Linux Audio

Check our new training course

Loading...
Note: File does not exist in v3.1.
   1// SPDX-License-Identifier: GPL-2.0-only
   2/*
   3 * Just-In-Time compiler for eBPF filters on 32bit ARM
   4 *
   5 * Copyright (c) 2017 Shubham Bansal <illusionist.neo@gmail.com>
   6 * Copyright (c) 2011 Mircea Gherzan <mgherzan@gmail.com>
   7 */
   8
   9#include <linux/bpf.h>
  10#include <linux/bitops.h>
  11#include <linux/compiler.h>
  12#include <linux/errno.h>
  13#include <linux/filter.h>
  14#include <linux/netdevice.h>
  15#include <linux/string.h>
  16#include <linux/slab.h>
  17#include <linux/if_vlan.h>
  18
  19#include <asm/cacheflush.h>
  20#include <asm/hwcap.h>
  21#include <asm/opcodes.h>
  22#include <asm/system_info.h>
  23
  24#include "bpf_jit_32.h"
  25
  26/*
  27 * eBPF prog stack layout:
  28 *
  29 *                         high
  30 * original ARM_SP =>     +-----+
  31 *                        |     | callee saved registers
  32 *                        +-----+ <= (BPF_FP + SCRATCH_SIZE)
  33 *                        | ... | eBPF JIT scratch space
  34 * eBPF fp register =>    +-----+
  35 *   (BPF_FP)             | ... | eBPF prog stack
  36 *                        +-----+
  37 *                        |RSVD | JIT scratchpad
  38 * current ARM_SP =>      +-----+ <= (BPF_FP - STACK_SIZE + SCRATCH_SIZE)
  39 *                        | ... | caller-saved registers
  40 *                        +-----+
  41 *                        | ... | arguments passed on stack
  42 * ARM_SP during call =>  +-----|
  43 *                        |     |
  44 *                        | ... | Function call stack
  45 *                        |     |
  46 *                        +-----+
  47 *                          low
  48 *
  49 * The callee saved registers depends on whether frame pointers are enabled.
  50 * With frame pointers (to be compliant with the ABI):
  51 *
  52 *                              high
  53 * original ARM_SP =>     +--------------+ \
  54 *                        |      pc      | |
  55 * current ARM_FP =>      +--------------+ } callee saved registers
  56 *                        |r4-r9,fp,ip,lr| |
  57 *                        +--------------+ /
  58 *                              low
  59 *
  60 * Without frame pointers:
  61 *
  62 *                              high
  63 * original ARM_SP =>     +--------------+
  64 *                        |  r4-r9,fp,lr | callee saved registers
  65 * current ARM_FP =>      +--------------+
  66 *                              low
  67 *
  68 * When popping registers off the stack at the end of a BPF function, we
  69 * reference them via the current ARM_FP register.
  70 *
  71 * Some eBPF operations are implemented via a call to a helper function.
  72 * Such calls are "invisible" in the eBPF code, so it is up to the calling
  73 * program to preserve any caller-saved ARM registers during the call. The
  74 * JIT emits code to push and pop those registers onto the stack, immediately
  75 * above the callee stack frame.
  76 */
  77#define CALLEE_MASK	(1 << ARM_R4 | 1 << ARM_R5 | 1 << ARM_R6 | \
  78			 1 << ARM_R7 | 1 << ARM_R8 | 1 << ARM_R9 | \
  79			 1 << ARM_FP)
  80#define CALLEE_PUSH_MASK (CALLEE_MASK | 1 << ARM_LR)
  81#define CALLEE_POP_MASK  (CALLEE_MASK | 1 << ARM_PC)
  82
  83#define CALLER_MASK	(1 << ARM_R0 | 1 << ARM_R1 | 1 << ARM_R2 | 1 << ARM_R3)
  84
  85enum {
  86	/* Stack layout - these are offsets from (top of stack - 4) */
  87	BPF_R2_HI,
  88	BPF_R2_LO,
  89	BPF_R3_HI,
  90	BPF_R3_LO,
  91	BPF_R4_HI,
  92	BPF_R4_LO,
  93	BPF_R5_HI,
  94	BPF_R5_LO,
  95	BPF_R7_HI,
  96	BPF_R7_LO,
  97	BPF_R8_HI,
  98	BPF_R8_LO,
  99	BPF_R9_HI,
 100	BPF_R9_LO,
 101	BPF_FP_HI,
 102	BPF_FP_LO,
 103	BPF_TC_HI,
 104	BPF_TC_LO,
 105	BPF_AX_HI,
 106	BPF_AX_LO,
 107	/* Stack space for BPF_REG_2, BPF_REG_3, BPF_REG_4,
 108	 * BPF_REG_5, BPF_REG_7, BPF_REG_8, BPF_REG_9,
 109	 * BPF_REG_FP and Tail call counts.
 110	 */
 111	BPF_JIT_SCRATCH_REGS,
 112};
 113
 114/*
 115 * Negative "register" values indicate the register is stored on the stack
 116 * and are the offset from the top of the eBPF JIT scratch space.
 117 */
 118#define STACK_OFFSET(k)	(-4 - (k) * 4)
 119#define SCRATCH_SIZE	(BPF_JIT_SCRATCH_REGS * 4)
 120
 121#ifdef CONFIG_FRAME_POINTER
 122#define EBPF_SCRATCH_TO_ARM_FP(x) ((x) - 4 * hweight16(CALLEE_PUSH_MASK) - 4)
 123#else
 124#define EBPF_SCRATCH_TO_ARM_FP(x) (x)
 125#endif
 126
 127#define TMP_REG_1	(MAX_BPF_JIT_REG + 0)	/* TEMP Register 1 */
 128#define TMP_REG_2	(MAX_BPF_JIT_REG + 1)	/* TEMP Register 2 */
 129#define TCALL_CNT	(MAX_BPF_JIT_REG + 2)	/* Tail Call Count */
 130
 131#define FLAG_IMM_OVERFLOW	(1 << 0)
 132
 133/*
 134 * Map eBPF registers to ARM 32bit registers or stack scratch space.
 135 *
 136 * 1. First argument is passed using the arm 32bit registers and rest of the
 137 * arguments are passed on stack scratch space.
 138 * 2. First callee-saved argument is mapped to arm 32 bit registers and rest
 139 * arguments are mapped to scratch space on stack.
 140 * 3. We need two 64 bit temp registers to do complex operations on eBPF
 141 * registers.
 142 *
 143 * As the eBPF registers are all 64 bit registers and arm has only 32 bit
 144 * registers, we have to map each eBPF registers with two arm 32 bit regs or
 145 * scratch memory space and we have to build eBPF 64 bit register from those.
 146 *
 147 */
 148static const s8 bpf2a32[][2] = {
 149	/* return value from in-kernel function, and exit value from eBPF */
 150	[BPF_REG_0] = {ARM_R1, ARM_R0},
 151	/* arguments from eBPF program to in-kernel function */
 152	[BPF_REG_1] = {ARM_R3, ARM_R2},
 153	/* Stored on stack scratch space */
 154	[BPF_REG_2] = {STACK_OFFSET(BPF_R2_HI), STACK_OFFSET(BPF_R2_LO)},
 155	[BPF_REG_3] = {STACK_OFFSET(BPF_R3_HI), STACK_OFFSET(BPF_R3_LO)},
 156	[BPF_REG_4] = {STACK_OFFSET(BPF_R4_HI), STACK_OFFSET(BPF_R4_LO)},
 157	[BPF_REG_5] = {STACK_OFFSET(BPF_R5_HI), STACK_OFFSET(BPF_R5_LO)},
 158	/* callee saved registers that in-kernel function will preserve */
 159	[BPF_REG_6] = {ARM_R5, ARM_R4},
 160	/* Stored on stack scratch space */
 161	[BPF_REG_7] = {STACK_OFFSET(BPF_R7_HI), STACK_OFFSET(BPF_R7_LO)},
 162	[BPF_REG_8] = {STACK_OFFSET(BPF_R8_HI), STACK_OFFSET(BPF_R8_LO)},
 163	[BPF_REG_9] = {STACK_OFFSET(BPF_R9_HI), STACK_OFFSET(BPF_R9_LO)},
 164	/* Read only Frame Pointer to access Stack */
 165	[BPF_REG_FP] = {STACK_OFFSET(BPF_FP_HI), STACK_OFFSET(BPF_FP_LO)},
 166	/* Temporary Register for BPF JIT, can be used
 167	 * for constant blindings and others.
 168	 */
 169	[TMP_REG_1] = {ARM_R7, ARM_R6},
 170	[TMP_REG_2] = {ARM_R9, ARM_R8},
 171	/* Tail call count. Stored on stack scratch space. */
 172	[TCALL_CNT] = {STACK_OFFSET(BPF_TC_HI), STACK_OFFSET(BPF_TC_LO)},
 173	/* temporary register for blinding constants.
 174	 * Stored on stack scratch space.
 175	 */
 176	[BPF_REG_AX] = {STACK_OFFSET(BPF_AX_HI), STACK_OFFSET(BPF_AX_LO)},
 177};
 178
 179#define	dst_lo	dst[1]
 180#define dst_hi	dst[0]
 181#define src_lo	src[1]
 182#define src_hi	src[0]
 183
 184/*
 185 * JIT Context:
 186 *
 187 * prog			:	bpf_prog
 188 * idx			:	index of current last JITed instruction.
 189 * prologue_bytes	:	bytes used in prologue.
 190 * epilogue_offset	:	offset of epilogue starting.
 191 * offsets		:	array of eBPF instruction offsets in
 192 *				JITed code.
 193 * target		:	final JITed code.
 194 * epilogue_bytes	:	no of bytes used in epilogue.
 195 * imm_count		:	no of immediate counts used for global
 196 *				variables.
 197 * imms			:	array of global variable addresses.
 198 */
 199
 200struct jit_ctx {
 201	const struct bpf_prog *prog;
 202	unsigned int idx;
 203	unsigned int prologue_bytes;
 204	unsigned int epilogue_offset;
 205	unsigned int cpu_architecture;
 206	u32 flags;
 207	u32 *offsets;
 208	u32 *target;
 209	u32 stack_size;
 210#if __LINUX_ARM_ARCH__ < 7
 211	u16 epilogue_bytes;
 212	u16 imm_count;
 213	u32 *imms;
 214#endif
 215};
 216
 217/*
 218 * Wrappers which handle both OABI and EABI and assures Thumb2 interworking
 219 * (where the assembly routines like __aeabi_uidiv could cause problems).
 220 */
 221static u32 jit_udiv32(u32 dividend, u32 divisor)
 222{
 223	return dividend / divisor;
 224}
 225
 226static u32 jit_mod32(u32 dividend, u32 divisor)
 227{
 228	return dividend % divisor;
 229}
 230
 231static inline void _emit(int cond, u32 inst, struct jit_ctx *ctx)
 232{
 233	inst |= (cond << 28);
 234	inst = __opcode_to_mem_arm(inst);
 235
 236	if (ctx->target != NULL)
 237		ctx->target[ctx->idx] = inst;
 238
 239	ctx->idx++;
 240}
 241
 242/*
 243 * Emit an instruction that will be executed unconditionally.
 244 */
 245static inline void emit(u32 inst, struct jit_ctx *ctx)
 246{
 247	_emit(ARM_COND_AL, inst, ctx);
 248}
 249
 250/*
 251 * This is rather horrid, but necessary to convert an integer constant
 252 * to an immediate operand for the opcodes, and be able to detect at
 253 * build time whether the constant can't be converted (iow, usable in
 254 * BUILD_BUG_ON()).
 255 */
 256#define imm12val(v, s) (rol32(v, (s)) | (s) << 7)
 257#define const_imm8m(x)					\
 258	({ int r;					\
 259	   u32 v = (x);					\
 260	   if (!(v & ~0x000000ff))			\
 261		r = imm12val(v, 0);			\
 262	   else if (!(v & ~0xc000003f))			\
 263		r = imm12val(v, 2);			\
 264	   else if (!(v & ~0xf000000f))			\
 265		r = imm12val(v, 4);			\
 266	   else if (!(v & ~0xfc000003))			\
 267		r = imm12val(v, 6);			\
 268	   else if (!(v & ~0xff000000))			\
 269		r = imm12val(v, 8);			\
 270	   else if (!(v & ~0x3fc00000))			\
 271		r = imm12val(v, 10);			\
 272	   else if (!(v & ~0x0ff00000))			\
 273		r = imm12val(v, 12);			\
 274	   else if (!(v & ~0x03fc0000))			\
 275		r = imm12val(v, 14);			\
 276	   else if (!(v & ~0x00ff0000))			\
 277		r = imm12val(v, 16);			\
 278	   else if (!(v & ~0x003fc000))			\
 279		r = imm12val(v, 18);			\
 280	   else if (!(v & ~0x000ff000))			\
 281		r = imm12val(v, 20);			\
 282	   else if (!(v & ~0x0003fc00))			\
 283		r = imm12val(v, 22);			\
 284	   else if (!(v & ~0x0000ff00))			\
 285		r = imm12val(v, 24);			\
 286	   else if (!(v & ~0x00003fc0))			\
 287		r = imm12val(v, 26);			\
 288	   else if (!(v & ~0x00000ff0))			\
 289		r = imm12val(v, 28);			\
 290	   else if (!(v & ~0x000003fc))			\
 291		r = imm12val(v, 30);			\
 292	   else						\
 293		r = -1;					\
 294	   r; })
 295
 296/*
 297 * Checks if immediate value can be converted to imm12(12 bits) value.
 298 */
 299static int imm8m(u32 x)
 300{
 301	u32 rot;
 302
 303	for (rot = 0; rot < 16; rot++)
 304		if ((x & ~ror32(0xff, 2 * rot)) == 0)
 305			return rol32(x, 2 * rot) | (rot << 8);
 306	return -1;
 307}
 308
 309#define imm8m(x) (__builtin_constant_p(x) ? const_imm8m(x) : imm8m(x))
 310
 311static u32 arm_bpf_ldst_imm12(u32 op, u8 rt, u8 rn, s16 imm12)
 312{
 313	op |= rt << 12 | rn << 16;
 314	if (imm12 >= 0)
 315		op |= ARM_INST_LDST__U;
 316	else
 317		imm12 = -imm12;
 318	return op | (imm12 & ARM_INST_LDST__IMM12);
 319}
 320
 321static u32 arm_bpf_ldst_imm8(u32 op, u8 rt, u8 rn, s16 imm8)
 322{
 323	op |= rt << 12 | rn << 16;
 324	if (imm8 >= 0)
 325		op |= ARM_INST_LDST__U;
 326	else
 327		imm8 = -imm8;
 328	return op | (imm8 & 0xf0) << 4 | (imm8 & 0x0f);
 329}
 330
 331#define ARM_LDR_I(rt, rn, off)	arm_bpf_ldst_imm12(ARM_INST_LDR_I, rt, rn, off)
 332#define ARM_LDRB_I(rt, rn, off)	arm_bpf_ldst_imm12(ARM_INST_LDRB_I, rt, rn, off)
 333#define ARM_LDRD_I(rt, rn, off)	arm_bpf_ldst_imm8(ARM_INST_LDRD_I, rt, rn, off)
 334#define ARM_LDRH_I(rt, rn, off)	arm_bpf_ldst_imm8(ARM_INST_LDRH_I, rt, rn, off)
 335
 336#define ARM_STR_I(rt, rn, off)	arm_bpf_ldst_imm12(ARM_INST_STR_I, rt, rn, off)
 337#define ARM_STRB_I(rt, rn, off)	arm_bpf_ldst_imm12(ARM_INST_STRB_I, rt, rn, off)
 338#define ARM_STRD_I(rt, rn, off)	arm_bpf_ldst_imm8(ARM_INST_STRD_I, rt, rn, off)
 339#define ARM_STRH_I(rt, rn, off)	arm_bpf_ldst_imm8(ARM_INST_STRH_I, rt, rn, off)
 340
 341/*
 342 * Initializes the JIT space with undefined instructions.
 343 */
 344static void jit_fill_hole(void *area, unsigned int size)
 345{
 346	u32 *ptr;
 347	/* We are guaranteed to have aligned memory. */
 348	for (ptr = area; size >= sizeof(u32); size -= sizeof(u32))
 349		*ptr++ = __opcode_to_mem_arm(ARM_INST_UDF);
 350}
 351
 352#if defined(CONFIG_AEABI) && (__LINUX_ARM_ARCH__ >= 5)
 353/* EABI requires the stack to be aligned to 64-bit boundaries */
 354#define STACK_ALIGNMENT	8
 355#else
 356/* Stack must be aligned to 32-bit boundaries */
 357#define STACK_ALIGNMENT	4
 358#endif
 359
 360/* total stack size used in JITed code */
 361#define _STACK_SIZE	(ctx->prog->aux->stack_depth + SCRATCH_SIZE)
 362#define STACK_SIZE	ALIGN(_STACK_SIZE, STACK_ALIGNMENT)
 363
 364#if __LINUX_ARM_ARCH__ < 7
 365
 366static u16 imm_offset(u32 k, struct jit_ctx *ctx)
 367{
 368	unsigned int i = 0, offset;
 369	u16 imm;
 370
 371	/* on the "fake" run we just count them (duplicates included) */
 372	if (ctx->target == NULL) {
 373		ctx->imm_count++;
 374		return 0;
 375	}
 376
 377	while ((i < ctx->imm_count) && ctx->imms[i]) {
 378		if (ctx->imms[i] == k)
 379			break;
 380		i++;
 381	}
 382
 383	if (ctx->imms[i] == 0)
 384		ctx->imms[i] = k;
 385
 386	/* constants go just after the epilogue */
 387	offset =  ctx->offsets[ctx->prog->len - 1] * 4;
 388	offset += ctx->prologue_bytes;
 389	offset += ctx->epilogue_bytes;
 390	offset += i * 4;
 391
 392	ctx->target[offset / 4] = k;
 393
 394	/* PC in ARM mode == address of the instruction + 8 */
 395	imm = offset - (8 + ctx->idx * 4);
 396
 397	if (imm & ~0xfff) {
 398		/*
 399		 * literal pool is too far, signal it into flags. we
 400		 * can only detect it on the second pass unfortunately.
 401		 */
 402		ctx->flags |= FLAG_IMM_OVERFLOW;
 403		return 0;
 404	}
 405
 406	return imm;
 407}
 408
 409#endif /* __LINUX_ARM_ARCH__ */
 410
 411static inline int bpf2a32_offset(int bpf_to, int bpf_from,
 412				 const struct jit_ctx *ctx) {
 413	int to, from;
 414
 415	if (ctx->target == NULL)
 416		return 0;
 417	to = ctx->offsets[bpf_to];
 418	from = ctx->offsets[bpf_from];
 419
 420	return to - from - 1;
 421}
 422
 423/*
 424 * Move an immediate that's not an imm8m to a core register.
 425 */
 426static inline void emit_mov_i_no8m(const u8 rd, u32 val, struct jit_ctx *ctx)
 427{
 428#if __LINUX_ARM_ARCH__ < 7
 429	emit(ARM_LDR_I(rd, ARM_PC, imm_offset(val, ctx)), ctx);
 430#else
 431	emit(ARM_MOVW(rd, val & 0xffff), ctx);
 432	if (val > 0xffff)
 433		emit(ARM_MOVT(rd, val >> 16), ctx);
 434#endif
 435}
 436
 437static inline void emit_mov_i(const u8 rd, u32 val, struct jit_ctx *ctx)
 438{
 439	int imm12 = imm8m(val);
 440
 441	if (imm12 >= 0)
 442		emit(ARM_MOV_I(rd, imm12), ctx);
 443	else
 444		emit_mov_i_no8m(rd, val, ctx);
 445}
 446
 447static void emit_bx_r(u8 tgt_reg, struct jit_ctx *ctx)
 448{
 449	if (elf_hwcap & HWCAP_THUMB)
 450		emit(ARM_BX(tgt_reg), ctx);
 451	else
 452		emit(ARM_MOV_R(ARM_PC, tgt_reg), ctx);
 453}
 454
 455static inline void emit_blx_r(u8 tgt_reg, struct jit_ctx *ctx)
 456{
 457#if __LINUX_ARM_ARCH__ < 5
 458	emit(ARM_MOV_R(ARM_LR, ARM_PC), ctx);
 459	emit_bx_r(tgt_reg, ctx);
 460#else
 461	emit(ARM_BLX_R(tgt_reg), ctx);
 462#endif
 463}
 464
 465static inline int epilogue_offset(const struct jit_ctx *ctx)
 466{
 467	int to, from;
 468	/* No need for 1st dummy run */
 469	if (ctx->target == NULL)
 470		return 0;
 471	to = ctx->epilogue_offset;
 472	from = ctx->idx;
 473
 474	return to - from - 2;
 475}
 476
 477static inline void emit_udivmod(u8 rd, u8 rm, u8 rn, struct jit_ctx *ctx, u8 op)
 478{
 479	const int exclude_mask = BIT(ARM_R0) | BIT(ARM_R1);
 480	const s8 *tmp = bpf2a32[TMP_REG_1];
 481
 482#if __LINUX_ARM_ARCH__ == 7
 483	if (elf_hwcap & HWCAP_IDIVA) {
 484		if (op == BPF_DIV)
 485			emit(ARM_UDIV(rd, rm, rn), ctx);
 486		else {
 487			emit(ARM_UDIV(ARM_IP, rm, rn), ctx);
 488			emit(ARM_MLS(rd, rn, ARM_IP, rm), ctx);
 489		}
 490		return;
 491	}
 492#endif
 493
 494	/*
 495	 * For BPF_ALU | BPF_DIV | BPF_K instructions
 496	 * As ARM_R1 and ARM_R0 contains 1st argument of bpf
 497	 * function, we need to save it on caller side to save
 498	 * it from getting destroyed within callee.
 499	 * After the return from the callee, we restore ARM_R0
 500	 * ARM_R1.
 501	 */
 502	if (rn != ARM_R1) {
 503		emit(ARM_MOV_R(tmp[0], ARM_R1), ctx);
 504		emit(ARM_MOV_R(ARM_R1, rn), ctx);
 505	}
 506	if (rm != ARM_R0) {
 507		emit(ARM_MOV_R(tmp[1], ARM_R0), ctx);
 508		emit(ARM_MOV_R(ARM_R0, rm), ctx);
 509	}
 510
 511	/* Push caller-saved registers on stack */
 512	emit(ARM_PUSH(CALLER_MASK & ~exclude_mask), ctx);
 513
 514	/* Call appropriate function */
 515	emit_mov_i(ARM_IP, op == BPF_DIV ?
 516		   (u32)jit_udiv32 : (u32)jit_mod32, ctx);
 517	emit_blx_r(ARM_IP, ctx);
 518
 519	/* Restore caller-saved registers from stack */
 520	emit(ARM_POP(CALLER_MASK & ~exclude_mask), ctx);
 521
 522	/* Save return value */
 523	if (rd != ARM_R0)
 524		emit(ARM_MOV_R(rd, ARM_R0), ctx);
 525
 526	/* Restore ARM_R0 and ARM_R1 */
 527	if (rn != ARM_R1)
 528		emit(ARM_MOV_R(ARM_R1, tmp[0]), ctx);
 529	if (rm != ARM_R0)
 530		emit(ARM_MOV_R(ARM_R0, tmp[1]), ctx);
 531}
 532
 533/* Is the translated BPF register on stack? */
 534static bool is_stacked(s8 reg)
 535{
 536	return reg < 0;
 537}
 538
 539/* If a BPF register is on the stack (stk is true), load it to the
 540 * supplied temporary register and return the temporary register
 541 * for subsequent operations, otherwise just use the CPU register.
 542 */
 543static s8 arm_bpf_get_reg32(s8 reg, s8 tmp, struct jit_ctx *ctx)
 544{
 545	if (is_stacked(reg)) {
 546		emit(ARM_LDR_I(tmp, ARM_FP, EBPF_SCRATCH_TO_ARM_FP(reg)), ctx);
 547		reg = tmp;
 548	}
 549	return reg;
 550}
 551
 552static const s8 *arm_bpf_get_reg64(const s8 *reg, const s8 *tmp,
 553				   struct jit_ctx *ctx)
 554{
 555	if (is_stacked(reg[1])) {
 556		if (__LINUX_ARM_ARCH__ >= 6 ||
 557		    ctx->cpu_architecture >= CPU_ARCH_ARMv5TE) {
 558			emit(ARM_LDRD_I(tmp[1], ARM_FP,
 559					EBPF_SCRATCH_TO_ARM_FP(reg[1])), ctx);
 560		} else {
 561			emit(ARM_LDR_I(tmp[1], ARM_FP,
 562				       EBPF_SCRATCH_TO_ARM_FP(reg[1])), ctx);
 563			emit(ARM_LDR_I(tmp[0], ARM_FP,
 564				       EBPF_SCRATCH_TO_ARM_FP(reg[0])), ctx);
 565		}
 566		reg = tmp;
 567	}
 568	return reg;
 569}
 570
 571/* If a BPF register is on the stack (stk is true), save the register
 572 * back to the stack.  If the source register is not the same, then
 573 * move it into the correct register.
 574 */
 575static void arm_bpf_put_reg32(s8 reg, s8 src, struct jit_ctx *ctx)
 576{
 577	if (is_stacked(reg))
 578		emit(ARM_STR_I(src, ARM_FP, EBPF_SCRATCH_TO_ARM_FP(reg)), ctx);
 579	else if (reg != src)
 580		emit(ARM_MOV_R(reg, src), ctx);
 581}
 582
 583static void arm_bpf_put_reg64(const s8 *reg, const s8 *src,
 584			      struct jit_ctx *ctx)
 585{
 586	if (is_stacked(reg[1])) {
 587		if (__LINUX_ARM_ARCH__ >= 6 ||
 588		    ctx->cpu_architecture >= CPU_ARCH_ARMv5TE) {
 589			emit(ARM_STRD_I(src[1], ARM_FP,
 590				       EBPF_SCRATCH_TO_ARM_FP(reg[1])), ctx);
 591		} else {
 592			emit(ARM_STR_I(src[1], ARM_FP,
 593				       EBPF_SCRATCH_TO_ARM_FP(reg[1])), ctx);
 594			emit(ARM_STR_I(src[0], ARM_FP,
 595				       EBPF_SCRATCH_TO_ARM_FP(reg[0])), ctx);
 596		}
 597	} else {
 598		if (reg[1] != src[1])
 599			emit(ARM_MOV_R(reg[1], src[1]), ctx);
 600		if (reg[0] != src[0])
 601			emit(ARM_MOV_R(reg[0], src[0]), ctx);
 602	}
 603}
 604
 605static inline void emit_a32_mov_i(const s8 dst, const u32 val,
 606				  struct jit_ctx *ctx)
 607{
 608	const s8 *tmp = bpf2a32[TMP_REG_1];
 609
 610	if (is_stacked(dst)) {
 611		emit_mov_i(tmp[1], val, ctx);
 612		arm_bpf_put_reg32(dst, tmp[1], ctx);
 613	} else {
 614		emit_mov_i(dst, val, ctx);
 615	}
 616}
 617
 618static void emit_a32_mov_i64(const s8 dst[], u64 val, struct jit_ctx *ctx)
 619{
 620	const s8 *tmp = bpf2a32[TMP_REG_1];
 621	const s8 *rd = is_stacked(dst_lo) ? tmp : dst;
 622
 623	emit_mov_i(rd[1], (u32)val, ctx);
 624	emit_mov_i(rd[0], val >> 32, ctx);
 625
 626	arm_bpf_put_reg64(dst, rd, ctx);
 627}
 628
 629/* Sign extended move */
 630static inline void emit_a32_mov_se_i64(const bool is64, const s8 dst[],
 631				       const u32 val, struct jit_ctx *ctx) {
 632	u64 val64 = val;
 633
 634	if (is64 && (val & (1<<31)))
 635		val64 |= 0xffffffff00000000ULL;
 636	emit_a32_mov_i64(dst, val64, ctx);
 637}
 638
 639static inline void emit_a32_add_r(const u8 dst, const u8 src,
 640			      const bool is64, const bool hi,
 641			      struct jit_ctx *ctx) {
 642	/* 64 bit :
 643	 *	adds dst_lo, dst_lo, src_lo
 644	 *	adc dst_hi, dst_hi, src_hi
 645	 * 32 bit :
 646	 *	add dst_lo, dst_lo, src_lo
 647	 */
 648	if (!hi && is64)
 649		emit(ARM_ADDS_R(dst, dst, src), ctx);
 650	else if (hi && is64)
 651		emit(ARM_ADC_R(dst, dst, src), ctx);
 652	else
 653		emit(ARM_ADD_R(dst, dst, src), ctx);
 654}
 655
 656static inline void emit_a32_sub_r(const u8 dst, const u8 src,
 657				  const bool is64, const bool hi,
 658				  struct jit_ctx *ctx) {
 659	/* 64 bit :
 660	 *	subs dst_lo, dst_lo, src_lo
 661	 *	sbc dst_hi, dst_hi, src_hi
 662	 * 32 bit :
 663	 *	sub dst_lo, dst_lo, src_lo
 664	 */
 665	if (!hi && is64)
 666		emit(ARM_SUBS_R(dst, dst, src), ctx);
 667	else if (hi && is64)
 668		emit(ARM_SBC_R(dst, dst, src), ctx);
 669	else
 670		emit(ARM_SUB_R(dst, dst, src), ctx);
 671}
 672
 673static inline void emit_alu_r(const u8 dst, const u8 src, const bool is64,
 674			      const bool hi, const u8 op, struct jit_ctx *ctx){
 675	switch (BPF_OP(op)) {
 676	/* dst = dst + src */
 677	case BPF_ADD:
 678		emit_a32_add_r(dst, src, is64, hi, ctx);
 679		break;
 680	/* dst = dst - src */
 681	case BPF_SUB:
 682		emit_a32_sub_r(dst, src, is64, hi, ctx);
 683		break;
 684	/* dst = dst | src */
 685	case BPF_OR:
 686		emit(ARM_ORR_R(dst, dst, src), ctx);
 687		break;
 688	/* dst = dst & src */
 689	case BPF_AND:
 690		emit(ARM_AND_R(dst, dst, src), ctx);
 691		break;
 692	/* dst = dst ^ src */
 693	case BPF_XOR:
 694		emit(ARM_EOR_R(dst, dst, src), ctx);
 695		break;
 696	/* dst = dst * src */
 697	case BPF_MUL:
 698		emit(ARM_MUL(dst, dst, src), ctx);
 699		break;
 700	/* dst = dst << src */
 701	case BPF_LSH:
 702		emit(ARM_LSL_R(dst, dst, src), ctx);
 703		break;
 704	/* dst = dst >> src */
 705	case BPF_RSH:
 706		emit(ARM_LSR_R(dst, dst, src), ctx);
 707		break;
 708	/* dst = dst >> src (signed)*/
 709	case BPF_ARSH:
 710		emit(ARM_MOV_SR(dst, dst, SRTYPE_ASR, src), ctx);
 711		break;
 712	}
 713}
 714
 715/* ALU operation (64 bit) */
 716static inline void emit_a32_alu_r64(const bool is64, const s8 dst[],
 717				  const s8 src[], struct jit_ctx *ctx,
 718				  const u8 op) {
 719	const s8 *tmp = bpf2a32[TMP_REG_1];
 720	const s8 *tmp2 = bpf2a32[TMP_REG_2];
 721	const s8 *rd;
 722
 723	rd = arm_bpf_get_reg64(dst, tmp, ctx);
 724	if (is64) {
 725		const s8 *rs;
 726
 727		rs = arm_bpf_get_reg64(src, tmp2, ctx);
 728
 729		/* ALU operation */
 730		emit_alu_r(rd[1], rs[1], true, false, op, ctx);
 731		emit_alu_r(rd[0], rs[0], true, true, op, ctx);
 732	} else {
 733		s8 rs;
 734
 735		rs = arm_bpf_get_reg32(src_lo, tmp2[1], ctx);
 736
 737		/* ALU operation */
 738		emit_alu_r(rd[1], rs, true, false, op, ctx);
 739		if (!ctx->prog->aux->verifier_zext)
 740			emit_a32_mov_i(rd[0], 0, ctx);
 741	}
 742
 743	arm_bpf_put_reg64(dst, rd, ctx);
 744}
 745
 746/* dst = src (4 bytes)*/
 747static inline void emit_a32_mov_r(const s8 dst, const s8 src,
 748				  struct jit_ctx *ctx) {
 749	const s8 *tmp = bpf2a32[TMP_REG_1];
 750	s8 rt;
 751
 752	rt = arm_bpf_get_reg32(src, tmp[0], ctx);
 753	arm_bpf_put_reg32(dst, rt, ctx);
 754}
 755
 756/* dst = src */
 757static inline void emit_a32_mov_r64(const bool is64, const s8 dst[],
 758				  const s8 src[],
 759				  struct jit_ctx *ctx) {
 760	if (!is64) {
 761		emit_a32_mov_r(dst_lo, src_lo, ctx);
 762		if (!ctx->prog->aux->verifier_zext)
 763			/* Zero out high 4 bytes */
 764			emit_a32_mov_i(dst_hi, 0, ctx);
 765	} else if (__LINUX_ARM_ARCH__ < 6 &&
 766		   ctx->cpu_architecture < CPU_ARCH_ARMv5TE) {
 767		/* complete 8 byte move */
 768		emit_a32_mov_r(dst_lo, src_lo, ctx);
 769		emit_a32_mov_r(dst_hi, src_hi, ctx);
 770	} else if (is_stacked(src_lo) && is_stacked(dst_lo)) {
 771		const u8 *tmp = bpf2a32[TMP_REG_1];
 772
 773		emit(ARM_LDRD_I(tmp[1], ARM_FP, EBPF_SCRATCH_TO_ARM_FP(src_lo)), ctx);
 774		emit(ARM_STRD_I(tmp[1], ARM_FP, EBPF_SCRATCH_TO_ARM_FP(dst_lo)), ctx);
 775	} else if (is_stacked(src_lo)) {
 776		emit(ARM_LDRD_I(dst[1], ARM_FP, EBPF_SCRATCH_TO_ARM_FP(src_lo)), ctx);
 777	} else if (is_stacked(dst_lo)) {
 778		emit(ARM_STRD_I(src[1], ARM_FP, EBPF_SCRATCH_TO_ARM_FP(dst_lo)), ctx);
 779	} else {
 780		emit(ARM_MOV_R(dst[0], src[0]), ctx);
 781		emit(ARM_MOV_R(dst[1], src[1]), ctx);
 782	}
 783}
 784
 785/* Shift operations */
 786static inline void emit_a32_alu_i(const s8 dst, const u32 val,
 787				struct jit_ctx *ctx, const u8 op) {
 788	const s8 *tmp = bpf2a32[TMP_REG_1];
 789	s8 rd;
 790
 791	rd = arm_bpf_get_reg32(dst, tmp[0], ctx);
 792
 793	/* Do shift operation */
 794	switch (op) {
 795	case BPF_LSH:
 796		emit(ARM_LSL_I(rd, rd, val), ctx);
 797		break;
 798	case BPF_RSH:
 799		emit(ARM_LSR_I(rd, rd, val), ctx);
 800		break;
 801	case BPF_ARSH:
 802		emit(ARM_ASR_I(rd, rd, val), ctx);
 803		break;
 804	case BPF_NEG:
 805		emit(ARM_RSB_I(rd, rd, val), ctx);
 806		break;
 807	}
 808
 809	arm_bpf_put_reg32(dst, rd, ctx);
 810}
 811
 812/* dst = ~dst (64 bit) */
 813static inline void emit_a32_neg64(const s8 dst[],
 814				struct jit_ctx *ctx){
 815	const s8 *tmp = bpf2a32[TMP_REG_1];
 816	const s8 *rd;
 817
 818	/* Setup Operand */
 819	rd = arm_bpf_get_reg64(dst, tmp, ctx);
 820
 821	/* Do Negate Operation */
 822	emit(ARM_RSBS_I(rd[1], rd[1], 0), ctx);
 823	emit(ARM_RSC_I(rd[0], rd[0], 0), ctx);
 824
 825	arm_bpf_put_reg64(dst, rd, ctx);
 826}
 827
 828/* dst = dst << src */
 829static inline void emit_a32_lsh_r64(const s8 dst[], const s8 src[],
 830				    struct jit_ctx *ctx) {
 831	const s8 *tmp = bpf2a32[TMP_REG_1];
 832	const s8 *tmp2 = bpf2a32[TMP_REG_2];
 833	const s8 *rd;
 834	s8 rt;
 835
 836	/* Setup Operands */
 837	rt = arm_bpf_get_reg32(src_lo, tmp2[1], ctx);
 838	rd = arm_bpf_get_reg64(dst, tmp, ctx);
 839
 840	/* Do LSH operation */
 841	emit(ARM_SUB_I(ARM_IP, rt, 32), ctx);
 842	emit(ARM_RSB_I(tmp2[0], rt, 32), ctx);
 843	emit(ARM_MOV_SR(ARM_LR, rd[0], SRTYPE_ASL, rt), ctx);
 844	emit(ARM_ORR_SR(ARM_LR, ARM_LR, rd[1], SRTYPE_ASL, ARM_IP), ctx);
 845	emit(ARM_ORR_SR(ARM_IP, ARM_LR, rd[1], SRTYPE_LSR, tmp2[0]), ctx);
 846	emit(ARM_MOV_SR(ARM_LR, rd[1], SRTYPE_ASL, rt), ctx);
 847
 848	arm_bpf_put_reg32(dst_lo, ARM_LR, ctx);
 849	arm_bpf_put_reg32(dst_hi, ARM_IP, ctx);
 850}
 851
 852/* dst = dst >> src (signed)*/
 853static inline void emit_a32_arsh_r64(const s8 dst[], const s8 src[],
 854				     struct jit_ctx *ctx) {
 855	const s8 *tmp = bpf2a32[TMP_REG_1];
 856	const s8 *tmp2 = bpf2a32[TMP_REG_2];
 857	const s8 *rd;
 858	s8 rt;
 859
 860	/* Setup Operands */
 861	rt = arm_bpf_get_reg32(src_lo, tmp2[1], ctx);
 862	rd = arm_bpf_get_reg64(dst, tmp, ctx);
 863
 864	/* Do the ARSH operation */
 865	emit(ARM_RSB_I(ARM_IP, rt, 32), ctx);
 866	emit(ARM_SUBS_I(tmp2[0], rt, 32), ctx);
 867	emit(ARM_MOV_SR(ARM_LR, rd[1], SRTYPE_LSR, rt), ctx);
 868	emit(ARM_ORR_SR(ARM_LR, ARM_LR, rd[0], SRTYPE_ASL, ARM_IP), ctx);
 869	_emit(ARM_COND_PL,
 870	      ARM_ORR_SR(ARM_LR, ARM_LR, rd[0], SRTYPE_ASR, tmp2[0]), ctx);
 871	emit(ARM_MOV_SR(ARM_IP, rd[0], SRTYPE_ASR, rt), ctx);
 872
 873	arm_bpf_put_reg32(dst_lo, ARM_LR, ctx);
 874	arm_bpf_put_reg32(dst_hi, ARM_IP, ctx);
 875}
 876
 877/* dst = dst >> src */
 878static inline void emit_a32_rsh_r64(const s8 dst[], const s8 src[],
 879				    struct jit_ctx *ctx) {
 880	const s8 *tmp = bpf2a32[TMP_REG_1];
 881	const s8 *tmp2 = bpf2a32[TMP_REG_2];
 882	const s8 *rd;
 883	s8 rt;
 884
 885	/* Setup Operands */
 886	rt = arm_bpf_get_reg32(src_lo, tmp2[1], ctx);
 887	rd = arm_bpf_get_reg64(dst, tmp, ctx);
 888
 889	/* Do RSH operation */
 890	emit(ARM_RSB_I(ARM_IP, rt, 32), ctx);
 891	emit(ARM_SUBS_I(tmp2[0], rt, 32), ctx);
 892	emit(ARM_MOV_SR(ARM_LR, rd[1], SRTYPE_LSR, rt), ctx);
 893	emit(ARM_ORR_SR(ARM_LR, ARM_LR, rd[0], SRTYPE_ASL, ARM_IP), ctx);
 894	emit(ARM_ORR_SR(ARM_LR, ARM_LR, rd[0], SRTYPE_LSR, tmp2[0]), ctx);
 895	emit(ARM_MOV_SR(ARM_IP, rd[0], SRTYPE_LSR, rt), ctx);
 896
 897	arm_bpf_put_reg32(dst_lo, ARM_LR, ctx);
 898	arm_bpf_put_reg32(dst_hi, ARM_IP, ctx);
 899}
 900
 901/* dst = dst << val */
 902static inline void emit_a32_lsh_i64(const s8 dst[],
 903				    const u32 val, struct jit_ctx *ctx){
 904	const s8 *tmp = bpf2a32[TMP_REG_1];
 905	const s8 *tmp2 = bpf2a32[TMP_REG_2];
 906	const s8 *rd;
 907
 908	/* Setup operands */
 909	rd = arm_bpf_get_reg64(dst, tmp, ctx);
 910
 911	/* Do LSH operation */
 912	if (val < 32) {
 913		emit(ARM_MOV_SI(tmp2[0], rd[0], SRTYPE_ASL, val), ctx);
 914		emit(ARM_ORR_SI(rd[0], tmp2[0], rd[1], SRTYPE_LSR, 32 - val), ctx);
 915		emit(ARM_MOV_SI(rd[1], rd[1], SRTYPE_ASL, val), ctx);
 916	} else {
 917		if (val == 32)
 918			emit(ARM_MOV_R(rd[0], rd[1]), ctx);
 919		else
 920			emit(ARM_MOV_SI(rd[0], rd[1], SRTYPE_ASL, val - 32), ctx);
 921		emit(ARM_EOR_R(rd[1], rd[1], rd[1]), ctx);
 922	}
 923
 924	arm_bpf_put_reg64(dst, rd, ctx);
 925}
 926
 927/* dst = dst >> val */
 928static inline void emit_a32_rsh_i64(const s8 dst[],
 929				    const u32 val, struct jit_ctx *ctx) {
 930	const s8 *tmp = bpf2a32[TMP_REG_1];
 931	const s8 *tmp2 = bpf2a32[TMP_REG_2];
 932	const s8 *rd;
 933
 934	/* Setup operands */
 935	rd = arm_bpf_get_reg64(dst, tmp, ctx);
 936
 937	/* Do LSR operation */
 938	if (val == 0) {
 939		/* An immediate value of 0 encodes a shift amount of 32
 940		 * for LSR. To shift by 0, don't do anything.
 941		 */
 942	} else if (val < 32) {
 943		emit(ARM_MOV_SI(tmp2[1], rd[1], SRTYPE_LSR, val), ctx);
 944		emit(ARM_ORR_SI(rd[1], tmp2[1], rd[0], SRTYPE_ASL, 32 - val), ctx);
 945		emit(ARM_MOV_SI(rd[0], rd[0], SRTYPE_LSR, val), ctx);
 946	} else if (val == 32) {
 947		emit(ARM_MOV_R(rd[1], rd[0]), ctx);
 948		emit(ARM_MOV_I(rd[0], 0), ctx);
 949	} else {
 950		emit(ARM_MOV_SI(rd[1], rd[0], SRTYPE_LSR, val - 32), ctx);
 951		emit(ARM_MOV_I(rd[0], 0), ctx);
 952	}
 953
 954	arm_bpf_put_reg64(dst, rd, ctx);
 955}
 956
 957/* dst = dst >> val (signed) */
 958static inline void emit_a32_arsh_i64(const s8 dst[],
 959				     const u32 val, struct jit_ctx *ctx){
 960	const s8 *tmp = bpf2a32[TMP_REG_1];
 961	const s8 *tmp2 = bpf2a32[TMP_REG_2];
 962	const s8 *rd;
 963
 964	/* Setup operands */
 965	rd = arm_bpf_get_reg64(dst, tmp, ctx);
 966
 967	/* Do ARSH operation */
 968	if (val == 0) {
 969		/* An immediate value of 0 encodes a shift amount of 32
 970		 * for ASR. To shift by 0, don't do anything.
 971		 */
 972	} else if (val < 32) {
 973		emit(ARM_MOV_SI(tmp2[1], rd[1], SRTYPE_LSR, val), ctx);
 974		emit(ARM_ORR_SI(rd[1], tmp2[1], rd[0], SRTYPE_ASL, 32 - val), ctx);
 975		emit(ARM_MOV_SI(rd[0], rd[0], SRTYPE_ASR, val), ctx);
 976	} else if (val == 32) {
 977		emit(ARM_MOV_R(rd[1], rd[0]), ctx);
 978		emit(ARM_MOV_SI(rd[0], rd[0], SRTYPE_ASR, 31), ctx);
 979	} else {
 980		emit(ARM_MOV_SI(rd[1], rd[0], SRTYPE_ASR, val - 32), ctx);
 981		emit(ARM_MOV_SI(rd[0], rd[0], SRTYPE_ASR, 31), ctx);
 982	}
 983
 984	arm_bpf_put_reg64(dst, rd, ctx);
 985}
 986
 987static inline void emit_a32_mul_r64(const s8 dst[], const s8 src[],
 988				    struct jit_ctx *ctx) {
 989	const s8 *tmp = bpf2a32[TMP_REG_1];
 990	const s8 *tmp2 = bpf2a32[TMP_REG_2];
 991	const s8 *rd, *rt;
 992
 993	/* Setup operands for multiplication */
 994	rd = arm_bpf_get_reg64(dst, tmp, ctx);
 995	rt = arm_bpf_get_reg64(src, tmp2, ctx);
 996
 997	/* Do Multiplication */
 998	emit(ARM_MUL(ARM_IP, rd[1], rt[0]), ctx);
 999	emit(ARM_MUL(ARM_LR, rd[0], rt[1]), ctx);
1000	emit(ARM_ADD_R(ARM_LR, ARM_IP, ARM_LR), ctx);
1001
1002	emit(ARM_UMULL(ARM_IP, rd[0], rd[1], rt[1]), ctx);
1003	emit(ARM_ADD_R(rd[0], ARM_LR, rd[0]), ctx);
1004
1005	arm_bpf_put_reg32(dst_lo, ARM_IP, ctx);
1006	arm_bpf_put_reg32(dst_hi, rd[0], ctx);
1007}
1008
1009static bool is_ldst_imm(s16 off, const u8 size)
1010{
1011	s16 off_max = 0;
1012
1013	switch (size) {
1014	case BPF_B:
1015	case BPF_W:
1016		off_max = 0xfff;
1017		break;
1018	case BPF_H:
1019		off_max = 0xff;
1020		break;
1021	case BPF_DW:
1022		/* Need to make sure off+4 does not overflow. */
1023		off_max = 0xfff - 4;
1024		break;
1025	}
1026	return -off_max <= off && off <= off_max;
1027}
1028
1029/* *(size *)(dst + off) = src */
1030static inline void emit_str_r(const s8 dst, const s8 src[],
1031			      s16 off, struct jit_ctx *ctx, const u8 sz){
1032	const s8 *tmp = bpf2a32[TMP_REG_1];
1033	s8 rd;
1034
1035	rd = arm_bpf_get_reg32(dst, tmp[1], ctx);
1036
1037	if (!is_ldst_imm(off, sz)) {
1038		emit_a32_mov_i(tmp[0], off, ctx);
1039		emit(ARM_ADD_R(tmp[0], tmp[0], rd), ctx);
1040		rd = tmp[0];
1041		off = 0;
1042	}
1043	switch (sz) {
1044	case BPF_B:
1045		/* Store a Byte */
1046		emit(ARM_STRB_I(src_lo, rd, off), ctx);
1047		break;
1048	case BPF_H:
1049		/* Store a HalfWord */
1050		emit(ARM_STRH_I(src_lo, rd, off), ctx);
1051		break;
1052	case BPF_W:
1053		/* Store a Word */
1054		emit(ARM_STR_I(src_lo, rd, off), ctx);
1055		break;
1056	case BPF_DW:
1057		/* Store a Double Word */
1058		emit(ARM_STR_I(src_lo, rd, off), ctx);
1059		emit(ARM_STR_I(src_hi, rd, off + 4), ctx);
1060		break;
1061	}
1062}
1063
1064/* dst = *(size*)(src + off) */
1065static inline void emit_ldx_r(const s8 dst[], const s8 src,
1066			      s16 off, struct jit_ctx *ctx, const u8 sz){
1067	const s8 *tmp = bpf2a32[TMP_REG_1];
1068	const s8 *rd = is_stacked(dst_lo) ? tmp : dst;
1069	s8 rm = src;
1070
1071	if (!is_ldst_imm(off, sz)) {
1072		emit_a32_mov_i(tmp[0], off, ctx);
1073		emit(ARM_ADD_R(tmp[0], tmp[0], src), ctx);
1074		rm = tmp[0];
1075		off = 0;
1076	} else if (rd[1] == rm) {
1077		emit(ARM_MOV_R(tmp[0], rm), ctx);
1078		rm = tmp[0];
1079	}
1080	switch (sz) {
1081	case BPF_B:
1082		/* Load a Byte */
1083		emit(ARM_LDRB_I(rd[1], rm, off), ctx);
1084		if (!ctx->prog->aux->verifier_zext)
1085			emit_a32_mov_i(rd[0], 0, ctx);
1086		break;
1087	case BPF_H:
1088		/* Load a HalfWord */
1089		emit(ARM_LDRH_I(rd[1], rm, off), ctx);
1090		if (!ctx->prog->aux->verifier_zext)
1091			emit_a32_mov_i(rd[0], 0, ctx);
1092		break;
1093	case BPF_W:
1094		/* Load a Word */
1095		emit(ARM_LDR_I(rd[1], rm, off), ctx);
1096		if (!ctx->prog->aux->verifier_zext)
1097			emit_a32_mov_i(rd[0], 0, ctx);
1098		break;
1099	case BPF_DW:
1100		/* Load a Double Word */
1101		emit(ARM_LDR_I(rd[1], rm, off), ctx);
1102		emit(ARM_LDR_I(rd[0], rm, off + 4), ctx);
1103		break;
1104	}
1105	arm_bpf_put_reg64(dst, rd, ctx);
1106}
1107
1108/* Arithmatic Operation */
1109static inline void emit_ar_r(const u8 rd, const u8 rt, const u8 rm,
1110			     const u8 rn, struct jit_ctx *ctx, u8 op,
1111			     bool is_jmp64) {
1112	switch (op) {
1113	case BPF_JSET:
1114		if (is_jmp64) {
1115			emit(ARM_AND_R(ARM_IP, rt, rn), ctx);
1116			emit(ARM_AND_R(ARM_LR, rd, rm), ctx);
1117			emit(ARM_ORRS_R(ARM_IP, ARM_LR, ARM_IP), ctx);
1118		} else {
1119			emit(ARM_ANDS_R(ARM_IP, rt, rn), ctx);
1120		}
1121		break;
1122	case BPF_JEQ:
1123	case BPF_JNE:
1124	case BPF_JGT:
1125	case BPF_JGE:
1126	case BPF_JLE:
1127	case BPF_JLT:
1128		if (is_jmp64) {
1129			emit(ARM_CMP_R(rd, rm), ctx);
1130			/* Only compare low halve if high halve are equal. */
1131			_emit(ARM_COND_EQ, ARM_CMP_R(rt, rn), ctx);
1132		} else {
1133			emit(ARM_CMP_R(rt, rn), ctx);
1134		}
1135		break;
1136	case BPF_JSLE:
1137	case BPF_JSGT:
1138		emit(ARM_CMP_R(rn, rt), ctx);
1139		if (is_jmp64)
1140			emit(ARM_SBCS_R(ARM_IP, rm, rd), ctx);
1141		break;
1142	case BPF_JSLT:
1143	case BPF_JSGE:
1144		emit(ARM_CMP_R(rt, rn), ctx);
1145		if (is_jmp64)
1146			emit(ARM_SBCS_R(ARM_IP, rd, rm), ctx);
1147		break;
1148	}
1149}
1150
1151static int out_offset = -1; /* initialized on the first pass of build_body() */
1152static int emit_bpf_tail_call(struct jit_ctx *ctx)
1153{
1154
1155	/* bpf_tail_call(void *prog_ctx, struct bpf_array *array, u64 index) */
1156	const s8 *r2 = bpf2a32[BPF_REG_2];
1157	const s8 *r3 = bpf2a32[BPF_REG_3];
1158	const s8 *tmp = bpf2a32[TMP_REG_1];
1159	const s8 *tmp2 = bpf2a32[TMP_REG_2];
1160	const s8 *tcc = bpf2a32[TCALL_CNT];
1161	const s8 *tc;
1162	const int idx0 = ctx->idx;
1163#define cur_offset (ctx->idx - idx0)
1164#define jmp_offset (out_offset - (cur_offset) - 2)
1165	u32 lo, hi;
1166	s8 r_array, r_index;
1167	int off;
1168
1169	/* if (index >= array->map.max_entries)
1170	 *	goto out;
1171	 */
1172	BUILD_BUG_ON(offsetof(struct bpf_array, map.max_entries) >
1173		     ARM_INST_LDST__IMM12);
1174	off = offsetof(struct bpf_array, map.max_entries);
1175	r_array = arm_bpf_get_reg32(r2[1], tmp2[0], ctx);
1176	/* index is 32-bit for arrays */
1177	r_index = arm_bpf_get_reg32(r3[1], tmp2[1], ctx);
1178	/* array->map.max_entries */
1179	emit(ARM_LDR_I(tmp[1], r_array, off), ctx);
1180	/* index >= array->map.max_entries */
1181	emit(ARM_CMP_R(r_index, tmp[1]), ctx);
1182	_emit(ARM_COND_CS, ARM_B(jmp_offset), ctx);
1183
1184	/* tmp2[0] = array, tmp2[1] = index */
1185
1186	/*
1187	 * if (tail_call_cnt >= MAX_TAIL_CALL_CNT)
1188	 *	goto out;
1189	 * tail_call_cnt++;
1190	 */
1191	lo = (u32)MAX_TAIL_CALL_CNT;
1192	hi = (u32)((u64)MAX_TAIL_CALL_CNT >> 32);
1193	tc = arm_bpf_get_reg64(tcc, tmp, ctx);
1194	emit(ARM_CMP_I(tc[0], hi), ctx);
1195	_emit(ARM_COND_EQ, ARM_CMP_I(tc[1], lo), ctx);
1196	_emit(ARM_COND_CS, ARM_B(jmp_offset), ctx);
1197	emit(ARM_ADDS_I(tc[1], tc[1], 1), ctx);
1198	emit(ARM_ADC_I(tc[0], tc[0], 0), ctx);
1199	arm_bpf_put_reg64(tcc, tmp, ctx);
1200
1201	/* prog = array->ptrs[index]
1202	 * if (prog == NULL)
1203	 *	goto out;
1204	 */
1205	BUILD_BUG_ON(imm8m(offsetof(struct bpf_array, ptrs)) < 0);
1206	off = imm8m(offsetof(struct bpf_array, ptrs));
1207	emit(ARM_ADD_I(tmp[1], r_array, off), ctx);
1208	emit(ARM_LDR_R_SI(tmp[1], tmp[1], r_index, SRTYPE_ASL, 2), ctx);
1209	emit(ARM_CMP_I(tmp[1], 0), ctx);
1210	_emit(ARM_COND_EQ, ARM_B(jmp_offset), ctx);
1211
1212	/* goto *(prog->bpf_func + prologue_size); */
1213	BUILD_BUG_ON(offsetof(struct bpf_prog, bpf_func) >
1214		     ARM_INST_LDST__IMM12);
1215	off = offsetof(struct bpf_prog, bpf_func);
1216	emit(ARM_LDR_I(tmp[1], tmp[1], off), ctx);
1217	emit(ARM_ADD_I(tmp[1], tmp[1], ctx->prologue_bytes), ctx);
1218	emit_bx_r(tmp[1], ctx);
1219
1220	/* out: */
1221	if (out_offset == -1)
1222		out_offset = cur_offset;
1223	if (cur_offset != out_offset) {
1224		pr_err_once("tail_call out_offset = %d, expected %d!\n",
1225			    cur_offset, out_offset);
1226		return -1;
1227	}
1228	return 0;
1229#undef cur_offset
1230#undef jmp_offset
1231}
1232
1233/* 0xabcd => 0xcdab */
1234static inline void emit_rev16(const u8 rd, const u8 rn, struct jit_ctx *ctx)
1235{
1236#if __LINUX_ARM_ARCH__ < 6
1237	const s8 *tmp2 = bpf2a32[TMP_REG_2];
1238
1239	emit(ARM_AND_I(tmp2[1], rn, 0xff), ctx);
1240	emit(ARM_MOV_SI(tmp2[0], rn, SRTYPE_LSR, 8), ctx);
1241	emit(ARM_AND_I(tmp2[0], tmp2[0], 0xff), ctx);
1242	emit(ARM_ORR_SI(rd, tmp2[0], tmp2[1], SRTYPE_LSL, 8), ctx);
1243#else /* ARMv6+ */
1244	emit(ARM_REV16(rd, rn), ctx);
1245#endif
1246}
1247
1248/* 0xabcdefgh => 0xghefcdab */
1249static inline void emit_rev32(const u8 rd, const u8 rn, struct jit_ctx *ctx)
1250{
1251#if __LINUX_ARM_ARCH__ < 6
1252	const s8 *tmp2 = bpf2a32[TMP_REG_2];
1253
1254	emit(ARM_AND_I(tmp2[1], rn, 0xff), ctx);
1255	emit(ARM_MOV_SI(tmp2[0], rn, SRTYPE_LSR, 24), ctx);
1256	emit(ARM_ORR_SI(ARM_IP, tmp2[0], tmp2[1], SRTYPE_LSL, 24), ctx);
1257
1258	emit(ARM_MOV_SI(tmp2[1], rn, SRTYPE_LSR, 8), ctx);
1259	emit(ARM_AND_I(tmp2[1], tmp2[1], 0xff), ctx);
1260	emit(ARM_MOV_SI(tmp2[0], rn, SRTYPE_LSR, 16), ctx);
1261	emit(ARM_AND_I(tmp2[0], tmp2[0], 0xff), ctx);
1262	emit(ARM_MOV_SI(tmp2[0], tmp2[0], SRTYPE_LSL, 8), ctx);
1263	emit(ARM_ORR_SI(tmp2[0], tmp2[0], tmp2[1], SRTYPE_LSL, 16), ctx);
1264	emit(ARM_ORR_R(rd, ARM_IP, tmp2[0]), ctx);
1265
1266#else /* ARMv6+ */
1267	emit(ARM_REV(rd, rn), ctx);
1268#endif
1269}
1270
1271// push the scratch stack register on top of the stack
1272static inline void emit_push_r64(const s8 src[], struct jit_ctx *ctx)
1273{
1274	const s8 *tmp2 = bpf2a32[TMP_REG_2];
1275	const s8 *rt;
1276	u16 reg_set = 0;
1277
1278	rt = arm_bpf_get_reg64(src, tmp2, ctx);
1279
1280	reg_set = (1 << rt[1]) | (1 << rt[0]);
1281	emit(ARM_PUSH(reg_set), ctx);
1282}
1283
1284static void build_prologue(struct jit_ctx *ctx)
1285{
1286	const s8 arm_r0 = bpf2a32[BPF_REG_0][1];
1287	const s8 *bpf_r1 = bpf2a32[BPF_REG_1];
1288	const s8 *bpf_fp = bpf2a32[BPF_REG_FP];
1289	const s8 *tcc = bpf2a32[TCALL_CNT];
1290
1291	/* Save callee saved registers. */
1292#ifdef CONFIG_FRAME_POINTER
1293	u16 reg_set = CALLEE_PUSH_MASK | 1 << ARM_IP | 1 << ARM_PC;
1294	emit(ARM_MOV_R(ARM_IP, ARM_SP), ctx);
1295	emit(ARM_PUSH(reg_set), ctx);
1296	emit(ARM_SUB_I(ARM_FP, ARM_IP, 4), ctx);
1297#else
1298	emit(ARM_PUSH(CALLEE_PUSH_MASK), ctx);
1299	emit(ARM_MOV_R(ARM_FP, ARM_SP), ctx);
1300#endif
1301	/* mov r3, #0 */
1302	/* sub r2, sp, #SCRATCH_SIZE */
1303	emit(ARM_MOV_I(bpf_r1[0], 0), ctx);
1304	emit(ARM_SUB_I(bpf_r1[1], ARM_SP, SCRATCH_SIZE), ctx);
1305
1306	ctx->stack_size = imm8m(STACK_SIZE);
1307
1308	/* Set up function call stack */
1309	emit(ARM_SUB_I(ARM_SP, ARM_SP, ctx->stack_size), ctx);
1310
1311	/* Set up BPF prog stack base register */
1312	emit_a32_mov_r64(true, bpf_fp, bpf_r1, ctx);
1313
1314	/* Initialize Tail Count */
1315	emit(ARM_MOV_I(bpf_r1[1], 0), ctx);
1316	emit_a32_mov_r64(true, tcc, bpf_r1, ctx);
1317
1318	/* Move BPF_CTX to BPF_R1 */
1319	emit(ARM_MOV_R(bpf_r1[1], arm_r0), ctx);
1320
1321	/* end of prologue */
1322}
1323
1324/* restore callee saved registers. */
1325static void build_epilogue(struct jit_ctx *ctx)
1326{
1327#ifdef CONFIG_FRAME_POINTER
1328	/* When using frame pointers, some additional registers need to
1329	 * be loaded. */
1330	u16 reg_set = CALLEE_POP_MASK | 1 << ARM_SP;
1331	emit(ARM_SUB_I(ARM_SP, ARM_FP, hweight16(reg_set) * 4), ctx);
1332	emit(ARM_LDM(ARM_SP, reg_set), ctx);
1333#else
1334	/* Restore callee saved registers. */
1335	emit(ARM_MOV_R(ARM_SP, ARM_FP), ctx);
1336	emit(ARM_POP(CALLEE_POP_MASK), ctx);
1337#endif
1338}
1339
1340/*
1341 * Convert an eBPF instruction to native instruction, i.e
1342 * JITs an eBPF instruction.
1343 * Returns :
1344 *	0  - Successfully JITed an 8-byte eBPF instruction
1345 *	>0 - Successfully JITed a 16-byte eBPF instruction
1346 *	<0 - Failed to JIT.
1347 */
1348static int build_insn(const struct bpf_insn *insn, struct jit_ctx *ctx)
1349{
1350	const u8 code = insn->code;
1351	const s8 *dst = bpf2a32[insn->dst_reg];
1352	const s8 *src = bpf2a32[insn->src_reg];
1353	const s8 *tmp = bpf2a32[TMP_REG_1];
1354	const s8 *tmp2 = bpf2a32[TMP_REG_2];
1355	const s16 off = insn->off;
1356	const s32 imm = insn->imm;
1357	const int i = insn - ctx->prog->insnsi;
1358	const bool is64 = BPF_CLASS(code) == BPF_ALU64;
1359	const s8 *rd, *rs;
1360	s8 rd_lo, rt, rm, rn;
1361	s32 jmp_offset;
1362
1363#define check_imm(bits, imm) do {				\
1364	if ((imm) >= (1 << ((bits) - 1)) ||			\
1365	    (imm) < -(1 << ((bits) - 1))) {			\
1366		pr_info("[%2d] imm=%d(0x%x) out of range\n",	\
1367			i, imm, imm);				\
1368		return -EINVAL;					\
1369	}							\
1370} while (0)
1371#define check_imm24(imm) check_imm(24, imm)
1372
1373	switch (code) {
1374	/* ALU operations */
1375
1376	/* dst = src */
1377	case BPF_ALU | BPF_MOV | BPF_K:
1378	case BPF_ALU | BPF_MOV | BPF_X:
1379	case BPF_ALU64 | BPF_MOV | BPF_K:
1380	case BPF_ALU64 | BPF_MOV | BPF_X:
1381		switch (BPF_SRC(code)) {
1382		case BPF_X:
1383			if (imm == 1) {
1384				/* Special mov32 for zext */
1385				emit_a32_mov_i(dst_hi, 0, ctx);
1386				break;
1387			}
1388			emit_a32_mov_r64(is64, dst, src, ctx);
1389			break;
1390		case BPF_K:
1391			/* Sign-extend immediate value to destination reg */
1392			emit_a32_mov_se_i64(is64, dst, imm, ctx);
1393			break;
1394		}
1395		break;
1396	/* dst = dst + src/imm */
1397	/* dst = dst - src/imm */
1398	/* dst = dst | src/imm */
1399	/* dst = dst & src/imm */
1400	/* dst = dst ^ src/imm */
1401	/* dst = dst * src/imm */
1402	/* dst = dst << src */
1403	/* dst = dst >> src */
1404	case BPF_ALU | BPF_ADD | BPF_K:
1405	case BPF_ALU | BPF_ADD | BPF_X:
1406	case BPF_ALU | BPF_SUB | BPF_K:
1407	case BPF_ALU | BPF_SUB | BPF_X:
1408	case BPF_ALU | BPF_OR | BPF_K:
1409	case BPF_ALU | BPF_OR | BPF_X:
1410	case BPF_ALU | BPF_AND | BPF_K:
1411	case BPF_ALU | BPF_AND | BPF_X:
1412	case BPF_ALU | BPF_XOR | BPF_K:
1413	case BPF_ALU | BPF_XOR | BPF_X:
1414	case BPF_ALU | BPF_MUL | BPF_K:
1415	case BPF_ALU | BPF_MUL | BPF_X:
1416	case BPF_ALU | BPF_LSH | BPF_X:
1417	case BPF_ALU | BPF_RSH | BPF_X:
1418	case BPF_ALU | BPF_ARSH | BPF_X:
1419	case BPF_ALU64 | BPF_ADD | BPF_K:
1420	case BPF_ALU64 | BPF_ADD | BPF_X:
1421	case BPF_ALU64 | BPF_SUB | BPF_K:
1422	case BPF_ALU64 | BPF_SUB | BPF_X:
1423	case BPF_ALU64 | BPF_OR | BPF_K:
1424	case BPF_ALU64 | BPF_OR | BPF_X:
1425	case BPF_ALU64 | BPF_AND | BPF_K:
1426	case BPF_ALU64 | BPF_AND | BPF_X:
1427	case BPF_ALU64 | BPF_XOR | BPF_K:
1428	case BPF_ALU64 | BPF_XOR | BPF_X:
1429		switch (BPF_SRC(code)) {
1430		case BPF_X:
1431			emit_a32_alu_r64(is64, dst, src, ctx, BPF_OP(code));
1432			break;
1433		case BPF_K:
1434			/* Move immediate value to the temporary register
1435			 * and then do the ALU operation on the temporary
1436			 * register as this will sign-extend the immediate
1437			 * value into temporary reg and then it would be
1438			 * safe to do the operation on it.
1439			 */
1440			emit_a32_mov_se_i64(is64, tmp2, imm, ctx);
1441			emit_a32_alu_r64(is64, dst, tmp2, ctx, BPF_OP(code));
1442			break;
1443		}
1444		break;
1445	/* dst = dst / src(imm) */
1446	/* dst = dst % src(imm) */
1447	case BPF_ALU | BPF_DIV | BPF_K:
1448	case BPF_ALU | BPF_DIV | BPF_X:
1449	case BPF_ALU | BPF_MOD | BPF_K:
1450	case BPF_ALU | BPF_MOD | BPF_X:
1451		rd_lo = arm_bpf_get_reg32(dst_lo, tmp2[1], ctx);
1452		switch (BPF_SRC(code)) {
1453		case BPF_X:
1454			rt = arm_bpf_get_reg32(src_lo, tmp2[0], ctx);
1455			break;
1456		case BPF_K:
1457			rt = tmp2[0];
1458			emit_a32_mov_i(rt, imm, ctx);
1459			break;
1460		default:
1461			rt = src_lo;
1462			break;
1463		}
1464		emit_udivmod(rd_lo, rd_lo, rt, ctx, BPF_OP(code));
1465		arm_bpf_put_reg32(dst_lo, rd_lo, ctx);
1466		if (!ctx->prog->aux->verifier_zext)
1467			emit_a32_mov_i(dst_hi, 0, ctx);
1468		break;
1469	case BPF_ALU64 | BPF_DIV | BPF_K:
1470	case BPF_ALU64 | BPF_DIV | BPF_X:
1471	case BPF_ALU64 | BPF_MOD | BPF_K:
1472	case BPF_ALU64 | BPF_MOD | BPF_X:
1473		goto notyet;
1474	/* dst = dst << imm */
1475	/* dst = dst >> imm */
1476	/* dst = dst >> imm (signed) */
1477	case BPF_ALU | BPF_LSH | BPF_K:
1478	case BPF_ALU | BPF_RSH | BPF_K:
1479	case BPF_ALU | BPF_ARSH | BPF_K:
1480		if (unlikely(imm > 31))
1481			return -EINVAL;
1482		if (imm)
1483			emit_a32_alu_i(dst_lo, imm, ctx, BPF_OP(code));
1484		if (!ctx->prog->aux->verifier_zext)
1485			emit_a32_mov_i(dst_hi, 0, ctx);
1486		break;
1487	/* dst = dst << imm */
1488	case BPF_ALU64 | BPF_LSH | BPF_K:
1489		if (unlikely(imm > 63))
1490			return -EINVAL;
1491		emit_a32_lsh_i64(dst, imm, ctx);
1492		break;
1493	/* dst = dst >> imm */
1494	case BPF_ALU64 | BPF_RSH | BPF_K:
1495		if (unlikely(imm > 63))
1496			return -EINVAL;
1497		emit_a32_rsh_i64(dst, imm, ctx);
1498		break;
1499	/* dst = dst << src */
1500	case BPF_ALU64 | BPF_LSH | BPF_X:
1501		emit_a32_lsh_r64(dst, src, ctx);
1502		break;
1503	/* dst = dst >> src */
1504	case BPF_ALU64 | BPF_RSH | BPF_X:
1505		emit_a32_rsh_r64(dst, src, ctx);
1506		break;
1507	/* dst = dst >> src (signed) */
1508	case BPF_ALU64 | BPF_ARSH | BPF_X:
1509		emit_a32_arsh_r64(dst, src, ctx);
1510		break;
1511	/* dst = dst >> imm (signed) */
1512	case BPF_ALU64 | BPF_ARSH | BPF_K:
1513		if (unlikely(imm > 63))
1514			return -EINVAL;
1515		emit_a32_arsh_i64(dst, imm, ctx);
1516		break;
1517	/* dst = ~dst */
1518	case BPF_ALU | BPF_NEG:
1519		emit_a32_alu_i(dst_lo, 0, ctx, BPF_OP(code));
1520		if (!ctx->prog->aux->verifier_zext)
1521			emit_a32_mov_i(dst_hi, 0, ctx);
1522		break;
1523	/* dst = ~dst (64 bit) */
1524	case BPF_ALU64 | BPF_NEG:
1525		emit_a32_neg64(dst, ctx);
1526		break;
1527	/* dst = dst * src/imm */
1528	case BPF_ALU64 | BPF_MUL | BPF_X:
1529	case BPF_ALU64 | BPF_MUL | BPF_K:
1530		switch (BPF_SRC(code)) {
1531		case BPF_X:
1532			emit_a32_mul_r64(dst, src, ctx);
1533			break;
1534		case BPF_K:
1535			/* Move immediate value to the temporary register
1536			 * and then do the multiplication on it as this
1537			 * will sign-extend the immediate value into temp
1538			 * reg then it would be safe to do the operation
1539			 * on it.
1540			 */
1541			emit_a32_mov_se_i64(is64, tmp2, imm, ctx);
1542			emit_a32_mul_r64(dst, tmp2, ctx);
1543			break;
1544		}
1545		break;
1546	/* dst = htole(dst) */
1547	/* dst = htobe(dst) */
1548	case BPF_ALU | BPF_END | BPF_FROM_LE:
1549	case BPF_ALU | BPF_END | BPF_FROM_BE:
1550		rd = arm_bpf_get_reg64(dst, tmp, ctx);
1551		if (BPF_SRC(code) == BPF_FROM_LE)
1552			goto emit_bswap_uxt;
1553		switch (imm) {
1554		case 16:
1555			emit_rev16(rd[1], rd[1], ctx);
1556			goto emit_bswap_uxt;
1557		case 32:
1558			emit_rev32(rd[1], rd[1], ctx);
1559			goto emit_bswap_uxt;
1560		case 64:
1561			emit_rev32(ARM_LR, rd[1], ctx);
1562			emit_rev32(rd[1], rd[0], ctx);
1563			emit(ARM_MOV_R(rd[0], ARM_LR), ctx);
1564			break;
1565		}
1566		goto exit;
1567emit_bswap_uxt:
1568		switch (imm) {
1569		case 16:
1570			/* zero-extend 16 bits into 64 bits */
1571#if __LINUX_ARM_ARCH__ < 6
1572			emit_a32_mov_i(tmp2[1], 0xffff, ctx);
1573			emit(ARM_AND_R(rd[1], rd[1], tmp2[1]), ctx);
1574#else /* ARMv6+ */
1575			emit(ARM_UXTH(rd[1], rd[1]), ctx);
1576#endif
1577			if (!ctx->prog->aux->verifier_zext)
1578				emit(ARM_EOR_R(rd[0], rd[0], rd[0]), ctx);
1579			break;
1580		case 32:
1581			/* zero-extend 32 bits into 64 bits */
1582			if (!ctx->prog->aux->verifier_zext)
1583				emit(ARM_EOR_R(rd[0], rd[0], rd[0]), ctx);
1584			break;
1585		case 64:
1586			/* nop */
1587			break;
1588		}
1589exit:
1590		arm_bpf_put_reg64(dst, rd, ctx);
1591		break;
1592	/* dst = imm64 */
1593	case BPF_LD | BPF_IMM | BPF_DW:
1594	{
1595		u64 val = (u32)imm | (u64)insn[1].imm << 32;
1596
1597		emit_a32_mov_i64(dst, val, ctx);
1598
1599		return 1;
1600	}
1601	/* LDX: dst = *(size *)(src + off) */
1602	case BPF_LDX | BPF_MEM | BPF_W:
1603	case BPF_LDX | BPF_MEM | BPF_H:
1604	case BPF_LDX | BPF_MEM | BPF_B:
1605	case BPF_LDX | BPF_MEM | BPF_DW:
1606		rn = arm_bpf_get_reg32(src_lo, tmp2[1], ctx);
1607		emit_ldx_r(dst, rn, off, ctx, BPF_SIZE(code));
1608		break;
1609	/* speculation barrier */
1610	case BPF_ST | BPF_NOSPEC:
1611		break;
1612	/* ST: *(size *)(dst + off) = imm */
1613	case BPF_ST | BPF_MEM | BPF_W:
1614	case BPF_ST | BPF_MEM | BPF_H:
1615	case BPF_ST | BPF_MEM | BPF_B:
1616	case BPF_ST | BPF_MEM | BPF_DW:
1617		switch (BPF_SIZE(code)) {
1618		case BPF_DW:
1619			/* Sign-extend immediate value into temp reg */
1620			emit_a32_mov_se_i64(true, tmp2, imm, ctx);
1621			break;
1622		case BPF_W:
1623		case BPF_H:
1624		case BPF_B:
1625			emit_a32_mov_i(tmp2[1], imm, ctx);
1626			break;
1627		}
1628		emit_str_r(dst_lo, tmp2, off, ctx, BPF_SIZE(code));
1629		break;
1630	/* Atomic ops */
1631	case BPF_STX | BPF_ATOMIC | BPF_W:
1632	case BPF_STX | BPF_ATOMIC | BPF_DW:
1633		goto notyet;
1634	/* STX: *(size *)(dst + off) = src */
1635	case BPF_STX | BPF_MEM | BPF_W:
1636	case BPF_STX | BPF_MEM | BPF_H:
1637	case BPF_STX | BPF_MEM | BPF_B:
1638	case BPF_STX | BPF_MEM | BPF_DW:
1639		rs = arm_bpf_get_reg64(src, tmp2, ctx);
1640		emit_str_r(dst_lo, rs, off, ctx, BPF_SIZE(code));
1641		break;
1642	/* PC += off if dst == src */
1643	/* PC += off if dst > src */
1644	/* PC += off if dst >= src */
1645	/* PC += off if dst < src */
1646	/* PC += off if dst <= src */
1647	/* PC += off if dst != src */
1648	/* PC += off if dst > src (signed) */
1649	/* PC += off if dst >= src (signed) */
1650	/* PC += off if dst < src (signed) */
1651	/* PC += off if dst <= src (signed) */
1652	/* PC += off if dst & src */
1653	case BPF_JMP | BPF_JEQ | BPF_X:
1654	case BPF_JMP | BPF_JGT | BPF_X:
1655	case BPF_JMP | BPF_JGE | BPF_X:
1656	case BPF_JMP | BPF_JNE | BPF_X:
1657	case BPF_JMP | BPF_JSGT | BPF_X:
1658	case BPF_JMP | BPF_JSGE | BPF_X:
1659	case BPF_JMP | BPF_JSET | BPF_X:
1660	case BPF_JMP | BPF_JLE | BPF_X:
1661	case BPF_JMP | BPF_JLT | BPF_X:
1662	case BPF_JMP | BPF_JSLT | BPF_X:
1663	case BPF_JMP | BPF_JSLE | BPF_X:
1664	case BPF_JMP32 | BPF_JEQ | BPF_X:
1665	case BPF_JMP32 | BPF_JGT | BPF_X:
1666	case BPF_JMP32 | BPF_JGE | BPF_X:
1667	case BPF_JMP32 | BPF_JNE | BPF_X:
1668	case BPF_JMP32 | BPF_JSGT | BPF_X:
1669	case BPF_JMP32 | BPF_JSGE | BPF_X:
1670	case BPF_JMP32 | BPF_JSET | BPF_X:
1671	case BPF_JMP32 | BPF_JLE | BPF_X:
1672	case BPF_JMP32 | BPF_JLT | BPF_X:
1673	case BPF_JMP32 | BPF_JSLT | BPF_X:
1674	case BPF_JMP32 | BPF_JSLE | BPF_X:
1675		/* Setup source registers */
1676		rm = arm_bpf_get_reg32(src_hi, tmp2[0], ctx);
1677		rn = arm_bpf_get_reg32(src_lo, tmp2[1], ctx);
1678		goto go_jmp;
1679	/* PC += off if dst == imm */
1680	/* PC += off if dst > imm */
1681	/* PC += off if dst >= imm */
1682	/* PC += off if dst < imm */
1683	/* PC += off if dst <= imm */
1684	/* PC += off if dst != imm */
1685	/* PC += off if dst > imm (signed) */
1686	/* PC += off if dst >= imm (signed) */
1687	/* PC += off if dst < imm (signed) */
1688	/* PC += off if dst <= imm (signed) */
1689	/* PC += off if dst & imm */
1690	case BPF_JMP | BPF_JEQ | BPF_K:
1691	case BPF_JMP | BPF_JGT | BPF_K:
1692	case BPF_JMP | BPF_JGE | BPF_K:
1693	case BPF_JMP | BPF_JNE | BPF_K:
1694	case BPF_JMP | BPF_JSGT | BPF_K:
1695	case BPF_JMP | BPF_JSGE | BPF_K:
1696	case BPF_JMP | BPF_JSET | BPF_K:
1697	case BPF_JMP | BPF_JLT | BPF_K:
1698	case BPF_JMP | BPF_JLE | BPF_K:
1699	case BPF_JMP | BPF_JSLT | BPF_K:
1700	case BPF_JMP | BPF_JSLE | BPF_K:
1701	case BPF_JMP32 | BPF_JEQ | BPF_K:
1702	case BPF_JMP32 | BPF_JGT | BPF_K:
1703	case BPF_JMP32 | BPF_JGE | BPF_K:
1704	case BPF_JMP32 | BPF_JNE | BPF_K:
1705	case BPF_JMP32 | BPF_JSGT | BPF_K:
1706	case BPF_JMP32 | BPF_JSGE | BPF_K:
1707	case BPF_JMP32 | BPF_JSET | BPF_K:
1708	case BPF_JMP32 | BPF_JLT | BPF_K:
1709	case BPF_JMP32 | BPF_JLE | BPF_K:
1710	case BPF_JMP32 | BPF_JSLT | BPF_K:
1711	case BPF_JMP32 | BPF_JSLE | BPF_K:
1712		if (off == 0)
1713			break;
1714		rm = tmp2[0];
1715		rn = tmp2[1];
1716		/* Sign-extend immediate value */
1717		emit_a32_mov_se_i64(true, tmp2, imm, ctx);
1718go_jmp:
1719		/* Setup destination register */
1720		rd = arm_bpf_get_reg64(dst, tmp, ctx);
1721
1722		/* Check for the condition */
1723		emit_ar_r(rd[0], rd[1], rm, rn, ctx, BPF_OP(code),
1724			  BPF_CLASS(code) == BPF_JMP);
1725
1726		/* Setup JUMP instruction */
1727		jmp_offset = bpf2a32_offset(i+off, i, ctx);
1728		switch (BPF_OP(code)) {
1729		case BPF_JNE:
1730		case BPF_JSET:
1731			_emit(ARM_COND_NE, ARM_B(jmp_offset), ctx);
1732			break;
1733		case BPF_JEQ:
1734			_emit(ARM_COND_EQ, ARM_B(jmp_offset), ctx);
1735			break;
1736		case BPF_JGT:
1737			_emit(ARM_COND_HI, ARM_B(jmp_offset), ctx);
1738			break;
1739		case BPF_JGE:
1740			_emit(ARM_COND_CS, ARM_B(jmp_offset), ctx);
1741			break;
1742		case BPF_JSGT:
1743			_emit(ARM_COND_LT, ARM_B(jmp_offset), ctx);
1744			break;
1745		case BPF_JSGE:
1746			_emit(ARM_COND_GE, ARM_B(jmp_offset), ctx);
1747			break;
1748		case BPF_JLE:
1749			_emit(ARM_COND_LS, ARM_B(jmp_offset), ctx);
1750			break;
1751		case BPF_JLT:
1752			_emit(ARM_COND_CC, ARM_B(jmp_offset), ctx);
1753			break;
1754		case BPF_JSLT:
1755			_emit(ARM_COND_LT, ARM_B(jmp_offset), ctx);
1756			break;
1757		case BPF_JSLE:
1758			_emit(ARM_COND_GE, ARM_B(jmp_offset), ctx);
1759			break;
1760		}
1761		break;
1762	/* JMP OFF */
1763	case BPF_JMP | BPF_JA:
1764	{
1765		if (off == 0)
1766			break;
1767		jmp_offset = bpf2a32_offset(i+off, i, ctx);
1768		check_imm24(jmp_offset);
1769		emit(ARM_B(jmp_offset), ctx);
1770		break;
1771	}
1772	/* tail call */
1773	case BPF_JMP | BPF_TAIL_CALL:
1774		if (emit_bpf_tail_call(ctx))
1775			return -EFAULT;
1776		break;
1777	/* function call */
1778	case BPF_JMP | BPF_CALL:
1779	{
1780		const s8 *r0 = bpf2a32[BPF_REG_0];
1781		const s8 *r1 = bpf2a32[BPF_REG_1];
1782		const s8 *r2 = bpf2a32[BPF_REG_2];
1783		const s8 *r3 = bpf2a32[BPF_REG_3];
1784		const s8 *r4 = bpf2a32[BPF_REG_4];
1785		const s8 *r5 = bpf2a32[BPF_REG_5];
1786		const u32 func = (u32)__bpf_call_base + (u32)imm;
1787
1788		emit_a32_mov_r64(true, r0, r1, ctx);
1789		emit_a32_mov_r64(true, r1, r2, ctx);
1790		emit_push_r64(r5, ctx);
1791		emit_push_r64(r4, ctx);
1792		emit_push_r64(r3, ctx);
1793
1794		emit_a32_mov_i(tmp[1], func, ctx);
1795		emit_blx_r(tmp[1], ctx);
1796
1797		emit(ARM_ADD_I(ARM_SP, ARM_SP, imm8m(24)), ctx); // callee clean
1798		break;
1799	}
1800	/* function return */
1801	case BPF_JMP | BPF_EXIT:
1802		/* Optimization: when last instruction is EXIT
1803		 * simply fallthrough to epilogue.
1804		 */
1805		if (i == ctx->prog->len - 1)
1806			break;
1807		jmp_offset = epilogue_offset(ctx);
1808		check_imm24(jmp_offset);
1809		emit(ARM_B(jmp_offset), ctx);
1810		break;
1811notyet:
1812		pr_info_once("*** NOT YET: opcode %02x ***\n", code);
1813		return -EFAULT;
1814	default:
1815		pr_err_once("unknown opcode %02x\n", code);
1816		return -EINVAL;
1817	}
1818
1819	if (ctx->flags & FLAG_IMM_OVERFLOW)
1820		/*
1821		 * this instruction generated an overflow when
1822		 * trying to access the literal pool, so
1823		 * delegate this filter to the kernel interpreter.
1824		 */
1825		return -1;
1826	return 0;
1827}
1828
1829static int build_body(struct jit_ctx *ctx)
1830{
1831	const struct bpf_prog *prog = ctx->prog;
1832	unsigned int i;
1833
1834	for (i = 0; i < prog->len; i++) {
1835		const struct bpf_insn *insn = &(prog->insnsi[i]);
1836		int ret;
1837
1838		ret = build_insn(insn, ctx);
1839
1840		/* It's used with loading the 64 bit immediate value. */
1841		if (ret > 0) {
1842			i++;
1843			if (ctx->target == NULL)
1844				ctx->offsets[i] = ctx->idx;
1845			continue;
1846		}
1847
1848		if (ctx->target == NULL)
1849			ctx->offsets[i] = ctx->idx;
1850
1851		/* If unsuccesful, return with error code */
1852		if (ret)
1853			return ret;
1854	}
1855	return 0;
1856}
1857
1858static int validate_code(struct jit_ctx *ctx)
1859{
1860	int i;
1861
1862	for (i = 0; i < ctx->idx; i++) {
1863		if (ctx->target[i] == __opcode_to_mem_arm(ARM_INST_UDF))
1864			return -1;
1865	}
1866
1867	return 0;
1868}
1869
1870bool bpf_jit_needs_zext(void)
1871{
1872	return true;
1873}
1874
1875struct bpf_prog *bpf_int_jit_compile(struct bpf_prog *prog)
1876{
1877	struct bpf_prog *tmp, *orig_prog = prog;
1878	struct bpf_binary_header *header;
1879	bool tmp_blinded = false;
1880	struct jit_ctx ctx;
1881	unsigned int tmp_idx;
1882	unsigned int image_size;
1883	u8 *image_ptr;
1884
1885	/* If BPF JIT was not enabled then we must fall back to
1886	 * the interpreter.
1887	 */
1888	if (!prog->jit_requested)
1889		return orig_prog;
1890
1891	/* If constant blinding was enabled and we failed during blinding
1892	 * then we must fall back to the interpreter. Otherwise, we save
1893	 * the new JITed code.
1894	 */
1895	tmp = bpf_jit_blind_constants(prog);
1896
1897	if (IS_ERR(tmp))
1898		return orig_prog;
1899	if (tmp != prog) {
1900		tmp_blinded = true;
1901		prog = tmp;
1902	}
1903
1904	memset(&ctx, 0, sizeof(ctx));
1905	ctx.prog = prog;
1906	ctx.cpu_architecture = cpu_architecture();
1907
1908	/* Not able to allocate memory for offsets[] , then
1909	 * we must fall back to the interpreter
1910	 */
1911	ctx.offsets = kcalloc(prog->len, sizeof(int), GFP_KERNEL);
1912	if (ctx.offsets == NULL) {
1913		prog = orig_prog;
1914		goto out;
1915	}
1916
1917	/* 1) fake pass to find in the length of the JITed code,
1918	 * to compute ctx->offsets and other context variables
1919	 * needed to compute final JITed code.
1920	 * Also, calculate random starting pointer/start of JITed code
1921	 * which is prefixed by random number of fault instructions.
1922	 *
1923	 * If the first pass fails then there is no chance of it
1924	 * being successful in the second pass, so just fall back
1925	 * to the interpreter.
1926	 */
1927	if (build_body(&ctx)) {
1928		prog = orig_prog;
1929		goto out_off;
1930	}
1931
1932	tmp_idx = ctx.idx;
1933	build_prologue(&ctx);
1934	ctx.prologue_bytes = (ctx.idx - tmp_idx) * 4;
1935
1936	ctx.epilogue_offset = ctx.idx;
1937
1938#if __LINUX_ARM_ARCH__ < 7
1939	tmp_idx = ctx.idx;
1940	build_epilogue(&ctx);
1941	ctx.epilogue_bytes = (ctx.idx - tmp_idx) * 4;
1942
1943	ctx.idx += ctx.imm_count;
1944	if (ctx.imm_count) {
1945		ctx.imms = kcalloc(ctx.imm_count, sizeof(u32), GFP_KERNEL);
1946		if (ctx.imms == NULL) {
1947			prog = orig_prog;
1948			goto out_off;
1949		}
1950	}
1951#else
1952	/* there's nothing about the epilogue on ARMv7 */
1953	build_epilogue(&ctx);
1954#endif
1955	/* Now we can get the actual image size of the JITed arm code.
1956	 * Currently, we are not considering the THUMB-2 instructions
1957	 * for jit, although it can decrease the size of the image.
1958	 *
1959	 * As each arm instruction is of length 32bit, we are translating
1960	 * number of JITed instructions into the size required to store these
1961	 * JITed code.
1962	 */
1963	image_size = sizeof(u32) * ctx.idx;
1964
1965	/* Now we know the size of the structure to make */
1966	header = bpf_jit_binary_alloc(image_size, &image_ptr,
1967				      sizeof(u32), jit_fill_hole);
1968	/* Not able to allocate memory for the structure then
1969	 * we must fall back to the interpretation
1970	 */
1971	if (header == NULL) {
1972		prog = orig_prog;
1973		goto out_imms;
1974	}
1975
1976	/* 2.) Actual pass to generate final JIT code */
1977	ctx.target = (u32 *) image_ptr;
1978	ctx.idx = 0;
1979
1980	build_prologue(&ctx);
1981
1982	/* If building the body of the JITed code fails somehow,
1983	 * we fall back to the interpretation.
1984	 */
1985	if (build_body(&ctx) < 0) {
1986		image_ptr = NULL;
1987		bpf_jit_binary_free(header);
1988		prog = orig_prog;
1989		goto out_imms;
1990	}
1991	build_epilogue(&ctx);
1992
1993	/* 3.) Extra pass to validate JITed Code */
1994	if (validate_code(&ctx)) {
1995		image_ptr = NULL;
1996		bpf_jit_binary_free(header);
1997		prog = orig_prog;
1998		goto out_imms;
1999	}
2000	flush_icache_range((u32)header, (u32)(ctx.target + ctx.idx));
2001
2002	if (bpf_jit_enable > 1)
2003		/* there are 2 passes here */
2004		bpf_jit_dump(prog->len, image_size, 2, ctx.target);
2005
2006	bpf_jit_binary_lock_ro(header);
2007	prog->bpf_func = (void *)ctx.target;
2008	prog->jited = 1;
2009	prog->jited_len = image_size;
2010
2011out_imms:
2012#if __LINUX_ARM_ARCH__ < 7
2013	if (ctx.imm_count)
2014		kfree(ctx.imms);
2015#endif
2016out_off:
2017	kfree(ctx.offsets);
2018out:
2019	if (tmp_blinded)
2020		bpf_jit_prog_release_other(prog, prog == orig_prog ?
2021					   tmp : orig_prog);
2022	return prog;
2023}
2024