Linux Audio

Check our new training course

Loading...
v3.1
  1/*
  2 * Register map access API
  3 *
  4 * Copyright 2011 Wolfson Microelectronics plc
  5 *
  6 * Author: Mark Brown <broonie@opensource.wolfsonmicro.com>
  7 *
  8 * This program is free software; you can redistribute it and/or modify
  9 * it under the terms of the GNU General Public License version 2 as
 10 * published by the Free Software Foundation.
 11 */
 12
 
 13#include <linux/slab.h>
 14#include <linux/module.h>
 15#include <linux/mutex.h>
 16#include <linux/err.h>
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 17
 18#include <linux/regmap.h>
 
 
 
 
 
 
 
 
 
 19
 20struct regmap;
 
 
 
 21
 22struct regmap_format {
 23	size_t buf_size;
 24	size_t reg_bytes;
 25	size_t val_bytes;
 26	void (*format_write)(struct regmap *map,
 27			     unsigned int reg, unsigned int val);
 28	void (*format_reg)(void *buf, unsigned int reg);
 29	void (*format_val)(void *buf, unsigned int val);
 30	unsigned int (*parse_val)(void *buf);
 31};
 32
 33struct regmap {
 34	struct mutex lock;
 35
 36	struct device *dev; /* Device we do I/O on */
 37	void *work_buf;     /* Scratch buffer used to format I/O */
 38	struct regmap_format format;  /* Buffer format */
 39	const struct regmap_bus *bus;
 40};
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 41
 42static void regmap_format_4_12_write(struct regmap *map,
 43				     unsigned int reg, unsigned int val)
 44{
 45	__be16 *out = map->work_buf;
 46	*out = cpu_to_be16((reg << 12) | val);
 47}
 48
 49static void regmap_format_7_9_write(struct regmap *map,
 50				    unsigned int reg, unsigned int val)
 51{
 52	__be16 *out = map->work_buf;
 53	*out = cpu_to_be16((reg << 9) | val);
 54}
 55
 56static void regmap_format_8(void *buf, unsigned int val)
 
 
 
 
 
 
 
 
 
 
 57{
 58	u8 *b = buf;
 59
 60	b[0] = val;
 61}
 62
 63static void regmap_format_16(void *buf, unsigned int val)
 64{
 65	__be16 *b = buf;
 66
 67	b[0] = cpu_to_be16(val);
 68}
 69
 70static unsigned int regmap_parse_8(void *buf)
 
 
 
 
 
 
 
 
 
 
 
 
 
 71{
 72	u8 *b = buf;
 73
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 74	return b[0];
 75}
 76
 77static unsigned int regmap_parse_16(void *buf)
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 78{
 79	__be16 *b = buf;
 80
 81	b[0] = be16_to_cpu(b[0]);
 
 82
 83	return b[0];
 
 
 
 
 84}
 85
 86/**
 87 * regmap_init(): Initialise register map
 88 *
 89 * @dev: Device that will be interacted with
 90 * @bus: Bus-specific callbacks to use with device
 91 * @config: Configuration for register map
 92 *
 93 * The return value will be an ERR_PTR() on error or a valid pointer to
 94 * a struct regmap.  This function should generally not be called
 95 * directly, it should be called by bus-specific init functions.
 96 */
 97struct regmap *regmap_init(struct device *dev,
 98			   const struct regmap_bus *bus,
 99			   const struct regmap_config *config)
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
100{
101	struct regmap *map;
102	int ret = -EINVAL;
 
 
103
104	if (!bus || !config)
105		return NULL;
106
107	map = kzalloc(sizeof(*map), GFP_KERNEL);
108	if (map == NULL) {
109		ret = -ENOMEM;
110		goto err;
111	}
112
113	mutex_init(&map->lock);
114	map->format.buf_size = (config->reg_bits + config->val_bits) / 8;
115	map->format.reg_bytes = config->reg_bits / 8;
116	map->format.val_bytes = config->val_bits / 8;
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
117	map->dev = dev;
118	map->bus = bus;
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
119
120	switch (config->reg_bits) {
121	case 4:
122		switch (config->val_bits) {
123		case 12:
124			map->format.format_write = regmap_format_4_12_write;
125			break;
126		default:
127			goto err_map;
128		}
129		break;
130
131	case 7:
132		switch (config->val_bits) {
133		case 9:
134			map->format.format_write = regmap_format_7_9_write;
135			break;
136		default:
137			goto err_map;
138		}
139		break;
140
 
 
 
 
 
 
 
 
 
 
141	case 8:
142		map->format.format_reg = regmap_format_8;
143		break;
144
145	case 16:
146		map->format.format_reg = regmap_format_16;
 
 
 
 
 
 
 
 
 
 
 
 
147		break;
148
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
149	default:
150		goto err_map;
151	}
152
 
 
 
153	switch (config->val_bits) {
154	case 8:
155		map->format.format_val = regmap_format_8;
156		map->format.parse_val = regmap_parse_8;
 
157		break;
158	case 16:
159		map->format.format_val = regmap_format_16;
160		map->format.parse_val = regmap_parse_16;
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
161		break;
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
162	}
163
164	if (!map->format.format_write &&
165	    !(map->format.format_reg && map->format.format_val))
166		goto err_map;
167
168	map->work_buf = kmalloc(map->format.buf_size, GFP_KERNEL);
169	if (map->work_buf == NULL) {
170		ret = -ENOMEM;
171		goto err_map;
172	}
173
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
174	return map;
175
 
 
 
 
 
176err_map:
177	kfree(map);
178err:
179	return ERR_PTR(ret);
180}
181EXPORT_SYMBOL_GPL(regmap_init);
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
182
183/**
184 * regmap_exit(): Free a previously allocated register map
185 */
186void regmap_exit(struct regmap *map)
187{
 
 
 
 
 
 
 
188	kfree(map->work_buf);
 
 
 
 
 
 
 
 
189	kfree(map);
190}
191EXPORT_SYMBOL_GPL(regmap_exit);
192
193static int _regmap_raw_write(struct regmap *map, unsigned int reg,
194			     const void *val, size_t val_len)
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
195{
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
196	void *buf;
197	int ret = -ENOTSUPP;
198	size_t len;
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
199
200	map->format.format_reg(map->work_buf, reg);
201
202	/* Try to do a gather write if we can */
203	if (map->bus->gather_write)
204		ret = map->bus->gather_write(map->dev, map->work_buf,
205					     map->format.reg_bytes,
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
206					     val, val_len);
207
208	/* Otherwise fall back on linearising by hand. */
209	if (ret == -ENOTSUPP) {
210		len = map->format.reg_bytes + val_len;
211		buf = kmalloc(len, GFP_KERNEL);
212		if (!buf)
213			return -ENOMEM;
214
215		memcpy(buf, map->work_buf, map->format.reg_bytes);
216		memcpy(buf + map->format.reg_bytes, val, val_len);
217		ret = map->bus->write(map->dev, buf, len);
 
218
219		kfree(buf);
 
 
 
 
 
 
220	}
221
 
 
222	return ret;
223}
224
225static int _regmap_write(struct regmap *map, unsigned int reg,
226			 unsigned int val)
 
 
 
 
227{
228	BUG_ON(!map->format.format_write && !map->format.format_val);
 
 
 
229
230	if (map->format.format_write) {
231		map->format.format_write(map, reg, val);
 
 
 
 
 
 
 
 
232
233		return map->bus->write(map->dev, map->work_buf,
234				       map->format.buf_size);
235	} else {
236		map->format.format_val(map->work_buf + map->format.reg_bytes,
237				       val);
238		return _regmap_raw_write(map, reg,
239					 map->work_buf + map->format.reg_bytes,
240					 map->format.val_bytes);
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
241	}
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
242}
243
244/**
245 * regmap_write(): Write a value to a single register
246 *
247 * @map: Register map to write to
248 * @reg: Register to write to
249 * @val: Value to be written
250 *
251 * A value of zero will be returned on success, a negative errno will
252 * be returned in error cases.
253 */
254int regmap_write(struct regmap *map, unsigned int reg, unsigned int val)
255{
256	int ret;
257
258	mutex_lock(&map->lock);
 
 
 
259
260	ret = _regmap_write(map, reg, val);
261
262	mutex_unlock(&map->lock);
263
264	return ret;
265}
266EXPORT_SYMBOL_GPL(regmap_write);
267
268/**
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
269 * regmap_raw_write(): Write raw values to one or more registers
270 *
271 * @map: Register map to write to
272 * @reg: Initial register to write to
273 * @val: Block of data to be written, laid out for direct transmission to the
274 *       device
275 * @val_len: Length of data pointed to by val.
276 *
277 * This function is intended to be used for things like firmware
278 * download where a large block of data needs to be transferred to the
279 * device.  No formatting will be done on the data provided.
280 *
281 * A value of zero will be returned on success, a negative errno will
282 * be returned in error cases.
283 */
284int regmap_raw_write(struct regmap *map, unsigned int reg,
285		     const void *val, size_t val_len)
286{
287	int ret;
288
289	mutex_lock(&map->lock);
 
 
 
 
 
 
 
290
291	ret = _regmap_raw_write(map, reg, val, val_len);
292
293	mutex_unlock(&map->lock);
294
295	return ret;
296}
297EXPORT_SYMBOL_GPL(regmap_raw_write);
298
299static int _regmap_raw_read(struct regmap *map, unsigned int reg, void *val,
300			    unsigned int val_len)
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
301{
302	u8 *u8 = map->work_buf;
303	int ret;
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
304
305	map->format.format_reg(map->work_buf, reg);
 
306
 
 
 
 
 
 
 
 
 
307	/*
308	 * Some buses flag reads by setting the high bits in the
309	 * register addresss; since it's always the high bits for all
310	 * current formats we can do this here rather than in
311	 * formatting.  This may break if we get interesting formats.
312	 */
313	if (map->bus->read_flag_mask)
314		u8[0] |= map->bus->read_flag_mask;
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
315
316	ret = map->bus->read(map->dev, map->work_buf, map->format.reg_bytes,
317			     val, val_len);
318	if (ret != 0)
319		return ret;
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
320
 
 
 
321	return 0;
322}
323
324static int _regmap_read(struct regmap *map, unsigned int reg,
325			unsigned int *val)
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
326{
327	int ret;
328
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
329	if (!map->format.parse_val)
330		return -EINVAL;
331
332	ret = _regmap_raw_read(map, reg, map->work_buf, map->format.val_bytes);
333	if (ret == 0)
334		*val = map->format.parse_val(map->work_buf);
335
336	return ret;
337}
338
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
339/**
340 * regmap_read(): Read a value from a single register
341 *
342 * @map: Register map to write to
343 * @reg: Register to be read from
344 * @val: Pointer to store read value
345 *
346 * A value of zero will be returned on success, a negative errno will
347 * be returned in error cases.
348 */
349int regmap_read(struct regmap *map, unsigned int reg, unsigned int *val)
350{
351	int ret;
352
353	mutex_lock(&map->lock);
 
 
 
354
355	ret = _regmap_read(map, reg, val);
356
357	mutex_unlock(&map->lock);
358
359	return ret;
360}
361EXPORT_SYMBOL_GPL(regmap_read);
362
363/**
364 * regmap_raw_read(): Read raw data from the device
365 *
366 * @map: Register map to write to
367 * @reg: First register to be read from
368 * @val: Pointer to store read value
369 * @val_len: Size of data to read
370 *
371 * A value of zero will be returned on success, a negative errno will
372 * be returned in error cases.
373 */
374int regmap_raw_read(struct regmap *map, unsigned int reg, void *val,
375		    size_t val_len)
376{
377	int ret;
 
 
 
 
 
 
 
 
 
 
 
 
378
379	mutex_lock(&map->lock);
380
381	ret = _regmap_raw_read(map, reg, val, val_len);
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
382
383	mutex_unlock(&map->lock);
 
384
385	return ret;
386}
387EXPORT_SYMBOL_GPL(regmap_raw_read);
388
389/**
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
390 * regmap_bulk_read(): Read multiple registers from the device
391 *
392 * @map: Register map to write to
393 * @reg: First register to be read from
394 * @val: Pointer to store read value, in native register size for device
395 * @val_count: Number of registers to read
396 *
397 * A value of zero will be returned on success, a negative errno will
398 * be returned in error cases.
399 */
400int regmap_bulk_read(struct regmap *map, unsigned int reg, void *val,
401		     size_t val_count)
402{
403	int ret, i;
404	size_t val_bytes = map->format.val_bytes;
 
405
406	if (!map->format.parse_val)
407		return -EINVAL;
408
409	ret = regmap_raw_read(map, reg, val, val_bytes * val_count);
410	if (ret != 0)
411		return ret;
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
412
413	for (i = 0; i < val_count * val_bytes; i += val_bytes)
414		map->format.parse_val(val + i);
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
415
416	return 0;
417}
418EXPORT_SYMBOL_GPL(regmap_bulk_read);
419
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
420/**
421 * remap_update_bits: Perform a read/modify/write cycle on the register map
 
 
422 *
423 * @map: Register map to update
424 * @reg: Register to update
425 * @mask: Bitmask to change
426 * @val: New value for bitmask
 
 
 
 
 
 
 
 
427 *
428 * Returns zero for success, a negative number on error.
429 */
430int regmap_update_bits(struct regmap *map, unsigned int reg,
431		       unsigned int mask, unsigned int val)
 
432{
433	int ret;
434	unsigned int tmp;
435
436	mutex_lock(&map->lock);
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
437
438	ret = _regmap_read(map, reg, &tmp);
439	if (ret != 0)
440		goto out;
441
442	tmp &= ~mask;
443	tmp |= val & mask;
444
445	ret = _regmap_write(map, reg, tmp);
 
 
 
446
447out:
448	mutex_unlock(&map->lock);
 
 
 
 
 
 
449
450	return ret;
451}
452EXPORT_SYMBOL_GPL(regmap_update_bits);
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
v4.10.11
   1/*
   2 * Register map access API
   3 *
   4 * Copyright 2011 Wolfson Microelectronics plc
   5 *
   6 * Author: Mark Brown <broonie@opensource.wolfsonmicro.com>
   7 *
   8 * This program is free software; you can redistribute it and/or modify
   9 * it under the terms of the GNU General Public License version 2 as
  10 * published by the Free Software Foundation.
  11 */
  12
  13#include <linux/device.h>
  14#include <linux/slab.h>
  15#include <linux/export.h>
  16#include <linux/mutex.h>
  17#include <linux/err.h>
  18#include <linux/of.h>
  19#include <linux/rbtree.h>
  20#include <linux/sched.h>
  21#include <linux/delay.h>
  22#include <linux/log2.h>
  23
  24#define CREATE_TRACE_POINTS
  25#include "trace.h"
  26
  27#include "internal.h"
  28
  29/*
  30 * Sometimes for failures during very early init the trace
  31 * infrastructure isn't available early enough to be used.  For this
  32 * sort of problem defining LOG_DEVICE will add printks for basic
  33 * register I/O on a specific device.
  34 */
  35#undef LOG_DEVICE
  36
  37static int _regmap_update_bits(struct regmap *map, unsigned int reg,
  38			       unsigned int mask, unsigned int val,
  39			       bool *change, bool force_write);
  40
  41static int _regmap_bus_reg_read(void *context, unsigned int reg,
  42				unsigned int *val);
  43static int _regmap_bus_read(void *context, unsigned int reg,
  44			    unsigned int *val);
  45static int _regmap_bus_formatted_write(void *context, unsigned int reg,
  46				       unsigned int val);
  47static int _regmap_bus_reg_write(void *context, unsigned int reg,
  48				 unsigned int val);
  49static int _regmap_bus_raw_write(void *context, unsigned int reg,
  50				 unsigned int val);
  51
  52bool regmap_reg_in_ranges(unsigned int reg,
  53			  const struct regmap_range *ranges,
  54			  unsigned int nranges)
  55{
  56	const struct regmap_range *r;
  57	int i;
  58
  59	for (i = 0, r = ranges; i < nranges; i++, r++)
  60		if (regmap_reg_in_range(reg, r))
  61			return true;
  62	return false;
  63}
  64EXPORT_SYMBOL_GPL(regmap_reg_in_ranges);
  65
  66bool regmap_check_range_table(struct regmap *map, unsigned int reg,
  67			      const struct regmap_access_table *table)
  68{
  69	/* Check "no ranges" first */
  70	if (regmap_reg_in_ranges(reg, table->no_ranges, table->n_no_ranges))
  71		return false;
  72
  73	/* In case zero "yes ranges" are supplied, any reg is OK */
  74	if (!table->n_yes_ranges)
  75		return true;
  76
  77	return regmap_reg_in_ranges(reg, table->yes_ranges,
  78				    table->n_yes_ranges);
  79}
  80EXPORT_SYMBOL_GPL(regmap_check_range_table);
  81
  82bool regmap_writeable(struct regmap *map, unsigned int reg)
  83{
  84	if (map->max_register && reg > map->max_register)
  85		return false;
  86
  87	if (map->writeable_reg)
  88		return map->writeable_reg(map->dev, reg);
  89
  90	if (map->wr_table)
  91		return regmap_check_range_table(map, reg, map->wr_table);
  92
  93	return true;
  94}
  95
  96bool regmap_cached(struct regmap *map, unsigned int reg)
  97{
  98	int ret;
  99	unsigned int val;
 100
 101	if (map->cache == REGCACHE_NONE)
 102		return false;
 103
 104	if (!map->cache_ops)
 105		return false;
 106
 107	if (map->max_register && reg > map->max_register)
 108		return false;
 109
 110	map->lock(map->lock_arg);
 111	ret = regcache_read(map, reg, &val);
 112	map->unlock(map->lock_arg);
 113	if (ret)
 114		return false;
 115
 116	return true;
 117}
 118
 119bool regmap_readable(struct regmap *map, unsigned int reg)
 120{
 121	if (!map->reg_read)
 122		return false;
 123
 124	if (map->max_register && reg > map->max_register)
 125		return false;
 126
 127	if (map->format.format_write)
 128		return false;
 129
 130	if (map->readable_reg)
 131		return map->readable_reg(map->dev, reg);
 132
 133	if (map->rd_table)
 134		return regmap_check_range_table(map, reg, map->rd_table);
 135
 136	return true;
 137}
 138
 139bool regmap_volatile(struct regmap *map, unsigned int reg)
 140{
 141	if (!map->format.format_write && !regmap_readable(map, reg))
 142		return false;
 143
 144	if (map->volatile_reg)
 145		return map->volatile_reg(map->dev, reg);
 146
 147	if (map->volatile_table)
 148		return regmap_check_range_table(map, reg, map->volatile_table);
 149
 150	if (map->cache_ops)
 151		return false;
 152	else
 153		return true;
 154}
 155
 156bool regmap_precious(struct regmap *map, unsigned int reg)
 157{
 158	if (!regmap_readable(map, reg))
 159		return false;
 160
 161	if (map->precious_reg)
 162		return map->precious_reg(map->dev, reg);
 163
 164	if (map->precious_table)
 165		return regmap_check_range_table(map, reg, map->precious_table);
 166
 167	return false;
 168}
 169
 170static bool regmap_volatile_range(struct regmap *map, unsigned int reg,
 171	size_t num)
 172{
 173	unsigned int i;
 174
 175	for (i = 0; i < num; i++)
 176		if (!regmap_volatile(map, reg + i))
 177			return false;
 178
 179	return true;
 180}
 181
 182static void regmap_format_2_6_write(struct regmap *map,
 183				     unsigned int reg, unsigned int val)
 184{
 185	u8 *out = map->work_buf;
 186
 187	*out = (reg << 6) | val;
 188}
 189
 190static void regmap_format_4_12_write(struct regmap *map,
 191				     unsigned int reg, unsigned int val)
 192{
 193	__be16 *out = map->work_buf;
 194	*out = cpu_to_be16((reg << 12) | val);
 195}
 196
 197static void regmap_format_7_9_write(struct regmap *map,
 198				    unsigned int reg, unsigned int val)
 199{
 200	__be16 *out = map->work_buf;
 201	*out = cpu_to_be16((reg << 9) | val);
 202}
 203
 204static void regmap_format_10_14_write(struct regmap *map,
 205				    unsigned int reg, unsigned int val)
 206{
 207	u8 *out = map->work_buf;
 208
 209	out[2] = val;
 210	out[1] = (val >> 8) | (reg << 6);
 211	out[0] = reg >> 2;
 212}
 213
 214static void regmap_format_8(void *buf, unsigned int val, unsigned int shift)
 215{
 216	u8 *b = buf;
 217
 218	b[0] = val << shift;
 219}
 220
 221static void regmap_format_16_be(void *buf, unsigned int val, unsigned int shift)
 222{
 223	__be16 *b = buf;
 224
 225	b[0] = cpu_to_be16(val << shift);
 226}
 227
 228static void regmap_format_16_le(void *buf, unsigned int val, unsigned int shift)
 229{
 230	__le16 *b = buf;
 231
 232	b[0] = cpu_to_le16(val << shift);
 233}
 234
 235static void regmap_format_16_native(void *buf, unsigned int val,
 236				    unsigned int shift)
 237{
 238	*(u16 *)buf = val << shift;
 239}
 240
 241static void regmap_format_24(void *buf, unsigned int val, unsigned int shift)
 242{
 243	u8 *b = buf;
 244
 245	val <<= shift;
 246
 247	b[0] = val >> 16;
 248	b[1] = val >> 8;
 249	b[2] = val;
 250}
 251
 252static void regmap_format_32_be(void *buf, unsigned int val, unsigned int shift)
 253{
 254	__be32 *b = buf;
 255
 256	b[0] = cpu_to_be32(val << shift);
 257}
 258
 259static void regmap_format_32_le(void *buf, unsigned int val, unsigned int shift)
 260{
 261	__le32 *b = buf;
 262
 263	b[0] = cpu_to_le32(val << shift);
 264}
 265
 266static void regmap_format_32_native(void *buf, unsigned int val,
 267				    unsigned int shift)
 268{
 269	*(u32 *)buf = val << shift;
 270}
 271
 272#ifdef CONFIG_64BIT
 273static void regmap_format_64_be(void *buf, unsigned int val, unsigned int shift)
 274{
 275	__be64 *b = buf;
 276
 277	b[0] = cpu_to_be64((u64)val << shift);
 278}
 279
 280static void regmap_format_64_le(void *buf, unsigned int val, unsigned int shift)
 281{
 282	__le64 *b = buf;
 283
 284	b[0] = cpu_to_le64((u64)val << shift);
 285}
 286
 287static void regmap_format_64_native(void *buf, unsigned int val,
 288				    unsigned int shift)
 289{
 290	*(u64 *)buf = (u64)val << shift;
 291}
 292#endif
 293
 294static void regmap_parse_inplace_noop(void *buf)
 295{
 296}
 297
 298static unsigned int regmap_parse_8(const void *buf)
 299{
 300	const u8 *b = buf;
 301
 302	return b[0];
 303}
 304
 305static unsigned int regmap_parse_16_be(const void *buf)
 306{
 307	const __be16 *b = buf;
 308
 309	return be16_to_cpu(b[0]);
 310}
 311
 312static unsigned int regmap_parse_16_le(const void *buf)
 313{
 314	const __le16 *b = buf;
 315
 316	return le16_to_cpu(b[0]);
 317}
 318
 319static void regmap_parse_16_be_inplace(void *buf)
 320{
 321	__be16 *b = buf;
 322
 323	b[0] = be16_to_cpu(b[0]);
 324}
 325
 326static void regmap_parse_16_le_inplace(void *buf)
 327{
 328	__le16 *b = buf;
 329
 330	b[0] = le16_to_cpu(b[0]);
 331}
 332
 333static unsigned int regmap_parse_16_native(const void *buf)
 334{
 335	return *(u16 *)buf;
 336}
 337
 338static unsigned int regmap_parse_24(const void *buf)
 339{
 340	const u8 *b = buf;
 341	unsigned int ret = b[2];
 342	ret |= ((unsigned int)b[1]) << 8;
 343	ret |= ((unsigned int)b[0]) << 16;
 344
 345	return ret;
 346}
 347
 348static unsigned int regmap_parse_32_be(const void *buf)
 349{
 350	const __be32 *b = buf;
 351
 352	return be32_to_cpu(b[0]);
 353}
 354
 355static unsigned int regmap_parse_32_le(const void *buf)
 356{
 357	const __le32 *b = buf;
 358
 359	return le32_to_cpu(b[0]);
 360}
 361
 362static void regmap_parse_32_be_inplace(void *buf)
 363{
 364	__be32 *b = buf;
 365
 366	b[0] = be32_to_cpu(b[0]);
 367}
 368
 369static void regmap_parse_32_le_inplace(void *buf)
 370{
 371	__le32 *b = buf;
 372
 373	b[0] = le32_to_cpu(b[0]);
 374}
 375
 376static unsigned int regmap_parse_32_native(const void *buf)
 377{
 378	return *(u32 *)buf;
 379}
 380
 381#ifdef CONFIG_64BIT
 382static unsigned int regmap_parse_64_be(const void *buf)
 383{
 384	const __be64 *b = buf;
 385
 386	return be64_to_cpu(b[0]);
 387}
 388
 389static unsigned int regmap_parse_64_le(const void *buf)
 390{
 391	const __le64 *b = buf;
 392
 393	return le64_to_cpu(b[0]);
 394}
 395
 396static void regmap_parse_64_be_inplace(void *buf)
 397{
 398	__be64 *b = buf;
 399
 400	b[0] = be64_to_cpu(b[0]);
 401}
 402
 403static void regmap_parse_64_le_inplace(void *buf)
 404{
 405	__le64 *b = buf;
 406
 407	b[0] = le64_to_cpu(b[0]);
 408}
 409
 410static unsigned int regmap_parse_64_native(const void *buf)
 411{
 412	return *(u64 *)buf;
 413}
 414#endif
 415
 416static void regmap_lock_mutex(void *__map)
 417{
 418	struct regmap *map = __map;
 419	mutex_lock(&map->mutex);
 420}
 421
 422static void regmap_unlock_mutex(void *__map)
 423{
 424	struct regmap *map = __map;
 425	mutex_unlock(&map->mutex);
 426}
 427
 428static void regmap_lock_spinlock(void *__map)
 429__acquires(&map->spinlock)
 430{
 431	struct regmap *map = __map;
 432	unsigned long flags;
 433
 434	spin_lock_irqsave(&map->spinlock, flags);
 435	map->spinlock_flags = flags;
 436}
 437
 438static void regmap_unlock_spinlock(void *__map)
 439__releases(&map->spinlock)
 440{
 441	struct regmap *map = __map;
 442	spin_unlock_irqrestore(&map->spinlock, map->spinlock_flags);
 443}
 444
 445static void dev_get_regmap_release(struct device *dev, void *res)
 446{
 447	/*
 448	 * We don't actually have anything to do here; the goal here
 449	 * is not to manage the regmap but to provide a simple way to
 450	 * get the regmap back given a struct device.
 451	 */
 452}
 453
 454static bool _regmap_range_add(struct regmap *map,
 455			      struct regmap_range_node *data)
 456{
 457	struct rb_root *root = &map->range_tree;
 458	struct rb_node **new = &(root->rb_node), *parent = NULL;
 459
 460	while (*new) {
 461		struct regmap_range_node *this =
 462			container_of(*new, struct regmap_range_node, node);
 463
 464		parent = *new;
 465		if (data->range_max < this->range_min)
 466			new = &((*new)->rb_left);
 467		else if (data->range_min > this->range_max)
 468			new = &((*new)->rb_right);
 469		else
 470			return false;
 471	}
 472
 473	rb_link_node(&data->node, parent, new);
 474	rb_insert_color(&data->node, root);
 475
 476	return true;
 477}
 478
 479static struct regmap_range_node *_regmap_range_lookup(struct regmap *map,
 480						      unsigned int reg)
 481{
 482	struct rb_node *node = map->range_tree.rb_node;
 483
 484	while (node) {
 485		struct regmap_range_node *this =
 486			container_of(node, struct regmap_range_node, node);
 487
 488		if (reg < this->range_min)
 489			node = node->rb_left;
 490		else if (reg > this->range_max)
 491			node = node->rb_right;
 492		else
 493			return this;
 494	}
 495
 496	return NULL;
 497}
 498
 499static void regmap_range_exit(struct regmap *map)
 500{
 501	struct rb_node *next;
 502	struct regmap_range_node *range_node;
 503
 504	next = rb_first(&map->range_tree);
 505	while (next) {
 506		range_node = rb_entry(next, struct regmap_range_node, node);
 507		next = rb_next(&range_node->node);
 508		rb_erase(&range_node->node, &map->range_tree);
 509		kfree(range_node);
 510	}
 511
 512	kfree(map->selector_work_buf);
 513}
 514
 515int regmap_attach_dev(struct device *dev, struct regmap *map,
 516		      const struct regmap_config *config)
 517{
 518	struct regmap **m;
 519
 520	map->dev = dev;
 521
 522	regmap_debugfs_init(map, config->name);
 523
 524	/* Add a devres resource for dev_get_regmap() */
 525	m = devres_alloc(dev_get_regmap_release, sizeof(*m), GFP_KERNEL);
 526	if (!m) {
 527		regmap_debugfs_exit(map);
 528		return -ENOMEM;
 529	}
 530	*m = map;
 531	devres_add(dev, m);
 532
 533	return 0;
 534}
 535EXPORT_SYMBOL_GPL(regmap_attach_dev);
 536
 537static enum regmap_endian regmap_get_reg_endian(const struct regmap_bus *bus,
 538					const struct regmap_config *config)
 539{
 540	enum regmap_endian endian;
 541
 542	/* Retrieve the endianness specification from the regmap config */
 543	endian = config->reg_format_endian;
 544
 545	/* If the regmap config specified a non-default value, use that */
 546	if (endian != REGMAP_ENDIAN_DEFAULT)
 547		return endian;
 548
 549	/* Retrieve the endianness specification from the bus config */
 550	if (bus && bus->reg_format_endian_default)
 551		endian = bus->reg_format_endian_default;
 552
 553	/* If the bus specified a non-default value, use that */
 554	if (endian != REGMAP_ENDIAN_DEFAULT)
 555		return endian;
 556
 557	/* Use this if no other value was found */
 558	return REGMAP_ENDIAN_BIG;
 559}
 560
 561enum regmap_endian regmap_get_val_endian(struct device *dev,
 562					 const struct regmap_bus *bus,
 563					 const struct regmap_config *config)
 564{
 565	struct device_node *np;
 566	enum regmap_endian endian;
 567
 568	/* Retrieve the endianness specification from the regmap config */
 569	endian = config->val_format_endian;
 570
 571	/* If the regmap config specified a non-default value, use that */
 572	if (endian != REGMAP_ENDIAN_DEFAULT)
 573		return endian;
 574
 575	/* If the dev and dev->of_node exist try to get endianness from DT */
 576	if (dev && dev->of_node) {
 577		np = dev->of_node;
 578
 579		/* Parse the device's DT node for an endianness specification */
 580		if (of_property_read_bool(np, "big-endian"))
 581			endian = REGMAP_ENDIAN_BIG;
 582		else if (of_property_read_bool(np, "little-endian"))
 583			endian = REGMAP_ENDIAN_LITTLE;
 584		else if (of_property_read_bool(np, "native-endian"))
 585			endian = REGMAP_ENDIAN_NATIVE;
 586
 587		/* If the endianness was specified in DT, use that */
 588		if (endian != REGMAP_ENDIAN_DEFAULT)
 589			return endian;
 590	}
 591
 592	/* Retrieve the endianness specification from the bus config */
 593	if (bus && bus->val_format_endian_default)
 594		endian = bus->val_format_endian_default;
 595
 596	/* If the bus specified a non-default value, use that */
 597	if (endian != REGMAP_ENDIAN_DEFAULT)
 598		return endian;
 599
 600	/* Use this if no other value was found */
 601	return REGMAP_ENDIAN_BIG;
 602}
 603EXPORT_SYMBOL_GPL(regmap_get_val_endian);
 604
 605struct regmap *__regmap_init(struct device *dev,
 606			     const struct regmap_bus *bus,
 607			     void *bus_context,
 608			     const struct regmap_config *config,
 609			     struct lock_class_key *lock_key,
 610			     const char *lock_name)
 611{
 612	struct regmap *map;
 613	int ret = -EINVAL;
 614	enum regmap_endian reg_endian, val_endian;
 615	int i, j;
 616
 617	if (!config)
 618		goto err;
 619
 620	map = kzalloc(sizeof(*map), GFP_KERNEL);
 621	if (map == NULL) {
 622		ret = -ENOMEM;
 623		goto err;
 624	}
 625
 626	if (config->lock && config->unlock) {
 627		map->lock = config->lock;
 628		map->unlock = config->unlock;
 629		map->lock_arg = config->lock_arg;
 630	} else {
 631		if ((bus && bus->fast_io) ||
 632		    config->fast_io) {
 633			spin_lock_init(&map->spinlock);
 634			map->lock = regmap_lock_spinlock;
 635			map->unlock = regmap_unlock_spinlock;
 636			lockdep_set_class_and_name(&map->spinlock,
 637						   lock_key, lock_name);
 638		} else {
 639			mutex_init(&map->mutex);
 640			map->lock = regmap_lock_mutex;
 641			map->unlock = regmap_unlock_mutex;
 642			lockdep_set_class_and_name(&map->mutex,
 643						   lock_key, lock_name);
 644		}
 645		map->lock_arg = map;
 646	}
 647
 648	/*
 649	 * When we write in fast-paths with regmap_bulk_write() don't allocate
 650	 * scratch buffers with sleeping allocations.
 651	 */
 652	if ((bus && bus->fast_io) || config->fast_io)
 653		map->alloc_flags = GFP_ATOMIC;
 654	else
 655		map->alloc_flags = GFP_KERNEL;
 656
 657	map->format.reg_bytes = DIV_ROUND_UP(config->reg_bits, 8);
 658	map->format.pad_bytes = config->pad_bits / 8;
 659	map->format.val_bytes = DIV_ROUND_UP(config->val_bits, 8);
 660	map->format.buf_size = DIV_ROUND_UP(config->reg_bits +
 661			config->val_bits + config->pad_bits, 8);
 662	map->reg_shift = config->pad_bits % 8;
 663	if (config->reg_stride)
 664		map->reg_stride = config->reg_stride;
 665	else
 666		map->reg_stride = 1;
 667	if (is_power_of_2(map->reg_stride))
 668		map->reg_stride_order = ilog2(map->reg_stride);
 669	else
 670		map->reg_stride_order = -1;
 671	map->use_single_read = config->use_single_rw || !bus || !bus->read;
 672	map->use_single_write = config->use_single_rw || !bus || !bus->write;
 673	map->can_multi_write = config->can_multi_write && bus && bus->write;
 674	if (bus) {
 675		map->max_raw_read = bus->max_raw_read;
 676		map->max_raw_write = bus->max_raw_write;
 677	}
 678	map->dev = dev;
 679	map->bus = bus;
 680	map->bus_context = bus_context;
 681	map->max_register = config->max_register;
 682	map->wr_table = config->wr_table;
 683	map->rd_table = config->rd_table;
 684	map->volatile_table = config->volatile_table;
 685	map->precious_table = config->precious_table;
 686	map->writeable_reg = config->writeable_reg;
 687	map->readable_reg = config->readable_reg;
 688	map->volatile_reg = config->volatile_reg;
 689	map->precious_reg = config->precious_reg;
 690	map->cache_type = config->cache_type;
 691	map->name = config->name;
 692
 693	spin_lock_init(&map->async_lock);
 694	INIT_LIST_HEAD(&map->async_list);
 695	INIT_LIST_HEAD(&map->async_free);
 696	init_waitqueue_head(&map->async_waitq);
 697
 698	if (config->read_flag_mask || config->write_flag_mask) {
 699		map->read_flag_mask = config->read_flag_mask;
 700		map->write_flag_mask = config->write_flag_mask;
 701	} else if (bus) {
 702		map->read_flag_mask = bus->read_flag_mask;
 703	}
 704
 705	if (!bus) {
 706		map->reg_read  = config->reg_read;
 707		map->reg_write = config->reg_write;
 708
 709		map->defer_caching = false;
 710		goto skip_format_initialization;
 711	} else if (!bus->read || !bus->write) {
 712		map->reg_read = _regmap_bus_reg_read;
 713		map->reg_write = _regmap_bus_reg_write;
 714
 715		map->defer_caching = false;
 716		goto skip_format_initialization;
 717	} else {
 718		map->reg_read  = _regmap_bus_read;
 719		map->reg_update_bits = bus->reg_update_bits;
 720	}
 721
 722	reg_endian = regmap_get_reg_endian(bus, config);
 723	val_endian = regmap_get_val_endian(dev, bus, config);
 724
 725	switch (config->reg_bits + map->reg_shift) {
 726	case 2:
 727		switch (config->val_bits) {
 728		case 6:
 729			map->format.format_write = regmap_format_2_6_write;
 730			break;
 731		default:
 732			goto err_map;
 733		}
 734		break;
 735
 
 736	case 4:
 737		switch (config->val_bits) {
 738		case 12:
 739			map->format.format_write = regmap_format_4_12_write;
 740			break;
 741		default:
 742			goto err_map;
 743		}
 744		break;
 745
 746	case 7:
 747		switch (config->val_bits) {
 748		case 9:
 749			map->format.format_write = regmap_format_7_9_write;
 750			break;
 751		default:
 752			goto err_map;
 753		}
 754		break;
 755
 756	case 10:
 757		switch (config->val_bits) {
 758		case 14:
 759			map->format.format_write = regmap_format_10_14_write;
 760			break;
 761		default:
 762			goto err_map;
 763		}
 764		break;
 765
 766	case 8:
 767		map->format.format_reg = regmap_format_8;
 768		break;
 769
 770	case 16:
 771		switch (reg_endian) {
 772		case REGMAP_ENDIAN_BIG:
 773			map->format.format_reg = regmap_format_16_be;
 774			break;
 775		case REGMAP_ENDIAN_LITTLE:
 776			map->format.format_reg = regmap_format_16_le;
 777			break;
 778		case REGMAP_ENDIAN_NATIVE:
 779			map->format.format_reg = regmap_format_16_native;
 780			break;
 781		default:
 782			goto err_map;
 783		}
 784		break;
 785
 786	case 24:
 787		if (reg_endian != REGMAP_ENDIAN_BIG)
 788			goto err_map;
 789		map->format.format_reg = regmap_format_24;
 790		break;
 791
 792	case 32:
 793		switch (reg_endian) {
 794		case REGMAP_ENDIAN_BIG:
 795			map->format.format_reg = regmap_format_32_be;
 796			break;
 797		case REGMAP_ENDIAN_LITTLE:
 798			map->format.format_reg = regmap_format_32_le;
 799			break;
 800		case REGMAP_ENDIAN_NATIVE:
 801			map->format.format_reg = regmap_format_32_native;
 802			break;
 803		default:
 804			goto err_map;
 805		}
 806		break;
 807
 808#ifdef CONFIG_64BIT
 809	case 64:
 810		switch (reg_endian) {
 811		case REGMAP_ENDIAN_BIG:
 812			map->format.format_reg = regmap_format_64_be;
 813			break;
 814		case REGMAP_ENDIAN_LITTLE:
 815			map->format.format_reg = regmap_format_64_le;
 816			break;
 817		case REGMAP_ENDIAN_NATIVE:
 818			map->format.format_reg = regmap_format_64_native;
 819			break;
 820		default:
 821			goto err_map;
 822		}
 823		break;
 824#endif
 825
 826	default:
 827		goto err_map;
 828	}
 829
 830	if (val_endian == REGMAP_ENDIAN_NATIVE)
 831		map->format.parse_inplace = regmap_parse_inplace_noop;
 832
 833	switch (config->val_bits) {
 834	case 8:
 835		map->format.format_val = regmap_format_8;
 836		map->format.parse_val = regmap_parse_8;
 837		map->format.parse_inplace = regmap_parse_inplace_noop;
 838		break;
 839	case 16:
 840		switch (val_endian) {
 841		case REGMAP_ENDIAN_BIG:
 842			map->format.format_val = regmap_format_16_be;
 843			map->format.parse_val = regmap_parse_16_be;
 844			map->format.parse_inplace = regmap_parse_16_be_inplace;
 845			break;
 846		case REGMAP_ENDIAN_LITTLE:
 847			map->format.format_val = regmap_format_16_le;
 848			map->format.parse_val = regmap_parse_16_le;
 849			map->format.parse_inplace = regmap_parse_16_le_inplace;
 850			break;
 851		case REGMAP_ENDIAN_NATIVE:
 852			map->format.format_val = regmap_format_16_native;
 853			map->format.parse_val = regmap_parse_16_native;
 854			break;
 855		default:
 856			goto err_map;
 857		}
 858		break;
 859	case 24:
 860		if (val_endian != REGMAP_ENDIAN_BIG)
 861			goto err_map;
 862		map->format.format_val = regmap_format_24;
 863		map->format.parse_val = regmap_parse_24;
 864		break;
 865	case 32:
 866		switch (val_endian) {
 867		case REGMAP_ENDIAN_BIG:
 868			map->format.format_val = regmap_format_32_be;
 869			map->format.parse_val = regmap_parse_32_be;
 870			map->format.parse_inplace = regmap_parse_32_be_inplace;
 871			break;
 872		case REGMAP_ENDIAN_LITTLE:
 873			map->format.format_val = regmap_format_32_le;
 874			map->format.parse_val = regmap_parse_32_le;
 875			map->format.parse_inplace = regmap_parse_32_le_inplace;
 876			break;
 877		case REGMAP_ENDIAN_NATIVE:
 878			map->format.format_val = regmap_format_32_native;
 879			map->format.parse_val = regmap_parse_32_native;
 880			break;
 881		default:
 882			goto err_map;
 883		}
 884		break;
 885#ifdef CONFIG_64BIT
 886	case 64:
 887		switch (val_endian) {
 888		case REGMAP_ENDIAN_BIG:
 889			map->format.format_val = regmap_format_64_be;
 890			map->format.parse_val = regmap_parse_64_be;
 891			map->format.parse_inplace = regmap_parse_64_be_inplace;
 892			break;
 893		case REGMAP_ENDIAN_LITTLE:
 894			map->format.format_val = regmap_format_64_le;
 895			map->format.parse_val = regmap_parse_64_le;
 896			map->format.parse_inplace = regmap_parse_64_le_inplace;
 897			break;
 898		case REGMAP_ENDIAN_NATIVE:
 899			map->format.format_val = regmap_format_64_native;
 900			map->format.parse_val = regmap_parse_64_native;
 901			break;
 902		default:
 903			goto err_map;
 904		}
 905		break;
 906#endif
 907	}
 908
 909	if (map->format.format_write) {
 910		if ((reg_endian != REGMAP_ENDIAN_BIG) ||
 911		    (val_endian != REGMAP_ENDIAN_BIG))
 912			goto err_map;
 913		map->use_single_write = true;
 914	}
 915
 916	if (!map->format.format_write &&
 917	    !(map->format.format_reg && map->format.format_val))
 918		goto err_map;
 919
 920	map->work_buf = kzalloc(map->format.buf_size, GFP_KERNEL);
 921	if (map->work_buf == NULL) {
 922		ret = -ENOMEM;
 923		goto err_map;
 924	}
 925
 926	if (map->format.format_write) {
 927		map->defer_caching = false;
 928		map->reg_write = _regmap_bus_formatted_write;
 929	} else if (map->format.format_val) {
 930		map->defer_caching = true;
 931		map->reg_write = _regmap_bus_raw_write;
 932	}
 933
 934skip_format_initialization:
 935
 936	map->range_tree = RB_ROOT;
 937	for (i = 0; i < config->num_ranges; i++) {
 938		const struct regmap_range_cfg *range_cfg = &config->ranges[i];
 939		struct regmap_range_node *new;
 940
 941		/* Sanity check */
 942		if (range_cfg->range_max < range_cfg->range_min) {
 943			dev_err(map->dev, "Invalid range %d: %d < %d\n", i,
 944				range_cfg->range_max, range_cfg->range_min);
 945			goto err_range;
 946		}
 947
 948		if (range_cfg->range_max > map->max_register) {
 949			dev_err(map->dev, "Invalid range %d: %d > %d\n", i,
 950				range_cfg->range_max, map->max_register);
 951			goto err_range;
 952		}
 953
 954		if (range_cfg->selector_reg > map->max_register) {
 955			dev_err(map->dev,
 956				"Invalid range %d: selector out of map\n", i);
 957			goto err_range;
 958		}
 959
 960		if (range_cfg->window_len == 0) {
 961			dev_err(map->dev, "Invalid range %d: window_len 0\n",
 962				i);
 963			goto err_range;
 964		}
 965
 966		/* Make sure, that this register range has no selector
 967		   or data window within its boundary */
 968		for (j = 0; j < config->num_ranges; j++) {
 969			unsigned sel_reg = config->ranges[j].selector_reg;
 970			unsigned win_min = config->ranges[j].window_start;
 971			unsigned win_max = win_min +
 972					   config->ranges[j].window_len - 1;
 973
 974			/* Allow data window inside its own virtual range */
 975			if (j == i)
 976				continue;
 977
 978			if (range_cfg->range_min <= sel_reg &&
 979			    sel_reg <= range_cfg->range_max) {
 980				dev_err(map->dev,
 981					"Range %d: selector for %d in window\n",
 982					i, j);
 983				goto err_range;
 984			}
 985
 986			if (!(win_max < range_cfg->range_min ||
 987			      win_min > range_cfg->range_max)) {
 988				dev_err(map->dev,
 989					"Range %d: window for %d in window\n",
 990					i, j);
 991				goto err_range;
 992			}
 993		}
 994
 995		new = kzalloc(sizeof(*new), GFP_KERNEL);
 996		if (new == NULL) {
 997			ret = -ENOMEM;
 998			goto err_range;
 999		}
1000
1001		new->map = map;
1002		new->name = range_cfg->name;
1003		new->range_min = range_cfg->range_min;
1004		new->range_max = range_cfg->range_max;
1005		new->selector_reg = range_cfg->selector_reg;
1006		new->selector_mask = range_cfg->selector_mask;
1007		new->selector_shift = range_cfg->selector_shift;
1008		new->window_start = range_cfg->window_start;
1009		new->window_len = range_cfg->window_len;
1010
1011		if (!_regmap_range_add(map, new)) {
1012			dev_err(map->dev, "Failed to add range %d\n", i);
1013			kfree(new);
1014			goto err_range;
1015		}
1016
1017		if (map->selector_work_buf == NULL) {
1018			map->selector_work_buf =
1019				kzalloc(map->format.buf_size, GFP_KERNEL);
1020			if (map->selector_work_buf == NULL) {
1021				ret = -ENOMEM;
1022				goto err_range;
1023			}
1024		}
1025	}
1026
1027	ret = regcache_init(map, config);
1028	if (ret != 0)
1029		goto err_range;
1030
1031	if (dev) {
1032		ret = regmap_attach_dev(dev, map, config);
1033		if (ret != 0)
1034			goto err_regcache;
1035	}
1036
1037	return map;
1038
1039err_regcache:
1040	regcache_exit(map);
1041err_range:
1042	regmap_range_exit(map);
1043	kfree(map->work_buf);
1044err_map:
1045	kfree(map);
1046err:
1047	return ERR_PTR(ret);
1048}
1049EXPORT_SYMBOL_GPL(__regmap_init);
1050
1051static void devm_regmap_release(struct device *dev, void *res)
1052{
1053	regmap_exit(*(struct regmap **)res);
1054}
1055
1056struct regmap *__devm_regmap_init(struct device *dev,
1057				  const struct regmap_bus *bus,
1058				  void *bus_context,
1059				  const struct regmap_config *config,
1060				  struct lock_class_key *lock_key,
1061				  const char *lock_name)
1062{
1063	struct regmap **ptr, *regmap;
1064
1065	ptr = devres_alloc(devm_regmap_release, sizeof(*ptr), GFP_KERNEL);
1066	if (!ptr)
1067		return ERR_PTR(-ENOMEM);
1068
1069	regmap = __regmap_init(dev, bus, bus_context, config,
1070			       lock_key, lock_name);
1071	if (!IS_ERR(regmap)) {
1072		*ptr = regmap;
1073		devres_add(dev, ptr);
1074	} else {
1075		devres_free(ptr);
1076	}
1077
1078	return regmap;
1079}
1080EXPORT_SYMBOL_GPL(__devm_regmap_init);
1081
1082static void regmap_field_init(struct regmap_field *rm_field,
1083	struct regmap *regmap, struct reg_field reg_field)
1084{
1085	rm_field->regmap = regmap;
1086	rm_field->reg = reg_field.reg;
1087	rm_field->shift = reg_field.lsb;
1088	rm_field->mask = GENMASK(reg_field.msb, reg_field.lsb);
1089	rm_field->id_size = reg_field.id_size;
1090	rm_field->id_offset = reg_field.id_offset;
1091}
1092
1093/**
1094 * devm_regmap_field_alloc(): Allocate and initialise a register field
1095 * in a register map.
1096 *
1097 * @dev: Device that will be interacted with
1098 * @regmap: regmap bank in which this register field is located.
1099 * @reg_field: Register field with in the bank.
1100 *
1101 * The return value will be an ERR_PTR() on error or a valid pointer
1102 * to a struct regmap_field. The regmap_field will be automatically freed
1103 * by the device management code.
1104 */
1105struct regmap_field *devm_regmap_field_alloc(struct device *dev,
1106		struct regmap *regmap, struct reg_field reg_field)
1107{
1108	struct regmap_field *rm_field = devm_kzalloc(dev,
1109					sizeof(*rm_field), GFP_KERNEL);
1110	if (!rm_field)
1111		return ERR_PTR(-ENOMEM);
1112
1113	regmap_field_init(rm_field, regmap, reg_field);
1114
1115	return rm_field;
1116
1117}
1118EXPORT_SYMBOL_GPL(devm_regmap_field_alloc);
1119
1120/**
1121 * devm_regmap_field_free(): Free register field allocated using
1122 * devm_regmap_field_alloc. Usally drivers need not call this function,
1123 * as the memory allocated via devm will be freed as per device-driver
1124 * life-cyle.
1125 *
1126 * @dev: Device that will be interacted with
1127 * @field: regmap field which should be freed.
1128 */
1129void devm_regmap_field_free(struct device *dev,
1130	struct regmap_field *field)
1131{
1132	devm_kfree(dev, field);
1133}
1134EXPORT_SYMBOL_GPL(devm_regmap_field_free);
1135
1136/**
1137 * regmap_field_alloc(): Allocate and initialise a register field
1138 * in a register map.
1139 *
1140 * @regmap: regmap bank in which this register field is located.
1141 * @reg_field: Register field with in the bank.
1142 *
1143 * The return value will be an ERR_PTR() on error or a valid pointer
1144 * to a struct regmap_field. The regmap_field should be freed by the
1145 * user once its finished working with it using regmap_field_free().
1146 */
1147struct regmap_field *regmap_field_alloc(struct regmap *regmap,
1148		struct reg_field reg_field)
1149{
1150	struct regmap_field *rm_field = kzalloc(sizeof(*rm_field), GFP_KERNEL);
1151
1152	if (!rm_field)
1153		return ERR_PTR(-ENOMEM);
1154
1155	regmap_field_init(rm_field, regmap, reg_field);
1156
1157	return rm_field;
1158}
1159EXPORT_SYMBOL_GPL(regmap_field_alloc);
1160
1161/**
1162 * regmap_field_free(): Free register field allocated using regmap_field_alloc
1163 *
1164 * @field: regmap field which should be freed.
1165 */
1166void regmap_field_free(struct regmap_field *field)
1167{
1168	kfree(field);
1169}
1170EXPORT_SYMBOL_GPL(regmap_field_free);
1171
1172/**
1173 * regmap_reinit_cache(): Reinitialise the current register cache
1174 *
1175 * @map: Register map to operate on.
1176 * @config: New configuration.  Only the cache data will be used.
1177 *
1178 * Discard any existing register cache for the map and initialize a
1179 * new cache.  This can be used to restore the cache to defaults or to
1180 * update the cache configuration to reflect runtime discovery of the
1181 * hardware.
1182 *
1183 * No explicit locking is done here, the user needs to ensure that
1184 * this function will not race with other calls to regmap.
1185 */
1186int regmap_reinit_cache(struct regmap *map, const struct regmap_config *config)
1187{
1188	regcache_exit(map);
1189	regmap_debugfs_exit(map);
1190
1191	map->max_register = config->max_register;
1192	map->writeable_reg = config->writeable_reg;
1193	map->readable_reg = config->readable_reg;
1194	map->volatile_reg = config->volatile_reg;
1195	map->precious_reg = config->precious_reg;
1196	map->cache_type = config->cache_type;
1197
1198	regmap_debugfs_init(map, config->name);
1199
1200	map->cache_bypass = false;
1201	map->cache_only = false;
1202
1203	return regcache_init(map, config);
1204}
1205EXPORT_SYMBOL_GPL(regmap_reinit_cache);
1206
1207/**
1208 * regmap_exit(): Free a previously allocated register map
1209 */
1210void regmap_exit(struct regmap *map)
1211{
1212	struct regmap_async *async;
1213
1214	regcache_exit(map);
1215	regmap_debugfs_exit(map);
1216	regmap_range_exit(map);
1217	if (map->bus && map->bus->free_context)
1218		map->bus->free_context(map->bus_context);
1219	kfree(map->work_buf);
1220	while (!list_empty(&map->async_free)) {
1221		async = list_first_entry_or_null(&map->async_free,
1222						 struct regmap_async,
1223						 list);
1224		list_del(&async->list);
1225		kfree(async->work_buf);
1226		kfree(async);
1227	}
1228	kfree(map);
1229}
1230EXPORT_SYMBOL_GPL(regmap_exit);
1231
1232static int dev_get_regmap_match(struct device *dev, void *res, void *data)
1233{
1234	struct regmap **r = res;
1235	if (!r || !*r) {
1236		WARN_ON(!r || !*r);
1237		return 0;
1238	}
1239
1240	/* If the user didn't specify a name match any */
1241	if (data)
1242		return (*r)->name == data;
1243	else
1244		return 1;
1245}
1246
1247/**
1248 * dev_get_regmap(): Obtain the regmap (if any) for a device
1249 *
1250 * @dev: Device to retrieve the map for
1251 * @name: Optional name for the register map, usually NULL.
1252 *
1253 * Returns the regmap for the device if one is present, or NULL.  If
1254 * name is specified then it must match the name specified when
1255 * registering the device, if it is NULL then the first regmap found
1256 * will be used.  Devices with multiple register maps are very rare,
1257 * generic code should normally not need to specify a name.
1258 */
1259struct regmap *dev_get_regmap(struct device *dev, const char *name)
1260{
1261	struct regmap **r = devres_find(dev, dev_get_regmap_release,
1262					dev_get_regmap_match, (void *)name);
1263
1264	if (!r)
1265		return NULL;
1266	return *r;
1267}
1268EXPORT_SYMBOL_GPL(dev_get_regmap);
1269
1270/**
1271 * regmap_get_device(): Obtain the device from a regmap
1272 *
1273 * @map: Register map to operate on.
1274 *
1275 * Returns the underlying device that the regmap has been created for.
1276 */
1277struct device *regmap_get_device(struct regmap *map)
1278{
1279	return map->dev;
1280}
1281EXPORT_SYMBOL_GPL(regmap_get_device);
1282
1283static int _regmap_select_page(struct regmap *map, unsigned int *reg,
1284			       struct regmap_range_node *range,
1285			       unsigned int val_num)
1286{
1287	void *orig_work_buf;
1288	unsigned int win_offset;
1289	unsigned int win_page;
1290	bool page_chg;
1291	int ret;
1292
1293	win_offset = (*reg - range->range_min) % range->window_len;
1294	win_page = (*reg - range->range_min) / range->window_len;
1295
1296	if (val_num > 1) {
1297		/* Bulk write shouldn't cross range boundary */
1298		if (*reg + val_num - 1 > range->range_max)
1299			return -EINVAL;
1300
1301		/* ... or single page boundary */
1302		if (val_num > range->window_len - win_offset)
1303			return -EINVAL;
1304	}
1305
1306	/* It is possible to have selector register inside data window.
1307	   In that case, selector register is located on every page and
1308	   it needs no page switching, when accessed alone. */
1309	if (val_num > 1 ||
1310	    range->window_start + win_offset != range->selector_reg) {
1311		/* Use separate work_buf during page switching */
1312		orig_work_buf = map->work_buf;
1313		map->work_buf = map->selector_work_buf;
1314
1315		ret = _regmap_update_bits(map, range->selector_reg,
1316					  range->selector_mask,
1317					  win_page << range->selector_shift,
1318					  &page_chg, false);
1319
1320		map->work_buf = orig_work_buf;
1321
1322		if (ret != 0)
1323			return ret;
1324	}
1325
1326	*reg = range->window_start + win_offset;
1327
1328	return 0;
1329}
1330
1331static void regmap_set_work_buf_flag_mask(struct regmap *map, int max_bytes,
1332					  unsigned long mask)
1333{
1334	u8 *buf;
1335	int i;
1336
1337	if (!mask || !map->work_buf)
1338		return;
1339
1340	buf = map->work_buf;
1341
1342	for (i = 0; i < max_bytes; i++)
1343		buf[i] |= (mask >> (8 * i)) & 0xff;
1344}
1345
1346int _regmap_raw_write(struct regmap *map, unsigned int reg,
1347		      const void *val, size_t val_len)
1348{
1349	struct regmap_range_node *range;
1350	unsigned long flags;
1351	void *work_val = map->work_buf + map->format.reg_bytes +
1352		map->format.pad_bytes;
1353	void *buf;
1354	int ret = -ENOTSUPP;
1355	size_t len;
1356	int i;
1357
1358	WARN_ON(!map->bus);
1359
1360	/* Check for unwritable registers before we start */
1361	if (map->writeable_reg)
1362		for (i = 0; i < val_len / map->format.val_bytes; i++)
1363			if (!map->writeable_reg(map->dev,
1364					       reg + regmap_get_offset(map, i)))
1365				return -EINVAL;
1366
1367	if (!map->cache_bypass && map->format.parse_val) {
1368		unsigned int ival;
1369		int val_bytes = map->format.val_bytes;
1370		for (i = 0; i < val_len / val_bytes; i++) {
1371			ival = map->format.parse_val(val + (i * val_bytes));
1372			ret = regcache_write(map,
1373					     reg + regmap_get_offset(map, i),
1374					     ival);
1375			if (ret) {
1376				dev_err(map->dev,
1377					"Error in caching of register: %x ret: %d\n",
1378					reg + i, ret);
1379				return ret;
1380			}
1381		}
1382		if (map->cache_only) {
1383			map->cache_dirty = true;
1384			return 0;
1385		}
1386	}
1387
1388	range = _regmap_range_lookup(map, reg);
1389	if (range) {
1390		int val_num = val_len / map->format.val_bytes;
1391		int win_offset = (reg - range->range_min) % range->window_len;
1392		int win_residue = range->window_len - win_offset;
1393
1394		/* If the write goes beyond the end of the window split it */
1395		while (val_num > win_residue) {
1396			dev_dbg(map->dev, "Writing window %d/%zu\n",
1397				win_residue, val_len / map->format.val_bytes);
1398			ret = _regmap_raw_write(map, reg, val, win_residue *
1399						map->format.val_bytes);
1400			if (ret != 0)
1401				return ret;
1402
1403			reg += win_residue;
1404			val_num -= win_residue;
1405			val += win_residue * map->format.val_bytes;
1406			val_len -= win_residue * map->format.val_bytes;
1407
1408			win_offset = (reg - range->range_min) %
1409				range->window_len;
1410			win_residue = range->window_len - win_offset;
1411		}
1412
1413		ret = _regmap_select_page(map, &reg, range, val_num);
1414		if (ret != 0)
1415			return ret;
1416	}
1417
1418	map->format.format_reg(map->work_buf, reg, map->reg_shift);
1419	regmap_set_work_buf_flag_mask(map, map->format.reg_bytes,
1420				      map->write_flag_mask);
1421
1422	/*
1423	 * Essentially all I/O mechanisms will be faster with a single
1424	 * buffer to write.  Since register syncs often generate raw
1425	 * writes of single registers optimise that case.
1426	 */
1427	if (val != work_val && val_len == map->format.val_bytes) {
1428		memcpy(work_val, val, map->format.val_bytes);
1429		val = work_val;
1430	}
1431
1432	if (map->async && map->bus->async_write) {
1433		struct regmap_async *async;
1434
1435		trace_regmap_async_write_start(map, reg, val_len);
1436
1437		spin_lock_irqsave(&map->async_lock, flags);
1438		async = list_first_entry_or_null(&map->async_free,
1439						 struct regmap_async,
1440						 list);
1441		if (async)
1442			list_del(&async->list);
1443		spin_unlock_irqrestore(&map->async_lock, flags);
1444
1445		if (!async) {
1446			async = map->bus->async_alloc();
1447			if (!async)
1448				return -ENOMEM;
1449
1450			async->work_buf = kzalloc(map->format.buf_size,
1451						  GFP_KERNEL | GFP_DMA);
1452			if (!async->work_buf) {
1453				kfree(async);
1454				return -ENOMEM;
1455			}
1456		}
1457
1458		async->map = map;
1459
1460		/* If the caller supplied the value we can use it safely. */
1461		memcpy(async->work_buf, map->work_buf, map->format.pad_bytes +
1462		       map->format.reg_bytes + map->format.val_bytes);
1463
1464		spin_lock_irqsave(&map->async_lock, flags);
1465		list_add_tail(&async->list, &map->async_list);
1466		spin_unlock_irqrestore(&map->async_lock, flags);
1467
1468		if (val != work_val)
1469			ret = map->bus->async_write(map->bus_context,
1470						    async->work_buf,
1471						    map->format.reg_bytes +
1472						    map->format.pad_bytes,
1473						    val, val_len, async);
1474		else
1475			ret = map->bus->async_write(map->bus_context,
1476						    async->work_buf,
1477						    map->format.reg_bytes +
1478						    map->format.pad_bytes +
1479						    val_len, NULL, 0, async);
1480
1481		if (ret != 0) {
1482			dev_err(map->dev, "Failed to schedule write: %d\n",
1483				ret);
1484
1485			spin_lock_irqsave(&map->async_lock, flags);
1486			list_move(&async->list, &map->async_free);
1487			spin_unlock_irqrestore(&map->async_lock, flags);
1488		}
1489
1490		return ret;
1491	}
1492
1493	trace_regmap_hw_write_start(map, reg, val_len / map->format.val_bytes);
1494
1495	/* If we're doing a single register write we can probably just
1496	 * send the work_buf directly, otherwise try to do a gather
1497	 * write.
1498	 */
1499	if (val == work_val)
1500		ret = map->bus->write(map->bus_context, map->work_buf,
1501				      map->format.reg_bytes +
1502				      map->format.pad_bytes +
1503				      val_len);
1504	else if (map->bus->gather_write)
1505		ret = map->bus->gather_write(map->bus_context, map->work_buf,
1506					     map->format.reg_bytes +
1507					     map->format.pad_bytes,
1508					     val, val_len);
1509
1510	/* If that didn't work fall back on linearising by hand. */
1511	if (ret == -ENOTSUPP) {
1512		len = map->format.reg_bytes + map->format.pad_bytes + val_len;
1513		buf = kzalloc(len, GFP_KERNEL);
1514		if (!buf)
1515			return -ENOMEM;
1516
1517		memcpy(buf, map->work_buf, map->format.reg_bytes);
1518		memcpy(buf + map->format.reg_bytes + map->format.pad_bytes,
1519		       val, val_len);
1520		ret = map->bus->write(map->bus_context, buf, len);
1521
1522		kfree(buf);
1523	} else if (ret != 0 && !map->cache_bypass && map->format.parse_val) {
1524		/* regcache_drop_region() takes lock that we already have,
1525		 * thus call map->cache_ops->drop() directly
1526		 */
1527		if (map->cache_ops && map->cache_ops->drop)
1528			map->cache_ops->drop(map, reg, reg + 1);
1529	}
1530
1531	trace_regmap_hw_write_done(map, reg, val_len / map->format.val_bytes);
1532
1533	return ret;
1534}
1535
1536/**
1537 * regmap_can_raw_write - Test if regmap_raw_write() is supported
1538 *
1539 * @map: Map to check.
1540 */
1541bool regmap_can_raw_write(struct regmap *map)
1542{
1543	return map->bus && map->bus->write && map->format.format_val &&
1544		map->format.format_reg;
1545}
1546EXPORT_SYMBOL_GPL(regmap_can_raw_write);
1547
1548/**
1549 * regmap_get_raw_read_max - Get the maximum size we can read
1550 *
1551 * @map: Map to check.
1552 */
1553size_t regmap_get_raw_read_max(struct regmap *map)
1554{
1555	return map->max_raw_read;
1556}
1557EXPORT_SYMBOL_GPL(regmap_get_raw_read_max);
1558
1559/**
1560 * regmap_get_raw_write_max - Get the maximum size we can read
1561 *
1562 * @map: Map to check.
1563 */
1564size_t regmap_get_raw_write_max(struct regmap *map)
1565{
1566	return map->max_raw_write;
1567}
1568EXPORT_SYMBOL_GPL(regmap_get_raw_write_max);
1569
1570static int _regmap_bus_formatted_write(void *context, unsigned int reg,
1571				       unsigned int val)
1572{
1573	int ret;
1574	struct regmap_range_node *range;
1575	struct regmap *map = context;
1576
1577	WARN_ON(!map->bus || !map->format.format_write);
1578
1579	range = _regmap_range_lookup(map, reg);
1580	if (range) {
1581		ret = _regmap_select_page(map, &reg, range, 1);
1582		if (ret != 0)
1583			return ret;
1584	}
1585
1586	map->format.format_write(map, reg, val);
1587
1588	trace_regmap_hw_write_start(map, reg, 1);
1589
1590	ret = map->bus->write(map->bus_context, map->work_buf,
1591			      map->format.buf_size);
1592
1593	trace_regmap_hw_write_done(map, reg, 1);
1594
1595	return ret;
1596}
1597
1598static int _regmap_bus_reg_write(void *context, unsigned int reg,
1599				 unsigned int val)
1600{
1601	struct regmap *map = context;
1602
1603	return map->bus->reg_write(map->bus_context, reg, val);
1604}
1605
1606static int _regmap_bus_raw_write(void *context, unsigned int reg,
1607				 unsigned int val)
1608{
1609	struct regmap *map = context;
1610
1611	WARN_ON(!map->bus || !map->format.format_val);
1612
1613	map->format.format_val(map->work_buf + map->format.reg_bytes
1614			       + map->format.pad_bytes, val, 0);
1615	return _regmap_raw_write(map, reg,
1616				 map->work_buf +
1617				 map->format.reg_bytes +
1618				 map->format.pad_bytes,
1619				 map->format.val_bytes);
1620}
1621
1622static inline void *_regmap_map_get_context(struct regmap *map)
1623{
1624	return (map->bus) ? map : map->bus_context;
1625}
1626
1627int _regmap_write(struct regmap *map, unsigned int reg,
1628		  unsigned int val)
1629{
1630	int ret;
1631	void *context = _regmap_map_get_context(map);
1632
1633	if (!regmap_writeable(map, reg))
1634		return -EIO;
1635
1636	if (!map->cache_bypass && !map->defer_caching) {
1637		ret = regcache_write(map, reg, val);
1638		if (ret != 0)
1639			return ret;
1640		if (map->cache_only) {
1641			map->cache_dirty = true;
1642			return 0;
1643		}
1644	}
1645
1646#ifdef LOG_DEVICE
1647	if (map->dev && strcmp(dev_name(map->dev), LOG_DEVICE) == 0)
1648		dev_info(map->dev, "%x <= %x\n", reg, val);
1649#endif
1650
1651	trace_regmap_reg_write(map, reg, val);
1652
1653	return map->reg_write(context, reg, val);
1654}
1655
1656/**
1657 * regmap_write(): Write a value to a single register
1658 *
1659 * @map: Register map to write to
1660 * @reg: Register to write to
1661 * @val: Value to be written
1662 *
1663 * A value of zero will be returned on success, a negative errno will
1664 * be returned in error cases.
1665 */
1666int regmap_write(struct regmap *map, unsigned int reg, unsigned int val)
1667{
1668	int ret;
1669
1670	if (!IS_ALIGNED(reg, map->reg_stride))
1671		return -EINVAL;
1672
1673	map->lock(map->lock_arg);
1674
1675	ret = _regmap_write(map, reg, val);
1676
1677	map->unlock(map->lock_arg);
1678
1679	return ret;
1680}
1681EXPORT_SYMBOL_GPL(regmap_write);
1682
1683/**
1684 * regmap_write_async(): Write a value to a single register asynchronously
1685 *
1686 * @map: Register map to write to
1687 * @reg: Register to write to
1688 * @val: Value to be written
1689 *
1690 * A value of zero will be returned on success, a negative errno will
1691 * be returned in error cases.
1692 */
1693int regmap_write_async(struct regmap *map, unsigned int reg, unsigned int val)
1694{
1695	int ret;
1696
1697	if (!IS_ALIGNED(reg, map->reg_stride))
1698		return -EINVAL;
1699
1700	map->lock(map->lock_arg);
1701
1702	map->async = true;
1703
1704	ret = _regmap_write(map, reg, val);
1705
1706	map->async = false;
1707
1708	map->unlock(map->lock_arg);
1709
1710	return ret;
1711}
1712EXPORT_SYMBOL_GPL(regmap_write_async);
1713
1714/**
1715 * regmap_raw_write(): Write raw values to one or more registers
1716 *
1717 * @map: Register map to write to
1718 * @reg: Initial register to write to
1719 * @val: Block of data to be written, laid out for direct transmission to the
1720 *       device
1721 * @val_len: Length of data pointed to by val.
1722 *
1723 * This function is intended to be used for things like firmware
1724 * download where a large block of data needs to be transferred to the
1725 * device.  No formatting will be done on the data provided.
1726 *
1727 * A value of zero will be returned on success, a negative errno will
1728 * be returned in error cases.
1729 */
1730int regmap_raw_write(struct regmap *map, unsigned int reg,
1731		     const void *val, size_t val_len)
1732{
1733	int ret;
1734
1735	if (!regmap_can_raw_write(map))
1736		return -EINVAL;
1737	if (val_len % map->format.val_bytes)
1738		return -EINVAL;
1739	if (map->max_raw_write && map->max_raw_write > val_len)
1740		return -E2BIG;
1741
1742	map->lock(map->lock_arg);
1743
1744	ret = _regmap_raw_write(map, reg, val, val_len);
1745
1746	map->unlock(map->lock_arg);
1747
1748	return ret;
1749}
1750EXPORT_SYMBOL_GPL(regmap_raw_write);
1751
1752/**
1753 * regmap_field_update_bits_base():
1754 *	Perform a read/modify/write cycle on the register field
1755 *	with change, async, force option
1756 *
1757 * @field: Register field to write to
1758 * @mask: Bitmask to change
1759 * @val: Value to be written
1760 * @change: Boolean indicating if a write was done
1761 * @async: Boolean indicating asynchronously
1762 * @force: Boolean indicating use force update
1763 *
1764 * A value of zero will be returned on success, a negative errno will
1765 * be returned in error cases.
1766 */
1767int regmap_field_update_bits_base(struct regmap_field *field,
1768				  unsigned int mask, unsigned int val,
1769				  bool *change, bool async, bool force)
1770{
1771	mask = (mask << field->shift) & field->mask;
1772
1773	return regmap_update_bits_base(field->regmap, field->reg,
1774				       mask, val << field->shift,
1775				       change, async, force);
1776}
1777EXPORT_SYMBOL_GPL(regmap_field_update_bits_base);
1778
1779/**
1780 * regmap_fields_update_bits_base():
1781 *	Perform a read/modify/write cycle on the register field
1782 *	with change, async, force option
1783 *
1784 * @field: Register field to write to
1785 * @id: port ID
1786 * @mask: Bitmask to change
1787 * @val: Value to be written
1788 * @change: Boolean indicating if a write was done
1789 * @async: Boolean indicating asynchronously
1790 * @force: Boolean indicating use force update
1791 *
1792 * A value of zero will be returned on success, a negative errno will
1793 * be returned in error cases.
1794 */
1795int regmap_fields_update_bits_base(struct regmap_field *field,  unsigned int id,
1796				   unsigned int mask, unsigned int val,
1797				   bool *change, bool async, bool force)
1798{
1799	if (id >= field->id_size)
1800		return -EINVAL;
1801
1802	mask = (mask << field->shift) & field->mask;
1803
1804	return regmap_update_bits_base(field->regmap,
1805				       field->reg + (field->id_offset * id),
1806				       mask, val << field->shift,
1807				       change, async, force);
1808}
1809EXPORT_SYMBOL_GPL(regmap_fields_update_bits_base);
1810
1811/*
1812 * regmap_bulk_write(): Write multiple registers to the device
1813 *
1814 * @map: Register map to write to
1815 * @reg: First register to be write from
1816 * @val: Block of data to be written, in native register size for device
1817 * @val_count: Number of registers to write
1818 *
1819 * This function is intended to be used for writing a large block of
1820 * data to the device either in single transfer or multiple transfer.
1821 *
1822 * A value of zero will be returned on success, a negative errno will
1823 * be returned in error cases.
1824 */
1825int regmap_bulk_write(struct regmap *map, unsigned int reg, const void *val,
1826		     size_t val_count)
1827{
1828	int ret = 0, i;
1829	size_t val_bytes = map->format.val_bytes;
1830	size_t total_size = val_bytes * val_count;
1831
1832	if (!IS_ALIGNED(reg, map->reg_stride))
1833		return -EINVAL;
1834
1835	/*
1836	 * Some devices don't support bulk write, for
1837	 * them we have a series of single write operations in the first two if
1838	 * blocks.
1839	 *
1840	 * The first if block is used for memory mapped io. It does not allow
1841	 * val_bytes of 3 for example.
1842	 * The second one is for busses that do not provide raw I/O.
1843	 * The third one is used for busses which do not have these limitations
1844	 * and can write arbitrary value lengths.
1845	 */
1846	if (!map->bus) {
1847		map->lock(map->lock_arg);
1848		for (i = 0; i < val_count; i++) {
1849			unsigned int ival;
1850
1851			switch (val_bytes) {
1852			case 1:
1853				ival = *(u8 *)(val + (i * val_bytes));
1854				break;
1855			case 2:
1856				ival = *(u16 *)(val + (i * val_bytes));
1857				break;
1858			case 4:
1859				ival = *(u32 *)(val + (i * val_bytes));
1860				break;
1861#ifdef CONFIG_64BIT
1862			case 8:
1863				ival = *(u64 *)(val + (i * val_bytes));
1864				break;
1865#endif
1866			default:
1867				ret = -EINVAL;
1868				goto out;
1869			}
1870
1871			ret = _regmap_write(map,
1872					    reg + regmap_get_offset(map, i),
1873					    ival);
1874			if (ret != 0)
1875				goto out;
1876		}
1877out:
1878		map->unlock(map->lock_arg);
1879	} else if (map->bus && !map->format.parse_inplace) {
1880		const u8 *u8 = val;
1881		const u16 *u16 = val;
1882		const u32 *u32 = val;
1883		unsigned int ival;
1884
1885		for (i = 0; i < val_count; i++) {
1886			switch (map->format.val_bytes) {
1887			case 4:
1888				ival = u32[i];
1889				break;
1890			case 2:
1891				ival = u16[i];
1892				break;
1893			case 1:
1894				ival = u8[i];
1895				break;
1896			default:
1897				return -EINVAL;
1898			}
1899
1900			ret = regmap_write(map, reg + (i * map->reg_stride),
1901					   ival);
1902			if (ret)
1903				return ret;
1904		}
1905	} else if (map->use_single_write ||
1906		   (map->max_raw_write && map->max_raw_write < total_size)) {
1907		int chunk_stride = map->reg_stride;
1908		size_t chunk_size = val_bytes;
1909		size_t chunk_count = val_count;
1910
1911		if (!map->use_single_write) {
1912			chunk_size = map->max_raw_write;
1913			if (chunk_size % val_bytes)
1914				chunk_size -= chunk_size % val_bytes;
1915			chunk_count = total_size / chunk_size;
1916			chunk_stride *= chunk_size / val_bytes;
1917		}
1918
1919		map->lock(map->lock_arg);
1920		/* Write as many bytes as possible with chunk_size */
1921		for (i = 0; i < chunk_count; i++) {
1922			ret = _regmap_raw_write(map,
1923						reg + (i * chunk_stride),
1924						val + (i * chunk_size),
1925						chunk_size);
1926			if (ret)
1927				break;
1928		}
1929
1930		/* Write remaining bytes */
1931		if (!ret && chunk_size * i < total_size) {
1932			ret = _regmap_raw_write(map, reg + (i * chunk_stride),
1933						val + (i * chunk_size),
1934						total_size - i * chunk_size);
1935		}
1936		map->unlock(map->lock_arg);
1937	} else {
1938		void *wval;
1939
1940		if (!val_count)
1941			return -EINVAL;
1942
1943		wval = kmemdup(val, val_count * val_bytes, map->alloc_flags);
1944		if (!wval) {
1945			dev_err(map->dev, "Error in memory allocation\n");
1946			return -ENOMEM;
1947		}
1948		for (i = 0; i < val_count * val_bytes; i += val_bytes)
1949			map->format.parse_inplace(wval + i);
1950
1951		map->lock(map->lock_arg);
1952		ret = _regmap_raw_write(map, reg, wval, val_bytes * val_count);
1953		map->unlock(map->lock_arg);
1954
1955		kfree(wval);
1956	}
1957	return ret;
1958}
1959EXPORT_SYMBOL_GPL(regmap_bulk_write);
1960
1961/*
1962 * _regmap_raw_multi_reg_write()
1963 *
1964 * the (register,newvalue) pairs in regs have not been formatted, but
1965 * they are all in the same page and have been changed to being page
1966 * relative. The page register has been written if that was necessary.
1967 */
1968static int _regmap_raw_multi_reg_write(struct regmap *map,
1969				       const struct reg_sequence *regs,
1970				       size_t num_regs)
1971{
 
1972	int ret;
1973	void *buf;
1974	int i;
1975	u8 *u8;
1976	size_t val_bytes = map->format.val_bytes;
1977	size_t reg_bytes = map->format.reg_bytes;
1978	size_t pad_bytes = map->format.pad_bytes;
1979	size_t pair_size = reg_bytes + pad_bytes + val_bytes;
1980	size_t len = pair_size * num_regs;
1981
1982	if (!len)
1983		return -EINVAL;
1984
1985	buf = kzalloc(len, GFP_KERNEL);
1986	if (!buf)
1987		return -ENOMEM;
1988
1989	/* We have to linearise by hand. */
1990
1991	u8 = buf;
1992
1993	for (i = 0; i < num_regs; i++) {
1994		unsigned int reg = regs[i].reg;
1995		unsigned int val = regs[i].def;
1996		trace_regmap_hw_write_start(map, reg, 1);
1997		map->format.format_reg(u8, reg, map->reg_shift);
1998		u8 += reg_bytes + pad_bytes;
1999		map->format.format_val(u8, val, 0);
2000		u8 += val_bytes;
2001	}
2002	u8 = buf;
2003	*u8 |= map->write_flag_mask;
2004
2005	ret = map->bus->write(map->bus_context, buf, len);
2006
2007	kfree(buf);
2008
2009	for (i = 0; i < num_regs; i++) {
2010		int reg = regs[i].reg;
2011		trace_regmap_hw_write_done(map, reg, 1);
2012	}
2013	return ret;
2014}
2015
2016static unsigned int _regmap_register_page(struct regmap *map,
2017					  unsigned int reg,
2018					  struct regmap_range_node *range)
2019{
2020	unsigned int win_page = (reg - range->range_min) / range->window_len;
2021
2022	return win_page;
2023}
2024
2025static int _regmap_range_multi_paged_reg_write(struct regmap *map,
2026					       struct reg_sequence *regs,
2027					       size_t num_regs)
2028{
2029	int ret;
2030	int i, n;
2031	struct reg_sequence *base;
2032	unsigned int this_page = 0;
2033	unsigned int page_change = 0;
2034	/*
2035	 * the set of registers are not neccessarily in order, but
2036	 * since the order of write must be preserved this algorithm
2037	 * chops the set each time the page changes. This also applies
2038	 * if there is a delay required at any point in the sequence.
2039	 */
2040	base = regs;
2041	for (i = 0, n = 0; i < num_regs; i++, n++) {
2042		unsigned int reg = regs[i].reg;
2043		struct regmap_range_node *range;
2044
2045		range = _regmap_range_lookup(map, reg);
2046		if (range) {
2047			unsigned int win_page = _regmap_register_page(map, reg,
2048								      range);
2049
2050			if (i == 0)
2051				this_page = win_page;
2052			if (win_page != this_page) {
2053				this_page = win_page;
2054				page_change = 1;
2055			}
2056		}
2057
2058		/* If we have both a page change and a delay make sure to
2059		 * write the regs and apply the delay before we change the
2060		 * page.
2061		 */
2062
2063		if (page_change || regs[i].delay_us) {
2064
2065				/* For situations where the first write requires
2066				 * a delay we need to make sure we don't call
2067				 * raw_multi_reg_write with n=0
2068				 * This can't occur with page breaks as we
2069				 * never write on the first iteration
2070				 */
2071				if (regs[i].delay_us && i == 0)
2072					n = 1;
2073
2074				ret = _regmap_raw_multi_reg_write(map, base, n);
2075				if (ret != 0)
2076					return ret;
2077
2078				if (regs[i].delay_us)
2079					udelay(regs[i].delay_us);
2080
2081				base += n;
2082				n = 0;
2083
2084				if (page_change) {
2085					ret = _regmap_select_page(map,
2086								  &base[n].reg,
2087								  range, 1);
2088					if (ret != 0)
2089						return ret;
2090
2091					page_change = 0;
2092				}
2093
2094		}
2095
2096	}
2097	if (n > 0)
2098		return _regmap_raw_multi_reg_write(map, base, n);
2099	return 0;
2100}
2101
2102static int _regmap_multi_reg_write(struct regmap *map,
2103				   const struct reg_sequence *regs,
2104				   size_t num_regs)
2105{
2106	int i;
2107	int ret;
2108
2109	if (!map->can_multi_write) {
2110		for (i = 0; i < num_regs; i++) {
2111			ret = _regmap_write(map, regs[i].reg, regs[i].def);
2112			if (ret != 0)
2113				return ret;
2114
2115			if (regs[i].delay_us)
2116				udelay(regs[i].delay_us);
2117		}
2118		return 0;
2119	}
2120
2121	if (!map->format.parse_inplace)
2122		return -EINVAL;
2123
2124	if (map->writeable_reg)
2125		for (i = 0; i < num_regs; i++) {
2126			int reg = regs[i].reg;
2127			if (!map->writeable_reg(map->dev, reg))
2128				return -EINVAL;
2129			if (!IS_ALIGNED(reg, map->reg_stride))
2130				return -EINVAL;
2131		}
2132
2133	if (!map->cache_bypass) {
2134		for (i = 0; i < num_regs; i++) {
2135			unsigned int val = regs[i].def;
2136			unsigned int reg = regs[i].reg;
2137			ret = regcache_write(map, reg, val);
2138			if (ret) {
2139				dev_err(map->dev,
2140				"Error in caching of register: %x ret: %d\n",
2141								reg, ret);
2142				return ret;
2143			}
2144		}
2145		if (map->cache_only) {
2146			map->cache_dirty = true;
2147			return 0;
2148		}
2149	}
2150
2151	WARN_ON(!map->bus);
2152
2153	for (i = 0; i < num_regs; i++) {
2154		unsigned int reg = regs[i].reg;
2155		struct regmap_range_node *range;
2156
2157		/* Coalesce all the writes between a page break or a delay
2158		 * in a sequence
2159		 */
2160		range = _regmap_range_lookup(map, reg);
2161		if (range || regs[i].delay_us) {
2162			size_t len = sizeof(struct reg_sequence)*num_regs;
2163			struct reg_sequence *base = kmemdup(regs, len,
2164							   GFP_KERNEL);
2165			if (!base)
2166				return -ENOMEM;
2167			ret = _regmap_range_multi_paged_reg_write(map, base,
2168								  num_regs);
2169			kfree(base);
2170
2171			return ret;
2172		}
2173	}
2174	return _regmap_raw_multi_reg_write(map, regs, num_regs);
2175}
2176
2177/*
2178 * regmap_multi_reg_write(): Write multiple registers to the device
2179 *
2180 * where the set of register,value pairs are supplied in any order,
2181 * possibly not all in a single range.
2182 *
2183 * @map: Register map to write to
2184 * @regs: Array of structures containing register,value to be written
2185 * @num_regs: Number of registers to write
2186 *
2187 * The 'normal' block write mode will send ultimately send data on the
2188 * target bus as R,V1,V2,V3,..,Vn where successively higer registers are
2189 * addressed. However, this alternative block multi write mode will send
2190 * the data as R1,V1,R2,V2,..,Rn,Vn on the target bus. The target device
2191 * must of course support the mode.
2192 *
2193 * A value of zero will be returned on success, a negative errno will be
2194 * returned in error cases.
2195 */
2196int regmap_multi_reg_write(struct regmap *map, const struct reg_sequence *regs,
2197			   int num_regs)
2198{
2199	int ret;
2200
2201	map->lock(map->lock_arg);
2202
2203	ret = _regmap_multi_reg_write(map, regs, num_regs);
2204
2205	map->unlock(map->lock_arg);
2206
2207	return ret;
2208}
2209EXPORT_SYMBOL_GPL(regmap_multi_reg_write);
2210
2211/*
2212 * regmap_multi_reg_write_bypassed(): Write multiple registers to the
2213 *                                    device but not the cache
2214 *
2215 * where the set of register are supplied in any order
2216 *
2217 * @map: Register map to write to
2218 * @regs: Array of structures containing register,value to be written
2219 * @num_regs: Number of registers to write
2220 *
2221 * This function is intended to be used for writing a large block of data
2222 * atomically to the device in single transfer for those I2C client devices
2223 * that implement this alternative block write mode.
2224 *
2225 * A value of zero will be returned on success, a negative errno will
2226 * be returned in error cases.
2227 */
2228int regmap_multi_reg_write_bypassed(struct regmap *map,
2229				    const struct reg_sequence *regs,
2230				    int num_regs)
2231{
2232	int ret;
2233	bool bypass;
2234
2235	map->lock(map->lock_arg);
2236
2237	bypass = map->cache_bypass;
2238	map->cache_bypass = true;
2239
2240	ret = _regmap_multi_reg_write(map, regs, num_regs);
2241
2242	map->cache_bypass = bypass;
2243
2244	map->unlock(map->lock_arg);
2245
2246	return ret;
2247}
2248EXPORT_SYMBOL_GPL(regmap_multi_reg_write_bypassed);
2249
2250/**
2251 * regmap_raw_write_async(): Write raw values to one or more registers
2252 *                           asynchronously
2253 *
2254 * @map: Register map to write to
2255 * @reg: Initial register to write to
2256 * @val: Block of data to be written, laid out for direct transmission to the
2257 *       device.  Must be valid until regmap_async_complete() is called.
2258 * @val_len: Length of data pointed to by val.
2259 *
2260 * This function is intended to be used for things like firmware
2261 * download where a large block of data needs to be transferred to the
2262 * device.  No formatting will be done on the data provided.
2263 *
2264 * If supported by the underlying bus the write will be scheduled
2265 * asynchronously, helping maximise I/O speed on higher speed buses
2266 * like SPI.  regmap_async_complete() can be called to ensure that all
2267 * asynchrnous writes have been completed.
2268 *
2269 * A value of zero will be returned on success, a negative errno will
2270 * be returned in error cases.
2271 */
2272int regmap_raw_write_async(struct regmap *map, unsigned int reg,
2273			   const void *val, size_t val_len)
2274{
2275	int ret;
2276
2277	if (val_len % map->format.val_bytes)
2278		return -EINVAL;
2279	if (!IS_ALIGNED(reg, map->reg_stride))
2280		return -EINVAL;
2281
2282	map->lock(map->lock_arg);
2283
2284	map->async = true;
2285
2286	ret = _regmap_raw_write(map, reg, val, val_len);
2287
2288	map->async = false;
2289
2290	map->unlock(map->lock_arg);
2291
2292	return ret;
2293}
2294EXPORT_SYMBOL_GPL(regmap_raw_write_async);
2295
2296static int _regmap_raw_read(struct regmap *map, unsigned int reg, void *val,
2297			    unsigned int val_len)
2298{
2299	struct regmap_range_node *range;
2300	int ret;
2301
2302	WARN_ON(!map->bus);
2303
2304	if (!map->bus || !map->bus->read)
2305		return -EINVAL;
2306
2307	range = _regmap_range_lookup(map, reg);
2308	if (range) {
2309		ret = _regmap_select_page(map, &reg, range,
2310					  val_len / map->format.val_bytes);
2311		if (ret != 0)
2312			return ret;
2313	}
2314
2315	map->format.format_reg(map->work_buf, reg, map->reg_shift);
2316	regmap_set_work_buf_flag_mask(map, map->format.reg_bytes,
2317				      map->read_flag_mask);
2318	trace_regmap_hw_read_start(map, reg, val_len / map->format.val_bytes);
2319
2320	ret = map->bus->read(map->bus_context, map->work_buf,
2321			     map->format.reg_bytes + map->format.pad_bytes,
2322			     val, val_len);
2323
2324	trace_regmap_hw_read_done(map, reg, val_len / map->format.val_bytes);
2325
2326	return ret;
2327}
2328
2329static int _regmap_bus_reg_read(void *context, unsigned int reg,
2330				unsigned int *val)
2331{
2332	struct regmap *map = context;
2333
2334	return map->bus->reg_read(map->bus_context, reg, val);
2335}
2336
2337static int _regmap_bus_read(void *context, unsigned int reg,
2338			    unsigned int *val)
2339{
2340	int ret;
2341	struct regmap *map = context;
2342
2343	if (!map->format.parse_val)
2344		return -EINVAL;
2345
2346	ret = _regmap_raw_read(map, reg, map->work_buf, map->format.val_bytes);
2347	if (ret == 0)
2348		*val = map->format.parse_val(map->work_buf);
2349
2350	return ret;
2351}
2352
2353static int _regmap_read(struct regmap *map, unsigned int reg,
2354			unsigned int *val)
2355{
2356	int ret;
2357	void *context = _regmap_map_get_context(map);
2358
2359	if (!map->cache_bypass) {
2360		ret = regcache_read(map, reg, val);
2361		if (ret == 0)
2362			return 0;
2363	}
2364
2365	if (map->cache_only)
2366		return -EBUSY;
2367
2368	if (!regmap_readable(map, reg))
2369		return -EIO;
2370
2371	ret = map->reg_read(context, reg, val);
2372	if (ret == 0) {
2373#ifdef LOG_DEVICE
2374		if (map->dev && strcmp(dev_name(map->dev), LOG_DEVICE) == 0)
2375			dev_info(map->dev, "%x => %x\n", reg, *val);
2376#endif
2377
2378		trace_regmap_reg_read(map, reg, *val);
2379
2380		if (!map->cache_bypass)
2381			regcache_write(map, reg, *val);
2382	}
2383
2384	return ret;
2385}
2386
2387/**
2388 * regmap_read(): Read a value from a single register
2389 *
2390 * @map: Register map to read from
2391 * @reg: Register to be read from
2392 * @val: Pointer to store read value
2393 *
2394 * A value of zero will be returned on success, a negative errno will
2395 * be returned in error cases.
2396 */
2397int regmap_read(struct regmap *map, unsigned int reg, unsigned int *val)
2398{
2399	int ret;
2400
2401	if (!IS_ALIGNED(reg, map->reg_stride))
2402		return -EINVAL;
2403
2404	map->lock(map->lock_arg);
2405
2406	ret = _regmap_read(map, reg, val);
2407
2408	map->unlock(map->lock_arg);
2409
2410	return ret;
2411}
2412EXPORT_SYMBOL_GPL(regmap_read);
2413
2414/**
2415 * regmap_raw_read(): Read raw data from the device
2416 *
2417 * @map: Register map to read from
2418 * @reg: First register to be read from
2419 * @val: Pointer to store read value
2420 * @val_len: Size of data to read
2421 *
2422 * A value of zero will be returned on success, a negative errno will
2423 * be returned in error cases.
2424 */
2425int regmap_raw_read(struct regmap *map, unsigned int reg, void *val,
2426		    size_t val_len)
2427{
2428	size_t val_bytes = map->format.val_bytes;
2429	size_t val_count = val_len / val_bytes;
2430	unsigned int v;
2431	int ret, i;
2432
2433	if (!map->bus)
2434		return -EINVAL;
2435	if (val_len % map->format.val_bytes)
2436		return -EINVAL;
2437	if (!IS_ALIGNED(reg, map->reg_stride))
2438		return -EINVAL;
2439	if (val_count == 0)
2440		return -EINVAL;
2441
2442	map->lock(map->lock_arg);
2443
2444	if (regmap_volatile_range(map, reg, val_count) || map->cache_bypass ||
2445	    map->cache_type == REGCACHE_NONE) {
2446		if (!map->bus->read) {
2447			ret = -ENOTSUPP;
2448			goto out;
2449		}
2450		if (map->max_raw_read && map->max_raw_read < val_len) {
2451			ret = -E2BIG;
2452			goto out;
2453		}
2454
2455		/* Physical block read if there's no cache involved */
2456		ret = _regmap_raw_read(map, reg, val, val_len);
2457
2458	} else {
2459		/* Otherwise go word by word for the cache; should be low
2460		 * cost as we expect to hit the cache.
2461		 */
2462		for (i = 0; i < val_count; i++) {
2463			ret = _regmap_read(map, reg + regmap_get_offset(map, i),
2464					   &v);
2465			if (ret != 0)
2466				goto out;
2467
2468			map->format.format_val(val + (i * val_bytes), v, 0);
2469		}
2470	}
2471
2472 out:
2473	map->unlock(map->lock_arg);
2474
2475	return ret;
2476}
2477EXPORT_SYMBOL_GPL(regmap_raw_read);
2478
2479/**
2480 * regmap_field_read(): Read a value to a single register field
2481 *
2482 * @field: Register field to read from
2483 * @val: Pointer to store read value
2484 *
2485 * A value of zero will be returned on success, a negative errno will
2486 * be returned in error cases.
2487 */
2488int regmap_field_read(struct regmap_field *field, unsigned int *val)
2489{
2490	int ret;
2491	unsigned int reg_val;
2492	ret = regmap_read(field->regmap, field->reg, &reg_val);
2493	if (ret != 0)
2494		return ret;
2495
2496	reg_val &= field->mask;
2497	reg_val >>= field->shift;
2498	*val = reg_val;
2499
2500	return ret;
2501}
2502EXPORT_SYMBOL_GPL(regmap_field_read);
2503
2504/**
2505 * regmap_fields_read(): Read a value to a single register field with port ID
2506 *
2507 * @field: Register field to read from
2508 * @id: port ID
2509 * @val: Pointer to store read value
2510 *
2511 * A value of zero will be returned on success, a negative errno will
2512 * be returned in error cases.
2513 */
2514int regmap_fields_read(struct regmap_field *field, unsigned int id,
2515		       unsigned int *val)
2516{
2517	int ret;
2518	unsigned int reg_val;
2519
2520	if (id >= field->id_size)
2521		return -EINVAL;
2522
2523	ret = regmap_read(field->regmap,
2524			  field->reg + (field->id_offset * id),
2525			  &reg_val);
2526	if (ret != 0)
2527		return ret;
2528
2529	reg_val &= field->mask;
2530	reg_val >>= field->shift;
2531	*val = reg_val;
2532
2533	return ret;
2534}
2535EXPORT_SYMBOL_GPL(regmap_fields_read);
2536
2537/**
2538 * regmap_bulk_read(): Read multiple registers from the device
2539 *
2540 * @map: Register map to read from
2541 * @reg: First register to be read from
2542 * @val: Pointer to store read value, in native register size for device
2543 * @val_count: Number of registers to read
2544 *
2545 * A value of zero will be returned on success, a negative errno will
2546 * be returned in error cases.
2547 */
2548int regmap_bulk_read(struct regmap *map, unsigned int reg, void *val,
2549		     size_t val_count)
2550{
2551	int ret, i;
2552	size_t val_bytes = map->format.val_bytes;
2553	bool vol = regmap_volatile_range(map, reg, val_count);
2554
2555	if (!IS_ALIGNED(reg, map->reg_stride))
2556		return -EINVAL;
2557
2558	if (map->bus && map->format.parse_inplace && (vol || map->cache_type == REGCACHE_NONE)) {
2559		/*
2560		 * Some devices does not support bulk read, for
2561		 * them we have a series of single read operations.
2562		 */
2563		size_t total_size = val_bytes * val_count;
2564
2565		if (!map->use_single_read &&
2566		    (!map->max_raw_read || map->max_raw_read > total_size)) {
2567			ret = regmap_raw_read(map, reg, val,
2568					      val_bytes * val_count);
2569			if (ret != 0)
2570				return ret;
2571		} else {
2572			/*
2573			 * Some devices do not support bulk read or do not
2574			 * support large bulk reads, for them we have a series
2575			 * of read operations.
2576			 */
2577			int chunk_stride = map->reg_stride;
2578			size_t chunk_size = val_bytes;
2579			size_t chunk_count = val_count;
2580
2581			if (!map->use_single_read) {
2582				chunk_size = map->max_raw_read;
2583				if (chunk_size % val_bytes)
2584					chunk_size -= chunk_size % val_bytes;
2585				chunk_count = total_size / chunk_size;
2586				chunk_stride *= chunk_size / val_bytes;
2587			}
2588
2589			/* Read bytes that fit into a multiple of chunk_size */
2590			for (i = 0; i < chunk_count; i++) {
2591				ret = regmap_raw_read(map,
2592						      reg + (i * chunk_stride),
2593						      val + (i * chunk_size),
2594						      chunk_size);
2595				if (ret != 0)
2596					return ret;
2597			}
2598
2599			/* Read remaining bytes */
2600			if (chunk_size * i < total_size) {
2601				ret = regmap_raw_read(map,
2602						      reg + (i * chunk_stride),
2603						      val + (i * chunk_size),
2604						      total_size - i * chunk_size);
2605				if (ret != 0)
2606					return ret;
2607			}
2608		}
2609
2610		for (i = 0; i < val_count * val_bytes; i += val_bytes)
2611			map->format.parse_inplace(val + i);
2612	} else {
2613		for (i = 0; i < val_count; i++) {
2614			unsigned int ival;
2615			ret = regmap_read(map, reg + regmap_get_offset(map, i),
2616					  &ival);
2617			if (ret != 0)
2618				return ret;
2619
2620			if (map->format.format_val) {
2621				map->format.format_val(val + (i * val_bytes), ival, 0);
2622			} else {
2623				/* Devices providing read and write
2624				 * operations can use the bulk I/O
2625				 * functions if they define a val_bytes,
2626				 * we assume that the values are native
2627				 * endian.
2628				 */
2629#ifdef CONFIG_64BIT
2630				u64 *u64 = val;
2631#endif
2632				u32 *u32 = val;
2633				u16 *u16 = val;
2634				u8 *u8 = val;
2635
2636				switch (map->format.val_bytes) {
2637#ifdef CONFIG_64BIT
2638				case 8:
2639					u64[i] = ival;
2640					break;
2641#endif
2642				case 4:
2643					u32[i] = ival;
2644					break;
2645				case 2:
2646					u16[i] = ival;
2647					break;
2648				case 1:
2649					u8[i] = ival;
2650					break;
2651				default:
2652					return -EINVAL;
2653				}
2654			}
2655		}
2656	}
2657
2658	return 0;
2659}
2660EXPORT_SYMBOL_GPL(regmap_bulk_read);
2661
2662static int _regmap_update_bits(struct regmap *map, unsigned int reg,
2663			       unsigned int mask, unsigned int val,
2664			       bool *change, bool force_write)
2665{
2666	int ret;
2667	unsigned int tmp, orig;
2668
2669	if (change)
2670		*change = false;
2671
2672	if (regmap_volatile(map, reg) && map->reg_update_bits) {
2673		ret = map->reg_update_bits(map->bus_context, reg, mask, val);
2674		if (ret == 0 && change)
2675			*change = true;
2676	} else {
2677		ret = _regmap_read(map, reg, &orig);
2678		if (ret != 0)
2679			return ret;
2680
2681		tmp = orig & ~mask;
2682		tmp |= val & mask;
2683
2684		if (force_write || (tmp != orig)) {
2685			ret = _regmap_write(map, reg, tmp);
2686			if (ret == 0 && change)
2687				*change = true;
2688		}
2689	}
2690
2691	return ret;
2692}
2693
2694/**
2695 * regmap_update_bits_base:
2696 *	Perform a read/modify/write cycle on the
2697 *	register map with change, async, force option
2698 *
2699 * @map: Register map to update
2700 * @reg: Register to update
2701 * @mask: Bitmask to change
2702 * @val: New value for bitmask
2703 * @change: Boolean indicating if a write was done
2704 * @async: Boolean indicating asynchronously
2705 * @force: Boolean indicating use force update
2706 *
2707 * if async was true,
2708 * With most buses the read must be done synchronously so this is most
2709 * useful for devices with a cache which do not need to interact with
2710 * the hardware to determine the current register value.
2711 *
2712 * Returns zero for success, a negative number on error.
2713 */
2714int regmap_update_bits_base(struct regmap *map, unsigned int reg,
2715			    unsigned int mask, unsigned int val,
2716			    bool *change, bool async, bool force)
2717{
2718	int ret;
 
2719
2720	map->lock(map->lock_arg);
2721
2722	map->async = async;
2723
2724	ret = _regmap_update_bits(map, reg, mask, val, change, force);
2725
2726	map->async = false;
2727
2728	map->unlock(map->lock_arg);
2729
2730	return ret;
2731}
2732EXPORT_SYMBOL_GPL(regmap_update_bits_base);
2733
2734void regmap_async_complete_cb(struct regmap_async *async, int ret)
2735{
2736	struct regmap *map = async->map;
2737	bool wake;
2738
2739	trace_regmap_async_io_complete(map);
2740
2741	spin_lock(&map->async_lock);
2742	list_move(&async->list, &map->async_free);
2743	wake = list_empty(&map->async_list);
2744
 
2745	if (ret != 0)
2746		map->async_ret = ret;
2747
2748	spin_unlock(&map->async_lock);
 
2749
2750	if (wake)
2751		wake_up(&map->async_waitq);
2752}
2753EXPORT_SYMBOL_GPL(regmap_async_complete_cb);
2754
2755static int regmap_async_is_done(struct regmap *map)
2756{
2757	unsigned long flags;
2758	int ret;
2759
2760	spin_lock_irqsave(&map->async_lock, flags);
2761	ret = list_empty(&map->async_list);
2762	spin_unlock_irqrestore(&map->async_lock, flags);
2763
2764	return ret;
2765}
2766
2767/**
2768 * regmap_async_complete: Ensure all asynchronous I/O has completed.
2769 *
2770 * @map: Map to operate on.
2771 *
2772 * Blocks until any pending asynchronous I/O has completed.  Returns
2773 * an error code for any failed I/O operations.
2774 */
2775int regmap_async_complete(struct regmap *map)
2776{
2777	unsigned long flags;
2778	int ret;
2779
2780	/* Nothing to do with no async support */
2781	if (!map->bus || !map->bus->async_write)
2782		return 0;
2783
2784	trace_regmap_async_complete_start(map);
2785
2786	wait_event(map->async_waitq, regmap_async_is_done(map));
2787
2788	spin_lock_irqsave(&map->async_lock, flags);
2789	ret = map->async_ret;
2790	map->async_ret = 0;
2791	spin_unlock_irqrestore(&map->async_lock, flags);
2792
2793	trace_regmap_async_complete_done(map);
2794
2795	return ret;
2796}
2797EXPORT_SYMBOL_GPL(regmap_async_complete);
2798
2799/**
2800 * regmap_register_patch: Register and apply register updates to be applied
2801 *                        on device initialistion
2802 *
2803 * @map: Register map to apply updates to.
2804 * @regs: Values to update.
2805 * @num_regs: Number of entries in regs.
2806 *
2807 * Register a set of register updates to be applied to the device
2808 * whenever the device registers are synchronised with the cache and
2809 * apply them immediately.  Typically this is used to apply
2810 * corrections to be applied to the device defaults on startup, such
2811 * as the updates some vendors provide to undocumented registers.
2812 *
2813 * The caller must ensure that this function cannot be called
2814 * concurrently with either itself or regcache_sync().
2815 */
2816int regmap_register_patch(struct regmap *map, const struct reg_sequence *regs,
2817			  int num_regs)
2818{
2819	struct reg_sequence *p;
2820	int ret;
2821	bool bypass;
2822
2823	if (WARN_ONCE(num_regs <= 0, "invalid registers number (%d)\n",
2824	    num_regs))
2825		return 0;
2826
2827	p = krealloc(map->patch,
2828		     sizeof(struct reg_sequence) * (map->patch_regs + num_regs),
2829		     GFP_KERNEL);
2830	if (p) {
2831		memcpy(p + map->patch_regs, regs, num_regs * sizeof(*regs));
2832		map->patch = p;
2833		map->patch_regs += num_regs;
2834	} else {
2835		return -ENOMEM;
2836	}
2837
2838	map->lock(map->lock_arg);
2839
2840	bypass = map->cache_bypass;
2841
2842	map->cache_bypass = true;
2843	map->async = true;
2844
2845	ret = _regmap_multi_reg_write(map, regs, num_regs);
2846
2847	map->async = false;
2848	map->cache_bypass = bypass;
2849
2850	map->unlock(map->lock_arg);
2851
2852	regmap_async_complete(map);
2853
2854	return ret;
2855}
2856EXPORT_SYMBOL_GPL(regmap_register_patch);
2857
2858/*
2859 * regmap_get_val_bytes(): Report the size of a register value
2860 *
2861 * Report the size of a register value, mainly intended to for use by
2862 * generic infrastructure built on top of regmap.
2863 */
2864int regmap_get_val_bytes(struct regmap *map)
2865{
2866	if (map->format.format_write)
2867		return -EINVAL;
2868
2869	return map->format.val_bytes;
2870}
2871EXPORT_SYMBOL_GPL(regmap_get_val_bytes);
2872
2873/**
2874 * regmap_get_max_register(): Report the max register value
2875 *
2876 * Report the max register value, mainly intended to for use by
2877 * generic infrastructure built on top of regmap.
2878 */
2879int regmap_get_max_register(struct regmap *map)
2880{
2881	return map->max_register ? map->max_register : -EINVAL;
2882}
2883EXPORT_SYMBOL_GPL(regmap_get_max_register);
2884
2885/**
2886 * regmap_get_reg_stride(): Report the register address stride
2887 *
2888 * Report the register address stride, mainly intended to for use by
2889 * generic infrastructure built on top of regmap.
2890 */
2891int regmap_get_reg_stride(struct regmap *map)
2892{
2893	return map->reg_stride;
2894}
2895EXPORT_SYMBOL_GPL(regmap_get_reg_stride);
2896
2897int regmap_parse_val(struct regmap *map, const void *buf,
2898			unsigned int *val)
2899{
2900	if (!map->format.parse_val)
2901		return -EINVAL;
2902
2903	*val = map->format.parse_val(buf);
2904
2905	return 0;
2906}
2907EXPORT_SYMBOL_GPL(regmap_parse_val);
2908
2909static int __init regmap_initcall(void)
2910{
2911	regmap_debugfs_initcall();
2912
2913	return 0;
2914}
2915postcore_initcall(regmap_initcall);