Linux Audio

Check our new training course

Loading...
v3.1
   1/*
   2 * SuperH on-chip serial module support.  (SCI with no FIFO / with FIFO)
   3 *
   4 *  Copyright (C) 2002 - 2011  Paul Mundt
   5 *  Modified to support SH7720 SCIF. Markus Brunner, Mark Jonas (Jul 2007).
   6 *
   7 * based off of the old drivers/char/sh-sci.c by:
   8 *
   9 *   Copyright (C) 1999, 2000  Niibe Yutaka
  10 *   Copyright (C) 2000  Sugioka Toshinobu
  11 *   Modified to support multiple serial ports. Stuart Menefy (May 2000).
  12 *   Modified to support SecureEdge. David McCullough (2002)
  13 *   Modified to support SH7300 SCIF. Takashi Kusuda (Jun 2003).
  14 *   Removed SH7300 support (Jul 2007).
  15 *
  16 * This file is subject to the terms and conditions of the GNU General Public
  17 * License.  See the file "COPYING" in the main directory of this archive
  18 * for more details.
  19 */
  20#if defined(CONFIG_SERIAL_SH_SCI_CONSOLE) && defined(CONFIG_MAGIC_SYSRQ)
  21#define SUPPORT_SYSRQ
  22#endif
  23
  24#undef DEBUG
  25
  26#include <linux/module.h>
 
 
 
 
 
 
 
  27#include <linux/errno.h>
  28#include <linux/timer.h>
  29#include <linux/interrupt.h>
  30#include <linux/tty.h>
  31#include <linux/tty_flip.h>
  32#include <linux/serial.h>
  33#include <linux/major.h>
  34#include <linux/string.h>
  35#include <linux/sysrq.h>
  36#include <linux/ioport.h>
 
 
  37#include <linux/mm.h>
  38#include <linux/init.h>
  39#include <linux/delay.h>
  40#include <linux/console.h>
  41#include <linux/platform_device.h>
  42#include <linux/serial_sci.h>
  43#include <linux/notifier.h>
 
 
  44#include <linux/pm_runtime.h>
  45#include <linux/cpufreq.h>
  46#include <linux/clk.h>
  47#include <linux/ctype.h>
  48#include <linux/err.h>
  49#include <linux/dmaengine.h>
  50#include <linux/dma-mapping.h>
  51#include <linux/scatterlist.h>
 
 
 
  52#include <linux/slab.h>
 
 
 
 
 
  53
  54#ifdef CONFIG_SUPERH
  55#include <asm/sh_bios.h>
  56#endif
  57
  58#include "sh-sci.h"
  59
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
  60struct sci_port {
  61	struct uart_port	port;
  62
  63	/* Platform configuration */
  64	struct plat_sci_port	*cfg;
 
 
 
 
  65
  66	/* Break timer */
  67	struct timer_list	break_timer;
  68	int			break_flag;
  69
  70	/* Interface clock */
  71	struct clk		*iclk;
  72	/* Function clock */
  73	struct clk		*fclk;
  74
 
  75	char			*irqstr[SCIx_NR_IRQS];
  76
  77	struct dma_chan			*chan_tx;
  78	struct dma_chan			*chan_rx;
  79
  80#ifdef CONFIG_SERIAL_SH_SCI_DMA
  81	struct dma_async_tx_descriptor	*desc_tx;
  82	struct dma_async_tx_descriptor	*desc_rx[2];
  83	dma_cookie_t			cookie_tx;
  84	dma_cookie_t			cookie_rx[2];
  85	dma_cookie_t			active_rx;
  86	struct scatterlist		sg_tx;
  87	unsigned int			sg_len_tx;
  88	struct scatterlist		sg_rx[2];
  89	size_t				buf_len_rx;
  90	struct sh_dmae_slave		param_tx;
  91	struct sh_dmae_slave		param_rx;
  92	struct work_struct		work_tx;
  93	struct work_struct		work_rx;
  94	struct timer_list		rx_timer;
  95	unsigned int			rx_timeout;
  96#endif
  97
  98	struct notifier_block		freq_transition;
  99
 100#ifdef CONFIG_SERIAL_SH_SCI_CONSOLE
 101	unsigned short saved_smr;
 102	unsigned short saved_fcr;
 103	unsigned char saved_brr;
 104#endif
 105};
 106
 107/* Function prototypes */
 108static void sci_start_tx(struct uart_port *port);
 109static void sci_stop_tx(struct uart_port *port);
 110static void sci_start_rx(struct uart_port *port);
 111
 112#define SCI_NPORTS CONFIG_SERIAL_SH_SCI_NR_UARTS
 113
 114static struct sci_port sci_ports[SCI_NPORTS];
 115static struct uart_driver sci_uart_driver;
 116
 117static inline struct sci_port *
 118to_sci_port(struct uart_port *uart)
 119{
 120	return container_of(uart, struct sci_port, port);
 121}
 122
 123struct plat_sci_reg {
 124	u8 offset, size;
 125};
 126
 127/* Helper for invalidating specific entries of an inherited map. */
 128#define sci_reg_invalid	{ .offset = 0, .size = 0 }
 129
 130static struct plat_sci_reg sci_regmap[SCIx_NR_REGTYPES][SCIx_NR_REGS] = {
 131	[SCIx_PROBE_REGTYPE] = {
 132		[0 ... SCIx_NR_REGS - 1] = sci_reg_invalid,
 133	},
 134
 135	/*
 136	 * Common SCI definitions, dependent on the port's regshift
 137	 * value.
 138	 */
 139	[SCIx_SCI_REGTYPE] = {
 140		[SCSMR]		= { 0x00,  8 },
 141		[SCBRR]		= { 0x01,  8 },
 142		[SCSCR]		= { 0x02,  8 },
 143		[SCxTDR]	= { 0x03,  8 },
 144		[SCxSR]		= { 0x04,  8 },
 145		[SCxRDR]	= { 0x05,  8 },
 146		[SCFCR]		= sci_reg_invalid,
 147		[SCFDR]		= sci_reg_invalid,
 148		[SCTFDR]	= sci_reg_invalid,
 149		[SCRFDR]	= sci_reg_invalid,
 150		[SCSPTR]	= sci_reg_invalid,
 151		[SCLSR]		= sci_reg_invalid,
 
 152	},
 153
 154	/*
 155	 * Common definitions for legacy IrDA ports, dependent on
 156	 * regshift value.
 157	 */
 158	[SCIx_IRDA_REGTYPE] = {
 159		[SCSMR]		= { 0x00,  8 },
 160		[SCBRR]		= { 0x01,  8 },
 161		[SCSCR]		= { 0x02,  8 },
 162		[SCxTDR]	= { 0x03,  8 },
 163		[SCxSR]		= { 0x04,  8 },
 164		[SCxRDR]	= { 0x05,  8 },
 165		[SCFCR]		= { 0x06,  8 },
 166		[SCFDR]		= { 0x07, 16 },
 167		[SCTFDR]	= sci_reg_invalid,
 168		[SCRFDR]	= sci_reg_invalid,
 169		[SCSPTR]	= sci_reg_invalid,
 170		[SCLSR]		= sci_reg_invalid,
 
 171	},
 172
 173	/*
 174	 * Common SCIFA definitions.
 175	 */
 176	[SCIx_SCIFA_REGTYPE] = {
 177		[SCSMR]		= { 0x00, 16 },
 178		[SCBRR]		= { 0x04,  8 },
 179		[SCSCR]		= { 0x08, 16 },
 180		[SCxTDR]	= { 0x20,  8 },
 181		[SCxSR]		= { 0x14, 16 },
 182		[SCxRDR]	= { 0x24,  8 },
 183		[SCFCR]		= { 0x18, 16 },
 184		[SCFDR]		= { 0x1c, 16 },
 185		[SCTFDR]	= sci_reg_invalid,
 186		[SCRFDR]	= sci_reg_invalid,
 187		[SCSPTR]	= sci_reg_invalid,
 188		[SCLSR]		= sci_reg_invalid,
 
 189	},
 190
 191	/*
 192	 * Common SCIFB definitions.
 193	 */
 194	[SCIx_SCIFB_REGTYPE] = {
 195		[SCSMR]		= { 0x00, 16 },
 196		[SCBRR]		= { 0x04,  8 },
 197		[SCSCR]		= { 0x08, 16 },
 198		[SCxTDR]	= { 0x40,  8 },
 199		[SCxSR]		= { 0x14, 16 },
 200		[SCxRDR]	= { 0x60,  8 },
 201		[SCFCR]		= { 0x18, 16 },
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 202		[SCFDR]		= { 0x1c, 16 },
 203		[SCTFDR]	= sci_reg_invalid,
 204		[SCRFDR]	= sci_reg_invalid,
 205		[SCSPTR]	= sci_reg_invalid,
 206		[SCLSR]		= sci_reg_invalid,
 
 207	},
 208
 209	/*
 210	 * Common SH-3 SCIF definitions.
 211	 */
 212	[SCIx_SH3_SCIF_REGTYPE] = {
 213		[SCSMR]		= { 0x00,  8 },
 214		[SCBRR]		= { 0x02,  8 },
 215		[SCSCR]		= { 0x04,  8 },
 216		[SCxTDR]	= { 0x06,  8 },
 217		[SCxSR]		= { 0x08, 16 },
 218		[SCxRDR]	= { 0x0a,  8 },
 219		[SCFCR]		= { 0x0c,  8 },
 220		[SCFDR]		= { 0x0e, 16 },
 221		[SCTFDR]	= sci_reg_invalid,
 222		[SCRFDR]	= sci_reg_invalid,
 223		[SCSPTR]	= sci_reg_invalid,
 224		[SCLSR]		= sci_reg_invalid,
 
 225	},
 226
 227	/*
 228	 * Common SH-4(A) SCIF(B) definitions.
 229	 */
 230	[SCIx_SH4_SCIF_REGTYPE] = {
 231		[SCSMR]		= { 0x00, 16 },
 232		[SCBRR]		= { 0x04,  8 },
 233		[SCSCR]		= { 0x08, 16 },
 234		[SCxTDR]	= { 0x0c,  8 },
 235		[SCxSR]		= { 0x10, 16 },
 236		[SCxRDR]	= { 0x14,  8 },
 237		[SCFCR]		= { 0x18, 16 },
 238		[SCFDR]		= { 0x1c, 16 },
 239		[SCTFDR]	= sci_reg_invalid,
 240		[SCRFDR]	= sci_reg_invalid,
 241		[SCSPTR]	= { 0x20, 16 },
 242		[SCLSR]		= { 0x24, 16 },
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 243	},
 244
 245	/*
 246	 * Common SH-4(A) SCIF(B) definitions for ports without an SCSPTR
 247	 * register.
 248	 */
 249	[SCIx_SH4_SCIF_NO_SCSPTR_REGTYPE] = {
 250		[SCSMR]		= { 0x00, 16 },
 251		[SCBRR]		= { 0x04,  8 },
 252		[SCSCR]		= { 0x08, 16 },
 253		[SCxTDR]	= { 0x0c,  8 },
 254		[SCxSR]		= { 0x10, 16 },
 255		[SCxRDR]	= { 0x14,  8 },
 256		[SCFCR]		= { 0x18, 16 },
 257		[SCFDR]		= { 0x1c, 16 },
 258		[SCTFDR]	= sci_reg_invalid,
 259		[SCRFDR]	= sci_reg_invalid,
 260		[SCSPTR]	= sci_reg_invalid,
 261		[SCLSR]		= { 0x24, 16 },
 
 262	},
 263
 264	/*
 265	 * Common SH-4(A) SCIF(B) definitions for ports with FIFO data
 266	 * count registers.
 267	 */
 268	[SCIx_SH4_SCIF_FIFODATA_REGTYPE] = {
 269		[SCSMR]		= { 0x00, 16 },
 270		[SCBRR]		= { 0x04,  8 },
 271		[SCSCR]		= { 0x08, 16 },
 272		[SCxTDR]	= { 0x0c,  8 },
 273		[SCxSR]		= { 0x10, 16 },
 274		[SCxRDR]	= { 0x14,  8 },
 275		[SCFCR]		= { 0x18, 16 },
 276		[SCFDR]		= { 0x1c, 16 },
 277		[SCTFDR]	= { 0x1c, 16 },	/* aliased to SCFDR */
 278		[SCRFDR]	= { 0x20, 16 },
 279		[SCSPTR]	= { 0x24, 16 },
 280		[SCLSR]		= { 0x28, 16 },
 
 281	},
 282
 283	/*
 284	 * SH7705-style SCIF(B) ports, lacking both SCSPTR and SCLSR
 285	 * registers.
 286	 */
 287	[SCIx_SH7705_SCIF_REGTYPE] = {
 288		[SCSMR]		= { 0x00, 16 },
 289		[SCBRR]		= { 0x04,  8 },
 290		[SCSCR]		= { 0x08, 16 },
 291		[SCxTDR]	= { 0x20,  8 },
 292		[SCxSR]		= { 0x14, 16 },
 293		[SCxRDR]	= { 0x24,  8 },
 294		[SCFCR]		= { 0x18, 16 },
 295		[SCFDR]		= { 0x1c, 16 },
 296		[SCTFDR]	= sci_reg_invalid,
 297		[SCRFDR]	= sci_reg_invalid,
 298		[SCSPTR]	= sci_reg_invalid,
 299		[SCLSR]		= sci_reg_invalid,
 
 300	},
 301};
 302
 303#define sci_getreg(up, offset)		(sci_regmap[to_sci_port(up)->cfg->regtype] + offset)
 304
 305/*
 306 * The "offset" here is rather misleading, in that it refers to an enum
 307 * value relative to the port mapping rather than the fixed offset
 308 * itself, which needs to be manually retrieved from the platform's
 309 * register map for the given port.
 310 */
 311static unsigned int sci_serial_in(struct uart_port *p, int offset)
 312{
 313	struct plat_sci_reg *reg = sci_getreg(p, offset);
 314
 315	if (reg->size == 8)
 316		return ioread8(p->membase + (reg->offset << p->regshift));
 317	else if (reg->size == 16)
 318		return ioread16(p->membase + (reg->offset << p->regshift));
 319	else
 320		WARN(1, "Invalid register access\n");
 321
 322	return 0;
 323}
 324
 325static void sci_serial_out(struct uart_port *p, int offset, int value)
 326{
 327	struct plat_sci_reg *reg = sci_getreg(p, offset);
 328
 329	if (reg->size == 8)
 330		iowrite8(value, p->membase + (reg->offset << p->regshift));
 331	else if (reg->size == 16)
 332		iowrite16(value, p->membase + (reg->offset << p->regshift));
 333	else
 334		WARN(1, "Invalid register access\n");
 335}
 336
 337#define sci_in(up, offset)		(up->serial_in(up, offset))
 338#define sci_out(up, offset, value)	(up->serial_out(up, offset, value))
 339
 340static int sci_probe_regmap(struct plat_sci_port *cfg)
 341{
 342	switch (cfg->type) {
 343	case PORT_SCI:
 344		cfg->regtype = SCIx_SCI_REGTYPE;
 345		break;
 346	case PORT_IRDA:
 347		cfg->regtype = SCIx_IRDA_REGTYPE;
 348		break;
 349	case PORT_SCIFA:
 350		cfg->regtype = SCIx_SCIFA_REGTYPE;
 351		break;
 352	case PORT_SCIFB:
 353		cfg->regtype = SCIx_SCIFB_REGTYPE;
 354		break;
 355	case PORT_SCIF:
 356		/*
 357		 * The SH-4 is a bit of a misnomer here, although that's
 358		 * where this particular port layout originated. This
 359		 * configuration (or some slight variation thereof)
 360		 * remains the dominant model for all SCIFs.
 361		 */
 362		cfg->regtype = SCIx_SH4_SCIF_REGTYPE;
 363		break;
 
 
 
 364	default:
 365		printk(KERN_ERR "Can't probe register map for given port\n");
 366		return -EINVAL;
 367	}
 368
 369	return 0;
 370}
 371
 372static void sci_port_enable(struct sci_port *sci_port)
 373{
 374	if (!sci_port->port.dev)
 375		return;
 376
 377	pm_runtime_get_sync(sci_port->port.dev);
 378
 379	clk_enable(sci_port->iclk);
 380	sci_port->port.uartclk = clk_get_rate(sci_port->iclk);
 381	clk_enable(sci_port->fclk);
 382}
 383
 384static void sci_port_disable(struct sci_port *sci_port)
 385{
 386	if (!sci_port->port.dev)
 387		return;
 388
 389	clk_disable(sci_port->fclk);
 390	clk_disable(sci_port->iclk);
 
 
 
 
 
 
 
 
 391
 392	pm_runtime_put_sync(sci_port->port.dev);
 393}
 394
 395#if defined(CONFIG_CONSOLE_POLL) || defined(CONFIG_SERIAL_SH_SCI_CONSOLE)
 396
 397#ifdef CONFIG_CONSOLE_POLL
 398static int sci_poll_get_char(struct uart_port *port)
 399{
 400	unsigned short status;
 401	int c;
 402
 403	do {
 404		status = sci_in(port, SCxSR);
 405		if (status & SCxSR_ERRORS(port)) {
 406			sci_out(port, SCxSR, SCxSR_ERROR_CLEAR(port));
 407			continue;
 408		}
 409		break;
 410	} while (1);
 411
 412	if (!(status & SCxSR_RDxF(port)))
 413		return NO_POLL_CHAR;
 414
 415	c = sci_in(port, SCxRDR);
 416
 417	/* Dummy read */
 418	sci_in(port, SCxSR);
 419	sci_out(port, SCxSR, SCxSR_RDxF_CLEAR(port));
 420
 421	return c;
 422}
 423#endif
 424
 425static void sci_poll_put_char(struct uart_port *port, unsigned char c)
 426{
 427	unsigned short status;
 428
 429	do {
 430		status = sci_in(port, SCxSR);
 431	} while (!(status & SCxSR_TDxE(port)));
 432
 433	sci_out(port, SCxTDR, c);
 434	sci_out(port, SCxSR, SCxSR_TDxE_CLEAR(port) & ~SCxSR_TEND(port));
 435}
 436#endif /* CONFIG_CONSOLE_POLL || CONFIG_SERIAL_SH_SCI_CONSOLE */
 437
 438static void sci_init_pins(struct uart_port *port, unsigned int cflag)
 439{
 440	struct sci_port *s = to_sci_port(port);
 441	struct plat_sci_reg *reg = sci_regmap[s->cfg->regtype] + SCSPTR;
 442
 443	/*
 444	 * Use port-specific handler if provided.
 445	 */
 446	if (s->cfg->ops && s->cfg->ops->init_pins) {
 447		s->cfg->ops->init_pins(port, cflag);
 448		return;
 449	}
 450
 451	/*
 452	 * For the generic path SCSPTR is necessary. Bail out if that's
 453	 * unavailable, too.
 454	 */
 455	if (!reg->size)
 456		return;
 457
 458	if (!(cflag & CRTSCTS))
 459		sci_out(port, SCSPTR, 0x0080); /* Set RTS = 1 */
 
 
 
 
 
 
 
 460}
 461
 462static int sci_txfill(struct uart_port *port)
 463{
 464	struct plat_sci_reg *reg;
 465
 466	reg = sci_getreg(port, SCTFDR);
 467	if (reg->size)
 468		return sci_in(port, SCTFDR) & 0xff;
 469
 470	reg = sci_getreg(port, SCFDR);
 471	if (reg->size)
 472		return sci_in(port, SCFDR) >> 8;
 473
 474	return !(sci_in(port, SCxSR) & SCI_TDRE);
 475}
 476
 477static int sci_txroom(struct uart_port *port)
 478{
 479	return port->fifosize - sci_txfill(port);
 480}
 481
 482static int sci_rxfill(struct uart_port *port)
 483{
 484	struct plat_sci_reg *reg;
 485
 486	reg = sci_getreg(port, SCRFDR);
 487	if (reg->size)
 488		return sci_in(port, SCRFDR) & 0xff;
 489
 490	reg = sci_getreg(port, SCFDR);
 491	if (reg->size)
 492		return sci_in(port, SCFDR) & ((port->fifosize << 1) - 1);
 493
 494	return (sci_in(port, SCxSR) & SCxSR_RDxF(port)) != 0;
 495}
 496
 497/*
 498 * SCI helper for checking the state of the muxed port/RXD pins.
 499 */
 500static inline int sci_rxd_in(struct uart_port *port)
 501{
 502	struct sci_port *s = to_sci_port(port);
 503
 504	if (s->cfg->port_reg <= 0)
 505		return 1;
 506
 507	return !!__raw_readb(s->cfg->port_reg);
 
 508}
 509
 510/* ********************************************************************** *
 511 *                   the interrupt related routines                       *
 512 * ********************************************************************** */
 513
 514static void sci_transmit_chars(struct uart_port *port)
 515{
 516	struct circ_buf *xmit = &port->state->xmit;
 517	unsigned int stopped = uart_tx_stopped(port);
 518	unsigned short status;
 519	unsigned short ctrl;
 520	int count;
 521
 522	status = sci_in(port, SCxSR);
 523	if (!(status & SCxSR_TDxE(port))) {
 524		ctrl = sci_in(port, SCSCR);
 525		if (uart_circ_empty(xmit))
 526			ctrl &= ~SCSCR_TIE;
 527		else
 528			ctrl |= SCSCR_TIE;
 529		sci_out(port, SCSCR, ctrl);
 530		return;
 531	}
 532
 533	count = sci_txroom(port);
 534
 535	do {
 536		unsigned char c;
 537
 538		if (port->x_char) {
 539			c = port->x_char;
 540			port->x_char = 0;
 541		} else if (!uart_circ_empty(xmit) && !stopped) {
 542			c = xmit->buf[xmit->tail];
 543			xmit->tail = (xmit->tail + 1) & (UART_XMIT_SIZE - 1);
 544		} else {
 545			break;
 546		}
 547
 548		sci_out(port, SCxTDR, c);
 549
 550		port->icount.tx++;
 551	} while (--count > 0);
 552
 553	sci_out(port, SCxSR, SCxSR_TDxE_CLEAR(port));
 554
 555	if (uart_circ_chars_pending(xmit) < WAKEUP_CHARS)
 556		uart_write_wakeup(port);
 557	if (uart_circ_empty(xmit)) {
 558		sci_stop_tx(port);
 559	} else {
 560		ctrl = sci_in(port, SCSCR);
 561
 562		if (port->type != PORT_SCI) {
 563			sci_in(port, SCxSR); /* Dummy read */
 564			sci_out(port, SCxSR, SCxSR_TDxE_CLEAR(port));
 565		}
 566
 567		ctrl |= SCSCR_TIE;
 568		sci_out(port, SCSCR, ctrl);
 569	}
 570}
 571
 572/* On SH3, SCIF may read end-of-break as a space->mark char */
 573#define STEPFN(c)  ({int __c = (c); (((__c-1)|(__c)) == -1); })
 574
 575static void sci_receive_chars(struct uart_port *port)
 576{
 577	struct sci_port *sci_port = to_sci_port(port);
 578	struct tty_struct *tty = port->state->port.tty;
 579	int i, count, copied = 0;
 580	unsigned short status;
 581	unsigned char flag;
 582
 583	status = sci_in(port, SCxSR);
 584	if (!(status & SCxSR_RDxF(port)))
 585		return;
 586
 587	while (1) {
 588		/* Don't copy more bytes than there is room for in the buffer */
 589		count = tty_buffer_request_room(tty, sci_rxfill(port));
 590
 591		/* If for any reason we can't copy more data, we're done! */
 592		if (count == 0)
 593			break;
 594
 595		if (port->type == PORT_SCI) {
 596			char c = sci_in(port, SCxRDR);
 597			if (uart_handle_sysrq_char(port, c) ||
 598			    sci_port->break_flag)
 599				count = 0;
 600			else
 601				tty_insert_flip_char(tty, c, TTY_NORMAL);
 602		} else {
 603			for (i = 0; i < count; i++) {
 604				char c = sci_in(port, SCxRDR);
 605				status = sci_in(port, SCxSR);
 
 606#if defined(CONFIG_CPU_SH3)
 607				/* Skip "chars" during break */
 608				if (sci_port->break_flag) {
 609					if ((c == 0) &&
 610					    (status & SCxSR_FER(port))) {
 611						count--; i--;
 612						continue;
 613					}
 614
 615					/* Nonzero => end-of-break */
 616					dev_dbg(port->dev, "debounce<%02x>\n", c);
 617					sci_port->break_flag = 0;
 618
 619					if (STEPFN(c)) {
 620						count--; i--;
 621						continue;
 622					}
 623				}
 624#endif /* CONFIG_CPU_SH3 */
 625				if (uart_handle_sysrq_char(port, c)) {
 626					count--; i--;
 627					continue;
 628				}
 629
 630				/* Store data and status */
 631				if (status & SCxSR_FER(port)) {
 632					flag = TTY_FRAME;
 
 633					dev_notice(port->dev, "frame error\n");
 634				} else if (status & SCxSR_PER(port)) {
 635					flag = TTY_PARITY;
 
 636					dev_notice(port->dev, "parity error\n");
 637				} else
 638					flag = TTY_NORMAL;
 639
 640				tty_insert_flip_char(tty, c, flag);
 641			}
 642		}
 643
 644		sci_in(port, SCxSR); /* dummy read */
 645		sci_out(port, SCxSR, SCxSR_RDxF_CLEAR(port));
 646
 647		copied += count;
 648		port->icount.rx += count;
 649	}
 650
 651	if (copied) {
 652		/* Tell the rest of the system the news. New characters! */
 653		tty_flip_buffer_push(tty);
 654	} else {
 655		sci_in(port, SCxSR); /* dummy read */
 656		sci_out(port, SCxSR, SCxSR_RDxF_CLEAR(port));
 657	}
 658}
 659
 660#define SCI_BREAK_JIFFIES (HZ/20)
 661
 662/*
 663 * The sci generates interrupts during the break,
 664 * 1 per millisecond or so during the break period, for 9600 baud.
 665 * So dont bother disabling interrupts.
 666 * But dont want more than 1 break event.
 667 * Use a kernel timer to periodically poll the rx line until
 668 * the break is finished.
 669 */
 670static inline void sci_schedule_break_timer(struct sci_port *port)
 671{
 672	mod_timer(&port->break_timer, jiffies + SCI_BREAK_JIFFIES);
 673}
 674
 675/* Ensure that two consecutive samples find the break over. */
 676static void sci_break_timer(unsigned long data)
 677{
 678	struct sci_port *port = (struct sci_port *)data;
 679
 680	sci_port_enable(port);
 681
 682	if (sci_rxd_in(&port->port) == 0) {
 683		port->break_flag = 1;
 684		sci_schedule_break_timer(port);
 685	} else if (port->break_flag == 1) {
 686		/* break is over. */
 687		port->break_flag = 2;
 688		sci_schedule_break_timer(port);
 689	} else
 690		port->break_flag = 0;
 691
 692	sci_port_disable(port);
 693}
 694
 695static int sci_handle_errors(struct uart_port *port)
 696{
 697	int copied = 0;
 698	unsigned short status = sci_in(port, SCxSR);
 699	struct tty_struct *tty = port->state->port.tty;
 700	struct sci_port *s = to_sci_port(port);
 701
 702	/*
 703	 * Handle overruns, if supported.
 704	 */
 705	if (s->cfg->overrun_bit != SCIx_NOT_SUPPORTED) {
 706		if (status & (1 << s->cfg->overrun_bit)) {
 707			/* overrun error */
 708			if (tty_insert_flip_char(tty, 0, TTY_OVERRUN))
 709				copied++;
 710
 711			dev_notice(port->dev, "overrun error");
 712		}
 
 
 
 713	}
 714
 715	if (status & SCxSR_FER(port)) {
 716		if (sci_rxd_in(port) == 0) {
 717			/* Notify of BREAK */
 718			struct sci_port *sci_port = to_sci_port(port);
 719
 720			if (!sci_port->break_flag) {
 
 
 721				sci_port->break_flag = 1;
 722				sci_schedule_break_timer(sci_port);
 723
 724				/* Do sysrq handling. */
 725				if (uart_handle_break(port))
 726					return 0;
 727
 728				dev_dbg(port->dev, "BREAK detected\n");
 729
 730				if (tty_insert_flip_char(tty, 0, TTY_BREAK))
 731					copied++;
 732			}
 733
 734		} else {
 735			/* frame error */
 736			if (tty_insert_flip_char(tty, 0, TTY_FRAME))
 
 
 737				copied++;
 738
 739			dev_notice(port->dev, "frame error\n");
 740		}
 741	}
 742
 743	if (status & SCxSR_PER(port)) {
 744		/* parity error */
 745		if (tty_insert_flip_char(tty, 0, TTY_PARITY))
 
 
 746			copied++;
 747
 748		dev_notice(port->dev, "parity error");
 749	}
 750
 751	if (copied)
 752		tty_flip_buffer_push(tty);
 753
 754	return copied;
 755}
 756
 757static int sci_handle_fifo_overrun(struct uart_port *port)
 758{
 759	struct tty_struct *tty = port->state->port.tty;
 760	struct sci_port *s = to_sci_port(port);
 761	struct plat_sci_reg *reg;
 762	int copied = 0;
 763
 764	reg = sci_getreg(port, SCLSR);
 765	if (!reg->size)
 766		return 0;
 767
 768	if ((sci_in(port, SCLSR) & (1 << s->cfg->overrun_bit))) {
 769		sci_out(port, SCLSR, 0);
 770
 771		tty_insert_flip_char(tty, 0, TTY_OVERRUN);
 772		tty_flip_buffer_push(tty);
 
 
 773
 774		dev_notice(port->dev, "overrun error\n");
 775		copied++;
 776	}
 777
 778	return copied;
 779}
 780
 781static int sci_handle_breaks(struct uart_port *port)
 782{
 783	int copied = 0;
 784	unsigned short status = sci_in(port, SCxSR);
 785	struct tty_struct *tty = port->state->port.tty;
 786	struct sci_port *s = to_sci_port(port);
 787
 788	if (uart_handle_break(port))
 789		return 0;
 790
 791	if (!s->break_flag && status & SCxSR_BRK(port)) {
 792#if defined(CONFIG_CPU_SH3)
 793		/* Debounce break */
 794		s->break_flag = 1;
 795#endif
 
 
 
 796		/* Notify of BREAK */
 797		if (tty_insert_flip_char(tty, 0, TTY_BREAK))
 798			copied++;
 799
 800		dev_dbg(port->dev, "BREAK detected\n");
 801	}
 802
 803	if (copied)
 804		tty_flip_buffer_push(tty);
 805
 806	copied += sci_handle_fifo_overrun(port);
 807
 808	return copied;
 809}
 810
 811static irqreturn_t sci_rx_interrupt(int irq, void *ptr)
 812{
 813#ifdef CONFIG_SERIAL_SH_SCI_DMA
 814	struct uart_port *port = ptr;
 815	struct sci_port *s = to_sci_port(port);
 816
 817	if (s->chan_rx) {
 818		u16 scr = sci_in(port, SCSCR);
 819		u16 ssr = sci_in(port, SCxSR);
 820
 821		/* Disable future Rx interrupts */
 822		if (port->type == PORT_SCIFA || port->type == PORT_SCIFB) {
 823			disable_irq_nosync(irq);
 824			scr |= 0x4000;
 825		} else {
 826			scr &= ~SCSCR_RIE;
 827		}
 828		sci_out(port, SCSCR, scr);
 829		/* Clear current interrupt */
 830		sci_out(port, SCxSR, ssr & ~(1 | SCxSR_RDxF(port)));
 831		dev_dbg(port->dev, "Rx IRQ %lu: setup t-out in %u jiffies\n",
 832			jiffies, s->rx_timeout);
 833		mod_timer(&s->rx_timer, jiffies + s->rx_timeout);
 834
 835		return IRQ_HANDLED;
 836	}
 837#endif
 838
 839	/* I think sci_receive_chars has to be called irrespective
 840	 * of whether the I_IXOFF is set, otherwise, how is the interrupt
 841	 * to be disabled?
 842	 */
 843	sci_receive_chars(ptr);
 844
 845	return IRQ_HANDLED;
 846}
 847
 848static irqreturn_t sci_tx_interrupt(int irq, void *ptr)
 849{
 850	struct uart_port *port = ptr;
 851	unsigned long flags;
 852
 853	spin_lock_irqsave(&port->lock, flags);
 854	sci_transmit_chars(port);
 855	spin_unlock_irqrestore(&port->lock, flags);
 856
 857	return IRQ_HANDLED;
 858}
 859
 860static irqreturn_t sci_er_interrupt(int irq, void *ptr)
 861{
 862	struct uart_port *port = ptr;
 863
 864	/* Handle errors */
 865	if (port->type == PORT_SCI) {
 866		if (sci_handle_errors(port)) {
 867			/* discard character in rx buffer */
 868			sci_in(port, SCxSR);
 869			sci_out(port, SCxSR, SCxSR_RDxF_CLEAR(port));
 870		}
 871	} else {
 872		sci_handle_fifo_overrun(port);
 873		sci_rx_interrupt(irq, ptr);
 874	}
 875
 876	sci_out(port, SCxSR, SCxSR_ERROR_CLEAR(port));
 877
 878	/* Kick the transmission */
 879	sci_tx_interrupt(irq, ptr);
 880
 881	return IRQ_HANDLED;
 882}
 883
 884static irqreturn_t sci_br_interrupt(int irq, void *ptr)
 885{
 886	struct uart_port *port = ptr;
 887
 888	/* Handle BREAKs */
 889	sci_handle_breaks(port);
 890	sci_out(port, SCxSR, SCxSR_BREAK_CLEAR(port));
 891
 892	return IRQ_HANDLED;
 893}
 894
 895static inline unsigned long port_rx_irq_mask(struct uart_port *port)
 896{
 897	/*
 898	 * Not all ports (such as SCIFA) will support REIE. Rather than
 899	 * special-casing the port type, we check the port initialization
 900	 * IRQ enable mask to see whether the IRQ is desired at all. If
 901	 * it's unset, it's logically inferred that there's no point in
 902	 * testing for it.
 903	 */
 904	return SCSCR_RIE | (to_sci_port(port)->cfg->scscr & SCSCR_REIE);
 905}
 906
 907static irqreturn_t sci_mpxed_interrupt(int irq, void *ptr)
 908{
 909	unsigned short ssr_status, scr_status, err_enabled;
 910	struct uart_port *port = ptr;
 911	struct sci_port *s = to_sci_port(port);
 912	irqreturn_t ret = IRQ_NONE;
 913
 914	ssr_status = sci_in(port, SCxSR);
 915	scr_status = sci_in(port, SCSCR);
 916	err_enabled = scr_status & port_rx_irq_mask(port);
 917
 918	/* Tx Interrupt */
 919	if ((ssr_status & SCxSR_TDxE(port)) && (scr_status & SCSCR_TIE) &&
 920	    !s->chan_tx)
 921		ret = sci_tx_interrupt(irq, ptr);
 922
 923	/*
 924	 * Rx Interrupt: if we're using DMA, the DMA controller clears RDF /
 925	 * DR flags
 926	 */
 927	if (((ssr_status & SCxSR_RDxF(port)) || s->chan_rx) &&
 928	    (scr_status & SCSCR_RIE))
 929		ret = sci_rx_interrupt(irq, ptr);
 930
 931	/* Error Interrupt */
 932	if ((ssr_status & SCxSR_ERRORS(port)) && err_enabled)
 933		ret = sci_er_interrupt(irq, ptr);
 934
 935	/* Break Interrupt */
 936	if ((ssr_status & SCxSR_BRK(port)) && err_enabled)
 937		ret = sci_br_interrupt(irq, ptr);
 938
 939	return ret;
 940}
 941
 942/*
 943 * Here we define a transition notifier so that we can update all of our
 944 * ports' baud rate when the peripheral clock changes.
 945 */
 946static int sci_notifier(struct notifier_block *self,
 947			unsigned long phase, void *p)
 948{
 949	struct sci_port *sci_port;
 950	unsigned long flags;
 951
 952	sci_port = container_of(self, struct sci_port, freq_transition);
 953
 954	if ((phase == CPUFREQ_POSTCHANGE) ||
 955	    (phase == CPUFREQ_RESUMECHANGE)) {
 956		struct uart_port *port = &sci_port->port;
 957
 958		spin_lock_irqsave(&port->lock, flags);
 959		port->uartclk = clk_get_rate(sci_port->iclk);
 960		spin_unlock_irqrestore(&port->lock, flags);
 961	}
 962
 963	return NOTIFY_OK;
 964}
 965
 966static struct sci_irq_desc {
 967	const char	*desc;
 968	irq_handler_t	handler;
 969} sci_irq_desc[] = {
 970	/*
 971	 * Split out handlers, the default case.
 972	 */
 973	[SCIx_ERI_IRQ] = {
 974		.desc = "rx err",
 975		.handler = sci_er_interrupt,
 976	},
 977
 978	[SCIx_RXI_IRQ] = {
 979		.desc = "rx full",
 980		.handler = sci_rx_interrupt,
 981	},
 982
 983	[SCIx_TXI_IRQ] = {
 984		.desc = "tx empty",
 985		.handler = sci_tx_interrupt,
 986	},
 987
 988	[SCIx_BRI_IRQ] = {
 989		.desc = "break",
 990		.handler = sci_br_interrupt,
 991	},
 992
 993	/*
 994	 * Special muxed handler.
 995	 */
 996	[SCIx_MUX_IRQ] = {
 997		.desc = "mux",
 998		.handler = sci_mpxed_interrupt,
 999	},
1000};
1001
1002static int sci_request_irq(struct sci_port *port)
1003{
1004	struct uart_port *up = &port->port;
1005	int i, j, ret = 0;
1006
1007	for (i = j = 0; i < SCIx_NR_IRQS; i++, j++) {
1008		struct sci_irq_desc *desc;
1009		unsigned int irq;
1010
1011		if (SCIx_IRQ_IS_MUXED(port)) {
1012			i = SCIx_MUX_IRQ;
1013			irq = up->irq;
1014		} else
1015			irq = port->cfg->irqs[i];
 
 
 
 
 
 
 
 
1016
1017		desc = sci_irq_desc + i;
1018		port->irqstr[j] = kasprintf(GFP_KERNEL, "%s:%s",
1019					    dev_name(up->dev), desc->desc);
1020		if (!port->irqstr[j]) {
1021			dev_err(up->dev, "Failed to allocate %s IRQ string\n",
1022				desc->desc);
1023			goto out_nomem;
1024		}
1025
1026		ret = request_irq(irq, desc->handler, up->irqflags,
1027				  port->irqstr[j], port);
1028		if (unlikely(ret)) {
1029			dev_err(up->dev, "Can't allocate %s IRQ\n", desc->desc);
1030			goto out_noirq;
1031		}
1032	}
1033
1034	return 0;
1035
1036out_noirq:
1037	while (--i >= 0)
1038		free_irq(port->cfg->irqs[i], port);
1039
1040out_nomem:
1041	while (--j >= 0)
1042		kfree(port->irqstr[j]);
1043
1044	return ret;
1045}
1046
1047static void sci_free_irq(struct sci_port *port)
1048{
1049	int i;
1050
1051	/*
1052	 * Intentionally in reverse order so we iterate over the muxed
1053	 * IRQ first.
1054	 */
1055	for (i = 0; i < SCIx_NR_IRQS; i++) {
1056		free_irq(port->cfg->irqs[i], port);
 
 
 
 
 
 
 
 
 
1057		kfree(port->irqstr[i]);
1058
1059		if (SCIx_IRQ_IS_MUXED(port)) {
1060			/* If there's only one IRQ, we're done. */
1061			return;
1062		}
1063	}
1064}
1065
1066static unsigned int sci_tx_empty(struct uart_port *port)
1067{
1068	unsigned short status = sci_in(port, SCxSR);
1069	unsigned short in_tx_fifo = sci_txfill(port);
1070
1071	return (status & SCxSR_TEND(port)) && !in_tx_fifo ? TIOCSER_TEMT : 0;
1072}
1073
 
 
 
 
 
 
 
 
 
 
 
 
1074static void sci_set_mctrl(struct uart_port *port, unsigned int mctrl)
1075{
1076	/* This routine is used for seting signals of: DTR, DCD, CTS/RTS */
1077	/* We use SCIF's hardware for CTS/RTS, so don't need any for that. */
1078	/* If you have signals for DTR and DCD, please implement here. */
 
 
 
 
 
 
 
 
 
1079}
1080
1081static unsigned int sci_get_mctrl(struct uart_port *port)
1082{
1083	/* This routine is used for getting signals of: DTR, DCD, DSR, RI,
1084	   and CTS/RTS */
1085
1086	return TIOCM_DTR | TIOCM_RTS | TIOCM_CTS | TIOCM_DSR;
 
1087}
1088
1089#ifdef CONFIG_SERIAL_SH_SCI_DMA
1090static void sci_dma_tx_complete(void *arg)
1091{
1092	struct sci_port *s = arg;
1093	struct uart_port *port = &s->port;
1094	struct circ_buf *xmit = &port->state->xmit;
1095	unsigned long flags;
1096
1097	dev_dbg(port->dev, "%s(%d)\n", __func__, port->line);
1098
1099	spin_lock_irqsave(&port->lock, flags);
1100
1101	xmit->tail += sg_dma_len(&s->sg_tx);
1102	xmit->tail &= UART_XMIT_SIZE - 1;
1103
1104	port->icount.tx += sg_dma_len(&s->sg_tx);
1105
1106	async_tx_ack(s->desc_tx);
1107	s->cookie_tx = -EINVAL;
1108	s->desc_tx = NULL;
1109
1110	if (uart_circ_chars_pending(xmit) < WAKEUP_CHARS)
1111		uart_write_wakeup(port);
1112
1113	if (!uart_circ_empty(xmit)) {
 
1114		schedule_work(&s->work_tx);
1115	} else if (port->type == PORT_SCIFA || port->type == PORT_SCIFB) {
1116		u16 ctrl = sci_in(port, SCSCR);
1117		sci_out(port, SCSCR, ctrl & ~SCSCR_TIE);
 
 
 
1118	}
1119
1120	spin_unlock_irqrestore(&port->lock, flags);
1121}
1122
1123/* Locking: called with port lock held */
1124static int sci_dma_rx_push(struct sci_port *s, struct tty_struct *tty,
1125			   size_t count)
1126{
1127	struct uart_port *port = &s->port;
 
1128	int i, active, room;
1129
1130	room = tty_buffer_request_room(tty, count);
1131
1132	if (s->active_rx == s->cookie_rx[0]) {
1133		active = 0;
1134	} else if (s->active_rx == s->cookie_rx[1]) {
1135		active = 1;
1136	} else {
1137		dev_err(port->dev, "cookie %d not found!\n", s->active_rx);
1138		return 0;
1139	}
1140
1141	if (room < count)
1142		dev_warn(port->dev, "Rx overrun: dropping %u bytes\n",
1143			 count - room);
1144	if (!room)
1145		return room;
1146
1147	for (i = 0; i < room; i++)
1148		tty_insert_flip_char(tty, ((u8 *)sg_virt(&s->sg_rx[active]))[i],
1149				     TTY_NORMAL);
1150
1151	port->icount.rx += room;
1152
1153	return room;
1154}
1155
1156static void sci_dma_rx_complete(void *arg)
1157{
1158	struct sci_port *s = arg;
1159	struct uart_port *port = &s->port;
1160	struct tty_struct *tty = port->state->port.tty;
1161	unsigned long flags;
1162	int count;
1163
1164	dev_dbg(port->dev, "%s(%d) active #%d\n", __func__, port->line, s->active_rx);
 
1165
1166	spin_lock_irqsave(&port->lock, flags);
1167
1168	count = sci_dma_rx_push(s, tty, s->buf_len_rx);
1169
1170	mod_timer(&s->rx_timer, jiffies + s->rx_timeout);
1171
1172	spin_unlock_irqrestore(&port->lock, flags);
1173
1174	if (count)
1175		tty_flip_buffer_push(tty);
1176
1177	schedule_work(&s->work_rx);
1178}
1179
1180static void sci_rx_dma_release(struct sci_port *s, bool enable_pio)
1181{
1182	struct dma_chan *chan = s->chan_rx;
1183	struct uart_port *port = &s->port;
1184
1185	s->chan_rx = NULL;
1186	s->cookie_rx[0] = s->cookie_rx[1] = -EINVAL;
1187	dma_release_channel(chan);
1188	if (sg_dma_address(&s->sg_rx[0]))
1189		dma_free_coherent(port->dev, s->buf_len_rx * 2,
1190				  sg_virt(&s->sg_rx[0]), sg_dma_address(&s->sg_rx[0]));
1191	if (enable_pio)
1192		sci_start_rx(port);
1193}
1194
1195static void sci_tx_dma_release(struct sci_port *s, bool enable_pio)
1196{
1197	struct dma_chan *chan = s->chan_tx;
1198	struct uart_port *port = &s->port;
1199
1200	s->chan_tx = NULL;
1201	s->cookie_tx = -EINVAL;
1202	dma_release_channel(chan);
1203	if (enable_pio)
1204		sci_start_tx(port);
1205}
1206
1207static void sci_submit_rx(struct sci_port *s)
1208{
1209	struct dma_chan *chan = s->chan_rx;
1210	int i;
1211
1212	for (i = 0; i < 2; i++) {
1213		struct scatterlist *sg = &s->sg_rx[i];
1214		struct dma_async_tx_descriptor *desc;
1215
1216		desc = chan->device->device_prep_slave_sg(chan,
1217			sg, 1, DMA_FROM_DEVICE, DMA_PREP_INTERRUPT);
1218
1219		if (desc) {
1220			s->desc_rx[i] = desc;
1221			desc->callback = sci_dma_rx_complete;
1222			desc->callback_param = s;
1223			s->cookie_rx[i] = desc->tx_submit(desc);
1224		}
1225
1226		if (!desc || s->cookie_rx[i] < 0) {
1227			if (i) {
1228				async_tx_ack(s->desc_rx[0]);
1229				s->cookie_rx[0] = -EINVAL;
1230			}
1231			if (desc) {
1232				async_tx_ack(desc);
1233				s->cookie_rx[i] = -EINVAL;
1234			}
1235			dev_warn(s->port.dev,
1236				 "failed to re-start DMA, using PIO\n");
1237			sci_rx_dma_release(s, true);
1238			return;
1239		}
1240		dev_dbg(s->port.dev, "%s(): cookie %d to #%d\n", __func__,
1241			s->cookie_rx[i], i);
1242	}
1243
1244	s->active_rx = s->cookie_rx[0];
1245
1246	dma_async_issue_pending(chan);
1247}
1248
1249static void work_fn_rx(struct work_struct *work)
1250{
1251	struct sci_port *s = container_of(work, struct sci_port, work_rx);
1252	struct uart_port *port = &s->port;
1253	struct dma_async_tx_descriptor *desc;
1254	int new;
1255
1256	if (s->active_rx == s->cookie_rx[0]) {
1257		new = 0;
1258	} else if (s->active_rx == s->cookie_rx[1]) {
1259		new = 1;
1260	} else {
1261		dev_err(port->dev, "cookie %d not found!\n", s->active_rx);
1262		return;
1263	}
1264	desc = s->desc_rx[new];
1265
1266	if (dma_async_is_tx_complete(s->chan_rx, s->active_rx, NULL, NULL) !=
1267	    DMA_SUCCESS) {
1268		/* Handle incomplete DMA receive */
1269		struct tty_struct *tty = port->state->port.tty;
1270		struct dma_chan *chan = s->chan_rx;
1271		struct sh_desc *sh_desc = container_of(desc, struct sh_desc,
1272						       async_tx);
1273		unsigned long flags;
1274		int count;
1275
1276		chan->device->device_control(chan, DMA_TERMINATE_ALL, 0);
1277		dev_dbg(port->dev, "Read %u bytes with cookie %d\n",
1278			sh_desc->partial, sh_desc->cookie);
1279
1280		spin_lock_irqsave(&port->lock, flags);
1281		count = sci_dma_rx_push(s, tty, sh_desc->partial);
1282		spin_unlock_irqrestore(&port->lock, flags);
1283
1284		if (count)
1285			tty_flip_buffer_push(tty);
1286
1287		sci_submit_rx(s);
1288
1289		return;
1290	}
1291
1292	s->cookie_rx[new] = desc->tx_submit(desc);
1293	if (s->cookie_rx[new] < 0) {
1294		dev_warn(port->dev, "Failed submitting Rx DMA descriptor\n");
1295		sci_rx_dma_release(s, true);
1296		return;
1297	}
1298
1299	s->active_rx = s->cookie_rx[!new];
1300
1301	dev_dbg(port->dev, "%s: cookie %d #%d, new active #%d\n", __func__,
1302		s->cookie_rx[new], new, s->active_rx);
1303}
1304
1305static void work_fn_tx(struct work_struct *work)
1306{
1307	struct sci_port *s = container_of(work, struct sci_port, work_tx);
1308	struct dma_async_tx_descriptor *desc;
1309	struct dma_chan *chan = s->chan_tx;
1310	struct uart_port *port = &s->port;
1311	struct circ_buf *xmit = &port->state->xmit;
1312	struct scatterlist *sg = &s->sg_tx;
1313
1314	/*
1315	 * DMA is idle now.
1316	 * Port xmit buffer is already mapped, and it is one page... Just adjust
1317	 * offsets and lengths. Since it is a circular buffer, we have to
1318	 * transmit till the end, and then the rest. Take the port lock to get a
1319	 * consistent xmit buffer state.
1320	 */
1321	spin_lock_irq(&port->lock);
1322	sg->offset = xmit->tail & (UART_XMIT_SIZE - 1);
1323	sg_dma_address(sg) = (sg_dma_address(sg) & ~(UART_XMIT_SIZE - 1)) +
1324		sg->offset;
1325	sg_dma_len(sg) = min((int)CIRC_CNT(xmit->head, xmit->tail, UART_XMIT_SIZE),
1326		CIRC_CNT_TO_END(xmit->head, xmit->tail, UART_XMIT_SIZE));
1327	spin_unlock_irq(&port->lock);
1328
1329	BUG_ON(!sg_dma_len(sg));
1330
1331	desc = chan->device->device_prep_slave_sg(chan,
1332			sg, s->sg_len_tx, DMA_TO_DEVICE,
1333			DMA_PREP_INTERRUPT | DMA_CTRL_ACK);
1334	if (!desc) {
1335		/* switch to PIO */
1336		sci_tx_dma_release(s, true);
1337		return;
1338	}
1339
1340	dma_sync_sg_for_device(port->dev, sg, 1, DMA_TO_DEVICE);
1341
1342	spin_lock_irq(&port->lock);
1343	s->desc_tx = desc;
1344	desc->callback = sci_dma_tx_complete;
1345	desc->callback_param = s;
1346	spin_unlock_irq(&port->lock);
1347	s->cookie_tx = desc->tx_submit(desc);
1348	if (s->cookie_tx < 0) {
1349		dev_warn(port->dev, "Failed submitting Tx DMA descriptor\n");
1350		/* switch to PIO */
1351		sci_tx_dma_release(s, true);
1352		return;
1353	}
1354
1355	dev_dbg(port->dev, "%s: %p: %d...%d, cookie %d\n", __func__,
1356		xmit->buf, xmit->tail, xmit->head, s->cookie_tx);
1357
1358	dma_async_issue_pending(chan);
1359}
1360#endif
1361
1362static void sci_start_tx(struct uart_port *port)
1363{
1364	struct sci_port *s = to_sci_port(port);
1365	unsigned short ctrl;
1366
1367#ifdef CONFIG_SERIAL_SH_SCI_DMA
1368	if (port->type == PORT_SCIFA || port->type == PORT_SCIFB) {
1369		u16 new, scr = sci_in(port, SCSCR);
1370		if (s->chan_tx)
1371			new = scr | 0x8000;
1372		else
1373			new = scr & ~0x8000;
1374		if (new != scr)
1375			sci_out(port, SCSCR, new);
1376	}
1377
1378	if (s->chan_tx && !uart_circ_empty(&s->port.state->xmit) &&
1379	    s->cookie_tx < 0)
 
1380		schedule_work(&s->work_tx);
 
1381#endif
1382
1383	if (!s->chan_tx || port->type == PORT_SCIFA || port->type == PORT_SCIFB) {
1384		/* Set TIE (Transmit Interrupt Enable) bit in SCSCR */
1385		ctrl = sci_in(port, SCSCR);
1386		sci_out(port, SCSCR, ctrl | SCSCR_TIE);
1387	}
1388}
1389
1390static void sci_stop_tx(struct uart_port *port)
1391{
1392	unsigned short ctrl;
1393
1394	/* Clear TIE (Transmit Interrupt Enable) bit in SCSCR */
1395	ctrl = sci_in(port, SCSCR);
1396
1397	if (port->type == PORT_SCIFA || port->type == PORT_SCIFB)
1398		ctrl &= ~0x8000;
1399
1400	ctrl &= ~SCSCR_TIE;
1401
1402	sci_out(port, SCSCR, ctrl);
1403}
1404
1405static void sci_start_rx(struct uart_port *port)
1406{
1407	unsigned short ctrl;
1408
1409	ctrl = sci_in(port, SCSCR) | port_rx_irq_mask(port);
1410
1411	if (port->type == PORT_SCIFA || port->type == PORT_SCIFB)
1412		ctrl &= ~0x4000;
1413
1414	sci_out(port, SCSCR, ctrl);
1415}
1416
1417static void sci_stop_rx(struct uart_port *port)
1418{
1419	unsigned short ctrl;
1420
1421	ctrl = sci_in(port, SCSCR);
1422
1423	if (port->type == PORT_SCIFA || port->type == PORT_SCIFB)
1424		ctrl &= ~0x4000;
1425
1426	ctrl &= ~port_rx_irq_mask(port);
1427
1428	sci_out(port, SCSCR, ctrl);
1429}
1430
1431static void sci_enable_ms(struct uart_port *port)
1432{
1433	/* Nothing here yet .. */
 
 
1434}
1435
1436static void sci_break_ctl(struct uart_port *port, int break_state)
1437{
1438	/* Nothing here yet .. */
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1439}
1440
1441#ifdef CONFIG_SERIAL_SH_SCI_DMA
1442static bool filter(struct dma_chan *chan, void *slave)
1443{
1444	struct sh_dmae_slave *param = slave;
1445
1446	dev_dbg(chan->device->dev, "%s: slave ID %d\n", __func__,
1447		param->slave_id);
1448
1449	if (param->dma_dev == chan->device->dev) {
1450		chan->private = param;
1451		return true;
1452	} else {
1453		return false;
1454	}
1455}
1456
1457static void rx_timer_fn(unsigned long arg)
1458{
1459	struct sci_port *s = (struct sci_port *)arg;
1460	struct uart_port *port = &s->port;
1461	u16 scr = sci_in(port, SCSCR);
1462
1463	if (port->type == PORT_SCIFA || port->type == PORT_SCIFB) {
1464		scr &= ~0x4000;
1465		enable_irq(s->cfg->irqs[1]);
1466	}
1467	sci_out(port, SCSCR, scr | SCSCR_RIE);
1468	dev_dbg(port->dev, "DMA Rx timed out\n");
1469	schedule_work(&s->work_rx);
1470}
1471
1472static void sci_request_dma(struct uart_port *port)
1473{
1474	struct sci_port *s = to_sci_port(port);
1475	struct sh_dmae_slave *param;
1476	struct dma_chan *chan;
1477	dma_cap_mask_t mask;
1478	int nent;
1479
1480	dev_dbg(port->dev, "%s: port %d DMA %p\n", __func__,
1481		port->line, s->cfg->dma_dev);
1482
1483	if (!s->cfg->dma_dev)
1484		return;
1485
1486	dma_cap_zero(mask);
1487	dma_cap_set(DMA_SLAVE, mask);
1488
1489	param = &s->param_tx;
1490
1491	/* Slave ID, e.g., SHDMA_SLAVE_SCIF0_TX */
1492	param->slave_id = s->cfg->dma_slave_tx;
1493	param->dma_dev = s->cfg->dma_dev;
1494
1495	s->cookie_tx = -EINVAL;
1496	chan = dma_request_channel(mask, filter, param);
1497	dev_dbg(port->dev, "%s: TX: got channel %p\n", __func__, chan);
1498	if (chan) {
1499		s->chan_tx = chan;
1500		sg_init_table(&s->sg_tx, 1);
1501		/* UART circular tx buffer is an aligned page. */
1502		BUG_ON((int)port->state->xmit.buf & ~PAGE_MASK);
1503		sg_set_page(&s->sg_tx, virt_to_page(port->state->xmit.buf),
1504			    UART_XMIT_SIZE, (int)port->state->xmit.buf & ~PAGE_MASK);
 
1505		nent = dma_map_sg(port->dev, &s->sg_tx, 1, DMA_TO_DEVICE);
1506		if (!nent)
1507			sci_tx_dma_release(s, false);
1508		else
1509			dev_dbg(port->dev, "%s: mapped %d@%p to %x\n", __func__,
1510				sg_dma_len(&s->sg_tx),
1511				port->state->xmit.buf, sg_dma_address(&s->sg_tx));
 
1512
1513		s->sg_len_tx = nent;
1514
1515		INIT_WORK(&s->work_tx, work_fn_tx);
1516	}
1517
1518	param = &s->param_rx;
1519
1520	/* Slave ID, e.g., SHDMA_SLAVE_SCIF0_RX */
1521	param->slave_id = s->cfg->dma_slave_rx;
1522	param->dma_dev = s->cfg->dma_dev;
1523
1524	chan = dma_request_channel(mask, filter, param);
1525	dev_dbg(port->dev, "%s: RX: got channel %p\n", __func__, chan);
1526	if (chan) {
1527		dma_addr_t dma[2];
1528		void *buf[2];
1529		int i;
1530
1531		s->chan_rx = chan;
1532
1533		s->buf_len_rx = 2 * max(16, (int)port->fifosize);
1534		buf[0] = dma_alloc_coherent(port->dev, s->buf_len_rx * 2,
1535					    &dma[0], GFP_KERNEL);
1536
1537		if (!buf[0]) {
1538			dev_warn(port->dev,
1539				 "failed to allocate dma buffer, using PIO\n");
1540			sci_rx_dma_release(s, true);
1541			return;
1542		}
1543
1544		buf[1] = buf[0] + s->buf_len_rx;
1545		dma[1] = dma[0] + s->buf_len_rx;
1546
1547		for (i = 0; i < 2; i++) {
1548			struct scatterlist *sg = &s->sg_rx[i];
1549
1550			sg_init_table(sg, 1);
1551			sg_set_page(sg, virt_to_page(buf[i]), s->buf_len_rx,
1552				    (int)buf[i] & ~PAGE_MASK);
1553			sg_dma_address(sg) = dma[i];
1554		}
1555
1556		INIT_WORK(&s->work_rx, work_fn_rx);
1557		setup_timer(&s->rx_timer, rx_timer_fn, (unsigned long)s);
1558
1559		sci_submit_rx(s);
1560	}
1561}
1562
1563static void sci_free_dma(struct uart_port *port)
1564{
1565	struct sci_port *s = to_sci_port(port);
1566
1567	if (!s->cfg->dma_dev)
1568		return;
1569
1570	if (s->chan_tx)
1571		sci_tx_dma_release(s, false);
1572	if (s->chan_rx)
1573		sci_rx_dma_release(s, false);
1574}
1575#else
1576static inline void sci_request_dma(struct uart_port *port)
1577{
1578}
1579
1580static inline void sci_free_dma(struct uart_port *port)
1581{
1582}
1583#endif
1584
1585static int sci_startup(struct uart_port *port)
1586{
1587	struct sci_port *s = to_sci_port(port);
 
1588	int ret;
1589
1590	dev_dbg(port->dev, "%s(%d)\n", __func__, port->line);
1591
1592	sci_port_enable(s);
1593
1594	ret = sci_request_irq(s);
1595	if (unlikely(ret < 0))
1596		return ret;
1597
1598	sci_request_dma(port);
1599
 
1600	sci_start_tx(port);
1601	sci_start_rx(port);
 
1602
1603	return 0;
1604}
1605
1606static void sci_shutdown(struct uart_port *port)
1607{
1608	struct sci_port *s = to_sci_port(port);
 
1609
1610	dev_dbg(port->dev, "%s(%d)\n", __func__, port->line);
1611
 
1612	sci_stop_rx(port);
1613	sci_stop_tx(port);
 
1614
1615	sci_free_dma(port);
1616	sci_free_irq(s);
1617
1618	sci_port_disable(s);
1619}
1620
1621static unsigned int sci_scbrr_calc(unsigned int algo_id, unsigned int bps,
1622				   unsigned long freq)
1623{
1624	switch (algo_id) {
1625	case SCBRR_ALGO_1:
1626		return ((freq + 16 * bps) / (16 * bps) - 1);
1627	case SCBRR_ALGO_2:
1628		return ((freq + 16 * bps) / (32 * bps) - 1);
1629	case SCBRR_ALGO_3:
1630		return (((freq * 2) + 16 * bps) / (16 * bps) - 1);
1631	case SCBRR_ALGO_4:
1632		return (((freq * 2) + 16 * bps) / (32 * bps) - 1);
1633	case SCBRR_ALGO_5:
1634		return (((freq * 1000 / 32) / bps) - 1);
1635	}
1636
1637	/* Warn, but use a safe default */
1638	WARN_ON(1);
1639
1640	return ((freq + 16 * bps) / (32 * bps) - 1);
1641}
1642
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1643static void sci_reset(struct uart_port *port)
1644{
 
1645	unsigned int status;
1646
1647	do {
1648		status = sci_in(port, SCxSR);
1649	} while (!(status & SCxSR_TEND(port)));
1650
1651	sci_out(port, SCSCR, 0x00);	/* TE=0, RE=0, CKE1=0 */
1652
1653	if (port->type != PORT_SCI)
1654		sci_out(port, SCFCR, SCFCR_RFRST | SCFCR_TFRST);
 
1655}
1656
1657static void sci_set_termios(struct uart_port *port, struct ktermios *termios,
1658			    struct ktermios *old)
1659{
1660	struct sci_port *s = to_sci_port(port);
1661	unsigned int baud, smr_val, max_baud;
 
1662	int t = -1;
1663	u16 scfcr = 0;
1664
1665	/*
1666	 * earlyprintk comes here early on with port->uartclk set to zero.
1667	 * the clock framework is not up and running at this point so here
1668	 * we assume that 115200 is the maximum baud rate. please note that
1669	 * the baud rate is not programmed during earlyprintk - it is assumed
1670	 * that the previous boot loader has enabled required clocks and
1671	 * setup the baud rate generator hardware for us already.
1672	 */
1673	max_baud = port->uartclk ? port->uartclk / 16 : 115200;
1674
1675	baud = uart_get_baud_rate(port, termios, old, 0, max_baud);
1676	if (likely(baud && port->uartclk))
1677		t = sci_scbrr_calc(s->cfg->scbrr_algo_id, baud, port->uartclk);
 
 
 
 
 
 
 
 
1678
1679	sci_port_enable(s);
1680
1681	sci_reset(port);
1682
1683	smr_val = sci_in(port, SCSMR) & 3;
1684
1685	if ((termios->c_cflag & CSIZE) == CS7)
1686		smr_val |= 0x40;
1687	if (termios->c_cflag & PARENB)
1688		smr_val |= 0x20;
1689	if (termios->c_cflag & PARODD)
1690		smr_val |= 0x30;
1691	if (termios->c_cflag & CSTOPB)
1692		smr_val |= 0x08;
1693
1694	uart_update_timeout(port, termios->c_cflag, baud);
1695
1696	sci_out(port, SCSMR, smr_val);
1697
1698	dev_dbg(port->dev, "%s: SMR %x, t %x, SCSCR %x\n", __func__, smr_val, t,
1699		s->cfg->scscr);
1700
1701	if (t > 0) {
1702		if (t >= 256) {
1703			sci_out(port, SCSMR, (sci_in(port, SCSMR) & ~3) | 1);
1704			t >>= 2;
1705		} else
1706			sci_out(port, SCSMR, sci_in(port, SCSMR) & ~3);
1707
1708		sci_out(port, SCBRR, t);
1709		udelay((1000000+(baud-1)) / baud); /* Wait one bit interval */
1710	}
 
1711
1712	sci_init_pins(port, termios->c_cflag);
1713	sci_out(port, SCFCR, scfcr | ((termios->c_cflag & CRTSCTS) ? SCFCR_MCE : 0));
1714
1715	sci_out(port, SCSCR, s->cfg->scscr);
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1716
1717#ifdef CONFIG_SERIAL_SH_SCI_DMA
1718	/*
1719	 * Calculate delay for 1.5 DMA buffers: see
1720	 * drivers/serial/serial_core.c::uart_update_timeout(). With 10 bits
1721	 * (CS8), 250Hz, 115200 baud and 64 bytes FIFO, the above function
1722	 * calculates 1 jiffie for the data plus 5 jiffies for the "slop(e)."
1723	 * Then below we calculate 3 jiffies (12ms) for 1.5 DMA buffers (3 FIFO
1724	 * sizes), but it has been found out experimentally, that this is not
1725	 * enough: the driver too often needlessly runs on a DMA timeout. 20ms
1726	 * as a minimum seem to work perfectly.
1727	 */
1728	if (s->chan_rx) {
1729		s->rx_timeout = (port->timeout - HZ / 50) * s->buf_len_rx * 3 /
1730			port->fifosize / 2;
1731		dev_dbg(port->dev,
1732			"DMA Rx t-out %ums, tty t-out %u jiffies\n",
1733			s->rx_timeout * 1000 / HZ, port->timeout);
1734		if (s->rx_timeout < msecs_to_jiffies(20))
1735			s->rx_timeout = msecs_to_jiffies(20);
1736	}
1737#endif
1738
1739	if ((termios->c_cflag & CREAD) != 0)
1740		sci_start_rx(port);
1741
1742	sci_port_disable(s);
1743}
1744
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1745static const char *sci_type(struct uart_port *port)
1746{
1747	switch (port->type) {
1748	case PORT_IRDA:
1749		return "irda";
1750	case PORT_SCI:
1751		return "sci";
1752	case PORT_SCIF:
1753		return "scif";
1754	case PORT_SCIFA:
1755		return "scifa";
1756	case PORT_SCIFB:
1757		return "scifb";
 
 
1758	}
1759
1760	return NULL;
1761}
1762
1763static inline unsigned long sci_port_size(struct uart_port *port)
1764{
1765	/*
1766	 * Pick an arbitrary size that encapsulates all of the base
1767	 * registers by default. This can be optimized later, or derived
1768	 * from platform resource data at such a time that ports begin to
1769	 * behave more erratically.
1770	 */
1771	return 64;
 
 
 
1772}
1773
1774static int sci_remap_port(struct uart_port *port)
1775{
1776	unsigned long size = sci_port_size(port);
1777
1778	/*
1779	 * Nothing to do if there's already an established membase.
1780	 */
1781	if (port->membase)
1782		return 0;
1783
1784	if (port->flags & UPF_IOREMAP) {
1785		port->membase = ioremap_nocache(port->mapbase, size);
1786		if (unlikely(!port->membase)) {
1787			dev_err(port->dev, "can't remap port#%d\n", port->line);
1788			return -ENXIO;
1789		}
1790	} else {
1791		/*
1792		 * For the simple (and majority of) cases where we don't
1793		 * need to do any remapping, just cast the cookie
1794		 * directly.
1795		 */
1796		port->membase = (void __iomem *)port->mapbase;
1797	}
1798
1799	return 0;
1800}
1801
1802static void sci_release_port(struct uart_port *port)
1803{
1804	if (port->flags & UPF_IOREMAP) {
1805		iounmap(port->membase);
1806		port->membase = NULL;
1807	}
1808
1809	release_mem_region(port->mapbase, sci_port_size(port));
1810}
1811
1812static int sci_request_port(struct uart_port *port)
1813{
1814	unsigned long size = sci_port_size(port);
1815	struct resource *res;
1816	int ret;
1817
1818	res = request_mem_region(port->mapbase, size, dev_name(port->dev));
1819	if (unlikely(res == NULL))
1820		return -EBUSY;
1821
1822	ret = sci_remap_port(port);
1823	if (unlikely(ret != 0)) {
1824		release_resource(res);
1825		return ret;
1826	}
1827
1828	return 0;
1829}
1830
1831static void sci_config_port(struct uart_port *port, int flags)
1832{
1833	if (flags & UART_CONFIG_TYPE) {
1834		struct sci_port *sport = to_sci_port(port);
1835
1836		port->type = sport->cfg->type;
1837		sci_request_port(port);
1838	}
1839}
1840
1841static int sci_verify_port(struct uart_port *port, struct serial_struct *ser)
1842{
1843	struct sci_port *s = to_sci_port(port);
1844
1845	if (ser->irq != s->cfg->irqs[SCIx_TXI_IRQ] || ser->irq > nr_irqs)
1846		return -EINVAL;
1847	if (ser->baud_base < 2400)
1848		/* No paper tape reader for Mitch.. */
1849		return -EINVAL;
1850
1851	return 0;
1852}
1853
1854static struct uart_ops sci_uart_ops = {
1855	.tx_empty	= sci_tx_empty,
1856	.set_mctrl	= sci_set_mctrl,
1857	.get_mctrl	= sci_get_mctrl,
1858	.start_tx	= sci_start_tx,
1859	.stop_tx	= sci_stop_tx,
1860	.stop_rx	= sci_stop_rx,
1861	.enable_ms	= sci_enable_ms,
1862	.break_ctl	= sci_break_ctl,
1863	.startup	= sci_startup,
1864	.shutdown	= sci_shutdown,
1865	.set_termios	= sci_set_termios,
 
1866	.type		= sci_type,
1867	.release_port	= sci_release_port,
1868	.request_port	= sci_request_port,
1869	.config_port	= sci_config_port,
1870	.verify_port	= sci_verify_port,
1871#ifdef CONFIG_CONSOLE_POLL
1872	.poll_get_char	= sci_poll_get_char,
1873	.poll_put_char	= sci_poll_put_char,
1874#endif
1875};
1876
1877static int __devinit sci_init_single(struct platform_device *dev,
1878				     struct sci_port *sci_port,
1879				     unsigned int index,
1880				     struct plat_sci_port *p)
1881{
1882	struct uart_port *port = &sci_port->port;
 
 
 
1883	int ret;
1884
 
 
1885	port->ops	= &sci_uart_ops;
1886	port->iotype	= UPIO_MEM;
1887	port->line	= index;
1888
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1889	switch (p->type) {
1890	case PORT_SCIFB:
1891		port->fifosize = 256;
 
 
 
 
 
 
 
1892		break;
1893	case PORT_SCIFA:
1894		port->fifosize = 64;
 
 
1895		break;
1896	case PORT_SCIF:
1897		port->fifosize = 16;
 
 
 
 
 
 
 
1898		break;
1899	default:
1900		port->fifosize = 1;
 
 
1901		break;
1902	}
1903
1904	if (p->regtype == SCIx_PROBE_REGTYPE) {
1905		ret = sci_probe_regmap(p);
1906		if (unlikely(ret))
1907			return ret;
1908	}
 
1909
1910	if (dev) {
1911		sci_port->iclk = clk_get(&dev->dev, "sci_ick");
1912		if (IS_ERR(sci_port->iclk)) {
1913			sci_port->iclk = clk_get(&dev->dev, "peripheral_clk");
1914			if (IS_ERR(sci_port->iclk)) {
1915				dev_err(&dev->dev, "can't get iclk\n");
1916				return PTR_ERR(sci_port->iclk);
1917			}
1918		}
1919
1920		/*
1921		 * The function clock is optional, ignore it if we can't
1922		 * find it.
1923		 */
1924		sci_port->fclk = clk_get(&dev->dev, "sci_fck");
1925		if (IS_ERR(sci_port->fclk))
1926			sci_port->fclk = NULL;
1927
1928		port->dev = &dev->dev;
1929
1930		pm_runtime_irq_safe(&dev->dev);
1931		pm_runtime_enable(&dev->dev);
1932	}
1933
1934	sci_port->break_timer.data = (unsigned long)sci_port;
1935	sci_port->break_timer.function = sci_break_timer;
1936	init_timer(&sci_port->break_timer);
1937
1938	/*
1939	 * Establish some sensible defaults for the error detection.
1940	 */
1941	if (!p->error_mask)
1942		p->error_mask = (p->type == PORT_SCI) ?
1943			SCI_DEFAULT_ERROR_MASK : SCIF_DEFAULT_ERROR_MASK;
1944
1945	/*
1946	 * Establish sensible defaults for the overrun detection, unless
1947	 * the part has explicitly disabled support for it.
1948	 */
1949	if (p->overrun_bit != SCIx_NOT_SUPPORTED) {
1950		if (p->type == PORT_SCI)
1951			p->overrun_bit = 5;
1952		else if (p->scbrr_algo_id == SCBRR_ALGO_4)
1953			p->overrun_bit = 9;
1954		else
1955			p->overrun_bit = 0;
1956
1957		/*
1958		 * Make the error mask inclusive of overrun detection, if
1959		 * supported.
1960		 */
1961		p->error_mask |= (1 << p->overrun_bit);
1962	}
1963
1964	sci_port->cfg		= p;
1965
1966	port->mapbase		= p->mapbase;
1967	port->type		= p->type;
1968	port->flags		= p->flags;
1969	port->regshift		= p->regshift;
1970
1971	/*
1972	 * The UART port needs an IRQ value, so we peg this to the RX IRQ
1973	 * for the multi-IRQ ports, which is where we are primarily
1974	 * concerned with the shutdown path synchronization.
1975	 *
1976	 * For the muxed case there's nothing more to do.
1977	 */
1978	port->irq		= p->irqs[SCIx_RXI_IRQ];
1979	port->irqflags		= IRQF_DISABLED;
1980
1981	port->serial_in		= sci_serial_in;
1982	port->serial_out	= sci_serial_out;
1983
1984	if (p->dma_dev)
1985		dev_dbg(port->dev, "DMA device %p, tx %d, rx %d\n",
1986			p->dma_dev, p->dma_slave_tx, p->dma_slave_rx);
1987
1988	return 0;
1989}
1990
 
 
 
 
 
 
 
 
1991#ifdef CONFIG_SERIAL_SH_SCI_CONSOLE
1992static void serial_console_putchar(struct uart_port *port, int ch)
1993{
1994	sci_poll_put_char(port, ch);
1995}
1996
1997/*
1998 *	Print a string to the serial port trying not to disturb
1999 *	any possible real use of the port...
2000 */
2001static void serial_console_write(struct console *co, const char *s,
2002				 unsigned count)
2003{
2004	struct sci_port *sci_port = &sci_ports[co->index];
2005	struct uart_port *port = &sci_port->port;
2006	unsigned short bits;
 
 
2007
2008	sci_port_enable(sci_port);
 
 
 
 
 
 
 
 
 
 
2009
2010	uart_console_write(port, s, count, serial_console_putchar);
2011
2012	/* wait until fifo is empty and last bit has been transmitted */
2013	bits = SCxSR_TDxE(port) | SCxSR_TEND(port);
2014	while ((sci_in(port, SCxSR) & bits) != bits)
2015		cpu_relax();
2016
2017	sci_port_disable(sci_port);
 
 
 
 
 
2018}
2019
2020static int __devinit serial_console_setup(struct console *co, char *options)
2021{
2022	struct sci_port *sci_port;
2023	struct uart_port *port;
2024	int baud = 115200;
2025	int bits = 8;
2026	int parity = 'n';
2027	int flow = 'n';
2028	int ret;
2029
2030	/*
2031	 * Refuse to handle any bogus ports.
2032	 */
2033	if (co->index < 0 || co->index >= SCI_NPORTS)
2034		return -ENODEV;
2035
2036	sci_port = &sci_ports[co->index];
2037	port = &sci_port->port;
2038
2039	/*
2040	 * Refuse to handle uninitialized ports.
2041	 */
2042	if (!port->ops)
2043		return -ENODEV;
2044
2045	ret = sci_remap_port(port);
2046	if (unlikely(ret != 0))
2047		return ret;
2048
2049	sci_port_enable(sci_port);
2050
2051	if (options)
2052		uart_parse_options(options, &baud, &parity, &bits, &flow);
2053
2054	sci_port_disable(sci_port);
2055
2056	return uart_set_options(port, co, baud, parity, bits, flow);
2057}
2058
2059static struct console serial_console = {
2060	.name		= "ttySC",
2061	.device		= uart_console_device,
2062	.write		= serial_console_write,
2063	.setup		= serial_console_setup,
2064	.flags		= CON_PRINTBUFFER,
2065	.index		= -1,
2066	.data		= &sci_uart_driver,
2067};
2068
2069static struct console early_serial_console = {
2070	.name           = "early_ttySC",
2071	.write          = serial_console_write,
2072	.flags          = CON_PRINTBUFFER,
2073	.index		= -1,
2074};
2075
2076static char early_serial_buf[32];
2077
2078static int __devinit sci_probe_earlyprintk(struct platform_device *pdev)
2079{
2080	struct plat_sci_port *cfg = pdev->dev.platform_data;
2081
2082	if (early_serial_console.data)
2083		return -EEXIST;
2084
2085	early_serial_console.index = pdev->id;
2086
2087	sci_init_single(NULL, &sci_ports[pdev->id], pdev->id, cfg);
2088
2089	serial_console_setup(&early_serial_console, early_serial_buf);
2090
2091	if (!strstr(early_serial_buf, "keep"))
2092		early_serial_console.flags |= CON_BOOT;
2093
2094	register_console(&early_serial_console);
2095	return 0;
2096}
2097
2098#define uart_console(port)	((port)->cons->index == (port)->line)
2099
2100static int sci_runtime_suspend(struct device *dev)
2101{
2102	struct sci_port *sci_port = dev_get_drvdata(dev);
2103	struct uart_port *port = &sci_port->port;
2104
2105	if (uart_console(port)) {
2106		sci_port->saved_smr = sci_in(port, SCSMR);
2107		sci_port->saved_brr = sci_in(port, SCBRR);
2108		sci_port->saved_fcr = sci_in(port, SCFCR);
2109	}
2110	return 0;
2111}
2112
2113static int sci_runtime_resume(struct device *dev)
2114{
2115	struct sci_port *sci_port = dev_get_drvdata(dev);
2116	struct uart_port *port = &sci_port->port;
2117
2118	if (uart_console(port)) {
2119		sci_reset(port);
2120		sci_out(port, SCSMR, sci_port->saved_smr);
2121		sci_out(port, SCBRR, sci_port->saved_brr);
2122		sci_out(port, SCFCR, sci_port->saved_fcr);
2123		sci_out(port, SCSCR, sci_port->cfg->scscr);
2124	}
2125	return 0;
2126}
2127
2128#define SCI_CONSOLE	(&serial_console)
2129
2130#else
2131static inline int __devinit sci_probe_earlyprintk(struct platform_device *pdev)
2132{
2133	return -EINVAL;
2134}
2135
2136#define SCI_CONSOLE	NULL
2137#define sci_runtime_suspend	NULL
2138#define sci_runtime_resume	NULL
2139
2140#endif /* CONFIG_SERIAL_SH_SCI_CONSOLE */
2141
2142static char banner[] __initdata =
2143	KERN_INFO "SuperH SCI(F) driver initialized\n";
2144
2145static struct uart_driver sci_uart_driver = {
2146	.owner		= THIS_MODULE,
2147	.driver_name	= "sci",
2148	.dev_name	= "ttySC",
2149	.major		= SCI_MAJOR,
2150	.minor		= SCI_MINOR_START,
2151	.nr		= SCI_NPORTS,
2152	.cons		= SCI_CONSOLE,
2153};
2154
2155static int sci_remove(struct platform_device *dev)
2156{
2157	struct sci_port *port = platform_get_drvdata(dev);
2158
2159	cpufreq_unregister_notifier(&port->freq_transition,
2160				    CPUFREQ_TRANSITION_NOTIFIER);
2161
2162	uart_remove_one_port(&sci_uart_driver, &port->port);
2163
2164	clk_put(port->iclk);
2165	clk_put(port->fclk);
2166
2167	pm_runtime_disable(&dev->dev);
2168	return 0;
2169}
2170
2171static int __devinit sci_probe_single(struct platform_device *dev,
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
2172				      unsigned int index,
2173				      struct plat_sci_port *p,
2174				      struct sci_port *sciport)
2175{
2176	int ret;
2177
2178	/* Sanity check */
2179	if (unlikely(index >= SCI_NPORTS)) {
2180		dev_notice(&dev->dev, "Attempting to register port "
2181			   "%d when only %d are available.\n",
2182			   index+1, SCI_NPORTS);
2183		dev_notice(&dev->dev, "Consider bumping "
2184			   "CONFIG_SERIAL_SH_SCI_NR_UARTS!\n");
2185		return 0;
2186	}
2187
2188	ret = sci_init_single(dev, sciport, index, p);
2189	if (ret)
2190		return ret;
2191
2192	return uart_add_one_port(&sci_uart_driver, &sciport->port);
 
 
 
 
 
 
2193}
2194
2195static int __devinit sci_probe(struct platform_device *dev)
2196{
2197	struct plat_sci_port *p = dev->dev.platform_data;
2198	struct sci_port *sp = &sci_ports[dev->id];
 
2199	int ret;
2200
2201	/*
2202	 * If we've come here via earlyprintk initialization, head off to
2203	 * the special early probe. We don't have sufficient device state
2204	 * to make it beyond this yet.
2205	 */
2206	if (is_early_platform_device(dev))
2207		return sci_probe_earlyprintk(dev);
2208
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
2209	platform_set_drvdata(dev, sp);
2210
2211	ret = sci_probe_single(dev, dev->id, p, sp);
2212	if (ret)
2213		goto err_unreg;
2214
2215	sp->freq_transition.notifier_call = sci_notifier;
2216
2217	ret = cpufreq_register_notifier(&sp->freq_transition,
2218					CPUFREQ_TRANSITION_NOTIFIER);
2219	if (unlikely(ret < 0))
2220		goto err_unreg;
 
 
 
2221
2222#ifdef CONFIG_SH_STANDARD_BIOS
2223	sh_bios_gdb_detach();
2224#endif
2225
2226	return 0;
2227
2228err_unreg:
2229	sci_remove(dev);
2230	return ret;
2231}
2232
2233static int sci_suspend(struct device *dev)
2234{
2235	struct sci_port *sport = dev_get_drvdata(dev);
2236
2237	if (sport)
2238		uart_suspend_port(&sci_uart_driver, &sport->port);
2239
2240	return 0;
2241}
2242
2243static int sci_resume(struct device *dev)
2244{
2245	struct sci_port *sport = dev_get_drvdata(dev);
2246
2247	if (sport)
2248		uart_resume_port(&sci_uart_driver, &sport->port);
2249
2250	return 0;
2251}
2252
2253static const struct dev_pm_ops sci_dev_pm_ops = {
2254	.runtime_suspend = sci_runtime_suspend,
2255	.runtime_resume = sci_runtime_resume,
2256	.suspend	= sci_suspend,
2257	.resume		= sci_resume,
2258};
2259
2260static struct platform_driver sci_driver = {
2261	.probe		= sci_probe,
2262	.remove		= sci_remove,
2263	.driver		= {
2264		.name	= "sh-sci",
2265		.owner	= THIS_MODULE,
2266		.pm	= &sci_dev_pm_ops,
 
2267	},
2268};
2269
2270static int __init sci_init(void)
2271{
2272	int ret;
2273
2274	printk(banner);
2275
2276	ret = uart_register_driver(&sci_uart_driver);
2277	if (likely(ret == 0)) {
2278		ret = platform_driver_register(&sci_driver);
2279		if (unlikely(ret))
2280			uart_unregister_driver(&sci_uart_driver);
2281	}
2282
2283	return ret;
2284}
2285
2286static void __exit sci_exit(void)
2287{
2288	platform_driver_unregister(&sci_driver);
2289	uart_unregister_driver(&sci_uart_driver);
2290}
2291
2292#ifdef CONFIG_SERIAL_SH_SCI_CONSOLE
2293early_platform_init_buffer("earlyprintk", &sci_driver,
2294			   early_serial_buf, ARRAY_SIZE(early_serial_buf));
2295#endif
2296module_init(sci_init);
2297module_exit(sci_exit);
2298
2299MODULE_LICENSE("GPL");
2300MODULE_ALIAS("platform:sh-sci");
2301MODULE_AUTHOR("Paul Mundt");
2302MODULE_DESCRIPTION("SuperH SCI(F) serial driver");
v3.15
   1/*
   2 * SuperH on-chip serial module support.  (SCI with no FIFO / with FIFO)
   3 *
   4 *  Copyright (C) 2002 - 2011  Paul Mundt
   5 *  Modified to support SH7720 SCIF. Markus Brunner, Mark Jonas (Jul 2007).
   6 *
   7 * based off of the old drivers/char/sh-sci.c by:
   8 *
   9 *   Copyright (C) 1999, 2000  Niibe Yutaka
  10 *   Copyright (C) 2000  Sugioka Toshinobu
  11 *   Modified to support multiple serial ports. Stuart Menefy (May 2000).
  12 *   Modified to support SecureEdge. David McCullough (2002)
  13 *   Modified to support SH7300 SCIF. Takashi Kusuda (Jun 2003).
  14 *   Removed SH7300 support (Jul 2007).
  15 *
  16 * This file is subject to the terms and conditions of the GNU General Public
  17 * License.  See the file "COPYING" in the main directory of this archive
  18 * for more details.
  19 */
  20#if defined(CONFIG_SERIAL_SH_SCI_CONSOLE) && defined(CONFIG_MAGIC_SYSRQ)
  21#define SUPPORT_SYSRQ
  22#endif
  23
  24#undef DEBUG
  25
  26#include <linux/clk.h>
  27#include <linux/console.h>
  28#include <linux/ctype.h>
  29#include <linux/cpufreq.h>
  30#include <linux/delay.h>
  31#include <linux/dmaengine.h>
  32#include <linux/dma-mapping.h>
  33#include <linux/err.h>
  34#include <linux/errno.h>
  35#include <linux/init.h>
  36#include <linux/interrupt.h>
 
 
 
 
 
 
  37#include <linux/ioport.h>
  38#include <linux/major.h>
  39#include <linux/module.h>
  40#include <linux/mm.h>
 
 
 
 
 
  41#include <linux/notifier.h>
  42#include <linux/of.h>
  43#include <linux/platform_device.h>
  44#include <linux/pm_runtime.h>
 
 
 
 
 
 
  45#include <linux/scatterlist.h>
  46#include <linux/serial.h>
  47#include <linux/serial_sci.h>
  48#include <linux/sh_dma.h>
  49#include <linux/slab.h>
  50#include <linux/string.h>
  51#include <linux/sysrq.h>
  52#include <linux/timer.h>
  53#include <linux/tty.h>
  54#include <linux/tty_flip.h>
  55
  56#ifdef CONFIG_SUPERH
  57#include <asm/sh_bios.h>
  58#endif
  59
  60#include "sh-sci.h"
  61
  62/* Offsets into the sci_port->irqs array */
  63enum {
  64	SCIx_ERI_IRQ,
  65	SCIx_RXI_IRQ,
  66	SCIx_TXI_IRQ,
  67	SCIx_BRI_IRQ,
  68	SCIx_NR_IRQS,
  69
  70	SCIx_MUX_IRQ = SCIx_NR_IRQS,	/* special case */
  71};
  72
  73#define SCIx_IRQ_IS_MUXED(port)			\
  74	((port)->irqs[SCIx_ERI_IRQ] ==	\
  75	 (port)->irqs[SCIx_RXI_IRQ]) ||	\
  76	((port)->irqs[SCIx_ERI_IRQ] &&	\
  77	 ((port)->irqs[SCIx_RXI_IRQ] < 0))
  78
  79struct sci_port {
  80	struct uart_port	port;
  81
  82	/* Platform configuration */
  83	struct plat_sci_port	*cfg;
  84	int			overrun_bit;
  85	unsigned int		error_mask;
  86	unsigned int		sampling_rate;
  87
  88
  89	/* Break timer */
  90	struct timer_list	break_timer;
  91	int			break_flag;
  92
  93	/* Interface clock */
  94	struct clk		*iclk;
  95	/* Function clock */
  96	struct clk		*fclk;
  97
  98	int			irqs[SCIx_NR_IRQS];
  99	char			*irqstr[SCIx_NR_IRQS];
 100
 101	struct dma_chan			*chan_tx;
 102	struct dma_chan			*chan_rx;
 103
 104#ifdef CONFIG_SERIAL_SH_SCI_DMA
 105	struct dma_async_tx_descriptor	*desc_tx;
 106	struct dma_async_tx_descriptor	*desc_rx[2];
 107	dma_cookie_t			cookie_tx;
 108	dma_cookie_t			cookie_rx[2];
 109	dma_cookie_t			active_rx;
 110	struct scatterlist		sg_tx;
 111	unsigned int			sg_len_tx;
 112	struct scatterlist		sg_rx[2];
 113	size_t				buf_len_rx;
 114	struct sh_dmae_slave		param_tx;
 115	struct sh_dmae_slave		param_rx;
 116	struct work_struct		work_tx;
 117	struct work_struct		work_rx;
 118	struct timer_list		rx_timer;
 119	unsigned int			rx_timeout;
 120#endif
 121
 122	struct notifier_block		freq_transition;
 
 
 
 
 
 
 123};
 124
 125/* Function prototypes */
 126static void sci_start_tx(struct uart_port *port);
 127static void sci_stop_tx(struct uart_port *port);
 128static void sci_start_rx(struct uart_port *port);
 129
 130#define SCI_NPORTS CONFIG_SERIAL_SH_SCI_NR_UARTS
 131
 132static struct sci_port sci_ports[SCI_NPORTS];
 133static struct uart_driver sci_uart_driver;
 134
 135static inline struct sci_port *
 136to_sci_port(struct uart_port *uart)
 137{
 138	return container_of(uart, struct sci_port, port);
 139}
 140
 141struct plat_sci_reg {
 142	u8 offset, size;
 143};
 144
 145/* Helper for invalidating specific entries of an inherited map. */
 146#define sci_reg_invalid	{ .offset = 0, .size = 0 }
 147
 148static struct plat_sci_reg sci_regmap[SCIx_NR_REGTYPES][SCIx_NR_REGS] = {
 149	[SCIx_PROBE_REGTYPE] = {
 150		[0 ... SCIx_NR_REGS - 1] = sci_reg_invalid,
 151	},
 152
 153	/*
 154	 * Common SCI definitions, dependent on the port's regshift
 155	 * value.
 156	 */
 157	[SCIx_SCI_REGTYPE] = {
 158		[SCSMR]		= { 0x00,  8 },
 159		[SCBRR]		= { 0x01,  8 },
 160		[SCSCR]		= { 0x02,  8 },
 161		[SCxTDR]	= { 0x03,  8 },
 162		[SCxSR]		= { 0x04,  8 },
 163		[SCxRDR]	= { 0x05,  8 },
 164		[SCFCR]		= sci_reg_invalid,
 165		[SCFDR]		= sci_reg_invalid,
 166		[SCTFDR]	= sci_reg_invalid,
 167		[SCRFDR]	= sci_reg_invalid,
 168		[SCSPTR]	= sci_reg_invalid,
 169		[SCLSR]		= sci_reg_invalid,
 170		[HSSRR]		= sci_reg_invalid,
 171	},
 172
 173	/*
 174	 * Common definitions for legacy IrDA ports, dependent on
 175	 * regshift value.
 176	 */
 177	[SCIx_IRDA_REGTYPE] = {
 178		[SCSMR]		= { 0x00,  8 },
 179		[SCBRR]		= { 0x01,  8 },
 180		[SCSCR]		= { 0x02,  8 },
 181		[SCxTDR]	= { 0x03,  8 },
 182		[SCxSR]		= { 0x04,  8 },
 183		[SCxRDR]	= { 0x05,  8 },
 184		[SCFCR]		= { 0x06,  8 },
 185		[SCFDR]		= { 0x07, 16 },
 186		[SCTFDR]	= sci_reg_invalid,
 187		[SCRFDR]	= sci_reg_invalid,
 188		[SCSPTR]	= sci_reg_invalid,
 189		[SCLSR]		= sci_reg_invalid,
 190		[HSSRR]		= sci_reg_invalid,
 191	},
 192
 193	/*
 194	 * Common SCIFA definitions.
 195	 */
 196	[SCIx_SCIFA_REGTYPE] = {
 197		[SCSMR]		= { 0x00, 16 },
 198		[SCBRR]		= { 0x04,  8 },
 199		[SCSCR]		= { 0x08, 16 },
 200		[SCxTDR]	= { 0x20,  8 },
 201		[SCxSR]		= { 0x14, 16 },
 202		[SCxRDR]	= { 0x24,  8 },
 203		[SCFCR]		= { 0x18, 16 },
 204		[SCFDR]		= { 0x1c, 16 },
 205		[SCTFDR]	= sci_reg_invalid,
 206		[SCRFDR]	= sci_reg_invalid,
 207		[SCSPTR]	= sci_reg_invalid,
 208		[SCLSR]		= sci_reg_invalid,
 209		[HSSRR]		= sci_reg_invalid,
 210	},
 211
 212	/*
 213	 * Common SCIFB definitions.
 214	 */
 215	[SCIx_SCIFB_REGTYPE] = {
 216		[SCSMR]		= { 0x00, 16 },
 217		[SCBRR]		= { 0x04,  8 },
 218		[SCSCR]		= { 0x08, 16 },
 219		[SCxTDR]	= { 0x40,  8 },
 220		[SCxSR]		= { 0x14, 16 },
 221		[SCxRDR]	= { 0x60,  8 },
 222		[SCFCR]		= { 0x18, 16 },
 223		[SCFDR]		= sci_reg_invalid,
 224		[SCTFDR]	= { 0x38, 16 },
 225		[SCRFDR]	= { 0x3c, 16 },
 226		[SCSPTR]	= sci_reg_invalid,
 227		[SCLSR]		= sci_reg_invalid,
 228		[HSSRR]		= sci_reg_invalid,
 229	},
 230
 231	/*
 232	 * Common SH-2(A) SCIF definitions for ports with FIFO data
 233	 * count registers.
 234	 */
 235	[SCIx_SH2_SCIF_FIFODATA_REGTYPE] = {
 236		[SCSMR]		= { 0x00, 16 },
 237		[SCBRR]		= { 0x04,  8 },
 238		[SCSCR]		= { 0x08, 16 },
 239		[SCxTDR]	= { 0x0c,  8 },
 240		[SCxSR]		= { 0x10, 16 },
 241		[SCxRDR]	= { 0x14,  8 },
 242		[SCFCR]		= { 0x18, 16 },
 243		[SCFDR]		= { 0x1c, 16 },
 244		[SCTFDR]	= sci_reg_invalid,
 245		[SCRFDR]	= sci_reg_invalid,
 246		[SCSPTR]	= { 0x20, 16 },
 247		[SCLSR]		= { 0x24, 16 },
 248		[HSSRR]		= sci_reg_invalid,
 249	},
 250
 251	/*
 252	 * Common SH-3 SCIF definitions.
 253	 */
 254	[SCIx_SH3_SCIF_REGTYPE] = {
 255		[SCSMR]		= { 0x00,  8 },
 256		[SCBRR]		= { 0x02,  8 },
 257		[SCSCR]		= { 0x04,  8 },
 258		[SCxTDR]	= { 0x06,  8 },
 259		[SCxSR]		= { 0x08, 16 },
 260		[SCxRDR]	= { 0x0a,  8 },
 261		[SCFCR]		= { 0x0c,  8 },
 262		[SCFDR]		= { 0x0e, 16 },
 263		[SCTFDR]	= sci_reg_invalid,
 264		[SCRFDR]	= sci_reg_invalid,
 265		[SCSPTR]	= sci_reg_invalid,
 266		[SCLSR]		= sci_reg_invalid,
 267		[HSSRR]		= sci_reg_invalid,
 268	},
 269
 270	/*
 271	 * Common SH-4(A) SCIF(B) definitions.
 272	 */
 273	[SCIx_SH4_SCIF_REGTYPE] = {
 274		[SCSMR]		= { 0x00, 16 },
 275		[SCBRR]		= { 0x04,  8 },
 276		[SCSCR]		= { 0x08, 16 },
 277		[SCxTDR]	= { 0x0c,  8 },
 278		[SCxSR]		= { 0x10, 16 },
 279		[SCxRDR]	= { 0x14,  8 },
 280		[SCFCR]		= { 0x18, 16 },
 281		[SCFDR]		= { 0x1c, 16 },
 282		[SCTFDR]	= sci_reg_invalid,
 283		[SCRFDR]	= sci_reg_invalid,
 284		[SCSPTR]	= { 0x20, 16 },
 285		[SCLSR]		= { 0x24, 16 },
 286		[HSSRR]		= sci_reg_invalid,
 287	},
 288
 289	/*
 290	 * Common HSCIF definitions.
 291	 */
 292	[SCIx_HSCIF_REGTYPE] = {
 293		[SCSMR]		= { 0x00, 16 },
 294		[SCBRR]		= { 0x04,  8 },
 295		[SCSCR]		= { 0x08, 16 },
 296		[SCxTDR]	= { 0x0c,  8 },
 297		[SCxSR]		= { 0x10, 16 },
 298		[SCxRDR]	= { 0x14,  8 },
 299		[SCFCR]		= { 0x18, 16 },
 300		[SCFDR]		= { 0x1c, 16 },
 301		[SCTFDR]	= sci_reg_invalid,
 302		[SCRFDR]	= sci_reg_invalid,
 303		[SCSPTR]	= { 0x20, 16 },
 304		[SCLSR]		= { 0x24, 16 },
 305		[HSSRR]		= { 0x40, 16 },
 306	},
 307
 308	/*
 309	 * Common SH-4(A) SCIF(B) definitions for ports without an SCSPTR
 310	 * register.
 311	 */
 312	[SCIx_SH4_SCIF_NO_SCSPTR_REGTYPE] = {
 313		[SCSMR]		= { 0x00, 16 },
 314		[SCBRR]		= { 0x04,  8 },
 315		[SCSCR]		= { 0x08, 16 },
 316		[SCxTDR]	= { 0x0c,  8 },
 317		[SCxSR]		= { 0x10, 16 },
 318		[SCxRDR]	= { 0x14,  8 },
 319		[SCFCR]		= { 0x18, 16 },
 320		[SCFDR]		= { 0x1c, 16 },
 321		[SCTFDR]	= sci_reg_invalid,
 322		[SCRFDR]	= sci_reg_invalid,
 323		[SCSPTR]	= sci_reg_invalid,
 324		[SCLSR]		= { 0x24, 16 },
 325		[HSSRR]		= sci_reg_invalid,
 326	},
 327
 328	/*
 329	 * Common SH-4(A) SCIF(B) definitions for ports with FIFO data
 330	 * count registers.
 331	 */
 332	[SCIx_SH4_SCIF_FIFODATA_REGTYPE] = {
 333		[SCSMR]		= { 0x00, 16 },
 334		[SCBRR]		= { 0x04,  8 },
 335		[SCSCR]		= { 0x08, 16 },
 336		[SCxTDR]	= { 0x0c,  8 },
 337		[SCxSR]		= { 0x10, 16 },
 338		[SCxRDR]	= { 0x14,  8 },
 339		[SCFCR]		= { 0x18, 16 },
 340		[SCFDR]		= { 0x1c, 16 },
 341		[SCTFDR]	= { 0x1c, 16 },	/* aliased to SCFDR */
 342		[SCRFDR]	= { 0x20, 16 },
 343		[SCSPTR]	= { 0x24, 16 },
 344		[SCLSR]		= { 0x28, 16 },
 345		[HSSRR]		= sci_reg_invalid,
 346	},
 347
 348	/*
 349	 * SH7705-style SCIF(B) ports, lacking both SCSPTR and SCLSR
 350	 * registers.
 351	 */
 352	[SCIx_SH7705_SCIF_REGTYPE] = {
 353		[SCSMR]		= { 0x00, 16 },
 354		[SCBRR]		= { 0x04,  8 },
 355		[SCSCR]		= { 0x08, 16 },
 356		[SCxTDR]	= { 0x20,  8 },
 357		[SCxSR]		= { 0x14, 16 },
 358		[SCxRDR]	= { 0x24,  8 },
 359		[SCFCR]		= { 0x18, 16 },
 360		[SCFDR]		= { 0x1c, 16 },
 361		[SCTFDR]	= sci_reg_invalid,
 362		[SCRFDR]	= sci_reg_invalid,
 363		[SCSPTR]	= sci_reg_invalid,
 364		[SCLSR]		= sci_reg_invalid,
 365		[HSSRR]		= sci_reg_invalid,
 366	},
 367};
 368
 369#define sci_getreg(up, offset)		(sci_regmap[to_sci_port(up)->cfg->regtype] + offset)
 370
 371/*
 372 * The "offset" here is rather misleading, in that it refers to an enum
 373 * value relative to the port mapping rather than the fixed offset
 374 * itself, which needs to be manually retrieved from the platform's
 375 * register map for the given port.
 376 */
 377static unsigned int sci_serial_in(struct uart_port *p, int offset)
 378{
 379	struct plat_sci_reg *reg = sci_getreg(p, offset);
 380
 381	if (reg->size == 8)
 382		return ioread8(p->membase + (reg->offset << p->regshift));
 383	else if (reg->size == 16)
 384		return ioread16(p->membase + (reg->offset << p->regshift));
 385	else
 386		WARN(1, "Invalid register access\n");
 387
 388	return 0;
 389}
 390
 391static void sci_serial_out(struct uart_port *p, int offset, int value)
 392{
 393	struct plat_sci_reg *reg = sci_getreg(p, offset);
 394
 395	if (reg->size == 8)
 396		iowrite8(value, p->membase + (reg->offset << p->regshift));
 397	else if (reg->size == 16)
 398		iowrite16(value, p->membase + (reg->offset << p->regshift));
 399	else
 400		WARN(1, "Invalid register access\n");
 401}
 402
 
 
 
 403static int sci_probe_regmap(struct plat_sci_port *cfg)
 404{
 405	switch (cfg->type) {
 406	case PORT_SCI:
 407		cfg->regtype = SCIx_SCI_REGTYPE;
 408		break;
 409	case PORT_IRDA:
 410		cfg->regtype = SCIx_IRDA_REGTYPE;
 411		break;
 412	case PORT_SCIFA:
 413		cfg->regtype = SCIx_SCIFA_REGTYPE;
 414		break;
 415	case PORT_SCIFB:
 416		cfg->regtype = SCIx_SCIFB_REGTYPE;
 417		break;
 418	case PORT_SCIF:
 419		/*
 420		 * The SH-4 is a bit of a misnomer here, although that's
 421		 * where this particular port layout originated. This
 422		 * configuration (or some slight variation thereof)
 423		 * remains the dominant model for all SCIFs.
 424		 */
 425		cfg->regtype = SCIx_SH4_SCIF_REGTYPE;
 426		break;
 427	case PORT_HSCIF:
 428		cfg->regtype = SCIx_HSCIF_REGTYPE;
 429		break;
 430	default:
 431		pr_err("Can't probe register map for given port\n");
 432		return -EINVAL;
 433	}
 434
 435	return 0;
 436}
 437
 438static void sci_port_enable(struct sci_port *sci_port)
 439{
 440	if (!sci_port->port.dev)
 441		return;
 442
 443	pm_runtime_get_sync(sci_port->port.dev);
 444
 445	clk_prepare_enable(sci_port->iclk);
 446	sci_port->port.uartclk = clk_get_rate(sci_port->iclk);
 447	clk_prepare_enable(sci_port->fclk);
 448}
 449
 450static void sci_port_disable(struct sci_port *sci_port)
 451{
 452	if (!sci_port->port.dev)
 453		return;
 454
 455	/* Cancel the break timer to ensure that the timer handler will not try
 456	 * to access the hardware with clocks and power disabled. Reset the
 457	 * break flag to make the break debouncing state machine ready for the
 458	 * next break.
 459	 */
 460	del_timer_sync(&sci_port->break_timer);
 461	sci_port->break_flag = 0;
 462
 463	clk_disable_unprepare(sci_port->fclk);
 464	clk_disable_unprepare(sci_port->iclk);
 465
 466	pm_runtime_put_sync(sci_port->port.dev);
 467}
 468
 469#if defined(CONFIG_CONSOLE_POLL) || defined(CONFIG_SERIAL_SH_SCI_CONSOLE)
 470
 471#ifdef CONFIG_CONSOLE_POLL
 472static int sci_poll_get_char(struct uart_port *port)
 473{
 474	unsigned short status;
 475	int c;
 476
 477	do {
 478		status = serial_port_in(port, SCxSR);
 479		if (status & SCxSR_ERRORS(port)) {
 480			serial_port_out(port, SCxSR, SCxSR_ERROR_CLEAR(port));
 481			continue;
 482		}
 483		break;
 484	} while (1);
 485
 486	if (!(status & SCxSR_RDxF(port)))
 487		return NO_POLL_CHAR;
 488
 489	c = serial_port_in(port, SCxRDR);
 490
 491	/* Dummy read */
 492	serial_port_in(port, SCxSR);
 493	serial_port_out(port, SCxSR, SCxSR_RDxF_CLEAR(port));
 494
 495	return c;
 496}
 497#endif
 498
 499static void sci_poll_put_char(struct uart_port *port, unsigned char c)
 500{
 501	unsigned short status;
 502
 503	do {
 504		status = serial_port_in(port, SCxSR);
 505	} while (!(status & SCxSR_TDxE(port)));
 506
 507	serial_port_out(port, SCxTDR, c);
 508	serial_port_out(port, SCxSR, SCxSR_TDxE_CLEAR(port) & ~SCxSR_TEND(port));
 509}
 510#endif /* CONFIG_CONSOLE_POLL || CONFIG_SERIAL_SH_SCI_CONSOLE */
 511
 512static void sci_init_pins(struct uart_port *port, unsigned int cflag)
 513{
 514	struct sci_port *s = to_sci_port(port);
 515	struct plat_sci_reg *reg = sci_regmap[s->cfg->regtype] + SCSPTR;
 516
 517	/*
 518	 * Use port-specific handler if provided.
 519	 */
 520	if (s->cfg->ops && s->cfg->ops->init_pins) {
 521		s->cfg->ops->init_pins(port, cflag);
 522		return;
 523	}
 524
 525	/*
 526	 * For the generic path SCSPTR is necessary. Bail out if that's
 527	 * unavailable, too.
 528	 */
 529	if (!reg->size)
 530		return;
 531
 532	if ((s->cfg->capabilities & SCIx_HAVE_RTSCTS) &&
 533	    ((!(cflag & CRTSCTS)))) {
 534		unsigned short status;
 535
 536		status = serial_port_in(port, SCSPTR);
 537		status &= ~SCSPTR_CTSIO;
 538		status |= SCSPTR_RTSIO;
 539		serial_port_out(port, SCSPTR, status); /* Set RTS = 1 */
 540	}
 541}
 542
 543static int sci_txfill(struct uart_port *port)
 544{
 545	struct plat_sci_reg *reg;
 546
 547	reg = sci_getreg(port, SCTFDR);
 548	if (reg->size)
 549		return serial_port_in(port, SCTFDR) & ((port->fifosize << 1) - 1);
 550
 551	reg = sci_getreg(port, SCFDR);
 552	if (reg->size)
 553		return serial_port_in(port, SCFDR) >> 8;
 554
 555	return !(serial_port_in(port, SCxSR) & SCI_TDRE);
 556}
 557
 558static int sci_txroom(struct uart_port *port)
 559{
 560	return port->fifosize - sci_txfill(port);
 561}
 562
 563static int sci_rxfill(struct uart_port *port)
 564{
 565	struct plat_sci_reg *reg;
 566
 567	reg = sci_getreg(port, SCRFDR);
 568	if (reg->size)
 569		return serial_port_in(port, SCRFDR) & ((port->fifosize << 1) - 1);
 570
 571	reg = sci_getreg(port, SCFDR);
 572	if (reg->size)
 573		return serial_port_in(port, SCFDR) & ((port->fifosize << 1) - 1);
 574
 575	return (serial_port_in(port, SCxSR) & SCxSR_RDxF(port)) != 0;
 576}
 577
 578/*
 579 * SCI helper for checking the state of the muxed port/RXD pins.
 580 */
 581static inline int sci_rxd_in(struct uart_port *port)
 582{
 583	struct sci_port *s = to_sci_port(port);
 584
 585	if (s->cfg->port_reg <= 0)
 586		return 1;
 587
 588	/* Cast for ARM damage */
 589	return !!__raw_readb((void __iomem *)(uintptr_t)s->cfg->port_reg);
 590}
 591
 592/* ********************************************************************** *
 593 *                   the interrupt related routines                       *
 594 * ********************************************************************** */
 595
 596static void sci_transmit_chars(struct uart_port *port)
 597{
 598	struct circ_buf *xmit = &port->state->xmit;
 599	unsigned int stopped = uart_tx_stopped(port);
 600	unsigned short status;
 601	unsigned short ctrl;
 602	int count;
 603
 604	status = serial_port_in(port, SCxSR);
 605	if (!(status & SCxSR_TDxE(port))) {
 606		ctrl = serial_port_in(port, SCSCR);
 607		if (uart_circ_empty(xmit))
 608			ctrl &= ~SCSCR_TIE;
 609		else
 610			ctrl |= SCSCR_TIE;
 611		serial_port_out(port, SCSCR, ctrl);
 612		return;
 613	}
 614
 615	count = sci_txroom(port);
 616
 617	do {
 618		unsigned char c;
 619
 620		if (port->x_char) {
 621			c = port->x_char;
 622			port->x_char = 0;
 623		} else if (!uart_circ_empty(xmit) && !stopped) {
 624			c = xmit->buf[xmit->tail];
 625			xmit->tail = (xmit->tail + 1) & (UART_XMIT_SIZE - 1);
 626		} else {
 627			break;
 628		}
 629
 630		serial_port_out(port, SCxTDR, c);
 631
 632		port->icount.tx++;
 633	} while (--count > 0);
 634
 635	serial_port_out(port, SCxSR, SCxSR_TDxE_CLEAR(port));
 636
 637	if (uart_circ_chars_pending(xmit) < WAKEUP_CHARS)
 638		uart_write_wakeup(port);
 639	if (uart_circ_empty(xmit)) {
 640		sci_stop_tx(port);
 641	} else {
 642		ctrl = serial_port_in(port, SCSCR);
 643
 644		if (port->type != PORT_SCI) {
 645			serial_port_in(port, SCxSR); /* Dummy read */
 646			serial_port_out(port, SCxSR, SCxSR_TDxE_CLEAR(port));
 647		}
 648
 649		ctrl |= SCSCR_TIE;
 650		serial_port_out(port, SCSCR, ctrl);
 651	}
 652}
 653
 654/* On SH3, SCIF may read end-of-break as a space->mark char */
 655#define STEPFN(c)  ({int __c = (c); (((__c-1)|(__c)) == -1); })
 656
 657static void sci_receive_chars(struct uart_port *port)
 658{
 659	struct sci_port *sci_port = to_sci_port(port);
 660	struct tty_port *tport = &port->state->port;
 661	int i, count, copied = 0;
 662	unsigned short status;
 663	unsigned char flag;
 664
 665	status = serial_port_in(port, SCxSR);
 666	if (!(status & SCxSR_RDxF(port)))
 667		return;
 668
 669	while (1) {
 670		/* Don't copy more bytes than there is room for in the buffer */
 671		count = tty_buffer_request_room(tport, sci_rxfill(port));
 672
 673		/* If for any reason we can't copy more data, we're done! */
 674		if (count == 0)
 675			break;
 676
 677		if (port->type == PORT_SCI) {
 678			char c = serial_port_in(port, SCxRDR);
 679			if (uart_handle_sysrq_char(port, c) ||
 680			    sci_port->break_flag)
 681				count = 0;
 682			else
 683				tty_insert_flip_char(tport, c, TTY_NORMAL);
 684		} else {
 685			for (i = 0; i < count; i++) {
 686				char c = serial_port_in(port, SCxRDR);
 687
 688				status = serial_port_in(port, SCxSR);
 689#if defined(CONFIG_CPU_SH3)
 690				/* Skip "chars" during break */
 691				if (sci_port->break_flag) {
 692					if ((c == 0) &&
 693					    (status & SCxSR_FER(port))) {
 694						count--; i--;
 695						continue;
 696					}
 697
 698					/* Nonzero => end-of-break */
 699					dev_dbg(port->dev, "debounce<%02x>\n", c);
 700					sci_port->break_flag = 0;
 701
 702					if (STEPFN(c)) {
 703						count--; i--;
 704						continue;
 705					}
 706				}
 707#endif /* CONFIG_CPU_SH3 */
 708				if (uart_handle_sysrq_char(port, c)) {
 709					count--; i--;
 710					continue;
 711				}
 712
 713				/* Store data and status */
 714				if (status & SCxSR_FER(port)) {
 715					flag = TTY_FRAME;
 716					port->icount.frame++;
 717					dev_notice(port->dev, "frame error\n");
 718				} else if (status & SCxSR_PER(port)) {
 719					flag = TTY_PARITY;
 720					port->icount.parity++;
 721					dev_notice(port->dev, "parity error\n");
 722				} else
 723					flag = TTY_NORMAL;
 724
 725				tty_insert_flip_char(tport, c, flag);
 726			}
 727		}
 728
 729		serial_port_in(port, SCxSR); /* dummy read */
 730		serial_port_out(port, SCxSR, SCxSR_RDxF_CLEAR(port));
 731
 732		copied += count;
 733		port->icount.rx += count;
 734	}
 735
 736	if (copied) {
 737		/* Tell the rest of the system the news. New characters! */
 738		tty_flip_buffer_push(tport);
 739	} else {
 740		serial_port_in(port, SCxSR); /* dummy read */
 741		serial_port_out(port, SCxSR, SCxSR_RDxF_CLEAR(port));
 742	}
 743}
 744
 745#define SCI_BREAK_JIFFIES (HZ/20)
 746
 747/*
 748 * The sci generates interrupts during the break,
 749 * 1 per millisecond or so during the break period, for 9600 baud.
 750 * So dont bother disabling interrupts.
 751 * But dont want more than 1 break event.
 752 * Use a kernel timer to periodically poll the rx line until
 753 * the break is finished.
 754 */
 755static inline void sci_schedule_break_timer(struct sci_port *port)
 756{
 757	mod_timer(&port->break_timer, jiffies + SCI_BREAK_JIFFIES);
 758}
 759
 760/* Ensure that two consecutive samples find the break over. */
 761static void sci_break_timer(unsigned long data)
 762{
 763	struct sci_port *port = (struct sci_port *)data;
 764
 
 
 765	if (sci_rxd_in(&port->port) == 0) {
 766		port->break_flag = 1;
 767		sci_schedule_break_timer(port);
 768	} else if (port->break_flag == 1) {
 769		/* break is over. */
 770		port->break_flag = 2;
 771		sci_schedule_break_timer(port);
 772	} else
 773		port->break_flag = 0;
 
 
 774}
 775
 776static int sci_handle_errors(struct uart_port *port)
 777{
 778	int copied = 0;
 779	unsigned short status = serial_port_in(port, SCxSR);
 780	struct tty_port *tport = &port->state->port;
 781	struct sci_port *s = to_sci_port(port);
 782
 783	/* Handle overruns */
 784	if (status & (1 << s->overrun_bit)) {
 785		port->icount.overrun++;
 
 
 
 
 
 786
 787		/* overrun error */
 788		if (tty_insert_flip_char(tport, 0, TTY_OVERRUN))
 789			copied++;
 790
 791		dev_notice(port->dev, "overrun error\n");
 792	}
 793
 794	if (status & SCxSR_FER(port)) {
 795		if (sci_rxd_in(port) == 0) {
 796			/* Notify of BREAK */
 797			struct sci_port *sci_port = to_sci_port(port);
 798
 799			if (!sci_port->break_flag) {
 800				port->icount.brk++;
 801
 802				sci_port->break_flag = 1;
 803				sci_schedule_break_timer(sci_port);
 804
 805				/* Do sysrq handling. */
 806				if (uart_handle_break(port))
 807					return 0;
 808
 809				dev_dbg(port->dev, "BREAK detected\n");
 810
 811				if (tty_insert_flip_char(tport, 0, TTY_BREAK))
 812					copied++;
 813			}
 814
 815		} else {
 816			/* frame error */
 817			port->icount.frame++;
 818
 819			if (tty_insert_flip_char(tport, 0, TTY_FRAME))
 820				copied++;
 821
 822			dev_notice(port->dev, "frame error\n");
 823		}
 824	}
 825
 826	if (status & SCxSR_PER(port)) {
 827		/* parity error */
 828		port->icount.parity++;
 829
 830		if (tty_insert_flip_char(tport, 0, TTY_PARITY))
 831			copied++;
 832
 833		dev_notice(port->dev, "parity error\n");
 834	}
 835
 836	if (copied)
 837		tty_flip_buffer_push(tport);
 838
 839	return copied;
 840}
 841
 842static int sci_handle_fifo_overrun(struct uart_port *port)
 843{
 844	struct tty_port *tport = &port->state->port;
 845	struct sci_port *s = to_sci_port(port);
 846	struct plat_sci_reg *reg;
 847	int copied = 0;
 848
 849	reg = sci_getreg(port, SCLSR);
 850	if (!reg->size)
 851		return 0;
 852
 853	if ((serial_port_in(port, SCLSR) & (1 << s->overrun_bit))) {
 854		serial_port_out(port, SCLSR, 0);
 855
 856		port->icount.overrun++;
 857
 858		tty_insert_flip_char(tport, 0, TTY_OVERRUN);
 859		tty_flip_buffer_push(tport);
 860
 861		dev_notice(port->dev, "overrun error\n");
 862		copied++;
 863	}
 864
 865	return copied;
 866}
 867
 868static int sci_handle_breaks(struct uart_port *port)
 869{
 870	int copied = 0;
 871	unsigned short status = serial_port_in(port, SCxSR);
 872	struct tty_port *tport = &port->state->port;
 873	struct sci_port *s = to_sci_port(port);
 874
 875	if (uart_handle_break(port))
 876		return 0;
 877
 878	if (!s->break_flag && status & SCxSR_BRK(port)) {
 879#if defined(CONFIG_CPU_SH3)
 880		/* Debounce break */
 881		s->break_flag = 1;
 882#endif
 883
 884		port->icount.brk++;
 885
 886		/* Notify of BREAK */
 887		if (tty_insert_flip_char(tport, 0, TTY_BREAK))
 888			copied++;
 889
 890		dev_dbg(port->dev, "BREAK detected\n");
 891	}
 892
 893	if (copied)
 894		tty_flip_buffer_push(tport);
 895
 896	copied += sci_handle_fifo_overrun(port);
 897
 898	return copied;
 899}
 900
 901static irqreturn_t sci_rx_interrupt(int irq, void *ptr)
 902{
 903#ifdef CONFIG_SERIAL_SH_SCI_DMA
 904	struct uart_port *port = ptr;
 905	struct sci_port *s = to_sci_port(port);
 906
 907	if (s->chan_rx) {
 908		u16 scr = serial_port_in(port, SCSCR);
 909		u16 ssr = serial_port_in(port, SCxSR);
 910
 911		/* Disable future Rx interrupts */
 912		if (port->type == PORT_SCIFA || port->type == PORT_SCIFB) {
 913			disable_irq_nosync(irq);
 914			scr |= SCSCR_RDRQE;
 915		} else {
 916			scr &= ~SCSCR_RIE;
 917		}
 918		serial_port_out(port, SCSCR, scr);
 919		/* Clear current interrupt */
 920		serial_port_out(port, SCxSR, ssr & ~(1 | SCxSR_RDxF(port)));
 921		dev_dbg(port->dev, "Rx IRQ %lu: setup t-out in %u jiffies\n",
 922			jiffies, s->rx_timeout);
 923		mod_timer(&s->rx_timer, jiffies + s->rx_timeout);
 924
 925		return IRQ_HANDLED;
 926	}
 927#endif
 928
 929	/* I think sci_receive_chars has to be called irrespective
 930	 * of whether the I_IXOFF is set, otherwise, how is the interrupt
 931	 * to be disabled?
 932	 */
 933	sci_receive_chars(ptr);
 934
 935	return IRQ_HANDLED;
 936}
 937
 938static irqreturn_t sci_tx_interrupt(int irq, void *ptr)
 939{
 940	struct uart_port *port = ptr;
 941	unsigned long flags;
 942
 943	spin_lock_irqsave(&port->lock, flags);
 944	sci_transmit_chars(port);
 945	spin_unlock_irqrestore(&port->lock, flags);
 946
 947	return IRQ_HANDLED;
 948}
 949
 950static irqreturn_t sci_er_interrupt(int irq, void *ptr)
 951{
 952	struct uart_port *port = ptr;
 953
 954	/* Handle errors */
 955	if (port->type == PORT_SCI) {
 956		if (sci_handle_errors(port)) {
 957			/* discard character in rx buffer */
 958			serial_port_in(port, SCxSR);
 959			serial_port_out(port, SCxSR, SCxSR_RDxF_CLEAR(port));
 960		}
 961	} else {
 962		sci_handle_fifo_overrun(port);
 963		sci_rx_interrupt(irq, ptr);
 964	}
 965
 966	serial_port_out(port, SCxSR, SCxSR_ERROR_CLEAR(port));
 967
 968	/* Kick the transmission */
 969	sci_tx_interrupt(irq, ptr);
 970
 971	return IRQ_HANDLED;
 972}
 973
 974static irqreturn_t sci_br_interrupt(int irq, void *ptr)
 975{
 976	struct uart_port *port = ptr;
 977
 978	/* Handle BREAKs */
 979	sci_handle_breaks(port);
 980	serial_port_out(port, SCxSR, SCxSR_BREAK_CLEAR(port));
 981
 982	return IRQ_HANDLED;
 983}
 984
 985static inline unsigned long port_rx_irq_mask(struct uart_port *port)
 986{
 987	/*
 988	 * Not all ports (such as SCIFA) will support REIE. Rather than
 989	 * special-casing the port type, we check the port initialization
 990	 * IRQ enable mask to see whether the IRQ is desired at all. If
 991	 * it's unset, it's logically inferred that there's no point in
 992	 * testing for it.
 993	 */
 994	return SCSCR_RIE | (to_sci_port(port)->cfg->scscr & SCSCR_REIE);
 995}
 996
 997static irqreturn_t sci_mpxed_interrupt(int irq, void *ptr)
 998{
 999	unsigned short ssr_status, scr_status, err_enabled;
1000	struct uart_port *port = ptr;
1001	struct sci_port *s = to_sci_port(port);
1002	irqreturn_t ret = IRQ_NONE;
1003
1004	ssr_status = serial_port_in(port, SCxSR);
1005	scr_status = serial_port_in(port, SCSCR);
1006	err_enabled = scr_status & port_rx_irq_mask(port);
1007
1008	/* Tx Interrupt */
1009	if ((ssr_status & SCxSR_TDxE(port)) && (scr_status & SCSCR_TIE) &&
1010	    !s->chan_tx)
1011		ret = sci_tx_interrupt(irq, ptr);
1012
1013	/*
1014	 * Rx Interrupt: if we're using DMA, the DMA controller clears RDF /
1015	 * DR flags
1016	 */
1017	if (((ssr_status & SCxSR_RDxF(port)) || s->chan_rx) &&
1018	    (scr_status & SCSCR_RIE))
1019		ret = sci_rx_interrupt(irq, ptr);
1020
1021	/* Error Interrupt */
1022	if ((ssr_status & SCxSR_ERRORS(port)) && err_enabled)
1023		ret = sci_er_interrupt(irq, ptr);
1024
1025	/* Break Interrupt */
1026	if ((ssr_status & SCxSR_BRK(port)) && err_enabled)
1027		ret = sci_br_interrupt(irq, ptr);
1028
1029	return ret;
1030}
1031
1032/*
1033 * Here we define a transition notifier so that we can update all of our
1034 * ports' baud rate when the peripheral clock changes.
1035 */
1036static int sci_notifier(struct notifier_block *self,
1037			unsigned long phase, void *p)
1038{
1039	struct sci_port *sci_port;
1040	unsigned long flags;
1041
1042	sci_port = container_of(self, struct sci_port, freq_transition);
1043
1044	if (phase == CPUFREQ_POSTCHANGE) {
 
1045		struct uart_port *port = &sci_port->port;
1046
1047		spin_lock_irqsave(&port->lock, flags);
1048		port->uartclk = clk_get_rate(sci_port->iclk);
1049		spin_unlock_irqrestore(&port->lock, flags);
1050	}
1051
1052	return NOTIFY_OK;
1053}
1054
1055static struct sci_irq_desc {
1056	const char	*desc;
1057	irq_handler_t	handler;
1058} sci_irq_desc[] = {
1059	/*
1060	 * Split out handlers, the default case.
1061	 */
1062	[SCIx_ERI_IRQ] = {
1063		.desc = "rx err",
1064		.handler = sci_er_interrupt,
1065	},
1066
1067	[SCIx_RXI_IRQ] = {
1068		.desc = "rx full",
1069		.handler = sci_rx_interrupt,
1070	},
1071
1072	[SCIx_TXI_IRQ] = {
1073		.desc = "tx empty",
1074		.handler = sci_tx_interrupt,
1075	},
1076
1077	[SCIx_BRI_IRQ] = {
1078		.desc = "break",
1079		.handler = sci_br_interrupt,
1080	},
1081
1082	/*
1083	 * Special muxed handler.
1084	 */
1085	[SCIx_MUX_IRQ] = {
1086		.desc = "mux",
1087		.handler = sci_mpxed_interrupt,
1088	},
1089};
1090
1091static int sci_request_irq(struct sci_port *port)
1092{
1093	struct uart_port *up = &port->port;
1094	int i, j, ret = 0;
1095
1096	for (i = j = 0; i < SCIx_NR_IRQS; i++, j++) {
1097		struct sci_irq_desc *desc;
1098		int irq;
1099
1100		if (SCIx_IRQ_IS_MUXED(port)) {
1101			i = SCIx_MUX_IRQ;
1102			irq = up->irq;
1103		} else {
1104			irq = port->irqs[i];
1105
1106			/*
1107			 * Certain port types won't support all of the
1108			 * available interrupt sources.
1109			 */
1110			if (unlikely(irq < 0))
1111				continue;
1112		}
1113
1114		desc = sci_irq_desc + i;
1115		port->irqstr[j] = kasprintf(GFP_KERNEL, "%s:%s",
1116					    dev_name(up->dev), desc->desc);
1117		if (!port->irqstr[j]) {
1118			dev_err(up->dev, "Failed to allocate %s IRQ string\n",
1119				desc->desc);
1120			goto out_nomem;
1121		}
1122
1123		ret = request_irq(irq, desc->handler, up->irqflags,
1124				  port->irqstr[j], port);
1125		if (unlikely(ret)) {
1126			dev_err(up->dev, "Can't allocate %s IRQ\n", desc->desc);
1127			goto out_noirq;
1128		}
1129	}
1130
1131	return 0;
1132
1133out_noirq:
1134	while (--i >= 0)
1135		free_irq(port->irqs[i], port);
1136
1137out_nomem:
1138	while (--j >= 0)
1139		kfree(port->irqstr[j]);
1140
1141	return ret;
1142}
1143
1144static void sci_free_irq(struct sci_port *port)
1145{
1146	int i;
1147
1148	/*
1149	 * Intentionally in reverse order so we iterate over the muxed
1150	 * IRQ first.
1151	 */
1152	for (i = 0; i < SCIx_NR_IRQS; i++) {
1153		int irq = port->irqs[i];
1154
1155		/*
1156		 * Certain port types won't support all of the available
1157		 * interrupt sources.
1158		 */
1159		if (unlikely(irq < 0))
1160			continue;
1161
1162		free_irq(port->irqs[i], port);
1163		kfree(port->irqstr[i]);
1164
1165		if (SCIx_IRQ_IS_MUXED(port)) {
1166			/* If there's only one IRQ, we're done. */
1167			return;
1168		}
1169	}
1170}
1171
1172static unsigned int sci_tx_empty(struct uart_port *port)
1173{
1174	unsigned short status = serial_port_in(port, SCxSR);
1175	unsigned short in_tx_fifo = sci_txfill(port);
1176
1177	return (status & SCxSR_TEND(port)) && !in_tx_fifo ? TIOCSER_TEMT : 0;
1178}
1179
1180/*
1181 * Modem control is a bit of a mixed bag for SCI(F) ports. Generally
1182 * CTS/RTS is supported in hardware by at least one port and controlled
1183 * via SCSPTR (SCxPCR for SCIFA/B parts), or external pins (presently
1184 * handled via the ->init_pins() op, which is a bit of a one-way street,
1185 * lacking any ability to defer pin control -- this will later be
1186 * converted over to the GPIO framework).
1187 *
1188 * Other modes (such as loopback) are supported generically on certain
1189 * port types, but not others. For these it's sufficient to test for the
1190 * existence of the support register and simply ignore the port type.
1191 */
1192static void sci_set_mctrl(struct uart_port *port, unsigned int mctrl)
1193{
1194	if (mctrl & TIOCM_LOOP) {
1195		struct plat_sci_reg *reg;
1196
1197		/*
1198		 * Standard loopback mode for SCFCR ports.
1199		 */
1200		reg = sci_getreg(port, SCFCR);
1201		if (reg->size)
1202			serial_port_out(port, SCFCR,
1203					serial_port_in(port, SCFCR) |
1204					SCFCR_LOOP);
1205	}
1206}
1207
1208static unsigned int sci_get_mctrl(struct uart_port *port)
1209{
1210	/*
1211	 * CTS/RTS is handled in hardware when supported, while nothing
1212	 * else is wired up. Keep it simple and simply assert DSR/CAR.
1213	 */
1214	return TIOCM_DSR | TIOCM_CAR;
1215}
1216
1217#ifdef CONFIG_SERIAL_SH_SCI_DMA
1218static void sci_dma_tx_complete(void *arg)
1219{
1220	struct sci_port *s = arg;
1221	struct uart_port *port = &s->port;
1222	struct circ_buf *xmit = &port->state->xmit;
1223	unsigned long flags;
1224
1225	dev_dbg(port->dev, "%s(%d)\n", __func__, port->line);
1226
1227	spin_lock_irqsave(&port->lock, flags);
1228
1229	xmit->tail += sg_dma_len(&s->sg_tx);
1230	xmit->tail &= UART_XMIT_SIZE - 1;
1231
1232	port->icount.tx += sg_dma_len(&s->sg_tx);
1233
1234	async_tx_ack(s->desc_tx);
 
1235	s->desc_tx = NULL;
1236
1237	if (uart_circ_chars_pending(xmit) < WAKEUP_CHARS)
1238		uart_write_wakeup(port);
1239
1240	if (!uart_circ_empty(xmit)) {
1241		s->cookie_tx = 0;
1242		schedule_work(&s->work_tx);
1243	} else {
1244		s->cookie_tx = -EINVAL;
1245		if (port->type == PORT_SCIFA || port->type == PORT_SCIFB) {
1246			u16 ctrl = serial_port_in(port, SCSCR);
1247			serial_port_out(port, SCSCR, ctrl & ~SCSCR_TIE);
1248		}
1249	}
1250
1251	spin_unlock_irqrestore(&port->lock, flags);
1252}
1253
1254/* Locking: called with port lock held */
1255static int sci_dma_rx_push(struct sci_port *s, size_t count)
 
1256{
1257	struct uart_port *port = &s->port;
1258	struct tty_port *tport = &port->state->port;
1259	int i, active, room;
1260
1261	room = tty_buffer_request_room(tport, count);
1262
1263	if (s->active_rx == s->cookie_rx[0]) {
1264		active = 0;
1265	} else if (s->active_rx == s->cookie_rx[1]) {
1266		active = 1;
1267	} else {
1268		dev_err(port->dev, "cookie %d not found!\n", s->active_rx);
1269		return 0;
1270	}
1271
1272	if (room < count)
1273		dev_warn(port->dev, "Rx overrun: dropping %zu bytes\n",
1274			 count - room);
1275	if (!room)
1276		return room;
1277
1278	for (i = 0; i < room; i++)
1279		tty_insert_flip_char(tport, ((u8 *)sg_virt(&s->sg_rx[active]))[i],
1280				     TTY_NORMAL);
1281
1282	port->icount.rx += room;
1283
1284	return room;
1285}
1286
1287static void sci_dma_rx_complete(void *arg)
1288{
1289	struct sci_port *s = arg;
1290	struct uart_port *port = &s->port;
 
1291	unsigned long flags;
1292	int count;
1293
1294	dev_dbg(port->dev, "%s(%d) active #%d\n",
1295		__func__, port->line, s->active_rx);
1296
1297	spin_lock_irqsave(&port->lock, flags);
1298
1299	count = sci_dma_rx_push(s, s->buf_len_rx);
1300
1301	mod_timer(&s->rx_timer, jiffies + s->rx_timeout);
1302
1303	spin_unlock_irqrestore(&port->lock, flags);
1304
1305	if (count)
1306		tty_flip_buffer_push(&port->state->port);
1307
1308	schedule_work(&s->work_rx);
1309}
1310
1311static void sci_rx_dma_release(struct sci_port *s, bool enable_pio)
1312{
1313	struct dma_chan *chan = s->chan_rx;
1314	struct uart_port *port = &s->port;
1315
1316	s->chan_rx = NULL;
1317	s->cookie_rx[0] = s->cookie_rx[1] = -EINVAL;
1318	dma_release_channel(chan);
1319	if (sg_dma_address(&s->sg_rx[0]))
1320		dma_free_coherent(port->dev, s->buf_len_rx * 2,
1321				  sg_virt(&s->sg_rx[0]), sg_dma_address(&s->sg_rx[0]));
1322	if (enable_pio)
1323		sci_start_rx(port);
1324}
1325
1326static void sci_tx_dma_release(struct sci_port *s, bool enable_pio)
1327{
1328	struct dma_chan *chan = s->chan_tx;
1329	struct uart_port *port = &s->port;
1330
1331	s->chan_tx = NULL;
1332	s->cookie_tx = -EINVAL;
1333	dma_release_channel(chan);
1334	if (enable_pio)
1335		sci_start_tx(port);
1336}
1337
1338static void sci_submit_rx(struct sci_port *s)
1339{
1340	struct dma_chan *chan = s->chan_rx;
1341	int i;
1342
1343	for (i = 0; i < 2; i++) {
1344		struct scatterlist *sg = &s->sg_rx[i];
1345		struct dma_async_tx_descriptor *desc;
1346
1347		desc = dmaengine_prep_slave_sg(chan,
1348			sg, 1, DMA_DEV_TO_MEM, DMA_PREP_INTERRUPT);
1349
1350		if (desc) {
1351			s->desc_rx[i] = desc;
1352			desc->callback = sci_dma_rx_complete;
1353			desc->callback_param = s;
1354			s->cookie_rx[i] = desc->tx_submit(desc);
1355		}
1356
1357		if (!desc || s->cookie_rx[i] < 0) {
1358			if (i) {
1359				async_tx_ack(s->desc_rx[0]);
1360				s->cookie_rx[0] = -EINVAL;
1361			}
1362			if (desc) {
1363				async_tx_ack(desc);
1364				s->cookie_rx[i] = -EINVAL;
1365			}
1366			dev_warn(s->port.dev,
1367				 "failed to re-start DMA, using PIO\n");
1368			sci_rx_dma_release(s, true);
1369			return;
1370		}
1371		dev_dbg(s->port.dev, "%s(): cookie %d to #%d\n",
1372			__func__, s->cookie_rx[i], i);
1373	}
1374
1375	s->active_rx = s->cookie_rx[0];
1376
1377	dma_async_issue_pending(chan);
1378}
1379
1380static void work_fn_rx(struct work_struct *work)
1381{
1382	struct sci_port *s = container_of(work, struct sci_port, work_rx);
1383	struct uart_port *port = &s->port;
1384	struct dma_async_tx_descriptor *desc;
1385	int new;
1386
1387	if (s->active_rx == s->cookie_rx[0]) {
1388		new = 0;
1389	} else if (s->active_rx == s->cookie_rx[1]) {
1390		new = 1;
1391	} else {
1392		dev_err(port->dev, "cookie %d not found!\n", s->active_rx);
1393		return;
1394	}
1395	desc = s->desc_rx[new];
1396
1397	if (dma_async_is_tx_complete(s->chan_rx, s->active_rx, NULL, NULL) !=
1398	    DMA_COMPLETE) {
1399		/* Handle incomplete DMA receive */
 
1400		struct dma_chan *chan = s->chan_rx;
1401		struct shdma_desc *sh_desc = container_of(desc,
1402					struct shdma_desc, async_tx);
1403		unsigned long flags;
1404		int count;
1405
1406		chan->device->device_control(chan, DMA_TERMINATE_ALL, 0);
1407		dev_dbg(port->dev, "Read %zu bytes with cookie %d\n",
1408			sh_desc->partial, sh_desc->cookie);
1409
1410		spin_lock_irqsave(&port->lock, flags);
1411		count = sci_dma_rx_push(s, sh_desc->partial);
1412		spin_unlock_irqrestore(&port->lock, flags);
1413
1414		if (count)
1415			tty_flip_buffer_push(&port->state->port);
1416
1417		sci_submit_rx(s);
1418
1419		return;
1420	}
1421
1422	s->cookie_rx[new] = desc->tx_submit(desc);
1423	if (s->cookie_rx[new] < 0) {
1424		dev_warn(port->dev, "Failed submitting Rx DMA descriptor\n");
1425		sci_rx_dma_release(s, true);
1426		return;
1427	}
1428
1429	s->active_rx = s->cookie_rx[!new];
1430
1431	dev_dbg(port->dev, "%s: cookie %d #%d, new active #%d\n",
1432		__func__, s->cookie_rx[new], new, s->active_rx);
1433}
1434
1435static void work_fn_tx(struct work_struct *work)
1436{
1437	struct sci_port *s = container_of(work, struct sci_port, work_tx);
1438	struct dma_async_tx_descriptor *desc;
1439	struct dma_chan *chan = s->chan_tx;
1440	struct uart_port *port = &s->port;
1441	struct circ_buf *xmit = &port->state->xmit;
1442	struct scatterlist *sg = &s->sg_tx;
1443
1444	/*
1445	 * DMA is idle now.
1446	 * Port xmit buffer is already mapped, and it is one page... Just adjust
1447	 * offsets and lengths. Since it is a circular buffer, we have to
1448	 * transmit till the end, and then the rest. Take the port lock to get a
1449	 * consistent xmit buffer state.
1450	 */
1451	spin_lock_irq(&port->lock);
1452	sg->offset = xmit->tail & (UART_XMIT_SIZE - 1);
1453	sg_dma_address(sg) = (sg_dma_address(sg) & ~(UART_XMIT_SIZE - 1)) +
1454		sg->offset;
1455	sg_dma_len(sg) = min((int)CIRC_CNT(xmit->head, xmit->tail, UART_XMIT_SIZE),
1456		CIRC_CNT_TO_END(xmit->head, xmit->tail, UART_XMIT_SIZE));
1457	spin_unlock_irq(&port->lock);
1458
1459	BUG_ON(!sg_dma_len(sg));
1460
1461	desc = dmaengine_prep_slave_sg(chan,
1462			sg, s->sg_len_tx, DMA_MEM_TO_DEV,
1463			DMA_PREP_INTERRUPT | DMA_CTRL_ACK);
1464	if (!desc) {
1465		/* switch to PIO */
1466		sci_tx_dma_release(s, true);
1467		return;
1468	}
1469
1470	dma_sync_sg_for_device(port->dev, sg, 1, DMA_TO_DEVICE);
1471
1472	spin_lock_irq(&port->lock);
1473	s->desc_tx = desc;
1474	desc->callback = sci_dma_tx_complete;
1475	desc->callback_param = s;
1476	spin_unlock_irq(&port->lock);
1477	s->cookie_tx = desc->tx_submit(desc);
1478	if (s->cookie_tx < 0) {
1479		dev_warn(port->dev, "Failed submitting Tx DMA descriptor\n");
1480		/* switch to PIO */
1481		sci_tx_dma_release(s, true);
1482		return;
1483	}
1484
1485	dev_dbg(port->dev, "%s: %p: %d...%d, cookie %d\n",
1486		__func__, xmit->buf, xmit->tail, xmit->head, s->cookie_tx);
1487
1488	dma_async_issue_pending(chan);
1489}
1490#endif
1491
1492static void sci_start_tx(struct uart_port *port)
1493{
1494	struct sci_port *s = to_sci_port(port);
1495	unsigned short ctrl;
1496
1497#ifdef CONFIG_SERIAL_SH_SCI_DMA
1498	if (port->type == PORT_SCIFA || port->type == PORT_SCIFB) {
1499		u16 new, scr = serial_port_in(port, SCSCR);
1500		if (s->chan_tx)
1501			new = scr | SCSCR_TDRQE;
1502		else
1503			new = scr & ~SCSCR_TDRQE;
1504		if (new != scr)
1505			serial_port_out(port, SCSCR, new);
1506	}
1507
1508	if (s->chan_tx && !uart_circ_empty(&s->port.state->xmit) &&
1509	    s->cookie_tx < 0) {
1510		s->cookie_tx = 0;
1511		schedule_work(&s->work_tx);
1512	}
1513#endif
1514
1515	if (!s->chan_tx || port->type == PORT_SCIFA || port->type == PORT_SCIFB) {
1516		/* Set TIE (Transmit Interrupt Enable) bit in SCSCR */
1517		ctrl = serial_port_in(port, SCSCR);
1518		serial_port_out(port, SCSCR, ctrl | SCSCR_TIE);
1519	}
1520}
1521
1522static void sci_stop_tx(struct uart_port *port)
1523{
1524	unsigned short ctrl;
1525
1526	/* Clear TIE (Transmit Interrupt Enable) bit in SCSCR */
1527	ctrl = serial_port_in(port, SCSCR);
1528
1529	if (port->type == PORT_SCIFA || port->type == PORT_SCIFB)
1530		ctrl &= ~SCSCR_TDRQE;
1531
1532	ctrl &= ~SCSCR_TIE;
1533
1534	serial_port_out(port, SCSCR, ctrl);
1535}
1536
1537static void sci_start_rx(struct uart_port *port)
1538{
1539	unsigned short ctrl;
1540
1541	ctrl = serial_port_in(port, SCSCR) | port_rx_irq_mask(port);
1542
1543	if (port->type == PORT_SCIFA || port->type == PORT_SCIFB)
1544		ctrl &= ~SCSCR_RDRQE;
1545
1546	serial_port_out(port, SCSCR, ctrl);
1547}
1548
1549static void sci_stop_rx(struct uart_port *port)
1550{
1551	unsigned short ctrl;
1552
1553	ctrl = serial_port_in(port, SCSCR);
1554
1555	if (port->type == PORT_SCIFA || port->type == PORT_SCIFB)
1556		ctrl &= ~SCSCR_RDRQE;
1557
1558	ctrl &= ~port_rx_irq_mask(port);
1559
1560	serial_port_out(port, SCSCR, ctrl);
1561}
1562
1563static void sci_enable_ms(struct uart_port *port)
1564{
1565	/*
1566	 * Not supported by hardware, always a nop.
1567	 */
1568}
1569
1570static void sci_break_ctl(struct uart_port *port, int break_state)
1571{
1572	struct sci_port *s = to_sci_port(port);
1573	struct plat_sci_reg *reg = sci_regmap[s->cfg->regtype] + SCSPTR;
1574	unsigned short scscr, scsptr;
1575
1576	/* check wheter the port has SCSPTR */
1577	if (!reg->size) {
1578		/*
1579		 * Not supported by hardware. Most parts couple break and rx
1580		 * interrupts together, with break detection always enabled.
1581		 */
1582		return;
1583	}
1584
1585	scsptr = serial_port_in(port, SCSPTR);
1586	scscr = serial_port_in(port, SCSCR);
1587
1588	if (break_state == -1) {
1589		scsptr = (scsptr | SCSPTR_SPB2IO) & ~SCSPTR_SPB2DT;
1590		scscr &= ~SCSCR_TE;
1591	} else {
1592		scsptr = (scsptr | SCSPTR_SPB2DT) & ~SCSPTR_SPB2IO;
1593		scscr |= SCSCR_TE;
1594	}
1595
1596	serial_port_out(port, SCSPTR, scsptr);
1597	serial_port_out(port, SCSCR, scscr);
1598}
1599
1600#ifdef CONFIG_SERIAL_SH_SCI_DMA
1601static bool filter(struct dma_chan *chan, void *slave)
1602{
1603	struct sh_dmae_slave *param = slave;
1604
1605	dev_dbg(chan->device->dev, "%s: slave ID %d\n",
1606		__func__, param->shdma_slave.slave_id);
1607
1608	chan->private = &param->shdma_slave;
1609	return true;
 
 
 
 
1610}
1611
1612static void rx_timer_fn(unsigned long arg)
1613{
1614	struct sci_port *s = (struct sci_port *)arg;
1615	struct uart_port *port = &s->port;
1616	u16 scr = serial_port_in(port, SCSCR);
1617
1618	if (port->type == PORT_SCIFA || port->type == PORT_SCIFB) {
1619		scr &= ~SCSCR_RDRQE;
1620		enable_irq(s->irqs[SCIx_RXI_IRQ]);
1621	}
1622	serial_port_out(port, SCSCR, scr | SCSCR_RIE);
1623	dev_dbg(port->dev, "DMA Rx timed out\n");
1624	schedule_work(&s->work_rx);
1625}
1626
1627static void sci_request_dma(struct uart_port *port)
1628{
1629	struct sci_port *s = to_sci_port(port);
1630	struct sh_dmae_slave *param;
1631	struct dma_chan *chan;
1632	dma_cap_mask_t mask;
1633	int nent;
1634
1635	dev_dbg(port->dev, "%s: port %d\n", __func__, port->line);
 
1636
1637	if (s->cfg->dma_slave_tx <= 0 || s->cfg->dma_slave_rx <= 0)
1638		return;
1639
1640	dma_cap_zero(mask);
1641	dma_cap_set(DMA_SLAVE, mask);
1642
1643	param = &s->param_tx;
1644
1645	/* Slave ID, e.g., SHDMA_SLAVE_SCIF0_TX */
1646	param->shdma_slave.slave_id = s->cfg->dma_slave_tx;
 
1647
1648	s->cookie_tx = -EINVAL;
1649	chan = dma_request_channel(mask, filter, param);
1650	dev_dbg(port->dev, "%s: TX: got channel %p\n", __func__, chan);
1651	if (chan) {
1652		s->chan_tx = chan;
1653		sg_init_table(&s->sg_tx, 1);
1654		/* UART circular tx buffer is an aligned page. */
1655		BUG_ON((uintptr_t)port->state->xmit.buf & ~PAGE_MASK);
1656		sg_set_page(&s->sg_tx, virt_to_page(port->state->xmit.buf),
1657			    UART_XMIT_SIZE,
1658			    (uintptr_t)port->state->xmit.buf & ~PAGE_MASK);
1659		nent = dma_map_sg(port->dev, &s->sg_tx, 1, DMA_TO_DEVICE);
1660		if (!nent)
1661			sci_tx_dma_release(s, false);
1662		else
1663			dev_dbg(port->dev, "%s: mapped %d@%p to %pad\n",
1664				__func__,
1665				sg_dma_len(&s->sg_tx), port->state->xmit.buf,
1666				&sg_dma_address(&s->sg_tx));
1667
1668		s->sg_len_tx = nent;
1669
1670		INIT_WORK(&s->work_tx, work_fn_tx);
1671	}
1672
1673	param = &s->param_rx;
1674
1675	/* Slave ID, e.g., SHDMA_SLAVE_SCIF0_RX */
1676	param->shdma_slave.slave_id = s->cfg->dma_slave_rx;
 
1677
1678	chan = dma_request_channel(mask, filter, param);
1679	dev_dbg(port->dev, "%s: RX: got channel %p\n", __func__, chan);
1680	if (chan) {
1681		dma_addr_t dma[2];
1682		void *buf[2];
1683		int i;
1684
1685		s->chan_rx = chan;
1686
1687		s->buf_len_rx = 2 * max(16, (int)port->fifosize);
1688		buf[0] = dma_alloc_coherent(port->dev, s->buf_len_rx * 2,
1689					    &dma[0], GFP_KERNEL);
1690
1691		if (!buf[0]) {
1692			dev_warn(port->dev,
1693				 "failed to allocate dma buffer, using PIO\n");
1694			sci_rx_dma_release(s, true);
1695			return;
1696		}
1697
1698		buf[1] = buf[0] + s->buf_len_rx;
1699		dma[1] = dma[0] + s->buf_len_rx;
1700
1701		for (i = 0; i < 2; i++) {
1702			struct scatterlist *sg = &s->sg_rx[i];
1703
1704			sg_init_table(sg, 1);
1705			sg_set_page(sg, virt_to_page(buf[i]), s->buf_len_rx,
1706				    (uintptr_t)buf[i] & ~PAGE_MASK);
1707			sg_dma_address(sg) = dma[i];
1708		}
1709
1710		INIT_WORK(&s->work_rx, work_fn_rx);
1711		setup_timer(&s->rx_timer, rx_timer_fn, (unsigned long)s);
1712
1713		sci_submit_rx(s);
1714	}
1715}
1716
1717static void sci_free_dma(struct uart_port *port)
1718{
1719	struct sci_port *s = to_sci_port(port);
1720
 
 
 
1721	if (s->chan_tx)
1722		sci_tx_dma_release(s, false);
1723	if (s->chan_rx)
1724		sci_rx_dma_release(s, false);
1725}
1726#else
1727static inline void sci_request_dma(struct uart_port *port)
1728{
1729}
1730
1731static inline void sci_free_dma(struct uart_port *port)
1732{
1733}
1734#endif
1735
1736static int sci_startup(struct uart_port *port)
1737{
1738	struct sci_port *s = to_sci_port(port);
1739	unsigned long flags;
1740	int ret;
1741
1742	dev_dbg(port->dev, "%s(%d)\n", __func__, port->line);
1743
 
 
1744	ret = sci_request_irq(s);
1745	if (unlikely(ret < 0))
1746		return ret;
1747
1748	sci_request_dma(port);
1749
1750	spin_lock_irqsave(&port->lock, flags);
1751	sci_start_tx(port);
1752	sci_start_rx(port);
1753	spin_unlock_irqrestore(&port->lock, flags);
1754
1755	return 0;
1756}
1757
1758static void sci_shutdown(struct uart_port *port)
1759{
1760	struct sci_port *s = to_sci_port(port);
1761	unsigned long flags;
1762
1763	dev_dbg(port->dev, "%s(%d)\n", __func__, port->line);
1764
1765	spin_lock_irqsave(&port->lock, flags);
1766	sci_stop_rx(port);
1767	sci_stop_tx(port);
1768	spin_unlock_irqrestore(&port->lock, flags);
1769
1770	sci_free_dma(port);
1771	sci_free_irq(s);
 
 
1772}
1773
1774static unsigned int sci_scbrr_calc(struct sci_port *s, unsigned int bps,
1775				   unsigned long freq)
1776{
1777	if (s->sampling_rate)
1778		return DIV_ROUND_CLOSEST(freq, s->sampling_rate * bps) - 1;
 
 
 
 
 
 
 
 
 
 
1779
1780	/* Warn, but use a safe default */
1781	WARN_ON(1);
1782
1783	return ((freq + 16 * bps) / (32 * bps) - 1);
1784}
1785
1786/* calculate sample rate, BRR, and clock select for HSCIF */
1787static void sci_baud_calc_hscif(unsigned int bps, unsigned long freq,
1788				int *brr, unsigned int *srr,
1789				unsigned int *cks)
1790{
1791	int sr, c, br, err;
1792	int min_err = 1000; /* 100% */
1793
1794	/* Find the combination of sample rate and clock select with the
1795	   smallest deviation from the desired baud rate. */
1796	for (sr = 8; sr <= 32; sr++) {
1797		for (c = 0; c <= 3; c++) {
1798			/* integerized formulas from HSCIF documentation */
1799			br = freq / (sr * (1 << (2 * c + 1)) * bps) - 1;
1800			if (br < 0 || br > 255)
1801				continue;
1802			err = freq / ((br + 1) * bps * sr *
1803			      (1 << (2 * c + 1)) / 1000) - 1000;
1804			if (min_err > err) {
1805				min_err = err;
1806				*brr = br;
1807				*srr = sr - 1;
1808				*cks = c;
1809			}
1810		}
1811	}
1812
1813	if (min_err == 1000) {
1814		WARN_ON(1);
1815		/* use defaults */
1816		*brr = 255;
1817		*srr = 15;
1818		*cks = 0;
1819	}
1820}
1821
1822static void sci_reset(struct uart_port *port)
1823{
1824	struct plat_sci_reg *reg;
1825	unsigned int status;
1826
1827	do {
1828		status = serial_port_in(port, SCxSR);
1829	} while (!(status & SCxSR_TEND(port)));
1830
1831	serial_port_out(port, SCSCR, 0x00);	/* TE=0, RE=0, CKE1=0 */
1832
1833	reg = sci_getreg(port, SCFCR);
1834	if (reg->size)
1835		serial_port_out(port, SCFCR, SCFCR_RFRST | SCFCR_TFRST);
1836}
1837
1838static void sci_set_termios(struct uart_port *port, struct ktermios *termios,
1839			    struct ktermios *old)
1840{
1841	struct sci_port *s = to_sci_port(port);
1842	struct plat_sci_reg *reg;
1843	unsigned int baud, smr_val, max_baud, cks = 0;
1844	int t = -1;
1845	unsigned int srr = 15;
1846
1847	/*
1848	 * earlyprintk comes here early on with port->uartclk set to zero.
1849	 * the clock framework is not up and running at this point so here
1850	 * we assume that 115200 is the maximum baud rate. please note that
1851	 * the baud rate is not programmed during earlyprintk - it is assumed
1852	 * that the previous boot loader has enabled required clocks and
1853	 * setup the baud rate generator hardware for us already.
1854	 */
1855	max_baud = port->uartclk ? port->uartclk / 16 : 115200;
1856
1857	baud = uart_get_baud_rate(port, termios, old, 0, max_baud);
1858	if (likely(baud && port->uartclk)) {
1859		if (s->cfg->type == PORT_HSCIF) {
1860			sci_baud_calc_hscif(baud, port->uartclk, &t, &srr,
1861					    &cks);
1862		} else {
1863			t = sci_scbrr_calc(s, baud, port->uartclk);
1864			for (cks = 0; t >= 256 && cks <= 3; cks++)
1865				t >>= 2;
1866		}
1867	}
1868
1869	sci_port_enable(s);
1870
1871	sci_reset(port);
1872
1873	smr_val = serial_port_in(port, SCSMR) & 3;
1874
1875	if ((termios->c_cflag & CSIZE) == CS7)
1876		smr_val |= SCSMR_CHR;
1877	if (termios->c_cflag & PARENB)
1878		smr_val |= SCSMR_PE;
1879	if (termios->c_cflag & PARODD)
1880		smr_val |= SCSMR_PE | SCSMR_ODD;
1881	if (termios->c_cflag & CSTOPB)
1882		smr_val |= SCSMR_STOP;
1883
1884	uart_update_timeout(port, termios->c_cflag, baud);
1885
1886	dev_dbg(port->dev, "%s: SMR %x, cks %x, t %x, SCSCR %x\n",
1887		__func__, smr_val, cks, t, s->cfg->scscr);
 
 
1888
1889	if (t >= 0) {
1890		serial_port_out(port, SCSMR, (smr_val & ~SCSMR_CKS) | cks);
1891		serial_port_out(port, SCBRR, t);
1892		reg = sci_getreg(port, HSSRR);
1893		if (reg->size)
1894			serial_port_out(port, HSSRR, srr | HSCIF_SRE);
 
 
1895		udelay((1000000+(baud-1)) / baud); /* Wait one bit interval */
1896	} else
1897		serial_port_out(port, SCSMR, smr_val);
1898
1899	sci_init_pins(port, termios->c_cflag);
 
1900
1901	reg = sci_getreg(port, SCFCR);
1902	if (reg->size) {
1903		unsigned short ctrl = serial_port_in(port, SCFCR);
1904
1905		if (s->cfg->capabilities & SCIx_HAVE_RTSCTS) {
1906			if (termios->c_cflag & CRTSCTS)
1907				ctrl |= SCFCR_MCE;
1908			else
1909				ctrl &= ~SCFCR_MCE;
1910		}
1911
1912		/*
1913		 * As we've done a sci_reset() above, ensure we don't
1914		 * interfere with the FIFOs while toggling MCE. As the
1915		 * reset values could still be set, simply mask them out.
1916		 */
1917		ctrl &= ~(SCFCR_RFRST | SCFCR_TFRST);
1918
1919		serial_port_out(port, SCFCR, ctrl);
1920	}
1921
1922	serial_port_out(port, SCSCR, s->cfg->scscr);
1923
1924#ifdef CONFIG_SERIAL_SH_SCI_DMA
1925	/*
1926	 * Calculate delay for 1.5 DMA buffers: see
1927	 * drivers/serial/serial_core.c::uart_update_timeout(). With 10 bits
1928	 * (CS8), 250Hz, 115200 baud and 64 bytes FIFO, the above function
1929	 * calculates 1 jiffie for the data plus 5 jiffies for the "slop(e)."
1930	 * Then below we calculate 3 jiffies (12ms) for 1.5 DMA buffers (3 FIFO
1931	 * sizes), but it has been found out experimentally, that this is not
1932	 * enough: the driver too often needlessly runs on a DMA timeout. 20ms
1933	 * as a minimum seem to work perfectly.
1934	 */
1935	if (s->chan_rx) {
1936		s->rx_timeout = (port->timeout - HZ / 50) * s->buf_len_rx * 3 /
1937			port->fifosize / 2;
1938		dev_dbg(port->dev, "DMA Rx t-out %ums, tty t-out %u jiffies\n",
 
1939			s->rx_timeout * 1000 / HZ, port->timeout);
1940		if (s->rx_timeout < msecs_to_jiffies(20))
1941			s->rx_timeout = msecs_to_jiffies(20);
1942	}
1943#endif
1944
1945	if ((termios->c_cflag & CREAD) != 0)
1946		sci_start_rx(port);
1947
1948	sci_port_disable(s);
1949}
1950
1951static void sci_pm(struct uart_port *port, unsigned int state,
1952		   unsigned int oldstate)
1953{
1954	struct sci_port *sci_port = to_sci_port(port);
1955
1956	switch (state) {
1957	case UART_PM_STATE_OFF:
1958		sci_port_disable(sci_port);
1959		break;
1960	default:
1961		sci_port_enable(sci_port);
1962		break;
1963	}
1964}
1965
1966static const char *sci_type(struct uart_port *port)
1967{
1968	switch (port->type) {
1969	case PORT_IRDA:
1970		return "irda";
1971	case PORT_SCI:
1972		return "sci";
1973	case PORT_SCIF:
1974		return "scif";
1975	case PORT_SCIFA:
1976		return "scifa";
1977	case PORT_SCIFB:
1978		return "scifb";
1979	case PORT_HSCIF:
1980		return "hscif";
1981	}
1982
1983	return NULL;
1984}
1985
1986static inline unsigned long sci_port_size(struct uart_port *port)
1987{
1988	/*
1989	 * Pick an arbitrary size that encapsulates all of the base
1990	 * registers by default. This can be optimized later, or derived
1991	 * from platform resource data at such a time that ports begin to
1992	 * behave more erratically.
1993	 */
1994	if (port->type == PORT_HSCIF)
1995		return 96;
1996	else
1997		return 64;
1998}
1999
2000static int sci_remap_port(struct uart_port *port)
2001{
2002	unsigned long size = sci_port_size(port);
2003
2004	/*
2005	 * Nothing to do if there's already an established membase.
2006	 */
2007	if (port->membase)
2008		return 0;
2009
2010	if (port->flags & UPF_IOREMAP) {
2011		port->membase = ioremap_nocache(port->mapbase, size);
2012		if (unlikely(!port->membase)) {
2013			dev_err(port->dev, "can't remap port#%d\n", port->line);
2014			return -ENXIO;
2015		}
2016	} else {
2017		/*
2018		 * For the simple (and majority of) cases where we don't
2019		 * need to do any remapping, just cast the cookie
2020		 * directly.
2021		 */
2022		port->membase = (void __iomem *)(uintptr_t)port->mapbase;
2023	}
2024
2025	return 0;
2026}
2027
2028static void sci_release_port(struct uart_port *port)
2029{
2030	if (port->flags & UPF_IOREMAP) {
2031		iounmap(port->membase);
2032		port->membase = NULL;
2033	}
2034
2035	release_mem_region(port->mapbase, sci_port_size(port));
2036}
2037
2038static int sci_request_port(struct uart_port *port)
2039{
2040	unsigned long size = sci_port_size(port);
2041	struct resource *res;
2042	int ret;
2043
2044	res = request_mem_region(port->mapbase, size, dev_name(port->dev));
2045	if (unlikely(res == NULL))
2046		return -EBUSY;
2047
2048	ret = sci_remap_port(port);
2049	if (unlikely(ret != 0)) {
2050		release_resource(res);
2051		return ret;
2052	}
2053
2054	return 0;
2055}
2056
2057static void sci_config_port(struct uart_port *port, int flags)
2058{
2059	if (flags & UART_CONFIG_TYPE) {
2060		struct sci_port *sport = to_sci_port(port);
2061
2062		port->type = sport->cfg->type;
2063		sci_request_port(port);
2064	}
2065}
2066
2067static int sci_verify_port(struct uart_port *port, struct serial_struct *ser)
2068{
 
 
 
 
2069	if (ser->baud_base < 2400)
2070		/* No paper tape reader for Mitch.. */
2071		return -EINVAL;
2072
2073	return 0;
2074}
2075
2076static struct uart_ops sci_uart_ops = {
2077	.tx_empty	= sci_tx_empty,
2078	.set_mctrl	= sci_set_mctrl,
2079	.get_mctrl	= sci_get_mctrl,
2080	.start_tx	= sci_start_tx,
2081	.stop_tx	= sci_stop_tx,
2082	.stop_rx	= sci_stop_rx,
2083	.enable_ms	= sci_enable_ms,
2084	.break_ctl	= sci_break_ctl,
2085	.startup	= sci_startup,
2086	.shutdown	= sci_shutdown,
2087	.set_termios	= sci_set_termios,
2088	.pm		= sci_pm,
2089	.type		= sci_type,
2090	.release_port	= sci_release_port,
2091	.request_port	= sci_request_port,
2092	.config_port	= sci_config_port,
2093	.verify_port	= sci_verify_port,
2094#ifdef CONFIG_CONSOLE_POLL
2095	.poll_get_char	= sci_poll_get_char,
2096	.poll_put_char	= sci_poll_put_char,
2097#endif
2098};
2099
2100static int sci_init_single(struct platform_device *dev,
2101			   struct sci_port *sci_port, unsigned int index,
2102			   struct plat_sci_port *p, bool early)
 
2103{
2104	struct uart_port *port = &sci_port->port;
2105	const struct resource *res;
2106	unsigned int sampling_rate;
2107	unsigned int i;
2108	int ret;
2109
2110	sci_port->cfg	= p;
2111
2112	port->ops	= &sci_uart_ops;
2113	port->iotype	= UPIO_MEM;
2114	port->line	= index;
2115
2116	res = platform_get_resource(dev, IORESOURCE_MEM, 0);
2117	if (res == NULL)
2118		return -ENOMEM;
2119
2120	port->mapbase = res->start;
2121
2122	for (i = 0; i < ARRAY_SIZE(sci_port->irqs); ++i)
2123		sci_port->irqs[i] = platform_get_irq(dev, i);
2124
2125	/* The SCI generates several interrupts. They can be muxed together or
2126	 * connected to different interrupt lines. In the muxed case only one
2127	 * interrupt resource is specified. In the non-muxed case three or four
2128	 * interrupt resources are specified, as the BRI interrupt is optional.
2129	 */
2130	if (sci_port->irqs[0] < 0)
2131		return -ENXIO;
2132
2133	if (sci_port->irqs[1] < 0) {
2134		sci_port->irqs[1] = sci_port->irqs[0];
2135		sci_port->irqs[2] = sci_port->irqs[0];
2136		sci_port->irqs[3] = sci_port->irqs[0];
2137	}
2138
2139	if (p->regtype == SCIx_PROBE_REGTYPE) {
2140		ret = sci_probe_regmap(p);
2141		if (unlikely(ret))
2142			return ret;
2143	}
2144
2145	switch (p->type) {
2146	case PORT_SCIFB:
2147		port->fifosize = 256;
2148		sci_port->overrun_bit = 9;
2149		sampling_rate = 16;
2150		break;
2151	case PORT_HSCIF:
2152		port->fifosize = 128;
2153		sampling_rate = 0;
2154		sci_port->overrun_bit = 0;
2155		break;
2156	case PORT_SCIFA:
2157		port->fifosize = 64;
2158		sci_port->overrun_bit = 9;
2159		sampling_rate = 16;
2160		break;
2161	case PORT_SCIF:
2162		port->fifosize = 16;
2163		if (p->regtype == SCIx_SH7705_SCIF_REGTYPE) {
2164			sci_port->overrun_bit = 9;
2165			sampling_rate = 16;
2166		} else {
2167			sci_port->overrun_bit = 0;
2168			sampling_rate = 32;
2169		}
2170		break;
2171	default:
2172		port->fifosize = 1;
2173		sci_port->overrun_bit = 5;
2174		sampling_rate = 32;
2175		break;
2176	}
2177
2178	/* SCIFA on sh7723 and sh7724 need a custom sampling rate that doesn't
2179	 * match the SoC datasheet, this should be investigated. Let platform
2180	 * data override the sampling rate for now.
2181	 */
2182	sci_port->sampling_rate = p->sampling_rate ? p->sampling_rate
2183				: sampling_rate;
2184
2185	if (!early) {
2186		sci_port->iclk = clk_get(&dev->dev, "sci_ick");
2187		if (IS_ERR(sci_port->iclk)) {
2188			sci_port->iclk = clk_get(&dev->dev, "peripheral_clk");
2189			if (IS_ERR(sci_port->iclk)) {
2190				dev_err(&dev->dev, "can't get iclk\n");
2191				return PTR_ERR(sci_port->iclk);
2192			}
2193		}
2194
2195		/*
2196		 * The function clock is optional, ignore it if we can't
2197		 * find it.
2198		 */
2199		sci_port->fclk = clk_get(&dev->dev, "sci_fck");
2200		if (IS_ERR(sci_port->fclk))
2201			sci_port->fclk = NULL;
2202
2203		port->dev = &dev->dev;
2204
 
2205		pm_runtime_enable(&dev->dev);
2206	}
2207
2208	sci_port->break_timer.data = (unsigned long)sci_port;
2209	sci_port->break_timer.function = sci_break_timer;
2210	init_timer(&sci_port->break_timer);
2211
2212	/*
2213	 * Establish some sensible defaults for the error detection.
2214	 */
2215	sci_port->error_mask = (p->type == PORT_SCI) ?
 
2216			SCI_DEFAULT_ERROR_MASK : SCIF_DEFAULT_ERROR_MASK;
2217
2218	/*
2219	 * Establish sensible defaults for the overrun detection, unless
2220	 * the part has explicitly disabled support for it.
2221	 */
 
 
 
 
 
 
 
2222
2223	/*
2224	 * Make the error mask inclusive of overrun detection, if
2225	 * supported.
2226	 */
2227	sci_port->error_mask |= 1 << sci_port->overrun_bit;
 
 
 
2228
 
2229	port->type		= p->type;
2230	port->flags		= UPF_FIXED_PORT | p->flags;
2231	port->regshift		= p->regshift;
2232
2233	/*
2234	 * The UART port needs an IRQ value, so we peg this to the RX IRQ
2235	 * for the multi-IRQ ports, which is where we are primarily
2236	 * concerned with the shutdown path synchronization.
2237	 *
2238	 * For the muxed case there's nothing more to do.
2239	 */
2240	port->irq		= sci_port->irqs[SCIx_RXI_IRQ];
2241	port->irqflags		= 0;
2242
2243	port->serial_in		= sci_serial_in;
2244	port->serial_out	= sci_serial_out;
2245
2246	if (p->dma_slave_tx > 0 && p->dma_slave_rx > 0)
2247		dev_dbg(port->dev, "DMA tx %d, rx %d\n",
2248			p->dma_slave_tx, p->dma_slave_rx);
2249
2250	return 0;
2251}
2252
2253static void sci_cleanup_single(struct sci_port *port)
2254{
2255	clk_put(port->iclk);
2256	clk_put(port->fclk);
2257
2258	pm_runtime_disable(port->port.dev);
2259}
2260
2261#ifdef CONFIG_SERIAL_SH_SCI_CONSOLE
2262static void serial_console_putchar(struct uart_port *port, int ch)
2263{
2264	sci_poll_put_char(port, ch);
2265}
2266
2267/*
2268 *	Print a string to the serial port trying not to disturb
2269 *	any possible real use of the port...
2270 */
2271static void serial_console_write(struct console *co, const char *s,
2272				 unsigned count)
2273{
2274	struct sci_port *sci_port = &sci_ports[co->index];
2275	struct uart_port *port = &sci_port->port;
2276	unsigned short bits, ctrl;
2277	unsigned long flags;
2278	int locked = 1;
2279
2280	local_irq_save(flags);
2281	if (port->sysrq)
2282		locked = 0;
2283	else if (oops_in_progress)
2284		locked = spin_trylock(&port->lock);
2285	else
2286		spin_lock(&port->lock);
2287
2288	/* first save the SCSCR then disable the interrupts */
2289	ctrl = serial_port_in(port, SCSCR);
2290	serial_port_out(port, SCSCR, sci_port->cfg->scscr);
2291
2292	uart_console_write(port, s, count, serial_console_putchar);
2293
2294	/* wait until fifo is empty and last bit has been transmitted */
2295	bits = SCxSR_TDxE(port) | SCxSR_TEND(port);
2296	while ((serial_port_in(port, SCxSR) & bits) != bits)
2297		cpu_relax();
2298
2299	/* restore the SCSCR */
2300	serial_port_out(port, SCSCR, ctrl);
2301
2302	if (locked)
2303		spin_unlock(&port->lock);
2304	local_irq_restore(flags);
2305}
2306
2307static int serial_console_setup(struct console *co, char *options)
2308{
2309	struct sci_port *sci_port;
2310	struct uart_port *port;
2311	int baud = 115200;
2312	int bits = 8;
2313	int parity = 'n';
2314	int flow = 'n';
2315	int ret;
2316
2317	/*
2318	 * Refuse to handle any bogus ports.
2319	 */
2320	if (co->index < 0 || co->index >= SCI_NPORTS)
2321		return -ENODEV;
2322
2323	sci_port = &sci_ports[co->index];
2324	port = &sci_port->port;
2325
2326	/*
2327	 * Refuse to handle uninitialized ports.
2328	 */
2329	if (!port->ops)
2330		return -ENODEV;
2331
2332	ret = sci_remap_port(port);
2333	if (unlikely(ret != 0))
2334		return ret;
2335
 
 
2336	if (options)
2337		uart_parse_options(options, &baud, &parity, &bits, &flow);
2338
 
 
2339	return uart_set_options(port, co, baud, parity, bits, flow);
2340}
2341
2342static struct console serial_console = {
2343	.name		= "ttySC",
2344	.device		= uart_console_device,
2345	.write		= serial_console_write,
2346	.setup		= serial_console_setup,
2347	.flags		= CON_PRINTBUFFER,
2348	.index		= -1,
2349	.data		= &sci_uart_driver,
2350};
2351
2352static struct console early_serial_console = {
2353	.name           = "early_ttySC",
2354	.write          = serial_console_write,
2355	.flags          = CON_PRINTBUFFER,
2356	.index		= -1,
2357};
2358
2359static char early_serial_buf[32];
2360
2361static int sci_probe_earlyprintk(struct platform_device *pdev)
2362{
2363	struct plat_sci_port *cfg = dev_get_platdata(&pdev->dev);
2364
2365	if (early_serial_console.data)
2366		return -EEXIST;
2367
2368	early_serial_console.index = pdev->id;
2369
2370	sci_init_single(pdev, &sci_ports[pdev->id], pdev->id, cfg, true);
2371
2372	serial_console_setup(&early_serial_console, early_serial_buf);
2373
2374	if (!strstr(early_serial_buf, "keep"))
2375		early_serial_console.flags |= CON_BOOT;
2376
2377	register_console(&early_serial_console);
2378	return 0;
2379}
2380
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
2381#define SCI_CONSOLE	(&serial_console)
2382
2383#else
2384static inline int sci_probe_earlyprintk(struct platform_device *pdev)
2385{
2386	return -EINVAL;
2387}
2388
2389#define SCI_CONSOLE	NULL
 
 
2390
2391#endif /* CONFIG_SERIAL_SH_SCI_CONSOLE */
2392
2393static const char banner[] __initconst = "SuperH (H)SCI(F) driver initialized";
 
2394
2395static struct uart_driver sci_uart_driver = {
2396	.owner		= THIS_MODULE,
2397	.driver_name	= "sci",
2398	.dev_name	= "ttySC",
2399	.major		= SCI_MAJOR,
2400	.minor		= SCI_MINOR_START,
2401	.nr		= SCI_NPORTS,
2402	.cons		= SCI_CONSOLE,
2403};
2404
2405static int sci_remove(struct platform_device *dev)
2406{
2407	struct sci_port *port = platform_get_drvdata(dev);
2408
2409	cpufreq_unregister_notifier(&port->freq_transition,
2410				    CPUFREQ_TRANSITION_NOTIFIER);
2411
2412	uart_remove_one_port(&sci_uart_driver, &port->port);
2413
2414	sci_cleanup_single(port);
 
2415
 
2416	return 0;
2417}
2418
2419struct sci_port_info {
2420	unsigned int type;
2421	unsigned int regtype;
2422};
2423
2424static const struct of_device_id of_sci_match[] = {
2425	{
2426		.compatible = "renesas,scif",
2427		.data = &(const struct sci_port_info) {
2428			.type = PORT_SCIF,
2429			.regtype = SCIx_SH4_SCIF_REGTYPE,
2430		},
2431	}, {
2432		.compatible = "renesas,scifa",
2433		.data = &(const struct sci_port_info) {
2434			.type = PORT_SCIFA,
2435			.regtype = SCIx_SCIFA_REGTYPE,
2436		},
2437	}, {
2438		.compatible = "renesas,scifb",
2439		.data = &(const struct sci_port_info) {
2440			.type = PORT_SCIFB,
2441			.regtype = SCIx_SCIFB_REGTYPE,
2442		},
2443	}, {
2444		.compatible = "renesas,hscif",
2445		.data = &(const struct sci_port_info) {
2446			.type = PORT_HSCIF,
2447			.regtype = SCIx_HSCIF_REGTYPE,
2448		},
2449	}, {
2450		/* Terminator */
2451	},
2452};
2453MODULE_DEVICE_TABLE(of, of_sci_match);
2454
2455static struct plat_sci_port *
2456sci_parse_dt(struct platform_device *pdev, unsigned int *dev_id)
2457{
2458	struct device_node *np = pdev->dev.of_node;
2459	const struct of_device_id *match;
2460	const struct sci_port_info *info;
2461	struct plat_sci_port *p;
2462	int id;
2463
2464	if (!IS_ENABLED(CONFIG_OF) || !np)
2465		return NULL;
2466
2467	match = of_match_node(of_sci_match, pdev->dev.of_node);
2468	if (!match)
2469		return NULL;
2470
2471	info = match->data;
2472
2473	p = devm_kzalloc(&pdev->dev, sizeof(struct plat_sci_port), GFP_KERNEL);
2474	if (!p) {
2475		dev_err(&pdev->dev, "failed to allocate DT config data\n");
2476		return NULL;
2477	}
2478
2479	/* Get the line number for the aliases node. */
2480	id = of_alias_get_id(np, "serial");
2481	if (id < 0) {
2482		dev_err(&pdev->dev, "failed to get alias id (%d)\n", id);
2483		return NULL;
2484	}
2485
2486	*dev_id = id;
2487
2488	p->flags = UPF_IOREMAP | UPF_BOOT_AUTOCONF;
2489	p->type = info->type;
2490	p->regtype = info->regtype;
2491	p->scscr = SCSCR_RE | SCSCR_TE;
2492
2493	return p;
2494}
2495
2496static int sci_probe_single(struct platform_device *dev,
2497				      unsigned int index,
2498				      struct plat_sci_port *p,
2499				      struct sci_port *sciport)
2500{
2501	int ret;
2502
2503	/* Sanity check */
2504	if (unlikely(index >= SCI_NPORTS)) {
2505		dev_notice(&dev->dev, "Attempting to register port %d when only %d are available\n",
 
2506			   index+1, SCI_NPORTS);
2507		dev_notice(&dev->dev, "Consider bumping CONFIG_SERIAL_SH_SCI_NR_UARTS!\n");
2508		return -EINVAL;
 
2509	}
2510
2511	ret = sci_init_single(dev, sciport, index, p, false);
2512	if (ret)
2513		return ret;
2514
2515	ret = uart_add_one_port(&sci_uart_driver, &sciport->port);
2516	if (ret) {
2517		sci_cleanup_single(sciport);
2518		return ret;
2519	}
2520
2521	return 0;
2522}
2523
2524static int sci_probe(struct platform_device *dev)
2525{
2526	struct plat_sci_port *p;
2527	struct sci_port *sp;
2528	unsigned int dev_id;
2529	int ret;
2530
2531	/*
2532	 * If we've come here via earlyprintk initialization, head off to
2533	 * the special early probe. We don't have sufficient device state
2534	 * to make it beyond this yet.
2535	 */
2536	if (is_early_platform_device(dev))
2537		return sci_probe_earlyprintk(dev);
2538
2539	if (dev->dev.of_node) {
2540		p = sci_parse_dt(dev, &dev_id);
2541		if (p == NULL)
2542			return -EINVAL;
2543	} else {
2544		p = dev->dev.platform_data;
2545		if (p == NULL) {
2546			dev_err(&dev->dev, "no platform data supplied\n");
2547			return -EINVAL;
2548		}
2549
2550		dev_id = dev->id;
2551	}
2552
2553	sp = &sci_ports[dev_id];
2554	platform_set_drvdata(dev, sp);
2555
2556	ret = sci_probe_single(dev, dev_id, p, sp);
2557	if (ret)
2558		return ret;
2559
2560	sp->freq_transition.notifier_call = sci_notifier;
2561
2562	ret = cpufreq_register_notifier(&sp->freq_transition,
2563					CPUFREQ_TRANSITION_NOTIFIER);
2564	if (unlikely(ret < 0)) {
2565		uart_remove_one_port(&sci_uart_driver, &sp->port);
2566		sci_cleanup_single(sp);
2567		return ret;
2568	}
2569
2570#ifdef CONFIG_SH_STANDARD_BIOS
2571	sh_bios_gdb_detach();
2572#endif
2573
2574	return 0;
 
 
 
 
2575}
2576
2577static int sci_suspend(struct device *dev)
2578{
2579	struct sci_port *sport = dev_get_drvdata(dev);
2580
2581	if (sport)
2582		uart_suspend_port(&sci_uart_driver, &sport->port);
2583
2584	return 0;
2585}
2586
2587static int sci_resume(struct device *dev)
2588{
2589	struct sci_port *sport = dev_get_drvdata(dev);
2590
2591	if (sport)
2592		uart_resume_port(&sci_uart_driver, &sport->port);
2593
2594	return 0;
2595}
2596
2597static const struct dev_pm_ops sci_dev_pm_ops = {
 
 
2598	.suspend	= sci_suspend,
2599	.resume		= sci_resume,
2600};
2601
2602static struct platform_driver sci_driver = {
2603	.probe		= sci_probe,
2604	.remove		= sci_remove,
2605	.driver		= {
2606		.name	= "sh-sci",
2607		.owner	= THIS_MODULE,
2608		.pm	= &sci_dev_pm_ops,
2609		.of_match_table = of_match_ptr(of_sci_match),
2610	},
2611};
2612
2613static int __init sci_init(void)
2614{
2615	int ret;
2616
2617	pr_info("%s\n", banner);
2618
2619	ret = uart_register_driver(&sci_uart_driver);
2620	if (likely(ret == 0)) {
2621		ret = platform_driver_register(&sci_driver);
2622		if (unlikely(ret))
2623			uart_unregister_driver(&sci_uart_driver);
2624	}
2625
2626	return ret;
2627}
2628
2629static void __exit sci_exit(void)
2630{
2631	platform_driver_unregister(&sci_driver);
2632	uart_unregister_driver(&sci_uart_driver);
2633}
2634
2635#ifdef CONFIG_SERIAL_SH_SCI_CONSOLE
2636early_platform_init_buffer("earlyprintk", &sci_driver,
2637			   early_serial_buf, ARRAY_SIZE(early_serial_buf));
2638#endif
2639module_init(sci_init);
2640module_exit(sci_exit);
2641
2642MODULE_LICENSE("GPL");
2643MODULE_ALIAS("platform:sh-sci");
2644MODULE_AUTHOR("Paul Mundt");
2645MODULE_DESCRIPTION("SuperH (H)SCI(F) serial driver");