Linux Audio

Check our new training course

Loading...
v3.1
 
   1/*
   2 *  Driver for AMBA serial ports
   3 *
   4 *  Based on drivers/char/serial.c, by Linus Torvalds, Theodore Ts'o.
   5 *
   6 *  Copyright 1999 ARM Limited
   7 *  Copyright (C) 2000 Deep Blue Solutions Ltd.
   8 *  Copyright (C) 2010 ST-Ericsson SA
   9 *
  10 * This program is free software; you can redistribute it and/or modify
  11 * it under the terms of the GNU General Public License as published by
  12 * the Free Software Foundation; either version 2 of the License, or
  13 * (at your option) any later version.
  14 *
  15 * This program is distributed in the hope that it will be useful,
  16 * but WITHOUT ANY WARRANTY; without even the implied warranty of
  17 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
  18 * GNU General Public License for more details.
  19 *
  20 * You should have received a copy of the GNU General Public License
  21 * along with this program; if not, write to the Free Software
  22 * Foundation, Inc., 59 Temple Place, Suite 330, Boston, MA  02111-1307  USA
  23 *
  24 * This is a generic driver for ARM AMBA-type serial ports.  They
  25 * have a lot of 16550-like features, but are not register compatible.
  26 * Note that although they do have CTS, DCD and DSR inputs, they do
  27 * not have an RI input, nor do they have DTR or RTS outputs.  If
  28 * required, these have to be supplied via some other means (eg, GPIO)
  29 * and hooked into this driver.
  30 */
  31
  32#if defined(CONFIG_SERIAL_AMBA_PL011_CONSOLE) && defined(CONFIG_MAGIC_SYSRQ)
  33#define SUPPORT_SYSRQ
  34#endif
  35
  36#include <linux/module.h>
  37#include <linux/ioport.h>
  38#include <linux/init.h>
  39#include <linux/console.h>
  40#include <linux/sysrq.h>
  41#include <linux/device.h>
  42#include <linux/tty.h>
  43#include <linux/tty_flip.h>
  44#include <linux/serial_core.h>
  45#include <linux/serial.h>
  46#include <linux/amba/bus.h>
  47#include <linux/amba/serial.h>
  48#include <linux/clk.h>
  49#include <linux/slab.h>
  50#include <linux/dmaengine.h>
  51#include <linux/dma-mapping.h>
  52#include <linux/scatterlist.h>
  53#include <linux/delay.h>
  54
  55#include <asm/io.h>
  56#include <asm/sizes.h>
 
 
 
 
  57
  58#define UART_NR			14
  59
  60#define SERIAL_AMBA_MAJOR	204
  61#define SERIAL_AMBA_MINOR	64
  62#define SERIAL_AMBA_NR		UART_NR
  63
  64#define AMBA_ISR_PASS_LIMIT	256
  65
  66#define UART_DR_ERROR		(UART011_DR_OE|UART011_DR_BE|UART011_DR_PE|UART011_DR_FE)
  67#define UART_DUMMY_DR_RX	(1 << 16)
  68
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
  69
  70#define UART_WA_SAVE_NR 14
  71
  72static void pl011_lockup_wa(unsigned long data);
  73static const u32 uart_wa_reg[UART_WA_SAVE_NR] = {
  74	ST_UART011_DMAWM,
  75	ST_UART011_TIMEOUT,
  76	ST_UART011_LCRH_RX,
  77	UART011_IBRD,
  78	UART011_FBRD,
  79	ST_UART011_LCRH_TX,
  80	UART011_IFLS,
  81	ST_UART011_XFCR,
  82	ST_UART011_XON1,
  83	ST_UART011_XON2,
  84	ST_UART011_XOFF1,
  85	ST_UART011_XOFF2,
  86	UART011_CR,
  87	UART011_IMSC
  88};
  89
  90static u32 uart_wa_regdata[UART_WA_SAVE_NR];
  91static DECLARE_TASKLET(pl011_lockup_tlet, pl011_lockup_wa, 0);
 
 
 
 
 
 
 
 
 
 
 
 
 
  92
  93/* There is by now at least one vendor with differing details, so handle it */
  94struct vendor_data {
 
  95	unsigned int		ifls;
  96	unsigned int		fifosize;
  97	unsigned int		lcrh_tx;
  98	unsigned int		lcrh_rx;
 
 
 
  99	bool			oversampling;
 100	bool			interrupt_may_hang;   /* vendor-specific */
 101	bool			dma_threshold;
 
 
 
 
 
 102};
 103
 
 
 
 
 
 104static struct vendor_data vendor_arm = {
 
 105	.ifls			= UART011_IFLS_RX4_8|UART011_IFLS_TX4_8,
 106	.fifosize		= 16,
 107	.lcrh_tx		= UART011_LCRH,
 108	.lcrh_rx		= UART011_LCRH,
 
 109	.oversampling		= false,
 110	.dma_threshold		= false,
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 111};
 112
 
 
 
 
 
 113static struct vendor_data vendor_st = {
 
 114	.ifls			= UART011_IFLS_RX_HALF|UART011_IFLS_TX_HALF,
 115	.fifosize		= 64,
 116	.lcrh_tx		= ST_UART011_LCRH_TX,
 117	.lcrh_rx		= ST_UART011_LCRH_RX,
 
 118	.oversampling		= true,
 119	.interrupt_may_hang	= true,
 120	.dma_threshold		= true,
 
 
 
 
 121};
 122
 123static struct uart_amba_port *amba_ports[UART_NR];
 124
 125/* Deals with DMA transactions */
 126
 127struct pl011_sgbuf {
 128	struct scatterlist sg;
 129	char *buf;
 130};
 131
 132struct pl011_dmarx_data {
 133	struct dma_chan		*chan;
 134	struct completion	complete;
 135	bool			use_buf_b;
 136	struct pl011_sgbuf	sgbuf_a;
 137	struct pl011_sgbuf	sgbuf_b;
 138	dma_cookie_t		cookie;
 139	bool			running;
 
 
 
 
 
 
 140};
 141
 142struct pl011_dmatx_data {
 143	struct dma_chan		*chan;
 144	struct scatterlist	sg;
 145	char			*buf;
 146	bool			queued;
 147};
 148
 149/*
 150 * We wrap our port structure around the generic uart_port.
 151 */
 152struct uart_amba_port {
 153	struct uart_port	port;
 
 154	struct clk		*clk;
 155	const struct vendor_data *vendor;
 156	unsigned int		dmacr;		/* dma control reg */
 157	unsigned int		im;		/* interrupt mask */
 158	unsigned int		old_status;
 159	unsigned int		fifosize;	/* vendor-specific */
 160	unsigned int		lcrh_tx;	/* vendor-specific */
 161	unsigned int		lcrh_rx;	/* vendor-specific */
 162	bool			autorts;
 163	char			type[12];
 164	bool			interrupt_may_hang; /* vendor-specific */
 
 165#ifdef CONFIG_DMA_ENGINE
 166	/* DMA stuff */
 167	bool			using_tx_dma;
 168	bool			using_rx_dma;
 169	struct pl011_dmarx_data dmarx;
 170	struct pl011_dmatx_data	dmatx;
 
 171#endif
 172};
 173
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 174/*
 175 * Reads up to 256 characters from the FIFO or until it's empty and
 176 * inserts them into the TTY layer. Returns the number of characters
 177 * read from the FIFO.
 178 */
 179static int pl011_fifo_to_tty(struct uart_amba_port *uap)
 180{
 181	u16 status, ch;
 182	unsigned int flag, max_count = 256;
 183	int fifotaken = 0;
 184
 185	while (max_count--) {
 186		status = readw(uap->port.membase + UART01x_FR);
 187		if (status & UART01x_FR_RXFE)
 188			break;
 189
 190		/* Take chars from the FIFO and update status */
 191		ch = readw(uap->port.membase + UART01x_DR) |
 192			UART_DUMMY_DR_RX;
 193		flag = TTY_NORMAL;
 194		uap->port.icount.rx++;
 195		fifotaken++;
 196
 197		if (unlikely(ch & UART_DR_ERROR)) {
 198			if (ch & UART011_DR_BE) {
 199				ch &= ~(UART011_DR_FE | UART011_DR_PE);
 200				uap->port.icount.brk++;
 201				if (uart_handle_break(&uap->port))
 202					continue;
 203			} else if (ch & UART011_DR_PE)
 204				uap->port.icount.parity++;
 205			else if (ch & UART011_DR_FE)
 206				uap->port.icount.frame++;
 207			if (ch & UART011_DR_OE)
 208				uap->port.icount.overrun++;
 209
 210			ch &= uap->port.read_status_mask;
 211
 212			if (ch & UART011_DR_BE)
 213				flag = TTY_BREAK;
 214			else if (ch & UART011_DR_PE)
 215				flag = TTY_PARITY;
 216			else if (ch & UART011_DR_FE)
 217				flag = TTY_FRAME;
 218		}
 219
 220		if (uart_handle_sysrq_char(&uap->port, ch & 255))
 221			continue;
 
 222
 223		uart_insert_char(&uap->port, ch, UART011_DR_OE, ch, flag);
 
 224	}
 225
 226	return fifotaken;
 227}
 228
 229
 230/*
 231 * All the DMA operation mode stuff goes inside this ifdef.
 232 * This assumes that you have a generic DMA device interface,
 233 * no custom DMA interfaces are supported.
 234 */
 235#ifdef CONFIG_DMA_ENGINE
 236
 237#define PL011_DMA_BUFFER_SIZE PAGE_SIZE
 238
 239static int pl011_sgbuf_init(struct dma_chan *chan, struct pl011_sgbuf *sg,
 240	enum dma_data_direction dir)
 241{
 242	sg->buf = kmalloc(PL011_DMA_BUFFER_SIZE, GFP_KERNEL);
 
 
 
 243	if (!sg->buf)
 244		return -ENOMEM;
 245
 246	sg_init_one(&sg->sg, sg->buf, PL011_DMA_BUFFER_SIZE);
 
 
 
 
 247
 248	if (dma_map_sg(chan->device->dev, &sg->sg, 1, dir) != 1) {
 249		kfree(sg->buf);
 250		return -EINVAL;
 251	}
 252	return 0;
 253}
 254
 255static void pl011_sgbuf_free(struct dma_chan *chan, struct pl011_sgbuf *sg,
 256	enum dma_data_direction dir)
 257{
 258	if (sg->buf) {
 259		dma_unmap_sg(chan->device->dev, &sg->sg, 1, dir);
 260		kfree(sg->buf);
 
 261	}
 262}
 263
 264static void pl011_dma_probe_initcall(struct uart_amba_port *uap)
 265{
 266	/* DMA is the sole user of the platform data right now */
 267	struct amba_pl011_data *plat = uap->port.dev->platform_data;
 
 268	struct dma_slave_config tx_conf = {
 269		.dst_addr = uap->port.mapbase + UART01x_DR,
 
 270		.dst_addr_width = DMA_SLAVE_BUSWIDTH_1_BYTE,
 271		.direction = DMA_TO_DEVICE,
 272		.dst_maxburst = uap->fifosize >> 1,
 
 273	};
 274	struct dma_chan *chan;
 275	dma_cap_mask_t mask;
 276
 277	/* We need platform data */
 278	if (!plat || !plat->dma_filter) {
 279		dev_info(uap->port.dev, "no DMA platform data\n");
 280		return;
 281	}
 
 
 282
 283	/* Try to acquire a generic DMA engine slave TX channel */
 284	dma_cap_zero(mask);
 285	dma_cap_set(DMA_SLAVE, mask);
 286
 287	chan = dma_request_channel(mask, plat->dma_filter, plat->dma_tx_param);
 288	if (!chan) {
 289		dev_err(uap->port.dev, "no TX DMA channel!\n");
 290		return;
 
 
 
 
 
 
 
 
 291	}
 292
 293	dmaengine_slave_config(chan, &tx_conf);
 294	uap->dmatx.chan = chan;
 295
 296	dev_info(uap->port.dev, "DMA channel TX %s\n",
 297		 dma_chan_name(uap->dmatx.chan));
 298
 299	/* Optionally make use of an RX channel as well */
 300	if (plat->dma_rx_param) {
 301		struct dma_slave_config rx_conf = {
 302			.src_addr = uap->port.mapbase + UART01x_DR,
 303			.src_addr_width = DMA_SLAVE_BUSWIDTH_1_BYTE,
 304			.direction = DMA_FROM_DEVICE,
 305			.src_maxburst = uap->fifosize >> 1,
 306		};
 307
 
 308		chan = dma_request_channel(mask, plat->dma_filter, plat->dma_rx_param);
 
 309		if (!chan) {
 310			dev_err(uap->port.dev, "no RX DMA channel!\n");
 311			return;
 312		}
 
 313
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 314		dmaengine_slave_config(chan, &rx_conf);
 315		uap->dmarx.chan = chan;
 316
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 317		dev_info(uap->port.dev, "DMA channel RX %s\n",
 318			 dma_chan_name(uap->dmarx.chan));
 319	}
 320}
 321
 322#ifndef MODULE
 323/*
 324 * Stack up the UARTs and let the above initcall be done at device
 325 * initcall time, because the serial driver is called as an arch
 326 * initcall, and at this time the DMA subsystem is not yet registered.
 327 * At this point the driver will switch over to using DMA where desired.
 328 */
 329struct dma_uap {
 330	struct list_head node;
 331	struct uart_amba_port *uap;
 332};
 333
 334static LIST_HEAD(pl011_dma_uarts);
 335
 336static int __init pl011_dma_initcall(void)
 337{
 338	struct list_head *node, *tmp;
 339
 340	list_for_each_safe(node, tmp, &pl011_dma_uarts) {
 341		struct dma_uap *dmau = list_entry(node, struct dma_uap, node);
 342		pl011_dma_probe_initcall(dmau->uap);
 343		list_del(node);
 344		kfree(dmau);
 345	}
 346	return 0;
 347}
 348
 349device_initcall(pl011_dma_initcall);
 350
 351static void pl011_dma_probe(struct uart_amba_port *uap)
 352{
 353	struct dma_uap *dmau = kzalloc(sizeof(struct dma_uap), GFP_KERNEL);
 354	if (dmau) {
 355		dmau->uap = uap;
 356		list_add_tail(&dmau->node, &pl011_dma_uarts);
 357	}
 358}
 359#else
 360static void pl011_dma_probe(struct uart_amba_port *uap)
 361{
 362	pl011_dma_probe_initcall(uap);
 363}
 364#endif
 365
 366static void pl011_dma_remove(struct uart_amba_port *uap)
 367{
 368	/* TODO: remove the initcall if it has not yet executed */
 369	if (uap->dmatx.chan)
 370		dma_release_channel(uap->dmatx.chan);
 371	if (uap->dmarx.chan)
 372		dma_release_channel(uap->dmarx.chan);
 373}
 374
 375/* Forward declare this for the refill routine */
 376static int pl011_dma_tx_refill(struct uart_amba_port *uap);
 
 377
 378/*
 379 * The current DMA TX buffer has been sent.
 380 * Try to queue up another DMA buffer.
 381 */
 382static void pl011_dma_tx_callback(void *data)
 383{
 384	struct uart_amba_port *uap = data;
 385	struct pl011_dmatx_data *dmatx = &uap->dmatx;
 386	unsigned long flags;
 387	u16 dmacr;
 388
 389	spin_lock_irqsave(&uap->port.lock, flags);
 390	if (uap->dmatx.queued)
 391		dma_unmap_sg(dmatx->chan->device->dev, &dmatx->sg, 1,
 392			     DMA_TO_DEVICE);
 393
 394	dmacr = uap->dmacr;
 395	uap->dmacr = dmacr & ~UART011_TXDMAE;
 396	writew(uap->dmacr, uap->port.membase + UART011_DMACR);
 397
 398	/*
 399	 * If TX DMA was disabled, it means that we've stopped the DMA for
 400	 * some reason (eg, XOFF received, or we want to send an X-char.)
 401	 *
 402	 * Note: we need to be careful here of a potential race between DMA
 403	 * and the rest of the driver - if the driver disables TX DMA while
 404	 * a TX buffer completing, we must update the tx queued status to
 405	 * get further refills (hence we check dmacr).
 406	 */
 407	if (!(dmacr & UART011_TXDMAE) || uart_tx_stopped(&uap->port) ||
 408	    uart_circ_empty(&uap->port.state->xmit)) {
 409		uap->dmatx.queued = false;
 410		spin_unlock_irqrestore(&uap->port.lock, flags);
 411		return;
 412	}
 413
 414	if (pl011_dma_tx_refill(uap) <= 0) {
 415		/*
 416		 * We didn't queue a DMA buffer for some reason, but we
 417		 * have data pending to be sent.  Re-enable the TX IRQ.
 418		 */
 419		uap->im |= UART011_TXIM;
 420		writew(uap->im, uap->port.membase + UART011_IMSC);
 421	}
 422	spin_unlock_irqrestore(&uap->port.lock, flags);
 423}
 424
 425/*
 426 * Try to refill the TX DMA buffer.
 427 * Locking: called with port lock held and IRQs disabled.
 428 * Returns:
 429 *   1 if we queued up a TX DMA buffer.
 430 *   0 if we didn't want to handle this by DMA
 431 *  <0 on error
 432 */
 433static int pl011_dma_tx_refill(struct uart_amba_port *uap)
 434{
 435	struct pl011_dmatx_data *dmatx = &uap->dmatx;
 436	struct dma_chan *chan = dmatx->chan;
 437	struct dma_device *dma_dev = chan->device;
 438	struct dma_async_tx_descriptor *desc;
 439	struct circ_buf *xmit = &uap->port.state->xmit;
 440	unsigned int count;
 441
 442	/*
 443	 * Try to avoid the overhead involved in using DMA if the
 444	 * transaction fits in the first half of the FIFO, by using
 445	 * the standard interrupt handling.  This ensures that we
 446	 * issue a uart_write_wakeup() at the appropriate time.
 447	 */
 448	count = uart_circ_chars_pending(xmit);
 449	if (count < (uap->fifosize >> 1)) {
 450		uap->dmatx.queued = false;
 451		return 0;
 452	}
 453
 454	/*
 455	 * Bodge: don't send the last character by DMA, as this
 456	 * will prevent XON from notifying us to restart DMA.
 457	 */
 458	count -= 1;
 459
 460	/* Else proceed to copy the TX chars to the DMA buffer and fire DMA */
 461	if (count > PL011_DMA_BUFFER_SIZE)
 462		count = PL011_DMA_BUFFER_SIZE;
 463
 464	if (xmit->tail < xmit->head)
 465		memcpy(&dmatx->buf[0], &xmit->buf[xmit->tail], count);
 466	else {
 467		size_t first = UART_XMIT_SIZE - xmit->tail;
 468		size_t second = xmit->head;
 
 
 
 
 469
 470		memcpy(&dmatx->buf[0], &xmit->buf[xmit->tail], first);
 471		if (second)
 472			memcpy(&dmatx->buf[first], &xmit->buf[0], second);
 473	}
 474
 475	dmatx->sg.length = count;
 476
 477	if (dma_map_sg(dma_dev->dev, &dmatx->sg, 1, DMA_TO_DEVICE) != 1) {
 478		uap->dmatx.queued = false;
 479		dev_dbg(uap->port.dev, "unable to map TX DMA\n");
 480		return -EBUSY;
 481	}
 482
 483	desc = dma_dev->device_prep_slave_sg(chan, &dmatx->sg, 1, DMA_TO_DEVICE,
 484					     DMA_PREP_INTERRUPT | DMA_CTRL_ACK);
 485	if (!desc) {
 486		dma_unmap_sg(dma_dev->dev, &dmatx->sg, 1, DMA_TO_DEVICE);
 487		uap->dmatx.queued = false;
 488		/*
 489		 * If DMA cannot be used right now, we complete this
 490		 * transaction via IRQ and let the TTY layer retry.
 491		 */
 492		dev_dbg(uap->port.dev, "TX DMA busy\n");
 493		return -EBUSY;
 494	}
 495
 496	/* Some data to go along to the callback */
 497	desc->callback = pl011_dma_tx_callback;
 498	desc->callback_param = uap;
 499
 500	/* All errors should happen at prepare time */
 501	dmaengine_submit(desc);
 502
 503	/* Fire the DMA transaction */
 504	dma_dev->device_issue_pending(chan);
 505
 506	uap->dmacr |= UART011_TXDMAE;
 507	writew(uap->dmacr, uap->port.membase + UART011_DMACR);
 508	uap->dmatx.queued = true;
 509
 510	/*
 511	 * Now we know that DMA will fire, so advance the ring buffer
 512	 * with the stuff we just dispatched.
 513	 */
 514	xmit->tail = (xmit->tail + count) & (UART_XMIT_SIZE - 1);
 515	uap->port.icount.tx += count;
 516
 517	if (uart_circ_chars_pending(xmit) < WAKEUP_CHARS)
 518		uart_write_wakeup(&uap->port);
 519
 520	return 1;
 521}
 522
 523/*
 524 * We received a transmit interrupt without a pending X-char but with
 525 * pending characters.
 526 * Locking: called with port lock held and IRQs disabled.
 527 * Returns:
 528 *   false if we want to use PIO to transmit
 529 *   true if we queued a DMA buffer
 530 */
 531static bool pl011_dma_tx_irq(struct uart_amba_port *uap)
 532{
 533	if (!uap->using_tx_dma)
 534		return false;
 535
 536	/*
 537	 * If we already have a TX buffer queued, but received a
 538	 * TX interrupt, it will be because we've just sent an X-char.
 539	 * Ensure the TX DMA is enabled and the TX IRQ is disabled.
 540	 */
 541	if (uap->dmatx.queued) {
 542		uap->dmacr |= UART011_TXDMAE;
 543		writew(uap->dmacr, uap->port.membase + UART011_DMACR);
 544		uap->im &= ~UART011_TXIM;
 545		writew(uap->im, uap->port.membase + UART011_IMSC);
 546		return true;
 547	}
 548
 549	/*
 550	 * We don't have a TX buffer queued, so try to queue one.
 551	 * If we successfully queued a buffer, mask the TX IRQ.
 552	 */
 553	if (pl011_dma_tx_refill(uap) > 0) {
 554		uap->im &= ~UART011_TXIM;
 555		writew(uap->im, uap->port.membase + UART011_IMSC);
 556		return true;
 557	}
 558	return false;
 559}
 560
 561/*
 562 * Stop the DMA transmit (eg, due to received XOFF).
 563 * Locking: called with port lock held and IRQs disabled.
 564 */
 565static inline void pl011_dma_tx_stop(struct uart_amba_port *uap)
 566{
 567	if (uap->dmatx.queued) {
 568		uap->dmacr &= ~UART011_TXDMAE;
 569		writew(uap->dmacr, uap->port.membase + UART011_DMACR);
 570	}
 571}
 572
 573/*
 574 * Try to start a DMA transmit, or in the case of an XON/OFF
 575 * character queued for send, try to get that character out ASAP.
 576 * Locking: called with port lock held and IRQs disabled.
 577 * Returns:
 578 *   false if we want the TX IRQ to be enabled
 579 *   true if we have a buffer queued
 580 */
 581static inline bool pl011_dma_tx_start(struct uart_amba_port *uap)
 582{
 583	u16 dmacr;
 584
 585	if (!uap->using_tx_dma)
 586		return false;
 587
 588	if (!uap->port.x_char) {
 589		/* no X-char, try to push chars out in DMA mode */
 590		bool ret = true;
 591
 592		if (!uap->dmatx.queued) {
 593			if (pl011_dma_tx_refill(uap) > 0) {
 594				uap->im &= ~UART011_TXIM;
 595				ret = true;
 596			} else {
 597				uap->im |= UART011_TXIM;
 598				ret = false;
 599			}
 600			writew(uap->im, uap->port.membase + UART011_IMSC);
 601		} else if (!(uap->dmacr & UART011_TXDMAE)) {
 602			uap->dmacr |= UART011_TXDMAE;
 603			writew(uap->dmacr,
 604				       uap->port.membase + UART011_DMACR);
 605		}
 606		return ret;
 607	}
 608
 609	/*
 610	 * We have an X-char to send.  Disable DMA to prevent it loading
 611	 * the TX fifo, and then see if we can stuff it into the FIFO.
 612	 */
 613	dmacr = uap->dmacr;
 614	uap->dmacr &= ~UART011_TXDMAE;
 615	writew(uap->dmacr, uap->port.membase + UART011_DMACR);
 616
 617	if (readw(uap->port.membase + UART01x_FR) & UART01x_FR_TXFF) {
 618		/*
 619		 * No space in the FIFO, so enable the transmit interrupt
 620		 * so we know when there is space.  Note that once we've
 621		 * loaded the character, we should just re-enable DMA.
 622		 */
 623		return false;
 624	}
 625
 626	writew(uap->port.x_char, uap->port.membase + UART01x_DR);
 627	uap->port.icount.tx++;
 628	uap->port.x_char = 0;
 629
 630	/* Success - restore the DMA state */
 631	uap->dmacr = dmacr;
 632	writew(dmacr, uap->port.membase + UART011_DMACR);
 633
 634	return true;
 635}
 636
 637/*
 638 * Flush the transmit buffer.
 639 * Locking: called with port lock held and IRQs disabled.
 640 */
 641static void pl011_dma_flush_buffer(struct uart_port *port)
 
 
 642{
 643	struct uart_amba_port *uap = (struct uart_amba_port *)port;
 
 644
 645	if (!uap->using_tx_dma)
 646		return;
 647
 648	/* Avoid deadlock with the DMA engine callback */
 649	spin_unlock(&uap->port.lock);
 650	dmaengine_terminate_all(uap->dmatx.chan);
 651	spin_lock(&uap->port.lock);
 652	if (uap->dmatx.queued) {
 653		dma_unmap_sg(uap->dmatx.chan->device->dev, &uap->dmatx.sg, 1,
 654			     DMA_TO_DEVICE);
 655		uap->dmatx.queued = false;
 656		uap->dmacr &= ~UART011_TXDMAE;
 657		writew(uap->dmacr, uap->port.membase + UART011_DMACR);
 658	}
 659}
 660
 661static void pl011_dma_rx_callback(void *data);
 662
 663static int pl011_dma_rx_trigger_dma(struct uart_amba_port *uap)
 664{
 665	struct dma_chan *rxchan = uap->dmarx.chan;
 666	struct dma_device *dma_dev;
 667	struct pl011_dmarx_data *dmarx = &uap->dmarx;
 668	struct dma_async_tx_descriptor *desc;
 669	struct pl011_sgbuf *sgbuf;
 670
 671	if (!rxchan)
 672		return -EIO;
 673
 674	/* Start the RX DMA job */
 675	sgbuf = uap->dmarx.use_buf_b ?
 676		&uap->dmarx.sgbuf_b : &uap->dmarx.sgbuf_a;
 677	dma_dev = rxchan->device;
 678	desc = rxchan->device->device_prep_slave_sg(rxchan, &sgbuf->sg, 1,
 679					DMA_FROM_DEVICE,
 680					DMA_PREP_INTERRUPT | DMA_CTRL_ACK);
 681	/*
 682	 * If the DMA engine is busy and cannot prepare a
 683	 * channel, no big deal, the driver will fall back
 684	 * to interrupt mode as a result of this error code.
 685	 */
 686	if (!desc) {
 687		uap->dmarx.running = false;
 688		dmaengine_terminate_all(rxchan);
 689		return -EBUSY;
 690	}
 691
 692	/* Some data to go along to the callback */
 693	desc->callback = pl011_dma_rx_callback;
 694	desc->callback_param = uap;
 695	dmarx->cookie = dmaengine_submit(desc);
 696	dma_async_issue_pending(rxchan);
 697
 698	uap->dmacr |= UART011_RXDMAE;
 699	writew(uap->dmacr, uap->port.membase + UART011_DMACR);
 700	uap->dmarx.running = true;
 701
 702	uap->im &= ~UART011_RXIM;
 703	writew(uap->im, uap->port.membase + UART011_IMSC);
 704
 705	return 0;
 706}
 707
 708/*
 709 * This is called when either the DMA job is complete, or
 710 * the FIFO timeout interrupt occurred. This must be called
 711 * with the port spinlock uap->port.lock held.
 712 */
 713static void pl011_dma_rx_chars(struct uart_amba_port *uap,
 714			       u32 pending, bool use_buf_b,
 715			       bool readfifo)
 716{
 717	struct tty_struct *tty = uap->port.state->port.tty;
 718	struct pl011_sgbuf *sgbuf = use_buf_b ?
 719		&uap->dmarx.sgbuf_b : &uap->dmarx.sgbuf_a;
 720	struct device *dev = uap->dmarx.chan->device->dev;
 721	int dma_count = 0;
 722	u32 fifotaken = 0; /* only used for vdbg() */
 723
 724	/* Pick everything from the DMA first */
 
 
 
 
 
 
 
 
 
 
 
 725	if (pending) {
 726		/* Sync in buffer */
 727		dma_sync_sg_for_cpu(dev, &sgbuf->sg, 1, DMA_FROM_DEVICE);
 728
 729		/*
 730		 * First take all chars in the DMA pipe, then look in the FIFO.
 731		 * Note that tty_insert_flip_buf() tries to take as many chars
 732		 * as it can.
 733		 */
 734		dma_count = tty_insert_flip_string(uap->port.state->port.tty,
 735						   sgbuf->buf, pending);
 736
 737		/* Return buffer to device */
 738		dma_sync_sg_for_device(dev, &sgbuf->sg, 1, DMA_FROM_DEVICE);
 739
 740		uap->port.icount.rx += dma_count;
 741		if (dma_count < pending)
 742			dev_warn(uap->port.dev,
 743				 "couldn't insert all characters (TTY is full?)\n");
 744	}
 745
 
 
 
 
 746	/*
 747	 * Only continue with trying to read the FIFO if all DMA chars have
 748	 * been taken first.
 749	 */
 750	if (dma_count == pending && readfifo) {
 751		/* Clear any error flags */
 752		writew(UART011_OEIS | UART011_BEIS | UART011_PEIS | UART011_FEIS,
 753		       uap->port.membase + UART011_ICR);
 754
 755		/*
 756		 * If we read all the DMA'd characters, and we had an
 757		 * incomplete buffer, that could be due to an rx error, or
 758		 * maybe we just timed out. Read any pending chars and check
 759		 * the error status.
 760		 *
 761		 * Error conditions will only occur in the FIFO, these will
 762		 * trigger an immediate interrupt and stop the DMA job, so we
 763		 * will always find the error in the FIFO, never in the DMA
 764		 * buffer.
 765		 */
 766		fifotaken = pl011_fifo_to_tty(uap);
 767	}
 768
 769	spin_unlock(&uap->port.lock);
 770	dev_vdbg(uap->port.dev,
 771		 "Took %d chars from DMA buffer and %d chars from the FIFO\n",
 772		 dma_count, fifotaken);
 773	tty_flip_buffer_push(tty);
 774	spin_lock(&uap->port.lock);
 775}
 776
 777static void pl011_dma_rx_irq(struct uart_amba_port *uap)
 778{
 779	struct pl011_dmarx_data *dmarx = &uap->dmarx;
 780	struct dma_chan *rxchan = dmarx->chan;
 781	struct pl011_sgbuf *sgbuf = dmarx->use_buf_b ?
 782		&dmarx->sgbuf_b : &dmarx->sgbuf_a;
 783	size_t pending;
 784	struct dma_tx_state state;
 785	enum dma_status dmastat;
 786
 787	/*
 788	 * Pause the transfer so we can trust the current counter,
 789	 * do this before we pause the PL011 block, else we may
 790	 * overflow the FIFO.
 791	 */
 792	if (dmaengine_pause(rxchan))
 793		dev_err(uap->port.dev, "unable to pause DMA transfer\n");
 794	dmastat = rxchan->device->device_tx_status(rxchan,
 795						   dmarx->cookie, &state);
 796	if (dmastat != DMA_PAUSED)
 797		dev_err(uap->port.dev, "unable to pause DMA transfer\n");
 798
 799	/* Disable RX DMA - incoming data will wait in the FIFO */
 800	uap->dmacr &= ~UART011_RXDMAE;
 801	writew(uap->dmacr, uap->port.membase + UART011_DMACR);
 802	uap->dmarx.running = false;
 803
 804	pending = sgbuf->sg.length - state.residue;
 805	BUG_ON(pending > PL011_DMA_BUFFER_SIZE);
 806	/* Then we terminate the transfer - we now know our residue */
 807	dmaengine_terminate_all(rxchan);
 808
 809	/*
 810	 * This will take the chars we have so far and insert
 811	 * into the framework.
 812	 */
 813	pl011_dma_rx_chars(uap, pending, dmarx->use_buf_b, true);
 814
 815	/* Switch buffer & re-trigger DMA job */
 816	dmarx->use_buf_b = !dmarx->use_buf_b;
 817	if (pl011_dma_rx_trigger_dma(uap)) {
 818		dev_dbg(uap->port.dev, "could not retrigger RX DMA job "
 819			"fall back to interrupt mode\n");
 820		uap->im |= UART011_RXIM;
 821		writew(uap->im, uap->port.membase + UART011_IMSC);
 822	}
 823}
 824
 825static void pl011_dma_rx_callback(void *data)
 826{
 827	struct uart_amba_port *uap = data;
 828	struct pl011_dmarx_data *dmarx = &uap->dmarx;
 
 829	bool lastbuf = dmarx->use_buf_b;
 
 
 
 
 830	int ret;
 831
 832	/*
 833	 * This completion interrupt occurs typically when the
 834	 * RX buffer is totally stuffed but no timeout has yet
 835	 * occurred. When that happens, we just want the RX
 836	 * routine to flush out the secondary DMA buffer while
 837	 * we immediately trigger the next DMA job.
 838	 */
 839	spin_lock_irq(&uap->port.lock);
 
 
 
 
 
 
 
 
 
 
 840	uap->dmarx.running = false;
 841	dmarx->use_buf_b = !lastbuf;
 842	ret = pl011_dma_rx_trigger_dma(uap);
 843
 844	pl011_dma_rx_chars(uap, PL011_DMA_BUFFER_SIZE, lastbuf, false);
 845	spin_unlock_irq(&uap->port.lock);
 846	/*
 847	 * Do this check after we picked the DMA chars so we don't
 848	 * get some IRQ immediately from RX.
 849	 */
 850	if (ret) {
 851		dev_dbg(uap->port.dev, "could not retrigger RX DMA job "
 852			"fall back to interrupt mode\n");
 853		uap->im |= UART011_RXIM;
 854		writew(uap->im, uap->port.membase + UART011_IMSC);
 855	}
 856}
 857
 858/*
 859 * Stop accepting received characters, when we're shutting down or
 860 * suspending this port.
 861 * Locking: called with port lock held and IRQs disabled.
 862 */
 863static inline void pl011_dma_rx_stop(struct uart_amba_port *uap)
 864{
 
 
 
 865	/* FIXME.  Just disable the DMA enable */
 866	uap->dmacr &= ~UART011_RXDMAE;
 867	writew(uap->dmacr, uap->port.membase + UART011_DMACR);
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 868}
 869
 870static void pl011_dma_startup(struct uart_amba_port *uap)
 871{
 872	int ret;
 873
 
 
 
 874	if (!uap->dmatx.chan)
 875		return;
 876
 877	uap->dmatx.buf = kmalloc(PL011_DMA_BUFFER_SIZE, GFP_KERNEL);
 878	if (!uap->dmatx.buf) {
 879		dev_err(uap->port.dev, "no memory for DMA TX buffer\n");
 880		uap->port.fifosize = uap->fifosize;
 881		return;
 882	}
 883
 884	sg_init_one(&uap->dmatx.sg, uap->dmatx.buf, PL011_DMA_BUFFER_SIZE);
 885
 886	/* The DMA buffer is now the FIFO the TTY subsystem can use */
 887	uap->port.fifosize = PL011_DMA_BUFFER_SIZE;
 888	uap->using_tx_dma = true;
 889
 890	if (!uap->dmarx.chan)
 891		goto skip_rx;
 892
 893	/* Allocate and map DMA RX buffers */
 894	ret = pl011_sgbuf_init(uap->dmarx.chan, &uap->dmarx.sgbuf_a,
 895			       DMA_FROM_DEVICE);
 896	if (ret) {
 897		dev_err(uap->port.dev, "failed to init DMA %s: %d\n",
 898			"RX buffer A", ret);
 899		goto skip_rx;
 900	}
 901
 902	ret = pl011_sgbuf_init(uap->dmarx.chan, &uap->dmarx.sgbuf_b,
 903			       DMA_FROM_DEVICE);
 904	if (ret) {
 905		dev_err(uap->port.dev, "failed to init DMA %s: %d\n",
 906			"RX buffer B", ret);
 907		pl011_sgbuf_free(uap->dmarx.chan, &uap->dmarx.sgbuf_a,
 908				 DMA_FROM_DEVICE);
 909		goto skip_rx;
 910	}
 911
 912	uap->using_rx_dma = true;
 913
 914skip_rx:
 915	/* Turn on DMA error (RX/TX will be enabled on demand) */
 916	uap->dmacr |= UART011_DMAONERR;
 917	writew(uap->dmacr, uap->port.membase + UART011_DMACR);
 918
 919	/*
 920	 * ST Micro variants has some specific dma burst threshold
 921	 * compensation. Set this to 16 bytes, so burst will only
 922	 * be issued above/below 16 bytes.
 923	 */
 924	if (uap->vendor->dma_threshold)
 925		writew(ST_UART011_DMAWM_RX_16 | ST_UART011_DMAWM_TX_16,
 926			       uap->port.membase + ST_UART011_DMAWM);
 927
 928	if (uap->using_rx_dma) {
 929		if (pl011_dma_rx_trigger_dma(uap))
 930			dev_dbg(uap->port.dev, "could not trigger initial "
 931				"RX DMA job, fall back to interrupt mode\n");
 
 
 
 
 
 
 
 
 932	}
 933}
 934
 935static void pl011_dma_shutdown(struct uart_amba_port *uap)
 936{
 937	if (!(uap->using_tx_dma || uap->using_rx_dma))
 938		return;
 939
 940	/* Disable RX and TX DMA */
 941	while (readw(uap->port.membase + UART01x_FR) & UART01x_FR_BUSY)
 942		barrier();
 943
 944	spin_lock_irq(&uap->port.lock);
 945	uap->dmacr &= ~(UART011_DMAONERR | UART011_RXDMAE | UART011_TXDMAE);
 946	writew(uap->dmacr, uap->port.membase + UART011_DMACR);
 947	spin_unlock_irq(&uap->port.lock);
 948
 949	if (uap->using_tx_dma) {
 950		/* In theory, this should already be done by pl011_dma_flush_buffer */
 951		dmaengine_terminate_all(uap->dmatx.chan);
 952		if (uap->dmatx.queued) {
 953			dma_unmap_sg(uap->dmatx.chan->device->dev, &uap->dmatx.sg, 1,
 954				     DMA_TO_DEVICE);
 955			uap->dmatx.queued = false;
 956		}
 957
 958		kfree(uap->dmatx.buf);
 959		uap->using_tx_dma = false;
 960	}
 961
 962	if (uap->using_rx_dma) {
 963		dmaengine_terminate_all(uap->dmarx.chan);
 964		/* Clean up the RX DMA */
 965		pl011_sgbuf_free(uap->dmarx.chan, &uap->dmarx.sgbuf_a, DMA_FROM_DEVICE);
 966		pl011_sgbuf_free(uap->dmarx.chan, &uap->dmarx.sgbuf_b, DMA_FROM_DEVICE);
 
 
 967		uap->using_rx_dma = false;
 968	}
 969}
 970
 971static inline bool pl011_dma_rx_available(struct uart_amba_port *uap)
 972{
 973	return uap->using_rx_dma;
 974}
 975
 976static inline bool pl011_dma_rx_running(struct uart_amba_port *uap)
 977{
 978	return uap->using_rx_dma && uap->dmarx.running;
 979}
 980
 981
 982#else
 983/* Blank functions if the DMA engine is not available */
 984static inline void pl011_dma_probe(struct uart_amba_port *uap)
 985{
 986}
 987
 988static inline void pl011_dma_remove(struct uart_amba_port *uap)
 989{
 990}
 991
 992static inline void pl011_dma_startup(struct uart_amba_port *uap)
 993{
 994}
 995
 996static inline void pl011_dma_shutdown(struct uart_amba_port *uap)
 997{
 998}
 999
1000static inline bool pl011_dma_tx_irq(struct uart_amba_port *uap)
1001{
1002	return false;
1003}
1004
1005static inline void pl011_dma_tx_stop(struct uart_amba_port *uap)
1006{
1007}
1008
1009static inline bool pl011_dma_tx_start(struct uart_amba_port *uap)
1010{
1011	return false;
1012}
1013
1014static inline void pl011_dma_rx_irq(struct uart_amba_port *uap)
1015{
1016}
1017
1018static inline void pl011_dma_rx_stop(struct uart_amba_port *uap)
1019{
1020}
1021
1022static inline int pl011_dma_rx_trigger_dma(struct uart_amba_port *uap)
1023{
1024	return -EIO;
1025}
1026
1027static inline bool pl011_dma_rx_available(struct uart_amba_port *uap)
1028{
1029	return false;
1030}
1031
1032static inline bool pl011_dma_rx_running(struct uart_amba_port *uap)
1033{
1034	return false;
1035}
1036
1037#define pl011_dma_flush_buffer	NULL
1038#endif
1039
1040
1041/*
1042 * pl011_lockup_wa
1043 * This workaround aims to break the deadlock situation
1044 * when after long transfer over uart in hardware flow
1045 * control, uart interrupt registers cannot be cleared.
1046 * Hence uart transfer gets blocked.
1047 *
1048 * It is seen that during such deadlock condition ICR
1049 * don't get cleared even on multiple write. This leads
1050 * pass_counter to decrease and finally reach zero. This
1051 * can be taken as trigger point to run this UART_BT_WA.
1052 *
1053 */
1054static void pl011_lockup_wa(unsigned long data)
1055{
1056	struct uart_amba_port *uap = amba_ports[0];
1057	void __iomem *base = uap->port.membase;
1058	struct circ_buf *xmit = &uap->port.state->xmit;
1059	struct tty_struct *tty = uap->port.state->port.tty;
1060	int buf_empty_retries = 200;
1061	int loop;
1062
1063	/* Stop HCI layer from submitting data for tx */
1064	tty->hw_stopped = 1;
1065	while (!uart_circ_empty(xmit)) {
1066		if (buf_empty_retries-- == 0)
 
 
 
1067			break;
1068		udelay(100);
1069	}
1070
1071	/* Backup registers */
1072	for (loop = 0; loop < UART_WA_SAVE_NR; loop++)
1073		uart_wa_regdata[loop] = readl(base + uart_wa_reg[loop]);
1074
1075	/* Disable UART so that FIFO data is flushed out */
1076	writew(0x00, uap->port.membase + UART011_CR);
1077
1078	/* Soft reset UART module */
1079	if (uap->port.dev->platform_data) {
1080		struct amba_pl011_data *plat;
1081
1082		plat = uap->port.dev->platform_data;
1083		if (plat->reset)
1084			plat->reset();
1085	}
1086
1087	/* Restore registers */
1088	for (loop = 0; loop < UART_WA_SAVE_NR; loop++)
1089		writew(uart_wa_regdata[loop] ,
1090				uap->port.membase + uart_wa_reg[loop]);
1091
1092	/* Initialise the old status of the modem signals */
1093	uap->old_status = readw(uap->port.membase + UART01x_FR) &
1094		UART01x_FR_MODEM_ANY;
 
1095
1096	if (readl(base + UART011_MIS) & 0x2)
1097		printk(KERN_EMERG "UART_BT_WA: ***FAILED***\n");
 
 
1098
1099	/* Start Tx/Rx */
1100	tty->hw_stopped = 0;
1101}
1102
1103static void pl011_stop_tx(struct uart_port *port)
1104{
1105	struct uart_amba_port *uap = (struct uart_amba_port *)port;
 
1106
1107	uap->im &= ~UART011_TXIM;
1108	writew(uap->im, uap->port.membase + UART011_IMSC);
1109	pl011_dma_tx_stop(uap);
 
 
 
1110}
1111
1112static void pl011_start_tx(struct uart_port *port)
1113{
1114	struct uart_amba_port *uap = (struct uart_amba_port *)port;
1115
1116	if (!pl011_dma_tx_start(uap)) {
 
 
 
1117		uap->im |= UART011_TXIM;
1118		writew(uap->im, uap->port.membase + UART011_IMSC);
1119	}
1120}
1121
 
 
 
 
 
 
 
 
 
1122static void pl011_stop_rx(struct uart_port *port)
1123{
1124	struct uart_amba_port *uap = (struct uart_amba_port *)port;
 
1125
1126	uap->im &= ~(UART011_RXIM|UART011_RTIM|UART011_FEIM|
1127		     UART011_PEIM|UART011_BEIM|UART011_OEIM);
1128	writew(uap->im, uap->port.membase + UART011_IMSC);
1129
1130	pl011_dma_rx_stop(uap);
1131}
1132
 
 
 
 
 
 
 
 
 
1133static void pl011_enable_ms(struct uart_port *port)
1134{
1135	struct uart_amba_port *uap = (struct uart_amba_port *)port;
 
1136
1137	uap->im |= UART011_RIMIM|UART011_CTSMIM|UART011_DCDMIM|UART011_DSRMIM;
1138	writew(uap->im, uap->port.membase + UART011_IMSC);
1139}
1140
1141static void pl011_rx_chars(struct uart_amba_port *uap)
 
 
1142{
1143	struct tty_struct *tty = uap->port.state->port.tty;
1144
1145	pl011_fifo_to_tty(uap);
1146
1147	spin_unlock(&uap->port.lock);
1148	tty_flip_buffer_push(tty);
1149	/*
1150	 * If we were temporarily out of DMA mode for a while,
1151	 * attempt to switch back to DMA mode again.
1152	 */
1153	if (pl011_dma_rx_available(uap)) {
1154		if (pl011_dma_rx_trigger_dma(uap)) {
1155			dev_dbg(uap->port.dev, "could not trigger RX DMA job "
1156				"fall back to interrupt mode again\n");
1157			uap->im |= UART011_RXIM;
1158		} else
1159			uap->im &= ~UART011_RXIM;
1160		writew(uap->im, uap->port.membase + UART011_IMSC);
 
 
 
 
 
 
 
 
 
 
1161	}
1162	spin_lock(&uap->port.lock);
1163}
1164
1165static void pl011_tx_chars(struct uart_amba_port *uap)
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1166{
1167	struct circ_buf *xmit = &uap->port.state->xmit;
1168	int count;
 
 
 
 
1169
1170	if (uap->port.x_char) {
1171		writew(uap->port.x_char, uap->port.membase + UART01x_DR);
1172		uap->port.icount.tx++;
1173		uap->port.x_char = 0;
1174		return;
1175	}
1176	if (uart_circ_empty(xmit) || uart_tx_stopped(&uap->port)) {
1177		pl011_stop_tx(&uap->port);
1178		return;
1179	}
1180
1181	/* If we are using DMA mode, try to send some characters. */
1182	if (pl011_dma_tx_irq(uap))
1183		return;
1184
1185	count = uap->fifosize >> 1;
1186	do {
1187		writew(xmit->buf[xmit->tail], uap->port.membase + UART01x_DR);
1188		xmit->tail = (xmit->tail + 1) & (UART_XMIT_SIZE - 1);
1189		uap->port.icount.tx++;
1190		if (uart_circ_empty(xmit))
1191			break;
1192	} while (--count > 0);
 
 
 
 
 
1193
1194	if (uart_circ_chars_pending(xmit) < WAKEUP_CHARS)
1195		uart_write_wakeup(&uap->port);
1196
1197	if (uart_circ_empty(xmit))
1198		pl011_stop_tx(&uap->port);
 
 
 
1199}
1200
1201static void pl011_modem_status(struct uart_amba_port *uap)
1202{
1203	unsigned int status, delta;
1204
1205	status = readw(uap->port.membase + UART01x_FR) & UART01x_FR_MODEM_ANY;
1206
1207	delta = status ^ uap->old_status;
1208	uap->old_status = status;
1209
1210	if (!delta)
1211		return;
1212
1213	if (delta & UART01x_FR_DCD)
1214		uart_handle_dcd_change(&uap->port, status & UART01x_FR_DCD);
1215
1216	if (delta & UART01x_FR_DSR)
1217		uap->port.icount.dsr++;
1218
1219	if (delta & UART01x_FR_CTS)
1220		uart_handle_cts_change(&uap->port, status & UART01x_FR_CTS);
 
1221
1222	wake_up_interruptible(&uap->port.state->port.delta_msr_wait);
1223}
1224
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1225static irqreturn_t pl011_int(int irq, void *dev_id)
1226{
1227	struct uart_amba_port *uap = dev_id;
1228	unsigned long flags;
1229	unsigned int status, pass_counter = AMBA_ISR_PASS_LIMIT;
1230	int handled = 0;
1231
1232	spin_lock_irqsave(&uap->port.lock, flags);
1233
1234	status = readw(uap->port.membase + UART011_MIS);
1235	if (status) {
1236		do {
1237			writew(status & ~(UART011_TXIS|UART011_RTIS|
1238					  UART011_RXIS),
1239			       uap->port.membase + UART011_ICR);
 
 
1240
1241			if (status & (UART011_RTIS|UART011_RXIS)) {
1242				if (pl011_dma_rx_running(uap))
1243					pl011_dma_rx_irq(uap);
1244				else
1245					pl011_rx_chars(uap);
1246			}
1247			if (status & (UART011_DSRMIS|UART011_DCDMIS|
1248				      UART011_CTSMIS|UART011_RIMIS))
1249				pl011_modem_status(uap);
1250			if (status & UART011_TXIS)
1251				pl011_tx_chars(uap);
1252
1253			if (pass_counter-- == 0) {
1254				if (uap->interrupt_may_hang)
1255					tasklet_schedule(&pl011_lockup_tlet);
1256				break;
1257			}
1258
1259			status = readw(uap->port.membase + UART011_MIS);
1260		} while (status != 0);
1261		handled = 1;
1262	}
1263
1264	spin_unlock_irqrestore(&uap->port.lock, flags);
1265
1266	return IRQ_RETVAL(handled);
1267}
1268
1269static unsigned int pl01x_tx_empty(struct uart_port *port)
1270{
1271	struct uart_amba_port *uap = (struct uart_amba_port *)port;
1272	unsigned int status = readw(uap->port.membase + UART01x_FR);
1273	return status & (UART01x_FR_BUSY|UART01x_FR_TXFF) ? 0 : TIOCSER_TEMT;
 
 
 
 
 
1274}
1275
1276static unsigned int pl01x_get_mctrl(struct uart_port *port)
1277{
1278	struct uart_amba_port *uap = (struct uart_amba_port *)port;
 
1279	unsigned int result = 0;
1280	unsigned int status = readw(uap->port.membase + UART01x_FR);
1281
1282#define TIOCMBIT(uartbit, tiocmbit)	\
1283	if (status & uartbit)		\
1284		result |= tiocmbit
1285
1286	TIOCMBIT(UART01x_FR_DCD, TIOCM_CAR);
1287	TIOCMBIT(UART01x_FR_DSR, TIOCM_DSR);
1288	TIOCMBIT(UART01x_FR_CTS, TIOCM_CTS);
1289	TIOCMBIT(UART011_FR_RI, TIOCM_RNG);
1290#undef TIOCMBIT
1291	return result;
1292}
1293
1294static void pl011_set_mctrl(struct uart_port *port, unsigned int mctrl)
1295{
1296	struct uart_amba_port *uap = (struct uart_amba_port *)port;
 
1297	unsigned int cr;
1298
1299	cr = readw(uap->port.membase + UART011_CR);
1300
1301#define	TIOCMBIT(tiocmbit, uartbit)		\
1302	if (mctrl & tiocmbit)		\
1303		cr |= uartbit;		\
1304	else				\
1305		cr &= ~uartbit
1306
1307	TIOCMBIT(TIOCM_RTS, UART011_CR_RTS);
1308	TIOCMBIT(TIOCM_DTR, UART011_CR_DTR);
1309	TIOCMBIT(TIOCM_OUT1, UART011_CR_OUT1);
1310	TIOCMBIT(TIOCM_OUT2, UART011_CR_OUT2);
1311	TIOCMBIT(TIOCM_LOOP, UART011_CR_LBE);
1312
1313	if (uap->autorts) {
1314		/* We need to disable auto-RTS if we want to turn RTS off */
1315		TIOCMBIT(TIOCM_RTS, UART011_CR_RTSEN);
1316	}
1317#undef TIOCMBIT
1318
1319	writew(cr, uap->port.membase + UART011_CR);
1320}
1321
1322static void pl011_break_ctl(struct uart_port *port, int break_state)
1323{
1324	struct uart_amba_port *uap = (struct uart_amba_port *)port;
 
1325	unsigned long flags;
1326	unsigned int lcr_h;
1327
1328	spin_lock_irqsave(&uap->port.lock, flags);
1329	lcr_h = readw(uap->port.membase + uap->lcrh_tx);
1330	if (break_state == -1)
1331		lcr_h |= UART01x_LCRH_BRK;
1332	else
1333		lcr_h &= ~UART01x_LCRH_BRK;
1334	writew(lcr_h, uap->port.membase + uap->lcrh_tx);
1335	spin_unlock_irqrestore(&uap->port.lock, flags);
1336}
1337
1338#ifdef CONFIG_CONSOLE_POLL
1339static int pl010_get_poll_char(struct uart_port *port)
 
1340{
1341	struct uart_amba_port *uap = (struct uart_amba_port *)port;
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1342	unsigned int status;
1343
1344	status = readw(uap->port.membase + UART01x_FR);
 
 
 
 
 
 
1345	if (status & UART01x_FR_RXFE)
1346		return NO_POLL_CHAR;
1347
1348	return readw(uap->port.membase + UART01x_DR);
1349}
1350
1351static void pl010_put_poll_char(struct uart_port *port,
1352			 unsigned char ch)
1353{
1354	struct uart_amba_port *uap = (struct uart_amba_port *)port;
 
1355
1356	while (readw(uap->port.membase + UART01x_FR) & UART01x_FR_TXFF)
1357		barrier();
1358
1359	writew(ch, uap->port.membase + UART01x_DR);
1360}
1361
1362#endif /* CONFIG_CONSOLE_POLL */
1363
1364static int pl011_startup(struct uart_port *port)
1365{
1366	struct uart_amba_port *uap = (struct uart_amba_port *)port;
1367	unsigned int cr;
1368	int retval;
1369
 
 
 
1370	/*
1371	 * Try to enable the clock producer.
1372	 */
1373	retval = clk_enable(uap->clk);
1374	if (retval)
1375		goto out;
1376
1377	uap->port.uartclk = clk_get_rate(uap->clk);
1378
 
 
 
 
 
1379	/*
1380	 * Allocate the IRQ
 
1381	 */
1382	retval = request_irq(uap->port.irq, pl011_int, 0, "uart-pl011", uap);
1383	if (retval)
1384		goto clk_dis;
1385
1386	writew(uap->vendor->ifls, uap->port.membase + UART011_IFLS);
 
1387
1388	/*
1389	 * Provoke TX FIFO interrupt into asserting.
1390	 */
1391	cr = UART01x_CR_UARTEN | UART011_CR_TXE | UART011_CR_LBE;
1392	writew(cr, uap->port.membase + UART011_CR);
1393	writew(0, uap->port.membase + UART011_FBRD);
1394	writew(1, uap->port.membase + UART011_IBRD);
1395	writew(0, uap->port.membase + uap->lcrh_rx);
1396	if (uap->lcrh_tx != uap->lcrh_rx) {
 
 
 
 
 
 
 
 
1397		int i;
1398		/*
1399		 * Wait 10 PCLKs before writing LCRH_TX register,
1400		 * to get this delay write read only register 10 times
1401		 */
1402		for (i = 0; i < 10; ++i)
1403			writew(0xff, uap->port.membase + UART011_MIS);
1404		writew(0, uap->port.membase + uap->lcrh_tx);
1405	}
1406	writew(0, uap->port.membase + UART01x_DR);
1407	while (readw(uap->port.membase + UART01x_FR) & UART01x_FR_BUSY)
1408		barrier();
1409
1410	cr = UART01x_CR_UARTEN | UART011_CR_RXE | UART011_CR_TXE;
1411	writew(cr, uap->port.membase + UART011_CR);
1412
1413	/* Clear pending error interrupts */
1414	writew(UART011_OEIS | UART011_BEIS | UART011_PEIS | UART011_FEIS,
1415	       uap->port.membase + UART011_ICR);
1416
1417	/*
1418	 * initialise the old status of the modem signals
1419	 */
1420	uap->old_status = readw(uap->port.membase + UART01x_FR) & UART01x_FR_MODEM_ANY;
1421
1422	/* Startup DMA */
1423	pl011_dma_startup(uap);
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1424
1425	/*
1426	 * Finally, enable interrupts, only timeouts when using DMA
1427	 * if initial RX DMA job failed, start in interrupt mode
1428	 * as well.
 
1429	 */
1430	spin_lock_irq(&uap->port.lock);
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1431	uap->im = UART011_RTIM;
1432	if (!pl011_dma_rx_running(uap))
1433		uap->im |= UART011_RXIM;
1434	writew(uap->im, uap->port.membase + UART011_IMSC);
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1435	spin_unlock_irq(&uap->port.lock);
1436
1437	if (uap->port.dev->platform_data) {
1438		struct amba_pl011_data *plat;
 
 
1439
1440		plat = uap->port.dev->platform_data;
1441		if (plat->init)
1442			plat->init();
1443	}
1444
1445	return 0;
1446
1447 clk_dis:
1448	clk_disable(uap->clk);
1449 out:
1450	return retval;
1451}
1452
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1453static void pl011_shutdown_channel(struct uart_amba_port *uap,
1454					unsigned int lcrh)
1455{
1456      unsigned long val;
1457
1458      val = readw(uap->port.membase + lcrh);
1459      val &= ~(UART01x_LCRH_BRK | UART01x_LCRH_FEN);
1460      writew(val, uap->port.membase + lcrh);
1461}
1462
1463static void pl011_shutdown(struct uart_port *port)
 
 
 
 
 
1464{
1465	struct uart_amba_port *uap = (struct uart_amba_port *)port;
 
 
 
 
 
 
 
 
1466
1467	/*
1468	 * disable all interrupts
1469	 */
 
 
 
 
 
 
 
1470	spin_lock_irq(&uap->port.lock);
 
 
1471	uap->im = 0;
1472	writew(uap->im, uap->port.membase + UART011_IMSC);
1473	writew(0xffff, uap->port.membase + UART011_ICR);
 
1474	spin_unlock_irq(&uap->port.lock);
 
 
 
 
 
 
 
 
1475
1476	pl011_dma_shutdown(uap);
1477
1478	/*
1479	 * Free the interrupt
1480	 */
1481	free_irq(uap->port.irq, uap);
1482
1483	/*
1484	 * disable the port
1485	 */
1486	uap->autorts = false;
1487	writew(UART01x_CR_UARTEN | UART011_CR_TXE, uap->port.membase + UART011_CR);
1488
1489	/*
1490	 * disable break condition and fifos
1491	 */
1492	pl011_shutdown_channel(uap, uap->lcrh_rx);
1493	if (uap->lcrh_rx != uap->lcrh_tx)
1494		pl011_shutdown_channel(uap, uap->lcrh_tx);
1495
1496	/*
1497	 * Shut down the clock producer
1498	 */
1499	clk_disable(uap->clk);
 
 
1500
1501	if (uap->port.dev->platform_data) {
1502		struct amba_pl011_data *plat;
1503
1504		plat = uap->port.dev->platform_data;
1505		if (plat->exit)
1506			plat->exit();
1507	}
1508
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1509}
1510
1511static void
1512pl011_set_termios(struct uart_port *port, struct ktermios *termios,
1513		     struct ktermios *old)
1514{
1515	struct uart_amba_port *uap = (struct uart_amba_port *)port;
 
1516	unsigned int lcr_h, old_cr;
1517	unsigned long flags;
1518	unsigned int baud, quot, clkdiv;
 
1519
1520	if (uap->vendor->oversampling)
1521		clkdiv = 8;
1522	else
1523		clkdiv = 16;
1524
1525	/*
1526	 * Ask the core to calculate the divisor for us.
1527	 */
1528	baud = uart_get_baud_rate(port, termios, old, 0,
1529				  port->uartclk / clkdiv);
 
 
 
 
 
 
 
1530
1531	if (baud > port->uartclk/16)
1532		quot = DIV_ROUND_CLOSEST(port->uartclk * 8, baud);
1533	else
1534		quot = DIV_ROUND_CLOSEST(port->uartclk * 4, baud);
1535
1536	switch (termios->c_cflag & CSIZE) {
1537	case CS5:
1538		lcr_h = UART01x_LCRH_WLEN_5;
1539		break;
1540	case CS6:
1541		lcr_h = UART01x_LCRH_WLEN_6;
1542		break;
1543	case CS7:
1544		lcr_h = UART01x_LCRH_WLEN_7;
1545		break;
1546	default: // CS8
1547		lcr_h = UART01x_LCRH_WLEN_8;
1548		break;
1549	}
1550	if (termios->c_cflag & CSTOPB)
1551		lcr_h |= UART01x_LCRH_STP2;
1552	if (termios->c_cflag & PARENB) {
1553		lcr_h |= UART01x_LCRH_PEN;
1554		if (!(termios->c_cflag & PARODD))
1555			lcr_h |= UART01x_LCRH_EPS;
 
 
1556	}
1557	if (uap->fifosize > 1)
1558		lcr_h |= UART01x_LCRH_FEN;
1559
 
 
1560	spin_lock_irqsave(&port->lock, flags);
1561
1562	/*
1563	 * Update the per-port timeout.
1564	 */
1565	uart_update_timeout(port, termios->c_cflag, baud);
1566
1567	port->read_status_mask = UART011_DR_OE | 255;
1568	if (termios->c_iflag & INPCK)
1569		port->read_status_mask |= UART011_DR_FE | UART011_DR_PE;
1570	if (termios->c_iflag & (BRKINT | PARMRK))
1571		port->read_status_mask |= UART011_DR_BE;
1572
1573	/*
1574	 * Characters to ignore
 
 
1575	 */
1576	port->ignore_status_mask = 0;
1577	if (termios->c_iflag & IGNPAR)
1578		port->ignore_status_mask |= UART011_DR_FE | UART011_DR_PE;
1579	if (termios->c_iflag & IGNBRK) {
1580		port->ignore_status_mask |= UART011_DR_BE;
1581		/*
1582		 * If we're ignoring parity and break indicators,
1583		 * ignore overruns too (for real raw support).
1584		 */
1585		if (termios->c_iflag & IGNPAR)
1586			port->ignore_status_mask |= UART011_DR_OE;
1587	}
1588
1589	/*
1590	 * Ignore all characters if CREAD is not set.
1591	 */
1592	if ((termios->c_cflag & CREAD) == 0)
1593		port->ignore_status_mask |= UART_DUMMY_DR_RX;
1594
1595	if (UART_ENABLE_MS(port, termios->c_cflag))
1596		pl011_enable_ms(port);
1597
1598	/* first, disable everything */
1599	old_cr = readw(port->membase + UART011_CR);
1600	writew(0, port->membase + UART011_CR);
 
1601
1602	if (termios->c_cflag & CRTSCTS) {
1603		if (old_cr & UART011_CR_RTS)
1604			old_cr |= UART011_CR_RTSEN;
1605
1606		old_cr |= UART011_CR_CTSEN;
1607		uap->autorts = true;
1608	} else {
1609		old_cr &= ~(UART011_CR_CTSEN | UART011_CR_RTSEN);
1610		uap->autorts = false;
1611	}
1612
1613	if (uap->vendor->oversampling) {
1614		if (baud > port->uartclk / 16)
1615			old_cr |= ST_UART011_CR_OVSFACT;
1616		else
1617			old_cr &= ~ST_UART011_CR_OVSFACT;
1618	}
1619
 
 
 
 
 
 
 
 
 
 
 
 
1620	/* Set baud rate */
1621	writew(quot & 0x3f, port->membase + UART011_FBRD);
1622	writew(quot >> 6, port->membase + UART011_IBRD);
1623
1624	/*
1625	 * ----------v----------v----------v----------v-----
1626	 * NOTE: MUST BE WRITTEN AFTER UARTLCR_M & UARTLCR_L
 
1627	 * ----------^----------^----------^----------^-----
1628	 */
1629	writew(lcr_h, port->membase + uap->lcrh_rx);
1630	if (uap->lcrh_rx != uap->lcrh_tx) {
1631		int i;
1632		/*
1633		 * Wait 10 PCLKs before writing LCRH_TX register,
1634		 * to get this delay write read only register 10 times
1635		 */
1636		for (i = 0; i < 10; ++i)
1637			writew(0xff, uap->port.membase + UART011_MIS);
1638		writew(lcr_h, port->membase + uap->lcrh_tx);
1639	}
1640	writew(old_cr, port->membase + UART011_CR);
1641
1642	spin_unlock_irqrestore(&port->lock, flags);
1643}
1644
1645static const char *pl011_type(struct uart_port *port)
 
 
1646{
1647	struct uart_amba_port *uap = (struct uart_amba_port *)port;
1648	return uap->port.type == PORT_AMBA ? uap->type : NULL;
1649}
1650
1651/*
1652 * Release the memory region(s) being used by 'port'
1653 */
1654static void pl010_release_port(struct uart_port *port)
1655{
1656	release_mem_region(port->mapbase, SZ_4K);
 
 
 
 
 
1657}
1658
1659/*
1660 * Request the memory region(s) being used by 'port'
1661 */
1662static int pl010_request_port(struct uart_port *port)
1663{
1664	return request_mem_region(port->mapbase, SZ_4K, "uart-pl011")
1665			!= NULL ? 0 : -EBUSY;
 
1666}
1667
1668/*
1669 * Configure/autoconfigure the port.
1670 */
1671static void pl010_config_port(struct uart_port *port, int flags)
1672{
1673	if (flags & UART_CONFIG_TYPE) {
1674		port->type = PORT_AMBA;
1675		pl010_request_port(port);
1676	}
1677}
1678
1679/*
1680 * verify the new serial_struct (for TIOCSSERIAL).
1681 */
1682static int pl010_verify_port(struct uart_port *port, struct serial_struct *ser)
1683{
1684	int ret = 0;
1685	if (ser->type != PORT_UNKNOWN && ser->type != PORT_AMBA)
1686		ret = -EINVAL;
1687	if (ser->irq < 0 || ser->irq >= nr_irqs)
1688		ret = -EINVAL;
1689	if (ser->baud_base < 9600)
1690		ret = -EINVAL;
 
 
1691	return ret;
1692}
1693
1694static struct uart_ops amba_pl011_pops = {
1695	.tx_empty	= pl01x_tx_empty,
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1696	.set_mctrl	= pl011_set_mctrl,
1697	.get_mctrl	= pl01x_get_mctrl,
1698	.stop_tx	= pl011_stop_tx,
1699	.start_tx	= pl011_start_tx,
1700	.stop_rx	= pl011_stop_rx,
 
 
1701	.enable_ms	= pl011_enable_ms,
1702	.break_ctl	= pl011_break_ctl,
1703	.startup	= pl011_startup,
1704	.shutdown	= pl011_shutdown,
1705	.flush_buffer	= pl011_dma_flush_buffer,
1706	.set_termios	= pl011_set_termios,
1707	.type		= pl011_type,
1708	.release_port	= pl010_release_port,
1709	.request_port	= pl010_request_port,
1710	.config_port	= pl010_config_port,
1711	.verify_port	= pl010_verify_port,
1712#ifdef CONFIG_CONSOLE_POLL
1713	.poll_get_char = pl010_get_poll_char,
1714	.poll_put_char = pl010_put_poll_char,
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1715#endif
1716};
1717
1718static struct uart_amba_port *amba_ports[UART_NR];
1719
1720#ifdef CONFIG_SERIAL_AMBA_PL011_CONSOLE
1721
1722static void pl011_console_putchar(struct uart_port *port, int ch)
1723{
1724	struct uart_amba_port *uap = (struct uart_amba_port *)port;
 
1725
1726	while (readw(uap->port.membase + UART01x_FR) & UART01x_FR_TXFF)
1727		barrier();
1728	writew(ch, uap->port.membase + UART01x_DR);
1729}
1730
1731static void
1732pl011_console_write(struct console *co, const char *s, unsigned int count)
1733{
1734	struct uart_amba_port *uap = amba_ports[co->index];
1735	unsigned int status, old_cr, new_cr;
 
 
1736
1737	clk_enable(uap->clk);
1738
 
 
 
 
 
 
 
 
1739	/*
1740	 *	First save the CR then disable the interrupts
1741	 */
1742	old_cr = readw(uap->port.membase + UART011_CR);
1743	new_cr = old_cr & ~UART011_CR_CTSEN;
1744	new_cr |= UART01x_CR_UARTEN | UART011_CR_TXE;
1745	writew(new_cr, uap->port.membase + UART011_CR);
 
 
1746
1747	uart_console_write(&uap->port, s, count, pl011_console_putchar);
1748
1749	/*
1750	 *	Finally, wait for transmitter to become empty
1751	 *	and restore the TCR
1752	 */
1753	do {
1754		status = readw(uap->port.membase + UART01x_FR);
1755	} while (status & UART01x_FR_BUSY);
1756	writew(old_cr, uap->port.membase + UART011_CR);
 
 
 
 
 
 
1757
1758	clk_disable(uap->clk);
1759}
1760
1761static void __init
1762pl011_console_get_options(struct uart_amba_port *uap, int *baud,
1763			     int *parity, int *bits)
1764{
1765	if (readw(uap->port.membase + UART011_CR) & UART01x_CR_UARTEN) {
1766		unsigned int lcr_h, ibrd, fbrd;
1767
1768		lcr_h = readw(uap->port.membase + uap->lcrh_tx);
1769
1770		*parity = 'n';
1771		if (lcr_h & UART01x_LCRH_PEN) {
1772			if (lcr_h & UART01x_LCRH_EPS)
1773				*parity = 'e';
1774			else
1775				*parity = 'o';
1776		}
1777
1778		if ((lcr_h & 0x60) == UART01x_LCRH_WLEN_7)
1779			*bits = 7;
1780		else
1781			*bits = 8;
1782
1783		ibrd = readw(uap->port.membase + UART011_IBRD);
1784		fbrd = readw(uap->port.membase + UART011_FBRD);
1785
1786		*baud = uap->port.uartclk * 4 / (64 * ibrd + fbrd);
1787
1788		if (uap->vendor->oversampling) {
1789			if (readw(uap->port.membase + UART011_CR)
1790				  & ST_UART011_CR_OVSFACT)
1791				*baud *= 2;
1792		}
1793	}
1794}
1795
1796static int __init pl011_console_setup(struct console *co, char *options)
1797{
1798	struct uart_amba_port *uap;
1799	int baud = 38400;
1800	int bits = 8;
1801	int parity = 'n';
1802	int flow = 'n';
 
1803
1804	/*
1805	 * Check whether an invalid uart number has been specified, and
1806	 * if so, search for the first available port that does have
1807	 * console support.
1808	 */
1809	if (co->index >= UART_NR)
1810		co->index = 0;
1811	uap = amba_ports[co->index];
1812	if (!uap)
1813		return -ENODEV;
1814
1815	if (uap->port.dev->platform_data) {
 
 
 
 
 
 
 
1816		struct amba_pl011_data *plat;
1817
1818		plat = uap->port.dev->platform_data;
1819		if (plat->init)
1820			plat->init();
1821	}
1822
1823	uap->port.uartclk = clk_get_rate(uap->clk);
1824
1825	if (options)
1826		uart_parse_options(options, &baud, &parity, &bits, &flow);
1827	else
1828		pl011_console_get_options(uap, &baud, &parity, &bits);
 
 
 
 
 
1829
1830	return uart_set_options(&uap->port, co, baud, parity, bits, flow);
1831}
1832
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1833static struct uart_driver amba_reg;
1834static struct console amba_console = {
1835	.name		= "ttyAMA",
1836	.write		= pl011_console_write,
1837	.device		= uart_console_device,
1838	.setup		= pl011_console_setup,
1839	.flags		= CON_PRINTBUFFER,
 
1840	.index		= -1,
1841	.data		= &amba_reg,
1842};
1843
1844#define AMBA_CONSOLE	(&amba_console)
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1845#else
1846#define AMBA_CONSOLE	NULL
1847#endif
1848
1849static struct uart_driver amba_reg = {
1850	.owner			= THIS_MODULE,
1851	.driver_name		= "ttyAMA",
1852	.dev_name		= "ttyAMA",
1853	.major			= SERIAL_AMBA_MAJOR,
1854	.minor			= SERIAL_AMBA_MINOR,
1855	.nr			= UART_NR,
1856	.cons			= AMBA_CONSOLE,
1857};
1858
1859static int pl011_probe(struct amba_device *dev, const struct amba_id *id)
1860{
1861	struct uart_amba_port *uap;
1862	struct vendor_data *vendor = id->data;
1863	void __iomem *base;
1864	int i, ret;
1865
1866	for (i = 0; i < ARRAY_SIZE(amba_ports); i++)
1867		if (amba_ports[i] == NULL)
1868			break;
1869
1870	if (i == ARRAY_SIZE(amba_ports)) {
1871		ret = -EBUSY;
1872		goto out;
1873	}
1874
1875	uap = kzalloc(sizeof(struct uart_amba_port), GFP_KERNEL);
1876	if (uap == NULL) {
1877		ret = -ENOMEM;
1878		goto out;
 
 
 
 
 
 
1879	}
1880
1881	base = ioremap(dev->res.start, resource_size(&dev->res));
1882	if (!base) {
1883		ret = -ENOMEM;
1884		goto free;
1885	}
 
 
 
 
 
 
1886
1887	uap->clk = clk_get(&dev->dev, NULL);
1888	if (IS_ERR(uap->clk)) {
1889		ret = PTR_ERR(uap->clk);
1890		goto unmap;
 
1891	}
 
 
 
 
1892
1893	uap->vendor = vendor;
1894	uap->lcrh_rx = vendor->lcrh_rx;
1895	uap->lcrh_tx = vendor->lcrh_tx;
1896	uap->fifosize = vendor->fifosize;
1897	uap->interrupt_may_hang = vendor->interrupt_may_hang;
1898	uap->port.dev = &dev->dev;
1899	uap->port.mapbase = dev->res.start;
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1900	uap->port.membase = base;
1901	uap->port.iotype = UPIO_MEM;
1902	uap->port.irq = dev->irq[0];
1903	uap->port.fifosize = uap->fifosize;
1904	uap->port.ops = &amba_pl011_pops;
1905	uap->port.flags = UPF_BOOT_AUTOCONF;
1906	uap->port.line = i;
1907	pl011_dma_probe(uap);
1908
1909	snprintf(uap->type, sizeof(uap->type), "PL011 rev%u", amba_rev(dev));
 
 
1910
1911	amba_ports[i] = uap;
1912
1913	amba_set_drvdata(dev, uap);
1914	ret = uart_add_one_port(&amba_reg, &uap->port);
1915	if (ret) {
1916		amba_set_drvdata(dev, NULL);
1917		amba_ports[i] = NULL;
1918		pl011_dma_remove(uap);
1919		clk_put(uap->clk);
1920 unmap:
1921		iounmap(base);
1922 free:
1923		kfree(uap);
 
 
 
 
 
 
 
 
 
 
1924	}
1925 out:
 
 
 
 
1926	return ret;
1927}
1928
1929static int pl011_remove(struct amba_device *dev)
 
 
 
 
 
 
 
1930{
1931	struct uart_amba_port *uap = amba_get_drvdata(dev);
1932	int i;
 
 
1933
1934	amba_set_drvdata(dev, NULL);
 
 
1935
1936	uart_remove_one_port(&amba_reg, &uap->port);
 
 
 
1937
1938	for (i = 0; i < ARRAY_SIZE(amba_ports); i++)
1939		if (amba_ports[i] == uap)
1940			amba_ports[i] = NULL;
1941
1942	pl011_dma_remove(uap);
1943	iounmap(uap->port.membase);
1944	clk_put(uap->clk);
1945	kfree(uap);
1946	return 0;
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1947}
1948
1949#ifdef CONFIG_PM
1950static int pl011_suspend(struct amba_device *dev, pm_message_t state)
1951{
1952	struct uart_amba_port *uap = amba_get_drvdata(dev);
1953
 
 
 
 
 
 
 
 
 
1954	if (!uap)
1955		return -EINVAL;
1956
1957	return uart_suspend_port(&amba_reg, &uap->port);
1958}
1959
1960static int pl011_resume(struct amba_device *dev)
1961{
1962	struct uart_amba_port *uap = amba_get_drvdata(dev);
1963
1964	if (!uap)
1965		return -EINVAL;
1966
1967	return uart_resume_port(&amba_reg, &uap->port);
1968}
1969#endif
1970
1971static struct amba_id pl011_ids[] = {
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1972	{
1973		.id	= 0x00041011,
1974		.mask	= 0x000fffff,
1975		.data	= &vendor_arm,
1976	},
1977	{
1978		.id	= 0x00380802,
1979		.mask	= 0x00ffffff,
1980		.data	= &vendor_st,
1981	},
1982	{ 0, 0 },
1983};
1984
 
 
1985static struct amba_driver pl011_driver = {
1986	.drv = {
1987		.name	= "uart-pl011",
 
 
1988	},
1989	.id_table	= pl011_ids,
1990	.probe		= pl011_probe,
1991	.remove		= pl011_remove,
1992#ifdef CONFIG_PM
1993	.suspend	= pl011_suspend,
1994	.resume		= pl011_resume,
1995#endif
1996};
1997
1998static int __init pl011_init(void)
1999{
2000	int ret;
2001	printk(KERN_INFO "Serial: AMBA PL011 UART driver\n");
2002
2003	ret = uart_register_driver(&amba_reg);
2004	if (ret == 0) {
2005		ret = amba_driver_register(&pl011_driver);
2006		if (ret)
2007			uart_unregister_driver(&amba_reg);
2008	}
2009	return ret;
2010}
2011
2012static void __exit pl011_exit(void)
2013{
 
2014	amba_driver_unregister(&pl011_driver);
2015	uart_unregister_driver(&amba_reg);
2016}
2017
2018/*
2019 * While this can be a module, if builtin it's most likely the console
2020 * So let's leave module_exit but move module_init to an earlier place
2021 */
2022arch_initcall(pl011_init);
2023module_exit(pl011_exit);
2024
2025MODULE_AUTHOR("ARM Ltd/Deep Blue Solutions Ltd");
2026MODULE_DESCRIPTION("ARM AMBA serial port driver");
2027MODULE_LICENSE("GPL");
v6.2
   1// SPDX-License-Identifier: GPL-2.0+
   2/*
   3 *  Driver for AMBA serial ports
   4 *
   5 *  Based on drivers/char/serial.c, by Linus Torvalds, Theodore Ts'o.
   6 *
   7 *  Copyright 1999 ARM Limited
   8 *  Copyright (C) 2000 Deep Blue Solutions Ltd.
   9 *  Copyright (C) 2010 ST-Ericsson SA
  10 *
 
 
 
 
 
 
 
 
 
 
 
 
 
 
  11 * This is a generic driver for ARM AMBA-type serial ports.  They
  12 * have a lot of 16550-like features, but are not register compatible.
  13 * Note that although they do have CTS, DCD and DSR inputs, they do
  14 * not have an RI input, nor do they have DTR or RTS outputs.  If
  15 * required, these have to be supplied via some other means (eg, GPIO)
  16 * and hooked into this driver.
  17 */
  18
 
 
 
 
  19#include <linux/module.h>
  20#include <linux/ioport.h>
  21#include <linux/init.h>
  22#include <linux/console.h>
  23#include <linux/sysrq.h>
  24#include <linux/device.h>
  25#include <linux/tty.h>
  26#include <linux/tty_flip.h>
  27#include <linux/serial_core.h>
  28#include <linux/serial.h>
  29#include <linux/amba/bus.h>
  30#include <linux/amba/serial.h>
  31#include <linux/clk.h>
  32#include <linux/slab.h>
  33#include <linux/dmaengine.h>
  34#include <linux/dma-mapping.h>
  35#include <linux/scatterlist.h>
  36#include <linux/delay.h>
  37#include <linux/types.h>
  38#include <linux/of.h>
  39#include <linux/of_device.h>
  40#include <linux/pinctrl/consumer.h>
  41#include <linux/sizes.h>
  42#include <linux/io.h>
  43#include <linux/acpi.h>
  44
  45#define UART_NR			14
  46
  47#define SERIAL_AMBA_MAJOR	204
  48#define SERIAL_AMBA_MINOR	64
  49#define SERIAL_AMBA_NR		UART_NR
  50
  51#define AMBA_ISR_PASS_LIMIT	256
  52
  53#define UART_DR_ERROR		(UART011_DR_OE|UART011_DR_BE|UART011_DR_PE|UART011_DR_FE)
  54#define UART_DUMMY_DR_RX	(1 << 16)
  55
  56enum {
  57	REG_DR,
  58	REG_ST_DMAWM,
  59	REG_ST_TIMEOUT,
  60	REG_FR,
  61	REG_LCRH_RX,
  62	REG_LCRH_TX,
  63	REG_IBRD,
  64	REG_FBRD,
  65	REG_CR,
  66	REG_IFLS,
  67	REG_IMSC,
  68	REG_RIS,
  69	REG_MIS,
  70	REG_ICR,
  71	REG_DMACR,
  72	REG_ST_XFCR,
  73	REG_ST_XON1,
  74	REG_ST_XON2,
  75	REG_ST_XOFF1,
  76	REG_ST_XOFF2,
  77	REG_ST_ITCR,
  78	REG_ST_ITIP,
  79	REG_ST_ABCR,
  80	REG_ST_ABIMSC,
  81
  82	/* The size of the array - must be last */
  83	REG_ARRAY_SIZE,
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
  84};
  85
  86static u16 pl011_std_offsets[REG_ARRAY_SIZE] = {
  87	[REG_DR] = UART01x_DR,
  88	[REG_FR] = UART01x_FR,
  89	[REG_LCRH_RX] = UART011_LCRH,
  90	[REG_LCRH_TX] = UART011_LCRH,
  91	[REG_IBRD] = UART011_IBRD,
  92	[REG_FBRD] = UART011_FBRD,
  93	[REG_CR] = UART011_CR,
  94	[REG_IFLS] = UART011_IFLS,
  95	[REG_IMSC] = UART011_IMSC,
  96	[REG_RIS] = UART011_RIS,
  97	[REG_MIS] = UART011_MIS,
  98	[REG_ICR] = UART011_ICR,
  99	[REG_DMACR] = UART011_DMACR,
 100};
 101
 102/* There is by now at least one vendor with differing details, so handle it */
 103struct vendor_data {
 104	const u16		*reg_offset;
 105	unsigned int		ifls;
 106	unsigned int		fr_busy;
 107	unsigned int		fr_dsr;
 108	unsigned int		fr_cts;
 109	unsigned int		fr_ri;
 110	unsigned int		inv_fr;
 111	bool			access_32b;
 112	bool			oversampling;
 
 113	bool			dma_threshold;
 114	bool			cts_event_workaround;
 115	bool			always_enabled;
 116	bool			fixed_options;
 117
 118	unsigned int (*get_fifosize)(struct amba_device *dev);
 119};
 120
 121static unsigned int get_fifosize_arm(struct amba_device *dev)
 122{
 123	return amba_rev(dev) < 3 ? 16 : 32;
 124}
 125
 126static struct vendor_data vendor_arm = {
 127	.reg_offset		= pl011_std_offsets,
 128	.ifls			= UART011_IFLS_RX4_8|UART011_IFLS_TX4_8,
 129	.fr_busy		= UART01x_FR_BUSY,
 130	.fr_dsr			= UART01x_FR_DSR,
 131	.fr_cts			= UART01x_FR_CTS,
 132	.fr_ri			= UART011_FR_RI,
 133	.oversampling		= false,
 134	.dma_threshold		= false,
 135	.cts_event_workaround	= false,
 136	.always_enabled		= false,
 137	.fixed_options		= false,
 138	.get_fifosize		= get_fifosize_arm,
 139};
 140
 141static const struct vendor_data vendor_sbsa = {
 142	.reg_offset		= pl011_std_offsets,
 143	.fr_busy		= UART01x_FR_BUSY,
 144	.fr_dsr			= UART01x_FR_DSR,
 145	.fr_cts			= UART01x_FR_CTS,
 146	.fr_ri			= UART011_FR_RI,
 147	.access_32b		= true,
 148	.oversampling		= false,
 149	.dma_threshold		= false,
 150	.cts_event_workaround	= false,
 151	.always_enabled		= true,
 152	.fixed_options		= true,
 153};
 154
 155#ifdef CONFIG_ACPI_SPCR_TABLE
 156static const struct vendor_data vendor_qdt_qdf2400_e44 = {
 157	.reg_offset		= pl011_std_offsets,
 158	.fr_busy		= UART011_FR_TXFE,
 159	.fr_dsr			= UART01x_FR_DSR,
 160	.fr_cts			= UART01x_FR_CTS,
 161	.fr_ri			= UART011_FR_RI,
 162	.inv_fr			= UART011_FR_TXFE,
 163	.access_32b		= true,
 164	.oversampling		= false,
 165	.dma_threshold		= false,
 166	.cts_event_workaround	= false,
 167	.always_enabled		= true,
 168	.fixed_options		= true,
 169};
 170#endif
 171
 172static u16 pl011_st_offsets[REG_ARRAY_SIZE] = {
 173	[REG_DR] = UART01x_DR,
 174	[REG_ST_DMAWM] = ST_UART011_DMAWM,
 175	[REG_ST_TIMEOUT] = ST_UART011_TIMEOUT,
 176	[REG_FR] = UART01x_FR,
 177	[REG_LCRH_RX] = ST_UART011_LCRH_RX,
 178	[REG_LCRH_TX] = ST_UART011_LCRH_TX,
 179	[REG_IBRD] = UART011_IBRD,
 180	[REG_FBRD] = UART011_FBRD,
 181	[REG_CR] = UART011_CR,
 182	[REG_IFLS] = UART011_IFLS,
 183	[REG_IMSC] = UART011_IMSC,
 184	[REG_RIS] = UART011_RIS,
 185	[REG_MIS] = UART011_MIS,
 186	[REG_ICR] = UART011_ICR,
 187	[REG_DMACR] = UART011_DMACR,
 188	[REG_ST_XFCR] = ST_UART011_XFCR,
 189	[REG_ST_XON1] = ST_UART011_XON1,
 190	[REG_ST_XON2] = ST_UART011_XON2,
 191	[REG_ST_XOFF1] = ST_UART011_XOFF1,
 192	[REG_ST_XOFF2] = ST_UART011_XOFF2,
 193	[REG_ST_ITCR] = ST_UART011_ITCR,
 194	[REG_ST_ITIP] = ST_UART011_ITIP,
 195	[REG_ST_ABCR] = ST_UART011_ABCR,
 196	[REG_ST_ABIMSC] = ST_UART011_ABIMSC,
 197};
 198
 199static unsigned int get_fifosize_st(struct amba_device *dev)
 200{
 201	return 64;
 202}
 203
 204static struct vendor_data vendor_st = {
 205	.reg_offset		= pl011_st_offsets,
 206	.ifls			= UART011_IFLS_RX_HALF|UART011_IFLS_TX_HALF,
 207	.fr_busy		= UART01x_FR_BUSY,
 208	.fr_dsr			= UART01x_FR_DSR,
 209	.fr_cts			= UART01x_FR_CTS,
 210	.fr_ri			= UART011_FR_RI,
 211	.oversampling		= true,
 
 212	.dma_threshold		= true,
 213	.cts_event_workaround	= true,
 214	.always_enabled		= false,
 215	.fixed_options		= false,
 216	.get_fifosize		= get_fifosize_st,
 217};
 218
 
 
 219/* Deals with DMA transactions */
 220
 221struct pl011_sgbuf {
 222	struct scatterlist sg;
 223	char *buf;
 224};
 225
 226struct pl011_dmarx_data {
 227	struct dma_chan		*chan;
 228	struct completion	complete;
 229	bool			use_buf_b;
 230	struct pl011_sgbuf	sgbuf_a;
 231	struct pl011_sgbuf	sgbuf_b;
 232	dma_cookie_t		cookie;
 233	bool			running;
 234	struct timer_list	timer;
 235	unsigned int last_residue;
 236	unsigned long last_jiffies;
 237	bool auto_poll_rate;
 238	unsigned int poll_rate;
 239	unsigned int poll_timeout;
 240};
 241
 242struct pl011_dmatx_data {
 243	struct dma_chan		*chan;
 244	struct scatterlist	sg;
 245	char			*buf;
 246	bool			queued;
 247};
 248
 249/*
 250 * We wrap our port structure around the generic uart_port.
 251 */
 252struct uart_amba_port {
 253	struct uart_port	port;
 254	const u16		*reg_offset;
 255	struct clk		*clk;
 256	const struct vendor_data *vendor;
 257	unsigned int		dmacr;		/* dma control reg */
 258	unsigned int		im;		/* interrupt mask */
 259	unsigned int		old_status;
 260	unsigned int		fifosize;	/* vendor-specific */
 261	unsigned int		fixed_baud;	/* vendor-set fixed baud rate */
 
 
 262	char			type[12];
 263	bool			rs485_tx_started;
 264	unsigned int		rs485_tx_drain_interval; /* usecs */
 265#ifdef CONFIG_DMA_ENGINE
 266	/* DMA stuff */
 267	bool			using_tx_dma;
 268	bool			using_rx_dma;
 269	struct pl011_dmarx_data dmarx;
 270	struct pl011_dmatx_data	dmatx;
 271	bool			dma_probed;
 272#endif
 273};
 274
 275static unsigned int pl011_tx_empty(struct uart_port *port);
 276
 277static unsigned int pl011_reg_to_offset(const struct uart_amba_port *uap,
 278	unsigned int reg)
 279{
 280	return uap->reg_offset[reg];
 281}
 282
 283static unsigned int pl011_read(const struct uart_amba_port *uap,
 284	unsigned int reg)
 285{
 286	void __iomem *addr = uap->port.membase + pl011_reg_to_offset(uap, reg);
 287
 288	return (uap->port.iotype == UPIO_MEM32) ?
 289		readl_relaxed(addr) : readw_relaxed(addr);
 290}
 291
 292static void pl011_write(unsigned int val, const struct uart_amba_port *uap,
 293	unsigned int reg)
 294{
 295	void __iomem *addr = uap->port.membase + pl011_reg_to_offset(uap, reg);
 296
 297	if (uap->port.iotype == UPIO_MEM32)
 298		writel_relaxed(val, addr);
 299	else
 300		writew_relaxed(val, addr);
 301}
 302
 303/*
 304 * Reads up to 256 characters from the FIFO or until it's empty and
 305 * inserts them into the TTY layer. Returns the number of characters
 306 * read from the FIFO.
 307 */
 308static int pl011_fifo_to_tty(struct uart_amba_port *uap)
 309{
 310	unsigned int ch, flag, fifotaken;
 311	int sysrq;
 312	u16 status;
 313
 314	for (fifotaken = 0; fifotaken != 256; fifotaken++) {
 315		status = pl011_read(uap, REG_FR);
 316		if (status & UART01x_FR_RXFE)
 317			break;
 318
 319		/* Take chars from the FIFO and update status */
 320		ch = pl011_read(uap, REG_DR) | UART_DUMMY_DR_RX;
 
 321		flag = TTY_NORMAL;
 322		uap->port.icount.rx++;
 
 323
 324		if (unlikely(ch & UART_DR_ERROR)) {
 325			if (ch & UART011_DR_BE) {
 326				ch &= ~(UART011_DR_FE | UART011_DR_PE);
 327				uap->port.icount.brk++;
 328				if (uart_handle_break(&uap->port))
 329					continue;
 330			} else if (ch & UART011_DR_PE)
 331				uap->port.icount.parity++;
 332			else if (ch & UART011_DR_FE)
 333				uap->port.icount.frame++;
 334			if (ch & UART011_DR_OE)
 335				uap->port.icount.overrun++;
 336
 337			ch &= uap->port.read_status_mask;
 338
 339			if (ch & UART011_DR_BE)
 340				flag = TTY_BREAK;
 341			else if (ch & UART011_DR_PE)
 342				flag = TTY_PARITY;
 343			else if (ch & UART011_DR_FE)
 344				flag = TTY_FRAME;
 345		}
 346
 347		spin_unlock(&uap->port.lock);
 348		sysrq = uart_handle_sysrq_char(&uap->port, ch & 255);
 349		spin_lock(&uap->port.lock);
 350
 351		if (!sysrq)
 352			uart_insert_char(&uap->port, ch, UART011_DR_OE, ch, flag);
 353	}
 354
 355	return fifotaken;
 356}
 357
 358
 359/*
 360 * All the DMA operation mode stuff goes inside this ifdef.
 361 * This assumes that you have a generic DMA device interface,
 362 * no custom DMA interfaces are supported.
 363 */
 364#ifdef CONFIG_DMA_ENGINE
 365
 366#define PL011_DMA_BUFFER_SIZE PAGE_SIZE
 367
 368static int pl011_sgbuf_init(struct dma_chan *chan, struct pl011_sgbuf *sg,
 369	enum dma_data_direction dir)
 370{
 371	dma_addr_t dma_addr;
 372
 373	sg->buf = dma_alloc_coherent(chan->device->dev,
 374		PL011_DMA_BUFFER_SIZE, &dma_addr, GFP_KERNEL);
 375	if (!sg->buf)
 376		return -ENOMEM;
 377
 378	sg_init_table(&sg->sg, 1);
 379	sg_set_page(&sg->sg, phys_to_page(dma_addr),
 380		PL011_DMA_BUFFER_SIZE, offset_in_page(dma_addr));
 381	sg_dma_address(&sg->sg) = dma_addr;
 382	sg_dma_len(&sg->sg) = PL011_DMA_BUFFER_SIZE;
 383
 
 
 
 
 384	return 0;
 385}
 386
 387static void pl011_sgbuf_free(struct dma_chan *chan, struct pl011_sgbuf *sg,
 388	enum dma_data_direction dir)
 389{
 390	if (sg->buf) {
 391		dma_free_coherent(chan->device->dev,
 392			PL011_DMA_BUFFER_SIZE, sg->buf,
 393			sg_dma_address(&sg->sg));
 394	}
 395}
 396
 397static void pl011_dma_probe(struct uart_amba_port *uap)
 398{
 399	/* DMA is the sole user of the platform data right now */
 400	struct amba_pl011_data *plat = dev_get_platdata(uap->port.dev);
 401	struct device *dev = uap->port.dev;
 402	struct dma_slave_config tx_conf = {
 403		.dst_addr = uap->port.mapbase +
 404				 pl011_reg_to_offset(uap, REG_DR),
 405		.dst_addr_width = DMA_SLAVE_BUSWIDTH_1_BYTE,
 406		.direction = DMA_MEM_TO_DEV,
 407		.dst_maxburst = uap->fifosize >> 1,
 408		.device_fc = false,
 409	};
 410	struct dma_chan *chan;
 411	dma_cap_mask_t mask;
 412
 413	uap->dma_probed = true;
 414	chan = dma_request_chan(dev, "tx");
 415	if (IS_ERR(chan)) {
 416		if (PTR_ERR(chan) == -EPROBE_DEFER) {
 417			uap->dma_probed = false;
 418			return;
 419		}
 420
 421		/* We need platform data */
 422		if (!plat || !plat->dma_filter) {
 423			dev_info(uap->port.dev, "no DMA platform data\n");
 424			return;
 425		}
 426
 427		/* Try to acquire a generic DMA engine slave TX channel */
 428		dma_cap_zero(mask);
 429		dma_cap_set(DMA_SLAVE, mask);
 430
 431		chan = dma_request_channel(mask, plat->dma_filter,
 432						plat->dma_tx_param);
 433		if (!chan) {
 434			dev_err(uap->port.dev, "no TX DMA channel!\n");
 435			return;
 436		}
 437	}
 438
 439	dmaengine_slave_config(chan, &tx_conf);
 440	uap->dmatx.chan = chan;
 441
 442	dev_info(uap->port.dev, "DMA channel TX %s\n",
 443		 dma_chan_name(uap->dmatx.chan));
 444
 445	/* Optionally make use of an RX channel as well */
 446	chan = dma_request_slave_channel(dev, "rx");
 
 
 
 
 
 
 447
 448	if (!chan && plat && plat->dma_rx_param) {
 449		chan = dma_request_channel(mask, plat->dma_filter, plat->dma_rx_param);
 450
 451		if (!chan) {
 452			dev_err(uap->port.dev, "no RX DMA channel!\n");
 453			return;
 454		}
 455	}
 456
 457	if (chan) {
 458		struct dma_slave_config rx_conf = {
 459			.src_addr = uap->port.mapbase +
 460				pl011_reg_to_offset(uap, REG_DR),
 461			.src_addr_width = DMA_SLAVE_BUSWIDTH_1_BYTE,
 462			.direction = DMA_DEV_TO_MEM,
 463			.src_maxburst = uap->fifosize >> 2,
 464			.device_fc = false,
 465		};
 466		struct dma_slave_caps caps;
 467
 468		/*
 469		 * Some DMA controllers provide information on their capabilities.
 470		 * If the controller does, check for suitable residue processing
 471		 * otherwise assime all is well.
 472		 */
 473		if (0 == dma_get_slave_caps(chan, &caps)) {
 474			if (caps.residue_granularity ==
 475					DMA_RESIDUE_GRANULARITY_DESCRIPTOR) {
 476				dma_release_channel(chan);
 477				dev_info(uap->port.dev,
 478					"RX DMA disabled - no residue processing\n");
 479				return;
 480			}
 481		}
 482		dmaengine_slave_config(chan, &rx_conf);
 483		uap->dmarx.chan = chan;
 484
 485		uap->dmarx.auto_poll_rate = false;
 486		if (plat && plat->dma_rx_poll_enable) {
 487			/* Set poll rate if specified. */
 488			if (plat->dma_rx_poll_rate) {
 489				uap->dmarx.auto_poll_rate = false;
 490				uap->dmarx.poll_rate = plat->dma_rx_poll_rate;
 491			} else {
 492				/*
 493				 * 100 ms defaults to poll rate if not
 494				 * specified. This will be adjusted with
 495				 * the baud rate at set_termios.
 496				 */
 497				uap->dmarx.auto_poll_rate = true;
 498				uap->dmarx.poll_rate =  100;
 499			}
 500			/* 3 secs defaults poll_timeout if not specified. */
 501			if (plat->dma_rx_poll_timeout)
 502				uap->dmarx.poll_timeout =
 503					plat->dma_rx_poll_timeout;
 504			else
 505				uap->dmarx.poll_timeout = 3000;
 506		} else if (!plat && dev->of_node) {
 507			uap->dmarx.auto_poll_rate = of_property_read_bool(
 508						dev->of_node, "auto-poll");
 509			if (uap->dmarx.auto_poll_rate) {
 510				u32 x;
 511
 512				if (0 == of_property_read_u32(dev->of_node,
 513						"poll-rate-ms", &x))
 514					uap->dmarx.poll_rate = x;
 515				else
 516					uap->dmarx.poll_rate = 100;
 517				if (0 == of_property_read_u32(dev->of_node,
 518						"poll-timeout-ms", &x))
 519					uap->dmarx.poll_timeout = x;
 520				else
 521					uap->dmarx.poll_timeout = 3000;
 522			}
 523		}
 524		dev_info(uap->port.dev, "DMA channel RX %s\n",
 525			 dma_chan_name(uap->dmarx.chan));
 526	}
 527}
 528
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 529static void pl011_dma_remove(struct uart_amba_port *uap)
 530{
 
 531	if (uap->dmatx.chan)
 532		dma_release_channel(uap->dmatx.chan);
 533	if (uap->dmarx.chan)
 534		dma_release_channel(uap->dmarx.chan);
 535}
 536
 537/* Forward declare these for the refill routine */
 538static int pl011_dma_tx_refill(struct uart_amba_port *uap);
 539static void pl011_start_tx_pio(struct uart_amba_port *uap);
 540
 541/*
 542 * The current DMA TX buffer has been sent.
 543 * Try to queue up another DMA buffer.
 544 */
 545static void pl011_dma_tx_callback(void *data)
 546{
 547	struct uart_amba_port *uap = data;
 548	struct pl011_dmatx_data *dmatx = &uap->dmatx;
 549	unsigned long flags;
 550	u16 dmacr;
 551
 552	spin_lock_irqsave(&uap->port.lock, flags);
 553	if (uap->dmatx.queued)
 554		dma_unmap_sg(dmatx->chan->device->dev, &dmatx->sg, 1,
 555			     DMA_TO_DEVICE);
 556
 557	dmacr = uap->dmacr;
 558	uap->dmacr = dmacr & ~UART011_TXDMAE;
 559	pl011_write(uap->dmacr, uap, REG_DMACR);
 560
 561	/*
 562	 * If TX DMA was disabled, it means that we've stopped the DMA for
 563	 * some reason (eg, XOFF received, or we want to send an X-char.)
 564	 *
 565	 * Note: we need to be careful here of a potential race between DMA
 566	 * and the rest of the driver - if the driver disables TX DMA while
 567	 * a TX buffer completing, we must update the tx queued status to
 568	 * get further refills (hence we check dmacr).
 569	 */
 570	if (!(dmacr & UART011_TXDMAE) || uart_tx_stopped(&uap->port) ||
 571	    uart_circ_empty(&uap->port.state->xmit)) {
 572		uap->dmatx.queued = false;
 573		spin_unlock_irqrestore(&uap->port.lock, flags);
 574		return;
 575	}
 576
 577	if (pl011_dma_tx_refill(uap) <= 0)
 578		/*
 579		 * We didn't queue a DMA buffer for some reason, but we
 580		 * have data pending to be sent.  Re-enable the TX IRQ.
 581		 */
 582		pl011_start_tx_pio(uap);
 583
 
 584	spin_unlock_irqrestore(&uap->port.lock, flags);
 585}
 586
 587/*
 588 * Try to refill the TX DMA buffer.
 589 * Locking: called with port lock held and IRQs disabled.
 590 * Returns:
 591 *   1 if we queued up a TX DMA buffer.
 592 *   0 if we didn't want to handle this by DMA
 593 *  <0 on error
 594 */
 595static int pl011_dma_tx_refill(struct uart_amba_port *uap)
 596{
 597	struct pl011_dmatx_data *dmatx = &uap->dmatx;
 598	struct dma_chan *chan = dmatx->chan;
 599	struct dma_device *dma_dev = chan->device;
 600	struct dma_async_tx_descriptor *desc;
 601	struct circ_buf *xmit = &uap->port.state->xmit;
 602	unsigned int count;
 603
 604	/*
 605	 * Try to avoid the overhead involved in using DMA if the
 606	 * transaction fits in the first half of the FIFO, by using
 607	 * the standard interrupt handling.  This ensures that we
 608	 * issue a uart_write_wakeup() at the appropriate time.
 609	 */
 610	count = uart_circ_chars_pending(xmit);
 611	if (count < (uap->fifosize >> 1)) {
 612		uap->dmatx.queued = false;
 613		return 0;
 614	}
 615
 616	/*
 617	 * Bodge: don't send the last character by DMA, as this
 618	 * will prevent XON from notifying us to restart DMA.
 619	 */
 620	count -= 1;
 621
 622	/* Else proceed to copy the TX chars to the DMA buffer and fire DMA */
 623	if (count > PL011_DMA_BUFFER_SIZE)
 624		count = PL011_DMA_BUFFER_SIZE;
 625
 626	if (xmit->tail < xmit->head)
 627		memcpy(&dmatx->buf[0], &xmit->buf[xmit->tail], count);
 628	else {
 629		size_t first = UART_XMIT_SIZE - xmit->tail;
 630		size_t second;
 631
 632		if (first > count)
 633			first = count;
 634		second = count - first;
 635
 636		memcpy(&dmatx->buf[0], &xmit->buf[xmit->tail], first);
 637		if (second)
 638			memcpy(&dmatx->buf[first], &xmit->buf[0], second);
 639	}
 640
 641	dmatx->sg.length = count;
 642
 643	if (dma_map_sg(dma_dev->dev, &dmatx->sg, 1, DMA_TO_DEVICE) != 1) {
 644		uap->dmatx.queued = false;
 645		dev_dbg(uap->port.dev, "unable to map TX DMA\n");
 646		return -EBUSY;
 647	}
 648
 649	desc = dmaengine_prep_slave_sg(chan, &dmatx->sg, 1, DMA_MEM_TO_DEV,
 650					     DMA_PREP_INTERRUPT | DMA_CTRL_ACK);
 651	if (!desc) {
 652		dma_unmap_sg(dma_dev->dev, &dmatx->sg, 1, DMA_TO_DEVICE);
 653		uap->dmatx.queued = false;
 654		/*
 655		 * If DMA cannot be used right now, we complete this
 656		 * transaction via IRQ and let the TTY layer retry.
 657		 */
 658		dev_dbg(uap->port.dev, "TX DMA busy\n");
 659		return -EBUSY;
 660	}
 661
 662	/* Some data to go along to the callback */
 663	desc->callback = pl011_dma_tx_callback;
 664	desc->callback_param = uap;
 665
 666	/* All errors should happen at prepare time */
 667	dmaengine_submit(desc);
 668
 669	/* Fire the DMA transaction */
 670	dma_dev->device_issue_pending(chan);
 671
 672	uap->dmacr |= UART011_TXDMAE;
 673	pl011_write(uap->dmacr, uap, REG_DMACR);
 674	uap->dmatx.queued = true;
 675
 676	/*
 677	 * Now we know that DMA will fire, so advance the ring buffer
 678	 * with the stuff we just dispatched.
 679	 */
 680	uart_xmit_advance(&uap->port, count);
 
 681
 682	if (uart_circ_chars_pending(xmit) < WAKEUP_CHARS)
 683		uart_write_wakeup(&uap->port);
 684
 685	return 1;
 686}
 687
 688/*
 689 * We received a transmit interrupt without a pending X-char but with
 690 * pending characters.
 691 * Locking: called with port lock held and IRQs disabled.
 692 * Returns:
 693 *   false if we want to use PIO to transmit
 694 *   true if we queued a DMA buffer
 695 */
 696static bool pl011_dma_tx_irq(struct uart_amba_port *uap)
 697{
 698	if (!uap->using_tx_dma)
 699		return false;
 700
 701	/*
 702	 * If we already have a TX buffer queued, but received a
 703	 * TX interrupt, it will be because we've just sent an X-char.
 704	 * Ensure the TX DMA is enabled and the TX IRQ is disabled.
 705	 */
 706	if (uap->dmatx.queued) {
 707		uap->dmacr |= UART011_TXDMAE;
 708		pl011_write(uap->dmacr, uap, REG_DMACR);
 709		uap->im &= ~UART011_TXIM;
 710		pl011_write(uap->im, uap, REG_IMSC);
 711		return true;
 712	}
 713
 714	/*
 715	 * We don't have a TX buffer queued, so try to queue one.
 716	 * If we successfully queued a buffer, mask the TX IRQ.
 717	 */
 718	if (pl011_dma_tx_refill(uap) > 0) {
 719		uap->im &= ~UART011_TXIM;
 720		pl011_write(uap->im, uap, REG_IMSC);
 721		return true;
 722	}
 723	return false;
 724}
 725
 726/*
 727 * Stop the DMA transmit (eg, due to received XOFF).
 728 * Locking: called with port lock held and IRQs disabled.
 729 */
 730static inline void pl011_dma_tx_stop(struct uart_amba_port *uap)
 731{
 732	if (uap->dmatx.queued) {
 733		uap->dmacr &= ~UART011_TXDMAE;
 734		pl011_write(uap->dmacr, uap, REG_DMACR);
 735	}
 736}
 737
 738/*
 739 * Try to start a DMA transmit, or in the case of an XON/OFF
 740 * character queued for send, try to get that character out ASAP.
 741 * Locking: called with port lock held and IRQs disabled.
 742 * Returns:
 743 *   false if we want the TX IRQ to be enabled
 744 *   true if we have a buffer queued
 745 */
 746static inline bool pl011_dma_tx_start(struct uart_amba_port *uap)
 747{
 748	u16 dmacr;
 749
 750	if (!uap->using_tx_dma)
 751		return false;
 752
 753	if (!uap->port.x_char) {
 754		/* no X-char, try to push chars out in DMA mode */
 755		bool ret = true;
 756
 757		if (!uap->dmatx.queued) {
 758			if (pl011_dma_tx_refill(uap) > 0) {
 759				uap->im &= ~UART011_TXIM;
 760				pl011_write(uap->im, uap, REG_IMSC);
 761			} else
 
 762				ret = false;
 
 
 763		} else if (!(uap->dmacr & UART011_TXDMAE)) {
 764			uap->dmacr |= UART011_TXDMAE;
 765			pl011_write(uap->dmacr, uap, REG_DMACR);
 
 766		}
 767		return ret;
 768	}
 769
 770	/*
 771	 * We have an X-char to send.  Disable DMA to prevent it loading
 772	 * the TX fifo, and then see if we can stuff it into the FIFO.
 773	 */
 774	dmacr = uap->dmacr;
 775	uap->dmacr &= ~UART011_TXDMAE;
 776	pl011_write(uap->dmacr, uap, REG_DMACR);
 777
 778	if (pl011_read(uap, REG_FR) & UART01x_FR_TXFF) {
 779		/*
 780		 * No space in the FIFO, so enable the transmit interrupt
 781		 * so we know when there is space.  Note that once we've
 782		 * loaded the character, we should just re-enable DMA.
 783		 */
 784		return false;
 785	}
 786
 787	pl011_write(uap->port.x_char, uap, REG_DR);
 788	uap->port.icount.tx++;
 789	uap->port.x_char = 0;
 790
 791	/* Success - restore the DMA state */
 792	uap->dmacr = dmacr;
 793	pl011_write(dmacr, uap, REG_DMACR);
 794
 795	return true;
 796}
 797
 798/*
 799 * Flush the transmit buffer.
 800 * Locking: called with port lock held and IRQs disabled.
 801 */
 802static void pl011_dma_flush_buffer(struct uart_port *port)
 803__releases(&uap->port.lock)
 804__acquires(&uap->port.lock)
 805{
 806	struct uart_amba_port *uap =
 807	    container_of(port, struct uart_amba_port, port);
 808
 809	if (!uap->using_tx_dma)
 810		return;
 811
 812	dmaengine_terminate_async(uap->dmatx.chan);
 813
 
 
 814	if (uap->dmatx.queued) {
 815		dma_unmap_sg(uap->dmatx.chan->device->dev, &uap->dmatx.sg, 1,
 816			     DMA_TO_DEVICE);
 817		uap->dmatx.queued = false;
 818		uap->dmacr &= ~UART011_TXDMAE;
 819		pl011_write(uap->dmacr, uap, REG_DMACR);
 820	}
 821}
 822
 823static void pl011_dma_rx_callback(void *data);
 824
 825static int pl011_dma_rx_trigger_dma(struct uart_amba_port *uap)
 826{
 827	struct dma_chan *rxchan = uap->dmarx.chan;
 
 828	struct pl011_dmarx_data *dmarx = &uap->dmarx;
 829	struct dma_async_tx_descriptor *desc;
 830	struct pl011_sgbuf *sgbuf;
 831
 832	if (!rxchan)
 833		return -EIO;
 834
 835	/* Start the RX DMA job */
 836	sgbuf = uap->dmarx.use_buf_b ?
 837		&uap->dmarx.sgbuf_b : &uap->dmarx.sgbuf_a;
 838	desc = dmaengine_prep_slave_sg(rxchan, &sgbuf->sg, 1,
 839					DMA_DEV_TO_MEM,
 
 840					DMA_PREP_INTERRUPT | DMA_CTRL_ACK);
 841	/*
 842	 * If the DMA engine is busy and cannot prepare a
 843	 * channel, no big deal, the driver will fall back
 844	 * to interrupt mode as a result of this error code.
 845	 */
 846	if (!desc) {
 847		uap->dmarx.running = false;
 848		dmaengine_terminate_all(rxchan);
 849		return -EBUSY;
 850	}
 851
 852	/* Some data to go along to the callback */
 853	desc->callback = pl011_dma_rx_callback;
 854	desc->callback_param = uap;
 855	dmarx->cookie = dmaengine_submit(desc);
 856	dma_async_issue_pending(rxchan);
 857
 858	uap->dmacr |= UART011_RXDMAE;
 859	pl011_write(uap->dmacr, uap, REG_DMACR);
 860	uap->dmarx.running = true;
 861
 862	uap->im &= ~UART011_RXIM;
 863	pl011_write(uap->im, uap, REG_IMSC);
 864
 865	return 0;
 866}
 867
 868/*
 869 * This is called when either the DMA job is complete, or
 870 * the FIFO timeout interrupt occurred. This must be called
 871 * with the port spinlock uap->port.lock held.
 872 */
 873static void pl011_dma_rx_chars(struct uart_amba_port *uap,
 874			       u32 pending, bool use_buf_b,
 875			       bool readfifo)
 876{
 877	struct tty_port *port = &uap->port.state->port;
 878	struct pl011_sgbuf *sgbuf = use_buf_b ?
 879		&uap->dmarx.sgbuf_b : &uap->dmarx.sgbuf_a;
 
 880	int dma_count = 0;
 881	u32 fifotaken = 0; /* only used for vdbg() */
 882
 883	struct pl011_dmarx_data *dmarx = &uap->dmarx;
 884	int dmataken = 0;
 885
 886	if (uap->dmarx.poll_rate) {
 887		/* The data can be taken by polling */
 888		dmataken = sgbuf->sg.length - dmarx->last_residue;
 889		/* Recalculate the pending size */
 890		if (pending >= dmataken)
 891			pending -= dmataken;
 892	}
 893
 894	/* Pick the remain data from the DMA */
 895	if (pending) {
 
 
 896
 897		/*
 898		 * First take all chars in the DMA pipe, then look in the FIFO.
 899		 * Note that tty_insert_flip_buf() tries to take as many chars
 900		 * as it can.
 901		 */
 902		dma_count = tty_insert_flip_string(port, sgbuf->buf + dmataken,
 903				pending);
 
 
 
 904
 905		uap->port.icount.rx += dma_count;
 906		if (dma_count < pending)
 907			dev_warn(uap->port.dev,
 908				 "couldn't insert all characters (TTY is full?)\n");
 909	}
 910
 911	/* Reset the last_residue for Rx DMA poll */
 912	if (uap->dmarx.poll_rate)
 913		dmarx->last_residue = sgbuf->sg.length;
 914
 915	/*
 916	 * Only continue with trying to read the FIFO if all DMA chars have
 917	 * been taken first.
 918	 */
 919	if (dma_count == pending && readfifo) {
 920		/* Clear any error flags */
 921		pl011_write(UART011_OEIS | UART011_BEIS | UART011_PEIS |
 922			    UART011_FEIS, uap, REG_ICR);
 923
 924		/*
 925		 * If we read all the DMA'd characters, and we had an
 926		 * incomplete buffer, that could be due to an rx error, or
 927		 * maybe we just timed out. Read any pending chars and check
 928		 * the error status.
 929		 *
 930		 * Error conditions will only occur in the FIFO, these will
 931		 * trigger an immediate interrupt and stop the DMA job, so we
 932		 * will always find the error in the FIFO, never in the DMA
 933		 * buffer.
 934		 */
 935		fifotaken = pl011_fifo_to_tty(uap);
 936	}
 937
 
 938	dev_vdbg(uap->port.dev,
 939		 "Took %d chars from DMA buffer and %d chars from the FIFO\n",
 940		 dma_count, fifotaken);
 941	tty_flip_buffer_push(port);
 
 942}
 943
 944static void pl011_dma_rx_irq(struct uart_amba_port *uap)
 945{
 946	struct pl011_dmarx_data *dmarx = &uap->dmarx;
 947	struct dma_chan *rxchan = dmarx->chan;
 948	struct pl011_sgbuf *sgbuf = dmarx->use_buf_b ?
 949		&dmarx->sgbuf_b : &dmarx->sgbuf_a;
 950	size_t pending;
 951	struct dma_tx_state state;
 952	enum dma_status dmastat;
 953
 954	/*
 955	 * Pause the transfer so we can trust the current counter,
 956	 * do this before we pause the PL011 block, else we may
 957	 * overflow the FIFO.
 958	 */
 959	if (dmaengine_pause(rxchan))
 960		dev_err(uap->port.dev, "unable to pause DMA transfer\n");
 961	dmastat = rxchan->device->device_tx_status(rxchan,
 962						   dmarx->cookie, &state);
 963	if (dmastat != DMA_PAUSED)
 964		dev_err(uap->port.dev, "unable to pause DMA transfer\n");
 965
 966	/* Disable RX DMA - incoming data will wait in the FIFO */
 967	uap->dmacr &= ~UART011_RXDMAE;
 968	pl011_write(uap->dmacr, uap, REG_DMACR);
 969	uap->dmarx.running = false;
 970
 971	pending = sgbuf->sg.length - state.residue;
 972	BUG_ON(pending > PL011_DMA_BUFFER_SIZE);
 973	/* Then we terminate the transfer - we now know our residue */
 974	dmaengine_terminate_all(rxchan);
 975
 976	/*
 977	 * This will take the chars we have so far and insert
 978	 * into the framework.
 979	 */
 980	pl011_dma_rx_chars(uap, pending, dmarx->use_buf_b, true);
 981
 982	/* Switch buffer & re-trigger DMA job */
 983	dmarx->use_buf_b = !dmarx->use_buf_b;
 984	if (pl011_dma_rx_trigger_dma(uap)) {
 985		dev_dbg(uap->port.dev, "could not retrigger RX DMA job "
 986			"fall back to interrupt mode\n");
 987		uap->im |= UART011_RXIM;
 988		pl011_write(uap->im, uap, REG_IMSC);
 989	}
 990}
 991
 992static void pl011_dma_rx_callback(void *data)
 993{
 994	struct uart_amba_port *uap = data;
 995	struct pl011_dmarx_data *dmarx = &uap->dmarx;
 996	struct dma_chan *rxchan = dmarx->chan;
 997	bool lastbuf = dmarx->use_buf_b;
 998	struct pl011_sgbuf *sgbuf = dmarx->use_buf_b ?
 999		&dmarx->sgbuf_b : &dmarx->sgbuf_a;
1000	size_t pending;
1001	struct dma_tx_state state;
1002	int ret;
1003
1004	/*
1005	 * This completion interrupt occurs typically when the
1006	 * RX buffer is totally stuffed but no timeout has yet
1007	 * occurred. When that happens, we just want the RX
1008	 * routine to flush out the secondary DMA buffer while
1009	 * we immediately trigger the next DMA job.
1010	 */
1011	spin_lock_irq(&uap->port.lock);
1012	/*
1013	 * Rx data can be taken by the UART interrupts during
1014	 * the DMA irq handler. So we check the residue here.
1015	 */
1016	rxchan->device->device_tx_status(rxchan, dmarx->cookie, &state);
1017	pending = sgbuf->sg.length - state.residue;
1018	BUG_ON(pending > PL011_DMA_BUFFER_SIZE);
1019	/* Then we terminate the transfer - we now know our residue */
1020	dmaengine_terminate_all(rxchan);
1021
1022	uap->dmarx.running = false;
1023	dmarx->use_buf_b = !lastbuf;
1024	ret = pl011_dma_rx_trigger_dma(uap);
1025
1026	pl011_dma_rx_chars(uap, pending, lastbuf, false);
1027	spin_unlock_irq(&uap->port.lock);
1028	/*
1029	 * Do this check after we picked the DMA chars so we don't
1030	 * get some IRQ immediately from RX.
1031	 */
1032	if (ret) {
1033		dev_dbg(uap->port.dev, "could not retrigger RX DMA job "
1034			"fall back to interrupt mode\n");
1035		uap->im |= UART011_RXIM;
1036		pl011_write(uap->im, uap, REG_IMSC);
1037	}
1038}
1039
1040/*
1041 * Stop accepting received characters, when we're shutting down or
1042 * suspending this port.
1043 * Locking: called with port lock held and IRQs disabled.
1044 */
1045static inline void pl011_dma_rx_stop(struct uart_amba_port *uap)
1046{
1047	if (!uap->using_rx_dma)
1048		return;
1049
1050	/* FIXME.  Just disable the DMA enable */
1051	uap->dmacr &= ~UART011_RXDMAE;
1052	pl011_write(uap->dmacr, uap, REG_DMACR);
1053}
1054
1055/*
1056 * Timer handler for Rx DMA polling.
1057 * Every polling, It checks the residue in the dma buffer and transfer
1058 * data to the tty. Also, last_residue is updated for the next polling.
1059 */
1060static void pl011_dma_rx_poll(struct timer_list *t)
1061{
1062	struct uart_amba_port *uap = from_timer(uap, t, dmarx.timer);
1063	struct tty_port *port = &uap->port.state->port;
1064	struct pl011_dmarx_data *dmarx = &uap->dmarx;
1065	struct dma_chan *rxchan = uap->dmarx.chan;
1066	unsigned long flags;
1067	unsigned int dmataken = 0;
1068	unsigned int size = 0;
1069	struct pl011_sgbuf *sgbuf;
1070	int dma_count;
1071	struct dma_tx_state state;
1072
1073	sgbuf = dmarx->use_buf_b ? &uap->dmarx.sgbuf_b : &uap->dmarx.sgbuf_a;
1074	rxchan->device->device_tx_status(rxchan, dmarx->cookie, &state);
1075	if (likely(state.residue < dmarx->last_residue)) {
1076		dmataken = sgbuf->sg.length - dmarx->last_residue;
1077		size = dmarx->last_residue - state.residue;
1078		dma_count = tty_insert_flip_string(port, sgbuf->buf + dmataken,
1079				size);
1080		if (dma_count == size)
1081			dmarx->last_residue =  state.residue;
1082		dmarx->last_jiffies = jiffies;
1083	}
1084	tty_flip_buffer_push(port);
1085
1086	/*
1087	 * If no data is received in poll_timeout, the driver will fall back
1088	 * to interrupt mode. We will retrigger DMA at the first interrupt.
1089	 */
1090	if (jiffies_to_msecs(jiffies - dmarx->last_jiffies)
1091			> uap->dmarx.poll_timeout) {
1092
1093		spin_lock_irqsave(&uap->port.lock, flags);
1094		pl011_dma_rx_stop(uap);
1095		uap->im |= UART011_RXIM;
1096		pl011_write(uap->im, uap, REG_IMSC);
1097		spin_unlock_irqrestore(&uap->port.lock, flags);
1098
1099		uap->dmarx.running = false;
1100		dmaengine_terminate_all(rxchan);
1101		del_timer(&uap->dmarx.timer);
1102	} else {
1103		mod_timer(&uap->dmarx.timer,
1104			jiffies + msecs_to_jiffies(uap->dmarx.poll_rate));
1105	}
1106}
1107
1108static void pl011_dma_startup(struct uart_amba_port *uap)
1109{
1110	int ret;
1111
1112	if (!uap->dma_probed)
1113		pl011_dma_probe(uap);
1114
1115	if (!uap->dmatx.chan)
1116		return;
1117
1118	uap->dmatx.buf = kmalloc(PL011_DMA_BUFFER_SIZE, GFP_KERNEL | __GFP_DMA);
1119	if (!uap->dmatx.buf) {
1120		dev_err(uap->port.dev, "no memory for DMA TX buffer\n");
1121		uap->port.fifosize = uap->fifosize;
1122		return;
1123	}
1124
1125	sg_init_one(&uap->dmatx.sg, uap->dmatx.buf, PL011_DMA_BUFFER_SIZE);
1126
1127	/* The DMA buffer is now the FIFO the TTY subsystem can use */
1128	uap->port.fifosize = PL011_DMA_BUFFER_SIZE;
1129	uap->using_tx_dma = true;
1130
1131	if (!uap->dmarx.chan)
1132		goto skip_rx;
1133
1134	/* Allocate and map DMA RX buffers */
1135	ret = pl011_sgbuf_init(uap->dmarx.chan, &uap->dmarx.sgbuf_a,
1136			       DMA_FROM_DEVICE);
1137	if (ret) {
1138		dev_err(uap->port.dev, "failed to init DMA %s: %d\n",
1139			"RX buffer A", ret);
1140		goto skip_rx;
1141	}
1142
1143	ret = pl011_sgbuf_init(uap->dmarx.chan, &uap->dmarx.sgbuf_b,
1144			       DMA_FROM_DEVICE);
1145	if (ret) {
1146		dev_err(uap->port.dev, "failed to init DMA %s: %d\n",
1147			"RX buffer B", ret);
1148		pl011_sgbuf_free(uap->dmarx.chan, &uap->dmarx.sgbuf_a,
1149				 DMA_FROM_DEVICE);
1150		goto skip_rx;
1151	}
1152
1153	uap->using_rx_dma = true;
1154
1155skip_rx:
1156	/* Turn on DMA error (RX/TX will be enabled on demand) */
1157	uap->dmacr |= UART011_DMAONERR;
1158	pl011_write(uap->dmacr, uap, REG_DMACR);
1159
1160	/*
1161	 * ST Micro variants has some specific dma burst threshold
1162	 * compensation. Set this to 16 bytes, so burst will only
1163	 * be issued above/below 16 bytes.
1164	 */
1165	if (uap->vendor->dma_threshold)
1166		pl011_write(ST_UART011_DMAWM_RX_16 | ST_UART011_DMAWM_TX_16,
1167			    uap, REG_ST_DMAWM);
1168
1169	if (uap->using_rx_dma) {
1170		if (pl011_dma_rx_trigger_dma(uap))
1171			dev_dbg(uap->port.dev, "could not trigger initial "
1172				"RX DMA job, fall back to interrupt mode\n");
1173		if (uap->dmarx.poll_rate) {
1174			timer_setup(&uap->dmarx.timer, pl011_dma_rx_poll, 0);
1175			mod_timer(&uap->dmarx.timer,
1176				jiffies +
1177				msecs_to_jiffies(uap->dmarx.poll_rate));
1178			uap->dmarx.last_residue = PL011_DMA_BUFFER_SIZE;
1179			uap->dmarx.last_jiffies = jiffies;
1180		}
1181	}
1182}
1183
1184static void pl011_dma_shutdown(struct uart_amba_port *uap)
1185{
1186	if (!(uap->using_tx_dma || uap->using_rx_dma))
1187		return;
1188
1189	/* Disable RX and TX DMA */
1190	while (pl011_read(uap, REG_FR) & uap->vendor->fr_busy)
1191		cpu_relax();
1192
1193	spin_lock_irq(&uap->port.lock);
1194	uap->dmacr &= ~(UART011_DMAONERR | UART011_RXDMAE | UART011_TXDMAE);
1195	pl011_write(uap->dmacr, uap, REG_DMACR);
1196	spin_unlock_irq(&uap->port.lock);
1197
1198	if (uap->using_tx_dma) {
1199		/* In theory, this should already be done by pl011_dma_flush_buffer */
1200		dmaengine_terminate_all(uap->dmatx.chan);
1201		if (uap->dmatx.queued) {
1202			dma_unmap_sg(uap->dmatx.chan->device->dev, &uap->dmatx.sg, 1,
1203				     DMA_TO_DEVICE);
1204			uap->dmatx.queued = false;
1205		}
1206
1207		kfree(uap->dmatx.buf);
1208		uap->using_tx_dma = false;
1209	}
1210
1211	if (uap->using_rx_dma) {
1212		dmaengine_terminate_all(uap->dmarx.chan);
1213		/* Clean up the RX DMA */
1214		pl011_sgbuf_free(uap->dmarx.chan, &uap->dmarx.sgbuf_a, DMA_FROM_DEVICE);
1215		pl011_sgbuf_free(uap->dmarx.chan, &uap->dmarx.sgbuf_b, DMA_FROM_DEVICE);
1216		if (uap->dmarx.poll_rate)
1217			del_timer_sync(&uap->dmarx.timer);
1218		uap->using_rx_dma = false;
1219	}
1220}
1221
1222static inline bool pl011_dma_rx_available(struct uart_amba_port *uap)
1223{
1224	return uap->using_rx_dma;
1225}
1226
1227static inline bool pl011_dma_rx_running(struct uart_amba_port *uap)
1228{
1229	return uap->using_rx_dma && uap->dmarx.running;
1230}
1231
 
1232#else
1233/* Blank functions if the DMA engine is not available */
 
 
 
 
1234static inline void pl011_dma_remove(struct uart_amba_port *uap)
1235{
1236}
1237
1238static inline void pl011_dma_startup(struct uart_amba_port *uap)
1239{
1240}
1241
1242static inline void pl011_dma_shutdown(struct uart_amba_port *uap)
1243{
1244}
1245
1246static inline bool pl011_dma_tx_irq(struct uart_amba_port *uap)
1247{
1248	return false;
1249}
1250
1251static inline void pl011_dma_tx_stop(struct uart_amba_port *uap)
1252{
1253}
1254
1255static inline bool pl011_dma_tx_start(struct uart_amba_port *uap)
1256{
1257	return false;
1258}
1259
1260static inline void pl011_dma_rx_irq(struct uart_amba_port *uap)
1261{
1262}
1263
1264static inline void pl011_dma_rx_stop(struct uart_amba_port *uap)
1265{
1266}
1267
1268static inline int pl011_dma_rx_trigger_dma(struct uart_amba_port *uap)
1269{
1270	return -EIO;
1271}
1272
1273static inline bool pl011_dma_rx_available(struct uart_amba_port *uap)
1274{
1275	return false;
1276}
1277
1278static inline bool pl011_dma_rx_running(struct uart_amba_port *uap)
1279{
1280	return false;
1281}
1282
1283#define pl011_dma_flush_buffer	NULL
1284#endif
1285
1286static void pl011_rs485_tx_stop(struct uart_amba_port *uap)
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1287{
1288	/*
1289	 * To be on the safe side only time out after twice as many iterations
1290	 * as fifo size.
1291	 */
1292	const int MAX_TX_DRAIN_ITERS = uap->port.fifosize * 2;
1293	struct uart_port *port = &uap->port;
1294	int i = 0;
1295	u32 cr;
1296
1297	/* Wait until hardware tx queue is empty */
1298	while (!pl011_tx_empty(port)) {
1299		if (i > MAX_TX_DRAIN_ITERS) {
1300			dev_warn(port->dev,
1301				 "timeout while draining hardware tx queue\n");
1302			break;
1303		}
 
 
 
 
 
 
 
 
 
 
 
 
1304
1305		udelay(uap->rs485_tx_drain_interval);
1306		i++;
 
1307	}
1308
1309	if (port->rs485.delay_rts_after_send)
1310		mdelay(port->rs485.delay_rts_after_send);
1311
1312	cr = pl011_read(uap, REG_CR);
1313
1314	if (port->rs485.flags & SER_RS485_RTS_AFTER_SEND)
1315		cr &= ~UART011_CR_RTS;
1316	else
1317		cr |= UART011_CR_RTS;
1318
1319	/* Disable the transmitter and reenable the transceiver */
1320	cr &= ~UART011_CR_TXE;
1321	cr |= UART011_CR_RXE;
1322	pl011_write(cr, uap, REG_CR);
1323
1324	uap->rs485_tx_started = false;
 
1325}
1326
1327static void pl011_stop_tx(struct uart_port *port)
1328{
1329	struct uart_amba_port *uap =
1330	    container_of(port, struct uart_amba_port, port);
1331
1332	uap->im &= ~UART011_TXIM;
1333	pl011_write(uap->im, uap, REG_IMSC);
1334	pl011_dma_tx_stop(uap);
1335
1336	if ((port->rs485.flags & SER_RS485_ENABLED) && uap->rs485_tx_started)
1337		pl011_rs485_tx_stop(uap);
1338}
1339
1340static bool pl011_tx_chars(struct uart_amba_port *uap, bool from_irq);
 
 
1341
1342/* Start TX with programmed I/O only (no DMA) */
1343static void pl011_start_tx_pio(struct uart_amba_port *uap)
1344{
1345	if (pl011_tx_chars(uap, false)) {
1346		uap->im |= UART011_TXIM;
1347		pl011_write(uap->im, uap, REG_IMSC);
1348	}
1349}
1350
1351static void pl011_start_tx(struct uart_port *port)
1352{
1353	struct uart_amba_port *uap =
1354	    container_of(port, struct uart_amba_port, port);
1355
1356	if (!pl011_dma_tx_start(uap))
1357		pl011_start_tx_pio(uap);
1358}
1359
1360static void pl011_stop_rx(struct uart_port *port)
1361{
1362	struct uart_amba_port *uap =
1363	    container_of(port, struct uart_amba_port, port);
1364
1365	uap->im &= ~(UART011_RXIM|UART011_RTIM|UART011_FEIM|
1366		     UART011_PEIM|UART011_BEIM|UART011_OEIM);
1367	pl011_write(uap->im, uap, REG_IMSC);
1368
1369	pl011_dma_rx_stop(uap);
1370}
1371
1372static void pl011_throttle_rx(struct uart_port *port)
1373{
1374	unsigned long flags;
1375
1376	spin_lock_irqsave(&port->lock, flags);
1377	pl011_stop_rx(port);
1378	spin_unlock_irqrestore(&port->lock, flags);
1379}
1380
1381static void pl011_enable_ms(struct uart_port *port)
1382{
1383	struct uart_amba_port *uap =
1384	    container_of(port, struct uart_amba_port, port);
1385
1386	uap->im |= UART011_RIMIM|UART011_CTSMIM|UART011_DCDMIM|UART011_DSRMIM;
1387	pl011_write(uap->im, uap, REG_IMSC);
1388}
1389
1390static void pl011_rx_chars(struct uart_amba_port *uap)
1391__releases(&uap->port.lock)
1392__acquires(&uap->port.lock)
1393{
 
 
1394	pl011_fifo_to_tty(uap);
1395
1396	spin_unlock(&uap->port.lock);
1397	tty_flip_buffer_push(&uap->port.state->port);
1398	/*
1399	 * If we were temporarily out of DMA mode for a while,
1400	 * attempt to switch back to DMA mode again.
1401	 */
1402	if (pl011_dma_rx_available(uap)) {
1403		if (pl011_dma_rx_trigger_dma(uap)) {
1404			dev_dbg(uap->port.dev, "could not trigger RX DMA job "
1405				"fall back to interrupt mode again\n");
1406			uap->im |= UART011_RXIM;
1407			pl011_write(uap->im, uap, REG_IMSC);
1408		} else {
1409#ifdef CONFIG_DMA_ENGINE
1410			/* Start Rx DMA poll */
1411			if (uap->dmarx.poll_rate) {
1412				uap->dmarx.last_jiffies = jiffies;
1413				uap->dmarx.last_residue	= PL011_DMA_BUFFER_SIZE;
1414				mod_timer(&uap->dmarx.timer,
1415					jiffies +
1416					msecs_to_jiffies(uap->dmarx.poll_rate));
1417			}
1418#endif
1419		}
1420	}
1421	spin_lock(&uap->port.lock);
1422}
1423
1424static bool pl011_tx_char(struct uart_amba_port *uap, unsigned char c,
1425			  bool from_irq)
1426{
1427	if (unlikely(!from_irq) &&
1428	    pl011_read(uap, REG_FR) & UART01x_FR_TXFF)
1429		return false; /* unable to transmit character */
1430
1431	pl011_write(c, uap, REG_DR);
1432	uap->port.icount.tx++;
1433
1434	return true;
1435}
1436
1437static void pl011_rs485_tx_start(struct uart_amba_port *uap)
1438{
1439	struct uart_port *port = &uap->port;
1440	u32 cr;
1441
1442	/* Enable transmitter */
1443	cr = pl011_read(uap, REG_CR);
1444	cr |= UART011_CR_TXE;
1445
1446	/* Disable receiver if half-duplex */
1447	if (!(port->rs485.flags & SER_RS485_RX_DURING_TX))
1448		cr &= ~UART011_CR_RXE;
1449
1450	if (port->rs485.flags & SER_RS485_RTS_ON_SEND)
1451		cr &= ~UART011_CR_RTS;
1452	else
1453		cr |= UART011_CR_RTS;
1454
1455	pl011_write(cr, uap, REG_CR);
1456
1457	if (port->rs485.delay_rts_before_send)
1458		mdelay(port->rs485.delay_rts_before_send);
1459
1460	uap->rs485_tx_started = true;
1461}
1462
1463/* Returns true if tx interrupts have to be (kept) enabled  */
1464static bool pl011_tx_chars(struct uart_amba_port *uap, bool from_irq)
1465{
1466	struct circ_buf *xmit = &uap->port.state->xmit;
1467	int count = uap->fifosize >> 1;
1468
1469	if ((uap->port.rs485.flags & SER_RS485_ENABLED) &&
1470	    !uap->rs485_tx_started)
1471		pl011_rs485_tx_start(uap);
1472
1473	if (uap->port.x_char) {
1474		if (!pl011_tx_char(uap, uap->port.x_char, from_irq))
1475			return true;
1476		uap->port.x_char = 0;
1477		--count;
1478	}
1479	if (uart_circ_empty(xmit) || uart_tx_stopped(&uap->port)) {
1480		pl011_stop_tx(&uap->port);
1481		return false;
1482	}
1483
1484	/* If we are using DMA mode, try to send some characters. */
1485	if (pl011_dma_tx_irq(uap))
1486		return true;
1487
 
1488	do {
1489		if (likely(from_irq) && count-- == 0)
 
 
 
1490			break;
1491
1492		if (!pl011_tx_char(uap, xmit->buf[xmit->tail], from_irq))
1493			break;
1494
1495		xmit->tail = (xmit->tail + 1) & (UART_XMIT_SIZE - 1);
1496	} while (!uart_circ_empty(xmit));
1497
1498	if (uart_circ_chars_pending(xmit) < WAKEUP_CHARS)
1499		uart_write_wakeup(&uap->port);
1500
1501	if (uart_circ_empty(xmit)) {
1502		pl011_stop_tx(&uap->port);
1503		return false;
1504	}
1505	return true;
1506}
1507
1508static void pl011_modem_status(struct uart_amba_port *uap)
1509{
1510	unsigned int status, delta;
1511
1512	status = pl011_read(uap, REG_FR) & UART01x_FR_MODEM_ANY;
1513
1514	delta = status ^ uap->old_status;
1515	uap->old_status = status;
1516
1517	if (!delta)
1518		return;
1519
1520	if (delta & UART01x_FR_DCD)
1521		uart_handle_dcd_change(&uap->port, status & UART01x_FR_DCD);
1522
1523	if (delta & uap->vendor->fr_dsr)
1524		uap->port.icount.dsr++;
1525
1526	if (delta & uap->vendor->fr_cts)
1527		uart_handle_cts_change(&uap->port,
1528				       status & uap->vendor->fr_cts);
1529
1530	wake_up_interruptible(&uap->port.state->port.delta_msr_wait);
1531}
1532
1533static void check_apply_cts_event_workaround(struct uart_amba_port *uap)
1534{
1535	if (!uap->vendor->cts_event_workaround)
1536		return;
1537
1538	/* workaround to make sure that all bits are unlocked.. */
1539	pl011_write(0x00, uap, REG_ICR);
1540
1541	/*
1542	 * WA: introduce 26ns(1 uart clk) delay before W1C;
1543	 * single apb access will incur 2 pclk(133.12Mhz) delay,
1544	 * so add 2 dummy reads
1545	 */
1546	pl011_read(uap, REG_ICR);
1547	pl011_read(uap, REG_ICR);
1548}
1549
1550static irqreturn_t pl011_int(int irq, void *dev_id)
1551{
1552	struct uart_amba_port *uap = dev_id;
1553	unsigned long flags;
1554	unsigned int status, pass_counter = AMBA_ISR_PASS_LIMIT;
1555	int handled = 0;
1556
1557	spin_lock_irqsave(&uap->port.lock, flags);
1558	status = pl011_read(uap, REG_RIS) & uap->im;
 
1559	if (status) {
1560		do {
1561			check_apply_cts_event_workaround(uap);
1562
1563			pl011_write(status & ~(UART011_TXIS|UART011_RTIS|
1564					       UART011_RXIS),
1565				    uap, REG_ICR);
1566
1567			if (status & (UART011_RTIS|UART011_RXIS)) {
1568				if (pl011_dma_rx_running(uap))
1569					pl011_dma_rx_irq(uap);
1570				else
1571					pl011_rx_chars(uap);
1572			}
1573			if (status & (UART011_DSRMIS|UART011_DCDMIS|
1574				      UART011_CTSMIS|UART011_RIMIS))
1575				pl011_modem_status(uap);
1576			if (status & UART011_TXIS)
1577				pl011_tx_chars(uap, true);
1578
1579			if (pass_counter-- == 0)
 
 
1580				break;
 
1581
1582			status = pl011_read(uap, REG_RIS) & uap->im;
1583		} while (status != 0);
1584		handled = 1;
1585	}
1586
1587	spin_unlock_irqrestore(&uap->port.lock, flags);
1588
1589	return IRQ_RETVAL(handled);
1590}
1591
1592static unsigned int pl011_tx_empty(struct uart_port *port)
1593{
1594	struct uart_amba_port *uap =
1595	    container_of(port, struct uart_amba_port, port);
1596
1597	/* Allow feature register bits to be inverted to work around errata */
1598	unsigned int status = pl011_read(uap, REG_FR) ^ uap->vendor->inv_fr;
1599
1600	return status & (uap->vendor->fr_busy | UART01x_FR_TXFF) ?
1601							0 : TIOCSER_TEMT;
1602}
1603
1604static unsigned int pl011_get_mctrl(struct uart_port *port)
1605{
1606	struct uart_amba_port *uap =
1607	    container_of(port, struct uart_amba_port, port);
1608	unsigned int result = 0;
1609	unsigned int status = pl011_read(uap, REG_FR);
1610
1611#define TIOCMBIT(uartbit, tiocmbit)	\
1612	if (status & uartbit)		\
1613		result |= tiocmbit
1614
1615	TIOCMBIT(UART01x_FR_DCD, TIOCM_CAR);
1616	TIOCMBIT(uap->vendor->fr_dsr, TIOCM_DSR);
1617	TIOCMBIT(uap->vendor->fr_cts, TIOCM_CTS);
1618	TIOCMBIT(uap->vendor->fr_ri, TIOCM_RNG);
1619#undef TIOCMBIT
1620	return result;
1621}
1622
1623static void pl011_set_mctrl(struct uart_port *port, unsigned int mctrl)
1624{
1625	struct uart_amba_port *uap =
1626	    container_of(port, struct uart_amba_port, port);
1627	unsigned int cr;
1628
1629	cr = pl011_read(uap, REG_CR);
1630
1631#define	TIOCMBIT(tiocmbit, uartbit)		\
1632	if (mctrl & tiocmbit)		\
1633		cr |= uartbit;		\
1634	else				\
1635		cr &= ~uartbit
1636
1637	TIOCMBIT(TIOCM_RTS, UART011_CR_RTS);
1638	TIOCMBIT(TIOCM_DTR, UART011_CR_DTR);
1639	TIOCMBIT(TIOCM_OUT1, UART011_CR_OUT1);
1640	TIOCMBIT(TIOCM_OUT2, UART011_CR_OUT2);
1641	TIOCMBIT(TIOCM_LOOP, UART011_CR_LBE);
1642
1643	if (port->status & UPSTAT_AUTORTS) {
1644		/* We need to disable auto-RTS if we want to turn RTS off */
1645		TIOCMBIT(TIOCM_RTS, UART011_CR_RTSEN);
1646	}
1647#undef TIOCMBIT
1648
1649	pl011_write(cr, uap, REG_CR);
1650}
1651
1652static void pl011_break_ctl(struct uart_port *port, int break_state)
1653{
1654	struct uart_amba_port *uap =
1655	    container_of(port, struct uart_amba_port, port);
1656	unsigned long flags;
1657	unsigned int lcr_h;
1658
1659	spin_lock_irqsave(&uap->port.lock, flags);
1660	lcr_h = pl011_read(uap, REG_LCRH_TX);
1661	if (break_state == -1)
1662		lcr_h |= UART01x_LCRH_BRK;
1663	else
1664		lcr_h &= ~UART01x_LCRH_BRK;
1665	pl011_write(lcr_h, uap, REG_LCRH_TX);
1666	spin_unlock_irqrestore(&uap->port.lock, flags);
1667}
1668
1669#ifdef CONFIG_CONSOLE_POLL
1670
1671static void pl011_quiesce_irqs(struct uart_port *port)
1672{
1673	struct uart_amba_port *uap =
1674	    container_of(port, struct uart_amba_port, port);
1675
1676	pl011_write(pl011_read(uap, REG_MIS), uap, REG_ICR);
1677	/*
1678	 * There is no way to clear TXIM as this is "ready to transmit IRQ", so
1679	 * we simply mask it. start_tx() will unmask it.
1680	 *
1681	 * Note we can race with start_tx(), and if the race happens, the
1682	 * polling user might get another interrupt just after we clear it.
1683	 * But it should be OK and can happen even w/o the race, e.g.
1684	 * controller immediately got some new data and raised the IRQ.
1685	 *
1686	 * And whoever uses polling routines assumes that it manages the device
1687	 * (including tx queue), so we're also fine with start_tx()'s caller
1688	 * side.
1689	 */
1690	pl011_write(pl011_read(uap, REG_IMSC) & ~UART011_TXIM, uap,
1691		    REG_IMSC);
1692}
1693
1694static int pl011_get_poll_char(struct uart_port *port)
1695{
1696	struct uart_amba_port *uap =
1697	    container_of(port, struct uart_amba_port, port);
1698	unsigned int status;
1699
1700	/*
1701	 * The caller might need IRQs lowered, e.g. if used with KDB NMI
1702	 * debugger.
1703	 */
1704	pl011_quiesce_irqs(port);
1705
1706	status = pl011_read(uap, REG_FR);
1707	if (status & UART01x_FR_RXFE)
1708		return NO_POLL_CHAR;
1709
1710	return pl011_read(uap, REG_DR);
1711}
1712
1713static void pl011_put_poll_char(struct uart_port *port,
1714			 unsigned char ch)
1715{
1716	struct uart_amba_port *uap =
1717	    container_of(port, struct uart_amba_port, port);
1718
1719	while (pl011_read(uap, REG_FR) & UART01x_FR_TXFF)
1720		cpu_relax();
1721
1722	pl011_write(ch, uap, REG_DR);
1723}
1724
1725#endif /* CONFIG_CONSOLE_POLL */
1726
1727static int pl011_hwinit(struct uart_port *port)
1728{
1729	struct uart_amba_port *uap =
1730	    container_of(port, struct uart_amba_port, port);
1731	int retval;
1732
1733	/* Optionaly enable pins to be muxed in and configured */
1734	pinctrl_pm_select_default_state(port->dev);
1735
1736	/*
1737	 * Try to enable the clock producer.
1738	 */
1739	retval = clk_prepare_enable(uap->clk);
1740	if (retval)
1741		return retval;
1742
1743	uap->port.uartclk = clk_get_rate(uap->clk);
1744
1745	/* Clear pending error and receive interrupts */
1746	pl011_write(UART011_OEIS | UART011_BEIS | UART011_PEIS |
1747		    UART011_FEIS | UART011_RTIS | UART011_RXIS,
1748		    uap, REG_ICR);
1749
1750	/*
1751	 * Save interrupts enable mask, and enable RX interrupts in case if
1752	 * the interrupt is used for NMI entry.
1753	 */
1754	uap->im = pl011_read(uap, REG_IMSC);
1755	pl011_write(UART011_RTIM | UART011_RXIM, uap, REG_IMSC);
 
1756
1757	if (dev_get_platdata(uap->port.dev)) {
1758		struct amba_pl011_data *plat;
1759
1760		plat = dev_get_platdata(uap->port.dev);
1761		if (plat->init)
1762			plat->init();
1763	}
1764	return 0;
1765}
1766
1767static bool pl011_split_lcrh(const struct uart_amba_port *uap)
1768{
1769	return pl011_reg_to_offset(uap, REG_LCRH_RX) !=
1770	       pl011_reg_to_offset(uap, REG_LCRH_TX);
1771}
1772
1773static void pl011_write_lcr_h(struct uart_amba_port *uap, unsigned int lcr_h)
1774{
1775	pl011_write(lcr_h, uap, REG_LCRH_RX);
1776	if (pl011_split_lcrh(uap)) {
1777		int i;
1778		/*
1779		 * Wait 10 PCLKs before writing LCRH_TX register,
1780		 * to get this delay write read only register 10 times
1781		 */
1782		for (i = 0; i < 10; ++i)
1783			pl011_write(0xff, uap, REG_MIS);
1784		pl011_write(lcr_h, uap, REG_LCRH_TX);
1785	}
1786}
 
 
 
 
 
 
 
 
 
1787
1788static int pl011_allocate_irq(struct uart_amba_port *uap)
1789{
1790	pl011_write(uap->im, uap, REG_IMSC);
 
1791
1792	return request_irq(uap->port.irq, pl011_int, IRQF_SHARED, "uart-pl011", uap);
1793}
1794
1795/*
1796 * Enable interrupts, only timeouts when using DMA
1797 * if initial RX DMA job failed, start in interrupt mode
1798 * as well.
1799 */
1800static void pl011_enable_interrupts(struct uart_amba_port *uap)
1801{
1802	unsigned long flags;
1803	unsigned int i;
1804
1805	spin_lock_irqsave(&uap->port.lock, flags);
1806
1807	/* Clear out any spuriously appearing RX interrupts */
1808	pl011_write(UART011_RTIS | UART011_RXIS, uap, REG_ICR);
1809
1810	/*
1811	 * RXIS is asserted only when the RX FIFO transitions from below
1812	 * to above the trigger threshold.  If the RX FIFO is already
1813	 * full to the threshold this can't happen and RXIS will now be
1814	 * stuck off.  Drain the RX FIFO explicitly to fix this:
1815	 */
1816	for (i = 0; i < uap->fifosize * 2; ++i) {
1817		if (pl011_read(uap, REG_FR) & UART01x_FR_RXFE)
1818			break;
1819
1820		pl011_read(uap, REG_DR);
1821	}
1822
1823	uap->im = UART011_RTIM;
1824	if (!pl011_dma_rx_running(uap))
1825		uap->im |= UART011_RXIM;
1826	pl011_write(uap->im, uap, REG_IMSC);
1827	spin_unlock_irqrestore(&uap->port.lock, flags);
1828}
1829
1830static void pl011_unthrottle_rx(struct uart_port *port)
1831{
1832	struct uart_amba_port *uap = container_of(port, struct uart_amba_port, port);
1833	unsigned long flags;
1834
1835	spin_lock_irqsave(&uap->port.lock, flags);
1836
1837	uap->im = UART011_RTIM;
1838	if (!pl011_dma_rx_running(uap))
1839		uap->im |= UART011_RXIM;
1840
1841	pl011_write(uap->im, uap, REG_IMSC);
1842
1843	spin_unlock_irqrestore(&uap->port.lock, flags);
1844}
1845
1846static int pl011_startup(struct uart_port *port)
1847{
1848	struct uart_amba_port *uap =
1849	    container_of(port, struct uart_amba_port, port);
1850	unsigned int cr;
1851	int retval;
1852
1853	retval = pl011_hwinit(port);
1854	if (retval)
1855		goto clk_dis;
1856
1857	retval = pl011_allocate_irq(uap);
1858	if (retval)
1859		goto clk_dis;
1860
1861	pl011_write(uap->vendor->ifls, uap, REG_IFLS);
1862
1863	spin_lock_irq(&uap->port.lock);
1864
1865	cr = pl011_read(uap, REG_CR);
1866	cr &= UART011_CR_RTS | UART011_CR_DTR;
1867	cr |= UART01x_CR_UARTEN | UART011_CR_RXE;
1868
1869	if (!(port->rs485.flags & SER_RS485_ENABLED))
1870		cr |= UART011_CR_TXE;
1871
1872	pl011_write(cr, uap, REG_CR);
1873
1874	spin_unlock_irq(&uap->port.lock);
1875
1876	/*
1877	 * initialise the old status of the modem signals
1878	 */
1879	uap->old_status = pl011_read(uap, REG_FR) & UART01x_FR_MODEM_ANY;
1880
1881	/* Startup DMA */
1882	pl011_dma_startup(uap);
1883
1884	pl011_enable_interrupts(uap);
1885
1886	return 0;
1887
1888 clk_dis:
1889	clk_disable_unprepare(uap->clk);
 
1890	return retval;
1891}
1892
1893static int sbsa_uart_startup(struct uart_port *port)
1894{
1895	struct uart_amba_port *uap =
1896		container_of(port, struct uart_amba_port, port);
1897	int retval;
1898
1899	retval = pl011_hwinit(port);
1900	if (retval)
1901		return retval;
1902
1903	retval = pl011_allocate_irq(uap);
1904	if (retval)
1905		return retval;
1906
1907	/* The SBSA UART does not support any modem status lines. */
1908	uap->old_status = 0;
1909
1910	pl011_enable_interrupts(uap);
1911
1912	return 0;
1913}
1914
1915static void pl011_shutdown_channel(struct uart_amba_port *uap,
1916					unsigned int lcrh)
1917{
1918      unsigned long val;
1919
1920      val = pl011_read(uap, lcrh);
1921      val &= ~(UART01x_LCRH_BRK | UART01x_LCRH_FEN);
1922      pl011_write(val, uap, lcrh);
1923}
1924
1925/*
1926 * disable the port. It should not disable RTS and DTR.
1927 * Also RTS and DTR state should be preserved to restore
1928 * it during startup().
1929 */
1930static void pl011_disable_uart(struct uart_amba_port *uap)
1931{
1932	unsigned int cr;
1933
1934	uap->port.status &= ~(UPSTAT_AUTOCTS | UPSTAT_AUTORTS);
1935	spin_lock_irq(&uap->port.lock);
1936	cr = pl011_read(uap, REG_CR);
1937	cr &= UART011_CR_RTS | UART011_CR_DTR;
1938	cr |= UART01x_CR_UARTEN | UART011_CR_TXE;
1939	pl011_write(cr, uap, REG_CR);
1940	spin_unlock_irq(&uap->port.lock);
1941
1942	/*
1943	 * disable break condition and fifos
1944	 */
1945	pl011_shutdown_channel(uap, REG_LCRH_RX);
1946	if (pl011_split_lcrh(uap))
1947		pl011_shutdown_channel(uap, REG_LCRH_TX);
1948}
1949
1950static void pl011_disable_interrupts(struct uart_amba_port *uap)
1951{
1952	spin_lock_irq(&uap->port.lock);
1953
1954	/* mask all interrupts and clear all pending ones */
1955	uap->im = 0;
1956	pl011_write(uap->im, uap, REG_IMSC);
1957	pl011_write(0xffff, uap, REG_ICR);
1958
1959	spin_unlock_irq(&uap->port.lock);
1960}
1961
1962static void pl011_shutdown(struct uart_port *port)
1963{
1964	struct uart_amba_port *uap =
1965		container_of(port, struct uart_amba_port, port);
1966
1967	pl011_disable_interrupts(uap);
1968
1969	pl011_dma_shutdown(uap);
1970
1971	if ((port->rs485.flags & SER_RS485_ENABLED) && uap->rs485_tx_started)
1972		pl011_rs485_tx_stop(uap);
 
 
1973
1974	free_irq(uap->port.irq, uap);
 
 
 
 
1975
1976	pl011_disable_uart(uap);
 
 
 
 
 
1977
1978	/*
1979	 * Shut down the clock producer
1980	 */
1981	clk_disable_unprepare(uap->clk);
1982	/* Optionally let pins go into sleep states */
1983	pinctrl_pm_select_sleep_state(port->dev);
1984
1985	if (dev_get_platdata(uap->port.dev)) {
1986		struct amba_pl011_data *plat;
1987
1988		plat = dev_get_platdata(uap->port.dev);
1989		if (plat->exit)
1990			plat->exit();
1991	}
1992
1993	if (uap->port.ops->flush_buffer)
1994		uap->port.ops->flush_buffer(port);
1995}
1996
1997static void sbsa_uart_shutdown(struct uart_port *port)
1998{
1999	struct uart_amba_port *uap =
2000		container_of(port, struct uart_amba_port, port);
2001
2002	pl011_disable_interrupts(uap);
2003
2004	free_irq(uap->port.irq, uap);
2005
2006	if (uap->port.ops->flush_buffer)
2007		uap->port.ops->flush_buffer(port);
2008}
2009
2010static void
2011pl011_setup_status_masks(struct uart_port *port, struct ktermios *termios)
2012{
2013	port->read_status_mask = UART011_DR_OE | 255;
2014	if (termios->c_iflag & INPCK)
2015		port->read_status_mask |= UART011_DR_FE | UART011_DR_PE;
2016	if (termios->c_iflag & (IGNBRK | BRKINT | PARMRK))
2017		port->read_status_mask |= UART011_DR_BE;
2018
2019	/*
2020	 * Characters to ignore
2021	 */
2022	port->ignore_status_mask = 0;
2023	if (termios->c_iflag & IGNPAR)
2024		port->ignore_status_mask |= UART011_DR_FE | UART011_DR_PE;
2025	if (termios->c_iflag & IGNBRK) {
2026		port->ignore_status_mask |= UART011_DR_BE;
2027		/*
2028		 * If we're ignoring parity and break indicators,
2029		 * ignore overruns too (for real raw support).
2030		 */
2031		if (termios->c_iflag & IGNPAR)
2032			port->ignore_status_mask |= UART011_DR_OE;
2033	}
2034
2035	/*
2036	 * Ignore all characters if CREAD is not set.
2037	 */
2038	if ((termios->c_cflag & CREAD) == 0)
2039		port->ignore_status_mask |= UART_DUMMY_DR_RX;
2040}
2041
2042static void
2043pl011_set_termios(struct uart_port *port, struct ktermios *termios,
2044		  const struct ktermios *old)
2045{
2046	struct uart_amba_port *uap =
2047	    container_of(port, struct uart_amba_port, port);
2048	unsigned int lcr_h, old_cr;
2049	unsigned long flags;
2050	unsigned int baud, quot, clkdiv;
2051	unsigned int bits;
2052
2053	if (uap->vendor->oversampling)
2054		clkdiv = 8;
2055	else
2056		clkdiv = 16;
2057
2058	/*
2059	 * Ask the core to calculate the divisor for us.
2060	 */
2061	baud = uart_get_baud_rate(port, termios, old, 0,
2062				  port->uartclk / clkdiv);
2063#ifdef CONFIG_DMA_ENGINE
2064	/*
2065	 * Adjust RX DMA polling rate with baud rate if not specified.
2066	 */
2067	if (uap->dmarx.auto_poll_rate)
2068		uap->dmarx.poll_rate = DIV_ROUND_UP(10000000, baud);
2069#endif
2070
2071	if (baud > port->uartclk/16)
2072		quot = DIV_ROUND_CLOSEST(port->uartclk * 8, baud);
2073	else
2074		quot = DIV_ROUND_CLOSEST(port->uartclk * 4, baud);
2075
2076	switch (termios->c_cflag & CSIZE) {
2077	case CS5:
2078		lcr_h = UART01x_LCRH_WLEN_5;
2079		break;
2080	case CS6:
2081		lcr_h = UART01x_LCRH_WLEN_6;
2082		break;
2083	case CS7:
2084		lcr_h = UART01x_LCRH_WLEN_7;
2085		break;
2086	default: // CS8
2087		lcr_h = UART01x_LCRH_WLEN_8;
2088		break;
2089	}
2090	if (termios->c_cflag & CSTOPB)
2091		lcr_h |= UART01x_LCRH_STP2;
2092	if (termios->c_cflag & PARENB) {
2093		lcr_h |= UART01x_LCRH_PEN;
2094		if (!(termios->c_cflag & PARODD))
2095			lcr_h |= UART01x_LCRH_EPS;
2096		if (termios->c_cflag & CMSPAR)
2097			lcr_h |= UART011_LCRH_SPS;
2098	}
2099	if (uap->fifosize > 1)
2100		lcr_h |= UART01x_LCRH_FEN;
2101
2102	bits = tty_get_frame_size(termios->c_cflag);
2103
2104	spin_lock_irqsave(&port->lock, flags);
2105
2106	/*
2107	 * Update the per-port timeout.
2108	 */
2109	uart_update_timeout(port, termios->c_cflag, baud);
2110
 
 
 
 
 
 
2111	/*
2112	 * Calculate the approximated time it takes to transmit one character
2113	 * with the given baud rate. We use this as the poll interval when we
2114	 * wait for the tx queue to empty.
2115	 */
2116	uap->rs485_tx_drain_interval = DIV_ROUND_UP(bits * 1000 * 1000, baud);
 
 
 
 
 
 
 
 
 
 
 
2117
2118	pl011_setup_status_masks(port, termios);
 
 
 
 
2119
2120	if (UART_ENABLE_MS(port, termios->c_cflag))
2121		pl011_enable_ms(port);
2122
2123	if (port->rs485.flags & SER_RS485_ENABLED)
2124		termios->c_cflag &= ~CRTSCTS;
2125
2126	old_cr = pl011_read(uap, REG_CR);
2127
2128	if (termios->c_cflag & CRTSCTS) {
2129		if (old_cr & UART011_CR_RTS)
2130			old_cr |= UART011_CR_RTSEN;
2131
2132		old_cr |= UART011_CR_CTSEN;
2133		port->status |= UPSTAT_AUTOCTS | UPSTAT_AUTORTS;
2134	} else {
2135		old_cr &= ~(UART011_CR_CTSEN | UART011_CR_RTSEN);
2136		port->status &= ~(UPSTAT_AUTOCTS | UPSTAT_AUTORTS);
2137	}
2138
2139	if (uap->vendor->oversampling) {
2140		if (baud > port->uartclk / 16)
2141			old_cr |= ST_UART011_CR_OVSFACT;
2142		else
2143			old_cr &= ~ST_UART011_CR_OVSFACT;
2144	}
2145
2146	/*
2147	 * Workaround for the ST Micro oversampling variants to
2148	 * increase the bitrate slightly, by lowering the divisor,
2149	 * to avoid delayed sampling of start bit at high speeds,
2150	 * else we see data corruption.
2151	 */
2152	if (uap->vendor->oversampling) {
2153		if ((baud >= 3000000) && (baud < 3250000) && (quot > 1))
2154			quot -= 1;
2155		else if ((baud > 3250000) && (quot > 2))
2156			quot -= 2;
2157	}
2158	/* Set baud rate */
2159	pl011_write(quot & 0x3f, uap, REG_FBRD);
2160	pl011_write(quot >> 6, uap, REG_IBRD);
2161
2162	/*
2163	 * ----------v----------v----------v----------v-----
2164	 * NOTE: REG_LCRH_TX and REG_LCRH_RX MUST BE WRITTEN AFTER
2165	 * REG_FBRD & REG_IBRD.
2166	 * ----------^----------^----------^----------^-----
2167	 */
2168	pl011_write_lcr_h(uap, lcr_h);
2169	pl011_write(old_cr, uap, REG_CR);
 
 
 
 
 
 
 
 
 
 
2170
2171	spin_unlock_irqrestore(&port->lock, flags);
2172}
2173
2174static void
2175sbsa_uart_set_termios(struct uart_port *port, struct ktermios *termios,
2176		      const struct ktermios *old)
2177{
2178	struct uart_amba_port *uap =
2179	    container_of(port, struct uart_amba_port, port);
2180	unsigned long flags;
2181
2182	tty_termios_encode_baud_rate(termios, uap->fixed_baud, uap->fixed_baud);
2183
2184	/* The SBSA UART only supports 8n1 without hardware flow control. */
2185	termios->c_cflag &= ~(CSIZE | CSTOPB | PARENB | PARODD);
2186	termios->c_cflag &= ~(CMSPAR | CRTSCTS);
2187	termios->c_cflag |= CS8 | CLOCAL;
2188
2189	spin_lock_irqsave(&port->lock, flags);
2190	uart_update_timeout(port, CS8, uap->fixed_baud);
2191	pl011_setup_status_masks(port, termios);
2192	spin_unlock_irqrestore(&port->lock, flags);
2193}
2194
2195static const char *pl011_type(struct uart_port *port)
 
 
 
2196{
2197	struct uart_amba_port *uap =
2198	    container_of(port, struct uart_amba_port, port);
2199	return uap->port.type == PORT_AMBA ? uap->type : NULL;
2200}
2201
2202/*
2203 * Configure/autoconfigure the port.
2204 */
2205static void pl011_config_port(struct uart_port *port, int flags)
2206{
2207	if (flags & UART_CONFIG_TYPE)
2208		port->type = PORT_AMBA;
 
 
2209}
2210
2211/*
2212 * verify the new serial_struct (for TIOCSSERIAL).
2213 */
2214static int pl011_verify_port(struct uart_port *port, struct serial_struct *ser)
2215{
2216	int ret = 0;
2217	if (ser->type != PORT_UNKNOWN && ser->type != PORT_AMBA)
2218		ret = -EINVAL;
2219	if (ser->irq < 0 || ser->irq >= nr_irqs)
2220		ret = -EINVAL;
2221	if (ser->baud_base < 9600)
2222		ret = -EINVAL;
2223	if (port->mapbase != (unsigned long) ser->iomem_base)
2224		ret = -EINVAL;
2225	return ret;
2226}
2227
2228static int pl011_rs485_config(struct uart_port *port, struct ktermios *termios,
2229			      struct serial_rs485 *rs485)
2230{
2231	struct uart_amba_port *uap =
2232		container_of(port, struct uart_amba_port, port);
2233
2234	if (port->rs485.flags & SER_RS485_ENABLED)
2235		pl011_rs485_tx_stop(uap);
2236
2237	/* Make sure auto RTS is disabled */
2238	if (rs485->flags & SER_RS485_ENABLED) {
2239		u32 cr = pl011_read(uap, REG_CR);
2240
2241		cr &= ~UART011_CR_RTSEN;
2242		pl011_write(cr, uap, REG_CR);
2243		port->status &= ~UPSTAT_AUTORTS;
2244	}
2245
2246	return 0;
2247}
2248
2249static const struct uart_ops amba_pl011_pops = {
2250	.tx_empty	= pl011_tx_empty,
2251	.set_mctrl	= pl011_set_mctrl,
2252	.get_mctrl	= pl011_get_mctrl,
2253	.stop_tx	= pl011_stop_tx,
2254	.start_tx	= pl011_start_tx,
2255	.stop_rx	= pl011_stop_rx,
2256	.throttle	= pl011_throttle_rx,
2257	.unthrottle	= pl011_unthrottle_rx,
2258	.enable_ms	= pl011_enable_ms,
2259	.break_ctl	= pl011_break_ctl,
2260	.startup	= pl011_startup,
2261	.shutdown	= pl011_shutdown,
2262	.flush_buffer	= pl011_dma_flush_buffer,
2263	.set_termios	= pl011_set_termios,
2264	.type		= pl011_type,
2265	.config_port	= pl011_config_port,
2266	.verify_port	= pl011_verify_port,
 
 
2267#ifdef CONFIG_CONSOLE_POLL
2268	.poll_init     = pl011_hwinit,
2269	.poll_get_char = pl011_get_poll_char,
2270	.poll_put_char = pl011_put_poll_char,
2271#endif
2272};
2273
2274static void sbsa_uart_set_mctrl(struct uart_port *port, unsigned int mctrl)
2275{
2276}
2277
2278static unsigned int sbsa_uart_get_mctrl(struct uart_port *port)
2279{
2280	return 0;
2281}
2282
2283static const struct uart_ops sbsa_uart_pops = {
2284	.tx_empty	= pl011_tx_empty,
2285	.set_mctrl	= sbsa_uart_set_mctrl,
2286	.get_mctrl	= sbsa_uart_get_mctrl,
2287	.stop_tx	= pl011_stop_tx,
2288	.start_tx	= pl011_start_tx,
2289	.stop_rx	= pl011_stop_rx,
2290	.startup	= sbsa_uart_startup,
2291	.shutdown	= sbsa_uart_shutdown,
2292	.set_termios	= sbsa_uart_set_termios,
2293	.type		= pl011_type,
2294	.config_port	= pl011_config_port,
2295	.verify_port	= pl011_verify_port,
2296#ifdef CONFIG_CONSOLE_POLL
2297	.poll_init     = pl011_hwinit,
2298	.poll_get_char = pl011_get_poll_char,
2299	.poll_put_char = pl011_put_poll_char,
2300#endif
2301};
2302
2303static struct uart_amba_port *amba_ports[UART_NR];
2304
2305#ifdef CONFIG_SERIAL_AMBA_PL011_CONSOLE
2306
2307static void pl011_console_putchar(struct uart_port *port, unsigned char ch)
2308{
2309	struct uart_amba_port *uap =
2310	    container_of(port, struct uart_amba_port, port);
2311
2312	while (pl011_read(uap, REG_FR) & UART01x_FR_TXFF)
2313		cpu_relax();
2314	pl011_write(ch, uap, REG_DR);
2315}
2316
2317static void
2318pl011_console_write(struct console *co, const char *s, unsigned int count)
2319{
2320	struct uart_amba_port *uap = amba_ports[co->index];
2321	unsigned int old_cr = 0, new_cr;
2322	unsigned long flags;
2323	int locked = 1;
2324
2325	clk_enable(uap->clk);
2326
2327	local_irq_save(flags);
2328	if (uap->port.sysrq)
2329		locked = 0;
2330	else if (oops_in_progress)
2331		locked = spin_trylock(&uap->port.lock);
2332	else
2333		spin_lock(&uap->port.lock);
2334
2335	/*
2336	 *	First save the CR then disable the interrupts
2337	 */
2338	if (!uap->vendor->always_enabled) {
2339		old_cr = pl011_read(uap, REG_CR);
2340		new_cr = old_cr & ~UART011_CR_CTSEN;
2341		new_cr |= UART01x_CR_UARTEN | UART011_CR_TXE;
2342		pl011_write(new_cr, uap, REG_CR);
2343	}
2344
2345	uart_console_write(&uap->port, s, count, pl011_console_putchar);
2346
2347	/*
2348	 *	Finally, wait for transmitter to become empty and restore the
2349	 *	TCR. Allow feature register bits to be inverted to work around
2350	 *	errata.
2351	 */
2352	while ((pl011_read(uap, REG_FR) ^ uap->vendor->inv_fr)
2353						& uap->vendor->fr_busy)
2354		cpu_relax();
2355	if (!uap->vendor->always_enabled)
2356		pl011_write(old_cr, uap, REG_CR);
2357
2358	if (locked)
2359		spin_unlock(&uap->port.lock);
2360	local_irq_restore(flags);
2361
2362	clk_disable(uap->clk);
2363}
2364
2365static void pl011_console_get_options(struct uart_amba_port *uap, int *baud,
2366				      int *parity, int *bits)
 
2367{
2368	if (pl011_read(uap, REG_CR) & UART01x_CR_UARTEN) {
2369		unsigned int lcr_h, ibrd, fbrd;
2370
2371		lcr_h = pl011_read(uap, REG_LCRH_TX);
2372
2373		*parity = 'n';
2374		if (lcr_h & UART01x_LCRH_PEN) {
2375			if (lcr_h & UART01x_LCRH_EPS)
2376				*parity = 'e';
2377			else
2378				*parity = 'o';
2379		}
2380
2381		if ((lcr_h & 0x60) == UART01x_LCRH_WLEN_7)
2382			*bits = 7;
2383		else
2384			*bits = 8;
2385
2386		ibrd = pl011_read(uap, REG_IBRD);
2387		fbrd = pl011_read(uap, REG_FBRD);
2388
2389		*baud = uap->port.uartclk * 4 / (64 * ibrd + fbrd);
2390
2391		if (uap->vendor->oversampling) {
2392			if (pl011_read(uap, REG_CR)
2393				  & ST_UART011_CR_OVSFACT)
2394				*baud *= 2;
2395		}
2396	}
2397}
2398
2399static int pl011_console_setup(struct console *co, char *options)
2400{
2401	struct uart_amba_port *uap;
2402	int baud = 38400;
2403	int bits = 8;
2404	int parity = 'n';
2405	int flow = 'n';
2406	int ret;
2407
2408	/*
2409	 * Check whether an invalid uart number has been specified, and
2410	 * if so, search for the first available port that does have
2411	 * console support.
2412	 */
2413	if (co->index >= UART_NR)
2414		co->index = 0;
2415	uap = amba_ports[co->index];
2416	if (!uap)
2417		return -ENODEV;
2418
2419	/* Allow pins to be muxed in and configured */
2420	pinctrl_pm_select_default_state(uap->port.dev);
2421
2422	ret = clk_prepare(uap->clk);
2423	if (ret)
2424		return ret;
2425
2426	if (dev_get_platdata(uap->port.dev)) {
2427		struct amba_pl011_data *plat;
2428
2429		plat = dev_get_platdata(uap->port.dev);
2430		if (plat->init)
2431			plat->init();
2432	}
2433
2434	uap->port.uartclk = clk_get_rate(uap->clk);
2435
2436	if (uap->vendor->fixed_options) {
2437		baud = uap->fixed_baud;
2438	} else {
2439		if (options)
2440			uart_parse_options(options,
2441					   &baud, &parity, &bits, &flow);
2442		else
2443			pl011_console_get_options(uap, &baud, &parity, &bits);
2444	}
2445
2446	return uart_set_options(&uap->port, co, baud, parity, bits, flow);
2447}
2448
2449/**
2450 *	pl011_console_match - non-standard console matching
2451 *	@co:	  registering console
2452 *	@name:	  name from console command line
2453 *	@idx:	  index from console command line
2454 *	@options: ptr to option string from console command line
2455 *
2456 *	Only attempts to match console command lines of the form:
2457 *	    console=pl011,mmio|mmio32,<addr>[,<options>]
2458 *	    console=pl011,0x<addr>[,<options>]
2459 *	This form is used to register an initial earlycon boot console and
2460 *	replace it with the amba_console at pl011 driver init.
2461 *
2462 *	Performs console setup for a match (as required by interface)
2463 *	If no <options> are specified, then assume the h/w is already setup.
2464 *
2465 *	Returns 0 if console matches; otherwise non-zero to use default matching
2466 */
2467static int pl011_console_match(struct console *co, char *name, int idx,
2468			       char *options)
2469{
2470	unsigned char iotype;
2471	resource_size_t addr;
2472	int i;
2473
2474	/*
2475	 * Systems affected by the Qualcomm Technologies QDF2400 E44 erratum
2476	 * have a distinct console name, so make sure we check for that.
2477	 * The actual implementation of the erratum occurs in the probe
2478	 * function.
2479	 */
2480	if ((strcmp(name, "qdf2400_e44") != 0) && (strcmp(name, "pl011") != 0))
2481		return -ENODEV;
2482
2483	if (uart_parse_earlycon(options, &iotype, &addr, &options))
2484		return -ENODEV;
2485
2486	if (iotype != UPIO_MEM && iotype != UPIO_MEM32)
2487		return -ENODEV;
2488
2489	/* try to match the port specified on the command line */
2490	for (i = 0; i < ARRAY_SIZE(amba_ports); i++) {
2491		struct uart_port *port;
2492
2493		if (!amba_ports[i])
2494			continue;
2495
2496		port = &amba_ports[i]->port;
2497
2498		if (port->mapbase != addr)
2499			continue;
2500
2501		co->index = i;
2502		port->cons = co;
2503		return pl011_console_setup(co, options);
2504	}
2505
2506	return -ENODEV;
2507}
2508
2509static struct uart_driver amba_reg;
2510static struct console amba_console = {
2511	.name		= "ttyAMA",
2512	.write		= pl011_console_write,
2513	.device		= uart_console_device,
2514	.setup		= pl011_console_setup,
2515	.match		= pl011_console_match,
2516	.flags		= CON_PRINTBUFFER | CON_ANYTIME,
2517	.index		= -1,
2518	.data		= &amba_reg,
2519};
2520
2521#define AMBA_CONSOLE	(&amba_console)
2522
2523static void qdf2400_e44_putc(struct uart_port *port, unsigned char c)
2524{
2525	while (readl(port->membase + UART01x_FR) & UART01x_FR_TXFF)
2526		cpu_relax();
2527	writel(c, port->membase + UART01x_DR);
2528	while (!(readl(port->membase + UART01x_FR) & UART011_FR_TXFE))
2529		cpu_relax();
2530}
2531
2532static void qdf2400_e44_early_write(struct console *con, const char *s, unsigned n)
2533{
2534	struct earlycon_device *dev = con->data;
2535
2536	uart_console_write(&dev->port, s, n, qdf2400_e44_putc);
2537}
2538
2539static void pl011_putc(struct uart_port *port, unsigned char c)
2540{
2541	while (readl(port->membase + UART01x_FR) & UART01x_FR_TXFF)
2542		cpu_relax();
2543	if (port->iotype == UPIO_MEM32)
2544		writel(c, port->membase + UART01x_DR);
2545	else
2546		writeb(c, port->membase + UART01x_DR);
2547	while (readl(port->membase + UART01x_FR) & UART01x_FR_BUSY)
2548		cpu_relax();
2549}
2550
2551static void pl011_early_write(struct console *con, const char *s, unsigned n)
2552{
2553	struct earlycon_device *dev = con->data;
2554
2555	uart_console_write(&dev->port, s, n, pl011_putc);
2556}
2557
2558#ifdef CONFIG_CONSOLE_POLL
2559static int pl011_getc(struct uart_port *port)
2560{
2561	if (readl(port->membase + UART01x_FR) & UART01x_FR_RXFE)
2562		return NO_POLL_CHAR;
2563
2564	if (port->iotype == UPIO_MEM32)
2565		return readl(port->membase + UART01x_DR);
2566	else
2567		return readb(port->membase + UART01x_DR);
2568}
2569
2570static int pl011_early_read(struct console *con, char *s, unsigned int n)
2571{
2572	struct earlycon_device *dev = con->data;
2573	int ch, num_read = 0;
2574
2575	while (num_read < n) {
2576		ch = pl011_getc(&dev->port);
2577		if (ch == NO_POLL_CHAR)
2578			break;
2579
2580		s[num_read++] = ch;
2581	}
2582
2583	return num_read;
2584}
2585#else
2586#define pl011_early_read NULL
2587#endif
2588
2589/*
2590 * On non-ACPI systems, earlycon is enabled by specifying
2591 * "earlycon=pl011,<address>" on the kernel command line.
2592 *
2593 * On ACPI ARM64 systems, an "early" console is enabled via the SPCR table,
2594 * by specifying only "earlycon" on the command line.  Because it requires
2595 * SPCR, the console starts after ACPI is parsed, which is later than a
2596 * traditional early console.
2597 *
2598 * To get the traditional early console that starts before ACPI is parsed,
2599 * specify the full "earlycon=pl011,<address>" option.
2600 */
2601static int __init pl011_early_console_setup(struct earlycon_device *device,
2602					    const char *opt)
2603{
2604	if (!device->port.membase)
2605		return -ENODEV;
2606
2607	device->con->write = pl011_early_write;
2608	device->con->read = pl011_early_read;
2609
2610	return 0;
2611}
2612OF_EARLYCON_DECLARE(pl011, "arm,pl011", pl011_early_console_setup);
2613OF_EARLYCON_DECLARE(pl011, "arm,sbsa-uart", pl011_early_console_setup);
2614
2615/*
2616 * On Qualcomm Datacenter Technologies QDF2400 SOCs affected by
2617 * Erratum 44, traditional earlycon can be enabled by specifying
2618 * "earlycon=qdf2400_e44,<address>".  Any options are ignored.
2619 *
2620 * Alternatively, you can just specify "earlycon", and the early console
2621 * will be enabled with the information from the SPCR table.  In this
2622 * case, the SPCR code will detect the need for the E44 work-around,
2623 * and set the console name to "qdf2400_e44".
2624 */
2625static int __init
2626qdf2400_e44_early_console_setup(struct earlycon_device *device,
2627				const char *opt)
2628{
2629	if (!device->port.membase)
2630		return -ENODEV;
2631
2632	device->con->write = qdf2400_e44_early_write;
2633	return 0;
2634}
2635EARLYCON_DECLARE(qdf2400_e44, qdf2400_e44_early_console_setup);
2636
2637#else
2638#define AMBA_CONSOLE	NULL
2639#endif
2640
2641static struct uart_driver amba_reg = {
2642	.owner			= THIS_MODULE,
2643	.driver_name		= "ttyAMA",
2644	.dev_name		= "ttyAMA",
2645	.major			= SERIAL_AMBA_MAJOR,
2646	.minor			= SERIAL_AMBA_MINOR,
2647	.nr			= UART_NR,
2648	.cons			= AMBA_CONSOLE,
2649};
2650
2651static int pl011_probe_dt_alias(int index, struct device *dev)
2652{
2653	struct device_node *np;
2654	static bool seen_dev_with_alias = false;
2655	static bool seen_dev_without_alias = false;
2656	int ret = index;
2657
2658	if (!IS_ENABLED(CONFIG_OF))
2659		return ret;
 
2660
2661	np = dev->of_node;
2662	if (!np)
2663		return ret;
 
2664
2665	ret = of_alias_get_id(np, "serial");
2666	if (ret < 0) {
2667		seen_dev_without_alias = true;
2668		ret = index;
2669	} else {
2670		seen_dev_with_alias = true;
2671		if (ret >= ARRAY_SIZE(amba_ports) || amba_ports[ret] != NULL) {
2672			dev_warn(dev, "requested serial port %d  not available.\n", ret);
2673			ret = index;
2674		}
2675	}
2676
2677	if (seen_dev_with_alias && seen_dev_without_alias)
2678		dev_warn(dev, "aliased and non-aliased serial devices found in device tree. Serial port enumeration may be unpredictable.\n");
2679
2680	return ret;
2681}
2682
2683/* unregisters the driver also if no more ports are left */
2684static void pl011_unregister_port(struct uart_amba_port *uap)
2685{
2686	int i;
2687	bool busy = false;
2688
2689	for (i = 0; i < ARRAY_SIZE(amba_ports); i++) {
2690		if (amba_ports[i] == uap)
2691			amba_ports[i] = NULL;
2692		else if (amba_ports[i])
2693			busy = true;
2694	}
2695	pl011_dma_remove(uap);
2696	if (!busy)
2697		uart_unregister_driver(&amba_reg);
2698}
2699
2700static int pl011_find_free_port(void)
2701{
2702	int i;
2703
2704	for (i = 0; i < ARRAY_SIZE(amba_ports); i++)
2705		if (amba_ports[i] == NULL)
2706			return i;
2707
2708	return -EBUSY;
2709}
2710
2711static int pl011_get_rs485_mode(struct uart_amba_port *uap)
2712{
2713	struct uart_port *port = &uap->port;
2714	int ret;
2715
2716	ret = uart_get_rs485_mode(port);
2717	if (ret)
2718		return ret;
2719
2720	return 0;
2721}
2722
2723static int pl011_setup_port(struct device *dev, struct uart_amba_port *uap,
2724			    struct resource *mmiobase, int index)
2725{
2726	void __iomem *base;
2727	int ret;
2728
2729	base = devm_ioremap_resource(dev, mmiobase);
2730	if (IS_ERR(base))
2731		return PTR_ERR(base);
2732
2733	index = pl011_probe_dt_alias(index, dev);
2734
2735	uap->port.dev = dev;
2736	uap->port.mapbase = mmiobase->start;
2737	uap->port.membase = base;
 
 
2738	uap->port.fifosize = uap->fifosize;
2739	uap->port.has_sysrq = IS_ENABLED(CONFIG_SERIAL_AMBA_PL011_CONSOLE);
2740	uap->port.flags = UPF_BOOT_AUTOCONF;
2741	uap->port.line = index;
 
2742
2743	ret = pl011_get_rs485_mode(uap);
2744	if (ret)
2745		return ret;
2746
2747	amba_ports[index] = uap;
2748
2749	return 0;
2750}
2751
2752static int pl011_register_port(struct uart_amba_port *uap)
2753{
2754	int ret, i;
2755
2756	/* Ensure interrupts from this UART are masked and cleared */
2757	pl011_write(0, uap, REG_IMSC);
2758	pl011_write(0xffff, uap, REG_ICR);
2759
2760	if (!amba_reg.state) {
2761		ret = uart_register_driver(&amba_reg);
2762		if (ret < 0) {
2763			dev_err(uap->port.dev,
2764				"Failed to register AMBA-PL011 driver\n");
2765			for (i = 0; i < ARRAY_SIZE(amba_ports); i++)
2766				if (amba_ports[i] == uap)
2767					amba_ports[i] = NULL;
2768			return ret;
2769		}
2770	}
2771
2772	ret = uart_add_one_port(&amba_reg, &uap->port);
2773	if (ret)
2774		pl011_unregister_port(uap);
2775
2776	return ret;
2777}
2778
2779static const struct serial_rs485 pl011_rs485_supported = {
2780	.flags = SER_RS485_ENABLED | SER_RS485_RTS_ON_SEND | SER_RS485_RTS_AFTER_SEND |
2781		 SER_RS485_RX_DURING_TX,
2782	.delay_rts_before_send = 1,
2783	.delay_rts_after_send = 1,
2784};
2785
2786static int pl011_probe(struct amba_device *dev, const struct amba_id *id)
2787{
2788	struct uart_amba_port *uap;
2789	struct vendor_data *vendor = id->data;
2790	int portnr, ret;
2791	u32 val;
2792
2793	portnr = pl011_find_free_port();
2794	if (portnr < 0)
2795		return portnr;
2796
2797	uap = devm_kzalloc(&dev->dev, sizeof(struct uart_amba_port),
2798			   GFP_KERNEL);
2799	if (!uap)
2800		return -ENOMEM;
2801
2802	uap->clk = devm_clk_get(&dev->dev, NULL);
2803	if (IS_ERR(uap->clk))
2804		return PTR_ERR(uap->clk);
2805
2806	uap->reg_offset = vendor->reg_offset;
2807	uap->vendor = vendor;
2808	uap->fifosize = vendor->get_fifosize(dev);
2809	uap->port.iotype = vendor->access_32b ? UPIO_MEM32 : UPIO_MEM;
2810	uap->port.irq = dev->irq[0];
2811	uap->port.ops = &amba_pl011_pops;
2812	uap->port.rs485_config = pl011_rs485_config;
2813	uap->port.rs485_supported = pl011_rs485_supported;
2814	snprintf(uap->type, sizeof(uap->type), "PL011 rev%u", amba_rev(dev));
2815
2816	if (device_property_read_u32(&dev->dev, "reg-io-width", &val) == 0) {
2817		switch (val) {
2818		case 1:
2819			uap->port.iotype = UPIO_MEM;
2820			break;
2821		case 4:
2822			uap->port.iotype = UPIO_MEM32;
2823			break;
2824		default:
2825			dev_warn(&dev->dev, "unsupported reg-io-width (%d)\n",
2826				 val);
2827			return -EINVAL;
2828		}
2829	}
2830
2831	ret = pl011_setup_port(&dev->dev, uap, &dev->res, portnr);
2832	if (ret)
2833		return ret;
2834
2835	amba_set_drvdata(dev, uap);
2836
2837	return pl011_register_port(uap);
2838}
2839
2840static void pl011_remove(struct amba_device *dev)
 
2841{
2842	struct uart_amba_port *uap = amba_get_drvdata(dev);
2843
2844	uart_remove_one_port(&amba_reg, &uap->port);
2845	pl011_unregister_port(uap);
2846}
2847
2848#ifdef CONFIG_PM_SLEEP
2849static int pl011_suspend(struct device *dev)
2850{
2851	struct uart_amba_port *uap = dev_get_drvdata(dev);
2852
2853	if (!uap)
2854		return -EINVAL;
2855
2856	return uart_suspend_port(&amba_reg, &uap->port);
2857}
2858
2859static int pl011_resume(struct device *dev)
2860{
2861	struct uart_amba_port *uap = dev_get_drvdata(dev);
2862
2863	if (!uap)
2864		return -EINVAL;
2865
2866	return uart_resume_port(&amba_reg, &uap->port);
2867}
2868#endif
2869
2870static SIMPLE_DEV_PM_OPS(pl011_dev_pm_ops, pl011_suspend, pl011_resume);
2871
2872static int sbsa_uart_probe(struct platform_device *pdev)
2873{
2874	struct uart_amba_port *uap;
2875	struct resource *r;
2876	int portnr, ret;
2877	int baudrate;
2878
2879	/*
2880	 * Check the mandatory baud rate parameter in the DT node early
2881	 * so that we can easily exit with the error.
2882	 */
2883	if (pdev->dev.of_node) {
2884		struct device_node *np = pdev->dev.of_node;
2885
2886		ret = of_property_read_u32(np, "current-speed", &baudrate);
2887		if (ret)
2888			return ret;
2889	} else {
2890		baudrate = 115200;
2891	}
2892
2893	portnr = pl011_find_free_port();
2894	if (portnr < 0)
2895		return portnr;
2896
2897	uap = devm_kzalloc(&pdev->dev, sizeof(struct uart_amba_port),
2898			   GFP_KERNEL);
2899	if (!uap)
2900		return -ENOMEM;
2901
2902	ret = platform_get_irq(pdev, 0);
2903	if (ret < 0)
2904		return ret;
2905	uap->port.irq	= ret;
2906
2907#ifdef CONFIG_ACPI_SPCR_TABLE
2908	if (qdf2400_e44_present) {
2909		dev_info(&pdev->dev, "working around QDF2400 SoC erratum 44\n");
2910		uap->vendor = &vendor_qdt_qdf2400_e44;
2911	} else
2912#endif
2913		uap->vendor = &vendor_sbsa;
2914
2915	uap->reg_offset	= uap->vendor->reg_offset;
2916	uap->fifosize	= 32;
2917	uap->port.iotype = uap->vendor->access_32b ? UPIO_MEM32 : UPIO_MEM;
2918	uap->port.ops	= &sbsa_uart_pops;
2919	uap->fixed_baud = baudrate;
2920
2921	snprintf(uap->type, sizeof(uap->type), "SBSA");
2922
2923	r = platform_get_resource(pdev, IORESOURCE_MEM, 0);
2924
2925	ret = pl011_setup_port(&pdev->dev, uap, r, portnr);
2926	if (ret)
2927		return ret;
2928
2929	platform_set_drvdata(pdev, uap);
2930
2931	return pl011_register_port(uap);
2932}
2933
2934static int sbsa_uart_remove(struct platform_device *pdev)
2935{
2936	struct uart_amba_port *uap = platform_get_drvdata(pdev);
2937
2938	uart_remove_one_port(&amba_reg, &uap->port);
2939	pl011_unregister_port(uap);
2940	return 0;
2941}
2942
2943static const struct of_device_id sbsa_uart_of_match[] = {
2944	{ .compatible = "arm,sbsa-uart", },
2945	{},
2946};
2947MODULE_DEVICE_TABLE(of, sbsa_uart_of_match);
2948
2949static const struct acpi_device_id __maybe_unused sbsa_uart_acpi_match[] = {
2950	{ "ARMH0011", 0 },
2951	{ "ARMHB000", 0 },
2952	{},
2953};
2954MODULE_DEVICE_TABLE(acpi, sbsa_uart_acpi_match);
2955
2956static struct platform_driver arm_sbsa_uart_platform_driver = {
2957	.probe		= sbsa_uart_probe,
2958	.remove		= sbsa_uart_remove,
2959	.driver	= {
2960		.name	= "sbsa-uart",
2961		.pm	= &pl011_dev_pm_ops,
2962		.of_match_table = of_match_ptr(sbsa_uart_of_match),
2963		.acpi_match_table = ACPI_PTR(sbsa_uart_acpi_match),
2964		.suppress_bind_attrs = IS_BUILTIN(CONFIG_SERIAL_AMBA_PL011),
2965	},
2966};
2967
2968static const struct amba_id pl011_ids[] = {
2969	{
2970		.id	= 0x00041011,
2971		.mask	= 0x000fffff,
2972		.data	= &vendor_arm,
2973	},
2974	{
2975		.id	= 0x00380802,
2976		.mask	= 0x00ffffff,
2977		.data	= &vendor_st,
2978	},
2979	{ 0, 0 },
2980};
2981
2982MODULE_DEVICE_TABLE(amba, pl011_ids);
2983
2984static struct amba_driver pl011_driver = {
2985	.drv = {
2986		.name	= "uart-pl011",
2987		.pm	= &pl011_dev_pm_ops,
2988		.suppress_bind_attrs = IS_BUILTIN(CONFIG_SERIAL_AMBA_PL011),
2989	},
2990	.id_table	= pl011_ids,
2991	.probe		= pl011_probe,
2992	.remove		= pl011_remove,
 
 
 
 
2993};
2994
2995static int __init pl011_init(void)
2996{
 
2997	printk(KERN_INFO "Serial: AMBA PL011 UART driver\n");
2998
2999	if (platform_driver_register(&arm_sbsa_uart_platform_driver))
3000		pr_warn("could not register SBSA UART platform driver\n");
3001	return amba_driver_register(&pl011_driver);
 
 
 
 
3002}
3003
3004static void __exit pl011_exit(void)
3005{
3006	platform_driver_unregister(&arm_sbsa_uart_platform_driver);
3007	amba_driver_unregister(&pl011_driver);
 
3008}
3009
3010/*
3011 * While this can be a module, if builtin it's most likely the console
3012 * So let's leave module_exit but move module_init to an earlier place
3013 */
3014arch_initcall(pl011_init);
3015module_exit(pl011_exit);
3016
3017MODULE_AUTHOR("ARM Ltd/Deep Blue Solutions Ltd");
3018MODULE_DESCRIPTION("ARM AMBA serial port driver");
3019MODULE_LICENSE("GPL");