Linux Audio

Check our new training course

Loading...
v3.1
 
   1/*
   2 *  Driver for AMBA serial ports
   3 *
   4 *  Based on drivers/char/serial.c, by Linus Torvalds, Theodore Ts'o.
   5 *
   6 *  Copyright 1999 ARM Limited
   7 *  Copyright (C) 2000 Deep Blue Solutions Ltd.
   8 *  Copyright (C) 2010 ST-Ericsson SA
   9 *
  10 * This program is free software; you can redistribute it and/or modify
  11 * it under the terms of the GNU General Public License as published by
  12 * the Free Software Foundation; either version 2 of the License, or
  13 * (at your option) any later version.
  14 *
  15 * This program is distributed in the hope that it will be useful,
  16 * but WITHOUT ANY WARRANTY; without even the implied warranty of
  17 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
  18 * GNU General Public License for more details.
  19 *
  20 * You should have received a copy of the GNU General Public License
  21 * along with this program; if not, write to the Free Software
  22 * Foundation, Inc., 59 Temple Place, Suite 330, Boston, MA  02111-1307  USA
  23 *
  24 * This is a generic driver for ARM AMBA-type serial ports.  They
  25 * have a lot of 16550-like features, but are not register compatible.
  26 * Note that although they do have CTS, DCD and DSR inputs, they do
  27 * not have an RI input, nor do they have DTR or RTS outputs.  If
  28 * required, these have to be supplied via some other means (eg, GPIO)
  29 * and hooked into this driver.
  30 */
  31
  32#if defined(CONFIG_SERIAL_AMBA_PL011_CONSOLE) && defined(CONFIG_MAGIC_SYSRQ)
  33#define SUPPORT_SYSRQ
  34#endif
  35
  36#include <linux/module.h>
  37#include <linux/ioport.h>
  38#include <linux/init.h>
  39#include <linux/console.h>
  40#include <linux/sysrq.h>
  41#include <linux/device.h>
  42#include <linux/tty.h>
  43#include <linux/tty_flip.h>
  44#include <linux/serial_core.h>
  45#include <linux/serial.h>
  46#include <linux/amba/bus.h>
  47#include <linux/amba/serial.h>
  48#include <linux/clk.h>
  49#include <linux/slab.h>
  50#include <linux/dmaengine.h>
  51#include <linux/dma-mapping.h>
  52#include <linux/scatterlist.h>
  53#include <linux/delay.h>
 
 
 
 
 
 
 
  54
  55#include <asm/io.h>
  56#include <asm/sizes.h>
  57
  58#define UART_NR			14
  59
  60#define SERIAL_AMBA_MAJOR	204
  61#define SERIAL_AMBA_MINOR	64
  62#define SERIAL_AMBA_NR		UART_NR
  63
  64#define AMBA_ISR_PASS_LIMIT	256
  65
  66#define UART_DR_ERROR		(UART011_DR_OE|UART011_DR_BE|UART011_DR_PE|UART011_DR_FE)
  67#define UART_DUMMY_DR_RX	(1 << 16)
  68
  69
  70#define UART_WA_SAVE_NR 14
  71
  72static void pl011_lockup_wa(unsigned long data);
  73static const u32 uart_wa_reg[UART_WA_SAVE_NR] = {
  74	ST_UART011_DMAWM,
  75	ST_UART011_TIMEOUT,
  76	ST_UART011_LCRH_RX,
  77	UART011_IBRD,
  78	UART011_FBRD,
  79	ST_UART011_LCRH_TX,
  80	UART011_IFLS,
  81	ST_UART011_XFCR,
  82	ST_UART011_XON1,
  83	ST_UART011_XON2,
  84	ST_UART011_XOFF1,
  85	ST_UART011_XOFF2,
  86	UART011_CR,
  87	UART011_IMSC
  88};
  89
  90static u32 uart_wa_regdata[UART_WA_SAVE_NR];
  91static DECLARE_TASKLET(pl011_lockup_tlet, pl011_lockup_wa, 0);
  92
  93/* There is by now at least one vendor with differing details, so handle it */
  94struct vendor_data {
 
  95	unsigned int		ifls;
  96	unsigned int		fifosize;
  97	unsigned int		lcrh_tx;
  98	unsigned int		lcrh_rx;
 
 
 
  99	bool			oversampling;
 100	bool			interrupt_may_hang;   /* vendor-specific */
 101	bool			dma_threshold;
 
 
 
 
 
 102};
 103
 
 
 
 
 
 104static struct vendor_data vendor_arm = {
 
 105	.ifls			= UART011_IFLS_RX4_8|UART011_IFLS_TX4_8,
 106	.fifosize		= 16,
 107	.lcrh_tx		= UART011_LCRH,
 108	.lcrh_rx		= UART011_LCRH,
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 109	.oversampling		= false,
 110	.dma_threshold		= false,
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 111};
 112
 
 
 
 
 
 113static struct vendor_data vendor_st = {
 
 114	.ifls			= UART011_IFLS_RX_HALF|UART011_IFLS_TX_HALF,
 115	.fifosize		= 64,
 116	.lcrh_tx		= ST_UART011_LCRH_TX,
 117	.lcrh_rx		= ST_UART011_LCRH_RX,
 
 118	.oversampling		= true,
 119	.interrupt_may_hang	= true,
 120	.dma_threshold		= true,
 
 
 
 
 121};
 122
 123static struct uart_amba_port *amba_ports[UART_NR];
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 124
 125/* Deals with DMA transactions */
 126
 127struct pl011_sgbuf {
 128	struct scatterlist sg;
 129	char *buf;
 130};
 131
 132struct pl011_dmarx_data {
 133	struct dma_chan		*chan;
 134	struct completion	complete;
 135	bool			use_buf_b;
 136	struct pl011_sgbuf	sgbuf_a;
 137	struct pl011_sgbuf	sgbuf_b;
 138	dma_cookie_t		cookie;
 139	bool			running;
 
 
 
 
 
 
 140};
 141
 142struct pl011_dmatx_data {
 143	struct dma_chan		*chan;
 144	struct scatterlist	sg;
 145	char			*buf;
 146	bool			queued;
 147};
 148
 149/*
 150 * We wrap our port structure around the generic uart_port.
 151 */
 152struct uart_amba_port {
 153	struct uart_port	port;
 
 154	struct clk		*clk;
 155	const struct vendor_data *vendor;
 156	unsigned int		dmacr;		/* dma control reg */
 157	unsigned int		im;		/* interrupt mask */
 158	unsigned int		old_status;
 159	unsigned int		fifosize;	/* vendor-specific */
 160	unsigned int		lcrh_tx;	/* vendor-specific */
 161	unsigned int		lcrh_rx;	/* vendor-specific */
 162	bool			autorts;
 163	char			type[12];
 164	bool			interrupt_may_hang; /* vendor-specific */
 165#ifdef CONFIG_DMA_ENGINE
 166	/* DMA stuff */
 167	bool			using_tx_dma;
 168	bool			using_rx_dma;
 169	struct pl011_dmarx_data dmarx;
 170	struct pl011_dmatx_data	dmatx;
 
 171#endif
 172};
 173
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 174/*
 175 * Reads up to 256 characters from the FIFO or until it's empty and
 176 * inserts them into the TTY layer. Returns the number of characters
 177 * read from the FIFO.
 178 */
 179static int pl011_fifo_to_tty(struct uart_amba_port *uap)
 180{
 181	u16 status, ch;
 182	unsigned int flag, max_count = 256;
 183	int fifotaken = 0;
 184
 185	while (max_count--) {
 186		status = readw(uap->port.membase + UART01x_FR);
 187		if (status & UART01x_FR_RXFE)
 188			break;
 189
 190		/* Take chars from the FIFO and update status */
 191		ch = readw(uap->port.membase + UART01x_DR) |
 192			UART_DUMMY_DR_RX;
 193		flag = TTY_NORMAL;
 194		uap->port.icount.rx++;
 195		fifotaken++;
 196
 197		if (unlikely(ch & UART_DR_ERROR)) {
 198			if (ch & UART011_DR_BE) {
 199				ch &= ~(UART011_DR_FE | UART011_DR_PE);
 200				uap->port.icount.brk++;
 201				if (uart_handle_break(&uap->port))
 202					continue;
 203			} else if (ch & UART011_DR_PE)
 204				uap->port.icount.parity++;
 205			else if (ch & UART011_DR_FE)
 206				uap->port.icount.frame++;
 207			if (ch & UART011_DR_OE)
 208				uap->port.icount.overrun++;
 209
 210			ch &= uap->port.read_status_mask;
 211
 212			if (ch & UART011_DR_BE)
 213				flag = TTY_BREAK;
 214			else if (ch & UART011_DR_PE)
 215				flag = TTY_PARITY;
 216			else if (ch & UART011_DR_FE)
 217				flag = TTY_FRAME;
 218		}
 219
 220		if (uart_handle_sysrq_char(&uap->port, ch & 255))
 221			continue;
 222
 223		uart_insert_char(&uap->port, ch, UART011_DR_OE, ch, flag);
 224	}
 225
 226	return fifotaken;
 227}
 228
 229
 230/*
 231 * All the DMA operation mode stuff goes inside this ifdef.
 232 * This assumes that you have a generic DMA device interface,
 233 * no custom DMA interfaces are supported.
 234 */
 235#ifdef CONFIG_DMA_ENGINE
 236
 237#define PL011_DMA_BUFFER_SIZE PAGE_SIZE
 238
 239static int pl011_sgbuf_init(struct dma_chan *chan, struct pl011_sgbuf *sg,
 240	enum dma_data_direction dir)
 241{
 242	sg->buf = kmalloc(PL011_DMA_BUFFER_SIZE, GFP_KERNEL);
 
 
 
 243	if (!sg->buf)
 244		return -ENOMEM;
 245
 246	sg_init_one(&sg->sg, sg->buf, PL011_DMA_BUFFER_SIZE);
 
 
 
 
 247
 248	if (dma_map_sg(chan->device->dev, &sg->sg, 1, dir) != 1) {
 249		kfree(sg->buf);
 250		return -EINVAL;
 251	}
 252	return 0;
 253}
 254
 255static void pl011_sgbuf_free(struct dma_chan *chan, struct pl011_sgbuf *sg,
 256	enum dma_data_direction dir)
 257{
 258	if (sg->buf) {
 259		dma_unmap_sg(chan->device->dev, &sg->sg, 1, dir);
 260		kfree(sg->buf);
 
 261	}
 262}
 263
 264static void pl011_dma_probe_initcall(struct uart_amba_port *uap)
 265{
 266	/* DMA is the sole user of the platform data right now */
 267	struct amba_pl011_data *plat = uap->port.dev->platform_data;
 
 268	struct dma_slave_config tx_conf = {
 269		.dst_addr = uap->port.mapbase + UART01x_DR,
 
 270		.dst_addr_width = DMA_SLAVE_BUSWIDTH_1_BYTE,
 271		.direction = DMA_TO_DEVICE,
 272		.dst_maxburst = uap->fifosize >> 1,
 
 273	};
 274	struct dma_chan *chan;
 275	dma_cap_mask_t mask;
 276
 277	/* We need platform data */
 278	if (!plat || !plat->dma_filter) {
 279		dev_info(uap->port.dev, "no DMA platform data\n");
 280		return;
 281	}
 
 
 282
 283	/* Try to acquire a generic DMA engine slave TX channel */
 284	dma_cap_zero(mask);
 285	dma_cap_set(DMA_SLAVE, mask);
 286
 287	chan = dma_request_channel(mask, plat->dma_filter, plat->dma_tx_param);
 288	if (!chan) {
 289		dev_err(uap->port.dev, "no TX DMA channel!\n");
 290		return;
 
 
 
 
 
 
 
 
 291	}
 292
 293	dmaengine_slave_config(chan, &tx_conf);
 294	uap->dmatx.chan = chan;
 295
 296	dev_info(uap->port.dev, "DMA channel TX %s\n",
 297		 dma_chan_name(uap->dmatx.chan));
 298
 299	/* Optionally make use of an RX channel as well */
 300	if (plat->dma_rx_param) {
 301		struct dma_slave_config rx_conf = {
 302			.src_addr = uap->port.mapbase + UART01x_DR,
 303			.src_addr_width = DMA_SLAVE_BUSWIDTH_1_BYTE,
 304			.direction = DMA_FROM_DEVICE,
 305			.src_maxburst = uap->fifosize >> 1,
 306		};
 307
 
 308		chan = dma_request_channel(mask, plat->dma_filter, plat->dma_rx_param);
 
 309		if (!chan) {
 310			dev_err(uap->port.dev, "no RX DMA channel!\n");
 311			return;
 312		}
 
 313
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 314		dmaengine_slave_config(chan, &rx_conf);
 315		uap->dmarx.chan = chan;
 316
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 317		dev_info(uap->port.dev, "DMA channel RX %s\n",
 318			 dma_chan_name(uap->dmarx.chan));
 319	}
 320}
 321
 322#ifndef MODULE
 323/*
 324 * Stack up the UARTs and let the above initcall be done at device
 325 * initcall time, because the serial driver is called as an arch
 326 * initcall, and at this time the DMA subsystem is not yet registered.
 327 * At this point the driver will switch over to using DMA where desired.
 328 */
 329struct dma_uap {
 330	struct list_head node;
 331	struct uart_amba_port *uap;
 332};
 333
 334static LIST_HEAD(pl011_dma_uarts);
 335
 336static int __init pl011_dma_initcall(void)
 337{
 338	struct list_head *node, *tmp;
 339
 340	list_for_each_safe(node, tmp, &pl011_dma_uarts) {
 341		struct dma_uap *dmau = list_entry(node, struct dma_uap, node);
 342		pl011_dma_probe_initcall(dmau->uap);
 343		list_del(node);
 344		kfree(dmau);
 345	}
 346	return 0;
 347}
 348
 349device_initcall(pl011_dma_initcall);
 350
 351static void pl011_dma_probe(struct uart_amba_port *uap)
 352{
 353	struct dma_uap *dmau = kzalloc(sizeof(struct dma_uap), GFP_KERNEL);
 354	if (dmau) {
 355		dmau->uap = uap;
 356		list_add_tail(&dmau->node, &pl011_dma_uarts);
 357	}
 358}
 359#else
 360static void pl011_dma_probe(struct uart_amba_port *uap)
 361{
 362	pl011_dma_probe_initcall(uap);
 363}
 364#endif
 365
 366static void pl011_dma_remove(struct uart_amba_port *uap)
 367{
 368	/* TODO: remove the initcall if it has not yet executed */
 369	if (uap->dmatx.chan)
 370		dma_release_channel(uap->dmatx.chan);
 371	if (uap->dmarx.chan)
 372		dma_release_channel(uap->dmarx.chan);
 373}
 374
 375/* Forward declare this for the refill routine */
 376static int pl011_dma_tx_refill(struct uart_amba_port *uap);
 
 377
 378/*
 379 * The current DMA TX buffer has been sent.
 380 * Try to queue up another DMA buffer.
 381 */
 382static void pl011_dma_tx_callback(void *data)
 383{
 384	struct uart_amba_port *uap = data;
 385	struct pl011_dmatx_data *dmatx = &uap->dmatx;
 386	unsigned long flags;
 387	u16 dmacr;
 388
 389	spin_lock_irqsave(&uap->port.lock, flags);
 390	if (uap->dmatx.queued)
 391		dma_unmap_sg(dmatx->chan->device->dev, &dmatx->sg, 1,
 392			     DMA_TO_DEVICE);
 393
 394	dmacr = uap->dmacr;
 395	uap->dmacr = dmacr & ~UART011_TXDMAE;
 396	writew(uap->dmacr, uap->port.membase + UART011_DMACR);
 397
 398	/*
 399	 * If TX DMA was disabled, it means that we've stopped the DMA for
 400	 * some reason (eg, XOFF received, or we want to send an X-char.)
 401	 *
 402	 * Note: we need to be careful here of a potential race between DMA
 403	 * and the rest of the driver - if the driver disables TX DMA while
 404	 * a TX buffer completing, we must update the tx queued status to
 405	 * get further refills (hence we check dmacr).
 406	 */
 407	if (!(dmacr & UART011_TXDMAE) || uart_tx_stopped(&uap->port) ||
 408	    uart_circ_empty(&uap->port.state->xmit)) {
 409		uap->dmatx.queued = false;
 410		spin_unlock_irqrestore(&uap->port.lock, flags);
 411		return;
 412	}
 413
 414	if (pl011_dma_tx_refill(uap) <= 0) {
 415		/*
 416		 * We didn't queue a DMA buffer for some reason, but we
 417		 * have data pending to be sent.  Re-enable the TX IRQ.
 418		 */
 419		uap->im |= UART011_TXIM;
 420		writew(uap->im, uap->port.membase + UART011_IMSC);
 421	}
 422	spin_unlock_irqrestore(&uap->port.lock, flags);
 423}
 424
 425/*
 426 * Try to refill the TX DMA buffer.
 427 * Locking: called with port lock held and IRQs disabled.
 428 * Returns:
 429 *   1 if we queued up a TX DMA buffer.
 430 *   0 if we didn't want to handle this by DMA
 431 *  <0 on error
 432 */
 433static int pl011_dma_tx_refill(struct uart_amba_port *uap)
 434{
 435	struct pl011_dmatx_data *dmatx = &uap->dmatx;
 436	struct dma_chan *chan = dmatx->chan;
 437	struct dma_device *dma_dev = chan->device;
 438	struct dma_async_tx_descriptor *desc;
 439	struct circ_buf *xmit = &uap->port.state->xmit;
 440	unsigned int count;
 441
 442	/*
 443	 * Try to avoid the overhead involved in using DMA if the
 444	 * transaction fits in the first half of the FIFO, by using
 445	 * the standard interrupt handling.  This ensures that we
 446	 * issue a uart_write_wakeup() at the appropriate time.
 447	 */
 448	count = uart_circ_chars_pending(xmit);
 449	if (count < (uap->fifosize >> 1)) {
 450		uap->dmatx.queued = false;
 451		return 0;
 452	}
 453
 454	/*
 455	 * Bodge: don't send the last character by DMA, as this
 456	 * will prevent XON from notifying us to restart DMA.
 457	 */
 458	count -= 1;
 459
 460	/* Else proceed to copy the TX chars to the DMA buffer and fire DMA */
 461	if (count > PL011_DMA_BUFFER_SIZE)
 462		count = PL011_DMA_BUFFER_SIZE;
 463
 464	if (xmit->tail < xmit->head)
 465		memcpy(&dmatx->buf[0], &xmit->buf[xmit->tail], count);
 466	else {
 467		size_t first = UART_XMIT_SIZE - xmit->tail;
 468		size_t second = xmit->head;
 
 
 
 
 469
 470		memcpy(&dmatx->buf[0], &xmit->buf[xmit->tail], first);
 471		if (second)
 472			memcpy(&dmatx->buf[first], &xmit->buf[0], second);
 473	}
 474
 475	dmatx->sg.length = count;
 476
 477	if (dma_map_sg(dma_dev->dev, &dmatx->sg, 1, DMA_TO_DEVICE) != 1) {
 478		uap->dmatx.queued = false;
 479		dev_dbg(uap->port.dev, "unable to map TX DMA\n");
 480		return -EBUSY;
 481	}
 482
 483	desc = dma_dev->device_prep_slave_sg(chan, &dmatx->sg, 1, DMA_TO_DEVICE,
 484					     DMA_PREP_INTERRUPT | DMA_CTRL_ACK);
 485	if (!desc) {
 486		dma_unmap_sg(dma_dev->dev, &dmatx->sg, 1, DMA_TO_DEVICE);
 487		uap->dmatx.queued = false;
 488		/*
 489		 * If DMA cannot be used right now, we complete this
 490		 * transaction via IRQ and let the TTY layer retry.
 491		 */
 492		dev_dbg(uap->port.dev, "TX DMA busy\n");
 493		return -EBUSY;
 494	}
 495
 496	/* Some data to go along to the callback */
 497	desc->callback = pl011_dma_tx_callback;
 498	desc->callback_param = uap;
 499
 500	/* All errors should happen at prepare time */
 501	dmaengine_submit(desc);
 502
 503	/* Fire the DMA transaction */
 504	dma_dev->device_issue_pending(chan);
 505
 506	uap->dmacr |= UART011_TXDMAE;
 507	writew(uap->dmacr, uap->port.membase + UART011_DMACR);
 508	uap->dmatx.queued = true;
 509
 510	/*
 511	 * Now we know that DMA will fire, so advance the ring buffer
 512	 * with the stuff we just dispatched.
 513	 */
 514	xmit->tail = (xmit->tail + count) & (UART_XMIT_SIZE - 1);
 515	uap->port.icount.tx += count;
 516
 517	if (uart_circ_chars_pending(xmit) < WAKEUP_CHARS)
 518		uart_write_wakeup(&uap->port);
 519
 520	return 1;
 521}
 522
 523/*
 524 * We received a transmit interrupt without a pending X-char but with
 525 * pending characters.
 526 * Locking: called with port lock held and IRQs disabled.
 527 * Returns:
 528 *   false if we want to use PIO to transmit
 529 *   true if we queued a DMA buffer
 530 */
 531static bool pl011_dma_tx_irq(struct uart_amba_port *uap)
 532{
 533	if (!uap->using_tx_dma)
 534		return false;
 535
 536	/*
 537	 * If we already have a TX buffer queued, but received a
 538	 * TX interrupt, it will be because we've just sent an X-char.
 539	 * Ensure the TX DMA is enabled and the TX IRQ is disabled.
 540	 */
 541	if (uap->dmatx.queued) {
 542		uap->dmacr |= UART011_TXDMAE;
 543		writew(uap->dmacr, uap->port.membase + UART011_DMACR);
 544		uap->im &= ~UART011_TXIM;
 545		writew(uap->im, uap->port.membase + UART011_IMSC);
 546		return true;
 547	}
 548
 549	/*
 550	 * We don't have a TX buffer queued, so try to queue one.
 551	 * If we successfully queued a buffer, mask the TX IRQ.
 552	 */
 553	if (pl011_dma_tx_refill(uap) > 0) {
 554		uap->im &= ~UART011_TXIM;
 555		writew(uap->im, uap->port.membase + UART011_IMSC);
 556		return true;
 557	}
 558	return false;
 559}
 560
 561/*
 562 * Stop the DMA transmit (eg, due to received XOFF).
 563 * Locking: called with port lock held and IRQs disabled.
 564 */
 565static inline void pl011_dma_tx_stop(struct uart_amba_port *uap)
 566{
 567	if (uap->dmatx.queued) {
 568		uap->dmacr &= ~UART011_TXDMAE;
 569		writew(uap->dmacr, uap->port.membase + UART011_DMACR);
 570	}
 571}
 572
 573/*
 574 * Try to start a DMA transmit, or in the case of an XON/OFF
 575 * character queued for send, try to get that character out ASAP.
 576 * Locking: called with port lock held and IRQs disabled.
 577 * Returns:
 578 *   false if we want the TX IRQ to be enabled
 579 *   true if we have a buffer queued
 580 */
 581static inline bool pl011_dma_tx_start(struct uart_amba_port *uap)
 582{
 583	u16 dmacr;
 584
 585	if (!uap->using_tx_dma)
 586		return false;
 587
 588	if (!uap->port.x_char) {
 589		/* no X-char, try to push chars out in DMA mode */
 590		bool ret = true;
 591
 592		if (!uap->dmatx.queued) {
 593			if (pl011_dma_tx_refill(uap) > 0) {
 594				uap->im &= ~UART011_TXIM;
 595				ret = true;
 596			} else {
 597				uap->im |= UART011_TXIM;
 598				ret = false;
 599			}
 600			writew(uap->im, uap->port.membase + UART011_IMSC);
 601		} else if (!(uap->dmacr & UART011_TXDMAE)) {
 602			uap->dmacr |= UART011_TXDMAE;
 603			writew(uap->dmacr,
 604				       uap->port.membase + UART011_DMACR);
 605		}
 606		return ret;
 607	}
 608
 609	/*
 610	 * We have an X-char to send.  Disable DMA to prevent it loading
 611	 * the TX fifo, and then see if we can stuff it into the FIFO.
 612	 */
 613	dmacr = uap->dmacr;
 614	uap->dmacr &= ~UART011_TXDMAE;
 615	writew(uap->dmacr, uap->port.membase + UART011_DMACR);
 616
 617	if (readw(uap->port.membase + UART01x_FR) & UART01x_FR_TXFF) {
 618		/*
 619		 * No space in the FIFO, so enable the transmit interrupt
 620		 * so we know when there is space.  Note that once we've
 621		 * loaded the character, we should just re-enable DMA.
 622		 */
 623		return false;
 624	}
 625
 626	writew(uap->port.x_char, uap->port.membase + UART01x_DR);
 627	uap->port.icount.tx++;
 628	uap->port.x_char = 0;
 629
 630	/* Success - restore the DMA state */
 631	uap->dmacr = dmacr;
 632	writew(dmacr, uap->port.membase + UART011_DMACR);
 633
 634	return true;
 635}
 636
 637/*
 638 * Flush the transmit buffer.
 639 * Locking: called with port lock held and IRQs disabled.
 640 */
 641static void pl011_dma_flush_buffer(struct uart_port *port)
 
 
 642{
 643	struct uart_amba_port *uap = (struct uart_amba_port *)port;
 
 644
 645	if (!uap->using_tx_dma)
 646		return;
 647
 648	/* Avoid deadlock with the DMA engine callback */
 649	spin_unlock(&uap->port.lock);
 650	dmaengine_terminate_all(uap->dmatx.chan);
 651	spin_lock(&uap->port.lock);
 652	if (uap->dmatx.queued) {
 653		dma_unmap_sg(uap->dmatx.chan->device->dev, &uap->dmatx.sg, 1,
 654			     DMA_TO_DEVICE);
 655		uap->dmatx.queued = false;
 656		uap->dmacr &= ~UART011_TXDMAE;
 657		writew(uap->dmacr, uap->port.membase + UART011_DMACR);
 658	}
 659}
 660
 661static void pl011_dma_rx_callback(void *data);
 662
 663static int pl011_dma_rx_trigger_dma(struct uart_amba_port *uap)
 664{
 665	struct dma_chan *rxchan = uap->dmarx.chan;
 666	struct dma_device *dma_dev;
 667	struct pl011_dmarx_data *dmarx = &uap->dmarx;
 668	struct dma_async_tx_descriptor *desc;
 669	struct pl011_sgbuf *sgbuf;
 670
 671	if (!rxchan)
 672		return -EIO;
 673
 674	/* Start the RX DMA job */
 675	sgbuf = uap->dmarx.use_buf_b ?
 676		&uap->dmarx.sgbuf_b : &uap->dmarx.sgbuf_a;
 677	dma_dev = rxchan->device;
 678	desc = rxchan->device->device_prep_slave_sg(rxchan, &sgbuf->sg, 1,
 679					DMA_FROM_DEVICE,
 680					DMA_PREP_INTERRUPT | DMA_CTRL_ACK);
 681	/*
 682	 * If the DMA engine is busy and cannot prepare a
 683	 * channel, no big deal, the driver will fall back
 684	 * to interrupt mode as a result of this error code.
 685	 */
 686	if (!desc) {
 687		uap->dmarx.running = false;
 688		dmaengine_terminate_all(rxchan);
 689		return -EBUSY;
 690	}
 691
 692	/* Some data to go along to the callback */
 693	desc->callback = pl011_dma_rx_callback;
 694	desc->callback_param = uap;
 695	dmarx->cookie = dmaengine_submit(desc);
 696	dma_async_issue_pending(rxchan);
 697
 698	uap->dmacr |= UART011_RXDMAE;
 699	writew(uap->dmacr, uap->port.membase + UART011_DMACR);
 700	uap->dmarx.running = true;
 701
 702	uap->im &= ~UART011_RXIM;
 703	writew(uap->im, uap->port.membase + UART011_IMSC);
 704
 705	return 0;
 706}
 707
 708/*
 709 * This is called when either the DMA job is complete, or
 710 * the FIFO timeout interrupt occurred. This must be called
 711 * with the port spinlock uap->port.lock held.
 712 */
 713static void pl011_dma_rx_chars(struct uart_amba_port *uap,
 714			       u32 pending, bool use_buf_b,
 715			       bool readfifo)
 716{
 717	struct tty_struct *tty = uap->port.state->port.tty;
 718	struct pl011_sgbuf *sgbuf = use_buf_b ?
 719		&uap->dmarx.sgbuf_b : &uap->dmarx.sgbuf_a;
 720	struct device *dev = uap->dmarx.chan->device->dev;
 721	int dma_count = 0;
 722	u32 fifotaken = 0; /* only used for vdbg() */
 723
 724	/* Pick everything from the DMA first */
 
 
 
 
 
 
 
 
 
 
 
 725	if (pending) {
 726		/* Sync in buffer */
 727		dma_sync_sg_for_cpu(dev, &sgbuf->sg, 1, DMA_FROM_DEVICE);
 728
 729		/*
 730		 * First take all chars in the DMA pipe, then look in the FIFO.
 731		 * Note that tty_insert_flip_buf() tries to take as many chars
 732		 * as it can.
 733		 */
 734		dma_count = tty_insert_flip_string(uap->port.state->port.tty,
 735						   sgbuf->buf, pending);
 736
 737		/* Return buffer to device */
 738		dma_sync_sg_for_device(dev, &sgbuf->sg, 1, DMA_FROM_DEVICE);
 739
 740		uap->port.icount.rx += dma_count;
 741		if (dma_count < pending)
 742			dev_warn(uap->port.dev,
 743				 "couldn't insert all characters (TTY is full?)\n");
 744	}
 745
 
 
 
 
 746	/*
 747	 * Only continue with trying to read the FIFO if all DMA chars have
 748	 * been taken first.
 749	 */
 750	if (dma_count == pending && readfifo) {
 751		/* Clear any error flags */
 752		writew(UART011_OEIS | UART011_BEIS | UART011_PEIS | UART011_FEIS,
 753		       uap->port.membase + UART011_ICR);
 754
 755		/*
 756		 * If we read all the DMA'd characters, and we had an
 757		 * incomplete buffer, that could be due to an rx error, or
 758		 * maybe we just timed out. Read any pending chars and check
 759		 * the error status.
 760		 *
 761		 * Error conditions will only occur in the FIFO, these will
 762		 * trigger an immediate interrupt and stop the DMA job, so we
 763		 * will always find the error in the FIFO, never in the DMA
 764		 * buffer.
 765		 */
 766		fifotaken = pl011_fifo_to_tty(uap);
 767	}
 768
 769	spin_unlock(&uap->port.lock);
 770	dev_vdbg(uap->port.dev,
 771		 "Took %d chars from DMA buffer and %d chars from the FIFO\n",
 772		 dma_count, fifotaken);
 773	tty_flip_buffer_push(tty);
 774	spin_lock(&uap->port.lock);
 775}
 776
 777static void pl011_dma_rx_irq(struct uart_amba_port *uap)
 778{
 779	struct pl011_dmarx_data *dmarx = &uap->dmarx;
 780	struct dma_chan *rxchan = dmarx->chan;
 781	struct pl011_sgbuf *sgbuf = dmarx->use_buf_b ?
 782		&dmarx->sgbuf_b : &dmarx->sgbuf_a;
 783	size_t pending;
 784	struct dma_tx_state state;
 785	enum dma_status dmastat;
 786
 787	/*
 788	 * Pause the transfer so we can trust the current counter,
 789	 * do this before we pause the PL011 block, else we may
 790	 * overflow the FIFO.
 791	 */
 792	if (dmaengine_pause(rxchan))
 793		dev_err(uap->port.dev, "unable to pause DMA transfer\n");
 794	dmastat = rxchan->device->device_tx_status(rxchan,
 795						   dmarx->cookie, &state);
 796	if (dmastat != DMA_PAUSED)
 797		dev_err(uap->port.dev, "unable to pause DMA transfer\n");
 798
 799	/* Disable RX DMA - incoming data will wait in the FIFO */
 800	uap->dmacr &= ~UART011_RXDMAE;
 801	writew(uap->dmacr, uap->port.membase + UART011_DMACR);
 802	uap->dmarx.running = false;
 803
 804	pending = sgbuf->sg.length - state.residue;
 805	BUG_ON(pending > PL011_DMA_BUFFER_SIZE);
 806	/* Then we terminate the transfer - we now know our residue */
 807	dmaengine_terminate_all(rxchan);
 808
 809	/*
 810	 * This will take the chars we have so far and insert
 811	 * into the framework.
 812	 */
 813	pl011_dma_rx_chars(uap, pending, dmarx->use_buf_b, true);
 814
 815	/* Switch buffer & re-trigger DMA job */
 816	dmarx->use_buf_b = !dmarx->use_buf_b;
 817	if (pl011_dma_rx_trigger_dma(uap)) {
 818		dev_dbg(uap->port.dev, "could not retrigger RX DMA job "
 819			"fall back to interrupt mode\n");
 820		uap->im |= UART011_RXIM;
 821		writew(uap->im, uap->port.membase + UART011_IMSC);
 822	}
 823}
 824
 825static void pl011_dma_rx_callback(void *data)
 826{
 827	struct uart_amba_port *uap = data;
 828	struct pl011_dmarx_data *dmarx = &uap->dmarx;
 
 829	bool lastbuf = dmarx->use_buf_b;
 
 
 
 
 830	int ret;
 831
 832	/*
 833	 * This completion interrupt occurs typically when the
 834	 * RX buffer is totally stuffed but no timeout has yet
 835	 * occurred. When that happens, we just want the RX
 836	 * routine to flush out the secondary DMA buffer while
 837	 * we immediately trigger the next DMA job.
 838	 */
 839	spin_lock_irq(&uap->port.lock);
 
 
 
 
 
 
 
 
 
 
 840	uap->dmarx.running = false;
 841	dmarx->use_buf_b = !lastbuf;
 842	ret = pl011_dma_rx_trigger_dma(uap);
 843
 844	pl011_dma_rx_chars(uap, PL011_DMA_BUFFER_SIZE, lastbuf, false);
 845	spin_unlock_irq(&uap->port.lock);
 846	/*
 847	 * Do this check after we picked the DMA chars so we don't
 848	 * get some IRQ immediately from RX.
 849	 */
 850	if (ret) {
 851		dev_dbg(uap->port.dev, "could not retrigger RX DMA job "
 852			"fall back to interrupt mode\n");
 853		uap->im |= UART011_RXIM;
 854		writew(uap->im, uap->port.membase + UART011_IMSC);
 855	}
 856}
 857
 858/*
 859 * Stop accepting received characters, when we're shutting down or
 860 * suspending this port.
 861 * Locking: called with port lock held and IRQs disabled.
 862 */
 863static inline void pl011_dma_rx_stop(struct uart_amba_port *uap)
 864{
 865	/* FIXME.  Just disable the DMA enable */
 866	uap->dmacr &= ~UART011_RXDMAE;
 867	writew(uap->dmacr, uap->port.membase + UART011_DMACR);
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 868}
 869
 870static void pl011_dma_startup(struct uart_amba_port *uap)
 871{
 872	int ret;
 873
 
 
 
 874	if (!uap->dmatx.chan)
 875		return;
 876
 877	uap->dmatx.buf = kmalloc(PL011_DMA_BUFFER_SIZE, GFP_KERNEL);
 878	if (!uap->dmatx.buf) {
 879		dev_err(uap->port.dev, "no memory for DMA TX buffer\n");
 880		uap->port.fifosize = uap->fifosize;
 881		return;
 882	}
 883
 884	sg_init_one(&uap->dmatx.sg, uap->dmatx.buf, PL011_DMA_BUFFER_SIZE);
 885
 886	/* The DMA buffer is now the FIFO the TTY subsystem can use */
 887	uap->port.fifosize = PL011_DMA_BUFFER_SIZE;
 888	uap->using_tx_dma = true;
 889
 890	if (!uap->dmarx.chan)
 891		goto skip_rx;
 892
 893	/* Allocate and map DMA RX buffers */
 894	ret = pl011_sgbuf_init(uap->dmarx.chan, &uap->dmarx.sgbuf_a,
 895			       DMA_FROM_DEVICE);
 896	if (ret) {
 897		dev_err(uap->port.dev, "failed to init DMA %s: %d\n",
 898			"RX buffer A", ret);
 899		goto skip_rx;
 900	}
 901
 902	ret = pl011_sgbuf_init(uap->dmarx.chan, &uap->dmarx.sgbuf_b,
 903			       DMA_FROM_DEVICE);
 904	if (ret) {
 905		dev_err(uap->port.dev, "failed to init DMA %s: %d\n",
 906			"RX buffer B", ret);
 907		pl011_sgbuf_free(uap->dmarx.chan, &uap->dmarx.sgbuf_a,
 908				 DMA_FROM_DEVICE);
 909		goto skip_rx;
 910	}
 911
 912	uap->using_rx_dma = true;
 913
 914skip_rx:
 915	/* Turn on DMA error (RX/TX will be enabled on demand) */
 916	uap->dmacr |= UART011_DMAONERR;
 917	writew(uap->dmacr, uap->port.membase + UART011_DMACR);
 918
 919	/*
 920	 * ST Micro variants has some specific dma burst threshold
 921	 * compensation. Set this to 16 bytes, so burst will only
 922	 * be issued above/below 16 bytes.
 923	 */
 924	if (uap->vendor->dma_threshold)
 925		writew(ST_UART011_DMAWM_RX_16 | ST_UART011_DMAWM_TX_16,
 926			       uap->port.membase + ST_UART011_DMAWM);
 927
 928	if (uap->using_rx_dma) {
 929		if (pl011_dma_rx_trigger_dma(uap))
 930			dev_dbg(uap->port.dev, "could not trigger initial "
 931				"RX DMA job, fall back to interrupt mode\n");
 
 
 
 
 
 
 
 
 932	}
 933}
 934
 935static void pl011_dma_shutdown(struct uart_amba_port *uap)
 936{
 937	if (!(uap->using_tx_dma || uap->using_rx_dma))
 938		return;
 939
 940	/* Disable RX and TX DMA */
 941	while (readw(uap->port.membase + UART01x_FR) & UART01x_FR_BUSY)
 942		barrier();
 943
 944	spin_lock_irq(&uap->port.lock);
 945	uap->dmacr &= ~(UART011_DMAONERR | UART011_RXDMAE | UART011_TXDMAE);
 946	writew(uap->dmacr, uap->port.membase + UART011_DMACR);
 947	spin_unlock_irq(&uap->port.lock);
 948
 949	if (uap->using_tx_dma) {
 950		/* In theory, this should already be done by pl011_dma_flush_buffer */
 951		dmaengine_terminate_all(uap->dmatx.chan);
 952		if (uap->dmatx.queued) {
 953			dma_unmap_sg(uap->dmatx.chan->device->dev, &uap->dmatx.sg, 1,
 954				     DMA_TO_DEVICE);
 955			uap->dmatx.queued = false;
 956		}
 957
 958		kfree(uap->dmatx.buf);
 959		uap->using_tx_dma = false;
 960	}
 961
 962	if (uap->using_rx_dma) {
 963		dmaengine_terminate_all(uap->dmarx.chan);
 964		/* Clean up the RX DMA */
 965		pl011_sgbuf_free(uap->dmarx.chan, &uap->dmarx.sgbuf_a, DMA_FROM_DEVICE);
 966		pl011_sgbuf_free(uap->dmarx.chan, &uap->dmarx.sgbuf_b, DMA_FROM_DEVICE);
 
 
 967		uap->using_rx_dma = false;
 968	}
 969}
 970
 971static inline bool pl011_dma_rx_available(struct uart_amba_port *uap)
 972{
 973	return uap->using_rx_dma;
 974}
 975
 976static inline bool pl011_dma_rx_running(struct uart_amba_port *uap)
 977{
 978	return uap->using_rx_dma && uap->dmarx.running;
 979}
 980
 981
 982#else
 983/* Blank functions if the DMA engine is not available */
 984static inline void pl011_dma_probe(struct uart_amba_port *uap)
 985{
 986}
 987
 988static inline void pl011_dma_remove(struct uart_amba_port *uap)
 989{
 990}
 991
 992static inline void pl011_dma_startup(struct uart_amba_port *uap)
 993{
 994}
 995
 996static inline void pl011_dma_shutdown(struct uart_amba_port *uap)
 997{
 998}
 999
1000static inline bool pl011_dma_tx_irq(struct uart_amba_port *uap)
1001{
1002	return false;
1003}
1004
1005static inline void pl011_dma_tx_stop(struct uart_amba_port *uap)
1006{
1007}
1008
1009static inline bool pl011_dma_tx_start(struct uart_amba_port *uap)
1010{
1011	return false;
1012}
1013
1014static inline void pl011_dma_rx_irq(struct uart_amba_port *uap)
1015{
1016}
1017
1018static inline void pl011_dma_rx_stop(struct uart_amba_port *uap)
1019{
1020}
1021
1022static inline int pl011_dma_rx_trigger_dma(struct uart_amba_port *uap)
1023{
1024	return -EIO;
1025}
1026
1027static inline bool pl011_dma_rx_available(struct uart_amba_port *uap)
1028{
1029	return false;
1030}
1031
1032static inline bool pl011_dma_rx_running(struct uart_amba_port *uap)
1033{
1034	return false;
1035}
1036
1037#define pl011_dma_flush_buffer	NULL
1038#endif
1039
1040
1041/*
1042 * pl011_lockup_wa
1043 * This workaround aims to break the deadlock situation
1044 * when after long transfer over uart in hardware flow
1045 * control, uart interrupt registers cannot be cleared.
1046 * Hence uart transfer gets blocked.
1047 *
1048 * It is seen that during such deadlock condition ICR
1049 * don't get cleared even on multiple write. This leads
1050 * pass_counter to decrease and finally reach zero. This
1051 * can be taken as trigger point to run this UART_BT_WA.
1052 *
1053 */
1054static void pl011_lockup_wa(unsigned long data)
1055{
1056	struct uart_amba_port *uap = amba_ports[0];
1057	void __iomem *base = uap->port.membase;
1058	struct circ_buf *xmit = &uap->port.state->xmit;
1059	struct tty_struct *tty = uap->port.state->port.tty;
1060	int buf_empty_retries = 200;
1061	int loop;
1062
1063	/* Stop HCI layer from submitting data for tx */
1064	tty->hw_stopped = 1;
1065	while (!uart_circ_empty(xmit)) {
1066		if (buf_empty_retries-- == 0)
1067			break;
1068		udelay(100);
1069	}
1070
1071	/* Backup registers */
1072	for (loop = 0; loop < UART_WA_SAVE_NR; loop++)
1073		uart_wa_regdata[loop] = readl(base + uart_wa_reg[loop]);
1074
1075	/* Disable UART so that FIFO data is flushed out */
1076	writew(0x00, uap->port.membase + UART011_CR);
1077
1078	/* Soft reset UART module */
1079	if (uap->port.dev->platform_data) {
1080		struct amba_pl011_data *plat;
1081
1082		plat = uap->port.dev->platform_data;
1083		if (plat->reset)
1084			plat->reset();
1085	}
1086
1087	/* Restore registers */
1088	for (loop = 0; loop < UART_WA_SAVE_NR; loop++)
1089		writew(uart_wa_regdata[loop] ,
1090				uap->port.membase + uart_wa_reg[loop]);
1091
1092	/* Initialise the old status of the modem signals */
1093	uap->old_status = readw(uap->port.membase + UART01x_FR) &
1094		UART01x_FR_MODEM_ANY;
1095
1096	if (readl(base + UART011_MIS) & 0x2)
1097		printk(KERN_EMERG "UART_BT_WA: ***FAILED***\n");
1098
1099	/* Start Tx/Rx */
1100	tty->hw_stopped = 0;
1101}
1102
1103static void pl011_stop_tx(struct uart_port *port)
1104{
1105	struct uart_amba_port *uap = (struct uart_amba_port *)port;
 
1106
1107	uap->im &= ~UART011_TXIM;
1108	writew(uap->im, uap->port.membase + UART011_IMSC);
1109	pl011_dma_tx_stop(uap);
1110}
1111
1112static void pl011_start_tx(struct uart_port *port)
1113{
1114	struct uart_amba_port *uap = (struct uart_amba_port *)port;
1115
1116	if (!pl011_dma_tx_start(uap)) {
 
 
 
1117		uap->im |= UART011_TXIM;
1118		writew(uap->im, uap->port.membase + UART011_IMSC);
1119	}
1120}
1121
 
 
 
 
 
 
 
 
 
1122static void pl011_stop_rx(struct uart_port *port)
1123{
1124	struct uart_amba_port *uap = (struct uart_amba_port *)port;
 
1125
1126	uap->im &= ~(UART011_RXIM|UART011_RTIM|UART011_FEIM|
1127		     UART011_PEIM|UART011_BEIM|UART011_OEIM);
1128	writew(uap->im, uap->port.membase + UART011_IMSC);
1129
1130	pl011_dma_rx_stop(uap);
1131}
1132
1133static void pl011_enable_ms(struct uart_port *port)
1134{
1135	struct uart_amba_port *uap = (struct uart_amba_port *)port;
 
1136
1137	uap->im |= UART011_RIMIM|UART011_CTSMIM|UART011_DCDMIM|UART011_DSRMIM;
1138	writew(uap->im, uap->port.membase + UART011_IMSC);
1139}
1140
1141static void pl011_rx_chars(struct uart_amba_port *uap)
 
 
1142{
1143	struct tty_struct *tty = uap->port.state->port.tty;
1144
1145	pl011_fifo_to_tty(uap);
1146
1147	spin_unlock(&uap->port.lock);
1148	tty_flip_buffer_push(tty);
1149	/*
1150	 * If we were temporarily out of DMA mode for a while,
1151	 * attempt to switch back to DMA mode again.
1152	 */
1153	if (pl011_dma_rx_available(uap)) {
1154		if (pl011_dma_rx_trigger_dma(uap)) {
1155			dev_dbg(uap->port.dev, "could not trigger RX DMA job "
1156				"fall back to interrupt mode again\n");
1157			uap->im |= UART011_RXIM;
1158		} else
1159			uap->im &= ~UART011_RXIM;
1160		writew(uap->im, uap->port.membase + UART011_IMSC);
 
 
 
 
 
 
 
 
 
 
1161	}
1162	spin_lock(&uap->port.lock);
1163}
1164
1165static void pl011_tx_chars(struct uart_amba_port *uap)
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1166{
1167	struct circ_buf *xmit = &uap->port.state->xmit;
1168	int count;
1169
1170	if (uap->port.x_char) {
1171		writew(uap->port.x_char, uap->port.membase + UART01x_DR);
1172		uap->port.icount.tx++;
1173		uap->port.x_char = 0;
1174		return;
1175	}
1176	if (uart_circ_empty(xmit) || uart_tx_stopped(&uap->port)) {
1177		pl011_stop_tx(&uap->port);
1178		return;
1179	}
1180
1181	/* If we are using DMA mode, try to send some characters. */
1182	if (pl011_dma_tx_irq(uap))
1183		return;
1184
1185	count = uap->fifosize >> 1;
1186	do {
1187		writew(xmit->buf[xmit->tail], uap->port.membase + UART01x_DR);
1188		xmit->tail = (xmit->tail + 1) & (UART_XMIT_SIZE - 1);
1189		uap->port.icount.tx++;
1190		if (uart_circ_empty(xmit))
1191			break;
1192	} while (--count > 0);
 
 
 
 
 
1193
1194	if (uart_circ_chars_pending(xmit) < WAKEUP_CHARS)
1195		uart_write_wakeup(&uap->port);
1196
1197	if (uart_circ_empty(xmit))
1198		pl011_stop_tx(&uap->port);
 
 
 
1199}
1200
1201static void pl011_modem_status(struct uart_amba_port *uap)
1202{
1203	unsigned int status, delta;
1204
1205	status = readw(uap->port.membase + UART01x_FR) & UART01x_FR_MODEM_ANY;
1206
1207	delta = status ^ uap->old_status;
1208	uap->old_status = status;
1209
1210	if (!delta)
1211		return;
1212
1213	if (delta & UART01x_FR_DCD)
1214		uart_handle_dcd_change(&uap->port, status & UART01x_FR_DCD);
1215
1216	if (delta & UART01x_FR_DSR)
1217		uap->port.icount.dsr++;
1218
1219	if (delta & UART01x_FR_CTS)
1220		uart_handle_cts_change(&uap->port, status & UART01x_FR_CTS);
 
1221
1222	wake_up_interruptible(&uap->port.state->port.delta_msr_wait);
1223}
1224
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1225static irqreturn_t pl011_int(int irq, void *dev_id)
1226{
1227	struct uart_amba_port *uap = dev_id;
1228	unsigned long flags;
1229	unsigned int status, pass_counter = AMBA_ISR_PASS_LIMIT;
1230	int handled = 0;
1231
1232	spin_lock_irqsave(&uap->port.lock, flags);
1233
1234	status = readw(uap->port.membase + UART011_MIS);
1235	if (status) {
1236		do {
1237			writew(status & ~(UART011_TXIS|UART011_RTIS|
1238					  UART011_RXIS),
1239			       uap->port.membase + UART011_ICR);
 
 
1240
1241			if (status & (UART011_RTIS|UART011_RXIS)) {
1242				if (pl011_dma_rx_running(uap))
1243					pl011_dma_rx_irq(uap);
1244				else
1245					pl011_rx_chars(uap);
1246			}
1247			if (status & (UART011_DSRMIS|UART011_DCDMIS|
1248				      UART011_CTSMIS|UART011_RIMIS))
1249				pl011_modem_status(uap);
1250			if (status & UART011_TXIS)
1251				pl011_tx_chars(uap);
1252
1253			if (pass_counter-- == 0) {
1254				if (uap->interrupt_may_hang)
1255					tasklet_schedule(&pl011_lockup_tlet);
1256				break;
1257			}
1258
1259			status = readw(uap->port.membase + UART011_MIS);
1260		} while (status != 0);
1261		handled = 1;
1262	}
1263
1264	spin_unlock_irqrestore(&uap->port.lock, flags);
1265
1266	return IRQ_RETVAL(handled);
1267}
1268
1269static unsigned int pl01x_tx_empty(struct uart_port *port)
1270{
1271	struct uart_amba_port *uap = (struct uart_amba_port *)port;
1272	unsigned int status = readw(uap->port.membase + UART01x_FR);
1273	return status & (UART01x_FR_BUSY|UART01x_FR_TXFF) ? 0 : TIOCSER_TEMT;
 
 
 
 
 
1274}
1275
1276static unsigned int pl01x_get_mctrl(struct uart_port *port)
1277{
1278	struct uart_amba_port *uap = (struct uart_amba_port *)port;
 
1279	unsigned int result = 0;
1280	unsigned int status = readw(uap->port.membase + UART01x_FR);
1281
1282#define TIOCMBIT(uartbit, tiocmbit)	\
1283	if (status & uartbit)		\
1284		result |= tiocmbit
1285
1286	TIOCMBIT(UART01x_FR_DCD, TIOCM_CAR);
1287	TIOCMBIT(UART01x_FR_DSR, TIOCM_DSR);
1288	TIOCMBIT(UART01x_FR_CTS, TIOCM_CTS);
1289	TIOCMBIT(UART011_FR_RI, TIOCM_RNG);
1290#undef TIOCMBIT
1291	return result;
1292}
1293
1294static void pl011_set_mctrl(struct uart_port *port, unsigned int mctrl)
1295{
1296	struct uart_amba_port *uap = (struct uart_amba_port *)port;
 
1297	unsigned int cr;
1298
1299	cr = readw(uap->port.membase + UART011_CR);
1300
1301#define	TIOCMBIT(tiocmbit, uartbit)		\
1302	if (mctrl & tiocmbit)		\
1303		cr |= uartbit;		\
1304	else				\
1305		cr &= ~uartbit
1306
1307	TIOCMBIT(TIOCM_RTS, UART011_CR_RTS);
1308	TIOCMBIT(TIOCM_DTR, UART011_CR_DTR);
1309	TIOCMBIT(TIOCM_OUT1, UART011_CR_OUT1);
1310	TIOCMBIT(TIOCM_OUT2, UART011_CR_OUT2);
1311	TIOCMBIT(TIOCM_LOOP, UART011_CR_LBE);
1312
1313	if (uap->autorts) {
1314		/* We need to disable auto-RTS if we want to turn RTS off */
1315		TIOCMBIT(TIOCM_RTS, UART011_CR_RTSEN);
1316	}
1317#undef TIOCMBIT
1318
1319	writew(cr, uap->port.membase + UART011_CR);
1320}
1321
1322static void pl011_break_ctl(struct uart_port *port, int break_state)
1323{
1324	struct uart_amba_port *uap = (struct uart_amba_port *)port;
 
1325	unsigned long flags;
1326	unsigned int lcr_h;
1327
1328	spin_lock_irqsave(&uap->port.lock, flags);
1329	lcr_h = readw(uap->port.membase + uap->lcrh_tx);
1330	if (break_state == -1)
1331		lcr_h |= UART01x_LCRH_BRK;
1332	else
1333		lcr_h &= ~UART01x_LCRH_BRK;
1334	writew(lcr_h, uap->port.membase + uap->lcrh_tx);
1335	spin_unlock_irqrestore(&uap->port.lock, flags);
1336}
1337
1338#ifdef CONFIG_CONSOLE_POLL
1339static int pl010_get_poll_char(struct uart_port *port)
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1340{
1341	struct uart_amba_port *uap = (struct uart_amba_port *)port;
 
1342	unsigned int status;
1343
1344	status = readw(uap->port.membase + UART01x_FR);
 
 
 
 
 
 
1345	if (status & UART01x_FR_RXFE)
1346		return NO_POLL_CHAR;
1347
1348	return readw(uap->port.membase + UART01x_DR);
1349}
1350
1351static void pl010_put_poll_char(struct uart_port *port,
1352			 unsigned char ch)
1353{
1354	struct uart_amba_port *uap = (struct uart_amba_port *)port;
 
1355
1356	while (readw(uap->port.membase + UART01x_FR) & UART01x_FR_TXFF)
1357		barrier();
1358
1359	writew(ch, uap->port.membase + UART01x_DR);
1360}
1361
1362#endif /* CONFIG_CONSOLE_POLL */
1363
1364static int pl011_startup(struct uart_port *port)
1365{
1366	struct uart_amba_port *uap = (struct uart_amba_port *)port;
1367	unsigned int cr;
1368	int retval;
1369
 
 
 
1370	/*
1371	 * Try to enable the clock producer.
1372	 */
1373	retval = clk_enable(uap->clk);
1374	if (retval)
1375		goto out;
1376
1377	uap->port.uartclk = clk_get_rate(uap->clk);
1378
 
 
 
 
 
1379	/*
1380	 * Allocate the IRQ
 
1381	 */
1382	retval = request_irq(uap->port.irq, pl011_int, 0, "uart-pl011", uap);
1383	if (retval)
1384		goto clk_dis;
1385
1386	writew(uap->vendor->ifls, uap->port.membase + UART011_IFLS);
 
1387
1388	/*
1389	 * Provoke TX FIFO interrupt into asserting.
1390	 */
1391	cr = UART01x_CR_UARTEN | UART011_CR_TXE | UART011_CR_LBE;
1392	writew(cr, uap->port.membase + UART011_CR);
1393	writew(0, uap->port.membase + UART011_FBRD);
1394	writew(1, uap->port.membase + UART011_IBRD);
1395	writew(0, uap->port.membase + uap->lcrh_rx);
1396	if (uap->lcrh_tx != uap->lcrh_rx) {
 
 
 
 
 
 
 
 
1397		int i;
1398		/*
1399		 * Wait 10 PCLKs before writing LCRH_TX register,
1400		 * to get this delay write read only register 10 times
1401		 */
1402		for (i = 0; i < 10; ++i)
1403			writew(0xff, uap->port.membase + UART011_MIS);
1404		writew(0, uap->port.membase + uap->lcrh_tx);
1405	}
1406	writew(0, uap->port.membase + UART01x_DR);
1407	while (readw(uap->port.membase + UART01x_FR) & UART01x_FR_BUSY)
1408		barrier();
1409
1410	cr = UART01x_CR_UARTEN | UART011_CR_RXE | UART011_CR_TXE;
1411	writew(cr, uap->port.membase + UART011_CR);
1412
1413	/* Clear pending error interrupts */
1414	writew(UART011_OEIS | UART011_BEIS | UART011_PEIS | UART011_FEIS,
1415	       uap->port.membase + UART011_ICR);
1416
1417	/*
1418	 * initialise the old status of the modem signals
1419	 */
1420	uap->old_status = readw(uap->port.membase + UART01x_FR) & UART01x_FR_MODEM_ANY;
1421
1422	/* Startup DMA */
1423	pl011_dma_startup(uap);
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1424
1425	/*
1426	 * Finally, enable interrupts, only timeouts when using DMA
1427	 * if initial RX DMA job failed, start in interrupt mode
1428	 * as well.
 
1429	 */
1430	spin_lock_irq(&uap->port.lock);
 
 
 
 
 
 
1431	uap->im = UART011_RTIM;
1432	if (!pl011_dma_rx_running(uap))
1433		uap->im |= UART011_RXIM;
1434	writew(uap->im, uap->port.membase + UART011_IMSC);
1435	spin_unlock_irq(&uap->port.lock);
 
1436
1437	if (uap->port.dev->platform_data) {
1438		struct amba_pl011_data *plat;
 
 
 
 
1439
1440		plat = uap->port.dev->platform_data;
1441		if (plat->init)
1442			plat->init();
1443	}
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1444
1445	return 0;
1446
1447 clk_dis:
1448	clk_disable(uap->clk);
1449 out:
1450	return retval;
1451}
1452
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1453static void pl011_shutdown_channel(struct uart_amba_port *uap,
1454					unsigned int lcrh)
1455{
1456      unsigned long val;
1457
1458      val = readw(uap->port.membase + lcrh);
1459      val &= ~(UART01x_LCRH_BRK | UART01x_LCRH_FEN);
1460      writew(val, uap->port.membase + lcrh);
1461}
1462
1463static void pl011_shutdown(struct uart_port *port)
 
 
 
 
 
1464{
1465	struct uart_amba_port *uap = (struct uart_amba_port *)port;
 
 
 
 
 
 
 
 
 
1466
1467	/*
1468	 * disable all interrupts
1469	 */
 
 
 
 
 
 
 
1470	spin_lock_irq(&uap->port.lock);
 
 
1471	uap->im = 0;
1472	writew(uap->im, uap->port.membase + UART011_IMSC);
1473	writew(0xffff, uap->port.membase + UART011_ICR);
 
1474	spin_unlock_irq(&uap->port.lock);
 
 
 
 
 
 
 
 
1475
1476	pl011_dma_shutdown(uap);
1477
1478	/*
1479	 * Free the interrupt
1480	 */
1481	free_irq(uap->port.irq, uap);
1482
1483	/*
1484	 * disable the port
1485	 */
1486	uap->autorts = false;
1487	writew(UART01x_CR_UARTEN | UART011_CR_TXE, uap->port.membase + UART011_CR);
1488
1489	/*
1490	 * disable break condition and fifos
1491	 */
1492	pl011_shutdown_channel(uap, uap->lcrh_rx);
1493	if (uap->lcrh_rx != uap->lcrh_tx)
1494		pl011_shutdown_channel(uap, uap->lcrh_tx);
1495
1496	/*
1497	 * Shut down the clock producer
1498	 */
1499	clk_disable(uap->clk);
 
 
1500
1501	if (uap->port.dev->platform_data) {
1502		struct amba_pl011_data *plat;
1503
1504		plat = uap->port.dev->platform_data;
1505		if (plat->exit)
1506			plat->exit();
1507	}
1508
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1509}
1510
1511static void
1512pl011_set_termios(struct uart_port *port, struct ktermios *termios,
1513		     struct ktermios *old)
1514{
1515	struct uart_amba_port *uap = (struct uart_amba_port *)port;
 
1516	unsigned int lcr_h, old_cr;
1517	unsigned long flags;
1518	unsigned int baud, quot, clkdiv;
1519
1520	if (uap->vendor->oversampling)
1521		clkdiv = 8;
1522	else
1523		clkdiv = 16;
1524
1525	/*
1526	 * Ask the core to calculate the divisor for us.
1527	 */
1528	baud = uart_get_baud_rate(port, termios, old, 0,
1529				  port->uartclk / clkdiv);
 
 
 
 
 
 
 
1530
1531	if (baud > port->uartclk/16)
1532		quot = DIV_ROUND_CLOSEST(port->uartclk * 8, baud);
1533	else
1534		quot = DIV_ROUND_CLOSEST(port->uartclk * 4, baud);
1535
1536	switch (termios->c_cflag & CSIZE) {
1537	case CS5:
1538		lcr_h = UART01x_LCRH_WLEN_5;
1539		break;
1540	case CS6:
1541		lcr_h = UART01x_LCRH_WLEN_6;
1542		break;
1543	case CS7:
1544		lcr_h = UART01x_LCRH_WLEN_7;
1545		break;
1546	default: // CS8
1547		lcr_h = UART01x_LCRH_WLEN_8;
1548		break;
1549	}
1550	if (termios->c_cflag & CSTOPB)
1551		lcr_h |= UART01x_LCRH_STP2;
1552	if (termios->c_cflag & PARENB) {
1553		lcr_h |= UART01x_LCRH_PEN;
1554		if (!(termios->c_cflag & PARODD))
1555			lcr_h |= UART01x_LCRH_EPS;
 
 
1556	}
1557	if (uap->fifosize > 1)
1558		lcr_h |= UART01x_LCRH_FEN;
1559
1560	spin_lock_irqsave(&port->lock, flags);
1561
1562	/*
1563	 * Update the per-port timeout.
1564	 */
1565	uart_update_timeout(port, termios->c_cflag, baud);
1566
1567	port->read_status_mask = UART011_DR_OE | 255;
1568	if (termios->c_iflag & INPCK)
1569		port->read_status_mask |= UART011_DR_FE | UART011_DR_PE;
1570	if (termios->c_iflag & (BRKINT | PARMRK))
1571		port->read_status_mask |= UART011_DR_BE;
1572
1573	/*
1574	 * Characters to ignore
1575	 */
1576	port->ignore_status_mask = 0;
1577	if (termios->c_iflag & IGNPAR)
1578		port->ignore_status_mask |= UART011_DR_FE | UART011_DR_PE;
1579	if (termios->c_iflag & IGNBRK) {
1580		port->ignore_status_mask |= UART011_DR_BE;
1581		/*
1582		 * If we're ignoring parity and break indicators,
1583		 * ignore overruns too (for real raw support).
1584		 */
1585		if (termios->c_iflag & IGNPAR)
1586			port->ignore_status_mask |= UART011_DR_OE;
1587	}
1588
1589	/*
1590	 * Ignore all characters if CREAD is not set.
1591	 */
1592	if ((termios->c_cflag & CREAD) == 0)
1593		port->ignore_status_mask |= UART_DUMMY_DR_RX;
1594
1595	if (UART_ENABLE_MS(port, termios->c_cflag))
1596		pl011_enable_ms(port);
1597
1598	/* first, disable everything */
1599	old_cr = readw(port->membase + UART011_CR);
1600	writew(0, port->membase + UART011_CR);
1601
1602	if (termios->c_cflag & CRTSCTS) {
1603		if (old_cr & UART011_CR_RTS)
1604			old_cr |= UART011_CR_RTSEN;
1605
1606		old_cr |= UART011_CR_CTSEN;
1607		uap->autorts = true;
1608	} else {
1609		old_cr &= ~(UART011_CR_CTSEN | UART011_CR_RTSEN);
1610		uap->autorts = false;
1611	}
1612
1613	if (uap->vendor->oversampling) {
1614		if (baud > port->uartclk / 16)
1615			old_cr |= ST_UART011_CR_OVSFACT;
1616		else
1617			old_cr &= ~ST_UART011_CR_OVSFACT;
1618	}
1619
 
 
 
 
 
 
 
 
 
 
 
 
1620	/* Set baud rate */
1621	writew(quot & 0x3f, port->membase + UART011_FBRD);
1622	writew(quot >> 6, port->membase + UART011_IBRD);
1623
1624	/*
1625	 * ----------v----------v----------v----------v-----
1626	 * NOTE: MUST BE WRITTEN AFTER UARTLCR_M & UARTLCR_L
 
1627	 * ----------^----------^----------^----------^-----
1628	 */
1629	writew(lcr_h, port->membase + uap->lcrh_rx);
1630	if (uap->lcrh_rx != uap->lcrh_tx) {
1631		int i;
1632		/*
1633		 * Wait 10 PCLKs before writing LCRH_TX register,
1634		 * to get this delay write read only register 10 times
1635		 */
1636		for (i = 0; i < 10; ++i)
1637			writew(0xff, uap->port.membase + UART011_MIS);
1638		writew(lcr_h, port->membase + uap->lcrh_tx);
1639	}
1640	writew(old_cr, port->membase + UART011_CR);
1641
1642	spin_unlock_irqrestore(&port->lock, flags);
1643}
1644
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1645static const char *pl011_type(struct uart_port *port)
1646{
1647	struct uart_amba_port *uap = (struct uart_amba_port *)port;
 
1648	return uap->port.type == PORT_AMBA ? uap->type : NULL;
1649}
1650
1651/*
1652 * Release the memory region(s) being used by 'port'
1653 */
1654static void pl010_release_port(struct uart_port *port)
1655{
1656	release_mem_region(port->mapbase, SZ_4K);
1657}
1658
1659/*
1660 * Request the memory region(s) being used by 'port'
1661 */
1662static int pl010_request_port(struct uart_port *port)
1663{
1664	return request_mem_region(port->mapbase, SZ_4K, "uart-pl011")
1665			!= NULL ? 0 : -EBUSY;
1666}
1667
1668/*
1669 * Configure/autoconfigure the port.
1670 */
1671static void pl010_config_port(struct uart_port *port, int flags)
1672{
1673	if (flags & UART_CONFIG_TYPE) {
1674		port->type = PORT_AMBA;
1675		pl010_request_port(port);
1676	}
1677}
1678
1679/*
1680 * verify the new serial_struct (for TIOCSSERIAL).
1681 */
1682static int pl010_verify_port(struct uart_port *port, struct serial_struct *ser)
1683{
1684	int ret = 0;
1685	if (ser->type != PORT_UNKNOWN && ser->type != PORT_AMBA)
1686		ret = -EINVAL;
1687	if (ser->irq < 0 || ser->irq >= nr_irqs)
1688		ret = -EINVAL;
1689	if (ser->baud_base < 9600)
1690		ret = -EINVAL;
1691	return ret;
1692}
1693
1694static struct uart_ops amba_pl011_pops = {
1695	.tx_empty	= pl01x_tx_empty,
1696	.set_mctrl	= pl011_set_mctrl,
1697	.get_mctrl	= pl01x_get_mctrl,
1698	.stop_tx	= pl011_stop_tx,
1699	.start_tx	= pl011_start_tx,
1700	.stop_rx	= pl011_stop_rx,
1701	.enable_ms	= pl011_enable_ms,
1702	.break_ctl	= pl011_break_ctl,
1703	.startup	= pl011_startup,
1704	.shutdown	= pl011_shutdown,
1705	.flush_buffer	= pl011_dma_flush_buffer,
1706	.set_termios	= pl011_set_termios,
1707	.type		= pl011_type,
1708	.release_port	= pl010_release_port,
1709	.request_port	= pl010_request_port,
1710	.config_port	= pl010_config_port,
1711	.verify_port	= pl010_verify_port,
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1712#ifdef CONFIG_CONSOLE_POLL
1713	.poll_get_char = pl010_get_poll_char,
1714	.poll_put_char = pl010_put_poll_char,
 
1715#endif
1716};
1717
1718static struct uart_amba_port *amba_ports[UART_NR];
1719
1720#ifdef CONFIG_SERIAL_AMBA_PL011_CONSOLE
1721
1722static void pl011_console_putchar(struct uart_port *port, int ch)
1723{
1724	struct uart_amba_port *uap = (struct uart_amba_port *)port;
 
1725
1726	while (readw(uap->port.membase + UART01x_FR) & UART01x_FR_TXFF)
1727		barrier();
1728	writew(ch, uap->port.membase + UART01x_DR);
1729}
1730
1731static void
1732pl011_console_write(struct console *co, const char *s, unsigned int count)
1733{
1734	struct uart_amba_port *uap = amba_ports[co->index];
1735	unsigned int status, old_cr, new_cr;
 
 
1736
1737	clk_enable(uap->clk);
1738
 
 
 
 
 
 
 
 
1739	/*
1740	 *	First save the CR then disable the interrupts
1741	 */
1742	old_cr = readw(uap->port.membase + UART011_CR);
1743	new_cr = old_cr & ~UART011_CR_CTSEN;
1744	new_cr |= UART01x_CR_UARTEN | UART011_CR_TXE;
1745	writew(new_cr, uap->port.membase + UART011_CR);
 
 
1746
1747	uart_console_write(&uap->port, s, count, pl011_console_putchar);
1748
1749	/*
1750	 *	Finally, wait for transmitter to become empty
1751	 *	and restore the TCR
1752	 */
1753	do {
1754		status = readw(uap->port.membase + UART01x_FR);
1755	} while (status & UART01x_FR_BUSY);
1756	writew(old_cr, uap->port.membase + UART011_CR);
 
 
 
 
 
 
1757
1758	clk_disable(uap->clk);
1759}
1760
1761static void __init
1762pl011_console_get_options(struct uart_amba_port *uap, int *baud,
1763			     int *parity, int *bits)
1764{
1765	if (readw(uap->port.membase + UART011_CR) & UART01x_CR_UARTEN) {
1766		unsigned int lcr_h, ibrd, fbrd;
1767
1768		lcr_h = readw(uap->port.membase + uap->lcrh_tx);
1769
1770		*parity = 'n';
1771		if (lcr_h & UART01x_LCRH_PEN) {
1772			if (lcr_h & UART01x_LCRH_EPS)
1773				*parity = 'e';
1774			else
1775				*parity = 'o';
1776		}
1777
1778		if ((lcr_h & 0x60) == UART01x_LCRH_WLEN_7)
1779			*bits = 7;
1780		else
1781			*bits = 8;
1782
1783		ibrd = readw(uap->port.membase + UART011_IBRD);
1784		fbrd = readw(uap->port.membase + UART011_FBRD);
1785
1786		*baud = uap->port.uartclk * 4 / (64 * ibrd + fbrd);
1787
1788		if (uap->vendor->oversampling) {
1789			if (readw(uap->port.membase + UART011_CR)
1790				  & ST_UART011_CR_OVSFACT)
1791				*baud *= 2;
1792		}
1793	}
1794}
1795
1796static int __init pl011_console_setup(struct console *co, char *options)
1797{
1798	struct uart_amba_port *uap;
1799	int baud = 38400;
1800	int bits = 8;
1801	int parity = 'n';
1802	int flow = 'n';
 
1803
1804	/*
1805	 * Check whether an invalid uart number has been specified, and
1806	 * if so, search for the first available port that does have
1807	 * console support.
1808	 */
1809	if (co->index >= UART_NR)
1810		co->index = 0;
1811	uap = amba_ports[co->index];
1812	if (!uap)
1813		return -ENODEV;
1814
1815	if (uap->port.dev->platform_data) {
 
 
 
 
 
 
 
1816		struct amba_pl011_data *plat;
1817
1818		plat = uap->port.dev->platform_data;
1819		if (plat->init)
1820			plat->init();
1821	}
1822
1823	uap->port.uartclk = clk_get_rate(uap->clk);
1824
1825	if (options)
1826		uart_parse_options(options, &baud, &parity, &bits, &flow);
1827	else
1828		pl011_console_get_options(uap, &baud, &parity, &bits);
 
 
 
 
 
1829
1830	return uart_set_options(&uap->port, co, baud, parity, bits, flow);
1831}
1832
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1833static struct uart_driver amba_reg;
1834static struct console amba_console = {
1835	.name		= "ttyAMA",
1836	.write		= pl011_console_write,
1837	.device		= uart_console_device,
1838	.setup		= pl011_console_setup,
1839	.flags		= CON_PRINTBUFFER,
 
1840	.index		= -1,
1841	.data		= &amba_reg,
1842};
1843
1844#define AMBA_CONSOLE	(&amba_console)
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1845#else
1846#define AMBA_CONSOLE	NULL
1847#endif
1848
1849static struct uart_driver amba_reg = {
1850	.owner			= THIS_MODULE,
1851	.driver_name		= "ttyAMA",
1852	.dev_name		= "ttyAMA",
1853	.major			= SERIAL_AMBA_MAJOR,
1854	.minor			= SERIAL_AMBA_MINOR,
1855	.nr			= UART_NR,
1856	.cons			= AMBA_CONSOLE,
1857};
1858
1859static int pl011_probe(struct amba_device *dev, const struct amba_id *id)
1860{
1861	struct uart_amba_port *uap;
1862	struct vendor_data *vendor = id->data;
1863	void __iomem *base;
1864	int i, ret;
1865
1866	for (i = 0; i < ARRAY_SIZE(amba_ports); i++)
1867		if (amba_ports[i] == NULL)
1868			break;
1869
1870	if (i == ARRAY_SIZE(amba_ports)) {
1871		ret = -EBUSY;
1872		goto out;
1873	}
1874
1875	uap = kzalloc(sizeof(struct uart_amba_port), GFP_KERNEL);
1876	if (uap == NULL) {
1877		ret = -ENOMEM;
1878		goto out;
 
 
 
 
 
 
1879	}
1880
1881	base = ioremap(dev->res.start, resource_size(&dev->res));
1882	if (!base) {
1883		ret = -ENOMEM;
1884		goto free;
 
 
 
 
 
 
 
 
 
 
 
 
 
1885	}
 
 
 
 
 
 
 
 
 
 
 
 
1886
1887	uap->clk = clk_get(&dev->dev, NULL);
1888	if (IS_ERR(uap->clk)) {
1889		ret = PTR_ERR(uap->clk);
1890		goto unmap;
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1891	}
1892
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1893	uap->vendor = vendor;
1894	uap->lcrh_rx = vendor->lcrh_rx;
1895	uap->lcrh_tx = vendor->lcrh_tx;
1896	uap->fifosize = vendor->fifosize;
1897	uap->interrupt_may_hang = vendor->interrupt_may_hang;
1898	uap->port.dev = &dev->dev;
1899	uap->port.mapbase = dev->res.start;
1900	uap->port.membase = base;
1901	uap->port.iotype = UPIO_MEM;
1902	uap->port.irq = dev->irq[0];
1903	uap->port.fifosize = uap->fifosize;
1904	uap->port.ops = &amba_pl011_pops;
1905	uap->port.flags = UPF_BOOT_AUTOCONF;
1906	uap->port.line = i;
1907	pl011_dma_probe(uap);
1908
1909	snprintf(uap->type, sizeof(uap->type), "PL011 rev%u", amba_rev(dev));
1910
1911	amba_ports[i] = uap;
 
 
1912
1913	amba_set_drvdata(dev, uap);
1914	ret = uart_add_one_port(&amba_reg, &uap->port);
1915	if (ret) {
1916		amba_set_drvdata(dev, NULL);
1917		amba_ports[i] = NULL;
1918		pl011_dma_remove(uap);
1919		clk_put(uap->clk);
1920 unmap:
1921		iounmap(base);
1922 free:
1923		kfree(uap);
1924	}
1925 out:
1926	return ret;
1927}
1928
1929static int pl011_remove(struct amba_device *dev)
1930{
1931	struct uart_amba_port *uap = amba_get_drvdata(dev);
1932	int i;
1933
1934	amba_set_drvdata(dev, NULL);
1935
1936	uart_remove_one_port(&amba_reg, &uap->port);
1937
1938	for (i = 0; i < ARRAY_SIZE(amba_ports); i++)
1939		if (amba_ports[i] == uap)
1940			amba_ports[i] = NULL;
1941
1942	pl011_dma_remove(uap);
1943	iounmap(uap->port.membase);
1944	clk_put(uap->clk);
1945	kfree(uap);
1946	return 0;
1947}
1948
1949#ifdef CONFIG_PM
1950static int pl011_suspend(struct amba_device *dev, pm_message_t state)
1951{
1952	struct uart_amba_port *uap = amba_get_drvdata(dev);
1953
1954	if (!uap)
1955		return -EINVAL;
1956
1957	return uart_suspend_port(&amba_reg, &uap->port);
1958}
1959
1960static int pl011_resume(struct amba_device *dev)
1961{
1962	struct uart_amba_port *uap = amba_get_drvdata(dev);
1963
1964	if (!uap)
1965		return -EINVAL;
1966
1967	return uart_resume_port(&amba_reg, &uap->port);
1968}
1969#endif
1970
1971static struct amba_id pl011_ids[] = {
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1972	{
1973		.id	= 0x00041011,
1974		.mask	= 0x000fffff,
1975		.data	= &vendor_arm,
1976	},
1977	{
1978		.id	= 0x00380802,
1979		.mask	= 0x00ffffff,
1980		.data	= &vendor_st,
1981	},
 
 
 
 
 
1982	{ 0, 0 },
1983};
1984
 
 
1985static struct amba_driver pl011_driver = {
1986	.drv = {
1987		.name	= "uart-pl011",
 
 
1988	},
1989	.id_table	= pl011_ids,
1990	.probe		= pl011_probe,
1991	.remove		= pl011_remove,
1992#ifdef CONFIG_PM
1993	.suspend	= pl011_suspend,
1994	.resume		= pl011_resume,
1995#endif
1996};
1997
1998static int __init pl011_init(void)
1999{
2000	int ret;
2001	printk(KERN_INFO "Serial: AMBA PL011 UART driver\n");
2002
2003	ret = uart_register_driver(&amba_reg);
2004	if (ret == 0) {
2005		ret = amba_driver_register(&pl011_driver);
2006		if (ret)
2007			uart_unregister_driver(&amba_reg);
2008	}
2009	return ret;
2010}
2011
2012static void __exit pl011_exit(void)
2013{
 
2014	amba_driver_unregister(&pl011_driver);
2015	uart_unregister_driver(&amba_reg);
2016}
2017
2018/*
2019 * While this can be a module, if builtin it's most likely the console
2020 * So let's leave module_exit but move module_init to an earlier place
2021 */
2022arch_initcall(pl011_init);
2023module_exit(pl011_exit);
2024
2025MODULE_AUTHOR("ARM Ltd/Deep Blue Solutions Ltd");
2026MODULE_DESCRIPTION("ARM AMBA serial port driver");
2027MODULE_LICENSE("GPL");
v5.9
   1// SPDX-License-Identifier: GPL-2.0+
   2/*
   3 *  Driver for AMBA serial ports
   4 *
   5 *  Based on drivers/char/serial.c, by Linus Torvalds, Theodore Ts'o.
   6 *
   7 *  Copyright 1999 ARM Limited
   8 *  Copyright (C) 2000 Deep Blue Solutions Ltd.
   9 *  Copyright (C) 2010 ST-Ericsson SA
  10 *
 
 
 
 
 
 
 
 
 
 
 
 
 
 
  11 * This is a generic driver for ARM AMBA-type serial ports.  They
  12 * have a lot of 16550-like features, but are not register compatible.
  13 * Note that although they do have CTS, DCD and DSR inputs, they do
  14 * not have an RI input, nor do they have DTR or RTS outputs.  If
  15 * required, these have to be supplied via some other means (eg, GPIO)
  16 * and hooked into this driver.
  17 */
  18
 
 
 
 
  19#include <linux/module.h>
  20#include <linux/ioport.h>
  21#include <linux/init.h>
  22#include <linux/console.h>
  23#include <linux/sysrq.h>
  24#include <linux/device.h>
  25#include <linux/tty.h>
  26#include <linux/tty_flip.h>
  27#include <linux/serial_core.h>
  28#include <linux/serial.h>
  29#include <linux/amba/bus.h>
  30#include <linux/amba/serial.h>
  31#include <linux/clk.h>
  32#include <linux/slab.h>
  33#include <linux/dmaengine.h>
  34#include <linux/dma-mapping.h>
  35#include <linux/scatterlist.h>
  36#include <linux/delay.h>
  37#include <linux/types.h>
  38#include <linux/of.h>
  39#include <linux/of_device.h>
  40#include <linux/pinctrl/consumer.h>
  41#include <linux/sizes.h>
  42#include <linux/io.h>
  43#include <linux/acpi.h>
  44
  45#include "amba-pl011.h"
 
  46
  47#define UART_NR			14
  48
  49#define SERIAL_AMBA_MAJOR	204
  50#define SERIAL_AMBA_MINOR	64
  51#define SERIAL_AMBA_NR		UART_NR
  52
  53#define AMBA_ISR_PASS_LIMIT	256
  54
  55#define UART_DR_ERROR		(UART011_DR_OE|UART011_DR_BE|UART011_DR_PE|UART011_DR_FE)
  56#define UART_DUMMY_DR_RX	(1 << 16)
  57
  58static u16 pl011_std_offsets[REG_ARRAY_SIZE] = {
  59	[REG_DR] = UART01x_DR,
  60	[REG_FR] = UART01x_FR,
  61	[REG_LCRH_RX] = UART011_LCRH,
  62	[REG_LCRH_TX] = UART011_LCRH,
  63	[REG_IBRD] = UART011_IBRD,
  64	[REG_FBRD] = UART011_FBRD,
  65	[REG_CR] = UART011_CR,
  66	[REG_IFLS] = UART011_IFLS,
  67	[REG_IMSC] = UART011_IMSC,
  68	[REG_RIS] = UART011_RIS,
  69	[REG_MIS] = UART011_MIS,
  70	[REG_ICR] = UART011_ICR,
  71	[REG_DMACR] = UART011_DMACR,
 
 
 
 
 
  72};
  73
 
 
 
  74/* There is by now at least one vendor with differing details, so handle it */
  75struct vendor_data {
  76	const u16		*reg_offset;
  77	unsigned int		ifls;
  78	unsigned int		fr_busy;
  79	unsigned int		fr_dsr;
  80	unsigned int		fr_cts;
  81	unsigned int		fr_ri;
  82	unsigned int		inv_fr;
  83	bool			access_32b;
  84	bool			oversampling;
 
  85	bool			dma_threshold;
  86	bool			cts_event_workaround;
  87	bool			always_enabled;
  88	bool			fixed_options;
  89
  90	unsigned int (*get_fifosize)(struct amba_device *dev);
  91};
  92
  93static unsigned int get_fifosize_arm(struct amba_device *dev)
  94{
  95	return amba_rev(dev) < 3 ? 16 : 32;
  96}
  97
  98static struct vendor_data vendor_arm = {
  99	.reg_offset		= pl011_std_offsets,
 100	.ifls			= UART011_IFLS_RX4_8|UART011_IFLS_TX4_8,
 101	.fr_busy		= UART01x_FR_BUSY,
 102	.fr_dsr			= UART01x_FR_DSR,
 103	.fr_cts			= UART01x_FR_CTS,
 104	.fr_ri			= UART011_FR_RI,
 105	.oversampling		= false,
 106	.dma_threshold		= false,
 107	.cts_event_workaround	= false,
 108	.always_enabled		= false,
 109	.fixed_options		= false,
 110	.get_fifosize		= get_fifosize_arm,
 111};
 112
 113static const struct vendor_data vendor_sbsa = {
 114	.reg_offset		= pl011_std_offsets,
 115	.fr_busy		= UART01x_FR_BUSY,
 116	.fr_dsr			= UART01x_FR_DSR,
 117	.fr_cts			= UART01x_FR_CTS,
 118	.fr_ri			= UART011_FR_RI,
 119	.access_32b		= true,
 120	.oversampling		= false,
 121	.dma_threshold		= false,
 122	.cts_event_workaround	= false,
 123	.always_enabled		= true,
 124	.fixed_options		= true,
 125};
 126
 127#ifdef CONFIG_ACPI_SPCR_TABLE
 128static const struct vendor_data vendor_qdt_qdf2400_e44 = {
 129	.reg_offset		= pl011_std_offsets,
 130	.fr_busy		= UART011_FR_TXFE,
 131	.fr_dsr			= UART01x_FR_DSR,
 132	.fr_cts			= UART01x_FR_CTS,
 133	.fr_ri			= UART011_FR_RI,
 134	.inv_fr			= UART011_FR_TXFE,
 135	.access_32b		= true,
 136	.oversampling		= false,
 137	.dma_threshold		= false,
 138	.cts_event_workaround	= false,
 139	.always_enabled		= true,
 140	.fixed_options		= true,
 141};
 142#endif
 143
 144static u16 pl011_st_offsets[REG_ARRAY_SIZE] = {
 145	[REG_DR] = UART01x_DR,
 146	[REG_ST_DMAWM] = ST_UART011_DMAWM,
 147	[REG_ST_TIMEOUT] = ST_UART011_TIMEOUT,
 148	[REG_FR] = UART01x_FR,
 149	[REG_LCRH_RX] = ST_UART011_LCRH_RX,
 150	[REG_LCRH_TX] = ST_UART011_LCRH_TX,
 151	[REG_IBRD] = UART011_IBRD,
 152	[REG_FBRD] = UART011_FBRD,
 153	[REG_CR] = UART011_CR,
 154	[REG_IFLS] = UART011_IFLS,
 155	[REG_IMSC] = UART011_IMSC,
 156	[REG_RIS] = UART011_RIS,
 157	[REG_MIS] = UART011_MIS,
 158	[REG_ICR] = UART011_ICR,
 159	[REG_DMACR] = UART011_DMACR,
 160	[REG_ST_XFCR] = ST_UART011_XFCR,
 161	[REG_ST_XON1] = ST_UART011_XON1,
 162	[REG_ST_XON2] = ST_UART011_XON2,
 163	[REG_ST_XOFF1] = ST_UART011_XOFF1,
 164	[REG_ST_XOFF2] = ST_UART011_XOFF2,
 165	[REG_ST_ITCR] = ST_UART011_ITCR,
 166	[REG_ST_ITIP] = ST_UART011_ITIP,
 167	[REG_ST_ABCR] = ST_UART011_ABCR,
 168	[REG_ST_ABIMSC] = ST_UART011_ABIMSC,
 169};
 170
 171static unsigned int get_fifosize_st(struct amba_device *dev)
 172{
 173	return 64;
 174}
 175
 176static struct vendor_data vendor_st = {
 177	.reg_offset		= pl011_st_offsets,
 178	.ifls			= UART011_IFLS_RX_HALF|UART011_IFLS_TX_HALF,
 179	.fr_busy		= UART01x_FR_BUSY,
 180	.fr_dsr			= UART01x_FR_DSR,
 181	.fr_cts			= UART01x_FR_CTS,
 182	.fr_ri			= UART011_FR_RI,
 183	.oversampling		= true,
 
 184	.dma_threshold		= true,
 185	.cts_event_workaround	= true,
 186	.always_enabled		= false,
 187	.fixed_options		= false,
 188	.get_fifosize		= get_fifosize_st,
 189};
 190
 191static const u16 pl011_zte_offsets[REG_ARRAY_SIZE] = {
 192	[REG_DR] = ZX_UART011_DR,
 193	[REG_FR] = ZX_UART011_FR,
 194	[REG_LCRH_RX] = ZX_UART011_LCRH,
 195	[REG_LCRH_TX] = ZX_UART011_LCRH,
 196	[REG_IBRD] = ZX_UART011_IBRD,
 197	[REG_FBRD] = ZX_UART011_FBRD,
 198	[REG_CR] = ZX_UART011_CR,
 199	[REG_IFLS] = ZX_UART011_IFLS,
 200	[REG_IMSC] = ZX_UART011_IMSC,
 201	[REG_RIS] = ZX_UART011_RIS,
 202	[REG_MIS] = ZX_UART011_MIS,
 203	[REG_ICR] = ZX_UART011_ICR,
 204	[REG_DMACR] = ZX_UART011_DMACR,
 205};
 206
 207static unsigned int get_fifosize_zte(struct amba_device *dev)
 208{
 209	return 16;
 210}
 211
 212static struct vendor_data vendor_zte = {
 213	.reg_offset		= pl011_zte_offsets,
 214	.access_32b		= true,
 215	.ifls			= UART011_IFLS_RX4_8|UART011_IFLS_TX4_8,
 216	.fr_busy		= ZX_UART01x_FR_BUSY,
 217	.fr_dsr			= ZX_UART01x_FR_DSR,
 218	.fr_cts			= ZX_UART01x_FR_CTS,
 219	.fr_ri			= ZX_UART011_FR_RI,
 220	.get_fifosize		= get_fifosize_zte,
 221};
 222
 223/* Deals with DMA transactions */
 224
 225struct pl011_sgbuf {
 226	struct scatterlist sg;
 227	char *buf;
 228};
 229
 230struct pl011_dmarx_data {
 231	struct dma_chan		*chan;
 232	struct completion	complete;
 233	bool			use_buf_b;
 234	struct pl011_sgbuf	sgbuf_a;
 235	struct pl011_sgbuf	sgbuf_b;
 236	dma_cookie_t		cookie;
 237	bool			running;
 238	struct timer_list	timer;
 239	unsigned int last_residue;
 240	unsigned long last_jiffies;
 241	bool auto_poll_rate;
 242	unsigned int poll_rate;
 243	unsigned int poll_timeout;
 244};
 245
 246struct pl011_dmatx_data {
 247	struct dma_chan		*chan;
 248	struct scatterlist	sg;
 249	char			*buf;
 250	bool			queued;
 251};
 252
 253/*
 254 * We wrap our port structure around the generic uart_port.
 255 */
 256struct uart_amba_port {
 257	struct uart_port	port;
 258	const u16		*reg_offset;
 259	struct clk		*clk;
 260	const struct vendor_data *vendor;
 261	unsigned int		dmacr;		/* dma control reg */
 262	unsigned int		im;		/* interrupt mask */
 263	unsigned int		old_status;
 264	unsigned int		fifosize;	/* vendor-specific */
 265	unsigned int		old_cr;		/* state during shutdown */
 266	unsigned int		fixed_baud;	/* vendor-set fixed baud rate */
 
 267	char			type[12];
 
 268#ifdef CONFIG_DMA_ENGINE
 269	/* DMA stuff */
 270	bool			using_tx_dma;
 271	bool			using_rx_dma;
 272	struct pl011_dmarx_data dmarx;
 273	struct pl011_dmatx_data	dmatx;
 274	bool			dma_probed;
 275#endif
 276};
 277
 278static unsigned int pl011_reg_to_offset(const struct uart_amba_port *uap,
 279	unsigned int reg)
 280{
 281	return uap->reg_offset[reg];
 282}
 283
 284static unsigned int pl011_read(const struct uart_amba_port *uap,
 285	unsigned int reg)
 286{
 287	void __iomem *addr = uap->port.membase + pl011_reg_to_offset(uap, reg);
 288
 289	return (uap->port.iotype == UPIO_MEM32) ?
 290		readl_relaxed(addr) : readw_relaxed(addr);
 291}
 292
 293static void pl011_write(unsigned int val, const struct uart_amba_port *uap,
 294	unsigned int reg)
 295{
 296	void __iomem *addr = uap->port.membase + pl011_reg_to_offset(uap, reg);
 297
 298	if (uap->port.iotype == UPIO_MEM32)
 299		writel_relaxed(val, addr);
 300	else
 301		writew_relaxed(val, addr);
 302}
 303
 304/*
 305 * Reads up to 256 characters from the FIFO or until it's empty and
 306 * inserts them into the TTY layer. Returns the number of characters
 307 * read from the FIFO.
 308 */
 309static int pl011_fifo_to_tty(struct uart_amba_port *uap)
 310{
 311	u16 status;
 312	unsigned int ch, flag, fifotaken;
 
 313
 314	for (fifotaken = 0; fifotaken != 256; fifotaken++) {
 315		status = pl011_read(uap, REG_FR);
 316		if (status & UART01x_FR_RXFE)
 317			break;
 318
 319		/* Take chars from the FIFO and update status */
 320		ch = pl011_read(uap, REG_DR) | UART_DUMMY_DR_RX;
 
 321		flag = TTY_NORMAL;
 322		uap->port.icount.rx++;
 
 323
 324		if (unlikely(ch & UART_DR_ERROR)) {
 325			if (ch & UART011_DR_BE) {
 326				ch &= ~(UART011_DR_FE | UART011_DR_PE);
 327				uap->port.icount.brk++;
 328				if (uart_handle_break(&uap->port))
 329					continue;
 330			} else if (ch & UART011_DR_PE)
 331				uap->port.icount.parity++;
 332			else if (ch & UART011_DR_FE)
 333				uap->port.icount.frame++;
 334			if (ch & UART011_DR_OE)
 335				uap->port.icount.overrun++;
 336
 337			ch &= uap->port.read_status_mask;
 338
 339			if (ch & UART011_DR_BE)
 340				flag = TTY_BREAK;
 341			else if (ch & UART011_DR_PE)
 342				flag = TTY_PARITY;
 343			else if (ch & UART011_DR_FE)
 344				flag = TTY_FRAME;
 345		}
 346
 347		if (uart_handle_sysrq_char(&uap->port, ch & 255))
 348			continue;
 349
 350		uart_insert_char(&uap->port, ch, UART011_DR_OE, ch, flag);
 351	}
 352
 353	return fifotaken;
 354}
 355
 356
 357/*
 358 * All the DMA operation mode stuff goes inside this ifdef.
 359 * This assumes that you have a generic DMA device interface,
 360 * no custom DMA interfaces are supported.
 361 */
 362#ifdef CONFIG_DMA_ENGINE
 363
 364#define PL011_DMA_BUFFER_SIZE PAGE_SIZE
 365
 366static int pl011_sgbuf_init(struct dma_chan *chan, struct pl011_sgbuf *sg,
 367	enum dma_data_direction dir)
 368{
 369	dma_addr_t dma_addr;
 370
 371	sg->buf = dma_alloc_coherent(chan->device->dev,
 372		PL011_DMA_BUFFER_SIZE, &dma_addr, GFP_KERNEL);
 373	if (!sg->buf)
 374		return -ENOMEM;
 375
 376	sg_init_table(&sg->sg, 1);
 377	sg_set_page(&sg->sg, phys_to_page(dma_addr),
 378		PL011_DMA_BUFFER_SIZE, offset_in_page(dma_addr));
 379	sg_dma_address(&sg->sg) = dma_addr;
 380	sg_dma_len(&sg->sg) = PL011_DMA_BUFFER_SIZE;
 381
 
 
 
 
 382	return 0;
 383}
 384
 385static void pl011_sgbuf_free(struct dma_chan *chan, struct pl011_sgbuf *sg,
 386	enum dma_data_direction dir)
 387{
 388	if (sg->buf) {
 389		dma_free_coherent(chan->device->dev,
 390			PL011_DMA_BUFFER_SIZE, sg->buf,
 391			sg_dma_address(&sg->sg));
 392	}
 393}
 394
 395static void pl011_dma_probe(struct uart_amba_port *uap)
 396{
 397	/* DMA is the sole user of the platform data right now */
 398	struct amba_pl011_data *plat = dev_get_platdata(uap->port.dev);
 399	struct device *dev = uap->port.dev;
 400	struct dma_slave_config tx_conf = {
 401		.dst_addr = uap->port.mapbase +
 402				 pl011_reg_to_offset(uap, REG_DR),
 403		.dst_addr_width = DMA_SLAVE_BUSWIDTH_1_BYTE,
 404		.direction = DMA_MEM_TO_DEV,
 405		.dst_maxburst = uap->fifosize >> 1,
 406		.device_fc = false,
 407	};
 408	struct dma_chan *chan;
 409	dma_cap_mask_t mask;
 410
 411	uap->dma_probed = true;
 412	chan = dma_request_chan(dev, "tx");
 413	if (IS_ERR(chan)) {
 414		if (PTR_ERR(chan) == -EPROBE_DEFER) {
 415			uap->dma_probed = false;
 416			return;
 417		}
 418
 419		/* We need platform data */
 420		if (!plat || !plat->dma_filter) {
 421			dev_info(uap->port.dev, "no DMA platform data\n");
 422			return;
 423		}
 424
 425		/* Try to acquire a generic DMA engine slave TX channel */
 426		dma_cap_zero(mask);
 427		dma_cap_set(DMA_SLAVE, mask);
 428
 429		chan = dma_request_channel(mask, plat->dma_filter,
 430						plat->dma_tx_param);
 431		if (!chan) {
 432			dev_err(uap->port.dev, "no TX DMA channel!\n");
 433			return;
 434		}
 435	}
 436
 437	dmaengine_slave_config(chan, &tx_conf);
 438	uap->dmatx.chan = chan;
 439
 440	dev_info(uap->port.dev, "DMA channel TX %s\n",
 441		 dma_chan_name(uap->dmatx.chan));
 442
 443	/* Optionally make use of an RX channel as well */
 444	chan = dma_request_slave_channel(dev, "rx");
 
 
 
 
 
 
 445
 446	if (!chan && plat && plat->dma_rx_param) {
 447		chan = dma_request_channel(mask, plat->dma_filter, plat->dma_rx_param);
 448
 449		if (!chan) {
 450			dev_err(uap->port.dev, "no RX DMA channel!\n");
 451			return;
 452		}
 453	}
 454
 455	if (chan) {
 456		struct dma_slave_config rx_conf = {
 457			.src_addr = uap->port.mapbase +
 458				pl011_reg_to_offset(uap, REG_DR),
 459			.src_addr_width = DMA_SLAVE_BUSWIDTH_1_BYTE,
 460			.direction = DMA_DEV_TO_MEM,
 461			.src_maxburst = uap->fifosize >> 2,
 462			.device_fc = false,
 463		};
 464		struct dma_slave_caps caps;
 465
 466		/*
 467		 * Some DMA controllers provide information on their capabilities.
 468		 * If the controller does, check for suitable residue processing
 469		 * otherwise assime all is well.
 470		 */
 471		if (0 == dma_get_slave_caps(chan, &caps)) {
 472			if (caps.residue_granularity ==
 473					DMA_RESIDUE_GRANULARITY_DESCRIPTOR) {
 474				dma_release_channel(chan);
 475				dev_info(uap->port.dev,
 476					"RX DMA disabled - no residue processing\n");
 477				return;
 478			}
 479		}
 480		dmaengine_slave_config(chan, &rx_conf);
 481		uap->dmarx.chan = chan;
 482
 483		uap->dmarx.auto_poll_rate = false;
 484		if (plat && plat->dma_rx_poll_enable) {
 485			/* Set poll rate if specified. */
 486			if (plat->dma_rx_poll_rate) {
 487				uap->dmarx.auto_poll_rate = false;
 488				uap->dmarx.poll_rate = plat->dma_rx_poll_rate;
 489			} else {
 490				/*
 491				 * 100 ms defaults to poll rate if not
 492				 * specified. This will be adjusted with
 493				 * the baud rate at set_termios.
 494				 */
 495				uap->dmarx.auto_poll_rate = true;
 496				uap->dmarx.poll_rate =  100;
 497			}
 498			/* 3 secs defaults poll_timeout if not specified. */
 499			if (plat->dma_rx_poll_timeout)
 500				uap->dmarx.poll_timeout =
 501					plat->dma_rx_poll_timeout;
 502			else
 503				uap->dmarx.poll_timeout = 3000;
 504		} else if (!plat && dev->of_node) {
 505			uap->dmarx.auto_poll_rate = of_property_read_bool(
 506						dev->of_node, "auto-poll");
 507			if (uap->dmarx.auto_poll_rate) {
 508				u32 x;
 509
 510				if (0 == of_property_read_u32(dev->of_node,
 511						"poll-rate-ms", &x))
 512					uap->dmarx.poll_rate = x;
 513				else
 514					uap->dmarx.poll_rate = 100;
 515				if (0 == of_property_read_u32(dev->of_node,
 516						"poll-timeout-ms", &x))
 517					uap->dmarx.poll_timeout = x;
 518				else
 519					uap->dmarx.poll_timeout = 3000;
 520			}
 521		}
 522		dev_info(uap->port.dev, "DMA channel RX %s\n",
 523			 dma_chan_name(uap->dmarx.chan));
 524	}
 525}
 526
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 527static void pl011_dma_remove(struct uart_amba_port *uap)
 528{
 
 529	if (uap->dmatx.chan)
 530		dma_release_channel(uap->dmatx.chan);
 531	if (uap->dmarx.chan)
 532		dma_release_channel(uap->dmarx.chan);
 533}
 534
 535/* Forward declare these for the refill routine */
 536static int pl011_dma_tx_refill(struct uart_amba_port *uap);
 537static void pl011_start_tx_pio(struct uart_amba_port *uap);
 538
 539/*
 540 * The current DMA TX buffer has been sent.
 541 * Try to queue up another DMA buffer.
 542 */
 543static void pl011_dma_tx_callback(void *data)
 544{
 545	struct uart_amba_port *uap = data;
 546	struct pl011_dmatx_data *dmatx = &uap->dmatx;
 547	unsigned long flags;
 548	u16 dmacr;
 549
 550	spin_lock_irqsave(&uap->port.lock, flags);
 551	if (uap->dmatx.queued)
 552		dma_unmap_sg(dmatx->chan->device->dev, &dmatx->sg, 1,
 553			     DMA_TO_DEVICE);
 554
 555	dmacr = uap->dmacr;
 556	uap->dmacr = dmacr & ~UART011_TXDMAE;
 557	pl011_write(uap->dmacr, uap, REG_DMACR);
 558
 559	/*
 560	 * If TX DMA was disabled, it means that we've stopped the DMA for
 561	 * some reason (eg, XOFF received, or we want to send an X-char.)
 562	 *
 563	 * Note: we need to be careful here of a potential race between DMA
 564	 * and the rest of the driver - if the driver disables TX DMA while
 565	 * a TX buffer completing, we must update the tx queued status to
 566	 * get further refills (hence we check dmacr).
 567	 */
 568	if (!(dmacr & UART011_TXDMAE) || uart_tx_stopped(&uap->port) ||
 569	    uart_circ_empty(&uap->port.state->xmit)) {
 570		uap->dmatx.queued = false;
 571		spin_unlock_irqrestore(&uap->port.lock, flags);
 572		return;
 573	}
 574
 575	if (pl011_dma_tx_refill(uap) <= 0)
 576		/*
 577		 * We didn't queue a DMA buffer for some reason, but we
 578		 * have data pending to be sent.  Re-enable the TX IRQ.
 579		 */
 580		pl011_start_tx_pio(uap);
 581
 
 582	spin_unlock_irqrestore(&uap->port.lock, flags);
 583}
 584
 585/*
 586 * Try to refill the TX DMA buffer.
 587 * Locking: called with port lock held and IRQs disabled.
 588 * Returns:
 589 *   1 if we queued up a TX DMA buffer.
 590 *   0 if we didn't want to handle this by DMA
 591 *  <0 on error
 592 */
 593static int pl011_dma_tx_refill(struct uart_amba_port *uap)
 594{
 595	struct pl011_dmatx_data *dmatx = &uap->dmatx;
 596	struct dma_chan *chan = dmatx->chan;
 597	struct dma_device *dma_dev = chan->device;
 598	struct dma_async_tx_descriptor *desc;
 599	struct circ_buf *xmit = &uap->port.state->xmit;
 600	unsigned int count;
 601
 602	/*
 603	 * Try to avoid the overhead involved in using DMA if the
 604	 * transaction fits in the first half of the FIFO, by using
 605	 * the standard interrupt handling.  This ensures that we
 606	 * issue a uart_write_wakeup() at the appropriate time.
 607	 */
 608	count = uart_circ_chars_pending(xmit);
 609	if (count < (uap->fifosize >> 1)) {
 610		uap->dmatx.queued = false;
 611		return 0;
 612	}
 613
 614	/*
 615	 * Bodge: don't send the last character by DMA, as this
 616	 * will prevent XON from notifying us to restart DMA.
 617	 */
 618	count -= 1;
 619
 620	/* Else proceed to copy the TX chars to the DMA buffer and fire DMA */
 621	if (count > PL011_DMA_BUFFER_SIZE)
 622		count = PL011_DMA_BUFFER_SIZE;
 623
 624	if (xmit->tail < xmit->head)
 625		memcpy(&dmatx->buf[0], &xmit->buf[xmit->tail], count);
 626	else {
 627		size_t first = UART_XMIT_SIZE - xmit->tail;
 628		size_t second;
 629
 630		if (first > count)
 631			first = count;
 632		second = count - first;
 633
 634		memcpy(&dmatx->buf[0], &xmit->buf[xmit->tail], first);
 635		if (second)
 636			memcpy(&dmatx->buf[first], &xmit->buf[0], second);
 637	}
 638
 639	dmatx->sg.length = count;
 640
 641	if (dma_map_sg(dma_dev->dev, &dmatx->sg, 1, DMA_TO_DEVICE) != 1) {
 642		uap->dmatx.queued = false;
 643		dev_dbg(uap->port.dev, "unable to map TX DMA\n");
 644		return -EBUSY;
 645	}
 646
 647	desc = dmaengine_prep_slave_sg(chan, &dmatx->sg, 1, DMA_MEM_TO_DEV,
 648					     DMA_PREP_INTERRUPT | DMA_CTRL_ACK);
 649	if (!desc) {
 650		dma_unmap_sg(dma_dev->dev, &dmatx->sg, 1, DMA_TO_DEVICE);
 651		uap->dmatx.queued = false;
 652		/*
 653		 * If DMA cannot be used right now, we complete this
 654		 * transaction via IRQ and let the TTY layer retry.
 655		 */
 656		dev_dbg(uap->port.dev, "TX DMA busy\n");
 657		return -EBUSY;
 658	}
 659
 660	/* Some data to go along to the callback */
 661	desc->callback = pl011_dma_tx_callback;
 662	desc->callback_param = uap;
 663
 664	/* All errors should happen at prepare time */
 665	dmaengine_submit(desc);
 666
 667	/* Fire the DMA transaction */
 668	dma_dev->device_issue_pending(chan);
 669
 670	uap->dmacr |= UART011_TXDMAE;
 671	pl011_write(uap->dmacr, uap, REG_DMACR);
 672	uap->dmatx.queued = true;
 673
 674	/*
 675	 * Now we know that DMA will fire, so advance the ring buffer
 676	 * with the stuff we just dispatched.
 677	 */
 678	xmit->tail = (xmit->tail + count) & (UART_XMIT_SIZE - 1);
 679	uap->port.icount.tx += count;
 680
 681	if (uart_circ_chars_pending(xmit) < WAKEUP_CHARS)
 682		uart_write_wakeup(&uap->port);
 683
 684	return 1;
 685}
 686
 687/*
 688 * We received a transmit interrupt without a pending X-char but with
 689 * pending characters.
 690 * Locking: called with port lock held and IRQs disabled.
 691 * Returns:
 692 *   false if we want to use PIO to transmit
 693 *   true if we queued a DMA buffer
 694 */
 695static bool pl011_dma_tx_irq(struct uart_amba_port *uap)
 696{
 697	if (!uap->using_tx_dma)
 698		return false;
 699
 700	/*
 701	 * If we already have a TX buffer queued, but received a
 702	 * TX interrupt, it will be because we've just sent an X-char.
 703	 * Ensure the TX DMA is enabled and the TX IRQ is disabled.
 704	 */
 705	if (uap->dmatx.queued) {
 706		uap->dmacr |= UART011_TXDMAE;
 707		pl011_write(uap->dmacr, uap, REG_DMACR);
 708		uap->im &= ~UART011_TXIM;
 709		pl011_write(uap->im, uap, REG_IMSC);
 710		return true;
 711	}
 712
 713	/*
 714	 * We don't have a TX buffer queued, so try to queue one.
 715	 * If we successfully queued a buffer, mask the TX IRQ.
 716	 */
 717	if (pl011_dma_tx_refill(uap) > 0) {
 718		uap->im &= ~UART011_TXIM;
 719		pl011_write(uap->im, uap, REG_IMSC);
 720		return true;
 721	}
 722	return false;
 723}
 724
 725/*
 726 * Stop the DMA transmit (eg, due to received XOFF).
 727 * Locking: called with port lock held and IRQs disabled.
 728 */
 729static inline void pl011_dma_tx_stop(struct uart_amba_port *uap)
 730{
 731	if (uap->dmatx.queued) {
 732		uap->dmacr &= ~UART011_TXDMAE;
 733		pl011_write(uap->dmacr, uap, REG_DMACR);
 734	}
 735}
 736
 737/*
 738 * Try to start a DMA transmit, or in the case of an XON/OFF
 739 * character queued for send, try to get that character out ASAP.
 740 * Locking: called with port lock held and IRQs disabled.
 741 * Returns:
 742 *   false if we want the TX IRQ to be enabled
 743 *   true if we have a buffer queued
 744 */
 745static inline bool pl011_dma_tx_start(struct uart_amba_port *uap)
 746{
 747	u16 dmacr;
 748
 749	if (!uap->using_tx_dma)
 750		return false;
 751
 752	if (!uap->port.x_char) {
 753		/* no X-char, try to push chars out in DMA mode */
 754		bool ret = true;
 755
 756		if (!uap->dmatx.queued) {
 757			if (pl011_dma_tx_refill(uap) > 0) {
 758				uap->im &= ~UART011_TXIM;
 759				pl011_write(uap->im, uap, REG_IMSC);
 760			} else
 
 761				ret = false;
 
 
 762		} else if (!(uap->dmacr & UART011_TXDMAE)) {
 763			uap->dmacr |= UART011_TXDMAE;
 764			pl011_write(uap->dmacr, uap, REG_DMACR);
 
 765		}
 766		return ret;
 767	}
 768
 769	/*
 770	 * We have an X-char to send.  Disable DMA to prevent it loading
 771	 * the TX fifo, and then see if we can stuff it into the FIFO.
 772	 */
 773	dmacr = uap->dmacr;
 774	uap->dmacr &= ~UART011_TXDMAE;
 775	pl011_write(uap->dmacr, uap, REG_DMACR);
 776
 777	if (pl011_read(uap, REG_FR) & UART01x_FR_TXFF) {
 778		/*
 779		 * No space in the FIFO, so enable the transmit interrupt
 780		 * so we know when there is space.  Note that once we've
 781		 * loaded the character, we should just re-enable DMA.
 782		 */
 783		return false;
 784	}
 785
 786	pl011_write(uap->port.x_char, uap, REG_DR);
 787	uap->port.icount.tx++;
 788	uap->port.x_char = 0;
 789
 790	/* Success - restore the DMA state */
 791	uap->dmacr = dmacr;
 792	pl011_write(dmacr, uap, REG_DMACR);
 793
 794	return true;
 795}
 796
 797/*
 798 * Flush the transmit buffer.
 799 * Locking: called with port lock held and IRQs disabled.
 800 */
 801static void pl011_dma_flush_buffer(struct uart_port *port)
 802__releases(&uap->port.lock)
 803__acquires(&uap->port.lock)
 804{
 805	struct uart_amba_port *uap =
 806	    container_of(port, struct uart_amba_port, port);
 807
 808	if (!uap->using_tx_dma)
 809		return;
 810
 811	dmaengine_terminate_async(uap->dmatx.chan);
 812
 
 
 813	if (uap->dmatx.queued) {
 814		dma_unmap_sg(uap->dmatx.chan->device->dev, &uap->dmatx.sg, 1,
 815			     DMA_TO_DEVICE);
 816		uap->dmatx.queued = false;
 817		uap->dmacr &= ~UART011_TXDMAE;
 818		pl011_write(uap->dmacr, uap, REG_DMACR);
 819	}
 820}
 821
 822static void pl011_dma_rx_callback(void *data);
 823
 824static int pl011_dma_rx_trigger_dma(struct uart_amba_port *uap)
 825{
 826	struct dma_chan *rxchan = uap->dmarx.chan;
 
 827	struct pl011_dmarx_data *dmarx = &uap->dmarx;
 828	struct dma_async_tx_descriptor *desc;
 829	struct pl011_sgbuf *sgbuf;
 830
 831	if (!rxchan)
 832		return -EIO;
 833
 834	/* Start the RX DMA job */
 835	sgbuf = uap->dmarx.use_buf_b ?
 836		&uap->dmarx.sgbuf_b : &uap->dmarx.sgbuf_a;
 837	desc = dmaengine_prep_slave_sg(rxchan, &sgbuf->sg, 1,
 838					DMA_DEV_TO_MEM,
 
 839					DMA_PREP_INTERRUPT | DMA_CTRL_ACK);
 840	/*
 841	 * If the DMA engine is busy and cannot prepare a
 842	 * channel, no big deal, the driver will fall back
 843	 * to interrupt mode as a result of this error code.
 844	 */
 845	if (!desc) {
 846		uap->dmarx.running = false;
 847		dmaengine_terminate_all(rxchan);
 848		return -EBUSY;
 849	}
 850
 851	/* Some data to go along to the callback */
 852	desc->callback = pl011_dma_rx_callback;
 853	desc->callback_param = uap;
 854	dmarx->cookie = dmaengine_submit(desc);
 855	dma_async_issue_pending(rxchan);
 856
 857	uap->dmacr |= UART011_RXDMAE;
 858	pl011_write(uap->dmacr, uap, REG_DMACR);
 859	uap->dmarx.running = true;
 860
 861	uap->im &= ~UART011_RXIM;
 862	pl011_write(uap->im, uap, REG_IMSC);
 863
 864	return 0;
 865}
 866
 867/*
 868 * This is called when either the DMA job is complete, or
 869 * the FIFO timeout interrupt occurred. This must be called
 870 * with the port spinlock uap->port.lock held.
 871 */
 872static void pl011_dma_rx_chars(struct uart_amba_port *uap,
 873			       u32 pending, bool use_buf_b,
 874			       bool readfifo)
 875{
 876	struct tty_port *port = &uap->port.state->port;
 877	struct pl011_sgbuf *sgbuf = use_buf_b ?
 878		&uap->dmarx.sgbuf_b : &uap->dmarx.sgbuf_a;
 
 879	int dma_count = 0;
 880	u32 fifotaken = 0; /* only used for vdbg() */
 881
 882	struct pl011_dmarx_data *dmarx = &uap->dmarx;
 883	int dmataken = 0;
 884
 885	if (uap->dmarx.poll_rate) {
 886		/* The data can be taken by polling */
 887		dmataken = sgbuf->sg.length - dmarx->last_residue;
 888		/* Recalculate the pending size */
 889		if (pending >= dmataken)
 890			pending -= dmataken;
 891	}
 892
 893	/* Pick the remain data from the DMA */
 894	if (pending) {
 
 
 895
 896		/*
 897		 * First take all chars in the DMA pipe, then look in the FIFO.
 898		 * Note that tty_insert_flip_buf() tries to take as many chars
 899		 * as it can.
 900		 */
 901		dma_count = tty_insert_flip_string(port, sgbuf->buf + dmataken,
 902				pending);
 
 
 
 903
 904		uap->port.icount.rx += dma_count;
 905		if (dma_count < pending)
 906			dev_warn(uap->port.dev,
 907				 "couldn't insert all characters (TTY is full?)\n");
 908	}
 909
 910	/* Reset the last_residue for Rx DMA poll */
 911	if (uap->dmarx.poll_rate)
 912		dmarx->last_residue = sgbuf->sg.length;
 913
 914	/*
 915	 * Only continue with trying to read the FIFO if all DMA chars have
 916	 * been taken first.
 917	 */
 918	if (dma_count == pending && readfifo) {
 919		/* Clear any error flags */
 920		pl011_write(UART011_OEIS | UART011_BEIS | UART011_PEIS |
 921			    UART011_FEIS, uap, REG_ICR);
 922
 923		/*
 924		 * If we read all the DMA'd characters, and we had an
 925		 * incomplete buffer, that could be due to an rx error, or
 926		 * maybe we just timed out. Read any pending chars and check
 927		 * the error status.
 928		 *
 929		 * Error conditions will only occur in the FIFO, these will
 930		 * trigger an immediate interrupt and stop the DMA job, so we
 931		 * will always find the error in the FIFO, never in the DMA
 932		 * buffer.
 933		 */
 934		fifotaken = pl011_fifo_to_tty(uap);
 935	}
 936
 937	spin_unlock(&uap->port.lock);
 938	dev_vdbg(uap->port.dev,
 939		 "Took %d chars from DMA buffer and %d chars from the FIFO\n",
 940		 dma_count, fifotaken);
 941	tty_flip_buffer_push(port);
 942	spin_lock(&uap->port.lock);
 943}
 944
 945static void pl011_dma_rx_irq(struct uart_amba_port *uap)
 946{
 947	struct pl011_dmarx_data *dmarx = &uap->dmarx;
 948	struct dma_chan *rxchan = dmarx->chan;
 949	struct pl011_sgbuf *sgbuf = dmarx->use_buf_b ?
 950		&dmarx->sgbuf_b : &dmarx->sgbuf_a;
 951	size_t pending;
 952	struct dma_tx_state state;
 953	enum dma_status dmastat;
 954
 955	/*
 956	 * Pause the transfer so we can trust the current counter,
 957	 * do this before we pause the PL011 block, else we may
 958	 * overflow the FIFO.
 959	 */
 960	if (dmaengine_pause(rxchan))
 961		dev_err(uap->port.dev, "unable to pause DMA transfer\n");
 962	dmastat = rxchan->device->device_tx_status(rxchan,
 963						   dmarx->cookie, &state);
 964	if (dmastat != DMA_PAUSED)
 965		dev_err(uap->port.dev, "unable to pause DMA transfer\n");
 966
 967	/* Disable RX DMA - incoming data will wait in the FIFO */
 968	uap->dmacr &= ~UART011_RXDMAE;
 969	pl011_write(uap->dmacr, uap, REG_DMACR);
 970	uap->dmarx.running = false;
 971
 972	pending = sgbuf->sg.length - state.residue;
 973	BUG_ON(pending > PL011_DMA_BUFFER_SIZE);
 974	/* Then we terminate the transfer - we now know our residue */
 975	dmaengine_terminate_all(rxchan);
 976
 977	/*
 978	 * This will take the chars we have so far and insert
 979	 * into the framework.
 980	 */
 981	pl011_dma_rx_chars(uap, pending, dmarx->use_buf_b, true);
 982
 983	/* Switch buffer & re-trigger DMA job */
 984	dmarx->use_buf_b = !dmarx->use_buf_b;
 985	if (pl011_dma_rx_trigger_dma(uap)) {
 986		dev_dbg(uap->port.dev, "could not retrigger RX DMA job "
 987			"fall back to interrupt mode\n");
 988		uap->im |= UART011_RXIM;
 989		pl011_write(uap->im, uap, REG_IMSC);
 990	}
 991}
 992
 993static void pl011_dma_rx_callback(void *data)
 994{
 995	struct uart_amba_port *uap = data;
 996	struct pl011_dmarx_data *dmarx = &uap->dmarx;
 997	struct dma_chan *rxchan = dmarx->chan;
 998	bool lastbuf = dmarx->use_buf_b;
 999	struct pl011_sgbuf *sgbuf = dmarx->use_buf_b ?
1000		&dmarx->sgbuf_b : &dmarx->sgbuf_a;
1001	size_t pending;
1002	struct dma_tx_state state;
1003	int ret;
1004
1005	/*
1006	 * This completion interrupt occurs typically when the
1007	 * RX buffer is totally stuffed but no timeout has yet
1008	 * occurred. When that happens, we just want the RX
1009	 * routine to flush out the secondary DMA buffer while
1010	 * we immediately trigger the next DMA job.
1011	 */
1012	spin_lock_irq(&uap->port.lock);
1013	/*
1014	 * Rx data can be taken by the UART interrupts during
1015	 * the DMA irq handler. So we check the residue here.
1016	 */
1017	rxchan->device->device_tx_status(rxchan, dmarx->cookie, &state);
1018	pending = sgbuf->sg.length - state.residue;
1019	BUG_ON(pending > PL011_DMA_BUFFER_SIZE);
1020	/* Then we terminate the transfer - we now know our residue */
1021	dmaengine_terminate_all(rxchan);
1022
1023	uap->dmarx.running = false;
1024	dmarx->use_buf_b = !lastbuf;
1025	ret = pl011_dma_rx_trigger_dma(uap);
1026
1027	pl011_dma_rx_chars(uap, pending, lastbuf, false);
1028	spin_unlock_irq(&uap->port.lock);
1029	/*
1030	 * Do this check after we picked the DMA chars so we don't
1031	 * get some IRQ immediately from RX.
1032	 */
1033	if (ret) {
1034		dev_dbg(uap->port.dev, "could not retrigger RX DMA job "
1035			"fall back to interrupt mode\n");
1036		uap->im |= UART011_RXIM;
1037		pl011_write(uap->im, uap, REG_IMSC);
1038	}
1039}
1040
1041/*
1042 * Stop accepting received characters, when we're shutting down or
1043 * suspending this port.
1044 * Locking: called with port lock held and IRQs disabled.
1045 */
1046static inline void pl011_dma_rx_stop(struct uart_amba_port *uap)
1047{
1048	/* FIXME.  Just disable the DMA enable */
1049	uap->dmacr &= ~UART011_RXDMAE;
1050	pl011_write(uap->dmacr, uap, REG_DMACR);
1051}
1052
1053/*
1054 * Timer handler for Rx DMA polling.
1055 * Every polling, It checks the residue in the dma buffer and transfer
1056 * data to the tty. Also, last_residue is updated for the next polling.
1057 */
1058static void pl011_dma_rx_poll(struct timer_list *t)
1059{
1060	struct uart_amba_port *uap = from_timer(uap, t, dmarx.timer);
1061	struct tty_port *port = &uap->port.state->port;
1062	struct pl011_dmarx_data *dmarx = &uap->dmarx;
1063	struct dma_chan *rxchan = uap->dmarx.chan;
1064	unsigned long flags = 0;
1065	unsigned int dmataken = 0;
1066	unsigned int size = 0;
1067	struct pl011_sgbuf *sgbuf;
1068	int dma_count;
1069	struct dma_tx_state state;
1070
1071	sgbuf = dmarx->use_buf_b ? &uap->dmarx.sgbuf_b : &uap->dmarx.sgbuf_a;
1072	rxchan->device->device_tx_status(rxchan, dmarx->cookie, &state);
1073	if (likely(state.residue < dmarx->last_residue)) {
1074		dmataken = sgbuf->sg.length - dmarx->last_residue;
1075		size = dmarx->last_residue - state.residue;
1076		dma_count = tty_insert_flip_string(port, sgbuf->buf + dmataken,
1077				size);
1078		if (dma_count == size)
1079			dmarx->last_residue =  state.residue;
1080		dmarx->last_jiffies = jiffies;
1081	}
1082	tty_flip_buffer_push(port);
1083
1084	/*
1085	 * If no data is received in poll_timeout, the driver will fall back
1086	 * to interrupt mode. We will retrigger DMA at the first interrupt.
1087	 */
1088	if (jiffies_to_msecs(jiffies - dmarx->last_jiffies)
1089			> uap->dmarx.poll_timeout) {
1090
1091		spin_lock_irqsave(&uap->port.lock, flags);
1092		pl011_dma_rx_stop(uap);
1093		uap->im |= UART011_RXIM;
1094		pl011_write(uap->im, uap, REG_IMSC);
1095		spin_unlock_irqrestore(&uap->port.lock, flags);
1096
1097		uap->dmarx.running = false;
1098		dmaengine_terminate_all(rxchan);
1099		del_timer(&uap->dmarx.timer);
1100	} else {
1101		mod_timer(&uap->dmarx.timer,
1102			jiffies + msecs_to_jiffies(uap->dmarx.poll_rate));
1103	}
1104}
1105
1106static void pl011_dma_startup(struct uart_amba_port *uap)
1107{
1108	int ret;
1109
1110	if (!uap->dma_probed)
1111		pl011_dma_probe(uap);
1112
1113	if (!uap->dmatx.chan)
1114		return;
1115
1116	uap->dmatx.buf = kmalloc(PL011_DMA_BUFFER_SIZE, GFP_KERNEL | __GFP_DMA);
1117	if (!uap->dmatx.buf) {
1118		dev_err(uap->port.dev, "no memory for DMA TX buffer\n");
1119		uap->port.fifosize = uap->fifosize;
1120		return;
1121	}
1122
1123	sg_init_one(&uap->dmatx.sg, uap->dmatx.buf, PL011_DMA_BUFFER_SIZE);
1124
1125	/* The DMA buffer is now the FIFO the TTY subsystem can use */
1126	uap->port.fifosize = PL011_DMA_BUFFER_SIZE;
1127	uap->using_tx_dma = true;
1128
1129	if (!uap->dmarx.chan)
1130		goto skip_rx;
1131
1132	/* Allocate and map DMA RX buffers */
1133	ret = pl011_sgbuf_init(uap->dmarx.chan, &uap->dmarx.sgbuf_a,
1134			       DMA_FROM_DEVICE);
1135	if (ret) {
1136		dev_err(uap->port.dev, "failed to init DMA %s: %d\n",
1137			"RX buffer A", ret);
1138		goto skip_rx;
1139	}
1140
1141	ret = pl011_sgbuf_init(uap->dmarx.chan, &uap->dmarx.sgbuf_b,
1142			       DMA_FROM_DEVICE);
1143	if (ret) {
1144		dev_err(uap->port.dev, "failed to init DMA %s: %d\n",
1145			"RX buffer B", ret);
1146		pl011_sgbuf_free(uap->dmarx.chan, &uap->dmarx.sgbuf_a,
1147				 DMA_FROM_DEVICE);
1148		goto skip_rx;
1149	}
1150
1151	uap->using_rx_dma = true;
1152
1153skip_rx:
1154	/* Turn on DMA error (RX/TX will be enabled on demand) */
1155	uap->dmacr |= UART011_DMAONERR;
1156	pl011_write(uap->dmacr, uap, REG_DMACR);
1157
1158	/*
1159	 * ST Micro variants has some specific dma burst threshold
1160	 * compensation. Set this to 16 bytes, so burst will only
1161	 * be issued above/below 16 bytes.
1162	 */
1163	if (uap->vendor->dma_threshold)
1164		pl011_write(ST_UART011_DMAWM_RX_16 | ST_UART011_DMAWM_TX_16,
1165			    uap, REG_ST_DMAWM);
1166
1167	if (uap->using_rx_dma) {
1168		if (pl011_dma_rx_trigger_dma(uap))
1169			dev_dbg(uap->port.dev, "could not trigger initial "
1170				"RX DMA job, fall back to interrupt mode\n");
1171		if (uap->dmarx.poll_rate) {
1172			timer_setup(&uap->dmarx.timer, pl011_dma_rx_poll, 0);
1173			mod_timer(&uap->dmarx.timer,
1174				jiffies +
1175				msecs_to_jiffies(uap->dmarx.poll_rate));
1176			uap->dmarx.last_residue = PL011_DMA_BUFFER_SIZE;
1177			uap->dmarx.last_jiffies = jiffies;
1178		}
1179	}
1180}
1181
1182static void pl011_dma_shutdown(struct uart_amba_port *uap)
1183{
1184	if (!(uap->using_tx_dma || uap->using_rx_dma))
1185		return;
1186
1187	/* Disable RX and TX DMA */
1188	while (pl011_read(uap, REG_FR) & uap->vendor->fr_busy)
1189		cpu_relax();
1190
1191	spin_lock_irq(&uap->port.lock);
1192	uap->dmacr &= ~(UART011_DMAONERR | UART011_RXDMAE | UART011_TXDMAE);
1193	pl011_write(uap->dmacr, uap, REG_DMACR);
1194	spin_unlock_irq(&uap->port.lock);
1195
1196	if (uap->using_tx_dma) {
1197		/* In theory, this should already be done by pl011_dma_flush_buffer */
1198		dmaengine_terminate_all(uap->dmatx.chan);
1199		if (uap->dmatx.queued) {
1200			dma_unmap_sg(uap->dmatx.chan->device->dev, &uap->dmatx.sg, 1,
1201				     DMA_TO_DEVICE);
1202			uap->dmatx.queued = false;
1203		}
1204
1205		kfree(uap->dmatx.buf);
1206		uap->using_tx_dma = false;
1207	}
1208
1209	if (uap->using_rx_dma) {
1210		dmaengine_terminate_all(uap->dmarx.chan);
1211		/* Clean up the RX DMA */
1212		pl011_sgbuf_free(uap->dmarx.chan, &uap->dmarx.sgbuf_a, DMA_FROM_DEVICE);
1213		pl011_sgbuf_free(uap->dmarx.chan, &uap->dmarx.sgbuf_b, DMA_FROM_DEVICE);
1214		if (uap->dmarx.poll_rate)
1215			del_timer_sync(&uap->dmarx.timer);
1216		uap->using_rx_dma = false;
1217	}
1218}
1219
1220static inline bool pl011_dma_rx_available(struct uart_amba_port *uap)
1221{
1222	return uap->using_rx_dma;
1223}
1224
1225static inline bool pl011_dma_rx_running(struct uart_amba_port *uap)
1226{
1227	return uap->using_rx_dma && uap->dmarx.running;
1228}
1229
 
1230#else
1231/* Blank functions if the DMA engine is not available */
 
 
 
 
1232static inline void pl011_dma_remove(struct uart_amba_port *uap)
1233{
1234}
1235
1236static inline void pl011_dma_startup(struct uart_amba_port *uap)
1237{
1238}
1239
1240static inline void pl011_dma_shutdown(struct uart_amba_port *uap)
1241{
1242}
1243
1244static inline bool pl011_dma_tx_irq(struct uart_amba_port *uap)
1245{
1246	return false;
1247}
1248
1249static inline void pl011_dma_tx_stop(struct uart_amba_port *uap)
1250{
1251}
1252
1253static inline bool pl011_dma_tx_start(struct uart_amba_port *uap)
1254{
1255	return false;
1256}
1257
1258static inline void pl011_dma_rx_irq(struct uart_amba_port *uap)
1259{
1260}
1261
1262static inline void pl011_dma_rx_stop(struct uart_amba_port *uap)
1263{
1264}
1265
1266static inline int pl011_dma_rx_trigger_dma(struct uart_amba_port *uap)
1267{
1268	return -EIO;
1269}
1270
1271static inline bool pl011_dma_rx_available(struct uart_amba_port *uap)
1272{
1273	return false;
1274}
1275
1276static inline bool pl011_dma_rx_running(struct uart_amba_port *uap)
1277{
1278	return false;
1279}
1280
1281#define pl011_dma_flush_buffer	NULL
1282#endif
1283
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1284static void pl011_stop_tx(struct uart_port *port)
1285{
1286	struct uart_amba_port *uap =
1287	    container_of(port, struct uart_amba_port, port);
1288
1289	uap->im &= ~UART011_TXIM;
1290	pl011_write(uap->im, uap, REG_IMSC);
1291	pl011_dma_tx_stop(uap);
1292}
1293
1294static bool pl011_tx_chars(struct uart_amba_port *uap, bool from_irq);
 
 
1295
1296/* Start TX with programmed I/O only (no DMA) */
1297static void pl011_start_tx_pio(struct uart_amba_port *uap)
1298{
1299	if (pl011_tx_chars(uap, false)) {
1300		uap->im |= UART011_TXIM;
1301		pl011_write(uap->im, uap, REG_IMSC);
1302	}
1303}
1304
1305static void pl011_start_tx(struct uart_port *port)
1306{
1307	struct uart_amba_port *uap =
1308	    container_of(port, struct uart_amba_port, port);
1309
1310	if (!pl011_dma_tx_start(uap))
1311		pl011_start_tx_pio(uap);
1312}
1313
1314static void pl011_stop_rx(struct uart_port *port)
1315{
1316	struct uart_amba_port *uap =
1317	    container_of(port, struct uart_amba_port, port);
1318
1319	uap->im &= ~(UART011_RXIM|UART011_RTIM|UART011_FEIM|
1320		     UART011_PEIM|UART011_BEIM|UART011_OEIM);
1321	pl011_write(uap->im, uap, REG_IMSC);
1322
1323	pl011_dma_rx_stop(uap);
1324}
1325
1326static void pl011_enable_ms(struct uart_port *port)
1327{
1328	struct uart_amba_port *uap =
1329	    container_of(port, struct uart_amba_port, port);
1330
1331	uap->im |= UART011_RIMIM|UART011_CTSMIM|UART011_DCDMIM|UART011_DSRMIM;
1332	pl011_write(uap->im, uap, REG_IMSC);
1333}
1334
1335static void pl011_rx_chars(struct uart_amba_port *uap)
1336__releases(&uap->port.lock)
1337__acquires(&uap->port.lock)
1338{
 
 
1339	pl011_fifo_to_tty(uap);
1340
1341	spin_unlock(&uap->port.lock);
1342	tty_flip_buffer_push(&uap->port.state->port);
1343	/*
1344	 * If we were temporarily out of DMA mode for a while,
1345	 * attempt to switch back to DMA mode again.
1346	 */
1347	if (pl011_dma_rx_available(uap)) {
1348		if (pl011_dma_rx_trigger_dma(uap)) {
1349			dev_dbg(uap->port.dev, "could not trigger RX DMA job "
1350				"fall back to interrupt mode again\n");
1351			uap->im |= UART011_RXIM;
1352			pl011_write(uap->im, uap, REG_IMSC);
1353		} else {
1354#ifdef CONFIG_DMA_ENGINE
1355			/* Start Rx DMA poll */
1356			if (uap->dmarx.poll_rate) {
1357				uap->dmarx.last_jiffies = jiffies;
1358				uap->dmarx.last_residue	= PL011_DMA_BUFFER_SIZE;
1359				mod_timer(&uap->dmarx.timer,
1360					jiffies +
1361					msecs_to_jiffies(uap->dmarx.poll_rate));
1362			}
1363#endif
1364		}
1365	}
1366	spin_lock(&uap->port.lock);
1367}
1368
1369static bool pl011_tx_char(struct uart_amba_port *uap, unsigned char c,
1370			  bool from_irq)
1371{
1372	if (unlikely(!from_irq) &&
1373	    pl011_read(uap, REG_FR) & UART01x_FR_TXFF)
1374		return false; /* unable to transmit character */
1375
1376	pl011_write(c, uap, REG_DR);
1377	uap->port.icount.tx++;
1378
1379	return true;
1380}
1381
1382/* Returns true if tx interrupts have to be (kept) enabled  */
1383static bool pl011_tx_chars(struct uart_amba_port *uap, bool from_irq)
1384{
1385	struct circ_buf *xmit = &uap->port.state->xmit;
1386	int count = uap->fifosize >> 1;
1387
1388	if (uap->port.x_char) {
1389		if (!pl011_tx_char(uap, uap->port.x_char, from_irq))
1390			return true;
1391		uap->port.x_char = 0;
1392		--count;
1393	}
1394	if (uart_circ_empty(xmit) || uart_tx_stopped(&uap->port)) {
1395		pl011_stop_tx(&uap->port);
1396		return false;
1397	}
1398
1399	/* If we are using DMA mode, try to send some characters. */
1400	if (pl011_dma_tx_irq(uap))
1401		return true;
1402
 
1403	do {
1404		if (likely(from_irq) && count-- == 0)
 
 
 
1405			break;
1406
1407		if (!pl011_tx_char(uap, xmit->buf[xmit->tail], from_irq))
1408			break;
1409
1410		xmit->tail = (xmit->tail + 1) & (UART_XMIT_SIZE - 1);
1411	} while (!uart_circ_empty(xmit));
1412
1413	if (uart_circ_chars_pending(xmit) < WAKEUP_CHARS)
1414		uart_write_wakeup(&uap->port);
1415
1416	if (uart_circ_empty(xmit)) {
1417		pl011_stop_tx(&uap->port);
1418		return false;
1419	}
1420	return true;
1421}
1422
1423static void pl011_modem_status(struct uart_amba_port *uap)
1424{
1425	unsigned int status, delta;
1426
1427	status = pl011_read(uap, REG_FR) & UART01x_FR_MODEM_ANY;
1428
1429	delta = status ^ uap->old_status;
1430	uap->old_status = status;
1431
1432	if (!delta)
1433		return;
1434
1435	if (delta & UART01x_FR_DCD)
1436		uart_handle_dcd_change(&uap->port, status & UART01x_FR_DCD);
1437
1438	if (delta & uap->vendor->fr_dsr)
1439		uap->port.icount.dsr++;
1440
1441	if (delta & uap->vendor->fr_cts)
1442		uart_handle_cts_change(&uap->port,
1443				       status & uap->vendor->fr_cts);
1444
1445	wake_up_interruptible(&uap->port.state->port.delta_msr_wait);
1446}
1447
1448static void check_apply_cts_event_workaround(struct uart_amba_port *uap)
1449{
1450	if (!uap->vendor->cts_event_workaround)
1451		return;
1452
1453	/* workaround to make sure that all bits are unlocked.. */
1454	pl011_write(0x00, uap, REG_ICR);
1455
1456	/*
1457	 * WA: introduce 26ns(1 uart clk) delay before W1C;
1458	 * single apb access will incur 2 pclk(133.12Mhz) delay,
1459	 * so add 2 dummy reads
1460	 */
1461	pl011_read(uap, REG_ICR);
1462	pl011_read(uap, REG_ICR);
1463}
1464
1465static irqreturn_t pl011_int(int irq, void *dev_id)
1466{
1467	struct uart_amba_port *uap = dev_id;
1468	unsigned long flags;
1469	unsigned int status, pass_counter = AMBA_ISR_PASS_LIMIT;
1470	int handled = 0;
1471
1472	spin_lock_irqsave(&uap->port.lock, flags);
1473	status = pl011_read(uap, REG_RIS) & uap->im;
 
1474	if (status) {
1475		do {
1476			check_apply_cts_event_workaround(uap);
1477
1478			pl011_write(status & ~(UART011_TXIS|UART011_RTIS|
1479					       UART011_RXIS),
1480				    uap, REG_ICR);
1481
1482			if (status & (UART011_RTIS|UART011_RXIS)) {
1483				if (pl011_dma_rx_running(uap))
1484					pl011_dma_rx_irq(uap);
1485				else
1486					pl011_rx_chars(uap);
1487			}
1488			if (status & (UART011_DSRMIS|UART011_DCDMIS|
1489				      UART011_CTSMIS|UART011_RIMIS))
1490				pl011_modem_status(uap);
1491			if (status & UART011_TXIS)
1492				pl011_tx_chars(uap, true);
1493
1494			if (pass_counter-- == 0)
 
 
1495				break;
 
1496
1497			status = pl011_read(uap, REG_RIS) & uap->im;
1498		} while (status != 0);
1499		handled = 1;
1500	}
1501
1502	spin_unlock_irqrestore(&uap->port.lock, flags);
1503
1504	return IRQ_RETVAL(handled);
1505}
1506
1507static unsigned int pl011_tx_empty(struct uart_port *port)
1508{
1509	struct uart_amba_port *uap =
1510	    container_of(port, struct uart_amba_port, port);
1511
1512	/* Allow feature register bits to be inverted to work around errata */
1513	unsigned int status = pl011_read(uap, REG_FR) ^ uap->vendor->inv_fr;
1514
1515	return status & (uap->vendor->fr_busy | UART01x_FR_TXFF) ?
1516							0 : TIOCSER_TEMT;
1517}
1518
1519static unsigned int pl011_get_mctrl(struct uart_port *port)
1520{
1521	struct uart_amba_port *uap =
1522	    container_of(port, struct uart_amba_port, port);
1523	unsigned int result = 0;
1524	unsigned int status = pl011_read(uap, REG_FR);
1525
1526#define TIOCMBIT(uartbit, tiocmbit)	\
1527	if (status & uartbit)		\
1528		result |= tiocmbit
1529
1530	TIOCMBIT(UART01x_FR_DCD, TIOCM_CAR);
1531	TIOCMBIT(uap->vendor->fr_dsr, TIOCM_DSR);
1532	TIOCMBIT(uap->vendor->fr_cts, TIOCM_CTS);
1533	TIOCMBIT(uap->vendor->fr_ri, TIOCM_RNG);
1534#undef TIOCMBIT
1535	return result;
1536}
1537
1538static void pl011_set_mctrl(struct uart_port *port, unsigned int mctrl)
1539{
1540	struct uart_amba_port *uap =
1541	    container_of(port, struct uart_amba_port, port);
1542	unsigned int cr;
1543
1544	cr = pl011_read(uap, REG_CR);
1545
1546#define	TIOCMBIT(tiocmbit, uartbit)		\
1547	if (mctrl & tiocmbit)		\
1548		cr |= uartbit;		\
1549	else				\
1550		cr &= ~uartbit
1551
1552	TIOCMBIT(TIOCM_RTS, UART011_CR_RTS);
1553	TIOCMBIT(TIOCM_DTR, UART011_CR_DTR);
1554	TIOCMBIT(TIOCM_OUT1, UART011_CR_OUT1);
1555	TIOCMBIT(TIOCM_OUT2, UART011_CR_OUT2);
1556	TIOCMBIT(TIOCM_LOOP, UART011_CR_LBE);
1557
1558	if (port->status & UPSTAT_AUTORTS) {
1559		/* We need to disable auto-RTS if we want to turn RTS off */
1560		TIOCMBIT(TIOCM_RTS, UART011_CR_RTSEN);
1561	}
1562#undef TIOCMBIT
1563
1564	pl011_write(cr, uap, REG_CR);
1565}
1566
1567static void pl011_break_ctl(struct uart_port *port, int break_state)
1568{
1569	struct uart_amba_port *uap =
1570	    container_of(port, struct uart_amba_port, port);
1571	unsigned long flags;
1572	unsigned int lcr_h;
1573
1574	spin_lock_irqsave(&uap->port.lock, flags);
1575	lcr_h = pl011_read(uap, REG_LCRH_TX);
1576	if (break_state == -1)
1577		lcr_h |= UART01x_LCRH_BRK;
1578	else
1579		lcr_h &= ~UART01x_LCRH_BRK;
1580	pl011_write(lcr_h, uap, REG_LCRH_TX);
1581	spin_unlock_irqrestore(&uap->port.lock, flags);
1582}
1583
1584#ifdef CONFIG_CONSOLE_POLL
1585
1586static void pl011_quiesce_irqs(struct uart_port *port)
1587{
1588	struct uart_amba_port *uap =
1589	    container_of(port, struct uart_amba_port, port);
1590
1591	pl011_write(pl011_read(uap, REG_MIS), uap, REG_ICR);
1592	/*
1593	 * There is no way to clear TXIM as this is "ready to transmit IRQ", so
1594	 * we simply mask it. start_tx() will unmask it.
1595	 *
1596	 * Note we can race with start_tx(), and if the race happens, the
1597	 * polling user might get another interrupt just after we clear it.
1598	 * But it should be OK and can happen even w/o the race, e.g.
1599	 * controller immediately got some new data and raised the IRQ.
1600	 *
1601	 * And whoever uses polling routines assumes that it manages the device
1602	 * (including tx queue), so we're also fine with start_tx()'s caller
1603	 * side.
1604	 */
1605	pl011_write(pl011_read(uap, REG_IMSC) & ~UART011_TXIM, uap,
1606		    REG_IMSC);
1607}
1608
1609static int pl011_get_poll_char(struct uart_port *port)
1610{
1611	struct uart_amba_port *uap =
1612	    container_of(port, struct uart_amba_port, port);
1613	unsigned int status;
1614
1615	/*
1616	 * The caller might need IRQs lowered, e.g. if used with KDB NMI
1617	 * debugger.
1618	 */
1619	pl011_quiesce_irqs(port);
1620
1621	status = pl011_read(uap, REG_FR);
1622	if (status & UART01x_FR_RXFE)
1623		return NO_POLL_CHAR;
1624
1625	return pl011_read(uap, REG_DR);
1626}
1627
1628static void pl011_put_poll_char(struct uart_port *port,
1629			 unsigned char ch)
1630{
1631	struct uart_amba_port *uap =
1632	    container_of(port, struct uart_amba_port, port);
1633
1634	while (pl011_read(uap, REG_FR) & UART01x_FR_TXFF)
1635		cpu_relax();
1636
1637	pl011_write(ch, uap, REG_DR);
1638}
1639
1640#endif /* CONFIG_CONSOLE_POLL */
1641
1642static int pl011_hwinit(struct uart_port *port)
1643{
1644	struct uart_amba_port *uap =
1645	    container_of(port, struct uart_amba_port, port);
1646	int retval;
1647
1648	/* Optionaly enable pins to be muxed in and configured */
1649	pinctrl_pm_select_default_state(port->dev);
1650
1651	/*
1652	 * Try to enable the clock producer.
1653	 */
1654	retval = clk_prepare_enable(uap->clk);
1655	if (retval)
1656		return retval;
1657
1658	uap->port.uartclk = clk_get_rate(uap->clk);
1659
1660	/* Clear pending error and receive interrupts */
1661	pl011_write(UART011_OEIS | UART011_BEIS | UART011_PEIS |
1662		    UART011_FEIS | UART011_RTIS | UART011_RXIS,
1663		    uap, REG_ICR);
1664
1665	/*
1666	 * Save interrupts enable mask, and enable RX interrupts in case if
1667	 * the interrupt is used for NMI entry.
1668	 */
1669	uap->im = pl011_read(uap, REG_IMSC);
1670	pl011_write(UART011_RTIM | UART011_RXIM, uap, REG_IMSC);
 
1671
1672	if (dev_get_platdata(uap->port.dev)) {
1673		struct amba_pl011_data *plat;
1674
1675		plat = dev_get_platdata(uap->port.dev);
1676		if (plat->init)
1677			plat->init();
1678	}
1679	return 0;
1680}
1681
1682static bool pl011_split_lcrh(const struct uart_amba_port *uap)
1683{
1684	return pl011_reg_to_offset(uap, REG_LCRH_RX) !=
1685	       pl011_reg_to_offset(uap, REG_LCRH_TX);
1686}
1687
1688static void pl011_write_lcr_h(struct uart_amba_port *uap, unsigned int lcr_h)
1689{
1690	pl011_write(lcr_h, uap, REG_LCRH_RX);
1691	if (pl011_split_lcrh(uap)) {
1692		int i;
1693		/*
1694		 * Wait 10 PCLKs before writing LCRH_TX register,
1695		 * to get this delay write read only register 10 times
1696		 */
1697		for (i = 0; i < 10; ++i)
1698			pl011_write(0xff, uap, REG_MIS);
1699		pl011_write(lcr_h, uap, REG_LCRH_TX);
1700	}
1701}
 
 
 
 
 
 
 
 
 
1702
1703static int pl011_allocate_irq(struct uart_amba_port *uap)
1704{
1705	pl011_write(uap->im, uap, REG_IMSC);
 
1706
1707	return request_irq(uap->port.irq, pl011_int, IRQF_SHARED, "uart-pl011", uap);
1708}
1709
1710/*
1711 * Enable interrupts, only timeouts when using DMA
1712 * if initial RX DMA job failed, start in interrupt mode
1713 * as well.
1714 */
1715static void pl011_enable_interrupts(struct uart_amba_port *uap)
1716{
1717	unsigned int i;
1718
1719	spin_lock_irq(&uap->port.lock);
1720
1721	/* Clear out any spuriously appearing RX interrupts */
1722	pl011_write(UART011_RTIS | UART011_RXIS, uap, REG_ICR);
1723
1724	/*
1725	 * RXIS is asserted only when the RX FIFO transitions from below
1726	 * to above the trigger threshold.  If the RX FIFO is already
1727	 * full to the threshold this can't happen and RXIS will now be
1728	 * stuck off.  Drain the RX FIFO explicitly to fix this:
1729	 */
1730	for (i = 0; i < uap->fifosize * 2; ++i) {
1731		if (pl011_read(uap, REG_FR) & UART01x_FR_RXFE)
1732			break;
1733
1734		pl011_read(uap, REG_DR);
1735	}
1736
1737	uap->im = UART011_RTIM;
1738	if (!pl011_dma_rx_running(uap))
1739		uap->im |= UART011_RXIM;
1740	pl011_write(uap->im, uap, REG_IMSC);
1741	spin_unlock_irq(&uap->port.lock);
1742}
1743
1744static int pl011_startup(struct uart_port *port)
1745{
1746	struct uart_amba_port *uap =
1747	    container_of(port, struct uart_amba_port, port);
1748	unsigned int cr;
1749	int retval;
1750
1751	retval = pl011_hwinit(port);
1752	if (retval)
1753		goto clk_dis;
1754
1755	retval = pl011_allocate_irq(uap);
1756	if (retval)
1757		goto clk_dis;
1758
1759	pl011_write(uap->vendor->ifls, uap, REG_IFLS);
1760
1761	spin_lock_irq(&uap->port.lock);
1762
1763	/* restore RTS and DTR */
1764	cr = uap->old_cr & (UART011_CR_RTS | UART011_CR_DTR);
1765	cr |= UART01x_CR_UARTEN | UART011_CR_RXE | UART011_CR_TXE;
1766	pl011_write(cr, uap, REG_CR);
1767
1768	spin_unlock_irq(&uap->port.lock);
1769
1770	/*
1771	 * initialise the old status of the modem signals
1772	 */
1773	uap->old_status = pl011_read(uap, REG_FR) & UART01x_FR_MODEM_ANY;
1774
1775	/* Startup DMA */
1776	pl011_dma_startup(uap);
1777
1778	pl011_enable_interrupts(uap);
1779
1780	return 0;
1781
1782 clk_dis:
1783	clk_disable_unprepare(uap->clk);
 
1784	return retval;
1785}
1786
1787static int sbsa_uart_startup(struct uart_port *port)
1788{
1789	struct uart_amba_port *uap =
1790		container_of(port, struct uart_amba_port, port);
1791	int retval;
1792
1793	retval = pl011_hwinit(port);
1794	if (retval)
1795		return retval;
1796
1797	retval = pl011_allocate_irq(uap);
1798	if (retval)
1799		return retval;
1800
1801	/* The SBSA UART does not support any modem status lines. */
1802	uap->old_status = 0;
1803
1804	pl011_enable_interrupts(uap);
1805
1806	return 0;
1807}
1808
1809static void pl011_shutdown_channel(struct uart_amba_port *uap,
1810					unsigned int lcrh)
1811{
1812      unsigned long val;
1813
1814      val = pl011_read(uap, lcrh);
1815      val &= ~(UART01x_LCRH_BRK | UART01x_LCRH_FEN);
1816      pl011_write(val, uap, lcrh);
1817}
1818
1819/*
1820 * disable the port. It should not disable RTS and DTR.
1821 * Also RTS and DTR state should be preserved to restore
1822 * it during startup().
1823 */
1824static void pl011_disable_uart(struct uart_amba_port *uap)
1825{
1826	unsigned int cr;
1827
1828	uap->port.status &= ~(UPSTAT_AUTOCTS | UPSTAT_AUTORTS);
1829	spin_lock_irq(&uap->port.lock);
1830	cr = pl011_read(uap, REG_CR);
1831	uap->old_cr = cr;
1832	cr &= UART011_CR_RTS | UART011_CR_DTR;
1833	cr |= UART01x_CR_UARTEN | UART011_CR_TXE;
1834	pl011_write(cr, uap, REG_CR);
1835	spin_unlock_irq(&uap->port.lock);
1836
1837	/*
1838	 * disable break condition and fifos
1839	 */
1840	pl011_shutdown_channel(uap, REG_LCRH_RX);
1841	if (pl011_split_lcrh(uap))
1842		pl011_shutdown_channel(uap, REG_LCRH_TX);
1843}
1844
1845static void pl011_disable_interrupts(struct uart_amba_port *uap)
1846{
1847	spin_lock_irq(&uap->port.lock);
1848
1849	/* mask all interrupts and clear all pending ones */
1850	uap->im = 0;
1851	pl011_write(uap->im, uap, REG_IMSC);
1852	pl011_write(0xffff, uap, REG_ICR);
1853
1854	spin_unlock_irq(&uap->port.lock);
1855}
1856
1857static void pl011_shutdown(struct uart_port *port)
1858{
1859	struct uart_amba_port *uap =
1860		container_of(port, struct uart_amba_port, port);
1861
1862	pl011_disable_interrupts(uap);
1863
1864	pl011_dma_shutdown(uap);
1865
 
 
 
1866	free_irq(uap->port.irq, uap);
1867
1868	pl011_disable_uart(uap);
 
 
 
 
 
 
 
 
 
 
 
1869
1870	/*
1871	 * Shut down the clock producer
1872	 */
1873	clk_disable_unprepare(uap->clk);
1874	/* Optionally let pins go into sleep states */
1875	pinctrl_pm_select_sleep_state(port->dev);
1876
1877	if (dev_get_platdata(uap->port.dev)) {
1878		struct amba_pl011_data *plat;
1879
1880		plat = dev_get_platdata(uap->port.dev);
1881		if (plat->exit)
1882			plat->exit();
1883	}
1884
1885	if (uap->port.ops->flush_buffer)
1886		uap->port.ops->flush_buffer(port);
1887}
1888
1889static void sbsa_uart_shutdown(struct uart_port *port)
1890{
1891	struct uart_amba_port *uap =
1892		container_of(port, struct uart_amba_port, port);
1893
1894	pl011_disable_interrupts(uap);
1895
1896	free_irq(uap->port.irq, uap);
1897
1898	if (uap->port.ops->flush_buffer)
1899		uap->port.ops->flush_buffer(port);
1900}
1901
1902static void
1903pl011_setup_status_masks(struct uart_port *port, struct ktermios *termios)
1904{
1905	port->read_status_mask = UART011_DR_OE | 255;
1906	if (termios->c_iflag & INPCK)
1907		port->read_status_mask |= UART011_DR_FE | UART011_DR_PE;
1908	if (termios->c_iflag & (IGNBRK | BRKINT | PARMRK))
1909		port->read_status_mask |= UART011_DR_BE;
1910
1911	/*
1912	 * Characters to ignore
1913	 */
1914	port->ignore_status_mask = 0;
1915	if (termios->c_iflag & IGNPAR)
1916		port->ignore_status_mask |= UART011_DR_FE | UART011_DR_PE;
1917	if (termios->c_iflag & IGNBRK) {
1918		port->ignore_status_mask |= UART011_DR_BE;
1919		/*
1920		 * If we're ignoring parity and break indicators,
1921		 * ignore overruns too (for real raw support).
1922		 */
1923		if (termios->c_iflag & IGNPAR)
1924			port->ignore_status_mask |= UART011_DR_OE;
1925	}
1926
1927	/*
1928	 * Ignore all characters if CREAD is not set.
1929	 */
1930	if ((termios->c_cflag & CREAD) == 0)
1931		port->ignore_status_mask |= UART_DUMMY_DR_RX;
1932}
1933
1934static void
1935pl011_set_termios(struct uart_port *port, struct ktermios *termios,
1936		     struct ktermios *old)
1937{
1938	struct uart_amba_port *uap =
1939	    container_of(port, struct uart_amba_port, port);
1940	unsigned int lcr_h, old_cr;
1941	unsigned long flags;
1942	unsigned int baud, quot, clkdiv;
1943
1944	if (uap->vendor->oversampling)
1945		clkdiv = 8;
1946	else
1947		clkdiv = 16;
1948
1949	/*
1950	 * Ask the core to calculate the divisor for us.
1951	 */
1952	baud = uart_get_baud_rate(port, termios, old, 0,
1953				  port->uartclk / clkdiv);
1954#ifdef CONFIG_DMA_ENGINE
1955	/*
1956	 * Adjust RX DMA polling rate with baud rate if not specified.
1957	 */
1958	if (uap->dmarx.auto_poll_rate)
1959		uap->dmarx.poll_rate = DIV_ROUND_UP(10000000, baud);
1960#endif
1961
1962	if (baud > port->uartclk/16)
1963		quot = DIV_ROUND_CLOSEST(port->uartclk * 8, baud);
1964	else
1965		quot = DIV_ROUND_CLOSEST(port->uartclk * 4, baud);
1966
1967	switch (termios->c_cflag & CSIZE) {
1968	case CS5:
1969		lcr_h = UART01x_LCRH_WLEN_5;
1970		break;
1971	case CS6:
1972		lcr_h = UART01x_LCRH_WLEN_6;
1973		break;
1974	case CS7:
1975		lcr_h = UART01x_LCRH_WLEN_7;
1976		break;
1977	default: // CS8
1978		lcr_h = UART01x_LCRH_WLEN_8;
1979		break;
1980	}
1981	if (termios->c_cflag & CSTOPB)
1982		lcr_h |= UART01x_LCRH_STP2;
1983	if (termios->c_cflag & PARENB) {
1984		lcr_h |= UART01x_LCRH_PEN;
1985		if (!(termios->c_cflag & PARODD))
1986			lcr_h |= UART01x_LCRH_EPS;
1987		if (termios->c_cflag & CMSPAR)
1988			lcr_h |= UART011_LCRH_SPS;
1989	}
1990	if (uap->fifosize > 1)
1991		lcr_h |= UART01x_LCRH_FEN;
1992
1993	spin_lock_irqsave(&port->lock, flags);
1994
1995	/*
1996	 * Update the per-port timeout.
1997	 */
1998	uart_update_timeout(port, termios->c_cflag, baud);
1999
2000	pl011_setup_status_masks(port, termios);
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
2001
2002	if (UART_ENABLE_MS(port, termios->c_cflag))
2003		pl011_enable_ms(port);
2004
2005	/* first, disable everything */
2006	old_cr = pl011_read(uap, REG_CR);
2007	pl011_write(0, uap, REG_CR);
2008
2009	if (termios->c_cflag & CRTSCTS) {
2010		if (old_cr & UART011_CR_RTS)
2011			old_cr |= UART011_CR_RTSEN;
2012
2013		old_cr |= UART011_CR_CTSEN;
2014		port->status |= UPSTAT_AUTOCTS | UPSTAT_AUTORTS;
2015	} else {
2016		old_cr &= ~(UART011_CR_CTSEN | UART011_CR_RTSEN);
2017		port->status &= ~(UPSTAT_AUTOCTS | UPSTAT_AUTORTS);
2018	}
2019
2020	if (uap->vendor->oversampling) {
2021		if (baud > port->uartclk / 16)
2022			old_cr |= ST_UART011_CR_OVSFACT;
2023		else
2024			old_cr &= ~ST_UART011_CR_OVSFACT;
2025	}
2026
2027	/*
2028	 * Workaround for the ST Micro oversampling variants to
2029	 * increase the bitrate slightly, by lowering the divisor,
2030	 * to avoid delayed sampling of start bit at high speeds,
2031	 * else we see data corruption.
2032	 */
2033	if (uap->vendor->oversampling) {
2034		if ((baud >= 3000000) && (baud < 3250000) && (quot > 1))
2035			quot -= 1;
2036		else if ((baud > 3250000) && (quot > 2))
2037			quot -= 2;
2038	}
2039	/* Set baud rate */
2040	pl011_write(quot & 0x3f, uap, REG_FBRD);
2041	pl011_write(quot >> 6, uap, REG_IBRD);
2042
2043	/*
2044	 * ----------v----------v----------v----------v-----
2045	 * NOTE: REG_LCRH_TX and REG_LCRH_RX MUST BE WRITTEN AFTER
2046	 * REG_FBRD & REG_IBRD.
2047	 * ----------^----------^----------^----------^-----
2048	 */
2049	pl011_write_lcr_h(uap, lcr_h);
2050	pl011_write(old_cr, uap, REG_CR);
 
 
 
 
 
 
 
 
 
 
2051
2052	spin_unlock_irqrestore(&port->lock, flags);
2053}
2054
2055static void
2056sbsa_uart_set_termios(struct uart_port *port, struct ktermios *termios,
2057		      struct ktermios *old)
2058{
2059	struct uart_amba_port *uap =
2060	    container_of(port, struct uart_amba_port, port);
2061	unsigned long flags;
2062
2063	tty_termios_encode_baud_rate(termios, uap->fixed_baud, uap->fixed_baud);
2064
2065	/* The SBSA UART only supports 8n1 without hardware flow control. */
2066	termios->c_cflag &= ~(CSIZE | CSTOPB | PARENB | PARODD);
2067	termios->c_cflag &= ~(CMSPAR | CRTSCTS);
2068	termios->c_cflag |= CS8 | CLOCAL;
2069
2070	spin_lock_irqsave(&port->lock, flags);
2071	uart_update_timeout(port, CS8, uap->fixed_baud);
2072	pl011_setup_status_masks(port, termios);
2073	spin_unlock_irqrestore(&port->lock, flags);
2074}
2075
2076static const char *pl011_type(struct uart_port *port)
2077{
2078	struct uart_amba_port *uap =
2079	    container_of(port, struct uart_amba_port, port);
2080	return uap->port.type == PORT_AMBA ? uap->type : NULL;
2081}
2082
2083/*
2084 * Release the memory region(s) being used by 'port'
2085 */
2086static void pl011_release_port(struct uart_port *port)
2087{
2088	release_mem_region(port->mapbase, SZ_4K);
2089}
2090
2091/*
2092 * Request the memory region(s) being used by 'port'
2093 */
2094static int pl011_request_port(struct uart_port *port)
2095{
2096	return request_mem_region(port->mapbase, SZ_4K, "uart-pl011")
2097			!= NULL ? 0 : -EBUSY;
2098}
2099
2100/*
2101 * Configure/autoconfigure the port.
2102 */
2103static void pl011_config_port(struct uart_port *port, int flags)
2104{
2105	if (flags & UART_CONFIG_TYPE) {
2106		port->type = PORT_AMBA;
2107		pl011_request_port(port);
2108	}
2109}
2110
2111/*
2112 * verify the new serial_struct (for TIOCSSERIAL).
2113 */
2114static int pl011_verify_port(struct uart_port *port, struct serial_struct *ser)
2115{
2116	int ret = 0;
2117	if (ser->type != PORT_UNKNOWN && ser->type != PORT_AMBA)
2118		ret = -EINVAL;
2119	if (ser->irq < 0 || ser->irq >= nr_irqs)
2120		ret = -EINVAL;
2121	if (ser->baud_base < 9600)
2122		ret = -EINVAL;
2123	return ret;
2124}
2125
2126static const struct uart_ops amba_pl011_pops = {
2127	.tx_empty	= pl011_tx_empty,
2128	.set_mctrl	= pl011_set_mctrl,
2129	.get_mctrl	= pl011_get_mctrl,
2130	.stop_tx	= pl011_stop_tx,
2131	.start_tx	= pl011_start_tx,
2132	.stop_rx	= pl011_stop_rx,
2133	.enable_ms	= pl011_enable_ms,
2134	.break_ctl	= pl011_break_ctl,
2135	.startup	= pl011_startup,
2136	.shutdown	= pl011_shutdown,
2137	.flush_buffer	= pl011_dma_flush_buffer,
2138	.set_termios	= pl011_set_termios,
2139	.type		= pl011_type,
2140	.release_port	= pl011_release_port,
2141	.request_port	= pl011_request_port,
2142	.config_port	= pl011_config_port,
2143	.verify_port	= pl011_verify_port,
2144#ifdef CONFIG_CONSOLE_POLL
2145	.poll_init     = pl011_hwinit,
2146	.poll_get_char = pl011_get_poll_char,
2147	.poll_put_char = pl011_put_poll_char,
2148#endif
2149};
2150
2151static void sbsa_uart_set_mctrl(struct uart_port *port, unsigned int mctrl)
2152{
2153}
2154
2155static unsigned int sbsa_uart_get_mctrl(struct uart_port *port)
2156{
2157	return 0;
2158}
2159
2160static const struct uart_ops sbsa_uart_pops = {
2161	.tx_empty	= pl011_tx_empty,
2162	.set_mctrl	= sbsa_uart_set_mctrl,
2163	.get_mctrl	= sbsa_uart_get_mctrl,
2164	.stop_tx	= pl011_stop_tx,
2165	.start_tx	= pl011_start_tx,
2166	.stop_rx	= pl011_stop_rx,
2167	.startup	= sbsa_uart_startup,
2168	.shutdown	= sbsa_uart_shutdown,
2169	.set_termios	= sbsa_uart_set_termios,
2170	.type		= pl011_type,
2171	.release_port	= pl011_release_port,
2172	.request_port	= pl011_request_port,
2173	.config_port	= pl011_config_port,
2174	.verify_port	= pl011_verify_port,
2175#ifdef CONFIG_CONSOLE_POLL
2176	.poll_init     = pl011_hwinit,
2177	.poll_get_char = pl011_get_poll_char,
2178	.poll_put_char = pl011_put_poll_char,
2179#endif
2180};
2181
2182static struct uart_amba_port *amba_ports[UART_NR];
2183
2184#ifdef CONFIG_SERIAL_AMBA_PL011_CONSOLE
2185
2186static void pl011_console_putchar(struct uart_port *port, int ch)
2187{
2188	struct uart_amba_port *uap =
2189	    container_of(port, struct uart_amba_port, port);
2190
2191	while (pl011_read(uap, REG_FR) & UART01x_FR_TXFF)
2192		cpu_relax();
2193	pl011_write(ch, uap, REG_DR);
2194}
2195
2196static void
2197pl011_console_write(struct console *co, const char *s, unsigned int count)
2198{
2199	struct uart_amba_port *uap = amba_ports[co->index];
2200	unsigned int old_cr = 0, new_cr;
2201	unsigned long flags;
2202	int locked = 1;
2203
2204	clk_enable(uap->clk);
2205
2206	local_irq_save(flags);
2207	if (uap->port.sysrq)
2208		locked = 0;
2209	else if (oops_in_progress)
2210		locked = spin_trylock(&uap->port.lock);
2211	else
2212		spin_lock(&uap->port.lock);
2213
2214	/*
2215	 *	First save the CR then disable the interrupts
2216	 */
2217	if (!uap->vendor->always_enabled) {
2218		old_cr = pl011_read(uap, REG_CR);
2219		new_cr = old_cr & ~UART011_CR_CTSEN;
2220		new_cr |= UART01x_CR_UARTEN | UART011_CR_TXE;
2221		pl011_write(new_cr, uap, REG_CR);
2222	}
2223
2224	uart_console_write(&uap->port, s, count, pl011_console_putchar);
2225
2226	/*
2227	 *	Finally, wait for transmitter to become empty and restore the
2228	 *	TCR. Allow feature register bits to be inverted to work around
2229	 *	errata.
2230	 */
2231	while ((pl011_read(uap, REG_FR) ^ uap->vendor->inv_fr)
2232						& uap->vendor->fr_busy)
2233		cpu_relax();
2234	if (!uap->vendor->always_enabled)
2235		pl011_write(old_cr, uap, REG_CR);
2236
2237	if (locked)
2238		spin_unlock(&uap->port.lock);
2239	local_irq_restore(flags);
2240
2241	clk_disable(uap->clk);
2242}
2243
2244static void pl011_console_get_options(struct uart_amba_port *uap, int *baud,
2245				      int *parity, int *bits)
 
2246{
2247	if (pl011_read(uap, REG_CR) & UART01x_CR_UARTEN) {
2248		unsigned int lcr_h, ibrd, fbrd;
2249
2250		lcr_h = pl011_read(uap, REG_LCRH_TX);
2251
2252		*parity = 'n';
2253		if (lcr_h & UART01x_LCRH_PEN) {
2254			if (lcr_h & UART01x_LCRH_EPS)
2255				*parity = 'e';
2256			else
2257				*parity = 'o';
2258		}
2259
2260		if ((lcr_h & 0x60) == UART01x_LCRH_WLEN_7)
2261			*bits = 7;
2262		else
2263			*bits = 8;
2264
2265		ibrd = pl011_read(uap, REG_IBRD);
2266		fbrd = pl011_read(uap, REG_FBRD);
2267
2268		*baud = uap->port.uartclk * 4 / (64 * ibrd + fbrd);
2269
2270		if (uap->vendor->oversampling) {
2271			if (pl011_read(uap, REG_CR)
2272				  & ST_UART011_CR_OVSFACT)
2273				*baud *= 2;
2274		}
2275	}
2276}
2277
2278static int pl011_console_setup(struct console *co, char *options)
2279{
2280	struct uart_amba_port *uap;
2281	int baud = 38400;
2282	int bits = 8;
2283	int parity = 'n';
2284	int flow = 'n';
2285	int ret;
2286
2287	/*
2288	 * Check whether an invalid uart number has been specified, and
2289	 * if so, search for the first available port that does have
2290	 * console support.
2291	 */
2292	if (co->index >= UART_NR)
2293		co->index = 0;
2294	uap = amba_ports[co->index];
2295	if (!uap)
2296		return -ENODEV;
2297
2298	/* Allow pins to be muxed in and configured */
2299	pinctrl_pm_select_default_state(uap->port.dev);
2300
2301	ret = clk_prepare(uap->clk);
2302	if (ret)
2303		return ret;
2304
2305	if (dev_get_platdata(uap->port.dev)) {
2306		struct amba_pl011_data *plat;
2307
2308		plat = dev_get_platdata(uap->port.dev);
2309		if (plat->init)
2310			plat->init();
2311	}
2312
2313	uap->port.uartclk = clk_get_rate(uap->clk);
2314
2315	if (uap->vendor->fixed_options) {
2316		baud = uap->fixed_baud;
2317	} else {
2318		if (options)
2319			uart_parse_options(options,
2320					   &baud, &parity, &bits, &flow);
2321		else
2322			pl011_console_get_options(uap, &baud, &parity, &bits);
2323	}
2324
2325	return uart_set_options(&uap->port, co, baud, parity, bits, flow);
2326}
2327
2328/**
2329 *	pl011_console_match - non-standard console matching
2330 *	@co:	  registering console
2331 *	@name:	  name from console command line
2332 *	@idx:	  index from console command line
2333 *	@options: ptr to option string from console command line
2334 *
2335 *	Only attempts to match console command lines of the form:
2336 *	    console=pl011,mmio|mmio32,<addr>[,<options>]
2337 *	    console=pl011,0x<addr>[,<options>]
2338 *	This form is used to register an initial earlycon boot console and
2339 *	replace it with the amba_console at pl011 driver init.
2340 *
2341 *	Performs console setup for a match (as required by interface)
2342 *	If no <options> are specified, then assume the h/w is already setup.
2343 *
2344 *	Returns 0 if console matches; otherwise non-zero to use default matching
2345 */
2346static int pl011_console_match(struct console *co, char *name, int idx,
2347			       char *options)
2348{
2349	unsigned char iotype;
2350	resource_size_t addr;
2351	int i;
2352
2353	/*
2354	 * Systems affected by the Qualcomm Technologies QDF2400 E44 erratum
2355	 * have a distinct console name, so make sure we check for that.
2356	 * The actual implementation of the erratum occurs in the probe
2357	 * function.
2358	 */
2359	if ((strcmp(name, "qdf2400_e44") != 0) && (strcmp(name, "pl011") != 0))
2360		return -ENODEV;
2361
2362	if (uart_parse_earlycon(options, &iotype, &addr, &options))
2363		return -ENODEV;
2364
2365	if (iotype != UPIO_MEM && iotype != UPIO_MEM32)
2366		return -ENODEV;
2367
2368	/* try to match the port specified on the command line */
2369	for (i = 0; i < ARRAY_SIZE(amba_ports); i++) {
2370		struct uart_port *port;
2371
2372		if (!amba_ports[i])
2373			continue;
2374
2375		port = &amba_ports[i]->port;
2376
2377		if (port->mapbase != addr)
2378			continue;
2379
2380		co->index = i;
2381		port->cons = co;
2382		return pl011_console_setup(co, options);
2383	}
2384
2385	return -ENODEV;
2386}
2387
2388static struct uart_driver amba_reg;
2389static struct console amba_console = {
2390	.name		= "ttyAMA",
2391	.write		= pl011_console_write,
2392	.device		= uart_console_device,
2393	.setup		= pl011_console_setup,
2394	.match		= pl011_console_match,
2395	.flags		= CON_PRINTBUFFER | CON_ANYTIME,
2396	.index		= -1,
2397	.data		= &amba_reg,
2398};
2399
2400#define AMBA_CONSOLE	(&amba_console)
2401
2402static void qdf2400_e44_putc(struct uart_port *port, int c)
2403{
2404	while (readl(port->membase + UART01x_FR) & UART01x_FR_TXFF)
2405		cpu_relax();
2406	writel(c, port->membase + UART01x_DR);
2407	while (!(readl(port->membase + UART01x_FR) & UART011_FR_TXFE))
2408		cpu_relax();
2409}
2410
2411static void qdf2400_e44_early_write(struct console *con, const char *s, unsigned n)
2412{
2413	struct earlycon_device *dev = con->data;
2414
2415	uart_console_write(&dev->port, s, n, qdf2400_e44_putc);
2416}
2417
2418static void pl011_putc(struct uart_port *port, int c)
2419{
2420	while (readl(port->membase + UART01x_FR) & UART01x_FR_TXFF)
2421		cpu_relax();
2422	if (port->iotype == UPIO_MEM32)
2423		writel(c, port->membase + UART01x_DR);
2424	else
2425		writeb(c, port->membase + UART01x_DR);
2426	while (readl(port->membase + UART01x_FR) & UART01x_FR_BUSY)
2427		cpu_relax();
2428}
2429
2430static void pl011_early_write(struct console *con, const char *s, unsigned n)
2431{
2432	struct earlycon_device *dev = con->data;
2433
2434	uart_console_write(&dev->port, s, n, pl011_putc);
2435}
2436
2437#ifdef CONFIG_CONSOLE_POLL
2438static int pl011_getc(struct uart_port *port)
2439{
2440	if (readl(port->membase + UART01x_FR) & UART01x_FR_RXFE)
2441		return NO_POLL_CHAR;
2442
2443	if (port->iotype == UPIO_MEM32)
2444		return readl(port->membase + UART01x_DR);
2445	else
2446		return readb(port->membase + UART01x_DR);
2447}
2448
2449static int pl011_early_read(struct console *con, char *s, unsigned int n)
2450{
2451	struct earlycon_device *dev = con->data;
2452	int ch, num_read = 0;
2453
2454	while (num_read < n) {
2455		ch = pl011_getc(&dev->port);
2456		if (ch == NO_POLL_CHAR)
2457			break;
2458
2459		s[num_read++] = ch;
2460	}
2461
2462	return num_read;
2463}
2464#else
2465#define pl011_early_read NULL
2466#endif
2467
2468/*
2469 * On non-ACPI systems, earlycon is enabled by specifying
2470 * "earlycon=pl011,<address>" on the kernel command line.
2471 *
2472 * On ACPI ARM64 systems, an "early" console is enabled via the SPCR table,
2473 * by specifying only "earlycon" on the command line.  Because it requires
2474 * SPCR, the console starts after ACPI is parsed, which is later than a
2475 * traditional early console.
2476 *
2477 * To get the traditional early console that starts before ACPI is parsed,
2478 * specify the full "earlycon=pl011,<address>" option.
2479 */
2480static int __init pl011_early_console_setup(struct earlycon_device *device,
2481					    const char *opt)
2482{
2483	if (!device->port.membase)
2484		return -ENODEV;
2485
2486	device->con->write = pl011_early_write;
2487	device->con->read = pl011_early_read;
2488
2489	return 0;
2490}
2491OF_EARLYCON_DECLARE(pl011, "arm,pl011", pl011_early_console_setup);
2492OF_EARLYCON_DECLARE(pl011, "arm,sbsa-uart", pl011_early_console_setup);
2493
2494/*
2495 * On Qualcomm Datacenter Technologies QDF2400 SOCs affected by
2496 * Erratum 44, traditional earlycon can be enabled by specifying
2497 * "earlycon=qdf2400_e44,<address>".  Any options are ignored.
2498 *
2499 * Alternatively, you can just specify "earlycon", and the early console
2500 * will be enabled with the information from the SPCR table.  In this
2501 * case, the SPCR code will detect the need for the E44 work-around,
2502 * and set the console name to "qdf2400_e44".
2503 */
2504static int __init
2505qdf2400_e44_early_console_setup(struct earlycon_device *device,
2506				const char *opt)
2507{
2508	if (!device->port.membase)
2509		return -ENODEV;
2510
2511	device->con->write = qdf2400_e44_early_write;
2512	return 0;
2513}
2514EARLYCON_DECLARE(qdf2400_e44, qdf2400_e44_early_console_setup);
2515
2516#else
2517#define AMBA_CONSOLE	NULL
2518#endif
2519
2520static struct uart_driver amba_reg = {
2521	.owner			= THIS_MODULE,
2522	.driver_name		= "ttyAMA",
2523	.dev_name		= "ttyAMA",
2524	.major			= SERIAL_AMBA_MAJOR,
2525	.minor			= SERIAL_AMBA_MINOR,
2526	.nr			= UART_NR,
2527	.cons			= AMBA_CONSOLE,
2528};
2529
2530static int pl011_probe_dt_alias(int index, struct device *dev)
2531{
2532	struct device_node *np;
2533	static bool seen_dev_with_alias = false;
2534	static bool seen_dev_without_alias = false;
2535	int ret = index;
2536
2537	if (!IS_ENABLED(CONFIG_OF))
2538		return ret;
 
2539
2540	np = dev->of_node;
2541	if (!np)
2542		return ret;
 
2543
2544	ret = of_alias_get_id(np, "serial");
2545	if (ret < 0) {
2546		seen_dev_without_alias = true;
2547		ret = index;
2548	} else {
2549		seen_dev_with_alias = true;
2550		if (ret >= ARRAY_SIZE(amba_ports) || amba_ports[ret] != NULL) {
2551			dev_warn(dev, "requested serial port %d  not available.\n", ret);
2552			ret = index;
2553		}
2554	}
2555
2556	if (seen_dev_with_alias && seen_dev_without_alias)
2557		dev_warn(dev, "aliased and non-aliased serial devices found in device tree. Serial port enumeration may be unpredictable.\n");
2558
2559	return ret;
2560}
2561
2562/* unregisters the driver also if no more ports are left */
2563static void pl011_unregister_port(struct uart_amba_port *uap)
2564{
2565	int i;
2566	bool busy = false;
2567
2568	for (i = 0; i < ARRAY_SIZE(amba_ports); i++) {
2569		if (amba_ports[i] == uap)
2570			amba_ports[i] = NULL;
2571		else if (amba_ports[i])
2572			busy = true;
2573	}
2574	pl011_dma_remove(uap);
2575	if (!busy)
2576		uart_unregister_driver(&amba_reg);
2577}
2578
2579static int pl011_find_free_port(void)
2580{
2581	int i;
2582
2583	for (i = 0; i < ARRAY_SIZE(amba_ports); i++)
2584		if (amba_ports[i] == NULL)
2585			return i;
2586
2587	return -EBUSY;
2588}
2589
2590static int pl011_setup_port(struct device *dev, struct uart_amba_port *uap,
2591			    struct resource *mmiobase, int index)
2592{
2593	void __iomem *base;
2594
2595	base = devm_ioremap_resource(dev, mmiobase);
2596	if (IS_ERR(base))
2597		return PTR_ERR(base);
2598
2599	index = pl011_probe_dt_alias(index, dev);
2600
2601	uap->old_cr = 0;
2602	uap->port.dev = dev;
2603	uap->port.mapbase = mmiobase->start;
2604	uap->port.membase = base;
2605	uap->port.fifosize = uap->fifosize;
2606	uap->port.has_sysrq = IS_ENABLED(CONFIG_SERIAL_AMBA_PL011_CONSOLE);
2607	uap->port.flags = UPF_BOOT_AUTOCONF;
2608	uap->port.line = index;
2609
2610	amba_ports[index] = uap;
2611
2612	return 0;
2613}
2614
2615static int pl011_register_port(struct uart_amba_port *uap)
2616{
2617	int ret, i;
2618
2619	/* Ensure interrupts from this UART are masked and cleared */
2620	pl011_write(0, uap, REG_IMSC);
2621	pl011_write(0xffff, uap, REG_ICR);
2622
2623	if (!amba_reg.state) {
2624		ret = uart_register_driver(&amba_reg);
2625		if (ret < 0) {
2626			dev_err(uap->port.dev,
2627				"Failed to register AMBA-PL011 driver\n");
2628			for (i = 0; i < ARRAY_SIZE(amba_ports); i++)
2629				if (amba_ports[i] == uap)
2630					amba_ports[i] = NULL;
2631			return ret;
2632		}
2633	}
2634
2635	ret = uart_add_one_port(&amba_reg, &uap->port);
2636	if (ret)
2637		pl011_unregister_port(uap);
2638
2639	return ret;
2640}
2641
2642static int pl011_probe(struct amba_device *dev, const struct amba_id *id)
2643{
2644	struct uart_amba_port *uap;
2645	struct vendor_data *vendor = id->data;
2646	int portnr, ret;
2647
2648	portnr = pl011_find_free_port();
2649	if (portnr < 0)
2650		return portnr;
2651
2652	uap = devm_kzalloc(&dev->dev, sizeof(struct uart_amba_port),
2653			   GFP_KERNEL);
2654	if (!uap)
2655		return -ENOMEM;
2656
2657	uap->clk = devm_clk_get(&dev->dev, NULL);
2658	if (IS_ERR(uap->clk))
2659		return PTR_ERR(uap->clk);
2660
2661	uap->reg_offset = vendor->reg_offset;
2662	uap->vendor = vendor;
2663	uap->fifosize = vendor->get_fifosize(dev);
2664	uap->port.iotype = vendor->access_32b ? UPIO_MEM32 : UPIO_MEM;
 
 
 
 
 
 
2665	uap->port.irq = dev->irq[0];
 
2666	uap->port.ops = &amba_pl011_pops;
 
 
 
2667
2668	snprintf(uap->type, sizeof(uap->type), "PL011 rev%u", amba_rev(dev));
2669
2670	ret = pl011_setup_port(&dev->dev, uap, &dev->res, portnr);
2671	if (ret)
2672		return ret;
2673
2674	amba_set_drvdata(dev, uap);
2675
2676	return pl011_register_port(uap);
 
 
 
 
 
 
 
 
 
 
 
2677}
2678
2679static int pl011_remove(struct amba_device *dev)
2680{
2681	struct uart_amba_port *uap = amba_get_drvdata(dev);
 
 
 
2682
2683	uart_remove_one_port(&amba_reg, &uap->port);
2684	pl011_unregister_port(uap);
 
 
 
 
 
 
 
 
2685	return 0;
2686}
2687
2688#ifdef CONFIG_PM_SLEEP
2689static int pl011_suspend(struct device *dev)
2690{
2691	struct uart_amba_port *uap = dev_get_drvdata(dev);
2692
2693	if (!uap)
2694		return -EINVAL;
2695
2696	return uart_suspend_port(&amba_reg, &uap->port);
2697}
2698
2699static int pl011_resume(struct device *dev)
2700{
2701	struct uart_amba_port *uap = dev_get_drvdata(dev);
2702
2703	if (!uap)
2704		return -EINVAL;
2705
2706	return uart_resume_port(&amba_reg, &uap->port);
2707}
2708#endif
2709
2710static SIMPLE_DEV_PM_OPS(pl011_dev_pm_ops, pl011_suspend, pl011_resume);
2711
2712static int sbsa_uart_probe(struct platform_device *pdev)
2713{
2714	struct uart_amba_port *uap;
2715	struct resource *r;
2716	int portnr, ret;
2717	int baudrate;
2718
2719	/*
2720	 * Check the mandatory baud rate parameter in the DT node early
2721	 * so that we can easily exit with the error.
2722	 */
2723	if (pdev->dev.of_node) {
2724		struct device_node *np = pdev->dev.of_node;
2725
2726		ret = of_property_read_u32(np, "current-speed", &baudrate);
2727		if (ret)
2728			return ret;
2729	} else {
2730		baudrate = 115200;
2731	}
2732
2733	portnr = pl011_find_free_port();
2734	if (portnr < 0)
2735		return portnr;
2736
2737	uap = devm_kzalloc(&pdev->dev, sizeof(struct uart_amba_port),
2738			   GFP_KERNEL);
2739	if (!uap)
2740		return -ENOMEM;
2741
2742	ret = platform_get_irq(pdev, 0);
2743	if (ret < 0)
2744		return ret;
2745	uap->port.irq	= ret;
2746
2747#ifdef CONFIG_ACPI_SPCR_TABLE
2748	if (qdf2400_e44_present) {
2749		dev_info(&pdev->dev, "working around QDF2400 SoC erratum 44\n");
2750		uap->vendor = &vendor_qdt_qdf2400_e44;
2751	} else
2752#endif
2753		uap->vendor = &vendor_sbsa;
2754
2755	uap->reg_offset	= uap->vendor->reg_offset;
2756	uap->fifosize	= 32;
2757	uap->port.iotype = uap->vendor->access_32b ? UPIO_MEM32 : UPIO_MEM;
2758	uap->port.ops	= &sbsa_uart_pops;
2759	uap->fixed_baud = baudrate;
2760
2761	snprintf(uap->type, sizeof(uap->type), "SBSA");
2762
2763	r = platform_get_resource(pdev, IORESOURCE_MEM, 0);
2764
2765	ret = pl011_setup_port(&pdev->dev, uap, r, portnr);
2766	if (ret)
2767		return ret;
2768
2769	platform_set_drvdata(pdev, uap);
2770
2771	return pl011_register_port(uap);
2772}
2773
2774static int sbsa_uart_remove(struct platform_device *pdev)
2775{
2776	struct uart_amba_port *uap = platform_get_drvdata(pdev);
2777
2778	uart_remove_one_port(&amba_reg, &uap->port);
2779	pl011_unregister_port(uap);
2780	return 0;
2781}
2782
2783static const struct of_device_id sbsa_uart_of_match[] = {
2784	{ .compatible = "arm,sbsa-uart", },
2785	{},
2786};
2787MODULE_DEVICE_TABLE(of, sbsa_uart_of_match);
2788
2789static const struct acpi_device_id sbsa_uart_acpi_match[] = {
2790	{ "ARMH0011", 0 },
2791	{},
2792};
2793MODULE_DEVICE_TABLE(acpi, sbsa_uart_acpi_match);
2794
2795static struct platform_driver arm_sbsa_uart_platform_driver = {
2796	.probe		= sbsa_uart_probe,
2797	.remove		= sbsa_uart_remove,
2798	.driver	= {
2799		.name	= "sbsa-uart",
2800		.pm	= &pl011_dev_pm_ops,
2801		.of_match_table = of_match_ptr(sbsa_uart_of_match),
2802		.acpi_match_table = ACPI_PTR(sbsa_uart_acpi_match),
2803		.suppress_bind_attrs = IS_BUILTIN(CONFIG_SERIAL_AMBA_PL011),
2804	},
2805};
2806
2807static const struct amba_id pl011_ids[] = {
2808	{
2809		.id	= 0x00041011,
2810		.mask	= 0x000fffff,
2811		.data	= &vendor_arm,
2812	},
2813	{
2814		.id	= 0x00380802,
2815		.mask	= 0x00ffffff,
2816		.data	= &vendor_st,
2817	},
2818	{
2819		.id	= AMBA_LINUX_ID(0x00, 0x1, 0xffe),
2820		.mask	= 0x00ffffff,
2821		.data	= &vendor_zte,
2822	},
2823	{ 0, 0 },
2824};
2825
2826MODULE_DEVICE_TABLE(amba, pl011_ids);
2827
2828static struct amba_driver pl011_driver = {
2829	.drv = {
2830		.name	= "uart-pl011",
2831		.pm	= &pl011_dev_pm_ops,
2832		.suppress_bind_attrs = IS_BUILTIN(CONFIG_SERIAL_AMBA_PL011),
2833	},
2834	.id_table	= pl011_ids,
2835	.probe		= pl011_probe,
2836	.remove		= pl011_remove,
 
 
 
 
2837};
2838
2839static int __init pl011_init(void)
2840{
 
2841	printk(KERN_INFO "Serial: AMBA PL011 UART driver\n");
2842
2843	if (platform_driver_register(&arm_sbsa_uart_platform_driver))
2844		pr_warn("could not register SBSA UART platform driver\n");
2845	return amba_driver_register(&pl011_driver);
 
 
 
 
2846}
2847
2848static void __exit pl011_exit(void)
2849{
2850	platform_driver_unregister(&arm_sbsa_uart_platform_driver);
2851	amba_driver_unregister(&pl011_driver);
 
2852}
2853
2854/*
2855 * While this can be a module, if builtin it's most likely the console
2856 * So let's leave module_exit but move module_init to an earlier place
2857 */
2858arch_initcall(pl011_init);
2859module_exit(pl011_exit);
2860
2861MODULE_AUTHOR("ARM Ltd/Deep Blue Solutions Ltd");
2862MODULE_DESCRIPTION("ARM AMBA serial port driver");
2863MODULE_LICENSE("GPL");