061		u8 += reg_bytes + pad_bytes;
2062		map->format.format_val(u8, val, 0);
2063		u8 += val_bytes;
2064	}
2065	u8 = buf;
2066	*u8 |= map->write_flag_mask;
2067
2068	ret = map->bus->write(map->bus_context, buf, len);
2069
2070	kfree(buf);
2071
2072	for (i = 0; i < num_regs; i++) {
2073		int reg = regs[i].reg;
2074		trace_regmap_hw_write_done(map, reg, 1);
2075	}
2076	return ret;
2077}
2078
2079static unsigned int _regmap_register_page(struct regmap *map,
2080					  unsigned int reg,
2081					  struct regmap_range_node *range)
2082{
2083	unsigned int win_page = (reg - range->range_min) / range->window_len;
2084
2085	return win_page;
2086}
2087
2088static int _regmap_range_multi_paged_reg_write(struct regmap *map,
2089					       struct reg_sequence *regs,
2090					       size_t num_regs)
2091{
2092	int ret;
2093	int i, n;
2094	struct reg_sequence *base;
2095	unsigned int this_page = 0;
2096	unsigned int page_change = 0;
2097	/*
2098	 * the set of registers are not neccessarily in order, but
2099	 * since the order of write must be preserved this algorithm
2100	 * chops the set each time the page changes. This also applies
2101	 * if there is a delay required at any point in the sequence.
2102	 */
2103	base = regs;
2104	for (i = 0, n = 0; i < num_regs; i++, n++) {
2105		unsigned int reg = regs[i].reg;
2106		struct regmap_range_node *range;
2107
2108		range = _regmap_range_lookup(map, reg);
2109		if (range) {
2110			unsigned int win_page = _regmap_register_page(map, reg,
2111								      range);
2112
2113			if (i == 0)
2114				this_page = win_page;
2115			if (win_page != this_page) {
2116				this_page = win_page;
2117				page_change = 1;
2118			}
2119		}
2120
2121		/* If we have both a page change and a delay make sure to
2122		 * write the regs and apply the delay before we change the
2123		 * page.
2124		 */
2125
2126		if (page_change || regs[i].delay_us) {
2127
2128				/* For situations where the first write requires
2129				 * a delay we need to make sure we don't call
2130				 * raw_multi_reg_write with n=0
2131				 * This can't occur with page breaks as we
2132				 * never write on the first iteration
2133				 */
2134				if (regs[i].delay_us && i == 0)
2135					n = 1;
2136
2137				ret = _regmap_raw_multi_reg_write(map, base, n);
2138				if (ret != 0)
2139					return ret;
2140
2141				if (regs[i].delay_us)
2142					udelay(regs[i].delay_us);
2143
2144				base += n;
2145				n = 0;
2146
2147				if (page_change) {
2148					ret = _regmap_select_page(map,
2149								  &base[n].reg,
2150								  range, 1);
2151					if (ret != 0)
2152						return ret;
2153
2154					page_change = 0;
2155				}
2156
2157		}
2158
2159	}
2160	if (n > 0)
2161		return _regmap_raw_multi_reg_write(map, base, n);
2162	return 0;
2163}
2164
2165static int _regmap_multi_reg_write(struct regmap *map,
2166				   const struct reg_sequence *regs,
2167				   size_t num_regs)
2168{
2169	int i;
2170	int ret;
2171
2172	if (!map->can_multi_write) {
2173		for (i = 0; i < num_regs; i++) {
2174			ret = _regmap_write(map, regs[i].reg, regs[i].def);
2175			if (ret != 0)
2176				return ret;
2177
2178			if (regs[i].delay_us)
2179				udelay(regs[i].delay_us);
2180		}
2181		return 0;
2182	}
2183
2184	if (!map->format.parse_inplace)
2185		return -EINVAL;
2186
2187	if (map->writeable_reg)
2188		for (i = 0; i < num_regs; i++) {
2189			int reg = regs[i].reg;
2190			if (!map->writeable_reg(map->dev, reg))
2191				return -EINVAL;
2192			if (!IS_ALIGNED(reg, map->reg_stride))
2193				return -EINVAL;
2194		}
2195
2196	if (!map->cache_bypass) {
2197		for (i = 0; i < num_regs; i++) {
2198			unsigned int val = regs[i].def;
2199			unsigned int reg = regs[i].reg;
2200			ret = regcache_write(map, reg, val);
2201			if (ret) {
2202				dev_err(map->dev,
2203				"Error in caching of register: %x ret: %d\n",
2204								reg, ret);
2205				return ret;
2206			}
2207		}
2208		if (map->cache_only) {
2209			map->cache_dirty = true;
2210			return 0;
2211		}
2212	}
2213
2214	WARN_ON(!map->bus);
2215
2216	for (i = 0; i < num_regs; i++) {
2217		unsigned int reg = regs[i].reg;
2218		struct regmap_range_node *range;
2219
2220		/* Coalesce all the writes between a page break or a delay
2221		 * in a sequence
2222		 */
2223		range = _regmap_range_lookup(map, reg);
2224		if (range || regs[i].delay_us) {
2225			size_t len = sizeof(struct reg_sequence)*num_regs;
2226			struct reg_sequence *base = kmemdup(regs, len,
2227							   GFP_KERNEL);
2228			if (!base)
2229				return -ENOMEM;
2230			ret = _regmap_range_multi_paged_reg_write(map, base,
2231								  num_regs);
2232			kfree(base);
2233
2234			return ret;
2235		}
2236	}
2237	return _regmap_raw_multi_reg_write(map, regs, num_regs);
2238}
2239
2240/**
2241 * regmap_multi_reg_write() - Write multiple registers to the device
2242 *
2243 * @map: Register map to write to
2244 * @regs: Array of structures containing register,value to be written
2245 * @num_regs: Number of registers to write
2246 *
2247 * Write multiple registers to the device where the set of register, value
2248 * pairs are supplied in any order, possibly not all in a single range.
2249 *
2250 * The 'normal' block write mode will send ultimately send data on the
2251 * target bus as R,V1,V2,V3,..,Vn where successively higher registers are
2252 * addressed. However, this alternative block multi write mode will send
2253 * the data as R1,V1,R2,V2,..,Rn,Vn on the target bus. The target device
2254 * must of course support the mode.
2255 *
2256 * A value of zero will be returned on success, a negative errno will be
2257 * returned in error cases.
2258 */
2259int regmap_multi_reg_write(struct regmap *map, const struct reg_sequence *regs,
2260			   int num_regs)
2261{
2262	int ret;
2263
2264	map->lock(map->lock_arg);
2265
2266	ret = _regmap_multi_reg_write(map, regs, num_regs);
2267
2268	map->unlock(map->lock_arg);
2269
2270	return ret;
2271}
2272EXPORT_SYMBOL_GPL(regmap_multi_reg_write);
2273
2274/**
2275 * regmap_multi_reg_write_bypassed() - Write multiple registers to the
2276 *                                     device but not the cache
2277 *
2278 * @map: Register map to write to
2279 * @regs: Array of structures containing register,value to be written
2280 * @num_regs: Number of registers to write
2281 *
2282 * Write multiple registers to the device but not the cache where the set
2283 * of register are supplied in any order.
2284 *
2285 * This function is intended to be used for writing a large block of data
2286 * atomically to the device in single transfer for those I2C client devices
2287 * that implement this alternative block write mode.
2288 *
2289 * A value of zero will be returned on success, a negative errno will
2290 * be returned in error cases.
2291 */
2292int regmap_multi_reg_write_bypassed(struct regmap *map,
2293				    const struct reg_sequence *regs,
2294				    int num_regs)
2295{
2296	int ret;
2297	bool bypass;
2298
2299	map->lock(map->lock_arg);
2300
2301	bypass = map->cache_bypass;
2302	map->cache_bypass = true;
2303
2304	ret = _regmap_multi_reg_write(map, regs, num_regs);
2305
2306	map->cache_bypass = bypass;
2307
2308	map->unlock(map->lock_arg);
2309
2310	return ret;
2311}
2312EXPORT_SYMBOL_GPL(regmap_multi_reg_write_bypassed);
2313
2314/**
2315 * regmap_raw_write_async() - Write raw values to one or more registers
2316 *                            asynchronously
2317 *
2318 * @map: Register map to write to
2319 * @reg: Initial register to write to
2320 * @val: Block of data to be written, laid out for direct transmission to the
2321 *       device.  Must be valid until regmap_async_complete() is called.
2322 * @val_len: Length of data pointed to by val.
2323 *
2324 * This function is intended to be used for things like firmware
2325 * download where a large block of data needs to be transferred to the
2326 * device.  No formatting will be done on the data provided.
2327 *
2328 * If supported by the underlying bus the write will be scheduled
2329 * asynchronously, helping maximise I/O speed on higher speed buses
2330 * like SPI.  regmap_async_complete() can be called to ensure that all
2331 * asynchrnous writes have been completed.
2332 *
2333 * A value of zero will be returned on success, a negative errno will
2334 * be returned in error cases.
2335 */
2336int regmap_raw_write_async(struct regmap *map, unsigned int reg,
2337			   const void *val, size_t val_len)
2338{
2339	int ret;
2340
2341	if (val_len % map->format.val_bytes)
2342		return -EINVAL;
2343	if (!IS_ALIGNED(reg, map->reg_stride))
2344		return -EINVAL;
2345
2346	map->lock(map->lock_arg);
2347
2348	map->async = true;
2349
2350	ret = _regmap_raw_write(map, reg, val, val_len);
2351
2352	map->async = false;
2353
2354	map->unlock(map->lock_arg);
2355
2356	return ret;
2357}
2358EXPORT_SYMBOL_GPL(regmap_raw_write_async);
2359
2360static int _regmap_raw_read(struct regmap *map, unsigned int reg, void *val,
2361			    unsigned int val_len)
2362{
2363	struct regmap_range_node *range;
2364	int ret;
2365
2366	WARN_ON(!map->bus);
2367
2368	if (!map->bus || !map->bus->read)
2369		return -EINVAL;
2370
2371	range = _regmap_range_lookup(map, reg);
2372	if (range) {
2373		ret = _regmap_select_page(map, &reg, range,
2374					  val_len / map->format.val_bytes);
2375		if (ret != 0)
2376			return ret;
2377	}
2378
2379	map->format.format_reg(map->work_buf, reg, map->reg_shift);
2380	regmap_set_work_buf_flag_mask(map, map->format.reg_bytes,
2381				      map->read_flag_mask);
2382	trace_regmap_hw_read_start(map, reg, val_len / map->format.val_bytes);
2383
2384	ret = map->bus->read(map->bus_context, map->work_buf,
2385			     map->format.reg_bytes + map->format.pad_bytes,
2386			     val, val_len);
2387
2388	trace_regmap_hw_read_done(map, reg, val_len / map->format.val_bytes);
2389
2390	return ret;
2391}
2392
2393static int _regmap_bus_reg_read(void *context, unsigned int reg,
2394				unsigned int *val)
2395{
2396	struct regmap *map = context;
2397
2398	return map->bus->reg_read(map->bus_context, reg, val);
2399}
2400
2401static int _regmap_bus_read(void *context, unsigned int reg,
2402			    unsigned int *val)
2403{
2404	int ret;
2405	struct regmap *map = context;
2406	void *work_val = map->work_buf + map->format.reg_bytes +
2407		map->format.pad_bytes;
2408
2409	if (!map->format.parse_val)
2410		return -EINVAL;
2411
2412	ret = _regmap_raw_read(map, reg, work_val, map->format.val_bytes);
2413	if (ret == 0)
2414		*val = map->format.parse_val(work_val);
2415
2416	return ret;
2417}
2418
2419static int _regmap_read(struct regmap *map, unsigned int reg,
2420			unsigned int *val)
2421{
2422	int ret;
2423	void *context = _regmap_map_get_context(map);
2424
2425	if (!map->cache_bypass) {
2426		ret = regcache_read(map, reg, val);
2427		if (ret == 0)
2428			return 0;
2429	}
2430
2431	if (map->cache_only)
2432		return -EBUSY;
2433
2434	if (!regmap_readable(map, reg))
2435		return -EIO;
2436
2437	ret = map->reg_read(context, reg, val);
2438	if (ret == 0) {
2439#ifdef LOG_DEVICE
2440		if (map->dev && strcmp(dev_name(map->dev), LOG_DEVICE) == 0)
2441			dev_info(map->dev, "%x => %x\n", reg, *val);
2442#endif
2443
2444		trace_regmap_reg_read(map, reg, *val);
2445
2446		if (!map->cache_bypass)
2447			regcache_write(map, reg, *val);
2448	}
2449
2450	return ret;
2451}
2452
2453/**
2454 * regmap_read() - Read a value from a single register
2455 *
2456 * @map: Register map to read from
2457 * @reg: Register to be read from
2458 * @val: Pointer to store read value
2459 *
2460 * A value of zero will be returned on success, a negative errno will
2461 * be returned in error cases.
2462 */
2463int regmap_read(struct regmap *map, unsigned int reg, unsigned int *val)
2464{
2465	int ret;
2466
2467	if (!IS_ALIGNED(reg, map->reg_stride))
2468		return -EINVAL;
2469
2470	map->lock(map->lock_arg);
2471
2472	ret = _regmap_read(map, reg, val);
2473
2474	map->unlock(map->lock_arg);
2475
2476	return ret;
2477}
2478EXPORT_SYMBOL_GPL(regmap_read);
2479
2480/**
2481 * regmap_raw_read() - Read raw data from the device
2482 *
2483 * @map: Register map to read from
2484 * @reg: First register to be read from
2485 * @val: Pointer to store read value
2486 * @val_len: Size of data to read
2487 *
2488 * A value of zero will be returned on success, a negative errno will
2489 * be returned in error cases.
2490 */
2491int regmap_raw_read(struct regmap *map, unsigned int reg, void *val,
2492		    size_t val_len)
2493{
2494	size_t val_bytes = map->format.val_bytes;
2495	size_t val_count = val_len / val_bytes;
2496	unsigned int v;
2497	int ret, i;
2498
2499	if (!map->bus)
2500		return -EINVAL;
2501	if (val_len % map->format.val_bytes)
2502		return -EINVAL;
2503	if (!IS_ALIGNED(reg, map->reg_stride))
2504		return -EINVAL;
2505	if (val_count == 0)
2506		return -EINVAL;
2507
2508	map->lock(map->lock_arg);
2509
2510	if (regmap_volatile_range(map, reg, val_count) || map->cache_bypass ||
2511	    map->cache_type == REGCACHE_NONE) {
2512		size_t chunk_count, chunk_bytes;
2513		size_t chunk_regs = val_count;
2514
2515		if (!map->bus->read) {
2516			ret = -ENOTSUPP;
2517			goto out;
2518		}
2519
2520		if (map->use_single_read)
2521			chunk_regs = 1;
2522		else if (map->max_raw_read && val_len > map->max_raw_read)
2523			chunk_regs = map->max_raw_read / val_bytes;
2524
2525		chunk_count = val_count / chunk_regs;
2526		chunk_bytes = chunk_regs * val_bytes;
2527
2528		/* Read bytes that fit into whole chunks */
2529		for (i = 0; i < chunk_count; i++) {
2530			ret = _regmap_raw_read(map, reg, val, chunk_bytes);
2531			if (ret != 0)
2532				goto out;
2533
2534			reg += regmap_get_offset(map, chunk_regs);
2535			val += chunk_bytes;
2536			val_len -= chunk_bytes;
2537		}
2538
2539		/* Read remaining bytes */
2540		if (val_len) {
2541			ret = _regmap_raw_read(map, reg, val, val_len);
2542			if (ret != 0)
2543				goto out;
2544		}
2545	} else {
2546		/* Otherwise go word by word for the cache; should be low
2547		 * cost as we expect to hit the cache.
2548		 */
2549		for (i = 0; i < val_count; i++) {
2550			ret = _regmap_read(map, reg + regmap_get_offset(map, i),
2551					   &v);
2552			if (ret != 0)
2553				goto out;
2554
2555			map->format.format_val(val + (i * val_bytes), v, 0);
2556		}
2557	}
2558
2559 out:
2560	map->unlock(map->lock_arg);
2561
2562	return ret;
2563}
2564EXPORT_SYMBOL_GPL(regmap_raw_read);
2565
2566/**
2567 * regmap_field_read() - Read a value to a single register field
2568 *
2569 * @field: Register field to read from
2570 * @val: Pointer to store read value
2571 *
2572 * A value of zero will be returned on success, a negative errno will
2573 * be returned in error cases.
2574 */
2575int regmap_field_read(struct regmap_field *field, unsigned int *val)
2576{
2577	int ret;
2578	unsigned int reg_val;
2579	ret = regmap_read(field->regmap, field->reg, &reg_val);
2580	if (ret != 0)
2581		return ret;
2582
2583	reg_val &= field->mask;
2584	reg_val >>= field->shift;
2585	*val = reg_val;
2586
2587	return ret;
2588}
2589EXPORT_SYMBOL_GPL(regmap_field_read);
2590
2591/**
2592 * regmap_fields_read() - Read a value to a single register field with port ID
2593 *
2594 * @field: Register field to read from
2595 * @id: port ID
2596 * @val: Pointer to store read value
2597 *
2598 * A value of zero will be returned on success, a negative errno will
2599 * be returned in error cases.
2600 */
2601int regmap_fields_read(struct regmap_field *field, unsigned int id,
2602		       unsigned int *val)
2603{
2604	int ret;
2605	unsigned int reg_val;
2606
2607	if (id >= field->id_size)
2608		return -EINVAL;
2609
2610	ret = regmap_read(field->regmap,
2611			  field->reg + (field->id_offset * id),
2612			  &reg_val);
2613	if (ret != 0)
2614		return ret;
2615
2616	reg_val &= field->mask;
2617	reg_val >>= field->shift;
2618	*val = reg_val;
2619
2620	return ret;
2621}
2622EXPORT_SYMBOL_GPL(regmap_fields_read);
2623
2624/**
2625 * regmap_bulk_read() - Read multiple registers from the device
2626 *
2627 * @map: Register map to read from
2628 * @reg: First register to be read from
2629 * @val: Pointer to store read value, in native register size for device
2630 * @val_count: Number of registers to read
2631 *
2632 * A value of zero will be returned on success, a negative errno will
2633 * be returned in error cases.
2634 */
2635int regmap_bulk_read(struct regmap *map, unsigned int reg, void *val,
2636		     size_t val_count)
2637{
2638	int ret, i;
2639	size_t val_bytes = map->format.val_bytes;
2640	bool vol = regmap_volatile_range(map, reg, val_count);
2641
2642	if (!IS_ALIGNED(reg, map->reg_stride))
2643		return -EINVAL;
2644	if (val_count == 0)
2645		return -EINVAL;
2646
2647	if (map->bus && map->format.parse_inplace && (vol || map->cache_type == REGCACHE_NONE)) {
2648		ret = regmap_raw_read(map, reg, val, val_bytes * val_count);
2649		if (ret != 0)
2650			return ret;
2651
2652		for (i = 0; i < val_count * val_bytes; i += val_bytes)
2653			map->format.parse_inplace(val + i);
2654	} else {
2655#ifdef CONFIG_64BIT
2656		u64 *u64 = val;
2657#endif
2658		u32 *u32 = val;
2659		u16 *u16 = val;
2660		u8 *u8 = val;
2661
2662		map->lock(map->lock_arg);
2663
2664		for (i = 0; i < val_count; i++) {
2665			unsigned int ival;
2666
2667			ret = _regmap_read(map, reg + regmap_get_offset(map, i),
2668					   &ival);
2669			if (ret != 0)
2670				goto out;
2671
2672			switch (map->format.val_bytes) {
2673#ifdef CONFIG_64BIT
2674			case 8:
2675				u64[i] = ival;
2676				break;
2677#endif
2678			case 4:
2679				u32[i] = ival;
2680				break;
2681			case 2:
2682				u16[i] = ival;
2683				break;
2684			case 1:
2685				u8[i] = ival;
2686				break;
2687			default:
2688				ret = -EINVAL;
2689				goto out;
2690			}
2691		}
2692
2693out:
2694		map->unlock(map->lock_arg);
2695	}
2696
2697	return ret;
2698}
2699EXPORT_SYMBOL_GPL(regmap_bulk_read);
2700
2701static int _regmap_update_bits(struct regmap *map, unsigned int reg,
2702			       unsigned int mask, unsigned int val,
2703			       bool *change, bool force_write)
2704{
2705	int ret;
2706	unsigned int tmp, orig;
2707
2708	if (change)
2709		*change = false;
2710
2711	if (regmap_volatile(map, reg) && map->reg_update_bits) {
2712		ret = map->reg_update_bits(map->bus_context, reg, mask, val);
2713		if (ret == 0 && change)
2714			*change = true;
2715	} else {
2716		ret = _regmap_read(map, reg, &orig);
2717		if (ret != 0)
2718			return ret;
2719
2720		tmp = orig & ~mask;
2721		tmp |= val & mask;
2722
2723		if (force_write || (tmp != orig)) {
2724			ret = _regmap_write(map, reg, tmp);
2725			if (ret == 0 && change)
2726				*change = true;
2727		}
2728	}
2729
2730	return ret;
2731}
2732
2733/**
2734 * regmap_update_bits_base() - Perform a read/modify/write cycle on a register
2735 *
2736 * @map: Register map to update
2737 * @reg: Register to update
2738 * @mask: Bitmask to change
2739 * @val: New value for bitmask
2740 * @change: Boolean indicating if a write was done
2741 * @async: Boolean indicating asynchronously
2742 * @force: Boolean indicating use force update
2743 *
2744 * Perform a read/modify/write cycle on a register map with change, async, force
2745 * options.
2746 *
2747 * If async is true:
2748 *
2749 * With most buses the read must be done synchronously so this is most useful
2750 * for devices with a cache which do not need to interact with the hardware to
2751 * determine the current register value.
2752 *
2753 * Returns zero for success, a negative number on error.
2754 */
2755int regmap_update_bits_base(struct regmap *map, unsigned int reg,
2756			    unsigned int mask, unsigned int val,
2757			    bool *change, bool async, bool force)
2758{
2759	int ret;
 
2760
2761	map->lock(map->lock_arg);
2762
2763	map->async = async;
2764
2765	ret = _regmap_update_bits(map, reg, mask, val, change, force);
2766
2767	map->async = false;
2768
2769	map->unlock(map->lock_arg);
2770
2771	return ret;
2772}
2773EXPORT_SYMBOL_GPL(regmap_update_bits_base);
2774
2775void regmap_async_complete_cb(struct regmap_async *async, int ret)
2776{
2777	struct regmap *map = async->map;
2778	bool wake;
2779
2780	trace_regmap_async_io_complete(map);
2781
2782	spin_lock(&map->async_lock);
2783	list_move(&async->list, &map->async_free);
2784	wake = list_empty(&map->async_list);
2785
 
2786	if (ret != 0)
2787		map->async_ret = ret;
2788
2789	spin_unlock(&map->async_lock);
 
2790
2791	if (wake)
2792		wake_up(&map->async_waitq);
2793}
2794EXPORT_SYMBOL_GPL(regmap_async_complete_cb);
2795
2796static int regmap_async_is_done(struct regmap *map)
2797{
2798	unsigned long flags;
2799	int ret;
2800
2801	spin_lock_irqsave(&map->async_lock, flags);
2802	ret = list_empty(&map->async_list);
2803	spin_unlock_irqrestore(&map->async_lock, flags);
2804
2805	return ret;
2806}
2807
2808/**
2809 * regmap_async_complete - Ensure all asynchronous I/O has completed.
2810 *
2811 * @map: Map to operate on.
2812 *
2813 * Blocks until any pending asynchronous I/O has completed.  Returns
2814 * an error code for any failed I/O operations.
2815 */
2816int regmap_async_complete(struct regmap *map)
2817{
2818	unsigned long flags;
2819	int ret;
2820
2821	/* Nothing to do with no async support */
2822	if (!map->bus || !map->bus->async_write)
2823		return 0;
2824
2825	trace_regmap_async_complete_start(map);
2826
2827	wait_event(map->async_waitq, regmap_async_is_done(map));
2828
2829	spin_lock_irqsave(&map->async_lock, flags);
2830	ret = map->async_ret;
2831	map->async_ret = 0;
2832	spin_unlock_irqrestore(&map->async_lock, flags);
2833
2834	trace_regmap_async_complete_done(map);
2835
2836	return ret;
2837}
2838EXPORT_SYMBOL_GPL(regmap_async_complete);
2839
2840/**
2841 * regmap_register_patch - Register and apply register updates to be applied
2842 *                         on device initialistion
2843 *
2844 * @map: Register map to apply updates to.
2845 * @regs: Values to update.
2846 * @num_regs: Number of entries in regs.
2847 *
2848 * Register a set of register updates to be applied to the device
2849 * whenever the device registers are synchronised with the cache and
2850 * apply them immediately.  Typically this is used to apply
2851 * corrections to be applied to the device defaults on startup, such
2852 * as the updates some vendors provide to undocumented registers.
2853 *
2854 * The caller must ensure that this function cannot be called
2855 * concurrently with either itself or regcache_sync().
2856 */
2857int regmap_register_patch(struct regmap *map, const struct reg_sequence *regs,
2858			  int num_regs)
2859{
2860	struct reg_sequence *p;
2861	int ret;
2862	bool bypass;
2863
2864	if (WARN_ONCE(num_regs <= 0, "invalid registers number (%d)\n",
2865	    num_regs))
2866		return 0;
2867
2868	p = krealloc(map->patch,
2869		     sizeof(struct reg_sequence) * (map->patch_regs + num_regs),
2870		     GFP_KERNEL);
2871	if (p) {
2872		memcpy(p + map->patch_regs, regs, num_regs * sizeof(*regs));
2873		map->patch = p;
2874		map->patch_regs += num_regs;
2875	} else {
2876		return -ENOMEM;
2877	}
2878
2879	map->lock(map->lock_arg);
2880
2881	bypass = map->cache_bypass;
2882
2883	map->cache_bypass = true;
2884	map->async = true;
2885
2886	ret = _regmap_multi_reg_write(map, regs, num_regs);
2887
2888	map->async = false;
2889	map->cache_bypass = bypass;
2890
2891	map->unlock(map->lock_arg);
2892
2893	regmap_async_complete(map);
2894
2895	return ret;
2896}
2897EXPORT_SYMBOL_GPL(regmap_register_patch);
2898
2899/**
2900 * regmap_get_val_bytes() - Report the size of a register value
2901 *
2902 * @map: Register map to operate on.
2903 *
2904 * Report the size of a register value, mainly intended to for use by
2905 * generic infrastructure built on top of regmap.
2906 */
2907int regmap_get_val_bytes(struct regmap *map)
2908{
2909	if (map->format.format_write)
2910		return -EINVAL;
2911
2912	return map->format.val_bytes;
2913}
2914EXPORT_SYMBOL_GPL(regmap_get_val_bytes);
2915
2916/**
2917 * regmap_get_max_register() - Report the max register value
2918 *
2919 * @map: Register map to operate on.
2920 *
2921 * Report the max register value, mainly intended to for use by
2922 * generic infrastructure built on top of regmap.
2923 */
2924int regmap_get_max_register(struct regmap *map)
2925{
2926	return map->max_register ? map->max_register : -EINVAL;
2927}
2928EXPORT_SYMBOL_GPL(regmap_get_max_register);
2929
2930/**
2931 * regmap_get_reg_stride() - Report the register address stride
2932 *
2933 * @map: Register map to operate on.
2934 *
2935 * Report the register address stride, mainly intended to for use by
2936 * generic infrastructure built on top of regmap.
2937 */
2938int regmap_get_reg_stride(struct regmap *map)
2939{
2940	return map->reg_stride;
2941}
2942EXPORT_SYMBOL_GPL(regmap_get_reg_stride);
2943
2944int regmap_parse_val(struct regmap *map, const void *buf,
2945			unsigned int *val)
2946{
2947	if (!map->format.parse_val)
2948		return -EINVAL;
2949
2950	*val = map->format.parse_val(buf);
2951
2952	return 0;
2953}
2954EXPORT_SYMBOL_GPL(regmap_parse_val);
2955
2956static int __init regmap_initcall(void)
2957{
2958	regmap_debugfs_initcall();
2959
2960	return 0;
2961}
2962postcore_initcall(regmap_initcall);