Linux Audio

Check our new training course

Loading...
v3.1
   1/*
   2 *  Driver for AMBA serial ports
   3 *
   4 *  Based on drivers/char/serial.c, by Linus Torvalds, Theodore Ts'o.
   5 *
   6 *  Copyright 1999 ARM Limited
   7 *  Copyright (C) 2000 Deep Blue Solutions Ltd.
   8 *  Copyright (C) 2010 ST-Ericsson SA
   9 *
  10 * This program is free software; you can redistribute it and/or modify
  11 * it under the terms of the GNU General Public License as published by
  12 * the Free Software Foundation; either version 2 of the License, or
  13 * (at your option) any later version.
  14 *
  15 * This program is distributed in the hope that it will be useful,
  16 * but WITHOUT ANY WARRANTY; without even the implied warranty of
  17 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
  18 * GNU General Public License for more details.
  19 *
  20 * You should have received a copy of the GNU General Public License
  21 * along with this program; if not, write to the Free Software
  22 * Foundation, Inc., 59 Temple Place, Suite 330, Boston, MA  02111-1307  USA
  23 *
  24 * This is a generic driver for ARM AMBA-type serial ports.  They
  25 * have a lot of 16550-like features, but are not register compatible.
  26 * Note that although they do have CTS, DCD and DSR inputs, they do
  27 * not have an RI input, nor do they have DTR or RTS outputs.  If
  28 * required, these have to be supplied via some other means (eg, GPIO)
  29 * and hooked into this driver.
  30 */
  31
 
  32#if defined(CONFIG_SERIAL_AMBA_PL011_CONSOLE) && defined(CONFIG_MAGIC_SYSRQ)
  33#define SUPPORT_SYSRQ
  34#endif
  35
  36#include <linux/module.h>
  37#include <linux/ioport.h>
  38#include <linux/init.h>
  39#include <linux/console.h>
  40#include <linux/sysrq.h>
  41#include <linux/device.h>
  42#include <linux/tty.h>
  43#include <linux/tty_flip.h>
  44#include <linux/serial_core.h>
  45#include <linux/serial.h>
  46#include <linux/amba/bus.h>
  47#include <linux/amba/serial.h>
  48#include <linux/clk.h>
  49#include <linux/slab.h>
  50#include <linux/dmaengine.h>
  51#include <linux/dma-mapping.h>
  52#include <linux/scatterlist.h>
  53#include <linux/delay.h>
 
 
 
 
 
 
 
  54
  55#include <asm/io.h>
  56#include <asm/sizes.h>
  57
  58#define UART_NR			14
  59
  60#define SERIAL_AMBA_MAJOR	204
  61#define SERIAL_AMBA_MINOR	64
  62#define SERIAL_AMBA_NR		UART_NR
  63
  64#define AMBA_ISR_PASS_LIMIT	256
  65
  66#define UART_DR_ERROR		(UART011_DR_OE|UART011_DR_BE|UART011_DR_PE|UART011_DR_FE)
  67#define UART_DUMMY_DR_RX	(1 << 16)
  68
  69
  70#define UART_WA_SAVE_NR 14
  71
  72static void pl011_lockup_wa(unsigned long data);
  73static const u32 uart_wa_reg[UART_WA_SAVE_NR] = {
  74	ST_UART011_DMAWM,
  75	ST_UART011_TIMEOUT,
  76	ST_UART011_LCRH_RX,
  77	UART011_IBRD,
  78	UART011_FBRD,
  79	ST_UART011_LCRH_TX,
  80	UART011_IFLS,
  81	ST_UART011_XFCR,
  82	ST_UART011_XON1,
  83	ST_UART011_XON2,
  84	ST_UART011_XOFF1,
  85	ST_UART011_XOFF2,
  86	UART011_CR,
  87	UART011_IMSC
  88};
  89
  90static u32 uart_wa_regdata[UART_WA_SAVE_NR];
  91static DECLARE_TASKLET(pl011_lockup_tlet, pl011_lockup_wa, 0);
  92
  93/* There is by now at least one vendor with differing details, so handle it */
  94struct vendor_data {
 
  95	unsigned int		ifls;
  96	unsigned int		fifosize;
  97	unsigned int		lcrh_tx;
  98	unsigned int		lcrh_rx;
  99	bool			oversampling;
 100	bool			interrupt_may_hang;   /* vendor-specific */
 101	bool			dma_threshold;
 
 
 
 
 
 102};
 103
 
 
 
 
 
 104static struct vendor_data vendor_arm = {
 
 105	.ifls			= UART011_IFLS_RX4_8|UART011_IFLS_TX4_8,
 106	.fifosize		= 16,
 107	.lcrh_tx		= UART011_LCRH,
 108	.lcrh_rx		= UART011_LCRH,
 109	.oversampling		= false,
 110	.dma_threshold		= false,
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 111};
 112
 
 
 
 
 
 113static struct vendor_data vendor_st = {
 
 114	.ifls			= UART011_IFLS_RX_HALF|UART011_IFLS_TX_HALF,
 115	.fifosize		= 64,
 116	.lcrh_tx		= ST_UART011_LCRH_TX,
 117	.lcrh_rx		= ST_UART011_LCRH_RX,
 118	.oversampling		= true,
 119	.interrupt_may_hang	= true,
 120	.dma_threshold		= true,
 
 
 
 
 121};
 122
 123static struct uart_amba_port *amba_ports[UART_NR];
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 124
 125/* Deals with DMA transactions */
 126
 127struct pl011_sgbuf {
 128	struct scatterlist sg;
 129	char *buf;
 130};
 131
 132struct pl011_dmarx_data {
 133	struct dma_chan		*chan;
 134	struct completion	complete;
 135	bool			use_buf_b;
 136	struct pl011_sgbuf	sgbuf_a;
 137	struct pl011_sgbuf	sgbuf_b;
 138	dma_cookie_t		cookie;
 139	bool			running;
 
 
 
 
 
 
 140};
 141
 142struct pl011_dmatx_data {
 143	struct dma_chan		*chan;
 144	struct scatterlist	sg;
 145	char			*buf;
 146	bool			queued;
 147};
 148
 149/*
 150 * We wrap our port structure around the generic uart_port.
 151 */
 152struct uart_amba_port {
 153	struct uart_port	port;
 
 154	struct clk		*clk;
 155	const struct vendor_data *vendor;
 156	unsigned int		dmacr;		/* dma control reg */
 157	unsigned int		im;		/* interrupt mask */
 158	unsigned int		old_status;
 159	unsigned int		fifosize;	/* vendor-specific */
 160	unsigned int		lcrh_tx;	/* vendor-specific */
 161	unsigned int		lcrh_rx;	/* vendor-specific */
 162	bool			autorts;
 
 163	char			type[12];
 164	bool			interrupt_may_hang; /* vendor-specific */
 165#ifdef CONFIG_DMA_ENGINE
 166	/* DMA stuff */
 167	bool			using_tx_dma;
 168	bool			using_rx_dma;
 169	struct pl011_dmarx_data dmarx;
 170	struct pl011_dmatx_data	dmatx;
 
 171#endif
 172};
 173
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 174/*
 175 * Reads up to 256 characters from the FIFO or until it's empty and
 176 * inserts them into the TTY layer. Returns the number of characters
 177 * read from the FIFO.
 178 */
 179static int pl011_fifo_to_tty(struct uart_amba_port *uap)
 180{
 181	u16 status, ch;
 182	unsigned int flag, max_count = 256;
 183	int fifotaken = 0;
 184
 185	while (max_count--) {
 186		status = readw(uap->port.membase + UART01x_FR);
 187		if (status & UART01x_FR_RXFE)
 188			break;
 189
 190		/* Take chars from the FIFO and update status */
 191		ch = readw(uap->port.membase + UART01x_DR) |
 192			UART_DUMMY_DR_RX;
 193		flag = TTY_NORMAL;
 194		uap->port.icount.rx++;
 195		fifotaken++;
 196
 197		if (unlikely(ch & UART_DR_ERROR)) {
 198			if (ch & UART011_DR_BE) {
 199				ch &= ~(UART011_DR_FE | UART011_DR_PE);
 200				uap->port.icount.brk++;
 201				if (uart_handle_break(&uap->port))
 202					continue;
 203			} else if (ch & UART011_DR_PE)
 204				uap->port.icount.parity++;
 205			else if (ch & UART011_DR_FE)
 206				uap->port.icount.frame++;
 207			if (ch & UART011_DR_OE)
 208				uap->port.icount.overrun++;
 209
 210			ch &= uap->port.read_status_mask;
 211
 212			if (ch & UART011_DR_BE)
 213				flag = TTY_BREAK;
 214			else if (ch & UART011_DR_PE)
 215				flag = TTY_PARITY;
 216			else if (ch & UART011_DR_FE)
 217				flag = TTY_FRAME;
 218		}
 219
 220		if (uart_handle_sysrq_char(&uap->port, ch & 255))
 221			continue;
 222
 223		uart_insert_char(&uap->port, ch, UART011_DR_OE, ch, flag);
 224	}
 225
 226	return fifotaken;
 227}
 228
 229
 230/*
 231 * All the DMA operation mode stuff goes inside this ifdef.
 232 * This assumes that you have a generic DMA device interface,
 233 * no custom DMA interfaces are supported.
 234 */
 235#ifdef CONFIG_DMA_ENGINE
 236
 237#define PL011_DMA_BUFFER_SIZE PAGE_SIZE
 238
 239static int pl011_sgbuf_init(struct dma_chan *chan, struct pl011_sgbuf *sg,
 240	enum dma_data_direction dir)
 241{
 242	sg->buf = kmalloc(PL011_DMA_BUFFER_SIZE, GFP_KERNEL);
 
 
 
 243	if (!sg->buf)
 244		return -ENOMEM;
 245
 246	sg_init_one(&sg->sg, sg->buf, PL011_DMA_BUFFER_SIZE);
 
 
 
 
 247
 248	if (dma_map_sg(chan->device->dev, &sg->sg, 1, dir) != 1) {
 249		kfree(sg->buf);
 250		return -EINVAL;
 251	}
 252	return 0;
 253}
 254
 255static void pl011_sgbuf_free(struct dma_chan *chan, struct pl011_sgbuf *sg,
 256	enum dma_data_direction dir)
 257{
 258	if (sg->buf) {
 259		dma_unmap_sg(chan->device->dev, &sg->sg, 1, dir);
 260		kfree(sg->buf);
 
 261	}
 262}
 263
 264static void pl011_dma_probe_initcall(struct uart_amba_port *uap)
 265{
 266	/* DMA is the sole user of the platform data right now */
 267	struct amba_pl011_data *plat = uap->port.dev->platform_data;
 
 268	struct dma_slave_config tx_conf = {
 269		.dst_addr = uap->port.mapbase + UART01x_DR,
 
 270		.dst_addr_width = DMA_SLAVE_BUSWIDTH_1_BYTE,
 271		.direction = DMA_TO_DEVICE,
 272		.dst_maxburst = uap->fifosize >> 1,
 
 273	};
 274	struct dma_chan *chan;
 275	dma_cap_mask_t mask;
 276
 277	/* We need platform data */
 278	if (!plat || !plat->dma_filter) {
 279		dev_info(uap->port.dev, "no DMA platform data\n");
 280		return;
 281	}
 
 
 282
 283	/* Try to acquire a generic DMA engine slave TX channel */
 284	dma_cap_zero(mask);
 285	dma_cap_set(DMA_SLAVE, mask);
 286
 287	chan = dma_request_channel(mask, plat->dma_filter, plat->dma_tx_param);
 288	if (!chan) {
 289		dev_err(uap->port.dev, "no TX DMA channel!\n");
 290		return;
 
 
 
 
 
 
 
 
 291	}
 292
 293	dmaengine_slave_config(chan, &tx_conf);
 294	uap->dmatx.chan = chan;
 295
 296	dev_info(uap->port.dev, "DMA channel TX %s\n",
 297		 dma_chan_name(uap->dmatx.chan));
 298
 299	/* Optionally make use of an RX channel as well */
 300	if (plat->dma_rx_param) {
 301		struct dma_slave_config rx_conf = {
 302			.src_addr = uap->port.mapbase + UART01x_DR,
 303			.src_addr_width = DMA_SLAVE_BUSWIDTH_1_BYTE,
 304			.direction = DMA_FROM_DEVICE,
 305			.src_maxburst = uap->fifosize >> 1,
 306		};
 307
 
 308		chan = dma_request_channel(mask, plat->dma_filter, plat->dma_rx_param);
 
 309		if (!chan) {
 310			dev_err(uap->port.dev, "no RX DMA channel!\n");
 311			return;
 312		}
 
 
 
 
 
 
 
 
 
 
 
 
 313
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 314		dmaengine_slave_config(chan, &rx_conf);
 315		uap->dmarx.chan = chan;
 316
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 317		dev_info(uap->port.dev, "DMA channel RX %s\n",
 318			 dma_chan_name(uap->dmarx.chan));
 319	}
 320}
 321
 322#ifndef MODULE
 323/*
 324 * Stack up the UARTs and let the above initcall be done at device
 325 * initcall time, because the serial driver is called as an arch
 326 * initcall, and at this time the DMA subsystem is not yet registered.
 327 * At this point the driver will switch over to using DMA where desired.
 328 */
 329struct dma_uap {
 330	struct list_head node;
 331	struct uart_amba_port *uap;
 332};
 333
 334static LIST_HEAD(pl011_dma_uarts);
 335
 336static int __init pl011_dma_initcall(void)
 337{
 338	struct list_head *node, *tmp;
 339
 340	list_for_each_safe(node, tmp, &pl011_dma_uarts) {
 341		struct dma_uap *dmau = list_entry(node, struct dma_uap, node);
 342		pl011_dma_probe_initcall(dmau->uap);
 343		list_del(node);
 344		kfree(dmau);
 345	}
 346	return 0;
 347}
 348
 349device_initcall(pl011_dma_initcall);
 350
 351static void pl011_dma_probe(struct uart_amba_port *uap)
 352{
 353	struct dma_uap *dmau = kzalloc(sizeof(struct dma_uap), GFP_KERNEL);
 354	if (dmau) {
 355		dmau->uap = uap;
 356		list_add_tail(&dmau->node, &pl011_dma_uarts);
 357	}
 358}
 359#else
 360static void pl011_dma_probe(struct uart_amba_port *uap)
 361{
 362	pl011_dma_probe_initcall(uap);
 363}
 364#endif
 365
 366static void pl011_dma_remove(struct uart_amba_port *uap)
 367{
 368	/* TODO: remove the initcall if it has not yet executed */
 369	if (uap->dmatx.chan)
 370		dma_release_channel(uap->dmatx.chan);
 371	if (uap->dmarx.chan)
 372		dma_release_channel(uap->dmarx.chan);
 373}
 374
 375/* Forward declare this for the refill routine */
 376static int pl011_dma_tx_refill(struct uart_amba_port *uap);
 
 377
 378/*
 379 * The current DMA TX buffer has been sent.
 380 * Try to queue up another DMA buffer.
 381 */
 382static void pl011_dma_tx_callback(void *data)
 383{
 384	struct uart_amba_port *uap = data;
 385	struct pl011_dmatx_data *dmatx = &uap->dmatx;
 386	unsigned long flags;
 387	u16 dmacr;
 388
 389	spin_lock_irqsave(&uap->port.lock, flags);
 390	if (uap->dmatx.queued)
 391		dma_unmap_sg(dmatx->chan->device->dev, &dmatx->sg, 1,
 392			     DMA_TO_DEVICE);
 393
 394	dmacr = uap->dmacr;
 395	uap->dmacr = dmacr & ~UART011_TXDMAE;
 396	writew(uap->dmacr, uap->port.membase + UART011_DMACR);
 397
 398	/*
 399	 * If TX DMA was disabled, it means that we've stopped the DMA for
 400	 * some reason (eg, XOFF received, or we want to send an X-char.)
 401	 *
 402	 * Note: we need to be careful here of a potential race between DMA
 403	 * and the rest of the driver - if the driver disables TX DMA while
 404	 * a TX buffer completing, we must update the tx queued status to
 405	 * get further refills (hence we check dmacr).
 406	 */
 407	if (!(dmacr & UART011_TXDMAE) || uart_tx_stopped(&uap->port) ||
 408	    uart_circ_empty(&uap->port.state->xmit)) {
 409		uap->dmatx.queued = false;
 410		spin_unlock_irqrestore(&uap->port.lock, flags);
 411		return;
 412	}
 413
 414	if (pl011_dma_tx_refill(uap) <= 0) {
 415		/*
 416		 * We didn't queue a DMA buffer for some reason, but we
 417		 * have data pending to be sent.  Re-enable the TX IRQ.
 418		 */
 419		uap->im |= UART011_TXIM;
 420		writew(uap->im, uap->port.membase + UART011_IMSC);
 421	}
 422	spin_unlock_irqrestore(&uap->port.lock, flags);
 423}
 424
 425/*
 426 * Try to refill the TX DMA buffer.
 427 * Locking: called with port lock held and IRQs disabled.
 428 * Returns:
 429 *   1 if we queued up a TX DMA buffer.
 430 *   0 if we didn't want to handle this by DMA
 431 *  <0 on error
 432 */
 433static int pl011_dma_tx_refill(struct uart_amba_port *uap)
 434{
 435	struct pl011_dmatx_data *dmatx = &uap->dmatx;
 436	struct dma_chan *chan = dmatx->chan;
 437	struct dma_device *dma_dev = chan->device;
 438	struct dma_async_tx_descriptor *desc;
 439	struct circ_buf *xmit = &uap->port.state->xmit;
 440	unsigned int count;
 441
 442	/*
 443	 * Try to avoid the overhead involved in using DMA if the
 444	 * transaction fits in the first half of the FIFO, by using
 445	 * the standard interrupt handling.  This ensures that we
 446	 * issue a uart_write_wakeup() at the appropriate time.
 447	 */
 448	count = uart_circ_chars_pending(xmit);
 449	if (count < (uap->fifosize >> 1)) {
 450		uap->dmatx.queued = false;
 451		return 0;
 452	}
 453
 454	/*
 455	 * Bodge: don't send the last character by DMA, as this
 456	 * will prevent XON from notifying us to restart DMA.
 457	 */
 458	count -= 1;
 459
 460	/* Else proceed to copy the TX chars to the DMA buffer and fire DMA */
 461	if (count > PL011_DMA_BUFFER_SIZE)
 462		count = PL011_DMA_BUFFER_SIZE;
 463
 464	if (xmit->tail < xmit->head)
 465		memcpy(&dmatx->buf[0], &xmit->buf[xmit->tail], count);
 466	else {
 467		size_t first = UART_XMIT_SIZE - xmit->tail;
 468		size_t second = xmit->head;
 
 
 
 
 469
 470		memcpy(&dmatx->buf[0], &xmit->buf[xmit->tail], first);
 471		if (second)
 472			memcpy(&dmatx->buf[first], &xmit->buf[0], second);
 473	}
 474
 475	dmatx->sg.length = count;
 476
 477	if (dma_map_sg(dma_dev->dev, &dmatx->sg, 1, DMA_TO_DEVICE) != 1) {
 478		uap->dmatx.queued = false;
 479		dev_dbg(uap->port.dev, "unable to map TX DMA\n");
 480		return -EBUSY;
 481	}
 482
 483	desc = dma_dev->device_prep_slave_sg(chan, &dmatx->sg, 1, DMA_TO_DEVICE,
 484					     DMA_PREP_INTERRUPT | DMA_CTRL_ACK);
 485	if (!desc) {
 486		dma_unmap_sg(dma_dev->dev, &dmatx->sg, 1, DMA_TO_DEVICE);
 487		uap->dmatx.queued = false;
 488		/*
 489		 * If DMA cannot be used right now, we complete this
 490		 * transaction via IRQ and let the TTY layer retry.
 491		 */
 492		dev_dbg(uap->port.dev, "TX DMA busy\n");
 493		return -EBUSY;
 494	}
 495
 496	/* Some data to go along to the callback */
 497	desc->callback = pl011_dma_tx_callback;
 498	desc->callback_param = uap;
 499
 500	/* All errors should happen at prepare time */
 501	dmaengine_submit(desc);
 502
 503	/* Fire the DMA transaction */
 504	dma_dev->device_issue_pending(chan);
 505
 506	uap->dmacr |= UART011_TXDMAE;
 507	writew(uap->dmacr, uap->port.membase + UART011_DMACR);
 508	uap->dmatx.queued = true;
 509
 510	/*
 511	 * Now we know that DMA will fire, so advance the ring buffer
 512	 * with the stuff we just dispatched.
 513	 */
 514	xmit->tail = (xmit->tail + count) & (UART_XMIT_SIZE - 1);
 515	uap->port.icount.tx += count;
 516
 517	if (uart_circ_chars_pending(xmit) < WAKEUP_CHARS)
 518		uart_write_wakeup(&uap->port);
 519
 520	return 1;
 521}
 522
 523/*
 524 * We received a transmit interrupt without a pending X-char but with
 525 * pending characters.
 526 * Locking: called with port lock held and IRQs disabled.
 527 * Returns:
 528 *   false if we want to use PIO to transmit
 529 *   true if we queued a DMA buffer
 530 */
 531static bool pl011_dma_tx_irq(struct uart_amba_port *uap)
 532{
 533	if (!uap->using_tx_dma)
 534		return false;
 535
 536	/*
 537	 * If we already have a TX buffer queued, but received a
 538	 * TX interrupt, it will be because we've just sent an X-char.
 539	 * Ensure the TX DMA is enabled and the TX IRQ is disabled.
 540	 */
 541	if (uap->dmatx.queued) {
 542		uap->dmacr |= UART011_TXDMAE;
 543		writew(uap->dmacr, uap->port.membase + UART011_DMACR);
 544		uap->im &= ~UART011_TXIM;
 545		writew(uap->im, uap->port.membase + UART011_IMSC);
 546		return true;
 547	}
 548
 549	/*
 550	 * We don't have a TX buffer queued, so try to queue one.
 551	 * If we successfully queued a buffer, mask the TX IRQ.
 552	 */
 553	if (pl011_dma_tx_refill(uap) > 0) {
 554		uap->im &= ~UART011_TXIM;
 555		writew(uap->im, uap->port.membase + UART011_IMSC);
 556		return true;
 557	}
 558	return false;
 559}
 560
 561/*
 562 * Stop the DMA transmit (eg, due to received XOFF).
 563 * Locking: called with port lock held and IRQs disabled.
 564 */
 565static inline void pl011_dma_tx_stop(struct uart_amba_port *uap)
 566{
 567	if (uap->dmatx.queued) {
 568		uap->dmacr &= ~UART011_TXDMAE;
 569		writew(uap->dmacr, uap->port.membase + UART011_DMACR);
 570	}
 571}
 572
 573/*
 574 * Try to start a DMA transmit, or in the case of an XON/OFF
 575 * character queued for send, try to get that character out ASAP.
 576 * Locking: called with port lock held and IRQs disabled.
 577 * Returns:
 578 *   false if we want the TX IRQ to be enabled
 579 *   true if we have a buffer queued
 580 */
 581static inline bool pl011_dma_tx_start(struct uart_amba_port *uap)
 582{
 583	u16 dmacr;
 584
 585	if (!uap->using_tx_dma)
 586		return false;
 587
 588	if (!uap->port.x_char) {
 589		/* no X-char, try to push chars out in DMA mode */
 590		bool ret = true;
 591
 592		if (!uap->dmatx.queued) {
 593			if (pl011_dma_tx_refill(uap) > 0) {
 594				uap->im &= ~UART011_TXIM;
 595				ret = true;
 596			} else {
 597				uap->im |= UART011_TXIM;
 598				ret = false;
 599			}
 600			writew(uap->im, uap->port.membase + UART011_IMSC);
 601		} else if (!(uap->dmacr & UART011_TXDMAE)) {
 602			uap->dmacr |= UART011_TXDMAE;
 603			writew(uap->dmacr,
 604				       uap->port.membase + UART011_DMACR);
 605		}
 606		return ret;
 607	}
 608
 609	/*
 610	 * We have an X-char to send.  Disable DMA to prevent it loading
 611	 * the TX fifo, and then see if we can stuff it into the FIFO.
 612	 */
 613	dmacr = uap->dmacr;
 614	uap->dmacr &= ~UART011_TXDMAE;
 615	writew(uap->dmacr, uap->port.membase + UART011_DMACR);
 616
 617	if (readw(uap->port.membase + UART01x_FR) & UART01x_FR_TXFF) {
 618		/*
 619		 * No space in the FIFO, so enable the transmit interrupt
 620		 * so we know when there is space.  Note that once we've
 621		 * loaded the character, we should just re-enable DMA.
 622		 */
 623		return false;
 624	}
 625
 626	writew(uap->port.x_char, uap->port.membase + UART01x_DR);
 627	uap->port.icount.tx++;
 628	uap->port.x_char = 0;
 629
 630	/* Success - restore the DMA state */
 631	uap->dmacr = dmacr;
 632	writew(dmacr, uap->port.membase + UART011_DMACR);
 633
 634	return true;
 635}
 636
 637/*
 638 * Flush the transmit buffer.
 639 * Locking: called with port lock held and IRQs disabled.
 640 */
 641static void pl011_dma_flush_buffer(struct uart_port *port)
 
 
 642{
 643	struct uart_amba_port *uap = (struct uart_amba_port *)port;
 
 644
 645	if (!uap->using_tx_dma)
 646		return;
 647
 648	/* Avoid deadlock with the DMA engine callback */
 649	spin_unlock(&uap->port.lock);
 650	dmaengine_terminate_all(uap->dmatx.chan);
 651	spin_lock(&uap->port.lock);
 652	if (uap->dmatx.queued) {
 653		dma_unmap_sg(uap->dmatx.chan->device->dev, &uap->dmatx.sg, 1,
 654			     DMA_TO_DEVICE);
 655		uap->dmatx.queued = false;
 656		uap->dmacr &= ~UART011_TXDMAE;
 657		writew(uap->dmacr, uap->port.membase + UART011_DMACR);
 658	}
 659}
 660
 661static void pl011_dma_rx_callback(void *data);
 662
 663static int pl011_dma_rx_trigger_dma(struct uart_amba_port *uap)
 664{
 665	struct dma_chan *rxchan = uap->dmarx.chan;
 666	struct dma_device *dma_dev;
 667	struct pl011_dmarx_data *dmarx = &uap->dmarx;
 668	struct dma_async_tx_descriptor *desc;
 669	struct pl011_sgbuf *sgbuf;
 670
 671	if (!rxchan)
 672		return -EIO;
 673
 674	/* Start the RX DMA job */
 675	sgbuf = uap->dmarx.use_buf_b ?
 676		&uap->dmarx.sgbuf_b : &uap->dmarx.sgbuf_a;
 677	dma_dev = rxchan->device;
 678	desc = rxchan->device->device_prep_slave_sg(rxchan, &sgbuf->sg, 1,
 679					DMA_FROM_DEVICE,
 680					DMA_PREP_INTERRUPT | DMA_CTRL_ACK);
 681	/*
 682	 * If the DMA engine is busy and cannot prepare a
 683	 * channel, no big deal, the driver will fall back
 684	 * to interrupt mode as a result of this error code.
 685	 */
 686	if (!desc) {
 687		uap->dmarx.running = false;
 688		dmaengine_terminate_all(rxchan);
 689		return -EBUSY;
 690	}
 691
 692	/* Some data to go along to the callback */
 693	desc->callback = pl011_dma_rx_callback;
 694	desc->callback_param = uap;
 695	dmarx->cookie = dmaengine_submit(desc);
 696	dma_async_issue_pending(rxchan);
 697
 698	uap->dmacr |= UART011_RXDMAE;
 699	writew(uap->dmacr, uap->port.membase + UART011_DMACR);
 700	uap->dmarx.running = true;
 701
 702	uap->im &= ~UART011_RXIM;
 703	writew(uap->im, uap->port.membase + UART011_IMSC);
 704
 705	return 0;
 706}
 707
 708/*
 709 * This is called when either the DMA job is complete, or
 710 * the FIFO timeout interrupt occurred. This must be called
 711 * with the port spinlock uap->port.lock held.
 712 */
 713static void pl011_dma_rx_chars(struct uart_amba_port *uap,
 714			       u32 pending, bool use_buf_b,
 715			       bool readfifo)
 716{
 717	struct tty_struct *tty = uap->port.state->port.tty;
 718	struct pl011_sgbuf *sgbuf = use_buf_b ?
 719		&uap->dmarx.sgbuf_b : &uap->dmarx.sgbuf_a;
 720	struct device *dev = uap->dmarx.chan->device->dev;
 721	int dma_count = 0;
 722	u32 fifotaken = 0; /* only used for vdbg() */
 723
 724	/* Pick everything from the DMA first */
 
 
 
 
 
 
 
 
 
 
 
 725	if (pending) {
 726		/* Sync in buffer */
 727		dma_sync_sg_for_cpu(dev, &sgbuf->sg, 1, DMA_FROM_DEVICE);
 728
 729		/*
 730		 * First take all chars in the DMA pipe, then look in the FIFO.
 731		 * Note that tty_insert_flip_buf() tries to take as many chars
 732		 * as it can.
 733		 */
 734		dma_count = tty_insert_flip_string(uap->port.state->port.tty,
 735						   sgbuf->buf, pending);
 736
 737		/* Return buffer to device */
 738		dma_sync_sg_for_device(dev, &sgbuf->sg, 1, DMA_FROM_DEVICE);
 739
 740		uap->port.icount.rx += dma_count;
 741		if (dma_count < pending)
 742			dev_warn(uap->port.dev,
 743				 "couldn't insert all characters (TTY is full?)\n");
 744	}
 745
 
 
 
 
 746	/*
 747	 * Only continue with trying to read the FIFO if all DMA chars have
 748	 * been taken first.
 749	 */
 750	if (dma_count == pending && readfifo) {
 751		/* Clear any error flags */
 752		writew(UART011_OEIS | UART011_BEIS | UART011_PEIS | UART011_FEIS,
 753		       uap->port.membase + UART011_ICR);
 754
 755		/*
 756		 * If we read all the DMA'd characters, and we had an
 757		 * incomplete buffer, that could be due to an rx error, or
 758		 * maybe we just timed out. Read any pending chars and check
 759		 * the error status.
 760		 *
 761		 * Error conditions will only occur in the FIFO, these will
 762		 * trigger an immediate interrupt and stop the DMA job, so we
 763		 * will always find the error in the FIFO, never in the DMA
 764		 * buffer.
 765		 */
 766		fifotaken = pl011_fifo_to_tty(uap);
 767	}
 768
 769	spin_unlock(&uap->port.lock);
 770	dev_vdbg(uap->port.dev,
 771		 "Took %d chars from DMA buffer and %d chars from the FIFO\n",
 772		 dma_count, fifotaken);
 773	tty_flip_buffer_push(tty);
 774	spin_lock(&uap->port.lock);
 775}
 776
 777static void pl011_dma_rx_irq(struct uart_amba_port *uap)
 778{
 779	struct pl011_dmarx_data *dmarx = &uap->dmarx;
 780	struct dma_chan *rxchan = dmarx->chan;
 781	struct pl011_sgbuf *sgbuf = dmarx->use_buf_b ?
 782		&dmarx->sgbuf_b : &dmarx->sgbuf_a;
 783	size_t pending;
 784	struct dma_tx_state state;
 785	enum dma_status dmastat;
 786
 787	/*
 788	 * Pause the transfer so we can trust the current counter,
 789	 * do this before we pause the PL011 block, else we may
 790	 * overflow the FIFO.
 791	 */
 792	if (dmaengine_pause(rxchan))
 793		dev_err(uap->port.dev, "unable to pause DMA transfer\n");
 794	dmastat = rxchan->device->device_tx_status(rxchan,
 795						   dmarx->cookie, &state);
 796	if (dmastat != DMA_PAUSED)
 797		dev_err(uap->port.dev, "unable to pause DMA transfer\n");
 798
 799	/* Disable RX DMA - incoming data will wait in the FIFO */
 800	uap->dmacr &= ~UART011_RXDMAE;
 801	writew(uap->dmacr, uap->port.membase + UART011_DMACR);
 802	uap->dmarx.running = false;
 803
 804	pending = sgbuf->sg.length - state.residue;
 805	BUG_ON(pending > PL011_DMA_BUFFER_SIZE);
 806	/* Then we terminate the transfer - we now know our residue */
 807	dmaengine_terminate_all(rxchan);
 808
 809	/*
 810	 * This will take the chars we have so far and insert
 811	 * into the framework.
 812	 */
 813	pl011_dma_rx_chars(uap, pending, dmarx->use_buf_b, true);
 814
 815	/* Switch buffer & re-trigger DMA job */
 816	dmarx->use_buf_b = !dmarx->use_buf_b;
 817	if (pl011_dma_rx_trigger_dma(uap)) {
 818		dev_dbg(uap->port.dev, "could not retrigger RX DMA job "
 819			"fall back to interrupt mode\n");
 820		uap->im |= UART011_RXIM;
 821		writew(uap->im, uap->port.membase + UART011_IMSC);
 822	}
 823}
 824
 825static void pl011_dma_rx_callback(void *data)
 826{
 827	struct uart_amba_port *uap = data;
 828	struct pl011_dmarx_data *dmarx = &uap->dmarx;
 
 829	bool lastbuf = dmarx->use_buf_b;
 
 
 
 
 830	int ret;
 831
 832	/*
 833	 * This completion interrupt occurs typically when the
 834	 * RX buffer is totally stuffed but no timeout has yet
 835	 * occurred. When that happens, we just want the RX
 836	 * routine to flush out the secondary DMA buffer while
 837	 * we immediately trigger the next DMA job.
 838	 */
 839	spin_lock_irq(&uap->port.lock);
 
 
 
 
 
 
 
 
 
 
 840	uap->dmarx.running = false;
 841	dmarx->use_buf_b = !lastbuf;
 842	ret = pl011_dma_rx_trigger_dma(uap);
 843
 844	pl011_dma_rx_chars(uap, PL011_DMA_BUFFER_SIZE, lastbuf, false);
 845	spin_unlock_irq(&uap->port.lock);
 846	/*
 847	 * Do this check after we picked the DMA chars so we don't
 848	 * get some IRQ immediately from RX.
 849	 */
 850	if (ret) {
 851		dev_dbg(uap->port.dev, "could not retrigger RX DMA job "
 852			"fall back to interrupt mode\n");
 853		uap->im |= UART011_RXIM;
 854		writew(uap->im, uap->port.membase + UART011_IMSC);
 855	}
 856}
 857
 858/*
 859 * Stop accepting received characters, when we're shutting down or
 860 * suspending this port.
 861 * Locking: called with port lock held and IRQs disabled.
 862 */
 863static inline void pl011_dma_rx_stop(struct uart_amba_port *uap)
 864{
 865	/* FIXME.  Just disable the DMA enable */
 866	uap->dmacr &= ~UART011_RXDMAE;
 867	writew(uap->dmacr, uap->port.membase + UART011_DMACR);
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 868}
 869
 870static void pl011_dma_startup(struct uart_amba_port *uap)
 871{
 872	int ret;
 873
 
 
 
 874	if (!uap->dmatx.chan)
 875		return;
 876
 877	uap->dmatx.buf = kmalloc(PL011_DMA_BUFFER_SIZE, GFP_KERNEL);
 878	if (!uap->dmatx.buf) {
 879		dev_err(uap->port.dev, "no memory for DMA TX buffer\n");
 880		uap->port.fifosize = uap->fifosize;
 881		return;
 882	}
 883
 884	sg_init_one(&uap->dmatx.sg, uap->dmatx.buf, PL011_DMA_BUFFER_SIZE);
 885
 886	/* The DMA buffer is now the FIFO the TTY subsystem can use */
 887	uap->port.fifosize = PL011_DMA_BUFFER_SIZE;
 888	uap->using_tx_dma = true;
 889
 890	if (!uap->dmarx.chan)
 891		goto skip_rx;
 892
 893	/* Allocate and map DMA RX buffers */
 894	ret = pl011_sgbuf_init(uap->dmarx.chan, &uap->dmarx.sgbuf_a,
 895			       DMA_FROM_DEVICE);
 896	if (ret) {
 897		dev_err(uap->port.dev, "failed to init DMA %s: %d\n",
 898			"RX buffer A", ret);
 899		goto skip_rx;
 900	}
 901
 902	ret = pl011_sgbuf_init(uap->dmarx.chan, &uap->dmarx.sgbuf_b,
 903			       DMA_FROM_DEVICE);
 904	if (ret) {
 905		dev_err(uap->port.dev, "failed to init DMA %s: %d\n",
 906			"RX buffer B", ret);
 907		pl011_sgbuf_free(uap->dmarx.chan, &uap->dmarx.sgbuf_a,
 908				 DMA_FROM_DEVICE);
 909		goto skip_rx;
 910	}
 911
 912	uap->using_rx_dma = true;
 913
 914skip_rx:
 915	/* Turn on DMA error (RX/TX will be enabled on demand) */
 916	uap->dmacr |= UART011_DMAONERR;
 917	writew(uap->dmacr, uap->port.membase + UART011_DMACR);
 918
 919	/*
 920	 * ST Micro variants has some specific dma burst threshold
 921	 * compensation. Set this to 16 bytes, so burst will only
 922	 * be issued above/below 16 bytes.
 923	 */
 924	if (uap->vendor->dma_threshold)
 925		writew(ST_UART011_DMAWM_RX_16 | ST_UART011_DMAWM_TX_16,
 926			       uap->port.membase + ST_UART011_DMAWM);
 927
 928	if (uap->using_rx_dma) {
 929		if (pl011_dma_rx_trigger_dma(uap))
 930			dev_dbg(uap->port.dev, "could not trigger initial "
 931				"RX DMA job, fall back to interrupt mode\n");
 
 
 
 
 
 
 
 
 
 
 932	}
 933}
 934
 935static void pl011_dma_shutdown(struct uart_amba_port *uap)
 936{
 937	if (!(uap->using_tx_dma || uap->using_rx_dma))
 938		return;
 939
 940	/* Disable RX and TX DMA */
 941	while (readw(uap->port.membase + UART01x_FR) & UART01x_FR_BUSY)
 942		barrier();
 943
 944	spin_lock_irq(&uap->port.lock);
 945	uap->dmacr &= ~(UART011_DMAONERR | UART011_RXDMAE | UART011_TXDMAE);
 946	writew(uap->dmacr, uap->port.membase + UART011_DMACR);
 947	spin_unlock_irq(&uap->port.lock);
 948
 949	if (uap->using_tx_dma) {
 950		/* In theory, this should already be done by pl011_dma_flush_buffer */
 951		dmaengine_terminate_all(uap->dmatx.chan);
 952		if (uap->dmatx.queued) {
 953			dma_unmap_sg(uap->dmatx.chan->device->dev, &uap->dmatx.sg, 1,
 954				     DMA_TO_DEVICE);
 955			uap->dmatx.queued = false;
 956		}
 957
 958		kfree(uap->dmatx.buf);
 959		uap->using_tx_dma = false;
 960	}
 961
 962	if (uap->using_rx_dma) {
 963		dmaengine_terminate_all(uap->dmarx.chan);
 964		/* Clean up the RX DMA */
 965		pl011_sgbuf_free(uap->dmarx.chan, &uap->dmarx.sgbuf_a, DMA_FROM_DEVICE);
 966		pl011_sgbuf_free(uap->dmarx.chan, &uap->dmarx.sgbuf_b, DMA_FROM_DEVICE);
 
 
 967		uap->using_rx_dma = false;
 968	}
 969}
 970
 971static inline bool pl011_dma_rx_available(struct uart_amba_port *uap)
 972{
 973	return uap->using_rx_dma;
 974}
 975
 976static inline bool pl011_dma_rx_running(struct uart_amba_port *uap)
 977{
 978	return uap->using_rx_dma && uap->dmarx.running;
 979}
 980
 981
 982#else
 983/* Blank functions if the DMA engine is not available */
 984static inline void pl011_dma_probe(struct uart_amba_port *uap)
 985{
 986}
 987
 988static inline void pl011_dma_remove(struct uart_amba_port *uap)
 989{
 990}
 991
 992static inline void pl011_dma_startup(struct uart_amba_port *uap)
 993{
 994}
 995
 996static inline void pl011_dma_shutdown(struct uart_amba_port *uap)
 997{
 998}
 999
1000static inline bool pl011_dma_tx_irq(struct uart_amba_port *uap)
1001{
1002	return false;
1003}
1004
1005static inline void pl011_dma_tx_stop(struct uart_amba_port *uap)
1006{
1007}
1008
1009static inline bool pl011_dma_tx_start(struct uart_amba_port *uap)
1010{
1011	return false;
1012}
1013
1014static inline void pl011_dma_rx_irq(struct uart_amba_port *uap)
1015{
1016}
1017
1018static inline void pl011_dma_rx_stop(struct uart_amba_port *uap)
1019{
1020}
1021
1022static inline int pl011_dma_rx_trigger_dma(struct uart_amba_port *uap)
1023{
1024	return -EIO;
1025}
1026
1027static inline bool pl011_dma_rx_available(struct uart_amba_port *uap)
1028{
1029	return false;
1030}
1031
1032static inline bool pl011_dma_rx_running(struct uart_amba_port *uap)
1033{
1034	return false;
1035}
1036
1037#define pl011_dma_flush_buffer	NULL
1038#endif
1039
1040
1041/*
1042 * pl011_lockup_wa
1043 * This workaround aims to break the deadlock situation
1044 * when after long transfer over uart in hardware flow
1045 * control, uart interrupt registers cannot be cleared.
1046 * Hence uart transfer gets blocked.
1047 *
1048 * It is seen that during such deadlock condition ICR
1049 * don't get cleared even on multiple write. This leads
1050 * pass_counter to decrease and finally reach zero. This
1051 * can be taken as trigger point to run this UART_BT_WA.
1052 *
1053 */
1054static void pl011_lockup_wa(unsigned long data)
1055{
1056	struct uart_amba_port *uap = amba_ports[0];
1057	void __iomem *base = uap->port.membase;
1058	struct circ_buf *xmit = &uap->port.state->xmit;
1059	struct tty_struct *tty = uap->port.state->port.tty;
1060	int buf_empty_retries = 200;
1061	int loop;
1062
1063	/* Stop HCI layer from submitting data for tx */
1064	tty->hw_stopped = 1;
1065	while (!uart_circ_empty(xmit)) {
1066		if (buf_empty_retries-- == 0)
1067			break;
1068		udelay(100);
1069	}
1070
1071	/* Backup registers */
1072	for (loop = 0; loop < UART_WA_SAVE_NR; loop++)
1073		uart_wa_regdata[loop] = readl(base + uart_wa_reg[loop]);
1074
1075	/* Disable UART so that FIFO data is flushed out */
1076	writew(0x00, uap->port.membase + UART011_CR);
1077
1078	/* Soft reset UART module */
1079	if (uap->port.dev->platform_data) {
1080		struct amba_pl011_data *plat;
1081
1082		plat = uap->port.dev->platform_data;
1083		if (plat->reset)
1084			plat->reset();
1085	}
1086
1087	/* Restore registers */
1088	for (loop = 0; loop < UART_WA_SAVE_NR; loop++)
1089		writew(uart_wa_regdata[loop] ,
1090				uap->port.membase + uart_wa_reg[loop]);
1091
1092	/* Initialise the old status of the modem signals */
1093	uap->old_status = readw(uap->port.membase + UART01x_FR) &
1094		UART01x_FR_MODEM_ANY;
1095
1096	if (readl(base + UART011_MIS) & 0x2)
1097		printk(KERN_EMERG "UART_BT_WA: ***FAILED***\n");
1098
1099	/* Start Tx/Rx */
1100	tty->hw_stopped = 0;
1101}
1102
1103static void pl011_stop_tx(struct uart_port *port)
1104{
1105	struct uart_amba_port *uap = (struct uart_amba_port *)port;
 
1106
1107	uap->im &= ~UART011_TXIM;
1108	writew(uap->im, uap->port.membase + UART011_IMSC);
1109	pl011_dma_tx_stop(uap);
1110}
1111
 
 
 
 
 
 
 
 
 
 
1112static void pl011_start_tx(struct uart_port *port)
1113{
1114	struct uart_amba_port *uap = (struct uart_amba_port *)port;
 
1115
1116	if (!pl011_dma_tx_start(uap)) {
1117		uap->im |= UART011_TXIM;
1118		writew(uap->im, uap->port.membase + UART011_IMSC);
1119	}
1120}
1121
1122static void pl011_stop_rx(struct uart_port *port)
1123{
1124	struct uart_amba_port *uap = (struct uart_amba_port *)port;
 
1125
1126	uap->im &= ~(UART011_RXIM|UART011_RTIM|UART011_FEIM|
1127		     UART011_PEIM|UART011_BEIM|UART011_OEIM);
1128	writew(uap->im, uap->port.membase + UART011_IMSC);
1129
1130	pl011_dma_rx_stop(uap);
1131}
1132
1133static void pl011_enable_ms(struct uart_port *port)
1134{
1135	struct uart_amba_port *uap = (struct uart_amba_port *)port;
 
1136
1137	uap->im |= UART011_RIMIM|UART011_CTSMIM|UART011_DCDMIM|UART011_DSRMIM;
1138	writew(uap->im, uap->port.membase + UART011_IMSC);
1139}
1140
1141static void pl011_rx_chars(struct uart_amba_port *uap)
 
 
1142{
1143	struct tty_struct *tty = uap->port.state->port.tty;
1144
1145	pl011_fifo_to_tty(uap);
1146
1147	spin_unlock(&uap->port.lock);
1148	tty_flip_buffer_push(tty);
1149	/*
1150	 * If we were temporarily out of DMA mode for a while,
1151	 * attempt to switch back to DMA mode again.
1152	 */
1153	if (pl011_dma_rx_available(uap)) {
1154		if (pl011_dma_rx_trigger_dma(uap)) {
1155			dev_dbg(uap->port.dev, "could not trigger RX DMA job "
1156				"fall back to interrupt mode again\n");
1157			uap->im |= UART011_RXIM;
1158		} else
1159			uap->im &= ~UART011_RXIM;
1160		writew(uap->im, uap->port.membase + UART011_IMSC);
 
 
 
 
 
 
 
 
 
 
1161	}
1162	spin_lock(&uap->port.lock);
1163}
1164
1165static void pl011_tx_chars(struct uart_amba_port *uap)
 
 
 
 
 
 
 
 
 
 
 
 
 
1166{
1167	struct circ_buf *xmit = &uap->port.state->xmit;
1168	int count;
1169
1170	if (uap->port.x_char) {
1171		writew(uap->port.x_char, uap->port.membase + UART01x_DR);
1172		uap->port.icount.tx++;
1173		uap->port.x_char = 0;
1174		return;
1175	}
1176	if (uart_circ_empty(xmit) || uart_tx_stopped(&uap->port)) {
1177		pl011_stop_tx(&uap->port);
1178		return;
1179	}
1180
1181	/* If we are using DMA mode, try to send some characters. */
1182	if (pl011_dma_tx_irq(uap))
1183		return;
1184
1185	count = uap->fifosize >> 1;
1186	do {
1187		writew(xmit->buf[xmit->tail], uap->port.membase + UART01x_DR);
1188		xmit->tail = (xmit->tail + 1) & (UART_XMIT_SIZE - 1);
1189		uap->port.icount.tx++;
1190		if (uart_circ_empty(xmit))
1191			break;
1192	} while (--count > 0);
 
 
 
 
 
1193
1194	if (uart_circ_chars_pending(xmit) < WAKEUP_CHARS)
1195		uart_write_wakeup(&uap->port);
1196
1197	if (uart_circ_empty(xmit))
1198		pl011_stop_tx(&uap->port);
1199}
1200
1201static void pl011_modem_status(struct uart_amba_port *uap)
1202{
1203	unsigned int status, delta;
1204
1205	status = readw(uap->port.membase + UART01x_FR) & UART01x_FR_MODEM_ANY;
1206
1207	delta = status ^ uap->old_status;
1208	uap->old_status = status;
1209
1210	if (!delta)
1211		return;
1212
1213	if (delta & UART01x_FR_DCD)
1214		uart_handle_dcd_change(&uap->port, status & UART01x_FR_DCD);
1215
1216	if (delta & UART01x_FR_DSR)
1217		uap->port.icount.dsr++;
1218
1219	if (delta & UART01x_FR_CTS)
1220		uart_handle_cts_change(&uap->port, status & UART01x_FR_CTS);
1221
1222	wake_up_interruptible(&uap->port.state->port.delta_msr_wait);
1223}
1224
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1225static irqreturn_t pl011_int(int irq, void *dev_id)
1226{
1227	struct uart_amba_port *uap = dev_id;
1228	unsigned long flags;
1229	unsigned int status, pass_counter = AMBA_ISR_PASS_LIMIT;
 
1230	int handled = 0;
1231
1232	spin_lock_irqsave(&uap->port.lock, flags);
1233
1234	status = readw(uap->port.membase + UART011_MIS);
1235	if (status) {
1236		do {
1237			writew(status & ~(UART011_TXIS|UART011_RTIS|
1238					  UART011_RXIS),
1239			       uap->port.membase + UART011_ICR);
 
 
1240
1241			if (status & (UART011_RTIS|UART011_RXIS)) {
1242				if (pl011_dma_rx_running(uap))
1243					pl011_dma_rx_irq(uap);
1244				else
1245					pl011_rx_chars(uap);
1246			}
1247			if (status & (UART011_DSRMIS|UART011_DCDMIS|
1248				      UART011_CTSMIS|UART011_RIMIS))
1249				pl011_modem_status(uap);
1250			if (status & UART011_TXIS)
1251				pl011_tx_chars(uap);
1252
1253			if (pass_counter-- == 0) {
1254				if (uap->interrupt_may_hang)
1255					tasklet_schedule(&pl011_lockup_tlet);
1256				break;
1257			}
1258
1259			status = readw(uap->port.membase + UART011_MIS);
1260		} while (status != 0);
1261		handled = 1;
1262	}
1263
1264	spin_unlock_irqrestore(&uap->port.lock, flags);
1265
1266	return IRQ_RETVAL(handled);
1267}
1268
1269static unsigned int pl01x_tx_empty(struct uart_port *port)
1270{
1271	struct uart_amba_port *uap = (struct uart_amba_port *)port;
1272	unsigned int status = readw(uap->port.membase + UART01x_FR);
 
1273	return status & (UART01x_FR_BUSY|UART01x_FR_TXFF) ? 0 : TIOCSER_TEMT;
1274}
1275
1276static unsigned int pl01x_get_mctrl(struct uart_port *port)
1277{
1278	struct uart_amba_port *uap = (struct uart_amba_port *)port;
 
1279	unsigned int result = 0;
1280	unsigned int status = readw(uap->port.membase + UART01x_FR);
1281
1282#define TIOCMBIT(uartbit, tiocmbit)	\
1283	if (status & uartbit)		\
1284		result |= tiocmbit
1285
1286	TIOCMBIT(UART01x_FR_DCD, TIOCM_CAR);
1287	TIOCMBIT(UART01x_FR_DSR, TIOCM_DSR);
1288	TIOCMBIT(UART01x_FR_CTS, TIOCM_CTS);
1289	TIOCMBIT(UART011_FR_RI, TIOCM_RNG);
1290#undef TIOCMBIT
1291	return result;
1292}
1293
1294static void pl011_set_mctrl(struct uart_port *port, unsigned int mctrl)
1295{
1296	struct uart_amba_port *uap = (struct uart_amba_port *)port;
 
1297	unsigned int cr;
1298
1299	cr = readw(uap->port.membase + UART011_CR);
1300
1301#define	TIOCMBIT(tiocmbit, uartbit)		\
1302	if (mctrl & tiocmbit)		\
1303		cr |= uartbit;		\
1304	else				\
1305		cr &= ~uartbit
1306
1307	TIOCMBIT(TIOCM_RTS, UART011_CR_RTS);
1308	TIOCMBIT(TIOCM_DTR, UART011_CR_DTR);
1309	TIOCMBIT(TIOCM_OUT1, UART011_CR_OUT1);
1310	TIOCMBIT(TIOCM_OUT2, UART011_CR_OUT2);
1311	TIOCMBIT(TIOCM_LOOP, UART011_CR_LBE);
1312
1313	if (uap->autorts) {
1314		/* We need to disable auto-RTS if we want to turn RTS off */
1315		TIOCMBIT(TIOCM_RTS, UART011_CR_RTSEN);
1316	}
1317#undef TIOCMBIT
1318
1319	writew(cr, uap->port.membase + UART011_CR);
1320}
1321
1322static void pl011_break_ctl(struct uart_port *port, int break_state)
1323{
1324	struct uart_amba_port *uap = (struct uart_amba_port *)port;
 
1325	unsigned long flags;
1326	unsigned int lcr_h;
1327
1328	spin_lock_irqsave(&uap->port.lock, flags);
1329	lcr_h = readw(uap->port.membase + uap->lcrh_tx);
1330	if (break_state == -1)
1331		lcr_h |= UART01x_LCRH_BRK;
1332	else
1333		lcr_h &= ~UART01x_LCRH_BRK;
1334	writew(lcr_h, uap->port.membase + uap->lcrh_tx);
1335	spin_unlock_irqrestore(&uap->port.lock, flags);
1336}
1337
1338#ifdef CONFIG_CONSOLE_POLL
1339static int pl010_get_poll_char(struct uart_port *port)
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1340{
1341	struct uart_amba_port *uap = (struct uart_amba_port *)port;
 
1342	unsigned int status;
1343
1344	status = readw(uap->port.membase + UART01x_FR);
 
 
 
 
 
 
1345	if (status & UART01x_FR_RXFE)
1346		return NO_POLL_CHAR;
1347
1348	return readw(uap->port.membase + UART01x_DR);
1349}
1350
1351static void pl010_put_poll_char(struct uart_port *port,
1352			 unsigned char ch)
1353{
1354	struct uart_amba_port *uap = (struct uart_amba_port *)port;
 
1355
1356	while (readw(uap->port.membase + UART01x_FR) & UART01x_FR_TXFF)
1357		barrier();
1358
1359	writew(ch, uap->port.membase + UART01x_DR);
1360}
1361
1362#endif /* CONFIG_CONSOLE_POLL */
1363
1364static int pl011_startup(struct uart_port *port)
1365{
1366	struct uart_amba_port *uap = (struct uart_amba_port *)port;
1367	unsigned int cr;
1368	int retval;
1369
 
 
 
1370	/*
1371	 * Try to enable the clock producer.
1372	 */
1373	retval = clk_enable(uap->clk);
1374	if (retval)
1375		goto out;
1376
1377	uap->port.uartclk = clk_get_rate(uap->clk);
1378
 
 
 
 
 
1379	/*
1380	 * Allocate the IRQ
 
1381	 */
1382	retval = request_irq(uap->port.irq, pl011_int, 0, "uart-pl011", uap);
1383	if (retval)
1384		goto clk_dis;
1385
1386	writew(uap->vendor->ifls, uap->port.membase + UART011_IFLS);
 
1387
1388	/*
1389	 * Provoke TX FIFO interrupt into asserting.
1390	 */
1391	cr = UART01x_CR_UARTEN | UART011_CR_TXE | UART011_CR_LBE;
1392	writew(cr, uap->port.membase + UART011_CR);
1393	writew(0, uap->port.membase + UART011_FBRD);
1394	writew(1, uap->port.membase + UART011_IBRD);
1395	writew(0, uap->port.membase + uap->lcrh_rx);
1396	if (uap->lcrh_tx != uap->lcrh_rx) {
 
 
 
 
 
 
 
 
1397		int i;
1398		/*
1399		 * Wait 10 PCLKs before writing LCRH_TX register,
1400		 * to get this delay write read only register 10 times
1401		 */
1402		for (i = 0; i < 10; ++i)
1403			writew(0xff, uap->port.membase + UART011_MIS);
1404		writew(0, uap->port.membase + uap->lcrh_tx);
1405	}
1406	writew(0, uap->port.membase + UART01x_DR);
1407	while (readw(uap->port.membase + UART01x_FR) & UART01x_FR_BUSY)
1408		barrier();
1409
1410	cr = UART01x_CR_UARTEN | UART011_CR_RXE | UART011_CR_TXE;
1411	writew(cr, uap->port.membase + UART011_CR);
1412
1413	/* Clear pending error interrupts */
1414	writew(UART011_OEIS | UART011_BEIS | UART011_PEIS | UART011_FEIS,
1415	       uap->port.membase + UART011_ICR);
1416
1417	/*
1418	 * initialise the old status of the modem signals
1419	 */
1420	uap->old_status = readw(uap->port.membase + UART01x_FR) & UART01x_FR_MODEM_ANY;
1421
1422	/* Startup DMA */
1423	pl011_dma_startup(uap);
1424
1425	/*
1426	 * Finally, enable interrupts, only timeouts when using DMA
1427	 * if initial RX DMA job failed, start in interrupt mode
1428	 * as well.
1429	 */
 
 
1430	spin_lock_irq(&uap->port.lock);
 
 
 
1431	uap->im = UART011_RTIM;
1432	if (!pl011_dma_rx_running(uap))
1433		uap->im |= UART011_RXIM;
1434	writew(uap->im, uap->port.membase + UART011_IMSC);
1435	spin_unlock_irq(&uap->port.lock);
 
1436
1437	if (uap->port.dev->platform_data) {
1438		struct amba_pl011_data *plat;
 
 
 
 
1439
1440		plat = uap->port.dev->platform_data;
1441		if (plat->init)
1442			plat->init();
1443	}
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1444
1445	return 0;
1446
1447 clk_dis:
1448	clk_disable(uap->clk);
1449 out:
1450	return retval;
1451}
1452
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1453static void pl011_shutdown_channel(struct uart_amba_port *uap,
1454					unsigned int lcrh)
1455{
1456      unsigned long val;
1457
1458      val = readw(uap->port.membase + lcrh);
1459      val &= ~(UART01x_LCRH_BRK | UART01x_LCRH_FEN);
1460      writew(val, uap->port.membase + lcrh);
1461}
1462
1463static void pl011_shutdown(struct uart_port *port)
 
 
 
 
 
1464{
1465	struct uart_amba_port *uap = (struct uart_amba_port *)port;
 
 
 
 
 
 
 
 
 
1466
1467	/*
1468	 * disable all interrupts
1469	 */
 
 
 
 
 
 
 
1470	spin_lock_irq(&uap->port.lock);
 
 
1471	uap->im = 0;
1472	writew(uap->im, uap->port.membase + UART011_IMSC);
1473	writew(0xffff, uap->port.membase + UART011_ICR);
 
1474	spin_unlock_irq(&uap->port.lock);
 
 
 
 
 
 
 
 
1475
1476	pl011_dma_shutdown(uap);
1477
1478	/*
1479	 * Free the interrupt
1480	 */
1481	free_irq(uap->port.irq, uap);
1482
1483	/*
1484	 * disable the port
1485	 */
1486	uap->autorts = false;
1487	writew(UART01x_CR_UARTEN | UART011_CR_TXE, uap->port.membase + UART011_CR);
1488
1489	/*
1490	 * disable break condition and fifos
1491	 */
1492	pl011_shutdown_channel(uap, uap->lcrh_rx);
1493	if (uap->lcrh_rx != uap->lcrh_tx)
1494		pl011_shutdown_channel(uap, uap->lcrh_tx);
1495
1496	/*
1497	 * Shut down the clock producer
1498	 */
1499	clk_disable(uap->clk);
 
 
1500
1501	if (uap->port.dev->platform_data) {
1502		struct amba_pl011_data *plat;
1503
1504		plat = uap->port.dev->platform_data;
1505		if (plat->exit)
1506			plat->exit();
1507	}
1508
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1509}
1510
1511static void
1512pl011_set_termios(struct uart_port *port, struct ktermios *termios,
1513		     struct ktermios *old)
1514{
1515	struct uart_amba_port *uap = (struct uart_amba_port *)port;
 
1516	unsigned int lcr_h, old_cr;
1517	unsigned long flags;
1518	unsigned int baud, quot, clkdiv;
1519
1520	if (uap->vendor->oversampling)
1521		clkdiv = 8;
1522	else
1523		clkdiv = 16;
1524
1525	/*
1526	 * Ask the core to calculate the divisor for us.
1527	 */
1528	baud = uart_get_baud_rate(port, termios, old, 0,
1529				  port->uartclk / clkdiv);
 
 
 
 
 
 
 
1530
1531	if (baud > port->uartclk/16)
1532		quot = DIV_ROUND_CLOSEST(port->uartclk * 8, baud);
1533	else
1534		quot = DIV_ROUND_CLOSEST(port->uartclk * 4, baud);
1535
1536	switch (termios->c_cflag & CSIZE) {
1537	case CS5:
1538		lcr_h = UART01x_LCRH_WLEN_5;
1539		break;
1540	case CS6:
1541		lcr_h = UART01x_LCRH_WLEN_6;
1542		break;
1543	case CS7:
1544		lcr_h = UART01x_LCRH_WLEN_7;
1545		break;
1546	default: // CS8
1547		lcr_h = UART01x_LCRH_WLEN_8;
1548		break;
1549	}
1550	if (termios->c_cflag & CSTOPB)
1551		lcr_h |= UART01x_LCRH_STP2;
1552	if (termios->c_cflag & PARENB) {
1553		lcr_h |= UART01x_LCRH_PEN;
1554		if (!(termios->c_cflag & PARODD))
1555			lcr_h |= UART01x_LCRH_EPS;
 
 
1556	}
1557	if (uap->fifosize > 1)
1558		lcr_h |= UART01x_LCRH_FEN;
1559
1560	spin_lock_irqsave(&port->lock, flags);
1561
1562	/*
1563	 * Update the per-port timeout.
1564	 */
1565	uart_update_timeout(port, termios->c_cflag, baud);
1566
1567	port->read_status_mask = UART011_DR_OE | 255;
1568	if (termios->c_iflag & INPCK)
1569		port->read_status_mask |= UART011_DR_FE | UART011_DR_PE;
1570	if (termios->c_iflag & (BRKINT | PARMRK))
1571		port->read_status_mask |= UART011_DR_BE;
1572
1573	/*
1574	 * Characters to ignore
1575	 */
1576	port->ignore_status_mask = 0;
1577	if (termios->c_iflag & IGNPAR)
1578		port->ignore_status_mask |= UART011_DR_FE | UART011_DR_PE;
1579	if (termios->c_iflag & IGNBRK) {
1580		port->ignore_status_mask |= UART011_DR_BE;
1581		/*
1582		 * If we're ignoring parity and break indicators,
1583		 * ignore overruns too (for real raw support).
1584		 */
1585		if (termios->c_iflag & IGNPAR)
1586			port->ignore_status_mask |= UART011_DR_OE;
1587	}
1588
1589	/*
1590	 * Ignore all characters if CREAD is not set.
1591	 */
1592	if ((termios->c_cflag & CREAD) == 0)
1593		port->ignore_status_mask |= UART_DUMMY_DR_RX;
1594
1595	if (UART_ENABLE_MS(port, termios->c_cflag))
1596		pl011_enable_ms(port);
1597
1598	/* first, disable everything */
1599	old_cr = readw(port->membase + UART011_CR);
1600	writew(0, port->membase + UART011_CR);
1601
1602	if (termios->c_cflag & CRTSCTS) {
1603		if (old_cr & UART011_CR_RTS)
1604			old_cr |= UART011_CR_RTSEN;
1605
1606		old_cr |= UART011_CR_CTSEN;
1607		uap->autorts = true;
1608	} else {
1609		old_cr &= ~(UART011_CR_CTSEN | UART011_CR_RTSEN);
1610		uap->autorts = false;
1611	}
1612
1613	if (uap->vendor->oversampling) {
1614		if (baud > port->uartclk / 16)
1615			old_cr |= ST_UART011_CR_OVSFACT;
1616		else
1617			old_cr &= ~ST_UART011_CR_OVSFACT;
1618	}
1619
 
 
 
 
 
 
 
 
 
 
 
 
1620	/* Set baud rate */
1621	writew(quot & 0x3f, port->membase + UART011_FBRD);
1622	writew(quot >> 6, port->membase + UART011_IBRD);
1623
1624	/*
1625	 * ----------v----------v----------v----------v-----
1626	 * NOTE: MUST BE WRITTEN AFTER UARTLCR_M & UARTLCR_L
 
1627	 * ----------^----------^----------^----------^-----
1628	 */
1629	writew(lcr_h, port->membase + uap->lcrh_rx);
1630	if (uap->lcrh_rx != uap->lcrh_tx) {
1631		int i;
1632		/*
1633		 * Wait 10 PCLKs before writing LCRH_TX register,
1634		 * to get this delay write read only register 10 times
1635		 */
1636		for (i = 0; i < 10; ++i)
1637			writew(0xff, uap->port.membase + UART011_MIS);
1638		writew(lcr_h, port->membase + uap->lcrh_tx);
1639	}
1640	writew(old_cr, port->membase + UART011_CR);
1641
1642	spin_unlock_irqrestore(&port->lock, flags);
1643}
1644
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1645static const char *pl011_type(struct uart_port *port)
1646{
1647	struct uart_amba_port *uap = (struct uart_amba_port *)port;
 
1648	return uap->port.type == PORT_AMBA ? uap->type : NULL;
1649}
1650
1651/*
1652 * Release the memory region(s) being used by 'port'
1653 */
1654static void pl010_release_port(struct uart_port *port)
1655{
1656	release_mem_region(port->mapbase, SZ_4K);
1657}
1658
1659/*
1660 * Request the memory region(s) being used by 'port'
1661 */
1662static int pl010_request_port(struct uart_port *port)
1663{
1664	return request_mem_region(port->mapbase, SZ_4K, "uart-pl011")
1665			!= NULL ? 0 : -EBUSY;
1666}
1667
1668/*
1669 * Configure/autoconfigure the port.
1670 */
1671static void pl010_config_port(struct uart_port *port, int flags)
1672{
1673	if (flags & UART_CONFIG_TYPE) {
1674		port->type = PORT_AMBA;
1675		pl010_request_port(port);
1676	}
1677}
1678
1679/*
1680 * verify the new serial_struct (for TIOCSSERIAL).
1681 */
1682static int pl010_verify_port(struct uart_port *port, struct serial_struct *ser)
1683{
1684	int ret = 0;
1685	if (ser->type != PORT_UNKNOWN && ser->type != PORT_AMBA)
1686		ret = -EINVAL;
1687	if (ser->irq < 0 || ser->irq >= nr_irqs)
1688		ret = -EINVAL;
1689	if (ser->baud_base < 9600)
1690		ret = -EINVAL;
1691	return ret;
1692}
1693
1694static struct uart_ops amba_pl011_pops = {
1695	.tx_empty	= pl01x_tx_empty,
1696	.set_mctrl	= pl011_set_mctrl,
1697	.get_mctrl	= pl01x_get_mctrl,
1698	.stop_tx	= pl011_stop_tx,
1699	.start_tx	= pl011_start_tx,
1700	.stop_rx	= pl011_stop_rx,
1701	.enable_ms	= pl011_enable_ms,
1702	.break_ctl	= pl011_break_ctl,
1703	.startup	= pl011_startup,
1704	.shutdown	= pl011_shutdown,
1705	.flush_buffer	= pl011_dma_flush_buffer,
1706	.set_termios	= pl011_set_termios,
1707	.type		= pl011_type,
1708	.release_port	= pl010_release_port,
1709	.request_port	= pl010_request_port,
1710	.config_port	= pl010_config_port,
1711	.verify_port	= pl010_verify_port,
1712#ifdef CONFIG_CONSOLE_POLL
1713	.poll_get_char = pl010_get_poll_char,
1714	.poll_put_char = pl010_put_poll_char,
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1715#endif
1716};
1717
1718static struct uart_amba_port *amba_ports[UART_NR];
1719
1720#ifdef CONFIG_SERIAL_AMBA_PL011_CONSOLE
1721
1722static void pl011_console_putchar(struct uart_port *port, int ch)
1723{
1724	struct uart_amba_port *uap = (struct uart_amba_port *)port;
 
1725
1726	while (readw(uap->port.membase + UART01x_FR) & UART01x_FR_TXFF)
1727		barrier();
1728	writew(ch, uap->port.membase + UART01x_DR);
1729}
1730
1731static void
1732pl011_console_write(struct console *co, const char *s, unsigned int count)
1733{
1734	struct uart_amba_port *uap = amba_ports[co->index];
1735	unsigned int status, old_cr, new_cr;
 
 
1736
1737	clk_enable(uap->clk);
1738
 
 
 
 
 
 
 
 
1739	/*
1740	 *	First save the CR then disable the interrupts
1741	 */
1742	old_cr = readw(uap->port.membase + UART011_CR);
1743	new_cr = old_cr & ~UART011_CR_CTSEN;
1744	new_cr |= UART01x_CR_UARTEN | UART011_CR_TXE;
1745	writew(new_cr, uap->port.membase + UART011_CR);
 
 
1746
1747	uart_console_write(&uap->port, s, count, pl011_console_putchar);
1748
1749	/*
1750	 *	Finally, wait for transmitter to become empty
1751	 *	and restore the TCR
1752	 */
1753	do {
1754		status = readw(uap->port.membase + UART01x_FR);
1755	} while (status & UART01x_FR_BUSY);
1756	writew(old_cr, uap->port.membase + UART011_CR);
 
 
 
 
1757
1758	clk_disable(uap->clk);
1759}
1760
1761static void __init
1762pl011_console_get_options(struct uart_amba_port *uap, int *baud,
1763			     int *parity, int *bits)
1764{
1765	if (readw(uap->port.membase + UART011_CR) & UART01x_CR_UARTEN) {
1766		unsigned int lcr_h, ibrd, fbrd;
1767
1768		lcr_h = readw(uap->port.membase + uap->lcrh_tx);
1769
1770		*parity = 'n';
1771		if (lcr_h & UART01x_LCRH_PEN) {
1772			if (lcr_h & UART01x_LCRH_EPS)
1773				*parity = 'e';
1774			else
1775				*parity = 'o';
1776		}
1777
1778		if ((lcr_h & 0x60) == UART01x_LCRH_WLEN_7)
1779			*bits = 7;
1780		else
1781			*bits = 8;
1782
1783		ibrd = readw(uap->port.membase + UART011_IBRD);
1784		fbrd = readw(uap->port.membase + UART011_FBRD);
1785
1786		*baud = uap->port.uartclk * 4 / (64 * ibrd + fbrd);
1787
1788		if (uap->vendor->oversampling) {
1789			if (readw(uap->port.membase + UART011_CR)
1790				  & ST_UART011_CR_OVSFACT)
1791				*baud *= 2;
1792		}
1793	}
1794}
1795
1796static int __init pl011_console_setup(struct console *co, char *options)
1797{
1798	struct uart_amba_port *uap;
1799	int baud = 38400;
1800	int bits = 8;
1801	int parity = 'n';
1802	int flow = 'n';
 
1803
1804	/*
1805	 * Check whether an invalid uart number has been specified, and
1806	 * if so, search for the first available port that does have
1807	 * console support.
1808	 */
1809	if (co->index >= UART_NR)
1810		co->index = 0;
1811	uap = amba_ports[co->index];
1812	if (!uap)
1813		return -ENODEV;
1814
1815	if (uap->port.dev->platform_data) {
 
 
 
 
 
 
 
1816		struct amba_pl011_data *plat;
1817
1818		plat = uap->port.dev->platform_data;
1819		if (plat->init)
1820			plat->init();
1821	}
1822
1823	uap->port.uartclk = clk_get_rate(uap->clk);
1824
1825	if (options)
1826		uart_parse_options(options, &baud, &parity, &bits, &flow);
1827	else
1828		pl011_console_get_options(uap, &baud, &parity, &bits);
 
 
 
 
 
1829
1830	return uart_set_options(&uap->port, co, baud, parity, bits, flow);
1831}
1832
1833static struct uart_driver amba_reg;
1834static struct console amba_console = {
1835	.name		= "ttyAMA",
1836	.write		= pl011_console_write,
1837	.device		= uart_console_device,
1838	.setup		= pl011_console_setup,
1839	.flags		= CON_PRINTBUFFER,
1840	.index		= -1,
1841	.data		= &amba_reg,
1842};
1843
1844#define AMBA_CONSOLE	(&amba_console)
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1845#else
1846#define AMBA_CONSOLE	NULL
1847#endif
1848
1849static struct uart_driver amba_reg = {
1850	.owner			= THIS_MODULE,
1851	.driver_name		= "ttyAMA",
1852	.dev_name		= "ttyAMA",
1853	.major			= SERIAL_AMBA_MAJOR,
1854	.minor			= SERIAL_AMBA_MINOR,
1855	.nr			= UART_NR,
1856	.cons			= AMBA_CONSOLE,
1857};
1858
1859static int pl011_probe(struct amba_device *dev, const struct amba_id *id)
1860{
1861	struct uart_amba_port *uap;
1862	struct vendor_data *vendor = id->data;
1863	void __iomem *base;
1864	int i, ret;
1865
1866	for (i = 0; i < ARRAY_SIZE(amba_ports); i++)
1867		if (amba_ports[i] == NULL)
1868			break;
1869
1870	if (i == ARRAY_SIZE(amba_ports)) {
1871		ret = -EBUSY;
1872		goto out;
1873	}
1874
1875	uap = kzalloc(sizeof(struct uart_amba_port), GFP_KERNEL);
1876	if (uap == NULL) {
1877		ret = -ENOMEM;
1878		goto out;
 
 
 
 
 
 
1879	}
1880
1881	base = ioremap(dev->res.start, resource_size(&dev->res));
1882	if (!base) {
1883		ret = -ENOMEM;
1884		goto free;
 
 
 
 
 
 
 
 
 
 
 
 
 
1885	}
 
 
 
 
 
 
 
 
1886
1887	uap->clk = clk_get(&dev->dev, NULL);
1888	if (IS_ERR(uap->clk)) {
1889		ret = PTR_ERR(uap->clk);
1890		goto unmap;
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1891	}
1892
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1893	uap->vendor = vendor;
1894	uap->lcrh_rx = vendor->lcrh_rx;
1895	uap->lcrh_tx = vendor->lcrh_tx;
1896	uap->fifosize = vendor->fifosize;
1897	uap->interrupt_may_hang = vendor->interrupt_may_hang;
1898	uap->port.dev = &dev->dev;
1899	uap->port.mapbase = dev->res.start;
1900	uap->port.membase = base;
1901	uap->port.iotype = UPIO_MEM;
1902	uap->port.irq = dev->irq[0];
1903	uap->port.fifosize = uap->fifosize;
1904	uap->port.ops = &amba_pl011_pops;
1905	uap->port.flags = UPF_BOOT_AUTOCONF;
1906	uap->port.line = i;
1907	pl011_dma_probe(uap);
1908
1909	snprintf(uap->type, sizeof(uap->type), "PL011 rev%u", amba_rev(dev));
1910
1911	amba_ports[i] = uap;
 
 
1912
1913	amba_set_drvdata(dev, uap);
1914	ret = uart_add_one_port(&amba_reg, &uap->port);
1915	if (ret) {
1916		amba_set_drvdata(dev, NULL);
1917		amba_ports[i] = NULL;
1918		pl011_dma_remove(uap);
1919		clk_put(uap->clk);
1920 unmap:
1921		iounmap(base);
1922 free:
1923		kfree(uap);
1924	}
1925 out:
1926	return ret;
1927}
1928
1929static int pl011_remove(struct amba_device *dev)
1930{
1931	struct uart_amba_port *uap = amba_get_drvdata(dev);
1932	int i;
1933
1934	amba_set_drvdata(dev, NULL);
1935
1936	uart_remove_one_port(&amba_reg, &uap->port);
1937
1938	for (i = 0; i < ARRAY_SIZE(amba_ports); i++)
1939		if (amba_ports[i] == uap)
1940			amba_ports[i] = NULL;
1941
1942	pl011_dma_remove(uap);
1943	iounmap(uap->port.membase);
1944	clk_put(uap->clk);
1945	kfree(uap);
1946	return 0;
1947}
1948
1949#ifdef CONFIG_PM
1950static int pl011_suspend(struct amba_device *dev, pm_message_t state)
1951{
1952	struct uart_amba_port *uap = amba_get_drvdata(dev);
1953
1954	if (!uap)
1955		return -EINVAL;
1956
1957	return uart_suspend_port(&amba_reg, &uap->port);
1958}
1959
1960static int pl011_resume(struct amba_device *dev)
1961{
1962	struct uart_amba_port *uap = amba_get_drvdata(dev);
1963
1964	if (!uap)
1965		return -EINVAL;
1966
1967	return uart_resume_port(&amba_reg, &uap->port);
1968}
1969#endif
1970
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1971static struct amba_id pl011_ids[] = {
1972	{
1973		.id	= 0x00041011,
1974		.mask	= 0x000fffff,
1975		.data	= &vendor_arm,
1976	},
1977	{
1978		.id	= 0x00380802,
1979		.mask	= 0x00ffffff,
1980		.data	= &vendor_st,
1981	},
1982	{ 0, 0 },
1983};
1984
 
 
1985static struct amba_driver pl011_driver = {
1986	.drv = {
1987		.name	= "uart-pl011",
 
1988	},
1989	.id_table	= pl011_ids,
1990	.probe		= pl011_probe,
1991	.remove		= pl011_remove,
1992#ifdef CONFIG_PM
1993	.suspend	= pl011_suspend,
1994	.resume		= pl011_resume,
1995#endif
1996};
1997
1998static int __init pl011_init(void)
1999{
2000	int ret;
2001	printk(KERN_INFO "Serial: AMBA PL011 UART driver\n");
2002
2003	ret = uart_register_driver(&amba_reg);
2004	if (ret == 0) {
2005		ret = amba_driver_register(&pl011_driver);
2006		if (ret)
2007			uart_unregister_driver(&amba_reg);
2008	}
2009	return ret;
2010}
2011
2012static void __exit pl011_exit(void)
2013{
 
2014	amba_driver_unregister(&pl011_driver);
2015	uart_unregister_driver(&amba_reg);
2016}
2017
2018/*
2019 * While this can be a module, if builtin it's most likely the console
2020 * So let's leave module_exit but move module_init to an earlier place
2021 */
2022arch_initcall(pl011_init);
2023module_exit(pl011_exit);
2024
2025MODULE_AUTHOR("ARM Ltd/Deep Blue Solutions Ltd");
2026MODULE_DESCRIPTION("ARM AMBA serial port driver");
2027MODULE_LICENSE("GPL");
v4.6
   1/*
   2 *  Driver for AMBA serial ports
   3 *
   4 *  Based on drivers/char/serial.c, by Linus Torvalds, Theodore Ts'o.
   5 *
   6 *  Copyright 1999 ARM Limited
   7 *  Copyright (C) 2000 Deep Blue Solutions Ltd.
   8 *  Copyright (C) 2010 ST-Ericsson SA
   9 *
  10 * This program is free software; you can redistribute it and/or modify
  11 * it under the terms of the GNU General Public License as published by
  12 * the Free Software Foundation; either version 2 of the License, or
  13 * (at your option) any later version.
  14 *
  15 * This program is distributed in the hope that it will be useful,
  16 * but WITHOUT ANY WARRANTY; without even the implied warranty of
  17 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
  18 * GNU General Public License for more details.
  19 *
  20 * You should have received a copy of the GNU General Public License
  21 * along with this program; if not, write to the Free Software
  22 * Foundation, Inc., 59 Temple Place, Suite 330, Boston, MA  02111-1307  USA
  23 *
  24 * This is a generic driver for ARM AMBA-type serial ports.  They
  25 * have a lot of 16550-like features, but are not register compatible.
  26 * Note that although they do have CTS, DCD and DSR inputs, they do
  27 * not have an RI input, nor do they have DTR or RTS outputs.  If
  28 * required, these have to be supplied via some other means (eg, GPIO)
  29 * and hooked into this driver.
  30 */
  31
  32
  33#if defined(CONFIG_SERIAL_AMBA_PL011_CONSOLE) && defined(CONFIG_MAGIC_SYSRQ)
  34#define SUPPORT_SYSRQ
  35#endif
  36
  37#include <linux/module.h>
  38#include <linux/ioport.h>
  39#include <linux/init.h>
  40#include <linux/console.h>
  41#include <linux/sysrq.h>
  42#include <linux/device.h>
  43#include <linux/tty.h>
  44#include <linux/tty_flip.h>
  45#include <linux/serial_core.h>
  46#include <linux/serial.h>
  47#include <linux/amba/bus.h>
  48#include <linux/amba/serial.h>
  49#include <linux/clk.h>
  50#include <linux/slab.h>
  51#include <linux/dmaengine.h>
  52#include <linux/dma-mapping.h>
  53#include <linux/scatterlist.h>
  54#include <linux/delay.h>
  55#include <linux/types.h>
  56#include <linux/of.h>
  57#include <linux/of_device.h>
  58#include <linux/pinctrl/consumer.h>
  59#include <linux/sizes.h>
  60#include <linux/io.h>
  61#include <linux/acpi.h>
  62
  63#include "amba-pl011.h"
 
  64
  65#define UART_NR			14
  66
  67#define SERIAL_AMBA_MAJOR	204
  68#define SERIAL_AMBA_MINOR	64
  69#define SERIAL_AMBA_NR		UART_NR
  70
  71#define AMBA_ISR_PASS_LIMIT	256
  72
  73#define UART_DR_ERROR		(UART011_DR_OE|UART011_DR_BE|UART011_DR_PE|UART011_DR_FE)
  74#define UART_DUMMY_DR_RX	(1 << 16)
  75
  76static u16 pl011_std_offsets[REG_ARRAY_SIZE] = {
  77	[REG_DR] = UART01x_DR,
  78	[REG_FR] = UART01x_FR,
  79	[REG_LCRH_RX] = UART011_LCRH,
  80	[REG_LCRH_TX] = UART011_LCRH,
  81	[REG_IBRD] = UART011_IBRD,
  82	[REG_FBRD] = UART011_FBRD,
  83	[REG_CR] = UART011_CR,
  84	[REG_IFLS] = UART011_IFLS,
  85	[REG_IMSC] = UART011_IMSC,
  86	[REG_RIS] = UART011_RIS,
  87	[REG_MIS] = UART011_MIS,
  88	[REG_ICR] = UART011_ICR,
  89	[REG_DMACR] = UART011_DMACR,
 
 
 
 
 
  90};
  91
 
 
 
  92/* There is by now at least one vendor with differing details, so handle it */
  93struct vendor_data {
  94	const u16		*reg_offset;
  95	unsigned int		ifls;
  96	bool			access_32b;
 
 
  97	bool			oversampling;
 
  98	bool			dma_threshold;
  99	bool			cts_event_workaround;
 100	bool			always_enabled;
 101	bool			fixed_options;
 102
 103	unsigned int (*get_fifosize)(struct amba_device *dev);
 104};
 105
 106static unsigned int get_fifosize_arm(struct amba_device *dev)
 107{
 108	return amba_rev(dev) < 3 ? 16 : 32;
 109}
 110
 111static struct vendor_data vendor_arm = {
 112	.reg_offset		= pl011_std_offsets,
 113	.ifls			= UART011_IFLS_RX4_8|UART011_IFLS_TX4_8,
 
 
 
 114	.oversampling		= false,
 115	.dma_threshold		= false,
 116	.cts_event_workaround	= false,
 117	.always_enabled		= false,
 118	.fixed_options		= false,
 119	.get_fifosize		= get_fifosize_arm,
 120};
 121
 122static struct vendor_data vendor_sbsa = {
 123	.reg_offset		= pl011_std_offsets,
 124	.oversampling		= false,
 125	.dma_threshold		= false,
 126	.cts_event_workaround	= false,
 127	.always_enabled		= true,
 128	.fixed_options		= true,
 129};
 130
 131static u16 pl011_st_offsets[REG_ARRAY_SIZE] = {
 132	[REG_DR] = UART01x_DR,
 133	[REG_ST_DMAWM] = ST_UART011_DMAWM,
 134	[REG_ST_TIMEOUT] = ST_UART011_TIMEOUT,
 135	[REG_FR] = UART01x_FR,
 136	[REG_LCRH_RX] = ST_UART011_LCRH_RX,
 137	[REG_LCRH_TX] = ST_UART011_LCRH_TX,
 138	[REG_IBRD] = UART011_IBRD,
 139	[REG_FBRD] = UART011_FBRD,
 140	[REG_CR] = UART011_CR,
 141	[REG_IFLS] = UART011_IFLS,
 142	[REG_IMSC] = UART011_IMSC,
 143	[REG_RIS] = UART011_RIS,
 144	[REG_MIS] = UART011_MIS,
 145	[REG_ICR] = UART011_ICR,
 146	[REG_DMACR] = UART011_DMACR,
 147	[REG_ST_XFCR] = ST_UART011_XFCR,
 148	[REG_ST_XON1] = ST_UART011_XON1,
 149	[REG_ST_XON2] = ST_UART011_XON2,
 150	[REG_ST_XOFF1] = ST_UART011_XOFF1,
 151	[REG_ST_XOFF2] = ST_UART011_XOFF2,
 152	[REG_ST_ITCR] = ST_UART011_ITCR,
 153	[REG_ST_ITIP] = ST_UART011_ITIP,
 154	[REG_ST_ABCR] = ST_UART011_ABCR,
 155	[REG_ST_ABIMSC] = ST_UART011_ABIMSC,
 156};
 157
 158static unsigned int get_fifosize_st(struct amba_device *dev)
 159{
 160	return 64;
 161}
 162
 163static struct vendor_data vendor_st = {
 164	.reg_offset		= pl011_st_offsets,
 165	.ifls			= UART011_IFLS_RX_HALF|UART011_IFLS_TX_HALF,
 
 
 
 166	.oversampling		= true,
 
 167	.dma_threshold		= true,
 168	.cts_event_workaround	= true,
 169	.always_enabled		= false,
 170	.fixed_options		= false,
 171	.get_fifosize		= get_fifosize_st,
 172};
 173
 174static const u16 pl011_zte_offsets[REG_ARRAY_SIZE] = {
 175	[REG_DR] = ZX_UART011_DR,
 176	[REG_FR] = ZX_UART011_FR,
 177	[REG_LCRH_RX] = ZX_UART011_LCRH,
 178	[REG_LCRH_TX] = ZX_UART011_LCRH,
 179	[REG_IBRD] = ZX_UART011_IBRD,
 180	[REG_FBRD] = ZX_UART011_FBRD,
 181	[REG_CR] = ZX_UART011_CR,
 182	[REG_IFLS] = ZX_UART011_IFLS,
 183	[REG_IMSC] = ZX_UART011_IMSC,
 184	[REG_RIS] = ZX_UART011_RIS,
 185	[REG_MIS] = ZX_UART011_MIS,
 186	[REG_ICR] = ZX_UART011_ICR,
 187	[REG_DMACR] = ZX_UART011_DMACR,
 188};
 189
 190static struct vendor_data vendor_zte __maybe_unused = {
 191	.reg_offset		= pl011_zte_offsets,
 192	.access_32b		= true,
 193	.ifls			= UART011_IFLS_RX4_8|UART011_IFLS_TX4_8,
 194	.get_fifosize		= get_fifosize_arm,
 195};
 196
 197/* Deals with DMA transactions */
 198
 199struct pl011_sgbuf {
 200	struct scatterlist sg;
 201	char *buf;
 202};
 203
 204struct pl011_dmarx_data {
 205	struct dma_chan		*chan;
 206	struct completion	complete;
 207	bool			use_buf_b;
 208	struct pl011_sgbuf	sgbuf_a;
 209	struct pl011_sgbuf	sgbuf_b;
 210	dma_cookie_t		cookie;
 211	bool			running;
 212	struct timer_list	timer;
 213	unsigned int last_residue;
 214	unsigned long last_jiffies;
 215	bool auto_poll_rate;
 216	unsigned int poll_rate;
 217	unsigned int poll_timeout;
 218};
 219
 220struct pl011_dmatx_data {
 221	struct dma_chan		*chan;
 222	struct scatterlist	sg;
 223	char			*buf;
 224	bool			queued;
 225};
 226
 227/*
 228 * We wrap our port structure around the generic uart_port.
 229 */
 230struct uart_amba_port {
 231	struct uart_port	port;
 232	const u16		*reg_offset;
 233	struct clk		*clk;
 234	const struct vendor_data *vendor;
 235	unsigned int		dmacr;		/* dma control reg */
 236	unsigned int		im;		/* interrupt mask */
 237	unsigned int		old_status;
 238	unsigned int		fifosize;	/* vendor-specific */
 239	unsigned int		old_cr;		/* state during shutdown */
 
 240	bool			autorts;
 241	unsigned int		fixed_baud;	/* vendor-set fixed baud rate */
 242	char			type[12];
 
 243#ifdef CONFIG_DMA_ENGINE
 244	/* DMA stuff */
 245	bool			using_tx_dma;
 246	bool			using_rx_dma;
 247	struct pl011_dmarx_data dmarx;
 248	struct pl011_dmatx_data	dmatx;
 249	bool			dma_probed;
 250#endif
 251};
 252
 253static unsigned int pl011_reg_to_offset(const struct uart_amba_port *uap,
 254	unsigned int reg)
 255{
 256	return uap->reg_offset[reg];
 257}
 258
 259static unsigned int pl011_read(const struct uart_amba_port *uap,
 260	unsigned int reg)
 261{
 262	void __iomem *addr = uap->port.membase + pl011_reg_to_offset(uap, reg);
 263
 264	return (uap->port.iotype == UPIO_MEM32) ?
 265		readl_relaxed(addr) : readw_relaxed(addr);
 266}
 267
 268static void pl011_write(unsigned int val, const struct uart_amba_port *uap,
 269	unsigned int reg)
 270{
 271	void __iomem *addr = uap->port.membase + pl011_reg_to_offset(uap, reg);
 272
 273	if (uap->port.iotype == UPIO_MEM32)
 274		writel_relaxed(val, addr);
 275	else
 276		writew_relaxed(val, addr);
 277}
 278
 279/*
 280 * Reads up to 256 characters from the FIFO or until it's empty and
 281 * inserts them into the TTY layer. Returns the number of characters
 282 * read from the FIFO.
 283 */
 284static int pl011_fifo_to_tty(struct uart_amba_port *uap)
 285{
 286	u16 status;
 287	unsigned int ch, flag, max_count = 256;
 288	int fifotaken = 0;
 289
 290	while (max_count--) {
 291		status = pl011_read(uap, REG_FR);
 292		if (status & UART01x_FR_RXFE)
 293			break;
 294
 295		/* Take chars from the FIFO and update status */
 296		ch = pl011_read(uap, REG_DR) | UART_DUMMY_DR_RX;
 
 297		flag = TTY_NORMAL;
 298		uap->port.icount.rx++;
 299		fifotaken++;
 300
 301		if (unlikely(ch & UART_DR_ERROR)) {
 302			if (ch & UART011_DR_BE) {
 303				ch &= ~(UART011_DR_FE | UART011_DR_PE);
 304				uap->port.icount.brk++;
 305				if (uart_handle_break(&uap->port))
 306					continue;
 307			} else if (ch & UART011_DR_PE)
 308				uap->port.icount.parity++;
 309			else if (ch & UART011_DR_FE)
 310				uap->port.icount.frame++;
 311			if (ch & UART011_DR_OE)
 312				uap->port.icount.overrun++;
 313
 314			ch &= uap->port.read_status_mask;
 315
 316			if (ch & UART011_DR_BE)
 317				flag = TTY_BREAK;
 318			else if (ch & UART011_DR_PE)
 319				flag = TTY_PARITY;
 320			else if (ch & UART011_DR_FE)
 321				flag = TTY_FRAME;
 322		}
 323
 324		if (uart_handle_sysrq_char(&uap->port, ch & 255))
 325			continue;
 326
 327		uart_insert_char(&uap->port, ch, UART011_DR_OE, ch, flag);
 328	}
 329
 330	return fifotaken;
 331}
 332
 333
 334/*
 335 * All the DMA operation mode stuff goes inside this ifdef.
 336 * This assumes that you have a generic DMA device interface,
 337 * no custom DMA interfaces are supported.
 338 */
 339#ifdef CONFIG_DMA_ENGINE
 340
 341#define PL011_DMA_BUFFER_SIZE PAGE_SIZE
 342
 343static int pl011_sgbuf_init(struct dma_chan *chan, struct pl011_sgbuf *sg,
 344	enum dma_data_direction dir)
 345{
 346	dma_addr_t dma_addr;
 347
 348	sg->buf = dma_alloc_coherent(chan->device->dev,
 349		PL011_DMA_BUFFER_SIZE, &dma_addr, GFP_KERNEL);
 350	if (!sg->buf)
 351		return -ENOMEM;
 352
 353	sg_init_table(&sg->sg, 1);
 354	sg_set_page(&sg->sg, phys_to_page(dma_addr),
 355		PL011_DMA_BUFFER_SIZE, offset_in_page(dma_addr));
 356	sg_dma_address(&sg->sg) = dma_addr;
 357	sg_dma_len(&sg->sg) = PL011_DMA_BUFFER_SIZE;
 358
 
 
 
 
 359	return 0;
 360}
 361
 362static void pl011_sgbuf_free(struct dma_chan *chan, struct pl011_sgbuf *sg,
 363	enum dma_data_direction dir)
 364{
 365	if (sg->buf) {
 366		dma_free_coherent(chan->device->dev,
 367			PL011_DMA_BUFFER_SIZE, sg->buf,
 368			sg_dma_address(&sg->sg));
 369	}
 370}
 371
 372static void pl011_dma_probe(struct uart_amba_port *uap)
 373{
 374	/* DMA is the sole user of the platform data right now */
 375	struct amba_pl011_data *plat = dev_get_platdata(uap->port.dev);
 376	struct device *dev = uap->port.dev;
 377	struct dma_slave_config tx_conf = {
 378		.dst_addr = uap->port.mapbase +
 379				 pl011_reg_to_offset(uap, REG_DR),
 380		.dst_addr_width = DMA_SLAVE_BUSWIDTH_1_BYTE,
 381		.direction = DMA_MEM_TO_DEV,
 382		.dst_maxburst = uap->fifosize >> 1,
 383		.device_fc = false,
 384	};
 385	struct dma_chan *chan;
 386	dma_cap_mask_t mask;
 387
 388	uap->dma_probed = true;
 389	chan = dma_request_slave_channel_reason(dev, "tx");
 390	if (IS_ERR(chan)) {
 391		if (PTR_ERR(chan) == -EPROBE_DEFER) {
 392			uap->dma_probed = false;
 393			return;
 394		}
 395
 396		/* We need platform data */
 397		if (!plat || !plat->dma_filter) {
 398			dev_info(uap->port.dev, "no DMA platform data\n");
 399			return;
 400		}
 401
 402		/* Try to acquire a generic DMA engine slave TX channel */
 403		dma_cap_zero(mask);
 404		dma_cap_set(DMA_SLAVE, mask);
 405
 406		chan = dma_request_channel(mask, plat->dma_filter,
 407						plat->dma_tx_param);
 408		if (!chan) {
 409			dev_err(uap->port.dev, "no TX DMA channel!\n");
 410			return;
 411		}
 412	}
 413
 414	dmaengine_slave_config(chan, &tx_conf);
 415	uap->dmatx.chan = chan;
 416
 417	dev_info(uap->port.dev, "DMA channel TX %s\n",
 418		 dma_chan_name(uap->dmatx.chan));
 419
 420	/* Optionally make use of an RX channel as well */
 421	chan = dma_request_slave_channel(dev, "rx");
 
 
 
 
 
 
 422
 423	if (!chan && plat && plat->dma_rx_param) {
 424		chan = dma_request_channel(mask, plat->dma_filter, plat->dma_rx_param);
 425
 426		if (!chan) {
 427			dev_err(uap->port.dev, "no RX DMA channel!\n");
 428			return;
 429		}
 430	}
 431
 432	if (chan) {
 433		struct dma_slave_config rx_conf = {
 434			.src_addr = uap->port.mapbase +
 435				pl011_reg_to_offset(uap, REG_DR),
 436			.src_addr_width = DMA_SLAVE_BUSWIDTH_1_BYTE,
 437			.direction = DMA_DEV_TO_MEM,
 438			.src_maxburst = uap->fifosize >> 2,
 439			.device_fc = false,
 440		};
 441		struct dma_slave_caps caps;
 442
 443		/*
 444		 * Some DMA controllers provide information on their capabilities.
 445		 * If the controller does, check for suitable residue processing
 446		 * otherwise assime all is well.
 447		 */
 448		if (0 == dma_get_slave_caps(chan, &caps)) {
 449			if (caps.residue_granularity ==
 450					DMA_RESIDUE_GRANULARITY_DESCRIPTOR) {
 451				dma_release_channel(chan);
 452				dev_info(uap->port.dev,
 453					"RX DMA disabled - no residue processing\n");
 454				return;
 455			}
 456		}
 457		dmaengine_slave_config(chan, &rx_conf);
 458		uap->dmarx.chan = chan;
 459
 460		uap->dmarx.auto_poll_rate = false;
 461		if (plat && plat->dma_rx_poll_enable) {
 462			/* Set poll rate if specified. */
 463			if (plat->dma_rx_poll_rate) {
 464				uap->dmarx.auto_poll_rate = false;
 465				uap->dmarx.poll_rate = plat->dma_rx_poll_rate;
 466			} else {
 467				/*
 468				 * 100 ms defaults to poll rate if not
 469				 * specified. This will be adjusted with
 470				 * the baud rate at set_termios.
 471				 */
 472				uap->dmarx.auto_poll_rate = true;
 473				uap->dmarx.poll_rate =  100;
 474			}
 475			/* 3 secs defaults poll_timeout if not specified. */
 476			if (plat->dma_rx_poll_timeout)
 477				uap->dmarx.poll_timeout =
 478					plat->dma_rx_poll_timeout;
 479			else
 480				uap->dmarx.poll_timeout = 3000;
 481		} else if (!plat && dev->of_node) {
 482			uap->dmarx.auto_poll_rate = of_property_read_bool(
 483						dev->of_node, "auto-poll");
 484			if (uap->dmarx.auto_poll_rate) {
 485				u32 x;
 486
 487				if (0 == of_property_read_u32(dev->of_node,
 488						"poll-rate-ms", &x))
 489					uap->dmarx.poll_rate = x;
 490				else
 491					uap->dmarx.poll_rate = 100;
 492				if (0 == of_property_read_u32(dev->of_node,
 493						"poll-timeout-ms", &x))
 494					uap->dmarx.poll_timeout = x;
 495				else
 496					uap->dmarx.poll_timeout = 3000;
 497			}
 498		}
 499		dev_info(uap->port.dev, "DMA channel RX %s\n",
 500			 dma_chan_name(uap->dmarx.chan));
 501	}
 502}
 503
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 504static void pl011_dma_remove(struct uart_amba_port *uap)
 505{
 
 506	if (uap->dmatx.chan)
 507		dma_release_channel(uap->dmatx.chan);
 508	if (uap->dmarx.chan)
 509		dma_release_channel(uap->dmarx.chan);
 510}
 511
 512/* Forward declare these for the refill routine */
 513static int pl011_dma_tx_refill(struct uart_amba_port *uap);
 514static void pl011_start_tx_pio(struct uart_amba_port *uap);
 515
 516/*
 517 * The current DMA TX buffer has been sent.
 518 * Try to queue up another DMA buffer.
 519 */
 520static void pl011_dma_tx_callback(void *data)
 521{
 522	struct uart_amba_port *uap = data;
 523	struct pl011_dmatx_data *dmatx = &uap->dmatx;
 524	unsigned long flags;
 525	u16 dmacr;
 526
 527	spin_lock_irqsave(&uap->port.lock, flags);
 528	if (uap->dmatx.queued)
 529		dma_unmap_sg(dmatx->chan->device->dev, &dmatx->sg, 1,
 530			     DMA_TO_DEVICE);
 531
 532	dmacr = uap->dmacr;
 533	uap->dmacr = dmacr & ~UART011_TXDMAE;
 534	pl011_write(uap->dmacr, uap, REG_DMACR);
 535
 536	/*
 537	 * If TX DMA was disabled, it means that we've stopped the DMA for
 538	 * some reason (eg, XOFF received, or we want to send an X-char.)
 539	 *
 540	 * Note: we need to be careful here of a potential race between DMA
 541	 * and the rest of the driver - if the driver disables TX DMA while
 542	 * a TX buffer completing, we must update the tx queued status to
 543	 * get further refills (hence we check dmacr).
 544	 */
 545	if (!(dmacr & UART011_TXDMAE) || uart_tx_stopped(&uap->port) ||
 546	    uart_circ_empty(&uap->port.state->xmit)) {
 547		uap->dmatx.queued = false;
 548		spin_unlock_irqrestore(&uap->port.lock, flags);
 549		return;
 550	}
 551
 552	if (pl011_dma_tx_refill(uap) <= 0)
 553		/*
 554		 * We didn't queue a DMA buffer for some reason, but we
 555		 * have data pending to be sent.  Re-enable the TX IRQ.
 556		 */
 557		pl011_start_tx_pio(uap);
 558
 
 559	spin_unlock_irqrestore(&uap->port.lock, flags);
 560}
 561
 562/*
 563 * Try to refill the TX DMA buffer.
 564 * Locking: called with port lock held and IRQs disabled.
 565 * Returns:
 566 *   1 if we queued up a TX DMA buffer.
 567 *   0 if we didn't want to handle this by DMA
 568 *  <0 on error
 569 */
 570static int pl011_dma_tx_refill(struct uart_amba_port *uap)
 571{
 572	struct pl011_dmatx_data *dmatx = &uap->dmatx;
 573	struct dma_chan *chan = dmatx->chan;
 574	struct dma_device *dma_dev = chan->device;
 575	struct dma_async_tx_descriptor *desc;
 576	struct circ_buf *xmit = &uap->port.state->xmit;
 577	unsigned int count;
 578
 579	/*
 580	 * Try to avoid the overhead involved in using DMA if the
 581	 * transaction fits in the first half of the FIFO, by using
 582	 * the standard interrupt handling.  This ensures that we
 583	 * issue a uart_write_wakeup() at the appropriate time.
 584	 */
 585	count = uart_circ_chars_pending(xmit);
 586	if (count < (uap->fifosize >> 1)) {
 587		uap->dmatx.queued = false;
 588		return 0;
 589	}
 590
 591	/*
 592	 * Bodge: don't send the last character by DMA, as this
 593	 * will prevent XON from notifying us to restart DMA.
 594	 */
 595	count -= 1;
 596
 597	/* Else proceed to copy the TX chars to the DMA buffer and fire DMA */
 598	if (count > PL011_DMA_BUFFER_SIZE)
 599		count = PL011_DMA_BUFFER_SIZE;
 600
 601	if (xmit->tail < xmit->head)
 602		memcpy(&dmatx->buf[0], &xmit->buf[xmit->tail], count);
 603	else {
 604		size_t first = UART_XMIT_SIZE - xmit->tail;
 605		size_t second;
 606
 607		if (first > count)
 608			first = count;
 609		second = count - first;
 610
 611		memcpy(&dmatx->buf[0], &xmit->buf[xmit->tail], first);
 612		if (second)
 613			memcpy(&dmatx->buf[first], &xmit->buf[0], second);
 614	}
 615
 616	dmatx->sg.length = count;
 617
 618	if (dma_map_sg(dma_dev->dev, &dmatx->sg, 1, DMA_TO_DEVICE) != 1) {
 619		uap->dmatx.queued = false;
 620		dev_dbg(uap->port.dev, "unable to map TX DMA\n");
 621		return -EBUSY;
 622	}
 623
 624	desc = dmaengine_prep_slave_sg(chan, &dmatx->sg, 1, DMA_MEM_TO_DEV,
 625					     DMA_PREP_INTERRUPT | DMA_CTRL_ACK);
 626	if (!desc) {
 627		dma_unmap_sg(dma_dev->dev, &dmatx->sg, 1, DMA_TO_DEVICE);
 628		uap->dmatx.queued = false;
 629		/*
 630		 * If DMA cannot be used right now, we complete this
 631		 * transaction via IRQ and let the TTY layer retry.
 632		 */
 633		dev_dbg(uap->port.dev, "TX DMA busy\n");
 634		return -EBUSY;
 635	}
 636
 637	/* Some data to go along to the callback */
 638	desc->callback = pl011_dma_tx_callback;
 639	desc->callback_param = uap;
 640
 641	/* All errors should happen at prepare time */
 642	dmaengine_submit(desc);
 643
 644	/* Fire the DMA transaction */
 645	dma_dev->device_issue_pending(chan);
 646
 647	uap->dmacr |= UART011_TXDMAE;
 648	pl011_write(uap->dmacr, uap, REG_DMACR);
 649	uap->dmatx.queued = true;
 650
 651	/*
 652	 * Now we know that DMA will fire, so advance the ring buffer
 653	 * with the stuff we just dispatched.
 654	 */
 655	xmit->tail = (xmit->tail + count) & (UART_XMIT_SIZE - 1);
 656	uap->port.icount.tx += count;
 657
 658	if (uart_circ_chars_pending(xmit) < WAKEUP_CHARS)
 659		uart_write_wakeup(&uap->port);
 660
 661	return 1;
 662}
 663
 664/*
 665 * We received a transmit interrupt without a pending X-char but with
 666 * pending characters.
 667 * Locking: called with port lock held and IRQs disabled.
 668 * Returns:
 669 *   false if we want to use PIO to transmit
 670 *   true if we queued a DMA buffer
 671 */
 672static bool pl011_dma_tx_irq(struct uart_amba_port *uap)
 673{
 674	if (!uap->using_tx_dma)
 675		return false;
 676
 677	/*
 678	 * If we already have a TX buffer queued, but received a
 679	 * TX interrupt, it will be because we've just sent an X-char.
 680	 * Ensure the TX DMA is enabled and the TX IRQ is disabled.
 681	 */
 682	if (uap->dmatx.queued) {
 683		uap->dmacr |= UART011_TXDMAE;
 684		pl011_write(uap->dmacr, uap, REG_DMACR);
 685		uap->im &= ~UART011_TXIM;
 686		pl011_write(uap->im, uap, REG_IMSC);
 687		return true;
 688	}
 689
 690	/*
 691	 * We don't have a TX buffer queued, so try to queue one.
 692	 * If we successfully queued a buffer, mask the TX IRQ.
 693	 */
 694	if (pl011_dma_tx_refill(uap) > 0) {
 695		uap->im &= ~UART011_TXIM;
 696		pl011_write(uap->im, uap, REG_IMSC);
 697		return true;
 698	}
 699	return false;
 700}
 701
 702/*
 703 * Stop the DMA transmit (eg, due to received XOFF).
 704 * Locking: called with port lock held and IRQs disabled.
 705 */
 706static inline void pl011_dma_tx_stop(struct uart_amba_port *uap)
 707{
 708	if (uap->dmatx.queued) {
 709		uap->dmacr &= ~UART011_TXDMAE;
 710		pl011_write(uap->dmacr, uap, REG_DMACR);
 711	}
 712}
 713
 714/*
 715 * Try to start a DMA transmit, or in the case of an XON/OFF
 716 * character queued for send, try to get that character out ASAP.
 717 * Locking: called with port lock held and IRQs disabled.
 718 * Returns:
 719 *   false if we want the TX IRQ to be enabled
 720 *   true if we have a buffer queued
 721 */
 722static inline bool pl011_dma_tx_start(struct uart_amba_port *uap)
 723{
 724	u16 dmacr;
 725
 726	if (!uap->using_tx_dma)
 727		return false;
 728
 729	if (!uap->port.x_char) {
 730		/* no X-char, try to push chars out in DMA mode */
 731		bool ret = true;
 732
 733		if (!uap->dmatx.queued) {
 734			if (pl011_dma_tx_refill(uap) > 0) {
 735				uap->im &= ~UART011_TXIM;
 736				pl011_write(uap->im, uap, REG_IMSC);
 737			} else
 
 738				ret = false;
 
 
 739		} else if (!(uap->dmacr & UART011_TXDMAE)) {
 740			uap->dmacr |= UART011_TXDMAE;
 741			pl011_write(uap->dmacr, uap, REG_DMACR);
 
 742		}
 743		return ret;
 744	}
 745
 746	/*
 747	 * We have an X-char to send.  Disable DMA to prevent it loading
 748	 * the TX fifo, and then see if we can stuff it into the FIFO.
 749	 */
 750	dmacr = uap->dmacr;
 751	uap->dmacr &= ~UART011_TXDMAE;
 752	pl011_write(uap->dmacr, uap, REG_DMACR);
 753
 754	if (pl011_read(uap, REG_FR) & UART01x_FR_TXFF) {
 755		/*
 756		 * No space in the FIFO, so enable the transmit interrupt
 757		 * so we know when there is space.  Note that once we've
 758		 * loaded the character, we should just re-enable DMA.
 759		 */
 760		return false;
 761	}
 762
 763	pl011_write(uap->port.x_char, uap, REG_DR);
 764	uap->port.icount.tx++;
 765	uap->port.x_char = 0;
 766
 767	/* Success - restore the DMA state */
 768	uap->dmacr = dmacr;
 769	pl011_write(dmacr, uap, REG_DMACR);
 770
 771	return true;
 772}
 773
 774/*
 775 * Flush the transmit buffer.
 776 * Locking: called with port lock held and IRQs disabled.
 777 */
 778static void pl011_dma_flush_buffer(struct uart_port *port)
 779__releases(&uap->port.lock)
 780__acquires(&uap->port.lock)
 781{
 782	struct uart_amba_port *uap =
 783	    container_of(port, struct uart_amba_port, port);
 784
 785	if (!uap->using_tx_dma)
 786		return;
 787
 788	/* Avoid deadlock with the DMA engine callback */
 789	spin_unlock(&uap->port.lock);
 790	dmaengine_terminate_all(uap->dmatx.chan);
 791	spin_lock(&uap->port.lock);
 792	if (uap->dmatx.queued) {
 793		dma_unmap_sg(uap->dmatx.chan->device->dev, &uap->dmatx.sg, 1,
 794			     DMA_TO_DEVICE);
 795		uap->dmatx.queued = false;
 796		uap->dmacr &= ~UART011_TXDMAE;
 797		pl011_write(uap->dmacr, uap, REG_DMACR);
 798	}
 799}
 800
 801static void pl011_dma_rx_callback(void *data);
 802
 803static int pl011_dma_rx_trigger_dma(struct uart_amba_port *uap)
 804{
 805	struct dma_chan *rxchan = uap->dmarx.chan;
 
 806	struct pl011_dmarx_data *dmarx = &uap->dmarx;
 807	struct dma_async_tx_descriptor *desc;
 808	struct pl011_sgbuf *sgbuf;
 809
 810	if (!rxchan)
 811		return -EIO;
 812
 813	/* Start the RX DMA job */
 814	sgbuf = uap->dmarx.use_buf_b ?
 815		&uap->dmarx.sgbuf_b : &uap->dmarx.sgbuf_a;
 816	desc = dmaengine_prep_slave_sg(rxchan, &sgbuf->sg, 1,
 817					DMA_DEV_TO_MEM,
 
 818					DMA_PREP_INTERRUPT | DMA_CTRL_ACK);
 819	/*
 820	 * If the DMA engine is busy and cannot prepare a
 821	 * channel, no big deal, the driver will fall back
 822	 * to interrupt mode as a result of this error code.
 823	 */
 824	if (!desc) {
 825		uap->dmarx.running = false;
 826		dmaengine_terminate_all(rxchan);
 827		return -EBUSY;
 828	}
 829
 830	/* Some data to go along to the callback */
 831	desc->callback = pl011_dma_rx_callback;
 832	desc->callback_param = uap;
 833	dmarx->cookie = dmaengine_submit(desc);
 834	dma_async_issue_pending(rxchan);
 835
 836	uap->dmacr |= UART011_RXDMAE;
 837	pl011_write(uap->dmacr, uap, REG_DMACR);
 838	uap->dmarx.running = true;
 839
 840	uap->im &= ~UART011_RXIM;
 841	pl011_write(uap->im, uap, REG_IMSC);
 842
 843	return 0;
 844}
 845
 846/*
 847 * This is called when either the DMA job is complete, or
 848 * the FIFO timeout interrupt occurred. This must be called
 849 * with the port spinlock uap->port.lock held.
 850 */
 851static void pl011_dma_rx_chars(struct uart_amba_port *uap,
 852			       u32 pending, bool use_buf_b,
 853			       bool readfifo)
 854{
 855	struct tty_port *port = &uap->port.state->port;
 856	struct pl011_sgbuf *sgbuf = use_buf_b ?
 857		&uap->dmarx.sgbuf_b : &uap->dmarx.sgbuf_a;
 
 858	int dma_count = 0;
 859	u32 fifotaken = 0; /* only used for vdbg() */
 860
 861	struct pl011_dmarx_data *dmarx = &uap->dmarx;
 862	int dmataken = 0;
 863
 864	if (uap->dmarx.poll_rate) {
 865		/* The data can be taken by polling */
 866		dmataken = sgbuf->sg.length - dmarx->last_residue;
 867		/* Recalculate the pending size */
 868		if (pending >= dmataken)
 869			pending -= dmataken;
 870	}
 871
 872	/* Pick the remain data from the DMA */
 873	if (pending) {
 
 
 874
 875		/*
 876		 * First take all chars in the DMA pipe, then look in the FIFO.
 877		 * Note that tty_insert_flip_buf() tries to take as many chars
 878		 * as it can.
 879		 */
 880		dma_count = tty_insert_flip_string(port, sgbuf->buf + dmataken,
 881				pending);
 
 
 
 882
 883		uap->port.icount.rx += dma_count;
 884		if (dma_count < pending)
 885			dev_warn(uap->port.dev,
 886				 "couldn't insert all characters (TTY is full?)\n");
 887	}
 888
 889	/* Reset the last_residue for Rx DMA poll */
 890	if (uap->dmarx.poll_rate)
 891		dmarx->last_residue = sgbuf->sg.length;
 892
 893	/*
 894	 * Only continue with trying to read the FIFO if all DMA chars have
 895	 * been taken first.
 896	 */
 897	if (dma_count == pending && readfifo) {
 898		/* Clear any error flags */
 899		pl011_write(UART011_OEIS | UART011_BEIS | UART011_PEIS |
 900			    UART011_FEIS, uap, REG_ICR);
 901
 902		/*
 903		 * If we read all the DMA'd characters, and we had an
 904		 * incomplete buffer, that could be due to an rx error, or
 905		 * maybe we just timed out. Read any pending chars and check
 906		 * the error status.
 907		 *
 908		 * Error conditions will only occur in the FIFO, these will
 909		 * trigger an immediate interrupt and stop the DMA job, so we
 910		 * will always find the error in the FIFO, never in the DMA
 911		 * buffer.
 912		 */
 913		fifotaken = pl011_fifo_to_tty(uap);
 914	}
 915
 916	spin_unlock(&uap->port.lock);
 917	dev_vdbg(uap->port.dev,
 918		 "Took %d chars from DMA buffer and %d chars from the FIFO\n",
 919		 dma_count, fifotaken);
 920	tty_flip_buffer_push(port);
 921	spin_lock(&uap->port.lock);
 922}
 923
 924static void pl011_dma_rx_irq(struct uart_amba_port *uap)
 925{
 926	struct pl011_dmarx_data *dmarx = &uap->dmarx;
 927	struct dma_chan *rxchan = dmarx->chan;
 928	struct pl011_sgbuf *sgbuf = dmarx->use_buf_b ?
 929		&dmarx->sgbuf_b : &dmarx->sgbuf_a;
 930	size_t pending;
 931	struct dma_tx_state state;
 932	enum dma_status dmastat;
 933
 934	/*
 935	 * Pause the transfer so we can trust the current counter,
 936	 * do this before we pause the PL011 block, else we may
 937	 * overflow the FIFO.
 938	 */
 939	if (dmaengine_pause(rxchan))
 940		dev_err(uap->port.dev, "unable to pause DMA transfer\n");
 941	dmastat = rxchan->device->device_tx_status(rxchan,
 942						   dmarx->cookie, &state);
 943	if (dmastat != DMA_PAUSED)
 944		dev_err(uap->port.dev, "unable to pause DMA transfer\n");
 945
 946	/* Disable RX DMA - incoming data will wait in the FIFO */
 947	uap->dmacr &= ~UART011_RXDMAE;
 948	pl011_write(uap->dmacr, uap, REG_DMACR);
 949	uap->dmarx.running = false;
 950
 951	pending = sgbuf->sg.length - state.residue;
 952	BUG_ON(pending > PL011_DMA_BUFFER_SIZE);
 953	/* Then we terminate the transfer - we now know our residue */
 954	dmaengine_terminate_all(rxchan);
 955
 956	/*
 957	 * This will take the chars we have so far and insert
 958	 * into the framework.
 959	 */
 960	pl011_dma_rx_chars(uap, pending, dmarx->use_buf_b, true);
 961
 962	/* Switch buffer & re-trigger DMA job */
 963	dmarx->use_buf_b = !dmarx->use_buf_b;
 964	if (pl011_dma_rx_trigger_dma(uap)) {
 965		dev_dbg(uap->port.dev, "could not retrigger RX DMA job "
 966			"fall back to interrupt mode\n");
 967		uap->im |= UART011_RXIM;
 968		pl011_write(uap->im, uap, REG_IMSC);
 969	}
 970}
 971
 972static void pl011_dma_rx_callback(void *data)
 973{
 974	struct uart_amba_port *uap = data;
 975	struct pl011_dmarx_data *dmarx = &uap->dmarx;
 976	struct dma_chan *rxchan = dmarx->chan;
 977	bool lastbuf = dmarx->use_buf_b;
 978	struct pl011_sgbuf *sgbuf = dmarx->use_buf_b ?
 979		&dmarx->sgbuf_b : &dmarx->sgbuf_a;
 980	size_t pending;
 981	struct dma_tx_state state;
 982	int ret;
 983
 984	/*
 985	 * This completion interrupt occurs typically when the
 986	 * RX buffer is totally stuffed but no timeout has yet
 987	 * occurred. When that happens, we just want the RX
 988	 * routine to flush out the secondary DMA buffer while
 989	 * we immediately trigger the next DMA job.
 990	 */
 991	spin_lock_irq(&uap->port.lock);
 992	/*
 993	 * Rx data can be taken by the UART interrupts during
 994	 * the DMA irq handler. So we check the residue here.
 995	 */
 996	rxchan->device->device_tx_status(rxchan, dmarx->cookie, &state);
 997	pending = sgbuf->sg.length - state.residue;
 998	BUG_ON(pending > PL011_DMA_BUFFER_SIZE);
 999	/* Then we terminate the transfer - we now know our residue */
1000	dmaengine_terminate_all(rxchan);
1001
1002	uap->dmarx.running = false;
1003	dmarx->use_buf_b = !lastbuf;
1004	ret = pl011_dma_rx_trigger_dma(uap);
1005
1006	pl011_dma_rx_chars(uap, pending, lastbuf, false);
1007	spin_unlock_irq(&uap->port.lock);
1008	/*
1009	 * Do this check after we picked the DMA chars so we don't
1010	 * get some IRQ immediately from RX.
1011	 */
1012	if (ret) {
1013		dev_dbg(uap->port.dev, "could not retrigger RX DMA job "
1014			"fall back to interrupt mode\n");
1015		uap->im |= UART011_RXIM;
1016		pl011_write(uap->im, uap, REG_IMSC);
1017	}
1018}
1019
1020/*
1021 * Stop accepting received characters, when we're shutting down or
1022 * suspending this port.
1023 * Locking: called with port lock held and IRQs disabled.
1024 */
1025static inline void pl011_dma_rx_stop(struct uart_amba_port *uap)
1026{
1027	/* FIXME.  Just disable the DMA enable */
1028	uap->dmacr &= ~UART011_RXDMAE;
1029	pl011_write(uap->dmacr, uap, REG_DMACR);
1030}
1031
1032/*
1033 * Timer handler for Rx DMA polling.
1034 * Every polling, It checks the residue in the dma buffer and transfer
1035 * data to the tty. Also, last_residue is updated for the next polling.
1036 */
1037static void pl011_dma_rx_poll(unsigned long args)
1038{
1039	struct uart_amba_port *uap = (struct uart_amba_port *)args;
1040	struct tty_port *port = &uap->port.state->port;
1041	struct pl011_dmarx_data *dmarx = &uap->dmarx;
1042	struct dma_chan *rxchan = uap->dmarx.chan;
1043	unsigned long flags = 0;
1044	unsigned int dmataken = 0;
1045	unsigned int size = 0;
1046	struct pl011_sgbuf *sgbuf;
1047	int dma_count;
1048	struct dma_tx_state state;
1049
1050	sgbuf = dmarx->use_buf_b ? &uap->dmarx.sgbuf_b : &uap->dmarx.sgbuf_a;
1051	rxchan->device->device_tx_status(rxchan, dmarx->cookie, &state);
1052	if (likely(state.residue < dmarx->last_residue)) {
1053		dmataken = sgbuf->sg.length - dmarx->last_residue;
1054		size = dmarx->last_residue - state.residue;
1055		dma_count = tty_insert_flip_string(port, sgbuf->buf + dmataken,
1056				size);
1057		if (dma_count == size)
1058			dmarx->last_residue =  state.residue;
1059		dmarx->last_jiffies = jiffies;
1060	}
1061	tty_flip_buffer_push(port);
1062
1063	/*
1064	 * If no data is received in poll_timeout, the driver will fall back
1065	 * to interrupt mode. We will retrigger DMA at the first interrupt.
1066	 */
1067	if (jiffies_to_msecs(jiffies - dmarx->last_jiffies)
1068			> uap->dmarx.poll_timeout) {
1069
1070		spin_lock_irqsave(&uap->port.lock, flags);
1071		pl011_dma_rx_stop(uap);
1072		uap->im |= UART011_RXIM;
1073		pl011_write(uap->im, uap, REG_IMSC);
1074		spin_unlock_irqrestore(&uap->port.lock, flags);
1075
1076		uap->dmarx.running = false;
1077		dmaengine_terminate_all(rxchan);
1078		del_timer(&uap->dmarx.timer);
1079	} else {
1080		mod_timer(&uap->dmarx.timer,
1081			jiffies + msecs_to_jiffies(uap->dmarx.poll_rate));
1082	}
1083}
1084
1085static void pl011_dma_startup(struct uart_amba_port *uap)
1086{
1087	int ret;
1088
1089	if (!uap->dma_probed)
1090		pl011_dma_probe(uap);
1091
1092	if (!uap->dmatx.chan)
1093		return;
1094
1095	uap->dmatx.buf = kmalloc(PL011_DMA_BUFFER_SIZE, GFP_KERNEL | __GFP_DMA);
1096	if (!uap->dmatx.buf) {
1097		dev_err(uap->port.dev, "no memory for DMA TX buffer\n");
1098		uap->port.fifosize = uap->fifosize;
1099		return;
1100	}
1101
1102	sg_init_one(&uap->dmatx.sg, uap->dmatx.buf, PL011_DMA_BUFFER_SIZE);
1103
1104	/* The DMA buffer is now the FIFO the TTY subsystem can use */
1105	uap->port.fifosize = PL011_DMA_BUFFER_SIZE;
1106	uap->using_tx_dma = true;
1107
1108	if (!uap->dmarx.chan)
1109		goto skip_rx;
1110
1111	/* Allocate and map DMA RX buffers */
1112	ret = pl011_sgbuf_init(uap->dmarx.chan, &uap->dmarx.sgbuf_a,
1113			       DMA_FROM_DEVICE);
1114	if (ret) {
1115		dev_err(uap->port.dev, "failed to init DMA %s: %d\n",
1116			"RX buffer A", ret);
1117		goto skip_rx;
1118	}
1119
1120	ret = pl011_sgbuf_init(uap->dmarx.chan, &uap->dmarx.sgbuf_b,
1121			       DMA_FROM_DEVICE);
1122	if (ret) {
1123		dev_err(uap->port.dev, "failed to init DMA %s: %d\n",
1124			"RX buffer B", ret);
1125		pl011_sgbuf_free(uap->dmarx.chan, &uap->dmarx.sgbuf_a,
1126				 DMA_FROM_DEVICE);
1127		goto skip_rx;
1128	}
1129
1130	uap->using_rx_dma = true;
1131
1132skip_rx:
1133	/* Turn on DMA error (RX/TX will be enabled on demand) */
1134	uap->dmacr |= UART011_DMAONERR;
1135	pl011_write(uap->dmacr, uap, REG_DMACR);
1136
1137	/*
1138	 * ST Micro variants has some specific dma burst threshold
1139	 * compensation. Set this to 16 bytes, so burst will only
1140	 * be issued above/below 16 bytes.
1141	 */
1142	if (uap->vendor->dma_threshold)
1143		pl011_write(ST_UART011_DMAWM_RX_16 | ST_UART011_DMAWM_TX_16,
1144			    uap, REG_ST_DMAWM);
1145
1146	if (uap->using_rx_dma) {
1147		if (pl011_dma_rx_trigger_dma(uap))
1148			dev_dbg(uap->port.dev, "could not trigger initial "
1149				"RX DMA job, fall back to interrupt mode\n");
1150		if (uap->dmarx.poll_rate) {
1151			init_timer(&(uap->dmarx.timer));
1152			uap->dmarx.timer.function = pl011_dma_rx_poll;
1153			uap->dmarx.timer.data = (unsigned long)uap;
1154			mod_timer(&uap->dmarx.timer,
1155				jiffies +
1156				msecs_to_jiffies(uap->dmarx.poll_rate));
1157			uap->dmarx.last_residue = PL011_DMA_BUFFER_SIZE;
1158			uap->dmarx.last_jiffies = jiffies;
1159		}
1160	}
1161}
1162
1163static void pl011_dma_shutdown(struct uart_amba_port *uap)
1164{
1165	if (!(uap->using_tx_dma || uap->using_rx_dma))
1166		return;
1167
1168	/* Disable RX and TX DMA */
1169	while (pl011_read(uap, REG_FR) & UART01x_FR_BUSY)
1170		cpu_relax();
1171
1172	spin_lock_irq(&uap->port.lock);
1173	uap->dmacr &= ~(UART011_DMAONERR | UART011_RXDMAE | UART011_TXDMAE);
1174	pl011_write(uap->dmacr, uap, REG_DMACR);
1175	spin_unlock_irq(&uap->port.lock);
1176
1177	if (uap->using_tx_dma) {
1178		/* In theory, this should already be done by pl011_dma_flush_buffer */
1179		dmaengine_terminate_all(uap->dmatx.chan);
1180		if (uap->dmatx.queued) {
1181			dma_unmap_sg(uap->dmatx.chan->device->dev, &uap->dmatx.sg, 1,
1182				     DMA_TO_DEVICE);
1183			uap->dmatx.queued = false;
1184		}
1185
1186		kfree(uap->dmatx.buf);
1187		uap->using_tx_dma = false;
1188	}
1189
1190	if (uap->using_rx_dma) {
1191		dmaengine_terminate_all(uap->dmarx.chan);
1192		/* Clean up the RX DMA */
1193		pl011_sgbuf_free(uap->dmarx.chan, &uap->dmarx.sgbuf_a, DMA_FROM_DEVICE);
1194		pl011_sgbuf_free(uap->dmarx.chan, &uap->dmarx.sgbuf_b, DMA_FROM_DEVICE);
1195		if (uap->dmarx.poll_rate)
1196			del_timer_sync(&uap->dmarx.timer);
1197		uap->using_rx_dma = false;
1198	}
1199}
1200
1201static inline bool pl011_dma_rx_available(struct uart_amba_port *uap)
1202{
1203	return uap->using_rx_dma;
1204}
1205
1206static inline bool pl011_dma_rx_running(struct uart_amba_port *uap)
1207{
1208	return uap->using_rx_dma && uap->dmarx.running;
1209}
1210
 
1211#else
1212/* Blank functions if the DMA engine is not available */
1213static inline void pl011_dma_probe(struct uart_amba_port *uap)
1214{
1215}
1216
1217static inline void pl011_dma_remove(struct uart_amba_port *uap)
1218{
1219}
1220
1221static inline void pl011_dma_startup(struct uart_amba_port *uap)
1222{
1223}
1224
1225static inline void pl011_dma_shutdown(struct uart_amba_port *uap)
1226{
1227}
1228
1229static inline bool pl011_dma_tx_irq(struct uart_amba_port *uap)
1230{
1231	return false;
1232}
1233
1234static inline void pl011_dma_tx_stop(struct uart_amba_port *uap)
1235{
1236}
1237
1238static inline bool pl011_dma_tx_start(struct uart_amba_port *uap)
1239{
1240	return false;
1241}
1242
1243static inline void pl011_dma_rx_irq(struct uart_amba_port *uap)
1244{
1245}
1246
1247static inline void pl011_dma_rx_stop(struct uart_amba_port *uap)
1248{
1249}
1250
1251static inline int pl011_dma_rx_trigger_dma(struct uart_amba_port *uap)
1252{
1253	return -EIO;
1254}
1255
1256static inline bool pl011_dma_rx_available(struct uart_amba_port *uap)
1257{
1258	return false;
1259}
1260
1261static inline bool pl011_dma_rx_running(struct uart_amba_port *uap)
1262{
1263	return false;
1264}
1265
1266#define pl011_dma_flush_buffer	NULL
1267#endif
1268
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1269static void pl011_stop_tx(struct uart_port *port)
1270{
1271	struct uart_amba_port *uap =
1272	    container_of(port, struct uart_amba_port, port);
1273
1274	uap->im &= ~UART011_TXIM;
1275	pl011_write(uap->im, uap, REG_IMSC);
1276	pl011_dma_tx_stop(uap);
1277}
1278
1279static void pl011_tx_chars(struct uart_amba_port *uap, bool from_irq);
1280
1281/* Start TX with programmed I/O only (no DMA) */
1282static void pl011_start_tx_pio(struct uart_amba_port *uap)
1283{
1284	uap->im |= UART011_TXIM;
1285	pl011_write(uap->im, uap, REG_IMSC);
1286	pl011_tx_chars(uap, false);
1287}
1288
1289static void pl011_start_tx(struct uart_port *port)
1290{
1291	struct uart_amba_port *uap =
1292	    container_of(port, struct uart_amba_port, port);
1293
1294	if (!pl011_dma_tx_start(uap))
1295		pl011_start_tx_pio(uap);
 
 
1296}
1297
1298static void pl011_stop_rx(struct uart_port *port)
1299{
1300	struct uart_amba_port *uap =
1301	    container_of(port, struct uart_amba_port, port);
1302
1303	uap->im &= ~(UART011_RXIM|UART011_RTIM|UART011_FEIM|
1304		     UART011_PEIM|UART011_BEIM|UART011_OEIM);
1305	pl011_write(uap->im, uap, REG_IMSC);
1306
1307	pl011_dma_rx_stop(uap);
1308}
1309
1310static void pl011_enable_ms(struct uart_port *port)
1311{
1312	struct uart_amba_port *uap =
1313	    container_of(port, struct uart_amba_port, port);
1314
1315	uap->im |= UART011_RIMIM|UART011_CTSMIM|UART011_DCDMIM|UART011_DSRMIM;
1316	pl011_write(uap->im, uap, REG_IMSC);
1317}
1318
1319static void pl011_rx_chars(struct uart_amba_port *uap)
1320__releases(&uap->port.lock)
1321__acquires(&uap->port.lock)
1322{
 
 
1323	pl011_fifo_to_tty(uap);
1324
1325	spin_unlock(&uap->port.lock);
1326	tty_flip_buffer_push(&uap->port.state->port);
1327	/*
1328	 * If we were temporarily out of DMA mode for a while,
1329	 * attempt to switch back to DMA mode again.
1330	 */
1331	if (pl011_dma_rx_available(uap)) {
1332		if (pl011_dma_rx_trigger_dma(uap)) {
1333			dev_dbg(uap->port.dev, "could not trigger RX DMA job "
1334				"fall back to interrupt mode again\n");
1335			uap->im |= UART011_RXIM;
1336			pl011_write(uap->im, uap, REG_IMSC);
1337		} else {
1338#ifdef CONFIG_DMA_ENGINE
1339			/* Start Rx DMA poll */
1340			if (uap->dmarx.poll_rate) {
1341				uap->dmarx.last_jiffies = jiffies;
1342				uap->dmarx.last_residue	= PL011_DMA_BUFFER_SIZE;
1343				mod_timer(&uap->dmarx.timer,
1344					jiffies +
1345					msecs_to_jiffies(uap->dmarx.poll_rate));
1346			}
1347#endif
1348		}
1349	}
1350	spin_lock(&uap->port.lock);
1351}
1352
1353static bool pl011_tx_char(struct uart_amba_port *uap, unsigned char c,
1354			  bool from_irq)
1355{
1356	if (unlikely(!from_irq) &&
1357	    pl011_read(uap, REG_FR) & UART01x_FR_TXFF)
1358		return false; /* unable to transmit character */
1359
1360	pl011_write(c, uap, REG_DR);
1361	uap->port.icount.tx++;
1362
1363	return true;
1364}
1365
1366static void pl011_tx_chars(struct uart_amba_port *uap, bool from_irq)
1367{
1368	struct circ_buf *xmit = &uap->port.state->xmit;
1369	int count = uap->fifosize >> 1;
1370
1371	if (uap->port.x_char) {
1372		if (!pl011_tx_char(uap, uap->port.x_char, from_irq))
1373			return;
1374		uap->port.x_char = 0;
1375		--count;
1376	}
1377	if (uart_circ_empty(xmit) || uart_tx_stopped(&uap->port)) {
1378		pl011_stop_tx(&uap->port);
1379		return;
1380	}
1381
1382	/* If we are using DMA mode, try to send some characters. */
1383	if (pl011_dma_tx_irq(uap))
1384		return;
1385
 
1386	do {
1387		if (likely(from_irq) && count-- == 0)
 
 
 
1388			break;
1389
1390		if (!pl011_tx_char(uap, xmit->buf[xmit->tail], from_irq))
1391			break;
1392
1393		xmit->tail = (xmit->tail + 1) & (UART_XMIT_SIZE - 1);
1394	} while (!uart_circ_empty(xmit));
1395
1396	if (uart_circ_chars_pending(xmit) < WAKEUP_CHARS)
1397		uart_write_wakeup(&uap->port);
1398
1399	if (uart_circ_empty(xmit))
1400		pl011_stop_tx(&uap->port);
1401}
1402
1403static void pl011_modem_status(struct uart_amba_port *uap)
1404{
1405	unsigned int status, delta;
1406
1407	status = pl011_read(uap, REG_FR) & UART01x_FR_MODEM_ANY;
1408
1409	delta = status ^ uap->old_status;
1410	uap->old_status = status;
1411
1412	if (!delta)
1413		return;
1414
1415	if (delta & UART01x_FR_DCD)
1416		uart_handle_dcd_change(&uap->port, status & UART01x_FR_DCD);
1417
1418	if (delta & UART01x_FR_DSR)
1419		uap->port.icount.dsr++;
1420
1421	if (delta & UART01x_FR_CTS)
1422		uart_handle_cts_change(&uap->port, status & UART01x_FR_CTS);
1423
1424	wake_up_interruptible(&uap->port.state->port.delta_msr_wait);
1425}
1426
1427static void check_apply_cts_event_workaround(struct uart_amba_port *uap)
1428{
1429	unsigned int dummy_read;
1430
1431	if (!uap->vendor->cts_event_workaround)
1432		return;
1433
1434	/* workaround to make sure that all bits are unlocked.. */
1435	pl011_write(0x00, uap, REG_ICR);
1436
1437	/*
1438	 * WA: introduce 26ns(1 uart clk) delay before W1C;
1439	 * single apb access will incur 2 pclk(133.12Mhz) delay,
1440	 * so add 2 dummy reads
1441	 */
1442	dummy_read = pl011_read(uap, REG_ICR);
1443	dummy_read = pl011_read(uap, REG_ICR);
1444}
1445
1446static irqreturn_t pl011_int(int irq, void *dev_id)
1447{
1448	struct uart_amba_port *uap = dev_id;
1449	unsigned long flags;
1450	unsigned int status, pass_counter = AMBA_ISR_PASS_LIMIT;
1451	u16 imsc;
1452	int handled = 0;
1453
1454	spin_lock_irqsave(&uap->port.lock, flags);
1455	imsc = pl011_read(uap, REG_IMSC);
1456	status = pl011_read(uap, REG_RIS) & imsc;
1457	if (status) {
1458		do {
1459			check_apply_cts_event_workaround(uap);
1460
1461			pl011_write(status & ~(UART011_TXIS|UART011_RTIS|
1462					       UART011_RXIS),
1463				    uap, REG_ICR);
1464
1465			if (status & (UART011_RTIS|UART011_RXIS)) {
1466				if (pl011_dma_rx_running(uap))
1467					pl011_dma_rx_irq(uap);
1468				else
1469					pl011_rx_chars(uap);
1470			}
1471			if (status & (UART011_DSRMIS|UART011_DCDMIS|
1472				      UART011_CTSMIS|UART011_RIMIS))
1473				pl011_modem_status(uap);
1474			if (status & UART011_TXIS)
1475				pl011_tx_chars(uap, true);
1476
1477			if (pass_counter-- == 0)
 
 
1478				break;
 
1479
1480			status = pl011_read(uap, REG_RIS) & imsc;
1481		} while (status != 0);
1482		handled = 1;
1483	}
1484
1485	spin_unlock_irqrestore(&uap->port.lock, flags);
1486
1487	return IRQ_RETVAL(handled);
1488}
1489
1490static unsigned int pl011_tx_empty(struct uart_port *port)
1491{
1492	struct uart_amba_port *uap =
1493	    container_of(port, struct uart_amba_port, port);
1494	unsigned int status = pl011_read(uap, REG_FR);
1495	return status & (UART01x_FR_BUSY|UART01x_FR_TXFF) ? 0 : TIOCSER_TEMT;
1496}
1497
1498static unsigned int pl011_get_mctrl(struct uart_port *port)
1499{
1500	struct uart_amba_port *uap =
1501	    container_of(port, struct uart_amba_port, port);
1502	unsigned int result = 0;
1503	unsigned int status = pl011_read(uap, REG_FR);
1504
1505#define TIOCMBIT(uartbit, tiocmbit)	\
1506	if (status & uartbit)		\
1507		result |= tiocmbit
1508
1509	TIOCMBIT(UART01x_FR_DCD, TIOCM_CAR);
1510	TIOCMBIT(UART01x_FR_DSR, TIOCM_DSR);
1511	TIOCMBIT(UART01x_FR_CTS, TIOCM_CTS);
1512	TIOCMBIT(UART011_FR_RI, TIOCM_RNG);
1513#undef TIOCMBIT
1514	return result;
1515}
1516
1517static void pl011_set_mctrl(struct uart_port *port, unsigned int mctrl)
1518{
1519	struct uart_amba_port *uap =
1520	    container_of(port, struct uart_amba_port, port);
1521	unsigned int cr;
1522
1523	cr = pl011_read(uap, REG_CR);
1524
1525#define	TIOCMBIT(tiocmbit, uartbit)		\
1526	if (mctrl & tiocmbit)		\
1527		cr |= uartbit;		\
1528	else				\
1529		cr &= ~uartbit
1530
1531	TIOCMBIT(TIOCM_RTS, UART011_CR_RTS);
1532	TIOCMBIT(TIOCM_DTR, UART011_CR_DTR);
1533	TIOCMBIT(TIOCM_OUT1, UART011_CR_OUT1);
1534	TIOCMBIT(TIOCM_OUT2, UART011_CR_OUT2);
1535	TIOCMBIT(TIOCM_LOOP, UART011_CR_LBE);
1536
1537	if (uap->autorts) {
1538		/* We need to disable auto-RTS if we want to turn RTS off */
1539		TIOCMBIT(TIOCM_RTS, UART011_CR_RTSEN);
1540	}
1541#undef TIOCMBIT
1542
1543	pl011_write(cr, uap, REG_CR);
1544}
1545
1546static void pl011_break_ctl(struct uart_port *port, int break_state)
1547{
1548	struct uart_amba_port *uap =
1549	    container_of(port, struct uart_amba_port, port);
1550	unsigned long flags;
1551	unsigned int lcr_h;
1552
1553	spin_lock_irqsave(&uap->port.lock, flags);
1554	lcr_h = pl011_read(uap, REG_LCRH_TX);
1555	if (break_state == -1)
1556		lcr_h |= UART01x_LCRH_BRK;
1557	else
1558		lcr_h &= ~UART01x_LCRH_BRK;
1559	pl011_write(lcr_h, uap, REG_LCRH_TX);
1560	spin_unlock_irqrestore(&uap->port.lock, flags);
1561}
1562
1563#ifdef CONFIG_CONSOLE_POLL
1564
1565static void pl011_quiesce_irqs(struct uart_port *port)
1566{
1567	struct uart_amba_port *uap =
1568	    container_of(port, struct uart_amba_port, port);
1569
1570	pl011_write(pl011_read(uap, REG_MIS), uap, REG_ICR);
1571	/*
1572	 * There is no way to clear TXIM as this is "ready to transmit IRQ", so
1573	 * we simply mask it. start_tx() will unmask it.
1574	 *
1575	 * Note we can race with start_tx(), and if the race happens, the
1576	 * polling user might get another interrupt just after we clear it.
1577	 * But it should be OK and can happen even w/o the race, e.g.
1578	 * controller immediately got some new data and raised the IRQ.
1579	 *
1580	 * And whoever uses polling routines assumes that it manages the device
1581	 * (including tx queue), so we're also fine with start_tx()'s caller
1582	 * side.
1583	 */
1584	pl011_write(pl011_read(uap, REG_IMSC) & ~UART011_TXIM, uap,
1585		    REG_IMSC);
1586}
1587
1588static int pl011_get_poll_char(struct uart_port *port)
1589{
1590	struct uart_amba_port *uap =
1591	    container_of(port, struct uart_amba_port, port);
1592	unsigned int status;
1593
1594	/*
1595	 * The caller might need IRQs lowered, e.g. if used with KDB NMI
1596	 * debugger.
1597	 */
1598	pl011_quiesce_irqs(port);
1599
1600	status = pl011_read(uap, REG_FR);
1601	if (status & UART01x_FR_RXFE)
1602		return NO_POLL_CHAR;
1603
1604	return pl011_read(uap, REG_DR);
1605}
1606
1607static void pl011_put_poll_char(struct uart_port *port,
1608			 unsigned char ch)
1609{
1610	struct uart_amba_port *uap =
1611	    container_of(port, struct uart_amba_port, port);
1612
1613	while (pl011_read(uap, REG_FR) & UART01x_FR_TXFF)
1614		cpu_relax();
1615
1616	pl011_write(ch, uap, REG_DR);
1617}
1618
1619#endif /* CONFIG_CONSOLE_POLL */
1620
1621static int pl011_hwinit(struct uart_port *port)
1622{
1623	struct uart_amba_port *uap =
1624	    container_of(port, struct uart_amba_port, port);
1625	int retval;
1626
1627	/* Optionaly enable pins to be muxed in and configured */
1628	pinctrl_pm_select_default_state(port->dev);
1629
1630	/*
1631	 * Try to enable the clock producer.
1632	 */
1633	retval = clk_prepare_enable(uap->clk);
1634	if (retval)
1635		return retval;
1636
1637	uap->port.uartclk = clk_get_rate(uap->clk);
1638
1639	/* Clear pending error and receive interrupts */
1640	pl011_write(UART011_OEIS | UART011_BEIS | UART011_PEIS |
1641		    UART011_FEIS | UART011_RTIS | UART011_RXIS,
1642		    uap, REG_ICR);
1643
1644	/*
1645	 * Save interrupts enable mask, and enable RX interrupts in case if
1646	 * the interrupt is used for NMI entry.
1647	 */
1648	uap->im = pl011_read(uap, REG_IMSC);
1649	pl011_write(UART011_RTIM | UART011_RXIM, uap, REG_IMSC);
 
1650
1651	if (dev_get_platdata(uap->port.dev)) {
1652		struct amba_pl011_data *plat;
1653
1654		plat = dev_get_platdata(uap->port.dev);
1655		if (plat->init)
1656			plat->init();
1657	}
1658	return 0;
1659}
1660
1661static bool pl011_split_lcrh(const struct uart_amba_port *uap)
1662{
1663	return pl011_reg_to_offset(uap, REG_LCRH_RX) !=
1664	       pl011_reg_to_offset(uap, REG_LCRH_TX);
1665}
1666
1667static void pl011_write_lcr_h(struct uart_amba_port *uap, unsigned int lcr_h)
1668{
1669	pl011_write(lcr_h, uap, REG_LCRH_RX);
1670	if (pl011_split_lcrh(uap)) {
1671		int i;
1672		/*
1673		 * Wait 10 PCLKs before writing LCRH_TX register,
1674		 * to get this delay write read only register 10 times
1675		 */
1676		for (i = 0; i < 10; ++i)
1677			pl011_write(0xff, uap, REG_MIS);
1678		pl011_write(lcr_h, uap, REG_LCRH_TX);
1679	}
1680}
 
 
 
 
 
 
 
 
 
1681
1682static int pl011_allocate_irq(struct uart_amba_port *uap)
1683{
1684	pl011_write(uap->im, uap, REG_IMSC);
 
1685
1686	return request_irq(uap->port.irq, pl011_int, 0, "uart-pl011", uap);
1687}
1688
1689/*
1690 * Enable interrupts, only timeouts when using DMA
1691 * if initial RX DMA job failed, start in interrupt mode
1692 * as well.
1693 */
1694static void pl011_enable_interrupts(struct uart_amba_port *uap)
1695{
1696	spin_lock_irq(&uap->port.lock);
1697
1698	/* Clear out any spuriously appearing RX interrupts */
1699	pl011_write(UART011_RTIS | UART011_RXIS, uap, REG_ICR);
1700	uap->im = UART011_RTIM;
1701	if (!pl011_dma_rx_running(uap))
1702		uap->im |= UART011_RXIM;
1703	pl011_write(uap->im, uap, REG_IMSC);
1704	spin_unlock_irq(&uap->port.lock);
1705}
1706
1707static int pl011_startup(struct uart_port *port)
1708{
1709	struct uart_amba_port *uap =
1710	    container_of(port, struct uart_amba_port, port);
1711	unsigned int cr;
1712	int retval;
1713
1714	retval = pl011_hwinit(port);
1715	if (retval)
1716		goto clk_dis;
1717
1718	retval = pl011_allocate_irq(uap);
1719	if (retval)
1720		goto clk_dis;
1721
1722	pl011_write(uap->vendor->ifls, uap, REG_IFLS);
1723
1724	spin_lock_irq(&uap->port.lock);
1725
1726	/* restore RTS and DTR */
1727	cr = uap->old_cr & (UART011_CR_RTS | UART011_CR_DTR);
1728	cr |= UART01x_CR_UARTEN | UART011_CR_RXE | UART011_CR_TXE;
1729	pl011_write(cr, uap, REG_CR);
1730
1731	spin_unlock_irq(&uap->port.lock);
1732
1733	/*
1734	 * initialise the old status of the modem signals
1735	 */
1736	uap->old_status = pl011_read(uap, REG_FR) & UART01x_FR_MODEM_ANY;
1737
1738	/* Startup DMA */
1739	pl011_dma_startup(uap);
1740
1741	pl011_enable_interrupts(uap);
1742
1743	return 0;
1744
1745 clk_dis:
1746	clk_disable_unprepare(uap->clk);
 
1747	return retval;
1748}
1749
1750static int sbsa_uart_startup(struct uart_port *port)
1751{
1752	struct uart_amba_port *uap =
1753		container_of(port, struct uart_amba_port, port);
1754	int retval;
1755
1756	retval = pl011_hwinit(port);
1757	if (retval)
1758		return retval;
1759
1760	retval = pl011_allocate_irq(uap);
1761	if (retval)
1762		return retval;
1763
1764	/* The SBSA UART does not support any modem status lines. */
1765	uap->old_status = 0;
1766
1767	pl011_enable_interrupts(uap);
1768
1769	return 0;
1770}
1771
1772static void pl011_shutdown_channel(struct uart_amba_port *uap,
1773					unsigned int lcrh)
1774{
1775      unsigned long val;
1776
1777      val = pl011_read(uap, lcrh);
1778      val &= ~(UART01x_LCRH_BRK | UART01x_LCRH_FEN);
1779      pl011_write(val, uap, lcrh);
1780}
1781
1782/*
1783 * disable the port. It should not disable RTS and DTR.
1784 * Also RTS and DTR state should be preserved to restore
1785 * it during startup().
1786 */
1787static void pl011_disable_uart(struct uart_amba_port *uap)
1788{
1789	unsigned int cr;
1790
1791	uap->autorts = false;
1792	spin_lock_irq(&uap->port.lock);
1793	cr = pl011_read(uap, REG_CR);
1794	uap->old_cr = cr;
1795	cr &= UART011_CR_RTS | UART011_CR_DTR;
1796	cr |= UART01x_CR_UARTEN | UART011_CR_TXE;
1797	pl011_write(cr, uap, REG_CR);
1798	spin_unlock_irq(&uap->port.lock);
1799
1800	/*
1801	 * disable break condition and fifos
1802	 */
1803	pl011_shutdown_channel(uap, REG_LCRH_RX);
1804	if (pl011_split_lcrh(uap))
1805		pl011_shutdown_channel(uap, REG_LCRH_TX);
1806}
1807
1808static void pl011_disable_interrupts(struct uart_amba_port *uap)
1809{
1810	spin_lock_irq(&uap->port.lock);
1811
1812	/* mask all interrupts and clear all pending ones */
1813	uap->im = 0;
1814	pl011_write(uap->im, uap, REG_IMSC);
1815	pl011_write(0xffff, uap, REG_ICR);
1816
1817	spin_unlock_irq(&uap->port.lock);
1818}
1819
1820static void pl011_shutdown(struct uart_port *port)
1821{
1822	struct uart_amba_port *uap =
1823		container_of(port, struct uart_amba_port, port);
1824
1825	pl011_disable_interrupts(uap);
1826
1827	pl011_dma_shutdown(uap);
1828
 
 
 
1829	free_irq(uap->port.irq, uap);
1830
1831	pl011_disable_uart(uap);
 
 
 
 
 
 
 
 
 
 
 
1832
1833	/*
1834	 * Shut down the clock producer
1835	 */
1836	clk_disable_unprepare(uap->clk);
1837	/* Optionally let pins go into sleep states */
1838	pinctrl_pm_select_sleep_state(port->dev);
1839
1840	if (dev_get_platdata(uap->port.dev)) {
1841		struct amba_pl011_data *plat;
1842
1843		plat = dev_get_platdata(uap->port.dev);
1844		if (plat->exit)
1845			plat->exit();
1846	}
1847
1848	if (uap->port.ops->flush_buffer)
1849		uap->port.ops->flush_buffer(port);
1850}
1851
1852static void sbsa_uart_shutdown(struct uart_port *port)
1853{
1854	struct uart_amba_port *uap =
1855		container_of(port, struct uart_amba_port, port);
1856
1857	pl011_disable_interrupts(uap);
1858
1859	free_irq(uap->port.irq, uap);
1860
1861	if (uap->port.ops->flush_buffer)
1862		uap->port.ops->flush_buffer(port);
1863}
1864
1865static void
1866pl011_setup_status_masks(struct uart_port *port, struct ktermios *termios)
1867{
1868	port->read_status_mask = UART011_DR_OE | 255;
1869	if (termios->c_iflag & INPCK)
1870		port->read_status_mask |= UART011_DR_FE | UART011_DR_PE;
1871	if (termios->c_iflag & (IGNBRK | BRKINT | PARMRK))
1872		port->read_status_mask |= UART011_DR_BE;
1873
1874	/*
1875	 * Characters to ignore
1876	 */
1877	port->ignore_status_mask = 0;
1878	if (termios->c_iflag & IGNPAR)
1879		port->ignore_status_mask |= UART011_DR_FE | UART011_DR_PE;
1880	if (termios->c_iflag & IGNBRK) {
1881		port->ignore_status_mask |= UART011_DR_BE;
1882		/*
1883		 * If we're ignoring parity and break indicators,
1884		 * ignore overruns too (for real raw support).
1885		 */
1886		if (termios->c_iflag & IGNPAR)
1887			port->ignore_status_mask |= UART011_DR_OE;
1888	}
1889
1890	/*
1891	 * Ignore all characters if CREAD is not set.
1892	 */
1893	if ((termios->c_cflag & CREAD) == 0)
1894		port->ignore_status_mask |= UART_DUMMY_DR_RX;
1895}
1896
1897static void
1898pl011_set_termios(struct uart_port *port, struct ktermios *termios,
1899		     struct ktermios *old)
1900{
1901	struct uart_amba_port *uap =
1902	    container_of(port, struct uart_amba_port, port);
1903	unsigned int lcr_h, old_cr;
1904	unsigned long flags;
1905	unsigned int baud, quot, clkdiv;
1906
1907	if (uap->vendor->oversampling)
1908		clkdiv = 8;
1909	else
1910		clkdiv = 16;
1911
1912	/*
1913	 * Ask the core to calculate the divisor for us.
1914	 */
1915	baud = uart_get_baud_rate(port, termios, old, 0,
1916				  port->uartclk / clkdiv);
1917#ifdef CONFIG_DMA_ENGINE
1918	/*
1919	 * Adjust RX DMA polling rate with baud rate if not specified.
1920	 */
1921	if (uap->dmarx.auto_poll_rate)
1922		uap->dmarx.poll_rate = DIV_ROUND_UP(10000000, baud);
1923#endif
1924
1925	if (baud > port->uartclk/16)
1926		quot = DIV_ROUND_CLOSEST(port->uartclk * 8, baud);
1927	else
1928		quot = DIV_ROUND_CLOSEST(port->uartclk * 4, baud);
1929
1930	switch (termios->c_cflag & CSIZE) {
1931	case CS5:
1932		lcr_h = UART01x_LCRH_WLEN_5;
1933		break;
1934	case CS6:
1935		lcr_h = UART01x_LCRH_WLEN_6;
1936		break;
1937	case CS7:
1938		lcr_h = UART01x_LCRH_WLEN_7;
1939		break;
1940	default: // CS8
1941		lcr_h = UART01x_LCRH_WLEN_8;
1942		break;
1943	}
1944	if (termios->c_cflag & CSTOPB)
1945		lcr_h |= UART01x_LCRH_STP2;
1946	if (termios->c_cflag & PARENB) {
1947		lcr_h |= UART01x_LCRH_PEN;
1948		if (!(termios->c_cflag & PARODD))
1949			lcr_h |= UART01x_LCRH_EPS;
1950		if (termios->c_cflag & CMSPAR)
1951			lcr_h |= UART011_LCRH_SPS;
1952	}
1953	if (uap->fifosize > 1)
1954		lcr_h |= UART01x_LCRH_FEN;
1955
1956	spin_lock_irqsave(&port->lock, flags);
1957
1958	/*
1959	 * Update the per-port timeout.
1960	 */
1961	uart_update_timeout(port, termios->c_cflag, baud);
1962
1963	pl011_setup_status_masks(port, termios);
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1964
1965	if (UART_ENABLE_MS(port, termios->c_cflag))
1966		pl011_enable_ms(port);
1967
1968	/* first, disable everything */
1969	old_cr = pl011_read(uap, REG_CR);
1970	pl011_write(0, uap, REG_CR);
1971
1972	if (termios->c_cflag & CRTSCTS) {
1973		if (old_cr & UART011_CR_RTS)
1974			old_cr |= UART011_CR_RTSEN;
1975
1976		old_cr |= UART011_CR_CTSEN;
1977		uap->autorts = true;
1978	} else {
1979		old_cr &= ~(UART011_CR_CTSEN | UART011_CR_RTSEN);
1980		uap->autorts = false;
1981	}
1982
1983	if (uap->vendor->oversampling) {
1984		if (baud > port->uartclk / 16)
1985			old_cr |= ST_UART011_CR_OVSFACT;
1986		else
1987			old_cr &= ~ST_UART011_CR_OVSFACT;
1988	}
1989
1990	/*
1991	 * Workaround for the ST Micro oversampling variants to
1992	 * increase the bitrate slightly, by lowering the divisor,
1993	 * to avoid delayed sampling of start bit at high speeds,
1994	 * else we see data corruption.
1995	 */
1996	if (uap->vendor->oversampling) {
1997		if ((baud >= 3000000) && (baud < 3250000) && (quot > 1))
1998			quot -= 1;
1999		else if ((baud > 3250000) && (quot > 2))
2000			quot -= 2;
2001	}
2002	/* Set baud rate */
2003	pl011_write(quot & 0x3f, uap, REG_FBRD);
2004	pl011_write(quot >> 6, uap, REG_IBRD);
2005
2006	/*
2007	 * ----------v----------v----------v----------v-----
2008	 * NOTE: REG_LCRH_TX and REG_LCRH_RX MUST BE WRITTEN AFTER
2009	 * REG_FBRD & REG_IBRD.
2010	 * ----------^----------^----------^----------^-----
2011	 */
2012	pl011_write_lcr_h(uap, lcr_h);
2013	pl011_write(old_cr, uap, REG_CR);
 
 
 
 
 
 
 
 
 
 
2014
2015	spin_unlock_irqrestore(&port->lock, flags);
2016}
2017
2018static void
2019sbsa_uart_set_termios(struct uart_port *port, struct ktermios *termios,
2020		      struct ktermios *old)
2021{
2022	struct uart_amba_port *uap =
2023	    container_of(port, struct uart_amba_port, port);
2024	unsigned long flags;
2025
2026	tty_termios_encode_baud_rate(termios, uap->fixed_baud, uap->fixed_baud);
2027
2028	/* The SBSA UART only supports 8n1 without hardware flow control. */
2029	termios->c_cflag &= ~(CSIZE | CSTOPB | PARENB | PARODD);
2030	termios->c_cflag &= ~(CMSPAR | CRTSCTS);
2031	termios->c_cflag |= CS8 | CLOCAL;
2032
2033	spin_lock_irqsave(&port->lock, flags);
2034	uart_update_timeout(port, CS8, uap->fixed_baud);
2035	pl011_setup_status_masks(port, termios);
2036	spin_unlock_irqrestore(&port->lock, flags);
2037}
2038
2039static const char *pl011_type(struct uart_port *port)
2040{
2041	struct uart_amba_port *uap =
2042	    container_of(port, struct uart_amba_port, port);
2043	return uap->port.type == PORT_AMBA ? uap->type : NULL;
2044}
2045
2046/*
2047 * Release the memory region(s) being used by 'port'
2048 */
2049static void pl011_release_port(struct uart_port *port)
2050{
2051	release_mem_region(port->mapbase, SZ_4K);
2052}
2053
2054/*
2055 * Request the memory region(s) being used by 'port'
2056 */
2057static int pl011_request_port(struct uart_port *port)
2058{
2059	return request_mem_region(port->mapbase, SZ_4K, "uart-pl011")
2060			!= NULL ? 0 : -EBUSY;
2061}
2062
2063/*
2064 * Configure/autoconfigure the port.
2065 */
2066static void pl011_config_port(struct uart_port *port, int flags)
2067{
2068	if (flags & UART_CONFIG_TYPE) {
2069		port->type = PORT_AMBA;
2070		pl011_request_port(port);
2071	}
2072}
2073
2074/*
2075 * verify the new serial_struct (for TIOCSSERIAL).
2076 */
2077static int pl011_verify_port(struct uart_port *port, struct serial_struct *ser)
2078{
2079	int ret = 0;
2080	if (ser->type != PORT_UNKNOWN && ser->type != PORT_AMBA)
2081		ret = -EINVAL;
2082	if (ser->irq < 0 || ser->irq >= nr_irqs)
2083		ret = -EINVAL;
2084	if (ser->baud_base < 9600)
2085		ret = -EINVAL;
2086	return ret;
2087}
2088
2089static struct uart_ops amba_pl011_pops = {
2090	.tx_empty	= pl011_tx_empty,
2091	.set_mctrl	= pl011_set_mctrl,
2092	.get_mctrl	= pl011_get_mctrl,
2093	.stop_tx	= pl011_stop_tx,
2094	.start_tx	= pl011_start_tx,
2095	.stop_rx	= pl011_stop_rx,
2096	.enable_ms	= pl011_enable_ms,
2097	.break_ctl	= pl011_break_ctl,
2098	.startup	= pl011_startup,
2099	.shutdown	= pl011_shutdown,
2100	.flush_buffer	= pl011_dma_flush_buffer,
2101	.set_termios	= pl011_set_termios,
2102	.type		= pl011_type,
2103	.release_port	= pl011_release_port,
2104	.request_port	= pl011_request_port,
2105	.config_port	= pl011_config_port,
2106	.verify_port	= pl011_verify_port,
2107#ifdef CONFIG_CONSOLE_POLL
2108	.poll_init     = pl011_hwinit,
2109	.poll_get_char = pl011_get_poll_char,
2110	.poll_put_char = pl011_put_poll_char,
2111#endif
2112};
2113
2114static void sbsa_uart_set_mctrl(struct uart_port *port, unsigned int mctrl)
2115{
2116}
2117
2118static unsigned int sbsa_uart_get_mctrl(struct uart_port *port)
2119{
2120	return 0;
2121}
2122
2123static const struct uart_ops sbsa_uart_pops = {
2124	.tx_empty	= pl011_tx_empty,
2125	.set_mctrl	= sbsa_uart_set_mctrl,
2126	.get_mctrl	= sbsa_uart_get_mctrl,
2127	.stop_tx	= pl011_stop_tx,
2128	.start_tx	= pl011_start_tx,
2129	.stop_rx	= pl011_stop_rx,
2130	.startup	= sbsa_uart_startup,
2131	.shutdown	= sbsa_uart_shutdown,
2132	.set_termios	= sbsa_uart_set_termios,
2133	.type		= pl011_type,
2134	.release_port	= pl011_release_port,
2135	.request_port	= pl011_request_port,
2136	.config_port	= pl011_config_port,
2137	.verify_port	= pl011_verify_port,
2138#ifdef CONFIG_CONSOLE_POLL
2139	.poll_init     = pl011_hwinit,
2140	.poll_get_char = pl011_get_poll_char,
2141	.poll_put_char = pl011_put_poll_char,
2142#endif
2143};
2144
2145static struct uart_amba_port *amba_ports[UART_NR];
2146
2147#ifdef CONFIG_SERIAL_AMBA_PL011_CONSOLE
2148
2149static void pl011_console_putchar(struct uart_port *port, int ch)
2150{
2151	struct uart_amba_port *uap =
2152	    container_of(port, struct uart_amba_port, port);
2153
2154	while (pl011_read(uap, REG_FR) & UART01x_FR_TXFF)
2155		cpu_relax();
2156	pl011_write(ch, uap, REG_DR);
2157}
2158
2159static void
2160pl011_console_write(struct console *co, const char *s, unsigned int count)
2161{
2162	struct uart_amba_port *uap = amba_ports[co->index];
2163	unsigned int old_cr = 0, new_cr;
2164	unsigned long flags;
2165	int locked = 1;
2166
2167	clk_enable(uap->clk);
2168
2169	local_irq_save(flags);
2170	if (uap->port.sysrq)
2171		locked = 0;
2172	else if (oops_in_progress)
2173		locked = spin_trylock(&uap->port.lock);
2174	else
2175		spin_lock(&uap->port.lock);
2176
2177	/*
2178	 *	First save the CR then disable the interrupts
2179	 */
2180	if (!uap->vendor->always_enabled) {
2181		old_cr = pl011_read(uap, REG_CR);
2182		new_cr = old_cr & ~UART011_CR_CTSEN;
2183		new_cr |= UART01x_CR_UARTEN | UART011_CR_TXE;
2184		pl011_write(new_cr, uap, REG_CR);
2185	}
2186
2187	uart_console_write(&uap->port, s, count, pl011_console_putchar);
2188
2189	/*
2190	 *	Finally, wait for transmitter to become empty
2191	 *	and restore the TCR
2192	 */
2193	while (pl011_read(uap, REG_FR) & UART01x_FR_BUSY)
2194		cpu_relax();
2195	if (!uap->vendor->always_enabled)
2196		pl011_write(old_cr, uap, REG_CR);
2197
2198	if (locked)
2199		spin_unlock(&uap->port.lock);
2200	local_irq_restore(flags);
2201
2202	clk_disable(uap->clk);
2203}
2204
2205static void __init
2206pl011_console_get_options(struct uart_amba_port *uap, int *baud,
2207			     int *parity, int *bits)
2208{
2209	if (pl011_read(uap, REG_CR) & UART01x_CR_UARTEN) {
2210		unsigned int lcr_h, ibrd, fbrd;
2211
2212		lcr_h = pl011_read(uap, REG_LCRH_TX);
2213
2214		*parity = 'n';
2215		if (lcr_h & UART01x_LCRH_PEN) {
2216			if (lcr_h & UART01x_LCRH_EPS)
2217				*parity = 'e';
2218			else
2219				*parity = 'o';
2220		}
2221
2222		if ((lcr_h & 0x60) == UART01x_LCRH_WLEN_7)
2223			*bits = 7;
2224		else
2225			*bits = 8;
2226
2227		ibrd = pl011_read(uap, REG_IBRD);
2228		fbrd = pl011_read(uap, REG_FBRD);
2229
2230		*baud = uap->port.uartclk * 4 / (64 * ibrd + fbrd);
2231
2232		if (uap->vendor->oversampling) {
2233			if (pl011_read(uap, REG_CR)
2234				  & ST_UART011_CR_OVSFACT)
2235				*baud *= 2;
2236		}
2237	}
2238}
2239
2240static int __init pl011_console_setup(struct console *co, char *options)
2241{
2242	struct uart_amba_port *uap;
2243	int baud = 38400;
2244	int bits = 8;
2245	int parity = 'n';
2246	int flow = 'n';
2247	int ret;
2248
2249	/*
2250	 * Check whether an invalid uart number has been specified, and
2251	 * if so, search for the first available port that does have
2252	 * console support.
2253	 */
2254	if (co->index >= UART_NR)
2255		co->index = 0;
2256	uap = amba_ports[co->index];
2257	if (!uap)
2258		return -ENODEV;
2259
2260	/* Allow pins to be muxed in and configured */
2261	pinctrl_pm_select_default_state(uap->port.dev);
2262
2263	ret = clk_prepare(uap->clk);
2264	if (ret)
2265		return ret;
2266
2267	if (dev_get_platdata(uap->port.dev)) {
2268		struct amba_pl011_data *plat;
2269
2270		plat = dev_get_platdata(uap->port.dev);
2271		if (plat->init)
2272			plat->init();
2273	}
2274
2275	uap->port.uartclk = clk_get_rate(uap->clk);
2276
2277	if (uap->vendor->fixed_options) {
2278		baud = uap->fixed_baud;
2279	} else {
2280		if (options)
2281			uart_parse_options(options,
2282					   &baud, &parity, &bits, &flow);
2283		else
2284			pl011_console_get_options(uap, &baud, &parity, &bits);
2285	}
2286
2287	return uart_set_options(&uap->port, co, baud, parity, bits, flow);
2288}
2289
2290static struct uart_driver amba_reg;
2291static struct console amba_console = {
2292	.name		= "ttyAMA",
2293	.write		= pl011_console_write,
2294	.device		= uart_console_device,
2295	.setup		= pl011_console_setup,
2296	.flags		= CON_PRINTBUFFER,
2297	.index		= -1,
2298	.data		= &amba_reg,
2299};
2300
2301#define AMBA_CONSOLE	(&amba_console)
2302
2303static void pl011_putc(struct uart_port *port, int c)
2304{
2305	while (readl(port->membase + UART01x_FR) & UART01x_FR_TXFF)
2306		cpu_relax();
2307	if (port->iotype == UPIO_MEM32)
2308		writel(c, port->membase + UART01x_DR);
2309	else
2310		writeb(c, port->membase + UART01x_DR);
2311	while (readl(port->membase + UART01x_FR) & UART01x_FR_BUSY)
2312		cpu_relax();
2313}
2314
2315static void pl011_early_write(struct console *con, const char *s, unsigned n)
2316{
2317	struct earlycon_device *dev = con->data;
2318
2319	uart_console_write(&dev->port, s, n, pl011_putc);
2320}
2321
2322static int __init pl011_early_console_setup(struct earlycon_device *device,
2323					    const char *opt)
2324{
2325	if (!device->port.membase)
2326		return -ENODEV;
2327
2328	device->con->write = pl011_early_write;
2329	return 0;
2330}
2331OF_EARLYCON_DECLARE(pl011, "arm,pl011", pl011_early_console_setup);
2332
2333#else
2334#define AMBA_CONSOLE	NULL
2335#endif
2336
2337static struct uart_driver amba_reg = {
2338	.owner			= THIS_MODULE,
2339	.driver_name		= "ttyAMA",
2340	.dev_name		= "ttyAMA",
2341	.major			= SERIAL_AMBA_MAJOR,
2342	.minor			= SERIAL_AMBA_MINOR,
2343	.nr			= UART_NR,
2344	.cons			= AMBA_CONSOLE,
2345};
2346
2347static int pl011_probe_dt_alias(int index, struct device *dev)
2348{
2349	struct device_node *np;
2350	static bool seen_dev_with_alias = false;
2351	static bool seen_dev_without_alias = false;
2352	int ret = index;
2353
2354	if (!IS_ENABLED(CONFIG_OF))
2355		return ret;
 
2356
2357	np = dev->of_node;
2358	if (!np)
2359		return ret;
 
2360
2361	ret = of_alias_get_id(np, "serial");
2362	if (IS_ERR_VALUE(ret)) {
2363		seen_dev_without_alias = true;
2364		ret = index;
2365	} else {
2366		seen_dev_with_alias = true;
2367		if (ret >= ARRAY_SIZE(amba_ports) || amba_ports[ret] != NULL) {
2368			dev_warn(dev, "requested serial port %d  not available.\n", ret);
2369			ret = index;
2370		}
2371	}
2372
2373	if (seen_dev_with_alias && seen_dev_without_alias)
2374		dev_warn(dev, "aliased and non-aliased serial devices found in device tree. Serial port enumeration may be unpredictable.\n");
2375
2376	return ret;
2377}
2378
2379/* unregisters the driver also if no more ports are left */
2380static void pl011_unregister_port(struct uart_amba_port *uap)
2381{
2382	int i;
2383	bool busy = false;
2384
2385	for (i = 0; i < ARRAY_SIZE(amba_ports); i++) {
2386		if (amba_ports[i] == uap)
2387			amba_ports[i] = NULL;
2388		else if (amba_ports[i])
2389			busy = true;
2390	}
2391	pl011_dma_remove(uap);
2392	if (!busy)
2393		uart_unregister_driver(&amba_reg);
2394}
2395
2396static int pl011_find_free_port(void)
2397{
2398	int i;
2399
2400	for (i = 0; i < ARRAY_SIZE(amba_ports); i++)
2401		if (amba_ports[i] == NULL)
2402			return i;
2403
2404	return -EBUSY;
2405}
2406
2407static int pl011_setup_port(struct device *dev, struct uart_amba_port *uap,
2408			    struct resource *mmiobase, int index)
2409{
2410	void __iomem *base;
2411
2412	base = devm_ioremap_resource(dev, mmiobase);
2413	if (IS_ERR(base))
2414		return PTR_ERR(base);
2415
2416	index = pl011_probe_dt_alias(index, dev);
2417
2418	uap->old_cr = 0;
2419	uap->port.dev = dev;
2420	uap->port.mapbase = mmiobase->start;
2421	uap->port.membase = base;
2422	uap->port.fifosize = uap->fifosize;
2423	uap->port.flags = UPF_BOOT_AUTOCONF;
2424	uap->port.line = index;
2425
2426	amba_ports[index] = uap;
2427
2428	return 0;
2429}
2430
2431static int pl011_register_port(struct uart_amba_port *uap)
2432{
2433	int ret;
2434
2435	/* Ensure interrupts from this UART are masked and cleared */
2436	pl011_write(0, uap, REG_IMSC);
2437	pl011_write(0xffff, uap, REG_ICR);
2438
2439	if (!amba_reg.state) {
2440		ret = uart_register_driver(&amba_reg);
2441		if (ret < 0) {
2442			dev_err(uap->port.dev,
2443				"Failed to register AMBA-PL011 driver\n");
2444			return ret;
2445		}
2446	}
2447
2448	ret = uart_add_one_port(&amba_reg, &uap->port);
2449	if (ret)
2450		pl011_unregister_port(uap);
2451
2452	return ret;
2453}
2454
2455static int pl011_probe(struct amba_device *dev, const struct amba_id *id)
2456{
2457	struct uart_amba_port *uap;
2458	struct vendor_data *vendor = id->data;
2459	int portnr, ret;
2460
2461	portnr = pl011_find_free_port();
2462	if (portnr < 0)
2463		return portnr;
2464
2465	uap = devm_kzalloc(&dev->dev, sizeof(struct uart_amba_port),
2466			   GFP_KERNEL);
2467	if (!uap)
2468		return -ENOMEM;
2469
2470	uap->clk = devm_clk_get(&dev->dev, NULL);
2471	if (IS_ERR(uap->clk))
2472		return PTR_ERR(uap->clk);
2473
2474	uap->reg_offset = vendor->reg_offset;
2475	uap->vendor = vendor;
2476	uap->fifosize = vendor->get_fifosize(dev);
2477	uap->port.iotype = vendor->access_32b ? UPIO_MEM32 : UPIO_MEM;
 
 
 
 
 
 
2478	uap->port.irq = dev->irq[0];
 
2479	uap->port.ops = &amba_pl011_pops;
 
 
 
2480
2481	snprintf(uap->type, sizeof(uap->type), "PL011 rev%u", amba_rev(dev));
2482
2483	ret = pl011_setup_port(&dev->dev, uap, &dev->res, portnr);
2484	if (ret)
2485		return ret;
2486
2487	amba_set_drvdata(dev, uap);
2488
2489	return pl011_register_port(uap);
 
 
 
 
 
 
 
 
 
 
 
2490}
2491
2492static int pl011_remove(struct amba_device *dev)
2493{
2494	struct uart_amba_port *uap = amba_get_drvdata(dev);
 
 
 
2495
2496	uart_remove_one_port(&amba_reg, &uap->port);
2497	pl011_unregister_port(uap);
 
 
 
 
 
 
 
 
2498	return 0;
2499}
2500
2501#ifdef CONFIG_PM_SLEEP
2502static int pl011_suspend(struct device *dev)
2503{
2504	struct uart_amba_port *uap = dev_get_drvdata(dev);
2505
2506	if (!uap)
2507		return -EINVAL;
2508
2509	return uart_suspend_port(&amba_reg, &uap->port);
2510}
2511
2512static int pl011_resume(struct device *dev)
2513{
2514	struct uart_amba_port *uap = dev_get_drvdata(dev);
2515
2516	if (!uap)
2517		return -EINVAL;
2518
2519	return uart_resume_port(&amba_reg, &uap->port);
2520}
2521#endif
2522
2523static SIMPLE_DEV_PM_OPS(pl011_dev_pm_ops, pl011_suspend, pl011_resume);
2524
2525static int sbsa_uart_probe(struct platform_device *pdev)
2526{
2527	struct uart_amba_port *uap;
2528	struct resource *r;
2529	int portnr, ret;
2530	int baudrate;
2531
2532	/*
2533	 * Check the mandatory baud rate parameter in the DT node early
2534	 * so that we can easily exit with the error.
2535	 */
2536	if (pdev->dev.of_node) {
2537		struct device_node *np = pdev->dev.of_node;
2538
2539		ret = of_property_read_u32(np, "current-speed", &baudrate);
2540		if (ret)
2541			return ret;
2542	} else {
2543		baudrate = 115200;
2544	}
2545
2546	portnr = pl011_find_free_port();
2547	if (portnr < 0)
2548		return portnr;
2549
2550	uap = devm_kzalloc(&pdev->dev, sizeof(struct uart_amba_port),
2551			   GFP_KERNEL);
2552	if (!uap)
2553		return -ENOMEM;
2554
2555	uap->reg_offset	= vendor_sbsa.reg_offset;
2556	uap->vendor	= &vendor_sbsa;
2557	uap->fifosize	= 32;
2558	uap->port.iotype = vendor_sbsa.access_32b ? UPIO_MEM32 : UPIO_MEM;
2559	uap->port.irq	= platform_get_irq(pdev, 0);
2560	uap->port.ops	= &sbsa_uart_pops;
2561	uap->fixed_baud = baudrate;
2562
2563	snprintf(uap->type, sizeof(uap->type), "SBSA");
2564
2565	r = platform_get_resource(pdev, IORESOURCE_MEM, 0);
2566
2567	ret = pl011_setup_port(&pdev->dev, uap, r, portnr);
2568	if (ret)
2569		return ret;
2570
2571	platform_set_drvdata(pdev, uap);
2572
2573	return pl011_register_port(uap);
2574}
2575
2576static int sbsa_uart_remove(struct platform_device *pdev)
2577{
2578	struct uart_amba_port *uap = platform_get_drvdata(pdev);
2579
2580	uart_remove_one_port(&amba_reg, &uap->port);
2581	pl011_unregister_port(uap);
2582	return 0;
2583}
2584
2585static const struct of_device_id sbsa_uart_of_match[] = {
2586	{ .compatible = "arm,sbsa-uart", },
2587	{},
2588};
2589MODULE_DEVICE_TABLE(of, sbsa_uart_of_match);
2590
2591static const struct acpi_device_id sbsa_uart_acpi_match[] = {
2592	{ "ARMH0011", 0 },
2593	{},
2594};
2595MODULE_DEVICE_TABLE(acpi, sbsa_uart_acpi_match);
2596
2597static struct platform_driver arm_sbsa_uart_platform_driver = {
2598	.probe		= sbsa_uart_probe,
2599	.remove		= sbsa_uart_remove,
2600	.driver	= {
2601		.name	= "sbsa-uart",
2602		.of_match_table = of_match_ptr(sbsa_uart_of_match),
2603		.acpi_match_table = ACPI_PTR(sbsa_uart_acpi_match),
2604	},
2605};
2606
2607static struct amba_id pl011_ids[] = {
2608	{
2609		.id	= 0x00041011,
2610		.mask	= 0x000fffff,
2611		.data	= &vendor_arm,
2612	},
2613	{
2614		.id	= 0x00380802,
2615		.mask	= 0x00ffffff,
2616		.data	= &vendor_st,
2617	},
2618	{ 0, 0 },
2619};
2620
2621MODULE_DEVICE_TABLE(amba, pl011_ids);
2622
2623static struct amba_driver pl011_driver = {
2624	.drv = {
2625		.name	= "uart-pl011",
2626		.pm	= &pl011_dev_pm_ops,
2627	},
2628	.id_table	= pl011_ids,
2629	.probe		= pl011_probe,
2630	.remove		= pl011_remove,
 
 
 
 
2631};
2632
2633static int __init pl011_init(void)
2634{
 
2635	printk(KERN_INFO "Serial: AMBA PL011 UART driver\n");
2636
2637	if (platform_driver_register(&arm_sbsa_uart_platform_driver))
2638		pr_warn("could not register SBSA UART platform driver\n");
2639	return amba_driver_register(&pl011_driver);
 
 
 
 
2640}
2641
2642static void __exit pl011_exit(void)
2643{
2644	platform_driver_unregister(&arm_sbsa_uart_platform_driver);
2645	amba_driver_unregister(&pl011_driver);
 
2646}
2647
2648/*
2649 * While this can be a module, if builtin it's most likely the console
2650 * So let's leave module_exit but move module_init to an earlier place
2651 */
2652arch_initcall(pl011_init);
2653module_exit(pl011_exit);
2654
2655MODULE_AUTHOR("ARM Ltd/Deep Blue Solutions Ltd");
2656MODULE_DESCRIPTION("ARM AMBA serial port driver");
2657MODULE_LICENSE("GPL");