Linux Audio

Check our new training course

Linux debugging, profiling, tracing and performance analysis training

Mar 24-27, 2025, special US time zones
Register
Loading...
v3.1
   1/*
   2 * SuperH on-chip serial module support.  (SCI with no FIFO / with FIFO)
   3 *
   4 *  Copyright (C) 2002 - 2011  Paul Mundt
 
   5 *  Modified to support SH7720 SCIF. Markus Brunner, Mark Jonas (Jul 2007).
   6 *
   7 * based off of the old drivers/char/sh-sci.c by:
   8 *
   9 *   Copyright (C) 1999, 2000  Niibe Yutaka
  10 *   Copyright (C) 2000  Sugioka Toshinobu
  11 *   Modified to support multiple serial ports. Stuart Menefy (May 2000).
  12 *   Modified to support SecureEdge. David McCullough (2002)
  13 *   Modified to support SH7300 SCIF. Takashi Kusuda (Jun 2003).
  14 *   Removed SH7300 support (Jul 2007).
  15 *
  16 * This file is subject to the terms and conditions of the GNU General Public
  17 * License.  See the file "COPYING" in the main directory of this archive
  18 * for more details.
  19 */
  20#if defined(CONFIG_SERIAL_SH_SCI_CONSOLE) && defined(CONFIG_MAGIC_SYSRQ)
  21#define SUPPORT_SYSRQ
  22#endif
  23
  24#undef DEBUG
  25
  26#include <linux/module.h>
 
 
 
 
 
 
 
  27#include <linux/errno.h>
  28#include <linux/timer.h>
  29#include <linux/interrupt.h>
  30#include <linux/tty.h>
  31#include <linux/tty_flip.h>
  32#include <linux/serial.h>
  33#include <linux/major.h>
  34#include <linux/string.h>
  35#include <linux/sysrq.h>
  36#include <linux/ioport.h>
 
 
  37#include <linux/mm.h>
  38#include <linux/init.h>
  39#include <linux/delay.h>
  40#include <linux/console.h>
  41#include <linux/platform_device.h>
  42#include <linux/serial_sci.h>
  43#include <linux/notifier.h>
  44#include <linux/pm_runtime.h>
  45#include <linux/cpufreq.h>
  46#include <linux/clk.h>
  47#include <linux/ctype.h>
  48#include <linux/err.h>
  49#include <linux/dmaengine.h>
  50#include <linux/dma-mapping.h>
  51#include <linux/scatterlist.h>
 
 
 
  52#include <linux/slab.h>
 
 
 
 
 
  53
  54#ifdef CONFIG_SUPERH
  55#include <asm/sh_bios.h>
  56#endif
  57
  58#include "sh-sci.h"
  59
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
  60struct sci_port {
  61	struct uart_port	port;
  62
  63	/* Platform configuration */
  64	struct plat_sci_port	*cfg;
 
 
 
 
 
 
  65
  66	/* Break timer */
  67	struct timer_list	break_timer;
  68	int			break_flag;
  69
  70	/* Interface clock */
  71	struct clk		*iclk;
  72	/* Function clock */
  73	struct clk		*fclk;
  74
 
  75	char			*irqstr[SCIx_NR_IRQS];
  76
  77	struct dma_chan			*chan_tx;
  78	struct dma_chan			*chan_rx;
  79
  80#ifdef CONFIG_SERIAL_SH_SCI_DMA
  81	struct dma_async_tx_descriptor	*desc_tx;
  82	struct dma_async_tx_descriptor	*desc_rx[2];
  83	dma_cookie_t			cookie_tx;
  84	dma_cookie_t			cookie_rx[2];
  85	dma_cookie_t			active_rx;
  86	struct scatterlist		sg_tx;
  87	unsigned int			sg_len_tx;
  88	struct scatterlist		sg_rx[2];
 
  89	size_t				buf_len_rx;
  90	struct sh_dmae_slave		param_tx;
  91	struct sh_dmae_slave		param_rx;
  92	struct work_struct		work_tx;
  93	struct work_struct		work_rx;
  94	struct timer_list		rx_timer;
  95	unsigned int			rx_timeout;
  96#endif
  97
  98	struct notifier_block		freq_transition;
  99
 100#ifdef CONFIG_SERIAL_SH_SCI_CONSOLE
 101	unsigned short saved_smr;
 102	unsigned short saved_fcr;
 103	unsigned char saved_brr;
 104#endif
 105};
 106
 107/* Function prototypes */
 108static void sci_start_tx(struct uart_port *port);
 109static void sci_stop_tx(struct uart_port *port);
 110static void sci_start_rx(struct uart_port *port);
 111
 112#define SCI_NPORTS CONFIG_SERIAL_SH_SCI_NR_UARTS
 113
 114static struct sci_port sci_ports[SCI_NPORTS];
 115static struct uart_driver sci_uart_driver;
 116
 117static inline struct sci_port *
 118to_sci_port(struct uart_port *uart)
 119{
 120	return container_of(uart, struct sci_port, port);
 121}
 122
 123struct plat_sci_reg {
 124	u8 offset, size;
 125};
 126
 127/* Helper for invalidating specific entries of an inherited map. */
 128#define sci_reg_invalid	{ .offset = 0, .size = 0 }
 129
 130static struct plat_sci_reg sci_regmap[SCIx_NR_REGTYPES][SCIx_NR_REGS] = {
 131	[SCIx_PROBE_REGTYPE] = {
 132		[0 ... SCIx_NR_REGS - 1] = sci_reg_invalid,
 133	},
 134
 135	/*
 136	 * Common SCI definitions, dependent on the port's regshift
 137	 * value.
 138	 */
 139	[SCIx_SCI_REGTYPE] = {
 140		[SCSMR]		= { 0x00,  8 },
 141		[SCBRR]		= { 0x01,  8 },
 142		[SCSCR]		= { 0x02,  8 },
 143		[SCxTDR]	= { 0x03,  8 },
 144		[SCxSR]		= { 0x04,  8 },
 145		[SCxRDR]	= { 0x05,  8 },
 146		[SCFCR]		= sci_reg_invalid,
 147		[SCFDR]		= sci_reg_invalid,
 148		[SCTFDR]	= sci_reg_invalid,
 149		[SCRFDR]	= sci_reg_invalid,
 150		[SCSPTR]	= sci_reg_invalid,
 151		[SCLSR]		= sci_reg_invalid,
 
 
 
 
 
 152	},
 153
 154	/*
 155	 * Common definitions for legacy IrDA ports, dependent on
 156	 * regshift value.
 157	 */
 158	[SCIx_IRDA_REGTYPE] = {
 159		[SCSMR]		= { 0x00,  8 },
 160		[SCBRR]		= { 0x01,  8 },
 161		[SCSCR]		= { 0x02,  8 },
 162		[SCxTDR]	= { 0x03,  8 },
 163		[SCxSR]		= { 0x04,  8 },
 164		[SCxRDR]	= { 0x05,  8 },
 165		[SCFCR]		= { 0x06,  8 },
 166		[SCFDR]		= { 0x07, 16 },
 167		[SCTFDR]	= sci_reg_invalid,
 168		[SCRFDR]	= sci_reg_invalid,
 169		[SCSPTR]	= sci_reg_invalid,
 170		[SCLSR]		= sci_reg_invalid,
 
 
 
 
 
 171	},
 172
 173	/*
 174	 * Common SCIFA definitions.
 175	 */
 176	[SCIx_SCIFA_REGTYPE] = {
 177		[SCSMR]		= { 0x00, 16 },
 178		[SCBRR]		= { 0x04,  8 },
 179		[SCSCR]		= { 0x08, 16 },
 180		[SCxTDR]	= { 0x20,  8 },
 181		[SCxSR]		= { 0x14, 16 },
 182		[SCxRDR]	= { 0x24,  8 },
 183		[SCFCR]		= { 0x18, 16 },
 184		[SCFDR]		= { 0x1c, 16 },
 185		[SCTFDR]	= sci_reg_invalid,
 186		[SCRFDR]	= sci_reg_invalid,
 187		[SCSPTR]	= sci_reg_invalid,
 188		[SCLSR]		= sci_reg_invalid,
 
 
 
 
 
 189	},
 190
 191	/*
 192	 * Common SCIFB definitions.
 193	 */
 194	[SCIx_SCIFB_REGTYPE] = {
 195		[SCSMR]		= { 0x00, 16 },
 196		[SCBRR]		= { 0x04,  8 },
 197		[SCSCR]		= { 0x08, 16 },
 198		[SCxTDR]	= { 0x40,  8 },
 199		[SCxSR]		= { 0x14, 16 },
 200		[SCxRDR]	= { 0x60,  8 },
 201		[SCFCR]		= { 0x18, 16 },
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 202		[SCFDR]		= { 0x1c, 16 },
 203		[SCTFDR]	= sci_reg_invalid,
 204		[SCRFDR]	= sci_reg_invalid,
 205		[SCSPTR]	= sci_reg_invalid,
 206		[SCLSR]		= sci_reg_invalid,
 
 
 
 
 
 207	},
 208
 209	/*
 210	 * Common SH-3 SCIF definitions.
 211	 */
 212	[SCIx_SH3_SCIF_REGTYPE] = {
 213		[SCSMR]		= { 0x00,  8 },
 214		[SCBRR]		= { 0x02,  8 },
 215		[SCSCR]		= { 0x04,  8 },
 216		[SCxTDR]	= { 0x06,  8 },
 217		[SCxSR]		= { 0x08, 16 },
 218		[SCxRDR]	= { 0x0a,  8 },
 219		[SCFCR]		= { 0x0c,  8 },
 220		[SCFDR]		= { 0x0e, 16 },
 221		[SCTFDR]	= sci_reg_invalid,
 222		[SCRFDR]	= sci_reg_invalid,
 223		[SCSPTR]	= sci_reg_invalid,
 224		[SCLSR]		= sci_reg_invalid,
 
 
 
 
 
 225	},
 226
 227	/*
 228	 * Common SH-4(A) SCIF(B) definitions.
 229	 */
 230	[SCIx_SH4_SCIF_REGTYPE] = {
 231		[SCSMR]		= { 0x00, 16 },
 232		[SCBRR]		= { 0x04,  8 },
 233		[SCSCR]		= { 0x08, 16 },
 234		[SCxTDR]	= { 0x0c,  8 },
 235		[SCxSR]		= { 0x10, 16 },
 236		[SCxRDR]	= { 0x14,  8 },
 237		[SCFCR]		= { 0x18, 16 },
 238		[SCFDR]		= { 0x1c, 16 },
 239		[SCTFDR]	= sci_reg_invalid,
 240		[SCRFDR]	= sci_reg_invalid,
 241		[SCSPTR]	= { 0x20, 16 },
 242		[SCLSR]		= { 0x24, 16 },
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 243	},
 244
 245	/*
 246	 * Common SH-4(A) SCIF(B) definitions for ports without an SCSPTR
 247	 * register.
 248	 */
 249	[SCIx_SH4_SCIF_NO_SCSPTR_REGTYPE] = {
 250		[SCSMR]		= { 0x00, 16 },
 251		[SCBRR]		= { 0x04,  8 },
 252		[SCSCR]		= { 0x08, 16 },
 253		[SCxTDR]	= { 0x0c,  8 },
 254		[SCxSR]		= { 0x10, 16 },
 255		[SCxRDR]	= { 0x14,  8 },
 256		[SCFCR]		= { 0x18, 16 },
 257		[SCFDR]		= { 0x1c, 16 },
 258		[SCTFDR]	= sci_reg_invalid,
 259		[SCRFDR]	= sci_reg_invalid,
 260		[SCSPTR]	= sci_reg_invalid,
 261		[SCLSR]		= { 0x24, 16 },
 
 
 
 
 
 262	},
 263
 264	/*
 265	 * Common SH-4(A) SCIF(B) definitions for ports with FIFO data
 266	 * count registers.
 267	 */
 268	[SCIx_SH4_SCIF_FIFODATA_REGTYPE] = {
 269		[SCSMR]		= { 0x00, 16 },
 270		[SCBRR]		= { 0x04,  8 },
 271		[SCSCR]		= { 0x08, 16 },
 272		[SCxTDR]	= { 0x0c,  8 },
 273		[SCxSR]		= { 0x10, 16 },
 274		[SCxRDR]	= { 0x14,  8 },
 275		[SCFCR]		= { 0x18, 16 },
 276		[SCFDR]		= { 0x1c, 16 },
 277		[SCTFDR]	= { 0x1c, 16 },	/* aliased to SCFDR */
 278		[SCRFDR]	= { 0x20, 16 },
 279		[SCSPTR]	= { 0x24, 16 },
 280		[SCLSR]		= { 0x28, 16 },
 
 
 
 
 
 281	},
 282
 283	/*
 284	 * SH7705-style SCIF(B) ports, lacking both SCSPTR and SCLSR
 285	 * registers.
 286	 */
 287	[SCIx_SH7705_SCIF_REGTYPE] = {
 288		[SCSMR]		= { 0x00, 16 },
 289		[SCBRR]		= { 0x04,  8 },
 290		[SCSCR]		= { 0x08, 16 },
 291		[SCxTDR]	= { 0x20,  8 },
 292		[SCxSR]		= { 0x14, 16 },
 293		[SCxRDR]	= { 0x24,  8 },
 294		[SCFCR]		= { 0x18, 16 },
 295		[SCFDR]		= { 0x1c, 16 },
 296		[SCTFDR]	= sci_reg_invalid,
 297		[SCRFDR]	= sci_reg_invalid,
 298		[SCSPTR]	= sci_reg_invalid,
 299		[SCLSR]		= sci_reg_invalid,
 
 
 
 
 
 300	},
 301};
 302
 303#define sci_getreg(up, offset)		(sci_regmap[to_sci_port(up)->cfg->regtype] + offset)
 304
 305/*
 306 * The "offset" here is rather misleading, in that it refers to an enum
 307 * value relative to the port mapping rather than the fixed offset
 308 * itself, which needs to be manually retrieved from the platform's
 309 * register map for the given port.
 310 */
 311static unsigned int sci_serial_in(struct uart_port *p, int offset)
 312{
 313	struct plat_sci_reg *reg = sci_getreg(p, offset);
 314
 315	if (reg->size == 8)
 316		return ioread8(p->membase + (reg->offset << p->regshift));
 317	else if (reg->size == 16)
 318		return ioread16(p->membase + (reg->offset << p->regshift));
 319	else
 320		WARN(1, "Invalid register access\n");
 321
 322	return 0;
 323}
 324
 325static void sci_serial_out(struct uart_port *p, int offset, int value)
 326{
 327	struct plat_sci_reg *reg = sci_getreg(p, offset);
 328
 329	if (reg->size == 8)
 330		iowrite8(value, p->membase + (reg->offset << p->regshift));
 331	else if (reg->size == 16)
 332		iowrite16(value, p->membase + (reg->offset << p->regshift));
 333	else
 334		WARN(1, "Invalid register access\n");
 335}
 336
 337#define sci_in(up, offset)		(up->serial_in(up, offset))
 338#define sci_out(up, offset, value)	(up->serial_out(up, offset, value))
 339
 340static int sci_probe_regmap(struct plat_sci_port *cfg)
 341{
 342	switch (cfg->type) {
 343	case PORT_SCI:
 344		cfg->regtype = SCIx_SCI_REGTYPE;
 345		break;
 346	case PORT_IRDA:
 347		cfg->regtype = SCIx_IRDA_REGTYPE;
 348		break;
 349	case PORT_SCIFA:
 350		cfg->regtype = SCIx_SCIFA_REGTYPE;
 351		break;
 352	case PORT_SCIFB:
 353		cfg->regtype = SCIx_SCIFB_REGTYPE;
 354		break;
 355	case PORT_SCIF:
 356		/*
 357		 * The SH-4 is a bit of a misnomer here, although that's
 358		 * where this particular port layout originated. This
 359		 * configuration (or some slight variation thereof)
 360		 * remains the dominant model for all SCIFs.
 361		 */
 362		cfg->regtype = SCIx_SH4_SCIF_REGTYPE;
 363		break;
 
 
 
 364	default:
 365		printk(KERN_ERR "Can't probe register map for given port\n");
 366		return -EINVAL;
 367	}
 368
 369	return 0;
 370}
 371
 372static void sci_port_enable(struct sci_port *sci_port)
 373{
 
 
 374	if (!sci_port->port.dev)
 375		return;
 376
 377	pm_runtime_get_sync(sci_port->port.dev);
 378
 379	clk_enable(sci_port->iclk);
 380	sci_port->port.uartclk = clk_get_rate(sci_port->iclk);
 381	clk_enable(sci_port->fclk);
 
 
 382}
 383
 384static void sci_port_disable(struct sci_port *sci_port)
 385{
 
 
 386	if (!sci_port->port.dev)
 387		return;
 388
 389	clk_disable(sci_port->fclk);
 390	clk_disable(sci_port->iclk);
 
 
 
 
 
 
 
 
 391
 392	pm_runtime_put_sync(sci_port->port.dev);
 393}
 394
 395#if defined(CONFIG_CONSOLE_POLL) || defined(CONFIG_SERIAL_SH_SCI_CONSOLE)
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 396
 397#ifdef CONFIG_CONSOLE_POLL
 398static int sci_poll_get_char(struct uart_port *port)
 399{
 400	unsigned short status;
 401	int c;
 402
 403	do {
 404		status = sci_in(port, SCxSR);
 405		if (status & SCxSR_ERRORS(port)) {
 406			sci_out(port, SCxSR, SCxSR_ERROR_CLEAR(port));
 407			continue;
 408		}
 409		break;
 410	} while (1);
 411
 412	if (!(status & SCxSR_RDxF(port)))
 413		return NO_POLL_CHAR;
 414
 415	c = sci_in(port, SCxRDR);
 416
 417	/* Dummy read */
 418	sci_in(port, SCxSR);
 419	sci_out(port, SCxSR, SCxSR_RDxF_CLEAR(port));
 420
 421	return c;
 422}
 423#endif
 424
 425static void sci_poll_put_char(struct uart_port *port, unsigned char c)
 426{
 427	unsigned short status;
 428
 429	do {
 430		status = sci_in(port, SCxSR);
 431	} while (!(status & SCxSR_TDxE(port)));
 432
 433	sci_out(port, SCxTDR, c);
 434	sci_out(port, SCxSR, SCxSR_TDxE_CLEAR(port) & ~SCxSR_TEND(port));
 435}
 436#endif /* CONFIG_CONSOLE_POLL || CONFIG_SERIAL_SH_SCI_CONSOLE */
 
 437
 438static void sci_init_pins(struct uart_port *port, unsigned int cflag)
 439{
 440	struct sci_port *s = to_sci_port(port);
 441	struct plat_sci_reg *reg = sci_regmap[s->cfg->regtype] + SCSPTR;
 442
 443	/*
 444	 * Use port-specific handler if provided.
 445	 */
 446	if (s->cfg->ops && s->cfg->ops->init_pins) {
 447		s->cfg->ops->init_pins(port, cflag);
 448		return;
 449	}
 450
 451	/*
 452	 * For the generic path SCSPTR is necessary. Bail out if that's
 453	 * unavailable, too.
 454	 */
 455	if (!reg->size)
 456		return;
 457
 458	if (!(cflag & CRTSCTS))
 459		sci_out(port, SCSPTR, 0x0080); /* Set RTS = 1 */
 
 
 
 
 
 
 
 460}
 461
 462static int sci_txfill(struct uart_port *port)
 463{
 464	struct plat_sci_reg *reg;
 465
 466	reg = sci_getreg(port, SCTFDR);
 467	if (reg->size)
 468		return sci_in(port, SCTFDR) & 0xff;
 469
 470	reg = sci_getreg(port, SCFDR);
 471	if (reg->size)
 472		return sci_in(port, SCFDR) >> 8;
 473
 474	return !(sci_in(port, SCxSR) & SCI_TDRE);
 475}
 476
 477static int sci_txroom(struct uart_port *port)
 478{
 479	return port->fifosize - sci_txfill(port);
 480}
 481
 482static int sci_rxfill(struct uart_port *port)
 483{
 484	struct plat_sci_reg *reg;
 485
 486	reg = sci_getreg(port, SCRFDR);
 487	if (reg->size)
 488		return sci_in(port, SCRFDR) & 0xff;
 489
 490	reg = sci_getreg(port, SCFDR);
 491	if (reg->size)
 492		return sci_in(port, SCFDR) & ((port->fifosize << 1) - 1);
 493
 494	return (sci_in(port, SCxSR) & SCxSR_RDxF(port)) != 0;
 495}
 496
 497/*
 498 * SCI helper for checking the state of the muxed port/RXD pins.
 499 */
 500static inline int sci_rxd_in(struct uart_port *port)
 501{
 502	struct sci_port *s = to_sci_port(port);
 503
 504	if (s->cfg->port_reg <= 0)
 505		return 1;
 506
 507	return !!__raw_readb(s->cfg->port_reg);
 
 508}
 509
 510/* ********************************************************************** *
 511 *                   the interrupt related routines                       *
 512 * ********************************************************************** */
 513
 514static void sci_transmit_chars(struct uart_port *port)
 515{
 516	struct circ_buf *xmit = &port->state->xmit;
 517	unsigned int stopped = uart_tx_stopped(port);
 518	unsigned short status;
 519	unsigned short ctrl;
 520	int count;
 521
 522	status = sci_in(port, SCxSR);
 523	if (!(status & SCxSR_TDxE(port))) {
 524		ctrl = sci_in(port, SCSCR);
 525		if (uart_circ_empty(xmit))
 526			ctrl &= ~SCSCR_TIE;
 527		else
 528			ctrl |= SCSCR_TIE;
 529		sci_out(port, SCSCR, ctrl);
 530		return;
 531	}
 532
 533	count = sci_txroom(port);
 534
 535	do {
 536		unsigned char c;
 537
 538		if (port->x_char) {
 539			c = port->x_char;
 540			port->x_char = 0;
 541		} else if (!uart_circ_empty(xmit) && !stopped) {
 542			c = xmit->buf[xmit->tail];
 543			xmit->tail = (xmit->tail + 1) & (UART_XMIT_SIZE - 1);
 544		} else {
 545			break;
 546		}
 547
 548		sci_out(port, SCxTDR, c);
 549
 550		port->icount.tx++;
 551	} while (--count > 0);
 552
 553	sci_out(port, SCxSR, SCxSR_TDxE_CLEAR(port));
 554
 555	if (uart_circ_chars_pending(xmit) < WAKEUP_CHARS)
 556		uart_write_wakeup(port);
 557	if (uart_circ_empty(xmit)) {
 558		sci_stop_tx(port);
 559	} else {
 560		ctrl = sci_in(port, SCSCR);
 561
 562		if (port->type != PORT_SCI) {
 563			sci_in(port, SCxSR); /* Dummy read */
 564			sci_out(port, SCxSR, SCxSR_TDxE_CLEAR(port));
 565		}
 566
 567		ctrl |= SCSCR_TIE;
 568		sci_out(port, SCSCR, ctrl);
 569	}
 570}
 571
 572/* On SH3, SCIF may read end-of-break as a space->mark char */
 573#define STEPFN(c)  ({int __c = (c); (((__c-1)|(__c)) == -1); })
 574
 575static void sci_receive_chars(struct uart_port *port)
 576{
 577	struct sci_port *sci_port = to_sci_port(port);
 578	struct tty_struct *tty = port->state->port.tty;
 579	int i, count, copied = 0;
 580	unsigned short status;
 581	unsigned char flag;
 582
 583	status = sci_in(port, SCxSR);
 584	if (!(status & SCxSR_RDxF(port)))
 585		return;
 586
 587	while (1) {
 588		/* Don't copy more bytes than there is room for in the buffer */
 589		count = tty_buffer_request_room(tty, sci_rxfill(port));
 590
 591		/* If for any reason we can't copy more data, we're done! */
 592		if (count == 0)
 593			break;
 594
 595		if (port->type == PORT_SCI) {
 596			char c = sci_in(port, SCxRDR);
 597			if (uart_handle_sysrq_char(port, c) ||
 598			    sci_port->break_flag)
 599				count = 0;
 600			else
 601				tty_insert_flip_char(tty, c, TTY_NORMAL);
 602		} else {
 603			for (i = 0; i < count; i++) {
 604				char c = sci_in(port, SCxRDR);
 605				status = sci_in(port, SCxSR);
 
 606#if defined(CONFIG_CPU_SH3)
 607				/* Skip "chars" during break */
 608				if (sci_port->break_flag) {
 609					if ((c == 0) &&
 610					    (status & SCxSR_FER(port))) {
 611						count--; i--;
 612						continue;
 613					}
 614
 615					/* Nonzero => end-of-break */
 616					dev_dbg(port->dev, "debounce<%02x>\n", c);
 617					sci_port->break_flag = 0;
 618
 619					if (STEPFN(c)) {
 620						count--; i--;
 621						continue;
 622					}
 623				}
 624#endif /* CONFIG_CPU_SH3 */
 625				if (uart_handle_sysrq_char(port, c)) {
 626					count--; i--;
 627					continue;
 628				}
 629
 630				/* Store data and status */
 631				if (status & SCxSR_FER(port)) {
 632					flag = TTY_FRAME;
 
 633					dev_notice(port->dev, "frame error\n");
 634				} else if (status & SCxSR_PER(port)) {
 635					flag = TTY_PARITY;
 
 636					dev_notice(port->dev, "parity error\n");
 637				} else
 638					flag = TTY_NORMAL;
 639
 640				tty_insert_flip_char(tty, c, flag);
 641			}
 642		}
 643
 644		sci_in(port, SCxSR); /* dummy read */
 645		sci_out(port, SCxSR, SCxSR_RDxF_CLEAR(port));
 646
 647		copied += count;
 648		port->icount.rx += count;
 649	}
 650
 651	if (copied) {
 652		/* Tell the rest of the system the news. New characters! */
 653		tty_flip_buffer_push(tty);
 654	} else {
 655		sci_in(port, SCxSR); /* dummy read */
 656		sci_out(port, SCxSR, SCxSR_RDxF_CLEAR(port));
 657	}
 658}
 659
 660#define SCI_BREAK_JIFFIES (HZ/20)
 661
 662/*
 663 * The sci generates interrupts during the break,
 664 * 1 per millisecond or so during the break period, for 9600 baud.
 665 * So dont bother disabling interrupts.
 666 * But dont want more than 1 break event.
 667 * Use a kernel timer to periodically poll the rx line until
 668 * the break is finished.
 669 */
 670static inline void sci_schedule_break_timer(struct sci_port *port)
 671{
 672	mod_timer(&port->break_timer, jiffies + SCI_BREAK_JIFFIES);
 673}
 674
 675/* Ensure that two consecutive samples find the break over. */
 676static void sci_break_timer(unsigned long data)
 677{
 678	struct sci_port *port = (struct sci_port *)data;
 679
 680	sci_port_enable(port);
 681
 682	if (sci_rxd_in(&port->port) == 0) {
 683		port->break_flag = 1;
 684		sci_schedule_break_timer(port);
 685	} else if (port->break_flag == 1) {
 686		/* break is over. */
 687		port->break_flag = 2;
 688		sci_schedule_break_timer(port);
 689	} else
 690		port->break_flag = 0;
 691
 692	sci_port_disable(port);
 693}
 694
 695static int sci_handle_errors(struct uart_port *port)
 696{
 697	int copied = 0;
 698	unsigned short status = sci_in(port, SCxSR);
 699	struct tty_struct *tty = port->state->port.tty;
 700	struct sci_port *s = to_sci_port(port);
 701
 702	/*
 703	 * Handle overruns, if supported.
 704	 */
 705	if (s->cfg->overrun_bit != SCIx_NOT_SUPPORTED) {
 706		if (status & (1 << s->cfg->overrun_bit)) {
 707			/* overrun error */
 708			if (tty_insert_flip_char(tty, 0, TTY_OVERRUN))
 709				copied++;
 710
 711			dev_notice(port->dev, "overrun error");
 712		}
 
 
 
 713	}
 714
 715	if (status & SCxSR_FER(port)) {
 716		if (sci_rxd_in(port) == 0) {
 717			/* Notify of BREAK */
 718			struct sci_port *sci_port = to_sci_port(port);
 719
 720			if (!sci_port->break_flag) {
 
 
 721				sci_port->break_flag = 1;
 722				sci_schedule_break_timer(sci_port);
 723
 724				/* Do sysrq handling. */
 725				if (uart_handle_break(port))
 726					return 0;
 727
 728				dev_dbg(port->dev, "BREAK detected\n");
 729
 730				if (tty_insert_flip_char(tty, 0, TTY_BREAK))
 731					copied++;
 732			}
 733
 734		} else {
 735			/* frame error */
 736			if (tty_insert_flip_char(tty, 0, TTY_FRAME))
 
 
 737				copied++;
 738
 739			dev_notice(port->dev, "frame error\n");
 740		}
 741	}
 742
 743	if (status & SCxSR_PER(port)) {
 744		/* parity error */
 745		if (tty_insert_flip_char(tty, 0, TTY_PARITY))
 
 
 746			copied++;
 747
 748		dev_notice(port->dev, "parity error");
 749	}
 750
 751	if (copied)
 752		tty_flip_buffer_push(tty);
 753
 754	return copied;
 755}
 756
 757static int sci_handle_fifo_overrun(struct uart_port *port)
 758{
 759	struct tty_struct *tty = port->state->port.tty;
 760	struct sci_port *s = to_sci_port(port);
 761	struct plat_sci_reg *reg;
 762	int copied = 0;
 
 763
 764	reg = sci_getreg(port, SCLSR);
 765	if (!reg->size)
 766		return 0;
 767
 768	if ((sci_in(port, SCLSR) & (1 << s->cfg->overrun_bit))) {
 769		sci_out(port, SCLSR, 0);
 
 
 770
 771		tty_insert_flip_char(tty, 0, TTY_OVERRUN);
 772		tty_flip_buffer_push(tty);
 773
 774		dev_notice(port->dev, "overrun error\n");
 
 
 
 775		copied++;
 776	}
 777
 778	return copied;
 779}
 780
 781static int sci_handle_breaks(struct uart_port *port)
 782{
 783	int copied = 0;
 784	unsigned short status = sci_in(port, SCxSR);
 785	struct tty_struct *tty = port->state->port.tty;
 786	struct sci_port *s = to_sci_port(port);
 787
 788	if (uart_handle_break(port))
 789		return 0;
 790
 791	if (!s->break_flag && status & SCxSR_BRK(port)) {
 792#if defined(CONFIG_CPU_SH3)
 793		/* Debounce break */
 794		s->break_flag = 1;
 795#endif
 
 
 
 796		/* Notify of BREAK */
 797		if (tty_insert_flip_char(tty, 0, TTY_BREAK))
 798			copied++;
 799
 800		dev_dbg(port->dev, "BREAK detected\n");
 801	}
 802
 803	if (copied)
 804		tty_flip_buffer_push(tty);
 805
 806	copied += sci_handle_fifo_overrun(port);
 807
 808	return copied;
 809}
 810
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 811static irqreturn_t sci_rx_interrupt(int irq, void *ptr)
 812{
 813#ifdef CONFIG_SERIAL_SH_SCI_DMA
 814	struct uart_port *port = ptr;
 815	struct sci_port *s = to_sci_port(port);
 816
 817	if (s->chan_rx) {
 818		u16 scr = sci_in(port, SCSCR);
 819		u16 ssr = sci_in(port, SCxSR);
 820
 821		/* Disable future Rx interrupts */
 822		if (port->type == PORT_SCIFA || port->type == PORT_SCIFB) {
 823			disable_irq_nosync(irq);
 824			scr |= 0x4000;
 825		} else {
 826			scr &= ~SCSCR_RIE;
 
 827		}
 828		sci_out(port, SCSCR, scr);
 829		/* Clear current interrupt */
 830		sci_out(port, SCxSR, ssr & ~(1 | SCxSR_RDxF(port)));
 
 831		dev_dbg(port->dev, "Rx IRQ %lu: setup t-out in %u jiffies\n",
 832			jiffies, s->rx_timeout);
 833		mod_timer(&s->rx_timer, jiffies + s->rx_timeout);
 834
 835		return IRQ_HANDLED;
 836	}
 837#endif
 838
 839	/* I think sci_receive_chars has to be called irrespective
 840	 * of whether the I_IXOFF is set, otherwise, how is the interrupt
 841	 * to be disabled?
 842	 */
 843	sci_receive_chars(ptr);
 844
 845	return IRQ_HANDLED;
 846}
 847
 848static irqreturn_t sci_tx_interrupt(int irq, void *ptr)
 849{
 850	struct uart_port *port = ptr;
 851	unsigned long flags;
 852
 853	spin_lock_irqsave(&port->lock, flags);
 854	sci_transmit_chars(port);
 855	spin_unlock_irqrestore(&port->lock, flags);
 856
 857	return IRQ_HANDLED;
 858}
 859
 860static irqreturn_t sci_er_interrupt(int irq, void *ptr)
 861{
 862	struct uart_port *port = ptr;
 
 863
 864	/* Handle errors */
 865	if (port->type == PORT_SCI) {
 866		if (sci_handle_errors(port)) {
 867			/* discard character in rx buffer */
 868			sci_in(port, SCxSR);
 869			sci_out(port, SCxSR, SCxSR_RDxF_CLEAR(port));
 870		}
 871	} else {
 872		sci_handle_fifo_overrun(port);
 873		sci_rx_interrupt(irq, ptr);
 
 874	}
 875
 876	sci_out(port, SCxSR, SCxSR_ERROR_CLEAR(port));
 877
 878	/* Kick the transmission */
 879	sci_tx_interrupt(irq, ptr);
 
 880
 881	return IRQ_HANDLED;
 882}
 883
 884static irqreturn_t sci_br_interrupt(int irq, void *ptr)
 885{
 886	struct uart_port *port = ptr;
 887
 888	/* Handle BREAKs */
 889	sci_handle_breaks(port);
 890	sci_out(port, SCxSR, SCxSR_BREAK_CLEAR(port));
 891
 892	return IRQ_HANDLED;
 893}
 894
 895static inline unsigned long port_rx_irq_mask(struct uart_port *port)
 896{
 897	/*
 898	 * Not all ports (such as SCIFA) will support REIE. Rather than
 899	 * special-casing the port type, we check the port initialization
 900	 * IRQ enable mask to see whether the IRQ is desired at all. If
 901	 * it's unset, it's logically inferred that there's no point in
 902	 * testing for it.
 903	 */
 904	return SCSCR_RIE | (to_sci_port(port)->cfg->scscr & SCSCR_REIE);
 905}
 906
 907static irqreturn_t sci_mpxed_interrupt(int irq, void *ptr)
 908{
 909	unsigned short ssr_status, scr_status, err_enabled;
 910	struct uart_port *port = ptr;
 911	struct sci_port *s = to_sci_port(port);
 912	irqreturn_t ret = IRQ_NONE;
 913
 914	ssr_status = sci_in(port, SCxSR);
 915	scr_status = sci_in(port, SCSCR);
 
 
 
 
 
 
 
 916	err_enabled = scr_status & port_rx_irq_mask(port);
 917
 918	/* Tx Interrupt */
 919	if ((ssr_status & SCxSR_TDxE(port)) && (scr_status & SCSCR_TIE) &&
 920	    !s->chan_tx)
 921		ret = sci_tx_interrupt(irq, ptr);
 922
 923	/*
 924	 * Rx Interrupt: if we're using DMA, the DMA controller clears RDF /
 925	 * DR flags
 926	 */
 927	if (((ssr_status & SCxSR_RDxF(port)) || s->chan_rx) &&
 928	    (scr_status & SCSCR_RIE))
 929		ret = sci_rx_interrupt(irq, ptr);
 930
 931	/* Error Interrupt */
 932	if ((ssr_status & SCxSR_ERRORS(port)) && err_enabled)
 933		ret = sci_er_interrupt(irq, ptr);
 934
 935	/* Break Interrupt */
 936	if ((ssr_status & SCxSR_BRK(port)) && err_enabled)
 937		ret = sci_br_interrupt(irq, ptr);
 938
 939	return ret;
 940}
 941
 942/*
 943 * Here we define a transition notifier so that we can update all of our
 944 * ports' baud rate when the peripheral clock changes.
 945 */
 946static int sci_notifier(struct notifier_block *self,
 947			unsigned long phase, void *p)
 948{
 949	struct sci_port *sci_port;
 950	unsigned long flags;
 951
 952	sci_port = container_of(self, struct sci_port, freq_transition);
 953
 954	if ((phase == CPUFREQ_POSTCHANGE) ||
 955	    (phase == CPUFREQ_RESUMECHANGE)) {
 956		struct uart_port *port = &sci_port->port;
 957
 958		spin_lock_irqsave(&port->lock, flags);
 959		port->uartclk = clk_get_rate(sci_port->iclk);
 960		spin_unlock_irqrestore(&port->lock, flags);
 961	}
 962
 963	return NOTIFY_OK;
 964}
 965
 966static struct sci_irq_desc {
 967	const char	*desc;
 968	irq_handler_t	handler;
 969} sci_irq_desc[] = {
 970	/*
 971	 * Split out handlers, the default case.
 972	 */
 973	[SCIx_ERI_IRQ] = {
 974		.desc = "rx err",
 975		.handler = sci_er_interrupt,
 976	},
 977
 978	[SCIx_RXI_IRQ] = {
 979		.desc = "rx full",
 980		.handler = sci_rx_interrupt,
 981	},
 982
 983	[SCIx_TXI_IRQ] = {
 984		.desc = "tx empty",
 985		.handler = sci_tx_interrupt,
 986	},
 987
 988	[SCIx_BRI_IRQ] = {
 989		.desc = "break",
 990		.handler = sci_br_interrupt,
 991	},
 992
 993	/*
 994	 * Special muxed handler.
 995	 */
 996	[SCIx_MUX_IRQ] = {
 997		.desc = "mux",
 998		.handler = sci_mpxed_interrupt,
 999	},
1000};
1001
1002static int sci_request_irq(struct sci_port *port)
1003{
1004	struct uart_port *up = &port->port;
1005	int i, j, ret = 0;
1006
1007	for (i = j = 0; i < SCIx_NR_IRQS; i++, j++) {
1008		struct sci_irq_desc *desc;
1009		unsigned int irq;
1010
1011		if (SCIx_IRQ_IS_MUXED(port)) {
1012			i = SCIx_MUX_IRQ;
1013			irq = up->irq;
1014		} else
1015			irq = port->cfg->irqs[i];
 
 
 
 
 
 
 
 
1016
1017		desc = sci_irq_desc + i;
1018		port->irqstr[j] = kasprintf(GFP_KERNEL, "%s:%s",
1019					    dev_name(up->dev), desc->desc);
1020		if (!port->irqstr[j]) {
1021			dev_err(up->dev, "Failed to allocate %s IRQ string\n",
1022				desc->desc);
1023			goto out_nomem;
1024		}
1025
1026		ret = request_irq(irq, desc->handler, up->irqflags,
1027				  port->irqstr[j], port);
1028		if (unlikely(ret)) {
1029			dev_err(up->dev, "Can't allocate %s IRQ\n", desc->desc);
1030			goto out_noirq;
1031		}
1032	}
1033
1034	return 0;
1035
1036out_noirq:
1037	while (--i >= 0)
1038		free_irq(port->cfg->irqs[i], port);
1039
1040out_nomem:
1041	while (--j >= 0)
1042		kfree(port->irqstr[j]);
1043
1044	return ret;
1045}
1046
1047static void sci_free_irq(struct sci_port *port)
1048{
1049	int i;
1050
1051	/*
1052	 * Intentionally in reverse order so we iterate over the muxed
1053	 * IRQ first.
1054	 */
1055	for (i = 0; i < SCIx_NR_IRQS; i++) {
1056		free_irq(port->cfg->irqs[i], port);
 
 
 
 
 
 
 
 
 
1057		kfree(port->irqstr[i]);
1058
1059		if (SCIx_IRQ_IS_MUXED(port)) {
1060			/* If there's only one IRQ, we're done. */
1061			return;
1062		}
1063	}
1064}
1065
1066static unsigned int sci_tx_empty(struct uart_port *port)
1067{
1068	unsigned short status = sci_in(port, SCxSR);
1069	unsigned short in_tx_fifo = sci_txfill(port);
1070
1071	return (status & SCxSR_TEND(port)) && !in_tx_fifo ? TIOCSER_TEMT : 0;
1072}
1073
 
 
 
 
 
 
 
 
 
 
 
 
1074static void sci_set_mctrl(struct uart_port *port, unsigned int mctrl)
1075{
1076	/* This routine is used for seting signals of: DTR, DCD, CTS/RTS */
1077	/* We use SCIF's hardware for CTS/RTS, so don't need any for that. */
1078	/* If you have signals for DTR and DCD, please implement here. */
 
 
 
 
 
 
 
 
 
1079}
1080
1081static unsigned int sci_get_mctrl(struct uart_port *port)
1082{
1083	/* This routine is used for getting signals of: DTR, DCD, DSR, RI,
1084	   and CTS/RTS */
1085
1086	return TIOCM_DTR | TIOCM_RTS | TIOCM_CTS | TIOCM_DSR;
 
1087}
1088
1089#ifdef CONFIG_SERIAL_SH_SCI_DMA
1090static void sci_dma_tx_complete(void *arg)
1091{
1092	struct sci_port *s = arg;
1093	struct uart_port *port = &s->port;
1094	struct circ_buf *xmit = &port->state->xmit;
1095	unsigned long flags;
1096
1097	dev_dbg(port->dev, "%s(%d)\n", __func__, port->line);
1098
1099	spin_lock_irqsave(&port->lock, flags);
1100
1101	xmit->tail += sg_dma_len(&s->sg_tx);
1102	xmit->tail &= UART_XMIT_SIZE - 1;
1103
1104	port->icount.tx += sg_dma_len(&s->sg_tx);
1105
1106	async_tx_ack(s->desc_tx);
1107	s->cookie_tx = -EINVAL;
1108	s->desc_tx = NULL;
1109
1110	if (uart_circ_chars_pending(xmit) < WAKEUP_CHARS)
1111		uart_write_wakeup(port);
1112
1113	if (!uart_circ_empty(xmit)) {
1114		schedule_work(&s->work_tx);
1115	} else if (port->type == PORT_SCIFA || port->type == PORT_SCIFB) {
1116		u16 ctrl = sci_in(port, SCSCR);
1117		sci_out(port, SCSCR, ctrl & ~SCSCR_TIE);
 
 
1118	}
1119
1120	spin_unlock_irqrestore(&port->lock, flags);
1121}
1122
1123/* Locking: called with port lock held */
1124static int sci_dma_rx_push(struct sci_port *s, struct tty_struct *tty,
1125			   size_t count)
1126{
1127	struct uart_port *port = &s->port;
1128	int i, active, room;
1129
1130	room = tty_buffer_request_room(tty, count);
1131
1132	if (s->active_rx == s->cookie_rx[0]) {
1133		active = 0;
1134	} else if (s->active_rx == s->cookie_rx[1]) {
1135		active = 1;
1136	} else {
1137		dev_err(port->dev, "cookie %d not found!\n", s->active_rx);
1138		return 0;
1139	}
1140
1141	if (room < count)
1142		dev_warn(port->dev, "Rx overrun: dropping %u bytes\n",
1143			 count - room);
1144	if (!room)
1145		return room;
1146
1147	for (i = 0; i < room; i++)
1148		tty_insert_flip_char(tty, ((u8 *)sg_virt(&s->sg_rx[active]))[i],
1149				     TTY_NORMAL);
1150
1151	port->icount.rx += room;
1152
1153	return room;
1154}
1155
1156static void sci_dma_rx_complete(void *arg)
1157{
1158	struct sci_port *s = arg;
1159	struct uart_port *port = &s->port;
1160	struct tty_struct *tty = port->state->port.tty;
1161	unsigned long flags;
1162	int count;
1163
1164	dev_dbg(port->dev, "%s(%d) active #%d\n", __func__, port->line, s->active_rx);
1165
1166	spin_lock_irqsave(&port->lock, flags);
1167
1168	count = sci_dma_rx_push(s, tty, s->buf_len_rx);
 
 
1169
1170	mod_timer(&s->rx_timer, jiffies + s->rx_timeout);
1171
 
 
 
1172	spin_unlock_irqrestore(&port->lock, flags);
1173
1174	if (count)
1175		tty_flip_buffer_push(tty);
1176
1177	schedule_work(&s->work_rx);
1178}
1179
1180static void sci_rx_dma_release(struct sci_port *s, bool enable_pio)
1181{
1182	struct dma_chan *chan = s->chan_rx;
1183	struct uart_port *port = &s->port;
1184
1185	s->chan_rx = NULL;
1186	s->cookie_rx[0] = s->cookie_rx[1] = -EINVAL;
1187	dma_release_channel(chan);
1188	if (sg_dma_address(&s->sg_rx[0]))
1189		dma_free_coherent(port->dev, s->buf_len_rx * 2,
1190				  sg_virt(&s->sg_rx[0]), sg_dma_address(&s->sg_rx[0]));
1191	if (enable_pio)
1192		sci_start_rx(port);
1193}
1194
1195static void sci_tx_dma_release(struct sci_port *s, bool enable_pio)
1196{
1197	struct dma_chan *chan = s->chan_tx;
1198	struct uart_port *port = &s->port;
1199
1200	s->chan_tx = NULL;
1201	s->cookie_tx = -EINVAL;
1202	dma_release_channel(chan);
1203	if (enable_pio)
1204		sci_start_tx(port);
1205}
1206
1207static void sci_submit_rx(struct sci_port *s)
1208{
1209	struct dma_chan *chan = s->chan_rx;
1210	int i;
1211
1212	for (i = 0; i < 2; i++) {
1213		struct scatterlist *sg = &s->sg_rx[i];
1214		struct dma_async_tx_descriptor *desc;
1215
1216		desc = chan->device->device_prep_slave_sg(chan,
1217			sg, 1, DMA_FROM_DEVICE, DMA_PREP_INTERRUPT);
1218
1219		if (desc) {
1220			s->desc_rx[i] = desc;
1221			desc->callback = sci_dma_rx_complete;
1222			desc->callback_param = s;
1223			s->cookie_rx[i] = desc->tx_submit(desc);
1224		}
1225
1226		if (!desc || s->cookie_rx[i] < 0) {
1227			if (i) {
1228				async_tx_ack(s->desc_rx[0]);
1229				s->cookie_rx[0] = -EINVAL;
1230			}
1231			if (desc) {
1232				async_tx_ack(desc);
1233				s->cookie_rx[i] = -EINVAL;
1234			}
1235			dev_warn(s->port.dev,
1236				 "failed to re-start DMA, using PIO\n");
1237			sci_rx_dma_release(s, true);
1238			return;
1239		}
1240		dev_dbg(s->port.dev, "%s(): cookie %d to #%d\n", __func__,
1241			s->cookie_rx[i], i);
1242	}
1243
1244	s->active_rx = s->cookie_rx[0];
1245
1246	dma_async_issue_pending(chan);
1247}
1248
1249static void work_fn_rx(struct work_struct *work)
1250{
1251	struct sci_port *s = container_of(work, struct sci_port, work_rx);
1252	struct uart_port *port = &s->port;
1253	struct dma_async_tx_descriptor *desc;
1254	int new;
1255
1256	if (s->active_rx == s->cookie_rx[0]) {
1257		new = 0;
1258	} else if (s->active_rx == s->cookie_rx[1]) {
1259		new = 1;
1260	} else {
1261		dev_err(port->dev, "cookie %d not found!\n", s->active_rx);
1262		return;
1263	}
1264	desc = s->desc_rx[new];
1265
1266	if (dma_async_is_tx_complete(s->chan_rx, s->active_rx, NULL, NULL) !=
1267	    DMA_SUCCESS) {
1268		/* Handle incomplete DMA receive */
1269		struct tty_struct *tty = port->state->port.tty;
1270		struct dma_chan *chan = s->chan_rx;
1271		struct sh_desc *sh_desc = container_of(desc, struct sh_desc,
1272						       async_tx);
1273		unsigned long flags;
1274		int count;
1275
1276		chan->device->device_control(chan, DMA_TERMINATE_ALL, 0);
1277		dev_dbg(port->dev, "Read %u bytes with cookie %d\n",
1278			sh_desc->partial, sh_desc->cookie);
1279
1280		spin_lock_irqsave(&port->lock, flags);
1281		count = sci_dma_rx_push(s, tty, sh_desc->partial);
1282		spin_unlock_irqrestore(&port->lock, flags);
1283
1284		if (count)
1285			tty_flip_buffer_push(tty);
1286
1287		sci_submit_rx(s);
1288
1289		return;
1290	}
1291
1292	s->cookie_rx[new] = desc->tx_submit(desc);
1293	if (s->cookie_rx[new] < 0) {
1294		dev_warn(port->dev, "Failed submitting Rx DMA descriptor\n");
1295		sci_rx_dma_release(s, true);
1296		return;
1297	}
1298
1299	s->active_rx = s->cookie_rx[!new];
1300
1301	dev_dbg(port->dev, "%s: cookie %d #%d, new active #%d\n", __func__,
1302		s->cookie_rx[new], new, s->active_rx);
1303}
1304
1305static void work_fn_tx(struct work_struct *work)
1306{
1307	struct sci_port *s = container_of(work, struct sci_port, work_tx);
1308	struct dma_async_tx_descriptor *desc;
1309	struct dma_chan *chan = s->chan_tx;
1310	struct uart_port *port = &s->port;
1311	struct circ_buf *xmit = &port->state->xmit;
1312	struct scatterlist *sg = &s->sg_tx;
1313
1314	/*
1315	 * DMA is idle now.
1316	 * Port xmit buffer is already mapped, and it is one page... Just adjust
1317	 * offsets and lengths. Since it is a circular buffer, we have to
1318	 * transmit till the end, and then the rest. Take the port lock to get a
1319	 * consistent xmit buffer state.
1320	 */
1321	spin_lock_irq(&port->lock);
1322	sg->offset = xmit->tail & (UART_XMIT_SIZE - 1);
1323	sg_dma_address(sg) = (sg_dma_address(sg) & ~(UART_XMIT_SIZE - 1)) +
1324		sg->offset;
1325	sg_dma_len(sg) = min((int)CIRC_CNT(xmit->head, xmit->tail, UART_XMIT_SIZE),
1326		CIRC_CNT_TO_END(xmit->head, xmit->tail, UART_XMIT_SIZE));
1327	spin_unlock_irq(&port->lock);
1328
1329	BUG_ON(!sg_dma_len(sg));
1330
1331	desc = chan->device->device_prep_slave_sg(chan,
1332			sg, s->sg_len_tx, DMA_TO_DEVICE,
1333			DMA_PREP_INTERRUPT | DMA_CTRL_ACK);
1334	if (!desc) {
1335		/* switch to PIO */
1336		sci_tx_dma_release(s, true);
1337		return;
1338	}
1339
1340	dma_sync_sg_for_device(port->dev, sg, 1, DMA_TO_DEVICE);
1341
1342	spin_lock_irq(&port->lock);
1343	s->desc_tx = desc;
1344	desc->callback = sci_dma_tx_complete;
1345	desc->callback_param = s;
1346	spin_unlock_irq(&port->lock);
1347	s->cookie_tx = desc->tx_submit(desc);
1348	if (s->cookie_tx < 0) {
1349		dev_warn(port->dev, "Failed submitting Tx DMA descriptor\n");
1350		/* switch to PIO */
1351		sci_tx_dma_release(s, true);
1352		return;
1353	}
1354
1355	dev_dbg(port->dev, "%s: %p: %d...%d, cookie %d\n", __func__,
1356		xmit->buf, xmit->tail, xmit->head, s->cookie_tx);
1357
1358	dma_async_issue_pending(chan);
1359}
1360#endif
1361
1362static void sci_start_tx(struct uart_port *port)
1363{
1364	struct sci_port *s = to_sci_port(port);
1365	unsigned short ctrl;
1366
1367#ifdef CONFIG_SERIAL_SH_SCI_DMA
1368	if (port->type == PORT_SCIFA || port->type == PORT_SCIFB) {
1369		u16 new, scr = sci_in(port, SCSCR);
1370		if (s->chan_tx)
1371			new = scr | 0x8000;
1372		else
1373			new = scr & ~0x8000;
1374		if (new != scr)
1375			sci_out(port, SCSCR, new);
1376	}
1377
1378	if (s->chan_tx && !uart_circ_empty(&s->port.state->xmit) &&
1379	    s->cookie_tx < 0)
1380		schedule_work(&s->work_tx);
1381#endif
1382
1383	if (!s->chan_tx || port->type == PORT_SCIFA || port->type == PORT_SCIFB) {
1384		/* Set TIE (Transmit Interrupt Enable) bit in SCSCR */
1385		ctrl = sci_in(port, SCSCR);
1386		sci_out(port, SCSCR, ctrl | SCSCR_TIE);
1387	}
1388}
1389
1390static void sci_stop_tx(struct uart_port *port)
1391{
1392	unsigned short ctrl;
1393
1394	/* Clear TIE (Transmit Interrupt Enable) bit in SCSCR */
1395	ctrl = sci_in(port, SCSCR);
1396
1397	if (port->type == PORT_SCIFA || port->type == PORT_SCIFB)
1398		ctrl &= ~0x8000;
1399
1400	ctrl &= ~SCSCR_TIE;
1401
1402	sci_out(port, SCSCR, ctrl);
1403}
1404
1405static void sci_start_rx(struct uart_port *port)
1406{
1407	unsigned short ctrl;
1408
1409	ctrl = sci_in(port, SCSCR) | port_rx_irq_mask(port);
1410
1411	if (port->type == PORT_SCIFA || port->type == PORT_SCIFB)
1412		ctrl &= ~0x4000;
1413
1414	sci_out(port, SCSCR, ctrl);
1415}
1416
1417static void sci_stop_rx(struct uart_port *port)
1418{
1419	unsigned short ctrl;
1420
1421	ctrl = sci_in(port, SCSCR);
1422
1423	if (port->type == PORT_SCIFA || port->type == PORT_SCIFB)
1424		ctrl &= ~0x4000;
1425
1426	ctrl &= ~port_rx_irq_mask(port);
1427
1428	sci_out(port, SCSCR, ctrl);
1429}
1430
1431static void sci_enable_ms(struct uart_port *port)
1432{
1433	/* Nothing here yet .. */
1434}
1435
1436static void sci_break_ctl(struct uart_port *port, int break_state)
1437{
1438	/* Nothing here yet .. */
1439}
1440
1441#ifdef CONFIG_SERIAL_SH_SCI_DMA
1442static bool filter(struct dma_chan *chan, void *slave)
1443{
1444	struct sh_dmae_slave *param = slave;
 
 
 
 
 
 
 
 
 
 
1445
1446	dev_dbg(chan->device->dev, "%s: slave ID %d\n", __func__,
1447		param->slave_id);
1448
1449	if (param->dma_dev == chan->device->dev) {
1450		chan->private = param;
1451		return true;
1452	} else {
1453		return false;
1454	}
1455}
1456
1457static void rx_timer_fn(unsigned long arg)
1458{
1459	struct sci_port *s = (struct sci_port *)arg;
1460	struct uart_port *port = &s->port;
1461	u16 scr = sci_in(port, SCSCR);
1462
1463	if (port->type == PORT_SCIFA || port->type == PORT_SCIFB) {
1464		scr &= ~0x4000;
1465		enable_irq(s->cfg->irqs[1]);
1466	}
1467	sci_out(port, SCSCR, scr | SCSCR_RIE);
1468	dev_dbg(port->dev, "DMA Rx timed out\n");
1469	schedule_work(&s->work_rx);
1470}
1471
1472static void sci_request_dma(struct uart_port *port)
 
 
1473{
1474	struct sci_port *s = to_sci_port(port);
1475	struct sh_dmae_slave *param;
1476	struct dma_chan *chan;
1477	dma_cap_mask_t mask;
1478	int nent;
1479
1480	dev_dbg(port->dev, "%s: port %d DMA %p\n", __func__,
1481		port->line, s->cfg->dma_dev);
1482
1483	if (!s->cfg->dma_dev)
1484		return;
1485
1486	dma_cap_zero(mask);
1487	dma_cap_set(DMA_SLAVE, mask);
1488
1489	param = &s->param_tx;
 
 
1490
1491	/* Slave ID, e.g., SHDMA_SLAVE_SCIF0_TX */
1492	param->slave_id = s->cfg->dma_slave_tx;
1493	param->dma_dev = s->cfg->dma_dev;
1494
1495	s->cookie_tx = -EINVAL;
1496	chan = dma_request_channel(mask, filter, param);
1497	dev_dbg(port->dev, "%s: TX: got channel %p\n", __func__, chan);
1498	if (chan) {
1499		s->chan_tx = chan;
1500		sg_init_table(&s->sg_tx, 1);
1501		/* UART circular tx buffer is an aligned page. */
1502		BUG_ON((int)port->state->xmit.buf & ~PAGE_MASK);
1503		sg_set_page(&s->sg_tx, virt_to_page(port->state->xmit.buf),
1504			    UART_XMIT_SIZE, (int)port->state->xmit.buf & ~PAGE_MASK);
1505		nent = dma_map_sg(port->dev, &s->sg_tx, 1, DMA_TO_DEVICE);
1506		if (!nent)
1507			sci_tx_dma_release(s, false);
1508		else
1509			dev_dbg(port->dev, "%s: mapped %d@%p to %x\n", __func__,
1510				sg_dma_len(&s->sg_tx),
1511				port->state->xmit.buf, sg_dma_address(&s->sg_tx));
1512
1513		s->sg_len_tx = nent;
1514
1515		INIT_WORK(&s->work_tx, work_fn_tx);
1516	}
1517
1518	param = &s->param_rx;
1519
1520	/* Slave ID, e.g., SHDMA_SLAVE_SCIF0_RX */
1521	param->slave_id = s->cfg->dma_slave_rx;
1522	param->dma_dev = s->cfg->dma_dev;
1523
1524	chan = dma_request_channel(mask, filter, param);
1525	dev_dbg(port->dev, "%s: RX: got channel %p\n", __func__, chan);
1526	if (chan) {
1527		dma_addr_t dma[2];
1528		void *buf[2];
1529		int i;
1530
1531		s->chan_rx = chan;
1532
1533		s->buf_len_rx = 2 * max(16, (int)port->fifosize);
1534		buf[0] = dma_alloc_coherent(port->dev, s->buf_len_rx * 2,
1535					    &dma[0], GFP_KERNEL);
1536
1537		if (!buf[0]) {
1538			dev_warn(port->dev,
1539				 "failed to allocate dma buffer, using PIO\n");
1540			sci_rx_dma_release(s, true);
1541			return;
1542		}
1543
1544		buf[1] = buf[0] + s->buf_len_rx;
1545		dma[1] = dma[0] + s->buf_len_rx;
1546
1547		for (i = 0; i < 2; i++) {
1548			struct scatterlist *sg = &s->sg_rx[i];
1549
1550			sg_init_table(sg, 1);
1551			sg_set_page(sg, virt_to_page(buf[i]), s->buf_len_rx,
1552				    (int)buf[i] & ~PAGE_MASK);
1553			sg_dma_address(sg) = dma[i];
1554		}
1555
1556		INIT_WORK(&s->work_rx, work_fn_rx);
1557		setup_timer(&s->rx_timer, rx_timer_fn, (unsigned long)s);
 
1558
1559		sci_submit_rx(s);
 
1560	}
1561}
1562
1563static void sci_free_dma(struct uart_port *port)
1564{
1565	struct sci_port *s = to_sci_port(port);
1566
1567	if (!s->cfg->dma_dev)
1568		return;
1569
1570	if (s->chan_tx)
1571		sci_tx_dma_release(s, false);
1572	if (s->chan_rx)
1573		sci_rx_dma_release(s, false);
1574}
1575#else
1576static inline void sci_request_dma(struct uart_port *port)
1577{
1578}
1579
1580static inline void sci_free_dma(struct uart_port *port)
1581{
 
1582}
1583#endif
1584
1585static int sci_startup(struct uart_port *port)
 
 
 
1586{
1587	struct sci_port *s = to_sci_port(port);
1588	int ret;
1589
1590	dev_dbg(port->dev, "%s(%d)\n", __func__, port->line);
1591
1592	sci_port_enable(s);
1593
1594	ret = sci_request_irq(s);
1595	if (unlikely(ret < 0))
1596		return ret;
1597
1598	sci_request_dma(port);
1599
1600	sci_start_tx(port);
1601	sci_start_rx(port);
1602
1603	return 0;
1604}
1605
1606static void sci_shutdown(struct uart_port *port)
1607{
1608	struct sci_port *s = to_sci_port(port);
1609
1610	dev_dbg(port->dev, "%s(%d)\n", __func__, port->line);
1611
1612	sci_stop_rx(port);
1613	sci_stop_tx(port);
1614
1615	sci_free_dma(port);
1616	sci_free_irq(s);
1617
1618	sci_port_disable(s);
1619}
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1620
1621static unsigned int sci_scbrr_calc(unsigned int algo_id, unsigned int bps,
1622				   unsigned long freq)
1623{
1624	switch (algo_id) {
1625	case SCBRR_ALGO_1:
1626		return ((freq + 16 * bps) / (16 * bps) - 1);
1627	case SCBRR_ALGO_2:
1628		return ((freq + 16 * bps) / (32 * bps) - 1);
1629	case SCBRR_ALGO_3:
1630		return (((freq * 2) + 16 * bps) / (16 * bps) - 1);
1631	case SCBRR_ALGO_4:
1632		return (((freq * 2) + 16 * bps) / (32 * bps) - 1);
1633	case SCBRR_ALGO_5:
1634		return (((freq * 1000 / 32) / bps) - 1);
1635	}
1636
1637	/* Warn, but use a safe default */
1638	WARN_ON(1);
1639
1640	return ((freq + 16 * bps) / (32 * bps) - 1);
1641}
1642
1643static void sci_reset(struct uart_port *port)
1644{
 
1645	unsigned int status;
1646
1647	do {
1648		status = sci_in(port, SCxSR);
1649	} while (!(status & SCxSR_TEND(port)));
1650
1651	sci_out(port, SCSCR, 0x00);	/* TE=0, RE=0, CKE1=0 */
1652
1653	if (port->type != PORT_SCI)
1654		sci_out(port, SCFCR, SCFCR_RFRST | SCFCR_TFRST);
 
1655}
1656
1657static void sci_set_termios(struct uart_port *port, struct ktermios *termios,
1658			    struct ktermios *old)
1659{
 
 
 
1660	struct sci_port *s = to_sci_port(port);
1661	unsigned int baud, smr_val, max_baud;
1662	int t = -1;
1663	u16 scfcr = 0;
 
 
 
 
 
 
 
 
 
 
1664
1665	/*
1666	 * earlyprintk comes here early on with port->uartclk set to zero.
1667	 * the clock framework is not up and running at this point so here
1668	 * we assume that 115200 is the maximum baud rate. please note that
1669	 * the baud rate is not programmed during earlyprintk - it is assumed
1670	 * that the previous boot loader has enabled required clocks and
1671	 * setup the baud rate generator hardware for us already.
1672	 */
1673	max_baud = port->uartclk ? port->uartclk / 16 : 115200;
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1674
1675	baud = uart_get_baud_rate(port, termios, old, 0, max_baud);
1676	if (likely(baud && port->uartclk))
1677		t = sci_scbrr_calc(s->cfg->scbrr_algo_id, baud, port->uartclk);
 
 
 
 
 
 
 
 
 
 
 
 
1678
1679	sci_port_enable(s);
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1680
1681	sci_reset(port);
 
 
 
 
 
 
 
 
 
1682
1683	smr_val = sci_in(port, SCSMR) & 3;
 
 
 
1684
1685	if ((termios->c_cflag & CSIZE) == CS7)
1686		smr_val |= 0x40;
1687	if (termios->c_cflag & PARENB)
1688		smr_val |= 0x20;
1689	if (termios->c_cflag & PARODD)
1690		smr_val |= 0x30;
1691	if (termios->c_cflag & CSTOPB)
1692		smr_val |= 0x08;
1693
1694	uart_update_timeout(port, termios->c_cflag, baud);
 
 
 
 
 
 
 
1695
1696	sci_out(port, SCSMR, smr_val);
1697
1698	dev_dbg(port->dev, "%s: SMR %x, t %x, SCSCR %x\n", __func__, smr_val, t,
1699		s->cfg->scscr);
1700
1701	if (t > 0) {
1702		if (t >= 256) {
1703			sci_out(port, SCSMR, (sci_in(port, SCSMR) & ~3) | 1);
1704			t >>= 2;
1705		} else
1706			sci_out(port, SCSMR, sci_in(port, SCSMR) & ~3);
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1707
1708		sci_out(port, SCBRR, t);
1709		udelay((1000000+(baud-1)) / baud); /* Wait one bit interval */
 
 
 
 
 
 
 
 
1710	}
1711
1712	sci_init_pins(port, termios->c_cflag);
1713	sci_out(port, SCFCR, scfcr | ((termios->c_cflag & CRTSCTS) ? SCFCR_MCE : 0));
1714
1715	sci_out(port, SCSCR, s->cfg->scscr);
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1716
1717#ifdef CONFIG_SERIAL_SH_SCI_DMA
1718	/*
1719	 * Calculate delay for 1.5 DMA buffers: see
1720	 * drivers/serial/serial_core.c::uart_update_timeout(). With 10 bits
1721	 * (CS8), 250Hz, 115200 baud and 64 bytes FIFO, the above function
1722	 * calculates 1 jiffie for the data plus 5 jiffies for the "slop(e)."
1723	 * Then below we calculate 3 jiffies (12ms) for 1.5 DMA buffers (3 FIFO
1724	 * sizes), but it has been found out experimentally, that this is not
1725	 * enough: the driver too often needlessly runs on a DMA timeout. 20ms
1726	 * as a minimum seem to work perfectly.
1727	 */
1728	if (s->chan_rx) {
1729		s->rx_timeout = (port->timeout - HZ / 50) * s->buf_len_rx * 3 /
1730			port->fifosize / 2;
1731		dev_dbg(port->dev,
1732			"DMA Rx t-out %ums, tty t-out %u jiffies\n",
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1733			s->rx_timeout * 1000 / HZ, port->timeout);
1734		if (s->rx_timeout < msecs_to_jiffies(20))
1735			s->rx_timeout = msecs_to_jiffies(20);
1736	}
1737#endif
1738
1739	if ((termios->c_cflag & CREAD) != 0)
1740		sci_start_rx(port);
1741
1742	sci_port_disable(s);
1743}
1744
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1745static const char *sci_type(struct uart_port *port)
1746{
1747	switch (port->type) {
1748	case PORT_IRDA:
1749		return "irda";
1750	case PORT_SCI:
1751		return "sci";
1752	case PORT_SCIF:
1753		return "scif";
1754	case PORT_SCIFA:
1755		return "scifa";
1756	case PORT_SCIFB:
1757		return "scifb";
 
 
1758	}
1759
1760	return NULL;
1761}
1762
1763static inline unsigned long sci_port_size(struct uart_port *port)
1764{
1765	/*
1766	 * Pick an arbitrary size that encapsulates all of the base
1767	 * registers by default. This can be optimized later, or derived
1768	 * from platform resource data at such a time that ports begin to
1769	 * behave more erratically.
1770	 */
1771	return 64;
1772}
1773
1774static int sci_remap_port(struct uart_port *port)
1775{
1776	unsigned long size = sci_port_size(port);
1777
1778	/*
1779	 * Nothing to do if there's already an established membase.
1780	 */
1781	if (port->membase)
1782		return 0;
1783
1784	if (port->flags & UPF_IOREMAP) {
1785		port->membase = ioremap_nocache(port->mapbase, size);
1786		if (unlikely(!port->membase)) {
1787			dev_err(port->dev, "can't remap port#%d\n", port->line);
1788			return -ENXIO;
1789		}
1790	} else {
1791		/*
1792		 * For the simple (and majority of) cases where we don't
1793		 * need to do any remapping, just cast the cookie
1794		 * directly.
1795		 */
1796		port->membase = (void __iomem *)port->mapbase;
1797	}
1798
1799	return 0;
1800}
1801
1802static void sci_release_port(struct uart_port *port)
1803{
 
 
1804	if (port->flags & UPF_IOREMAP) {
1805		iounmap(port->membase);
1806		port->membase = NULL;
1807	}
1808
1809	release_mem_region(port->mapbase, sci_port_size(port));
1810}
1811
1812static int sci_request_port(struct uart_port *port)
1813{
1814	unsigned long size = sci_port_size(port);
1815	struct resource *res;
 
1816	int ret;
1817
1818	res = request_mem_region(port->mapbase, size, dev_name(port->dev));
1819	if (unlikely(res == NULL))
 
 
1820		return -EBUSY;
 
1821
1822	ret = sci_remap_port(port);
1823	if (unlikely(ret != 0)) {
1824		release_resource(res);
1825		return ret;
1826	}
1827
1828	return 0;
1829}
1830
1831static void sci_config_port(struct uart_port *port, int flags)
1832{
1833	if (flags & UART_CONFIG_TYPE) {
1834		struct sci_port *sport = to_sci_port(port);
1835
1836		port->type = sport->cfg->type;
1837		sci_request_port(port);
1838	}
1839}
1840
1841static int sci_verify_port(struct uart_port *port, struct serial_struct *ser)
1842{
1843	struct sci_port *s = to_sci_port(port);
1844
1845	if (ser->irq != s->cfg->irqs[SCIx_TXI_IRQ] || ser->irq > nr_irqs)
1846		return -EINVAL;
1847	if (ser->baud_base < 2400)
1848		/* No paper tape reader for Mitch.. */
1849		return -EINVAL;
1850
1851	return 0;
1852}
1853
1854static struct uart_ops sci_uart_ops = {
1855	.tx_empty	= sci_tx_empty,
1856	.set_mctrl	= sci_set_mctrl,
1857	.get_mctrl	= sci_get_mctrl,
1858	.start_tx	= sci_start_tx,
1859	.stop_tx	= sci_stop_tx,
1860	.stop_rx	= sci_stop_rx,
1861	.enable_ms	= sci_enable_ms,
1862	.break_ctl	= sci_break_ctl,
1863	.startup	= sci_startup,
1864	.shutdown	= sci_shutdown,
1865	.set_termios	= sci_set_termios,
 
1866	.type		= sci_type,
1867	.release_port	= sci_release_port,
1868	.request_port	= sci_request_port,
1869	.config_port	= sci_config_port,
1870	.verify_port	= sci_verify_port,
1871#ifdef CONFIG_CONSOLE_POLL
1872	.poll_get_char	= sci_poll_get_char,
1873	.poll_put_char	= sci_poll_put_char,
1874#endif
1875};
1876
1877static int __devinit sci_init_single(struct platform_device *dev,
1878				     struct sci_port *sci_port,
1879				     unsigned int index,
1880				     struct plat_sci_port *p)
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1881{
1882	struct uart_port *port = &sci_port->port;
 
 
1883	int ret;
1884
 
 
1885	port->ops	= &sci_uart_ops;
1886	port->iotype	= UPIO_MEM;
1887	port->line	= index;
1888
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1889	switch (p->type) {
1890	case PORT_SCIFB:
1891		port->fifosize = 256;
 
 
 
 
 
 
 
 
 
1892		break;
1893	case PORT_SCIFA:
1894		port->fifosize = 64;
 
 
 
1895		break;
1896	case PORT_SCIF:
1897		port->fifosize = 16;
 
 
 
 
 
 
 
 
 
1898		break;
1899	default:
1900		port->fifosize = 1;
 
 
 
1901		break;
1902	}
1903
1904	if (p->regtype == SCIx_PROBE_REGTYPE) {
1905		ret = sci_probe_regmap(p);
1906		if (unlikely(ret))
 
 
 
 
 
 
 
1907			return ret;
1908	}
1909
1910	if (dev) {
1911		sci_port->iclk = clk_get(&dev->dev, "sci_ick");
1912		if (IS_ERR(sci_port->iclk)) {
1913			sci_port->iclk = clk_get(&dev->dev, "peripheral_clk");
1914			if (IS_ERR(sci_port->iclk)) {
1915				dev_err(&dev->dev, "can't get iclk\n");
1916				return PTR_ERR(sci_port->iclk);
1917			}
1918		}
1919
1920		/*
1921		 * The function clock is optional, ignore it if we can't
1922		 * find it.
1923		 */
1924		sci_port->fclk = clk_get(&dev->dev, "sci_fck");
1925		if (IS_ERR(sci_port->fclk))
1926			sci_port->fclk = NULL;
1927
1928		port->dev = &dev->dev;
1929
1930		pm_runtime_irq_safe(&dev->dev);
1931		pm_runtime_enable(&dev->dev);
1932	}
1933
1934	sci_port->break_timer.data = (unsigned long)sci_port;
1935	sci_port->break_timer.function = sci_break_timer;
1936	init_timer(&sci_port->break_timer);
1937
1938	/*
1939	 * Establish some sensible defaults for the error detection.
1940	 */
1941	if (!p->error_mask)
1942		p->error_mask = (p->type == PORT_SCI) ?
1943			SCI_DEFAULT_ERROR_MASK : SCIF_DEFAULT_ERROR_MASK;
 
 
 
 
1944
1945	/*
1946	 * Establish sensible defaults for the overrun detection, unless
1947	 * the part has explicitly disabled support for it.
1948	 */
1949	if (p->overrun_bit != SCIx_NOT_SUPPORTED) {
1950		if (p->type == PORT_SCI)
1951			p->overrun_bit = 5;
1952		else if (p->scbrr_algo_id == SCBRR_ALGO_4)
1953			p->overrun_bit = 9;
1954		else
1955			p->overrun_bit = 0;
1956
1957		/*
1958		 * Make the error mask inclusive of overrun detection, if
1959		 * supported.
1960		 */
1961		p->error_mask |= (1 << p->overrun_bit);
1962	}
1963
1964	sci_port->cfg		= p;
1965
1966	port->mapbase		= p->mapbase;
1967	port->type		= p->type;
1968	port->flags		= p->flags;
1969	port->regshift		= p->regshift;
1970
1971	/*
1972	 * The UART port needs an IRQ value, so we peg this to the RX IRQ
1973	 * for the multi-IRQ ports, which is where we are primarily
1974	 * concerned with the shutdown path synchronization.
1975	 *
1976	 * For the muxed case there's nothing more to do.
1977	 */
1978	port->irq		= p->irqs[SCIx_RXI_IRQ];
1979	port->irqflags		= IRQF_DISABLED;
1980
1981	port->serial_in		= sci_serial_in;
1982	port->serial_out	= sci_serial_out;
1983
1984	if (p->dma_dev)
1985		dev_dbg(port->dev, "DMA device %p, tx %d, rx %d\n",
1986			p->dma_dev, p->dma_slave_tx, p->dma_slave_rx);
1987
1988	return 0;
1989}
1990
1991#ifdef CONFIG_SERIAL_SH_SCI_CONSOLE
 
 
 
 
 
 
1992static void serial_console_putchar(struct uart_port *port, int ch)
1993{
1994	sci_poll_put_char(port, ch);
1995}
1996
1997/*
1998 *	Print a string to the serial port trying not to disturb
1999 *	any possible real use of the port...
2000 */
2001static void serial_console_write(struct console *co, const char *s,
2002				 unsigned count)
2003{
2004	struct sci_port *sci_port = &sci_ports[co->index];
2005	struct uart_port *port = &sci_port->port;
2006	unsigned short bits;
 
 
 
 
 
 
 
 
 
 
 
 
 
2007
2008	sci_port_enable(sci_port);
 
 
 
 
2009
2010	uart_console_write(port, s, count, serial_console_putchar);
2011
2012	/* wait until fifo is empty and last bit has been transmitted */
2013	bits = SCxSR_TDxE(port) | SCxSR_TEND(port);
2014	while ((sci_in(port, SCxSR) & bits) != bits)
2015		cpu_relax();
2016
2017	sci_port_disable(sci_port);
 
 
 
 
 
2018}
2019
2020static int __devinit serial_console_setup(struct console *co, char *options)
2021{
2022	struct sci_port *sci_port;
2023	struct uart_port *port;
2024	int baud = 115200;
2025	int bits = 8;
2026	int parity = 'n';
2027	int flow = 'n';
2028	int ret;
2029
2030	/*
2031	 * Refuse to handle any bogus ports.
2032	 */
2033	if (co->index < 0 || co->index >= SCI_NPORTS)
2034		return -ENODEV;
2035
2036	sci_port = &sci_ports[co->index];
2037	port = &sci_port->port;
2038
2039	/*
2040	 * Refuse to handle uninitialized ports.
2041	 */
2042	if (!port->ops)
2043		return -ENODEV;
2044
2045	ret = sci_remap_port(port);
2046	if (unlikely(ret != 0))
2047		return ret;
2048
2049	sci_port_enable(sci_port);
2050
2051	if (options)
2052		uart_parse_options(options, &baud, &parity, &bits, &flow);
2053
2054	sci_port_disable(sci_port);
2055
2056	return uart_set_options(port, co, baud, parity, bits, flow);
2057}
2058
2059static struct console serial_console = {
2060	.name		= "ttySC",
2061	.device		= uart_console_device,
2062	.write		= serial_console_write,
2063	.setup		= serial_console_setup,
2064	.flags		= CON_PRINTBUFFER,
2065	.index		= -1,
2066	.data		= &sci_uart_driver,
2067};
2068
2069static struct console early_serial_console = {
2070	.name           = "early_ttySC",
2071	.write          = serial_console_write,
2072	.flags          = CON_PRINTBUFFER,
2073	.index		= -1,
2074};
2075
2076static char early_serial_buf[32];
2077
2078static int __devinit sci_probe_earlyprintk(struct platform_device *pdev)
2079{
2080	struct plat_sci_port *cfg = pdev->dev.platform_data;
2081
2082	if (early_serial_console.data)
2083		return -EEXIST;
2084
2085	early_serial_console.index = pdev->id;
2086
2087	sci_init_single(NULL, &sci_ports[pdev->id], pdev->id, cfg);
2088
2089	serial_console_setup(&early_serial_console, early_serial_buf);
2090
2091	if (!strstr(early_serial_buf, "keep"))
2092		early_serial_console.flags |= CON_BOOT;
2093
2094	register_console(&early_serial_console);
2095	return 0;
2096}
2097
2098#define uart_console(port)	((port)->cons->index == (port)->line)
2099
2100static int sci_runtime_suspend(struct device *dev)
2101{
2102	struct sci_port *sci_port = dev_get_drvdata(dev);
2103	struct uart_port *port = &sci_port->port;
2104
2105	if (uart_console(port)) {
2106		sci_port->saved_smr = sci_in(port, SCSMR);
2107		sci_port->saved_brr = sci_in(port, SCBRR);
2108		sci_port->saved_fcr = sci_in(port, SCFCR);
2109	}
2110	return 0;
2111}
2112
2113static int sci_runtime_resume(struct device *dev)
2114{
2115	struct sci_port *sci_port = dev_get_drvdata(dev);
2116	struct uart_port *port = &sci_port->port;
2117
2118	if (uart_console(port)) {
2119		sci_reset(port);
2120		sci_out(port, SCSMR, sci_port->saved_smr);
2121		sci_out(port, SCBRR, sci_port->saved_brr);
2122		sci_out(port, SCFCR, sci_port->saved_fcr);
2123		sci_out(port, SCSCR, sci_port->cfg->scscr);
2124	}
2125	return 0;
2126}
2127
2128#define SCI_CONSOLE	(&serial_console)
2129
2130#else
2131static inline int __devinit sci_probe_earlyprintk(struct platform_device *pdev)
2132{
2133	return -EINVAL;
2134}
2135
2136#define SCI_CONSOLE	NULL
2137#define sci_runtime_suspend	NULL
2138#define sci_runtime_resume	NULL
2139
2140#endif /* CONFIG_SERIAL_SH_SCI_CONSOLE */
2141
2142static char banner[] __initdata =
2143	KERN_INFO "SuperH SCI(F) driver initialized\n";
2144
2145static struct uart_driver sci_uart_driver = {
2146	.owner		= THIS_MODULE,
2147	.driver_name	= "sci",
2148	.dev_name	= "ttySC",
2149	.major		= SCI_MAJOR,
2150	.minor		= SCI_MINOR_START,
2151	.nr		= SCI_NPORTS,
2152	.cons		= SCI_CONSOLE,
2153};
2154
2155static int sci_remove(struct platform_device *dev)
2156{
2157	struct sci_port *port = platform_get_drvdata(dev);
2158
2159	cpufreq_unregister_notifier(&port->freq_transition,
2160				    CPUFREQ_TRANSITION_NOTIFIER);
2161
2162	uart_remove_one_port(&sci_uart_driver, &port->port);
2163
2164	clk_put(port->iclk);
2165	clk_put(port->fclk);
2166
2167	pm_runtime_disable(&dev->dev);
2168	return 0;
2169}
2170
2171static int __devinit sci_probe_single(struct platform_device *dev,
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
2172				      unsigned int index,
2173				      struct plat_sci_port *p,
2174				      struct sci_port *sciport)
2175{
2176	int ret;
2177
2178	/* Sanity check */
2179	if (unlikely(index >= SCI_NPORTS)) {
2180		dev_notice(&dev->dev, "Attempting to register port "
2181			   "%d when only %d are available.\n",
2182			   index+1, SCI_NPORTS);
2183		dev_notice(&dev->dev, "Consider bumping "
2184			   "CONFIG_SERIAL_SH_SCI_NR_UARTS!\n");
2185		return 0;
2186	}
2187
2188	ret = sci_init_single(dev, sciport, index, p);
2189	if (ret)
2190		return ret;
2191
2192	return uart_add_one_port(&sci_uart_driver, &sciport->port);
 
 
 
 
 
 
2193}
2194
2195static int __devinit sci_probe(struct platform_device *dev)
2196{
2197	struct plat_sci_port *p = dev->dev.platform_data;
2198	struct sci_port *sp = &sci_ports[dev->id];
 
2199	int ret;
2200
2201	/*
2202	 * If we've come here via earlyprintk initialization, head off to
2203	 * the special early probe. We don't have sufficient device state
2204	 * to make it beyond this yet.
2205	 */
2206	if (is_early_platform_device(dev))
2207		return sci_probe_earlyprintk(dev);
2208
2209	platform_set_drvdata(dev, sp);
 
 
 
 
 
 
 
 
 
2210
2211	ret = sci_probe_single(dev, dev->id, p, sp);
2212	if (ret)
2213		goto err_unreg;
2214
2215	sp->freq_transition.notifier_call = sci_notifier;
 
2216
2217	ret = cpufreq_register_notifier(&sp->freq_transition,
2218					CPUFREQ_TRANSITION_NOTIFIER);
2219	if (unlikely(ret < 0))
2220		goto err_unreg;
2221
2222#ifdef CONFIG_SH_STANDARD_BIOS
2223	sh_bios_gdb_detach();
2224#endif
2225
2226	return 0;
2227
2228err_unreg:
2229	sci_remove(dev);
2230	return ret;
2231}
2232
2233static int sci_suspend(struct device *dev)
2234{
2235	struct sci_port *sport = dev_get_drvdata(dev);
2236
2237	if (sport)
2238		uart_suspend_port(&sci_uart_driver, &sport->port);
2239
2240	return 0;
2241}
2242
2243static int sci_resume(struct device *dev)
2244{
2245	struct sci_port *sport = dev_get_drvdata(dev);
2246
2247	if (sport)
2248		uart_resume_port(&sci_uart_driver, &sport->port);
2249
2250	return 0;
2251}
2252
2253static const struct dev_pm_ops sci_dev_pm_ops = {
2254	.runtime_suspend = sci_runtime_suspend,
2255	.runtime_resume = sci_runtime_resume,
2256	.suspend	= sci_suspend,
2257	.resume		= sci_resume,
2258};
2259
2260static struct platform_driver sci_driver = {
2261	.probe		= sci_probe,
2262	.remove		= sci_remove,
2263	.driver		= {
2264		.name	= "sh-sci",
2265		.owner	= THIS_MODULE,
2266		.pm	= &sci_dev_pm_ops,
 
2267	},
2268};
2269
2270static int __init sci_init(void)
2271{
2272	int ret;
2273
2274	printk(banner);
2275
2276	ret = uart_register_driver(&sci_uart_driver);
2277	if (likely(ret == 0)) {
2278		ret = platform_driver_register(&sci_driver);
2279		if (unlikely(ret))
2280			uart_unregister_driver(&sci_uart_driver);
2281	}
2282
2283	return ret;
2284}
2285
2286static void __exit sci_exit(void)
2287{
2288	platform_driver_unregister(&sci_driver);
2289	uart_unregister_driver(&sci_uart_driver);
2290}
2291
2292#ifdef CONFIG_SERIAL_SH_SCI_CONSOLE
2293early_platform_init_buffer("earlyprintk", &sci_driver,
2294			   early_serial_buf, ARRAY_SIZE(early_serial_buf));
2295#endif
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
2296module_init(sci_init);
2297module_exit(sci_exit);
2298
2299MODULE_LICENSE("GPL");
2300MODULE_ALIAS("platform:sh-sci");
2301MODULE_AUTHOR("Paul Mundt");
2302MODULE_DESCRIPTION("SuperH SCI(F) serial driver");
v4.6
   1/*
   2 * SuperH on-chip serial module support.  (SCI with no FIFO / with FIFO)
   3 *
   4 *  Copyright (C) 2002 - 2011  Paul Mundt
   5 *  Copyright (C) 2015 Glider bvba
   6 *  Modified to support SH7720 SCIF. Markus Brunner, Mark Jonas (Jul 2007).
   7 *
   8 * based off of the old drivers/char/sh-sci.c by:
   9 *
  10 *   Copyright (C) 1999, 2000  Niibe Yutaka
  11 *   Copyright (C) 2000  Sugioka Toshinobu
  12 *   Modified to support multiple serial ports. Stuart Menefy (May 2000).
  13 *   Modified to support SecureEdge. David McCullough (2002)
  14 *   Modified to support SH7300 SCIF. Takashi Kusuda (Jun 2003).
  15 *   Removed SH7300 support (Jul 2007).
  16 *
  17 * This file is subject to the terms and conditions of the GNU General Public
  18 * License.  See the file "COPYING" in the main directory of this archive
  19 * for more details.
  20 */
  21#if defined(CONFIG_SERIAL_SH_SCI_CONSOLE) && defined(CONFIG_MAGIC_SYSRQ)
  22#define SUPPORT_SYSRQ
  23#endif
  24
  25#undef DEBUG
  26
  27#include <linux/clk.h>
  28#include <linux/console.h>
  29#include <linux/ctype.h>
  30#include <linux/cpufreq.h>
  31#include <linux/delay.h>
  32#include <linux/dmaengine.h>
  33#include <linux/dma-mapping.h>
  34#include <linux/err.h>
  35#include <linux/errno.h>
  36#include <linux/init.h>
  37#include <linux/interrupt.h>
 
 
 
 
 
 
  38#include <linux/ioport.h>
  39#include <linux/major.h>
  40#include <linux/module.h>
  41#include <linux/mm.h>
  42#include <linux/of.h>
 
 
  43#include <linux/platform_device.h>
 
 
  44#include <linux/pm_runtime.h>
 
 
 
 
 
 
  45#include <linux/scatterlist.h>
  46#include <linux/serial.h>
  47#include <linux/serial_sci.h>
  48#include <linux/sh_dma.h>
  49#include <linux/slab.h>
  50#include <linux/string.h>
  51#include <linux/sysrq.h>
  52#include <linux/timer.h>
  53#include <linux/tty.h>
  54#include <linux/tty_flip.h>
  55
  56#ifdef CONFIG_SUPERH
  57#include <asm/sh_bios.h>
  58#endif
  59
  60#include "sh-sci.h"
  61
  62/* Offsets into the sci_port->irqs array */
  63enum {
  64	SCIx_ERI_IRQ,
  65	SCIx_RXI_IRQ,
  66	SCIx_TXI_IRQ,
  67	SCIx_BRI_IRQ,
  68	SCIx_NR_IRQS,
  69
  70	SCIx_MUX_IRQ = SCIx_NR_IRQS,	/* special case */
  71};
  72
  73#define SCIx_IRQ_IS_MUXED(port)			\
  74	((port)->irqs[SCIx_ERI_IRQ] ==	\
  75	 (port)->irqs[SCIx_RXI_IRQ]) ||	\
  76	((port)->irqs[SCIx_ERI_IRQ] &&	\
  77	 ((port)->irqs[SCIx_RXI_IRQ] < 0))
  78
  79enum SCI_CLKS {
  80	SCI_FCK,		/* Functional Clock */
  81	SCI_SCK,		/* Optional External Clock */
  82	SCI_BRG_INT,		/* Optional BRG Internal Clock Source */
  83	SCI_SCIF_CLK,		/* Optional BRG External Clock Source */
  84	SCI_NUM_CLKS
  85};
  86
  87/* Bit x set means sampling rate x + 1 is supported */
  88#define SCI_SR(x)		BIT((x) - 1)
  89#define SCI_SR_RANGE(x, y)	GENMASK((y) - 1, (x) - 1)
  90
  91#define SCI_SR_SCIFAB		SCI_SR(5) | SCI_SR(7) | SCI_SR(11) | \
  92				SCI_SR(13) | SCI_SR(16) | SCI_SR(17) | \
  93				SCI_SR(19) | SCI_SR(27)
  94
  95#define min_sr(_port)		ffs((_port)->sampling_rate_mask)
  96#define max_sr(_port)		fls((_port)->sampling_rate_mask)
  97
  98/* Iterate over all supported sampling rates, from high to low */
  99#define for_each_sr(_sr, _port)						\
 100	for ((_sr) = max_sr(_port); (_sr) >= min_sr(_port); (_sr)--)	\
 101		if ((_port)->sampling_rate_mask & SCI_SR((_sr)))
 102
 103struct sci_port {
 104	struct uart_port	port;
 105
 106	/* Platform configuration */
 107	struct plat_sci_port	*cfg;
 108	unsigned int		overrun_reg;
 109	unsigned int		overrun_mask;
 110	unsigned int		error_mask;
 111	unsigned int		error_clear;
 112	unsigned int		sampling_rate_mask;
 113	resource_size_t		reg_size;
 114
 115	/* Break timer */
 116	struct timer_list	break_timer;
 117	int			break_flag;
 118
 119	/* Clocks */
 120	struct clk		*clks[SCI_NUM_CLKS];
 121	unsigned long		clk_rates[SCI_NUM_CLKS];
 
 122
 123	int			irqs[SCIx_NR_IRQS];
 124	char			*irqstr[SCIx_NR_IRQS];
 125
 126	struct dma_chan			*chan_tx;
 127	struct dma_chan			*chan_rx;
 128
 129#ifdef CONFIG_SERIAL_SH_SCI_DMA
 
 
 130	dma_cookie_t			cookie_tx;
 131	dma_cookie_t			cookie_rx[2];
 132	dma_cookie_t			active_rx;
 133	dma_addr_t			tx_dma_addr;
 134	unsigned int			tx_dma_len;
 135	struct scatterlist		sg_rx[2];
 136	void				*rx_buf[2];
 137	size_t				buf_len_rx;
 
 
 138	struct work_struct		work_tx;
 
 139	struct timer_list		rx_timer;
 140	unsigned int			rx_timeout;
 141#endif
 
 
 
 
 
 
 
 
 142};
 143
 
 
 
 
 
 144#define SCI_NPORTS CONFIG_SERIAL_SH_SCI_NR_UARTS
 145
 146static struct sci_port sci_ports[SCI_NPORTS];
 147static struct uart_driver sci_uart_driver;
 148
 149static inline struct sci_port *
 150to_sci_port(struct uart_port *uart)
 151{
 152	return container_of(uart, struct sci_port, port);
 153}
 154
 155struct plat_sci_reg {
 156	u8 offset, size;
 157};
 158
 159/* Helper for invalidating specific entries of an inherited map. */
 160#define sci_reg_invalid	{ .offset = 0, .size = 0 }
 161
 162static const struct plat_sci_reg sci_regmap[SCIx_NR_REGTYPES][SCIx_NR_REGS] = {
 163	[SCIx_PROBE_REGTYPE] = {
 164		[0 ... SCIx_NR_REGS - 1] = sci_reg_invalid,
 165	},
 166
 167	/*
 168	 * Common SCI definitions, dependent on the port's regshift
 169	 * value.
 170	 */
 171	[SCIx_SCI_REGTYPE] = {
 172		[SCSMR]		= { 0x00,  8 },
 173		[SCBRR]		= { 0x01,  8 },
 174		[SCSCR]		= { 0x02,  8 },
 175		[SCxTDR]	= { 0x03,  8 },
 176		[SCxSR]		= { 0x04,  8 },
 177		[SCxRDR]	= { 0x05,  8 },
 178		[SCFCR]		= sci_reg_invalid,
 179		[SCFDR]		= sci_reg_invalid,
 180		[SCTFDR]	= sci_reg_invalid,
 181		[SCRFDR]	= sci_reg_invalid,
 182		[SCSPTR]	= sci_reg_invalid,
 183		[SCLSR]		= sci_reg_invalid,
 184		[HSSRR]		= sci_reg_invalid,
 185		[SCPCR]		= sci_reg_invalid,
 186		[SCPDR]		= sci_reg_invalid,
 187		[SCDL]		= sci_reg_invalid,
 188		[SCCKS]		= sci_reg_invalid,
 189	},
 190
 191	/*
 192	 * Common definitions for legacy IrDA ports, dependent on
 193	 * regshift value.
 194	 */
 195	[SCIx_IRDA_REGTYPE] = {
 196		[SCSMR]		= { 0x00,  8 },
 197		[SCBRR]		= { 0x01,  8 },
 198		[SCSCR]		= { 0x02,  8 },
 199		[SCxTDR]	= { 0x03,  8 },
 200		[SCxSR]		= { 0x04,  8 },
 201		[SCxRDR]	= { 0x05,  8 },
 202		[SCFCR]		= { 0x06,  8 },
 203		[SCFDR]		= { 0x07, 16 },
 204		[SCTFDR]	= sci_reg_invalid,
 205		[SCRFDR]	= sci_reg_invalid,
 206		[SCSPTR]	= sci_reg_invalid,
 207		[SCLSR]		= sci_reg_invalid,
 208		[HSSRR]		= sci_reg_invalid,
 209		[SCPCR]		= sci_reg_invalid,
 210		[SCPDR]		= sci_reg_invalid,
 211		[SCDL]		= sci_reg_invalid,
 212		[SCCKS]		= sci_reg_invalid,
 213	},
 214
 215	/*
 216	 * Common SCIFA definitions.
 217	 */
 218	[SCIx_SCIFA_REGTYPE] = {
 219		[SCSMR]		= { 0x00, 16 },
 220		[SCBRR]		= { 0x04,  8 },
 221		[SCSCR]		= { 0x08, 16 },
 222		[SCxTDR]	= { 0x20,  8 },
 223		[SCxSR]		= { 0x14, 16 },
 224		[SCxRDR]	= { 0x24,  8 },
 225		[SCFCR]		= { 0x18, 16 },
 226		[SCFDR]		= { 0x1c, 16 },
 227		[SCTFDR]	= sci_reg_invalid,
 228		[SCRFDR]	= sci_reg_invalid,
 229		[SCSPTR]	= sci_reg_invalid,
 230		[SCLSR]		= sci_reg_invalid,
 231		[HSSRR]		= sci_reg_invalid,
 232		[SCPCR]		= { 0x30, 16 },
 233		[SCPDR]		= { 0x34, 16 },
 234		[SCDL]		= sci_reg_invalid,
 235		[SCCKS]		= sci_reg_invalid,
 236	},
 237
 238	/*
 239	 * Common SCIFB definitions.
 240	 */
 241	[SCIx_SCIFB_REGTYPE] = {
 242		[SCSMR]		= { 0x00, 16 },
 243		[SCBRR]		= { 0x04,  8 },
 244		[SCSCR]		= { 0x08, 16 },
 245		[SCxTDR]	= { 0x40,  8 },
 246		[SCxSR]		= { 0x14, 16 },
 247		[SCxRDR]	= { 0x60,  8 },
 248		[SCFCR]		= { 0x18, 16 },
 249		[SCFDR]		= sci_reg_invalid,
 250		[SCTFDR]	= { 0x38, 16 },
 251		[SCRFDR]	= { 0x3c, 16 },
 252		[SCSPTR]	= sci_reg_invalid,
 253		[SCLSR]		= sci_reg_invalid,
 254		[HSSRR]		= sci_reg_invalid,
 255		[SCPCR]		= { 0x30, 16 },
 256		[SCPDR]		= { 0x34, 16 },
 257		[SCDL]		= sci_reg_invalid,
 258		[SCCKS]		= sci_reg_invalid,
 259	},
 260
 261	/*
 262	 * Common SH-2(A) SCIF definitions for ports with FIFO data
 263	 * count registers.
 264	 */
 265	[SCIx_SH2_SCIF_FIFODATA_REGTYPE] = {
 266		[SCSMR]		= { 0x00, 16 },
 267		[SCBRR]		= { 0x04,  8 },
 268		[SCSCR]		= { 0x08, 16 },
 269		[SCxTDR]	= { 0x0c,  8 },
 270		[SCxSR]		= { 0x10, 16 },
 271		[SCxRDR]	= { 0x14,  8 },
 272		[SCFCR]		= { 0x18, 16 },
 273		[SCFDR]		= { 0x1c, 16 },
 274		[SCTFDR]	= sci_reg_invalid,
 275		[SCRFDR]	= sci_reg_invalid,
 276		[SCSPTR]	= { 0x20, 16 },
 277		[SCLSR]		= { 0x24, 16 },
 278		[HSSRR]		= sci_reg_invalid,
 279		[SCPCR]		= sci_reg_invalid,
 280		[SCPDR]		= sci_reg_invalid,
 281		[SCDL]		= sci_reg_invalid,
 282		[SCCKS]		= sci_reg_invalid,
 283	},
 284
 285	/*
 286	 * Common SH-3 SCIF definitions.
 287	 */
 288	[SCIx_SH3_SCIF_REGTYPE] = {
 289		[SCSMR]		= { 0x00,  8 },
 290		[SCBRR]		= { 0x02,  8 },
 291		[SCSCR]		= { 0x04,  8 },
 292		[SCxTDR]	= { 0x06,  8 },
 293		[SCxSR]		= { 0x08, 16 },
 294		[SCxRDR]	= { 0x0a,  8 },
 295		[SCFCR]		= { 0x0c,  8 },
 296		[SCFDR]		= { 0x0e, 16 },
 297		[SCTFDR]	= sci_reg_invalid,
 298		[SCRFDR]	= sci_reg_invalid,
 299		[SCSPTR]	= sci_reg_invalid,
 300		[SCLSR]		= sci_reg_invalid,
 301		[HSSRR]		= sci_reg_invalid,
 302		[SCPCR]		= sci_reg_invalid,
 303		[SCPDR]		= sci_reg_invalid,
 304		[SCDL]		= sci_reg_invalid,
 305		[SCCKS]		= sci_reg_invalid,
 306	},
 307
 308	/*
 309	 * Common SH-4(A) SCIF(B) definitions.
 310	 */
 311	[SCIx_SH4_SCIF_REGTYPE] = {
 312		[SCSMR]		= { 0x00, 16 },
 313		[SCBRR]		= { 0x04,  8 },
 314		[SCSCR]		= { 0x08, 16 },
 315		[SCxTDR]	= { 0x0c,  8 },
 316		[SCxSR]		= { 0x10, 16 },
 317		[SCxRDR]	= { 0x14,  8 },
 318		[SCFCR]		= { 0x18, 16 },
 319		[SCFDR]		= { 0x1c, 16 },
 320		[SCTFDR]	= sci_reg_invalid,
 321		[SCRFDR]	= sci_reg_invalid,
 322		[SCSPTR]	= { 0x20, 16 },
 323		[SCLSR]		= { 0x24, 16 },
 324		[HSSRR]		= sci_reg_invalid,
 325		[SCPCR]		= sci_reg_invalid,
 326		[SCPDR]		= sci_reg_invalid,
 327		[SCDL]		= sci_reg_invalid,
 328		[SCCKS]		= sci_reg_invalid,
 329	},
 330
 331	/*
 332	 * Common SCIF definitions for ports with a Baud Rate Generator for
 333	 * External Clock (BRG).
 334	 */
 335	[SCIx_SH4_SCIF_BRG_REGTYPE] = {
 336		[SCSMR]		= { 0x00, 16 },
 337		[SCBRR]		= { 0x04,  8 },
 338		[SCSCR]		= { 0x08, 16 },
 339		[SCxTDR]	= { 0x0c,  8 },
 340		[SCxSR]		= { 0x10, 16 },
 341		[SCxRDR]	= { 0x14,  8 },
 342		[SCFCR]		= { 0x18, 16 },
 343		[SCFDR]		= { 0x1c, 16 },
 344		[SCTFDR]	= sci_reg_invalid,
 345		[SCRFDR]	= sci_reg_invalid,
 346		[SCSPTR]	= { 0x20, 16 },
 347		[SCLSR]		= { 0x24, 16 },
 348		[HSSRR]		= sci_reg_invalid,
 349		[SCPCR]		= sci_reg_invalid,
 350		[SCPDR]		= sci_reg_invalid,
 351		[SCDL]		= { 0x30, 16 },
 352		[SCCKS]		= { 0x34, 16 },
 353	},
 354
 355	/*
 356	 * Common HSCIF definitions.
 357	 */
 358	[SCIx_HSCIF_REGTYPE] = {
 359		[SCSMR]		= { 0x00, 16 },
 360		[SCBRR]		= { 0x04,  8 },
 361		[SCSCR]		= { 0x08, 16 },
 362		[SCxTDR]	= { 0x0c,  8 },
 363		[SCxSR]		= { 0x10, 16 },
 364		[SCxRDR]	= { 0x14,  8 },
 365		[SCFCR]		= { 0x18, 16 },
 366		[SCFDR]		= { 0x1c, 16 },
 367		[SCTFDR]	= sci_reg_invalid,
 368		[SCRFDR]	= sci_reg_invalid,
 369		[SCSPTR]	= { 0x20, 16 },
 370		[SCLSR]		= { 0x24, 16 },
 371		[HSSRR]		= { 0x40, 16 },
 372		[SCPCR]		= sci_reg_invalid,
 373		[SCPDR]		= sci_reg_invalid,
 374		[SCDL]		= { 0x30, 16 },
 375		[SCCKS]		= { 0x34, 16 },
 376	},
 377
 378	/*
 379	 * Common SH-4(A) SCIF(B) definitions for ports without an SCSPTR
 380	 * register.
 381	 */
 382	[SCIx_SH4_SCIF_NO_SCSPTR_REGTYPE] = {
 383		[SCSMR]		= { 0x00, 16 },
 384		[SCBRR]		= { 0x04,  8 },
 385		[SCSCR]		= { 0x08, 16 },
 386		[SCxTDR]	= { 0x0c,  8 },
 387		[SCxSR]		= { 0x10, 16 },
 388		[SCxRDR]	= { 0x14,  8 },
 389		[SCFCR]		= { 0x18, 16 },
 390		[SCFDR]		= { 0x1c, 16 },
 391		[SCTFDR]	= sci_reg_invalid,
 392		[SCRFDR]	= sci_reg_invalid,
 393		[SCSPTR]	= sci_reg_invalid,
 394		[SCLSR]		= { 0x24, 16 },
 395		[HSSRR]		= sci_reg_invalid,
 396		[SCPCR]		= sci_reg_invalid,
 397		[SCPDR]		= sci_reg_invalid,
 398		[SCDL]		= sci_reg_invalid,
 399		[SCCKS]		= sci_reg_invalid,
 400	},
 401
 402	/*
 403	 * Common SH-4(A) SCIF(B) definitions for ports with FIFO data
 404	 * count registers.
 405	 */
 406	[SCIx_SH4_SCIF_FIFODATA_REGTYPE] = {
 407		[SCSMR]		= { 0x00, 16 },
 408		[SCBRR]		= { 0x04,  8 },
 409		[SCSCR]		= { 0x08, 16 },
 410		[SCxTDR]	= { 0x0c,  8 },
 411		[SCxSR]		= { 0x10, 16 },
 412		[SCxRDR]	= { 0x14,  8 },
 413		[SCFCR]		= { 0x18, 16 },
 414		[SCFDR]		= { 0x1c, 16 },
 415		[SCTFDR]	= { 0x1c, 16 },	/* aliased to SCFDR */
 416		[SCRFDR]	= { 0x20, 16 },
 417		[SCSPTR]	= { 0x24, 16 },
 418		[SCLSR]		= { 0x28, 16 },
 419		[HSSRR]		= sci_reg_invalid,
 420		[SCPCR]		= sci_reg_invalid,
 421		[SCPDR]		= sci_reg_invalid,
 422		[SCDL]		= sci_reg_invalid,
 423		[SCCKS]		= sci_reg_invalid,
 424	},
 425
 426	/*
 427	 * SH7705-style SCIF(B) ports, lacking both SCSPTR and SCLSR
 428	 * registers.
 429	 */
 430	[SCIx_SH7705_SCIF_REGTYPE] = {
 431		[SCSMR]		= { 0x00, 16 },
 432		[SCBRR]		= { 0x04,  8 },
 433		[SCSCR]		= { 0x08, 16 },
 434		[SCxTDR]	= { 0x20,  8 },
 435		[SCxSR]		= { 0x14, 16 },
 436		[SCxRDR]	= { 0x24,  8 },
 437		[SCFCR]		= { 0x18, 16 },
 438		[SCFDR]		= { 0x1c, 16 },
 439		[SCTFDR]	= sci_reg_invalid,
 440		[SCRFDR]	= sci_reg_invalid,
 441		[SCSPTR]	= sci_reg_invalid,
 442		[SCLSR]		= sci_reg_invalid,
 443		[HSSRR]		= sci_reg_invalid,
 444		[SCPCR]		= sci_reg_invalid,
 445		[SCPDR]		= sci_reg_invalid,
 446		[SCDL]		= sci_reg_invalid,
 447		[SCCKS]		= sci_reg_invalid,
 448	},
 449};
 450
 451#define sci_getreg(up, offset)		(sci_regmap[to_sci_port(up)->cfg->regtype] + offset)
 452
 453/*
 454 * The "offset" here is rather misleading, in that it refers to an enum
 455 * value relative to the port mapping rather than the fixed offset
 456 * itself, which needs to be manually retrieved from the platform's
 457 * register map for the given port.
 458 */
 459static unsigned int sci_serial_in(struct uart_port *p, int offset)
 460{
 461	const struct plat_sci_reg *reg = sci_getreg(p, offset);
 462
 463	if (reg->size == 8)
 464		return ioread8(p->membase + (reg->offset << p->regshift));
 465	else if (reg->size == 16)
 466		return ioread16(p->membase + (reg->offset << p->regshift));
 467	else
 468		WARN(1, "Invalid register access\n");
 469
 470	return 0;
 471}
 472
 473static void sci_serial_out(struct uart_port *p, int offset, int value)
 474{
 475	const struct plat_sci_reg *reg = sci_getreg(p, offset);
 476
 477	if (reg->size == 8)
 478		iowrite8(value, p->membase + (reg->offset << p->regshift));
 479	else if (reg->size == 16)
 480		iowrite16(value, p->membase + (reg->offset << p->regshift));
 481	else
 482		WARN(1, "Invalid register access\n");
 483}
 484
 
 
 
 485static int sci_probe_regmap(struct plat_sci_port *cfg)
 486{
 487	switch (cfg->type) {
 488	case PORT_SCI:
 489		cfg->regtype = SCIx_SCI_REGTYPE;
 490		break;
 491	case PORT_IRDA:
 492		cfg->regtype = SCIx_IRDA_REGTYPE;
 493		break;
 494	case PORT_SCIFA:
 495		cfg->regtype = SCIx_SCIFA_REGTYPE;
 496		break;
 497	case PORT_SCIFB:
 498		cfg->regtype = SCIx_SCIFB_REGTYPE;
 499		break;
 500	case PORT_SCIF:
 501		/*
 502		 * The SH-4 is a bit of a misnomer here, although that's
 503		 * where this particular port layout originated. This
 504		 * configuration (or some slight variation thereof)
 505		 * remains the dominant model for all SCIFs.
 506		 */
 507		cfg->regtype = SCIx_SH4_SCIF_REGTYPE;
 508		break;
 509	case PORT_HSCIF:
 510		cfg->regtype = SCIx_HSCIF_REGTYPE;
 511		break;
 512	default:
 513		pr_err("Can't probe register map for given port\n");
 514		return -EINVAL;
 515	}
 516
 517	return 0;
 518}
 519
 520static void sci_port_enable(struct sci_port *sci_port)
 521{
 522	unsigned int i;
 523
 524	if (!sci_port->port.dev)
 525		return;
 526
 527	pm_runtime_get_sync(sci_port->port.dev);
 528
 529	for (i = 0; i < SCI_NUM_CLKS; i++) {
 530		clk_prepare_enable(sci_port->clks[i]);
 531		sci_port->clk_rates[i] = clk_get_rate(sci_port->clks[i]);
 532	}
 533	sci_port->port.uartclk = sci_port->clk_rates[SCI_FCK];
 534}
 535
 536static void sci_port_disable(struct sci_port *sci_port)
 537{
 538	unsigned int i;
 539
 540	if (!sci_port->port.dev)
 541		return;
 542
 543	/* Cancel the break timer to ensure that the timer handler will not try
 544	 * to access the hardware with clocks and power disabled. Reset the
 545	 * break flag to make the break debouncing state machine ready for the
 546	 * next break.
 547	 */
 548	del_timer_sync(&sci_port->break_timer);
 549	sci_port->break_flag = 0;
 550
 551	for (i = SCI_NUM_CLKS; i-- > 0; )
 552		clk_disable_unprepare(sci_port->clks[i]);
 553
 554	pm_runtime_put_sync(sci_port->port.dev);
 555}
 556
 557static inline unsigned long port_rx_irq_mask(struct uart_port *port)
 558{
 559	/*
 560	 * Not all ports (such as SCIFA) will support REIE. Rather than
 561	 * special-casing the port type, we check the port initialization
 562	 * IRQ enable mask to see whether the IRQ is desired at all. If
 563	 * it's unset, it's logically inferred that there's no point in
 564	 * testing for it.
 565	 */
 566	return SCSCR_RIE | (to_sci_port(port)->cfg->scscr & SCSCR_REIE);
 567}
 568
 569static void sci_start_tx(struct uart_port *port)
 570{
 571	struct sci_port *s = to_sci_port(port);
 572	unsigned short ctrl;
 573
 574#ifdef CONFIG_SERIAL_SH_SCI_DMA
 575	if (port->type == PORT_SCIFA || port->type == PORT_SCIFB) {
 576		u16 new, scr = serial_port_in(port, SCSCR);
 577		if (s->chan_tx)
 578			new = scr | SCSCR_TDRQE;
 579		else
 580			new = scr & ~SCSCR_TDRQE;
 581		if (new != scr)
 582			serial_port_out(port, SCSCR, new);
 583	}
 584
 585	if (s->chan_tx && !uart_circ_empty(&s->port.state->xmit) &&
 586	    dma_submit_error(s->cookie_tx)) {
 587		s->cookie_tx = 0;
 588		schedule_work(&s->work_tx);
 589	}
 590#endif
 591
 592	if (!s->chan_tx || port->type == PORT_SCIFA || port->type == PORT_SCIFB) {
 593		/* Set TIE (Transmit Interrupt Enable) bit in SCSCR */
 594		ctrl = serial_port_in(port, SCSCR);
 595		serial_port_out(port, SCSCR, ctrl | SCSCR_TIE);
 596	}
 597}
 598
 599static void sci_stop_tx(struct uart_port *port)
 600{
 601	unsigned short ctrl;
 602
 603	/* Clear TIE (Transmit Interrupt Enable) bit in SCSCR */
 604	ctrl = serial_port_in(port, SCSCR);
 605
 606	if (port->type == PORT_SCIFA || port->type == PORT_SCIFB)
 607		ctrl &= ~SCSCR_TDRQE;
 608
 609	ctrl &= ~SCSCR_TIE;
 610
 611	serial_port_out(port, SCSCR, ctrl);
 612}
 613
 614static void sci_start_rx(struct uart_port *port)
 615{
 616	unsigned short ctrl;
 617
 618	ctrl = serial_port_in(port, SCSCR) | port_rx_irq_mask(port);
 619
 620	if (port->type == PORT_SCIFA || port->type == PORT_SCIFB)
 621		ctrl &= ~SCSCR_RDRQE;
 622
 623	serial_port_out(port, SCSCR, ctrl);
 624}
 625
 626static void sci_stop_rx(struct uart_port *port)
 627{
 628	unsigned short ctrl;
 629
 630	ctrl = serial_port_in(port, SCSCR);
 631
 632	if (port->type == PORT_SCIFA || port->type == PORT_SCIFB)
 633		ctrl &= ~SCSCR_RDRQE;
 634
 635	ctrl &= ~port_rx_irq_mask(port);
 636
 637	serial_port_out(port, SCSCR, ctrl);
 638}
 639
 640static void sci_clear_SCxSR(struct uart_port *port, unsigned int mask)
 641{
 642	if (port->type == PORT_SCI) {
 643		/* Just store the mask */
 644		serial_port_out(port, SCxSR, mask);
 645	} else if (to_sci_port(port)->overrun_mask == SCIFA_ORER) {
 646		/* SCIFA/SCIFB and SCIF on SH7705/SH7720/SH7721 */
 647		/* Only clear the status bits we want to clear */
 648		serial_port_out(port, SCxSR,
 649				serial_port_in(port, SCxSR) & mask);
 650	} else {
 651		/* Store the mask, clear parity/framing errors */
 652		serial_port_out(port, SCxSR, mask & ~(SCIF_FERC | SCIF_PERC));
 653	}
 654}
 655
 656#if defined(CONFIG_CONSOLE_POLL) || defined(CONFIG_SERIAL_SH_SCI_CONSOLE) || \
 657    defined(CONFIG_SERIAL_SH_SCI_EARLYCON)
 658
 659#ifdef CONFIG_CONSOLE_POLL
 660static int sci_poll_get_char(struct uart_port *port)
 661{
 662	unsigned short status;
 663	int c;
 664
 665	do {
 666		status = serial_port_in(port, SCxSR);
 667		if (status & SCxSR_ERRORS(port)) {
 668			sci_clear_SCxSR(port, SCxSR_ERROR_CLEAR(port));
 669			continue;
 670		}
 671		break;
 672	} while (1);
 673
 674	if (!(status & SCxSR_RDxF(port)))
 675		return NO_POLL_CHAR;
 676
 677	c = serial_port_in(port, SCxRDR);
 678
 679	/* Dummy read */
 680	serial_port_in(port, SCxSR);
 681	sci_clear_SCxSR(port, SCxSR_RDxF_CLEAR(port));
 682
 683	return c;
 684}
 685#endif
 686
 687static void sci_poll_put_char(struct uart_port *port, unsigned char c)
 688{
 689	unsigned short status;
 690
 691	do {
 692		status = serial_port_in(port, SCxSR);
 693	} while (!(status & SCxSR_TDxE(port)));
 694
 695	serial_port_out(port, SCxTDR, c);
 696	sci_clear_SCxSR(port, SCxSR_TDxE_CLEAR(port) & ~SCxSR_TEND(port));
 697}
 698#endif /* CONFIG_CONSOLE_POLL || CONFIG_SERIAL_SH_SCI_CONSOLE ||
 699	  CONFIG_SERIAL_SH_SCI_EARLYCON */
 700
 701static void sci_init_pins(struct uart_port *port, unsigned int cflag)
 702{
 703	struct sci_port *s = to_sci_port(port);
 704	const struct plat_sci_reg *reg = sci_regmap[s->cfg->regtype] + SCSPTR;
 705
 706	/*
 707	 * Use port-specific handler if provided.
 708	 */
 709	if (s->cfg->ops && s->cfg->ops->init_pins) {
 710		s->cfg->ops->init_pins(port, cflag);
 711		return;
 712	}
 713
 714	/*
 715	 * For the generic path SCSPTR is necessary. Bail out if that's
 716	 * unavailable, too.
 717	 */
 718	if (!reg->size)
 719		return;
 720
 721	if ((s->cfg->capabilities & SCIx_HAVE_RTSCTS) &&
 722	    ((!(cflag & CRTSCTS)))) {
 723		unsigned short status;
 724
 725		status = serial_port_in(port, SCSPTR);
 726		status &= ~SCSPTR_CTSIO;
 727		status |= SCSPTR_RTSIO;
 728		serial_port_out(port, SCSPTR, status); /* Set RTS = 1 */
 729	}
 730}
 731
 732static int sci_txfill(struct uart_port *port)
 733{
 734	const struct plat_sci_reg *reg;
 735
 736	reg = sci_getreg(port, SCTFDR);
 737	if (reg->size)
 738		return serial_port_in(port, SCTFDR) & ((port->fifosize << 1) - 1);
 739
 740	reg = sci_getreg(port, SCFDR);
 741	if (reg->size)
 742		return serial_port_in(port, SCFDR) >> 8;
 743
 744	return !(serial_port_in(port, SCxSR) & SCI_TDRE);
 745}
 746
 747static int sci_txroom(struct uart_port *port)
 748{
 749	return port->fifosize - sci_txfill(port);
 750}
 751
 752static int sci_rxfill(struct uart_port *port)
 753{
 754	const struct plat_sci_reg *reg;
 755
 756	reg = sci_getreg(port, SCRFDR);
 757	if (reg->size)
 758		return serial_port_in(port, SCRFDR) & ((port->fifosize << 1) - 1);
 759
 760	reg = sci_getreg(port, SCFDR);
 761	if (reg->size)
 762		return serial_port_in(port, SCFDR) & ((port->fifosize << 1) - 1);
 763
 764	return (serial_port_in(port, SCxSR) & SCxSR_RDxF(port)) != 0;
 765}
 766
 767/*
 768 * SCI helper for checking the state of the muxed port/RXD pins.
 769 */
 770static inline int sci_rxd_in(struct uart_port *port)
 771{
 772	struct sci_port *s = to_sci_port(port);
 773
 774	if (s->cfg->port_reg <= 0)
 775		return 1;
 776
 777	/* Cast for ARM damage */
 778	return !!__raw_readb((void __iomem *)(uintptr_t)s->cfg->port_reg);
 779}
 780
 781/* ********************************************************************** *
 782 *                   the interrupt related routines                       *
 783 * ********************************************************************** */
 784
 785static void sci_transmit_chars(struct uart_port *port)
 786{
 787	struct circ_buf *xmit = &port->state->xmit;
 788	unsigned int stopped = uart_tx_stopped(port);
 789	unsigned short status;
 790	unsigned short ctrl;
 791	int count;
 792
 793	status = serial_port_in(port, SCxSR);
 794	if (!(status & SCxSR_TDxE(port))) {
 795		ctrl = serial_port_in(port, SCSCR);
 796		if (uart_circ_empty(xmit))
 797			ctrl &= ~SCSCR_TIE;
 798		else
 799			ctrl |= SCSCR_TIE;
 800		serial_port_out(port, SCSCR, ctrl);
 801		return;
 802	}
 803
 804	count = sci_txroom(port);
 805
 806	do {
 807		unsigned char c;
 808
 809		if (port->x_char) {
 810			c = port->x_char;
 811			port->x_char = 0;
 812		} else if (!uart_circ_empty(xmit) && !stopped) {
 813			c = xmit->buf[xmit->tail];
 814			xmit->tail = (xmit->tail + 1) & (UART_XMIT_SIZE - 1);
 815		} else {
 816			break;
 817		}
 818
 819		serial_port_out(port, SCxTDR, c);
 820
 821		port->icount.tx++;
 822	} while (--count > 0);
 823
 824	sci_clear_SCxSR(port, SCxSR_TDxE_CLEAR(port));
 825
 826	if (uart_circ_chars_pending(xmit) < WAKEUP_CHARS)
 827		uart_write_wakeup(port);
 828	if (uart_circ_empty(xmit)) {
 829		sci_stop_tx(port);
 830	} else {
 831		ctrl = serial_port_in(port, SCSCR);
 832
 833		if (port->type != PORT_SCI) {
 834			serial_port_in(port, SCxSR); /* Dummy read */
 835			sci_clear_SCxSR(port, SCxSR_TDxE_CLEAR(port));
 836		}
 837
 838		ctrl |= SCSCR_TIE;
 839		serial_port_out(port, SCSCR, ctrl);
 840	}
 841}
 842
 843/* On SH3, SCIF may read end-of-break as a space->mark char */
 844#define STEPFN(c)  ({int __c = (c); (((__c-1)|(__c)) == -1); })
 845
 846static void sci_receive_chars(struct uart_port *port)
 847{
 848	struct sci_port *sci_port = to_sci_port(port);
 849	struct tty_port *tport = &port->state->port;
 850	int i, count, copied = 0;
 851	unsigned short status;
 852	unsigned char flag;
 853
 854	status = serial_port_in(port, SCxSR);
 855	if (!(status & SCxSR_RDxF(port)))
 856		return;
 857
 858	while (1) {
 859		/* Don't copy more bytes than there is room for in the buffer */
 860		count = tty_buffer_request_room(tport, sci_rxfill(port));
 861
 862		/* If for any reason we can't copy more data, we're done! */
 863		if (count == 0)
 864			break;
 865
 866		if (port->type == PORT_SCI) {
 867			char c = serial_port_in(port, SCxRDR);
 868			if (uart_handle_sysrq_char(port, c) ||
 869			    sci_port->break_flag)
 870				count = 0;
 871			else
 872				tty_insert_flip_char(tport, c, TTY_NORMAL);
 873		} else {
 874			for (i = 0; i < count; i++) {
 875				char c = serial_port_in(port, SCxRDR);
 876
 877				status = serial_port_in(port, SCxSR);
 878#if defined(CONFIG_CPU_SH3)
 879				/* Skip "chars" during break */
 880				if (sci_port->break_flag) {
 881					if ((c == 0) &&
 882					    (status & SCxSR_FER(port))) {
 883						count--; i--;
 884						continue;
 885					}
 886
 887					/* Nonzero => end-of-break */
 888					dev_dbg(port->dev, "debounce<%02x>\n", c);
 889					sci_port->break_flag = 0;
 890
 891					if (STEPFN(c)) {
 892						count--; i--;
 893						continue;
 894					}
 895				}
 896#endif /* CONFIG_CPU_SH3 */
 897				if (uart_handle_sysrq_char(port, c)) {
 898					count--; i--;
 899					continue;
 900				}
 901
 902				/* Store data and status */
 903				if (status & SCxSR_FER(port)) {
 904					flag = TTY_FRAME;
 905					port->icount.frame++;
 906					dev_notice(port->dev, "frame error\n");
 907				} else if (status & SCxSR_PER(port)) {
 908					flag = TTY_PARITY;
 909					port->icount.parity++;
 910					dev_notice(port->dev, "parity error\n");
 911				} else
 912					flag = TTY_NORMAL;
 913
 914				tty_insert_flip_char(tport, c, flag);
 915			}
 916		}
 917
 918		serial_port_in(port, SCxSR); /* dummy read */
 919		sci_clear_SCxSR(port, SCxSR_RDxF_CLEAR(port));
 920
 921		copied += count;
 922		port->icount.rx += count;
 923	}
 924
 925	if (copied) {
 926		/* Tell the rest of the system the news. New characters! */
 927		tty_flip_buffer_push(tport);
 928	} else {
 929		serial_port_in(port, SCxSR); /* dummy read */
 930		sci_clear_SCxSR(port, SCxSR_RDxF_CLEAR(port));
 931	}
 932}
 933
 934#define SCI_BREAK_JIFFIES (HZ/20)
 935
 936/*
 937 * The sci generates interrupts during the break,
 938 * 1 per millisecond or so during the break period, for 9600 baud.
 939 * So dont bother disabling interrupts.
 940 * But dont want more than 1 break event.
 941 * Use a kernel timer to periodically poll the rx line until
 942 * the break is finished.
 943 */
 944static inline void sci_schedule_break_timer(struct sci_port *port)
 945{
 946	mod_timer(&port->break_timer, jiffies + SCI_BREAK_JIFFIES);
 947}
 948
 949/* Ensure that two consecutive samples find the break over. */
 950static void sci_break_timer(unsigned long data)
 951{
 952	struct sci_port *port = (struct sci_port *)data;
 953
 
 
 954	if (sci_rxd_in(&port->port) == 0) {
 955		port->break_flag = 1;
 956		sci_schedule_break_timer(port);
 957	} else if (port->break_flag == 1) {
 958		/* break is over. */
 959		port->break_flag = 2;
 960		sci_schedule_break_timer(port);
 961	} else
 962		port->break_flag = 0;
 
 
 963}
 964
 965static int sci_handle_errors(struct uart_port *port)
 966{
 967	int copied = 0;
 968	unsigned short status = serial_port_in(port, SCxSR);
 969	struct tty_port *tport = &port->state->port;
 970	struct sci_port *s = to_sci_port(port);
 971
 972	/* Handle overruns */
 973	if (status & s->overrun_mask) {
 974		port->icount.overrun++;
 
 
 
 
 
 975
 976		/* overrun error */
 977		if (tty_insert_flip_char(tport, 0, TTY_OVERRUN))
 978			copied++;
 979
 980		dev_notice(port->dev, "overrun error\n");
 981	}
 982
 983	if (status & SCxSR_FER(port)) {
 984		if (sci_rxd_in(port) == 0) {
 985			/* Notify of BREAK */
 986			struct sci_port *sci_port = to_sci_port(port);
 987
 988			if (!sci_port->break_flag) {
 989				port->icount.brk++;
 990
 991				sci_port->break_flag = 1;
 992				sci_schedule_break_timer(sci_port);
 993
 994				/* Do sysrq handling. */
 995				if (uart_handle_break(port))
 996					return 0;
 997
 998				dev_dbg(port->dev, "BREAK detected\n");
 999
1000				if (tty_insert_flip_char(tport, 0, TTY_BREAK))
1001					copied++;
1002			}
1003
1004		} else {
1005			/* frame error */
1006			port->icount.frame++;
1007
1008			if (tty_insert_flip_char(tport, 0, TTY_FRAME))
1009				copied++;
1010
1011			dev_notice(port->dev, "frame error\n");
1012		}
1013	}
1014
1015	if (status & SCxSR_PER(port)) {
1016		/* parity error */
1017		port->icount.parity++;
1018
1019		if (tty_insert_flip_char(tport, 0, TTY_PARITY))
1020			copied++;
1021
1022		dev_notice(port->dev, "parity error\n");
1023	}
1024
1025	if (copied)
1026		tty_flip_buffer_push(tport);
1027
1028	return copied;
1029}
1030
1031static int sci_handle_fifo_overrun(struct uart_port *port)
1032{
1033	struct tty_port *tport = &port->state->port;
1034	struct sci_port *s = to_sci_port(port);
1035	const struct plat_sci_reg *reg;
1036	int copied = 0;
1037	u16 status;
1038
1039	reg = sci_getreg(port, s->overrun_reg);
1040	if (!reg->size)
1041		return 0;
1042
1043	status = serial_port_in(port, s->overrun_reg);
1044	if (status & s->overrun_mask) {
1045		status &= ~s->overrun_mask;
1046		serial_port_out(port, s->overrun_reg, status);
1047
1048		port->icount.overrun++;
 
1049
1050		tty_insert_flip_char(tport, 0, TTY_OVERRUN);
1051		tty_flip_buffer_push(tport);
1052
1053		dev_dbg(port->dev, "overrun error\n");
1054		copied++;
1055	}
1056
1057	return copied;
1058}
1059
1060static int sci_handle_breaks(struct uart_port *port)
1061{
1062	int copied = 0;
1063	unsigned short status = serial_port_in(port, SCxSR);
1064	struct tty_port *tport = &port->state->port;
1065	struct sci_port *s = to_sci_port(port);
1066
1067	if (uart_handle_break(port))
1068		return 0;
1069
1070	if (!s->break_flag && status & SCxSR_BRK(port)) {
1071#if defined(CONFIG_CPU_SH3)
1072		/* Debounce break */
1073		s->break_flag = 1;
1074#endif
1075
1076		port->icount.brk++;
1077
1078		/* Notify of BREAK */
1079		if (tty_insert_flip_char(tport, 0, TTY_BREAK))
1080			copied++;
1081
1082		dev_dbg(port->dev, "BREAK detected\n");
1083	}
1084
1085	if (copied)
1086		tty_flip_buffer_push(tport);
1087
1088	copied += sci_handle_fifo_overrun(port);
1089
1090	return copied;
1091}
1092
1093#ifdef CONFIG_SERIAL_SH_SCI_DMA
1094static void sci_dma_tx_complete(void *arg)
1095{
1096	struct sci_port *s = arg;
1097	struct uart_port *port = &s->port;
1098	struct circ_buf *xmit = &port->state->xmit;
1099	unsigned long flags;
1100
1101	dev_dbg(port->dev, "%s(%d)\n", __func__, port->line);
1102
1103	spin_lock_irqsave(&port->lock, flags);
1104
1105	xmit->tail += s->tx_dma_len;
1106	xmit->tail &= UART_XMIT_SIZE - 1;
1107
1108	port->icount.tx += s->tx_dma_len;
1109
1110	if (uart_circ_chars_pending(xmit) < WAKEUP_CHARS)
1111		uart_write_wakeup(port);
1112
1113	if (!uart_circ_empty(xmit)) {
1114		s->cookie_tx = 0;
1115		schedule_work(&s->work_tx);
1116	} else {
1117		s->cookie_tx = -EINVAL;
1118		if (port->type == PORT_SCIFA || port->type == PORT_SCIFB) {
1119			u16 ctrl = serial_port_in(port, SCSCR);
1120			serial_port_out(port, SCSCR, ctrl & ~SCSCR_TIE);
1121		}
1122	}
1123
1124	spin_unlock_irqrestore(&port->lock, flags);
1125}
1126
1127/* Locking: called with port lock held */
1128static int sci_dma_rx_push(struct sci_port *s, void *buf, size_t count)
1129{
1130	struct uart_port *port = &s->port;
1131	struct tty_port *tport = &port->state->port;
1132	int copied;
1133
1134	copied = tty_insert_flip_string(tport, buf, count);
1135	if (copied < count) {
1136		dev_warn(port->dev, "Rx overrun: dropping %zu bytes\n",
1137			 count - copied);
1138		port->icount.buf_overrun++;
1139	}
1140
1141	port->icount.rx += copied;
1142
1143	return copied;
1144}
1145
1146static int sci_dma_rx_find_active(struct sci_port *s)
1147{
1148	unsigned int i;
1149
1150	for (i = 0; i < ARRAY_SIZE(s->cookie_rx); i++)
1151		if (s->active_rx == s->cookie_rx[i])
1152			return i;
1153
1154	dev_err(s->port.dev, "%s: Rx cookie %d not found!\n", __func__,
1155		s->active_rx);
1156	return -1;
1157}
1158
1159static void sci_rx_dma_release(struct sci_port *s, bool enable_pio)
1160{
1161	struct dma_chan *chan = s->chan_rx;
1162	struct uart_port *port = &s->port;
1163	unsigned long flags;
1164
1165	spin_lock_irqsave(&port->lock, flags);
1166	s->chan_rx = NULL;
1167	s->cookie_rx[0] = s->cookie_rx[1] = -EINVAL;
1168	spin_unlock_irqrestore(&port->lock, flags);
1169	dmaengine_terminate_all(chan);
1170	dma_free_coherent(chan->device->dev, s->buf_len_rx * 2, s->rx_buf[0],
1171			  sg_dma_address(&s->sg_rx[0]));
1172	dma_release_channel(chan);
1173	if (enable_pio)
1174		sci_start_rx(port);
1175}
1176
1177static void sci_dma_rx_complete(void *arg)
1178{
1179	struct sci_port *s = arg;
1180	struct dma_chan *chan = s->chan_rx;
1181	struct uart_port *port = &s->port;
1182	struct dma_async_tx_descriptor *desc;
1183	unsigned long flags;
1184	int active, count = 0;
1185
1186	dev_dbg(port->dev, "%s(%d) active cookie %d\n", __func__, port->line,
1187		s->active_rx);
1188
1189	spin_lock_irqsave(&port->lock, flags);
1190
1191	active = sci_dma_rx_find_active(s);
1192	if (active >= 0)
1193		count = sci_dma_rx_push(s, s->rx_buf[active], s->buf_len_rx);
1194
1195	mod_timer(&s->rx_timer, jiffies + s->rx_timeout);
1196
1197	if (count)
1198		tty_flip_buffer_push(&port->state->port);
1199
1200	desc = dmaengine_prep_slave_sg(s->chan_rx, &s->sg_rx[active], 1,
1201				       DMA_DEV_TO_MEM,
1202				       DMA_PREP_INTERRUPT | DMA_CTRL_ACK);
1203	if (!desc)
1204		goto fail;
1205
1206	desc->callback = sci_dma_rx_complete;
1207	desc->callback_param = s;
1208	s->cookie_rx[active] = dmaengine_submit(desc);
1209	if (dma_submit_error(s->cookie_rx[active]))
1210		goto fail;
1211
1212	s->active_rx = s->cookie_rx[!active];
1213
1214	dma_async_issue_pending(chan);
1215
1216	dev_dbg(port->dev, "%s: cookie %d #%d, new active cookie %d\n",
1217		__func__, s->cookie_rx[active], active, s->active_rx);
1218	spin_unlock_irqrestore(&port->lock, flags);
1219	return;
1220
1221fail:
1222	spin_unlock_irqrestore(&port->lock, flags);
1223	dev_warn(port->dev, "Failed submitting Rx DMA descriptor\n");
1224	sci_rx_dma_release(s, true);
1225}
1226
1227static void sci_tx_dma_release(struct sci_port *s, bool enable_pio)
1228{
1229	struct dma_chan *chan = s->chan_tx;
1230	struct uart_port *port = &s->port;
1231	unsigned long flags;
1232
1233	spin_lock_irqsave(&port->lock, flags);
1234	s->chan_tx = NULL;
1235	s->cookie_tx = -EINVAL;
1236	spin_unlock_irqrestore(&port->lock, flags);
1237	dmaengine_terminate_all(chan);
1238	dma_unmap_single(chan->device->dev, s->tx_dma_addr, UART_XMIT_SIZE,
1239			 DMA_TO_DEVICE);
1240	dma_release_channel(chan);
1241	if (enable_pio)
1242		sci_start_tx(port);
1243}
1244
1245static void sci_submit_rx(struct sci_port *s)
1246{
1247	struct dma_chan *chan = s->chan_rx;
1248	int i;
1249
1250	for (i = 0; i < 2; i++) {
1251		struct scatterlist *sg = &s->sg_rx[i];
1252		struct dma_async_tx_descriptor *desc;
1253
1254		desc = dmaengine_prep_slave_sg(chan,
1255			sg, 1, DMA_DEV_TO_MEM,
1256			DMA_PREP_INTERRUPT | DMA_CTRL_ACK);
1257		if (!desc)
1258			goto fail;
1259
1260		desc->callback = sci_dma_rx_complete;
1261		desc->callback_param = s;
1262		s->cookie_rx[i] = dmaengine_submit(desc);
1263		if (dma_submit_error(s->cookie_rx[i]))
1264			goto fail;
1265
1266		dev_dbg(s->port.dev, "%s(): cookie %d to #%d\n", __func__,
1267			s->cookie_rx[i], i);
1268	}
1269
1270	s->active_rx = s->cookie_rx[0];
1271
1272	dma_async_issue_pending(chan);
1273	return;
1274
1275fail:
1276	if (i)
1277		dmaengine_terminate_all(chan);
1278	for (i = 0; i < 2; i++)
1279		s->cookie_rx[i] = -EINVAL;
1280	s->active_rx = -EINVAL;
1281	dev_warn(s->port.dev, "Failed to re-start Rx DMA, using PIO\n");
1282	sci_rx_dma_release(s, true);
1283}
1284
1285static void work_fn_tx(struct work_struct *work)
1286{
1287	struct sci_port *s = container_of(work, struct sci_port, work_tx);
1288	struct dma_async_tx_descriptor *desc;
1289	struct dma_chan *chan = s->chan_tx;
1290	struct uart_port *port = &s->port;
1291	struct circ_buf *xmit = &port->state->xmit;
1292	dma_addr_t buf;
1293
1294	/*
1295	 * DMA is idle now.
1296	 * Port xmit buffer is already mapped, and it is one page... Just adjust
1297	 * offsets and lengths. Since it is a circular buffer, we have to
1298	 * transmit till the end, and then the rest. Take the port lock to get a
1299	 * consistent xmit buffer state.
1300	 */
1301	spin_lock_irq(&port->lock);
1302	buf = s->tx_dma_addr + (xmit->tail & (UART_XMIT_SIZE - 1));
1303	s->tx_dma_len = min_t(unsigned int,
1304		CIRC_CNT(xmit->head, xmit->tail, UART_XMIT_SIZE),
1305		CIRC_CNT_TO_END(xmit->head, xmit->tail, UART_XMIT_SIZE));
1306	spin_unlock_irq(&port->lock);
1307
1308	desc = dmaengine_prep_slave_single(chan, buf, s->tx_dma_len,
1309					   DMA_MEM_TO_DEV,
1310					   DMA_PREP_INTERRUPT | DMA_CTRL_ACK);
1311	if (!desc) {
1312		dev_warn(port->dev, "Failed preparing Tx DMA descriptor\n");
1313		/* switch to PIO */
1314		sci_tx_dma_release(s, true);
1315		return;
1316	}
1317
1318	dma_sync_single_for_device(chan->device->dev, buf, s->tx_dma_len,
1319				   DMA_TO_DEVICE);
1320
1321	spin_lock_irq(&port->lock);
1322	desc->callback = sci_dma_tx_complete;
1323	desc->callback_param = s;
1324	spin_unlock_irq(&port->lock);
1325	s->cookie_tx = dmaengine_submit(desc);
1326	if (dma_submit_error(s->cookie_tx)) {
1327		dev_warn(port->dev, "Failed submitting Tx DMA descriptor\n");
1328		/* switch to PIO */
1329		sci_tx_dma_release(s, true);
1330		return;
1331	}
1332
1333	dev_dbg(port->dev, "%s: %p: %d...%d, cookie %d\n",
1334		__func__, xmit->buf, xmit->tail, xmit->head, s->cookie_tx);
1335
1336	dma_async_issue_pending(chan);
1337}
1338
1339static void rx_timer_fn(unsigned long arg)
1340{
1341	struct sci_port *s = (struct sci_port *)arg;
1342	struct dma_chan *chan = s->chan_rx;
1343	struct uart_port *port = &s->port;
1344	struct dma_tx_state state;
1345	enum dma_status status;
1346	unsigned long flags;
1347	unsigned int read;
1348	int active, count;
1349	u16 scr;
1350
1351	spin_lock_irqsave(&port->lock, flags);
1352
1353	dev_dbg(port->dev, "DMA Rx timed out\n");
1354
1355	active = sci_dma_rx_find_active(s);
1356	if (active < 0) {
1357		spin_unlock_irqrestore(&port->lock, flags);
1358		return;
1359	}
1360
1361	status = dmaengine_tx_status(s->chan_rx, s->active_rx, &state);
1362	if (status == DMA_COMPLETE) {
1363		dev_dbg(port->dev, "Cookie %d #%d has already completed\n",
1364			s->active_rx, active);
1365		spin_unlock_irqrestore(&port->lock, flags);
1366
1367		/* Let packet complete handler take care of the packet */
1368		return;
1369	}
1370
1371	dmaengine_pause(chan);
1372
1373	/*
1374	 * sometimes DMA transfer doesn't stop even if it is stopped and
1375	 * data keeps on coming until transaction is complete so check
1376	 * for DMA_COMPLETE again
1377	 * Let packet complete handler take care of the packet
1378	 */
1379	status = dmaengine_tx_status(s->chan_rx, s->active_rx, &state);
1380	if (status == DMA_COMPLETE) {
1381		spin_unlock_irqrestore(&port->lock, flags);
1382		dev_dbg(port->dev, "Transaction complete after DMA engine was stopped");
1383		return;
1384	}
1385
1386	/* Handle incomplete DMA receive */
1387	dmaengine_terminate_all(s->chan_rx);
1388	read = sg_dma_len(&s->sg_rx[active]) - state.residue;
1389	dev_dbg(port->dev, "Read %u bytes with cookie %d\n", read,
1390		s->active_rx);
1391
1392	if (read) {
1393		count = sci_dma_rx_push(s, s->rx_buf[active], read);
1394		if (count)
1395			tty_flip_buffer_push(&port->state->port);
1396	}
1397
1398	if (port->type == PORT_SCIFA || port->type == PORT_SCIFB)
1399		sci_submit_rx(s);
1400
1401	/* Direct new serial port interrupts back to CPU */
1402	scr = serial_port_in(port, SCSCR);
1403	if (port->type == PORT_SCIFA || port->type == PORT_SCIFB) {
1404		scr &= ~SCSCR_RDRQE;
1405		enable_irq(s->irqs[SCIx_RXI_IRQ]);
1406	}
1407	serial_port_out(port, SCSCR, scr | SCSCR_RIE);
1408
1409	spin_unlock_irqrestore(&port->lock, flags);
1410}
1411
1412static struct dma_chan *sci_request_dma_chan(struct uart_port *port,
1413					     enum dma_transfer_direction dir,
1414					     unsigned int id)
1415{
1416	dma_cap_mask_t mask;
1417	struct dma_chan *chan;
1418	struct dma_slave_config cfg;
1419	int ret;
1420
1421	dma_cap_zero(mask);
1422	dma_cap_set(DMA_SLAVE, mask);
1423
1424	chan = dma_request_slave_channel_compat(mask, shdma_chan_filter,
1425					(void *)(unsigned long)id, port->dev,
1426					dir == DMA_MEM_TO_DEV ? "tx" : "rx");
1427	if (!chan) {
1428		dev_warn(port->dev,
1429			 "dma_request_slave_channel_compat failed\n");
1430		return NULL;
1431	}
1432
1433	memset(&cfg, 0, sizeof(cfg));
1434	cfg.direction = dir;
1435	if (dir == DMA_MEM_TO_DEV) {
1436		cfg.dst_addr = port->mapbase +
1437			(sci_getreg(port, SCxTDR)->offset << port->regshift);
1438		cfg.dst_addr_width = DMA_SLAVE_BUSWIDTH_1_BYTE;
1439	} else {
1440		cfg.src_addr = port->mapbase +
1441			(sci_getreg(port, SCxRDR)->offset << port->regshift);
1442		cfg.src_addr_width = DMA_SLAVE_BUSWIDTH_1_BYTE;
1443	}
1444
1445	ret = dmaengine_slave_config(chan, &cfg);
1446	if (ret) {
1447		dev_warn(port->dev, "dmaengine_slave_config failed %d\n", ret);
1448		dma_release_channel(chan);
1449		return NULL;
1450	}
1451
1452	return chan;
1453}
1454
1455static void sci_request_dma(struct uart_port *port)
1456{
1457	struct sci_port *s = to_sci_port(port);
1458	struct dma_chan *chan;
1459
1460	dev_dbg(port->dev, "%s: port %d\n", __func__, port->line);
1461
1462	if (!port->dev->of_node &&
1463	    (s->cfg->dma_slave_tx <= 0 || s->cfg->dma_slave_rx <= 0))
1464		return;
1465
1466	s->cookie_tx = -EINVAL;
1467	chan = sci_request_dma_chan(port, DMA_MEM_TO_DEV, s->cfg->dma_slave_tx);
1468	dev_dbg(port->dev, "%s: TX: got channel %p\n", __func__, chan);
1469	if (chan) {
1470		s->chan_tx = chan;
1471		/* UART circular tx buffer is an aligned page. */
1472		s->tx_dma_addr = dma_map_single(chan->device->dev,
1473						port->state->xmit.buf,
1474						UART_XMIT_SIZE,
1475						DMA_TO_DEVICE);
1476		if (dma_mapping_error(chan->device->dev, s->tx_dma_addr)) {
1477			dev_warn(port->dev, "Failed mapping Tx DMA descriptor\n");
1478			dma_release_channel(chan);
1479			s->chan_tx = NULL;
1480		} else {
1481			dev_dbg(port->dev, "%s: mapped %lu@%p to %pad\n",
1482				__func__, UART_XMIT_SIZE,
1483				port->state->xmit.buf, &s->tx_dma_addr);
1484		}
1485
1486		INIT_WORK(&s->work_tx, work_fn_tx);
1487	}
1488
1489	chan = sci_request_dma_chan(port, DMA_DEV_TO_MEM, s->cfg->dma_slave_rx);
1490	dev_dbg(port->dev, "%s: RX: got channel %p\n", __func__, chan);
1491	if (chan) {
1492		unsigned int i;
1493		dma_addr_t dma;
1494		void *buf;
1495
1496		s->chan_rx = chan;
1497
1498		s->buf_len_rx = 2 * max_t(size_t, 16, port->fifosize);
1499		buf = dma_alloc_coherent(chan->device->dev, s->buf_len_rx * 2,
1500					 &dma, GFP_KERNEL);
1501		if (!buf) {
1502			dev_warn(port->dev,
1503				 "Failed to allocate Rx dma buffer, using PIO\n");
1504			dma_release_channel(chan);
1505			s->chan_rx = NULL;
1506			return;
1507		}
1508
1509		for (i = 0; i < 2; i++) {
1510			struct scatterlist *sg = &s->sg_rx[i];
1511
1512			sg_init_table(sg, 1);
1513			s->rx_buf[i] = buf;
1514			sg_dma_address(sg) = dma;
1515			sg_dma_len(sg) = s->buf_len_rx;
1516
1517			buf += s->buf_len_rx;
1518			dma += s->buf_len_rx;
1519		}
1520
1521		setup_timer(&s->rx_timer, rx_timer_fn, (unsigned long)s);
1522
1523		if (port->type == PORT_SCIFA || port->type == PORT_SCIFB)
1524			sci_submit_rx(s);
1525	}
1526}
1527
1528static void sci_free_dma(struct uart_port *port)
1529{
1530	struct sci_port *s = to_sci_port(port);
1531
1532	if (s->chan_tx)
1533		sci_tx_dma_release(s, false);
1534	if (s->chan_rx)
1535		sci_rx_dma_release(s, false);
1536}
1537#else
1538static inline void sci_request_dma(struct uart_port *port)
1539{
1540}
1541
1542static inline void sci_free_dma(struct uart_port *port)
1543{
1544}
1545#endif
1546
1547static irqreturn_t sci_rx_interrupt(int irq, void *ptr)
1548{
1549#ifdef CONFIG_SERIAL_SH_SCI_DMA
1550	struct uart_port *port = ptr;
1551	struct sci_port *s = to_sci_port(port);
1552
1553	if (s->chan_rx) {
1554		u16 scr = serial_port_in(port, SCSCR);
1555		u16 ssr = serial_port_in(port, SCxSR);
1556
1557		/* Disable future Rx interrupts */
1558		if (port->type == PORT_SCIFA || port->type == PORT_SCIFB) {
1559			disable_irq_nosync(irq);
1560			scr |= SCSCR_RDRQE;
1561		} else {
1562			scr &= ~SCSCR_RIE;
1563			sci_submit_rx(s);
1564		}
1565		serial_port_out(port, SCSCR, scr);
1566		/* Clear current interrupt */
1567		serial_port_out(port, SCxSR,
1568				ssr & ~(SCIF_DR | SCxSR_RDxF(port)));
1569		dev_dbg(port->dev, "Rx IRQ %lu: setup t-out in %u jiffies\n",
1570			jiffies, s->rx_timeout);
1571		mod_timer(&s->rx_timer, jiffies + s->rx_timeout);
1572
1573		return IRQ_HANDLED;
1574	}
1575#endif
1576
1577	/* I think sci_receive_chars has to be called irrespective
1578	 * of whether the I_IXOFF is set, otherwise, how is the interrupt
1579	 * to be disabled?
1580	 */
1581	sci_receive_chars(ptr);
1582
1583	return IRQ_HANDLED;
1584}
1585
1586static irqreturn_t sci_tx_interrupt(int irq, void *ptr)
1587{
1588	struct uart_port *port = ptr;
1589	unsigned long flags;
1590
1591	spin_lock_irqsave(&port->lock, flags);
1592	sci_transmit_chars(port);
1593	spin_unlock_irqrestore(&port->lock, flags);
1594
1595	return IRQ_HANDLED;
1596}
1597
1598static irqreturn_t sci_er_interrupt(int irq, void *ptr)
1599{
1600	struct uart_port *port = ptr;
1601	struct sci_port *s = to_sci_port(port);
1602
1603	/* Handle errors */
1604	if (port->type == PORT_SCI) {
1605		if (sci_handle_errors(port)) {
1606			/* discard character in rx buffer */
1607			serial_port_in(port, SCxSR);
1608			sci_clear_SCxSR(port, SCxSR_RDxF_CLEAR(port));
1609		}
1610	} else {
1611		sci_handle_fifo_overrun(port);
1612		if (!s->chan_rx)
1613			sci_receive_chars(ptr);
1614	}
1615
1616	sci_clear_SCxSR(port, SCxSR_ERROR_CLEAR(port));
1617
1618	/* Kick the transmission */
1619	if (!s->chan_tx)
1620		sci_tx_interrupt(irq, ptr);
1621
1622	return IRQ_HANDLED;
1623}
1624
1625static irqreturn_t sci_br_interrupt(int irq, void *ptr)
1626{
1627	struct uart_port *port = ptr;
1628
1629	/* Handle BREAKs */
1630	sci_handle_breaks(port);
1631	sci_clear_SCxSR(port, SCxSR_BREAK_CLEAR(port));
1632
1633	return IRQ_HANDLED;
1634}
1635
 
 
 
 
 
 
 
 
 
 
 
 
1636static irqreturn_t sci_mpxed_interrupt(int irq, void *ptr)
1637{
1638	unsigned short ssr_status, scr_status, err_enabled, orer_status = 0;
1639	struct uart_port *port = ptr;
1640	struct sci_port *s = to_sci_port(port);
1641	irqreturn_t ret = IRQ_NONE;
1642
1643	ssr_status = serial_port_in(port, SCxSR);
1644	scr_status = serial_port_in(port, SCSCR);
1645	if (s->overrun_reg == SCxSR)
1646		orer_status = ssr_status;
1647	else {
1648		if (sci_getreg(port, s->overrun_reg)->size)
1649			orer_status = serial_port_in(port, s->overrun_reg);
1650	}
1651
1652	err_enabled = scr_status & port_rx_irq_mask(port);
1653
1654	/* Tx Interrupt */
1655	if ((ssr_status & SCxSR_TDxE(port)) && (scr_status & SCSCR_TIE) &&
1656	    !s->chan_tx)
1657		ret = sci_tx_interrupt(irq, ptr);
1658
1659	/*
1660	 * Rx Interrupt: if we're using DMA, the DMA controller clears RDF /
1661	 * DR flags
1662	 */
1663	if (((ssr_status & SCxSR_RDxF(port)) || s->chan_rx) &&
1664	    (scr_status & SCSCR_RIE))
1665		ret = sci_rx_interrupt(irq, ptr);
1666
1667	/* Error Interrupt */
1668	if ((ssr_status & SCxSR_ERRORS(port)) && err_enabled)
1669		ret = sci_er_interrupt(irq, ptr);
1670
1671	/* Break Interrupt */
1672	if ((ssr_status & SCxSR_BRK(port)) && err_enabled)
1673		ret = sci_br_interrupt(irq, ptr);
1674
1675	/* Overrun Interrupt */
1676	if (orer_status & s->overrun_mask) {
1677		sci_handle_fifo_overrun(port);
1678		ret = IRQ_HANDLED;
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1679	}
1680
1681	return ret;
1682}
1683
1684static const struct sci_irq_desc {
1685	const char	*desc;
1686	irq_handler_t	handler;
1687} sci_irq_desc[] = {
1688	/*
1689	 * Split out handlers, the default case.
1690	 */
1691	[SCIx_ERI_IRQ] = {
1692		.desc = "rx err",
1693		.handler = sci_er_interrupt,
1694	},
1695
1696	[SCIx_RXI_IRQ] = {
1697		.desc = "rx full",
1698		.handler = sci_rx_interrupt,
1699	},
1700
1701	[SCIx_TXI_IRQ] = {
1702		.desc = "tx empty",
1703		.handler = sci_tx_interrupt,
1704	},
1705
1706	[SCIx_BRI_IRQ] = {
1707		.desc = "break",
1708		.handler = sci_br_interrupt,
1709	},
1710
1711	/*
1712	 * Special muxed handler.
1713	 */
1714	[SCIx_MUX_IRQ] = {
1715		.desc = "mux",
1716		.handler = sci_mpxed_interrupt,
1717	},
1718};
1719
1720static int sci_request_irq(struct sci_port *port)
1721{
1722	struct uart_port *up = &port->port;
1723	int i, j, ret = 0;
1724
1725	for (i = j = 0; i < SCIx_NR_IRQS; i++, j++) {
1726		const struct sci_irq_desc *desc;
1727		int irq;
1728
1729		if (SCIx_IRQ_IS_MUXED(port)) {
1730			i = SCIx_MUX_IRQ;
1731			irq = up->irq;
1732		} else {
1733			irq = port->irqs[i];
1734
1735			/*
1736			 * Certain port types won't support all of the
1737			 * available interrupt sources.
1738			 */
1739			if (unlikely(irq < 0))
1740				continue;
1741		}
1742
1743		desc = sci_irq_desc + i;
1744		port->irqstr[j] = kasprintf(GFP_KERNEL, "%s:%s",
1745					    dev_name(up->dev), desc->desc);
1746		if (!port->irqstr[j])
 
 
1747			goto out_nomem;
 
1748
1749		ret = request_irq(irq, desc->handler, up->irqflags,
1750				  port->irqstr[j], port);
1751		if (unlikely(ret)) {
1752			dev_err(up->dev, "Can't allocate %s IRQ\n", desc->desc);
1753			goto out_noirq;
1754		}
1755	}
1756
1757	return 0;
1758
1759out_noirq:
1760	while (--i >= 0)
1761		free_irq(port->irqs[i], port);
1762
1763out_nomem:
1764	while (--j >= 0)
1765		kfree(port->irqstr[j]);
1766
1767	return ret;
1768}
1769
1770static void sci_free_irq(struct sci_port *port)
1771{
1772	int i;
1773
1774	/*
1775	 * Intentionally in reverse order so we iterate over the muxed
1776	 * IRQ first.
1777	 */
1778	for (i = 0; i < SCIx_NR_IRQS; i++) {
1779		int irq = port->irqs[i];
1780
1781		/*
1782		 * Certain port types won't support all of the available
1783		 * interrupt sources.
1784		 */
1785		if (unlikely(irq < 0))
1786			continue;
1787
1788		free_irq(port->irqs[i], port);
1789		kfree(port->irqstr[i]);
1790
1791		if (SCIx_IRQ_IS_MUXED(port)) {
1792			/* If there's only one IRQ, we're done. */
1793			return;
1794		}
1795	}
1796}
1797
1798static unsigned int sci_tx_empty(struct uart_port *port)
1799{
1800	unsigned short status = serial_port_in(port, SCxSR);
1801	unsigned short in_tx_fifo = sci_txfill(port);
1802
1803	return (status & SCxSR_TEND(port)) && !in_tx_fifo ? TIOCSER_TEMT : 0;
1804}
1805
1806/*
1807 * Modem control is a bit of a mixed bag for SCI(F) ports. Generally
1808 * CTS/RTS is supported in hardware by at least one port and controlled
1809 * via SCSPTR (SCxPCR for SCIFA/B parts), or external pins (presently
1810 * handled via the ->init_pins() op, which is a bit of a one-way street,
1811 * lacking any ability to defer pin control -- this will later be
1812 * converted over to the GPIO framework).
1813 *
1814 * Other modes (such as loopback) are supported generically on certain
1815 * port types, but not others. For these it's sufficient to test for the
1816 * existence of the support register and simply ignore the port type.
1817 */
1818static void sci_set_mctrl(struct uart_port *port, unsigned int mctrl)
1819{
1820	if (mctrl & TIOCM_LOOP) {
1821		const struct plat_sci_reg *reg;
1822
1823		/*
1824		 * Standard loopback mode for SCFCR ports.
1825		 */
1826		reg = sci_getreg(port, SCFCR);
1827		if (reg->size)
1828			serial_port_out(port, SCFCR,
1829					serial_port_in(port, SCFCR) |
1830					SCFCR_LOOP);
1831	}
1832}
1833
1834static unsigned int sci_get_mctrl(struct uart_port *port)
1835{
1836	/*
1837	 * CTS/RTS is handled in hardware when supported, while nothing
1838	 * else is wired up. Keep it simple and simply assert DSR/CAR.
1839	 */
1840	return TIOCM_DSR | TIOCM_CAR;
1841}
1842
1843static void sci_break_ctl(struct uart_port *port, int break_state)
 
1844{
1845	struct sci_port *s = to_sci_port(port);
1846	const struct plat_sci_reg *reg = sci_regmap[s->cfg->regtype] + SCSPTR;
1847	unsigned short scscr, scsptr;
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1848
1849	/* check wheter the port has SCSPTR */
1850	if (!reg->size) {
1851		/*
1852		 * Not supported by hardware. Most parts couple break and rx
1853		 * interrupts together, with break detection always enabled.
1854		 */
1855		return;
1856	}
1857
1858	scsptr = serial_port_in(port, SCSPTR);
1859	scscr = serial_port_in(port, SCSCR);
 
 
 
 
 
 
 
 
 
1860
1861	if (break_state == -1) {
1862		scsptr = (scsptr | SCSPTR_SPB2IO) & ~SCSPTR_SPB2DT;
1863		scscr &= ~SCSCR_TE;
 
1864	} else {
1865		scsptr = (scsptr | SCSPTR_SPB2DT) & ~SCSPTR_SPB2IO;
1866		scscr |= SCSCR_TE;
1867	}
1868
1869	serial_port_out(port, SCSPTR, scsptr);
1870	serial_port_out(port, SCSCR, scscr);
 
 
 
 
 
 
 
 
 
 
 
1871}
1872
1873static int sci_startup(struct uart_port *port)
1874{
1875	struct sci_port *s = to_sci_port(port);
 
 
1876	unsigned long flags;
1877	int ret;
 
 
1878
1879	dev_dbg(port->dev, "%s(%d)\n", __func__, port->line);
1880
1881	ret = sci_request_irq(s);
1882	if (unlikely(ret < 0))
1883		return ret;
1884
1885	sci_request_dma(port);
1886
1887	spin_lock_irqsave(&port->lock, flags);
1888	sci_start_tx(port);
1889	sci_start_rx(port);
1890	spin_unlock_irqrestore(&port->lock, flags);
1891
1892	return 0;
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1893}
1894
1895static void sci_shutdown(struct uart_port *port)
1896{
1897	struct sci_port *s = to_sci_port(port);
1898	unsigned long flags;
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1899
1900	dev_dbg(port->dev, "%s(%d)\n", __func__, port->line);
 
 
1901
1902	spin_lock_irqsave(&port->lock, flags);
1903	sci_stop_rx(port);
1904	sci_stop_tx(port);
1905	spin_unlock_irqrestore(&port->lock, flags);
1906
1907#ifdef CONFIG_SERIAL_SH_SCI_DMA
1908	if (s->chan_rx) {
1909		dev_dbg(port->dev, "%s(%d) deleting rx_timer\n", __func__,
1910			port->line);
1911		del_timer_sync(&s->rx_timer);
 
 
 
 
1912	}
 
 
 
 
1913#endif
1914
1915	sci_free_dma(port);
1916	sci_free_irq(s);
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1917}
1918
1919static int sci_sck_calc(struct sci_port *s, unsigned int bps,
1920			unsigned int *srr)
1921{
1922	unsigned long freq = s->clk_rates[SCI_SCK];
1923	int err, min_err = INT_MAX;
1924	unsigned int sr;
1925
1926	if (s->port.type != PORT_HSCIF)
1927		freq *= 2;
1928
1929	for_each_sr(sr, s) {
1930		err = DIV_ROUND_CLOSEST(freq, sr) - bps;
1931		if (abs(err) >= abs(min_err))
1932			continue;
1933
1934		min_err = err;
1935		*srr = sr - 1;
1936
1937		if (!err)
1938			break;
 
 
 
1939	}
 
1940
1941	dev_dbg(s->port.dev, "SCK: %u%+d bps using SR %u\n", bps, min_err,
1942		*srr + 1);
1943	return min_err;
 
 
 
 
 
 
 
 
 
 
1944}
1945
1946static int sci_brg_calc(struct sci_port *s, unsigned int bps,
1947			unsigned long freq, unsigned int *dlr,
1948			unsigned int *srr)
1949{
1950	int err, min_err = INT_MAX;
1951	unsigned int sr, dl;
 
 
 
 
 
 
1952
1953	if (s->port.type != PORT_HSCIF)
1954		freq *= 2;
 
 
 
1955
1956	for_each_sr(sr, s) {
1957		dl = DIV_ROUND_CLOSEST(freq, sr * bps);
1958		dl = clamp(dl, 1U, 65535U);
1959
1960		err = DIV_ROUND_CLOSEST(freq, sr * dl) - bps;
1961		if (abs(err) >= abs(min_err))
1962			continue;
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1963
1964		min_err = err;
1965		*dlr = dl;
1966		*srr = sr - 1;
1967
1968		if (!err)
1969			break;
1970	}
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1971
1972	dev_dbg(s->port.dev, "BRG: %u%+d bps using DL %u SR %u\n", bps,
1973		min_err, *dlr, *srr + 1);
1974	return min_err;
1975}
 
1976
1977/* calculate sample rate, BRR, and clock select */
1978static int sci_scbrr_calc(struct sci_port *s, unsigned int bps,
1979			  unsigned int *brr, unsigned int *srr,
1980			  unsigned int *cks)
1981{
1982	unsigned long freq = s->clk_rates[SCI_FCK];
1983	unsigned int sr, br, prediv, scrate, c;
1984	int err, min_err = INT_MAX;
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1985
1986	if (s->port.type != PORT_HSCIF)
1987		freq *= 2;
1988
1989	/*
1990	 * Find the combination of sample rate and clock select with the
1991	 * smallest deviation from the desired baud rate.
1992	 * Prefer high sample rates to maximise the receive margin.
1993	 *
1994	 * M: Receive margin (%)
1995	 * N: Ratio of bit rate to clock (N = sampling rate)
1996	 * D: Clock duty (D = 0 to 1.0)
1997	 * L: Frame length (L = 9 to 12)
1998	 * F: Absolute value of clock frequency deviation
1999	 *
2000	 *  M = |(0.5 - 1 / 2 * N) - ((L - 0.5) * F) -
2001	 *      (|D - 0.5| / N * (1 + F))|
2002	 *  NOTE: Usually, treat D for 0.5, F is 0 by this calculation.
2003	 */
2004	for_each_sr(sr, s) {
2005		for (c = 0; c <= 3; c++) {
2006			/* integerized formulas from HSCIF documentation */
2007			prediv = sr * (1 << (2 * c + 1));
2008
2009			/*
2010			 * We need to calculate:
2011			 *
2012			 *     br = freq / (prediv * bps) clamped to [1..256]
2013			 *     err = freq / (br * prediv) - bps
2014			 *
2015			 * Watch out for overflow when calculating the desired
2016			 * sampling clock rate!
2017			 */
2018			if (bps > UINT_MAX / prediv)
2019				break;
2020
2021			scrate = prediv * bps;
2022			br = DIV_ROUND_CLOSEST(freq, scrate);
2023			br = clamp(br, 1U, 256U);
2024
2025			err = DIV_ROUND_CLOSEST(freq, br * prediv) - bps;
2026			if (abs(err) >= abs(min_err))
2027				continue;
2028
2029			min_err = err;
2030			*brr = br - 1;
2031			*srr = sr - 1;
2032			*cks = c;
2033
2034			if (!err)
2035				goto found;
2036		}
 
 
 
 
 
 
 
 
 
 
 
2037	}
2038
2039found:
2040	dev_dbg(s->port.dev, "BRR: %u%+d bps using N %u SR %u cks %u\n", bps,
2041		min_err, *brr, *srr + 1, *cks);
2042	return min_err;
2043}
2044
2045static void sci_reset(struct uart_port *port)
2046{
2047	const struct plat_sci_reg *reg;
2048	unsigned int status;
2049
2050	do {
2051		status = serial_port_in(port, SCxSR);
2052	} while (!(status & SCxSR_TEND(port)));
2053
2054	serial_port_out(port, SCSCR, 0x00);	/* TE=0, RE=0, CKE1=0 */
2055
2056	reg = sci_getreg(port, SCFCR);
2057	if (reg->size)
2058		serial_port_out(port, SCFCR, SCFCR_RFRST | SCFCR_TFRST);
2059}
2060
2061static void sci_set_termios(struct uart_port *port, struct ktermios *termios,
2062			    struct ktermios *old)
2063{
2064	unsigned int baud, smr_val = SCSMR_ASYNC, scr_val = 0, i;
2065	unsigned int brr = 255, cks = 0, srr = 15, dl = 0, sccks = 0;
2066	unsigned int brr1 = 255, cks1 = 0, srr1 = 15, dl1 = 0;
2067	struct sci_port *s = to_sci_port(port);
2068	const struct plat_sci_reg *reg;
2069	int min_err = INT_MAX, err;
2070	unsigned long max_freq = 0;
2071	int best_clk = -1;
2072
2073	if ((termios->c_cflag & CSIZE) == CS7)
2074		smr_val |= SCSMR_CHR;
2075	if (termios->c_cflag & PARENB)
2076		smr_val |= SCSMR_PE;
2077	if (termios->c_cflag & PARODD)
2078		smr_val |= SCSMR_PE | SCSMR_ODD;
2079	if (termios->c_cflag & CSTOPB)
2080		smr_val |= SCSMR_STOP;
2081
2082	/*
2083	 * earlyprintk comes here early on with port->uartclk set to zero.
2084	 * the clock framework is not up and running at this point so here
2085	 * we assume that 115200 is the maximum baud rate. please note that
2086	 * the baud rate is not programmed during earlyprintk - it is assumed
2087	 * that the previous boot loader has enabled required clocks and
2088	 * setup the baud rate generator hardware for us already.
2089	 */
2090	if (!port->uartclk) {
2091		baud = uart_get_baud_rate(port, termios, old, 0, 115200);
2092		goto done;
2093	}
2094
2095	for (i = 0; i < SCI_NUM_CLKS; i++)
2096		max_freq = max(max_freq, s->clk_rates[i]);
2097
2098	baud = uart_get_baud_rate(port, termios, old, 0, max_freq / min_sr(s));
2099	if (!baud)
2100		goto done;
2101
2102	/*
2103	 * There can be multiple sources for the sampling clock.  Find the one
2104	 * that gives us the smallest deviation from the desired baud rate.
2105	 */
2106
2107	/* Optional Undivided External Clock */
2108	if (s->clk_rates[SCI_SCK] && port->type != PORT_SCIFA &&
2109	    port->type != PORT_SCIFB) {
2110		err = sci_sck_calc(s, baud, &srr1);
2111		if (abs(err) < abs(min_err)) {
2112			best_clk = SCI_SCK;
2113			scr_val = SCSCR_CKE1;
2114			sccks = SCCKS_CKS;
2115			min_err = err;
2116			srr = srr1;
2117			if (!err)
2118				goto done;
2119		}
2120	}
2121
2122	/* Optional BRG Frequency Divided External Clock */
2123	if (s->clk_rates[SCI_SCIF_CLK] && sci_getreg(port, SCDL)->size) {
2124		err = sci_brg_calc(s, baud, s->clk_rates[SCI_SCIF_CLK], &dl1,
2125				   &srr1);
2126		if (abs(err) < abs(min_err)) {
2127			best_clk = SCI_SCIF_CLK;
2128			scr_val = SCSCR_CKE1;
2129			sccks = 0;
2130			min_err = err;
2131			dl = dl1;
2132			srr = srr1;
2133			if (!err)
2134				goto done;
2135		}
2136	}
2137
2138	/* Optional BRG Frequency Divided Internal Clock */
2139	if (s->clk_rates[SCI_BRG_INT] && sci_getreg(port, SCDL)->size) {
2140		err = sci_brg_calc(s, baud, s->clk_rates[SCI_BRG_INT], &dl1,
2141				   &srr1);
2142		if (abs(err) < abs(min_err)) {
2143			best_clk = SCI_BRG_INT;
2144			scr_val = SCSCR_CKE1;
2145			sccks = SCCKS_XIN;
2146			min_err = err;
2147			dl = dl1;
2148			srr = srr1;
2149			if (!min_err)
2150				goto done;
2151		}
2152	}
2153
2154	/* Divided Functional Clock using standard Bit Rate Register */
2155	err = sci_scbrr_calc(s, baud, &brr1, &srr1, &cks1);
2156	if (abs(err) < abs(min_err)) {
2157		best_clk = SCI_FCK;
2158		scr_val = 0;
2159		min_err = err;
2160		brr = brr1;
2161		srr = srr1;
2162		cks = cks1;
2163	}
2164
2165done:
2166	if (best_clk >= 0)
2167		dev_dbg(port->dev, "Using clk %pC for %u%+d bps\n",
2168			s->clks[best_clk], baud, min_err);
2169
2170	sci_port_enable(s);
 
 
 
 
 
 
 
2171
2172	/*
2173	 * Program the optional External Baud Rate Generator (BRG) first.
2174	 * It controls the mux to select (H)SCK or frequency divided clock.
2175	 */
2176	if (best_clk >= 0 && sci_getreg(port, SCCKS)->size) {
2177		serial_port_out(port, SCDL, dl);
2178		serial_port_out(port, SCCKS, sccks);
2179	}
2180
2181	sci_reset(port);
2182
2183	uart_update_timeout(port, termios->c_cflag, baud);
 
2184
2185	if (best_clk >= 0) {
2186		if (port->type == PORT_SCIFA || port->type == PORT_SCIFB)
2187			switch (srr + 1) {
2188			case 5:  smr_val |= SCSMR_SRC_5;  break;
2189			case 7:  smr_val |= SCSMR_SRC_7;  break;
2190			case 11: smr_val |= SCSMR_SRC_11; break;
2191			case 13: smr_val |= SCSMR_SRC_13; break;
2192			case 16: smr_val |= SCSMR_SRC_16; break;
2193			case 17: smr_val |= SCSMR_SRC_17; break;
2194			case 19: smr_val |= SCSMR_SRC_19; break;
2195			case 27: smr_val |= SCSMR_SRC_27; break;
2196			}
2197		smr_val |= cks;
2198		dev_dbg(port->dev,
2199			 "SCR 0x%x SMR 0x%x BRR %u CKS 0x%x DL %u SRR %u\n",
2200			 scr_val, smr_val, brr, sccks, dl, srr);
2201		serial_port_out(port, SCSCR, scr_val);
2202		serial_port_out(port, SCSMR, smr_val);
2203		serial_port_out(port, SCBRR, brr);
2204		if (sci_getreg(port, HSSRR)->size)
2205			serial_port_out(port, HSSRR, srr | HSCIF_SRE);
2206
2207		/* Wait one bit interval */
2208		udelay((1000000 + (baud - 1)) / baud);
2209	} else {
2210		/* Don't touch the bit rate configuration */
2211		scr_val = s->cfg->scscr & (SCSCR_CKE1 | SCSCR_CKE0);
2212		smr_val |= serial_port_in(port, SCSMR) &
2213			   (SCSMR_CKEDG | SCSMR_SRC_MASK | SCSMR_CKS);
2214		dev_dbg(port->dev, "SCR 0x%x SMR 0x%x\n", scr_val, smr_val);
2215		serial_port_out(port, SCSCR, scr_val);
2216		serial_port_out(port, SCSMR, smr_val);
2217	}
2218
2219	sci_init_pins(port, termios->c_cflag);
 
2220
2221	reg = sci_getreg(port, SCFCR);
2222	if (reg->size) {
2223		unsigned short ctrl = serial_port_in(port, SCFCR);
2224
2225		if (s->cfg->capabilities & SCIx_HAVE_RTSCTS) {
2226			if (termios->c_cflag & CRTSCTS)
2227				ctrl |= SCFCR_MCE;
2228			else
2229				ctrl &= ~SCFCR_MCE;
2230		}
2231
2232		/*
2233		 * As we've done a sci_reset() above, ensure we don't
2234		 * interfere with the FIFOs while toggling MCE. As the
2235		 * reset values could still be set, simply mask them out.
2236		 */
2237		ctrl &= ~(SCFCR_RFRST | SCFCR_TFRST);
2238
2239		serial_port_out(port, SCFCR, ctrl);
2240	}
2241
2242	scr_val |= s->cfg->scscr & ~(SCSCR_CKE1 | SCSCR_CKE0);
2243	dev_dbg(port->dev, "SCSCR 0x%x\n", scr_val);
2244	serial_port_out(port, SCSCR, scr_val);
2245	if ((srr + 1 == 5) &&
2246	    (port->type == PORT_SCIFA || port->type == PORT_SCIFB)) {
2247		/*
2248		 * In asynchronous mode, when the sampling rate is 1/5, first
2249		 * received data may become invalid on some SCIFA and SCIFB.
2250		 * To avoid this problem wait more than 1 serial data time (1
2251		 * bit time x serial data number) after setting SCSCR.RE = 1.
2252		 */
2253		udelay(DIV_ROUND_UP(10 * 1000000, baud));
2254	}
2255
2256#ifdef CONFIG_SERIAL_SH_SCI_DMA
2257	/*
2258	 * Calculate delay for 2 DMA buffers (4 FIFO).
2259	 * See serial_core.c::uart_update_timeout().
2260	 * With 10 bits (CS8), 250Hz, 115200 baud and 64 bytes FIFO, the above
2261	 * function calculates 1 jiffie for the data plus 5 jiffies for the
2262	 * "slop(e)." Then below we calculate 5 jiffies (20ms) for 2 DMA
2263	 * buffers (4 FIFO sizes), but when performing a faster transfer, the
2264	 * value obtained by this formula is too small. Therefore, if the value
2265	 * is smaller than 20ms, use 20ms as the timeout value for DMA.
2266	 */
2267	if (s->chan_rx) {
2268		unsigned int bits;
2269
2270		/* byte size and parity */
2271		switch (termios->c_cflag & CSIZE) {
2272		case CS5:
2273			bits = 7;
2274			break;
2275		case CS6:
2276			bits = 8;
2277			break;
2278		case CS7:
2279			bits = 9;
2280			break;
2281		default:
2282			bits = 10;
2283			break;
2284		}
2285
2286		if (termios->c_cflag & CSTOPB)
2287			bits++;
2288		if (termios->c_cflag & PARENB)
2289			bits++;
2290		s->rx_timeout = DIV_ROUND_UP((s->buf_len_rx * 2 * bits * HZ) /
2291					     (baud / 10), 10);
2292		dev_dbg(port->dev, "DMA Rx t-out %ums, tty t-out %u jiffies\n",
2293			s->rx_timeout * 1000 / HZ, port->timeout);
2294		if (s->rx_timeout < msecs_to_jiffies(20))
2295			s->rx_timeout = msecs_to_jiffies(20);
2296	}
2297#endif
2298
2299	if ((termios->c_cflag & CREAD) != 0)
2300		sci_start_rx(port);
2301
2302	sci_port_disable(s);
2303}
2304
2305static void sci_pm(struct uart_port *port, unsigned int state,
2306		   unsigned int oldstate)
2307{
2308	struct sci_port *sci_port = to_sci_port(port);
2309
2310	switch (state) {
2311	case UART_PM_STATE_OFF:
2312		sci_port_disable(sci_port);
2313		break;
2314	default:
2315		sci_port_enable(sci_port);
2316		break;
2317	}
2318}
2319
2320static const char *sci_type(struct uart_port *port)
2321{
2322	switch (port->type) {
2323	case PORT_IRDA:
2324		return "irda";
2325	case PORT_SCI:
2326		return "sci";
2327	case PORT_SCIF:
2328		return "scif";
2329	case PORT_SCIFA:
2330		return "scifa";
2331	case PORT_SCIFB:
2332		return "scifb";
2333	case PORT_HSCIF:
2334		return "hscif";
2335	}
2336
2337	return NULL;
2338}
2339
 
 
 
 
 
 
 
 
 
 
 
2340static int sci_remap_port(struct uart_port *port)
2341{
2342	struct sci_port *sport = to_sci_port(port);
2343
2344	/*
2345	 * Nothing to do if there's already an established membase.
2346	 */
2347	if (port->membase)
2348		return 0;
2349
2350	if (port->flags & UPF_IOREMAP) {
2351		port->membase = ioremap_nocache(port->mapbase, sport->reg_size);
2352		if (unlikely(!port->membase)) {
2353			dev_err(port->dev, "can't remap port#%d\n", port->line);
2354			return -ENXIO;
2355		}
2356	} else {
2357		/*
2358		 * For the simple (and majority of) cases where we don't
2359		 * need to do any remapping, just cast the cookie
2360		 * directly.
2361		 */
2362		port->membase = (void __iomem *)(uintptr_t)port->mapbase;
2363	}
2364
2365	return 0;
2366}
2367
2368static void sci_release_port(struct uart_port *port)
2369{
2370	struct sci_port *sport = to_sci_port(port);
2371
2372	if (port->flags & UPF_IOREMAP) {
2373		iounmap(port->membase);
2374		port->membase = NULL;
2375	}
2376
2377	release_mem_region(port->mapbase, sport->reg_size);
2378}
2379
2380static int sci_request_port(struct uart_port *port)
2381{
 
2382	struct resource *res;
2383	struct sci_port *sport = to_sci_port(port);
2384	int ret;
2385
2386	res = request_mem_region(port->mapbase, sport->reg_size,
2387				 dev_name(port->dev));
2388	if (unlikely(res == NULL)) {
2389		dev_err(port->dev, "request_mem_region failed.");
2390		return -EBUSY;
2391	}
2392
2393	ret = sci_remap_port(port);
2394	if (unlikely(ret != 0)) {
2395		release_resource(res);
2396		return ret;
2397	}
2398
2399	return 0;
2400}
2401
2402static void sci_config_port(struct uart_port *port, int flags)
2403{
2404	if (flags & UART_CONFIG_TYPE) {
2405		struct sci_port *sport = to_sci_port(port);
2406
2407		port->type = sport->cfg->type;
2408		sci_request_port(port);
2409	}
2410}
2411
2412static int sci_verify_port(struct uart_port *port, struct serial_struct *ser)
2413{
 
 
 
 
2414	if (ser->baud_base < 2400)
2415		/* No paper tape reader for Mitch.. */
2416		return -EINVAL;
2417
2418	return 0;
2419}
2420
2421static struct uart_ops sci_uart_ops = {
2422	.tx_empty	= sci_tx_empty,
2423	.set_mctrl	= sci_set_mctrl,
2424	.get_mctrl	= sci_get_mctrl,
2425	.start_tx	= sci_start_tx,
2426	.stop_tx	= sci_stop_tx,
2427	.stop_rx	= sci_stop_rx,
 
2428	.break_ctl	= sci_break_ctl,
2429	.startup	= sci_startup,
2430	.shutdown	= sci_shutdown,
2431	.set_termios	= sci_set_termios,
2432	.pm		= sci_pm,
2433	.type		= sci_type,
2434	.release_port	= sci_release_port,
2435	.request_port	= sci_request_port,
2436	.config_port	= sci_config_port,
2437	.verify_port	= sci_verify_port,
2438#ifdef CONFIG_CONSOLE_POLL
2439	.poll_get_char	= sci_poll_get_char,
2440	.poll_put_char	= sci_poll_put_char,
2441#endif
2442};
2443
2444static int sci_init_clocks(struct sci_port *sci_port, struct device *dev)
2445{
2446	const char *clk_names[] = {
2447		[SCI_FCK] = "fck",
2448		[SCI_SCK] = "sck",
2449		[SCI_BRG_INT] = "brg_int",
2450		[SCI_SCIF_CLK] = "scif_clk",
2451	};
2452	struct clk *clk;
2453	unsigned int i;
2454
2455	if (sci_port->cfg->type == PORT_HSCIF)
2456		clk_names[SCI_SCK] = "hsck";
2457
2458	for (i = 0; i < SCI_NUM_CLKS; i++) {
2459		clk = devm_clk_get(dev, clk_names[i]);
2460		if (PTR_ERR(clk) == -EPROBE_DEFER)
2461			return -EPROBE_DEFER;
2462
2463		if (IS_ERR(clk) && i == SCI_FCK) {
2464			/*
2465			 * "fck" used to be called "sci_ick", and we need to
2466			 * maintain DT backward compatibility.
2467			 */
2468			clk = devm_clk_get(dev, "sci_ick");
2469			if (PTR_ERR(clk) == -EPROBE_DEFER)
2470				return -EPROBE_DEFER;
2471
2472			if (!IS_ERR(clk))
2473				goto found;
2474
2475			/*
2476			 * Not all SH platforms declare a clock lookup entry
2477			 * for SCI devices, in which case we need to get the
2478			 * global "peripheral_clk" clock.
2479			 */
2480			clk = devm_clk_get(dev, "peripheral_clk");
2481			if (!IS_ERR(clk))
2482				goto found;
2483
2484			dev_err(dev, "failed to get %s (%ld)\n", clk_names[i],
2485				PTR_ERR(clk));
2486			return PTR_ERR(clk);
2487		}
2488
2489found:
2490		if (IS_ERR(clk))
2491			dev_dbg(dev, "failed to get %s (%ld)\n", clk_names[i],
2492				PTR_ERR(clk));
2493		else
2494			dev_dbg(dev, "clk %s is %pC rate %pCr\n", clk_names[i],
2495				clk, clk);
2496		sci_port->clks[i] = IS_ERR(clk) ? NULL : clk;
2497	}
2498	return 0;
2499}
2500
2501static int sci_init_single(struct platform_device *dev,
2502			   struct sci_port *sci_port, unsigned int index,
2503			   struct plat_sci_port *p, bool early)
2504{
2505	struct uart_port *port = &sci_port->port;
2506	const struct resource *res;
2507	unsigned int i;
2508	int ret;
2509
2510	sci_port->cfg	= p;
2511
2512	port->ops	= &sci_uart_ops;
2513	port->iotype	= UPIO_MEM;
2514	port->line	= index;
2515
2516	res = platform_get_resource(dev, IORESOURCE_MEM, 0);
2517	if (res == NULL)
2518		return -ENOMEM;
2519
2520	port->mapbase = res->start;
2521	sci_port->reg_size = resource_size(res);
2522
2523	for (i = 0; i < ARRAY_SIZE(sci_port->irqs); ++i)
2524		sci_port->irqs[i] = platform_get_irq(dev, i);
2525
2526	/* The SCI generates several interrupts. They can be muxed together or
2527	 * connected to different interrupt lines. In the muxed case only one
2528	 * interrupt resource is specified. In the non-muxed case three or four
2529	 * interrupt resources are specified, as the BRI interrupt is optional.
2530	 */
2531	if (sci_port->irqs[0] < 0)
2532		return -ENXIO;
2533
2534	if (sci_port->irqs[1] < 0) {
2535		sci_port->irqs[1] = sci_port->irqs[0];
2536		sci_port->irqs[2] = sci_port->irqs[0];
2537		sci_port->irqs[3] = sci_port->irqs[0];
2538	}
2539
2540	if (p->regtype == SCIx_PROBE_REGTYPE) {
2541		ret = sci_probe_regmap(p);
2542		if (unlikely(ret))
2543			return ret;
2544	}
2545
2546	switch (p->type) {
2547	case PORT_SCIFB:
2548		port->fifosize = 256;
2549		sci_port->overrun_reg = SCxSR;
2550		sci_port->overrun_mask = SCIFA_ORER;
2551		sci_port->sampling_rate_mask = SCI_SR_SCIFAB;
2552		break;
2553	case PORT_HSCIF:
2554		port->fifosize = 128;
2555		sci_port->overrun_reg = SCLSR;
2556		sci_port->overrun_mask = SCLSR_ORER;
2557		sci_port->sampling_rate_mask = SCI_SR_RANGE(8, 32);
2558		break;
2559	case PORT_SCIFA:
2560		port->fifosize = 64;
2561		sci_port->overrun_reg = SCxSR;
2562		sci_port->overrun_mask = SCIFA_ORER;
2563		sci_port->sampling_rate_mask = SCI_SR_SCIFAB;
2564		break;
2565	case PORT_SCIF:
2566		port->fifosize = 16;
2567		if (p->regtype == SCIx_SH7705_SCIF_REGTYPE) {
2568			sci_port->overrun_reg = SCxSR;
2569			sci_port->overrun_mask = SCIFA_ORER;
2570			sci_port->sampling_rate_mask = SCI_SR(16);
2571		} else {
2572			sci_port->overrun_reg = SCLSR;
2573			sci_port->overrun_mask = SCLSR_ORER;
2574			sci_port->sampling_rate_mask = SCI_SR(32);
2575		}
2576		break;
2577	default:
2578		port->fifosize = 1;
2579		sci_port->overrun_reg = SCxSR;
2580		sci_port->overrun_mask = SCI_ORER;
2581		sci_port->sampling_rate_mask = SCI_SR(32);
2582		break;
2583	}
2584
2585	/* SCIFA on sh7723 and sh7724 need a custom sampling rate that doesn't
2586	 * match the SoC datasheet, this should be investigated. Let platform
2587	 * data override the sampling rate for now.
2588	 */
2589	if (p->sampling_rate)
2590		sci_port->sampling_rate_mask = SCI_SR(p->sampling_rate);
2591
2592	if (!early) {
2593		ret = sci_init_clocks(sci_port, &dev->dev);
2594		if (ret < 0)
2595			return ret;
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
2596
2597		port->dev = &dev->dev;
2598
 
2599		pm_runtime_enable(&dev->dev);
2600	}
2601
2602	sci_port->break_timer.data = (unsigned long)sci_port;
2603	sci_port->break_timer.function = sci_break_timer;
2604	init_timer(&sci_port->break_timer);
2605
2606	/*
2607	 * Establish some sensible defaults for the error detection.
2608	 */
2609	if (p->type == PORT_SCI) {
2610		sci_port->error_mask = SCI_DEFAULT_ERROR_MASK;
2611		sci_port->error_clear = SCI_ERROR_CLEAR;
2612	} else {
2613		sci_port->error_mask = SCIF_DEFAULT_ERROR_MASK;
2614		sci_port->error_clear = SCIF_ERROR_CLEAR;
2615	}
2616
2617	/*
2618	 * Make the error mask inclusive of overrun detection, if
2619	 * supported.
2620	 */
2621	if (sci_port->overrun_reg == SCxSR) {
2622		sci_port->error_mask |= sci_port->overrun_mask;
2623		sci_port->error_clear &= ~sci_port->overrun_mask;
 
 
 
 
 
 
 
 
 
 
2624	}
2625
 
 
 
2626	port->type		= p->type;
2627	port->flags		= UPF_FIXED_PORT | p->flags;
2628	port->regshift		= p->regshift;
2629
2630	/*
2631	 * The UART port needs an IRQ value, so we peg this to the RX IRQ
2632	 * for the multi-IRQ ports, which is where we are primarily
2633	 * concerned with the shutdown path synchronization.
2634	 *
2635	 * For the muxed case there's nothing more to do.
2636	 */
2637	port->irq		= sci_port->irqs[SCIx_RXI_IRQ];
2638	port->irqflags		= 0;
2639
2640	port->serial_in		= sci_serial_in;
2641	port->serial_out	= sci_serial_out;
2642
2643	if (p->dma_slave_tx > 0 && p->dma_slave_rx > 0)
2644		dev_dbg(port->dev, "DMA tx %d, rx %d\n",
2645			p->dma_slave_tx, p->dma_slave_rx);
2646
2647	return 0;
2648}
2649
2650static void sci_cleanup_single(struct sci_port *port)
2651{
2652	pm_runtime_disable(port->port.dev);
2653}
2654
2655#if defined(CONFIG_SERIAL_SH_SCI_CONSOLE) || \
2656    defined(CONFIG_SERIAL_SH_SCI_EARLYCON)
2657static void serial_console_putchar(struct uart_port *port, int ch)
2658{
2659	sci_poll_put_char(port, ch);
2660}
2661
2662/*
2663 *	Print a string to the serial port trying not to disturb
2664 *	any possible real use of the port...
2665 */
2666static void serial_console_write(struct console *co, const char *s,
2667				 unsigned count)
2668{
2669	struct sci_port *sci_port = &sci_ports[co->index];
2670	struct uart_port *port = &sci_port->port;
2671	unsigned short bits, ctrl, ctrl_temp;
2672	unsigned long flags;
2673	int locked = 1;
2674
2675	local_irq_save(flags);
2676#if defined(SUPPORT_SYSRQ)
2677	if (port->sysrq)
2678		locked = 0;
2679	else
2680#endif
2681	if (oops_in_progress)
2682		locked = spin_trylock(&port->lock);
2683	else
2684		spin_lock(&port->lock);
2685
2686	/* first save SCSCR then disable interrupts, keep clock source */
2687	ctrl = serial_port_in(port, SCSCR);
2688	ctrl_temp = (sci_port->cfg->scscr & ~(SCSCR_CKE1 | SCSCR_CKE0)) |
2689		    (ctrl & (SCSCR_CKE1 | SCSCR_CKE0));
2690	serial_port_out(port, SCSCR, ctrl_temp);
2691
2692	uart_console_write(port, s, count, serial_console_putchar);
2693
2694	/* wait until fifo is empty and last bit has been transmitted */
2695	bits = SCxSR_TDxE(port) | SCxSR_TEND(port);
2696	while ((serial_port_in(port, SCxSR) & bits) != bits)
2697		cpu_relax();
2698
2699	/* restore the SCSCR */
2700	serial_port_out(port, SCSCR, ctrl);
2701
2702	if (locked)
2703		spin_unlock(&port->lock);
2704	local_irq_restore(flags);
2705}
2706
2707static int serial_console_setup(struct console *co, char *options)
2708{
2709	struct sci_port *sci_port;
2710	struct uart_port *port;
2711	int baud = 115200;
2712	int bits = 8;
2713	int parity = 'n';
2714	int flow = 'n';
2715	int ret;
2716
2717	/*
2718	 * Refuse to handle any bogus ports.
2719	 */
2720	if (co->index < 0 || co->index >= SCI_NPORTS)
2721		return -ENODEV;
2722
2723	sci_port = &sci_ports[co->index];
2724	port = &sci_port->port;
2725
2726	/*
2727	 * Refuse to handle uninitialized ports.
2728	 */
2729	if (!port->ops)
2730		return -ENODEV;
2731
2732	ret = sci_remap_port(port);
2733	if (unlikely(ret != 0))
2734		return ret;
2735
 
 
2736	if (options)
2737		uart_parse_options(options, &baud, &parity, &bits, &flow);
2738
 
 
2739	return uart_set_options(port, co, baud, parity, bits, flow);
2740}
2741
2742static struct console serial_console = {
2743	.name		= "ttySC",
2744	.device		= uart_console_device,
2745	.write		= serial_console_write,
2746	.setup		= serial_console_setup,
2747	.flags		= CON_PRINTBUFFER,
2748	.index		= -1,
2749	.data		= &sci_uart_driver,
2750};
2751
2752static struct console early_serial_console = {
2753	.name           = "early_ttySC",
2754	.write          = serial_console_write,
2755	.flags          = CON_PRINTBUFFER,
2756	.index		= -1,
2757};
2758
2759static char early_serial_buf[32];
2760
2761static int sci_probe_earlyprintk(struct platform_device *pdev)
2762{
2763	struct plat_sci_port *cfg = dev_get_platdata(&pdev->dev);
2764
2765	if (early_serial_console.data)
2766		return -EEXIST;
2767
2768	early_serial_console.index = pdev->id;
2769
2770	sci_init_single(pdev, &sci_ports[pdev->id], pdev->id, cfg, true);
2771
2772	serial_console_setup(&early_serial_console, early_serial_buf);
2773
2774	if (!strstr(early_serial_buf, "keep"))
2775		early_serial_console.flags |= CON_BOOT;
2776
2777	register_console(&early_serial_console);
2778	return 0;
2779}
2780
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
2781#define SCI_CONSOLE	(&serial_console)
2782
2783#else
2784static inline int sci_probe_earlyprintk(struct platform_device *pdev)
2785{
2786	return -EINVAL;
2787}
2788
2789#define SCI_CONSOLE	NULL
 
 
2790
2791#endif /* CONFIG_SERIAL_SH_SCI_CONSOLE || CONFIG_SERIAL_SH_SCI_EARLYCON */
2792
2793static const char banner[] __initconst = "SuperH (H)SCI(F) driver initialized";
 
2794
2795static struct uart_driver sci_uart_driver = {
2796	.owner		= THIS_MODULE,
2797	.driver_name	= "sci",
2798	.dev_name	= "ttySC",
2799	.major		= SCI_MAJOR,
2800	.minor		= SCI_MINOR_START,
2801	.nr		= SCI_NPORTS,
2802	.cons		= SCI_CONSOLE,
2803};
2804
2805static int sci_remove(struct platform_device *dev)
2806{
2807	struct sci_port *port = platform_get_drvdata(dev);
2808
 
 
 
2809	uart_remove_one_port(&sci_uart_driver, &port->port);
2810
2811	sci_cleanup_single(port);
 
2812
 
2813	return 0;
2814}
2815
2816
2817#define SCI_OF_DATA(type, regtype)	(void *)((type) << 16 | (regtype))
2818#define SCI_OF_TYPE(data)		((unsigned long)(data) >> 16)
2819#define SCI_OF_REGTYPE(data)		((unsigned long)(data) & 0xffff)
2820
2821static const struct of_device_id of_sci_match[] = {
2822	/* SoC-specific types */
2823	{
2824		.compatible = "renesas,scif-r7s72100",
2825		.data = SCI_OF_DATA(PORT_SCIF, SCIx_SH2_SCIF_FIFODATA_REGTYPE),
2826	},
2827	/* Family-specific types */
2828	{
2829		.compatible = "renesas,rcar-gen1-scif",
2830		.data = SCI_OF_DATA(PORT_SCIF, SCIx_SH4_SCIF_BRG_REGTYPE),
2831	}, {
2832		.compatible = "renesas,rcar-gen2-scif",
2833		.data = SCI_OF_DATA(PORT_SCIF, SCIx_SH4_SCIF_BRG_REGTYPE),
2834	}, {
2835		.compatible = "renesas,rcar-gen3-scif",
2836		.data = SCI_OF_DATA(PORT_SCIF, SCIx_SH4_SCIF_BRG_REGTYPE),
2837	},
2838	/* Generic types */
2839	{
2840		.compatible = "renesas,scif",
2841		.data = SCI_OF_DATA(PORT_SCIF, SCIx_SH4_SCIF_REGTYPE),
2842	}, {
2843		.compatible = "renesas,scifa",
2844		.data = SCI_OF_DATA(PORT_SCIFA, SCIx_SCIFA_REGTYPE),
2845	}, {
2846		.compatible = "renesas,scifb",
2847		.data = SCI_OF_DATA(PORT_SCIFB, SCIx_SCIFB_REGTYPE),
2848	}, {
2849		.compatible = "renesas,hscif",
2850		.data = SCI_OF_DATA(PORT_HSCIF, SCIx_HSCIF_REGTYPE),
2851	}, {
2852		.compatible = "renesas,sci",
2853		.data = SCI_OF_DATA(PORT_SCI, SCIx_SCI_REGTYPE),
2854	}, {
2855		/* Terminator */
2856	},
2857};
2858MODULE_DEVICE_TABLE(of, of_sci_match);
2859
2860static struct plat_sci_port *
2861sci_parse_dt(struct platform_device *pdev, unsigned int *dev_id)
2862{
2863	struct device_node *np = pdev->dev.of_node;
2864	const struct of_device_id *match;
2865	struct plat_sci_port *p;
2866	int id;
2867
2868	if (!IS_ENABLED(CONFIG_OF) || !np)
2869		return NULL;
2870
2871	match = of_match_node(of_sci_match, np);
2872	if (!match)
2873		return NULL;
2874
2875	p = devm_kzalloc(&pdev->dev, sizeof(struct plat_sci_port), GFP_KERNEL);
2876	if (!p)
2877		return NULL;
2878
2879	/* Get the line number from the aliases node. */
2880	id = of_alias_get_id(np, "serial");
2881	if (id < 0) {
2882		dev_err(&pdev->dev, "failed to get alias id (%d)\n", id);
2883		return NULL;
2884	}
2885
2886	*dev_id = id;
2887
2888	p->flags = UPF_IOREMAP | UPF_BOOT_AUTOCONF;
2889	p->type = SCI_OF_TYPE(match->data);
2890	p->regtype = SCI_OF_REGTYPE(match->data);
2891	p->scscr = SCSCR_RE | SCSCR_TE;
2892
2893	return p;
2894}
2895
2896static int sci_probe_single(struct platform_device *dev,
2897				      unsigned int index,
2898				      struct plat_sci_port *p,
2899				      struct sci_port *sciport)
2900{
2901	int ret;
2902
2903	/* Sanity check */
2904	if (unlikely(index >= SCI_NPORTS)) {
2905		dev_notice(&dev->dev, "Attempting to register port %d when only %d are available\n",
 
2906			   index+1, SCI_NPORTS);
2907		dev_notice(&dev->dev, "Consider bumping CONFIG_SERIAL_SH_SCI_NR_UARTS!\n");
2908		return -EINVAL;
 
2909	}
2910
2911	ret = sci_init_single(dev, sciport, index, p, false);
2912	if (ret)
2913		return ret;
2914
2915	ret = uart_add_one_port(&sci_uart_driver, &sciport->port);
2916	if (ret) {
2917		sci_cleanup_single(sciport);
2918		return ret;
2919	}
2920
2921	return 0;
2922}
2923
2924static int sci_probe(struct platform_device *dev)
2925{
2926	struct plat_sci_port *p;
2927	struct sci_port *sp;
2928	unsigned int dev_id;
2929	int ret;
2930
2931	/*
2932	 * If we've come here via earlyprintk initialization, head off to
2933	 * the special early probe. We don't have sufficient device state
2934	 * to make it beyond this yet.
2935	 */
2936	if (is_early_platform_device(dev))
2937		return sci_probe_earlyprintk(dev);
2938
2939	if (dev->dev.of_node) {
2940		p = sci_parse_dt(dev, &dev_id);
2941		if (p == NULL)
2942			return -EINVAL;
2943	} else {
2944		p = dev->dev.platform_data;
2945		if (p == NULL) {
2946			dev_err(&dev->dev, "no platform data supplied\n");
2947			return -EINVAL;
2948		}
2949
2950		dev_id = dev->id;
2951	}
 
2952
2953	sp = &sci_ports[dev_id];
2954	platform_set_drvdata(dev, sp);
2955
2956	ret = sci_probe_single(dev, dev_id, p, sp);
2957	if (ret)
2958		return ret;
 
2959
2960#ifdef CONFIG_SH_STANDARD_BIOS
2961	sh_bios_gdb_detach();
2962#endif
2963
2964	return 0;
 
 
 
 
2965}
2966
2967static __maybe_unused int sci_suspend(struct device *dev)
2968{
2969	struct sci_port *sport = dev_get_drvdata(dev);
2970
2971	if (sport)
2972		uart_suspend_port(&sci_uart_driver, &sport->port);
2973
2974	return 0;
2975}
2976
2977static __maybe_unused int sci_resume(struct device *dev)
2978{
2979	struct sci_port *sport = dev_get_drvdata(dev);
2980
2981	if (sport)
2982		uart_resume_port(&sci_uart_driver, &sport->port);
2983
2984	return 0;
2985}
2986
2987static SIMPLE_DEV_PM_OPS(sci_dev_pm_ops, sci_suspend, sci_resume);
 
 
 
 
 
2988
2989static struct platform_driver sci_driver = {
2990	.probe		= sci_probe,
2991	.remove		= sci_remove,
2992	.driver		= {
2993		.name	= "sh-sci",
 
2994		.pm	= &sci_dev_pm_ops,
2995		.of_match_table = of_match_ptr(of_sci_match),
2996	},
2997};
2998
2999static int __init sci_init(void)
3000{
3001	int ret;
3002
3003	pr_info("%s\n", banner);
3004
3005	ret = uart_register_driver(&sci_uart_driver);
3006	if (likely(ret == 0)) {
3007		ret = platform_driver_register(&sci_driver);
3008		if (unlikely(ret))
3009			uart_unregister_driver(&sci_uart_driver);
3010	}
3011
3012	return ret;
3013}
3014
3015static void __exit sci_exit(void)
3016{
3017	platform_driver_unregister(&sci_driver);
3018	uart_unregister_driver(&sci_uart_driver);
3019}
3020
3021#ifdef CONFIG_SERIAL_SH_SCI_CONSOLE
3022early_platform_init_buffer("earlyprintk", &sci_driver,
3023			   early_serial_buf, ARRAY_SIZE(early_serial_buf));
3024#endif
3025#ifdef CONFIG_SERIAL_SH_SCI_EARLYCON
3026static struct __init plat_sci_port port_cfg;
3027
3028static int __init early_console_setup(struct earlycon_device *device,
3029				      int type)
3030{
3031	if (!device->port.membase)
3032		return -ENODEV;
3033
3034	device->port.serial_in = sci_serial_in;
3035	device->port.serial_out	= sci_serial_out;
3036	device->port.type = type;
3037	memcpy(&sci_ports[0].port, &device->port, sizeof(struct uart_port));
3038	sci_ports[0].cfg = &port_cfg;
3039	sci_ports[0].cfg->type = type;
3040	sci_probe_regmap(sci_ports[0].cfg);
3041	port_cfg.scscr = sci_serial_in(&sci_ports[0].port, SCSCR) |
3042			 SCSCR_RE | SCSCR_TE;
3043	sci_serial_out(&sci_ports[0].port, SCSCR, port_cfg.scscr);
3044
3045	device->con->write = serial_console_write;
3046	return 0;
3047}
3048static int __init sci_early_console_setup(struct earlycon_device *device,
3049					  const char *opt)
3050{
3051	return early_console_setup(device, PORT_SCI);
3052}
3053static int __init scif_early_console_setup(struct earlycon_device *device,
3054					  const char *opt)
3055{
3056	return early_console_setup(device, PORT_SCIF);
3057}
3058static int __init scifa_early_console_setup(struct earlycon_device *device,
3059					  const char *opt)
3060{
3061	return early_console_setup(device, PORT_SCIFA);
3062}
3063static int __init scifb_early_console_setup(struct earlycon_device *device,
3064					  const char *opt)
3065{
3066	return early_console_setup(device, PORT_SCIFB);
3067}
3068static int __init hscif_early_console_setup(struct earlycon_device *device,
3069					  const char *opt)
3070{
3071	return early_console_setup(device, PORT_HSCIF);
3072}
3073
3074OF_EARLYCON_DECLARE(sci, "renesas,sci", sci_early_console_setup);
3075OF_EARLYCON_DECLARE(scif, "renesas,scif", scif_early_console_setup);
3076OF_EARLYCON_DECLARE(scifa, "renesas,scifa", scifa_early_console_setup);
3077OF_EARLYCON_DECLARE(scifb, "renesas,scifb", scifb_early_console_setup);
3078OF_EARLYCON_DECLARE(hscif, "renesas,hscif", hscif_early_console_setup);
3079#endif /* CONFIG_SERIAL_SH_SCI_EARLYCON */
3080
3081module_init(sci_init);
3082module_exit(sci_exit);
3083
3084MODULE_LICENSE("GPL");
3085MODULE_ALIAS("platform:sh-sci");
3086MODULE_AUTHOR("Paul Mundt");
3087MODULE_DESCRIPTION("SuperH (H)SCI(F) serial driver");