Linux Audio

Check our new training course

Loading...
Note: File does not exist in v3.1.
   1/*
   2 * Just-In-Time compiler for eBPF filters on 32bit ARM
   3 *
   4 * Copyright (c) 2017 Shubham Bansal <illusionist.neo@gmail.com>
   5 * Copyright (c) 2011 Mircea Gherzan <mgherzan@gmail.com>
   6 *
   7 * This program is free software; you can redistribute it and/or modify it
   8 * under the terms of the GNU General Public License as published by the
   9 * Free Software Foundation; version 2 of the License.
  10 */
  11
  12#include <linux/bpf.h>
  13#include <linux/bitops.h>
  14#include <linux/compiler.h>
  15#include <linux/errno.h>
  16#include <linux/filter.h>
  17#include <linux/netdevice.h>
  18#include <linux/string.h>
  19#include <linux/slab.h>
  20#include <linux/if_vlan.h>
  21
  22#include <asm/cacheflush.h>
  23#include <asm/hwcap.h>
  24#include <asm/opcodes.h>
  25
  26#include "bpf_jit_32.h"
  27
  28/*
  29 * eBPF prog stack layout:
  30 *
  31 *                         high
  32 * original ARM_SP =>     +-----+
  33 *                        |     | callee saved registers
  34 *                        +-----+ <= (BPF_FP + SCRATCH_SIZE)
  35 *                        | ... | eBPF JIT scratch space
  36 * eBPF fp register =>    +-----+
  37 *   (BPF_FP)             | ... | eBPF prog stack
  38 *                        +-----+
  39 *                        |RSVD | JIT scratchpad
  40 * current ARM_SP =>      +-----+ <= (BPF_FP - STACK_SIZE + SCRATCH_SIZE)
  41 *                        |     |
  42 *                        | ... | Function call stack
  43 *                        |     |
  44 *                        +-----+
  45 *                          low
  46 *
  47 * The callee saved registers depends on whether frame pointers are enabled.
  48 * With frame pointers (to be compliant with the ABI):
  49 *
  50 *                                high
  51 * original ARM_SP =>     +------------------+ \
  52 *                        |        pc        | |
  53 * current ARM_FP =>      +------------------+ } callee saved registers
  54 *                        |r4-r8,r10,fp,ip,lr| |
  55 *                        +------------------+ /
  56 *                                low
  57 *
  58 * Without frame pointers:
  59 *
  60 *                                high
  61 * original ARM_SP =>     +------------------+
  62 *                        | r4-r8,r10,fp,lr  | callee saved registers
  63 * current ARM_FP =>      +------------------+
  64 *                                low
  65 *
  66 * When popping registers off the stack at the end of a BPF function, we
  67 * reference them via the current ARM_FP register.
  68 */
  69#define CALLEE_MASK	(1 << ARM_R4 | 1 << ARM_R5 | 1 << ARM_R6 | \
  70			 1 << ARM_R7 | 1 << ARM_R8 | 1 << ARM_R10 | \
  71			 1 << ARM_FP)
  72#define CALLEE_PUSH_MASK (CALLEE_MASK | 1 << ARM_LR)
  73#define CALLEE_POP_MASK  (CALLEE_MASK | 1 << ARM_PC)
  74
  75#define STACK_OFFSET(k)	(k)
  76#define TMP_REG_1	(MAX_BPF_JIT_REG + 0)	/* TEMP Register 1 */
  77#define TMP_REG_2	(MAX_BPF_JIT_REG + 1)	/* TEMP Register 2 */
  78#define TCALL_CNT	(MAX_BPF_JIT_REG + 2)	/* Tail Call Count */
  79
  80#define FLAG_IMM_OVERFLOW	(1 << 0)
  81
  82/*
  83 * Map eBPF registers to ARM 32bit registers or stack scratch space.
  84 *
  85 * 1. First argument is passed using the arm 32bit registers and rest of the
  86 * arguments are passed on stack scratch space.
  87 * 2. First callee-saved arugument is mapped to arm 32 bit registers and rest
  88 * arguments are mapped to scratch space on stack.
  89 * 3. We need two 64 bit temp registers to do complex operations on eBPF
  90 * registers.
  91 *
  92 * As the eBPF registers are all 64 bit registers and arm has only 32 bit
  93 * registers, we have to map each eBPF registers with two arm 32 bit regs or
  94 * scratch memory space and we have to build eBPF 64 bit register from those.
  95 *
  96 */
  97static const u8 bpf2a32[][2] = {
  98	/* return value from in-kernel function, and exit value from eBPF */
  99	[BPF_REG_0] = {ARM_R1, ARM_R0},
 100	/* arguments from eBPF program to in-kernel function */
 101	[BPF_REG_1] = {ARM_R3, ARM_R2},
 102	/* Stored on stack scratch space */
 103	[BPF_REG_2] = {STACK_OFFSET(0), STACK_OFFSET(4)},
 104	[BPF_REG_3] = {STACK_OFFSET(8), STACK_OFFSET(12)},
 105	[BPF_REG_4] = {STACK_OFFSET(16), STACK_OFFSET(20)},
 106	[BPF_REG_5] = {STACK_OFFSET(24), STACK_OFFSET(28)},
 107	/* callee saved registers that in-kernel function will preserve */
 108	[BPF_REG_6] = {ARM_R5, ARM_R4},
 109	/* Stored on stack scratch space */
 110	[BPF_REG_7] = {STACK_OFFSET(32), STACK_OFFSET(36)},
 111	[BPF_REG_8] = {STACK_OFFSET(40), STACK_OFFSET(44)},
 112	[BPF_REG_9] = {STACK_OFFSET(48), STACK_OFFSET(52)},
 113	/* Read only Frame Pointer to access Stack */
 114	[BPF_REG_FP] = {STACK_OFFSET(56), STACK_OFFSET(60)},
 115	/* Temporary Register for internal BPF JIT, can be used
 116	 * for constant blindings and others.
 117	 */
 118	[TMP_REG_1] = {ARM_R7, ARM_R6},
 119	[TMP_REG_2] = {ARM_R10, ARM_R8},
 120	/* Tail call count. Stored on stack scratch space. */
 121	[TCALL_CNT] = {STACK_OFFSET(64), STACK_OFFSET(68)},
 122	/* temporary register for blinding constants.
 123	 * Stored on stack scratch space.
 124	 */
 125	[BPF_REG_AX] = {STACK_OFFSET(72), STACK_OFFSET(76)},
 126};
 127
 128#define	dst_lo	dst[1]
 129#define dst_hi	dst[0]
 130#define src_lo	src[1]
 131#define src_hi	src[0]
 132
 133/*
 134 * JIT Context:
 135 *
 136 * prog			:	bpf_prog
 137 * idx			:	index of current last JITed instruction.
 138 * prologue_bytes	:	bytes used in prologue.
 139 * epilogue_offset	:	offset of epilogue starting.
 140 * offsets		:	array of eBPF instruction offsets in
 141 *				JITed code.
 142 * target		:	final JITed code.
 143 * epilogue_bytes	:	no of bytes used in epilogue.
 144 * imm_count		:	no of immediate counts used for global
 145 *				variables.
 146 * imms			:	array of global variable addresses.
 147 */
 148
 149struct jit_ctx {
 150	const struct bpf_prog *prog;
 151	unsigned int idx;
 152	unsigned int prologue_bytes;
 153	unsigned int epilogue_offset;
 154	u32 flags;
 155	u32 *offsets;
 156	u32 *target;
 157	u32 stack_size;
 158#if __LINUX_ARM_ARCH__ < 7
 159	u16 epilogue_bytes;
 160	u16 imm_count;
 161	u32 *imms;
 162#endif
 163};
 164
 165/*
 166 * Wrappers which handle both OABI and EABI and assures Thumb2 interworking
 167 * (where the assembly routines like __aeabi_uidiv could cause problems).
 168 */
 169static u32 jit_udiv32(u32 dividend, u32 divisor)
 170{
 171	return dividend / divisor;
 172}
 173
 174static u32 jit_mod32(u32 dividend, u32 divisor)
 175{
 176	return dividend % divisor;
 177}
 178
 179static inline void _emit(int cond, u32 inst, struct jit_ctx *ctx)
 180{
 181	inst |= (cond << 28);
 182	inst = __opcode_to_mem_arm(inst);
 183
 184	if (ctx->target != NULL)
 185		ctx->target[ctx->idx] = inst;
 186
 187	ctx->idx++;
 188}
 189
 190/*
 191 * Emit an instruction that will be executed unconditionally.
 192 */
 193static inline void emit(u32 inst, struct jit_ctx *ctx)
 194{
 195	_emit(ARM_COND_AL, inst, ctx);
 196}
 197
 198/*
 199 * Checks if immediate value can be converted to imm12(12 bits) value.
 200 */
 201static int16_t imm8m(u32 x)
 202{
 203	u32 rot;
 204
 205	for (rot = 0; rot < 16; rot++)
 206		if ((x & ~ror32(0xff, 2 * rot)) == 0)
 207			return rol32(x, 2 * rot) | (rot << 8);
 208	return -1;
 209}
 210
 211/*
 212 * Initializes the JIT space with undefined instructions.
 213 */
 214static void jit_fill_hole(void *area, unsigned int size)
 215{
 216	u32 *ptr;
 217	/* We are guaranteed to have aligned memory. */
 218	for (ptr = area; size >= sizeof(u32); size -= sizeof(u32))
 219		*ptr++ = __opcode_to_mem_arm(ARM_INST_UDF);
 220}
 221
 222#if defined(CONFIG_AEABI) && (__LINUX_ARM_ARCH__ >= 5)
 223/* EABI requires the stack to be aligned to 64-bit boundaries */
 224#define STACK_ALIGNMENT	8
 225#else
 226/* Stack must be aligned to 32-bit boundaries */
 227#define STACK_ALIGNMENT	4
 228#endif
 229
 230/* Stack space for BPF_REG_2, BPF_REG_3, BPF_REG_4,
 231 * BPF_REG_5, BPF_REG_7, BPF_REG_8, BPF_REG_9,
 232 * BPF_REG_FP and Tail call counts.
 233 */
 234#define SCRATCH_SIZE 80
 235
 236/* total stack size used in JITed code */
 237#define _STACK_SIZE \
 238	(ctx->prog->aux->stack_depth + \
 239	 + SCRATCH_SIZE + \
 240	 + 4 /* extra for skb_copy_bits buffer */)
 241
 242#define STACK_SIZE ALIGN(_STACK_SIZE, STACK_ALIGNMENT)
 243
 244/* Get the offset of eBPF REGISTERs stored on scratch space. */
 245#define STACK_VAR(off) (STACK_SIZE-off-4)
 246
 247/* Offset of skb_copy_bits buffer */
 248#define SKB_BUFFER STACK_VAR(SCRATCH_SIZE)
 249
 250#if __LINUX_ARM_ARCH__ < 7
 251
 252static u16 imm_offset(u32 k, struct jit_ctx *ctx)
 253{
 254	unsigned int i = 0, offset;
 255	u16 imm;
 256
 257	/* on the "fake" run we just count them (duplicates included) */
 258	if (ctx->target == NULL) {
 259		ctx->imm_count++;
 260		return 0;
 261	}
 262
 263	while ((i < ctx->imm_count) && ctx->imms[i]) {
 264		if (ctx->imms[i] == k)
 265			break;
 266		i++;
 267	}
 268
 269	if (ctx->imms[i] == 0)
 270		ctx->imms[i] = k;
 271
 272	/* constants go just after the epilogue */
 273	offset =  ctx->offsets[ctx->prog->len - 1] * 4;
 274	offset += ctx->prologue_bytes;
 275	offset += ctx->epilogue_bytes;
 276	offset += i * 4;
 277
 278	ctx->target[offset / 4] = k;
 279
 280	/* PC in ARM mode == address of the instruction + 8 */
 281	imm = offset - (8 + ctx->idx * 4);
 282
 283	if (imm & ~0xfff) {
 284		/*
 285		 * literal pool is too far, signal it into flags. we
 286		 * can only detect it on the second pass unfortunately.
 287		 */
 288		ctx->flags |= FLAG_IMM_OVERFLOW;
 289		return 0;
 290	}
 291
 292	return imm;
 293}
 294
 295#endif /* __LINUX_ARM_ARCH__ */
 296
 297static inline int bpf2a32_offset(int bpf_to, int bpf_from,
 298				 const struct jit_ctx *ctx) {
 299	int to, from;
 300
 301	if (ctx->target == NULL)
 302		return 0;
 303	to = ctx->offsets[bpf_to];
 304	from = ctx->offsets[bpf_from];
 305
 306	return to - from - 1;
 307}
 308
 309/*
 310 * Move an immediate that's not an imm8m to a core register.
 311 */
 312static inline void emit_mov_i_no8m(const u8 rd, u32 val, struct jit_ctx *ctx)
 313{
 314#if __LINUX_ARM_ARCH__ < 7
 315	emit(ARM_LDR_I(rd, ARM_PC, imm_offset(val, ctx)), ctx);
 316#else
 317	emit(ARM_MOVW(rd, val & 0xffff), ctx);
 318	if (val > 0xffff)
 319		emit(ARM_MOVT(rd, val >> 16), ctx);
 320#endif
 321}
 322
 323static inline void emit_mov_i(const u8 rd, u32 val, struct jit_ctx *ctx)
 324{
 325	int imm12 = imm8m(val);
 326
 327	if (imm12 >= 0)
 328		emit(ARM_MOV_I(rd, imm12), ctx);
 329	else
 330		emit_mov_i_no8m(rd, val, ctx);
 331}
 332
 333static void emit_bx_r(u8 tgt_reg, struct jit_ctx *ctx)
 334{
 335	if (elf_hwcap & HWCAP_THUMB)
 336		emit(ARM_BX(tgt_reg), ctx);
 337	else
 338		emit(ARM_MOV_R(ARM_PC, tgt_reg), ctx);
 339}
 340
 341static inline void emit_blx_r(u8 tgt_reg, struct jit_ctx *ctx)
 342{
 343#if __LINUX_ARM_ARCH__ < 5
 344	emit(ARM_MOV_R(ARM_LR, ARM_PC), ctx);
 345	emit_bx_r(tgt_reg, ctx);
 346#else
 347	emit(ARM_BLX_R(tgt_reg), ctx);
 348#endif
 349}
 350
 351static inline int epilogue_offset(const struct jit_ctx *ctx)
 352{
 353	int to, from;
 354	/* No need for 1st dummy run */
 355	if (ctx->target == NULL)
 356		return 0;
 357	to = ctx->epilogue_offset;
 358	from = ctx->idx;
 359
 360	return to - from - 2;
 361}
 362
 363static inline void emit_udivmod(u8 rd, u8 rm, u8 rn, struct jit_ctx *ctx, u8 op)
 364{
 365	const u8 *tmp = bpf2a32[TMP_REG_1];
 366
 367#if __LINUX_ARM_ARCH__ == 7
 368	if (elf_hwcap & HWCAP_IDIVA) {
 369		if (op == BPF_DIV)
 370			emit(ARM_UDIV(rd, rm, rn), ctx);
 371		else {
 372			emit(ARM_UDIV(ARM_IP, rm, rn), ctx);
 373			emit(ARM_MLS(rd, rn, ARM_IP, rm), ctx);
 374		}
 375		return;
 376	}
 377#endif
 378
 379	/*
 380	 * For BPF_ALU | BPF_DIV | BPF_K instructions
 381	 * As ARM_R1 and ARM_R0 contains 1st argument of bpf
 382	 * function, we need to save it on caller side to save
 383	 * it from getting destroyed within callee.
 384	 * After the return from the callee, we restore ARM_R0
 385	 * ARM_R1.
 386	 */
 387	if (rn != ARM_R1) {
 388		emit(ARM_MOV_R(tmp[0], ARM_R1), ctx);
 389		emit(ARM_MOV_R(ARM_R1, rn), ctx);
 390	}
 391	if (rm != ARM_R0) {
 392		emit(ARM_MOV_R(tmp[1], ARM_R0), ctx);
 393		emit(ARM_MOV_R(ARM_R0, rm), ctx);
 394	}
 395
 396	/* Call appropriate function */
 397	emit_mov_i(ARM_IP, op == BPF_DIV ?
 398		   (u32)jit_udiv32 : (u32)jit_mod32, ctx);
 399	emit_blx_r(ARM_IP, ctx);
 400
 401	/* Save return value */
 402	if (rd != ARM_R0)
 403		emit(ARM_MOV_R(rd, ARM_R0), ctx);
 404
 405	/* Restore ARM_R0 and ARM_R1 */
 406	if (rn != ARM_R1)
 407		emit(ARM_MOV_R(ARM_R1, tmp[0]), ctx);
 408	if (rm != ARM_R0)
 409		emit(ARM_MOV_R(ARM_R0, tmp[1]), ctx);
 410}
 411
 412/* Checks whether BPF register is on scratch stack space or not. */
 413static inline bool is_on_stack(u8 bpf_reg)
 414{
 415	static u8 stack_regs[] = {BPF_REG_AX, BPF_REG_3, BPF_REG_4, BPF_REG_5,
 416				BPF_REG_7, BPF_REG_8, BPF_REG_9, TCALL_CNT,
 417				BPF_REG_2, BPF_REG_FP};
 418	int i, reg_len = sizeof(stack_regs);
 419
 420	for (i = 0 ; i < reg_len ; i++) {
 421		if (bpf_reg == stack_regs[i])
 422			return true;
 423	}
 424	return false;
 425}
 426
 427static inline void emit_a32_mov_i(const u8 dst, const u32 val,
 428				  bool dstk, struct jit_ctx *ctx)
 429{
 430	const u8 *tmp = bpf2a32[TMP_REG_1];
 431
 432	if (dstk) {
 433		emit_mov_i(tmp[1], val, ctx);
 434		emit(ARM_STR_I(tmp[1], ARM_SP, STACK_VAR(dst)), ctx);
 435	} else {
 436		emit_mov_i(dst, val, ctx);
 437	}
 438}
 439
 440/* Sign extended move */
 441static inline void emit_a32_mov_i64(const bool is64, const u8 dst[],
 442				  const u32 val, bool dstk,
 443				  struct jit_ctx *ctx) {
 444	u32 hi = 0;
 445
 446	if (is64 && (val & (1<<31)))
 447		hi = (u32)~0;
 448	emit_a32_mov_i(dst_lo, val, dstk, ctx);
 449	emit_a32_mov_i(dst_hi, hi, dstk, ctx);
 450}
 451
 452static inline void emit_a32_add_r(const u8 dst, const u8 src,
 453			      const bool is64, const bool hi,
 454			      struct jit_ctx *ctx) {
 455	/* 64 bit :
 456	 *	adds dst_lo, dst_lo, src_lo
 457	 *	adc dst_hi, dst_hi, src_hi
 458	 * 32 bit :
 459	 *	add dst_lo, dst_lo, src_lo
 460	 */
 461	if (!hi && is64)
 462		emit(ARM_ADDS_R(dst, dst, src), ctx);
 463	else if (hi && is64)
 464		emit(ARM_ADC_R(dst, dst, src), ctx);
 465	else
 466		emit(ARM_ADD_R(dst, dst, src), ctx);
 467}
 468
 469static inline void emit_a32_sub_r(const u8 dst, const u8 src,
 470				  const bool is64, const bool hi,
 471				  struct jit_ctx *ctx) {
 472	/* 64 bit :
 473	 *	subs dst_lo, dst_lo, src_lo
 474	 *	sbc dst_hi, dst_hi, src_hi
 475	 * 32 bit :
 476	 *	sub dst_lo, dst_lo, src_lo
 477	 */
 478	if (!hi && is64)
 479		emit(ARM_SUBS_R(dst, dst, src), ctx);
 480	else if (hi && is64)
 481		emit(ARM_SBC_R(dst, dst, src), ctx);
 482	else
 483		emit(ARM_SUB_R(dst, dst, src), ctx);
 484}
 485
 486static inline void emit_alu_r(const u8 dst, const u8 src, const bool is64,
 487			      const bool hi, const u8 op, struct jit_ctx *ctx){
 488	switch (BPF_OP(op)) {
 489	/* dst = dst + src */
 490	case BPF_ADD:
 491		emit_a32_add_r(dst, src, is64, hi, ctx);
 492		break;
 493	/* dst = dst - src */
 494	case BPF_SUB:
 495		emit_a32_sub_r(dst, src, is64, hi, ctx);
 496		break;
 497	/* dst = dst | src */
 498	case BPF_OR:
 499		emit(ARM_ORR_R(dst, dst, src), ctx);
 500		break;
 501	/* dst = dst & src */
 502	case BPF_AND:
 503		emit(ARM_AND_R(dst, dst, src), ctx);
 504		break;
 505	/* dst = dst ^ src */
 506	case BPF_XOR:
 507		emit(ARM_EOR_R(dst, dst, src), ctx);
 508		break;
 509	/* dst = dst * src */
 510	case BPF_MUL:
 511		emit(ARM_MUL(dst, dst, src), ctx);
 512		break;
 513	/* dst = dst << src */
 514	case BPF_LSH:
 515		emit(ARM_LSL_R(dst, dst, src), ctx);
 516		break;
 517	/* dst = dst >> src */
 518	case BPF_RSH:
 519		emit(ARM_LSR_R(dst, dst, src), ctx);
 520		break;
 521	/* dst = dst >> src (signed)*/
 522	case BPF_ARSH:
 523		emit(ARM_MOV_SR(dst, dst, SRTYPE_ASR, src), ctx);
 524		break;
 525	}
 526}
 527
 528/* ALU operation (32 bit)
 529 * dst = dst (op) src
 530 */
 531static inline void emit_a32_alu_r(const u8 dst, const u8 src,
 532				  bool dstk, bool sstk,
 533				  struct jit_ctx *ctx, const bool is64,
 534				  const bool hi, const u8 op) {
 535	const u8 *tmp = bpf2a32[TMP_REG_1];
 536	u8 rn = sstk ? tmp[1] : src;
 537
 538	if (sstk)
 539		emit(ARM_LDR_I(rn, ARM_SP, STACK_VAR(src)), ctx);
 540
 541	/* ALU operation */
 542	if (dstk) {
 543		emit(ARM_LDR_I(tmp[0], ARM_SP, STACK_VAR(dst)), ctx);
 544		emit_alu_r(tmp[0], rn, is64, hi, op, ctx);
 545		emit(ARM_STR_I(tmp[0], ARM_SP, STACK_VAR(dst)), ctx);
 546	} else {
 547		emit_alu_r(dst, rn, is64, hi, op, ctx);
 548	}
 549}
 550
 551/* ALU operation (64 bit) */
 552static inline void emit_a32_alu_r64(const bool is64, const u8 dst[],
 553				  const u8 src[], bool dstk,
 554				  bool sstk, struct jit_ctx *ctx,
 555				  const u8 op) {
 556	emit_a32_alu_r(dst_lo, src_lo, dstk, sstk, ctx, is64, false, op);
 557	if (is64)
 558		emit_a32_alu_r(dst_hi, src_hi, dstk, sstk, ctx, is64, true, op);
 559	else
 560		emit_a32_mov_i(dst_hi, 0, dstk, ctx);
 561}
 562
 563/* dst = imm (4 bytes)*/
 564static inline void emit_a32_mov_r(const u8 dst, const u8 src,
 565				  bool dstk, bool sstk,
 566				  struct jit_ctx *ctx) {
 567	const u8 *tmp = bpf2a32[TMP_REG_1];
 568	u8 rt = sstk ? tmp[0] : src;
 569
 570	if (sstk)
 571		emit(ARM_LDR_I(tmp[0], ARM_SP, STACK_VAR(src)), ctx);
 572	if (dstk)
 573		emit(ARM_STR_I(rt, ARM_SP, STACK_VAR(dst)), ctx);
 574	else
 575		emit(ARM_MOV_R(dst, rt), ctx);
 576}
 577
 578/* dst = src */
 579static inline void emit_a32_mov_r64(const bool is64, const u8 dst[],
 580				  const u8 src[], bool dstk,
 581				  bool sstk, struct jit_ctx *ctx) {
 582	emit_a32_mov_r(dst_lo, src_lo, dstk, sstk, ctx);
 583	if (is64) {
 584		/* complete 8 byte move */
 585		emit_a32_mov_r(dst_hi, src_hi, dstk, sstk, ctx);
 586	} else {
 587		/* Zero out high 4 bytes */
 588		emit_a32_mov_i(dst_hi, 0, dstk, ctx);
 589	}
 590}
 591
 592/* Shift operations */
 593static inline void emit_a32_alu_i(const u8 dst, const u32 val, bool dstk,
 594				struct jit_ctx *ctx, const u8 op) {
 595	const u8 *tmp = bpf2a32[TMP_REG_1];
 596	u8 rd = dstk ? tmp[0] : dst;
 597
 598	if (dstk)
 599		emit(ARM_LDR_I(rd, ARM_SP, STACK_VAR(dst)), ctx);
 600
 601	/* Do shift operation */
 602	switch (op) {
 603	case BPF_LSH:
 604		emit(ARM_LSL_I(rd, rd, val), ctx);
 605		break;
 606	case BPF_RSH:
 607		emit(ARM_LSR_I(rd, rd, val), ctx);
 608		break;
 609	case BPF_NEG:
 610		emit(ARM_RSB_I(rd, rd, val), ctx);
 611		break;
 612	}
 613
 614	if (dstk)
 615		emit(ARM_STR_I(rd, ARM_SP, STACK_VAR(dst)), ctx);
 616}
 617
 618/* dst = ~dst (64 bit) */
 619static inline void emit_a32_neg64(const u8 dst[], bool dstk,
 620				struct jit_ctx *ctx){
 621	const u8 *tmp = bpf2a32[TMP_REG_1];
 622	u8 rd = dstk ? tmp[1] : dst[1];
 623	u8 rm = dstk ? tmp[0] : dst[0];
 624
 625	/* Setup Operand */
 626	if (dstk) {
 627		emit(ARM_LDR_I(rd, ARM_SP, STACK_VAR(dst_lo)), ctx);
 628		emit(ARM_LDR_I(rm, ARM_SP, STACK_VAR(dst_hi)), ctx);
 629	}
 630
 631	/* Do Negate Operation */
 632	emit(ARM_RSBS_I(rd, rd, 0), ctx);
 633	emit(ARM_RSC_I(rm, rm, 0), ctx);
 634
 635	if (dstk) {
 636		emit(ARM_STR_I(rd, ARM_SP, STACK_VAR(dst_lo)), ctx);
 637		emit(ARM_STR_I(rm, ARM_SP, STACK_VAR(dst_hi)), ctx);
 638	}
 639}
 640
 641/* dst = dst << src */
 642static inline void emit_a32_lsh_r64(const u8 dst[], const u8 src[], bool dstk,
 643				    bool sstk, struct jit_ctx *ctx) {
 644	const u8 *tmp = bpf2a32[TMP_REG_1];
 645	const u8 *tmp2 = bpf2a32[TMP_REG_2];
 646
 647	/* Setup Operands */
 648	u8 rt = sstk ? tmp2[1] : src_lo;
 649	u8 rd = dstk ? tmp[1] : dst_lo;
 650	u8 rm = dstk ? tmp[0] : dst_hi;
 651
 652	if (sstk)
 653		emit(ARM_LDR_I(rt, ARM_SP, STACK_VAR(src_lo)), ctx);
 654	if (dstk) {
 655		emit(ARM_LDR_I(rd, ARM_SP, STACK_VAR(dst_lo)), ctx);
 656		emit(ARM_LDR_I(rm, ARM_SP, STACK_VAR(dst_hi)), ctx);
 657	}
 658
 659	/* Do LSH operation */
 660	emit(ARM_SUB_I(ARM_IP, rt, 32), ctx);
 661	emit(ARM_RSB_I(tmp2[0], rt, 32), ctx);
 662	emit(ARM_MOV_SR(ARM_LR, rm, SRTYPE_ASL, rt), ctx);
 663	emit(ARM_ORR_SR(ARM_LR, ARM_LR, rd, SRTYPE_ASL, ARM_IP), ctx);
 664	emit(ARM_ORR_SR(ARM_IP, ARM_LR, rd, SRTYPE_LSR, tmp2[0]), ctx);
 665	emit(ARM_MOV_SR(ARM_LR, rd, SRTYPE_ASL, rt), ctx);
 666
 667	if (dstk) {
 668		emit(ARM_STR_I(ARM_LR, ARM_SP, STACK_VAR(dst_lo)), ctx);
 669		emit(ARM_STR_I(ARM_IP, ARM_SP, STACK_VAR(dst_hi)), ctx);
 670	} else {
 671		emit(ARM_MOV_R(rd, ARM_LR), ctx);
 672		emit(ARM_MOV_R(rm, ARM_IP), ctx);
 673	}
 674}
 675
 676/* dst = dst >> src (signed)*/
 677static inline void emit_a32_arsh_r64(const u8 dst[], const u8 src[], bool dstk,
 678				    bool sstk, struct jit_ctx *ctx) {
 679	const u8 *tmp = bpf2a32[TMP_REG_1];
 680	const u8 *tmp2 = bpf2a32[TMP_REG_2];
 681	/* Setup Operands */
 682	u8 rt = sstk ? tmp2[1] : src_lo;
 683	u8 rd = dstk ? tmp[1] : dst_lo;
 684	u8 rm = dstk ? tmp[0] : dst_hi;
 685
 686	if (sstk)
 687		emit(ARM_LDR_I(rt, ARM_SP, STACK_VAR(src_lo)), ctx);
 688	if (dstk) {
 689		emit(ARM_LDR_I(rd, ARM_SP, STACK_VAR(dst_lo)), ctx);
 690		emit(ARM_LDR_I(rm, ARM_SP, STACK_VAR(dst_hi)), ctx);
 691	}
 692
 693	/* Do the ARSH operation */
 694	emit(ARM_RSB_I(ARM_IP, rt, 32), ctx);
 695	emit(ARM_SUBS_I(tmp2[0], rt, 32), ctx);
 696	emit(ARM_MOV_SR(ARM_LR, rd, SRTYPE_LSR, rt), ctx);
 697	emit(ARM_ORR_SR(ARM_LR, ARM_LR, rm, SRTYPE_ASL, ARM_IP), ctx);
 698	_emit(ARM_COND_MI, ARM_B(0), ctx);
 699	emit(ARM_ORR_SR(ARM_LR, ARM_LR, rm, SRTYPE_ASR, tmp2[0]), ctx);
 700	emit(ARM_MOV_SR(ARM_IP, rm, SRTYPE_ASR, rt), ctx);
 701	if (dstk) {
 702		emit(ARM_STR_I(ARM_LR, ARM_SP, STACK_VAR(dst_lo)), ctx);
 703		emit(ARM_STR_I(ARM_IP, ARM_SP, STACK_VAR(dst_hi)), ctx);
 704	} else {
 705		emit(ARM_MOV_R(rd, ARM_LR), ctx);
 706		emit(ARM_MOV_R(rm, ARM_IP), ctx);
 707	}
 708}
 709
 710/* dst = dst >> src */
 711static inline void emit_a32_lsr_r64(const u8 dst[], const u8 src[], bool dstk,
 712				     bool sstk, struct jit_ctx *ctx) {
 713	const u8 *tmp = bpf2a32[TMP_REG_1];
 714	const u8 *tmp2 = bpf2a32[TMP_REG_2];
 715	/* Setup Operands */
 716	u8 rt = sstk ? tmp2[1] : src_lo;
 717	u8 rd = dstk ? tmp[1] : dst_lo;
 718	u8 rm = dstk ? tmp[0] : dst_hi;
 719
 720	if (sstk)
 721		emit(ARM_LDR_I(rt, ARM_SP, STACK_VAR(src_lo)), ctx);
 722	if (dstk) {
 723		emit(ARM_LDR_I(rd, ARM_SP, STACK_VAR(dst_lo)), ctx);
 724		emit(ARM_LDR_I(rm, ARM_SP, STACK_VAR(dst_hi)), ctx);
 725	}
 726
 727	/* Do LSH operation */
 728	emit(ARM_RSB_I(ARM_IP, rt, 32), ctx);
 729	emit(ARM_SUBS_I(tmp2[0], rt, 32), ctx);
 730	emit(ARM_MOV_SR(ARM_LR, rd, SRTYPE_LSR, rt), ctx);
 731	emit(ARM_ORR_SR(ARM_LR, ARM_LR, rm, SRTYPE_ASL, ARM_IP), ctx);
 732	emit(ARM_ORR_SR(ARM_LR, ARM_LR, rm, SRTYPE_LSR, tmp2[0]), ctx);
 733	emit(ARM_MOV_SR(ARM_IP, rm, SRTYPE_LSR, rt), ctx);
 734	if (dstk) {
 735		emit(ARM_STR_I(ARM_LR, ARM_SP, STACK_VAR(dst_lo)), ctx);
 736		emit(ARM_STR_I(ARM_IP, ARM_SP, STACK_VAR(dst_hi)), ctx);
 737	} else {
 738		emit(ARM_MOV_R(rd, ARM_LR), ctx);
 739		emit(ARM_MOV_R(rm, ARM_IP), ctx);
 740	}
 741}
 742
 743/* dst = dst << val */
 744static inline void emit_a32_lsh_i64(const u8 dst[], bool dstk,
 745				     const u32 val, struct jit_ctx *ctx){
 746	const u8 *tmp = bpf2a32[TMP_REG_1];
 747	const u8 *tmp2 = bpf2a32[TMP_REG_2];
 748	/* Setup operands */
 749	u8 rd = dstk ? tmp[1] : dst_lo;
 750	u8 rm = dstk ? tmp[0] : dst_hi;
 751
 752	if (dstk) {
 753		emit(ARM_LDR_I(rd, ARM_SP, STACK_VAR(dst_lo)), ctx);
 754		emit(ARM_LDR_I(rm, ARM_SP, STACK_VAR(dst_hi)), ctx);
 755	}
 756
 757	/* Do LSH operation */
 758	if (val < 32) {
 759		emit(ARM_MOV_SI(tmp2[0], rm, SRTYPE_ASL, val), ctx);
 760		emit(ARM_ORR_SI(rm, tmp2[0], rd, SRTYPE_LSR, 32 - val), ctx);
 761		emit(ARM_MOV_SI(rd, rd, SRTYPE_ASL, val), ctx);
 762	} else {
 763		if (val == 32)
 764			emit(ARM_MOV_R(rm, rd), ctx);
 765		else
 766			emit(ARM_MOV_SI(rm, rd, SRTYPE_ASL, val - 32), ctx);
 767		emit(ARM_EOR_R(rd, rd, rd), ctx);
 768	}
 769
 770	if (dstk) {
 771		emit(ARM_STR_I(rd, ARM_SP, STACK_VAR(dst_lo)), ctx);
 772		emit(ARM_STR_I(rm, ARM_SP, STACK_VAR(dst_hi)), ctx);
 773	}
 774}
 775
 776/* dst = dst >> val */
 777static inline void emit_a32_lsr_i64(const u8 dst[], bool dstk,
 778				    const u32 val, struct jit_ctx *ctx) {
 779	const u8 *tmp = bpf2a32[TMP_REG_1];
 780	const u8 *tmp2 = bpf2a32[TMP_REG_2];
 781	/* Setup operands */
 782	u8 rd = dstk ? tmp[1] : dst_lo;
 783	u8 rm = dstk ? tmp[0] : dst_hi;
 784
 785	if (dstk) {
 786		emit(ARM_LDR_I(rd, ARM_SP, STACK_VAR(dst_lo)), ctx);
 787		emit(ARM_LDR_I(rm, ARM_SP, STACK_VAR(dst_hi)), ctx);
 788	}
 789
 790	/* Do LSR operation */
 791	if (val < 32) {
 792		emit(ARM_MOV_SI(tmp2[1], rd, SRTYPE_LSR, val), ctx);
 793		emit(ARM_ORR_SI(rd, tmp2[1], rm, SRTYPE_ASL, 32 - val), ctx);
 794		emit(ARM_MOV_SI(rm, rm, SRTYPE_LSR, val), ctx);
 795	} else if (val == 32) {
 796		emit(ARM_MOV_R(rd, rm), ctx);
 797		emit(ARM_MOV_I(rm, 0), ctx);
 798	} else {
 799		emit(ARM_MOV_SI(rd, rm, SRTYPE_LSR, val - 32), ctx);
 800		emit(ARM_MOV_I(rm, 0), ctx);
 801	}
 802
 803	if (dstk) {
 804		emit(ARM_STR_I(rd, ARM_SP, STACK_VAR(dst_lo)), ctx);
 805		emit(ARM_STR_I(rm, ARM_SP, STACK_VAR(dst_hi)), ctx);
 806	}
 807}
 808
 809/* dst = dst >> val (signed) */
 810static inline void emit_a32_arsh_i64(const u8 dst[], bool dstk,
 811				     const u32 val, struct jit_ctx *ctx){
 812	const u8 *tmp = bpf2a32[TMP_REG_1];
 813	const u8 *tmp2 = bpf2a32[TMP_REG_2];
 814	 /* Setup operands */
 815	u8 rd = dstk ? tmp[1] : dst_lo;
 816	u8 rm = dstk ? tmp[0] : dst_hi;
 817
 818	if (dstk) {
 819		emit(ARM_LDR_I(rd, ARM_SP, STACK_VAR(dst_lo)), ctx);
 820		emit(ARM_LDR_I(rm, ARM_SP, STACK_VAR(dst_hi)), ctx);
 821	}
 822
 823	/* Do ARSH operation */
 824	if (val < 32) {
 825		emit(ARM_MOV_SI(tmp2[1], rd, SRTYPE_LSR, val), ctx);
 826		emit(ARM_ORR_SI(rd, tmp2[1], rm, SRTYPE_ASL, 32 - val), ctx);
 827		emit(ARM_MOV_SI(rm, rm, SRTYPE_ASR, val), ctx);
 828	} else if (val == 32) {
 829		emit(ARM_MOV_R(rd, rm), ctx);
 830		emit(ARM_MOV_SI(rm, rm, SRTYPE_ASR, 31), ctx);
 831	} else {
 832		emit(ARM_MOV_SI(rd, rm, SRTYPE_ASR, val - 32), ctx);
 833		emit(ARM_MOV_SI(rm, rm, SRTYPE_ASR, 31), ctx);
 834	}
 835
 836	if (dstk) {
 837		emit(ARM_STR_I(rd, ARM_SP, STACK_VAR(dst_lo)), ctx);
 838		emit(ARM_STR_I(rm, ARM_SP, STACK_VAR(dst_hi)), ctx);
 839	}
 840}
 841
 842static inline void emit_a32_mul_r64(const u8 dst[], const u8 src[], bool dstk,
 843				    bool sstk, struct jit_ctx *ctx) {
 844	const u8 *tmp = bpf2a32[TMP_REG_1];
 845	const u8 *tmp2 = bpf2a32[TMP_REG_2];
 846	/* Setup operands for multiplication */
 847	u8 rd = dstk ? tmp[1] : dst_lo;
 848	u8 rm = dstk ? tmp[0] : dst_hi;
 849	u8 rt = sstk ? tmp2[1] : src_lo;
 850	u8 rn = sstk ? tmp2[0] : src_hi;
 851
 852	if (dstk) {
 853		emit(ARM_LDR_I(rd, ARM_SP, STACK_VAR(dst_lo)), ctx);
 854		emit(ARM_LDR_I(rm, ARM_SP, STACK_VAR(dst_hi)), ctx);
 855	}
 856	if (sstk) {
 857		emit(ARM_LDR_I(rt, ARM_SP, STACK_VAR(src_lo)), ctx);
 858		emit(ARM_LDR_I(rn, ARM_SP, STACK_VAR(src_hi)), ctx);
 859	}
 860
 861	/* Do Multiplication */
 862	emit(ARM_MUL(ARM_IP, rd, rn), ctx);
 863	emit(ARM_MUL(ARM_LR, rm, rt), ctx);
 864	emit(ARM_ADD_R(ARM_LR, ARM_IP, ARM_LR), ctx);
 865
 866	emit(ARM_UMULL(ARM_IP, rm, rd, rt), ctx);
 867	emit(ARM_ADD_R(rm, ARM_LR, rm), ctx);
 868	if (dstk) {
 869		emit(ARM_STR_I(ARM_IP, ARM_SP, STACK_VAR(dst_lo)), ctx);
 870		emit(ARM_STR_I(rm, ARM_SP, STACK_VAR(dst_hi)), ctx);
 871	} else {
 872		emit(ARM_MOV_R(rd, ARM_IP), ctx);
 873	}
 874}
 875
 876/* *(size *)(dst + off) = src */
 877static inline void emit_str_r(const u8 dst, const u8 src, bool dstk,
 878			      const s32 off, struct jit_ctx *ctx, const u8 sz){
 879	const u8 *tmp = bpf2a32[TMP_REG_1];
 880	u8 rd = dstk ? tmp[1] : dst;
 881
 882	if (dstk)
 883		emit(ARM_LDR_I(rd, ARM_SP, STACK_VAR(dst)), ctx);
 884	if (off) {
 885		emit_a32_mov_i(tmp[0], off, false, ctx);
 886		emit(ARM_ADD_R(tmp[0], rd, tmp[0]), ctx);
 887		rd = tmp[0];
 888	}
 889	switch (sz) {
 890	case BPF_W:
 891		/* Store a Word */
 892		emit(ARM_STR_I(src, rd, 0), ctx);
 893		break;
 894	case BPF_H:
 895		/* Store a HalfWord */
 896		emit(ARM_STRH_I(src, rd, 0), ctx);
 897		break;
 898	case BPF_B:
 899		/* Store a Byte */
 900		emit(ARM_STRB_I(src, rd, 0), ctx);
 901		break;
 902	}
 903}
 904
 905/* dst = *(size*)(src + off) */
 906static inline void emit_ldx_r(const u8 dst[], const u8 src, bool dstk,
 907			      s32 off, struct jit_ctx *ctx, const u8 sz){
 908	const u8 *tmp = bpf2a32[TMP_REG_1];
 909	const u8 *rd = dstk ? tmp : dst;
 910	u8 rm = src;
 911	s32 off_max;
 912
 913	if (sz == BPF_H)
 914		off_max = 0xff;
 915	else
 916		off_max = 0xfff;
 917
 918	if (off < 0 || off > off_max) {
 919		emit_a32_mov_i(tmp[0], off, false, ctx);
 920		emit(ARM_ADD_R(tmp[0], tmp[0], src), ctx);
 921		rm = tmp[0];
 922		off = 0;
 923	} else if (rd[1] == rm) {
 924		emit(ARM_MOV_R(tmp[0], rm), ctx);
 925		rm = tmp[0];
 926	}
 927	switch (sz) {
 928	case BPF_B:
 929		/* Load a Byte */
 930		emit(ARM_LDRB_I(rd[1], rm, off), ctx);
 931		emit_a32_mov_i(dst[0], 0, dstk, ctx);
 932		break;
 933	case BPF_H:
 934		/* Load a HalfWord */
 935		emit(ARM_LDRH_I(rd[1], rm, off), ctx);
 936		emit_a32_mov_i(dst[0], 0, dstk, ctx);
 937		break;
 938	case BPF_W:
 939		/* Load a Word */
 940		emit(ARM_LDR_I(rd[1], rm, off), ctx);
 941		emit_a32_mov_i(dst[0], 0, dstk, ctx);
 942		break;
 943	case BPF_DW:
 944		/* Load a Double Word */
 945		emit(ARM_LDR_I(rd[1], rm, off), ctx);
 946		emit(ARM_LDR_I(rd[0], rm, off + 4), ctx);
 947		break;
 948	}
 949	if (dstk)
 950		emit(ARM_STR_I(rd[1], ARM_SP, STACK_VAR(dst[1])), ctx);
 951	if (dstk && sz == BPF_DW)
 952		emit(ARM_STR_I(rd[0], ARM_SP, STACK_VAR(dst[0])), ctx);
 953}
 954
 955/* Arithmatic Operation */
 956static inline void emit_ar_r(const u8 rd, const u8 rt, const u8 rm,
 957			     const u8 rn, struct jit_ctx *ctx, u8 op) {
 958	switch (op) {
 959	case BPF_JSET:
 960		emit(ARM_AND_R(ARM_IP, rt, rn), ctx);
 961		emit(ARM_AND_R(ARM_LR, rd, rm), ctx);
 962		emit(ARM_ORRS_R(ARM_IP, ARM_LR, ARM_IP), ctx);
 963		break;
 964	case BPF_JEQ:
 965	case BPF_JNE:
 966	case BPF_JGT:
 967	case BPF_JGE:
 968	case BPF_JLE:
 969	case BPF_JLT:
 970		emit(ARM_CMP_R(rd, rm), ctx);
 971		_emit(ARM_COND_EQ, ARM_CMP_R(rt, rn), ctx);
 972		break;
 973	case BPF_JSLE:
 974	case BPF_JSGT:
 975		emit(ARM_CMP_R(rn, rt), ctx);
 976		emit(ARM_SBCS_R(ARM_IP, rm, rd), ctx);
 977		break;
 978	case BPF_JSLT:
 979	case BPF_JSGE:
 980		emit(ARM_CMP_R(rt, rn), ctx);
 981		emit(ARM_SBCS_R(ARM_IP, rd, rm), ctx);
 982		break;
 983	}
 984}
 985
 986static int out_offset = -1; /* initialized on the first pass of build_body() */
 987static int emit_bpf_tail_call(struct jit_ctx *ctx)
 988{
 989
 990	/* bpf_tail_call(void *prog_ctx, struct bpf_array *array, u64 index) */
 991	const u8 *r2 = bpf2a32[BPF_REG_2];
 992	const u8 *r3 = bpf2a32[BPF_REG_3];
 993	const u8 *tmp = bpf2a32[TMP_REG_1];
 994	const u8 *tmp2 = bpf2a32[TMP_REG_2];
 995	const u8 *tcc = bpf2a32[TCALL_CNT];
 996	const int idx0 = ctx->idx;
 997#define cur_offset (ctx->idx - idx0)
 998#define jmp_offset (out_offset - (cur_offset) - 2)
 999	u32 off, lo, hi;
1000
1001	/* if (index >= array->map.max_entries)
1002	 *	goto out;
1003	 */
1004	off = offsetof(struct bpf_array, map.max_entries);
1005	/* array->map.max_entries */
1006	emit_a32_mov_i(tmp[1], off, false, ctx);
1007	emit(ARM_LDR_I(tmp2[1], ARM_SP, STACK_VAR(r2[1])), ctx);
1008	emit(ARM_LDR_R(tmp[1], tmp2[1], tmp[1]), ctx);
1009	/* index is 32-bit for arrays */
1010	emit(ARM_LDR_I(tmp2[1], ARM_SP, STACK_VAR(r3[1])), ctx);
1011	/* index >= array->map.max_entries */
1012	emit(ARM_CMP_R(tmp2[1], tmp[1]), ctx);
1013	_emit(ARM_COND_CS, ARM_B(jmp_offset), ctx);
1014
1015	/* if (tail_call_cnt > MAX_TAIL_CALL_CNT)
1016	 *	goto out;
1017	 * tail_call_cnt++;
1018	 */
1019	lo = (u32)MAX_TAIL_CALL_CNT;
1020	hi = (u32)((u64)MAX_TAIL_CALL_CNT >> 32);
1021	emit(ARM_LDR_I(tmp[1], ARM_SP, STACK_VAR(tcc[1])), ctx);
1022	emit(ARM_LDR_I(tmp[0], ARM_SP, STACK_VAR(tcc[0])), ctx);
1023	emit(ARM_CMP_I(tmp[0], hi), ctx);
1024	_emit(ARM_COND_EQ, ARM_CMP_I(tmp[1], lo), ctx);
1025	_emit(ARM_COND_HI, ARM_B(jmp_offset), ctx);
1026	emit(ARM_ADDS_I(tmp[1], tmp[1], 1), ctx);
1027	emit(ARM_ADC_I(tmp[0], tmp[0], 0), ctx);
1028	emit(ARM_STR_I(tmp[1], ARM_SP, STACK_VAR(tcc[1])), ctx);
1029	emit(ARM_STR_I(tmp[0], ARM_SP, STACK_VAR(tcc[0])), ctx);
1030
1031	/* prog = array->ptrs[index]
1032	 * if (prog == NULL)
1033	 *	goto out;
1034	 */
1035	off = offsetof(struct bpf_array, ptrs);
1036	emit_a32_mov_i(tmp[1], off, false, ctx);
1037	emit(ARM_LDR_I(tmp2[1], ARM_SP, STACK_VAR(r2[1])), ctx);
1038	emit(ARM_ADD_R(tmp[1], tmp2[1], tmp[1]), ctx);
1039	emit(ARM_LDR_I(tmp2[1], ARM_SP, STACK_VAR(r3[1])), ctx);
1040	emit(ARM_MOV_SI(tmp[0], tmp2[1], SRTYPE_ASL, 2), ctx);
1041	emit(ARM_LDR_R(tmp[1], tmp[1], tmp[0]), ctx);
1042	emit(ARM_CMP_I(tmp[1], 0), ctx);
1043	_emit(ARM_COND_EQ, ARM_B(jmp_offset), ctx);
1044
1045	/* goto *(prog->bpf_func + prologue_size); */
1046	off = offsetof(struct bpf_prog, bpf_func);
1047	emit_a32_mov_i(tmp2[1], off, false, ctx);
1048	emit(ARM_LDR_R(tmp[1], tmp[1], tmp2[1]), ctx);
1049	emit(ARM_ADD_I(tmp[1], tmp[1], ctx->prologue_bytes), ctx);
1050	emit_bx_r(tmp[1], ctx);
1051
1052	/* out: */
1053	if (out_offset == -1)
1054		out_offset = cur_offset;
1055	if (cur_offset != out_offset) {
1056		pr_err_once("tail_call out_offset = %d, expected %d!\n",
1057			    cur_offset, out_offset);
1058		return -1;
1059	}
1060	return 0;
1061#undef cur_offset
1062#undef jmp_offset
1063}
1064
1065/* 0xabcd => 0xcdab */
1066static inline void emit_rev16(const u8 rd, const u8 rn, struct jit_ctx *ctx)
1067{
1068#if __LINUX_ARM_ARCH__ < 6
1069	const u8 *tmp2 = bpf2a32[TMP_REG_2];
1070
1071	emit(ARM_AND_I(tmp2[1], rn, 0xff), ctx);
1072	emit(ARM_MOV_SI(tmp2[0], rn, SRTYPE_LSR, 8), ctx);
1073	emit(ARM_AND_I(tmp2[0], tmp2[0], 0xff), ctx);
1074	emit(ARM_ORR_SI(rd, tmp2[0], tmp2[1], SRTYPE_LSL, 8), ctx);
1075#else /* ARMv6+ */
1076	emit(ARM_REV16(rd, rn), ctx);
1077#endif
1078}
1079
1080/* 0xabcdefgh => 0xghefcdab */
1081static inline void emit_rev32(const u8 rd, const u8 rn, struct jit_ctx *ctx)
1082{
1083#if __LINUX_ARM_ARCH__ < 6
1084	const u8 *tmp2 = bpf2a32[TMP_REG_2];
1085
1086	emit(ARM_AND_I(tmp2[1], rn, 0xff), ctx);
1087	emit(ARM_MOV_SI(tmp2[0], rn, SRTYPE_LSR, 24), ctx);
1088	emit(ARM_ORR_SI(ARM_IP, tmp2[0], tmp2[1], SRTYPE_LSL, 24), ctx);
1089
1090	emit(ARM_MOV_SI(tmp2[1], rn, SRTYPE_LSR, 8), ctx);
1091	emit(ARM_AND_I(tmp2[1], tmp2[1], 0xff), ctx);
1092	emit(ARM_MOV_SI(tmp2[0], rn, SRTYPE_LSR, 16), ctx);
1093	emit(ARM_AND_I(tmp2[0], tmp2[0], 0xff), ctx);
1094	emit(ARM_MOV_SI(tmp2[0], tmp2[0], SRTYPE_LSL, 8), ctx);
1095	emit(ARM_ORR_SI(tmp2[0], tmp2[0], tmp2[1], SRTYPE_LSL, 16), ctx);
1096	emit(ARM_ORR_R(rd, ARM_IP, tmp2[0]), ctx);
1097
1098#else /* ARMv6+ */
1099	emit(ARM_REV(rd, rn), ctx);
1100#endif
1101}
1102
1103// push the scratch stack register on top of the stack
1104static inline void emit_push_r64(const u8 src[], const u8 shift,
1105		struct jit_ctx *ctx)
1106{
1107	const u8 *tmp2 = bpf2a32[TMP_REG_2];
1108	u16 reg_set = 0;
1109
1110	emit(ARM_LDR_I(tmp2[1], ARM_SP, STACK_VAR(src[1]+shift)), ctx);
1111	emit(ARM_LDR_I(tmp2[0], ARM_SP, STACK_VAR(src[0]+shift)), ctx);
1112
1113	reg_set = (1 << tmp2[1]) | (1 << tmp2[0]);
1114	emit(ARM_PUSH(reg_set), ctx);
1115}
1116
1117static void build_prologue(struct jit_ctx *ctx)
1118{
1119	const u8 r0 = bpf2a32[BPF_REG_0][1];
1120	const u8 r2 = bpf2a32[BPF_REG_1][1];
1121	const u8 r3 = bpf2a32[BPF_REG_1][0];
1122	const u8 r4 = bpf2a32[BPF_REG_6][1];
1123	const u8 fplo = bpf2a32[BPF_REG_FP][1];
1124	const u8 fphi = bpf2a32[BPF_REG_FP][0];
1125	const u8 *tcc = bpf2a32[TCALL_CNT];
1126
1127	/* Save callee saved registers. */
1128#ifdef CONFIG_FRAME_POINTER
1129	u16 reg_set = CALLEE_PUSH_MASK | 1 << ARM_IP | 1 << ARM_PC;
1130	emit(ARM_MOV_R(ARM_IP, ARM_SP), ctx);
1131	emit(ARM_PUSH(reg_set), ctx);
1132	emit(ARM_SUB_I(ARM_FP, ARM_IP, 4), ctx);
1133#else
1134	emit(ARM_PUSH(CALLEE_PUSH_MASK), ctx);
1135	emit(ARM_MOV_R(ARM_FP, ARM_SP), ctx);
1136#endif
1137	/* Save frame pointer for later */
1138	emit(ARM_SUB_I(ARM_IP, ARM_SP, SCRATCH_SIZE), ctx);
1139
1140	ctx->stack_size = imm8m(STACK_SIZE);
1141
1142	/* Set up function call stack */
1143	emit(ARM_SUB_I(ARM_SP, ARM_SP, ctx->stack_size), ctx);
1144
1145	/* Set up BPF prog stack base register */
1146	emit_a32_mov_r(fplo, ARM_IP, true, false, ctx);
1147	emit_a32_mov_i(fphi, 0, true, ctx);
1148
1149	/* mov r4, 0 */
1150	emit(ARM_MOV_I(r4, 0), ctx);
1151
1152	/* Move BPF_CTX to BPF_R1 */
1153	emit(ARM_MOV_R(r3, r4), ctx);
1154	emit(ARM_MOV_R(r2, r0), ctx);
1155	/* Initialize Tail Count */
1156	emit(ARM_STR_I(r4, ARM_SP, STACK_VAR(tcc[0])), ctx);
1157	emit(ARM_STR_I(r4, ARM_SP, STACK_VAR(tcc[1])), ctx);
1158	/* end of prologue */
1159}
1160
1161/* restore callee saved registers. */
1162static void build_epilogue(struct jit_ctx *ctx)
1163{
1164#ifdef CONFIG_FRAME_POINTER
1165	/* When using frame pointers, some additional registers need to
1166	 * be loaded. */
1167	u16 reg_set = CALLEE_POP_MASK | 1 << ARM_SP;
1168	emit(ARM_SUB_I(ARM_SP, ARM_FP, hweight16(reg_set) * 4), ctx);
1169	emit(ARM_LDM(ARM_SP, reg_set), ctx);
1170#else
1171	/* Restore callee saved registers. */
1172	emit(ARM_MOV_R(ARM_SP, ARM_FP), ctx);
1173	emit(ARM_POP(CALLEE_POP_MASK), ctx);
1174#endif
1175}
1176
1177/*
1178 * Convert an eBPF instruction to native instruction, i.e
1179 * JITs an eBPF instruction.
1180 * Returns :
1181 *	0  - Successfully JITed an 8-byte eBPF instruction
1182 *	>0 - Successfully JITed a 16-byte eBPF instruction
1183 *	<0 - Failed to JIT.
1184 */
1185static int build_insn(const struct bpf_insn *insn, struct jit_ctx *ctx)
1186{
1187	const u8 code = insn->code;
1188	const u8 *dst = bpf2a32[insn->dst_reg];
1189	const u8 *src = bpf2a32[insn->src_reg];
1190	const u8 *tmp = bpf2a32[TMP_REG_1];
1191	const u8 *tmp2 = bpf2a32[TMP_REG_2];
1192	const s16 off = insn->off;
1193	const s32 imm = insn->imm;
1194	const int i = insn - ctx->prog->insnsi;
1195	const bool is64 = BPF_CLASS(code) == BPF_ALU64;
1196	const bool dstk = is_on_stack(insn->dst_reg);
1197	const bool sstk = is_on_stack(insn->src_reg);
1198	u8 rd, rt, rm, rn;
1199	s32 jmp_offset;
1200
1201#define check_imm(bits, imm) do {				\
1202	if ((((imm) > 0) && ((imm) >> (bits))) ||		\
1203	    (((imm) < 0) && (~(imm) >> (bits)))) {		\
1204		pr_info("[%2d] imm=%d(0x%x) out of range\n",	\
1205			i, imm, imm);				\
1206		return -EINVAL;					\
1207	}							\
1208} while (0)
1209#define check_imm24(imm) check_imm(24, imm)
1210
1211	switch (code) {
1212	/* ALU operations */
1213
1214	/* dst = src */
1215	case BPF_ALU | BPF_MOV | BPF_K:
1216	case BPF_ALU | BPF_MOV | BPF_X:
1217	case BPF_ALU64 | BPF_MOV | BPF_K:
1218	case BPF_ALU64 | BPF_MOV | BPF_X:
1219		switch (BPF_SRC(code)) {
1220		case BPF_X:
1221			emit_a32_mov_r64(is64, dst, src, dstk, sstk, ctx);
1222			break;
1223		case BPF_K:
1224			/* Sign-extend immediate value to destination reg */
1225			emit_a32_mov_i64(is64, dst, imm, dstk, ctx);
1226			break;
1227		}
1228		break;
1229	/* dst = dst + src/imm */
1230	/* dst = dst - src/imm */
1231	/* dst = dst | src/imm */
1232	/* dst = dst & src/imm */
1233	/* dst = dst ^ src/imm */
1234	/* dst = dst * src/imm */
1235	/* dst = dst << src */
1236	/* dst = dst >> src */
1237	case BPF_ALU | BPF_ADD | BPF_K:
1238	case BPF_ALU | BPF_ADD | BPF_X:
1239	case BPF_ALU | BPF_SUB | BPF_K:
1240	case BPF_ALU | BPF_SUB | BPF_X:
1241	case BPF_ALU | BPF_OR | BPF_K:
1242	case BPF_ALU | BPF_OR | BPF_X:
1243	case BPF_ALU | BPF_AND | BPF_K:
1244	case BPF_ALU | BPF_AND | BPF_X:
1245	case BPF_ALU | BPF_XOR | BPF_K:
1246	case BPF_ALU | BPF_XOR | BPF_X:
1247	case BPF_ALU | BPF_MUL | BPF_K:
1248	case BPF_ALU | BPF_MUL | BPF_X:
1249	case BPF_ALU | BPF_LSH | BPF_X:
1250	case BPF_ALU | BPF_RSH | BPF_X:
1251	case BPF_ALU | BPF_ARSH | BPF_K:
1252	case BPF_ALU | BPF_ARSH | BPF_X:
1253	case BPF_ALU64 | BPF_ADD | BPF_K:
1254	case BPF_ALU64 | BPF_ADD | BPF_X:
1255	case BPF_ALU64 | BPF_SUB | BPF_K:
1256	case BPF_ALU64 | BPF_SUB | BPF_X:
1257	case BPF_ALU64 | BPF_OR | BPF_K:
1258	case BPF_ALU64 | BPF_OR | BPF_X:
1259	case BPF_ALU64 | BPF_AND | BPF_K:
1260	case BPF_ALU64 | BPF_AND | BPF_X:
1261	case BPF_ALU64 | BPF_XOR | BPF_K:
1262	case BPF_ALU64 | BPF_XOR | BPF_X:
1263		switch (BPF_SRC(code)) {
1264		case BPF_X:
1265			emit_a32_alu_r64(is64, dst, src, dstk, sstk,
1266					 ctx, BPF_OP(code));
1267			break;
1268		case BPF_K:
1269			/* Move immediate value to the temporary register
1270			 * and then do the ALU operation on the temporary
1271			 * register as this will sign-extend the immediate
1272			 * value into temporary reg and then it would be
1273			 * safe to do the operation on it.
1274			 */
1275			emit_a32_mov_i64(is64, tmp2, imm, false, ctx);
1276			emit_a32_alu_r64(is64, dst, tmp2, dstk, false,
1277					 ctx, BPF_OP(code));
1278			break;
1279		}
1280		break;
1281	/* dst = dst / src(imm) */
1282	/* dst = dst % src(imm) */
1283	case BPF_ALU | BPF_DIV | BPF_K:
1284	case BPF_ALU | BPF_DIV | BPF_X:
1285	case BPF_ALU | BPF_MOD | BPF_K:
1286	case BPF_ALU | BPF_MOD | BPF_X:
1287		rt = src_lo;
1288		rd = dstk ? tmp2[1] : dst_lo;
1289		if (dstk)
1290			emit(ARM_LDR_I(rd, ARM_SP, STACK_VAR(dst_lo)), ctx);
1291		switch (BPF_SRC(code)) {
1292		case BPF_X:
1293			rt = sstk ? tmp2[0] : rt;
1294			if (sstk)
1295				emit(ARM_LDR_I(rt, ARM_SP, STACK_VAR(src_lo)),
1296				     ctx);
1297			break;
1298		case BPF_K:
1299			rt = tmp2[0];
1300			emit_a32_mov_i(rt, imm, false, ctx);
1301			break;
1302		}
1303		emit_udivmod(rd, rd, rt, ctx, BPF_OP(code));
1304		if (dstk)
1305			emit(ARM_STR_I(rd, ARM_SP, STACK_VAR(dst_lo)), ctx);
1306		emit_a32_mov_i(dst_hi, 0, dstk, ctx);
1307		break;
1308	case BPF_ALU64 | BPF_DIV | BPF_K:
1309	case BPF_ALU64 | BPF_DIV | BPF_X:
1310	case BPF_ALU64 | BPF_MOD | BPF_K:
1311	case BPF_ALU64 | BPF_MOD | BPF_X:
1312		goto notyet;
1313	/* dst = dst >> imm */
1314	/* dst = dst << imm */
1315	case BPF_ALU | BPF_RSH | BPF_K:
1316	case BPF_ALU | BPF_LSH | BPF_K:
1317		if (unlikely(imm > 31))
1318			return -EINVAL;
1319		if (imm)
1320			emit_a32_alu_i(dst_lo, imm, dstk, ctx, BPF_OP(code));
1321		emit_a32_mov_i(dst_hi, 0, dstk, ctx);
1322		break;
1323	/* dst = dst << imm */
1324	case BPF_ALU64 | BPF_LSH | BPF_K:
1325		if (unlikely(imm > 63))
1326			return -EINVAL;
1327		emit_a32_lsh_i64(dst, dstk, imm, ctx);
1328		break;
1329	/* dst = dst >> imm */
1330	case BPF_ALU64 | BPF_RSH | BPF_K:
1331		if (unlikely(imm > 63))
1332			return -EINVAL;
1333		emit_a32_lsr_i64(dst, dstk, imm, ctx);
1334		break;
1335	/* dst = dst << src */
1336	case BPF_ALU64 | BPF_LSH | BPF_X:
1337		emit_a32_lsh_r64(dst, src, dstk, sstk, ctx);
1338		break;
1339	/* dst = dst >> src */
1340	case BPF_ALU64 | BPF_RSH | BPF_X:
1341		emit_a32_lsr_r64(dst, src, dstk, sstk, ctx);
1342		break;
1343	/* dst = dst >> src (signed) */
1344	case BPF_ALU64 | BPF_ARSH | BPF_X:
1345		emit_a32_arsh_r64(dst, src, dstk, sstk, ctx);
1346		break;
1347	/* dst = dst >> imm (signed) */
1348	case BPF_ALU64 | BPF_ARSH | BPF_K:
1349		if (unlikely(imm > 63))
1350			return -EINVAL;
1351		emit_a32_arsh_i64(dst, dstk, imm, ctx);
1352		break;
1353	/* dst = ~dst */
1354	case BPF_ALU | BPF_NEG:
1355		emit_a32_alu_i(dst_lo, 0, dstk, ctx, BPF_OP(code));
1356		emit_a32_mov_i(dst_hi, 0, dstk, ctx);
1357		break;
1358	/* dst = ~dst (64 bit) */
1359	case BPF_ALU64 | BPF_NEG:
1360		emit_a32_neg64(dst, dstk, ctx);
1361		break;
1362	/* dst = dst * src/imm */
1363	case BPF_ALU64 | BPF_MUL | BPF_X:
1364	case BPF_ALU64 | BPF_MUL | BPF_K:
1365		switch (BPF_SRC(code)) {
1366		case BPF_X:
1367			emit_a32_mul_r64(dst, src, dstk, sstk, ctx);
1368			break;
1369		case BPF_K:
1370			/* Move immediate value to the temporary register
1371			 * and then do the multiplication on it as this
1372			 * will sign-extend the immediate value into temp
1373			 * reg then it would be safe to do the operation
1374			 * on it.
1375			 */
1376			emit_a32_mov_i64(is64, tmp2, imm, false, ctx);
1377			emit_a32_mul_r64(dst, tmp2, dstk, false, ctx);
1378			break;
1379		}
1380		break;
1381	/* dst = htole(dst) */
1382	/* dst = htobe(dst) */
1383	case BPF_ALU | BPF_END | BPF_FROM_LE:
1384	case BPF_ALU | BPF_END | BPF_FROM_BE:
1385		rd = dstk ? tmp[0] : dst_hi;
1386		rt = dstk ? tmp[1] : dst_lo;
1387		if (dstk) {
1388			emit(ARM_LDR_I(rt, ARM_SP, STACK_VAR(dst_lo)), ctx);
1389			emit(ARM_LDR_I(rd, ARM_SP, STACK_VAR(dst_hi)), ctx);
1390		}
1391		if (BPF_SRC(code) == BPF_FROM_LE)
1392			goto emit_bswap_uxt;
1393		switch (imm) {
1394		case 16:
1395			emit_rev16(rt, rt, ctx);
1396			goto emit_bswap_uxt;
1397		case 32:
1398			emit_rev32(rt, rt, ctx);
1399			goto emit_bswap_uxt;
1400		case 64:
1401			emit_rev32(ARM_LR, rt, ctx);
1402			emit_rev32(rt, rd, ctx);
1403			emit(ARM_MOV_R(rd, ARM_LR), ctx);
1404			break;
1405		}
1406		goto exit;
1407emit_bswap_uxt:
1408		switch (imm) {
1409		case 16:
1410			/* zero-extend 16 bits into 64 bits */
1411#if __LINUX_ARM_ARCH__ < 6
1412			emit_a32_mov_i(tmp2[1], 0xffff, false, ctx);
1413			emit(ARM_AND_R(rt, rt, tmp2[1]), ctx);
1414#else /* ARMv6+ */
1415			emit(ARM_UXTH(rt, rt), ctx);
1416#endif
1417			emit(ARM_EOR_R(rd, rd, rd), ctx);
1418			break;
1419		case 32:
1420			/* zero-extend 32 bits into 64 bits */
1421			emit(ARM_EOR_R(rd, rd, rd), ctx);
1422			break;
1423		case 64:
1424			/* nop */
1425			break;
1426		}
1427exit:
1428		if (dstk) {
1429			emit(ARM_STR_I(rt, ARM_SP, STACK_VAR(dst_lo)), ctx);
1430			emit(ARM_STR_I(rd, ARM_SP, STACK_VAR(dst_hi)), ctx);
1431		}
1432		break;
1433	/* dst = imm64 */
1434	case BPF_LD | BPF_IMM | BPF_DW:
1435	{
1436		const struct bpf_insn insn1 = insn[1];
1437		u32 hi, lo = imm;
1438
1439		hi = insn1.imm;
1440		emit_a32_mov_i(dst_lo, lo, dstk, ctx);
1441		emit_a32_mov_i(dst_hi, hi, dstk, ctx);
1442
1443		return 1;
1444	}
1445	/* LDX: dst = *(size *)(src + off) */
1446	case BPF_LDX | BPF_MEM | BPF_W:
1447	case BPF_LDX | BPF_MEM | BPF_H:
1448	case BPF_LDX | BPF_MEM | BPF_B:
1449	case BPF_LDX | BPF_MEM | BPF_DW:
1450		rn = sstk ? tmp2[1] : src_lo;
1451		if (sstk)
1452			emit(ARM_LDR_I(rn, ARM_SP, STACK_VAR(src_lo)), ctx);
1453		emit_ldx_r(dst, rn, dstk, off, ctx, BPF_SIZE(code));
1454		break;
1455	/* R0 = ntohx(*(size *)(((struct sk_buff *)R6)->data + imm)) */
1456	case BPF_LD | BPF_ABS | BPF_W:
1457	case BPF_LD | BPF_ABS | BPF_H:
1458	case BPF_LD | BPF_ABS | BPF_B:
1459	/* R0 = ntohx(*(size *)(((struct sk_buff *)R6)->data + src + imm)) */
1460	case BPF_LD | BPF_IND | BPF_W:
1461	case BPF_LD | BPF_IND | BPF_H:
1462	case BPF_LD | BPF_IND | BPF_B:
1463	{
1464		const u8 r4 = bpf2a32[BPF_REG_6][1]; /* r4 = ptr to sk_buff */
1465		const u8 r0 = bpf2a32[BPF_REG_0][1]; /*r0: struct sk_buff *skb*/
1466						     /* rtn value */
1467		const u8 r1 = bpf2a32[BPF_REG_0][0]; /* r1: int k */
1468		const u8 r2 = bpf2a32[BPF_REG_1][1]; /* r2: unsigned int size */
1469		const u8 r3 = bpf2a32[BPF_REG_1][0]; /* r3: void *buffer */
1470		const u8 r6 = bpf2a32[TMP_REG_1][1]; /* r6: void *(*func)(..) */
1471		int size;
1472
1473		/* Setting up first argument */
1474		emit(ARM_MOV_R(r0, r4), ctx);
1475
1476		/* Setting up second argument */
1477		emit_a32_mov_i(r1, imm, false, ctx);
1478		if (BPF_MODE(code) == BPF_IND)
1479			emit_a32_alu_r(r1, src_lo, false, sstk, ctx,
1480				       false, false, BPF_ADD);
1481
1482		/* Setting up third argument */
1483		switch (BPF_SIZE(code)) {
1484		case BPF_W:
1485			size = 4;
1486			break;
1487		case BPF_H:
1488			size = 2;
1489			break;
1490		case BPF_B:
1491			size = 1;
1492			break;
1493		default:
1494			return -EINVAL;
1495		}
1496		emit_a32_mov_i(r2, size, false, ctx);
1497
1498		/* Setting up fourth argument */
1499		emit(ARM_ADD_I(r3, ARM_SP, imm8m(SKB_BUFFER)), ctx);
1500
1501		/* Setting up function pointer to call */
1502		emit_a32_mov_i(r6, (unsigned int)bpf_load_pointer, false, ctx);
1503		emit_blx_r(r6, ctx);
1504
1505		emit(ARM_EOR_R(r1, r1, r1), ctx);
1506		/* Check if return address is NULL or not.
1507		 * if NULL then jump to epilogue
1508		 * else continue to load the value from retn address
1509		 */
1510		emit(ARM_CMP_I(r0, 0), ctx);
1511		jmp_offset = epilogue_offset(ctx);
1512		check_imm24(jmp_offset);
1513		_emit(ARM_COND_EQ, ARM_B(jmp_offset), ctx);
1514
1515		/* Load value from the address */
1516		switch (BPF_SIZE(code)) {
1517		case BPF_W:
1518			emit(ARM_LDR_I(r0, r0, 0), ctx);
1519			emit_rev32(r0, r0, ctx);
1520			break;
1521		case BPF_H:
1522			emit(ARM_LDRH_I(r0, r0, 0), ctx);
1523			emit_rev16(r0, r0, ctx);
1524			break;
1525		case BPF_B:
1526			emit(ARM_LDRB_I(r0, r0, 0), ctx);
1527			/* No need to reverse */
1528			break;
1529		}
1530		break;
1531	}
1532	/* ST: *(size *)(dst + off) = imm */
1533	case BPF_ST | BPF_MEM | BPF_W:
1534	case BPF_ST | BPF_MEM | BPF_H:
1535	case BPF_ST | BPF_MEM | BPF_B:
1536	case BPF_ST | BPF_MEM | BPF_DW:
1537		switch (BPF_SIZE(code)) {
1538		case BPF_DW:
1539			/* Sign-extend immediate value into temp reg */
1540			emit_a32_mov_i64(true, tmp2, imm, false, ctx);
1541			emit_str_r(dst_lo, tmp2[1], dstk, off, ctx, BPF_W);
1542			emit_str_r(dst_lo, tmp2[0], dstk, off+4, ctx, BPF_W);
1543			break;
1544		case BPF_W:
1545		case BPF_H:
1546		case BPF_B:
1547			emit_a32_mov_i(tmp2[1], imm, false, ctx);
1548			emit_str_r(dst_lo, tmp2[1], dstk, off, ctx,
1549				   BPF_SIZE(code));
1550			break;
1551		}
1552		break;
1553	/* STX XADD: lock *(u32 *)(dst + off) += src */
1554	case BPF_STX | BPF_XADD | BPF_W:
1555	/* STX XADD: lock *(u64 *)(dst + off) += src */
1556	case BPF_STX | BPF_XADD | BPF_DW:
1557		goto notyet;
1558	/* STX: *(size *)(dst + off) = src */
1559	case BPF_STX | BPF_MEM | BPF_W:
1560	case BPF_STX | BPF_MEM | BPF_H:
1561	case BPF_STX | BPF_MEM | BPF_B:
1562	case BPF_STX | BPF_MEM | BPF_DW:
1563	{
1564		u8 sz = BPF_SIZE(code);
1565
1566		rn = sstk ? tmp2[1] : src_lo;
1567		rm = sstk ? tmp2[0] : src_hi;
1568		if (sstk) {
1569			emit(ARM_LDR_I(rn, ARM_SP, STACK_VAR(src_lo)), ctx);
1570			emit(ARM_LDR_I(rm, ARM_SP, STACK_VAR(src_hi)), ctx);
1571		}
1572
1573		/* Store the value */
1574		if (BPF_SIZE(code) == BPF_DW) {
1575			emit_str_r(dst_lo, rn, dstk, off, ctx, BPF_W);
1576			emit_str_r(dst_lo, rm, dstk, off+4, ctx, BPF_W);
1577		} else {
1578			emit_str_r(dst_lo, rn, dstk, off, ctx, sz);
1579		}
1580		break;
1581	}
1582	/* PC += off if dst == src */
1583	/* PC += off if dst > src */
1584	/* PC += off if dst >= src */
1585	/* PC += off if dst < src */
1586	/* PC += off if dst <= src */
1587	/* PC += off if dst != src */
1588	/* PC += off if dst > src (signed) */
1589	/* PC += off if dst >= src (signed) */
1590	/* PC += off if dst < src (signed) */
1591	/* PC += off if dst <= src (signed) */
1592	/* PC += off if dst & src */
1593	case BPF_JMP | BPF_JEQ | BPF_X:
1594	case BPF_JMP | BPF_JGT | BPF_X:
1595	case BPF_JMP | BPF_JGE | BPF_X:
1596	case BPF_JMP | BPF_JNE | BPF_X:
1597	case BPF_JMP | BPF_JSGT | BPF_X:
1598	case BPF_JMP | BPF_JSGE | BPF_X:
1599	case BPF_JMP | BPF_JSET | BPF_X:
1600	case BPF_JMP | BPF_JLE | BPF_X:
1601	case BPF_JMP | BPF_JLT | BPF_X:
1602	case BPF_JMP | BPF_JSLT | BPF_X:
1603	case BPF_JMP | BPF_JSLE | BPF_X:
1604		/* Setup source registers */
1605		rm = sstk ? tmp2[0] : src_hi;
1606		rn = sstk ? tmp2[1] : src_lo;
1607		if (sstk) {
1608			emit(ARM_LDR_I(rn, ARM_SP, STACK_VAR(src_lo)), ctx);
1609			emit(ARM_LDR_I(rm, ARM_SP, STACK_VAR(src_hi)), ctx);
1610		}
1611		goto go_jmp;
1612	/* PC += off if dst == imm */
1613	/* PC += off if dst > imm */
1614	/* PC += off if dst >= imm */
1615	/* PC += off if dst < imm */
1616	/* PC += off if dst <= imm */
1617	/* PC += off if dst != imm */
1618	/* PC += off if dst > imm (signed) */
1619	/* PC += off if dst >= imm (signed) */
1620	/* PC += off if dst < imm (signed) */
1621	/* PC += off if dst <= imm (signed) */
1622	/* PC += off if dst & imm */
1623	case BPF_JMP | BPF_JEQ | BPF_K:
1624	case BPF_JMP | BPF_JGT | BPF_K:
1625	case BPF_JMP | BPF_JGE | BPF_K:
1626	case BPF_JMP | BPF_JNE | BPF_K:
1627	case BPF_JMP | BPF_JSGT | BPF_K:
1628	case BPF_JMP | BPF_JSGE | BPF_K:
1629	case BPF_JMP | BPF_JSET | BPF_K:
1630	case BPF_JMP | BPF_JLT | BPF_K:
1631	case BPF_JMP | BPF_JLE | BPF_K:
1632	case BPF_JMP | BPF_JSLT | BPF_K:
1633	case BPF_JMP | BPF_JSLE | BPF_K:
1634		if (off == 0)
1635			break;
1636		rm = tmp2[0];
1637		rn = tmp2[1];
1638		/* Sign-extend immediate value */
1639		emit_a32_mov_i64(true, tmp2, imm, false, ctx);
1640go_jmp:
1641		/* Setup destination register */
1642		rd = dstk ? tmp[0] : dst_hi;
1643		rt = dstk ? tmp[1] : dst_lo;
1644		if (dstk) {
1645			emit(ARM_LDR_I(rt, ARM_SP, STACK_VAR(dst_lo)), ctx);
1646			emit(ARM_LDR_I(rd, ARM_SP, STACK_VAR(dst_hi)), ctx);
1647		}
1648
1649		/* Check for the condition */
1650		emit_ar_r(rd, rt, rm, rn, ctx, BPF_OP(code));
1651
1652		/* Setup JUMP instruction */
1653		jmp_offset = bpf2a32_offset(i+off, i, ctx);
1654		switch (BPF_OP(code)) {
1655		case BPF_JNE:
1656		case BPF_JSET:
1657			_emit(ARM_COND_NE, ARM_B(jmp_offset), ctx);
1658			break;
1659		case BPF_JEQ:
1660			_emit(ARM_COND_EQ, ARM_B(jmp_offset), ctx);
1661			break;
1662		case BPF_JGT:
1663			_emit(ARM_COND_HI, ARM_B(jmp_offset), ctx);
1664			break;
1665		case BPF_JGE:
1666			_emit(ARM_COND_CS, ARM_B(jmp_offset), ctx);
1667			break;
1668		case BPF_JSGT:
1669			_emit(ARM_COND_LT, ARM_B(jmp_offset), ctx);
1670			break;
1671		case BPF_JSGE:
1672			_emit(ARM_COND_GE, ARM_B(jmp_offset), ctx);
1673			break;
1674		case BPF_JLE:
1675			_emit(ARM_COND_LS, ARM_B(jmp_offset), ctx);
1676			break;
1677		case BPF_JLT:
1678			_emit(ARM_COND_CC, ARM_B(jmp_offset), ctx);
1679			break;
1680		case BPF_JSLT:
1681			_emit(ARM_COND_LT, ARM_B(jmp_offset), ctx);
1682			break;
1683		case BPF_JSLE:
1684			_emit(ARM_COND_GE, ARM_B(jmp_offset), ctx);
1685			break;
1686		}
1687		break;
1688	/* JMP OFF */
1689	case BPF_JMP | BPF_JA:
1690	{
1691		if (off == 0)
1692			break;
1693		jmp_offset = bpf2a32_offset(i+off, i, ctx);
1694		check_imm24(jmp_offset);
1695		emit(ARM_B(jmp_offset), ctx);
1696		break;
1697	}
1698	/* tail call */
1699	case BPF_JMP | BPF_TAIL_CALL:
1700		if (emit_bpf_tail_call(ctx))
1701			return -EFAULT;
1702		break;
1703	/* function call */
1704	case BPF_JMP | BPF_CALL:
1705	{
1706		const u8 *r0 = bpf2a32[BPF_REG_0];
1707		const u8 *r1 = bpf2a32[BPF_REG_1];
1708		const u8 *r2 = bpf2a32[BPF_REG_2];
1709		const u8 *r3 = bpf2a32[BPF_REG_3];
1710		const u8 *r4 = bpf2a32[BPF_REG_4];
1711		const u8 *r5 = bpf2a32[BPF_REG_5];
1712		const u32 func = (u32)__bpf_call_base + (u32)imm;
1713
1714		emit_a32_mov_r64(true, r0, r1, false, false, ctx);
1715		emit_a32_mov_r64(true, r1, r2, false, true, ctx);
1716		emit_push_r64(r5, 0, ctx);
1717		emit_push_r64(r4, 8, ctx);
1718		emit_push_r64(r3, 16, ctx);
1719
1720		emit_a32_mov_i(tmp[1], func, false, ctx);
1721		emit_blx_r(tmp[1], ctx);
1722
1723		emit(ARM_ADD_I(ARM_SP, ARM_SP, imm8m(24)), ctx); // callee clean
1724		break;
1725	}
1726	/* function return */
1727	case BPF_JMP | BPF_EXIT:
1728		/* Optimization: when last instruction is EXIT
1729		 * simply fallthrough to epilogue.
1730		 */
1731		if (i == ctx->prog->len - 1)
1732			break;
1733		jmp_offset = epilogue_offset(ctx);
1734		check_imm24(jmp_offset);
1735		emit(ARM_B(jmp_offset), ctx);
1736		break;
1737notyet:
1738		pr_info_once("*** NOT YET: opcode %02x ***\n", code);
1739		return -EFAULT;
1740	default:
1741		pr_err_once("unknown opcode %02x\n", code);
1742		return -EINVAL;
1743	}
1744
1745	if (ctx->flags & FLAG_IMM_OVERFLOW)
1746		/*
1747		 * this instruction generated an overflow when
1748		 * trying to access the literal pool, so
1749		 * delegate this filter to the kernel interpreter.
1750		 */
1751		return -1;
1752	return 0;
1753}
1754
1755static int build_body(struct jit_ctx *ctx)
1756{
1757	const struct bpf_prog *prog = ctx->prog;
1758	unsigned int i;
1759
1760	for (i = 0; i < prog->len; i++) {
1761		const struct bpf_insn *insn = &(prog->insnsi[i]);
1762		int ret;
1763
1764		ret = build_insn(insn, ctx);
1765
1766		/* It's used with loading the 64 bit immediate value. */
1767		if (ret > 0) {
1768			i++;
1769			if (ctx->target == NULL)
1770				ctx->offsets[i] = ctx->idx;
1771			continue;
1772		}
1773
1774		if (ctx->target == NULL)
1775			ctx->offsets[i] = ctx->idx;
1776
1777		/* If unsuccesfull, return with error code */
1778		if (ret)
1779			return ret;
1780	}
1781	return 0;
1782}
1783
1784static int validate_code(struct jit_ctx *ctx)
1785{
1786	int i;
1787
1788	for (i = 0; i < ctx->idx; i++) {
1789		if (ctx->target[i] == __opcode_to_mem_arm(ARM_INST_UDF))
1790			return -1;
1791	}
1792
1793	return 0;
1794}
1795
1796void bpf_jit_compile(struct bpf_prog *prog)
1797{
1798	/* Nothing to do here. We support Internal BPF. */
1799}
1800
1801struct bpf_prog *bpf_int_jit_compile(struct bpf_prog *prog)
1802{
1803	struct bpf_prog *tmp, *orig_prog = prog;
1804	struct bpf_binary_header *header;
1805	bool tmp_blinded = false;
1806	struct jit_ctx ctx;
1807	unsigned int tmp_idx;
1808	unsigned int image_size;
1809	u8 *image_ptr;
1810
1811	/* If BPF JIT was not enabled then we must fall back to
1812	 * the interpreter.
1813	 */
1814	if (!prog->jit_requested)
1815		return orig_prog;
1816
1817	/* If constant blinding was enabled and we failed during blinding
1818	 * then we must fall back to the interpreter. Otherwise, we save
1819	 * the new JITed code.
1820	 */
1821	tmp = bpf_jit_blind_constants(prog);
1822
1823	if (IS_ERR(tmp))
1824		return orig_prog;
1825	if (tmp != prog) {
1826		tmp_blinded = true;
1827		prog = tmp;
1828	}
1829
1830	memset(&ctx, 0, sizeof(ctx));
1831	ctx.prog = prog;
1832
1833	/* Not able to allocate memory for offsets[] , then
1834	 * we must fall back to the interpreter
1835	 */
1836	ctx.offsets = kcalloc(prog->len, sizeof(int), GFP_KERNEL);
1837	if (ctx.offsets == NULL) {
1838		prog = orig_prog;
1839		goto out;
1840	}
1841
1842	/* 1) fake pass to find in the length of the JITed code,
1843	 * to compute ctx->offsets and other context variables
1844	 * needed to compute final JITed code.
1845	 * Also, calculate random starting pointer/start of JITed code
1846	 * which is prefixed by random number of fault instructions.
1847	 *
1848	 * If the first pass fails then there is no chance of it
1849	 * being successful in the second pass, so just fall back
1850	 * to the interpreter.
1851	 */
1852	if (build_body(&ctx)) {
1853		prog = orig_prog;
1854		goto out_off;
1855	}
1856
1857	tmp_idx = ctx.idx;
1858	build_prologue(&ctx);
1859	ctx.prologue_bytes = (ctx.idx - tmp_idx) * 4;
1860
1861	ctx.epilogue_offset = ctx.idx;
1862
1863#if __LINUX_ARM_ARCH__ < 7
1864	tmp_idx = ctx.idx;
1865	build_epilogue(&ctx);
1866	ctx.epilogue_bytes = (ctx.idx - tmp_idx) * 4;
1867
1868	ctx.idx += ctx.imm_count;
1869	if (ctx.imm_count) {
1870		ctx.imms = kcalloc(ctx.imm_count, sizeof(u32), GFP_KERNEL);
1871		if (ctx.imms == NULL) {
1872			prog = orig_prog;
1873			goto out_off;
1874		}
1875	}
1876#else
1877	/* there's nothing about the epilogue on ARMv7 */
1878	build_epilogue(&ctx);
1879#endif
1880	/* Now we can get the actual image size of the JITed arm code.
1881	 * Currently, we are not considering the THUMB-2 instructions
1882	 * for jit, although it can decrease the size of the image.
1883	 *
1884	 * As each arm instruction is of length 32bit, we are translating
1885	 * number of JITed intructions into the size required to store these
1886	 * JITed code.
1887	 */
1888	image_size = sizeof(u32) * ctx.idx;
1889
1890	/* Now we know the size of the structure to make */
1891	header = bpf_jit_binary_alloc(image_size, &image_ptr,
1892				      sizeof(u32), jit_fill_hole);
1893	/* Not able to allocate memory for the structure then
1894	 * we must fall back to the interpretation
1895	 */
1896	if (header == NULL) {
1897		prog = orig_prog;
1898		goto out_imms;
1899	}
1900
1901	/* 2.) Actual pass to generate final JIT code */
1902	ctx.target = (u32 *) image_ptr;
1903	ctx.idx = 0;
1904
1905	build_prologue(&ctx);
1906
1907	/* If building the body of the JITed code fails somehow,
1908	 * we fall back to the interpretation.
1909	 */
1910	if (build_body(&ctx) < 0) {
1911		image_ptr = NULL;
1912		bpf_jit_binary_free(header);
1913		prog = orig_prog;
1914		goto out_imms;
1915	}
1916	build_epilogue(&ctx);
1917
1918	/* 3.) Extra pass to validate JITed Code */
1919	if (validate_code(&ctx)) {
1920		image_ptr = NULL;
1921		bpf_jit_binary_free(header);
1922		prog = orig_prog;
1923		goto out_imms;
1924	}
1925	flush_icache_range((u32)header, (u32)(ctx.target + ctx.idx));
1926
1927	if (bpf_jit_enable > 1)
1928		/* there are 2 passes here */
1929		bpf_jit_dump(prog->len, image_size, 2, ctx.target);
1930
1931	set_memory_ro((unsigned long)header, header->pages);
1932	prog->bpf_func = (void *)ctx.target;
1933	prog->jited = 1;
1934	prog->jited_len = image_size;
1935
1936out_imms:
1937#if __LINUX_ARM_ARCH__ < 7
1938	if (ctx.imm_count)
1939		kfree(ctx.imms);
1940#endif
1941out_off:
1942	kfree(ctx.offsets);
1943out:
1944	if (tmp_blinded)
1945		bpf_jit_prog_release_other(prog, prog == orig_prog ?
1946					   tmp : orig_prog);
1947	return prog;
1948}
1949