Linux Audio

Check our new training course

Loading...
v3.1
 
   1/*
   2 *  Driver for AMBA serial ports
   3 *
   4 *  Based on drivers/char/serial.c, by Linus Torvalds, Theodore Ts'o.
   5 *
   6 *  Copyright 1999 ARM Limited
   7 *  Copyright (C) 2000 Deep Blue Solutions Ltd.
   8 *  Copyright (C) 2010 ST-Ericsson SA
   9 *
  10 * This program is free software; you can redistribute it and/or modify
  11 * it under the terms of the GNU General Public License as published by
  12 * the Free Software Foundation; either version 2 of the License, or
  13 * (at your option) any later version.
  14 *
  15 * This program is distributed in the hope that it will be useful,
  16 * but WITHOUT ANY WARRANTY; without even the implied warranty of
  17 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
  18 * GNU General Public License for more details.
  19 *
  20 * You should have received a copy of the GNU General Public License
  21 * along with this program; if not, write to the Free Software
  22 * Foundation, Inc., 59 Temple Place, Suite 330, Boston, MA  02111-1307  USA
  23 *
  24 * This is a generic driver for ARM AMBA-type serial ports.  They
  25 * have a lot of 16550-like features, but are not register compatible.
  26 * Note that although they do have CTS, DCD and DSR inputs, they do
  27 * not have an RI input, nor do they have DTR or RTS outputs.  If
  28 * required, these have to be supplied via some other means (eg, GPIO)
  29 * and hooked into this driver.
  30 */
  31
 
  32#if defined(CONFIG_SERIAL_AMBA_PL011_CONSOLE) && defined(CONFIG_MAGIC_SYSRQ)
  33#define SUPPORT_SYSRQ
  34#endif
  35
  36#include <linux/module.h>
  37#include <linux/ioport.h>
  38#include <linux/init.h>
  39#include <linux/console.h>
  40#include <linux/sysrq.h>
  41#include <linux/device.h>
  42#include <linux/tty.h>
  43#include <linux/tty_flip.h>
  44#include <linux/serial_core.h>
  45#include <linux/serial.h>
  46#include <linux/amba/bus.h>
  47#include <linux/amba/serial.h>
  48#include <linux/clk.h>
  49#include <linux/slab.h>
  50#include <linux/dmaengine.h>
  51#include <linux/dma-mapping.h>
  52#include <linux/scatterlist.h>
  53#include <linux/delay.h>
 
 
 
 
 
 
 
  54
  55#include <asm/io.h>
  56#include <asm/sizes.h>
  57
  58#define UART_NR			14
  59
  60#define SERIAL_AMBA_MAJOR	204
  61#define SERIAL_AMBA_MINOR	64
  62#define SERIAL_AMBA_NR		UART_NR
  63
  64#define AMBA_ISR_PASS_LIMIT	256
  65
  66#define UART_DR_ERROR		(UART011_DR_OE|UART011_DR_BE|UART011_DR_PE|UART011_DR_FE)
  67#define UART_DUMMY_DR_RX	(1 << 16)
  68
  69
  70#define UART_WA_SAVE_NR 14
  71
  72static void pl011_lockup_wa(unsigned long data);
  73static const u32 uart_wa_reg[UART_WA_SAVE_NR] = {
  74	ST_UART011_DMAWM,
  75	ST_UART011_TIMEOUT,
  76	ST_UART011_LCRH_RX,
  77	UART011_IBRD,
  78	UART011_FBRD,
  79	ST_UART011_LCRH_TX,
  80	UART011_IFLS,
  81	ST_UART011_XFCR,
  82	ST_UART011_XON1,
  83	ST_UART011_XON2,
  84	ST_UART011_XOFF1,
  85	ST_UART011_XOFF2,
  86	UART011_CR,
  87	UART011_IMSC
  88};
  89
  90static u32 uart_wa_regdata[UART_WA_SAVE_NR];
  91static DECLARE_TASKLET(pl011_lockup_tlet, pl011_lockup_wa, 0);
  92
  93/* There is by now at least one vendor with differing details, so handle it */
  94struct vendor_data {
 
  95	unsigned int		ifls;
  96	unsigned int		fifosize;
  97	unsigned int		lcrh_tx;
  98	unsigned int		lcrh_rx;
 
 
 
  99	bool			oversampling;
 100	bool			interrupt_may_hang;   /* vendor-specific */
 101	bool			dma_threshold;
 
 
 
 
 
 102};
 103
 
 
 
 
 
 104static struct vendor_data vendor_arm = {
 
 105	.ifls			= UART011_IFLS_RX4_8|UART011_IFLS_TX4_8,
 106	.fifosize		= 16,
 107	.lcrh_tx		= UART011_LCRH,
 108	.lcrh_rx		= UART011_LCRH,
 
 109	.oversampling		= false,
 110	.dma_threshold		= false,
 
 
 
 
 111};
 112
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 113static struct vendor_data vendor_st = {
 
 114	.ifls			= UART011_IFLS_RX_HALF|UART011_IFLS_TX_HALF,
 115	.fifosize		= 64,
 116	.lcrh_tx		= ST_UART011_LCRH_TX,
 117	.lcrh_rx		= ST_UART011_LCRH_RX,
 
 118	.oversampling		= true,
 119	.interrupt_may_hang	= true,
 120	.dma_threshold		= true,
 
 
 
 
 121};
 122
 123static struct uart_amba_port *amba_ports[UART_NR];
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 124
 125/* Deals with DMA transactions */
 126
 127struct pl011_sgbuf {
 128	struct scatterlist sg;
 129	char *buf;
 130};
 131
 132struct pl011_dmarx_data {
 133	struct dma_chan		*chan;
 134	struct completion	complete;
 135	bool			use_buf_b;
 136	struct pl011_sgbuf	sgbuf_a;
 137	struct pl011_sgbuf	sgbuf_b;
 138	dma_cookie_t		cookie;
 139	bool			running;
 
 
 
 
 
 
 140};
 141
 142struct pl011_dmatx_data {
 143	struct dma_chan		*chan;
 144	struct scatterlist	sg;
 145	char			*buf;
 146	bool			queued;
 147};
 148
 149/*
 150 * We wrap our port structure around the generic uart_port.
 151 */
 152struct uart_amba_port {
 153	struct uart_port	port;
 
 154	struct clk		*clk;
 155	const struct vendor_data *vendor;
 156	unsigned int		dmacr;		/* dma control reg */
 157	unsigned int		im;		/* interrupt mask */
 158	unsigned int		old_status;
 159	unsigned int		fifosize;	/* vendor-specific */
 160	unsigned int		lcrh_tx;	/* vendor-specific */
 161	unsigned int		lcrh_rx;	/* vendor-specific */
 162	bool			autorts;
 163	char			type[12];
 164	bool			interrupt_may_hang; /* vendor-specific */
 165#ifdef CONFIG_DMA_ENGINE
 166	/* DMA stuff */
 167	bool			using_tx_dma;
 168	bool			using_rx_dma;
 169	struct pl011_dmarx_data dmarx;
 170	struct pl011_dmatx_data	dmatx;
 
 171#endif
 172};
 173
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 174/*
 175 * Reads up to 256 characters from the FIFO or until it's empty and
 176 * inserts them into the TTY layer. Returns the number of characters
 177 * read from the FIFO.
 178 */
 179static int pl011_fifo_to_tty(struct uart_amba_port *uap)
 180{
 181	u16 status, ch;
 182	unsigned int flag, max_count = 256;
 183	int fifotaken = 0;
 184
 185	while (max_count--) {
 186		status = readw(uap->port.membase + UART01x_FR);
 187		if (status & UART01x_FR_RXFE)
 188			break;
 189
 190		/* Take chars from the FIFO and update status */
 191		ch = readw(uap->port.membase + UART01x_DR) |
 192			UART_DUMMY_DR_RX;
 193		flag = TTY_NORMAL;
 194		uap->port.icount.rx++;
 195		fifotaken++;
 196
 197		if (unlikely(ch & UART_DR_ERROR)) {
 198			if (ch & UART011_DR_BE) {
 199				ch &= ~(UART011_DR_FE | UART011_DR_PE);
 200				uap->port.icount.brk++;
 201				if (uart_handle_break(&uap->port))
 202					continue;
 203			} else if (ch & UART011_DR_PE)
 204				uap->port.icount.parity++;
 205			else if (ch & UART011_DR_FE)
 206				uap->port.icount.frame++;
 207			if (ch & UART011_DR_OE)
 208				uap->port.icount.overrun++;
 209
 210			ch &= uap->port.read_status_mask;
 211
 212			if (ch & UART011_DR_BE)
 213				flag = TTY_BREAK;
 214			else if (ch & UART011_DR_PE)
 215				flag = TTY_PARITY;
 216			else if (ch & UART011_DR_FE)
 217				flag = TTY_FRAME;
 218		}
 219
 220		if (uart_handle_sysrq_char(&uap->port, ch & 255))
 221			continue;
 222
 223		uart_insert_char(&uap->port, ch, UART011_DR_OE, ch, flag);
 224	}
 225
 226	return fifotaken;
 227}
 228
 229
 230/*
 231 * All the DMA operation mode stuff goes inside this ifdef.
 232 * This assumes that you have a generic DMA device interface,
 233 * no custom DMA interfaces are supported.
 234 */
 235#ifdef CONFIG_DMA_ENGINE
 236
 237#define PL011_DMA_BUFFER_SIZE PAGE_SIZE
 238
 239static int pl011_sgbuf_init(struct dma_chan *chan, struct pl011_sgbuf *sg,
 240	enum dma_data_direction dir)
 241{
 242	sg->buf = kmalloc(PL011_DMA_BUFFER_SIZE, GFP_KERNEL);
 
 
 
 243	if (!sg->buf)
 244		return -ENOMEM;
 245
 246	sg_init_one(&sg->sg, sg->buf, PL011_DMA_BUFFER_SIZE);
 
 
 
 
 247
 248	if (dma_map_sg(chan->device->dev, &sg->sg, 1, dir) != 1) {
 249		kfree(sg->buf);
 250		return -EINVAL;
 251	}
 252	return 0;
 253}
 254
 255static void pl011_sgbuf_free(struct dma_chan *chan, struct pl011_sgbuf *sg,
 256	enum dma_data_direction dir)
 257{
 258	if (sg->buf) {
 259		dma_unmap_sg(chan->device->dev, &sg->sg, 1, dir);
 260		kfree(sg->buf);
 
 261	}
 262}
 263
 264static void pl011_dma_probe_initcall(struct uart_amba_port *uap)
 265{
 266	/* DMA is the sole user of the platform data right now */
 267	struct amba_pl011_data *plat = uap->port.dev->platform_data;
 
 268	struct dma_slave_config tx_conf = {
 269		.dst_addr = uap->port.mapbase + UART01x_DR,
 
 270		.dst_addr_width = DMA_SLAVE_BUSWIDTH_1_BYTE,
 271		.direction = DMA_TO_DEVICE,
 272		.dst_maxburst = uap->fifosize >> 1,
 
 273	};
 274	struct dma_chan *chan;
 275	dma_cap_mask_t mask;
 276
 277	/* We need platform data */
 278	if (!plat || !plat->dma_filter) {
 279		dev_info(uap->port.dev, "no DMA platform data\n");
 280		return;
 281	}
 
 
 282
 283	/* Try to acquire a generic DMA engine slave TX channel */
 284	dma_cap_zero(mask);
 285	dma_cap_set(DMA_SLAVE, mask);
 286
 287	chan = dma_request_channel(mask, plat->dma_filter, plat->dma_tx_param);
 288	if (!chan) {
 289		dev_err(uap->port.dev, "no TX DMA channel!\n");
 290		return;
 
 
 
 
 
 
 
 
 291	}
 292
 293	dmaengine_slave_config(chan, &tx_conf);
 294	uap->dmatx.chan = chan;
 295
 296	dev_info(uap->port.dev, "DMA channel TX %s\n",
 297		 dma_chan_name(uap->dmatx.chan));
 298
 299	/* Optionally make use of an RX channel as well */
 300	if (plat->dma_rx_param) {
 301		struct dma_slave_config rx_conf = {
 302			.src_addr = uap->port.mapbase + UART01x_DR,
 303			.src_addr_width = DMA_SLAVE_BUSWIDTH_1_BYTE,
 304			.direction = DMA_FROM_DEVICE,
 305			.src_maxburst = uap->fifosize >> 1,
 306		};
 307
 
 308		chan = dma_request_channel(mask, plat->dma_filter, plat->dma_rx_param);
 
 309		if (!chan) {
 310			dev_err(uap->port.dev, "no RX DMA channel!\n");
 311			return;
 312		}
 
 313
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 314		dmaengine_slave_config(chan, &rx_conf);
 315		uap->dmarx.chan = chan;
 316
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 317		dev_info(uap->port.dev, "DMA channel RX %s\n",
 318			 dma_chan_name(uap->dmarx.chan));
 319	}
 320}
 321
 322#ifndef MODULE
 323/*
 324 * Stack up the UARTs and let the above initcall be done at device
 325 * initcall time, because the serial driver is called as an arch
 326 * initcall, and at this time the DMA subsystem is not yet registered.
 327 * At this point the driver will switch over to using DMA where desired.
 328 */
 329struct dma_uap {
 330	struct list_head node;
 331	struct uart_amba_port *uap;
 332};
 333
 334static LIST_HEAD(pl011_dma_uarts);
 335
 336static int __init pl011_dma_initcall(void)
 337{
 338	struct list_head *node, *tmp;
 339
 340	list_for_each_safe(node, tmp, &pl011_dma_uarts) {
 341		struct dma_uap *dmau = list_entry(node, struct dma_uap, node);
 342		pl011_dma_probe_initcall(dmau->uap);
 343		list_del(node);
 344		kfree(dmau);
 345	}
 346	return 0;
 347}
 348
 349device_initcall(pl011_dma_initcall);
 350
 351static void pl011_dma_probe(struct uart_amba_port *uap)
 352{
 353	struct dma_uap *dmau = kzalloc(sizeof(struct dma_uap), GFP_KERNEL);
 354	if (dmau) {
 355		dmau->uap = uap;
 356		list_add_tail(&dmau->node, &pl011_dma_uarts);
 357	}
 358}
 359#else
 360static void pl011_dma_probe(struct uart_amba_port *uap)
 361{
 362	pl011_dma_probe_initcall(uap);
 363}
 364#endif
 365
 366static void pl011_dma_remove(struct uart_amba_port *uap)
 367{
 368	/* TODO: remove the initcall if it has not yet executed */
 369	if (uap->dmatx.chan)
 370		dma_release_channel(uap->dmatx.chan);
 371	if (uap->dmarx.chan)
 372		dma_release_channel(uap->dmarx.chan);
 373}
 374
 375/* Forward declare this for the refill routine */
 376static int pl011_dma_tx_refill(struct uart_amba_port *uap);
 
 377
 378/*
 379 * The current DMA TX buffer has been sent.
 380 * Try to queue up another DMA buffer.
 381 */
 382static void pl011_dma_tx_callback(void *data)
 383{
 384	struct uart_amba_port *uap = data;
 385	struct pl011_dmatx_data *dmatx = &uap->dmatx;
 386	unsigned long flags;
 387	u16 dmacr;
 388
 389	spin_lock_irqsave(&uap->port.lock, flags);
 390	if (uap->dmatx.queued)
 391		dma_unmap_sg(dmatx->chan->device->dev, &dmatx->sg, 1,
 392			     DMA_TO_DEVICE);
 393
 394	dmacr = uap->dmacr;
 395	uap->dmacr = dmacr & ~UART011_TXDMAE;
 396	writew(uap->dmacr, uap->port.membase + UART011_DMACR);
 397
 398	/*
 399	 * If TX DMA was disabled, it means that we've stopped the DMA for
 400	 * some reason (eg, XOFF received, or we want to send an X-char.)
 401	 *
 402	 * Note: we need to be careful here of a potential race between DMA
 403	 * and the rest of the driver - if the driver disables TX DMA while
 404	 * a TX buffer completing, we must update the tx queued status to
 405	 * get further refills (hence we check dmacr).
 406	 */
 407	if (!(dmacr & UART011_TXDMAE) || uart_tx_stopped(&uap->port) ||
 408	    uart_circ_empty(&uap->port.state->xmit)) {
 409		uap->dmatx.queued = false;
 410		spin_unlock_irqrestore(&uap->port.lock, flags);
 411		return;
 412	}
 413
 414	if (pl011_dma_tx_refill(uap) <= 0) {
 415		/*
 416		 * We didn't queue a DMA buffer for some reason, but we
 417		 * have data pending to be sent.  Re-enable the TX IRQ.
 418		 */
 419		uap->im |= UART011_TXIM;
 420		writew(uap->im, uap->port.membase + UART011_IMSC);
 421	}
 422	spin_unlock_irqrestore(&uap->port.lock, flags);
 423}
 424
 425/*
 426 * Try to refill the TX DMA buffer.
 427 * Locking: called with port lock held and IRQs disabled.
 428 * Returns:
 429 *   1 if we queued up a TX DMA buffer.
 430 *   0 if we didn't want to handle this by DMA
 431 *  <0 on error
 432 */
 433static int pl011_dma_tx_refill(struct uart_amba_port *uap)
 434{
 435	struct pl011_dmatx_data *dmatx = &uap->dmatx;
 436	struct dma_chan *chan = dmatx->chan;
 437	struct dma_device *dma_dev = chan->device;
 438	struct dma_async_tx_descriptor *desc;
 439	struct circ_buf *xmit = &uap->port.state->xmit;
 440	unsigned int count;
 441
 442	/*
 443	 * Try to avoid the overhead involved in using DMA if the
 444	 * transaction fits in the first half of the FIFO, by using
 445	 * the standard interrupt handling.  This ensures that we
 446	 * issue a uart_write_wakeup() at the appropriate time.
 447	 */
 448	count = uart_circ_chars_pending(xmit);
 449	if (count < (uap->fifosize >> 1)) {
 450		uap->dmatx.queued = false;
 451		return 0;
 452	}
 453
 454	/*
 455	 * Bodge: don't send the last character by DMA, as this
 456	 * will prevent XON from notifying us to restart DMA.
 457	 */
 458	count -= 1;
 459
 460	/* Else proceed to copy the TX chars to the DMA buffer and fire DMA */
 461	if (count > PL011_DMA_BUFFER_SIZE)
 462		count = PL011_DMA_BUFFER_SIZE;
 463
 464	if (xmit->tail < xmit->head)
 465		memcpy(&dmatx->buf[0], &xmit->buf[xmit->tail], count);
 466	else {
 467		size_t first = UART_XMIT_SIZE - xmit->tail;
 468		size_t second = xmit->head;
 
 
 
 
 469
 470		memcpy(&dmatx->buf[0], &xmit->buf[xmit->tail], first);
 471		if (second)
 472			memcpy(&dmatx->buf[first], &xmit->buf[0], second);
 473	}
 474
 475	dmatx->sg.length = count;
 476
 477	if (dma_map_sg(dma_dev->dev, &dmatx->sg, 1, DMA_TO_DEVICE) != 1) {
 478		uap->dmatx.queued = false;
 479		dev_dbg(uap->port.dev, "unable to map TX DMA\n");
 480		return -EBUSY;
 481	}
 482
 483	desc = dma_dev->device_prep_slave_sg(chan, &dmatx->sg, 1, DMA_TO_DEVICE,
 484					     DMA_PREP_INTERRUPT | DMA_CTRL_ACK);
 485	if (!desc) {
 486		dma_unmap_sg(dma_dev->dev, &dmatx->sg, 1, DMA_TO_DEVICE);
 487		uap->dmatx.queued = false;
 488		/*
 489		 * If DMA cannot be used right now, we complete this
 490		 * transaction via IRQ and let the TTY layer retry.
 491		 */
 492		dev_dbg(uap->port.dev, "TX DMA busy\n");
 493		return -EBUSY;
 494	}
 495
 496	/* Some data to go along to the callback */
 497	desc->callback = pl011_dma_tx_callback;
 498	desc->callback_param = uap;
 499
 500	/* All errors should happen at prepare time */
 501	dmaengine_submit(desc);
 502
 503	/* Fire the DMA transaction */
 504	dma_dev->device_issue_pending(chan);
 505
 506	uap->dmacr |= UART011_TXDMAE;
 507	writew(uap->dmacr, uap->port.membase + UART011_DMACR);
 508	uap->dmatx.queued = true;
 509
 510	/*
 511	 * Now we know that DMA will fire, so advance the ring buffer
 512	 * with the stuff we just dispatched.
 513	 */
 514	xmit->tail = (xmit->tail + count) & (UART_XMIT_SIZE - 1);
 515	uap->port.icount.tx += count;
 516
 517	if (uart_circ_chars_pending(xmit) < WAKEUP_CHARS)
 518		uart_write_wakeup(&uap->port);
 519
 520	return 1;
 521}
 522
 523/*
 524 * We received a transmit interrupt without a pending X-char but with
 525 * pending characters.
 526 * Locking: called with port lock held and IRQs disabled.
 527 * Returns:
 528 *   false if we want to use PIO to transmit
 529 *   true if we queued a DMA buffer
 530 */
 531static bool pl011_dma_tx_irq(struct uart_amba_port *uap)
 532{
 533	if (!uap->using_tx_dma)
 534		return false;
 535
 536	/*
 537	 * If we already have a TX buffer queued, but received a
 538	 * TX interrupt, it will be because we've just sent an X-char.
 539	 * Ensure the TX DMA is enabled and the TX IRQ is disabled.
 540	 */
 541	if (uap->dmatx.queued) {
 542		uap->dmacr |= UART011_TXDMAE;
 543		writew(uap->dmacr, uap->port.membase + UART011_DMACR);
 544		uap->im &= ~UART011_TXIM;
 545		writew(uap->im, uap->port.membase + UART011_IMSC);
 546		return true;
 547	}
 548
 549	/*
 550	 * We don't have a TX buffer queued, so try to queue one.
 551	 * If we successfully queued a buffer, mask the TX IRQ.
 552	 */
 553	if (pl011_dma_tx_refill(uap) > 0) {
 554		uap->im &= ~UART011_TXIM;
 555		writew(uap->im, uap->port.membase + UART011_IMSC);
 556		return true;
 557	}
 558	return false;
 559}
 560
 561/*
 562 * Stop the DMA transmit (eg, due to received XOFF).
 563 * Locking: called with port lock held and IRQs disabled.
 564 */
 565static inline void pl011_dma_tx_stop(struct uart_amba_port *uap)
 566{
 567	if (uap->dmatx.queued) {
 568		uap->dmacr &= ~UART011_TXDMAE;
 569		writew(uap->dmacr, uap->port.membase + UART011_DMACR);
 570	}
 571}
 572
 573/*
 574 * Try to start a DMA transmit, or in the case of an XON/OFF
 575 * character queued for send, try to get that character out ASAP.
 576 * Locking: called with port lock held and IRQs disabled.
 577 * Returns:
 578 *   false if we want the TX IRQ to be enabled
 579 *   true if we have a buffer queued
 580 */
 581static inline bool pl011_dma_tx_start(struct uart_amba_port *uap)
 582{
 583	u16 dmacr;
 584
 585	if (!uap->using_tx_dma)
 586		return false;
 587
 588	if (!uap->port.x_char) {
 589		/* no X-char, try to push chars out in DMA mode */
 590		bool ret = true;
 591
 592		if (!uap->dmatx.queued) {
 593			if (pl011_dma_tx_refill(uap) > 0) {
 594				uap->im &= ~UART011_TXIM;
 595				ret = true;
 596			} else {
 597				uap->im |= UART011_TXIM;
 598				ret = false;
 599			}
 600			writew(uap->im, uap->port.membase + UART011_IMSC);
 601		} else if (!(uap->dmacr & UART011_TXDMAE)) {
 602			uap->dmacr |= UART011_TXDMAE;
 603			writew(uap->dmacr,
 604				       uap->port.membase + UART011_DMACR);
 605		}
 606		return ret;
 607	}
 608
 609	/*
 610	 * We have an X-char to send.  Disable DMA to prevent it loading
 611	 * the TX fifo, and then see if we can stuff it into the FIFO.
 612	 */
 613	dmacr = uap->dmacr;
 614	uap->dmacr &= ~UART011_TXDMAE;
 615	writew(uap->dmacr, uap->port.membase + UART011_DMACR);
 616
 617	if (readw(uap->port.membase + UART01x_FR) & UART01x_FR_TXFF) {
 618		/*
 619		 * No space in the FIFO, so enable the transmit interrupt
 620		 * so we know when there is space.  Note that once we've
 621		 * loaded the character, we should just re-enable DMA.
 622		 */
 623		return false;
 624	}
 625
 626	writew(uap->port.x_char, uap->port.membase + UART01x_DR);
 627	uap->port.icount.tx++;
 628	uap->port.x_char = 0;
 629
 630	/* Success - restore the DMA state */
 631	uap->dmacr = dmacr;
 632	writew(dmacr, uap->port.membase + UART011_DMACR);
 633
 634	return true;
 635}
 636
 637/*
 638 * Flush the transmit buffer.
 639 * Locking: called with port lock held and IRQs disabled.
 640 */
 641static void pl011_dma_flush_buffer(struct uart_port *port)
 
 
 642{
 643	struct uart_amba_port *uap = (struct uart_amba_port *)port;
 
 644
 645	if (!uap->using_tx_dma)
 646		return;
 647
 648	/* Avoid deadlock with the DMA engine callback */
 649	spin_unlock(&uap->port.lock);
 650	dmaengine_terminate_all(uap->dmatx.chan);
 651	spin_lock(&uap->port.lock);
 652	if (uap->dmatx.queued) {
 653		dma_unmap_sg(uap->dmatx.chan->device->dev, &uap->dmatx.sg, 1,
 654			     DMA_TO_DEVICE);
 655		uap->dmatx.queued = false;
 656		uap->dmacr &= ~UART011_TXDMAE;
 657		writew(uap->dmacr, uap->port.membase + UART011_DMACR);
 658	}
 659}
 660
 661static void pl011_dma_rx_callback(void *data);
 662
 663static int pl011_dma_rx_trigger_dma(struct uart_amba_port *uap)
 664{
 665	struct dma_chan *rxchan = uap->dmarx.chan;
 666	struct dma_device *dma_dev;
 667	struct pl011_dmarx_data *dmarx = &uap->dmarx;
 668	struct dma_async_tx_descriptor *desc;
 669	struct pl011_sgbuf *sgbuf;
 670
 671	if (!rxchan)
 672		return -EIO;
 673
 674	/* Start the RX DMA job */
 675	sgbuf = uap->dmarx.use_buf_b ?
 676		&uap->dmarx.sgbuf_b : &uap->dmarx.sgbuf_a;
 677	dma_dev = rxchan->device;
 678	desc = rxchan->device->device_prep_slave_sg(rxchan, &sgbuf->sg, 1,
 679					DMA_FROM_DEVICE,
 680					DMA_PREP_INTERRUPT | DMA_CTRL_ACK);
 681	/*
 682	 * If the DMA engine is busy and cannot prepare a
 683	 * channel, no big deal, the driver will fall back
 684	 * to interrupt mode as a result of this error code.
 685	 */
 686	if (!desc) {
 687		uap->dmarx.running = false;
 688		dmaengine_terminate_all(rxchan);
 689		return -EBUSY;
 690	}
 691
 692	/* Some data to go along to the callback */
 693	desc->callback = pl011_dma_rx_callback;
 694	desc->callback_param = uap;
 695	dmarx->cookie = dmaengine_submit(desc);
 696	dma_async_issue_pending(rxchan);
 697
 698	uap->dmacr |= UART011_RXDMAE;
 699	writew(uap->dmacr, uap->port.membase + UART011_DMACR);
 700	uap->dmarx.running = true;
 701
 702	uap->im &= ~UART011_RXIM;
 703	writew(uap->im, uap->port.membase + UART011_IMSC);
 704
 705	return 0;
 706}
 707
 708/*
 709 * This is called when either the DMA job is complete, or
 710 * the FIFO timeout interrupt occurred. This must be called
 711 * with the port spinlock uap->port.lock held.
 712 */
 713static void pl011_dma_rx_chars(struct uart_amba_port *uap,
 714			       u32 pending, bool use_buf_b,
 715			       bool readfifo)
 716{
 717	struct tty_struct *tty = uap->port.state->port.tty;
 718	struct pl011_sgbuf *sgbuf = use_buf_b ?
 719		&uap->dmarx.sgbuf_b : &uap->dmarx.sgbuf_a;
 720	struct device *dev = uap->dmarx.chan->device->dev;
 721	int dma_count = 0;
 722	u32 fifotaken = 0; /* only used for vdbg() */
 723
 724	/* Pick everything from the DMA first */
 
 
 
 
 
 
 
 
 
 
 
 725	if (pending) {
 726		/* Sync in buffer */
 727		dma_sync_sg_for_cpu(dev, &sgbuf->sg, 1, DMA_FROM_DEVICE);
 728
 729		/*
 730		 * First take all chars in the DMA pipe, then look in the FIFO.
 731		 * Note that tty_insert_flip_buf() tries to take as many chars
 732		 * as it can.
 733		 */
 734		dma_count = tty_insert_flip_string(uap->port.state->port.tty,
 735						   sgbuf->buf, pending);
 736
 737		/* Return buffer to device */
 738		dma_sync_sg_for_device(dev, &sgbuf->sg, 1, DMA_FROM_DEVICE);
 739
 740		uap->port.icount.rx += dma_count;
 741		if (dma_count < pending)
 742			dev_warn(uap->port.dev,
 743				 "couldn't insert all characters (TTY is full?)\n");
 744	}
 745
 
 
 
 
 746	/*
 747	 * Only continue with trying to read the FIFO if all DMA chars have
 748	 * been taken first.
 749	 */
 750	if (dma_count == pending && readfifo) {
 751		/* Clear any error flags */
 752		writew(UART011_OEIS | UART011_BEIS | UART011_PEIS | UART011_FEIS,
 753		       uap->port.membase + UART011_ICR);
 754
 755		/*
 756		 * If we read all the DMA'd characters, and we had an
 757		 * incomplete buffer, that could be due to an rx error, or
 758		 * maybe we just timed out. Read any pending chars and check
 759		 * the error status.
 760		 *
 761		 * Error conditions will only occur in the FIFO, these will
 762		 * trigger an immediate interrupt and stop the DMA job, so we
 763		 * will always find the error in the FIFO, never in the DMA
 764		 * buffer.
 765		 */
 766		fifotaken = pl011_fifo_to_tty(uap);
 767	}
 768
 769	spin_unlock(&uap->port.lock);
 770	dev_vdbg(uap->port.dev,
 771		 "Took %d chars from DMA buffer and %d chars from the FIFO\n",
 772		 dma_count, fifotaken);
 773	tty_flip_buffer_push(tty);
 774	spin_lock(&uap->port.lock);
 775}
 776
 777static void pl011_dma_rx_irq(struct uart_amba_port *uap)
 778{
 779	struct pl011_dmarx_data *dmarx = &uap->dmarx;
 780	struct dma_chan *rxchan = dmarx->chan;
 781	struct pl011_sgbuf *sgbuf = dmarx->use_buf_b ?
 782		&dmarx->sgbuf_b : &dmarx->sgbuf_a;
 783	size_t pending;
 784	struct dma_tx_state state;
 785	enum dma_status dmastat;
 786
 787	/*
 788	 * Pause the transfer so we can trust the current counter,
 789	 * do this before we pause the PL011 block, else we may
 790	 * overflow the FIFO.
 791	 */
 792	if (dmaengine_pause(rxchan))
 793		dev_err(uap->port.dev, "unable to pause DMA transfer\n");
 794	dmastat = rxchan->device->device_tx_status(rxchan,
 795						   dmarx->cookie, &state);
 796	if (dmastat != DMA_PAUSED)
 797		dev_err(uap->port.dev, "unable to pause DMA transfer\n");
 798
 799	/* Disable RX DMA - incoming data will wait in the FIFO */
 800	uap->dmacr &= ~UART011_RXDMAE;
 801	writew(uap->dmacr, uap->port.membase + UART011_DMACR);
 802	uap->dmarx.running = false;
 803
 804	pending = sgbuf->sg.length - state.residue;
 805	BUG_ON(pending > PL011_DMA_BUFFER_SIZE);
 806	/* Then we terminate the transfer - we now know our residue */
 807	dmaengine_terminate_all(rxchan);
 808
 809	/*
 810	 * This will take the chars we have so far and insert
 811	 * into the framework.
 812	 */
 813	pl011_dma_rx_chars(uap, pending, dmarx->use_buf_b, true);
 814
 815	/* Switch buffer & re-trigger DMA job */
 816	dmarx->use_buf_b = !dmarx->use_buf_b;
 817	if (pl011_dma_rx_trigger_dma(uap)) {
 818		dev_dbg(uap->port.dev, "could not retrigger RX DMA job "
 819			"fall back to interrupt mode\n");
 820		uap->im |= UART011_RXIM;
 821		writew(uap->im, uap->port.membase + UART011_IMSC);
 822	}
 823}
 824
 825static void pl011_dma_rx_callback(void *data)
 826{
 827	struct uart_amba_port *uap = data;
 828	struct pl011_dmarx_data *dmarx = &uap->dmarx;
 
 829	bool lastbuf = dmarx->use_buf_b;
 
 
 
 
 830	int ret;
 831
 832	/*
 833	 * This completion interrupt occurs typically when the
 834	 * RX buffer is totally stuffed but no timeout has yet
 835	 * occurred. When that happens, we just want the RX
 836	 * routine to flush out the secondary DMA buffer while
 837	 * we immediately trigger the next DMA job.
 838	 */
 839	spin_lock_irq(&uap->port.lock);
 
 
 
 
 
 
 
 
 
 
 840	uap->dmarx.running = false;
 841	dmarx->use_buf_b = !lastbuf;
 842	ret = pl011_dma_rx_trigger_dma(uap);
 843
 844	pl011_dma_rx_chars(uap, PL011_DMA_BUFFER_SIZE, lastbuf, false);
 845	spin_unlock_irq(&uap->port.lock);
 846	/*
 847	 * Do this check after we picked the DMA chars so we don't
 848	 * get some IRQ immediately from RX.
 849	 */
 850	if (ret) {
 851		dev_dbg(uap->port.dev, "could not retrigger RX DMA job "
 852			"fall back to interrupt mode\n");
 853		uap->im |= UART011_RXIM;
 854		writew(uap->im, uap->port.membase + UART011_IMSC);
 855	}
 856}
 857
 858/*
 859 * Stop accepting received characters, when we're shutting down or
 860 * suspending this port.
 861 * Locking: called with port lock held and IRQs disabled.
 862 */
 863static inline void pl011_dma_rx_stop(struct uart_amba_port *uap)
 864{
 865	/* FIXME.  Just disable the DMA enable */
 866	uap->dmacr &= ~UART011_RXDMAE;
 867	writew(uap->dmacr, uap->port.membase + UART011_DMACR);
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 868}
 869
 870static void pl011_dma_startup(struct uart_amba_port *uap)
 871{
 872	int ret;
 873
 
 
 
 874	if (!uap->dmatx.chan)
 875		return;
 876
 877	uap->dmatx.buf = kmalloc(PL011_DMA_BUFFER_SIZE, GFP_KERNEL);
 878	if (!uap->dmatx.buf) {
 879		dev_err(uap->port.dev, "no memory for DMA TX buffer\n");
 880		uap->port.fifosize = uap->fifosize;
 881		return;
 882	}
 883
 884	sg_init_one(&uap->dmatx.sg, uap->dmatx.buf, PL011_DMA_BUFFER_SIZE);
 885
 886	/* The DMA buffer is now the FIFO the TTY subsystem can use */
 887	uap->port.fifosize = PL011_DMA_BUFFER_SIZE;
 888	uap->using_tx_dma = true;
 889
 890	if (!uap->dmarx.chan)
 891		goto skip_rx;
 892
 893	/* Allocate and map DMA RX buffers */
 894	ret = pl011_sgbuf_init(uap->dmarx.chan, &uap->dmarx.sgbuf_a,
 895			       DMA_FROM_DEVICE);
 896	if (ret) {
 897		dev_err(uap->port.dev, "failed to init DMA %s: %d\n",
 898			"RX buffer A", ret);
 899		goto skip_rx;
 900	}
 901
 902	ret = pl011_sgbuf_init(uap->dmarx.chan, &uap->dmarx.sgbuf_b,
 903			       DMA_FROM_DEVICE);
 904	if (ret) {
 905		dev_err(uap->port.dev, "failed to init DMA %s: %d\n",
 906			"RX buffer B", ret);
 907		pl011_sgbuf_free(uap->dmarx.chan, &uap->dmarx.sgbuf_a,
 908				 DMA_FROM_DEVICE);
 909		goto skip_rx;
 910	}
 911
 912	uap->using_rx_dma = true;
 913
 914skip_rx:
 915	/* Turn on DMA error (RX/TX will be enabled on demand) */
 916	uap->dmacr |= UART011_DMAONERR;
 917	writew(uap->dmacr, uap->port.membase + UART011_DMACR);
 918
 919	/*
 920	 * ST Micro variants has some specific dma burst threshold
 921	 * compensation. Set this to 16 bytes, so burst will only
 922	 * be issued above/below 16 bytes.
 923	 */
 924	if (uap->vendor->dma_threshold)
 925		writew(ST_UART011_DMAWM_RX_16 | ST_UART011_DMAWM_TX_16,
 926			       uap->port.membase + ST_UART011_DMAWM);
 927
 928	if (uap->using_rx_dma) {
 929		if (pl011_dma_rx_trigger_dma(uap))
 930			dev_dbg(uap->port.dev, "could not trigger initial "
 931				"RX DMA job, fall back to interrupt mode\n");
 
 
 
 
 
 
 
 
 932	}
 933}
 934
 935static void pl011_dma_shutdown(struct uart_amba_port *uap)
 936{
 937	if (!(uap->using_tx_dma || uap->using_rx_dma))
 938		return;
 939
 940	/* Disable RX and TX DMA */
 941	while (readw(uap->port.membase + UART01x_FR) & UART01x_FR_BUSY)
 942		barrier();
 943
 944	spin_lock_irq(&uap->port.lock);
 945	uap->dmacr &= ~(UART011_DMAONERR | UART011_RXDMAE | UART011_TXDMAE);
 946	writew(uap->dmacr, uap->port.membase + UART011_DMACR);
 947	spin_unlock_irq(&uap->port.lock);
 948
 949	if (uap->using_tx_dma) {
 950		/* In theory, this should already be done by pl011_dma_flush_buffer */
 951		dmaengine_terminate_all(uap->dmatx.chan);
 952		if (uap->dmatx.queued) {
 953			dma_unmap_sg(uap->dmatx.chan->device->dev, &uap->dmatx.sg, 1,
 954				     DMA_TO_DEVICE);
 955			uap->dmatx.queued = false;
 956		}
 957
 958		kfree(uap->dmatx.buf);
 959		uap->using_tx_dma = false;
 960	}
 961
 962	if (uap->using_rx_dma) {
 963		dmaengine_terminate_all(uap->dmarx.chan);
 964		/* Clean up the RX DMA */
 965		pl011_sgbuf_free(uap->dmarx.chan, &uap->dmarx.sgbuf_a, DMA_FROM_DEVICE);
 966		pl011_sgbuf_free(uap->dmarx.chan, &uap->dmarx.sgbuf_b, DMA_FROM_DEVICE);
 
 
 967		uap->using_rx_dma = false;
 968	}
 969}
 970
 971static inline bool pl011_dma_rx_available(struct uart_amba_port *uap)
 972{
 973	return uap->using_rx_dma;
 974}
 975
 976static inline bool pl011_dma_rx_running(struct uart_amba_port *uap)
 977{
 978	return uap->using_rx_dma && uap->dmarx.running;
 979}
 980
 981
 982#else
 983/* Blank functions if the DMA engine is not available */
 984static inline void pl011_dma_probe(struct uart_amba_port *uap)
 985{
 986}
 987
 988static inline void pl011_dma_remove(struct uart_amba_port *uap)
 989{
 990}
 991
 992static inline void pl011_dma_startup(struct uart_amba_port *uap)
 993{
 994}
 995
 996static inline void pl011_dma_shutdown(struct uart_amba_port *uap)
 997{
 998}
 999
1000static inline bool pl011_dma_tx_irq(struct uart_amba_port *uap)
1001{
1002	return false;
1003}
1004
1005static inline void pl011_dma_tx_stop(struct uart_amba_port *uap)
1006{
1007}
1008
1009static inline bool pl011_dma_tx_start(struct uart_amba_port *uap)
1010{
1011	return false;
1012}
1013
1014static inline void pl011_dma_rx_irq(struct uart_amba_port *uap)
1015{
1016}
1017
1018static inline void pl011_dma_rx_stop(struct uart_amba_port *uap)
1019{
1020}
1021
1022static inline int pl011_dma_rx_trigger_dma(struct uart_amba_port *uap)
1023{
1024	return -EIO;
1025}
1026
1027static inline bool pl011_dma_rx_available(struct uart_amba_port *uap)
1028{
1029	return false;
1030}
1031
1032static inline bool pl011_dma_rx_running(struct uart_amba_port *uap)
1033{
1034	return false;
1035}
1036
1037#define pl011_dma_flush_buffer	NULL
1038#endif
1039
1040
1041/*
1042 * pl011_lockup_wa
1043 * This workaround aims to break the deadlock situation
1044 * when after long transfer over uart in hardware flow
1045 * control, uart interrupt registers cannot be cleared.
1046 * Hence uart transfer gets blocked.
1047 *
1048 * It is seen that during such deadlock condition ICR
1049 * don't get cleared even on multiple write. This leads
1050 * pass_counter to decrease and finally reach zero. This
1051 * can be taken as trigger point to run this UART_BT_WA.
1052 *
1053 */
1054static void pl011_lockup_wa(unsigned long data)
1055{
1056	struct uart_amba_port *uap = amba_ports[0];
1057	void __iomem *base = uap->port.membase;
1058	struct circ_buf *xmit = &uap->port.state->xmit;
1059	struct tty_struct *tty = uap->port.state->port.tty;
1060	int buf_empty_retries = 200;
1061	int loop;
1062
1063	/* Stop HCI layer from submitting data for tx */
1064	tty->hw_stopped = 1;
1065	while (!uart_circ_empty(xmit)) {
1066		if (buf_empty_retries-- == 0)
1067			break;
1068		udelay(100);
1069	}
1070
1071	/* Backup registers */
1072	for (loop = 0; loop < UART_WA_SAVE_NR; loop++)
1073		uart_wa_regdata[loop] = readl(base + uart_wa_reg[loop]);
1074
1075	/* Disable UART so that FIFO data is flushed out */
1076	writew(0x00, uap->port.membase + UART011_CR);
1077
1078	/* Soft reset UART module */
1079	if (uap->port.dev->platform_data) {
1080		struct amba_pl011_data *plat;
1081
1082		plat = uap->port.dev->platform_data;
1083		if (plat->reset)
1084			plat->reset();
1085	}
1086
1087	/* Restore registers */
1088	for (loop = 0; loop < UART_WA_SAVE_NR; loop++)
1089		writew(uart_wa_regdata[loop] ,
1090				uap->port.membase + uart_wa_reg[loop]);
1091
1092	/* Initialise the old status of the modem signals */
1093	uap->old_status = readw(uap->port.membase + UART01x_FR) &
1094		UART01x_FR_MODEM_ANY;
1095
1096	if (readl(base + UART011_MIS) & 0x2)
1097		printk(KERN_EMERG "UART_BT_WA: ***FAILED***\n");
1098
1099	/* Start Tx/Rx */
1100	tty->hw_stopped = 0;
1101}
1102
1103static void pl011_stop_tx(struct uart_port *port)
1104{
1105	struct uart_amba_port *uap = (struct uart_amba_port *)port;
 
1106
1107	uap->im &= ~UART011_TXIM;
1108	writew(uap->im, uap->port.membase + UART011_IMSC);
1109	pl011_dma_tx_stop(uap);
1110}
1111
1112static void pl011_start_tx(struct uart_port *port)
1113{
1114	struct uart_amba_port *uap = (struct uart_amba_port *)port;
1115
1116	if (!pl011_dma_tx_start(uap)) {
 
 
 
1117		uap->im |= UART011_TXIM;
1118		writew(uap->im, uap->port.membase + UART011_IMSC);
1119	}
1120}
1121
 
 
 
 
 
 
 
 
 
1122static void pl011_stop_rx(struct uart_port *port)
1123{
1124	struct uart_amba_port *uap = (struct uart_amba_port *)port;
 
1125
1126	uap->im &= ~(UART011_RXIM|UART011_RTIM|UART011_FEIM|
1127		     UART011_PEIM|UART011_BEIM|UART011_OEIM);
1128	writew(uap->im, uap->port.membase + UART011_IMSC);
1129
1130	pl011_dma_rx_stop(uap);
1131}
1132
1133static void pl011_enable_ms(struct uart_port *port)
1134{
1135	struct uart_amba_port *uap = (struct uart_amba_port *)port;
 
1136
1137	uap->im |= UART011_RIMIM|UART011_CTSMIM|UART011_DCDMIM|UART011_DSRMIM;
1138	writew(uap->im, uap->port.membase + UART011_IMSC);
1139}
1140
1141static void pl011_rx_chars(struct uart_amba_port *uap)
 
 
1142{
1143	struct tty_struct *tty = uap->port.state->port.tty;
1144
1145	pl011_fifo_to_tty(uap);
1146
1147	spin_unlock(&uap->port.lock);
1148	tty_flip_buffer_push(tty);
1149	/*
1150	 * If we were temporarily out of DMA mode for a while,
1151	 * attempt to switch back to DMA mode again.
1152	 */
1153	if (pl011_dma_rx_available(uap)) {
1154		if (pl011_dma_rx_trigger_dma(uap)) {
1155			dev_dbg(uap->port.dev, "could not trigger RX DMA job "
1156				"fall back to interrupt mode again\n");
1157			uap->im |= UART011_RXIM;
1158		} else
1159			uap->im &= ~UART011_RXIM;
1160		writew(uap->im, uap->port.membase + UART011_IMSC);
 
 
 
 
 
 
 
 
 
 
1161	}
1162	spin_lock(&uap->port.lock);
1163}
1164
1165static void pl011_tx_chars(struct uart_amba_port *uap)
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1166{
1167	struct circ_buf *xmit = &uap->port.state->xmit;
1168	int count;
1169
1170	if (uap->port.x_char) {
1171		writew(uap->port.x_char, uap->port.membase + UART01x_DR);
1172		uap->port.icount.tx++;
1173		uap->port.x_char = 0;
1174		return;
1175	}
1176	if (uart_circ_empty(xmit) || uart_tx_stopped(&uap->port)) {
1177		pl011_stop_tx(&uap->port);
1178		return;
1179	}
1180
1181	/* If we are using DMA mode, try to send some characters. */
1182	if (pl011_dma_tx_irq(uap))
1183		return;
1184
1185	count = uap->fifosize >> 1;
1186	do {
1187		writew(xmit->buf[xmit->tail], uap->port.membase + UART01x_DR);
1188		xmit->tail = (xmit->tail + 1) & (UART_XMIT_SIZE - 1);
1189		uap->port.icount.tx++;
1190		if (uart_circ_empty(xmit))
1191			break;
1192	} while (--count > 0);
 
 
1193
1194	if (uart_circ_chars_pending(xmit) < WAKEUP_CHARS)
1195		uart_write_wakeup(&uap->port);
1196
1197	if (uart_circ_empty(xmit))
1198		pl011_stop_tx(&uap->port);
 
 
 
1199}
1200
1201static void pl011_modem_status(struct uart_amba_port *uap)
1202{
1203	unsigned int status, delta;
1204
1205	status = readw(uap->port.membase + UART01x_FR) & UART01x_FR_MODEM_ANY;
1206
1207	delta = status ^ uap->old_status;
1208	uap->old_status = status;
1209
1210	if (!delta)
1211		return;
1212
1213	if (delta & UART01x_FR_DCD)
1214		uart_handle_dcd_change(&uap->port, status & UART01x_FR_DCD);
1215
1216	if (delta & UART01x_FR_DSR)
1217		uap->port.icount.dsr++;
1218
1219	if (delta & UART01x_FR_CTS)
1220		uart_handle_cts_change(&uap->port, status & UART01x_FR_CTS);
 
1221
1222	wake_up_interruptible(&uap->port.state->port.delta_msr_wait);
1223}
1224
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1225static irqreturn_t pl011_int(int irq, void *dev_id)
1226{
1227	struct uart_amba_port *uap = dev_id;
1228	unsigned long flags;
1229	unsigned int status, pass_counter = AMBA_ISR_PASS_LIMIT;
1230	int handled = 0;
1231
1232	spin_lock_irqsave(&uap->port.lock, flags);
1233
1234	status = readw(uap->port.membase + UART011_MIS);
1235	if (status) {
1236		do {
1237			writew(status & ~(UART011_TXIS|UART011_RTIS|
1238					  UART011_RXIS),
1239			       uap->port.membase + UART011_ICR);
 
 
1240
1241			if (status & (UART011_RTIS|UART011_RXIS)) {
1242				if (pl011_dma_rx_running(uap))
1243					pl011_dma_rx_irq(uap);
1244				else
1245					pl011_rx_chars(uap);
1246			}
1247			if (status & (UART011_DSRMIS|UART011_DCDMIS|
1248				      UART011_CTSMIS|UART011_RIMIS))
1249				pl011_modem_status(uap);
1250			if (status & UART011_TXIS)
1251				pl011_tx_chars(uap);
1252
1253			if (pass_counter-- == 0) {
1254				if (uap->interrupt_may_hang)
1255					tasklet_schedule(&pl011_lockup_tlet);
1256				break;
1257			}
1258
1259			status = readw(uap->port.membase + UART011_MIS);
1260		} while (status != 0);
1261		handled = 1;
1262	}
1263
1264	spin_unlock_irqrestore(&uap->port.lock, flags);
1265
1266	return IRQ_RETVAL(handled);
1267}
1268
1269static unsigned int pl01x_tx_empty(struct uart_port *port)
1270{
1271	struct uart_amba_port *uap = (struct uart_amba_port *)port;
1272	unsigned int status = readw(uap->port.membase + UART01x_FR);
1273	return status & (UART01x_FR_BUSY|UART01x_FR_TXFF) ? 0 : TIOCSER_TEMT;
 
 
 
 
 
1274}
1275
1276static unsigned int pl01x_get_mctrl(struct uart_port *port)
1277{
1278	struct uart_amba_port *uap = (struct uart_amba_port *)port;
 
1279	unsigned int result = 0;
1280	unsigned int status = readw(uap->port.membase + UART01x_FR);
1281
1282#define TIOCMBIT(uartbit, tiocmbit)	\
1283	if (status & uartbit)		\
1284		result |= tiocmbit
1285
1286	TIOCMBIT(UART01x_FR_DCD, TIOCM_CAR);
1287	TIOCMBIT(UART01x_FR_DSR, TIOCM_DSR);
1288	TIOCMBIT(UART01x_FR_CTS, TIOCM_CTS);
1289	TIOCMBIT(UART011_FR_RI, TIOCM_RNG);
1290#undef TIOCMBIT
1291	return result;
1292}
1293
1294static void pl011_set_mctrl(struct uart_port *port, unsigned int mctrl)
1295{
1296	struct uart_amba_port *uap = (struct uart_amba_port *)port;
 
1297	unsigned int cr;
1298
1299	cr = readw(uap->port.membase + UART011_CR);
1300
1301#define	TIOCMBIT(tiocmbit, uartbit)		\
1302	if (mctrl & tiocmbit)		\
1303		cr |= uartbit;		\
1304	else				\
1305		cr &= ~uartbit
1306
1307	TIOCMBIT(TIOCM_RTS, UART011_CR_RTS);
1308	TIOCMBIT(TIOCM_DTR, UART011_CR_DTR);
1309	TIOCMBIT(TIOCM_OUT1, UART011_CR_OUT1);
1310	TIOCMBIT(TIOCM_OUT2, UART011_CR_OUT2);
1311	TIOCMBIT(TIOCM_LOOP, UART011_CR_LBE);
1312
1313	if (uap->autorts) {
1314		/* We need to disable auto-RTS if we want to turn RTS off */
1315		TIOCMBIT(TIOCM_RTS, UART011_CR_RTSEN);
1316	}
1317#undef TIOCMBIT
1318
1319	writew(cr, uap->port.membase + UART011_CR);
1320}
1321
1322static void pl011_break_ctl(struct uart_port *port, int break_state)
1323{
1324	struct uart_amba_port *uap = (struct uart_amba_port *)port;
 
1325	unsigned long flags;
1326	unsigned int lcr_h;
1327
1328	spin_lock_irqsave(&uap->port.lock, flags);
1329	lcr_h = readw(uap->port.membase + uap->lcrh_tx);
1330	if (break_state == -1)
1331		lcr_h |= UART01x_LCRH_BRK;
1332	else
1333		lcr_h &= ~UART01x_LCRH_BRK;
1334	writew(lcr_h, uap->port.membase + uap->lcrh_tx);
1335	spin_unlock_irqrestore(&uap->port.lock, flags);
1336}
1337
1338#ifdef CONFIG_CONSOLE_POLL
1339static int pl010_get_poll_char(struct uart_port *port)
 
1340{
1341	struct uart_amba_port *uap = (struct uart_amba_port *)port;
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1342	unsigned int status;
1343
1344	status = readw(uap->port.membase + UART01x_FR);
 
 
 
 
 
 
1345	if (status & UART01x_FR_RXFE)
1346		return NO_POLL_CHAR;
1347
1348	return readw(uap->port.membase + UART01x_DR);
1349}
1350
1351static void pl010_put_poll_char(struct uart_port *port,
1352			 unsigned char ch)
1353{
1354	struct uart_amba_port *uap = (struct uart_amba_port *)port;
 
1355
1356	while (readw(uap->port.membase + UART01x_FR) & UART01x_FR_TXFF)
1357		barrier();
1358
1359	writew(ch, uap->port.membase + UART01x_DR);
1360}
1361
1362#endif /* CONFIG_CONSOLE_POLL */
1363
1364static int pl011_startup(struct uart_port *port)
1365{
1366	struct uart_amba_port *uap = (struct uart_amba_port *)port;
1367	unsigned int cr;
1368	int retval;
1369
 
 
 
1370	/*
1371	 * Try to enable the clock producer.
1372	 */
1373	retval = clk_enable(uap->clk);
1374	if (retval)
1375		goto out;
1376
1377	uap->port.uartclk = clk_get_rate(uap->clk);
1378
 
 
 
 
 
1379	/*
1380	 * Allocate the IRQ
 
1381	 */
1382	retval = request_irq(uap->port.irq, pl011_int, 0, "uart-pl011", uap);
1383	if (retval)
1384		goto clk_dis;
1385
1386	writew(uap->vendor->ifls, uap->port.membase + UART011_IFLS);
 
1387
1388	/*
1389	 * Provoke TX FIFO interrupt into asserting.
1390	 */
1391	cr = UART01x_CR_UARTEN | UART011_CR_TXE | UART011_CR_LBE;
1392	writew(cr, uap->port.membase + UART011_CR);
1393	writew(0, uap->port.membase + UART011_FBRD);
1394	writew(1, uap->port.membase + UART011_IBRD);
1395	writew(0, uap->port.membase + uap->lcrh_rx);
1396	if (uap->lcrh_tx != uap->lcrh_rx) {
 
 
 
 
 
 
 
 
1397		int i;
1398		/*
1399		 * Wait 10 PCLKs before writing LCRH_TX register,
1400		 * to get this delay write read only register 10 times
1401		 */
1402		for (i = 0; i < 10; ++i)
1403			writew(0xff, uap->port.membase + UART011_MIS);
1404		writew(0, uap->port.membase + uap->lcrh_tx);
1405	}
1406	writew(0, uap->port.membase + UART01x_DR);
1407	while (readw(uap->port.membase + UART01x_FR) & UART01x_FR_BUSY)
1408		barrier();
1409
1410	cr = UART01x_CR_UARTEN | UART011_CR_RXE | UART011_CR_TXE;
1411	writew(cr, uap->port.membase + UART011_CR);
1412
1413	/* Clear pending error interrupts */
1414	writew(UART011_OEIS | UART011_BEIS | UART011_PEIS | UART011_FEIS,
1415	       uap->port.membase + UART011_ICR);
1416
1417	/*
1418	 * initialise the old status of the modem signals
1419	 */
1420	uap->old_status = readw(uap->port.membase + UART01x_FR) & UART01x_FR_MODEM_ANY;
1421
1422	/* Startup DMA */
1423	pl011_dma_startup(uap);
1424
1425	/*
1426	 * Finally, enable interrupts, only timeouts when using DMA
1427	 * if initial RX DMA job failed, start in interrupt mode
1428	 * as well.
1429	 */
 
 
1430	spin_lock_irq(&uap->port.lock);
 
 
 
1431	uap->im = UART011_RTIM;
1432	if (!pl011_dma_rx_running(uap))
1433		uap->im |= UART011_RXIM;
1434	writew(uap->im, uap->port.membase + UART011_IMSC);
1435	spin_unlock_irq(&uap->port.lock);
 
1436
1437	if (uap->port.dev->platform_data) {
1438		struct amba_pl011_data *plat;
 
 
 
 
1439
1440		plat = uap->port.dev->platform_data;
1441		if (plat->init)
1442			plat->init();
1443	}
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1444
1445	return 0;
1446
1447 clk_dis:
1448	clk_disable(uap->clk);
1449 out:
1450	return retval;
1451}
1452
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1453static void pl011_shutdown_channel(struct uart_amba_port *uap,
1454					unsigned int lcrh)
1455{
1456      unsigned long val;
1457
1458      val = readw(uap->port.membase + lcrh);
1459      val &= ~(UART01x_LCRH_BRK | UART01x_LCRH_FEN);
1460      writew(val, uap->port.membase + lcrh);
1461}
1462
1463static void pl011_shutdown(struct uart_port *port)
 
 
 
 
 
1464{
1465	struct uart_amba_port *uap = (struct uart_amba_port *)port;
 
 
 
 
 
 
 
 
 
1466
1467	/*
1468	 * disable all interrupts
1469	 */
 
 
 
 
 
 
 
1470	spin_lock_irq(&uap->port.lock);
 
 
1471	uap->im = 0;
1472	writew(uap->im, uap->port.membase + UART011_IMSC);
1473	writew(0xffff, uap->port.membase + UART011_ICR);
 
1474	spin_unlock_irq(&uap->port.lock);
 
 
 
 
 
 
 
 
1475
1476	pl011_dma_shutdown(uap);
1477
1478	/*
1479	 * Free the interrupt
1480	 */
1481	free_irq(uap->port.irq, uap);
1482
1483	/*
1484	 * disable the port
1485	 */
1486	uap->autorts = false;
1487	writew(UART01x_CR_UARTEN | UART011_CR_TXE, uap->port.membase + UART011_CR);
1488
1489	/*
1490	 * disable break condition and fifos
1491	 */
1492	pl011_shutdown_channel(uap, uap->lcrh_rx);
1493	if (uap->lcrh_rx != uap->lcrh_tx)
1494		pl011_shutdown_channel(uap, uap->lcrh_tx);
1495
1496	/*
1497	 * Shut down the clock producer
1498	 */
1499	clk_disable(uap->clk);
 
 
1500
1501	if (uap->port.dev->platform_data) {
1502		struct amba_pl011_data *plat;
1503
1504		plat = uap->port.dev->platform_data;
1505		if (plat->exit)
1506			plat->exit();
1507	}
1508
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1509}
1510
1511static void
1512pl011_set_termios(struct uart_port *port, struct ktermios *termios,
1513		     struct ktermios *old)
1514{
1515	struct uart_amba_port *uap = (struct uart_amba_port *)port;
 
1516	unsigned int lcr_h, old_cr;
1517	unsigned long flags;
1518	unsigned int baud, quot, clkdiv;
1519
1520	if (uap->vendor->oversampling)
1521		clkdiv = 8;
1522	else
1523		clkdiv = 16;
1524
1525	/*
1526	 * Ask the core to calculate the divisor for us.
1527	 */
1528	baud = uart_get_baud_rate(port, termios, old, 0,
1529				  port->uartclk / clkdiv);
 
 
 
 
 
 
 
1530
1531	if (baud > port->uartclk/16)
1532		quot = DIV_ROUND_CLOSEST(port->uartclk * 8, baud);
1533	else
1534		quot = DIV_ROUND_CLOSEST(port->uartclk * 4, baud);
1535
1536	switch (termios->c_cflag & CSIZE) {
1537	case CS5:
1538		lcr_h = UART01x_LCRH_WLEN_5;
1539		break;
1540	case CS6:
1541		lcr_h = UART01x_LCRH_WLEN_6;
1542		break;
1543	case CS7:
1544		lcr_h = UART01x_LCRH_WLEN_7;
1545		break;
1546	default: // CS8
1547		lcr_h = UART01x_LCRH_WLEN_8;
1548		break;
1549	}
1550	if (termios->c_cflag & CSTOPB)
1551		lcr_h |= UART01x_LCRH_STP2;
1552	if (termios->c_cflag & PARENB) {
1553		lcr_h |= UART01x_LCRH_PEN;
1554		if (!(termios->c_cflag & PARODD))
1555			lcr_h |= UART01x_LCRH_EPS;
 
 
1556	}
1557	if (uap->fifosize > 1)
1558		lcr_h |= UART01x_LCRH_FEN;
1559
1560	spin_lock_irqsave(&port->lock, flags);
1561
1562	/*
1563	 * Update the per-port timeout.
1564	 */
1565	uart_update_timeout(port, termios->c_cflag, baud);
1566
1567	port->read_status_mask = UART011_DR_OE | 255;
1568	if (termios->c_iflag & INPCK)
1569		port->read_status_mask |= UART011_DR_FE | UART011_DR_PE;
1570	if (termios->c_iflag & (BRKINT | PARMRK))
1571		port->read_status_mask |= UART011_DR_BE;
1572
1573	/*
1574	 * Characters to ignore
1575	 */
1576	port->ignore_status_mask = 0;
1577	if (termios->c_iflag & IGNPAR)
1578		port->ignore_status_mask |= UART011_DR_FE | UART011_DR_PE;
1579	if (termios->c_iflag & IGNBRK) {
1580		port->ignore_status_mask |= UART011_DR_BE;
1581		/*
1582		 * If we're ignoring parity and break indicators,
1583		 * ignore overruns too (for real raw support).
1584		 */
1585		if (termios->c_iflag & IGNPAR)
1586			port->ignore_status_mask |= UART011_DR_OE;
1587	}
1588
1589	/*
1590	 * Ignore all characters if CREAD is not set.
1591	 */
1592	if ((termios->c_cflag & CREAD) == 0)
1593		port->ignore_status_mask |= UART_DUMMY_DR_RX;
1594
1595	if (UART_ENABLE_MS(port, termios->c_cflag))
1596		pl011_enable_ms(port);
1597
1598	/* first, disable everything */
1599	old_cr = readw(port->membase + UART011_CR);
1600	writew(0, port->membase + UART011_CR);
1601
1602	if (termios->c_cflag & CRTSCTS) {
1603		if (old_cr & UART011_CR_RTS)
1604			old_cr |= UART011_CR_RTSEN;
1605
1606		old_cr |= UART011_CR_CTSEN;
1607		uap->autorts = true;
1608	} else {
1609		old_cr &= ~(UART011_CR_CTSEN | UART011_CR_RTSEN);
1610		uap->autorts = false;
1611	}
1612
1613	if (uap->vendor->oversampling) {
1614		if (baud > port->uartclk / 16)
1615			old_cr |= ST_UART011_CR_OVSFACT;
1616		else
1617			old_cr &= ~ST_UART011_CR_OVSFACT;
1618	}
1619
 
 
 
 
 
 
 
 
 
 
 
 
1620	/* Set baud rate */
1621	writew(quot & 0x3f, port->membase + UART011_FBRD);
1622	writew(quot >> 6, port->membase + UART011_IBRD);
1623
1624	/*
1625	 * ----------v----------v----------v----------v-----
1626	 * NOTE: MUST BE WRITTEN AFTER UARTLCR_M & UARTLCR_L
 
1627	 * ----------^----------^----------^----------^-----
1628	 */
1629	writew(lcr_h, port->membase + uap->lcrh_rx);
1630	if (uap->lcrh_rx != uap->lcrh_tx) {
1631		int i;
1632		/*
1633		 * Wait 10 PCLKs before writing LCRH_TX register,
1634		 * to get this delay write read only register 10 times
1635		 */
1636		for (i = 0; i < 10; ++i)
1637			writew(0xff, uap->port.membase + UART011_MIS);
1638		writew(lcr_h, port->membase + uap->lcrh_tx);
1639	}
1640	writew(old_cr, port->membase + UART011_CR);
1641
1642	spin_unlock_irqrestore(&port->lock, flags);
1643}
1644
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1645static const char *pl011_type(struct uart_port *port)
1646{
1647	struct uart_amba_port *uap = (struct uart_amba_port *)port;
 
1648	return uap->port.type == PORT_AMBA ? uap->type : NULL;
1649}
1650
1651/*
1652 * Release the memory region(s) being used by 'port'
1653 */
1654static void pl010_release_port(struct uart_port *port)
1655{
1656	release_mem_region(port->mapbase, SZ_4K);
1657}
1658
1659/*
1660 * Request the memory region(s) being used by 'port'
1661 */
1662static int pl010_request_port(struct uart_port *port)
1663{
1664	return request_mem_region(port->mapbase, SZ_4K, "uart-pl011")
1665			!= NULL ? 0 : -EBUSY;
1666}
1667
1668/*
1669 * Configure/autoconfigure the port.
1670 */
1671static void pl010_config_port(struct uart_port *port, int flags)
1672{
1673	if (flags & UART_CONFIG_TYPE) {
1674		port->type = PORT_AMBA;
1675		pl010_request_port(port);
1676	}
1677}
1678
1679/*
1680 * verify the new serial_struct (for TIOCSSERIAL).
1681 */
1682static int pl010_verify_port(struct uart_port *port, struct serial_struct *ser)
1683{
1684	int ret = 0;
1685	if (ser->type != PORT_UNKNOWN && ser->type != PORT_AMBA)
1686		ret = -EINVAL;
1687	if (ser->irq < 0 || ser->irq >= nr_irqs)
1688		ret = -EINVAL;
1689	if (ser->baud_base < 9600)
1690		ret = -EINVAL;
1691	return ret;
1692}
1693
1694static struct uart_ops amba_pl011_pops = {
1695	.tx_empty	= pl01x_tx_empty,
1696	.set_mctrl	= pl011_set_mctrl,
1697	.get_mctrl	= pl01x_get_mctrl,
1698	.stop_tx	= pl011_stop_tx,
1699	.start_tx	= pl011_start_tx,
1700	.stop_rx	= pl011_stop_rx,
1701	.enable_ms	= pl011_enable_ms,
1702	.break_ctl	= pl011_break_ctl,
1703	.startup	= pl011_startup,
1704	.shutdown	= pl011_shutdown,
1705	.flush_buffer	= pl011_dma_flush_buffer,
1706	.set_termios	= pl011_set_termios,
1707	.type		= pl011_type,
1708	.release_port	= pl010_release_port,
1709	.request_port	= pl010_request_port,
1710	.config_port	= pl010_config_port,
1711	.verify_port	= pl010_verify_port,
1712#ifdef CONFIG_CONSOLE_POLL
1713	.poll_get_char = pl010_get_poll_char,
1714	.poll_put_char = pl010_put_poll_char,
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1715#endif
1716};
1717
1718static struct uart_amba_port *amba_ports[UART_NR];
1719
1720#ifdef CONFIG_SERIAL_AMBA_PL011_CONSOLE
1721
1722static void pl011_console_putchar(struct uart_port *port, int ch)
1723{
1724	struct uart_amba_port *uap = (struct uart_amba_port *)port;
 
1725
1726	while (readw(uap->port.membase + UART01x_FR) & UART01x_FR_TXFF)
1727		barrier();
1728	writew(ch, uap->port.membase + UART01x_DR);
1729}
1730
1731static void
1732pl011_console_write(struct console *co, const char *s, unsigned int count)
1733{
1734	struct uart_amba_port *uap = amba_ports[co->index];
1735	unsigned int status, old_cr, new_cr;
 
 
1736
1737	clk_enable(uap->clk);
1738
 
 
 
 
 
 
 
 
1739	/*
1740	 *	First save the CR then disable the interrupts
1741	 */
1742	old_cr = readw(uap->port.membase + UART011_CR);
1743	new_cr = old_cr & ~UART011_CR_CTSEN;
1744	new_cr |= UART01x_CR_UARTEN | UART011_CR_TXE;
1745	writew(new_cr, uap->port.membase + UART011_CR);
 
 
1746
1747	uart_console_write(&uap->port, s, count, pl011_console_putchar);
1748
1749	/*
1750	 *	Finally, wait for transmitter to become empty
1751	 *	and restore the TCR
1752	 */
1753	do {
1754		status = readw(uap->port.membase + UART01x_FR);
1755	} while (status & UART01x_FR_BUSY);
1756	writew(old_cr, uap->port.membase + UART011_CR);
 
 
 
 
 
 
1757
1758	clk_disable(uap->clk);
1759}
1760
1761static void __init
1762pl011_console_get_options(struct uart_amba_port *uap, int *baud,
1763			     int *parity, int *bits)
1764{
1765	if (readw(uap->port.membase + UART011_CR) & UART01x_CR_UARTEN) {
1766		unsigned int lcr_h, ibrd, fbrd;
1767
1768		lcr_h = readw(uap->port.membase + uap->lcrh_tx);
1769
1770		*parity = 'n';
1771		if (lcr_h & UART01x_LCRH_PEN) {
1772			if (lcr_h & UART01x_LCRH_EPS)
1773				*parity = 'e';
1774			else
1775				*parity = 'o';
1776		}
1777
1778		if ((lcr_h & 0x60) == UART01x_LCRH_WLEN_7)
1779			*bits = 7;
1780		else
1781			*bits = 8;
1782
1783		ibrd = readw(uap->port.membase + UART011_IBRD);
1784		fbrd = readw(uap->port.membase + UART011_FBRD);
1785
1786		*baud = uap->port.uartclk * 4 / (64 * ibrd + fbrd);
1787
1788		if (uap->vendor->oversampling) {
1789			if (readw(uap->port.membase + UART011_CR)
1790				  & ST_UART011_CR_OVSFACT)
1791				*baud *= 2;
1792		}
1793	}
1794}
1795
1796static int __init pl011_console_setup(struct console *co, char *options)
1797{
1798	struct uart_amba_port *uap;
1799	int baud = 38400;
1800	int bits = 8;
1801	int parity = 'n';
1802	int flow = 'n';
 
1803
1804	/*
1805	 * Check whether an invalid uart number has been specified, and
1806	 * if so, search for the first available port that does have
1807	 * console support.
1808	 */
1809	if (co->index >= UART_NR)
1810		co->index = 0;
1811	uap = amba_ports[co->index];
1812	if (!uap)
1813		return -ENODEV;
1814
1815	if (uap->port.dev->platform_data) {
 
 
 
 
 
 
 
1816		struct amba_pl011_data *plat;
1817
1818		plat = uap->port.dev->platform_data;
1819		if (plat->init)
1820			plat->init();
1821	}
1822
1823	uap->port.uartclk = clk_get_rate(uap->clk);
1824
1825	if (options)
1826		uart_parse_options(options, &baud, &parity, &bits, &flow);
1827	else
1828		pl011_console_get_options(uap, &baud, &parity, &bits);
 
 
 
 
 
1829
1830	return uart_set_options(&uap->port, co, baud, parity, bits, flow);
1831}
1832
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1833static struct uart_driver amba_reg;
1834static struct console amba_console = {
1835	.name		= "ttyAMA",
1836	.write		= pl011_console_write,
1837	.device		= uart_console_device,
1838	.setup		= pl011_console_setup,
1839	.flags		= CON_PRINTBUFFER,
 
1840	.index		= -1,
1841	.data		= &amba_reg,
1842};
1843
1844#define AMBA_CONSOLE	(&amba_console)
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1845#else
1846#define AMBA_CONSOLE	NULL
1847#endif
1848
1849static struct uart_driver amba_reg = {
1850	.owner			= THIS_MODULE,
1851	.driver_name		= "ttyAMA",
1852	.dev_name		= "ttyAMA",
1853	.major			= SERIAL_AMBA_MAJOR,
1854	.minor			= SERIAL_AMBA_MINOR,
1855	.nr			= UART_NR,
1856	.cons			= AMBA_CONSOLE,
1857};
1858
1859static int pl011_probe(struct amba_device *dev, const struct amba_id *id)
1860{
1861	struct uart_amba_port *uap;
1862	struct vendor_data *vendor = id->data;
1863	void __iomem *base;
1864	int i, ret;
1865
1866	for (i = 0; i < ARRAY_SIZE(amba_ports); i++)
1867		if (amba_ports[i] == NULL)
1868			break;
1869
1870	if (i == ARRAY_SIZE(amba_ports)) {
1871		ret = -EBUSY;
1872		goto out;
1873	}
1874
1875	uap = kzalloc(sizeof(struct uart_amba_port), GFP_KERNEL);
1876	if (uap == NULL) {
1877		ret = -ENOMEM;
1878		goto out;
 
 
 
 
 
 
1879	}
1880
1881	base = ioremap(dev->res.start, resource_size(&dev->res));
1882	if (!base) {
1883		ret = -ENOMEM;
1884		goto free;
 
 
 
 
 
 
 
 
 
 
 
 
 
1885	}
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1886
1887	uap->clk = clk_get(&dev->dev, NULL);
1888	if (IS_ERR(uap->clk)) {
1889		ret = PTR_ERR(uap->clk);
1890		goto unmap;
 
 
 
 
 
 
 
1891	}
1892
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1893	uap->vendor = vendor;
1894	uap->lcrh_rx = vendor->lcrh_rx;
1895	uap->lcrh_tx = vendor->lcrh_tx;
1896	uap->fifosize = vendor->fifosize;
1897	uap->interrupt_may_hang = vendor->interrupt_may_hang;
1898	uap->port.dev = &dev->dev;
1899	uap->port.mapbase = dev->res.start;
1900	uap->port.membase = base;
1901	uap->port.iotype = UPIO_MEM;
1902	uap->port.irq = dev->irq[0];
1903	uap->port.fifosize = uap->fifosize;
1904	uap->port.ops = &amba_pl011_pops;
1905	uap->port.flags = UPF_BOOT_AUTOCONF;
1906	uap->port.line = i;
1907	pl011_dma_probe(uap);
1908
1909	snprintf(uap->type, sizeof(uap->type), "PL011 rev%u", amba_rev(dev));
1910
1911	amba_ports[i] = uap;
 
 
1912
1913	amba_set_drvdata(dev, uap);
1914	ret = uart_add_one_port(&amba_reg, &uap->port);
1915	if (ret) {
1916		amba_set_drvdata(dev, NULL);
1917		amba_ports[i] = NULL;
1918		pl011_dma_remove(uap);
1919		clk_put(uap->clk);
1920 unmap:
1921		iounmap(base);
1922 free:
1923		kfree(uap);
1924	}
1925 out:
1926	return ret;
1927}
1928
1929static int pl011_remove(struct amba_device *dev)
1930{
1931	struct uart_amba_port *uap = amba_get_drvdata(dev);
1932	int i;
1933
1934	amba_set_drvdata(dev, NULL);
1935
1936	uart_remove_one_port(&amba_reg, &uap->port);
1937
1938	for (i = 0; i < ARRAY_SIZE(amba_ports); i++)
1939		if (amba_ports[i] == uap)
1940			amba_ports[i] = NULL;
1941
1942	pl011_dma_remove(uap);
1943	iounmap(uap->port.membase);
1944	clk_put(uap->clk);
1945	kfree(uap);
1946	return 0;
1947}
1948
1949#ifdef CONFIG_PM
1950static int pl011_suspend(struct amba_device *dev, pm_message_t state)
1951{
1952	struct uart_amba_port *uap = amba_get_drvdata(dev);
1953
1954	if (!uap)
1955		return -EINVAL;
1956
1957	return uart_suspend_port(&amba_reg, &uap->port);
1958}
1959
1960static int pl011_resume(struct amba_device *dev)
1961{
1962	struct uart_amba_port *uap = amba_get_drvdata(dev);
1963
1964	if (!uap)
1965		return -EINVAL;
1966
1967	return uart_resume_port(&amba_reg, &uap->port);
1968}
1969#endif
1970
1971static struct amba_id pl011_ids[] = {
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1972	{
1973		.id	= 0x00041011,
1974		.mask	= 0x000fffff,
1975		.data	= &vendor_arm,
1976	},
1977	{
1978		.id	= 0x00380802,
1979		.mask	= 0x00ffffff,
1980		.data	= &vendor_st,
1981	},
 
 
 
 
 
1982	{ 0, 0 },
1983};
1984
 
 
1985static struct amba_driver pl011_driver = {
1986	.drv = {
1987		.name	= "uart-pl011",
 
1988	},
1989	.id_table	= pl011_ids,
1990	.probe		= pl011_probe,
1991	.remove		= pl011_remove,
1992#ifdef CONFIG_PM
1993	.suspend	= pl011_suspend,
1994	.resume		= pl011_resume,
1995#endif
1996};
1997
1998static int __init pl011_init(void)
1999{
2000	int ret;
2001	printk(KERN_INFO "Serial: AMBA PL011 UART driver\n");
2002
2003	ret = uart_register_driver(&amba_reg);
2004	if (ret == 0) {
2005		ret = amba_driver_register(&pl011_driver);
2006		if (ret)
2007			uart_unregister_driver(&amba_reg);
2008	}
2009	return ret;
2010}
2011
2012static void __exit pl011_exit(void)
2013{
 
2014	amba_driver_unregister(&pl011_driver);
2015	uart_unregister_driver(&amba_reg);
2016}
2017
2018/*
2019 * While this can be a module, if builtin it's most likely the console
2020 * So let's leave module_exit but move module_init to an earlier place
2021 */
2022arch_initcall(pl011_init);
2023module_exit(pl011_exit);
2024
2025MODULE_AUTHOR("ARM Ltd/Deep Blue Solutions Ltd");
2026MODULE_DESCRIPTION("ARM AMBA serial port driver");
2027MODULE_LICENSE("GPL");
v4.17
   1// SPDX-License-Identifier: GPL-2.0+
   2/*
   3 *  Driver for AMBA serial ports
   4 *
   5 *  Based on drivers/char/serial.c, by Linus Torvalds, Theodore Ts'o.
   6 *
   7 *  Copyright 1999 ARM Limited
   8 *  Copyright (C) 2000 Deep Blue Solutions Ltd.
   9 *  Copyright (C) 2010 ST-Ericsson SA
  10 *
 
 
 
 
 
 
 
 
 
 
 
 
 
 
  11 * This is a generic driver for ARM AMBA-type serial ports.  They
  12 * have a lot of 16550-like features, but are not register compatible.
  13 * Note that although they do have CTS, DCD and DSR inputs, they do
  14 * not have an RI input, nor do they have DTR or RTS outputs.  If
  15 * required, these have to be supplied via some other means (eg, GPIO)
  16 * and hooked into this driver.
  17 */
  18
  19
  20#if defined(CONFIG_SERIAL_AMBA_PL011_CONSOLE) && defined(CONFIG_MAGIC_SYSRQ)
  21#define SUPPORT_SYSRQ
  22#endif
  23
  24#include <linux/module.h>
  25#include <linux/ioport.h>
  26#include <linux/init.h>
  27#include <linux/console.h>
  28#include <linux/sysrq.h>
  29#include <linux/device.h>
  30#include <linux/tty.h>
  31#include <linux/tty_flip.h>
  32#include <linux/serial_core.h>
  33#include <linux/serial.h>
  34#include <linux/amba/bus.h>
  35#include <linux/amba/serial.h>
  36#include <linux/clk.h>
  37#include <linux/slab.h>
  38#include <linux/dmaengine.h>
  39#include <linux/dma-mapping.h>
  40#include <linux/scatterlist.h>
  41#include <linux/delay.h>
  42#include <linux/types.h>
  43#include <linux/of.h>
  44#include <linux/of_device.h>
  45#include <linux/pinctrl/consumer.h>
  46#include <linux/sizes.h>
  47#include <linux/io.h>
  48#include <linux/acpi.h>
  49
  50#include "amba-pl011.h"
 
  51
  52#define UART_NR			14
  53
  54#define SERIAL_AMBA_MAJOR	204
  55#define SERIAL_AMBA_MINOR	64
  56#define SERIAL_AMBA_NR		UART_NR
  57
  58#define AMBA_ISR_PASS_LIMIT	256
  59
  60#define UART_DR_ERROR		(UART011_DR_OE|UART011_DR_BE|UART011_DR_PE|UART011_DR_FE)
  61#define UART_DUMMY_DR_RX	(1 << 16)
  62
  63static u16 pl011_std_offsets[REG_ARRAY_SIZE] = {
  64	[REG_DR] = UART01x_DR,
  65	[REG_FR] = UART01x_FR,
  66	[REG_LCRH_RX] = UART011_LCRH,
  67	[REG_LCRH_TX] = UART011_LCRH,
  68	[REG_IBRD] = UART011_IBRD,
  69	[REG_FBRD] = UART011_FBRD,
  70	[REG_CR] = UART011_CR,
  71	[REG_IFLS] = UART011_IFLS,
  72	[REG_IMSC] = UART011_IMSC,
  73	[REG_RIS] = UART011_RIS,
  74	[REG_MIS] = UART011_MIS,
  75	[REG_ICR] = UART011_ICR,
  76	[REG_DMACR] = UART011_DMACR,
 
 
 
 
 
  77};
  78
 
 
 
  79/* There is by now at least one vendor with differing details, so handle it */
  80struct vendor_data {
  81	const u16		*reg_offset;
  82	unsigned int		ifls;
  83	unsigned int		fr_busy;
  84	unsigned int		fr_dsr;
  85	unsigned int		fr_cts;
  86	unsigned int		fr_ri;
  87	unsigned int		inv_fr;
  88	bool			access_32b;
  89	bool			oversampling;
 
  90	bool			dma_threshold;
  91	bool			cts_event_workaround;
  92	bool			always_enabled;
  93	bool			fixed_options;
  94
  95	unsigned int (*get_fifosize)(struct amba_device *dev);
  96};
  97
  98static unsigned int get_fifosize_arm(struct amba_device *dev)
  99{
 100	return amba_rev(dev) < 3 ? 16 : 32;
 101}
 102
 103static struct vendor_data vendor_arm = {
 104	.reg_offset		= pl011_std_offsets,
 105	.ifls			= UART011_IFLS_RX4_8|UART011_IFLS_TX4_8,
 106	.fr_busy		= UART01x_FR_BUSY,
 107	.fr_dsr			= UART01x_FR_DSR,
 108	.fr_cts			= UART01x_FR_CTS,
 109	.fr_ri			= UART011_FR_RI,
 110	.oversampling		= false,
 111	.dma_threshold		= false,
 112	.cts_event_workaround	= false,
 113	.always_enabled		= false,
 114	.fixed_options		= false,
 115	.get_fifosize		= get_fifosize_arm,
 116};
 117
 118static const struct vendor_data vendor_sbsa = {
 119	.reg_offset		= pl011_std_offsets,
 120	.fr_busy		= UART01x_FR_BUSY,
 121	.fr_dsr			= UART01x_FR_DSR,
 122	.fr_cts			= UART01x_FR_CTS,
 123	.fr_ri			= UART011_FR_RI,
 124	.access_32b		= true,
 125	.oversampling		= false,
 126	.dma_threshold		= false,
 127	.cts_event_workaround	= false,
 128	.always_enabled		= true,
 129	.fixed_options		= true,
 130};
 131
 132#ifdef CONFIG_ACPI_SPCR_TABLE
 133static const struct vendor_data vendor_qdt_qdf2400_e44 = {
 134	.reg_offset		= pl011_std_offsets,
 135	.fr_busy		= UART011_FR_TXFE,
 136	.fr_dsr			= UART01x_FR_DSR,
 137	.fr_cts			= UART01x_FR_CTS,
 138	.fr_ri			= UART011_FR_RI,
 139	.inv_fr			= UART011_FR_TXFE,
 140	.access_32b		= true,
 141	.oversampling		= false,
 142	.dma_threshold		= false,
 143	.cts_event_workaround	= false,
 144	.always_enabled		= true,
 145	.fixed_options		= true,
 146};
 147#endif
 148
 149static u16 pl011_st_offsets[REG_ARRAY_SIZE] = {
 150	[REG_DR] = UART01x_DR,
 151	[REG_ST_DMAWM] = ST_UART011_DMAWM,
 152	[REG_ST_TIMEOUT] = ST_UART011_TIMEOUT,
 153	[REG_FR] = UART01x_FR,
 154	[REG_LCRH_RX] = ST_UART011_LCRH_RX,
 155	[REG_LCRH_TX] = ST_UART011_LCRH_TX,
 156	[REG_IBRD] = UART011_IBRD,
 157	[REG_FBRD] = UART011_FBRD,
 158	[REG_CR] = UART011_CR,
 159	[REG_IFLS] = UART011_IFLS,
 160	[REG_IMSC] = UART011_IMSC,
 161	[REG_RIS] = UART011_RIS,
 162	[REG_MIS] = UART011_MIS,
 163	[REG_ICR] = UART011_ICR,
 164	[REG_DMACR] = UART011_DMACR,
 165	[REG_ST_XFCR] = ST_UART011_XFCR,
 166	[REG_ST_XON1] = ST_UART011_XON1,
 167	[REG_ST_XON2] = ST_UART011_XON2,
 168	[REG_ST_XOFF1] = ST_UART011_XOFF1,
 169	[REG_ST_XOFF2] = ST_UART011_XOFF2,
 170	[REG_ST_ITCR] = ST_UART011_ITCR,
 171	[REG_ST_ITIP] = ST_UART011_ITIP,
 172	[REG_ST_ABCR] = ST_UART011_ABCR,
 173	[REG_ST_ABIMSC] = ST_UART011_ABIMSC,
 174};
 175
 176static unsigned int get_fifosize_st(struct amba_device *dev)
 177{
 178	return 64;
 179}
 180
 181static struct vendor_data vendor_st = {
 182	.reg_offset		= pl011_st_offsets,
 183	.ifls			= UART011_IFLS_RX_HALF|UART011_IFLS_TX_HALF,
 184	.fr_busy		= UART01x_FR_BUSY,
 185	.fr_dsr			= UART01x_FR_DSR,
 186	.fr_cts			= UART01x_FR_CTS,
 187	.fr_ri			= UART011_FR_RI,
 188	.oversampling		= true,
 
 189	.dma_threshold		= true,
 190	.cts_event_workaround	= true,
 191	.always_enabled		= false,
 192	.fixed_options		= false,
 193	.get_fifosize		= get_fifosize_st,
 194};
 195
 196static const u16 pl011_zte_offsets[REG_ARRAY_SIZE] = {
 197	[REG_DR] = ZX_UART011_DR,
 198	[REG_FR] = ZX_UART011_FR,
 199	[REG_LCRH_RX] = ZX_UART011_LCRH,
 200	[REG_LCRH_TX] = ZX_UART011_LCRH,
 201	[REG_IBRD] = ZX_UART011_IBRD,
 202	[REG_FBRD] = ZX_UART011_FBRD,
 203	[REG_CR] = ZX_UART011_CR,
 204	[REG_IFLS] = ZX_UART011_IFLS,
 205	[REG_IMSC] = ZX_UART011_IMSC,
 206	[REG_RIS] = ZX_UART011_RIS,
 207	[REG_MIS] = ZX_UART011_MIS,
 208	[REG_ICR] = ZX_UART011_ICR,
 209	[REG_DMACR] = ZX_UART011_DMACR,
 210};
 211
 212static unsigned int get_fifosize_zte(struct amba_device *dev)
 213{
 214	return 16;
 215}
 216
 217static struct vendor_data vendor_zte = {
 218	.reg_offset		= pl011_zte_offsets,
 219	.access_32b		= true,
 220	.ifls			= UART011_IFLS_RX4_8|UART011_IFLS_TX4_8,
 221	.fr_busy		= ZX_UART01x_FR_BUSY,
 222	.fr_dsr			= ZX_UART01x_FR_DSR,
 223	.fr_cts			= ZX_UART01x_FR_CTS,
 224	.fr_ri			= ZX_UART011_FR_RI,
 225	.get_fifosize		= get_fifosize_zte,
 226};
 227
 228/* Deals with DMA transactions */
 229
 230struct pl011_sgbuf {
 231	struct scatterlist sg;
 232	char *buf;
 233};
 234
 235struct pl011_dmarx_data {
 236	struct dma_chan		*chan;
 237	struct completion	complete;
 238	bool			use_buf_b;
 239	struct pl011_sgbuf	sgbuf_a;
 240	struct pl011_sgbuf	sgbuf_b;
 241	dma_cookie_t		cookie;
 242	bool			running;
 243	struct timer_list	timer;
 244	unsigned int last_residue;
 245	unsigned long last_jiffies;
 246	bool auto_poll_rate;
 247	unsigned int poll_rate;
 248	unsigned int poll_timeout;
 249};
 250
 251struct pl011_dmatx_data {
 252	struct dma_chan		*chan;
 253	struct scatterlist	sg;
 254	char			*buf;
 255	bool			queued;
 256};
 257
 258/*
 259 * We wrap our port structure around the generic uart_port.
 260 */
 261struct uart_amba_port {
 262	struct uart_port	port;
 263	const u16		*reg_offset;
 264	struct clk		*clk;
 265	const struct vendor_data *vendor;
 266	unsigned int		dmacr;		/* dma control reg */
 267	unsigned int		im;		/* interrupt mask */
 268	unsigned int		old_status;
 269	unsigned int		fifosize;	/* vendor-specific */
 270	unsigned int		old_cr;		/* state during shutdown */
 271	unsigned int		fixed_baud;	/* vendor-set fixed baud rate */
 
 272	char			type[12];
 
 273#ifdef CONFIG_DMA_ENGINE
 274	/* DMA stuff */
 275	bool			using_tx_dma;
 276	bool			using_rx_dma;
 277	struct pl011_dmarx_data dmarx;
 278	struct pl011_dmatx_data	dmatx;
 279	bool			dma_probed;
 280#endif
 281};
 282
 283static unsigned int pl011_reg_to_offset(const struct uart_amba_port *uap,
 284	unsigned int reg)
 285{
 286	return uap->reg_offset[reg];
 287}
 288
 289static unsigned int pl011_read(const struct uart_amba_port *uap,
 290	unsigned int reg)
 291{
 292	void __iomem *addr = uap->port.membase + pl011_reg_to_offset(uap, reg);
 293
 294	return (uap->port.iotype == UPIO_MEM32) ?
 295		readl_relaxed(addr) : readw_relaxed(addr);
 296}
 297
 298static void pl011_write(unsigned int val, const struct uart_amba_port *uap,
 299	unsigned int reg)
 300{
 301	void __iomem *addr = uap->port.membase + pl011_reg_to_offset(uap, reg);
 302
 303	if (uap->port.iotype == UPIO_MEM32)
 304		writel_relaxed(val, addr);
 305	else
 306		writew_relaxed(val, addr);
 307}
 308
 309/*
 310 * Reads up to 256 characters from the FIFO or until it's empty and
 311 * inserts them into the TTY layer. Returns the number of characters
 312 * read from the FIFO.
 313 */
 314static int pl011_fifo_to_tty(struct uart_amba_port *uap)
 315{
 316	u16 status;
 317	unsigned int ch, flag, fifotaken;
 
 318
 319	for (fifotaken = 0; fifotaken != 256; fifotaken++) {
 320		status = pl011_read(uap, REG_FR);
 321		if (status & UART01x_FR_RXFE)
 322			break;
 323
 324		/* Take chars from the FIFO and update status */
 325		ch = pl011_read(uap, REG_DR) | UART_DUMMY_DR_RX;
 
 326		flag = TTY_NORMAL;
 327		uap->port.icount.rx++;
 
 328
 329		if (unlikely(ch & UART_DR_ERROR)) {
 330			if (ch & UART011_DR_BE) {
 331				ch &= ~(UART011_DR_FE | UART011_DR_PE);
 332				uap->port.icount.brk++;
 333				if (uart_handle_break(&uap->port))
 334					continue;
 335			} else if (ch & UART011_DR_PE)
 336				uap->port.icount.parity++;
 337			else if (ch & UART011_DR_FE)
 338				uap->port.icount.frame++;
 339			if (ch & UART011_DR_OE)
 340				uap->port.icount.overrun++;
 341
 342			ch &= uap->port.read_status_mask;
 343
 344			if (ch & UART011_DR_BE)
 345				flag = TTY_BREAK;
 346			else if (ch & UART011_DR_PE)
 347				flag = TTY_PARITY;
 348			else if (ch & UART011_DR_FE)
 349				flag = TTY_FRAME;
 350		}
 351
 352		if (uart_handle_sysrq_char(&uap->port, ch & 255))
 353			continue;
 354
 355		uart_insert_char(&uap->port, ch, UART011_DR_OE, ch, flag);
 356	}
 357
 358	return fifotaken;
 359}
 360
 361
 362/*
 363 * All the DMA operation mode stuff goes inside this ifdef.
 364 * This assumes that you have a generic DMA device interface,
 365 * no custom DMA interfaces are supported.
 366 */
 367#ifdef CONFIG_DMA_ENGINE
 368
 369#define PL011_DMA_BUFFER_SIZE PAGE_SIZE
 370
 371static int pl011_sgbuf_init(struct dma_chan *chan, struct pl011_sgbuf *sg,
 372	enum dma_data_direction dir)
 373{
 374	dma_addr_t dma_addr;
 375
 376	sg->buf = dma_alloc_coherent(chan->device->dev,
 377		PL011_DMA_BUFFER_SIZE, &dma_addr, GFP_KERNEL);
 378	if (!sg->buf)
 379		return -ENOMEM;
 380
 381	sg_init_table(&sg->sg, 1);
 382	sg_set_page(&sg->sg, phys_to_page(dma_addr),
 383		PL011_DMA_BUFFER_SIZE, offset_in_page(dma_addr));
 384	sg_dma_address(&sg->sg) = dma_addr;
 385	sg_dma_len(&sg->sg) = PL011_DMA_BUFFER_SIZE;
 386
 
 
 
 
 387	return 0;
 388}
 389
 390static void pl011_sgbuf_free(struct dma_chan *chan, struct pl011_sgbuf *sg,
 391	enum dma_data_direction dir)
 392{
 393	if (sg->buf) {
 394		dma_free_coherent(chan->device->dev,
 395			PL011_DMA_BUFFER_SIZE, sg->buf,
 396			sg_dma_address(&sg->sg));
 397	}
 398}
 399
 400static void pl011_dma_probe(struct uart_amba_port *uap)
 401{
 402	/* DMA is the sole user of the platform data right now */
 403	struct amba_pl011_data *plat = dev_get_platdata(uap->port.dev);
 404	struct device *dev = uap->port.dev;
 405	struct dma_slave_config tx_conf = {
 406		.dst_addr = uap->port.mapbase +
 407				 pl011_reg_to_offset(uap, REG_DR),
 408		.dst_addr_width = DMA_SLAVE_BUSWIDTH_1_BYTE,
 409		.direction = DMA_MEM_TO_DEV,
 410		.dst_maxburst = uap->fifosize >> 1,
 411		.device_fc = false,
 412	};
 413	struct dma_chan *chan;
 414	dma_cap_mask_t mask;
 415
 416	uap->dma_probed = true;
 417	chan = dma_request_slave_channel_reason(dev, "tx");
 418	if (IS_ERR(chan)) {
 419		if (PTR_ERR(chan) == -EPROBE_DEFER) {
 420			uap->dma_probed = false;
 421			return;
 422		}
 423
 424		/* We need platform data */
 425		if (!plat || !plat->dma_filter) {
 426			dev_info(uap->port.dev, "no DMA platform data\n");
 427			return;
 428		}
 429
 430		/* Try to acquire a generic DMA engine slave TX channel */
 431		dma_cap_zero(mask);
 432		dma_cap_set(DMA_SLAVE, mask);
 433
 434		chan = dma_request_channel(mask, plat->dma_filter,
 435						plat->dma_tx_param);
 436		if (!chan) {
 437			dev_err(uap->port.dev, "no TX DMA channel!\n");
 438			return;
 439		}
 440	}
 441
 442	dmaengine_slave_config(chan, &tx_conf);
 443	uap->dmatx.chan = chan;
 444
 445	dev_info(uap->port.dev, "DMA channel TX %s\n",
 446		 dma_chan_name(uap->dmatx.chan));
 447
 448	/* Optionally make use of an RX channel as well */
 449	chan = dma_request_slave_channel(dev, "rx");
 
 
 
 
 
 
 450
 451	if (!chan && plat && plat->dma_rx_param) {
 452		chan = dma_request_channel(mask, plat->dma_filter, plat->dma_rx_param);
 453
 454		if (!chan) {
 455			dev_err(uap->port.dev, "no RX DMA channel!\n");
 456			return;
 457		}
 458	}
 459
 460	if (chan) {
 461		struct dma_slave_config rx_conf = {
 462			.src_addr = uap->port.mapbase +
 463				pl011_reg_to_offset(uap, REG_DR),
 464			.src_addr_width = DMA_SLAVE_BUSWIDTH_1_BYTE,
 465			.direction = DMA_DEV_TO_MEM,
 466			.src_maxburst = uap->fifosize >> 2,
 467			.device_fc = false,
 468		};
 469		struct dma_slave_caps caps;
 470
 471		/*
 472		 * Some DMA controllers provide information on their capabilities.
 473		 * If the controller does, check for suitable residue processing
 474		 * otherwise assime all is well.
 475		 */
 476		if (0 == dma_get_slave_caps(chan, &caps)) {
 477			if (caps.residue_granularity ==
 478					DMA_RESIDUE_GRANULARITY_DESCRIPTOR) {
 479				dma_release_channel(chan);
 480				dev_info(uap->port.dev,
 481					"RX DMA disabled - no residue processing\n");
 482				return;
 483			}
 484		}
 485		dmaengine_slave_config(chan, &rx_conf);
 486		uap->dmarx.chan = chan;
 487
 488		uap->dmarx.auto_poll_rate = false;
 489		if (plat && plat->dma_rx_poll_enable) {
 490			/* Set poll rate if specified. */
 491			if (plat->dma_rx_poll_rate) {
 492				uap->dmarx.auto_poll_rate = false;
 493				uap->dmarx.poll_rate = plat->dma_rx_poll_rate;
 494			} else {
 495				/*
 496				 * 100 ms defaults to poll rate if not
 497				 * specified. This will be adjusted with
 498				 * the baud rate at set_termios.
 499				 */
 500				uap->dmarx.auto_poll_rate = true;
 501				uap->dmarx.poll_rate =  100;
 502			}
 503			/* 3 secs defaults poll_timeout if not specified. */
 504			if (plat->dma_rx_poll_timeout)
 505				uap->dmarx.poll_timeout =
 506					plat->dma_rx_poll_timeout;
 507			else
 508				uap->dmarx.poll_timeout = 3000;
 509		} else if (!plat && dev->of_node) {
 510			uap->dmarx.auto_poll_rate = of_property_read_bool(
 511						dev->of_node, "auto-poll");
 512			if (uap->dmarx.auto_poll_rate) {
 513				u32 x;
 514
 515				if (0 == of_property_read_u32(dev->of_node,
 516						"poll-rate-ms", &x))
 517					uap->dmarx.poll_rate = x;
 518				else
 519					uap->dmarx.poll_rate = 100;
 520				if (0 == of_property_read_u32(dev->of_node,
 521						"poll-timeout-ms", &x))
 522					uap->dmarx.poll_timeout = x;
 523				else
 524					uap->dmarx.poll_timeout = 3000;
 525			}
 526		}
 527		dev_info(uap->port.dev, "DMA channel RX %s\n",
 528			 dma_chan_name(uap->dmarx.chan));
 529	}
 530}
 531
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 532static void pl011_dma_remove(struct uart_amba_port *uap)
 533{
 
 534	if (uap->dmatx.chan)
 535		dma_release_channel(uap->dmatx.chan);
 536	if (uap->dmarx.chan)
 537		dma_release_channel(uap->dmarx.chan);
 538}
 539
 540/* Forward declare these for the refill routine */
 541static int pl011_dma_tx_refill(struct uart_amba_port *uap);
 542static void pl011_start_tx_pio(struct uart_amba_port *uap);
 543
 544/*
 545 * The current DMA TX buffer has been sent.
 546 * Try to queue up another DMA buffer.
 547 */
 548static void pl011_dma_tx_callback(void *data)
 549{
 550	struct uart_amba_port *uap = data;
 551	struct pl011_dmatx_data *dmatx = &uap->dmatx;
 552	unsigned long flags;
 553	u16 dmacr;
 554
 555	spin_lock_irqsave(&uap->port.lock, flags);
 556	if (uap->dmatx.queued)
 557		dma_unmap_sg(dmatx->chan->device->dev, &dmatx->sg, 1,
 558			     DMA_TO_DEVICE);
 559
 560	dmacr = uap->dmacr;
 561	uap->dmacr = dmacr & ~UART011_TXDMAE;
 562	pl011_write(uap->dmacr, uap, REG_DMACR);
 563
 564	/*
 565	 * If TX DMA was disabled, it means that we've stopped the DMA for
 566	 * some reason (eg, XOFF received, or we want to send an X-char.)
 567	 *
 568	 * Note: we need to be careful here of a potential race between DMA
 569	 * and the rest of the driver - if the driver disables TX DMA while
 570	 * a TX buffer completing, we must update the tx queued status to
 571	 * get further refills (hence we check dmacr).
 572	 */
 573	if (!(dmacr & UART011_TXDMAE) || uart_tx_stopped(&uap->port) ||
 574	    uart_circ_empty(&uap->port.state->xmit)) {
 575		uap->dmatx.queued = false;
 576		spin_unlock_irqrestore(&uap->port.lock, flags);
 577		return;
 578	}
 579
 580	if (pl011_dma_tx_refill(uap) <= 0)
 581		/*
 582		 * We didn't queue a DMA buffer for some reason, but we
 583		 * have data pending to be sent.  Re-enable the TX IRQ.
 584		 */
 585		pl011_start_tx_pio(uap);
 586
 
 587	spin_unlock_irqrestore(&uap->port.lock, flags);
 588}
 589
 590/*
 591 * Try to refill the TX DMA buffer.
 592 * Locking: called with port lock held and IRQs disabled.
 593 * Returns:
 594 *   1 if we queued up a TX DMA buffer.
 595 *   0 if we didn't want to handle this by DMA
 596 *  <0 on error
 597 */
 598static int pl011_dma_tx_refill(struct uart_amba_port *uap)
 599{
 600	struct pl011_dmatx_data *dmatx = &uap->dmatx;
 601	struct dma_chan *chan = dmatx->chan;
 602	struct dma_device *dma_dev = chan->device;
 603	struct dma_async_tx_descriptor *desc;
 604	struct circ_buf *xmit = &uap->port.state->xmit;
 605	unsigned int count;
 606
 607	/*
 608	 * Try to avoid the overhead involved in using DMA if the
 609	 * transaction fits in the first half of the FIFO, by using
 610	 * the standard interrupt handling.  This ensures that we
 611	 * issue a uart_write_wakeup() at the appropriate time.
 612	 */
 613	count = uart_circ_chars_pending(xmit);
 614	if (count < (uap->fifosize >> 1)) {
 615		uap->dmatx.queued = false;
 616		return 0;
 617	}
 618
 619	/*
 620	 * Bodge: don't send the last character by DMA, as this
 621	 * will prevent XON from notifying us to restart DMA.
 622	 */
 623	count -= 1;
 624
 625	/* Else proceed to copy the TX chars to the DMA buffer and fire DMA */
 626	if (count > PL011_DMA_BUFFER_SIZE)
 627		count = PL011_DMA_BUFFER_SIZE;
 628
 629	if (xmit->tail < xmit->head)
 630		memcpy(&dmatx->buf[0], &xmit->buf[xmit->tail], count);
 631	else {
 632		size_t first = UART_XMIT_SIZE - xmit->tail;
 633		size_t second;
 634
 635		if (first > count)
 636			first = count;
 637		second = count - first;
 638
 639		memcpy(&dmatx->buf[0], &xmit->buf[xmit->tail], first);
 640		if (second)
 641			memcpy(&dmatx->buf[first], &xmit->buf[0], second);
 642	}
 643
 644	dmatx->sg.length = count;
 645
 646	if (dma_map_sg(dma_dev->dev, &dmatx->sg, 1, DMA_TO_DEVICE) != 1) {
 647		uap->dmatx.queued = false;
 648		dev_dbg(uap->port.dev, "unable to map TX DMA\n");
 649		return -EBUSY;
 650	}
 651
 652	desc = dmaengine_prep_slave_sg(chan, &dmatx->sg, 1, DMA_MEM_TO_DEV,
 653					     DMA_PREP_INTERRUPT | DMA_CTRL_ACK);
 654	if (!desc) {
 655		dma_unmap_sg(dma_dev->dev, &dmatx->sg, 1, DMA_TO_DEVICE);
 656		uap->dmatx.queued = false;
 657		/*
 658		 * If DMA cannot be used right now, we complete this
 659		 * transaction via IRQ and let the TTY layer retry.
 660		 */
 661		dev_dbg(uap->port.dev, "TX DMA busy\n");
 662		return -EBUSY;
 663	}
 664
 665	/* Some data to go along to the callback */
 666	desc->callback = pl011_dma_tx_callback;
 667	desc->callback_param = uap;
 668
 669	/* All errors should happen at prepare time */
 670	dmaengine_submit(desc);
 671
 672	/* Fire the DMA transaction */
 673	dma_dev->device_issue_pending(chan);
 674
 675	uap->dmacr |= UART011_TXDMAE;
 676	pl011_write(uap->dmacr, uap, REG_DMACR);
 677	uap->dmatx.queued = true;
 678
 679	/*
 680	 * Now we know that DMA will fire, so advance the ring buffer
 681	 * with the stuff we just dispatched.
 682	 */
 683	xmit->tail = (xmit->tail + count) & (UART_XMIT_SIZE - 1);
 684	uap->port.icount.tx += count;
 685
 686	if (uart_circ_chars_pending(xmit) < WAKEUP_CHARS)
 687		uart_write_wakeup(&uap->port);
 688
 689	return 1;
 690}
 691
 692/*
 693 * We received a transmit interrupt without a pending X-char but with
 694 * pending characters.
 695 * Locking: called with port lock held and IRQs disabled.
 696 * Returns:
 697 *   false if we want to use PIO to transmit
 698 *   true if we queued a DMA buffer
 699 */
 700static bool pl011_dma_tx_irq(struct uart_amba_port *uap)
 701{
 702	if (!uap->using_tx_dma)
 703		return false;
 704
 705	/*
 706	 * If we already have a TX buffer queued, but received a
 707	 * TX interrupt, it will be because we've just sent an X-char.
 708	 * Ensure the TX DMA is enabled and the TX IRQ is disabled.
 709	 */
 710	if (uap->dmatx.queued) {
 711		uap->dmacr |= UART011_TXDMAE;
 712		pl011_write(uap->dmacr, uap, REG_DMACR);
 713		uap->im &= ~UART011_TXIM;
 714		pl011_write(uap->im, uap, REG_IMSC);
 715		return true;
 716	}
 717
 718	/*
 719	 * We don't have a TX buffer queued, so try to queue one.
 720	 * If we successfully queued a buffer, mask the TX IRQ.
 721	 */
 722	if (pl011_dma_tx_refill(uap) > 0) {
 723		uap->im &= ~UART011_TXIM;
 724		pl011_write(uap->im, uap, REG_IMSC);
 725		return true;
 726	}
 727	return false;
 728}
 729
 730/*
 731 * Stop the DMA transmit (eg, due to received XOFF).
 732 * Locking: called with port lock held and IRQs disabled.
 733 */
 734static inline void pl011_dma_tx_stop(struct uart_amba_port *uap)
 735{
 736	if (uap->dmatx.queued) {
 737		uap->dmacr &= ~UART011_TXDMAE;
 738		pl011_write(uap->dmacr, uap, REG_DMACR);
 739	}
 740}
 741
 742/*
 743 * Try to start a DMA transmit, or in the case of an XON/OFF
 744 * character queued for send, try to get that character out ASAP.
 745 * Locking: called with port lock held and IRQs disabled.
 746 * Returns:
 747 *   false if we want the TX IRQ to be enabled
 748 *   true if we have a buffer queued
 749 */
 750static inline bool pl011_dma_tx_start(struct uart_amba_port *uap)
 751{
 752	u16 dmacr;
 753
 754	if (!uap->using_tx_dma)
 755		return false;
 756
 757	if (!uap->port.x_char) {
 758		/* no X-char, try to push chars out in DMA mode */
 759		bool ret = true;
 760
 761		if (!uap->dmatx.queued) {
 762			if (pl011_dma_tx_refill(uap) > 0) {
 763				uap->im &= ~UART011_TXIM;
 764				pl011_write(uap->im, uap, REG_IMSC);
 765			} else
 
 766				ret = false;
 
 
 767		} else if (!(uap->dmacr & UART011_TXDMAE)) {
 768			uap->dmacr |= UART011_TXDMAE;
 769			pl011_write(uap->dmacr, uap, REG_DMACR);
 
 770		}
 771		return ret;
 772	}
 773
 774	/*
 775	 * We have an X-char to send.  Disable DMA to prevent it loading
 776	 * the TX fifo, and then see if we can stuff it into the FIFO.
 777	 */
 778	dmacr = uap->dmacr;
 779	uap->dmacr &= ~UART011_TXDMAE;
 780	pl011_write(uap->dmacr, uap, REG_DMACR);
 781
 782	if (pl011_read(uap, REG_FR) & UART01x_FR_TXFF) {
 783		/*
 784		 * No space in the FIFO, so enable the transmit interrupt
 785		 * so we know when there is space.  Note that once we've
 786		 * loaded the character, we should just re-enable DMA.
 787		 */
 788		return false;
 789	}
 790
 791	pl011_write(uap->port.x_char, uap, REG_DR);
 792	uap->port.icount.tx++;
 793	uap->port.x_char = 0;
 794
 795	/* Success - restore the DMA state */
 796	uap->dmacr = dmacr;
 797	pl011_write(dmacr, uap, REG_DMACR);
 798
 799	return true;
 800}
 801
 802/*
 803 * Flush the transmit buffer.
 804 * Locking: called with port lock held and IRQs disabled.
 805 */
 806static void pl011_dma_flush_buffer(struct uart_port *port)
 807__releases(&uap->port.lock)
 808__acquires(&uap->port.lock)
 809{
 810	struct uart_amba_port *uap =
 811	    container_of(port, struct uart_amba_port, port);
 812
 813	if (!uap->using_tx_dma)
 814		return;
 815
 816	/* Avoid deadlock with the DMA engine callback */
 817	spin_unlock(&uap->port.lock);
 818	dmaengine_terminate_all(uap->dmatx.chan);
 819	spin_lock(&uap->port.lock);
 820	if (uap->dmatx.queued) {
 821		dma_unmap_sg(uap->dmatx.chan->device->dev, &uap->dmatx.sg, 1,
 822			     DMA_TO_DEVICE);
 823		uap->dmatx.queued = false;
 824		uap->dmacr &= ~UART011_TXDMAE;
 825		pl011_write(uap->dmacr, uap, REG_DMACR);
 826	}
 827}
 828
 829static void pl011_dma_rx_callback(void *data);
 830
 831static int pl011_dma_rx_trigger_dma(struct uart_amba_port *uap)
 832{
 833	struct dma_chan *rxchan = uap->dmarx.chan;
 
 834	struct pl011_dmarx_data *dmarx = &uap->dmarx;
 835	struct dma_async_tx_descriptor *desc;
 836	struct pl011_sgbuf *sgbuf;
 837
 838	if (!rxchan)
 839		return -EIO;
 840
 841	/* Start the RX DMA job */
 842	sgbuf = uap->dmarx.use_buf_b ?
 843		&uap->dmarx.sgbuf_b : &uap->dmarx.sgbuf_a;
 844	desc = dmaengine_prep_slave_sg(rxchan, &sgbuf->sg, 1,
 845					DMA_DEV_TO_MEM,
 
 846					DMA_PREP_INTERRUPT | DMA_CTRL_ACK);
 847	/*
 848	 * If the DMA engine is busy and cannot prepare a
 849	 * channel, no big deal, the driver will fall back
 850	 * to interrupt mode as a result of this error code.
 851	 */
 852	if (!desc) {
 853		uap->dmarx.running = false;
 854		dmaengine_terminate_all(rxchan);
 855		return -EBUSY;
 856	}
 857
 858	/* Some data to go along to the callback */
 859	desc->callback = pl011_dma_rx_callback;
 860	desc->callback_param = uap;
 861	dmarx->cookie = dmaengine_submit(desc);
 862	dma_async_issue_pending(rxchan);
 863
 864	uap->dmacr |= UART011_RXDMAE;
 865	pl011_write(uap->dmacr, uap, REG_DMACR);
 866	uap->dmarx.running = true;
 867
 868	uap->im &= ~UART011_RXIM;
 869	pl011_write(uap->im, uap, REG_IMSC);
 870
 871	return 0;
 872}
 873
 874/*
 875 * This is called when either the DMA job is complete, or
 876 * the FIFO timeout interrupt occurred. This must be called
 877 * with the port spinlock uap->port.lock held.
 878 */
 879static void pl011_dma_rx_chars(struct uart_amba_port *uap,
 880			       u32 pending, bool use_buf_b,
 881			       bool readfifo)
 882{
 883	struct tty_port *port = &uap->port.state->port;
 884	struct pl011_sgbuf *sgbuf = use_buf_b ?
 885		&uap->dmarx.sgbuf_b : &uap->dmarx.sgbuf_a;
 
 886	int dma_count = 0;
 887	u32 fifotaken = 0; /* only used for vdbg() */
 888
 889	struct pl011_dmarx_data *dmarx = &uap->dmarx;
 890	int dmataken = 0;
 891
 892	if (uap->dmarx.poll_rate) {
 893		/* The data can be taken by polling */
 894		dmataken = sgbuf->sg.length - dmarx->last_residue;
 895		/* Recalculate the pending size */
 896		if (pending >= dmataken)
 897			pending -= dmataken;
 898	}
 899
 900	/* Pick the remain data from the DMA */
 901	if (pending) {
 
 
 902
 903		/*
 904		 * First take all chars in the DMA pipe, then look in the FIFO.
 905		 * Note that tty_insert_flip_buf() tries to take as many chars
 906		 * as it can.
 907		 */
 908		dma_count = tty_insert_flip_string(port, sgbuf->buf + dmataken,
 909				pending);
 
 
 
 910
 911		uap->port.icount.rx += dma_count;
 912		if (dma_count < pending)
 913			dev_warn(uap->port.dev,
 914				 "couldn't insert all characters (TTY is full?)\n");
 915	}
 916
 917	/* Reset the last_residue for Rx DMA poll */
 918	if (uap->dmarx.poll_rate)
 919		dmarx->last_residue = sgbuf->sg.length;
 920
 921	/*
 922	 * Only continue with trying to read the FIFO if all DMA chars have
 923	 * been taken first.
 924	 */
 925	if (dma_count == pending && readfifo) {
 926		/* Clear any error flags */
 927		pl011_write(UART011_OEIS | UART011_BEIS | UART011_PEIS |
 928			    UART011_FEIS, uap, REG_ICR);
 929
 930		/*
 931		 * If we read all the DMA'd characters, and we had an
 932		 * incomplete buffer, that could be due to an rx error, or
 933		 * maybe we just timed out. Read any pending chars and check
 934		 * the error status.
 935		 *
 936		 * Error conditions will only occur in the FIFO, these will
 937		 * trigger an immediate interrupt and stop the DMA job, so we
 938		 * will always find the error in the FIFO, never in the DMA
 939		 * buffer.
 940		 */
 941		fifotaken = pl011_fifo_to_tty(uap);
 942	}
 943
 944	spin_unlock(&uap->port.lock);
 945	dev_vdbg(uap->port.dev,
 946		 "Took %d chars from DMA buffer and %d chars from the FIFO\n",
 947		 dma_count, fifotaken);
 948	tty_flip_buffer_push(port);
 949	spin_lock(&uap->port.lock);
 950}
 951
 952static void pl011_dma_rx_irq(struct uart_amba_port *uap)
 953{
 954	struct pl011_dmarx_data *dmarx = &uap->dmarx;
 955	struct dma_chan *rxchan = dmarx->chan;
 956	struct pl011_sgbuf *sgbuf = dmarx->use_buf_b ?
 957		&dmarx->sgbuf_b : &dmarx->sgbuf_a;
 958	size_t pending;
 959	struct dma_tx_state state;
 960	enum dma_status dmastat;
 961
 962	/*
 963	 * Pause the transfer so we can trust the current counter,
 964	 * do this before we pause the PL011 block, else we may
 965	 * overflow the FIFO.
 966	 */
 967	if (dmaengine_pause(rxchan))
 968		dev_err(uap->port.dev, "unable to pause DMA transfer\n");
 969	dmastat = rxchan->device->device_tx_status(rxchan,
 970						   dmarx->cookie, &state);
 971	if (dmastat != DMA_PAUSED)
 972		dev_err(uap->port.dev, "unable to pause DMA transfer\n");
 973
 974	/* Disable RX DMA - incoming data will wait in the FIFO */
 975	uap->dmacr &= ~UART011_RXDMAE;
 976	pl011_write(uap->dmacr, uap, REG_DMACR);
 977	uap->dmarx.running = false;
 978
 979	pending = sgbuf->sg.length - state.residue;
 980	BUG_ON(pending > PL011_DMA_BUFFER_SIZE);
 981	/* Then we terminate the transfer - we now know our residue */
 982	dmaengine_terminate_all(rxchan);
 983
 984	/*
 985	 * This will take the chars we have so far and insert
 986	 * into the framework.
 987	 */
 988	pl011_dma_rx_chars(uap, pending, dmarx->use_buf_b, true);
 989
 990	/* Switch buffer & re-trigger DMA job */
 991	dmarx->use_buf_b = !dmarx->use_buf_b;
 992	if (pl011_dma_rx_trigger_dma(uap)) {
 993		dev_dbg(uap->port.dev, "could not retrigger RX DMA job "
 994			"fall back to interrupt mode\n");
 995		uap->im |= UART011_RXIM;
 996		pl011_write(uap->im, uap, REG_IMSC);
 997	}
 998}
 999
1000static void pl011_dma_rx_callback(void *data)
1001{
1002	struct uart_amba_port *uap = data;
1003	struct pl011_dmarx_data *dmarx = &uap->dmarx;
1004	struct dma_chan *rxchan = dmarx->chan;
1005	bool lastbuf = dmarx->use_buf_b;
1006	struct pl011_sgbuf *sgbuf = dmarx->use_buf_b ?
1007		&dmarx->sgbuf_b : &dmarx->sgbuf_a;
1008	size_t pending;
1009	struct dma_tx_state state;
1010	int ret;
1011
1012	/*
1013	 * This completion interrupt occurs typically when the
1014	 * RX buffer is totally stuffed but no timeout has yet
1015	 * occurred. When that happens, we just want the RX
1016	 * routine to flush out the secondary DMA buffer while
1017	 * we immediately trigger the next DMA job.
1018	 */
1019	spin_lock_irq(&uap->port.lock);
1020	/*
1021	 * Rx data can be taken by the UART interrupts during
1022	 * the DMA irq handler. So we check the residue here.
1023	 */
1024	rxchan->device->device_tx_status(rxchan, dmarx->cookie, &state);
1025	pending = sgbuf->sg.length - state.residue;
1026	BUG_ON(pending > PL011_DMA_BUFFER_SIZE);
1027	/* Then we terminate the transfer - we now know our residue */
1028	dmaengine_terminate_all(rxchan);
1029
1030	uap->dmarx.running = false;
1031	dmarx->use_buf_b = !lastbuf;
1032	ret = pl011_dma_rx_trigger_dma(uap);
1033
1034	pl011_dma_rx_chars(uap, pending, lastbuf, false);
1035	spin_unlock_irq(&uap->port.lock);
1036	/*
1037	 * Do this check after we picked the DMA chars so we don't
1038	 * get some IRQ immediately from RX.
1039	 */
1040	if (ret) {
1041		dev_dbg(uap->port.dev, "could not retrigger RX DMA job "
1042			"fall back to interrupt mode\n");
1043		uap->im |= UART011_RXIM;
1044		pl011_write(uap->im, uap, REG_IMSC);
1045	}
1046}
1047
1048/*
1049 * Stop accepting received characters, when we're shutting down or
1050 * suspending this port.
1051 * Locking: called with port lock held and IRQs disabled.
1052 */
1053static inline void pl011_dma_rx_stop(struct uart_amba_port *uap)
1054{
1055	/* FIXME.  Just disable the DMA enable */
1056	uap->dmacr &= ~UART011_RXDMAE;
1057	pl011_write(uap->dmacr, uap, REG_DMACR);
1058}
1059
1060/*
1061 * Timer handler for Rx DMA polling.
1062 * Every polling, It checks the residue in the dma buffer and transfer
1063 * data to the tty. Also, last_residue is updated for the next polling.
1064 */
1065static void pl011_dma_rx_poll(struct timer_list *t)
1066{
1067	struct uart_amba_port *uap = from_timer(uap, t, dmarx.timer);
1068	struct tty_port *port = &uap->port.state->port;
1069	struct pl011_dmarx_data *dmarx = &uap->dmarx;
1070	struct dma_chan *rxchan = uap->dmarx.chan;
1071	unsigned long flags = 0;
1072	unsigned int dmataken = 0;
1073	unsigned int size = 0;
1074	struct pl011_sgbuf *sgbuf;
1075	int dma_count;
1076	struct dma_tx_state state;
1077
1078	sgbuf = dmarx->use_buf_b ? &uap->dmarx.sgbuf_b : &uap->dmarx.sgbuf_a;
1079	rxchan->device->device_tx_status(rxchan, dmarx->cookie, &state);
1080	if (likely(state.residue < dmarx->last_residue)) {
1081		dmataken = sgbuf->sg.length - dmarx->last_residue;
1082		size = dmarx->last_residue - state.residue;
1083		dma_count = tty_insert_flip_string(port, sgbuf->buf + dmataken,
1084				size);
1085		if (dma_count == size)
1086			dmarx->last_residue =  state.residue;
1087		dmarx->last_jiffies = jiffies;
1088	}
1089	tty_flip_buffer_push(port);
1090
1091	/*
1092	 * If no data is received in poll_timeout, the driver will fall back
1093	 * to interrupt mode. We will retrigger DMA at the first interrupt.
1094	 */
1095	if (jiffies_to_msecs(jiffies - dmarx->last_jiffies)
1096			> uap->dmarx.poll_timeout) {
1097
1098		spin_lock_irqsave(&uap->port.lock, flags);
1099		pl011_dma_rx_stop(uap);
1100		uap->im |= UART011_RXIM;
1101		pl011_write(uap->im, uap, REG_IMSC);
1102		spin_unlock_irqrestore(&uap->port.lock, flags);
1103
1104		uap->dmarx.running = false;
1105		dmaengine_terminate_all(rxchan);
1106		del_timer(&uap->dmarx.timer);
1107	} else {
1108		mod_timer(&uap->dmarx.timer,
1109			jiffies + msecs_to_jiffies(uap->dmarx.poll_rate));
1110	}
1111}
1112
1113static void pl011_dma_startup(struct uart_amba_port *uap)
1114{
1115	int ret;
1116
1117	if (!uap->dma_probed)
1118		pl011_dma_probe(uap);
1119
1120	if (!uap->dmatx.chan)
1121		return;
1122
1123	uap->dmatx.buf = kmalloc(PL011_DMA_BUFFER_SIZE, GFP_KERNEL | __GFP_DMA);
1124	if (!uap->dmatx.buf) {
1125		dev_err(uap->port.dev, "no memory for DMA TX buffer\n");
1126		uap->port.fifosize = uap->fifosize;
1127		return;
1128	}
1129
1130	sg_init_one(&uap->dmatx.sg, uap->dmatx.buf, PL011_DMA_BUFFER_SIZE);
1131
1132	/* The DMA buffer is now the FIFO the TTY subsystem can use */
1133	uap->port.fifosize = PL011_DMA_BUFFER_SIZE;
1134	uap->using_tx_dma = true;
1135
1136	if (!uap->dmarx.chan)
1137		goto skip_rx;
1138
1139	/* Allocate and map DMA RX buffers */
1140	ret = pl011_sgbuf_init(uap->dmarx.chan, &uap->dmarx.sgbuf_a,
1141			       DMA_FROM_DEVICE);
1142	if (ret) {
1143		dev_err(uap->port.dev, "failed to init DMA %s: %d\n",
1144			"RX buffer A", ret);
1145		goto skip_rx;
1146	}
1147
1148	ret = pl011_sgbuf_init(uap->dmarx.chan, &uap->dmarx.sgbuf_b,
1149			       DMA_FROM_DEVICE);
1150	if (ret) {
1151		dev_err(uap->port.dev, "failed to init DMA %s: %d\n",
1152			"RX buffer B", ret);
1153		pl011_sgbuf_free(uap->dmarx.chan, &uap->dmarx.sgbuf_a,
1154				 DMA_FROM_DEVICE);
1155		goto skip_rx;
1156	}
1157
1158	uap->using_rx_dma = true;
1159
1160skip_rx:
1161	/* Turn on DMA error (RX/TX will be enabled on demand) */
1162	uap->dmacr |= UART011_DMAONERR;
1163	pl011_write(uap->dmacr, uap, REG_DMACR);
1164
1165	/*
1166	 * ST Micro variants has some specific dma burst threshold
1167	 * compensation. Set this to 16 bytes, so burst will only
1168	 * be issued above/below 16 bytes.
1169	 */
1170	if (uap->vendor->dma_threshold)
1171		pl011_write(ST_UART011_DMAWM_RX_16 | ST_UART011_DMAWM_TX_16,
1172			    uap, REG_ST_DMAWM);
1173
1174	if (uap->using_rx_dma) {
1175		if (pl011_dma_rx_trigger_dma(uap))
1176			dev_dbg(uap->port.dev, "could not trigger initial "
1177				"RX DMA job, fall back to interrupt mode\n");
1178		if (uap->dmarx.poll_rate) {
1179			timer_setup(&uap->dmarx.timer, pl011_dma_rx_poll, 0);
1180			mod_timer(&uap->dmarx.timer,
1181				jiffies +
1182				msecs_to_jiffies(uap->dmarx.poll_rate));
1183			uap->dmarx.last_residue = PL011_DMA_BUFFER_SIZE;
1184			uap->dmarx.last_jiffies = jiffies;
1185		}
1186	}
1187}
1188
1189static void pl011_dma_shutdown(struct uart_amba_port *uap)
1190{
1191	if (!(uap->using_tx_dma || uap->using_rx_dma))
1192		return;
1193
1194	/* Disable RX and TX DMA */
1195	while (pl011_read(uap, REG_FR) & uap->vendor->fr_busy)
1196		cpu_relax();
1197
1198	spin_lock_irq(&uap->port.lock);
1199	uap->dmacr &= ~(UART011_DMAONERR | UART011_RXDMAE | UART011_TXDMAE);
1200	pl011_write(uap->dmacr, uap, REG_DMACR);
1201	spin_unlock_irq(&uap->port.lock);
1202
1203	if (uap->using_tx_dma) {
1204		/* In theory, this should already be done by pl011_dma_flush_buffer */
1205		dmaengine_terminate_all(uap->dmatx.chan);
1206		if (uap->dmatx.queued) {
1207			dma_unmap_sg(uap->dmatx.chan->device->dev, &uap->dmatx.sg, 1,
1208				     DMA_TO_DEVICE);
1209			uap->dmatx.queued = false;
1210		}
1211
1212		kfree(uap->dmatx.buf);
1213		uap->using_tx_dma = false;
1214	}
1215
1216	if (uap->using_rx_dma) {
1217		dmaengine_terminate_all(uap->dmarx.chan);
1218		/* Clean up the RX DMA */
1219		pl011_sgbuf_free(uap->dmarx.chan, &uap->dmarx.sgbuf_a, DMA_FROM_DEVICE);
1220		pl011_sgbuf_free(uap->dmarx.chan, &uap->dmarx.sgbuf_b, DMA_FROM_DEVICE);
1221		if (uap->dmarx.poll_rate)
1222			del_timer_sync(&uap->dmarx.timer);
1223		uap->using_rx_dma = false;
1224	}
1225}
1226
1227static inline bool pl011_dma_rx_available(struct uart_amba_port *uap)
1228{
1229	return uap->using_rx_dma;
1230}
1231
1232static inline bool pl011_dma_rx_running(struct uart_amba_port *uap)
1233{
1234	return uap->using_rx_dma && uap->dmarx.running;
1235}
1236
 
1237#else
1238/* Blank functions if the DMA engine is not available */
1239static inline void pl011_dma_probe(struct uart_amba_port *uap)
1240{
1241}
1242
1243static inline void pl011_dma_remove(struct uart_amba_port *uap)
1244{
1245}
1246
1247static inline void pl011_dma_startup(struct uart_amba_port *uap)
1248{
1249}
1250
1251static inline void pl011_dma_shutdown(struct uart_amba_port *uap)
1252{
1253}
1254
1255static inline bool pl011_dma_tx_irq(struct uart_amba_port *uap)
1256{
1257	return false;
1258}
1259
1260static inline void pl011_dma_tx_stop(struct uart_amba_port *uap)
1261{
1262}
1263
1264static inline bool pl011_dma_tx_start(struct uart_amba_port *uap)
1265{
1266	return false;
1267}
1268
1269static inline void pl011_dma_rx_irq(struct uart_amba_port *uap)
1270{
1271}
1272
1273static inline void pl011_dma_rx_stop(struct uart_amba_port *uap)
1274{
1275}
1276
1277static inline int pl011_dma_rx_trigger_dma(struct uart_amba_port *uap)
1278{
1279	return -EIO;
1280}
1281
1282static inline bool pl011_dma_rx_available(struct uart_amba_port *uap)
1283{
1284	return false;
1285}
1286
1287static inline bool pl011_dma_rx_running(struct uart_amba_port *uap)
1288{
1289	return false;
1290}
1291
1292#define pl011_dma_flush_buffer	NULL
1293#endif
1294
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1295static void pl011_stop_tx(struct uart_port *port)
1296{
1297	struct uart_amba_port *uap =
1298	    container_of(port, struct uart_amba_port, port);
1299
1300	uap->im &= ~UART011_TXIM;
1301	pl011_write(uap->im, uap, REG_IMSC);
1302	pl011_dma_tx_stop(uap);
1303}
1304
1305static bool pl011_tx_chars(struct uart_amba_port *uap, bool from_irq);
 
 
1306
1307/* Start TX with programmed I/O only (no DMA) */
1308static void pl011_start_tx_pio(struct uart_amba_port *uap)
1309{
1310	if (pl011_tx_chars(uap, false)) {
1311		uap->im |= UART011_TXIM;
1312		pl011_write(uap->im, uap, REG_IMSC);
1313	}
1314}
1315
1316static void pl011_start_tx(struct uart_port *port)
1317{
1318	struct uart_amba_port *uap =
1319	    container_of(port, struct uart_amba_port, port);
1320
1321	if (!pl011_dma_tx_start(uap))
1322		pl011_start_tx_pio(uap);
1323}
1324
1325static void pl011_stop_rx(struct uart_port *port)
1326{
1327	struct uart_amba_port *uap =
1328	    container_of(port, struct uart_amba_port, port);
1329
1330	uap->im &= ~(UART011_RXIM|UART011_RTIM|UART011_FEIM|
1331		     UART011_PEIM|UART011_BEIM|UART011_OEIM);
1332	pl011_write(uap->im, uap, REG_IMSC);
1333
1334	pl011_dma_rx_stop(uap);
1335}
1336
1337static void pl011_enable_ms(struct uart_port *port)
1338{
1339	struct uart_amba_port *uap =
1340	    container_of(port, struct uart_amba_port, port);
1341
1342	uap->im |= UART011_RIMIM|UART011_CTSMIM|UART011_DCDMIM|UART011_DSRMIM;
1343	pl011_write(uap->im, uap, REG_IMSC);
1344}
1345
1346static void pl011_rx_chars(struct uart_amba_port *uap)
1347__releases(&uap->port.lock)
1348__acquires(&uap->port.lock)
1349{
 
 
1350	pl011_fifo_to_tty(uap);
1351
1352	spin_unlock(&uap->port.lock);
1353	tty_flip_buffer_push(&uap->port.state->port);
1354	/*
1355	 * If we were temporarily out of DMA mode for a while,
1356	 * attempt to switch back to DMA mode again.
1357	 */
1358	if (pl011_dma_rx_available(uap)) {
1359		if (pl011_dma_rx_trigger_dma(uap)) {
1360			dev_dbg(uap->port.dev, "could not trigger RX DMA job "
1361				"fall back to interrupt mode again\n");
1362			uap->im |= UART011_RXIM;
1363			pl011_write(uap->im, uap, REG_IMSC);
1364		} else {
1365#ifdef CONFIG_DMA_ENGINE
1366			/* Start Rx DMA poll */
1367			if (uap->dmarx.poll_rate) {
1368				uap->dmarx.last_jiffies = jiffies;
1369				uap->dmarx.last_residue	= PL011_DMA_BUFFER_SIZE;
1370				mod_timer(&uap->dmarx.timer,
1371					jiffies +
1372					msecs_to_jiffies(uap->dmarx.poll_rate));
1373			}
1374#endif
1375		}
1376	}
1377	spin_lock(&uap->port.lock);
1378}
1379
1380static bool pl011_tx_char(struct uart_amba_port *uap, unsigned char c,
1381			  bool from_irq)
1382{
1383	if (unlikely(!from_irq) &&
1384	    pl011_read(uap, REG_FR) & UART01x_FR_TXFF)
1385		return false; /* unable to transmit character */
1386
1387	pl011_write(c, uap, REG_DR);
1388	uap->port.icount.tx++;
1389
1390	return true;
1391}
1392
1393/* Returns true if tx interrupts have to be (kept) enabled  */
1394static bool pl011_tx_chars(struct uart_amba_port *uap, bool from_irq)
1395{
1396	struct circ_buf *xmit = &uap->port.state->xmit;
1397	int count = uap->fifosize >> 1;
1398
1399	if (uap->port.x_char) {
1400		if (!pl011_tx_char(uap, uap->port.x_char, from_irq))
1401			return true;
1402		uap->port.x_char = 0;
1403		--count;
1404	}
1405	if (uart_circ_empty(xmit) || uart_tx_stopped(&uap->port)) {
1406		pl011_stop_tx(&uap->port);
1407		return false;
1408	}
1409
1410	/* If we are using DMA mode, try to send some characters. */
1411	if (pl011_dma_tx_irq(uap))
1412		return true;
1413
 
1414	do {
1415		if (likely(from_irq) && count-- == 0)
1416			break;
1417
1418		if (!pl011_tx_char(uap, xmit->buf[xmit->tail], from_irq))
1419			break;
1420
1421		xmit->tail = (xmit->tail + 1) & (UART_XMIT_SIZE - 1);
1422	} while (!uart_circ_empty(xmit));
1423
1424	if (uart_circ_chars_pending(xmit) < WAKEUP_CHARS)
1425		uart_write_wakeup(&uap->port);
1426
1427	if (uart_circ_empty(xmit)) {
1428		pl011_stop_tx(&uap->port);
1429		return false;
1430	}
1431	return true;
1432}
1433
1434static void pl011_modem_status(struct uart_amba_port *uap)
1435{
1436	unsigned int status, delta;
1437
1438	status = pl011_read(uap, REG_FR) & UART01x_FR_MODEM_ANY;
1439
1440	delta = status ^ uap->old_status;
1441	uap->old_status = status;
1442
1443	if (!delta)
1444		return;
1445
1446	if (delta & UART01x_FR_DCD)
1447		uart_handle_dcd_change(&uap->port, status & UART01x_FR_DCD);
1448
1449	if (delta & uap->vendor->fr_dsr)
1450		uap->port.icount.dsr++;
1451
1452	if (delta & uap->vendor->fr_cts)
1453		uart_handle_cts_change(&uap->port,
1454				       status & uap->vendor->fr_cts);
1455
1456	wake_up_interruptible(&uap->port.state->port.delta_msr_wait);
1457}
1458
1459static void check_apply_cts_event_workaround(struct uart_amba_port *uap)
1460{
1461	unsigned int dummy_read;
1462
1463	if (!uap->vendor->cts_event_workaround)
1464		return;
1465
1466	/* workaround to make sure that all bits are unlocked.. */
1467	pl011_write(0x00, uap, REG_ICR);
1468
1469	/*
1470	 * WA: introduce 26ns(1 uart clk) delay before W1C;
1471	 * single apb access will incur 2 pclk(133.12Mhz) delay,
1472	 * so add 2 dummy reads
1473	 */
1474	dummy_read = pl011_read(uap, REG_ICR);
1475	dummy_read = pl011_read(uap, REG_ICR);
1476}
1477
1478static irqreturn_t pl011_int(int irq, void *dev_id)
1479{
1480	struct uart_amba_port *uap = dev_id;
1481	unsigned long flags;
1482	unsigned int status, pass_counter = AMBA_ISR_PASS_LIMIT;
1483	int handled = 0;
1484
1485	spin_lock_irqsave(&uap->port.lock, flags);
1486	status = pl011_read(uap, REG_RIS) & uap->im;
 
1487	if (status) {
1488		do {
1489			check_apply_cts_event_workaround(uap);
1490
1491			pl011_write(status & ~(UART011_TXIS|UART011_RTIS|
1492					       UART011_RXIS),
1493				    uap, REG_ICR);
1494
1495			if (status & (UART011_RTIS|UART011_RXIS)) {
1496				if (pl011_dma_rx_running(uap))
1497					pl011_dma_rx_irq(uap);
1498				else
1499					pl011_rx_chars(uap);
1500			}
1501			if (status & (UART011_DSRMIS|UART011_DCDMIS|
1502				      UART011_CTSMIS|UART011_RIMIS))
1503				pl011_modem_status(uap);
1504			if (status & UART011_TXIS)
1505				pl011_tx_chars(uap, true);
1506
1507			if (pass_counter-- == 0)
 
 
1508				break;
 
1509
1510			status = pl011_read(uap, REG_RIS) & uap->im;
1511		} while (status != 0);
1512		handled = 1;
1513	}
1514
1515	spin_unlock_irqrestore(&uap->port.lock, flags);
1516
1517	return IRQ_RETVAL(handled);
1518}
1519
1520static unsigned int pl011_tx_empty(struct uart_port *port)
1521{
1522	struct uart_amba_port *uap =
1523	    container_of(port, struct uart_amba_port, port);
1524
1525	/* Allow feature register bits to be inverted to work around errata */
1526	unsigned int status = pl011_read(uap, REG_FR) ^ uap->vendor->inv_fr;
1527
1528	return status & (uap->vendor->fr_busy | UART01x_FR_TXFF) ?
1529							0 : TIOCSER_TEMT;
1530}
1531
1532static unsigned int pl011_get_mctrl(struct uart_port *port)
1533{
1534	struct uart_amba_port *uap =
1535	    container_of(port, struct uart_amba_port, port);
1536	unsigned int result = 0;
1537	unsigned int status = pl011_read(uap, REG_FR);
1538
1539#define TIOCMBIT(uartbit, tiocmbit)	\
1540	if (status & uartbit)		\
1541		result |= tiocmbit
1542
1543	TIOCMBIT(UART01x_FR_DCD, TIOCM_CAR);
1544	TIOCMBIT(uap->vendor->fr_dsr, TIOCM_DSR);
1545	TIOCMBIT(uap->vendor->fr_cts, TIOCM_CTS);
1546	TIOCMBIT(uap->vendor->fr_ri, TIOCM_RNG);
1547#undef TIOCMBIT
1548	return result;
1549}
1550
1551static void pl011_set_mctrl(struct uart_port *port, unsigned int mctrl)
1552{
1553	struct uart_amba_port *uap =
1554	    container_of(port, struct uart_amba_port, port);
1555	unsigned int cr;
1556
1557	cr = pl011_read(uap, REG_CR);
1558
1559#define	TIOCMBIT(tiocmbit, uartbit)		\
1560	if (mctrl & tiocmbit)		\
1561		cr |= uartbit;		\
1562	else				\
1563		cr &= ~uartbit
1564
1565	TIOCMBIT(TIOCM_RTS, UART011_CR_RTS);
1566	TIOCMBIT(TIOCM_DTR, UART011_CR_DTR);
1567	TIOCMBIT(TIOCM_OUT1, UART011_CR_OUT1);
1568	TIOCMBIT(TIOCM_OUT2, UART011_CR_OUT2);
1569	TIOCMBIT(TIOCM_LOOP, UART011_CR_LBE);
1570
1571	if (port->status & UPSTAT_AUTORTS) {
1572		/* We need to disable auto-RTS if we want to turn RTS off */
1573		TIOCMBIT(TIOCM_RTS, UART011_CR_RTSEN);
1574	}
1575#undef TIOCMBIT
1576
1577	pl011_write(cr, uap, REG_CR);
1578}
1579
1580static void pl011_break_ctl(struct uart_port *port, int break_state)
1581{
1582	struct uart_amba_port *uap =
1583	    container_of(port, struct uart_amba_port, port);
1584	unsigned long flags;
1585	unsigned int lcr_h;
1586
1587	spin_lock_irqsave(&uap->port.lock, flags);
1588	lcr_h = pl011_read(uap, REG_LCRH_TX);
1589	if (break_state == -1)
1590		lcr_h |= UART01x_LCRH_BRK;
1591	else
1592		lcr_h &= ~UART01x_LCRH_BRK;
1593	pl011_write(lcr_h, uap, REG_LCRH_TX);
1594	spin_unlock_irqrestore(&uap->port.lock, flags);
1595}
1596
1597#ifdef CONFIG_CONSOLE_POLL
1598
1599static void pl011_quiesce_irqs(struct uart_port *port)
1600{
1601	struct uart_amba_port *uap =
1602	    container_of(port, struct uart_amba_port, port);
1603
1604	pl011_write(pl011_read(uap, REG_MIS), uap, REG_ICR);
1605	/*
1606	 * There is no way to clear TXIM as this is "ready to transmit IRQ", so
1607	 * we simply mask it. start_tx() will unmask it.
1608	 *
1609	 * Note we can race with start_tx(), and if the race happens, the
1610	 * polling user might get another interrupt just after we clear it.
1611	 * But it should be OK and can happen even w/o the race, e.g.
1612	 * controller immediately got some new data and raised the IRQ.
1613	 *
1614	 * And whoever uses polling routines assumes that it manages the device
1615	 * (including tx queue), so we're also fine with start_tx()'s caller
1616	 * side.
1617	 */
1618	pl011_write(pl011_read(uap, REG_IMSC) & ~UART011_TXIM, uap,
1619		    REG_IMSC);
1620}
1621
1622static int pl011_get_poll_char(struct uart_port *port)
1623{
1624	struct uart_amba_port *uap =
1625	    container_of(port, struct uart_amba_port, port);
1626	unsigned int status;
1627
1628	/*
1629	 * The caller might need IRQs lowered, e.g. if used with KDB NMI
1630	 * debugger.
1631	 */
1632	pl011_quiesce_irqs(port);
1633
1634	status = pl011_read(uap, REG_FR);
1635	if (status & UART01x_FR_RXFE)
1636		return NO_POLL_CHAR;
1637
1638	return pl011_read(uap, REG_DR);
1639}
1640
1641static void pl011_put_poll_char(struct uart_port *port,
1642			 unsigned char ch)
1643{
1644	struct uart_amba_port *uap =
1645	    container_of(port, struct uart_amba_port, port);
1646
1647	while (pl011_read(uap, REG_FR) & UART01x_FR_TXFF)
1648		cpu_relax();
1649
1650	pl011_write(ch, uap, REG_DR);
1651}
1652
1653#endif /* CONFIG_CONSOLE_POLL */
1654
1655static int pl011_hwinit(struct uart_port *port)
1656{
1657	struct uart_amba_port *uap =
1658	    container_of(port, struct uart_amba_port, port);
1659	int retval;
1660
1661	/* Optionaly enable pins to be muxed in and configured */
1662	pinctrl_pm_select_default_state(port->dev);
1663
1664	/*
1665	 * Try to enable the clock producer.
1666	 */
1667	retval = clk_prepare_enable(uap->clk);
1668	if (retval)
1669		return retval;
1670
1671	uap->port.uartclk = clk_get_rate(uap->clk);
1672
1673	/* Clear pending error and receive interrupts */
1674	pl011_write(UART011_OEIS | UART011_BEIS | UART011_PEIS |
1675		    UART011_FEIS | UART011_RTIS | UART011_RXIS,
1676		    uap, REG_ICR);
1677
1678	/*
1679	 * Save interrupts enable mask, and enable RX interrupts in case if
1680	 * the interrupt is used for NMI entry.
1681	 */
1682	uap->im = pl011_read(uap, REG_IMSC);
1683	pl011_write(UART011_RTIM | UART011_RXIM, uap, REG_IMSC);
 
1684
1685	if (dev_get_platdata(uap->port.dev)) {
1686		struct amba_pl011_data *plat;
1687
1688		plat = dev_get_platdata(uap->port.dev);
1689		if (plat->init)
1690			plat->init();
1691	}
1692	return 0;
1693}
1694
1695static bool pl011_split_lcrh(const struct uart_amba_port *uap)
1696{
1697	return pl011_reg_to_offset(uap, REG_LCRH_RX) !=
1698	       pl011_reg_to_offset(uap, REG_LCRH_TX);
1699}
1700
1701static void pl011_write_lcr_h(struct uart_amba_port *uap, unsigned int lcr_h)
1702{
1703	pl011_write(lcr_h, uap, REG_LCRH_RX);
1704	if (pl011_split_lcrh(uap)) {
1705		int i;
1706		/*
1707		 * Wait 10 PCLKs before writing LCRH_TX register,
1708		 * to get this delay write read only register 10 times
1709		 */
1710		for (i = 0; i < 10; ++i)
1711			pl011_write(0xff, uap, REG_MIS);
1712		pl011_write(lcr_h, uap, REG_LCRH_TX);
1713	}
1714}
 
 
 
 
 
 
 
 
 
1715
1716static int pl011_allocate_irq(struct uart_amba_port *uap)
1717{
1718	pl011_write(uap->im, uap, REG_IMSC);
 
1719
1720	return request_irq(uap->port.irq, pl011_int, 0, "uart-pl011", uap);
1721}
1722
1723/*
1724 * Enable interrupts, only timeouts when using DMA
1725 * if initial RX DMA job failed, start in interrupt mode
1726 * as well.
1727 */
1728static void pl011_enable_interrupts(struct uart_amba_port *uap)
1729{
1730	spin_lock_irq(&uap->port.lock);
1731
1732	/* Clear out any spuriously appearing RX interrupts */
1733	pl011_write(UART011_RTIS | UART011_RXIS, uap, REG_ICR);
1734	uap->im = UART011_RTIM;
1735	if (!pl011_dma_rx_running(uap))
1736		uap->im |= UART011_RXIM;
1737	pl011_write(uap->im, uap, REG_IMSC);
1738	spin_unlock_irq(&uap->port.lock);
1739}
1740
1741static int pl011_startup(struct uart_port *port)
1742{
1743	struct uart_amba_port *uap =
1744	    container_of(port, struct uart_amba_port, port);
1745	unsigned int cr;
1746	int retval;
1747
1748	retval = pl011_hwinit(port);
1749	if (retval)
1750		goto clk_dis;
1751
1752	retval = pl011_allocate_irq(uap);
1753	if (retval)
1754		goto clk_dis;
1755
1756	pl011_write(uap->vendor->ifls, uap, REG_IFLS);
1757
1758	spin_lock_irq(&uap->port.lock);
1759
1760	/* restore RTS and DTR */
1761	cr = uap->old_cr & (UART011_CR_RTS | UART011_CR_DTR);
1762	cr |= UART01x_CR_UARTEN | UART011_CR_RXE | UART011_CR_TXE;
1763	pl011_write(cr, uap, REG_CR);
1764
1765	spin_unlock_irq(&uap->port.lock);
1766
1767	/*
1768	 * initialise the old status of the modem signals
1769	 */
1770	uap->old_status = pl011_read(uap, REG_FR) & UART01x_FR_MODEM_ANY;
1771
1772	/* Startup DMA */
1773	pl011_dma_startup(uap);
1774
1775	pl011_enable_interrupts(uap);
1776
1777	return 0;
1778
1779 clk_dis:
1780	clk_disable_unprepare(uap->clk);
 
1781	return retval;
1782}
1783
1784static int sbsa_uart_startup(struct uart_port *port)
1785{
1786	struct uart_amba_port *uap =
1787		container_of(port, struct uart_amba_port, port);
1788	int retval;
1789
1790	retval = pl011_hwinit(port);
1791	if (retval)
1792		return retval;
1793
1794	retval = pl011_allocate_irq(uap);
1795	if (retval)
1796		return retval;
1797
1798	/* The SBSA UART does not support any modem status lines. */
1799	uap->old_status = 0;
1800
1801	pl011_enable_interrupts(uap);
1802
1803	return 0;
1804}
1805
1806static void pl011_shutdown_channel(struct uart_amba_port *uap,
1807					unsigned int lcrh)
1808{
1809      unsigned long val;
1810
1811      val = pl011_read(uap, lcrh);
1812      val &= ~(UART01x_LCRH_BRK | UART01x_LCRH_FEN);
1813      pl011_write(val, uap, lcrh);
1814}
1815
1816/*
1817 * disable the port. It should not disable RTS and DTR.
1818 * Also RTS and DTR state should be preserved to restore
1819 * it during startup().
1820 */
1821static void pl011_disable_uart(struct uart_amba_port *uap)
1822{
1823	unsigned int cr;
1824
1825	uap->port.status &= ~(UPSTAT_AUTOCTS | UPSTAT_AUTORTS);
1826	spin_lock_irq(&uap->port.lock);
1827	cr = pl011_read(uap, REG_CR);
1828	uap->old_cr = cr;
1829	cr &= UART011_CR_RTS | UART011_CR_DTR;
1830	cr |= UART01x_CR_UARTEN | UART011_CR_TXE;
1831	pl011_write(cr, uap, REG_CR);
1832	spin_unlock_irq(&uap->port.lock);
1833
1834	/*
1835	 * disable break condition and fifos
1836	 */
1837	pl011_shutdown_channel(uap, REG_LCRH_RX);
1838	if (pl011_split_lcrh(uap))
1839		pl011_shutdown_channel(uap, REG_LCRH_TX);
1840}
1841
1842static void pl011_disable_interrupts(struct uart_amba_port *uap)
1843{
1844	spin_lock_irq(&uap->port.lock);
1845
1846	/* mask all interrupts and clear all pending ones */
1847	uap->im = 0;
1848	pl011_write(uap->im, uap, REG_IMSC);
1849	pl011_write(0xffff, uap, REG_ICR);
1850
1851	spin_unlock_irq(&uap->port.lock);
1852}
1853
1854static void pl011_shutdown(struct uart_port *port)
1855{
1856	struct uart_amba_port *uap =
1857		container_of(port, struct uart_amba_port, port);
1858
1859	pl011_disable_interrupts(uap);
1860
1861	pl011_dma_shutdown(uap);
1862
 
 
 
1863	free_irq(uap->port.irq, uap);
1864
1865	pl011_disable_uart(uap);
 
 
 
 
 
 
 
 
 
 
 
1866
1867	/*
1868	 * Shut down the clock producer
1869	 */
1870	clk_disable_unprepare(uap->clk);
1871	/* Optionally let pins go into sleep states */
1872	pinctrl_pm_select_sleep_state(port->dev);
1873
1874	if (dev_get_platdata(uap->port.dev)) {
1875		struct amba_pl011_data *plat;
1876
1877		plat = dev_get_platdata(uap->port.dev);
1878		if (plat->exit)
1879			plat->exit();
1880	}
1881
1882	if (uap->port.ops->flush_buffer)
1883		uap->port.ops->flush_buffer(port);
1884}
1885
1886static void sbsa_uart_shutdown(struct uart_port *port)
1887{
1888	struct uart_amba_port *uap =
1889		container_of(port, struct uart_amba_port, port);
1890
1891	pl011_disable_interrupts(uap);
1892
1893	free_irq(uap->port.irq, uap);
1894
1895	if (uap->port.ops->flush_buffer)
1896		uap->port.ops->flush_buffer(port);
1897}
1898
1899static void
1900pl011_setup_status_masks(struct uart_port *port, struct ktermios *termios)
1901{
1902	port->read_status_mask = UART011_DR_OE | 255;
1903	if (termios->c_iflag & INPCK)
1904		port->read_status_mask |= UART011_DR_FE | UART011_DR_PE;
1905	if (termios->c_iflag & (IGNBRK | BRKINT | PARMRK))
1906		port->read_status_mask |= UART011_DR_BE;
1907
1908	/*
1909	 * Characters to ignore
1910	 */
1911	port->ignore_status_mask = 0;
1912	if (termios->c_iflag & IGNPAR)
1913		port->ignore_status_mask |= UART011_DR_FE | UART011_DR_PE;
1914	if (termios->c_iflag & IGNBRK) {
1915		port->ignore_status_mask |= UART011_DR_BE;
1916		/*
1917		 * If we're ignoring parity and break indicators,
1918		 * ignore overruns too (for real raw support).
1919		 */
1920		if (termios->c_iflag & IGNPAR)
1921			port->ignore_status_mask |= UART011_DR_OE;
1922	}
1923
1924	/*
1925	 * Ignore all characters if CREAD is not set.
1926	 */
1927	if ((termios->c_cflag & CREAD) == 0)
1928		port->ignore_status_mask |= UART_DUMMY_DR_RX;
1929}
1930
1931static void
1932pl011_set_termios(struct uart_port *port, struct ktermios *termios,
1933		     struct ktermios *old)
1934{
1935	struct uart_amba_port *uap =
1936	    container_of(port, struct uart_amba_port, port);
1937	unsigned int lcr_h, old_cr;
1938	unsigned long flags;
1939	unsigned int baud, quot, clkdiv;
1940
1941	if (uap->vendor->oversampling)
1942		clkdiv = 8;
1943	else
1944		clkdiv = 16;
1945
1946	/*
1947	 * Ask the core to calculate the divisor for us.
1948	 */
1949	baud = uart_get_baud_rate(port, termios, old, 0,
1950				  port->uartclk / clkdiv);
1951#ifdef CONFIG_DMA_ENGINE
1952	/*
1953	 * Adjust RX DMA polling rate with baud rate if not specified.
1954	 */
1955	if (uap->dmarx.auto_poll_rate)
1956		uap->dmarx.poll_rate = DIV_ROUND_UP(10000000, baud);
1957#endif
1958
1959	if (baud > port->uartclk/16)
1960		quot = DIV_ROUND_CLOSEST(port->uartclk * 8, baud);
1961	else
1962		quot = DIV_ROUND_CLOSEST(port->uartclk * 4, baud);
1963
1964	switch (termios->c_cflag & CSIZE) {
1965	case CS5:
1966		lcr_h = UART01x_LCRH_WLEN_5;
1967		break;
1968	case CS6:
1969		lcr_h = UART01x_LCRH_WLEN_6;
1970		break;
1971	case CS7:
1972		lcr_h = UART01x_LCRH_WLEN_7;
1973		break;
1974	default: // CS8
1975		lcr_h = UART01x_LCRH_WLEN_8;
1976		break;
1977	}
1978	if (termios->c_cflag & CSTOPB)
1979		lcr_h |= UART01x_LCRH_STP2;
1980	if (termios->c_cflag & PARENB) {
1981		lcr_h |= UART01x_LCRH_PEN;
1982		if (!(termios->c_cflag & PARODD))
1983			lcr_h |= UART01x_LCRH_EPS;
1984		if (termios->c_cflag & CMSPAR)
1985			lcr_h |= UART011_LCRH_SPS;
1986	}
1987	if (uap->fifosize > 1)
1988		lcr_h |= UART01x_LCRH_FEN;
1989
1990	spin_lock_irqsave(&port->lock, flags);
1991
1992	/*
1993	 * Update the per-port timeout.
1994	 */
1995	uart_update_timeout(port, termios->c_cflag, baud);
1996
1997	pl011_setup_status_masks(port, termios);
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1998
1999	if (UART_ENABLE_MS(port, termios->c_cflag))
2000		pl011_enable_ms(port);
2001
2002	/* first, disable everything */
2003	old_cr = pl011_read(uap, REG_CR);
2004	pl011_write(0, uap, REG_CR);
2005
2006	if (termios->c_cflag & CRTSCTS) {
2007		if (old_cr & UART011_CR_RTS)
2008			old_cr |= UART011_CR_RTSEN;
2009
2010		old_cr |= UART011_CR_CTSEN;
2011		port->status |= UPSTAT_AUTOCTS | UPSTAT_AUTORTS;
2012	} else {
2013		old_cr &= ~(UART011_CR_CTSEN | UART011_CR_RTSEN);
2014		port->status &= ~(UPSTAT_AUTOCTS | UPSTAT_AUTORTS);
2015	}
2016
2017	if (uap->vendor->oversampling) {
2018		if (baud > port->uartclk / 16)
2019			old_cr |= ST_UART011_CR_OVSFACT;
2020		else
2021			old_cr &= ~ST_UART011_CR_OVSFACT;
2022	}
2023
2024	/*
2025	 * Workaround for the ST Micro oversampling variants to
2026	 * increase the bitrate slightly, by lowering the divisor,
2027	 * to avoid delayed sampling of start bit at high speeds,
2028	 * else we see data corruption.
2029	 */
2030	if (uap->vendor->oversampling) {
2031		if ((baud >= 3000000) && (baud < 3250000) && (quot > 1))
2032			quot -= 1;
2033		else if ((baud > 3250000) && (quot > 2))
2034			quot -= 2;
2035	}
2036	/* Set baud rate */
2037	pl011_write(quot & 0x3f, uap, REG_FBRD);
2038	pl011_write(quot >> 6, uap, REG_IBRD);
2039
2040	/*
2041	 * ----------v----------v----------v----------v-----
2042	 * NOTE: REG_LCRH_TX and REG_LCRH_RX MUST BE WRITTEN AFTER
2043	 * REG_FBRD & REG_IBRD.
2044	 * ----------^----------^----------^----------^-----
2045	 */
2046	pl011_write_lcr_h(uap, lcr_h);
2047	pl011_write(old_cr, uap, REG_CR);
 
 
 
 
 
 
 
 
 
 
2048
2049	spin_unlock_irqrestore(&port->lock, flags);
2050}
2051
2052static void
2053sbsa_uart_set_termios(struct uart_port *port, struct ktermios *termios,
2054		      struct ktermios *old)
2055{
2056	struct uart_amba_port *uap =
2057	    container_of(port, struct uart_amba_port, port);
2058	unsigned long flags;
2059
2060	tty_termios_encode_baud_rate(termios, uap->fixed_baud, uap->fixed_baud);
2061
2062	/* The SBSA UART only supports 8n1 without hardware flow control. */
2063	termios->c_cflag &= ~(CSIZE | CSTOPB | PARENB | PARODD);
2064	termios->c_cflag &= ~(CMSPAR | CRTSCTS);
2065	termios->c_cflag |= CS8 | CLOCAL;
2066
2067	spin_lock_irqsave(&port->lock, flags);
2068	uart_update_timeout(port, CS8, uap->fixed_baud);
2069	pl011_setup_status_masks(port, termios);
2070	spin_unlock_irqrestore(&port->lock, flags);
2071}
2072
2073static const char *pl011_type(struct uart_port *port)
2074{
2075	struct uart_amba_port *uap =
2076	    container_of(port, struct uart_amba_port, port);
2077	return uap->port.type == PORT_AMBA ? uap->type : NULL;
2078}
2079
2080/*
2081 * Release the memory region(s) being used by 'port'
2082 */
2083static void pl011_release_port(struct uart_port *port)
2084{
2085	release_mem_region(port->mapbase, SZ_4K);
2086}
2087
2088/*
2089 * Request the memory region(s) being used by 'port'
2090 */
2091static int pl011_request_port(struct uart_port *port)
2092{
2093	return request_mem_region(port->mapbase, SZ_4K, "uart-pl011")
2094			!= NULL ? 0 : -EBUSY;
2095}
2096
2097/*
2098 * Configure/autoconfigure the port.
2099 */
2100static void pl011_config_port(struct uart_port *port, int flags)
2101{
2102	if (flags & UART_CONFIG_TYPE) {
2103		port->type = PORT_AMBA;
2104		pl011_request_port(port);
2105	}
2106}
2107
2108/*
2109 * verify the new serial_struct (for TIOCSSERIAL).
2110 */
2111static int pl011_verify_port(struct uart_port *port, struct serial_struct *ser)
2112{
2113	int ret = 0;
2114	if (ser->type != PORT_UNKNOWN && ser->type != PORT_AMBA)
2115		ret = -EINVAL;
2116	if (ser->irq < 0 || ser->irq >= nr_irqs)
2117		ret = -EINVAL;
2118	if (ser->baud_base < 9600)
2119		ret = -EINVAL;
2120	return ret;
2121}
2122
2123static const struct uart_ops amba_pl011_pops = {
2124	.tx_empty	= pl011_tx_empty,
2125	.set_mctrl	= pl011_set_mctrl,
2126	.get_mctrl	= pl011_get_mctrl,
2127	.stop_tx	= pl011_stop_tx,
2128	.start_tx	= pl011_start_tx,
2129	.stop_rx	= pl011_stop_rx,
2130	.enable_ms	= pl011_enable_ms,
2131	.break_ctl	= pl011_break_ctl,
2132	.startup	= pl011_startup,
2133	.shutdown	= pl011_shutdown,
2134	.flush_buffer	= pl011_dma_flush_buffer,
2135	.set_termios	= pl011_set_termios,
2136	.type		= pl011_type,
2137	.release_port	= pl011_release_port,
2138	.request_port	= pl011_request_port,
2139	.config_port	= pl011_config_port,
2140	.verify_port	= pl011_verify_port,
2141#ifdef CONFIG_CONSOLE_POLL
2142	.poll_init     = pl011_hwinit,
2143	.poll_get_char = pl011_get_poll_char,
2144	.poll_put_char = pl011_put_poll_char,
2145#endif
2146};
2147
2148static void sbsa_uart_set_mctrl(struct uart_port *port, unsigned int mctrl)
2149{
2150}
2151
2152static unsigned int sbsa_uart_get_mctrl(struct uart_port *port)
2153{
2154	return 0;
2155}
2156
2157static const struct uart_ops sbsa_uart_pops = {
2158	.tx_empty	= pl011_tx_empty,
2159	.set_mctrl	= sbsa_uart_set_mctrl,
2160	.get_mctrl	= sbsa_uart_get_mctrl,
2161	.stop_tx	= pl011_stop_tx,
2162	.start_tx	= pl011_start_tx,
2163	.stop_rx	= pl011_stop_rx,
2164	.startup	= sbsa_uart_startup,
2165	.shutdown	= sbsa_uart_shutdown,
2166	.set_termios	= sbsa_uart_set_termios,
2167	.type		= pl011_type,
2168	.release_port	= pl011_release_port,
2169	.request_port	= pl011_request_port,
2170	.config_port	= pl011_config_port,
2171	.verify_port	= pl011_verify_port,
2172#ifdef CONFIG_CONSOLE_POLL
2173	.poll_init     = pl011_hwinit,
2174	.poll_get_char = pl011_get_poll_char,
2175	.poll_put_char = pl011_put_poll_char,
2176#endif
2177};
2178
2179static struct uart_amba_port *amba_ports[UART_NR];
2180
2181#ifdef CONFIG_SERIAL_AMBA_PL011_CONSOLE
2182
2183static void pl011_console_putchar(struct uart_port *port, int ch)
2184{
2185	struct uart_amba_port *uap =
2186	    container_of(port, struct uart_amba_port, port);
2187
2188	while (pl011_read(uap, REG_FR) & UART01x_FR_TXFF)
2189		cpu_relax();
2190	pl011_write(ch, uap, REG_DR);
2191}
2192
2193static void
2194pl011_console_write(struct console *co, const char *s, unsigned int count)
2195{
2196	struct uart_amba_port *uap = amba_ports[co->index];
2197	unsigned int old_cr = 0, new_cr;
2198	unsigned long flags;
2199	int locked = 1;
2200
2201	clk_enable(uap->clk);
2202
2203	local_irq_save(flags);
2204	if (uap->port.sysrq)
2205		locked = 0;
2206	else if (oops_in_progress)
2207		locked = spin_trylock(&uap->port.lock);
2208	else
2209		spin_lock(&uap->port.lock);
2210
2211	/*
2212	 *	First save the CR then disable the interrupts
2213	 */
2214	if (!uap->vendor->always_enabled) {
2215		old_cr = pl011_read(uap, REG_CR);
2216		new_cr = old_cr & ~UART011_CR_CTSEN;
2217		new_cr |= UART01x_CR_UARTEN | UART011_CR_TXE;
2218		pl011_write(new_cr, uap, REG_CR);
2219	}
2220
2221	uart_console_write(&uap->port, s, count, pl011_console_putchar);
2222
2223	/*
2224	 *	Finally, wait for transmitter to become empty and restore the
2225	 *	TCR. Allow feature register bits to be inverted to work around
2226	 *	errata.
2227	 */
2228	while ((pl011_read(uap, REG_FR) ^ uap->vendor->inv_fr)
2229						& uap->vendor->fr_busy)
2230		cpu_relax();
2231	if (!uap->vendor->always_enabled)
2232		pl011_write(old_cr, uap, REG_CR);
2233
2234	if (locked)
2235		spin_unlock(&uap->port.lock);
2236	local_irq_restore(flags);
2237
2238	clk_disable(uap->clk);
2239}
2240
2241static void __init
2242pl011_console_get_options(struct uart_amba_port *uap, int *baud,
2243			     int *parity, int *bits)
2244{
2245	if (pl011_read(uap, REG_CR) & UART01x_CR_UARTEN) {
2246		unsigned int lcr_h, ibrd, fbrd;
2247
2248		lcr_h = pl011_read(uap, REG_LCRH_TX);
2249
2250		*parity = 'n';
2251		if (lcr_h & UART01x_LCRH_PEN) {
2252			if (lcr_h & UART01x_LCRH_EPS)
2253				*parity = 'e';
2254			else
2255				*parity = 'o';
2256		}
2257
2258		if ((lcr_h & 0x60) == UART01x_LCRH_WLEN_7)
2259			*bits = 7;
2260		else
2261			*bits = 8;
2262
2263		ibrd = pl011_read(uap, REG_IBRD);
2264		fbrd = pl011_read(uap, REG_FBRD);
2265
2266		*baud = uap->port.uartclk * 4 / (64 * ibrd + fbrd);
2267
2268		if (uap->vendor->oversampling) {
2269			if (pl011_read(uap, REG_CR)
2270				  & ST_UART011_CR_OVSFACT)
2271				*baud *= 2;
2272		}
2273	}
2274}
2275
2276static int __init pl011_console_setup(struct console *co, char *options)
2277{
2278	struct uart_amba_port *uap;
2279	int baud = 38400;
2280	int bits = 8;
2281	int parity = 'n';
2282	int flow = 'n';
2283	int ret;
2284
2285	/*
2286	 * Check whether an invalid uart number has been specified, and
2287	 * if so, search for the first available port that does have
2288	 * console support.
2289	 */
2290	if (co->index >= UART_NR)
2291		co->index = 0;
2292	uap = amba_ports[co->index];
2293	if (!uap)
2294		return -ENODEV;
2295
2296	/* Allow pins to be muxed in and configured */
2297	pinctrl_pm_select_default_state(uap->port.dev);
2298
2299	ret = clk_prepare(uap->clk);
2300	if (ret)
2301		return ret;
2302
2303	if (dev_get_platdata(uap->port.dev)) {
2304		struct amba_pl011_data *plat;
2305
2306		plat = dev_get_platdata(uap->port.dev);
2307		if (plat->init)
2308			plat->init();
2309	}
2310
2311	uap->port.uartclk = clk_get_rate(uap->clk);
2312
2313	if (uap->vendor->fixed_options) {
2314		baud = uap->fixed_baud;
2315	} else {
2316		if (options)
2317			uart_parse_options(options,
2318					   &baud, &parity, &bits, &flow);
2319		else
2320			pl011_console_get_options(uap, &baud, &parity, &bits);
2321	}
2322
2323	return uart_set_options(&uap->port, co, baud, parity, bits, flow);
2324}
2325
2326/**
2327 *	pl011_console_match - non-standard console matching
2328 *	@co:	  registering console
2329 *	@name:	  name from console command line
2330 *	@idx:	  index from console command line
2331 *	@options: ptr to option string from console command line
2332 *
2333 *	Only attempts to match console command lines of the form:
2334 *	    console=pl011,mmio|mmio32,<addr>[,<options>]
2335 *	    console=pl011,0x<addr>[,<options>]
2336 *	This form is used to register an initial earlycon boot console and
2337 *	replace it with the amba_console at pl011 driver init.
2338 *
2339 *	Performs console setup for a match (as required by interface)
2340 *	If no <options> are specified, then assume the h/w is already setup.
2341 *
2342 *	Returns 0 if console matches; otherwise non-zero to use default matching
2343 */
2344static int __init pl011_console_match(struct console *co, char *name, int idx,
2345				      char *options)
2346{
2347	unsigned char iotype;
2348	resource_size_t addr;
2349	int i;
2350
2351	/*
2352	 * Systems affected by the Qualcomm Technologies QDF2400 E44 erratum
2353	 * have a distinct console name, so make sure we check for that.
2354	 * The actual implementation of the erratum occurs in the probe
2355	 * function.
2356	 */
2357	if ((strcmp(name, "qdf2400_e44") != 0) && (strcmp(name, "pl011") != 0))
2358		return -ENODEV;
2359
2360	if (uart_parse_earlycon(options, &iotype, &addr, &options))
2361		return -ENODEV;
2362
2363	if (iotype != UPIO_MEM && iotype != UPIO_MEM32)
2364		return -ENODEV;
2365
2366	/* try to match the port specified on the command line */
2367	for (i = 0; i < ARRAY_SIZE(amba_ports); i++) {
2368		struct uart_port *port;
2369
2370		if (!amba_ports[i])
2371			continue;
2372
2373		port = &amba_ports[i]->port;
2374
2375		if (port->mapbase != addr)
2376			continue;
2377
2378		co->index = i;
2379		port->cons = co;
2380		return pl011_console_setup(co, options);
2381	}
2382
2383	return -ENODEV;
2384}
2385
2386static struct uart_driver amba_reg;
2387static struct console amba_console = {
2388	.name		= "ttyAMA",
2389	.write		= pl011_console_write,
2390	.device		= uart_console_device,
2391	.setup		= pl011_console_setup,
2392	.match		= pl011_console_match,
2393	.flags		= CON_PRINTBUFFER | CON_ANYTIME,
2394	.index		= -1,
2395	.data		= &amba_reg,
2396};
2397
2398#define AMBA_CONSOLE	(&amba_console)
2399
2400static void qdf2400_e44_putc(struct uart_port *port, int c)
2401{
2402	while (readl(port->membase + UART01x_FR) & UART01x_FR_TXFF)
2403		cpu_relax();
2404	writel(c, port->membase + UART01x_DR);
2405	while (!(readl(port->membase + UART01x_FR) & UART011_FR_TXFE))
2406		cpu_relax();
2407}
2408
2409static void qdf2400_e44_early_write(struct console *con, const char *s, unsigned n)
2410{
2411	struct earlycon_device *dev = con->data;
2412
2413	uart_console_write(&dev->port, s, n, qdf2400_e44_putc);
2414}
2415
2416static void pl011_putc(struct uart_port *port, int c)
2417{
2418	while (readl(port->membase + UART01x_FR) & UART01x_FR_TXFF)
2419		cpu_relax();
2420	if (port->iotype == UPIO_MEM32)
2421		writel(c, port->membase + UART01x_DR);
2422	else
2423		writeb(c, port->membase + UART01x_DR);
2424	while (readl(port->membase + UART01x_FR) & UART01x_FR_BUSY)
2425		cpu_relax();
2426}
2427
2428static void pl011_early_write(struct console *con, const char *s, unsigned n)
2429{
2430	struct earlycon_device *dev = con->data;
2431
2432	uart_console_write(&dev->port, s, n, pl011_putc);
2433}
2434
2435/*
2436 * On non-ACPI systems, earlycon is enabled by specifying
2437 * "earlycon=pl011,<address>" on the kernel command line.
2438 *
2439 * On ACPI ARM64 systems, an "early" console is enabled via the SPCR table,
2440 * by specifying only "earlycon" on the command line.  Because it requires
2441 * SPCR, the console starts after ACPI is parsed, which is later than a
2442 * traditional early console.
2443 *
2444 * To get the traditional early console that starts before ACPI is parsed,
2445 * specify the full "earlycon=pl011,<address>" option.
2446 */
2447static int __init pl011_early_console_setup(struct earlycon_device *device,
2448					    const char *opt)
2449{
2450	if (!device->port.membase)
2451		return -ENODEV;
2452
2453	device->con->write = pl011_early_write;
2454
2455	return 0;
2456}
2457OF_EARLYCON_DECLARE(pl011, "arm,pl011", pl011_early_console_setup);
2458OF_EARLYCON_DECLARE(pl011, "arm,sbsa-uart", pl011_early_console_setup);
2459
2460/*
2461 * On Qualcomm Datacenter Technologies QDF2400 SOCs affected by
2462 * Erratum 44, traditional earlycon can be enabled by specifying
2463 * "earlycon=qdf2400_e44,<address>".  Any options are ignored.
2464 *
2465 * Alternatively, you can just specify "earlycon", and the early console
2466 * will be enabled with the information from the SPCR table.  In this
2467 * case, the SPCR code will detect the need for the E44 work-around,
2468 * and set the console name to "qdf2400_e44".
2469 */
2470static int __init
2471qdf2400_e44_early_console_setup(struct earlycon_device *device,
2472				const char *opt)
2473{
2474	if (!device->port.membase)
2475		return -ENODEV;
2476
2477	device->con->write = qdf2400_e44_early_write;
2478	return 0;
2479}
2480EARLYCON_DECLARE(qdf2400_e44, qdf2400_e44_early_console_setup);
2481
2482#else
2483#define AMBA_CONSOLE	NULL
2484#endif
2485
2486static struct uart_driver amba_reg = {
2487	.owner			= THIS_MODULE,
2488	.driver_name		= "ttyAMA",
2489	.dev_name		= "ttyAMA",
2490	.major			= SERIAL_AMBA_MAJOR,
2491	.minor			= SERIAL_AMBA_MINOR,
2492	.nr			= UART_NR,
2493	.cons			= AMBA_CONSOLE,
2494};
2495
2496static int pl011_probe_dt_alias(int index, struct device *dev)
2497{
2498	struct device_node *np;
2499	static bool seen_dev_with_alias = false;
2500	static bool seen_dev_without_alias = false;
2501	int ret = index;
2502
2503	if (!IS_ENABLED(CONFIG_OF))
2504		return ret;
 
2505
2506	np = dev->of_node;
2507	if (!np)
2508		return ret;
 
2509
2510	ret = of_alias_get_id(np, "serial");
2511	if (ret < 0) {
2512		seen_dev_without_alias = true;
2513		ret = index;
2514	} else {
2515		seen_dev_with_alias = true;
2516		if (ret >= ARRAY_SIZE(amba_ports) || amba_ports[ret] != NULL) {
2517			dev_warn(dev, "requested serial port %d  not available.\n", ret);
2518			ret = index;
2519		}
2520	}
2521
2522	if (seen_dev_with_alias && seen_dev_without_alias)
2523		dev_warn(dev, "aliased and non-aliased serial devices found in device tree. Serial port enumeration may be unpredictable.\n");
2524
2525	return ret;
2526}
2527
2528/* unregisters the driver also if no more ports are left */
2529static void pl011_unregister_port(struct uart_amba_port *uap)
2530{
2531	int i;
2532	bool busy = false;
2533
2534	for (i = 0; i < ARRAY_SIZE(amba_ports); i++) {
2535		if (amba_ports[i] == uap)
2536			amba_ports[i] = NULL;
2537		else if (amba_ports[i])
2538			busy = true;
2539	}
2540	pl011_dma_remove(uap);
2541	if (!busy)
2542		uart_unregister_driver(&amba_reg);
2543}
2544
2545static int pl011_find_free_port(void)
2546{
2547	int i;
2548
2549	for (i = 0; i < ARRAY_SIZE(amba_ports); i++)
2550		if (amba_ports[i] == NULL)
2551			return i;
2552
2553	return -EBUSY;
2554}
2555
2556static int pl011_setup_port(struct device *dev, struct uart_amba_port *uap,
2557			    struct resource *mmiobase, int index)
2558{
2559	void __iomem *base;
2560
2561	base = devm_ioremap_resource(dev, mmiobase);
2562	if (IS_ERR(base))
2563		return PTR_ERR(base);
2564
2565	index = pl011_probe_dt_alias(index, dev);
2566
2567	uap->old_cr = 0;
2568	uap->port.dev = dev;
2569	uap->port.mapbase = mmiobase->start;
2570	uap->port.membase = base;
2571	uap->port.fifosize = uap->fifosize;
2572	uap->port.flags = UPF_BOOT_AUTOCONF;
2573	uap->port.line = index;
2574
2575	amba_ports[index] = uap;
2576
2577	return 0;
2578}
2579
2580static int pl011_register_port(struct uart_amba_port *uap)
2581{
2582	int ret;
2583
2584	/* Ensure interrupts from this UART are masked and cleared */
2585	pl011_write(0, uap, REG_IMSC);
2586	pl011_write(0xffff, uap, REG_ICR);
2587
2588	if (!amba_reg.state) {
2589		ret = uart_register_driver(&amba_reg);
2590		if (ret < 0) {
2591			dev_err(uap->port.dev,
2592				"Failed to register AMBA-PL011 driver\n");
2593			return ret;
2594		}
2595	}
2596
2597	ret = uart_add_one_port(&amba_reg, &uap->port);
2598	if (ret)
2599		pl011_unregister_port(uap);
2600
2601	return ret;
2602}
2603
2604static int pl011_probe(struct amba_device *dev, const struct amba_id *id)
2605{
2606	struct uart_amba_port *uap;
2607	struct vendor_data *vendor = id->data;
2608	int portnr, ret;
2609
2610	portnr = pl011_find_free_port();
2611	if (portnr < 0)
2612		return portnr;
2613
2614	uap = devm_kzalloc(&dev->dev, sizeof(struct uart_amba_port),
2615			   GFP_KERNEL);
2616	if (!uap)
2617		return -ENOMEM;
2618
2619	uap->clk = devm_clk_get(&dev->dev, NULL);
2620	if (IS_ERR(uap->clk))
2621		return PTR_ERR(uap->clk);
2622
2623	uap->reg_offset = vendor->reg_offset;
2624	uap->vendor = vendor;
2625	uap->fifosize = vendor->get_fifosize(dev);
2626	uap->port.iotype = vendor->access_32b ? UPIO_MEM32 : UPIO_MEM;
 
 
 
 
 
 
2627	uap->port.irq = dev->irq[0];
 
2628	uap->port.ops = &amba_pl011_pops;
 
 
 
2629
2630	snprintf(uap->type, sizeof(uap->type), "PL011 rev%u", amba_rev(dev));
2631
2632	ret = pl011_setup_port(&dev->dev, uap, &dev->res, portnr);
2633	if (ret)
2634		return ret;
2635
2636	amba_set_drvdata(dev, uap);
2637
2638	return pl011_register_port(uap);
 
 
 
 
 
 
 
 
 
 
 
2639}
2640
2641static int pl011_remove(struct amba_device *dev)
2642{
2643	struct uart_amba_port *uap = amba_get_drvdata(dev);
 
 
 
2644
2645	uart_remove_one_port(&amba_reg, &uap->port);
2646	pl011_unregister_port(uap);
 
 
 
 
 
 
 
 
2647	return 0;
2648}
2649
2650#ifdef CONFIG_PM_SLEEP
2651static int pl011_suspend(struct device *dev)
2652{
2653	struct uart_amba_port *uap = dev_get_drvdata(dev);
2654
2655	if (!uap)
2656		return -EINVAL;
2657
2658	return uart_suspend_port(&amba_reg, &uap->port);
2659}
2660
2661static int pl011_resume(struct device *dev)
2662{
2663	struct uart_amba_port *uap = dev_get_drvdata(dev);
2664
2665	if (!uap)
2666		return -EINVAL;
2667
2668	return uart_resume_port(&amba_reg, &uap->port);
2669}
2670#endif
2671
2672static SIMPLE_DEV_PM_OPS(pl011_dev_pm_ops, pl011_suspend, pl011_resume);
2673
2674static int sbsa_uart_probe(struct platform_device *pdev)
2675{
2676	struct uart_amba_port *uap;
2677	struct resource *r;
2678	int portnr, ret;
2679	int baudrate;
2680
2681	/*
2682	 * Check the mandatory baud rate parameter in the DT node early
2683	 * so that we can easily exit with the error.
2684	 */
2685	if (pdev->dev.of_node) {
2686		struct device_node *np = pdev->dev.of_node;
2687
2688		ret = of_property_read_u32(np, "current-speed", &baudrate);
2689		if (ret)
2690			return ret;
2691	} else {
2692		baudrate = 115200;
2693	}
2694
2695	portnr = pl011_find_free_port();
2696	if (portnr < 0)
2697		return portnr;
2698
2699	uap = devm_kzalloc(&pdev->dev, sizeof(struct uart_amba_port),
2700			   GFP_KERNEL);
2701	if (!uap)
2702		return -ENOMEM;
2703
2704	ret = platform_get_irq(pdev, 0);
2705	if (ret < 0) {
2706		if (ret != -EPROBE_DEFER)
2707			dev_err(&pdev->dev, "cannot obtain irq\n");
2708		return ret;
2709	}
2710	uap->port.irq	= ret;
2711
2712#ifdef CONFIG_ACPI_SPCR_TABLE
2713	if (qdf2400_e44_present) {
2714		dev_info(&pdev->dev, "working around QDF2400 SoC erratum 44\n");
2715		uap->vendor = &vendor_qdt_qdf2400_e44;
2716	} else
2717#endif
2718		uap->vendor = &vendor_sbsa;
2719
2720	uap->reg_offset	= uap->vendor->reg_offset;
2721	uap->fifosize	= 32;
2722	uap->port.iotype = uap->vendor->access_32b ? UPIO_MEM32 : UPIO_MEM;
2723	uap->port.ops	= &sbsa_uart_pops;
2724	uap->fixed_baud = baudrate;
2725
2726	snprintf(uap->type, sizeof(uap->type), "SBSA");
2727
2728	r = platform_get_resource(pdev, IORESOURCE_MEM, 0);
2729
2730	ret = pl011_setup_port(&pdev->dev, uap, r, portnr);
2731	if (ret)
2732		return ret;
2733
2734	platform_set_drvdata(pdev, uap);
2735
2736	return pl011_register_port(uap);
2737}
2738
2739static int sbsa_uart_remove(struct platform_device *pdev)
2740{
2741	struct uart_amba_port *uap = platform_get_drvdata(pdev);
2742
2743	uart_remove_one_port(&amba_reg, &uap->port);
2744	pl011_unregister_port(uap);
2745	return 0;
2746}
2747
2748static const struct of_device_id sbsa_uart_of_match[] = {
2749	{ .compatible = "arm,sbsa-uart", },
2750	{},
2751};
2752MODULE_DEVICE_TABLE(of, sbsa_uart_of_match);
2753
2754static const struct acpi_device_id sbsa_uart_acpi_match[] = {
2755	{ "ARMH0011", 0 },
2756	{},
2757};
2758MODULE_DEVICE_TABLE(acpi, sbsa_uart_acpi_match);
2759
2760static struct platform_driver arm_sbsa_uart_platform_driver = {
2761	.probe		= sbsa_uart_probe,
2762	.remove		= sbsa_uart_remove,
2763	.driver	= {
2764		.name	= "sbsa-uart",
2765		.of_match_table = of_match_ptr(sbsa_uart_of_match),
2766		.acpi_match_table = ACPI_PTR(sbsa_uart_acpi_match),
2767	},
2768};
2769
2770static const struct amba_id pl011_ids[] = {
2771	{
2772		.id	= 0x00041011,
2773		.mask	= 0x000fffff,
2774		.data	= &vendor_arm,
2775	},
2776	{
2777		.id	= 0x00380802,
2778		.mask	= 0x00ffffff,
2779		.data	= &vendor_st,
2780	},
2781	{
2782		.id	= AMBA_LINUX_ID(0x00, 0x1, 0xffe),
2783		.mask	= 0x00ffffff,
2784		.data	= &vendor_zte,
2785	},
2786	{ 0, 0 },
2787};
2788
2789MODULE_DEVICE_TABLE(amba, pl011_ids);
2790
2791static struct amba_driver pl011_driver = {
2792	.drv = {
2793		.name	= "uart-pl011",
2794		.pm	= &pl011_dev_pm_ops,
2795	},
2796	.id_table	= pl011_ids,
2797	.probe		= pl011_probe,
2798	.remove		= pl011_remove,
 
 
 
 
2799};
2800
2801static int __init pl011_init(void)
2802{
 
2803	printk(KERN_INFO "Serial: AMBA PL011 UART driver\n");
2804
2805	if (platform_driver_register(&arm_sbsa_uart_platform_driver))
2806		pr_warn("could not register SBSA UART platform driver\n");
2807	return amba_driver_register(&pl011_driver);
 
 
 
 
2808}
2809
2810static void __exit pl011_exit(void)
2811{
2812	platform_driver_unregister(&arm_sbsa_uart_platform_driver);
2813	amba_driver_unregister(&pl011_driver);
 
2814}
2815
2816/*
2817 * While this can be a module, if builtin it's most likely the console
2818 * So let's leave module_exit but move module_init to an earlier place
2819 */
2820arch_initcall(pl011_init);
2821module_exit(pl011_exit);
2822
2823MODULE_AUTHOR("ARM Ltd/Deep Blue Solutions Ltd");
2824MODULE_DESCRIPTION("ARM AMBA serial port driver");
2825MODULE_LICENSE("GPL");