Linux Audio

Check our new training course

Loading...
v3.1
 
   1/*
   2 * SuperH on-chip serial module support.  (SCI with no FIFO / with FIFO)
   3 *
   4 *  Copyright (C) 2002 - 2011  Paul Mundt
 
   5 *  Modified to support SH7720 SCIF. Markus Brunner, Mark Jonas (Jul 2007).
   6 *
   7 * based off of the old drivers/char/sh-sci.c by:
   8 *
   9 *   Copyright (C) 1999, 2000  Niibe Yutaka
  10 *   Copyright (C) 2000  Sugioka Toshinobu
  11 *   Modified to support multiple serial ports. Stuart Menefy (May 2000).
  12 *   Modified to support SecureEdge. David McCullough (2002)
  13 *   Modified to support SH7300 SCIF. Takashi Kusuda (Jun 2003).
  14 *   Removed SH7300 support (Jul 2007).
  15 *
  16 * This file is subject to the terms and conditions of the GNU General Public
  17 * License.  See the file "COPYING" in the main directory of this archive
  18 * for more details.
  19 */
  20#if defined(CONFIG_SERIAL_SH_SCI_CONSOLE) && defined(CONFIG_MAGIC_SYSRQ)
  21#define SUPPORT_SYSRQ
  22#endif
  23
  24#undef DEBUG
  25
  26#include <linux/module.h>
 
 
 
 
 
 
 
  27#include <linux/errno.h>
  28#include <linux/timer.h>
  29#include <linux/interrupt.h>
  30#include <linux/tty.h>
  31#include <linux/tty_flip.h>
  32#include <linux/serial.h>
  33#include <linux/major.h>
  34#include <linux/string.h>
  35#include <linux/sysrq.h>
  36#include <linux/ioport.h>
 
 
 
  37#include <linux/mm.h>
  38#include <linux/init.h>
  39#include <linux/delay.h>
  40#include <linux/console.h>
  41#include <linux/platform_device.h>
  42#include <linux/serial_sci.h>
  43#include <linux/notifier.h>
  44#include <linux/pm_runtime.h>
  45#include <linux/cpufreq.h>
  46#include <linux/clk.h>
  47#include <linux/ctype.h>
  48#include <linux/err.h>
  49#include <linux/dmaengine.h>
  50#include <linux/dma-mapping.h>
  51#include <linux/scatterlist.h>
 
 
 
  52#include <linux/slab.h>
 
 
 
 
 
  53
  54#ifdef CONFIG_SUPERH
  55#include <asm/sh_bios.h>
  56#endif
  57
 
  58#include "sh-sci.h"
  59
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
  60struct sci_port {
  61	struct uart_port	port;
  62
  63	/* Platform configuration */
  64	struct plat_sci_port	*cfg;
  65
  66	/* Break timer */
  67	struct timer_list	break_timer;
  68	int			break_flag;
  69
  70	/* Interface clock */
  71	struct clk		*iclk;
  72	/* Function clock */
  73	struct clk		*fclk;
  74
 
  75	char			*irqstr[SCIx_NR_IRQS];
  76
  77	struct dma_chan			*chan_tx;
  78	struct dma_chan			*chan_rx;
  79
  80#ifdef CONFIG_SERIAL_SH_SCI_DMA
  81	struct dma_async_tx_descriptor	*desc_tx;
  82	struct dma_async_tx_descriptor	*desc_rx[2];
  83	dma_cookie_t			cookie_tx;
  84	dma_cookie_t			cookie_rx[2];
  85	dma_cookie_t			active_rx;
  86	struct scatterlist		sg_tx;
  87	unsigned int			sg_len_tx;
  88	struct scatterlist		sg_rx[2];
 
  89	size_t				buf_len_rx;
  90	struct sh_dmae_slave		param_tx;
  91	struct sh_dmae_slave		param_rx;
  92	struct work_struct		work_tx;
  93	struct work_struct		work_rx;
  94	struct timer_list		rx_timer;
  95	unsigned int			rx_timeout;
  96#endif
 
 
 
 
 
  97
  98	struct notifier_block		freq_transition;
  99
 100#ifdef CONFIG_SERIAL_SH_SCI_CONSOLE
 101	unsigned short saved_smr;
 102	unsigned short saved_fcr;
 103	unsigned char saved_brr;
 104#endif
 105};
 106
 107/* Function prototypes */
 108static void sci_start_tx(struct uart_port *port);
 109static void sci_stop_tx(struct uart_port *port);
 110static void sci_start_rx(struct uart_port *port);
 111
 112#define SCI_NPORTS CONFIG_SERIAL_SH_SCI_NR_UARTS
 113
 114static struct sci_port sci_ports[SCI_NPORTS];
 115static struct uart_driver sci_uart_driver;
 116
 117static inline struct sci_port *
 118to_sci_port(struct uart_port *uart)
 119{
 120	return container_of(uart, struct sci_port, port);
 121}
 122
 123struct plat_sci_reg {
 124	u8 offset, size;
 125};
 126
 127/* Helper for invalidating specific entries of an inherited map. */
 128#define sci_reg_invalid	{ .offset = 0, .size = 0 }
 129
 130static struct plat_sci_reg sci_regmap[SCIx_NR_REGTYPES][SCIx_NR_REGS] = {
 131	[SCIx_PROBE_REGTYPE] = {
 132		[0 ... SCIx_NR_REGS - 1] = sci_reg_invalid,
 133	},
 134
 135	/*
 136	 * Common SCI definitions, dependent on the port's regshift
 137	 * value.
 138	 */
 139	[SCIx_SCI_REGTYPE] = {
 140		[SCSMR]		= { 0x00,  8 },
 141		[SCBRR]		= { 0x01,  8 },
 142		[SCSCR]		= { 0x02,  8 },
 143		[SCxTDR]	= { 0x03,  8 },
 144		[SCxSR]		= { 0x04,  8 },
 145		[SCxRDR]	= { 0x05,  8 },
 146		[SCFCR]		= sci_reg_invalid,
 147		[SCFDR]		= sci_reg_invalid,
 148		[SCTFDR]	= sci_reg_invalid,
 149		[SCRFDR]	= sci_reg_invalid,
 150		[SCSPTR]	= sci_reg_invalid,
 151		[SCLSR]		= sci_reg_invalid,
 
 
 152	},
 153
 154	/*
 155	 * Common definitions for legacy IrDA ports, dependent on
 156	 * regshift value.
 157	 */
 158	[SCIx_IRDA_REGTYPE] = {
 159		[SCSMR]		= { 0x00,  8 },
 160		[SCBRR]		= { 0x01,  8 },
 161		[SCSCR]		= { 0x02,  8 },
 162		[SCxTDR]	= { 0x03,  8 },
 163		[SCxSR]		= { 0x04,  8 },
 164		[SCxRDR]	= { 0x05,  8 },
 165		[SCFCR]		= { 0x06,  8 },
 166		[SCFDR]		= { 0x07, 16 },
 167		[SCTFDR]	= sci_reg_invalid,
 168		[SCRFDR]	= sci_reg_invalid,
 169		[SCSPTR]	= sci_reg_invalid,
 170		[SCLSR]		= sci_reg_invalid,
 
 
 
 
 171	},
 172
 173	/*
 174	 * Common SCIFA definitions.
 175	 */
 176	[SCIx_SCIFA_REGTYPE] = {
 177		[SCSMR]		= { 0x00, 16 },
 178		[SCBRR]		= { 0x04,  8 },
 179		[SCSCR]		= { 0x08, 16 },
 180		[SCxTDR]	= { 0x20,  8 },
 181		[SCxSR]		= { 0x14, 16 },
 182		[SCxRDR]	= { 0x24,  8 },
 183		[SCFCR]		= { 0x18, 16 },
 184		[SCFDR]		= { 0x1c, 16 },
 185		[SCTFDR]	= sci_reg_invalid,
 186		[SCRFDR]	= sci_reg_invalid,
 187		[SCSPTR]	= sci_reg_invalid,
 188		[SCLSR]		= sci_reg_invalid,
 
 
 
 
 
 
 189	},
 190
 191	/*
 192	 * Common SCIFB definitions.
 193	 */
 194	[SCIx_SCIFB_REGTYPE] = {
 195		[SCSMR]		= { 0x00, 16 },
 196		[SCBRR]		= { 0x04,  8 },
 197		[SCSCR]		= { 0x08, 16 },
 198		[SCxTDR]	= { 0x40,  8 },
 199		[SCxSR]		= { 0x14, 16 },
 200		[SCxRDR]	= { 0x60,  8 },
 201		[SCFCR]		= { 0x18, 16 },
 202		[SCFDR]		= { 0x1c, 16 },
 203		[SCTFDR]	= sci_reg_invalid,
 204		[SCRFDR]	= sci_reg_invalid,
 205		[SCSPTR]	= sci_reg_invalid,
 206		[SCLSR]		= sci_reg_invalid,
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 207	},
 208
 209	/*
 210	 * Common SH-3 SCIF definitions.
 211	 */
 212	[SCIx_SH3_SCIF_REGTYPE] = {
 213		[SCSMR]		= { 0x00,  8 },
 214		[SCBRR]		= { 0x02,  8 },
 215		[SCSCR]		= { 0x04,  8 },
 216		[SCxTDR]	= { 0x06,  8 },
 217		[SCxSR]		= { 0x08, 16 },
 218		[SCxRDR]	= { 0x0a,  8 },
 219		[SCFCR]		= { 0x0c,  8 },
 220		[SCFDR]		= { 0x0e, 16 },
 221		[SCTFDR]	= sci_reg_invalid,
 222		[SCRFDR]	= sci_reg_invalid,
 223		[SCSPTR]	= sci_reg_invalid,
 224		[SCLSR]		= sci_reg_invalid,
 
 
 
 
 225	},
 226
 227	/*
 228	 * Common SH-4(A) SCIF(B) definitions.
 229	 */
 230	[SCIx_SH4_SCIF_REGTYPE] = {
 231		[SCSMR]		= { 0x00, 16 },
 232		[SCBRR]		= { 0x04,  8 },
 233		[SCSCR]		= { 0x08, 16 },
 234		[SCxTDR]	= { 0x0c,  8 },
 235		[SCxSR]		= { 0x10, 16 },
 236		[SCxRDR]	= { 0x14,  8 },
 237		[SCFCR]		= { 0x18, 16 },
 238		[SCFDR]		= { 0x1c, 16 },
 239		[SCTFDR]	= sci_reg_invalid,
 240		[SCRFDR]	= sci_reg_invalid,
 241		[SCSPTR]	= { 0x20, 16 },
 242		[SCLSR]		= { 0x24, 16 },
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 243	},
 244
 245	/*
 246	 * Common SH-4(A) SCIF(B) definitions for ports without an SCSPTR
 247	 * register.
 248	 */
 249	[SCIx_SH4_SCIF_NO_SCSPTR_REGTYPE] = {
 250		[SCSMR]		= { 0x00, 16 },
 251		[SCBRR]		= { 0x04,  8 },
 252		[SCSCR]		= { 0x08, 16 },
 253		[SCxTDR]	= { 0x0c,  8 },
 254		[SCxSR]		= { 0x10, 16 },
 255		[SCxRDR]	= { 0x14,  8 },
 256		[SCFCR]		= { 0x18, 16 },
 257		[SCFDR]		= { 0x1c, 16 },
 258		[SCTFDR]	= sci_reg_invalid,
 259		[SCRFDR]	= sci_reg_invalid,
 260		[SCSPTR]	= sci_reg_invalid,
 261		[SCLSR]		= { 0x24, 16 },
 
 
 
 
 
 262	},
 263
 264	/*
 265	 * Common SH-4(A) SCIF(B) definitions for ports with FIFO data
 266	 * count registers.
 267	 */
 268	[SCIx_SH4_SCIF_FIFODATA_REGTYPE] = {
 269		[SCSMR]		= { 0x00, 16 },
 270		[SCBRR]		= { 0x04,  8 },
 271		[SCSCR]		= { 0x08, 16 },
 272		[SCxTDR]	= { 0x0c,  8 },
 273		[SCxSR]		= { 0x10, 16 },
 274		[SCxRDR]	= { 0x14,  8 },
 275		[SCFCR]		= { 0x18, 16 },
 276		[SCFDR]		= { 0x1c, 16 },
 277		[SCTFDR]	= { 0x1c, 16 },	/* aliased to SCFDR */
 278		[SCRFDR]	= { 0x20, 16 },
 279		[SCSPTR]	= { 0x24, 16 },
 280		[SCLSR]		= { 0x28, 16 },
 
 
 
 
 
 
 
 
 281	},
 282
 283	/*
 284	 * SH7705-style SCIF(B) ports, lacking both SCSPTR and SCLSR
 285	 * registers.
 286	 */
 287	[SCIx_SH7705_SCIF_REGTYPE] = {
 288		[SCSMR]		= { 0x00, 16 },
 289		[SCBRR]		= { 0x04,  8 },
 290		[SCSCR]		= { 0x08, 16 },
 291		[SCxTDR]	= { 0x20,  8 },
 292		[SCxSR]		= { 0x14, 16 },
 293		[SCxRDR]	= { 0x24,  8 },
 294		[SCFCR]		= { 0x18, 16 },
 295		[SCFDR]		= { 0x1c, 16 },
 296		[SCTFDR]	= sci_reg_invalid,
 297		[SCRFDR]	= sci_reg_invalid,
 298		[SCSPTR]	= sci_reg_invalid,
 299		[SCLSR]		= sci_reg_invalid,
 
 
 
 
 300	},
 301};
 302
 303#define sci_getreg(up, offset)		(sci_regmap[to_sci_port(up)->cfg->regtype] + offset)
 304
 305/*
 306 * The "offset" here is rather misleading, in that it refers to an enum
 307 * value relative to the port mapping rather than the fixed offset
 308 * itself, which needs to be manually retrieved from the platform's
 309 * register map for the given port.
 310 */
 311static unsigned int sci_serial_in(struct uart_port *p, int offset)
 312{
 313	struct plat_sci_reg *reg = sci_getreg(p, offset);
 314
 315	if (reg->size == 8)
 316		return ioread8(p->membase + (reg->offset << p->regshift));
 317	else if (reg->size == 16)
 318		return ioread16(p->membase + (reg->offset << p->regshift));
 319	else
 320		WARN(1, "Invalid register access\n");
 321
 322	return 0;
 323}
 324
 325static void sci_serial_out(struct uart_port *p, int offset, int value)
 326{
 327	struct plat_sci_reg *reg = sci_getreg(p, offset);
 328
 329	if (reg->size == 8)
 330		iowrite8(value, p->membase + (reg->offset << p->regshift));
 331	else if (reg->size == 16)
 332		iowrite16(value, p->membase + (reg->offset << p->regshift));
 333	else
 334		WARN(1, "Invalid register access\n");
 335}
 336
 337#define sci_in(up, offset)		(up->serial_in(up, offset))
 338#define sci_out(up, offset, value)	(up->serial_out(up, offset, value))
 339
 340static int sci_probe_regmap(struct plat_sci_port *cfg)
 341{
 342	switch (cfg->type) {
 343	case PORT_SCI:
 344		cfg->regtype = SCIx_SCI_REGTYPE;
 345		break;
 346	case PORT_IRDA:
 347		cfg->regtype = SCIx_IRDA_REGTYPE;
 348		break;
 349	case PORT_SCIFA:
 350		cfg->regtype = SCIx_SCIFA_REGTYPE;
 351		break;
 352	case PORT_SCIFB:
 353		cfg->regtype = SCIx_SCIFB_REGTYPE;
 354		break;
 355	case PORT_SCIF:
 356		/*
 357		 * The SH-4 is a bit of a misnomer here, although that's
 358		 * where this particular port layout originated. This
 359		 * configuration (or some slight variation thereof)
 360		 * remains the dominant model for all SCIFs.
 361		 */
 362		cfg->regtype = SCIx_SH4_SCIF_REGTYPE;
 363		break;
 364	default:
 365		printk(KERN_ERR "Can't probe register map for given port\n");
 366		return -EINVAL;
 367	}
 368
 369	return 0;
 370}
 371
 372static void sci_port_enable(struct sci_port *sci_port)
 373{
 
 
 374	if (!sci_port->port.dev)
 375		return;
 376
 377	pm_runtime_get_sync(sci_port->port.dev);
 378
 379	clk_enable(sci_port->iclk);
 380	sci_port->port.uartclk = clk_get_rate(sci_port->iclk);
 381	clk_enable(sci_port->fclk);
 
 
 382}
 383
 384static void sci_port_disable(struct sci_port *sci_port)
 385{
 
 
 386	if (!sci_port->port.dev)
 387		return;
 388
 389	clk_disable(sci_port->fclk);
 390	clk_disable(sci_port->iclk);
 391
 392	pm_runtime_put_sync(sci_port->port.dev);
 393}
 394
 395#if defined(CONFIG_CONSOLE_POLL) || defined(CONFIG_SERIAL_SH_SCI_CONSOLE)
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 396
 397#ifdef CONFIG_CONSOLE_POLL
 398static int sci_poll_get_char(struct uart_port *port)
 399{
 400	unsigned short status;
 401	int c;
 402
 403	do {
 404		status = sci_in(port, SCxSR);
 405		if (status & SCxSR_ERRORS(port)) {
 406			sci_out(port, SCxSR, SCxSR_ERROR_CLEAR(port));
 407			continue;
 408		}
 409		break;
 410	} while (1);
 411
 412	if (!(status & SCxSR_RDxF(port)))
 413		return NO_POLL_CHAR;
 414
 415	c = sci_in(port, SCxRDR);
 416
 417	/* Dummy read */
 418	sci_in(port, SCxSR);
 419	sci_out(port, SCxSR, SCxSR_RDxF_CLEAR(port));
 420
 421	return c;
 422}
 423#endif
 424
 425static void sci_poll_put_char(struct uart_port *port, unsigned char c)
 426{
 427	unsigned short status;
 428
 429	do {
 430		status = sci_in(port, SCxSR);
 431	} while (!(status & SCxSR_TDxE(port)));
 432
 433	sci_out(port, SCxTDR, c);
 434	sci_out(port, SCxSR, SCxSR_TDxE_CLEAR(port) & ~SCxSR_TEND(port));
 435}
 436#endif /* CONFIG_CONSOLE_POLL || CONFIG_SERIAL_SH_SCI_CONSOLE */
 
 437
 438static void sci_init_pins(struct uart_port *port, unsigned int cflag)
 439{
 440	struct sci_port *s = to_sci_port(port);
 441	struct plat_sci_reg *reg = sci_regmap[s->cfg->regtype] + SCSPTR;
 442
 443	/*
 444	 * Use port-specific handler if provided.
 445	 */
 446	if (s->cfg->ops && s->cfg->ops->init_pins) {
 447		s->cfg->ops->init_pins(port, cflag);
 448		return;
 449	}
 450
 451	/*
 452	 * For the generic path SCSPTR is necessary. Bail out if that's
 453	 * unavailable, too.
 454	 */
 455	if (!reg->size)
 456		return;
 457
 458	if (!(cflag & CRTSCTS))
 459		sci_out(port, SCSPTR, 0x0080); /* Set RTS = 1 */
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 460}
 461
 462static int sci_txfill(struct uart_port *port)
 463{
 464	struct plat_sci_reg *reg;
 
 
 465
 466	reg = sci_getreg(port, SCTFDR);
 467	if (reg->size)
 468		return sci_in(port, SCTFDR) & 0xff;
 469
 470	reg = sci_getreg(port, SCFDR);
 471	if (reg->size)
 472		return sci_in(port, SCFDR) >> 8;
 473
 474	return !(sci_in(port, SCxSR) & SCI_TDRE);
 475}
 476
 477static int sci_txroom(struct uart_port *port)
 478{
 479	return port->fifosize - sci_txfill(port);
 480}
 481
 482static int sci_rxfill(struct uart_port *port)
 483{
 484	struct plat_sci_reg *reg;
 
 
 485
 486	reg = sci_getreg(port, SCRFDR);
 487	if (reg->size)
 488		return sci_in(port, SCRFDR) & 0xff;
 489
 490	reg = sci_getreg(port, SCFDR);
 491	if (reg->size)
 492		return sci_in(port, SCFDR) & ((port->fifosize << 1) - 1);
 493
 494	return (sci_in(port, SCxSR) & SCxSR_RDxF(port)) != 0;
 495}
 496
 497/*
 498 * SCI helper for checking the state of the muxed port/RXD pins.
 499 */
 500static inline int sci_rxd_in(struct uart_port *port)
 501{
 502	struct sci_port *s = to_sci_port(port);
 503
 504	if (s->cfg->port_reg <= 0)
 505		return 1;
 506
 507	return !!__raw_readb(s->cfg->port_reg);
 508}
 509
 510/* ********************************************************************** *
 511 *                   the interrupt related routines                       *
 512 * ********************************************************************** */
 513
 514static void sci_transmit_chars(struct uart_port *port)
 515{
 516	struct circ_buf *xmit = &port->state->xmit;
 517	unsigned int stopped = uart_tx_stopped(port);
 518	unsigned short status;
 519	unsigned short ctrl;
 520	int count;
 521
 522	status = sci_in(port, SCxSR);
 523	if (!(status & SCxSR_TDxE(port))) {
 524		ctrl = sci_in(port, SCSCR);
 525		if (uart_circ_empty(xmit))
 526			ctrl &= ~SCSCR_TIE;
 527		else
 528			ctrl |= SCSCR_TIE;
 529		sci_out(port, SCSCR, ctrl);
 530		return;
 531	}
 532
 533	count = sci_txroom(port);
 534
 535	do {
 536		unsigned char c;
 537
 538		if (port->x_char) {
 539			c = port->x_char;
 540			port->x_char = 0;
 541		} else if (!uart_circ_empty(xmit) && !stopped) {
 542			c = xmit->buf[xmit->tail];
 543			xmit->tail = (xmit->tail + 1) & (UART_XMIT_SIZE - 1);
 544		} else {
 545			break;
 546		}
 547
 548		sci_out(port, SCxTDR, c);
 549
 550		port->icount.tx++;
 551	} while (--count > 0);
 552
 553	sci_out(port, SCxSR, SCxSR_TDxE_CLEAR(port));
 554
 555	if (uart_circ_chars_pending(xmit) < WAKEUP_CHARS)
 556		uart_write_wakeup(port);
 557	if (uart_circ_empty(xmit)) {
 558		sci_stop_tx(port);
 559	} else {
 560		ctrl = sci_in(port, SCSCR);
 561
 562		if (port->type != PORT_SCI) {
 563			sci_in(port, SCxSR); /* Dummy read */
 564			sci_out(port, SCxSR, SCxSR_TDxE_CLEAR(port));
 565		}
 566
 567		ctrl |= SCSCR_TIE;
 568		sci_out(port, SCSCR, ctrl);
 569	}
 570}
 571
 572/* On SH3, SCIF may read end-of-break as a space->mark char */
 573#define STEPFN(c)  ({int __c = (c); (((__c-1)|(__c)) == -1); })
 574
 575static void sci_receive_chars(struct uart_port *port)
 576{
 577	struct sci_port *sci_port = to_sci_port(port);
 578	struct tty_struct *tty = port->state->port.tty;
 579	int i, count, copied = 0;
 580	unsigned short status;
 581	unsigned char flag;
 582
 583	status = sci_in(port, SCxSR);
 584	if (!(status & SCxSR_RDxF(port)))
 585		return;
 586
 587	while (1) {
 588		/* Don't copy more bytes than there is room for in the buffer */
 589		count = tty_buffer_request_room(tty, sci_rxfill(port));
 590
 591		/* If for any reason we can't copy more data, we're done! */
 592		if (count == 0)
 593			break;
 594
 595		if (port->type == PORT_SCI) {
 596			char c = sci_in(port, SCxRDR);
 597			if (uart_handle_sysrq_char(port, c) ||
 598			    sci_port->break_flag)
 599				count = 0;
 600			else
 601				tty_insert_flip_char(tty, c, TTY_NORMAL);
 602		} else {
 603			for (i = 0; i < count; i++) {
 604				char c = sci_in(port, SCxRDR);
 605				status = sci_in(port, SCxSR);
 606#if defined(CONFIG_CPU_SH3)
 607				/* Skip "chars" during break */
 608				if (sci_port->break_flag) {
 609					if ((c == 0) &&
 610					    (status & SCxSR_FER(port))) {
 611						count--; i--;
 612						continue;
 613					}
 614
 615					/* Nonzero => end-of-break */
 616					dev_dbg(port->dev, "debounce<%02x>\n", c);
 617					sci_port->break_flag = 0;
 618
 619					if (STEPFN(c)) {
 620						count--; i--;
 621						continue;
 622					}
 623				}
 624#endif /* CONFIG_CPU_SH3 */
 625				if (uart_handle_sysrq_char(port, c)) {
 626					count--; i--;
 627					continue;
 628				}
 629
 630				/* Store data and status */
 631				if (status & SCxSR_FER(port)) {
 632					flag = TTY_FRAME;
 
 633					dev_notice(port->dev, "frame error\n");
 634				} else if (status & SCxSR_PER(port)) {
 635					flag = TTY_PARITY;
 
 636					dev_notice(port->dev, "parity error\n");
 637				} else
 638					flag = TTY_NORMAL;
 639
 640				tty_insert_flip_char(tty, c, flag);
 641			}
 642		}
 643
 644		sci_in(port, SCxSR); /* dummy read */
 645		sci_out(port, SCxSR, SCxSR_RDxF_CLEAR(port));
 646
 647		copied += count;
 648		port->icount.rx += count;
 649	}
 650
 651	if (copied) {
 652		/* Tell the rest of the system the news. New characters! */
 653		tty_flip_buffer_push(tty);
 654	} else {
 655		sci_in(port, SCxSR); /* dummy read */
 656		sci_out(port, SCxSR, SCxSR_RDxF_CLEAR(port));
 
 
 657	}
 658}
 659
 660#define SCI_BREAK_JIFFIES (HZ/20)
 661
 662/*
 663 * The sci generates interrupts during the break,
 664 * 1 per millisecond or so during the break period, for 9600 baud.
 665 * So dont bother disabling interrupts.
 666 * But dont want more than 1 break event.
 667 * Use a kernel timer to periodically poll the rx line until
 668 * the break is finished.
 669 */
 670static inline void sci_schedule_break_timer(struct sci_port *port)
 671{
 672	mod_timer(&port->break_timer, jiffies + SCI_BREAK_JIFFIES);
 673}
 674
 675/* Ensure that two consecutive samples find the break over. */
 676static void sci_break_timer(unsigned long data)
 677{
 678	struct sci_port *port = (struct sci_port *)data;
 679
 680	sci_port_enable(port);
 681
 682	if (sci_rxd_in(&port->port) == 0) {
 683		port->break_flag = 1;
 684		sci_schedule_break_timer(port);
 685	} else if (port->break_flag == 1) {
 686		/* break is over. */
 687		port->break_flag = 2;
 688		sci_schedule_break_timer(port);
 689	} else
 690		port->break_flag = 0;
 691
 692	sci_port_disable(port);
 693}
 694
 695static int sci_handle_errors(struct uart_port *port)
 696{
 697	int copied = 0;
 698	unsigned short status = sci_in(port, SCxSR);
 699	struct tty_struct *tty = port->state->port.tty;
 700	struct sci_port *s = to_sci_port(port);
 701
 702	/*
 703	 * Handle overruns, if supported.
 704	 */
 705	if (s->cfg->overrun_bit != SCIx_NOT_SUPPORTED) {
 706		if (status & (1 << s->cfg->overrun_bit)) {
 707			/* overrun error */
 708			if (tty_insert_flip_char(tty, 0, TTY_OVERRUN))
 709				copied++;
 710
 711			dev_notice(port->dev, "overrun error");
 712		}
 
 
 
 713	}
 714
 715	if (status & SCxSR_FER(port)) {
 716		if (sci_rxd_in(port) == 0) {
 717			/* Notify of BREAK */
 718			struct sci_port *sci_port = to_sci_port(port);
 719
 720			if (!sci_port->break_flag) {
 721				sci_port->break_flag = 1;
 722				sci_schedule_break_timer(sci_port);
 723
 724				/* Do sysrq handling. */
 725				if (uart_handle_break(port))
 726					return 0;
 727
 728				dev_dbg(port->dev, "BREAK detected\n");
 729
 730				if (tty_insert_flip_char(tty, 0, TTY_BREAK))
 731					copied++;
 732			}
 733
 734		} else {
 735			/* frame error */
 736			if (tty_insert_flip_char(tty, 0, TTY_FRAME))
 737				copied++;
 738
 739			dev_notice(port->dev, "frame error\n");
 740		}
 741	}
 742
 743	if (status & SCxSR_PER(port)) {
 744		/* parity error */
 745		if (tty_insert_flip_char(tty, 0, TTY_PARITY))
 
 
 746			copied++;
 747
 748		dev_notice(port->dev, "parity error");
 749	}
 750
 751	if (copied)
 752		tty_flip_buffer_push(tty);
 753
 754	return copied;
 755}
 756
 757static int sci_handle_fifo_overrun(struct uart_port *port)
 758{
 759	struct tty_struct *tty = port->state->port.tty;
 760	struct sci_port *s = to_sci_port(port);
 761	struct plat_sci_reg *reg;
 762	int copied = 0;
 
 763
 764	reg = sci_getreg(port, SCLSR);
 765	if (!reg->size)
 766		return 0;
 767
 768	if ((sci_in(port, SCLSR) & (1 << s->cfg->overrun_bit))) {
 769		sci_out(port, SCLSR, 0);
 
 
 770
 771		tty_insert_flip_char(tty, 0, TTY_OVERRUN);
 772		tty_flip_buffer_push(tty);
 773
 774		dev_notice(port->dev, "overrun error\n");
 
 
 
 775		copied++;
 776	}
 777
 778	return copied;
 779}
 780
 781static int sci_handle_breaks(struct uart_port *port)
 782{
 783	int copied = 0;
 784	unsigned short status = sci_in(port, SCxSR);
 785	struct tty_struct *tty = port->state->port.tty;
 786	struct sci_port *s = to_sci_port(port);
 787
 788	if (uart_handle_break(port))
 789		return 0;
 790
 791	if (!s->break_flag && status & SCxSR_BRK(port)) {
 792#if defined(CONFIG_CPU_SH3)
 793		/* Debounce break */
 794		s->break_flag = 1;
 795#endif
 796		/* Notify of BREAK */
 797		if (tty_insert_flip_char(tty, 0, TTY_BREAK))
 798			copied++;
 799
 800		dev_dbg(port->dev, "BREAK detected\n");
 801	}
 802
 803	if (copied)
 804		tty_flip_buffer_push(tty);
 805
 806	copied += sci_handle_fifo_overrun(port);
 807
 808	return copied;
 809}
 810
 811static irqreturn_t sci_rx_interrupt(int irq, void *ptr)
 812{
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 813#ifdef CONFIG_SERIAL_SH_SCI_DMA
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 814	struct uart_port *port = ptr;
 815	struct sci_port *s = to_sci_port(port);
 816
 
 817	if (s->chan_rx) {
 818		u16 scr = sci_in(port, SCSCR);
 819		u16 ssr = sci_in(port, SCxSR);
 820
 821		/* Disable future Rx interrupts */
 822		if (port->type == PORT_SCIFA || port->type == PORT_SCIFB) {
 823			disable_irq_nosync(irq);
 824			scr |= 0x4000;
 825		} else {
 826			scr &= ~SCSCR_RIE;
 
 827		}
 828		sci_out(port, SCSCR, scr);
 829		/* Clear current interrupt */
 830		sci_out(port, SCxSR, ssr & ~(1 | SCxSR_RDxF(port)));
 831		dev_dbg(port->dev, "Rx IRQ %lu: setup t-out in %u jiffies\n",
 
 832			jiffies, s->rx_timeout);
 833		mod_timer(&s->rx_timer, jiffies + s->rx_timeout);
 834
 835		return IRQ_HANDLED;
 836	}
 837#endif
 838
 
 
 
 
 
 
 
 
 839	/* I think sci_receive_chars has to be called irrespective
 840	 * of whether the I_IXOFF is set, otherwise, how is the interrupt
 841	 * to be disabled?
 842	 */
 843	sci_receive_chars(ptr);
 844
 845	return IRQ_HANDLED;
 846}
 847
 848static irqreturn_t sci_tx_interrupt(int irq, void *ptr)
 849{
 850	struct uart_port *port = ptr;
 851	unsigned long flags;
 852
 853	spin_lock_irqsave(&port->lock, flags);
 854	sci_transmit_chars(port);
 855	spin_unlock_irqrestore(&port->lock, flags);
 856
 857	return IRQ_HANDLED;
 858}
 859
 860static irqreturn_t sci_er_interrupt(int irq, void *ptr)
 861{
 862	struct uart_port *port = ptr;
 
 863
 864	/* Handle errors */
 865	if (port->type == PORT_SCI) {
 866		if (sci_handle_errors(port)) {
 867			/* discard character in rx buffer */
 868			sci_in(port, SCxSR);
 869			sci_out(port, SCxSR, SCxSR_RDxF_CLEAR(port));
 870		}
 871	} else {
 872		sci_handle_fifo_overrun(port);
 873		sci_rx_interrupt(irq, ptr);
 
 874	}
 875
 876	sci_out(port, SCxSR, SCxSR_ERROR_CLEAR(port));
 877
 878	/* Kick the transmission */
 879	sci_tx_interrupt(irq, ptr);
 
 880
 881	return IRQ_HANDLED;
 882}
 883
 884static irqreturn_t sci_br_interrupt(int irq, void *ptr)
 885{
 886	struct uart_port *port = ptr;
 887
 888	/* Handle BREAKs */
 889	sci_handle_breaks(port);
 890	sci_out(port, SCxSR, SCxSR_BREAK_CLEAR(port));
 891
 892	return IRQ_HANDLED;
 893}
 894
 895static inline unsigned long port_rx_irq_mask(struct uart_port *port)
 896{
 897	/*
 898	 * Not all ports (such as SCIFA) will support REIE. Rather than
 899	 * special-casing the port type, we check the port initialization
 900	 * IRQ enable mask to see whether the IRQ is desired at all. If
 901	 * it's unset, it's logically inferred that there's no point in
 902	 * testing for it.
 903	 */
 904	return SCSCR_RIE | (to_sci_port(port)->cfg->scscr & SCSCR_REIE);
 905}
 906
 907static irqreturn_t sci_mpxed_interrupt(int irq, void *ptr)
 908{
 909	unsigned short ssr_status, scr_status, err_enabled;
 910	struct uart_port *port = ptr;
 911	struct sci_port *s = to_sci_port(port);
 912	irqreturn_t ret = IRQ_NONE;
 913
 914	ssr_status = sci_in(port, SCxSR);
 915	scr_status = sci_in(port, SCSCR);
 
 
 
 
 
 916	err_enabled = scr_status & port_rx_irq_mask(port);
 917
 918	/* Tx Interrupt */
 919	if ((ssr_status & SCxSR_TDxE(port)) && (scr_status & SCSCR_TIE) &&
 920	    !s->chan_tx)
 921		ret = sci_tx_interrupt(irq, ptr);
 922
 923	/*
 924	 * Rx Interrupt: if we're using DMA, the DMA controller clears RDF /
 925	 * DR flags
 926	 */
 927	if (((ssr_status & SCxSR_RDxF(port)) || s->chan_rx) &&
 928	    (scr_status & SCSCR_RIE))
 929		ret = sci_rx_interrupt(irq, ptr);
 930
 931	/* Error Interrupt */
 932	if ((ssr_status & SCxSR_ERRORS(port)) && err_enabled)
 933		ret = sci_er_interrupt(irq, ptr);
 934
 935	/* Break Interrupt */
 936	if ((ssr_status & SCxSR_BRK(port)) && err_enabled)
 937		ret = sci_br_interrupt(irq, ptr);
 938
 939	return ret;
 940}
 941
 942/*
 943 * Here we define a transition notifier so that we can update all of our
 944 * ports' baud rate when the peripheral clock changes.
 945 */
 946static int sci_notifier(struct notifier_block *self,
 947			unsigned long phase, void *p)
 948{
 949	struct sci_port *sci_port;
 950	unsigned long flags;
 951
 952	sci_port = container_of(self, struct sci_port, freq_transition);
 953
 954	if ((phase == CPUFREQ_POSTCHANGE) ||
 955	    (phase == CPUFREQ_RESUMECHANGE)) {
 956		struct uart_port *port = &sci_port->port;
 957
 958		spin_lock_irqsave(&port->lock, flags);
 959		port->uartclk = clk_get_rate(sci_port->iclk);
 960		spin_unlock_irqrestore(&port->lock, flags);
 961	}
 962
 963	return NOTIFY_OK;
 964}
 965
 966static struct sci_irq_desc {
 967	const char	*desc;
 968	irq_handler_t	handler;
 969} sci_irq_desc[] = {
 970	/*
 971	 * Split out handlers, the default case.
 972	 */
 973	[SCIx_ERI_IRQ] = {
 974		.desc = "rx err",
 975		.handler = sci_er_interrupt,
 976	},
 977
 978	[SCIx_RXI_IRQ] = {
 979		.desc = "rx full",
 980		.handler = sci_rx_interrupt,
 981	},
 982
 983	[SCIx_TXI_IRQ] = {
 984		.desc = "tx empty",
 985		.handler = sci_tx_interrupt,
 986	},
 987
 988	[SCIx_BRI_IRQ] = {
 989		.desc = "break",
 990		.handler = sci_br_interrupt,
 991	},
 992
 993	/*
 994	 * Special muxed handler.
 995	 */
 996	[SCIx_MUX_IRQ] = {
 997		.desc = "mux",
 998		.handler = sci_mpxed_interrupt,
 999	},
1000};
1001
1002static int sci_request_irq(struct sci_port *port)
1003{
1004	struct uart_port *up = &port->port;
1005	int i, j, ret = 0;
1006
1007	for (i = j = 0; i < SCIx_NR_IRQS; i++, j++) {
1008		struct sci_irq_desc *desc;
1009		unsigned int irq;
1010
1011		if (SCIx_IRQ_IS_MUXED(port)) {
1012			i = SCIx_MUX_IRQ;
1013			irq = up->irq;
1014		} else
1015			irq = port->cfg->irqs[i];
 
 
 
 
 
 
 
 
1016
1017		desc = sci_irq_desc + i;
1018		port->irqstr[j] = kasprintf(GFP_KERNEL, "%s:%s",
1019					    dev_name(up->dev), desc->desc);
1020		if (!port->irqstr[j]) {
1021			dev_err(up->dev, "Failed to allocate %s IRQ string\n",
1022				desc->desc);
1023			goto out_nomem;
1024		}
1025
1026		ret = request_irq(irq, desc->handler, up->irqflags,
1027				  port->irqstr[j], port);
1028		if (unlikely(ret)) {
1029			dev_err(up->dev, "Can't allocate %s IRQ\n", desc->desc);
1030			goto out_noirq;
1031		}
1032	}
1033
1034	return 0;
1035
1036out_noirq:
1037	while (--i >= 0)
1038		free_irq(port->cfg->irqs[i], port);
1039
1040out_nomem:
1041	while (--j >= 0)
1042		kfree(port->irqstr[j]);
1043
1044	return ret;
1045}
1046
1047static void sci_free_irq(struct sci_port *port)
1048{
1049	int i;
1050
1051	/*
1052	 * Intentionally in reverse order so we iterate over the muxed
1053	 * IRQ first.
1054	 */
1055	for (i = 0; i < SCIx_NR_IRQS; i++) {
1056		free_irq(port->cfg->irqs[i], port);
 
 
 
 
 
 
 
 
 
1057		kfree(port->irqstr[i]);
1058
1059		if (SCIx_IRQ_IS_MUXED(port)) {
1060			/* If there's only one IRQ, we're done. */
1061			return;
1062		}
1063	}
1064}
1065
1066static unsigned int sci_tx_empty(struct uart_port *port)
1067{
1068	unsigned short status = sci_in(port, SCxSR);
1069	unsigned short in_tx_fifo = sci_txfill(port);
1070
1071	return (status & SCxSR_TEND(port)) && !in_tx_fifo ? TIOCSER_TEMT : 0;
1072}
1073
1074static void sci_set_mctrl(struct uart_port *port, unsigned int mctrl)
1075{
1076	/* This routine is used for seting signals of: DTR, DCD, CTS/RTS */
1077	/* We use SCIF's hardware for CTS/RTS, so don't need any for that. */
1078	/* If you have signals for DTR and DCD, please implement here. */
1079}
1080
1081static unsigned int sci_get_mctrl(struct uart_port *port)
1082{
1083	/* This routine is used for getting signals of: DTR, DCD, DSR, RI,
1084	   and CTS/RTS */
1085
1086	return TIOCM_DTR | TIOCM_RTS | TIOCM_CTS | TIOCM_DSR;
1087}
1088
1089#ifdef CONFIG_SERIAL_SH_SCI_DMA
1090static void sci_dma_tx_complete(void *arg)
1091{
1092	struct sci_port *s = arg;
1093	struct uart_port *port = &s->port;
1094	struct circ_buf *xmit = &port->state->xmit;
1095	unsigned long flags;
1096
1097	dev_dbg(port->dev, "%s(%d)\n", __func__, port->line);
1098
1099	spin_lock_irqsave(&port->lock, flags);
1100
1101	xmit->tail += sg_dma_len(&s->sg_tx);
1102	xmit->tail &= UART_XMIT_SIZE - 1;
1103
1104	port->icount.tx += sg_dma_len(&s->sg_tx);
1105
1106	async_tx_ack(s->desc_tx);
1107	s->cookie_tx = -EINVAL;
1108	s->desc_tx = NULL;
1109
1110	if (uart_circ_chars_pending(xmit) < WAKEUP_CHARS)
1111		uart_write_wakeup(port);
 
 
 
 
1112
1113	if (!uart_circ_empty(xmit)) {
1114		schedule_work(&s->work_tx);
1115	} else if (port->type == PORT_SCIFA || port->type == PORT_SCIFB) {
1116		u16 ctrl = sci_in(port, SCSCR);
1117		sci_out(port, SCSCR, ctrl & ~SCSCR_TIE);
 
 
 
 
 
 
 
1118	}
1119
1120	spin_unlock_irqrestore(&port->lock, flags);
1121}
1122
1123/* Locking: called with port lock held */
1124static int sci_dma_rx_push(struct sci_port *s, struct tty_struct *tty,
1125			   size_t count)
1126{
1127	struct uart_port *port = &s->port;
1128	int i, active, room;
1129
1130	room = tty_buffer_request_room(tty, count);
1131
1132	if (s->active_rx == s->cookie_rx[0]) {
1133		active = 0;
1134	} else if (s->active_rx == s->cookie_rx[1]) {
1135		active = 1;
1136	} else {
1137		dev_err(port->dev, "cookie %d not found!\n", s->active_rx);
1138		return 0;
1139	}
1140
1141	if (room < count)
1142		dev_warn(port->dev, "Rx overrun: dropping %u bytes\n",
1143			 count - room);
1144	if (!room)
1145		return room;
1146
1147	for (i = 0; i < room; i++)
1148		tty_insert_flip_char(tty, ((u8 *)sg_virt(&s->sg_rx[active]))[i],
1149				     TTY_NORMAL);
1150
1151	port->icount.rx += room;
1152
1153	return room;
1154}
1155
1156static void sci_dma_rx_complete(void *arg)
1157{
1158	struct sci_port *s = arg;
1159	struct uart_port *port = &s->port;
1160	struct tty_struct *tty = port->state->port.tty;
1161	unsigned long flags;
1162	int count;
1163
1164	dev_dbg(port->dev, "%s(%d) active #%d\n", __func__, port->line, s->active_rx);
1165
1166	spin_lock_irqsave(&port->lock, flags);
1167
1168	count = sci_dma_rx_push(s, tty, s->buf_len_rx);
1169
1170	mod_timer(&s->rx_timer, jiffies + s->rx_timeout);
1171
1172	spin_unlock_irqrestore(&port->lock, flags);
1173
1174	if (count)
1175		tty_flip_buffer_push(tty);
1176
1177	schedule_work(&s->work_rx);
1178}
1179
1180static void sci_rx_dma_release(struct sci_port *s, bool enable_pio)
1181{
1182	struct dma_chan *chan = s->chan_rx;
1183	struct uart_port *port = &s->port;
1184
1185	s->chan_rx = NULL;
1186	s->cookie_rx[0] = s->cookie_rx[1] = -EINVAL;
1187	dma_release_channel(chan);
1188	if (sg_dma_address(&s->sg_rx[0]))
1189		dma_free_coherent(port->dev, s->buf_len_rx * 2,
1190				  sg_virt(&s->sg_rx[0]), sg_dma_address(&s->sg_rx[0]));
1191	if (enable_pio)
1192		sci_start_rx(port);
1193}
1194
1195static void sci_tx_dma_release(struct sci_port *s, bool enable_pio)
1196{
1197	struct dma_chan *chan = s->chan_tx;
1198	struct uart_port *port = &s->port;
1199
1200	s->chan_tx = NULL;
1201	s->cookie_tx = -EINVAL;
1202	dma_release_channel(chan);
1203	if (enable_pio)
1204		sci_start_tx(port);
1205}
1206
1207static void sci_submit_rx(struct sci_port *s)
1208{
1209	struct dma_chan *chan = s->chan_rx;
1210	int i;
1211
1212	for (i = 0; i < 2; i++) {
1213		struct scatterlist *sg = &s->sg_rx[i];
1214		struct dma_async_tx_descriptor *desc;
1215
1216		desc = chan->device->device_prep_slave_sg(chan,
1217			sg, 1, DMA_FROM_DEVICE, DMA_PREP_INTERRUPT);
1218
1219		if (desc) {
1220			s->desc_rx[i] = desc;
1221			desc->callback = sci_dma_rx_complete;
1222			desc->callback_param = s;
1223			s->cookie_rx[i] = desc->tx_submit(desc);
1224		}
1225
1226		if (!desc || s->cookie_rx[i] < 0) {
1227			if (i) {
1228				async_tx_ack(s->desc_rx[0]);
1229				s->cookie_rx[0] = -EINVAL;
1230			}
1231			if (desc) {
1232				async_tx_ack(desc);
1233				s->cookie_rx[i] = -EINVAL;
1234			}
1235			dev_warn(s->port.dev,
1236				 "failed to re-start DMA, using PIO\n");
1237			sci_rx_dma_release(s, true);
1238			return;
1239		}
1240		dev_dbg(s->port.dev, "%s(): cookie %d to #%d\n", __func__,
1241			s->cookie_rx[i], i);
1242	}
1243
1244	s->active_rx = s->cookie_rx[0];
1245
1246	dma_async_issue_pending(chan);
1247}
1248
1249static void work_fn_rx(struct work_struct *work)
1250{
1251	struct sci_port *s = container_of(work, struct sci_port, work_rx);
1252	struct uart_port *port = &s->port;
1253	struct dma_async_tx_descriptor *desc;
1254	int new;
1255
1256	if (s->active_rx == s->cookie_rx[0]) {
1257		new = 0;
1258	} else if (s->active_rx == s->cookie_rx[1]) {
1259		new = 1;
1260	} else {
1261		dev_err(port->dev, "cookie %d not found!\n", s->active_rx);
1262		return;
 
1263	}
1264	desc = s->desc_rx[new];
1265
1266	if (dma_async_is_tx_complete(s->chan_rx, s->active_rx, NULL, NULL) !=
1267	    DMA_SUCCESS) {
1268		/* Handle incomplete DMA receive */
1269		struct tty_struct *tty = port->state->port.tty;
1270		struct dma_chan *chan = s->chan_rx;
1271		struct sh_desc *sh_desc = container_of(desc, struct sh_desc,
1272						       async_tx);
1273		unsigned long flags;
1274		int count;
1275
1276		chan->device->device_control(chan, DMA_TERMINATE_ALL, 0);
1277		dev_dbg(port->dev, "Read %u bytes with cookie %d\n",
1278			sh_desc->partial, sh_desc->cookie);
1279
1280		spin_lock_irqsave(&port->lock, flags);
1281		count = sci_dma_rx_push(s, tty, sh_desc->partial);
1282		spin_unlock_irqrestore(&port->lock, flags);
1283
1284		if (count)
1285			tty_flip_buffer_push(tty);
1286
1287		sci_submit_rx(s);
1288
1289		return;
1290	}
1291
1292	s->cookie_rx[new] = desc->tx_submit(desc);
1293	if (s->cookie_rx[new] < 0) {
1294		dev_warn(port->dev, "Failed submitting Rx DMA descriptor\n");
1295		sci_rx_dma_release(s, true);
1296		return;
1297	}
1298
1299	s->active_rx = s->cookie_rx[!new];
1300
1301	dev_dbg(port->dev, "%s: cookie %d #%d, new active #%d\n", __func__,
1302		s->cookie_rx[new], new, s->active_rx);
1303}
1304
1305static void work_fn_tx(struct work_struct *work)
1306{
1307	struct sci_port *s = container_of(work, struct sci_port, work_tx);
1308	struct dma_async_tx_descriptor *desc;
1309	struct dma_chan *chan = s->chan_tx;
1310	struct uart_port *port = &s->port;
1311	struct circ_buf *xmit = &port->state->xmit;
1312	struct scatterlist *sg = &s->sg_tx;
1313
1314	/*
1315	 * DMA is idle now.
1316	 * Port xmit buffer is already mapped, and it is one page... Just adjust
1317	 * offsets and lengths. Since it is a circular buffer, we have to
1318	 * transmit till the end, and then the rest. Take the port lock to get a
1319	 * consistent xmit buffer state.
1320	 */
1321	spin_lock_irq(&port->lock);
1322	sg->offset = xmit->tail & (UART_XMIT_SIZE - 1);
1323	sg_dma_address(sg) = (sg_dma_address(sg) & ~(UART_XMIT_SIZE - 1)) +
1324		sg->offset;
1325	sg_dma_len(sg) = min((int)CIRC_CNT(xmit->head, xmit->tail, UART_XMIT_SIZE),
1326		CIRC_CNT_TO_END(xmit->head, xmit->tail, UART_XMIT_SIZE));
1327	spin_unlock_irq(&port->lock);
1328
1329	BUG_ON(!sg_dma_len(sg));
1330
1331	desc = chan->device->device_prep_slave_sg(chan,
1332			sg, s->sg_len_tx, DMA_TO_DEVICE,
1333			DMA_PREP_INTERRUPT | DMA_CTRL_ACK);
1334	if (!desc) {
1335		/* switch to PIO */
1336		sci_tx_dma_release(s, true);
1337		return;
1338	}
1339
1340	dma_sync_sg_for_device(port->dev, sg, 1, DMA_TO_DEVICE);
1341
1342	spin_lock_irq(&port->lock);
1343	s->desc_tx = desc;
1344	desc->callback = sci_dma_tx_complete;
1345	desc->callback_param = s;
1346	spin_unlock_irq(&port->lock);
1347	s->cookie_tx = desc->tx_submit(desc);
1348	if (s->cookie_tx < 0) {
1349		dev_warn(port->dev, "Failed submitting Tx DMA descriptor\n");
1350		/* switch to PIO */
1351		sci_tx_dma_release(s, true);
1352		return;
1353	}
1354
1355	dev_dbg(port->dev, "%s: %p: %d...%d, cookie %d\n", __func__,
1356		xmit->buf, xmit->tail, xmit->head, s->cookie_tx);
1357
1358	dma_async_issue_pending(chan);
1359}
1360#endif
1361
1362static void sci_start_tx(struct uart_port *port)
1363{
1364	struct sci_port *s = to_sci_port(port);
1365	unsigned short ctrl;
1366
1367#ifdef CONFIG_SERIAL_SH_SCI_DMA
1368	if (port->type == PORT_SCIFA || port->type == PORT_SCIFB) {
1369		u16 new, scr = sci_in(port, SCSCR);
1370		if (s->chan_tx)
1371			new = scr | 0x8000;
1372		else
1373			new = scr & ~0x8000;
1374		if (new != scr)
1375			sci_out(port, SCSCR, new);
1376	}
1377
1378	if (s->chan_tx && !uart_circ_empty(&s->port.state->xmit) &&
1379	    s->cookie_tx < 0)
1380		schedule_work(&s->work_tx);
1381#endif
1382
1383	if (!s->chan_tx || port->type == PORT_SCIFA || port->type == PORT_SCIFB) {
1384		/* Set TIE (Transmit Interrupt Enable) bit in SCSCR */
1385		ctrl = sci_in(port, SCSCR);
1386		sci_out(port, SCSCR, ctrl | SCSCR_TIE);
 
 
 
 
 
1387	}
1388}
1389
1390static void sci_stop_tx(struct uart_port *port)
1391{
1392	unsigned short ctrl;
1393
1394	/* Clear TIE (Transmit Interrupt Enable) bit in SCSCR */
1395	ctrl = sci_in(port, SCSCR);
1396
1397	if (port->type == PORT_SCIFA || port->type == PORT_SCIFB)
1398		ctrl &= ~0x8000;
1399
1400	ctrl &= ~SCSCR_TIE;
1401
1402	sci_out(port, SCSCR, ctrl);
1403}
1404
1405static void sci_start_rx(struct uart_port *port)
1406{
1407	unsigned short ctrl;
1408
1409	ctrl = sci_in(port, SCSCR) | port_rx_irq_mask(port);
1410
1411	if (port->type == PORT_SCIFA || port->type == PORT_SCIFB)
1412		ctrl &= ~0x4000;
1413
1414	sci_out(port, SCSCR, ctrl);
1415}
1416
1417static void sci_stop_rx(struct uart_port *port)
1418{
1419	unsigned short ctrl;
1420
1421	ctrl = sci_in(port, SCSCR);
1422
1423	if (port->type == PORT_SCIFA || port->type == PORT_SCIFB)
1424		ctrl &= ~0x4000;
1425
1426	ctrl &= ~port_rx_irq_mask(port);
1427
1428	sci_out(port, SCSCR, ctrl);
1429}
1430
1431static void sci_enable_ms(struct uart_port *port)
1432{
1433	/* Nothing here yet .. */
1434}
1435
1436static void sci_break_ctl(struct uart_port *port, int break_state)
1437{
1438	/* Nothing here yet .. */
1439}
1440
1441#ifdef CONFIG_SERIAL_SH_SCI_DMA
1442static bool filter(struct dma_chan *chan, void *slave)
1443{
1444	struct sh_dmae_slave *param = slave;
 
 
 
 
1445
1446	dev_dbg(chan->device->dev, "%s: slave ID %d\n", __func__,
1447		param->slave_id);
 
1448
1449	if (param->dma_dev == chan->device->dev) {
1450		chan->private = param;
1451		return true;
1452	} else {
1453		return false;
 
1454	}
1455}
1456
1457static void rx_timer_fn(unsigned long arg)
1458{
1459	struct sci_port *s = (struct sci_port *)arg;
1460	struct uart_port *port = &s->port;
1461	u16 scr = sci_in(port, SCSCR);
1462
1463	if (port->type == PORT_SCIFA || port->type == PORT_SCIFB) {
1464		scr &= ~0x4000;
1465		enable_irq(s->cfg->irqs[1]);
1466	}
1467	sci_out(port, SCSCR, scr | SCSCR_RIE);
1468	dev_dbg(port->dev, "DMA Rx timed out\n");
1469	schedule_work(&s->work_rx);
1470}
1471
1472static void sci_request_dma(struct uart_port *port)
1473{
1474	struct sci_port *s = to_sci_port(port);
1475	struct sh_dmae_slave *param;
1476	struct dma_chan *chan;
1477	dma_cap_mask_t mask;
1478	int nent;
1479
1480	dev_dbg(port->dev, "%s: port %d DMA %p\n", __func__,
1481		port->line, s->cfg->dma_dev);
1482
1483	if (!s->cfg->dma_dev)
1484		return;
1485
1486	dma_cap_zero(mask);
1487	dma_cap_set(DMA_SLAVE, mask);
1488
1489	param = &s->param_tx;
1490
1491	/* Slave ID, e.g., SHDMA_SLAVE_SCIF0_TX */
1492	param->slave_id = s->cfg->dma_slave_tx;
1493	param->dma_dev = s->cfg->dma_dev;
1494
1495	s->cookie_tx = -EINVAL;
1496	chan = dma_request_channel(mask, filter, param);
1497	dev_dbg(port->dev, "%s: TX: got channel %p\n", __func__, chan);
1498	if (chan) {
1499		s->chan_tx = chan;
1500		sg_init_table(&s->sg_tx, 1);
1501		/* UART circular tx buffer is an aligned page. */
1502		BUG_ON((int)port->state->xmit.buf & ~PAGE_MASK);
1503		sg_set_page(&s->sg_tx, virt_to_page(port->state->xmit.buf),
1504			    UART_XMIT_SIZE, (int)port->state->xmit.buf & ~PAGE_MASK);
1505		nent = dma_map_sg(port->dev, &s->sg_tx, 1, DMA_TO_DEVICE);
1506		if (!nent)
1507			sci_tx_dma_release(s, false);
1508		else
1509			dev_dbg(port->dev, "%s: mapped %d@%p to %x\n", __func__,
1510				sg_dma_len(&s->sg_tx),
1511				port->state->xmit.buf, sg_dma_address(&s->sg_tx));
1512
1513		s->sg_len_tx = nent;
1514
1515		INIT_WORK(&s->work_tx, work_fn_tx);
 
 
 
1516	}
1517
1518	param = &s->param_rx;
1519
1520	/* Slave ID, e.g., SHDMA_SLAVE_SCIF0_RX */
1521	param->slave_id = s->cfg->dma_slave_rx;
1522	param->dma_dev = s->cfg->dma_dev;
1523
1524	chan = dma_request_channel(mask, filter, param);
1525	dev_dbg(port->dev, "%s: RX: got channel %p\n", __func__, chan);
1526	if (chan) {
1527		dma_addr_t dma[2];
1528		void *buf[2];
1529		int i;
1530
1531		s->chan_rx = chan;
1532
1533		s->buf_len_rx = 2 * max(16, (int)port->fifosize);
1534		buf[0] = dma_alloc_coherent(port->dev, s->buf_len_rx * 2,
1535					    &dma[0], GFP_KERNEL);
1536
1537		if (!buf[0]) {
1538			dev_warn(port->dev,
1539				 "failed to allocate dma buffer, using PIO\n");
1540			sci_rx_dma_release(s, true);
1541			return;
1542		}
1543
1544		buf[1] = buf[0] + s->buf_len_rx;
1545		dma[1] = dma[0] + s->buf_len_rx;
 
 
 
1546
1547		for (i = 0; i < 2; i++) {
1548			struct scatterlist *sg = &s->sg_rx[i];
1549
1550			sg_init_table(sg, 1);
1551			sg_set_page(sg, virt_to_page(buf[i]), s->buf_len_rx,
1552				    (int)buf[i] & ~PAGE_MASK);
1553			sg_dma_address(sg) = dma[i];
1554		}
1555
1556		INIT_WORK(&s->work_rx, work_fn_rx);
1557		setup_timer(&s->rx_timer, rx_timer_fn, (unsigned long)s);
 
 
 
 
 
 
 
 
 
1558
1559		sci_submit_rx(s);
 
 
 
 
1560	}
 
 
 
 
1561}
1562
1563static void sci_free_dma(struct uart_port *port)
 
1564{
1565	struct sci_port *s = to_sci_port(port);
 
 
 
 
 
 
 
 
 
 
1566
1567	if (!s->cfg->dma_dev)
1568		return;
1569
1570	if (s->chan_tx)
1571		sci_tx_dma_release(s, false);
1572	if (s->chan_rx)
1573		sci_rx_dma_release(s, false);
1574}
1575#else
1576static inline void sci_request_dma(struct uart_port *port)
1577{
1578}
1579
1580static inline void sci_free_dma(struct uart_port *port)
1581{
 
1582}
1583#endif
1584
1585static int sci_startup(struct uart_port *port)
 
 
1586{
1587	struct sci_port *s = to_sci_port(port);
1588	int ret;
1589
1590	dev_dbg(port->dev, "%s(%d)\n", __func__, port->line);
 
1591
1592	sci_port_enable(s);
 
 
1593
1594	ret = sci_request_irq(s);
1595	if (unlikely(ret < 0))
1596		return ret;
1597
1598	sci_request_dma(port);
 
 
1599
1600	sci_start_tx(port);
1601	sci_start_rx(port);
 
1602
1603	return 0;
 
 
1604}
1605
1606static void sci_shutdown(struct uart_port *port)
 
 
 
1607{
1608	struct sci_port *s = to_sci_port(port);
 
 
1609
1610	dev_dbg(port->dev, "%s(%d)\n", __func__, port->line);
1611
1612	sci_stop_rx(port);
1613	sci_stop_tx(port);
1614
1615	sci_free_dma(port);
1616	sci_free_irq(s);
1617
1618	sci_port_disable(s);
1619}
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1620
1621static unsigned int sci_scbrr_calc(unsigned int algo_id, unsigned int bps,
1622				   unsigned long freq)
1623{
1624	switch (algo_id) {
1625	case SCBRR_ALGO_1:
1626		return ((freq + 16 * bps) / (16 * bps) - 1);
1627	case SCBRR_ALGO_2:
1628		return ((freq + 16 * bps) / (32 * bps) - 1);
1629	case SCBRR_ALGO_3:
1630		return (((freq * 2) + 16 * bps) / (16 * bps) - 1);
1631	case SCBRR_ALGO_4:
1632		return (((freq * 2) + 16 * bps) / (32 * bps) - 1);
1633	case SCBRR_ALGO_5:
1634		return (((freq * 1000 / 32) / bps) - 1);
1635	}
1636
1637	/* Warn, but use a safe default */
1638	WARN_ON(1);
1639
1640	return ((freq + 16 * bps) / (32 * bps) - 1);
1641}
1642
1643static void sci_reset(struct uart_port *port)
1644{
 
1645	unsigned int status;
 
1646
1647	do {
1648		status = sci_in(port, SCxSR);
1649	} while (!(status & SCxSR_TEND(port)));
1650
1651	sci_out(port, SCSCR, 0x00);	/* TE=0, RE=0, CKE1=0 */
 
 
 
 
 
 
 
 
 
 
 
1652
1653	if (port->type != PORT_SCI)
1654		sci_out(port, SCFCR, SCFCR_RFRST | SCFCR_TFRST);
 
 
 
 
 
 
 
 
 
 
1655}
1656
1657static void sci_set_termios(struct uart_port *port, struct ktermios *termios,
1658			    struct ktermios *old)
1659{
 
 
 
1660	struct sci_port *s = to_sci_port(port);
1661	unsigned int baud, smr_val, max_baud;
1662	int t = -1;
1663	u16 scfcr = 0;
 
 
 
 
 
 
 
 
 
 
 
1664
1665	/*
1666	 * earlyprintk comes here early on with port->uartclk set to zero.
1667	 * the clock framework is not up and running at this point so here
1668	 * we assume that 115200 is the maximum baud rate. please note that
1669	 * the baud rate is not programmed during earlyprintk - it is assumed
1670	 * that the previous boot loader has enabled required clocks and
1671	 * setup the baud rate generator hardware for us already.
1672	 */
1673	max_baud = port->uartclk ? port->uartclk / 16 : 115200;
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1674
1675	baud = uart_get_baud_rate(port, termios, old, 0, max_baud);
1676	if (likely(baud && port->uartclk))
1677		t = sci_scbrr_calc(s->cfg->scbrr_algo_id, baud, port->uartclk);
 
 
 
 
 
 
 
 
 
 
 
 
1678
1679	sci_port_enable(s);
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1680
1681	sci_reset(port);
 
 
 
 
 
 
 
 
 
1682
1683	smr_val = sci_in(port, SCSMR) & 3;
 
 
 
1684
1685	if ((termios->c_cflag & CSIZE) == CS7)
1686		smr_val |= 0x40;
1687	if (termios->c_cflag & PARENB)
1688		smr_val |= 0x20;
1689	if (termios->c_cflag & PARODD)
1690		smr_val |= 0x30;
1691	if (termios->c_cflag & CSTOPB)
1692		smr_val |= 0x08;
1693
1694	uart_update_timeout(port, termios->c_cflag, baud);
 
 
 
 
 
 
 
 
 
1695
1696	sci_out(port, SCSMR, smr_val);
1697
1698	dev_dbg(port->dev, "%s: SMR %x, t %x, SCSCR %x\n", __func__, smr_val, t,
1699		s->cfg->scscr);
1700
1701	if (t > 0) {
1702		if (t >= 256) {
1703			sci_out(port, SCSMR, (sci_in(port, SCSMR) & ~3) | 1);
1704			t >>= 2;
1705		} else
1706			sci_out(port, SCSMR, sci_in(port, SCSMR) & ~3);
 
 
 
 
 
 
 
 
 
 
 
 
1707
1708		sci_out(port, SCBRR, t);
1709		udelay((1000000+(baud-1)) / baud); /* Wait one bit interval */
 
 
 
 
 
 
 
1710	}
1711
1712	sci_init_pins(port, termios->c_cflag);
1713	sci_out(port, SCFCR, scfcr | ((termios->c_cflag & CRTSCTS) ? SCFCR_MCE : 0));
1714
1715	sci_out(port, SCSCR, s->cfg->scscr);
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1716
1717#ifdef CONFIG_SERIAL_SH_SCI_DMA
1718	/*
1719	 * Calculate delay for 1.5 DMA buffers: see
1720	 * drivers/serial/serial_core.c::uart_update_timeout(). With 10 bits
1721	 * (CS8), 250Hz, 115200 baud and 64 bytes FIFO, the above function
1722	 * calculates 1 jiffie for the data plus 5 jiffies for the "slop(e)."
1723	 * Then below we calculate 3 jiffies (12ms) for 1.5 DMA buffers (3 FIFO
1724	 * sizes), but it has been found out experimentally, that this is not
1725	 * enough: the driver too often needlessly runs on a DMA timeout. 20ms
1726	 * as a minimum seem to work perfectly.
1727	 */
1728	if (s->chan_rx) {
1729		s->rx_timeout = (port->timeout - HZ / 50) * s->buf_len_rx * 3 /
1730			port->fifosize / 2;
1731		dev_dbg(port->dev,
1732			"DMA Rx t-out %ums, tty t-out %u jiffies\n",
1733			s->rx_timeout * 1000 / HZ, port->timeout);
1734		if (s->rx_timeout < msecs_to_jiffies(20))
1735			s->rx_timeout = msecs_to_jiffies(20);
 
 
 
 
 
 
1736	}
 
 
 
 
 
 
 
 
 
 
 
1737#endif
1738
1739	if ((termios->c_cflag & CREAD) != 0)
1740		sci_start_rx(port);
1741
 
 
1742	sci_port_disable(s);
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1743}
1744
1745static const char *sci_type(struct uart_port *port)
1746{
1747	switch (port->type) {
1748	case PORT_IRDA:
1749		return "irda";
1750	case PORT_SCI:
1751		return "sci";
1752	case PORT_SCIF:
1753		return "scif";
1754	case PORT_SCIFA:
1755		return "scifa";
1756	case PORT_SCIFB:
1757		return "scifb";
 
 
1758	}
1759
1760	return NULL;
1761}
1762
1763static inline unsigned long sci_port_size(struct uart_port *port)
1764{
1765	/*
1766	 * Pick an arbitrary size that encapsulates all of the base
1767	 * registers by default. This can be optimized later, or derived
1768	 * from platform resource data at such a time that ports begin to
1769	 * behave more erratically.
1770	 */
1771	return 64;
1772}
1773
1774static int sci_remap_port(struct uart_port *port)
1775{
1776	unsigned long size = sci_port_size(port);
1777
1778	/*
1779	 * Nothing to do if there's already an established membase.
1780	 */
1781	if (port->membase)
1782		return 0;
1783
1784	if (port->flags & UPF_IOREMAP) {
1785		port->membase = ioremap_nocache(port->mapbase, size);
1786		if (unlikely(!port->membase)) {
1787			dev_err(port->dev, "can't remap port#%d\n", port->line);
1788			return -ENXIO;
1789		}
1790	} else {
1791		/*
1792		 * For the simple (and majority of) cases where we don't
1793		 * need to do any remapping, just cast the cookie
1794		 * directly.
1795		 */
1796		port->membase = (void __iomem *)port->mapbase;
1797	}
1798
1799	return 0;
1800}
1801
1802static void sci_release_port(struct uart_port *port)
1803{
1804	if (port->flags & UPF_IOREMAP) {
 
 
1805		iounmap(port->membase);
1806		port->membase = NULL;
1807	}
1808
1809	release_mem_region(port->mapbase, sci_port_size(port));
1810}
1811
1812static int sci_request_port(struct uart_port *port)
1813{
1814	unsigned long size = sci_port_size(port);
1815	struct resource *res;
 
1816	int ret;
1817
1818	res = request_mem_region(port->mapbase, size, dev_name(port->dev));
1819	if (unlikely(res == NULL))
 
 
1820		return -EBUSY;
 
1821
1822	ret = sci_remap_port(port);
1823	if (unlikely(ret != 0)) {
1824		release_resource(res);
1825		return ret;
1826	}
1827
1828	return 0;
1829}
1830
1831static void sci_config_port(struct uart_port *port, int flags)
1832{
1833	if (flags & UART_CONFIG_TYPE) {
1834		struct sci_port *sport = to_sci_port(port);
1835
1836		port->type = sport->cfg->type;
1837		sci_request_port(port);
1838	}
1839}
1840
1841static int sci_verify_port(struct uart_port *port, struct serial_struct *ser)
1842{
1843	struct sci_port *s = to_sci_port(port);
1844
1845	if (ser->irq != s->cfg->irqs[SCIx_TXI_IRQ] || ser->irq > nr_irqs)
1846		return -EINVAL;
1847	if (ser->baud_base < 2400)
1848		/* No paper tape reader for Mitch.. */
1849		return -EINVAL;
1850
1851	return 0;
1852}
1853
1854static struct uart_ops sci_uart_ops = {
1855	.tx_empty	= sci_tx_empty,
1856	.set_mctrl	= sci_set_mctrl,
1857	.get_mctrl	= sci_get_mctrl,
1858	.start_tx	= sci_start_tx,
1859	.stop_tx	= sci_stop_tx,
1860	.stop_rx	= sci_stop_rx,
1861	.enable_ms	= sci_enable_ms,
1862	.break_ctl	= sci_break_ctl,
1863	.startup	= sci_startup,
1864	.shutdown	= sci_shutdown,
 
1865	.set_termios	= sci_set_termios,
 
1866	.type		= sci_type,
1867	.release_port	= sci_release_port,
1868	.request_port	= sci_request_port,
1869	.config_port	= sci_config_port,
1870	.verify_port	= sci_verify_port,
1871#ifdef CONFIG_CONSOLE_POLL
1872	.poll_get_char	= sci_poll_get_char,
1873	.poll_put_char	= sci_poll_put_char,
1874#endif
1875};
1876
1877static int __devinit sci_init_single(struct platform_device *dev,
1878				     struct sci_port *sci_port,
1879				     unsigned int index,
1880				     struct plat_sci_port *p)
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1881{
1882	struct uart_port *port = &sci_port->port;
 
 
1883	int ret;
1884
 
 
1885	port->ops	= &sci_uart_ops;
1886	port->iotype	= UPIO_MEM;
1887	port->line	= index;
1888
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1889	switch (p->type) {
1890	case PORT_SCIFB:
1891		port->fifosize = 256;
 
 
 
1892		break;
1893	case PORT_SCIFA:
1894		port->fifosize = 64;
1895		break;
1896	case PORT_SCIF:
1897		port->fifosize = 16;
 
 
 
 
1898		break;
1899	default:
1900		port->fifosize = 1;
1901		break;
1902	}
1903
1904	if (p->regtype == SCIx_PROBE_REGTYPE) {
1905		ret = sci_probe_regmap(p);
1906		if (unlikely(ret))
1907			return ret;
1908	}
1909
1910	if (dev) {
1911		sci_port->iclk = clk_get(&dev->dev, "sci_ick");
1912		if (IS_ERR(sci_port->iclk)) {
1913			sci_port->iclk = clk_get(&dev->dev, "peripheral_clk");
1914			if (IS_ERR(sci_port->iclk)) {
1915				dev_err(&dev->dev, "can't get iclk\n");
1916				return PTR_ERR(sci_port->iclk);
1917			}
1918		}
1919
1920		/*
1921		 * The function clock is optional, ignore it if we can't
1922		 * find it.
1923		 */
1924		sci_port->fclk = clk_get(&dev->dev, "sci_fck");
1925		if (IS_ERR(sci_port->fclk))
1926			sci_port->fclk = NULL;
1927
1928		port->dev = &dev->dev;
1929
1930		pm_runtime_irq_safe(&dev->dev);
1931		pm_runtime_enable(&dev->dev);
1932	}
1933
1934	sci_port->break_timer.data = (unsigned long)sci_port;
1935	sci_port->break_timer.function = sci_break_timer;
1936	init_timer(&sci_port->break_timer);
1937
1938	/*
1939	 * Establish some sensible defaults for the error detection.
1940	 */
1941	if (!p->error_mask)
1942		p->error_mask = (p->type == PORT_SCI) ?
1943			SCI_DEFAULT_ERROR_MASK : SCIF_DEFAULT_ERROR_MASK;
1944
1945	/*
1946	 * Establish sensible defaults for the overrun detection, unless
1947	 * the part has explicitly disabled support for it.
1948	 */
1949	if (p->overrun_bit != SCIx_NOT_SUPPORTED) {
1950		if (p->type == PORT_SCI)
1951			p->overrun_bit = 5;
1952		else if (p->scbrr_algo_id == SCBRR_ALGO_4)
1953			p->overrun_bit = 9;
1954		else
1955			p->overrun_bit = 0;
1956
1957		/*
1958		 * Make the error mask inclusive of overrun detection, if
1959		 * supported.
1960		 */
1961		p->error_mask |= (1 << p->overrun_bit);
1962	}
1963
1964	sci_port->cfg		= p;
1965
1966	port->mapbase		= p->mapbase;
1967	port->type		= p->type;
1968	port->flags		= p->flags;
1969	port->regshift		= p->regshift;
1970
1971	/*
1972	 * The UART port needs an IRQ value, so we peg this to the RX IRQ
1973	 * for the multi-IRQ ports, which is where we are primarily
1974	 * concerned with the shutdown path synchronization.
1975	 *
1976	 * For the muxed case there's nothing more to do.
1977	 */
1978	port->irq		= p->irqs[SCIx_RXI_IRQ];
1979	port->irqflags		= IRQF_DISABLED;
1980
1981	port->serial_in		= sci_serial_in;
1982	port->serial_out	= sci_serial_out;
1983
1984	if (p->dma_dev)
1985		dev_dbg(port->dev, "DMA device %p, tx %d, rx %d\n",
1986			p->dma_dev, p->dma_slave_tx, p->dma_slave_rx);
1987
1988	return 0;
1989}
1990
1991#ifdef CONFIG_SERIAL_SH_SCI_CONSOLE
 
 
 
 
 
 
1992static void serial_console_putchar(struct uart_port *port, int ch)
1993{
1994	sci_poll_put_char(port, ch);
1995}
1996
1997/*
1998 *	Print a string to the serial port trying not to disturb
1999 *	any possible real use of the port...
2000 */
2001static void serial_console_write(struct console *co, const char *s,
2002				 unsigned count)
2003{
2004	struct sci_port *sci_port = &sci_ports[co->index];
2005	struct uart_port *port = &sci_port->port;
2006	unsigned short bits;
 
 
 
 
 
 
 
 
 
 
 
 
 
2007
2008	sci_port_enable(sci_port);
 
 
 
 
 
2009
2010	uart_console_write(port, s, count, serial_console_putchar);
2011
2012	/* wait until fifo is empty and last bit has been transmitted */
2013	bits = SCxSR_TDxE(port) | SCxSR_TEND(port);
2014	while ((sci_in(port, SCxSR) & bits) != bits)
2015		cpu_relax();
2016
2017	sci_port_disable(sci_port);
 
 
 
 
 
2018}
2019
2020static int __devinit serial_console_setup(struct console *co, char *options)
2021{
2022	struct sci_port *sci_port;
2023	struct uart_port *port;
2024	int baud = 115200;
2025	int bits = 8;
2026	int parity = 'n';
2027	int flow = 'n';
2028	int ret;
2029
2030	/*
2031	 * Refuse to handle any bogus ports.
2032	 */
2033	if (co->index < 0 || co->index >= SCI_NPORTS)
2034		return -ENODEV;
2035
2036	sci_port = &sci_ports[co->index];
2037	port = &sci_port->port;
2038
2039	/*
2040	 * Refuse to handle uninitialized ports.
2041	 */
2042	if (!port->ops)
2043		return -ENODEV;
2044
2045	ret = sci_remap_port(port);
2046	if (unlikely(ret != 0))
2047		return ret;
2048
2049	sci_port_enable(sci_port);
2050
2051	if (options)
2052		uart_parse_options(options, &baud, &parity, &bits, &flow);
2053
2054	sci_port_disable(sci_port);
2055
2056	return uart_set_options(port, co, baud, parity, bits, flow);
2057}
2058
2059static struct console serial_console = {
2060	.name		= "ttySC",
2061	.device		= uart_console_device,
2062	.write		= serial_console_write,
2063	.setup		= serial_console_setup,
2064	.flags		= CON_PRINTBUFFER,
2065	.index		= -1,
2066	.data		= &sci_uart_driver,
2067};
2068
2069static struct console early_serial_console = {
2070	.name           = "early_ttySC",
2071	.write          = serial_console_write,
2072	.flags          = CON_PRINTBUFFER,
2073	.index		= -1,
2074};
2075
2076static char early_serial_buf[32];
2077
2078static int __devinit sci_probe_earlyprintk(struct platform_device *pdev)
2079{
2080	struct plat_sci_port *cfg = pdev->dev.platform_data;
2081
2082	if (early_serial_console.data)
2083		return -EEXIST;
2084
2085	early_serial_console.index = pdev->id;
2086
2087	sci_init_single(NULL, &sci_ports[pdev->id], pdev->id, cfg);
2088
2089	serial_console_setup(&early_serial_console, early_serial_buf);
2090
2091	if (!strstr(early_serial_buf, "keep"))
2092		early_serial_console.flags |= CON_BOOT;
2093
2094	register_console(&early_serial_console);
2095	return 0;
2096}
2097
2098#define uart_console(port)	((port)->cons->index == (port)->line)
2099
2100static int sci_runtime_suspend(struct device *dev)
2101{
2102	struct sci_port *sci_port = dev_get_drvdata(dev);
2103	struct uart_port *port = &sci_port->port;
2104
2105	if (uart_console(port)) {
2106		sci_port->saved_smr = sci_in(port, SCSMR);
2107		sci_port->saved_brr = sci_in(port, SCBRR);
2108		sci_port->saved_fcr = sci_in(port, SCFCR);
2109	}
2110	return 0;
2111}
2112
2113static int sci_runtime_resume(struct device *dev)
2114{
2115	struct sci_port *sci_port = dev_get_drvdata(dev);
2116	struct uart_port *port = &sci_port->port;
2117
2118	if (uart_console(port)) {
2119		sci_reset(port);
2120		sci_out(port, SCSMR, sci_port->saved_smr);
2121		sci_out(port, SCBRR, sci_port->saved_brr);
2122		sci_out(port, SCFCR, sci_port->saved_fcr);
2123		sci_out(port, SCSCR, sci_port->cfg->scscr);
2124	}
2125	return 0;
2126}
2127
2128#define SCI_CONSOLE	(&serial_console)
2129
2130#else
2131static inline int __devinit sci_probe_earlyprintk(struct platform_device *pdev)
2132{
2133	return -EINVAL;
2134}
2135
2136#define SCI_CONSOLE	NULL
2137#define sci_runtime_suspend	NULL
2138#define sci_runtime_resume	NULL
2139
2140#endif /* CONFIG_SERIAL_SH_SCI_CONSOLE */
2141
2142static char banner[] __initdata =
2143	KERN_INFO "SuperH SCI(F) driver initialized\n";
2144
 
2145static struct uart_driver sci_uart_driver = {
2146	.owner		= THIS_MODULE,
2147	.driver_name	= "sci",
2148	.dev_name	= "ttySC",
2149	.major		= SCI_MAJOR,
2150	.minor		= SCI_MINOR_START,
2151	.nr		= SCI_NPORTS,
2152	.cons		= SCI_CONSOLE,
2153};
2154
2155static int sci_remove(struct platform_device *dev)
2156{
2157	struct sci_port *port = platform_get_drvdata(dev);
2158
2159	cpufreq_unregister_notifier(&port->freq_transition,
2160				    CPUFREQ_TRANSITION_NOTIFIER);
2161
2162	uart_remove_one_port(&sci_uart_driver, &port->port);
2163
2164	clk_put(port->iclk);
2165	clk_put(port->fclk);
 
 
 
 
 
 
 
 
 
2166
2167	pm_runtime_disable(&dev->dev);
2168	return 0;
2169}
2170
2171static int __devinit sci_probe_single(struct platform_device *dev,
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
2172				      unsigned int index,
2173				      struct plat_sci_port *p,
2174				      struct sci_port *sciport)
2175{
2176	int ret;
2177
2178	/* Sanity check */
2179	if (unlikely(index >= SCI_NPORTS)) {
2180		dev_notice(&dev->dev, "Attempting to register port "
2181			   "%d when only %d are available.\n",
2182			   index+1, SCI_NPORTS);
2183		dev_notice(&dev->dev, "Consider bumping "
2184			   "CONFIG_SERIAL_SH_SCI_NR_UARTS!\n");
2185		return 0;
 
 
 
 
 
 
 
 
2186	}
 
2187
2188	ret = sci_init_single(dev, sciport, index, p);
2189	if (ret)
2190		return ret;
2191
2192	return uart_add_one_port(&sci_uart_driver, &sciport->port);
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
2193}
2194
2195static int __devinit sci_probe(struct platform_device *dev)
2196{
2197	struct plat_sci_port *p = dev->dev.platform_data;
2198	struct sci_port *sp = &sci_ports[dev->id];
 
2199	int ret;
2200
2201	/*
2202	 * If we've come here via earlyprintk initialization, head off to
2203	 * the special early probe. We don't have sufficient device state
2204	 * to make it beyond this yet.
2205	 */
2206	if (is_early_platform_device(dev))
2207		return sci_probe_earlyprintk(dev);
2208
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
2209	platform_set_drvdata(dev, sp);
2210
2211	ret = sci_probe_single(dev, dev->id, p, sp);
2212	if (ret)
2213		goto err_unreg;
2214
2215	sp->freq_transition.notifier_call = sci_notifier;
2216
2217	ret = cpufreq_register_notifier(&sp->freq_transition,
2218					CPUFREQ_TRANSITION_NOTIFIER);
2219	if (unlikely(ret < 0))
2220		goto err_unreg;
 
 
 
 
 
 
 
 
 
 
 
 
 
 
2221
2222#ifdef CONFIG_SH_STANDARD_BIOS
2223	sh_bios_gdb_detach();
2224#endif
2225
2226	return 0;
2227
2228err_unreg:
2229	sci_remove(dev);
2230	return ret;
2231}
2232
2233static int sci_suspend(struct device *dev)
2234{
2235	struct sci_port *sport = dev_get_drvdata(dev);
2236
2237	if (sport)
2238		uart_suspend_port(&sci_uart_driver, &sport->port);
2239
2240	return 0;
2241}
2242
2243static int sci_resume(struct device *dev)
2244{
2245	struct sci_port *sport = dev_get_drvdata(dev);
2246
2247	if (sport)
2248		uart_resume_port(&sci_uart_driver, &sport->port);
2249
2250	return 0;
2251}
2252
2253static const struct dev_pm_ops sci_dev_pm_ops = {
2254	.runtime_suspend = sci_runtime_suspend,
2255	.runtime_resume = sci_runtime_resume,
2256	.suspend	= sci_suspend,
2257	.resume		= sci_resume,
2258};
2259
2260static struct platform_driver sci_driver = {
2261	.probe		= sci_probe,
2262	.remove		= sci_remove,
2263	.driver		= {
2264		.name	= "sh-sci",
2265		.owner	= THIS_MODULE,
2266		.pm	= &sci_dev_pm_ops,
 
2267	},
2268};
2269
2270static int __init sci_init(void)
2271{
2272	int ret;
2273
2274	printk(banner);
2275
2276	ret = uart_register_driver(&sci_uart_driver);
2277	if (likely(ret == 0)) {
2278		ret = platform_driver_register(&sci_driver);
2279		if (unlikely(ret))
2280			uart_unregister_driver(&sci_uart_driver);
2281	}
2282
2283	return ret;
2284}
2285
2286static void __exit sci_exit(void)
2287{
2288	platform_driver_unregister(&sci_driver);
2289	uart_unregister_driver(&sci_uart_driver);
 
 
2290}
2291
2292#ifdef CONFIG_SERIAL_SH_SCI_CONSOLE
2293early_platform_init_buffer("earlyprintk", &sci_driver,
2294			   early_serial_buf, ARRAY_SIZE(early_serial_buf));
2295#endif
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
2296module_init(sci_init);
2297module_exit(sci_exit);
2298
2299MODULE_LICENSE("GPL");
2300MODULE_ALIAS("platform:sh-sci");
2301MODULE_AUTHOR("Paul Mundt");
2302MODULE_DESCRIPTION("SuperH SCI(F) serial driver");
v4.17
   1// SPDX-License-Identifier: GPL-2.0
   2/*
   3 * SuperH on-chip serial module support.  (SCI with no FIFO / with FIFO)
   4 *
   5 *  Copyright (C) 2002 - 2011  Paul Mundt
   6 *  Copyright (C) 2015 Glider bvba
   7 *  Modified to support SH7720 SCIF. Markus Brunner, Mark Jonas (Jul 2007).
   8 *
   9 * based off of the old drivers/char/sh-sci.c by:
  10 *
  11 *   Copyright (C) 1999, 2000  Niibe Yutaka
  12 *   Copyright (C) 2000  Sugioka Toshinobu
  13 *   Modified to support multiple serial ports. Stuart Menefy (May 2000).
  14 *   Modified to support SecureEdge. David McCullough (2002)
  15 *   Modified to support SH7300 SCIF. Takashi Kusuda (Jun 2003).
  16 *   Removed SH7300 support (Jul 2007).
 
 
 
 
  17 */
  18#if defined(CONFIG_SERIAL_SH_SCI_CONSOLE) && defined(CONFIG_MAGIC_SYSRQ)
  19#define SUPPORT_SYSRQ
  20#endif
  21
  22#undef DEBUG
  23
  24#include <linux/clk.h>
  25#include <linux/console.h>
  26#include <linux/ctype.h>
  27#include <linux/cpufreq.h>
  28#include <linux/delay.h>
  29#include <linux/dmaengine.h>
  30#include <linux/dma-mapping.h>
  31#include <linux/err.h>
  32#include <linux/errno.h>
  33#include <linux/init.h>
  34#include <linux/interrupt.h>
 
 
 
 
 
 
  35#include <linux/ioport.h>
  36#include <linux/ktime.h>
  37#include <linux/major.h>
  38#include <linux/module.h>
  39#include <linux/mm.h>
  40#include <linux/of.h>
  41#include <linux/of_device.h>
 
  42#include <linux/platform_device.h>
 
 
  43#include <linux/pm_runtime.h>
 
 
 
 
 
 
  44#include <linux/scatterlist.h>
  45#include <linux/serial.h>
  46#include <linux/serial_sci.h>
  47#include <linux/sh_dma.h>
  48#include <linux/slab.h>
  49#include <linux/string.h>
  50#include <linux/sysrq.h>
  51#include <linux/timer.h>
  52#include <linux/tty.h>
  53#include <linux/tty_flip.h>
  54
  55#ifdef CONFIG_SUPERH
  56#include <asm/sh_bios.h>
  57#endif
  58
  59#include "serial_mctrl_gpio.h"
  60#include "sh-sci.h"
  61
  62/* Offsets into the sci_port->irqs array */
  63enum {
  64	SCIx_ERI_IRQ,
  65	SCIx_RXI_IRQ,
  66	SCIx_TXI_IRQ,
  67	SCIx_BRI_IRQ,
  68	SCIx_NR_IRQS,
  69
  70	SCIx_MUX_IRQ = SCIx_NR_IRQS,	/* special case */
  71};
  72
  73#define SCIx_IRQ_IS_MUXED(port)			\
  74	((port)->irqs[SCIx_ERI_IRQ] ==	\
  75	 (port)->irqs[SCIx_RXI_IRQ]) ||	\
  76	((port)->irqs[SCIx_ERI_IRQ] &&	\
  77	 ((port)->irqs[SCIx_RXI_IRQ] < 0))
  78
  79enum SCI_CLKS {
  80	SCI_FCK,		/* Functional Clock */
  81	SCI_SCK,		/* Optional External Clock */
  82	SCI_BRG_INT,		/* Optional BRG Internal Clock Source */
  83	SCI_SCIF_CLK,		/* Optional BRG External Clock Source */
  84	SCI_NUM_CLKS
  85};
  86
  87/* Bit x set means sampling rate x + 1 is supported */
  88#define SCI_SR(x)		BIT((x) - 1)
  89#define SCI_SR_RANGE(x, y)	GENMASK((y) - 1, (x) - 1)
  90
  91#define SCI_SR_SCIFAB		SCI_SR(5) | SCI_SR(7) | SCI_SR(11) | \
  92				SCI_SR(13) | SCI_SR(16) | SCI_SR(17) | \
  93				SCI_SR(19) | SCI_SR(27)
  94
  95#define min_sr(_port)		ffs((_port)->sampling_rate_mask)
  96#define max_sr(_port)		fls((_port)->sampling_rate_mask)
  97
  98/* Iterate over all supported sampling rates, from high to low */
  99#define for_each_sr(_sr, _port)						\
 100	for ((_sr) = max_sr(_port); (_sr) >= min_sr(_port); (_sr)--)	\
 101		if ((_port)->sampling_rate_mask & SCI_SR((_sr)))
 102
 103struct plat_sci_reg {
 104	u8 offset, size;
 105};
 106
 107struct sci_port_params {
 108	const struct plat_sci_reg regs[SCIx_NR_REGS];
 109	unsigned int fifosize;
 110	unsigned int overrun_reg;
 111	unsigned int overrun_mask;
 112	unsigned int sampling_rate_mask;
 113	unsigned int error_mask;
 114	unsigned int error_clear;
 115};
 116
 117struct sci_port {
 118	struct uart_port	port;
 119
 120	/* Platform configuration */
 121	const struct sci_port_params *params;
 122	const struct plat_sci_port *cfg;
 123	unsigned int		sampling_rate_mask;
 124	resource_size_t		reg_size;
 125	struct mctrl_gpios	*gpios;
 126
 127	/* Clocks */
 128	struct clk		*clks[SCI_NUM_CLKS];
 129	unsigned long		clk_rates[SCI_NUM_CLKS];
 
 130
 131	int			irqs[SCIx_NR_IRQS];
 132	char			*irqstr[SCIx_NR_IRQS];
 133
 134	struct dma_chan			*chan_tx;
 135	struct dma_chan			*chan_rx;
 136
 137#ifdef CONFIG_SERIAL_SH_SCI_DMA
 
 
 138	dma_cookie_t			cookie_tx;
 139	dma_cookie_t			cookie_rx[2];
 140	dma_cookie_t			active_rx;
 141	dma_addr_t			tx_dma_addr;
 142	unsigned int			tx_dma_len;
 143	struct scatterlist		sg_rx[2];
 144	void				*rx_buf[2];
 145	size_t				buf_len_rx;
 
 
 146	struct work_struct		work_tx;
 147	struct hrtimer			rx_timer;
 148	unsigned int			rx_timeout;	/* microseconds */
 
 149#endif
 150	unsigned int			rx_frame;
 151	int				rx_trigger;
 152	struct timer_list		rx_fifo_timer;
 153	int				rx_fifo_timeout;
 154	u16				hscif_tot;
 155
 156	bool has_rtscts;
 157	bool autorts;
 
 
 
 
 
 158};
 159
 
 
 
 
 
 160#define SCI_NPORTS CONFIG_SERIAL_SH_SCI_NR_UARTS
 161
 162static struct sci_port sci_ports[SCI_NPORTS];
 163static struct uart_driver sci_uart_driver;
 164
 165static inline struct sci_port *
 166to_sci_port(struct uart_port *uart)
 167{
 168	return container_of(uart, struct sci_port, port);
 169}
 170
 171static const struct sci_port_params sci_port_params[SCIx_NR_REGTYPES] = {
 
 
 
 
 
 
 
 
 
 
 
 172	/*
 173	 * Common SCI definitions, dependent on the port's regshift
 174	 * value.
 175	 */
 176	[SCIx_SCI_REGTYPE] = {
 177		.regs = {
 178			[SCSMR]		= { 0x00,  8 },
 179			[SCBRR]		= { 0x01,  8 },
 180			[SCSCR]		= { 0x02,  8 },
 181			[SCxTDR]	= { 0x03,  8 },
 182			[SCxSR]		= { 0x04,  8 },
 183			[SCxRDR]	= { 0x05,  8 },
 184		},
 185		.fifosize = 1,
 186		.overrun_reg = SCxSR,
 187		.overrun_mask = SCI_ORER,
 188		.sampling_rate_mask = SCI_SR(32),
 189		.error_mask = SCI_DEFAULT_ERROR_MASK | SCI_ORER,
 190		.error_clear = SCI_ERROR_CLEAR & ~SCI_ORER,
 191	},
 192
 193	/*
 194	 * Common definitions for legacy IrDA ports.
 
 195	 */
 196	[SCIx_IRDA_REGTYPE] = {
 197		.regs = {
 198			[SCSMR]		= { 0x00,  8 },
 199			[SCBRR]		= { 0x02,  8 },
 200			[SCSCR]		= { 0x04,  8 },
 201			[SCxTDR]	= { 0x06,  8 },
 202			[SCxSR]		= { 0x08, 16 },
 203			[SCxRDR]	= { 0x0a,  8 },
 204			[SCFCR]		= { 0x0c,  8 },
 205			[SCFDR]		= { 0x0e, 16 },
 206		},
 207		.fifosize = 1,
 208		.overrun_reg = SCxSR,
 209		.overrun_mask = SCI_ORER,
 210		.sampling_rate_mask = SCI_SR(32),
 211		.error_mask = SCI_DEFAULT_ERROR_MASK | SCI_ORER,
 212		.error_clear = SCI_ERROR_CLEAR & ~SCI_ORER,
 213	},
 214
 215	/*
 216	 * Common SCIFA definitions.
 217	 */
 218	[SCIx_SCIFA_REGTYPE] = {
 219		.regs = {
 220			[SCSMR]		= { 0x00, 16 },
 221			[SCBRR]		= { 0x04,  8 },
 222			[SCSCR]		= { 0x08, 16 },
 223			[SCxTDR]	= { 0x20,  8 },
 224			[SCxSR]		= { 0x14, 16 },
 225			[SCxRDR]	= { 0x24,  8 },
 226			[SCFCR]		= { 0x18, 16 },
 227			[SCFDR]		= { 0x1c, 16 },
 228			[SCPCR]		= { 0x30, 16 },
 229			[SCPDR]		= { 0x34, 16 },
 230		},
 231		.fifosize = 64,
 232		.overrun_reg = SCxSR,
 233		.overrun_mask = SCIFA_ORER,
 234		.sampling_rate_mask = SCI_SR_SCIFAB,
 235		.error_mask = SCIF_DEFAULT_ERROR_MASK | SCIFA_ORER,
 236		.error_clear = SCIF_ERROR_CLEAR & ~SCIFA_ORER,
 237	},
 238
 239	/*
 240	 * Common SCIFB definitions.
 241	 */
 242	[SCIx_SCIFB_REGTYPE] = {
 243		.regs = {
 244			[SCSMR]		= { 0x00, 16 },
 245			[SCBRR]		= { 0x04,  8 },
 246			[SCSCR]		= { 0x08, 16 },
 247			[SCxTDR]	= { 0x40,  8 },
 248			[SCxSR]		= { 0x14, 16 },
 249			[SCxRDR]	= { 0x60,  8 },
 250			[SCFCR]		= { 0x18, 16 },
 251			[SCTFDR]	= { 0x38, 16 },
 252			[SCRFDR]	= { 0x3c, 16 },
 253			[SCPCR]		= { 0x30, 16 },
 254			[SCPDR]		= { 0x34, 16 },
 255		},
 256		.fifosize = 256,
 257		.overrun_reg = SCxSR,
 258		.overrun_mask = SCIFA_ORER,
 259		.sampling_rate_mask = SCI_SR_SCIFAB,
 260		.error_mask = SCIF_DEFAULT_ERROR_MASK | SCIFA_ORER,
 261		.error_clear = SCIF_ERROR_CLEAR & ~SCIFA_ORER,
 262	},
 263
 264	/*
 265	 * Common SH-2(A) SCIF definitions for ports with FIFO data
 266	 * count registers.
 267	 */
 268	[SCIx_SH2_SCIF_FIFODATA_REGTYPE] = {
 269		.regs = {
 270			[SCSMR]		= { 0x00, 16 },
 271			[SCBRR]		= { 0x04,  8 },
 272			[SCSCR]		= { 0x08, 16 },
 273			[SCxTDR]	= { 0x0c,  8 },
 274			[SCxSR]		= { 0x10, 16 },
 275			[SCxRDR]	= { 0x14,  8 },
 276			[SCFCR]		= { 0x18, 16 },
 277			[SCFDR]		= { 0x1c, 16 },
 278			[SCSPTR]	= { 0x20, 16 },
 279			[SCLSR]		= { 0x24, 16 },
 280		},
 281		.fifosize = 16,
 282		.overrun_reg = SCLSR,
 283		.overrun_mask = SCLSR_ORER,
 284		.sampling_rate_mask = SCI_SR(32),
 285		.error_mask = SCIF_DEFAULT_ERROR_MASK,
 286		.error_clear = SCIF_ERROR_CLEAR,
 287	},
 288
 289	/*
 290	 * Common SH-3 SCIF definitions.
 291	 */
 292	[SCIx_SH3_SCIF_REGTYPE] = {
 293		.regs = {
 294			[SCSMR]		= { 0x00,  8 },
 295			[SCBRR]		= { 0x02,  8 },
 296			[SCSCR]		= { 0x04,  8 },
 297			[SCxTDR]	= { 0x06,  8 },
 298			[SCxSR]		= { 0x08, 16 },
 299			[SCxRDR]	= { 0x0a,  8 },
 300			[SCFCR]		= { 0x0c,  8 },
 301			[SCFDR]		= { 0x0e, 16 },
 302		},
 303		.fifosize = 16,
 304		.overrun_reg = SCLSR,
 305		.overrun_mask = SCLSR_ORER,
 306		.sampling_rate_mask = SCI_SR(32),
 307		.error_mask = SCIF_DEFAULT_ERROR_MASK,
 308		.error_clear = SCIF_ERROR_CLEAR,
 309	},
 310
 311	/*
 312	 * Common SH-4(A) SCIF(B) definitions.
 313	 */
 314	[SCIx_SH4_SCIF_REGTYPE] = {
 315		.regs = {
 316			[SCSMR]		= { 0x00, 16 },
 317			[SCBRR]		= { 0x04,  8 },
 318			[SCSCR]		= { 0x08, 16 },
 319			[SCxTDR]	= { 0x0c,  8 },
 320			[SCxSR]		= { 0x10, 16 },
 321			[SCxRDR]	= { 0x14,  8 },
 322			[SCFCR]		= { 0x18, 16 },
 323			[SCFDR]		= { 0x1c, 16 },
 324			[SCSPTR]	= { 0x20, 16 },
 325			[SCLSR]		= { 0x24, 16 },
 326		},
 327		.fifosize = 16,
 328		.overrun_reg = SCLSR,
 329		.overrun_mask = SCLSR_ORER,
 330		.sampling_rate_mask = SCI_SR(32),
 331		.error_mask = SCIF_DEFAULT_ERROR_MASK,
 332		.error_clear = SCIF_ERROR_CLEAR,
 333	},
 334
 335	/*
 336	 * Common SCIF definitions for ports with a Baud Rate Generator for
 337	 * External Clock (BRG).
 338	 */
 339	[SCIx_SH4_SCIF_BRG_REGTYPE] = {
 340		.regs = {
 341			[SCSMR]		= { 0x00, 16 },
 342			[SCBRR]		= { 0x04,  8 },
 343			[SCSCR]		= { 0x08, 16 },
 344			[SCxTDR]	= { 0x0c,  8 },
 345			[SCxSR]		= { 0x10, 16 },
 346			[SCxRDR]	= { 0x14,  8 },
 347			[SCFCR]		= { 0x18, 16 },
 348			[SCFDR]		= { 0x1c, 16 },
 349			[SCSPTR]	= { 0x20, 16 },
 350			[SCLSR]		= { 0x24, 16 },
 351			[SCDL]		= { 0x30, 16 },
 352			[SCCKS]		= { 0x34, 16 },
 353		},
 354		.fifosize = 16,
 355		.overrun_reg = SCLSR,
 356		.overrun_mask = SCLSR_ORER,
 357		.sampling_rate_mask = SCI_SR(32),
 358		.error_mask = SCIF_DEFAULT_ERROR_MASK,
 359		.error_clear = SCIF_ERROR_CLEAR,
 360	},
 361
 362	/*
 363	 * Common HSCIF definitions.
 364	 */
 365	[SCIx_HSCIF_REGTYPE] = {
 366		.regs = {
 367			[SCSMR]		= { 0x00, 16 },
 368			[SCBRR]		= { 0x04,  8 },
 369			[SCSCR]		= { 0x08, 16 },
 370			[SCxTDR]	= { 0x0c,  8 },
 371			[SCxSR]		= { 0x10, 16 },
 372			[SCxRDR]	= { 0x14,  8 },
 373			[SCFCR]		= { 0x18, 16 },
 374			[SCFDR]		= { 0x1c, 16 },
 375			[SCSPTR]	= { 0x20, 16 },
 376			[SCLSR]		= { 0x24, 16 },
 377			[HSSRR]		= { 0x40, 16 },
 378			[SCDL]		= { 0x30, 16 },
 379			[SCCKS]		= { 0x34, 16 },
 380			[HSRTRGR]	= { 0x54, 16 },
 381			[HSTTRGR]	= { 0x58, 16 },
 382		},
 383		.fifosize = 128,
 384		.overrun_reg = SCLSR,
 385		.overrun_mask = SCLSR_ORER,
 386		.sampling_rate_mask = SCI_SR_RANGE(8, 32),
 387		.error_mask = SCIF_DEFAULT_ERROR_MASK,
 388		.error_clear = SCIF_ERROR_CLEAR,
 389	},
 390
 391	/*
 392	 * Common SH-4(A) SCIF(B) definitions for ports without an SCSPTR
 393	 * register.
 394	 */
 395	[SCIx_SH4_SCIF_NO_SCSPTR_REGTYPE] = {
 396		.regs = {
 397			[SCSMR]		= { 0x00, 16 },
 398			[SCBRR]		= { 0x04,  8 },
 399			[SCSCR]		= { 0x08, 16 },
 400			[SCxTDR]	= { 0x0c,  8 },
 401			[SCxSR]		= { 0x10, 16 },
 402			[SCxRDR]	= { 0x14,  8 },
 403			[SCFCR]		= { 0x18, 16 },
 404			[SCFDR]		= { 0x1c, 16 },
 405			[SCLSR]		= { 0x24, 16 },
 406		},
 407		.fifosize = 16,
 408		.overrun_reg = SCLSR,
 409		.overrun_mask = SCLSR_ORER,
 410		.sampling_rate_mask = SCI_SR(32),
 411		.error_mask = SCIF_DEFAULT_ERROR_MASK,
 412		.error_clear = SCIF_ERROR_CLEAR,
 413	},
 414
 415	/*
 416	 * Common SH-4(A) SCIF(B) definitions for ports with FIFO data
 417	 * count registers.
 418	 */
 419	[SCIx_SH4_SCIF_FIFODATA_REGTYPE] = {
 420		.regs = {
 421			[SCSMR]		= { 0x00, 16 },
 422			[SCBRR]		= { 0x04,  8 },
 423			[SCSCR]		= { 0x08, 16 },
 424			[SCxTDR]	= { 0x0c,  8 },
 425			[SCxSR]		= { 0x10, 16 },
 426			[SCxRDR]	= { 0x14,  8 },
 427			[SCFCR]		= { 0x18, 16 },
 428			[SCFDR]		= { 0x1c, 16 },
 429			[SCTFDR]	= { 0x1c, 16 },	/* aliased to SCFDR */
 430			[SCRFDR]	= { 0x20, 16 },
 431			[SCSPTR]	= { 0x24, 16 },
 432			[SCLSR]		= { 0x28, 16 },
 433		},
 434		.fifosize = 16,
 435		.overrun_reg = SCLSR,
 436		.overrun_mask = SCLSR_ORER,
 437		.sampling_rate_mask = SCI_SR(32),
 438		.error_mask = SCIF_DEFAULT_ERROR_MASK,
 439		.error_clear = SCIF_ERROR_CLEAR,
 440	},
 441
 442	/*
 443	 * SH7705-style SCIF(B) ports, lacking both SCSPTR and SCLSR
 444	 * registers.
 445	 */
 446	[SCIx_SH7705_SCIF_REGTYPE] = {
 447		.regs = {
 448			[SCSMR]		= { 0x00, 16 },
 449			[SCBRR]		= { 0x04,  8 },
 450			[SCSCR]		= { 0x08, 16 },
 451			[SCxTDR]	= { 0x20,  8 },
 452			[SCxSR]		= { 0x14, 16 },
 453			[SCxRDR]	= { 0x24,  8 },
 454			[SCFCR]		= { 0x18, 16 },
 455			[SCFDR]		= { 0x1c, 16 },
 456		},
 457		.fifosize = 64,
 458		.overrun_reg = SCxSR,
 459		.overrun_mask = SCIFA_ORER,
 460		.sampling_rate_mask = SCI_SR(16),
 461		.error_mask = SCIF_DEFAULT_ERROR_MASK | SCIFA_ORER,
 462		.error_clear = SCIF_ERROR_CLEAR & ~SCIFA_ORER,
 463	},
 464};
 465
 466#define sci_getreg(up, offset)		(&to_sci_port(up)->params->regs[offset])
 467
 468/*
 469 * The "offset" here is rather misleading, in that it refers to an enum
 470 * value relative to the port mapping rather than the fixed offset
 471 * itself, which needs to be manually retrieved from the platform's
 472 * register map for the given port.
 473 */
 474static unsigned int sci_serial_in(struct uart_port *p, int offset)
 475{
 476	const struct plat_sci_reg *reg = sci_getreg(p, offset);
 477
 478	if (reg->size == 8)
 479		return ioread8(p->membase + (reg->offset << p->regshift));
 480	else if (reg->size == 16)
 481		return ioread16(p->membase + (reg->offset << p->regshift));
 482	else
 483		WARN(1, "Invalid register access\n");
 484
 485	return 0;
 486}
 487
 488static void sci_serial_out(struct uart_port *p, int offset, int value)
 489{
 490	const struct plat_sci_reg *reg = sci_getreg(p, offset);
 491
 492	if (reg->size == 8)
 493		iowrite8(value, p->membase + (reg->offset << p->regshift));
 494	else if (reg->size == 16)
 495		iowrite16(value, p->membase + (reg->offset << p->regshift));
 496	else
 497		WARN(1, "Invalid register access\n");
 498}
 499
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 500static void sci_port_enable(struct sci_port *sci_port)
 501{
 502	unsigned int i;
 503
 504	if (!sci_port->port.dev)
 505		return;
 506
 507	pm_runtime_get_sync(sci_port->port.dev);
 508
 509	for (i = 0; i < SCI_NUM_CLKS; i++) {
 510		clk_prepare_enable(sci_port->clks[i]);
 511		sci_port->clk_rates[i] = clk_get_rate(sci_port->clks[i]);
 512	}
 513	sci_port->port.uartclk = sci_port->clk_rates[SCI_FCK];
 514}
 515
 516static void sci_port_disable(struct sci_port *sci_port)
 517{
 518	unsigned int i;
 519
 520	if (!sci_port->port.dev)
 521		return;
 522
 523	for (i = SCI_NUM_CLKS; i-- > 0; )
 524		clk_disable_unprepare(sci_port->clks[i]);
 525
 526	pm_runtime_put_sync(sci_port->port.dev);
 527}
 528
 529static inline unsigned long port_rx_irq_mask(struct uart_port *port)
 530{
 531	/*
 532	 * Not all ports (such as SCIFA) will support REIE. Rather than
 533	 * special-casing the port type, we check the port initialization
 534	 * IRQ enable mask to see whether the IRQ is desired at all. If
 535	 * it's unset, it's logically inferred that there's no point in
 536	 * testing for it.
 537	 */
 538	return SCSCR_RIE | (to_sci_port(port)->cfg->scscr & SCSCR_REIE);
 539}
 540
 541static void sci_start_tx(struct uart_port *port)
 542{
 543	struct sci_port *s = to_sci_port(port);
 544	unsigned short ctrl;
 545
 546#ifdef CONFIG_SERIAL_SH_SCI_DMA
 547	if (port->type == PORT_SCIFA || port->type == PORT_SCIFB) {
 548		u16 new, scr = serial_port_in(port, SCSCR);
 549		if (s->chan_tx)
 550			new = scr | SCSCR_TDRQE;
 551		else
 552			new = scr & ~SCSCR_TDRQE;
 553		if (new != scr)
 554			serial_port_out(port, SCSCR, new);
 555	}
 556
 557	if (s->chan_tx && !uart_circ_empty(&s->port.state->xmit) &&
 558	    dma_submit_error(s->cookie_tx)) {
 559		s->cookie_tx = 0;
 560		schedule_work(&s->work_tx);
 561	}
 562#endif
 563
 564	if (!s->chan_tx || port->type == PORT_SCIFA || port->type == PORT_SCIFB) {
 565		/* Set TIE (Transmit Interrupt Enable) bit in SCSCR */
 566		ctrl = serial_port_in(port, SCSCR);
 567		serial_port_out(port, SCSCR, ctrl | SCSCR_TIE);
 568	}
 569}
 570
 571static void sci_stop_tx(struct uart_port *port)
 572{
 573	unsigned short ctrl;
 574
 575	/* Clear TIE (Transmit Interrupt Enable) bit in SCSCR */
 576	ctrl = serial_port_in(port, SCSCR);
 577
 578	if (port->type == PORT_SCIFA || port->type == PORT_SCIFB)
 579		ctrl &= ~SCSCR_TDRQE;
 580
 581	ctrl &= ~SCSCR_TIE;
 582
 583	serial_port_out(port, SCSCR, ctrl);
 584}
 585
 586static void sci_start_rx(struct uart_port *port)
 587{
 588	unsigned short ctrl;
 589
 590	ctrl = serial_port_in(port, SCSCR) | port_rx_irq_mask(port);
 591
 592	if (port->type == PORT_SCIFA || port->type == PORT_SCIFB)
 593		ctrl &= ~SCSCR_RDRQE;
 594
 595	serial_port_out(port, SCSCR, ctrl);
 596}
 597
 598static void sci_stop_rx(struct uart_port *port)
 599{
 600	unsigned short ctrl;
 601
 602	ctrl = serial_port_in(port, SCSCR);
 603
 604	if (port->type == PORT_SCIFA || port->type == PORT_SCIFB)
 605		ctrl &= ~SCSCR_RDRQE;
 606
 607	ctrl &= ~port_rx_irq_mask(port);
 608
 609	serial_port_out(port, SCSCR, ctrl);
 610}
 611
 612static void sci_clear_SCxSR(struct uart_port *port, unsigned int mask)
 613{
 614	if (port->type == PORT_SCI) {
 615		/* Just store the mask */
 616		serial_port_out(port, SCxSR, mask);
 617	} else if (to_sci_port(port)->params->overrun_mask == SCIFA_ORER) {
 618		/* SCIFA/SCIFB and SCIF on SH7705/SH7720/SH7721 */
 619		/* Only clear the status bits we want to clear */
 620		serial_port_out(port, SCxSR,
 621				serial_port_in(port, SCxSR) & mask);
 622	} else {
 623		/* Store the mask, clear parity/framing errors */
 624		serial_port_out(port, SCxSR, mask & ~(SCIF_FERC | SCIF_PERC));
 625	}
 626}
 627
 628#if defined(CONFIG_CONSOLE_POLL) || defined(CONFIG_SERIAL_SH_SCI_CONSOLE) || \
 629    defined(CONFIG_SERIAL_SH_SCI_EARLYCON)
 630
 631#ifdef CONFIG_CONSOLE_POLL
 632static int sci_poll_get_char(struct uart_port *port)
 633{
 634	unsigned short status;
 635	int c;
 636
 637	do {
 638		status = serial_port_in(port, SCxSR);
 639		if (status & SCxSR_ERRORS(port)) {
 640			sci_clear_SCxSR(port, SCxSR_ERROR_CLEAR(port));
 641			continue;
 642		}
 643		break;
 644	} while (1);
 645
 646	if (!(status & SCxSR_RDxF(port)))
 647		return NO_POLL_CHAR;
 648
 649	c = serial_port_in(port, SCxRDR);
 650
 651	/* Dummy read */
 652	serial_port_in(port, SCxSR);
 653	sci_clear_SCxSR(port, SCxSR_RDxF_CLEAR(port));
 654
 655	return c;
 656}
 657#endif
 658
 659static void sci_poll_put_char(struct uart_port *port, unsigned char c)
 660{
 661	unsigned short status;
 662
 663	do {
 664		status = serial_port_in(port, SCxSR);
 665	} while (!(status & SCxSR_TDxE(port)));
 666
 667	serial_port_out(port, SCxTDR, c);
 668	sci_clear_SCxSR(port, SCxSR_TDxE_CLEAR(port) & ~SCxSR_TEND(port));
 669}
 670#endif /* CONFIG_CONSOLE_POLL || CONFIG_SERIAL_SH_SCI_CONSOLE ||
 671	  CONFIG_SERIAL_SH_SCI_EARLYCON */
 672
 673static void sci_init_pins(struct uart_port *port, unsigned int cflag)
 674{
 675	struct sci_port *s = to_sci_port(port);
 
 676
 677	/*
 678	 * Use port-specific handler if provided.
 679	 */
 680	if (s->cfg->ops && s->cfg->ops->init_pins) {
 681		s->cfg->ops->init_pins(port, cflag);
 682		return;
 683	}
 684
 685	if (port->type == PORT_SCIFA || port->type == PORT_SCIFB) {
 686		u16 data = serial_port_in(port, SCPDR);
 687		u16 ctrl = serial_port_in(port, SCPCR);
 
 
 
 688
 689		/* Enable RXD and TXD pin functions */
 690		ctrl &= ~(SCPCR_RXDC | SCPCR_TXDC);
 691		if (to_sci_port(port)->has_rtscts) {
 692			/* RTS# is output, active low, unless autorts */
 693			if (!(port->mctrl & TIOCM_RTS)) {
 694				ctrl |= SCPCR_RTSC;
 695				data |= SCPDR_RTSD;
 696			} else if (!s->autorts) {
 697				ctrl |= SCPCR_RTSC;
 698				data &= ~SCPDR_RTSD;
 699			} else {
 700				/* Enable RTS# pin function */
 701				ctrl &= ~SCPCR_RTSC;
 702			}
 703			/* Enable CTS# pin function */
 704			ctrl &= ~SCPCR_CTSC;
 705		}
 706		serial_port_out(port, SCPDR, data);
 707		serial_port_out(port, SCPCR, ctrl);
 708	} else if (sci_getreg(port, SCSPTR)->size) {
 709		u16 status = serial_port_in(port, SCSPTR);
 710
 711		/* RTS# is always output; and active low, unless autorts */
 712		status |= SCSPTR_RTSIO;
 713		if (!(port->mctrl & TIOCM_RTS))
 714			status |= SCSPTR_RTSDT;
 715		else if (!s->autorts)
 716			status &= ~SCSPTR_RTSDT;
 717		/* CTS# and SCK are inputs */
 718		status &= ~(SCSPTR_CTSIO | SCSPTR_SCKIO);
 719		serial_port_out(port, SCSPTR, status);
 720	}
 721}
 722
 723static int sci_txfill(struct uart_port *port)
 724{
 725	struct sci_port *s = to_sci_port(port);
 726	unsigned int fifo_mask = (s->params->fifosize << 1) - 1;
 727	const struct plat_sci_reg *reg;
 728
 729	reg = sci_getreg(port, SCTFDR);
 730	if (reg->size)
 731		return serial_port_in(port, SCTFDR) & fifo_mask;
 732
 733	reg = sci_getreg(port, SCFDR);
 734	if (reg->size)
 735		return serial_port_in(port, SCFDR) >> 8;
 736
 737	return !(serial_port_in(port, SCxSR) & SCI_TDRE);
 738}
 739
 740static int sci_txroom(struct uart_port *port)
 741{
 742	return port->fifosize - sci_txfill(port);
 743}
 744
 745static int sci_rxfill(struct uart_port *port)
 746{
 747	struct sci_port *s = to_sci_port(port);
 748	unsigned int fifo_mask = (s->params->fifosize << 1) - 1;
 749	const struct plat_sci_reg *reg;
 750
 751	reg = sci_getreg(port, SCRFDR);
 752	if (reg->size)
 753		return serial_port_in(port, SCRFDR) & fifo_mask;
 754
 755	reg = sci_getreg(port, SCFDR);
 756	if (reg->size)
 757		return serial_port_in(port, SCFDR) & fifo_mask;
 
 
 
 
 
 
 
 
 
 
 758
 759	return (serial_port_in(port, SCxSR) & SCxSR_RDxF(port)) != 0;
 
 
 
 760}
 761
 762/* ********************************************************************** *
 763 *                   the interrupt related routines                       *
 764 * ********************************************************************** */
 765
 766static void sci_transmit_chars(struct uart_port *port)
 767{
 768	struct circ_buf *xmit = &port->state->xmit;
 769	unsigned int stopped = uart_tx_stopped(port);
 770	unsigned short status;
 771	unsigned short ctrl;
 772	int count;
 773
 774	status = serial_port_in(port, SCxSR);
 775	if (!(status & SCxSR_TDxE(port))) {
 776		ctrl = serial_port_in(port, SCSCR);
 777		if (uart_circ_empty(xmit))
 778			ctrl &= ~SCSCR_TIE;
 779		else
 780			ctrl |= SCSCR_TIE;
 781		serial_port_out(port, SCSCR, ctrl);
 782		return;
 783	}
 784
 785	count = sci_txroom(port);
 786
 787	do {
 788		unsigned char c;
 789
 790		if (port->x_char) {
 791			c = port->x_char;
 792			port->x_char = 0;
 793		} else if (!uart_circ_empty(xmit) && !stopped) {
 794			c = xmit->buf[xmit->tail];
 795			xmit->tail = (xmit->tail + 1) & (UART_XMIT_SIZE - 1);
 796		} else {
 797			break;
 798		}
 799
 800		serial_port_out(port, SCxTDR, c);
 801
 802		port->icount.tx++;
 803	} while (--count > 0);
 804
 805	sci_clear_SCxSR(port, SCxSR_TDxE_CLEAR(port));
 806
 807	if (uart_circ_chars_pending(xmit) < WAKEUP_CHARS)
 808		uart_write_wakeup(port);
 809	if (uart_circ_empty(xmit)) {
 810		sci_stop_tx(port);
 811	} else {
 812		ctrl = serial_port_in(port, SCSCR);
 813
 814		if (port->type != PORT_SCI) {
 815			serial_port_in(port, SCxSR); /* Dummy read */
 816			sci_clear_SCxSR(port, SCxSR_TDxE_CLEAR(port));
 817		}
 818
 819		ctrl |= SCSCR_TIE;
 820		serial_port_out(port, SCSCR, ctrl);
 821	}
 822}
 823
 824/* On SH3, SCIF may read end-of-break as a space->mark char */
 825#define STEPFN(c)  ({int __c = (c); (((__c-1)|(__c)) == -1); })
 826
 827static void sci_receive_chars(struct uart_port *port)
 828{
 829	struct tty_port *tport = &port->state->port;
 
 830	int i, count, copied = 0;
 831	unsigned short status;
 832	unsigned char flag;
 833
 834	status = serial_port_in(port, SCxSR);
 835	if (!(status & SCxSR_RDxF(port)))
 836		return;
 837
 838	while (1) {
 839		/* Don't copy more bytes than there is room for in the buffer */
 840		count = tty_buffer_request_room(tport, sci_rxfill(port));
 841
 842		/* If for any reason we can't copy more data, we're done! */
 843		if (count == 0)
 844			break;
 845
 846		if (port->type == PORT_SCI) {
 847			char c = serial_port_in(port, SCxRDR);
 848			if (uart_handle_sysrq_char(port, c))
 
 849				count = 0;
 850			else
 851				tty_insert_flip_char(tport, c, TTY_NORMAL);
 852		} else {
 853			for (i = 0; i < count; i++) {
 854				char c = serial_port_in(port, SCxRDR);
 855
 856				status = serial_port_in(port, SCxSR);
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 857				if (uart_handle_sysrq_char(port, c)) {
 858					count--; i--;
 859					continue;
 860				}
 861
 862				/* Store data and status */
 863				if (status & SCxSR_FER(port)) {
 864					flag = TTY_FRAME;
 865					port->icount.frame++;
 866					dev_notice(port->dev, "frame error\n");
 867				} else if (status & SCxSR_PER(port)) {
 868					flag = TTY_PARITY;
 869					port->icount.parity++;
 870					dev_notice(port->dev, "parity error\n");
 871				} else
 872					flag = TTY_NORMAL;
 873
 874				tty_insert_flip_char(tport, c, flag);
 875			}
 876		}
 877
 878		serial_port_in(port, SCxSR); /* dummy read */
 879		sci_clear_SCxSR(port, SCxSR_RDxF_CLEAR(port));
 880
 881		copied += count;
 882		port->icount.rx += count;
 883	}
 884
 885	if (copied) {
 886		/* Tell the rest of the system the news. New characters! */
 887		tty_flip_buffer_push(tport);
 888	} else {
 889		/* TTY buffers full; read from RX reg to prevent lockup */
 890		serial_port_in(port, SCxRDR);
 891		serial_port_in(port, SCxSR); /* dummy read */
 892		sci_clear_SCxSR(port, SCxSR_RDxF_CLEAR(port));
 893	}
 894}
 895
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 896static int sci_handle_errors(struct uart_port *port)
 897{
 898	int copied = 0;
 899	unsigned short status = serial_port_in(port, SCxSR);
 900	struct tty_port *tport = &port->state->port;
 901	struct sci_port *s = to_sci_port(port);
 902
 903	/* Handle overruns */
 904	if (status & s->params->overrun_mask) {
 905		port->icount.overrun++;
 
 
 
 
 
 906
 907		/* overrun error */
 908		if (tty_insert_flip_char(tport, 0, TTY_OVERRUN))
 909			copied++;
 910
 911		dev_notice(port->dev, "overrun error\n");
 912	}
 913
 914	if (status & SCxSR_FER(port)) {
 915		/* frame error */
 916		port->icount.frame++;
 
 
 
 
 
 
 
 
 
 
 
 917
 918		if (tty_insert_flip_char(tport, 0, TTY_FRAME))
 919			copied++;
 
 
 
 
 
 
 920
 921		dev_notice(port->dev, "frame error\n");
 
 922	}
 923
 924	if (status & SCxSR_PER(port)) {
 925		/* parity error */
 926		port->icount.parity++;
 927
 928		if (tty_insert_flip_char(tport, 0, TTY_PARITY))
 929			copied++;
 930
 931		dev_notice(port->dev, "parity error\n");
 932	}
 933
 934	if (copied)
 935		tty_flip_buffer_push(tport);
 936
 937	return copied;
 938}
 939
 940static int sci_handle_fifo_overrun(struct uart_port *port)
 941{
 942	struct tty_port *tport = &port->state->port;
 943	struct sci_port *s = to_sci_port(port);
 944	const struct plat_sci_reg *reg;
 945	int copied = 0;
 946	u16 status;
 947
 948	reg = sci_getreg(port, s->params->overrun_reg);
 949	if (!reg->size)
 950		return 0;
 951
 952	status = serial_port_in(port, s->params->overrun_reg);
 953	if (status & s->params->overrun_mask) {
 954		status &= ~s->params->overrun_mask;
 955		serial_port_out(port, s->params->overrun_reg, status);
 956
 957		port->icount.overrun++;
 
 958
 959		tty_insert_flip_char(tport, 0, TTY_OVERRUN);
 960		tty_flip_buffer_push(tport);
 961
 962		dev_dbg(port->dev, "overrun error\n");
 963		copied++;
 964	}
 965
 966	return copied;
 967}
 968
 969static int sci_handle_breaks(struct uart_port *port)
 970{
 971	int copied = 0;
 972	unsigned short status = serial_port_in(port, SCxSR);
 973	struct tty_port *tport = &port->state->port;
 
 974
 975	if (uart_handle_break(port))
 976		return 0;
 977
 978	if (status & SCxSR_BRK(port)) {
 979		port->icount.brk++;
 980
 
 
 981		/* Notify of BREAK */
 982		if (tty_insert_flip_char(tport, 0, TTY_BREAK))
 983			copied++;
 984
 985		dev_dbg(port->dev, "BREAK detected\n");
 986	}
 987
 988	if (copied)
 989		tty_flip_buffer_push(tport);
 990
 991	copied += sci_handle_fifo_overrun(port);
 992
 993	return copied;
 994}
 995
 996static int scif_set_rtrg(struct uart_port *port, int rx_trig)
 997{
 998	unsigned int bits;
 999
1000	if (rx_trig < 1)
1001		rx_trig = 1;
1002	if (rx_trig >= port->fifosize)
1003		rx_trig = port->fifosize;
1004
1005	/* HSCIF can be set to an arbitrary level. */
1006	if (sci_getreg(port, HSRTRGR)->size) {
1007		serial_port_out(port, HSRTRGR, rx_trig);
1008		return rx_trig;
1009	}
1010
1011	switch (port->type) {
1012	case PORT_SCIF:
1013		if (rx_trig < 4) {
1014			bits = 0;
1015			rx_trig = 1;
1016		} else if (rx_trig < 8) {
1017			bits = SCFCR_RTRG0;
1018			rx_trig = 4;
1019		} else if (rx_trig < 14) {
1020			bits = SCFCR_RTRG1;
1021			rx_trig = 8;
1022		} else {
1023			bits = SCFCR_RTRG0 | SCFCR_RTRG1;
1024			rx_trig = 14;
1025		}
1026		break;
1027	case PORT_SCIFA:
1028	case PORT_SCIFB:
1029		if (rx_trig < 16) {
1030			bits = 0;
1031			rx_trig = 1;
1032		} else if (rx_trig < 32) {
1033			bits = SCFCR_RTRG0;
1034			rx_trig = 16;
1035		} else if (rx_trig < 48) {
1036			bits = SCFCR_RTRG1;
1037			rx_trig = 32;
1038		} else {
1039			bits = SCFCR_RTRG0 | SCFCR_RTRG1;
1040			rx_trig = 48;
1041		}
1042		break;
1043	default:
1044		WARN(1, "unknown FIFO configuration");
1045		return 1;
1046	}
1047
1048	serial_port_out(port, SCFCR,
1049		(serial_port_in(port, SCFCR) &
1050		~(SCFCR_RTRG1 | SCFCR_RTRG0)) | bits);
1051
1052	return rx_trig;
1053}
1054
1055static int scif_rtrg_enabled(struct uart_port *port)
1056{
1057	if (sci_getreg(port, HSRTRGR)->size)
1058		return serial_port_in(port, HSRTRGR) != 0;
1059	else
1060		return (serial_port_in(port, SCFCR) &
1061			(SCFCR_RTRG0 | SCFCR_RTRG1)) != 0;
1062}
1063
1064static void rx_fifo_timer_fn(struct timer_list *t)
1065{
1066	struct sci_port *s = from_timer(s, t, rx_fifo_timer);
1067	struct uart_port *port = &s->port;
1068
1069	dev_dbg(port->dev, "Rx timed out\n");
1070	scif_set_rtrg(port, 1);
1071}
1072
1073static ssize_t rx_trigger_show(struct device *dev,
1074			       struct device_attribute *attr,
1075			       char *buf)
1076{
1077	struct uart_port *port = dev_get_drvdata(dev);
1078	struct sci_port *sci = to_sci_port(port);
1079
1080	return sprintf(buf, "%d\n", sci->rx_trigger);
1081}
1082
1083static ssize_t rx_trigger_store(struct device *dev,
1084				struct device_attribute *attr,
1085				const char *buf,
1086				size_t count)
1087{
1088	struct uart_port *port = dev_get_drvdata(dev);
1089	struct sci_port *sci = to_sci_port(port);
1090	int ret;
1091	long r;
1092
1093	ret = kstrtol(buf, 0, &r);
1094	if (ret)
1095		return ret;
1096
1097	sci->rx_trigger = scif_set_rtrg(port, r);
1098	if (port->type == PORT_SCIFA || port->type == PORT_SCIFB)
1099		scif_set_rtrg(port, 1);
1100
1101	return count;
1102}
1103
1104static DEVICE_ATTR(rx_fifo_trigger, 0644, rx_trigger_show, rx_trigger_store);
1105
1106static ssize_t rx_fifo_timeout_show(struct device *dev,
1107			       struct device_attribute *attr,
1108			       char *buf)
1109{
1110	struct uart_port *port = dev_get_drvdata(dev);
1111	struct sci_port *sci = to_sci_port(port);
1112	int v;
1113
1114	if (port->type == PORT_HSCIF)
1115		v = sci->hscif_tot >> HSSCR_TOT_SHIFT;
1116	else
1117		v = sci->rx_fifo_timeout;
1118
1119	return sprintf(buf, "%d\n", v);
1120}
1121
1122static ssize_t rx_fifo_timeout_store(struct device *dev,
1123				struct device_attribute *attr,
1124				const char *buf,
1125				size_t count)
1126{
1127	struct uart_port *port = dev_get_drvdata(dev);
1128	struct sci_port *sci = to_sci_port(port);
1129	int ret;
1130	long r;
1131
1132	ret = kstrtol(buf, 0, &r);
1133	if (ret)
1134		return ret;
1135
1136	if (port->type == PORT_HSCIF) {
1137		if (r < 0 || r > 3)
1138			return -EINVAL;
1139		sci->hscif_tot = r << HSSCR_TOT_SHIFT;
1140	} else {
1141		sci->rx_fifo_timeout = r;
1142		scif_set_rtrg(port, 1);
1143		if (r > 0)
1144			timer_setup(&sci->rx_fifo_timer, rx_fifo_timer_fn, 0);
1145	}
1146
1147	return count;
1148}
1149
1150static DEVICE_ATTR_RW(rx_fifo_timeout);
1151
1152
1153#ifdef CONFIG_SERIAL_SH_SCI_DMA
1154static void sci_dma_tx_complete(void *arg)
1155{
1156	struct sci_port *s = arg;
1157	struct uart_port *port = &s->port;
1158	struct circ_buf *xmit = &port->state->xmit;
1159	unsigned long flags;
1160
1161	dev_dbg(port->dev, "%s(%d)\n", __func__, port->line);
1162
1163	spin_lock_irqsave(&port->lock, flags);
1164
1165	xmit->tail += s->tx_dma_len;
1166	xmit->tail &= UART_XMIT_SIZE - 1;
1167
1168	port->icount.tx += s->tx_dma_len;
1169
1170	if (uart_circ_chars_pending(xmit) < WAKEUP_CHARS)
1171		uart_write_wakeup(port);
1172
1173	if (!uart_circ_empty(xmit)) {
1174		s->cookie_tx = 0;
1175		schedule_work(&s->work_tx);
1176	} else {
1177		s->cookie_tx = -EINVAL;
1178		if (port->type == PORT_SCIFA || port->type == PORT_SCIFB) {
1179			u16 ctrl = serial_port_in(port, SCSCR);
1180			serial_port_out(port, SCSCR, ctrl & ~SCSCR_TIE);
1181		}
1182	}
1183
1184	spin_unlock_irqrestore(&port->lock, flags);
1185}
1186
1187/* Locking: called with port lock held */
1188static int sci_dma_rx_push(struct sci_port *s, void *buf, size_t count)
1189{
1190	struct uart_port *port = &s->port;
1191	struct tty_port *tport = &port->state->port;
1192	int copied;
1193
1194	copied = tty_insert_flip_string(tport, buf, count);
1195	if (copied < count)
1196		port->icount.buf_overrun++;
1197
1198	port->icount.rx += copied;
1199
1200	return copied;
1201}
1202
1203static int sci_dma_rx_find_active(struct sci_port *s)
1204{
1205	unsigned int i;
1206
1207	for (i = 0; i < ARRAY_SIZE(s->cookie_rx); i++)
1208		if (s->active_rx == s->cookie_rx[i])
1209			return i;
1210
1211	return -1;
1212}
1213
1214static void sci_rx_dma_release(struct sci_port *s, bool enable_pio)
1215{
1216	struct dma_chan *chan = s->chan_rx;
1217	struct uart_port *port = &s->port;
1218	unsigned long flags;
1219
1220	spin_lock_irqsave(&port->lock, flags);
1221	s->chan_rx = NULL;
1222	s->cookie_rx[0] = s->cookie_rx[1] = -EINVAL;
1223	spin_unlock_irqrestore(&port->lock, flags);
1224	dmaengine_terminate_all(chan);
1225	dma_free_coherent(chan->device->dev, s->buf_len_rx * 2, s->rx_buf[0],
1226			  sg_dma_address(&s->sg_rx[0]));
1227	dma_release_channel(chan);
1228	if (enable_pio) {
1229		spin_lock_irqsave(&port->lock, flags);
1230		sci_start_rx(port);
1231		spin_unlock_irqrestore(&port->lock, flags);
1232	}
1233}
1234
1235static void start_hrtimer_us(struct hrtimer *hrt, unsigned long usec)
1236{
1237	long sec = usec / 1000000;
1238	long nsec = (usec % 1000000) * 1000;
1239	ktime_t t = ktime_set(sec, nsec);
1240
1241	hrtimer_start(hrt, t, HRTIMER_MODE_REL);
1242}
1243
1244static void sci_dma_rx_complete(void *arg)
1245{
1246	struct sci_port *s = arg;
1247	struct dma_chan *chan = s->chan_rx;
1248	struct uart_port *port = &s->port;
1249	struct dma_async_tx_descriptor *desc;
1250	unsigned long flags;
1251	int active, count = 0;
1252
1253	dev_dbg(port->dev, "%s(%d) active cookie %d\n", __func__, port->line,
1254		s->active_rx);
1255
1256	spin_lock_irqsave(&port->lock, flags);
1257
1258	active = sci_dma_rx_find_active(s);
1259	if (active >= 0)
1260		count = sci_dma_rx_push(s, s->rx_buf[active], s->buf_len_rx);
1261
1262	start_hrtimer_us(&s->rx_timer, s->rx_timeout);
1263
1264	if (count)
1265		tty_flip_buffer_push(&port->state->port);
1266
1267	desc = dmaengine_prep_slave_sg(s->chan_rx, &s->sg_rx[active], 1,
1268				       DMA_DEV_TO_MEM,
1269				       DMA_PREP_INTERRUPT | DMA_CTRL_ACK);
1270	if (!desc)
1271		goto fail;
1272
1273	desc->callback = sci_dma_rx_complete;
1274	desc->callback_param = s;
1275	s->cookie_rx[active] = dmaengine_submit(desc);
1276	if (dma_submit_error(s->cookie_rx[active]))
1277		goto fail;
1278
1279	s->active_rx = s->cookie_rx[!active];
1280
1281	dma_async_issue_pending(chan);
1282
1283	spin_unlock_irqrestore(&port->lock, flags);
1284	dev_dbg(port->dev, "%s: cookie %d #%d, new active cookie %d\n",
1285		__func__, s->cookie_rx[active], active, s->active_rx);
1286	return;
1287
1288fail:
1289	spin_unlock_irqrestore(&port->lock, flags);
1290	dev_warn(port->dev, "Failed submitting Rx DMA descriptor\n");
1291	sci_rx_dma_release(s, true);
1292}
1293
1294static void sci_tx_dma_release(struct sci_port *s, bool enable_pio)
1295{
1296	struct dma_chan *chan = s->chan_tx;
1297	struct uart_port *port = &s->port;
1298	unsigned long flags;
1299
1300	spin_lock_irqsave(&port->lock, flags);
1301	s->chan_tx = NULL;
1302	s->cookie_tx = -EINVAL;
1303	spin_unlock_irqrestore(&port->lock, flags);
1304	dmaengine_terminate_all(chan);
1305	dma_unmap_single(chan->device->dev, s->tx_dma_addr, UART_XMIT_SIZE,
1306			 DMA_TO_DEVICE);
1307	dma_release_channel(chan);
1308	if (enable_pio) {
1309		spin_lock_irqsave(&port->lock, flags);
1310		sci_start_tx(port);
1311		spin_unlock_irqrestore(&port->lock, flags);
1312	}
1313}
1314
1315static void sci_submit_rx(struct sci_port *s)
1316{
1317	struct dma_chan *chan = s->chan_rx;
1318	int i;
1319
1320	for (i = 0; i < 2; i++) {
1321		struct scatterlist *sg = &s->sg_rx[i];
1322		struct dma_async_tx_descriptor *desc;
1323
1324		desc = dmaengine_prep_slave_sg(chan,
1325			sg, 1, DMA_DEV_TO_MEM,
1326			DMA_PREP_INTERRUPT | DMA_CTRL_ACK);
1327		if (!desc)
1328			goto fail;
1329
1330		desc->callback = sci_dma_rx_complete;
1331		desc->callback_param = s;
1332		s->cookie_rx[i] = dmaengine_submit(desc);
1333		if (dma_submit_error(s->cookie_rx[i]))
1334			goto fail;
1335
1336	}
1337
1338	s->active_rx = s->cookie_rx[0];
1339
1340	dma_async_issue_pending(chan);
1341	return;
1342
1343fail:
1344	if (i)
1345		dmaengine_terminate_all(chan);
1346	for (i = 0; i < 2; i++)
1347		s->cookie_rx[i] = -EINVAL;
1348	s->active_rx = -EINVAL;
1349	sci_rx_dma_release(s, true);
1350}
1351
1352static void work_fn_tx(struct work_struct *work)
1353{
1354	struct sci_port *s = container_of(work, struct sci_port, work_tx);
1355	struct dma_async_tx_descriptor *desc;
1356	struct dma_chan *chan = s->chan_tx;
1357	struct uart_port *port = &s->port;
1358	struct circ_buf *xmit = &port->state->xmit;
1359	dma_addr_t buf;
1360
1361	/*
1362	 * DMA is idle now.
1363	 * Port xmit buffer is already mapped, and it is one page... Just adjust
1364	 * offsets and lengths. Since it is a circular buffer, we have to
1365	 * transmit till the end, and then the rest. Take the port lock to get a
1366	 * consistent xmit buffer state.
1367	 */
1368	spin_lock_irq(&port->lock);
1369	buf = s->tx_dma_addr + (xmit->tail & (UART_XMIT_SIZE - 1));
1370	s->tx_dma_len = min_t(unsigned int,
1371		CIRC_CNT(xmit->head, xmit->tail, UART_XMIT_SIZE),
1372		CIRC_CNT_TO_END(xmit->head, xmit->tail, UART_XMIT_SIZE));
1373	spin_unlock_irq(&port->lock);
1374
1375	desc = dmaengine_prep_slave_single(chan, buf, s->tx_dma_len,
1376					   DMA_MEM_TO_DEV,
1377					   DMA_PREP_INTERRUPT | DMA_CTRL_ACK);
1378	if (!desc) {
1379		dev_warn(port->dev, "Failed preparing Tx DMA descriptor\n");
1380		/* switch to PIO */
1381		sci_tx_dma_release(s, true);
1382		return;
1383	}
1384
1385	dma_sync_single_for_device(chan->device->dev, buf, s->tx_dma_len,
1386				   DMA_TO_DEVICE);
1387
1388	spin_lock_irq(&port->lock);
1389	desc->callback = sci_dma_tx_complete;
1390	desc->callback_param = s;
1391	spin_unlock_irq(&port->lock);
1392	s->cookie_tx = dmaengine_submit(desc);
1393	if (dma_submit_error(s->cookie_tx)) {
1394		dev_warn(port->dev, "Failed submitting Tx DMA descriptor\n");
1395		/* switch to PIO */
1396		sci_tx_dma_release(s, true);
1397		return;
1398	}
1399
1400	dev_dbg(port->dev, "%s: %p: %d...%d, cookie %d\n",
1401		__func__, xmit->buf, xmit->tail, xmit->head, s->cookie_tx);
1402
1403	dma_async_issue_pending(chan);
1404}
1405
1406static enum hrtimer_restart rx_timer_fn(struct hrtimer *t)
1407{
1408	struct sci_port *s = container_of(t, struct sci_port, rx_timer);
1409	struct dma_chan *chan = s->chan_rx;
1410	struct uart_port *port = &s->port;
1411	struct dma_tx_state state;
1412	enum dma_status status;
1413	unsigned long flags;
1414	unsigned int read;
1415	int active, count;
1416	u16 scr;
1417
1418	dev_dbg(port->dev, "DMA Rx timed out\n");
1419
1420	spin_lock_irqsave(&port->lock, flags);
1421
1422	active = sci_dma_rx_find_active(s);
1423	if (active < 0) {
1424		spin_unlock_irqrestore(&port->lock, flags);
1425		return HRTIMER_NORESTART;
1426	}
1427
1428	status = dmaengine_tx_status(s->chan_rx, s->active_rx, &state);
1429	if (status == DMA_COMPLETE) {
1430		spin_unlock_irqrestore(&port->lock, flags);
1431		dev_dbg(port->dev, "Cookie %d #%d has already completed\n",
1432			s->active_rx, active);
1433
1434		/* Let packet complete handler take care of the packet */
1435		return HRTIMER_NORESTART;
1436	}
1437
1438	dmaengine_pause(chan);
1439
1440	/*
1441	 * sometimes DMA transfer doesn't stop even if it is stopped and
1442	 * data keeps on coming until transaction is complete so check
1443	 * for DMA_COMPLETE again
1444	 * Let packet complete handler take care of the packet
1445	 */
1446	status = dmaengine_tx_status(s->chan_rx, s->active_rx, &state);
1447	if (status == DMA_COMPLETE) {
1448		spin_unlock_irqrestore(&port->lock, flags);
1449		dev_dbg(port->dev, "Transaction complete after DMA engine was stopped");
1450		return HRTIMER_NORESTART;
1451	}
1452
1453	/* Handle incomplete DMA receive */
1454	dmaengine_terminate_all(s->chan_rx);
1455	read = sg_dma_len(&s->sg_rx[active]) - state.residue;
1456
1457	if (read) {
1458		count = sci_dma_rx_push(s, s->rx_buf[active], read);
1459		if (count)
1460			tty_flip_buffer_push(&port->state->port);
1461	}
1462
1463	if (port->type == PORT_SCIFA || port->type == PORT_SCIFB)
1464		sci_submit_rx(s);
1465
1466	/* Direct new serial port interrupts back to CPU */
1467	scr = serial_port_in(port, SCSCR);
1468	if (port->type == PORT_SCIFA || port->type == PORT_SCIFB) {
1469		scr &= ~SCSCR_RDRQE;
1470		enable_irq(s->irqs[SCIx_RXI_IRQ]);
1471	}
1472	serial_port_out(port, SCSCR, scr | SCSCR_RIE);
1473
1474	spin_unlock_irqrestore(&port->lock, flags);
1475
1476	return HRTIMER_NORESTART;
1477}
1478
1479static struct dma_chan *sci_request_dma_chan(struct uart_port *port,
1480					     enum dma_transfer_direction dir)
1481{
1482	struct dma_chan *chan;
1483	struct dma_slave_config cfg;
1484	int ret;
1485
1486	chan = dma_request_slave_channel(port->dev,
1487					 dir == DMA_MEM_TO_DEV ? "tx" : "rx");
1488	if (!chan) {
1489		dev_warn(port->dev, "dma_request_slave_channel failed\n");
1490		return NULL;
1491	}
1492
1493	memset(&cfg, 0, sizeof(cfg));
1494	cfg.direction = dir;
1495	if (dir == DMA_MEM_TO_DEV) {
1496		cfg.dst_addr = port->mapbase +
1497			(sci_getreg(port, SCxTDR)->offset << port->regshift);
1498		cfg.dst_addr_width = DMA_SLAVE_BUSWIDTH_1_BYTE;
1499	} else {
1500		cfg.src_addr = port->mapbase +
1501			(sci_getreg(port, SCxRDR)->offset << port->regshift);
1502		cfg.src_addr_width = DMA_SLAVE_BUSWIDTH_1_BYTE;
1503	}
1504
1505	ret = dmaengine_slave_config(chan, &cfg);
1506	if (ret) {
1507		dev_warn(port->dev, "dmaengine_slave_config failed %d\n", ret);
1508		dma_release_channel(chan);
1509		return NULL;
1510	}
1511
1512	return chan;
1513}
1514
1515static void sci_request_dma(struct uart_port *port)
1516{
1517	struct sci_port *s = to_sci_port(port);
1518	struct dma_chan *chan;
1519
1520	dev_dbg(port->dev, "%s: port %d\n", __func__, port->line);
1521
1522	if (!port->dev->of_node)
1523		return;
1524
1525	s->cookie_tx = -EINVAL;
1526
1527	/*
1528	 * Don't request a dma channel if no channel was specified
1529	 * in the device tree.
1530	 */
1531	if (!of_find_property(port->dev->of_node, "dmas", NULL))
1532		return;
1533
1534	chan = sci_request_dma_chan(port, DMA_MEM_TO_DEV);
1535	dev_dbg(port->dev, "%s: TX: got channel %p\n", __func__, chan);
1536	if (chan) {
1537		s->chan_tx = chan;
1538		/* UART circular tx buffer is an aligned page. */
1539		s->tx_dma_addr = dma_map_single(chan->device->dev,
1540						port->state->xmit.buf,
1541						UART_XMIT_SIZE,
1542						DMA_TO_DEVICE);
1543		if (dma_mapping_error(chan->device->dev, s->tx_dma_addr)) {
1544			dev_warn(port->dev, "Failed mapping Tx DMA descriptor\n");
1545			dma_release_channel(chan);
1546			s->chan_tx = NULL;
1547		} else {
1548			dev_dbg(port->dev, "%s: mapped %lu@%p to %pad\n",
1549				__func__, UART_XMIT_SIZE,
1550				port->state->xmit.buf, &s->tx_dma_addr);
1551		}
1552
1553		INIT_WORK(&s->work_tx, work_fn_tx);
1554	}
1555
1556	chan = sci_request_dma_chan(port, DMA_DEV_TO_MEM);
1557	dev_dbg(port->dev, "%s: RX: got channel %p\n", __func__, chan);
1558	if (chan) {
1559		unsigned int i;
1560		dma_addr_t dma;
1561		void *buf;
1562
1563		s->chan_rx = chan;
1564
1565		s->buf_len_rx = 2 * max_t(size_t, 16, port->fifosize);
1566		buf = dma_alloc_coherent(chan->device->dev, s->buf_len_rx * 2,
1567					 &dma, GFP_KERNEL);
1568		if (!buf) {
1569			dev_warn(port->dev,
1570				 "Failed to allocate Rx dma buffer, using PIO\n");
1571			dma_release_channel(chan);
1572			s->chan_rx = NULL;
1573			return;
1574		}
1575
1576		for (i = 0; i < 2; i++) {
1577			struct scatterlist *sg = &s->sg_rx[i];
1578
1579			sg_init_table(sg, 1);
1580			s->rx_buf[i] = buf;
1581			sg_dma_address(sg) = dma;
1582			sg_dma_len(sg) = s->buf_len_rx;
1583
1584			buf += s->buf_len_rx;
1585			dma += s->buf_len_rx;
1586		}
1587
1588		hrtimer_init(&s->rx_timer, CLOCK_MONOTONIC, HRTIMER_MODE_REL);
1589		s->rx_timer.function = rx_timer_fn;
1590
1591		if (port->type == PORT_SCIFA || port->type == PORT_SCIFB)
1592			sci_submit_rx(s);
1593	}
1594}
1595
1596static void sci_free_dma(struct uart_port *port)
1597{
1598	struct sci_port *s = to_sci_port(port);
1599
1600	if (s->chan_tx)
1601		sci_tx_dma_release(s, false);
1602	if (s->chan_rx)
1603		sci_rx_dma_release(s, false);
1604}
1605
1606static void sci_flush_buffer(struct uart_port *port)
1607{
1608	/*
1609	 * In uart_flush_buffer(), the xmit circular buffer has just been
1610	 * cleared, so we have to reset tx_dma_len accordingly.
1611	 */
1612	to_sci_port(port)->tx_dma_len = 0;
1613}
1614#else /* !CONFIG_SERIAL_SH_SCI_DMA */
1615static inline void sci_request_dma(struct uart_port *port)
1616{
1617}
1618
1619static inline void sci_free_dma(struct uart_port *port)
1620{
1621}
1622
1623#define sci_flush_buffer	NULL
1624#endif /* !CONFIG_SERIAL_SH_SCI_DMA */
1625
1626static irqreturn_t sci_rx_interrupt(int irq, void *ptr)
1627{
1628	struct uart_port *port = ptr;
1629	struct sci_port *s = to_sci_port(port);
1630
1631#ifdef CONFIG_SERIAL_SH_SCI_DMA
1632	if (s->chan_rx) {
1633		u16 scr = serial_port_in(port, SCSCR);
1634		u16 ssr = serial_port_in(port, SCxSR);
1635
1636		/* Disable future Rx interrupts */
1637		if (port->type == PORT_SCIFA || port->type == PORT_SCIFB) {
1638			disable_irq_nosync(irq);
1639			scr |= SCSCR_RDRQE;
1640		} else {
1641			scr &= ~SCSCR_RIE;
1642			sci_submit_rx(s);
1643		}
1644		serial_port_out(port, SCSCR, scr);
1645		/* Clear current interrupt */
1646		serial_port_out(port, SCxSR,
1647				ssr & ~(SCIF_DR | SCxSR_RDxF(port)));
1648		dev_dbg(port->dev, "Rx IRQ %lu: setup t-out in %u us\n",
1649			jiffies, s->rx_timeout);
1650		start_hrtimer_us(&s->rx_timer, s->rx_timeout);
1651
1652		return IRQ_HANDLED;
1653	}
1654#endif
1655
1656	if (s->rx_trigger > 1 && s->rx_fifo_timeout > 0) {
1657		if (!scif_rtrg_enabled(port))
1658			scif_set_rtrg(port, s->rx_trigger);
1659
1660		mod_timer(&s->rx_fifo_timer, jiffies + DIV_ROUND_UP(
1661			  s->rx_frame * HZ * s->rx_fifo_timeout, 1000000));
1662	}
1663
1664	/* I think sci_receive_chars has to be called irrespective
1665	 * of whether the I_IXOFF is set, otherwise, how is the interrupt
1666	 * to be disabled?
1667	 */
1668	sci_receive_chars(ptr);
1669
1670	return IRQ_HANDLED;
1671}
1672
1673static irqreturn_t sci_tx_interrupt(int irq, void *ptr)
1674{
1675	struct uart_port *port = ptr;
1676	unsigned long flags;
1677
1678	spin_lock_irqsave(&port->lock, flags);
1679	sci_transmit_chars(port);
1680	spin_unlock_irqrestore(&port->lock, flags);
1681
1682	return IRQ_HANDLED;
1683}
1684
1685static irqreturn_t sci_er_interrupt(int irq, void *ptr)
1686{
1687	struct uart_port *port = ptr;
1688	struct sci_port *s = to_sci_port(port);
1689
1690	/* Handle errors */
1691	if (port->type == PORT_SCI) {
1692		if (sci_handle_errors(port)) {
1693			/* discard character in rx buffer */
1694			serial_port_in(port, SCxSR);
1695			sci_clear_SCxSR(port, SCxSR_RDxF_CLEAR(port));
1696		}
1697	} else {
1698		sci_handle_fifo_overrun(port);
1699		if (!s->chan_rx)
1700			sci_receive_chars(ptr);
1701	}
1702
1703	sci_clear_SCxSR(port, SCxSR_ERROR_CLEAR(port));
1704
1705	/* Kick the transmission */
1706	if (!s->chan_tx)
1707		sci_tx_interrupt(irq, ptr);
1708
1709	return IRQ_HANDLED;
1710}
1711
1712static irqreturn_t sci_br_interrupt(int irq, void *ptr)
1713{
1714	struct uart_port *port = ptr;
1715
1716	/* Handle BREAKs */
1717	sci_handle_breaks(port);
1718	sci_clear_SCxSR(port, SCxSR_BREAK_CLEAR(port));
1719
1720	return IRQ_HANDLED;
1721}
1722
 
 
 
 
 
 
 
 
 
 
 
 
1723static irqreturn_t sci_mpxed_interrupt(int irq, void *ptr)
1724{
1725	unsigned short ssr_status, scr_status, err_enabled, orer_status = 0;
1726	struct uart_port *port = ptr;
1727	struct sci_port *s = to_sci_port(port);
1728	irqreturn_t ret = IRQ_NONE;
1729
1730	ssr_status = serial_port_in(port, SCxSR);
1731	scr_status = serial_port_in(port, SCSCR);
1732	if (s->params->overrun_reg == SCxSR)
1733		orer_status = ssr_status;
1734	else if (sci_getreg(port, s->params->overrun_reg)->size)
1735		orer_status = serial_port_in(port, s->params->overrun_reg);
1736
1737	err_enabled = scr_status & port_rx_irq_mask(port);
1738
1739	/* Tx Interrupt */
1740	if ((ssr_status & SCxSR_TDxE(port)) && (scr_status & SCSCR_TIE) &&
1741	    !s->chan_tx)
1742		ret = sci_tx_interrupt(irq, ptr);
1743
1744	/*
1745	 * Rx Interrupt: if we're using DMA, the DMA controller clears RDF /
1746	 * DR flags
1747	 */
1748	if (((ssr_status & SCxSR_RDxF(port)) || s->chan_rx) &&
1749	    (scr_status & SCSCR_RIE))
1750		ret = sci_rx_interrupt(irq, ptr);
1751
1752	/* Error Interrupt */
1753	if ((ssr_status & SCxSR_ERRORS(port)) && err_enabled)
1754		ret = sci_er_interrupt(irq, ptr);
1755
1756	/* Break Interrupt */
1757	if ((ssr_status & SCxSR_BRK(port)) && err_enabled)
1758		ret = sci_br_interrupt(irq, ptr);
1759
1760	/* Overrun Interrupt */
1761	if (orer_status & s->params->overrun_mask) {
1762		sci_handle_fifo_overrun(port);
1763		ret = IRQ_HANDLED;
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1764	}
1765
1766	return ret;
1767}
1768
1769static const struct sci_irq_desc {
1770	const char	*desc;
1771	irq_handler_t	handler;
1772} sci_irq_desc[] = {
1773	/*
1774	 * Split out handlers, the default case.
1775	 */
1776	[SCIx_ERI_IRQ] = {
1777		.desc = "rx err",
1778		.handler = sci_er_interrupt,
1779	},
1780
1781	[SCIx_RXI_IRQ] = {
1782		.desc = "rx full",
1783		.handler = sci_rx_interrupt,
1784	},
1785
1786	[SCIx_TXI_IRQ] = {
1787		.desc = "tx empty",
1788		.handler = sci_tx_interrupt,
1789	},
1790
1791	[SCIx_BRI_IRQ] = {
1792		.desc = "break",
1793		.handler = sci_br_interrupt,
1794	},
1795
1796	/*
1797	 * Special muxed handler.
1798	 */
1799	[SCIx_MUX_IRQ] = {
1800		.desc = "mux",
1801		.handler = sci_mpxed_interrupt,
1802	},
1803};
1804
1805static int sci_request_irq(struct sci_port *port)
1806{
1807	struct uart_port *up = &port->port;
1808	int i, j, ret = 0;
1809
1810	for (i = j = 0; i < SCIx_NR_IRQS; i++, j++) {
1811		const struct sci_irq_desc *desc;
1812		int irq;
1813
1814		if (SCIx_IRQ_IS_MUXED(port)) {
1815			i = SCIx_MUX_IRQ;
1816			irq = up->irq;
1817		} else {
1818			irq = port->irqs[i];
1819
1820			/*
1821			 * Certain port types won't support all of the
1822			 * available interrupt sources.
1823			 */
1824			if (unlikely(irq < 0))
1825				continue;
1826		}
1827
1828		desc = sci_irq_desc + i;
1829		port->irqstr[j] = kasprintf(GFP_KERNEL, "%s:%s",
1830					    dev_name(up->dev), desc->desc);
1831		if (!port->irqstr[j]) {
1832			ret = -ENOMEM;
 
1833			goto out_nomem;
1834		}
1835
1836		ret = request_irq(irq, desc->handler, up->irqflags,
1837				  port->irqstr[j], port);
1838		if (unlikely(ret)) {
1839			dev_err(up->dev, "Can't allocate %s IRQ\n", desc->desc);
1840			goto out_noirq;
1841		}
1842	}
1843
1844	return 0;
1845
1846out_noirq:
1847	while (--i >= 0)
1848		free_irq(port->irqs[i], port);
1849
1850out_nomem:
1851	while (--j >= 0)
1852		kfree(port->irqstr[j]);
1853
1854	return ret;
1855}
1856
1857static void sci_free_irq(struct sci_port *port)
1858{
1859	int i;
1860
1861	/*
1862	 * Intentionally in reverse order so we iterate over the muxed
1863	 * IRQ first.
1864	 */
1865	for (i = 0; i < SCIx_NR_IRQS; i++) {
1866		int irq = port->irqs[i];
1867
1868		/*
1869		 * Certain port types won't support all of the available
1870		 * interrupt sources.
1871		 */
1872		if (unlikely(irq < 0))
1873			continue;
1874
1875		free_irq(port->irqs[i], port);
1876		kfree(port->irqstr[i]);
1877
1878		if (SCIx_IRQ_IS_MUXED(port)) {
1879			/* If there's only one IRQ, we're done. */
1880			return;
1881		}
1882	}
1883}
1884
1885static unsigned int sci_tx_empty(struct uart_port *port)
1886{
1887	unsigned short status = serial_port_in(port, SCxSR);
1888	unsigned short in_tx_fifo = sci_txfill(port);
1889
1890	return (status & SCxSR_TEND(port)) && !in_tx_fifo ? TIOCSER_TEMT : 0;
1891}
1892
1893static void sci_set_rts(struct uart_port *port, bool state)
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1894{
1895	if (port->type == PORT_SCIFA || port->type == PORT_SCIFB) {
1896		u16 data = serial_port_in(port, SCPDR);
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1897
1898		/* Active low */
1899		if (state)
1900			data &= ~SCPDR_RTSD;
1901		else
1902			data |= SCPDR_RTSD;
1903		serial_port_out(port, SCPDR, data);
1904
1905		/* RTS# is output */
1906		serial_port_out(port, SCPCR,
1907				serial_port_in(port, SCPCR) | SCPCR_RTSC);
1908	} else if (sci_getreg(port, SCSPTR)->size) {
1909		u16 ctrl = serial_port_in(port, SCSPTR);
1910
1911		/* Active low */
1912		if (state)
1913			ctrl &= ~SCSPTR_RTSDT;
1914		else
1915			ctrl |= SCSPTR_RTSDT;
1916		serial_port_out(port, SCSPTR, ctrl);
1917	}
 
 
1918}
1919
1920static bool sci_get_cts(struct uart_port *port)
 
 
1921{
1922	if (port->type == PORT_SCIFA || port->type == PORT_SCIFB) {
1923		/* Active low */
1924		return !(serial_port_in(port, SCPDR) & SCPDR_CTSD);
1925	} else if (sci_getreg(port, SCSPTR)->size) {
1926		/* Active low */
1927		return !(serial_port_in(port, SCSPTR) & SCSPTR_CTSDT);
 
 
 
 
 
 
1928	}
1929
1930	return true;
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1931}
1932
1933/*
1934 * Modem control is a bit of a mixed bag for SCI(F) ports. Generally
1935 * CTS/RTS is supported in hardware by at least one port and controlled
1936 * via SCSPTR (SCxPCR for SCIFA/B parts), or external pins (presently
1937 * handled via the ->init_pins() op, which is a bit of a one-way street,
1938 * lacking any ability to defer pin control -- this will later be
1939 * converted over to the GPIO framework).
1940 *
1941 * Other modes (such as loopback) are supported generically on certain
1942 * port types, but not others. For these it's sufficient to test for the
1943 * existence of the support register and simply ignore the port type.
1944 */
1945static void sci_set_mctrl(struct uart_port *port, unsigned int mctrl)
1946{
1947	struct sci_port *s = to_sci_port(port);
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1948
1949	if (mctrl & TIOCM_LOOP) {
1950		const struct plat_sci_reg *reg;
 
 
 
 
1951
1952		/*
1953		 * Standard loopback mode for SCFCR ports.
1954		 */
1955		reg = sci_getreg(port, SCFCR);
1956		if (reg->size)
1957			serial_port_out(port, SCFCR,
1958					serial_port_in(port, SCFCR) |
1959					SCFCR_LOOP);
1960	}
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1961
1962	mctrl_gpio_set(s->gpios, mctrl);
 
1963
1964	if (!s->has_rtscts)
 
 
 
1965		return;
 
 
 
 
 
 
 
1966
1967	if (!(mctrl & TIOCM_RTS)) {
1968		/* Disable Auto RTS */
1969		serial_port_out(port, SCFCR,
1970				serial_port_in(port, SCFCR) & ~SCFCR_MCE);
1971
1972		/* Clear RTS */
1973		sci_set_rts(port, 0);
1974	} else if (s->autorts) {
1975		if (port->type == PORT_SCIFA || port->type == PORT_SCIFB) {
1976			/* Enable RTS# pin function */
1977			serial_port_out(port, SCPCR,
1978				serial_port_in(port, SCPCR) & ~SCPCR_RTSC);
1979		}
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1980
1981		/* Enable Auto RTS */
1982		serial_port_out(port, SCFCR,
1983				serial_port_in(port, SCFCR) | SCFCR_MCE);
1984	} else {
1985		/* Set RTS */
1986		sci_set_rts(port, 1);
 
 
 
 
 
1987	}
 
 
 
 
 
1988}
 
1989
1990static unsigned int sci_get_mctrl(struct uart_port *port)
1991{
1992	struct sci_port *s = to_sci_port(port);
1993	struct mctrl_gpios *gpios = s->gpios;
1994	unsigned int mctrl = 0;
 
 
 
 
 
 
 
 
 
 
1995
1996	mctrl_gpio_get(gpios, &mctrl);
 
 
 
1997
1998	/*
1999	 * CTS/RTS is handled in hardware when supported, while nothing
2000	 * else is wired up.
2001	 */
2002	if (s->autorts) {
2003		if (sci_get_cts(port))
2004			mctrl |= TIOCM_CTS;
2005	} else if (IS_ERR_OR_NULL(mctrl_gpio_to_gpiod(gpios, UART_GPIO_CTS))) {
2006		mctrl |= TIOCM_CTS;
2007	}
2008	if (IS_ERR_OR_NULL(mctrl_gpio_to_gpiod(gpios, UART_GPIO_DSR)))
2009		mctrl |= TIOCM_DSR;
2010	if (IS_ERR_OR_NULL(mctrl_gpio_to_gpiod(gpios, UART_GPIO_DCD)))
2011		mctrl |= TIOCM_CAR;
 
 
 
 
 
 
 
 
 
2012
2013	return mctrl;
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
2014}
2015
2016static void sci_enable_ms(struct uart_port *port)
2017{
2018	mctrl_gpio_enable_ms(to_sci_port(port)->gpios);
2019}
2020
2021static void sci_break_ctl(struct uart_port *port, int break_state)
2022{
2023	unsigned short scscr, scsptr;
2024	unsigned long flags;
2025
2026	/* check wheter the port has SCSPTR */
2027	if (!sci_getreg(port, SCSPTR)->size) {
2028		/*
2029		 * Not supported by hardware. Most parts couple break and rx
2030		 * interrupts together, with break detection always enabled.
2031		 */
2032		return;
2033	}
2034
2035	spin_lock_irqsave(&port->lock, flags);
2036	scsptr = serial_port_in(port, SCSPTR);
2037	scscr = serial_port_in(port, SCSCR);
2038
2039	if (break_state == -1) {
2040		scsptr = (scsptr | SCSPTR_SPB2IO) & ~SCSPTR_SPB2DT;
2041		scscr &= ~SCSCR_TE;
2042	} else {
2043		scsptr = (scsptr | SCSPTR_SPB2DT) & ~SCSPTR_SPB2IO;
2044		scscr |= SCSCR_TE;
2045	}
 
2046
2047	serial_port_out(port, SCSPTR, scsptr);
2048	serial_port_out(port, SCSCR, scscr);
2049	spin_unlock_irqrestore(&port->lock, flags);
 
 
 
 
 
 
 
 
 
 
2050}
2051
2052static int sci_startup(struct uart_port *port)
2053{
2054	struct sci_port *s = to_sci_port(port);
2055	int ret;
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
2056
2057	dev_dbg(port->dev, "%s(%d)\n", __func__, port->line);
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
2058
2059	sci_request_dma(port);
2060
2061	ret = sci_request_irq(s);
2062	if (unlikely(ret < 0)) {
2063		sci_free_dma(port);
2064		return ret;
2065	}
2066
2067	return 0;
2068}
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
2069
2070static void sci_shutdown(struct uart_port *port)
2071{
2072	struct sci_port *s = to_sci_port(port);
2073	unsigned long flags;
2074	u16 scr;
2075
2076	dev_dbg(port->dev, "%s(%d)\n", __func__, port->line);
 
2077
2078	s->autorts = false;
2079	mctrl_gpio_disable_ms(to_sci_port(port)->gpios);
 
 
 
2080
2081	spin_lock_irqsave(&port->lock, flags);
2082	sci_stop_rx(port);
2083	sci_stop_tx(port);
2084	/*
2085	 * Stop RX and TX, disable related interrupts, keep clock source
2086	 * and HSCIF TOT bits
2087	 */
2088	scr = serial_port_in(port, SCSCR);
2089	serial_port_out(port, SCSCR, scr &
2090			(SCSCR_CKE1 | SCSCR_CKE0 | s->hscif_tot));
2091	spin_unlock_irqrestore(&port->lock, flags);
2092
2093#ifdef CONFIG_SERIAL_SH_SCI_DMA
2094	if (s->chan_rx) {
2095		dev_dbg(port->dev, "%s(%d) deleting rx_timer\n", __func__,
2096			port->line);
2097		hrtimer_cancel(&s->rx_timer);
2098	}
2099#endif
2100
2101	sci_free_irq(s);
2102	sci_free_dma(port);
2103}
2104
2105static int sci_sck_calc(struct sci_port *s, unsigned int bps,
2106			unsigned int *srr)
2107{
2108	unsigned long freq = s->clk_rates[SCI_SCK];
2109	int err, min_err = INT_MAX;
2110	unsigned int sr;
2111
2112	if (s->port.type != PORT_HSCIF)
2113		freq *= 2;
2114
2115	for_each_sr(sr, s) {
2116		err = DIV_ROUND_CLOSEST(freq, sr) - bps;
2117		if (abs(err) >= abs(min_err))
2118			continue;
2119
2120		min_err = err;
2121		*srr = sr - 1;
2122
2123		if (!err)
2124			break;
2125	}
 
 
 
 
 
 
2126
2127	dev_dbg(s->port.dev, "SCK: %u%+d bps using SR %u\n", bps, min_err,
2128		*srr + 1);
2129	return min_err;
2130}
 
2131
2132static int sci_brg_calc(struct sci_port *s, unsigned int bps,
2133			unsigned long freq, unsigned int *dlr,
2134			unsigned int *srr)
2135{
2136	int err, min_err = INT_MAX;
2137	unsigned int sr, dl;
2138
2139	if (s->port.type != PORT_HSCIF)
2140		freq *= 2;
2141
2142	for_each_sr(sr, s) {
2143		dl = DIV_ROUND_CLOSEST(freq, sr * bps);
2144		dl = clamp(dl, 1U, 65535U);
2145
2146		err = DIV_ROUND_CLOSEST(freq, sr * dl) - bps;
2147		if (abs(err) >= abs(min_err))
2148			continue;
2149
2150		min_err = err;
2151		*dlr = dl;
2152		*srr = sr - 1;
2153
2154		if (!err)
2155			break;
2156	}
2157
2158	dev_dbg(s->port.dev, "BRG: %u%+d bps using DL %u SR %u\n", bps,
2159		min_err, *dlr, *srr + 1);
2160	return min_err;
2161}
2162
2163/* calculate sample rate, BRR, and clock select */
2164static int sci_scbrr_calc(struct sci_port *s, unsigned int bps,
2165			  unsigned int *brr, unsigned int *srr,
2166			  unsigned int *cks)
2167{
2168	unsigned long freq = s->clk_rates[SCI_FCK];
2169	unsigned int sr, br, prediv, scrate, c;
2170	int err, min_err = INT_MAX;
2171
2172	if (s->port.type != PORT_HSCIF)
2173		freq *= 2;
 
 
 
 
 
2174
2175	/*
2176	 * Find the combination of sample rate and clock select with the
2177	 * smallest deviation from the desired baud rate.
2178	 * Prefer high sample rates to maximise the receive margin.
2179	 *
2180	 * M: Receive margin (%)
2181	 * N: Ratio of bit rate to clock (N = sampling rate)
2182	 * D: Clock duty (D = 0 to 1.0)
2183	 * L: Frame length (L = 9 to 12)
2184	 * F: Absolute value of clock frequency deviation
2185	 *
2186	 *  M = |(0.5 - 1 / 2 * N) - ((L - 0.5) * F) -
2187	 *      (|D - 0.5| / N * (1 + F))|
2188	 *  NOTE: Usually, treat D for 0.5, F is 0 by this calculation.
2189	 */
2190	for_each_sr(sr, s) {
2191		for (c = 0; c <= 3; c++) {
2192			/* integerized formulas from HSCIF documentation */
2193			prediv = sr * (1 << (2 * c + 1));
2194
2195			/*
2196			 * We need to calculate:
2197			 *
2198			 *     br = freq / (prediv * bps) clamped to [1..256]
2199			 *     err = freq / (br * prediv) - bps
2200			 *
2201			 * Watch out for overflow when calculating the desired
2202			 * sampling clock rate!
2203			 */
2204			if (bps > UINT_MAX / prediv)
2205				break;
2206
2207			scrate = prediv * bps;
2208			br = DIV_ROUND_CLOSEST(freq, scrate);
2209			br = clamp(br, 1U, 256U);
2210
2211			err = DIV_ROUND_CLOSEST(freq, br * prediv) - bps;
2212			if (abs(err) >= abs(min_err))
2213				continue;
2214
2215			min_err = err;
2216			*brr = br - 1;
2217			*srr = sr - 1;
2218			*cks = c;
2219
2220			if (!err)
2221				goto found;
2222		}
 
 
 
 
 
 
 
 
 
 
 
2223	}
2224
2225found:
2226	dev_dbg(s->port.dev, "BRR: %u%+d bps using N %u SR %u cks %u\n", bps,
2227		min_err, *brr, *srr + 1, *cks);
2228	return min_err;
2229}
2230
2231static void sci_reset(struct uart_port *port)
2232{
2233	const struct plat_sci_reg *reg;
2234	unsigned int status;
2235	struct sci_port *s = to_sci_port(port);
2236
2237	serial_port_out(port, SCSCR, s->hscif_tot);	/* TE=0, RE=0, CKE1=0 */
 
 
2238
2239	reg = sci_getreg(port, SCFCR);
2240	if (reg->size)
2241		serial_port_out(port, SCFCR, SCFCR_RFRST | SCFCR_TFRST);
2242
2243	sci_clear_SCxSR(port,
2244			SCxSR_RDxF_CLEAR(port) & SCxSR_ERROR_CLEAR(port) &
2245			SCxSR_BREAK_CLEAR(port));
2246	if (sci_getreg(port, SCLSR)->size) {
2247		status = serial_port_in(port, SCLSR);
2248		status &= ~(SCLSR_TO | SCLSR_ORER);
2249		serial_port_out(port, SCLSR, status);
2250	}
2251
2252	if (s->rx_trigger > 1) {
2253		if (s->rx_fifo_timeout) {
2254			scif_set_rtrg(port, 1);
2255			timer_setup(&s->rx_fifo_timer, rx_fifo_timer_fn, 0);
2256		} else {
2257			if (port->type == PORT_SCIFA ||
2258			    port->type == PORT_SCIFB)
2259				scif_set_rtrg(port, 1);
2260			else
2261				scif_set_rtrg(port, s->rx_trigger);
2262		}
2263	}
2264}
2265
2266static void sci_set_termios(struct uart_port *port, struct ktermios *termios,
2267			    struct ktermios *old)
2268{
2269	unsigned int baud, smr_val = SCSMR_ASYNC, scr_val = 0, i, bits;
2270	unsigned int brr = 255, cks = 0, srr = 15, dl = 0, sccks = 0;
2271	unsigned int brr1 = 255, cks1 = 0, srr1 = 15, dl1 = 0;
2272	struct sci_port *s = to_sci_port(port);
2273	const struct plat_sci_reg *reg;
2274	int min_err = INT_MAX, err;
2275	unsigned long max_freq = 0;
2276	int best_clk = -1;
2277	unsigned long flags;
2278
2279	if ((termios->c_cflag & CSIZE) == CS7)
2280		smr_val |= SCSMR_CHR;
2281	if (termios->c_cflag & PARENB)
2282		smr_val |= SCSMR_PE;
2283	if (termios->c_cflag & PARODD)
2284		smr_val |= SCSMR_PE | SCSMR_ODD;
2285	if (termios->c_cflag & CSTOPB)
2286		smr_val |= SCSMR_STOP;
2287
2288	/*
2289	 * earlyprintk comes here early on with port->uartclk set to zero.
2290	 * the clock framework is not up and running at this point so here
2291	 * we assume that 115200 is the maximum baud rate. please note that
2292	 * the baud rate is not programmed during earlyprintk - it is assumed
2293	 * that the previous boot loader has enabled required clocks and
2294	 * setup the baud rate generator hardware for us already.
2295	 */
2296	if (!port->uartclk) {
2297		baud = uart_get_baud_rate(port, termios, old, 0, 115200);
2298		goto done;
2299	}
2300
2301	for (i = 0; i < SCI_NUM_CLKS; i++)
2302		max_freq = max(max_freq, s->clk_rates[i]);
2303
2304	baud = uart_get_baud_rate(port, termios, old, 0, max_freq / min_sr(s));
2305	if (!baud)
2306		goto done;
2307
2308	/*
2309	 * There can be multiple sources for the sampling clock.  Find the one
2310	 * that gives us the smallest deviation from the desired baud rate.
2311	 */
2312
2313	/* Optional Undivided External Clock */
2314	if (s->clk_rates[SCI_SCK] && port->type != PORT_SCIFA &&
2315	    port->type != PORT_SCIFB) {
2316		err = sci_sck_calc(s, baud, &srr1);
2317		if (abs(err) < abs(min_err)) {
2318			best_clk = SCI_SCK;
2319			scr_val = SCSCR_CKE1;
2320			sccks = SCCKS_CKS;
2321			min_err = err;
2322			srr = srr1;
2323			if (!err)
2324				goto done;
2325		}
2326	}
2327
2328	/* Optional BRG Frequency Divided External Clock */
2329	if (s->clk_rates[SCI_SCIF_CLK] && sci_getreg(port, SCDL)->size) {
2330		err = sci_brg_calc(s, baud, s->clk_rates[SCI_SCIF_CLK], &dl1,
2331				   &srr1);
2332		if (abs(err) < abs(min_err)) {
2333			best_clk = SCI_SCIF_CLK;
2334			scr_val = SCSCR_CKE1;
2335			sccks = 0;
2336			min_err = err;
2337			dl = dl1;
2338			srr = srr1;
2339			if (!err)
2340				goto done;
2341		}
2342	}
2343
2344	/* Optional BRG Frequency Divided Internal Clock */
2345	if (s->clk_rates[SCI_BRG_INT] && sci_getreg(port, SCDL)->size) {
2346		err = sci_brg_calc(s, baud, s->clk_rates[SCI_BRG_INT], &dl1,
2347				   &srr1);
2348		if (abs(err) < abs(min_err)) {
2349			best_clk = SCI_BRG_INT;
2350			scr_val = SCSCR_CKE1;
2351			sccks = SCCKS_XIN;
2352			min_err = err;
2353			dl = dl1;
2354			srr = srr1;
2355			if (!min_err)
2356				goto done;
2357		}
2358	}
2359
2360	/* Divided Functional Clock using standard Bit Rate Register */
2361	err = sci_scbrr_calc(s, baud, &brr1, &srr1, &cks1);
2362	if (abs(err) < abs(min_err)) {
2363		best_clk = SCI_FCK;
2364		scr_val = 0;
2365		min_err = err;
2366		brr = brr1;
2367		srr = srr1;
2368		cks = cks1;
2369	}
2370
2371done:
2372	if (best_clk >= 0)
2373		dev_dbg(port->dev, "Using clk %pC for %u%+d bps\n",
2374			s->clks[best_clk], baud, min_err);
2375
2376	sci_port_enable(s);
 
 
 
 
 
 
 
2377
2378	/*
2379	 * Program the optional External Baud Rate Generator (BRG) first.
2380	 * It controls the mux to select (H)SCK or frequency divided clock.
2381	 */
2382	if (best_clk >= 0 && sci_getreg(port, SCCKS)->size) {
2383		serial_port_out(port, SCDL, dl);
2384		serial_port_out(port, SCCKS, sccks);
2385	}
2386
2387	spin_lock_irqsave(&port->lock, flags);
2388
2389	sci_reset(port);
2390
2391	uart_update_timeout(port, termios->c_cflag, baud);
 
2392
2393	if (best_clk >= 0) {
2394		if (port->type == PORT_SCIFA || port->type == PORT_SCIFB)
2395			switch (srr + 1) {
2396			case 5:  smr_val |= SCSMR_SRC_5;  break;
2397			case 7:  smr_val |= SCSMR_SRC_7;  break;
2398			case 11: smr_val |= SCSMR_SRC_11; break;
2399			case 13: smr_val |= SCSMR_SRC_13; break;
2400			case 16: smr_val |= SCSMR_SRC_16; break;
2401			case 17: smr_val |= SCSMR_SRC_17; break;
2402			case 19: smr_val |= SCSMR_SRC_19; break;
2403			case 27: smr_val |= SCSMR_SRC_27; break;
2404			}
2405		smr_val |= cks;
2406		serial_port_out(port, SCSCR, scr_val | s->hscif_tot);
2407		serial_port_out(port, SCSMR, smr_val);
2408		serial_port_out(port, SCBRR, brr);
2409		if (sci_getreg(port, HSSRR)->size)
2410			serial_port_out(port, HSSRR, srr | HSCIF_SRE);
2411
2412		/* Wait one bit interval */
2413		udelay((1000000 + (baud - 1)) / baud);
2414	} else {
2415		/* Don't touch the bit rate configuration */
2416		scr_val = s->cfg->scscr & (SCSCR_CKE1 | SCSCR_CKE0);
2417		smr_val |= serial_port_in(port, SCSMR) &
2418			   (SCSMR_CKEDG | SCSMR_SRC_MASK | SCSMR_CKS);
2419		serial_port_out(port, SCSCR, scr_val | s->hscif_tot);
2420		serial_port_out(port, SCSMR, smr_val);
2421	}
2422
2423	sci_init_pins(port, termios->c_cflag);
 
2424
2425	port->status &= ~UPSTAT_AUTOCTS;
2426	s->autorts = false;
2427	reg = sci_getreg(port, SCFCR);
2428	if (reg->size) {
2429		unsigned short ctrl = serial_port_in(port, SCFCR);
2430
2431		if ((port->flags & UPF_HARD_FLOW) &&
2432		    (termios->c_cflag & CRTSCTS)) {
2433			/* There is no CTS interrupt to restart the hardware */
2434			port->status |= UPSTAT_AUTOCTS;
2435			/* MCE is enabled when RTS is raised */
2436			s->autorts = true;
2437		}
2438
2439		/*
2440		 * As we've done a sci_reset() above, ensure we don't
2441		 * interfere with the FIFOs while toggling MCE. As the
2442		 * reset values could still be set, simply mask them out.
2443		 */
2444		ctrl &= ~(SCFCR_RFRST | SCFCR_TFRST);
2445
2446		serial_port_out(port, SCFCR, ctrl);
2447	}
2448	if (port->flags & UPF_HARD_FLOW) {
2449		/* Refresh (Auto) RTS */
2450		sci_set_mctrl(port, port->mctrl);
2451	}
2452
2453	scr_val |= SCSCR_RE | SCSCR_TE |
2454		   (s->cfg->scscr & ~(SCSCR_CKE1 | SCSCR_CKE0));
2455	serial_port_out(port, SCSCR, scr_val | s->hscif_tot);
2456	if ((srr + 1 == 5) &&
2457	    (port->type == PORT_SCIFA || port->type == PORT_SCIFB)) {
2458		/*
2459		 * In asynchronous mode, when the sampling rate is 1/5, first
2460		 * received data may become invalid on some SCIFA and SCIFB.
2461		 * To avoid this problem wait more than 1 serial data time (1
2462		 * bit time x serial data number) after setting SCSCR.RE = 1.
2463		 */
2464		udelay(DIV_ROUND_UP(10 * 1000000, baud));
2465	}
2466
 
2467	/*
2468	 * Calculate delay for 2 DMA buffers (4 FIFO).
2469	 * See serial_core.c::uart_update_timeout().
2470	 * With 10 bits (CS8), 250Hz, 115200 baud and 64 bytes FIFO, the above
2471	 * function calculates 1 jiffie for the data plus 5 jiffies for the
2472	 * "slop(e)." Then below we calculate 5 jiffies (20ms) for 2 DMA
2473	 * buffers (4 FIFO sizes), but when performing a faster transfer, the
2474	 * value obtained by this formula is too small. Therefore, if the value
2475	 * is smaller than 20ms, use 20ms as the timeout value for DMA.
2476	 */
2477	/* byte size and parity */
2478	switch (termios->c_cflag & CSIZE) {
2479	case CS5:
2480		bits = 7;
2481		break;
2482	case CS6:
2483		bits = 8;
2484		break;
2485	case CS7:
2486		bits = 9;
2487		break;
2488	default:
2489		bits = 10;
2490		break;
2491	}
2492
2493	if (termios->c_cflag & CSTOPB)
2494		bits++;
2495	if (termios->c_cflag & PARENB)
2496		bits++;
2497
2498	s->rx_frame = (10000 * bits) / (baud / 100);
2499#ifdef CONFIG_SERIAL_SH_SCI_DMA
2500	s->rx_timeout = s->buf_len_rx * 2 * s->rx_frame;
2501	if (s->rx_timeout < 20)
2502		s->rx_timeout = 20;
2503#endif
2504
2505	if ((termios->c_cflag & CREAD) != 0)
2506		sci_start_rx(port);
2507
2508	spin_unlock_irqrestore(&port->lock, flags);
2509
2510	sci_port_disable(s);
2511
2512	if (UART_ENABLE_MS(port, termios->c_cflag))
2513		sci_enable_ms(port);
2514}
2515
2516static void sci_pm(struct uart_port *port, unsigned int state,
2517		   unsigned int oldstate)
2518{
2519	struct sci_port *sci_port = to_sci_port(port);
2520
2521	switch (state) {
2522	case UART_PM_STATE_OFF:
2523		sci_port_disable(sci_port);
2524		break;
2525	default:
2526		sci_port_enable(sci_port);
2527		break;
2528	}
2529}
2530
2531static const char *sci_type(struct uart_port *port)
2532{
2533	switch (port->type) {
2534	case PORT_IRDA:
2535		return "irda";
2536	case PORT_SCI:
2537		return "sci";
2538	case PORT_SCIF:
2539		return "scif";
2540	case PORT_SCIFA:
2541		return "scifa";
2542	case PORT_SCIFB:
2543		return "scifb";
2544	case PORT_HSCIF:
2545		return "hscif";
2546	}
2547
2548	return NULL;
2549}
2550
 
 
 
 
 
 
 
 
 
 
 
2551static int sci_remap_port(struct uart_port *port)
2552{
2553	struct sci_port *sport = to_sci_port(port);
2554
2555	/*
2556	 * Nothing to do if there's already an established membase.
2557	 */
2558	if (port->membase)
2559		return 0;
2560
2561	if (port->dev->of_node || (port->flags & UPF_IOREMAP)) {
2562		port->membase = ioremap_nocache(port->mapbase, sport->reg_size);
2563		if (unlikely(!port->membase)) {
2564			dev_err(port->dev, "can't remap port#%d\n", port->line);
2565			return -ENXIO;
2566		}
2567	} else {
2568		/*
2569		 * For the simple (and majority of) cases where we don't
2570		 * need to do any remapping, just cast the cookie
2571		 * directly.
2572		 */
2573		port->membase = (void __iomem *)(uintptr_t)port->mapbase;
2574	}
2575
2576	return 0;
2577}
2578
2579static void sci_release_port(struct uart_port *port)
2580{
2581	struct sci_port *sport = to_sci_port(port);
2582
2583	if (port->dev->of_node || (port->flags & UPF_IOREMAP)) {
2584		iounmap(port->membase);
2585		port->membase = NULL;
2586	}
2587
2588	release_mem_region(port->mapbase, sport->reg_size);
2589}
2590
2591static int sci_request_port(struct uart_port *port)
2592{
 
2593	struct resource *res;
2594	struct sci_port *sport = to_sci_port(port);
2595	int ret;
2596
2597	res = request_mem_region(port->mapbase, sport->reg_size,
2598				 dev_name(port->dev));
2599	if (unlikely(res == NULL)) {
2600		dev_err(port->dev, "request_mem_region failed.");
2601		return -EBUSY;
2602	}
2603
2604	ret = sci_remap_port(port);
2605	if (unlikely(ret != 0)) {
2606		release_resource(res);
2607		return ret;
2608	}
2609
2610	return 0;
2611}
2612
2613static void sci_config_port(struct uart_port *port, int flags)
2614{
2615	if (flags & UART_CONFIG_TYPE) {
2616		struct sci_port *sport = to_sci_port(port);
2617
2618		port->type = sport->cfg->type;
2619		sci_request_port(port);
2620	}
2621}
2622
2623static int sci_verify_port(struct uart_port *port, struct serial_struct *ser)
2624{
 
 
 
 
2625	if (ser->baud_base < 2400)
2626		/* No paper tape reader for Mitch.. */
2627		return -EINVAL;
2628
2629	return 0;
2630}
2631
2632static const struct uart_ops sci_uart_ops = {
2633	.tx_empty	= sci_tx_empty,
2634	.set_mctrl	= sci_set_mctrl,
2635	.get_mctrl	= sci_get_mctrl,
2636	.start_tx	= sci_start_tx,
2637	.stop_tx	= sci_stop_tx,
2638	.stop_rx	= sci_stop_rx,
2639	.enable_ms	= sci_enable_ms,
2640	.break_ctl	= sci_break_ctl,
2641	.startup	= sci_startup,
2642	.shutdown	= sci_shutdown,
2643	.flush_buffer	= sci_flush_buffer,
2644	.set_termios	= sci_set_termios,
2645	.pm		= sci_pm,
2646	.type		= sci_type,
2647	.release_port	= sci_release_port,
2648	.request_port	= sci_request_port,
2649	.config_port	= sci_config_port,
2650	.verify_port	= sci_verify_port,
2651#ifdef CONFIG_CONSOLE_POLL
2652	.poll_get_char	= sci_poll_get_char,
2653	.poll_put_char	= sci_poll_put_char,
2654#endif
2655};
2656
2657static int sci_init_clocks(struct sci_port *sci_port, struct device *dev)
2658{
2659	const char *clk_names[] = {
2660		[SCI_FCK] = "fck",
2661		[SCI_SCK] = "sck",
2662		[SCI_BRG_INT] = "brg_int",
2663		[SCI_SCIF_CLK] = "scif_clk",
2664	};
2665	struct clk *clk;
2666	unsigned int i;
2667
2668	if (sci_port->cfg->type == PORT_HSCIF)
2669		clk_names[SCI_SCK] = "hsck";
2670
2671	for (i = 0; i < SCI_NUM_CLKS; i++) {
2672		clk = devm_clk_get(dev, clk_names[i]);
2673		if (PTR_ERR(clk) == -EPROBE_DEFER)
2674			return -EPROBE_DEFER;
2675
2676		if (IS_ERR(clk) && i == SCI_FCK) {
2677			/*
2678			 * "fck" used to be called "sci_ick", and we need to
2679			 * maintain DT backward compatibility.
2680			 */
2681			clk = devm_clk_get(dev, "sci_ick");
2682			if (PTR_ERR(clk) == -EPROBE_DEFER)
2683				return -EPROBE_DEFER;
2684
2685			if (!IS_ERR(clk))
2686				goto found;
2687
2688			/*
2689			 * Not all SH platforms declare a clock lookup entry
2690			 * for SCI devices, in which case we need to get the
2691			 * global "peripheral_clk" clock.
2692			 */
2693			clk = devm_clk_get(dev, "peripheral_clk");
2694			if (!IS_ERR(clk))
2695				goto found;
2696
2697			dev_err(dev, "failed to get %s (%ld)\n", clk_names[i],
2698				PTR_ERR(clk));
2699			return PTR_ERR(clk);
2700		}
2701
2702found:
2703		if (IS_ERR(clk))
2704			dev_dbg(dev, "failed to get %s (%ld)\n", clk_names[i],
2705				PTR_ERR(clk));
2706		else
2707			dev_dbg(dev, "clk %s is %pC rate %pCr\n", clk_names[i],
2708				clk, clk);
2709		sci_port->clks[i] = IS_ERR(clk) ? NULL : clk;
2710	}
2711	return 0;
2712}
2713
2714static const struct sci_port_params *
2715sci_probe_regmap(const struct plat_sci_port *cfg)
2716{
2717	unsigned int regtype;
2718
2719	if (cfg->regtype != SCIx_PROBE_REGTYPE)
2720		return &sci_port_params[cfg->regtype];
2721
2722	switch (cfg->type) {
2723	case PORT_SCI:
2724		regtype = SCIx_SCI_REGTYPE;
2725		break;
2726	case PORT_IRDA:
2727		regtype = SCIx_IRDA_REGTYPE;
2728		break;
2729	case PORT_SCIFA:
2730		regtype = SCIx_SCIFA_REGTYPE;
2731		break;
2732	case PORT_SCIFB:
2733		regtype = SCIx_SCIFB_REGTYPE;
2734		break;
2735	case PORT_SCIF:
2736		/*
2737		 * The SH-4 is a bit of a misnomer here, although that's
2738		 * where this particular port layout originated. This
2739		 * configuration (or some slight variation thereof)
2740		 * remains the dominant model for all SCIFs.
2741		 */
2742		regtype = SCIx_SH4_SCIF_REGTYPE;
2743		break;
2744	case PORT_HSCIF:
2745		regtype = SCIx_HSCIF_REGTYPE;
2746		break;
2747	default:
2748		pr_err("Can't probe register map for given port\n");
2749		return NULL;
2750	}
2751
2752	return &sci_port_params[regtype];
2753}
2754
2755static int sci_init_single(struct platform_device *dev,
2756			   struct sci_port *sci_port, unsigned int index,
2757			   const struct plat_sci_port *p, bool early)
2758{
2759	struct uart_port *port = &sci_port->port;
2760	const struct resource *res;
2761	unsigned int i;
2762	int ret;
2763
2764	sci_port->cfg	= p;
2765
2766	port->ops	= &sci_uart_ops;
2767	port->iotype	= UPIO_MEM;
2768	port->line	= index;
2769
2770	res = platform_get_resource(dev, IORESOURCE_MEM, 0);
2771	if (res == NULL)
2772		return -ENOMEM;
2773
2774	port->mapbase = res->start;
2775	sci_port->reg_size = resource_size(res);
2776
2777	for (i = 0; i < ARRAY_SIZE(sci_port->irqs); ++i)
2778		sci_port->irqs[i] = platform_get_irq(dev, i);
2779
2780	/* The SCI generates several interrupts. They can be muxed together or
2781	 * connected to different interrupt lines. In the muxed case only one
2782	 * interrupt resource is specified. In the non-muxed case three or four
2783	 * interrupt resources are specified, as the BRI interrupt is optional.
2784	 */
2785	if (sci_port->irqs[0] < 0)
2786		return -ENXIO;
2787
2788	if (sci_port->irqs[1] < 0) {
2789		sci_port->irqs[1] = sci_port->irqs[0];
2790		sci_port->irqs[2] = sci_port->irqs[0];
2791		sci_port->irqs[3] = sci_port->irqs[0];
2792	}
2793
2794	sci_port->params = sci_probe_regmap(p);
2795	if (unlikely(sci_port->params == NULL))
2796		return -EINVAL;
2797
2798	switch (p->type) {
2799	case PORT_SCIFB:
2800		sci_port->rx_trigger = 48;
2801		break;
2802	case PORT_HSCIF:
2803		sci_port->rx_trigger = 64;
2804		break;
2805	case PORT_SCIFA:
2806		sci_port->rx_trigger = 32;
2807		break;
2808	case PORT_SCIF:
2809		if (p->regtype == SCIx_SH7705_SCIF_REGTYPE)
2810			/* RX triggering not implemented for this IP */
2811			sci_port->rx_trigger = 1;
2812		else
2813			sci_port->rx_trigger = 8;
2814		break;
2815	default:
2816		sci_port->rx_trigger = 1;
2817		break;
2818	}
2819
2820	sci_port->rx_fifo_timeout = 0;
2821	sci_port->hscif_tot = 0;
 
 
 
2822
2823	/* SCIFA on sh7723 and sh7724 need a custom sampling rate that doesn't
2824	 * match the SoC datasheet, this should be investigated. Let platform
2825	 * data override the sampling rate for now.
2826	 */
2827	sci_port->sampling_rate_mask = p->sampling_rate
2828				     ? SCI_SR(p->sampling_rate)
2829				     : sci_port->params->sampling_rate_mask;
2830
2831	if (!early) {
2832		ret = sci_init_clocks(sci_port, &dev->dev);
2833		if (ret < 0)
2834			return ret;
 
 
 
 
 
2835
2836		port->dev = &dev->dev;
2837
 
2838		pm_runtime_enable(&dev->dev);
2839	}
2840
2841	port->type		= p->type;
2842	port->flags		= UPF_FIXED_PORT | UPF_BOOT_AUTOCONF | p->flags;
2843	port->fifosize		= sci_port->params->fifosize;
 
 
 
 
 
 
 
2844
2845	if (port->type == PORT_SCI) {
2846		if (sci_port->reg_size >= 0x20)
2847			port->regshift = 2;
 
 
 
 
 
 
2848		else
2849			port->regshift = 1;
 
 
 
 
 
 
2850	}
2851
 
 
 
 
 
 
 
2852	/*
2853	 * The UART port needs an IRQ value, so we peg this to the RX IRQ
2854	 * for the multi-IRQ ports, which is where we are primarily
2855	 * concerned with the shutdown path synchronization.
2856	 *
2857	 * For the muxed case there's nothing more to do.
2858	 */
2859	port->irq		= sci_port->irqs[SCIx_RXI_IRQ];
2860	port->irqflags		= 0;
2861
2862	port->serial_in		= sci_serial_in;
2863	port->serial_out	= sci_serial_out;
2864
 
 
 
 
2865	return 0;
2866}
2867
2868static void sci_cleanup_single(struct sci_port *port)
2869{
2870	pm_runtime_disable(port->port.dev);
2871}
2872
2873#if defined(CONFIG_SERIAL_SH_SCI_CONSOLE) || \
2874    defined(CONFIG_SERIAL_SH_SCI_EARLYCON)
2875static void serial_console_putchar(struct uart_port *port, int ch)
2876{
2877	sci_poll_put_char(port, ch);
2878}
2879
2880/*
2881 *	Print a string to the serial port trying not to disturb
2882 *	any possible real use of the port...
2883 */
2884static void serial_console_write(struct console *co, const char *s,
2885				 unsigned count)
2886{
2887	struct sci_port *sci_port = &sci_ports[co->index];
2888	struct uart_port *port = &sci_port->port;
2889	unsigned short bits, ctrl, ctrl_temp;
2890	unsigned long flags;
2891	int locked = 1;
2892
2893	local_irq_save(flags);
2894#if defined(SUPPORT_SYSRQ)
2895	if (port->sysrq)
2896		locked = 0;
2897	else
2898#endif
2899	if (oops_in_progress)
2900		locked = spin_trylock(&port->lock);
2901	else
2902		spin_lock(&port->lock);
2903
2904	/* first save SCSCR then disable interrupts, keep clock source */
2905	ctrl = serial_port_in(port, SCSCR);
2906	ctrl_temp = SCSCR_RE | SCSCR_TE |
2907		    (sci_port->cfg->scscr & ~(SCSCR_CKE1 | SCSCR_CKE0)) |
2908		    (ctrl & (SCSCR_CKE1 | SCSCR_CKE0));
2909	serial_port_out(port, SCSCR, ctrl_temp | sci_port->hscif_tot);
2910
2911	uart_console_write(port, s, count, serial_console_putchar);
2912
2913	/* wait until fifo is empty and last bit has been transmitted */
2914	bits = SCxSR_TDxE(port) | SCxSR_TEND(port);
2915	while ((serial_port_in(port, SCxSR) & bits) != bits)
2916		cpu_relax();
2917
2918	/* restore the SCSCR */
2919	serial_port_out(port, SCSCR, ctrl);
2920
2921	if (locked)
2922		spin_unlock(&port->lock);
2923	local_irq_restore(flags);
2924}
2925
2926static int serial_console_setup(struct console *co, char *options)
2927{
2928	struct sci_port *sci_port;
2929	struct uart_port *port;
2930	int baud = 115200;
2931	int bits = 8;
2932	int parity = 'n';
2933	int flow = 'n';
2934	int ret;
2935
2936	/*
2937	 * Refuse to handle any bogus ports.
2938	 */
2939	if (co->index < 0 || co->index >= SCI_NPORTS)
2940		return -ENODEV;
2941
2942	sci_port = &sci_ports[co->index];
2943	port = &sci_port->port;
2944
2945	/*
2946	 * Refuse to handle uninitialized ports.
2947	 */
2948	if (!port->ops)
2949		return -ENODEV;
2950
2951	ret = sci_remap_port(port);
2952	if (unlikely(ret != 0))
2953		return ret;
2954
 
 
2955	if (options)
2956		uart_parse_options(options, &baud, &parity, &bits, &flow);
2957
 
 
2958	return uart_set_options(port, co, baud, parity, bits, flow);
2959}
2960
2961static struct console serial_console = {
2962	.name		= "ttySC",
2963	.device		= uart_console_device,
2964	.write		= serial_console_write,
2965	.setup		= serial_console_setup,
2966	.flags		= CON_PRINTBUFFER,
2967	.index		= -1,
2968	.data		= &sci_uart_driver,
2969};
2970
2971static struct console early_serial_console = {
2972	.name           = "early_ttySC",
2973	.write          = serial_console_write,
2974	.flags          = CON_PRINTBUFFER,
2975	.index		= -1,
2976};
2977
2978static char early_serial_buf[32];
2979
2980static int sci_probe_earlyprintk(struct platform_device *pdev)
2981{
2982	const struct plat_sci_port *cfg = dev_get_platdata(&pdev->dev);
2983
2984	if (early_serial_console.data)
2985		return -EEXIST;
2986
2987	early_serial_console.index = pdev->id;
2988
2989	sci_init_single(pdev, &sci_ports[pdev->id], pdev->id, cfg, true);
2990
2991	serial_console_setup(&early_serial_console, early_serial_buf);
2992
2993	if (!strstr(early_serial_buf, "keep"))
2994		early_serial_console.flags |= CON_BOOT;
2995
2996	register_console(&early_serial_console);
2997	return 0;
2998}
2999
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
3000#define SCI_CONSOLE	(&serial_console)
3001
3002#else
3003static inline int sci_probe_earlyprintk(struct platform_device *pdev)
3004{
3005	return -EINVAL;
3006}
3007
3008#define SCI_CONSOLE	NULL
 
 
3009
3010#endif /* CONFIG_SERIAL_SH_SCI_CONSOLE || CONFIG_SERIAL_SH_SCI_EARLYCON */
3011
3012static const char banner[] __initconst = "SuperH (H)SCI(F) driver initialized";
 
3013
3014static DEFINE_MUTEX(sci_uart_registration_lock);
3015static struct uart_driver sci_uart_driver = {
3016	.owner		= THIS_MODULE,
3017	.driver_name	= "sci",
3018	.dev_name	= "ttySC",
3019	.major		= SCI_MAJOR,
3020	.minor		= SCI_MINOR_START,
3021	.nr		= SCI_NPORTS,
3022	.cons		= SCI_CONSOLE,
3023};
3024
3025static int sci_remove(struct platform_device *dev)
3026{
3027	struct sci_port *port = platform_get_drvdata(dev);
3028
 
 
 
3029	uart_remove_one_port(&sci_uart_driver, &port->port);
3030
3031	sci_cleanup_single(port);
3032
3033	if (port->port.fifosize > 1) {
3034		sysfs_remove_file(&dev->dev.kobj,
3035				  &dev_attr_rx_fifo_trigger.attr);
3036	}
3037	if (port->port.type == PORT_SCIFA || port->port.type == PORT_SCIFB ||
3038	    port->port.type == PORT_HSCIF) {
3039		sysfs_remove_file(&dev->dev.kobj,
3040				  &dev_attr_rx_fifo_timeout.attr);
3041	}
3042
 
3043	return 0;
3044}
3045
3046
3047#define SCI_OF_DATA(type, regtype)	(void *)((type) << 16 | (regtype))
3048#define SCI_OF_TYPE(data)		((unsigned long)(data) >> 16)
3049#define SCI_OF_REGTYPE(data)		((unsigned long)(data) & 0xffff)
3050
3051static const struct of_device_id of_sci_match[] = {
3052	/* SoC-specific types */
3053	{
3054		.compatible = "renesas,scif-r7s72100",
3055		.data = SCI_OF_DATA(PORT_SCIF, SCIx_SH2_SCIF_FIFODATA_REGTYPE),
3056	},
3057	/* Family-specific types */
3058	{
3059		.compatible = "renesas,rcar-gen1-scif",
3060		.data = SCI_OF_DATA(PORT_SCIF, SCIx_SH4_SCIF_BRG_REGTYPE),
3061	}, {
3062		.compatible = "renesas,rcar-gen2-scif",
3063		.data = SCI_OF_DATA(PORT_SCIF, SCIx_SH4_SCIF_BRG_REGTYPE),
3064	}, {
3065		.compatible = "renesas,rcar-gen3-scif",
3066		.data = SCI_OF_DATA(PORT_SCIF, SCIx_SH4_SCIF_BRG_REGTYPE),
3067	},
3068	/* Generic types */
3069	{
3070		.compatible = "renesas,scif",
3071		.data = SCI_OF_DATA(PORT_SCIF, SCIx_SH4_SCIF_REGTYPE),
3072	}, {
3073		.compatible = "renesas,scifa",
3074		.data = SCI_OF_DATA(PORT_SCIFA, SCIx_SCIFA_REGTYPE),
3075	}, {
3076		.compatible = "renesas,scifb",
3077		.data = SCI_OF_DATA(PORT_SCIFB, SCIx_SCIFB_REGTYPE),
3078	}, {
3079		.compatible = "renesas,hscif",
3080		.data = SCI_OF_DATA(PORT_HSCIF, SCIx_HSCIF_REGTYPE),
3081	}, {
3082		.compatible = "renesas,sci",
3083		.data = SCI_OF_DATA(PORT_SCI, SCIx_SCI_REGTYPE),
3084	}, {
3085		/* Terminator */
3086	},
3087};
3088MODULE_DEVICE_TABLE(of, of_sci_match);
3089
3090static struct plat_sci_port *sci_parse_dt(struct platform_device *pdev,
3091					  unsigned int *dev_id)
3092{
3093	struct device_node *np = pdev->dev.of_node;
3094	struct plat_sci_port *p;
3095	struct sci_port *sp;
3096	const void *data;
3097	int id;
3098
3099	if (!IS_ENABLED(CONFIG_OF) || !np)
3100		return NULL;
3101
3102	data = of_device_get_match_data(&pdev->dev);
3103
3104	p = devm_kzalloc(&pdev->dev, sizeof(struct plat_sci_port), GFP_KERNEL);
3105	if (!p)
3106		return NULL;
3107
3108	/* Get the line number from the aliases node. */
3109	id = of_alias_get_id(np, "serial");
3110	if (id < 0) {
3111		dev_err(&pdev->dev, "failed to get alias id (%d)\n", id);
3112		return NULL;
3113	}
3114	if (id >= ARRAY_SIZE(sci_ports)) {
3115		dev_err(&pdev->dev, "serial%d out of range\n", id);
3116		return NULL;
3117	}
3118
3119	sp = &sci_ports[id];
3120	*dev_id = id;
3121
3122	p->type = SCI_OF_TYPE(data);
3123	p->regtype = SCI_OF_REGTYPE(data);
3124
3125	sp->has_rtscts = of_property_read_bool(np, "uart-has-rtscts");
3126
3127	return p;
3128}
3129
3130static int sci_probe_single(struct platform_device *dev,
3131				      unsigned int index,
3132				      struct plat_sci_port *p,
3133				      struct sci_port *sciport)
3134{
3135	int ret;
3136
3137	/* Sanity check */
3138	if (unlikely(index >= SCI_NPORTS)) {
3139		dev_notice(&dev->dev, "Attempting to register port %d when only %d are available\n",
 
3140			   index+1, SCI_NPORTS);
3141		dev_notice(&dev->dev, "Consider bumping CONFIG_SERIAL_SH_SCI_NR_UARTS!\n");
3142		return -EINVAL;
3143	}
3144
3145	mutex_lock(&sci_uart_registration_lock);
3146	if (!sci_uart_driver.state) {
3147		ret = uart_register_driver(&sci_uart_driver);
3148		if (ret) {
3149			mutex_unlock(&sci_uart_registration_lock);
3150			return ret;
3151		}
3152	}
3153	mutex_unlock(&sci_uart_registration_lock);
3154
3155	ret = sci_init_single(dev, sciport, index, p, false);
3156	if (ret)
3157		return ret;
3158
3159	sciport->gpios = mctrl_gpio_init(&sciport->port, 0);
3160	if (IS_ERR(sciport->gpios) && PTR_ERR(sciport->gpios) != -ENOSYS)
3161		return PTR_ERR(sciport->gpios);
3162
3163	if (sciport->has_rtscts) {
3164		if (!IS_ERR_OR_NULL(mctrl_gpio_to_gpiod(sciport->gpios,
3165							UART_GPIO_CTS)) ||
3166		    !IS_ERR_OR_NULL(mctrl_gpio_to_gpiod(sciport->gpios,
3167							UART_GPIO_RTS))) {
3168			dev_err(&dev->dev, "Conflicting RTS/CTS config\n");
3169			return -EINVAL;
3170		}
3171		sciport->port.flags |= UPF_HARD_FLOW;
3172	}
3173
3174	ret = uart_add_one_port(&sci_uart_driver, &sciport->port);
3175	if (ret) {
3176		sci_cleanup_single(sciport);
3177		return ret;
3178	}
3179
3180	return 0;
3181}
3182
3183static int sci_probe(struct platform_device *dev)
3184{
3185	struct plat_sci_port *p;
3186	struct sci_port *sp;
3187	unsigned int dev_id;
3188	int ret;
3189
3190	/*
3191	 * If we've come here via earlyprintk initialization, head off to
3192	 * the special early probe. We don't have sufficient device state
3193	 * to make it beyond this yet.
3194	 */
3195	if (is_early_platform_device(dev))
3196		return sci_probe_earlyprintk(dev);
3197
3198	if (dev->dev.of_node) {
3199		p = sci_parse_dt(dev, &dev_id);
3200		if (p == NULL)
3201			return -EINVAL;
3202	} else {
3203		p = dev->dev.platform_data;
3204		if (p == NULL) {
3205			dev_err(&dev->dev, "no platform data supplied\n");
3206			return -EINVAL;
3207		}
3208
3209		dev_id = dev->id;
3210	}
3211
3212	sp = &sci_ports[dev_id];
3213	platform_set_drvdata(dev, sp);
3214
3215	ret = sci_probe_single(dev, dev_id, p, sp);
3216	if (ret)
3217		return ret;
 
 
3218
3219	if (sp->port.fifosize > 1) {
3220		ret = sysfs_create_file(&dev->dev.kobj,
3221				&dev_attr_rx_fifo_trigger.attr);
3222		if (ret)
3223			return ret;
3224	}
3225	if (sp->port.type == PORT_SCIFA || sp->port.type == PORT_SCIFB ||
3226	    sp->port.type == PORT_HSCIF) {
3227		ret = sysfs_create_file(&dev->dev.kobj,
3228				&dev_attr_rx_fifo_timeout.attr);
3229		if (ret) {
3230			if (sp->port.fifosize > 1) {
3231				sysfs_remove_file(&dev->dev.kobj,
3232					&dev_attr_rx_fifo_trigger.attr);
3233			}
3234			return ret;
3235		}
3236	}
3237
3238#ifdef CONFIG_SH_STANDARD_BIOS
3239	sh_bios_gdb_detach();
3240#endif
3241
3242	return 0;
 
 
 
 
3243}
3244
3245static __maybe_unused int sci_suspend(struct device *dev)
3246{
3247	struct sci_port *sport = dev_get_drvdata(dev);
3248
3249	if (sport)
3250		uart_suspend_port(&sci_uart_driver, &sport->port);
3251
3252	return 0;
3253}
3254
3255static __maybe_unused int sci_resume(struct device *dev)
3256{
3257	struct sci_port *sport = dev_get_drvdata(dev);
3258
3259	if (sport)
3260		uart_resume_port(&sci_uart_driver, &sport->port);
3261
3262	return 0;
3263}
3264
3265static SIMPLE_DEV_PM_OPS(sci_dev_pm_ops, sci_suspend, sci_resume);
 
 
 
 
 
3266
3267static struct platform_driver sci_driver = {
3268	.probe		= sci_probe,
3269	.remove		= sci_remove,
3270	.driver		= {
3271		.name	= "sh-sci",
 
3272		.pm	= &sci_dev_pm_ops,
3273		.of_match_table = of_match_ptr(of_sci_match),
3274	},
3275};
3276
3277static int __init sci_init(void)
3278{
3279	pr_info("%s\n", banner);
3280
3281	return platform_driver_register(&sci_driver);
 
 
 
 
 
 
 
 
 
3282}
3283
3284static void __exit sci_exit(void)
3285{
3286	platform_driver_unregister(&sci_driver);
3287
3288	if (sci_uart_driver.state)
3289		uart_unregister_driver(&sci_uart_driver);
3290}
3291
3292#ifdef CONFIG_SERIAL_SH_SCI_CONSOLE
3293early_platform_init_buffer("earlyprintk", &sci_driver,
3294			   early_serial_buf, ARRAY_SIZE(early_serial_buf));
3295#endif
3296#ifdef CONFIG_SERIAL_SH_SCI_EARLYCON
3297static struct plat_sci_port port_cfg __initdata;
3298
3299static int __init early_console_setup(struct earlycon_device *device,
3300				      int type)
3301{
3302	if (!device->port.membase)
3303		return -ENODEV;
3304
3305	device->port.serial_in = sci_serial_in;
3306	device->port.serial_out	= sci_serial_out;
3307	device->port.type = type;
3308	memcpy(&sci_ports[0].port, &device->port, sizeof(struct uart_port));
3309	port_cfg.type = type;
3310	sci_ports[0].cfg = &port_cfg;
3311	sci_ports[0].params = sci_probe_regmap(&port_cfg);
3312	port_cfg.scscr = sci_serial_in(&sci_ports[0].port, SCSCR);
3313	sci_serial_out(&sci_ports[0].port, SCSCR,
3314		       SCSCR_RE | SCSCR_TE | port_cfg.scscr);
3315
3316	device->con->write = serial_console_write;
3317	return 0;
3318}
3319static int __init sci_early_console_setup(struct earlycon_device *device,
3320					  const char *opt)
3321{
3322	return early_console_setup(device, PORT_SCI);
3323}
3324static int __init scif_early_console_setup(struct earlycon_device *device,
3325					  const char *opt)
3326{
3327	return early_console_setup(device, PORT_SCIF);
3328}
3329static int __init scifa_early_console_setup(struct earlycon_device *device,
3330					  const char *opt)
3331{
3332	return early_console_setup(device, PORT_SCIFA);
3333}
3334static int __init scifb_early_console_setup(struct earlycon_device *device,
3335					  const char *opt)
3336{
3337	return early_console_setup(device, PORT_SCIFB);
3338}
3339static int __init hscif_early_console_setup(struct earlycon_device *device,
3340					  const char *opt)
3341{
3342	return early_console_setup(device, PORT_HSCIF);
3343}
3344
3345OF_EARLYCON_DECLARE(sci, "renesas,sci", sci_early_console_setup);
3346OF_EARLYCON_DECLARE(scif, "renesas,scif", scif_early_console_setup);
3347OF_EARLYCON_DECLARE(scifa, "renesas,scifa", scifa_early_console_setup);
3348OF_EARLYCON_DECLARE(scifb, "renesas,scifb", scifb_early_console_setup);
3349OF_EARLYCON_DECLARE(hscif, "renesas,hscif", hscif_early_console_setup);
3350#endif /* CONFIG_SERIAL_SH_SCI_EARLYCON */
3351
3352module_init(sci_init);
3353module_exit(sci_exit);
3354
3355MODULE_LICENSE("GPL");
3356MODULE_ALIAS("platform:sh-sci");
3357MODULE_AUTHOR("Paul Mundt");
3358MODULE_DESCRIPTION("SuperH (H)SCI(F) serial driver");