Linux Audio

Check our new training course

Embedded Linux training

Mar 31-Apr 8, 2025
Register
Loading...
v3.1
  1/*
  2 * Register map access API
  3 *
  4 * Copyright 2011 Wolfson Microelectronics plc
  5 *
  6 * Author: Mark Brown <broonie@opensource.wolfsonmicro.com>
  7 *
  8 * This program is free software; you can redistribute it and/or modify
  9 * it under the terms of the GNU General Public License version 2 as
 10 * published by the Free Software Foundation.
 11 */
 12
 
 13#include <linux/slab.h>
 14#include <linux/module.h>
 15#include <linux/mutex.h>
 16#include <linux/err.h>
 
 
 17
 18#include <linux/regmap.h>
 
 19
 20struct regmap;
 21
 22struct regmap_format {
 23	size_t buf_size;
 24	size_t reg_bytes;
 25	size_t val_bytes;
 26	void (*format_write)(struct regmap *map,
 27			     unsigned int reg, unsigned int val);
 28	void (*format_reg)(void *buf, unsigned int reg);
 29	void (*format_val)(void *buf, unsigned int val);
 30	unsigned int (*parse_val)(void *buf);
 31};
 32
 33struct regmap {
 34	struct mutex lock;
 35
 36	struct device *dev; /* Device we do I/O on */
 37	void *work_buf;     /* Scratch buffer used to format I/O */
 38	struct regmap_format format;  /* Buffer format */
 39	const struct regmap_bus *bus;
 40};
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 41
 42static void regmap_format_4_12_write(struct regmap *map,
 43				     unsigned int reg, unsigned int val)
 44{
 45	__be16 *out = map->work_buf;
 46	*out = cpu_to_be16((reg << 12) | val);
 47}
 48
 49static void regmap_format_7_9_write(struct regmap *map,
 50				    unsigned int reg, unsigned int val)
 51{
 52	__be16 *out = map->work_buf;
 53	*out = cpu_to_be16((reg << 9) | val);
 54}
 55
 56static void regmap_format_8(void *buf, unsigned int val)
 
 
 
 
 
 
 
 
 
 
 57{
 58	u8 *b = buf;
 59
 60	b[0] = val;
 61}
 62
 63static void regmap_format_16(void *buf, unsigned int val)
 64{
 65	__be16 *b = buf;
 66
 67	b[0] = cpu_to_be16(val);
 
 
 
 
 
 
 68}
 69
 70static unsigned int regmap_parse_8(void *buf)
 71{
 72	u8 *b = buf;
 73
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 74	return b[0];
 75}
 76
 77static unsigned int regmap_parse_16(void *buf)
 
 
 
 
 
 
 
 78{
 79	__be16 *b = buf;
 80
 81	b[0] = be16_to_cpu(b[0]);
 
 82
 83	return b[0];
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 84}
 85
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 86/**
 87 * regmap_init(): Initialise register map
 88 *
 89 * @dev: Device that will be interacted with
 90 * @bus: Bus-specific callbacks to use with device
 
 91 * @config: Configuration for register map
 92 *
 93 * The return value will be an ERR_PTR() on error or a valid pointer to
 94 * a struct regmap.  This function should generally not be called
 95 * directly, it should be called by bus-specific init functions.
 96 */
 97struct regmap *regmap_init(struct device *dev,
 98			   const struct regmap_bus *bus,
 
 99			   const struct regmap_config *config)
100{
101	struct regmap *map;
102	int ret = -EINVAL;
 
 
103
104	if (!bus || !config)
105		return NULL;
106
107	map = kzalloc(sizeof(*map), GFP_KERNEL);
108	if (map == NULL) {
109		ret = -ENOMEM;
110		goto err;
111	}
112
113	mutex_init(&map->lock);
114	map->format.buf_size = (config->reg_bits + config->val_bits) / 8;
115	map->format.reg_bytes = config->reg_bits / 8;
116	map->format.val_bytes = config->val_bits / 8;
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
117	map->dev = dev;
118	map->bus = bus;
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
119
120	switch (config->reg_bits) {
121	case 4:
122		switch (config->val_bits) {
123		case 12:
124			map->format.format_write = regmap_format_4_12_write;
125			break;
126		default:
127			goto err_map;
128		}
129		break;
130
131	case 7:
132		switch (config->val_bits) {
133		case 9:
134			map->format.format_write = regmap_format_7_9_write;
135			break;
136		default:
137			goto err_map;
138		}
139		break;
140
 
 
 
 
 
 
 
 
 
 
141	case 8:
142		map->format.format_reg = regmap_format_8;
143		break;
144
145	case 16:
146		map->format.format_reg = regmap_format_16;
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
147		break;
148
149	default:
150		goto err_map;
151	}
152
 
 
 
153	switch (config->val_bits) {
154	case 8:
155		map->format.format_val = regmap_format_8;
156		map->format.parse_val = regmap_parse_8;
 
157		break;
158	case 16:
159		map->format.format_val = regmap_format_16;
160		map->format.parse_val = regmap_parse_16;
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
161		break;
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
162	}
163
164	if (!map->format.format_write &&
165	    !(map->format.format_reg && map->format.format_val))
166		goto err_map;
167
168	map->work_buf = kmalloc(map->format.buf_size, GFP_KERNEL);
169	if (map->work_buf == NULL) {
170		ret = -ENOMEM;
171		goto err_map;
172	}
173
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
174	return map;
175
 
 
 
 
 
176err_map:
177	kfree(map);
178err:
179	return ERR_PTR(ret);
180}
181EXPORT_SYMBOL_GPL(regmap_init);
182
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
183/**
184 * regmap_exit(): Free a previously allocated register map
185 */
186void regmap_exit(struct regmap *map)
187{
 
 
 
 
 
 
 
188	kfree(map->work_buf);
 
 
 
 
 
 
 
 
189	kfree(map);
190}
191EXPORT_SYMBOL_GPL(regmap_exit);
192
193static int _regmap_raw_write(struct regmap *map, unsigned int reg,
194			     const void *val, size_t val_len)
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
195{
 
 
 
 
 
196	void *buf;
197	int ret = -ENOTSUPP;
198	size_t len;
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
199
200	map->format.format_reg(map->work_buf, reg);
 
201
202	/* Try to do a gather write if we can */
203	if (map->bus->gather_write)
204		ret = map->bus->gather_write(map->dev, map->work_buf,
205					     map->format.reg_bytes,
 
 
 
 
 
 
 
 
 
206					     val, val_len);
207
208	/* Otherwise fall back on linearising by hand. */
209	if (ret == -ENOTSUPP) {
210		len = map->format.reg_bytes + val_len;
211		buf = kmalloc(len, GFP_KERNEL);
212		if (!buf)
213			return -ENOMEM;
214
215		memcpy(buf, map->work_buf, map->format.reg_bytes);
216		memcpy(buf + map->format.reg_bytes, val, val_len);
217		ret = map->bus->write(map->dev, buf, len);
 
218
219		kfree(buf);
220	}
221
 
 
 
222	return ret;
223}
224
225static int _regmap_write(struct regmap *map, unsigned int reg,
226			 unsigned int val)
 
 
 
 
 
 
 
 
 
 
 
227{
228	BUG_ON(!map->format.format_write && !map->format.format_val);
 
 
229
230	if (map->format.format_write) {
231		map->format.format_write(map, reg, val);
232
233		return map->bus->write(map->dev, map->work_buf,
234				       map->format.buf_size);
235	} else {
236		map->format.format_val(map->work_buf + map->format.reg_bytes,
237				       val);
238		return _regmap_raw_write(map, reg,
239					 map->work_buf + map->format.reg_bytes,
240					 map->format.val_bytes);
241	}
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
242}
243
244/**
245 * regmap_write(): Write a value to a single register
246 *
247 * @map: Register map to write to
248 * @reg: Register to write to
249 * @val: Value to be written
250 *
251 * A value of zero will be returned on success, a negative errno will
252 * be returned in error cases.
253 */
254int regmap_write(struct regmap *map, unsigned int reg, unsigned int val)
255{
256	int ret;
257
258	mutex_lock(&map->lock);
 
 
 
259
260	ret = _regmap_write(map, reg, val);
261
262	mutex_unlock(&map->lock);
263
264	return ret;
265}
266EXPORT_SYMBOL_GPL(regmap_write);
267
268/**
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
269 * regmap_raw_write(): Write raw values to one or more registers
270 *
271 * @map: Register map to write to
272 * @reg: Initial register to write to
273 * @val: Block of data to be written, laid out for direct transmission to the
274 *       device
275 * @val_len: Length of data pointed to by val.
276 *
277 * This function is intended to be used for things like firmware
278 * download where a large block of data needs to be transferred to the
279 * device.  No formatting will be done on the data provided.
280 *
281 * A value of zero will be returned on success, a negative errno will
282 * be returned in error cases.
283 */
284int regmap_raw_write(struct regmap *map, unsigned int reg,
285		     const void *val, size_t val_len)
286{
287	int ret;
288
289	mutex_lock(&map->lock);
 
 
 
 
 
290
291	ret = _regmap_raw_write(map, reg, val, val_len);
292
293	mutex_unlock(&map->lock);
294
295	return ret;
296}
297EXPORT_SYMBOL_GPL(regmap_raw_write);
298
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
299static int _regmap_raw_read(struct regmap *map, unsigned int reg, void *val,
300			    unsigned int val_len)
301{
 
302	u8 *u8 = map->work_buf;
303	int ret;
304
305	map->format.format_reg(map->work_buf, reg);
 
 
 
 
 
 
 
 
 
 
306
307	/*
308	 * Some buses flag reads by setting the high bits in the
309	 * register addresss; since it's always the high bits for all
310	 * current formats we can do this here rather than in
311	 * formatting.  This may break if we get interesting formats.
312	 */
313	if (map->bus->read_flag_mask)
314		u8[0] |= map->bus->read_flag_mask;
315
316	ret = map->bus->read(map->dev, map->work_buf, map->format.reg_bytes,
 
 
 
 
317			     val, val_len);
318	if (ret != 0)
319		return ret;
320
321	return 0;
 
 
 
322}
323
324static int _regmap_read(struct regmap *map, unsigned int reg,
325			unsigned int *val)
326{
327	int ret;
 
328
329	if (!map->format.parse_val)
330		return -EINVAL;
331
332	ret = _regmap_raw_read(map, reg, map->work_buf, map->format.val_bytes);
333	if (ret == 0)
334		*val = map->format.parse_val(map->work_buf);
335
336	return ret;
337}
338
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
339/**
340 * regmap_read(): Read a value from a single register
341 *
342 * @map: Register map to write to
343 * @reg: Register to be read from
344 * @val: Pointer to store read value
345 *
346 * A value of zero will be returned on success, a negative errno will
347 * be returned in error cases.
348 */
349int regmap_read(struct regmap *map, unsigned int reg, unsigned int *val)
350{
351	int ret;
352
353	mutex_lock(&map->lock);
 
 
 
354
355	ret = _regmap_read(map, reg, val);
356
357	mutex_unlock(&map->lock);
358
359	return ret;
360}
361EXPORT_SYMBOL_GPL(regmap_read);
362
363/**
364 * regmap_raw_read(): Read raw data from the device
365 *
366 * @map: Register map to write to
367 * @reg: First register to be read from
368 * @val: Pointer to store read value
369 * @val_len: Size of data to read
370 *
371 * A value of zero will be returned on success, a negative errno will
372 * be returned in error cases.
373 */
374int regmap_raw_read(struct regmap *map, unsigned int reg, void *val,
375		    size_t val_len)
376{
377	int ret;
 
 
 
 
 
 
 
 
 
 
378
379	mutex_lock(&map->lock);
380
381	ret = _regmap_raw_read(map, reg, val, val_len);
 
 
 
382
383	mutex_unlock(&map->lock);
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
384
385	return ret;
386}
387EXPORT_SYMBOL_GPL(regmap_raw_read);
388
389/**
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
390 * regmap_bulk_read(): Read multiple registers from the device
391 *
392 * @map: Register map to write to
393 * @reg: First register to be read from
394 * @val: Pointer to store read value, in native register size for device
395 * @val_count: Number of registers to read
396 *
397 * A value of zero will be returned on success, a negative errno will
398 * be returned in error cases.
399 */
400int regmap_bulk_read(struct regmap *map, unsigned int reg, void *val,
401		     size_t val_count)
402{
403	int ret, i;
404	size_t val_bytes = map->format.val_bytes;
 
405
406	if (!map->format.parse_val)
407		return -EINVAL;
408
409	ret = regmap_raw_read(map, reg, val, val_bytes * val_count);
410	if (ret != 0)
411		return ret;
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
412
413	for (i = 0; i < val_count * val_bytes; i += val_bytes)
414		map->format.parse_val(val + i);
 
 
 
 
 
 
 
 
 
 
415
416	return 0;
417}
418EXPORT_SYMBOL_GPL(regmap_bulk_read);
419
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
420/**
421 * remap_update_bits: Perform a read/modify/write cycle on the register map
422 *
423 * @map: Register map to update
424 * @reg: Register to update
425 * @mask: Bitmask to change
426 * @val: New value for bitmask
427 *
428 * Returns zero for success, a negative number on error.
429 */
430int regmap_update_bits(struct regmap *map, unsigned int reg,
431		       unsigned int mask, unsigned int val)
432{
433	int ret;
434	unsigned int tmp;
435
436	mutex_lock(&map->lock);
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
437
438	ret = _regmap_read(map, reg, &tmp);
439	if (ret != 0)
440		goto out;
441
442	tmp &= ~mask;
443	tmp |= val & mask;
444
445	ret = _regmap_write(map, reg, tmp);
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
446
447out:
448	mutex_unlock(&map->lock);
 
 
 
 
 
449
450	return ret;
451}
452EXPORT_SYMBOL_GPL(regmap_update_bits);
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
v3.15
   1/*
   2 * Register map access API
   3 *
   4 * Copyright 2011 Wolfson Microelectronics plc
   5 *
   6 * Author: Mark Brown <broonie@opensource.wolfsonmicro.com>
   7 *
   8 * This program is free software; you can redistribute it and/or modify
   9 * it under the terms of the GNU General Public License version 2 as
  10 * published by the Free Software Foundation.
  11 */
  12
  13#include <linux/device.h>
  14#include <linux/slab.h>
  15#include <linux/export.h>
  16#include <linux/mutex.h>
  17#include <linux/err.h>
  18#include <linux/rbtree.h>
  19#include <linux/sched.h>
  20
  21#define CREATE_TRACE_POINTS
  22#include <trace/events/regmap.h>
  23
  24#include "internal.h"
  25
  26/*
  27 * Sometimes for failures during very early init the trace
  28 * infrastructure isn't available early enough to be used.  For this
  29 * sort of problem defining LOG_DEVICE will add printks for basic
  30 * register I/O on a specific device.
  31 */
  32#undef LOG_DEVICE
  33
  34static int _regmap_update_bits(struct regmap *map, unsigned int reg,
  35			       unsigned int mask, unsigned int val,
  36			       bool *change);
  37
  38static int _regmap_bus_read(void *context, unsigned int reg,
  39			    unsigned int *val);
  40static int _regmap_bus_formatted_write(void *context, unsigned int reg,
  41				       unsigned int val);
  42static int _regmap_bus_raw_write(void *context, unsigned int reg,
  43				 unsigned int val);
  44
  45bool regmap_reg_in_ranges(unsigned int reg,
  46			  const struct regmap_range *ranges,
  47			  unsigned int nranges)
  48{
  49	const struct regmap_range *r;
  50	int i;
  51
  52	for (i = 0, r = ranges; i < nranges; i++, r++)
  53		if (regmap_reg_in_range(reg, r))
  54			return true;
  55	return false;
  56}
  57EXPORT_SYMBOL_GPL(regmap_reg_in_ranges);
  58
  59bool regmap_check_range_table(struct regmap *map, unsigned int reg,
  60			      const struct regmap_access_table *table)
  61{
  62	/* Check "no ranges" first */
  63	if (regmap_reg_in_ranges(reg, table->no_ranges, table->n_no_ranges))
  64		return false;
  65
  66	/* In case zero "yes ranges" are supplied, any reg is OK */
  67	if (!table->n_yes_ranges)
  68		return true;
  69
  70	return regmap_reg_in_ranges(reg, table->yes_ranges,
  71				    table->n_yes_ranges);
  72}
  73EXPORT_SYMBOL_GPL(regmap_check_range_table);
  74
  75bool regmap_writeable(struct regmap *map, unsigned int reg)
  76{
  77	if (map->max_register && reg > map->max_register)
  78		return false;
  79
  80	if (map->writeable_reg)
  81		return map->writeable_reg(map->dev, reg);
  82
  83	if (map->wr_table)
  84		return regmap_check_range_table(map, reg, map->wr_table);
  85
  86	return true;
  87}
  88
  89bool regmap_readable(struct regmap *map, unsigned int reg)
  90{
  91	if (map->max_register && reg > map->max_register)
  92		return false;
  93
  94	if (map->format.format_write)
  95		return false;
  96
  97	if (map->readable_reg)
  98		return map->readable_reg(map->dev, reg);
  99
 100	if (map->rd_table)
 101		return regmap_check_range_table(map, reg, map->rd_table);
 102
 103	return true;
 104}
 105
 106bool regmap_volatile(struct regmap *map, unsigned int reg)
 107{
 108	if (!regmap_readable(map, reg))
 109		return false;
 110
 111	if (map->volatile_reg)
 112		return map->volatile_reg(map->dev, reg);
 113
 114	if (map->volatile_table)
 115		return regmap_check_range_table(map, reg, map->volatile_table);
 116
 117	if (map->cache_ops)
 118		return false;
 119	else
 120		return true;
 121}
 122
 123bool regmap_precious(struct regmap *map, unsigned int reg)
 124{
 125	if (!regmap_readable(map, reg))
 126		return false;
 127
 128	if (map->precious_reg)
 129		return map->precious_reg(map->dev, reg);
 130
 131	if (map->precious_table)
 132		return regmap_check_range_table(map, reg, map->precious_table);
 133
 134	return false;
 135}
 136
 137static bool regmap_volatile_range(struct regmap *map, unsigned int reg,
 138	size_t num)
 139{
 140	unsigned int i;
 141
 142	for (i = 0; i < num; i++)
 143		if (!regmap_volatile(map, reg + i))
 144			return false;
 145
 146	return true;
 147}
 148
 149static void regmap_format_2_6_write(struct regmap *map,
 150				     unsigned int reg, unsigned int val)
 151{
 152	u8 *out = map->work_buf;
 153
 154	*out = (reg << 6) | val;
 155}
 156
 157static void regmap_format_4_12_write(struct regmap *map,
 158				     unsigned int reg, unsigned int val)
 159{
 160	__be16 *out = map->work_buf;
 161	*out = cpu_to_be16((reg << 12) | val);
 162}
 163
 164static void regmap_format_7_9_write(struct regmap *map,
 165				    unsigned int reg, unsigned int val)
 166{
 167	__be16 *out = map->work_buf;
 168	*out = cpu_to_be16((reg << 9) | val);
 169}
 170
 171static void regmap_format_10_14_write(struct regmap *map,
 172				    unsigned int reg, unsigned int val)
 173{
 174	u8 *out = map->work_buf;
 175
 176	out[2] = val;
 177	out[1] = (val >> 8) | (reg << 6);
 178	out[0] = reg >> 2;
 179}
 180
 181static void regmap_format_8(void *buf, unsigned int val, unsigned int shift)
 182{
 183	u8 *b = buf;
 184
 185	b[0] = val << shift;
 186}
 187
 188static void regmap_format_16_be(void *buf, unsigned int val, unsigned int shift)
 189{
 190	__be16 *b = buf;
 191
 192	b[0] = cpu_to_be16(val << shift);
 193}
 194
 195static void regmap_format_16_native(void *buf, unsigned int val,
 196				    unsigned int shift)
 197{
 198	*(u16 *)buf = val << shift;
 199}
 200
 201static void regmap_format_24(void *buf, unsigned int val, unsigned int shift)
 202{
 203	u8 *b = buf;
 204
 205	val <<= shift;
 206
 207	b[0] = val >> 16;
 208	b[1] = val >> 8;
 209	b[2] = val;
 210}
 211
 212static void regmap_format_32_be(void *buf, unsigned int val, unsigned int shift)
 213{
 214	__be32 *b = buf;
 215
 216	b[0] = cpu_to_be32(val << shift);
 217}
 218
 219static void regmap_format_32_native(void *buf, unsigned int val,
 220				    unsigned int shift)
 221{
 222	*(u32 *)buf = val << shift;
 223}
 224
 225static void regmap_parse_inplace_noop(void *buf)
 226{
 227}
 228
 229static unsigned int regmap_parse_8(const void *buf)
 230{
 231	const u8 *b = buf;
 232
 233	return b[0];
 234}
 235
 236static unsigned int regmap_parse_16_be(const void *buf)
 237{
 238	const __be16 *b = buf;
 239
 240	return be16_to_cpu(b[0]);
 241}
 242
 243static void regmap_parse_16_be_inplace(void *buf)
 244{
 245	__be16 *b = buf;
 246
 247	b[0] = be16_to_cpu(b[0]);
 248}
 249
 250static unsigned int regmap_parse_16_native(const void *buf)
 251{
 252	return *(u16 *)buf;
 253}
 254
 255static unsigned int regmap_parse_24(const void *buf)
 256{
 257	const u8 *b = buf;
 258	unsigned int ret = b[2];
 259	ret |= ((unsigned int)b[1]) << 8;
 260	ret |= ((unsigned int)b[0]) << 16;
 261
 262	return ret;
 263}
 264
 265static unsigned int regmap_parse_32_be(const void *buf)
 266{
 267	const __be32 *b = buf;
 268
 269	return be32_to_cpu(b[0]);
 270}
 271
 272static void regmap_parse_32_be_inplace(void *buf)
 273{
 274	__be32 *b = buf;
 275
 276	b[0] = be32_to_cpu(b[0]);
 277}
 278
 279static unsigned int regmap_parse_32_native(const void *buf)
 280{
 281	return *(u32 *)buf;
 282}
 283
 284static void regmap_lock_mutex(void *__map)
 285{
 286	struct regmap *map = __map;
 287	mutex_lock(&map->mutex);
 288}
 289
 290static void regmap_unlock_mutex(void *__map)
 291{
 292	struct regmap *map = __map;
 293	mutex_unlock(&map->mutex);
 294}
 295
 296static void regmap_lock_spinlock(void *__map)
 297__acquires(&map->spinlock)
 298{
 299	struct regmap *map = __map;
 300	unsigned long flags;
 301
 302	spin_lock_irqsave(&map->spinlock, flags);
 303	map->spinlock_flags = flags;
 304}
 305
 306static void regmap_unlock_spinlock(void *__map)
 307__releases(&map->spinlock)
 308{
 309	struct regmap *map = __map;
 310	spin_unlock_irqrestore(&map->spinlock, map->spinlock_flags);
 311}
 312
 313static void dev_get_regmap_release(struct device *dev, void *res)
 314{
 315	/*
 316	 * We don't actually have anything to do here; the goal here
 317	 * is not to manage the regmap but to provide a simple way to
 318	 * get the regmap back given a struct device.
 319	 */
 320}
 321
 322static bool _regmap_range_add(struct regmap *map,
 323			      struct regmap_range_node *data)
 324{
 325	struct rb_root *root = &map->range_tree;
 326	struct rb_node **new = &(root->rb_node), *parent = NULL;
 327
 328	while (*new) {
 329		struct regmap_range_node *this =
 330			container_of(*new, struct regmap_range_node, node);
 331
 332		parent = *new;
 333		if (data->range_max < this->range_min)
 334			new = &((*new)->rb_left);
 335		else if (data->range_min > this->range_max)
 336			new = &((*new)->rb_right);
 337		else
 338			return false;
 339	}
 340
 341	rb_link_node(&data->node, parent, new);
 342	rb_insert_color(&data->node, root);
 343
 344	return true;
 345}
 346
 347static struct regmap_range_node *_regmap_range_lookup(struct regmap *map,
 348						      unsigned int reg)
 349{
 350	struct rb_node *node = map->range_tree.rb_node;
 351
 352	while (node) {
 353		struct regmap_range_node *this =
 354			container_of(node, struct regmap_range_node, node);
 355
 356		if (reg < this->range_min)
 357			node = node->rb_left;
 358		else if (reg > this->range_max)
 359			node = node->rb_right;
 360		else
 361			return this;
 362	}
 363
 364	return NULL;
 365}
 366
 367static void regmap_range_exit(struct regmap *map)
 368{
 369	struct rb_node *next;
 370	struct regmap_range_node *range_node;
 371
 372	next = rb_first(&map->range_tree);
 373	while (next) {
 374		range_node = rb_entry(next, struct regmap_range_node, node);
 375		next = rb_next(&range_node->node);
 376		rb_erase(&range_node->node, &map->range_tree);
 377		kfree(range_node);
 378	}
 379
 380	kfree(map->selector_work_buf);
 381}
 382
 383int regmap_attach_dev(struct device *dev, struct regmap *map,
 384		      const struct regmap_config *config)
 385{
 386	struct regmap **m;
 387
 388	map->dev = dev;
 389
 390	regmap_debugfs_init(map, config->name);
 391
 392	/* Add a devres resource for dev_get_regmap() */
 393	m = devres_alloc(dev_get_regmap_release, sizeof(*m), GFP_KERNEL);
 394	if (!m) {
 395		regmap_debugfs_exit(map);
 396		return -ENOMEM;
 397	}
 398	*m = map;
 399	devres_add(dev, m);
 400
 401	return 0;
 402}
 403EXPORT_SYMBOL_GPL(regmap_attach_dev);
 404
 405/**
 406 * regmap_init(): Initialise register map
 407 *
 408 * @dev: Device that will be interacted with
 409 * @bus: Bus-specific callbacks to use with device
 410 * @bus_context: Data passed to bus-specific callbacks
 411 * @config: Configuration for register map
 412 *
 413 * The return value will be an ERR_PTR() on error or a valid pointer to
 414 * a struct regmap.  This function should generally not be called
 415 * directly, it should be called by bus-specific init functions.
 416 */
 417struct regmap *regmap_init(struct device *dev,
 418			   const struct regmap_bus *bus,
 419			   void *bus_context,
 420			   const struct regmap_config *config)
 421{
 422	struct regmap *map;
 423	int ret = -EINVAL;
 424	enum regmap_endian reg_endian, val_endian;
 425	int i, j;
 426
 427	if (!config)
 428		goto err;
 429
 430	map = kzalloc(sizeof(*map), GFP_KERNEL);
 431	if (map == NULL) {
 432		ret = -ENOMEM;
 433		goto err;
 434	}
 435
 436	if (config->lock && config->unlock) {
 437		map->lock = config->lock;
 438		map->unlock = config->unlock;
 439		map->lock_arg = config->lock_arg;
 440	} else {
 441		if ((bus && bus->fast_io) ||
 442		    config->fast_io) {
 443			spin_lock_init(&map->spinlock);
 444			map->lock = regmap_lock_spinlock;
 445			map->unlock = regmap_unlock_spinlock;
 446		} else {
 447			mutex_init(&map->mutex);
 448			map->lock = regmap_lock_mutex;
 449			map->unlock = regmap_unlock_mutex;
 450		}
 451		map->lock_arg = map;
 452	}
 453	map->format.reg_bytes = DIV_ROUND_UP(config->reg_bits, 8);
 454	map->format.pad_bytes = config->pad_bits / 8;
 455	map->format.val_bytes = DIV_ROUND_UP(config->val_bits, 8);
 456	map->format.buf_size = DIV_ROUND_UP(config->reg_bits +
 457			config->val_bits + config->pad_bits, 8);
 458	map->reg_shift = config->pad_bits % 8;
 459	if (config->reg_stride)
 460		map->reg_stride = config->reg_stride;
 461	else
 462		map->reg_stride = 1;
 463	map->use_single_rw = config->use_single_rw;
 464	map->can_multi_write = config->can_multi_write;
 465	map->dev = dev;
 466	map->bus = bus;
 467	map->bus_context = bus_context;
 468	map->max_register = config->max_register;
 469	map->wr_table = config->wr_table;
 470	map->rd_table = config->rd_table;
 471	map->volatile_table = config->volatile_table;
 472	map->precious_table = config->precious_table;
 473	map->writeable_reg = config->writeable_reg;
 474	map->readable_reg = config->readable_reg;
 475	map->volatile_reg = config->volatile_reg;
 476	map->precious_reg = config->precious_reg;
 477	map->cache_type = config->cache_type;
 478	map->name = config->name;
 479
 480	spin_lock_init(&map->async_lock);
 481	INIT_LIST_HEAD(&map->async_list);
 482	INIT_LIST_HEAD(&map->async_free);
 483	init_waitqueue_head(&map->async_waitq);
 484
 485	if (config->read_flag_mask || config->write_flag_mask) {
 486		map->read_flag_mask = config->read_flag_mask;
 487		map->write_flag_mask = config->write_flag_mask;
 488	} else if (bus) {
 489		map->read_flag_mask = bus->read_flag_mask;
 490	}
 491
 492	if (!bus) {
 493		map->reg_read  = config->reg_read;
 494		map->reg_write = config->reg_write;
 495
 496		map->defer_caching = false;
 497		goto skip_format_initialization;
 498	} else {
 499		map->reg_read  = _regmap_bus_read;
 500	}
 501
 502	reg_endian = config->reg_format_endian;
 503	if (reg_endian == REGMAP_ENDIAN_DEFAULT)
 504		reg_endian = bus->reg_format_endian_default;
 505	if (reg_endian == REGMAP_ENDIAN_DEFAULT)
 506		reg_endian = REGMAP_ENDIAN_BIG;
 507
 508	val_endian = config->val_format_endian;
 509	if (val_endian == REGMAP_ENDIAN_DEFAULT)
 510		val_endian = bus->val_format_endian_default;
 511	if (val_endian == REGMAP_ENDIAN_DEFAULT)
 512		val_endian = REGMAP_ENDIAN_BIG;
 513
 514	switch (config->reg_bits + map->reg_shift) {
 515	case 2:
 516		switch (config->val_bits) {
 517		case 6:
 518			map->format.format_write = regmap_format_2_6_write;
 519			break;
 520		default:
 521			goto err_map;
 522		}
 523		break;
 524
 
 525	case 4:
 526		switch (config->val_bits) {
 527		case 12:
 528			map->format.format_write = regmap_format_4_12_write;
 529			break;
 530		default:
 531			goto err_map;
 532		}
 533		break;
 534
 535	case 7:
 536		switch (config->val_bits) {
 537		case 9:
 538			map->format.format_write = regmap_format_7_9_write;
 539			break;
 540		default:
 541			goto err_map;
 542		}
 543		break;
 544
 545	case 10:
 546		switch (config->val_bits) {
 547		case 14:
 548			map->format.format_write = regmap_format_10_14_write;
 549			break;
 550		default:
 551			goto err_map;
 552		}
 553		break;
 554
 555	case 8:
 556		map->format.format_reg = regmap_format_8;
 557		break;
 558
 559	case 16:
 560		switch (reg_endian) {
 561		case REGMAP_ENDIAN_BIG:
 562			map->format.format_reg = regmap_format_16_be;
 563			break;
 564		case REGMAP_ENDIAN_NATIVE:
 565			map->format.format_reg = regmap_format_16_native;
 566			break;
 567		default:
 568			goto err_map;
 569		}
 570		break;
 571
 572	case 24:
 573		if (reg_endian != REGMAP_ENDIAN_BIG)
 574			goto err_map;
 575		map->format.format_reg = regmap_format_24;
 576		break;
 577
 578	case 32:
 579		switch (reg_endian) {
 580		case REGMAP_ENDIAN_BIG:
 581			map->format.format_reg = regmap_format_32_be;
 582			break;
 583		case REGMAP_ENDIAN_NATIVE:
 584			map->format.format_reg = regmap_format_32_native;
 585			break;
 586		default:
 587			goto err_map;
 588		}
 589		break;
 590
 591	default:
 592		goto err_map;
 593	}
 594
 595	if (val_endian == REGMAP_ENDIAN_NATIVE)
 596		map->format.parse_inplace = regmap_parse_inplace_noop;
 597
 598	switch (config->val_bits) {
 599	case 8:
 600		map->format.format_val = regmap_format_8;
 601		map->format.parse_val = regmap_parse_8;
 602		map->format.parse_inplace = regmap_parse_inplace_noop;
 603		break;
 604	case 16:
 605		switch (val_endian) {
 606		case REGMAP_ENDIAN_BIG:
 607			map->format.format_val = regmap_format_16_be;
 608			map->format.parse_val = regmap_parse_16_be;
 609			map->format.parse_inplace = regmap_parse_16_be_inplace;
 610			break;
 611		case REGMAP_ENDIAN_NATIVE:
 612			map->format.format_val = regmap_format_16_native;
 613			map->format.parse_val = regmap_parse_16_native;
 614			break;
 615		default:
 616			goto err_map;
 617		}
 618		break;
 619	case 24:
 620		if (val_endian != REGMAP_ENDIAN_BIG)
 621			goto err_map;
 622		map->format.format_val = regmap_format_24;
 623		map->format.parse_val = regmap_parse_24;
 624		break;
 625	case 32:
 626		switch (val_endian) {
 627		case REGMAP_ENDIAN_BIG:
 628			map->format.format_val = regmap_format_32_be;
 629			map->format.parse_val = regmap_parse_32_be;
 630			map->format.parse_inplace = regmap_parse_32_be_inplace;
 631			break;
 632		case REGMAP_ENDIAN_NATIVE:
 633			map->format.format_val = regmap_format_32_native;
 634			map->format.parse_val = regmap_parse_32_native;
 635			break;
 636		default:
 637			goto err_map;
 638		}
 639		break;
 640	}
 641
 642	if (map->format.format_write) {
 643		if ((reg_endian != REGMAP_ENDIAN_BIG) ||
 644		    (val_endian != REGMAP_ENDIAN_BIG))
 645			goto err_map;
 646		map->use_single_rw = true;
 647	}
 648
 649	if (!map->format.format_write &&
 650	    !(map->format.format_reg && map->format.format_val))
 651		goto err_map;
 652
 653	map->work_buf = kzalloc(map->format.buf_size, GFP_KERNEL);
 654	if (map->work_buf == NULL) {
 655		ret = -ENOMEM;
 656		goto err_map;
 657	}
 658
 659	if (map->format.format_write) {
 660		map->defer_caching = false;
 661		map->reg_write = _regmap_bus_formatted_write;
 662	} else if (map->format.format_val) {
 663		map->defer_caching = true;
 664		map->reg_write = _regmap_bus_raw_write;
 665	}
 666
 667skip_format_initialization:
 668
 669	map->range_tree = RB_ROOT;
 670	for (i = 0; i < config->num_ranges; i++) {
 671		const struct regmap_range_cfg *range_cfg = &config->ranges[i];
 672		struct regmap_range_node *new;
 673
 674		/* Sanity check */
 675		if (range_cfg->range_max < range_cfg->range_min) {
 676			dev_err(map->dev, "Invalid range %d: %d < %d\n", i,
 677				range_cfg->range_max, range_cfg->range_min);
 678			goto err_range;
 679		}
 680
 681		if (range_cfg->range_max > map->max_register) {
 682			dev_err(map->dev, "Invalid range %d: %d > %d\n", i,
 683				range_cfg->range_max, map->max_register);
 684			goto err_range;
 685		}
 686
 687		if (range_cfg->selector_reg > map->max_register) {
 688			dev_err(map->dev,
 689				"Invalid range %d: selector out of map\n", i);
 690			goto err_range;
 691		}
 692
 693		if (range_cfg->window_len == 0) {
 694			dev_err(map->dev, "Invalid range %d: window_len 0\n",
 695				i);
 696			goto err_range;
 697		}
 698
 699		/* Make sure, that this register range has no selector
 700		   or data window within its boundary */
 701		for (j = 0; j < config->num_ranges; j++) {
 702			unsigned sel_reg = config->ranges[j].selector_reg;
 703			unsigned win_min = config->ranges[j].window_start;
 704			unsigned win_max = win_min +
 705					   config->ranges[j].window_len - 1;
 706
 707			/* Allow data window inside its own virtual range */
 708			if (j == i)
 709				continue;
 710
 711			if (range_cfg->range_min <= sel_reg &&
 712			    sel_reg <= range_cfg->range_max) {
 713				dev_err(map->dev,
 714					"Range %d: selector for %d in window\n",
 715					i, j);
 716				goto err_range;
 717			}
 718
 719			if (!(win_max < range_cfg->range_min ||
 720			      win_min > range_cfg->range_max)) {
 721				dev_err(map->dev,
 722					"Range %d: window for %d in window\n",
 723					i, j);
 724				goto err_range;
 725			}
 726		}
 727
 728		new = kzalloc(sizeof(*new), GFP_KERNEL);
 729		if (new == NULL) {
 730			ret = -ENOMEM;
 731			goto err_range;
 732		}
 733
 734		new->map = map;
 735		new->name = range_cfg->name;
 736		new->range_min = range_cfg->range_min;
 737		new->range_max = range_cfg->range_max;
 738		new->selector_reg = range_cfg->selector_reg;
 739		new->selector_mask = range_cfg->selector_mask;
 740		new->selector_shift = range_cfg->selector_shift;
 741		new->window_start = range_cfg->window_start;
 742		new->window_len = range_cfg->window_len;
 743
 744		if (!_regmap_range_add(map, new)) {
 745			dev_err(map->dev, "Failed to add range %d\n", i);
 746			kfree(new);
 747			goto err_range;
 748		}
 749
 750		if (map->selector_work_buf == NULL) {
 751			map->selector_work_buf =
 752				kzalloc(map->format.buf_size, GFP_KERNEL);
 753			if (map->selector_work_buf == NULL) {
 754				ret = -ENOMEM;
 755				goto err_range;
 756			}
 757		}
 758	}
 759
 760	ret = regcache_init(map, config);
 761	if (ret != 0)
 762		goto err_range;
 763
 764	if (dev) {
 765		ret = regmap_attach_dev(dev, map, config);
 766		if (ret != 0)
 767			goto err_regcache;
 768	}
 769
 770	return map;
 771
 772err_regcache:
 773	regcache_exit(map);
 774err_range:
 775	regmap_range_exit(map);
 776	kfree(map->work_buf);
 777err_map:
 778	kfree(map);
 779err:
 780	return ERR_PTR(ret);
 781}
 782EXPORT_SYMBOL_GPL(regmap_init);
 783
 784static void devm_regmap_release(struct device *dev, void *res)
 785{
 786	regmap_exit(*(struct regmap **)res);
 787}
 788
 789/**
 790 * devm_regmap_init(): Initialise managed register map
 791 *
 792 * @dev: Device that will be interacted with
 793 * @bus: Bus-specific callbacks to use with device
 794 * @bus_context: Data passed to bus-specific callbacks
 795 * @config: Configuration for register map
 796 *
 797 * The return value will be an ERR_PTR() on error or a valid pointer
 798 * to a struct regmap.  This function should generally not be called
 799 * directly, it should be called by bus-specific init functions.  The
 800 * map will be automatically freed by the device management code.
 801 */
 802struct regmap *devm_regmap_init(struct device *dev,
 803				const struct regmap_bus *bus,
 804				void *bus_context,
 805				const struct regmap_config *config)
 806{
 807	struct regmap **ptr, *regmap;
 808
 809	ptr = devres_alloc(devm_regmap_release, sizeof(*ptr), GFP_KERNEL);
 810	if (!ptr)
 811		return ERR_PTR(-ENOMEM);
 812
 813	regmap = regmap_init(dev, bus, bus_context, config);
 814	if (!IS_ERR(regmap)) {
 815		*ptr = regmap;
 816		devres_add(dev, ptr);
 817	} else {
 818		devres_free(ptr);
 819	}
 820
 821	return regmap;
 822}
 823EXPORT_SYMBOL_GPL(devm_regmap_init);
 824
 825static void regmap_field_init(struct regmap_field *rm_field,
 826	struct regmap *regmap, struct reg_field reg_field)
 827{
 828	int field_bits = reg_field.msb - reg_field.lsb + 1;
 829	rm_field->regmap = regmap;
 830	rm_field->reg = reg_field.reg;
 831	rm_field->shift = reg_field.lsb;
 832	rm_field->mask = ((BIT(field_bits) - 1) << reg_field.lsb);
 833	rm_field->id_size = reg_field.id_size;
 834	rm_field->id_offset = reg_field.id_offset;
 835}
 836
 837/**
 838 * devm_regmap_field_alloc(): Allocate and initialise a register field
 839 * in a register map.
 840 *
 841 * @dev: Device that will be interacted with
 842 * @regmap: regmap bank in which this register field is located.
 843 * @reg_field: Register field with in the bank.
 844 *
 845 * The return value will be an ERR_PTR() on error or a valid pointer
 846 * to a struct regmap_field. The regmap_field will be automatically freed
 847 * by the device management code.
 848 */
 849struct regmap_field *devm_regmap_field_alloc(struct device *dev,
 850		struct regmap *regmap, struct reg_field reg_field)
 851{
 852	struct regmap_field *rm_field = devm_kzalloc(dev,
 853					sizeof(*rm_field), GFP_KERNEL);
 854	if (!rm_field)
 855		return ERR_PTR(-ENOMEM);
 856
 857	regmap_field_init(rm_field, regmap, reg_field);
 858
 859	return rm_field;
 860
 861}
 862EXPORT_SYMBOL_GPL(devm_regmap_field_alloc);
 863
 864/**
 865 * devm_regmap_field_free(): Free register field allocated using
 866 * devm_regmap_field_alloc. Usally drivers need not call this function,
 867 * as the memory allocated via devm will be freed as per device-driver
 868 * life-cyle.
 869 *
 870 * @dev: Device that will be interacted with
 871 * @field: regmap field which should be freed.
 872 */
 873void devm_regmap_field_free(struct device *dev,
 874	struct regmap_field *field)
 875{
 876	devm_kfree(dev, field);
 877}
 878EXPORT_SYMBOL_GPL(devm_regmap_field_free);
 879
 880/**
 881 * regmap_field_alloc(): Allocate and initialise a register field
 882 * in a register map.
 883 *
 884 * @regmap: regmap bank in which this register field is located.
 885 * @reg_field: Register field with in the bank.
 886 *
 887 * The return value will be an ERR_PTR() on error or a valid pointer
 888 * to a struct regmap_field. The regmap_field should be freed by the
 889 * user once its finished working with it using regmap_field_free().
 890 */
 891struct regmap_field *regmap_field_alloc(struct regmap *regmap,
 892		struct reg_field reg_field)
 893{
 894	struct regmap_field *rm_field = kzalloc(sizeof(*rm_field), GFP_KERNEL);
 895
 896	if (!rm_field)
 897		return ERR_PTR(-ENOMEM);
 898
 899	regmap_field_init(rm_field, regmap, reg_field);
 900
 901	return rm_field;
 902}
 903EXPORT_SYMBOL_GPL(regmap_field_alloc);
 904
 905/**
 906 * regmap_field_free(): Free register field allocated using regmap_field_alloc
 907 *
 908 * @field: regmap field which should be freed.
 909 */
 910void regmap_field_free(struct regmap_field *field)
 911{
 912	kfree(field);
 913}
 914EXPORT_SYMBOL_GPL(regmap_field_free);
 915
 916/**
 917 * regmap_reinit_cache(): Reinitialise the current register cache
 918 *
 919 * @map: Register map to operate on.
 920 * @config: New configuration.  Only the cache data will be used.
 921 *
 922 * Discard any existing register cache for the map and initialize a
 923 * new cache.  This can be used to restore the cache to defaults or to
 924 * update the cache configuration to reflect runtime discovery of the
 925 * hardware.
 926 *
 927 * No explicit locking is done here, the user needs to ensure that
 928 * this function will not race with other calls to regmap.
 929 */
 930int regmap_reinit_cache(struct regmap *map, const struct regmap_config *config)
 931{
 932	regcache_exit(map);
 933	regmap_debugfs_exit(map);
 934
 935	map->max_register = config->max_register;
 936	map->writeable_reg = config->writeable_reg;
 937	map->readable_reg = config->readable_reg;
 938	map->volatile_reg = config->volatile_reg;
 939	map->precious_reg = config->precious_reg;
 940	map->cache_type = config->cache_type;
 941
 942	regmap_debugfs_init(map, config->name);
 943
 944	map->cache_bypass = false;
 945	map->cache_only = false;
 946
 947	return regcache_init(map, config);
 948}
 949EXPORT_SYMBOL_GPL(regmap_reinit_cache);
 950
 951/**
 952 * regmap_exit(): Free a previously allocated register map
 953 */
 954void regmap_exit(struct regmap *map)
 955{
 956	struct regmap_async *async;
 957
 958	regcache_exit(map);
 959	regmap_debugfs_exit(map);
 960	regmap_range_exit(map);
 961	if (map->bus && map->bus->free_context)
 962		map->bus->free_context(map->bus_context);
 963	kfree(map->work_buf);
 964	while (!list_empty(&map->async_free)) {
 965		async = list_first_entry_or_null(&map->async_free,
 966						 struct regmap_async,
 967						 list);
 968		list_del(&async->list);
 969		kfree(async->work_buf);
 970		kfree(async);
 971	}
 972	kfree(map);
 973}
 974EXPORT_SYMBOL_GPL(regmap_exit);
 975
 976static int dev_get_regmap_match(struct device *dev, void *res, void *data)
 977{
 978	struct regmap **r = res;
 979	if (!r || !*r) {
 980		WARN_ON(!r || !*r);
 981		return 0;
 982	}
 983
 984	/* If the user didn't specify a name match any */
 985	if (data)
 986		return (*r)->name == data;
 987	else
 988		return 1;
 989}
 990
 991/**
 992 * dev_get_regmap(): Obtain the regmap (if any) for a device
 993 *
 994 * @dev: Device to retrieve the map for
 995 * @name: Optional name for the register map, usually NULL.
 996 *
 997 * Returns the regmap for the device if one is present, or NULL.  If
 998 * name is specified then it must match the name specified when
 999 * registering the device, if it is NULL then the first regmap found
1000 * will be used.  Devices with multiple register maps are very rare,
1001 * generic code should normally not need to specify a name.
1002 */
1003struct regmap *dev_get_regmap(struct device *dev, const char *name)
1004{
1005	struct regmap **r = devres_find(dev, dev_get_regmap_release,
1006					dev_get_regmap_match, (void *)name);
1007
1008	if (!r)
1009		return NULL;
1010	return *r;
1011}
1012EXPORT_SYMBOL_GPL(dev_get_regmap);
1013
1014static int _regmap_select_page(struct regmap *map, unsigned int *reg,
1015			       struct regmap_range_node *range,
1016			       unsigned int val_num)
1017{
1018	void *orig_work_buf;
1019	unsigned int win_offset;
1020	unsigned int win_page;
1021	bool page_chg;
1022	int ret;
1023
1024	win_offset = (*reg - range->range_min) % range->window_len;
1025	win_page = (*reg - range->range_min) / range->window_len;
1026
1027	if (val_num > 1) {
1028		/* Bulk write shouldn't cross range boundary */
1029		if (*reg + val_num - 1 > range->range_max)
1030			return -EINVAL;
1031
1032		/* ... or single page boundary */
1033		if (val_num > range->window_len - win_offset)
1034			return -EINVAL;
1035	}
1036
1037	/* It is possible to have selector register inside data window.
1038	   In that case, selector register is located on every page and
1039	   it needs no page switching, when accessed alone. */
1040	if (val_num > 1 ||
1041	    range->window_start + win_offset != range->selector_reg) {
1042		/* Use separate work_buf during page switching */
1043		orig_work_buf = map->work_buf;
1044		map->work_buf = map->selector_work_buf;
1045
1046		ret = _regmap_update_bits(map, range->selector_reg,
1047					  range->selector_mask,
1048					  win_page << range->selector_shift,
1049					  &page_chg);
1050
1051		map->work_buf = orig_work_buf;
1052
1053		if (ret != 0)
1054			return ret;
1055	}
1056
1057	*reg = range->window_start + win_offset;
1058
1059	return 0;
1060}
1061
1062int _regmap_raw_write(struct regmap *map, unsigned int reg,
1063		      const void *val, size_t val_len)
1064{
1065	struct regmap_range_node *range;
1066	unsigned long flags;
1067	u8 *u8 = map->work_buf;
1068	void *work_val = map->work_buf + map->format.reg_bytes +
1069		map->format.pad_bytes;
1070	void *buf;
1071	int ret = -ENOTSUPP;
1072	size_t len;
1073	int i;
1074
1075	WARN_ON(!map->bus);
1076
1077	/* Check for unwritable registers before we start */
1078	if (map->writeable_reg)
1079		for (i = 0; i < val_len / map->format.val_bytes; i++)
1080			if (!map->writeable_reg(map->dev,
1081						reg + (i * map->reg_stride)))
1082				return -EINVAL;
1083
1084	if (!map->cache_bypass && map->format.parse_val) {
1085		unsigned int ival;
1086		int val_bytes = map->format.val_bytes;
1087		for (i = 0; i < val_len / val_bytes; i++) {
1088			ival = map->format.parse_val(val + (i * val_bytes));
1089			ret = regcache_write(map, reg + (i * map->reg_stride),
1090					     ival);
1091			if (ret) {
1092				dev_err(map->dev,
1093					"Error in caching of register: %x ret: %d\n",
1094					reg + i, ret);
1095				return ret;
1096			}
1097		}
1098		if (map->cache_only) {
1099			map->cache_dirty = true;
1100			return 0;
1101		}
1102	}
1103
1104	range = _regmap_range_lookup(map, reg);
1105	if (range) {
1106		int val_num = val_len / map->format.val_bytes;
1107		int win_offset = (reg - range->range_min) % range->window_len;
1108		int win_residue = range->window_len - win_offset;
1109
1110		/* If the write goes beyond the end of the window split it */
1111		while (val_num > win_residue) {
1112			dev_dbg(map->dev, "Writing window %d/%zu\n",
1113				win_residue, val_len / map->format.val_bytes);
1114			ret = _regmap_raw_write(map, reg, val, win_residue *
1115						map->format.val_bytes);
1116			if (ret != 0)
1117				return ret;
1118
1119			reg += win_residue;
1120			val_num -= win_residue;
1121			val += win_residue * map->format.val_bytes;
1122			val_len -= win_residue * map->format.val_bytes;
1123
1124			win_offset = (reg - range->range_min) %
1125				range->window_len;
1126			win_residue = range->window_len - win_offset;
1127		}
1128
1129		ret = _regmap_select_page(map, &reg, range, val_num);
1130		if (ret != 0)
1131			return ret;
1132	}
1133
1134	map->format.format_reg(map->work_buf, reg, map->reg_shift);
1135
1136	u8[0] |= map->write_flag_mask;
1137
1138	/*
1139	 * Essentially all I/O mechanisms will be faster with a single
1140	 * buffer to write.  Since register syncs often generate raw
1141	 * writes of single registers optimise that case.
1142	 */
1143	if (val != work_val && val_len == map->format.val_bytes) {
1144		memcpy(work_val, val, map->format.val_bytes);
1145		val = work_val;
1146	}
1147
1148	if (map->async && map->bus->async_write) {
1149		struct regmap_async *async;
1150
1151		trace_regmap_async_write_start(map->dev, reg, val_len);
1152
1153		spin_lock_irqsave(&map->async_lock, flags);
1154		async = list_first_entry_or_null(&map->async_free,
1155						 struct regmap_async,
1156						 list);
1157		if (async)
1158			list_del(&async->list);
1159		spin_unlock_irqrestore(&map->async_lock, flags);
1160
1161		if (!async) {
1162			async = map->bus->async_alloc();
1163			if (!async)
1164				return -ENOMEM;
1165
1166			async->work_buf = kzalloc(map->format.buf_size,
1167						  GFP_KERNEL | GFP_DMA);
1168			if (!async->work_buf) {
1169				kfree(async);
1170				return -ENOMEM;
1171			}
1172		}
1173
1174		async->map = map;
1175
1176		/* If the caller supplied the value we can use it safely. */
1177		memcpy(async->work_buf, map->work_buf, map->format.pad_bytes +
1178		       map->format.reg_bytes + map->format.val_bytes);
1179
1180		spin_lock_irqsave(&map->async_lock, flags);
1181		list_add_tail(&async->list, &map->async_list);
1182		spin_unlock_irqrestore(&map->async_lock, flags);
1183
1184		if (val != work_val)
1185			ret = map->bus->async_write(map->bus_context,
1186						    async->work_buf,
1187						    map->format.reg_bytes +
1188						    map->format.pad_bytes,
1189						    val, val_len, async);
1190		else
1191			ret = map->bus->async_write(map->bus_context,
1192						    async->work_buf,
1193						    map->format.reg_bytes +
1194						    map->format.pad_bytes +
1195						    val_len, NULL, 0, async);
1196
1197		if (ret != 0) {
1198			dev_err(map->dev, "Failed to schedule write: %d\n",
1199				ret);
1200
1201			spin_lock_irqsave(&map->async_lock, flags);
1202			list_move(&async->list, &map->async_free);
1203			spin_unlock_irqrestore(&map->async_lock, flags);
1204		}
1205
1206		return ret;
1207	}
1208
1209	trace_regmap_hw_write_start(map->dev, reg,
1210				    val_len / map->format.val_bytes);
1211
1212	/* If we're doing a single register write we can probably just
1213	 * send the work_buf directly, otherwise try to do a gather
1214	 * write.
1215	 */
1216	if (val == work_val)
1217		ret = map->bus->write(map->bus_context, map->work_buf,
1218				      map->format.reg_bytes +
1219				      map->format.pad_bytes +
1220				      val_len);
1221	else if (map->bus->gather_write)
1222		ret = map->bus->gather_write(map->bus_context, map->work_buf,
1223					     map->format.reg_bytes +
1224					     map->format.pad_bytes,
1225					     val, val_len);
1226
1227	/* If that didn't work fall back on linearising by hand. */
1228	if (ret == -ENOTSUPP) {
1229		len = map->format.reg_bytes + map->format.pad_bytes + val_len;
1230		buf = kzalloc(len, GFP_KERNEL);
1231		if (!buf)
1232			return -ENOMEM;
1233
1234		memcpy(buf, map->work_buf, map->format.reg_bytes);
1235		memcpy(buf + map->format.reg_bytes + map->format.pad_bytes,
1236		       val, val_len);
1237		ret = map->bus->write(map->bus_context, buf, len);
1238
1239		kfree(buf);
1240	}
1241
1242	trace_regmap_hw_write_done(map->dev, reg,
1243				   val_len / map->format.val_bytes);
1244
1245	return ret;
1246}
1247
1248/**
1249 * regmap_can_raw_write - Test if regmap_raw_write() is supported
1250 *
1251 * @map: Map to check.
1252 */
1253bool regmap_can_raw_write(struct regmap *map)
1254{
1255	return map->bus && map->format.format_val && map->format.format_reg;
1256}
1257EXPORT_SYMBOL_GPL(regmap_can_raw_write);
1258
1259static int _regmap_bus_formatted_write(void *context, unsigned int reg,
1260				       unsigned int val)
1261{
1262	int ret;
1263	struct regmap_range_node *range;
1264	struct regmap *map = context;
1265
1266	WARN_ON(!map->bus || !map->format.format_write);
 
1267
1268	range = _regmap_range_lookup(map, reg);
1269	if (range) {
1270		ret = _regmap_select_page(map, &reg, range, 1);
1271		if (ret != 0)
1272			return ret;
 
 
 
1273	}
1274
1275	map->format.format_write(map, reg, val);
1276
1277	trace_regmap_hw_write_start(map->dev, reg, 1);
1278
1279	ret = map->bus->write(map->bus_context, map->work_buf,
1280			      map->format.buf_size);
1281
1282	trace_regmap_hw_write_done(map->dev, reg, 1);
1283
1284	return ret;
1285}
1286
1287static int _regmap_bus_raw_write(void *context, unsigned int reg,
1288				 unsigned int val)
1289{
1290	struct regmap *map = context;
1291
1292	WARN_ON(!map->bus || !map->format.format_val);
1293
1294	map->format.format_val(map->work_buf + map->format.reg_bytes
1295			       + map->format.pad_bytes, val, 0);
1296	return _regmap_raw_write(map, reg,
1297				 map->work_buf +
1298				 map->format.reg_bytes +
1299				 map->format.pad_bytes,
1300				 map->format.val_bytes);
1301}
1302
1303static inline void *_regmap_map_get_context(struct regmap *map)
1304{
1305	return (map->bus) ? map : map->bus_context;
1306}
1307
1308int _regmap_write(struct regmap *map, unsigned int reg,
1309		  unsigned int val)
1310{
1311	int ret;
1312	void *context = _regmap_map_get_context(map);
1313
1314	if (!regmap_writeable(map, reg))
1315		return -EIO;
1316
1317	if (!map->cache_bypass && !map->defer_caching) {
1318		ret = regcache_write(map, reg, val);
1319		if (ret != 0)
1320			return ret;
1321		if (map->cache_only) {
1322			map->cache_dirty = true;
1323			return 0;
1324		}
1325	}
1326
1327#ifdef LOG_DEVICE
1328	if (strcmp(dev_name(map->dev), LOG_DEVICE) == 0)
1329		dev_info(map->dev, "%x <= %x\n", reg, val);
1330#endif
1331
1332	trace_regmap_reg_write(map->dev, reg, val);
1333
1334	return map->reg_write(context, reg, val);
1335}
1336
1337/**
1338 * regmap_write(): Write a value to a single register
1339 *
1340 * @map: Register map to write to
1341 * @reg: Register to write to
1342 * @val: Value to be written
1343 *
1344 * A value of zero will be returned on success, a negative errno will
1345 * be returned in error cases.
1346 */
1347int regmap_write(struct regmap *map, unsigned int reg, unsigned int val)
1348{
1349	int ret;
1350
1351	if (reg % map->reg_stride)
1352		return -EINVAL;
1353
1354	map->lock(map->lock_arg);
1355
1356	ret = _regmap_write(map, reg, val);
1357
1358	map->unlock(map->lock_arg);
1359
1360	return ret;
1361}
1362EXPORT_SYMBOL_GPL(regmap_write);
1363
1364/**
1365 * regmap_write_async(): Write a value to a single register asynchronously
1366 *
1367 * @map: Register map to write to
1368 * @reg: Register to write to
1369 * @val: Value to be written
1370 *
1371 * A value of zero will be returned on success, a negative errno will
1372 * be returned in error cases.
1373 */
1374int regmap_write_async(struct regmap *map, unsigned int reg, unsigned int val)
1375{
1376	int ret;
1377
1378	if (reg % map->reg_stride)
1379		return -EINVAL;
1380
1381	map->lock(map->lock_arg);
1382
1383	map->async = true;
1384
1385	ret = _regmap_write(map, reg, val);
1386
1387	map->async = false;
1388
1389	map->unlock(map->lock_arg);
1390
1391	return ret;
1392}
1393EXPORT_SYMBOL_GPL(regmap_write_async);
1394
1395/**
1396 * regmap_raw_write(): Write raw values to one or more registers
1397 *
1398 * @map: Register map to write to
1399 * @reg: Initial register to write to
1400 * @val: Block of data to be written, laid out for direct transmission to the
1401 *       device
1402 * @val_len: Length of data pointed to by val.
1403 *
1404 * This function is intended to be used for things like firmware
1405 * download where a large block of data needs to be transferred to the
1406 * device.  No formatting will be done on the data provided.
1407 *
1408 * A value of zero will be returned on success, a negative errno will
1409 * be returned in error cases.
1410 */
1411int regmap_raw_write(struct regmap *map, unsigned int reg,
1412		     const void *val, size_t val_len)
1413{
1414	int ret;
1415
1416	if (!regmap_can_raw_write(map))
1417		return -EINVAL;
1418	if (val_len % map->format.val_bytes)
1419		return -EINVAL;
1420
1421	map->lock(map->lock_arg);
1422
1423	ret = _regmap_raw_write(map, reg, val, val_len);
1424
1425	map->unlock(map->lock_arg);
1426
1427	return ret;
1428}
1429EXPORT_SYMBOL_GPL(regmap_raw_write);
1430
1431/**
1432 * regmap_field_write(): Write a value to a single register field
1433 *
1434 * @field: Register field to write to
1435 * @val: Value to be written
1436 *
1437 * A value of zero will be returned on success, a negative errno will
1438 * be returned in error cases.
1439 */
1440int regmap_field_write(struct regmap_field *field, unsigned int val)
1441{
1442	return regmap_update_bits(field->regmap, field->reg,
1443				field->mask, val << field->shift);
1444}
1445EXPORT_SYMBOL_GPL(regmap_field_write);
1446
1447/**
1448 * regmap_field_update_bits():	Perform a read/modify/write cycle
1449 *                              on the register field
1450 *
1451 * @field: Register field to write to
1452 * @mask: Bitmask to change
1453 * @val: Value to be written
1454 *
1455 * A value of zero will be returned on success, a negative errno will
1456 * be returned in error cases.
1457 */
1458int regmap_field_update_bits(struct regmap_field *field, unsigned int mask, unsigned int val)
1459{
1460	mask = (mask << field->shift) & field->mask;
1461
1462	return regmap_update_bits(field->regmap, field->reg,
1463				  mask, val << field->shift);
1464}
1465EXPORT_SYMBOL_GPL(regmap_field_update_bits);
1466
1467/**
1468 * regmap_fields_write(): Write a value to a single register field with port ID
1469 *
1470 * @field: Register field to write to
1471 * @id: port ID
1472 * @val: Value to be written
1473 *
1474 * A value of zero will be returned on success, a negative errno will
1475 * be returned in error cases.
1476 */
1477int regmap_fields_write(struct regmap_field *field, unsigned int id,
1478			unsigned int val)
1479{
1480	if (id >= field->id_size)
1481		return -EINVAL;
1482
1483	return regmap_update_bits(field->regmap,
1484				  field->reg + (field->id_offset * id),
1485				  field->mask, val << field->shift);
1486}
1487EXPORT_SYMBOL_GPL(regmap_fields_write);
1488
1489/**
1490 * regmap_fields_update_bits():	Perform a read/modify/write cycle
1491 *                              on the register field
1492 *
1493 * @field: Register field to write to
1494 * @id: port ID
1495 * @mask: Bitmask to change
1496 * @val: Value to be written
1497 *
1498 * A value of zero will be returned on success, a negative errno will
1499 * be returned in error cases.
1500 */
1501int regmap_fields_update_bits(struct regmap_field *field,  unsigned int id,
1502			      unsigned int mask, unsigned int val)
1503{
1504	if (id >= field->id_size)
1505		return -EINVAL;
1506
1507	mask = (mask << field->shift) & field->mask;
1508
1509	return regmap_update_bits(field->regmap,
1510				  field->reg + (field->id_offset * id),
1511				  mask, val << field->shift);
1512}
1513EXPORT_SYMBOL_GPL(regmap_fields_update_bits);
1514
1515/*
1516 * regmap_bulk_write(): Write multiple registers to the device
1517 *
1518 * @map: Register map to write to
1519 * @reg: First register to be write from
1520 * @val: Block of data to be written, in native register size for device
1521 * @val_count: Number of registers to write
1522 *
1523 * This function is intended to be used for writing a large block of
1524 * data to the device either in single transfer or multiple transfer.
1525 *
1526 * A value of zero will be returned on success, a negative errno will
1527 * be returned in error cases.
1528 */
1529int regmap_bulk_write(struct regmap *map, unsigned int reg, const void *val,
1530		     size_t val_count)
1531{
1532	int ret = 0, i;
1533	size_t val_bytes = map->format.val_bytes;
1534
1535	if (map->bus && !map->format.parse_inplace)
1536		return -EINVAL;
1537	if (reg % map->reg_stride)
1538		return -EINVAL;
1539
1540	/*
1541	 * Some devices don't support bulk write, for
1542	 * them we have a series of single write operations.
1543	 */
1544	if (!map->bus || map->use_single_rw) {
1545		map->lock(map->lock_arg);
1546		for (i = 0; i < val_count; i++) {
1547			unsigned int ival;
1548
1549			switch (val_bytes) {
1550			case 1:
1551				ival = *(u8 *)(val + (i * val_bytes));
1552				break;
1553			case 2:
1554				ival = *(u16 *)(val + (i * val_bytes));
1555				break;
1556			case 4:
1557				ival = *(u32 *)(val + (i * val_bytes));
1558				break;
1559#ifdef CONFIG_64BIT
1560			case 8:
1561				ival = *(u64 *)(val + (i * val_bytes));
1562				break;
1563#endif
1564			default:
1565				ret = -EINVAL;
1566				goto out;
1567			}
1568
1569			ret = _regmap_write(map, reg + (i * map->reg_stride),
1570					ival);
1571			if (ret != 0)
1572				goto out;
1573		}
1574out:
1575		map->unlock(map->lock_arg);
1576	} else {
1577		void *wval;
1578
1579		wval = kmemdup(val, val_count * val_bytes, GFP_KERNEL);
1580		if (!wval) {
1581			dev_err(map->dev, "Error in memory allocation\n");
1582			return -ENOMEM;
1583		}
1584		for (i = 0; i < val_count * val_bytes; i += val_bytes)
1585			map->format.parse_inplace(wval + i);
1586
1587		map->lock(map->lock_arg);
1588		ret = _regmap_raw_write(map, reg, wval, val_bytes * val_count);
1589		map->unlock(map->lock_arg);
1590
1591		kfree(wval);
1592	}
1593	return ret;
1594}
1595EXPORT_SYMBOL_GPL(regmap_bulk_write);
1596
1597/*
1598 * _regmap_raw_multi_reg_write()
1599 *
1600 * the (register,newvalue) pairs in regs have not been formatted, but
1601 * they are all in the same page and have been changed to being page
1602 * relative. The page register has been written if that was neccessary.
1603 */
1604static int _regmap_raw_multi_reg_write(struct regmap *map,
1605				       const struct reg_default *regs,
1606				       size_t num_regs)
1607{
1608	int ret;
1609	void *buf;
1610	int i;
1611	u8 *u8;
1612	size_t val_bytes = map->format.val_bytes;
1613	size_t reg_bytes = map->format.reg_bytes;
1614	size_t pad_bytes = map->format.pad_bytes;
1615	size_t pair_size = reg_bytes + pad_bytes + val_bytes;
1616	size_t len = pair_size * num_regs;
1617
1618	buf = kzalloc(len, GFP_KERNEL);
1619	if (!buf)
1620		return -ENOMEM;
1621
1622	/* We have to linearise by hand. */
1623
1624	u8 = buf;
1625
1626	for (i = 0; i < num_regs; i++) {
1627		int reg = regs[i].reg;
1628		int val = regs[i].def;
1629		trace_regmap_hw_write_start(map->dev, reg, 1);
1630		map->format.format_reg(u8, reg, map->reg_shift);
1631		u8 += reg_bytes + pad_bytes;
1632		map->format.format_val(u8, val, 0);
1633		u8 += val_bytes;
1634	}
1635	u8 = buf;
1636	*u8 |= map->write_flag_mask;
1637
1638	ret = map->bus->write(map->bus_context, buf, len);
1639
1640	kfree(buf);
1641
1642	for (i = 0; i < num_regs; i++) {
1643		int reg = regs[i].reg;
1644		trace_regmap_hw_write_done(map->dev, reg, 1);
1645	}
1646	return ret;
1647}
1648
1649static unsigned int _regmap_register_page(struct regmap *map,
1650					  unsigned int reg,
1651					  struct regmap_range_node *range)
1652{
1653	unsigned int win_page = (reg - range->range_min) / range->window_len;
1654
1655	return win_page;
1656}
1657
1658static int _regmap_range_multi_paged_reg_write(struct regmap *map,
1659					       struct reg_default *regs,
1660					       size_t num_regs)
1661{
1662	int ret;
1663	int i, n;
1664	struct reg_default *base;
1665	unsigned int this_page;
1666	/*
1667	 * the set of registers are not neccessarily in order, but
1668	 * since the order of write must be preserved this algorithm
1669	 * chops the set each time the page changes
1670	 */
1671	base = regs;
1672	for (i = 0, n = 0; i < num_regs; i++, n++) {
1673		unsigned int reg = regs[i].reg;
1674		struct regmap_range_node *range;
1675
1676		range = _regmap_range_lookup(map, reg);
1677		if (range) {
1678			unsigned int win_page = _regmap_register_page(map, reg,
1679								      range);
1680
1681			if (i == 0)
1682				this_page = win_page;
1683			if (win_page != this_page) {
1684				this_page = win_page;
1685				ret = _regmap_raw_multi_reg_write(map, base, n);
1686				if (ret != 0)
1687					return ret;
1688				base += n;
1689				n = 0;
1690			}
1691			ret = _regmap_select_page(map, &base[n].reg, range, 1);
1692			if (ret != 0)
1693				return ret;
1694		}
1695	}
1696	if (n > 0)
1697		return _regmap_raw_multi_reg_write(map, base, n);
1698	return 0;
1699}
1700
1701static int _regmap_multi_reg_write(struct regmap *map,
1702				   const struct reg_default *regs,
1703				   size_t num_regs)
1704{
1705	int i;
1706	int ret;
1707
1708	if (!map->can_multi_write) {
1709		for (i = 0; i < num_regs; i++) {
1710			ret = _regmap_write(map, regs[i].reg, regs[i].def);
1711			if (ret != 0)
1712				return ret;
1713		}
1714		return 0;
1715	}
1716
1717	if (!map->format.parse_inplace)
1718		return -EINVAL;
1719
1720	if (map->writeable_reg)
1721		for (i = 0; i < num_regs; i++) {
1722			int reg = regs[i].reg;
1723			if (!map->writeable_reg(map->dev, reg))
1724				return -EINVAL;
1725			if (reg % map->reg_stride)
1726				return -EINVAL;
1727		}
1728
1729	if (!map->cache_bypass) {
1730		for (i = 0; i < num_regs; i++) {
1731			unsigned int val = regs[i].def;
1732			unsigned int reg = regs[i].reg;
1733			ret = regcache_write(map, reg, val);
1734			if (ret) {
1735				dev_err(map->dev,
1736				"Error in caching of register: %x ret: %d\n",
1737								reg, ret);
1738				return ret;
1739			}
1740		}
1741		if (map->cache_only) {
1742			map->cache_dirty = true;
1743			return 0;
1744		}
1745	}
1746
1747	WARN_ON(!map->bus);
1748
1749	for (i = 0; i < num_regs; i++) {
1750		unsigned int reg = regs[i].reg;
1751		struct regmap_range_node *range;
1752		range = _regmap_range_lookup(map, reg);
1753		if (range) {
1754			size_t len = sizeof(struct reg_default)*num_regs;
1755			struct reg_default *base = kmemdup(regs, len,
1756							   GFP_KERNEL);
1757			if (!base)
1758				return -ENOMEM;
1759			ret = _regmap_range_multi_paged_reg_write(map, base,
1760								  num_regs);
1761			kfree(base);
1762
1763			return ret;
1764		}
1765	}
1766	return _regmap_raw_multi_reg_write(map, regs, num_regs);
1767}
1768
1769/*
1770 * regmap_multi_reg_write(): Write multiple registers to the device
1771 *
1772 * where the set of register,value pairs are supplied in any order,
1773 * possibly not all in a single range.
1774 *
1775 * @map: Register map to write to
1776 * @regs: Array of structures containing register,value to be written
1777 * @num_regs: Number of registers to write
1778 *
1779 * The 'normal' block write mode will send ultimately send data on the
1780 * target bus as R,V1,V2,V3,..,Vn where successively higer registers are
1781 * addressed. However, this alternative block multi write mode will send
1782 * the data as R1,V1,R2,V2,..,Rn,Vn on the target bus. The target device
1783 * must of course support the mode.
1784 *
1785 * A value of zero will be returned on success, a negative errno will be
1786 * returned in error cases.
1787 */
1788int regmap_multi_reg_write(struct regmap *map, const struct reg_default *regs,
1789			   int num_regs)
1790{
1791	int ret;
1792
1793	map->lock(map->lock_arg);
1794
1795	ret = _regmap_multi_reg_write(map, regs, num_regs);
1796
1797	map->unlock(map->lock_arg);
1798
1799	return ret;
1800}
1801EXPORT_SYMBOL_GPL(regmap_multi_reg_write);
1802
1803/*
1804 * regmap_multi_reg_write_bypassed(): Write multiple registers to the
1805 *                                    device but not the cache
1806 *
1807 * where the set of register are supplied in any order
1808 *
1809 * @map: Register map to write to
1810 * @regs: Array of structures containing register,value to be written
1811 * @num_regs: Number of registers to write
1812 *
1813 * This function is intended to be used for writing a large block of data
1814 * atomically to the device in single transfer for those I2C client devices
1815 * that implement this alternative block write mode.
1816 *
1817 * A value of zero will be returned on success, a negative errno will
1818 * be returned in error cases.
1819 */
1820int regmap_multi_reg_write_bypassed(struct regmap *map,
1821				    const struct reg_default *regs,
1822				    int num_regs)
1823{
1824	int ret;
1825	bool bypass;
1826
1827	map->lock(map->lock_arg);
1828
1829	bypass = map->cache_bypass;
1830	map->cache_bypass = true;
1831
1832	ret = _regmap_multi_reg_write(map, regs, num_regs);
1833
1834	map->cache_bypass = bypass;
1835
1836	map->unlock(map->lock_arg);
1837
1838	return ret;
1839}
1840EXPORT_SYMBOL_GPL(regmap_multi_reg_write_bypassed);
1841
1842/**
1843 * regmap_raw_write_async(): Write raw values to one or more registers
1844 *                           asynchronously
1845 *
1846 * @map: Register map to write to
1847 * @reg: Initial register to write to
1848 * @val: Block of data to be written, laid out for direct transmission to the
1849 *       device.  Must be valid until regmap_async_complete() is called.
1850 * @val_len: Length of data pointed to by val.
1851 *
1852 * This function is intended to be used for things like firmware
1853 * download where a large block of data needs to be transferred to the
1854 * device.  No formatting will be done on the data provided.
1855 *
1856 * If supported by the underlying bus the write will be scheduled
1857 * asynchronously, helping maximise I/O speed on higher speed buses
1858 * like SPI.  regmap_async_complete() can be called to ensure that all
1859 * asynchrnous writes have been completed.
1860 *
1861 * A value of zero will be returned on success, a negative errno will
1862 * be returned in error cases.
1863 */
1864int regmap_raw_write_async(struct regmap *map, unsigned int reg,
1865			   const void *val, size_t val_len)
1866{
1867	int ret;
1868
1869	if (val_len % map->format.val_bytes)
1870		return -EINVAL;
1871	if (reg % map->reg_stride)
1872		return -EINVAL;
1873
1874	map->lock(map->lock_arg);
1875
1876	map->async = true;
1877
1878	ret = _regmap_raw_write(map, reg, val, val_len);
1879
1880	map->async = false;
1881
1882	map->unlock(map->lock_arg);
1883
1884	return ret;
1885}
1886EXPORT_SYMBOL_GPL(regmap_raw_write_async);
1887
1888static int _regmap_raw_read(struct regmap *map, unsigned int reg, void *val,
1889			    unsigned int val_len)
1890{
1891	struct regmap_range_node *range;
1892	u8 *u8 = map->work_buf;
1893	int ret;
1894
1895	WARN_ON(!map->bus);
1896
1897	range = _regmap_range_lookup(map, reg);
1898	if (range) {
1899		ret = _regmap_select_page(map, &reg, range,
1900					  val_len / map->format.val_bytes);
1901		if (ret != 0)
1902			return ret;
1903	}
1904
1905	map->format.format_reg(map->work_buf, reg, map->reg_shift);
1906
1907	/*
1908	 * Some buses or devices flag reads by setting the high bits in the
1909	 * register addresss; since it's always the high bits for all
1910	 * current formats we can do this here rather than in
1911	 * formatting.  This may break if we get interesting formats.
1912	 */
1913	u8[0] |= map->read_flag_mask;
 
1914
1915	trace_regmap_hw_read_start(map->dev, reg,
1916				   val_len / map->format.val_bytes);
1917
1918	ret = map->bus->read(map->bus_context, map->work_buf,
1919			     map->format.reg_bytes + map->format.pad_bytes,
1920			     val, val_len);
 
 
1921
1922	trace_regmap_hw_read_done(map->dev, reg,
1923				  val_len / map->format.val_bytes);
1924
1925	return ret;
1926}
1927
1928static int _regmap_bus_read(void *context, unsigned int reg,
1929			    unsigned int *val)
1930{
1931	int ret;
1932	struct regmap *map = context;
1933
1934	if (!map->format.parse_val)
1935		return -EINVAL;
1936
1937	ret = _regmap_raw_read(map, reg, map->work_buf, map->format.val_bytes);
1938	if (ret == 0)
1939		*val = map->format.parse_val(map->work_buf);
1940
1941	return ret;
1942}
1943
1944static int _regmap_read(struct regmap *map, unsigned int reg,
1945			unsigned int *val)
1946{
1947	int ret;
1948	void *context = _regmap_map_get_context(map);
1949
1950	WARN_ON(!map->reg_read);
1951
1952	if (!map->cache_bypass) {
1953		ret = regcache_read(map, reg, val);
1954		if (ret == 0)
1955			return 0;
1956	}
1957
1958	if (map->cache_only)
1959		return -EBUSY;
1960
1961	if (!regmap_readable(map, reg))
1962		return -EIO;
1963
1964	ret = map->reg_read(context, reg, val);
1965	if (ret == 0) {
1966#ifdef LOG_DEVICE
1967		if (strcmp(dev_name(map->dev), LOG_DEVICE) == 0)
1968			dev_info(map->dev, "%x => %x\n", reg, *val);
1969#endif
1970
1971		trace_regmap_reg_read(map->dev, reg, *val);
1972
1973		if (!map->cache_bypass)
1974			regcache_write(map, reg, *val);
1975	}
1976
1977	return ret;
1978}
1979
1980/**
1981 * regmap_read(): Read a value from a single register
1982 *
1983 * @map: Register map to read from
1984 * @reg: Register to be read from
1985 * @val: Pointer to store read value
1986 *
1987 * A value of zero will be returned on success, a negative errno will
1988 * be returned in error cases.
1989 */
1990int regmap_read(struct regmap *map, unsigned int reg, unsigned int *val)
1991{
1992	int ret;
1993
1994	if (reg % map->reg_stride)
1995		return -EINVAL;
1996
1997	map->lock(map->lock_arg);
1998
1999	ret = _regmap_read(map, reg, val);
2000
2001	map->unlock(map->lock_arg);
2002
2003	return ret;
2004}
2005EXPORT_SYMBOL_GPL(regmap_read);
2006
2007/**
2008 * regmap_raw_read(): Read raw data from the device
2009 *
2010 * @map: Register map to read from
2011 * @reg: First register to be read from
2012 * @val: Pointer to store read value
2013 * @val_len: Size of data to read
2014 *
2015 * A value of zero will be returned on success, a negative errno will
2016 * be returned in error cases.
2017 */
2018int regmap_raw_read(struct regmap *map, unsigned int reg, void *val,
2019		    size_t val_len)
2020{
2021	size_t val_bytes = map->format.val_bytes;
2022	size_t val_count = val_len / val_bytes;
2023	unsigned int v;
2024	int ret, i;
2025
2026	if (!map->bus)
2027		return -EINVAL;
2028	if (val_len % map->format.val_bytes)
2029		return -EINVAL;
2030	if (reg % map->reg_stride)
2031		return -EINVAL;
2032
2033	map->lock(map->lock_arg);
2034
2035	if (regmap_volatile_range(map, reg, val_count) || map->cache_bypass ||
2036	    map->cache_type == REGCACHE_NONE) {
2037		/* Physical block read if there's no cache involved */
2038		ret = _regmap_raw_read(map, reg, val, val_len);
2039
2040	} else {
2041		/* Otherwise go word by word for the cache; should be low
2042		 * cost as we expect to hit the cache.
2043		 */
2044		for (i = 0; i < val_count; i++) {
2045			ret = _regmap_read(map, reg + (i * map->reg_stride),
2046					   &v);
2047			if (ret != 0)
2048				goto out;
2049
2050			map->format.format_val(val + (i * val_bytes), v, 0);
2051		}
2052	}
2053
2054 out:
2055	map->unlock(map->lock_arg);
2056
2057	return ret;
2058}
2059EXPORT_SYMBOL_GPL(regmap_raw_read);
2060
2061/**
2062 * regmap_field_read(): Read a value to a single register field
2063 *
2064 * @field: Register field to read from
2065 * @val: Pointer to store read value
2066 *
2067 * A value of zero will be returned on success, a negative errno will
2068 * be returned in error cases.
2069 */
2070int regmap_field_read(struct regmap_field *field, unsigned int *val)
2071{
2072	int ret;
2073	unsigned int reg_val;
2074	ret = regmap_read(field->regmap, field->reg, &reg_val);
2075	if (ret != 0)
2076		return ret;
2077
2078	reg_val &= field->mask;
2079	reg_val >>= field->shift;
2080	*val = reg_val;
2081
2082	return ret;
2083}
2084EXPORT_SYMBOL_GPL(regmap_field_read);
2085
2086/**
2087 * regmap_fields_read(): Read a value to a single register field with port ID
2088 *
2089 * @field: Register field to read from
2090 * @id: port ID
2091 * @val: Pointer to store read value
2092 *
2093 * A value of zero will be returned on success, a negative errno will
2094 * be returned in error cases.
2095 */
2096int regmap_fields_read(struct regmap_field *field, unsigned int id,
2097		       unsigned int *val)
2098{
2099	int ret;
2100	unsigned int reg_val;
2101
2102	if (id >= field->id_size)
2103		return -EINVAL;
2104
2105	ret = regmap_read(field->regmap,
2106			  field->reg + (field->id_offset * id),
2107			  &reg_val);
2108	if (ret != 0)
2109		return ret;
2110
2111	reg_val &= field->mask;
2112	reg_val >>= field->shift;
2113	*val = reg_val;
2114
2115	return ret;
2116}
2117EXPORT_SYMBOL_GPL(regmap_fields_read);
2118
2119/**
2120 * regmap_bulk_read(): Read multiple registers from the device
2121 *
2122 * @map: Register map to read from
2123 * @reg: First register to be read from
2124 * @val: Pointer to store read value, in native register size for device
2125 * @val_count: Number of registers to read
2126 *
2127 * A value of zero will be returned on success, a negative errno will
2128 * be returned in error cases.
2129 */
2130int regmap_bulk_read(struct regmap *map, unsigned int reg, void *val,
2131		     size_t val_count)
2132{
2133	int ret, i;
2134	size_t val_bytes = map->format.val_bytes;
2135	bool vol = regmap_volatile_range(map, reg, val_count);
2136
2137	if (reg % map->reg_stride)
2138		return -EINVAL;
2139
2140	if (map->bus && map->format.parse_inplace && (vol || map->cache_type == REGCACHE_NONE)) {
2141		/*
2142		 * Some devices does not support bulk read, for
2143		 * them we have a series of single read operations.
2144		 */
2145		if (map->use_single_rw) {
2146			for (i = 0; i < val_count; i++) {
2147				ret = regmap_raw_read(map,
2148						reg + (i * map->reg_stride),
2149						val + (i * val_bytes),
2150						val_bytes);
2151				if (ret != 0)
2152					return ret;
2153			}
2154		} else {
2155			ret = regmap_raw_read(map, reg, val,
2156					      val_bytes * val_count);
2157			if (ret != 0)
2158				return ret;
2159		}
2160
2161		for (i = 0; i < val_count * val_bytes; i += val_bytes)
2162			map->format.parse_inplace(val + i);
2163	} else {
2164		for (i = 0; i < val_count; i++) {
2165			unsigned int ival;
2166			ret = regmap_read(map, reg + (i * map->reg_stride),
2167					  &ival);
2168			if (ret != 0)
2169				return ret;
2170			memcpy(val + (i * val_bytes), &ival, val_bytes);
2171		}
2172	}
2173
2174	return 0;
2175}
2176EXPORT_SYMBOL_GPL(regmap_bulk_read);
2177
2178static int _regmap_update_bits(struct regmap *map, unsigned int reg,
2179			       unsigned int mask, unsigned int val,
2180			       bool *change)
2181{
2182	int ret;
2183	unsigned int tmp, orig;
2184
2185	ret = _regmap_read(map, reg, &orig);
2186	if (ret != 0)
2187		return ret;
2188
2189	tmp = orig & ~mask;
2190	tmp |= val & mask;
2191
2192	if (tmp != orig) {
2193		ret = _regmap_write(map, reg, tmp);
2194		if (change)
2195			*change = true;
2196	} else {
2197		if (change)
2198			*change = false;
2199	}
2200
2201	return ret;
2202}
2203
2204/**
2205 * regmap_update_bits: Perform a read/modify/write cycle on the register map
2206 *
2207 * @map: Register map to update
2208 * @reg: Register to update
2209 * @mask: Bitmask to change
2210 * @val: New value for bitmask
2211 *
2212 * Returns zero for success, a negative number on error.
2213 */
2214int regmap_update_bits(struct regmap *map, unsigned int reg,
2215		       unsigned int mask, unsigned int val)
2216{
2217	int ret;
 
2218
2219	map->lock(map->lock_arg);
2220	ret = _regmap_update_bits(map, reg, mask, val, NULL);
2221	map->unlock(map->lock_arg);
2222
2223	return ret;
2224}
2225EXPORT_SYMBOL_GPL(regmap_update_bits);
2226
2227/**
2228 * regmap_update_bits_async: Perform a read/modify/write cycle on the register
2229 *                           map asynchronously
2230 *
2231 * @map: Register map to update
2232 * @reg: Register to update
2233 * @mask: Bitmask to change
2234 * @val: New value for bitmask
2235 *
2236 * With most buses the read must be done synchronously so this is most
2237 * useful for devices with a cache which do not need to interact with
2238 * the hardware to determine the current register value.
2239 *
2240 * Returns zero for success, a negative number on error.
2241 */
2242int regmap_update_bits_async(struct regmap *map, unsigned int reg,
2243			     unsigned int mask, unsigned int val)
2244{
2245	int ret;
2246
2247	map->lock(map->lock_arg);
2248
2249	map->async = true;
2250
2251	ret = _regmap_update_bits(map, reg, mask, val, NULL);
2252
2253	map->async = false;
2254
2255	map->unlock(map->lock_arg);
2256
2257	return ret;
2258}
2259EXPORT_SYMBOL_GPL(regmap_update_bits_async);
2260
2261/**
2262 * regmap_update_bits_check: Perform a read/modify/write cycle on the
2263 *                           register map and report if updated
2264 *
2265 * @map: Register map to update
2266 * @reg: Register to update
2267 * @mask: Bitmask to change
2268 * @val: New value for bitmask
2269 * @change: Boolean indicating if a write was done
2270 *
2271 * Returns zero for success, a negative number on error.
2272 */
2273int regmap_update_bits_check(struct regmap *map, unsigned int reg,
2274			     unsigned int mask, unsigned int val,
2275			     bool *change)
2276{
2277	int ret;
2278
2279	map->lock(map->lock_arg);
2280	ret = _regmap_update_bits(map, reg, mask, val, change);
2281	map->unlock(map->lock_arg);
2282	return ret;
2283}
2284EXPORT_SYMBOL_GPL(regmap_update_bits_check);
2285
2286/**
2287 * regmap_update_bits_check_async: Perform a read/modify/write cycle on the
2288 *                                 register map asynchronously and report if
2289 *                                 updated
2290 *
2291 * @map: Register map to update
2292 * @reg: Register to update
2293 * @mask: Bitmask to change
2294 * @val: New value for bitmask
2295 * @change: Boolean indicating if a write was done
2296 *
2297 * With most buses the read must be done synchronously so this is most
2298 * useful for devices with a cache which do not need to interact with
2299 * the hardware to determine the current register value.
2300 *
2301 * Returns zero for success, a negative number on error.
2302 */
2303int regmap_update_bits_check_async(struct regmap *map, unsigned int reg,
2304				   unsigned int mask, unsigned int val,
2305				   bool *change)
2306{
2307	int ret;
2308
2309	map->lock(map->lock_arg);
2310
2311	map->async = true;
2312
2313	ret = _regmap_update_bits(map, reg, mask, val, change);
2314
2315	map->async = false;
2316
2317	map->unlock(map->lock_arg);
2318
2319	return ret;
2320}
2321EXPORT_SYMBOL_GPL(regmap_update_bits_check_async);
2322
2323void regmap_async_complete_cb(struct regmap_async *async, int ret)
2324{
2325	struct regmap *map = async->map;
2326	bool wake;
2327
2328	trace_regmap_async_io_complete(map->dev);
2329
2330	spin_lock(&map->async_lock);
2331	list_move(&async->list, &map->async_free);
2332	wake = list_empty(&map->async_list);
2333
 
2334	if (ret != 0)
2335		map->async_ret = ret;
2336
2337	spin_unlock(&map->async_lock);
 
2338
2339	if (wake)
2340		wake_up(&map->async_waitq);
2341}
2342EXPORT_SYMBOL_GPL(regmap_async_complete_cb);
2343
2344static int regmap_async_is_done(struct regmap *map)
2345{
2346	unsigned long flags;
2347	int ret;
2348
2349	spin_lock_irqsave(&map->async_lock, flags);
2350	ret = list_empty(&map->async_list);
2351	spin_unlock_irqrestore(&map->async_lock, flags);
2352
2353	return ret;
2354}
2355
2356/**
2357 * regmap_async_complete: Ensure all asynchronous I/O has completed.
2358 *
2359 * @map: Map to operate on.
2360 *
2361 * Blocks until any pending asynchronous I/O has completed.  Returns
2362 * an error code for any failed I/O operations.
2363 */
2364int regmap_async_complete(struct regmap *map)
2365{
2366	unsigned long flags;
2367	int ret;
2368
2369	/* Nothing to do with no async support */
2370	if (!map->bus || !map->bus->async_write)
2371		return 0;
2372
2373	trace_regmap_async_complete_start(map->dev);
2374
2375	wait_event(map->async_waitq, regmap_async_is_done(map));
2376
2377	spin_lock_irqsave(&map->async_lock, flags);
2378	ret = map->async_ret;
2379	map->async_ret = 0;
2380	spin_unlock_irqrestore(&map->async_lock, flags);
2381
2382	trace_regmap_async_complete_done(map->dev);
2383
2384	return ret;
2385}
2386EXPORT_SYMBOL_GPL(regmap_async_complete);
2387
2388/**
2389 * regmap_register_patch: Register and apply register updates to be applied
2390 *                        on device initialistion
2391 *
2392 * @map: Register map to apply updates to.
2393 * @regs: Values to update.
2394 * @num_regs: Number of entries in regs.
2395 *
2396 * Register a set of register updates to be applied to the device
2397 * whenever the device registers are synchronised with the cache and
2398 * apply them immediately.  Typically this is used to apply
2399 * corrections to be applied to the device defaults on startup, such
2400 * as the updates some vendors provide to undocumented registers.
2401 *
2402 * The caller must ensure that this function cannot be called
2403 * concurrently with either itself or regcache_sync().
2404 */
2405int regmap_register_patch(struct regmap *map, const struct reg_default *regs,
2406			  int num_regs)
2407{
2408	struct reg_default *p;
2409	int ret;
2410	bool bypass;
2411
2412	if (WARN_ONCE(num_regs <= 0, "invalid registers number (%d)\n",
2413	    num_regs))
2414		return 0;
2415
2416	p = krealloc(map->patch,
2417		     sizeof(struct reg_default) * (map->patch_regs + num_regs),
2418		     GFP_KERNEL);
2419	if (p) {
2420		memcpy(p + map->patch_regs, regs, num_regs * sizeof(*regs));
2421		map->patch = p;
2422		map->patch_regs += num_regs;
2423	} else {
2424		return -ENOMEM;
2425	}
2426
2427	map->lock(map->lock_arg);
2428
2429	bypass = map->cache_bypass;
2430
2431	map->cache_bypass = true;
2432	map->async = true;
2433
2434	ret = _regmap_multi_reg_write(map, regs, num_regs);
2435	if (ret != 0)
2436		goto out;
2437
2438out:
2439	map->async = false;
2440	map->cache_bypass = bypass;
2441
2442	map->unlock(map->lock_arg);
2443
2444	regmap_async_complete(map);
2445
2446	return ret;
2447}
2448EXPORT_SYMBOL_GPL(regmap_register_patch);
2449
2450/*
2451 * regmap_get_val_bytes(): Report the size of a register value
2452 *
2453 * Report the size of a register value, mainly intended to for use by
2454 * generic infrastructure built on top of regmap.
2455 */
2456int regmap_get_val_bytes(struct regmap *map)
2457{
2458	if (map->format.format_write)
2459		return -EINVAL;
2460
2461	return map->format.val_bytes;
2462}
2463EXPORT_SYMBOL_GPL(regmap_get_val_bytes);
2464
2465int regmap_parse_val(struct regmap *map, const void *buf,
2466			unsigned int *val)
2467{
2468	if (!map->format.parse_val)
2469		return -EINVAL;
2470
2471	*val = map->format.parse_val(buf);
2472
2473	return 0;
2474}
2475EXPORT_SYMBOL_GPL(regmap_parse_val);
2476
2477static int __init regmap_initcall(void)
2478{
2479	regmap_debugfs_initcall();
2480
2481	return 0;
2482}
2483postcore_initcall(regmap_initcall);